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Chapter 1

Introduction

Disasters are large intractable problems that test the ability of communities and

nations to effectively protect their populations and infrastructure, to reduce both

human and property loss, and to rapidly recover. The randomness of impacts and

problems, and uniqueness of incidents demand dynamic, real-time, effective and

cost efficient solutions. For this reason, we need quantitative risk-based methods

for decision-making under uncertainty to be developed and applied to volcanology.

Volcanic activity is a natural phenomenon that can turn into a disaster under

certain conditions. It is a natural process that cannot be controlled, but its

potentially disastrous effects can be mitigated. Volcanoes have implicit a natural

hazard which can threaten human lives and properties of those communities living

near by. The eruptions of volcanoes considered “dormant” or “inactive” have been

liable for major disasters in the past. The volcanic hazard from volcanoes with

a long term recurrence tends to be ignored, especially when little or no historical

data exists. This is the case of Teide - Pico Viejo stratovolcanoes in the island of

Tenerife.

Due to the limited scientific observability of the interior of a volcano, there

is a lot of uncertainty in forecasting volcanic eruptions. During a volcanic crisis

decision-makers need to take important life and death decisions under strict time

and uncertainty constrains. They are afraid of getting a decision wrong, causing

unnecessary economic disruption and public anxiety and distress.

There is an increasing recognition of the need of combining mathematical

models, together with statistical and operations research methods to address
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disaster management. The interdisciplinary science of mathematics applied to

the study of volcanology and volcanic hazard is an important approach, which

will help understand volcanic processes by integrating keen volcanological insights

with sound statistical modeling and artful application of computational power.

De la Cruz-Reyna [2000] have defined the different phases of a volcanic crisis

management. The first is the pre-event or pre-critical phase, and includes the sub-

phases of risk assessment, hazard and risk mapping, and postulation of expected

scenarios; volcano monitoring; and emergency planning. The second phase is

the critical or decision-making phase, which includes alert, communication, and

information procedures; response and implementation of emergency measures;

and defining the end of the critical phase.

Volcanic hazard is defined as the probability of any particular area being

affected by a destructive volcanic event within a given period of time. (Fournier

d’Albe 1979). The aim in a volcanic crisis management is to save lives and

minimize economic loss in the event of a volcanic eruption. To do this we need to

quantify the volcanic hazard in order to build an evacuation model to use before

the onset of the eruption. It is very important to note here that the hazard

term was used until recently for the scientific community of volcanologists to

refer to the different destructive volcanic events derived from a restless volcano.

It is very recent that volcanologists started associating the term hazard with

the probability of occurrence of a destructive volcanic event. It will take time

before scientists become familiar with the probability concept associated to the

volcanic hazard. In this sense, this thesis is also a contribution to make the

scientific community of volcanologists more familiar with the probabilistic concept

associated to hazard. When we talk about volcanic hazard, we now refer to the

probability of a destructive volcanic event happening in a given period of time.

The decision to evacuate is easy for remote volcanoes, where the potential

economic loss is small and there are no major consequences of a false alarm.

The hardest decisions are for volcanoes near to densely populated regions of

industrialized nations. In these cases, a prolonged mass evacuation costs millions,

and even billions of dollars, and the consequences of an unnecessary evacuation

are very costly and castigated.

Additionally, volcano hazard assessment is directly related with the estimation
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of the evacuation time. There is a large degree of uncertainty in the evacuation

process which needs to be taken into account as well as the volcanological un-

certainties. There has been major progress in the study and understanding of

the behavior of nonlinear complex systems, including the stochastic dynamics of

mass population evacuation.

Traditionally, the scientific community of volcanologists elaborate volcano

hazard maps and reports and communicate their scientific views on volcano haz-

ard to the government and civil protection officials, leaving to them the problem of

decision making. There is a need to support civil protection officials and govern-

ment further by establishing probabilistic criteria for evacuation decision-making.

The stochastic nature of many volcanological data has rarely been exploited

and the models do not generally produce the type of probabilistic outputs needed

for forecasting. In the last decade or so scientists have begun to exploit a wide

range of analytical and statistical methods for analyzing stochastic datasets. The

primary aim is to develop rigorous methods for quantifying the likelihood of

outcomes given the set of current and past observations.

The aim of this thesis is to work with volcanologists to try and address,

with the appropriate statistical methods, those questions they raise, and have

volcanologists collaborate with statisticians to learn about the advantages in the

application of statistical techniques to the interpretation of volcanic data. Here,

we propose and analyze different statistical methodologies to interpret volcanic

data and assess volcanic hazard. The statistical technique will depend on the

nature of the data and the type of problem we want to address. The models will

be used to analyze and interpret the historical and geological volcanic data for

Teide - Pico Viejo stratovolcanoes (TPV) and the Canary Islands archipelago.

1.1 Some useful definitions

Bayesian inference

Uses Bayes’ formula to compute the conditional posterior probability that the

hypothesis is true, given what was observed. The calculation involves the uncon-

ditional prior probability that the hypothesis is true, as well as the conditional

probabilities of getting what was observed given the hypothesis and given the
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alternative. The logic of Bayesian inference is sound, but there are practical diffi-

culties in its application. In particular, the prior probability that the hypothesis

is true may have to be determined subjectively, the alternative hypothesis must

be completely specified.

This represents the subjectivist school. According to Bayesian practice, changes

in belief upon receipt of new information are reflected in the transition from a

prior to a posterior probability. Bayes’ theorem is used as part of the process of

learning from new data. Thus if Ai is a particular event, and X is some data,

Bayes’ theorem can be used to update the prior probability P (Ai) to obtain the

posterior probability P (Ai|X) [Aspinall, 2006; Woo, 1999].

Frequentist inference

Is usually based on a p-value, which is the probability of getting what was

observed or a result more extreme than that, given that the hypothesis is true.

The weakness in the logic is that we are computing probabilities of events that

didn’t happen, assuming that the hypothesis is true, which it may not be. The

alternative hypothesis is used only to determine what events are more extreme

than the observed event and need not be completely specified.

In contrast with the subjectivist, the frequentist assigns a measure of uncer-

tainty to an individual event by considering it to belong to a class of similar events

having similar randomness properties, and associates probability with some no-

tion of limiting frequency [Woo, 1999].

Event tree

A graphical, tree-like representation of events in which branches are logical

steps from a general prior event through increasingly specific subsequent events

(intermediate outcomes) to final outcomes. Event trees are used to show possible

outcomes of volcanic unrest at progressively higher levels of detail. Probabilities

are estimated for each event through the tree. The multiplicative product of

probabilities along any one path will yield the probability of the terminal (right-

most) event. For graphical and conceptual simplicity, events at any given level

of the tree need not be mutually exclusive or exhaustive [Newhall and Hoblitt,

2002].

Probability tree

A graphical, tree-like representation of the probabilities of comprehensive (ex-
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haustive), mutually exclusive events. As above, events are progressively more

specific as one moves outward along branches. As above, the multiplicative prod-

uct of probabilities along any one path will be the probability of the most specific

event. However, the requirement that events at any given level of specificity be

comprehensive and mutually exclusive means that probabilities of events at that

level will sum to 1. This sum of 1 is required if one wishes to know, for example,

the total probability of an outcome (e.g., death) that might be reached along

different possible paths [Newhall and Hoblitt, 2002].

Volcano

A volcano is a vent in the earth’s crust through which molten rock (magma)

and rock fragments and gases are ejected from the Earth’s interior. A volcano is

created when magma erupts onto the surface of the Earth. Volcanoes take many

forms according to the chemical composition of their magma and the conditions in

which the magma is erupted. When magma is erupted freely in a continuous way

it is referred to as lava. Some lava known as ’basalt’ is hot and fluid. Opposite

of basalts are ’rhyolites’, which are characterized by their inability to flow freely,

erupt explosively or form steep domes. Midway in between are ’andesites’ which

are thick, flow slowly, and are mildly explosive [Blong, 2000].

Active Volcano

There are approximately 1,500 active volcanoes worldwide, of which only

about 550 are monitored because they are normally next to populated areas

and so considered a threat. Although there are no precise or generally accepted

definitions for the terms active volcano, dormant volcano and extinct volcano, all

volcanoes that have erupted in the last 10,000 years are commonly regarded as

active, and to volcanologists this means that the volcano have the possibility of

erupting again. Over 75% of the world’s active volcanoes are located in the Pa-

cific Ring of Fire, an arc of intense seismic and volcanic activity stretching form

New Zealand, along the eastern edge of Asia, north across the Aleutian Islands

of Alaska, and south along the coast of North and South America [Blong, 2000].

Extinct Volcano

Extinct volcanoes are those that scientists consider unlikely to erupt again,

because the volcano no longer has a lava supply. Examples of extinct volcanoes

are many volcanoes on the Hawaiian Emperor seamount chain in the Pacific
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Ocean, Hohentwiel, Shiprock and the Zuidwal volcano in the Netherlands. Edin-

burgh Castle in Scotland is famously located atop an extinct volcano. Otherwise,

whether a volcano is truly extinct is often difficult to determine. Since ”super-

volcano” calderas can have eruptive lifespans sometimes measured in millions of

years, a caldera that has not produced an eruption in tens of thousands of years

is likely to be considered dormant instead of extinct.

Dormant Volcano

It is difficult to distinguish an extinct volcano from a dormant one. Volcanoes

are often considered to be extinct if there are no written records of its activity.

Nevertheless, volcanoes may remain dormant for a long period of time. For ex-

ample, Yellowstone has a repose/recharge period of around 700 ka, and Toba of

around 380 ka. Vesuvius was described by Roman writers as having been covered

with gardens and vineyards before its famous eruption of AD 79, which destroyed

the towns of Herculaneum and Pompeii. Before its catastrophic eruption of 1991,

Pinatubo was an inconspicuous volcano, unknown to most people in the surround-

ing areas. Two other examples are the long-dormant Soufriére Hills volcano on

the island of Montserrat, thought to be extinct before activity resumed in 1995

and Fourpeaked Mountain in Alaska, which, before its September 2006 eruption,

had not erupted since before 8000 BC and had long been thought to be extinct.

Volcanic Hazard

Volcanic hazard is defined as the probability of any particular area being

affected by a destructive volcanic event within a given period of time. [Blong,

2000].

In mathematical notation. Let N(t) = Number of destructive volcanic events

arriving to a region µ(S) up to time t, where t ∈ [0,∞), µ(S) is a finite measure

from the spatial region S ⊂ V and V is some vector space (e.g. <2 or <3).

Then, Pµ(S)[N(t + ∆t) − N(t) ≥ 1] = Probability of at least one destructive

volcanic event arriving to region µ(S) during the time interval ∆t.

Under certain conditions we can say that the collection of random variables

{N(t) : t ≥ 0} is a spatial Poisson Process where the intensity rate λ(~x, t) (~x ∈ V )

depends on time and space, and is defined as: λS(t) =
∫
S
λ(~x, t)dµ(~x).

It is important to clarify that the concept of hazard here is not equivalent to

the hazard function known in Statistical Science and more specifically in Survival
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Analysis. Further research is needed to establish the relationship between the

hazard function and the concept of volcanic hazard.

Hazard Function

Let T be a random variable which denotes the elapsed time to an event E,

the event could be a restless volcano, a pyroclastic flow, or simply the evacuation

alarm. When T is a continuous random variable, the hazard function is defined

to be:

λ(t) = lim
δt→0

1

δt
Pr[t ≤ T < t+ δt|T ≥ t]

The hazard function describes a particular aspect of a probability distribution

function. Intuitively, λ(t)∆t is the probability that the event E happens within

the next ∆t units of time, given that it has not happened by time t.

Volcanic Risk

Volcanic risk is the adverse effect of volcanic hazards, and can be defined as

the product of (volcanic hazard) ∗ (vulnerability to those hazards) ∗ (value of

what is at risk). In probabilistic assessments, ”risk” means the probability or

likely magnitude of loss, calculated by the same formula [Blong, 2000].

Types of volcanic hazards

According to the classification done by Mart́ı and Ernst [2005], physical vol-

canic hazards as destructive volcanic events can be:

Direct volcano hazards: fall processes (tephra falls and ballistic projectiles),

flowage processes (pyroclastic flows, pyroclastic surges and laterally directed

blasts, debris avalanches, primary debris flows (lahars or mudflows) and floods),

lava flows.

Indirect volcano hazards:volcanogenic tsunamis, secondary debris flows (la-

hars), post-eruption famine and disease, aircraft encounters with volcanic ash.

Long-term versus short-term volcanic hazard

For the purpose of this thesis long-term volcanic hazard is used when we as-

sume the volcanic system shows no signs of unrest. Similarly, short term volcanic

hazard is used when the volcanic system is clearly in unrest mode and continuous

and frequent monitoring is needed to update the status of the volcanic hazard

[Blong, 2000].
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Classical Model for elicitation of expert judgment

The so-called Classical Model has been developed in Delft [Bedford and Cooke,

2001] for deriving uncertainty distributions over model parameters from expert

judgments. The name “Classical Model” derives from an analogy between calibra-

tion measurement and classical statistical hypothesis testing, and the approach

provides a basis for performance-based linear pooling or weighted averaging of

subjective opinions from a group of experts. The weights are derived from the

experts calibration and information performances, as measured against so-called

“seed” variables.

As mentioned above, the performance-based expert weight uses two quantita-

tive measures of performance: “calibration” and “informativeness”. The overall

individual expert weights Wj in the Classical Model are taken to be proportional

to the product of the individuals calibration score Cj (i.e. statistical likelihood)

and his informativeness score Ij(Sj, P ) (estimated from all variables jointly, that

is, both seeds and target variables):

Wj = Cj × Ij(Sj, P )

where

Cj = 1− χ2
R(2×N × I(sj, p)× Power)

and

I(sj, p) =
1

n

n∑
i=1

siln

(
sj
pi

)
where si is the distribution obtained from the expert on each of the seed variables,

pi is the background reference density function for each seed, scaled appropriately

for the item in question. j denotes the expert, R is the number of quantiles, N

is the number of seed variables used in calibration. Here Cj corresponds to the

asymptotic probability, under the hypothesis, of seeing a discrepancy between s

and p at least as great as I(sj, p) and, for N large, Cj is taken to be approximately

χ2 distributed. The number of degrees of freedom is related to the number of

quantiles used to define the experts distribution.
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Aleatory uncertainties

The aleatory (stochastic) uncertainty is a consequence of the intrinsic com-

plexity of a system, hence our limitation in predicting the evolution of the system

in a deterministic way. The aleatory uncertainty introduces a component of ran-

domness in the outcomes, regardless of our physical knowledge of the system Woo

[1999].

Epistemic uncertainties

The epistemic uncertainty is directly related to our knowledge of the system

and the quality and quantity of data we have about the system. The more data

we have, the better we know the system and the lower the epistemic uncertainty

Woo [1999].

EXPLORIS

The EXPLORIS project (Explosive Eruption Risk and Decision Support for

EU Populations Threatened by Volcanoes) was an initiative funded by the Euro-

pean Union’s research programme: Energy Environment and Sustainable Devel-

opment whose main aim consisted in the introduction of a new methodology and

new tools in the quantitative assessment of volcanic risk in densely populated re-

gions. This goal was fully achieved through the development of research facilities

completely new for the volcanological community. The project also tried to stim-

ulate new mitigation policies and decision support to the authorities responsible

for the most dangerous European volcanoes.

1.2 State of the art

Assessing eruption risk scenarios in probabilistic ways has become a main chal-

lenge in modern volcanology [Aspinall, 2006; Marzocchi et al., 2004, 2006, 2008;

Neri et al., 2008; Newhall and Hoblitt, 2002]. A logic-tree of volcanic events and

impacts tends to be constructed on the basis of the volcanological scenarios that

can be defined using the existing geological and historical volcanological records

[Marzocchi et al., 2004, 2006; Newhall and Hoblitt, 2002].

Despite the limitations in the construction of an event tree usually imposed by

the lack of knowledge on the past and present behavior of active volcanoes, it is

clear from the works previously cited and experiences on volcanic crises [Aspinall
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and Cook, 1998] that the construction of an event tree is a major step in the

hazard assessment. Most of the research done so far is based on a deterministic

approach for short-term forecasting (e.g., Hill et al. [2001]; Kilburn [2003]). The

alternative approach is probabilistic (e.g., Aspinall and Woo [1994]; Marzocchi

et al. [2004, 2006, 2008]; Newhall and Hoblitt [2002]). Newhall and Hoblitt [2002]

proposed a general event tree scheme to estimate the probability of all the relevant

possible scenarios of a volcanic crisis and, in general, to quantify the volcanic

hazard and risk. Later, Marzocchi et al. [2008] developed a probabilistic tool for

long- and short-term eruption forecasting based on Bayesian methodology and

fuzzy logic using event trees.

Event trees developed using Bayesian methodology assume that unrest is

caused by internal (magmatic) triggers only. However, there are volcanic sys-

tems where unrest episodes and, occasionally, eruptions may also be caused by

external triggers (geothermal, seismic) [Carniel et al., 2008; Gottsmann et al.,

2007; Tárraga et al., 2006]. In computing the long-term probability of an erup-

tion if we only consider magmatic triggers as the source of the unrest we would

be underestimating the total probability, since we need to account for the long-

term probability that the eruption is originated by a geothermal unrest (when a

hydrothermal system exists) or by a seismic unrest.

One chapter of this thesis presents a model to assess the volcanic hazard for

Teide - Pico Viejo, following the 2004-2005 seismic volcanic crisis on Tenerife

[Mart́ı and Geyer, 2009], where an event tree was developed that accounts for

different triggers of volcanic unrest, and uses elicitation of expert judgment to

assign a probability of occurrence to each possible eruptive scenario. However,

the nature of the methodology applied requires the event tree to be as simple

as possible, grouping events which may require to be analyzed individually (e.g.

origin of the unrest), and leaving out relevant nodes (e.g., type of composition of

the magma); does not account for the epistemic and aleatory uncertainties and

requires the elicitation team to meet in order to update the probabilities each time

new data arrives. Also, despite the corrections applied according to the relative

relevance (weight) of each expert, the method has still a strong human decision

component which adds an additional source of bias to the final results. For this

reason, we have included in another chapter of the thesis a model which uses
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Bayesian Inference to assign the probabilities of occurrence to each volcanic sce-

nario and accounts for all of the above mentioned disadvantages of the elicitation

method. The method was applied considering several triggers for the volcanic

unrest and a more detailed event tree.

Studies of volcanic time series have been done using stochastic principles to

study eruption patterns on specific volcanoes or volcanic groups [De la Cruz-

Reyna, 1991, 1993; Klein, 1982; Reyment, 1969; Wickman, 1976]. Bebbington

and Lai [1996a] applied a Weibull renewal model to describe the patterns of New

Zealand volcanoes. Other studies used transition probabilities of Markov chains

[Aspinall, 2006; Bebbington, 2007; Carta et al., 1981], change-point detection

techniques [Burt et al., 1994; Mulargia et al., 1987], Rank-order statistics [Pyle,

1998], Bayesian analysis of volcanic activity [Ho, 1990; Ho et al., 2006; Mar-

zocchi et al., 2008; Newhall and Hoblitt, 2002; Solow, 2001], non-homogeneous

models [Bebbington and Lai, 1996b; Ho, 1991a], a mixture of Weibull distri-

butions [Turner et al., 2007], geostatistical hazard-estimation methods [Jaquet

and Carniel, 2006; Jaquet et al., 2000], and a mixture of exponential distribu-

tions [Dzierma and Wehrmann, 2010a,b; Mendoza-Rosas and De la Cruz-Reyna,

2009, 2010]. Extreme-value methods have been applied to geological and histori-

cal eruption time series combined [Mendoza-Rosas and De la Cruz-Reyna, 2010,

2008] and historical series of large volcanic magnitudes [Coles and Sparks, 2006].

1.3 Aims of dissertation

The aim of this thesis is to work with volcanologists to try and address, with

the appropriate statistical methods, those questions they raise, and have vol-

canologists collaborate with statisticians to learn about the advantages in the

application of statistical techniques to the interpretation of volcanic data. Here,

we propose and analyze different statistical methodologies to interpret volcanic

data and assess volcanic hazard. The statistical technique will depend on the

nature of the data and the type of problem we want to address. The models will

be used to analyze and interpret the historical and geological volcanic data for

Teide - Pico Viejo stratovolcanoes (TPV) and the Canary Islands archipelago.

The first statistical method is an Elicitation of Expert Judgment using the

11



Classical Model to assign probabilities of occurrence to each possible eruptive

scenario that can be outlined from the eruption history of the volcano, and our

knowledge of other analogous volcanoes. The aim was to assess the long-term

volcanic hazard of TPV, following an unrest episode in 2004 which created dis-

crepancies among scientists regarding the nature of the unrest and the level of

hazard. The method helps formalize the way volcanic experts present scientific

advice by using a performance-based procedure for eliciting opinions that relies

on proper scoring rules. It uses concepts and principles of eliciting expert opinion

and structured elicitation within a mathematical framework. My contribution

came once the elicitation of expert opinion was done, to interpret and explain the

probability results, and be responsible for the statistical part of the manuscript.

The second statistical method is a Bayesian Inference approach to compute

the long-term probability for each volcanic scenario. The idea to use this method

came after seeing the limitations on the Classical Model, this is, the human bias,

the restrictions on the complexity of the tree, and the high dependence on the

elicitation team to update the probabilities when new data arrives. Also, there

were limitations in the application to TPV of other Bayesian event trees built for

analog volcanoes (eg. Vesuvius), since they did not contemplate all the options in

each node (eg. geothermal unrest), hence, underestimating the total probability

of an eruption at TPV. To accomplish this, we need a more complete event tree

with all the eruptive scenarios for TPV, then, to overcome the restrictions in

the data we apply Bayesian Inference to estimate the long-term probability of

occurrence for each scenario. Also, we build a computer program in R statistical

language to easily compute and update the probabilities. My contribution is

to construct the new probability tree, design the Bayesian model and write the

computer program.

The third method is a Non-parametric one-way unbalanced ANOVA using the

Kruskal-Wallis test. This method is used to study a unique dependent variable

against one classification variable which has two or more categories, where each

classification group has unequal number of observations. Additionally, when the

observations in the response variable are assumed to be independent from each

other, but we do not have enough evidence to assume a particular distributional

form, such as the normal (due to insufficient data), we need to use non-parametric
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procedures to perform the ANOVA analysis, in our case, the Kruskal-Wallis test.

This method is used to study collapse calderas, another type of volcanic struc-

tures important for their hazard implications and their high energy potential and

association with mineral deposits of high economic interest. This study was sug-

gested following the publication for the first time of the World Collapse Caldera

Database (WCCD) by the Group of Volcanology of Barcelona. The aim is to

study how collapse calderas are formed by analyzing their size and identifying key

variables which may help understand the geodynamic environment were volcanic

calderas are generated. Given the nature of the data we use the non-parametric

technique described above to address the problem.

The fourth statistical methodology NHGPPP (Non-homogeneous generalized

Pareto-Poisson process) uses extreme value theory to study eruptive time series

combining geological and historical records. This method accounts for the time-

dependence of the series and includes rare or extreme events, in the form of few

data of large eruptions, since these data require special methods of analysis. The

method is not restricted by the small number of observations in the time series

and takes into account the limitations inherent to the available data, including

its short sample time, probable absence of larger events, and incomplete report-

ing of small and intermediate magnitudes, as well as uncertainties in the age

and magnitude of the eruptions. Hence, taking into account the probable non-

homogeneity, incompleteness and missing data in the eruptive series, allowing for

a better estimation of the volcanic hazard. This methodology is applied to the

Canary Islands eruptive time series to study volcanic recurrence.

1.4 Thesis structure

This thesis is divided into 6 chapters, the first chapter is the Introduction and

the other five are as follow:

Chapter 2 proposes and describes a long-term volcanic hazard event tree for

Teide - Pico Viejo stratovolcanoes using the Elicitation of Expert Judgment Clas-

sical Model. First, we do an analysis of the potential location of future vents. The

second stage in the construction of the Teide - Pico Viejo event tree involved the

identification and characterization of all the effusive and explosive eruption types
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that have been associated with the Teide - Pico Viejo central complex during

the last 35 Ka. The third stage included the generation of the event tree (nodes

and branches) using the information obtained in the two previous stages, to later

assign a probability of occurrence to each branch using the elicitation of expert

judgment procedure. This methodology has been published in the Journal of

Volcanology and Geothermal Research and constitutes the body of chapter two.

Chapter 3 presents an alternative methodology to assess volcanic hazard ap-

plied to Teide - Pico Viejo volcanic complex which uses Bayesian Inference to

assign the probabilities of occurrence to each eruptive scenario. This method

allows to define a more complex and complete event tree. We first define a

probability event tree, then apply the Bayesian model to compute the long-term

probability of each and all of the mutually exclusive and exhaustive events, and

write a program in R which automatically updates and computes these prob-

abilities. This methodology has been published in the Journal of Geophysical

Research and constitutes the body of chapter three and the appendix.

Chapter 4 performs a statistical analysis on the worldwide Collapse Caldera

Database (CCDB), currently formed by 473 calderas and 28 variables. First we

do a descriptive analysis of each variable in the database to identify the response

and the explanatory variables to enter the study. Then we use a non-parametric

one-way unbalanced ANOVA with the Kruskal-Wallis test to identify groups of

volcanic calderas statistically significantly different, according to area, which may

belong to a particular geodynamic environment. This methodology has been

published in the Journal of Volcanology and Geothermal Research and constitutes

the body of chapter four.

Chapter 5 presents and describes a statistical methodology based on Extreme

Value Theory and the non-homogeneous Poisson point process to estimate the

volcanic hazard. First we explore the historical time series to assess indepen-

dence and stationarity of the process. Then we use a Weibull distribution to

analyze and adjust the waiting times between eruptions and last we apply the

non-homogeneous Poisson process with a Generalized Pareto distribution as in-

tensity function. We apply this methodology to the Canary Islands historical

eruptive time series. The contents of this chapter are written in the form of a

paper which has been submitted to Natural Hazards and Earth System Sciences
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in February 2010, and constitutes the body of chapter five.

There is a manuscript submited for publication at the Bulleting of Volcanology

under the title ”Hazard assessment of phonolitic volcanism at Teide - Pico Viejo

volcanic complex (Tenerife, Canary Islands)”. The project was not included in

this thesis because it uses the same NHGPPP statistical method presented in

chapter five to analyze the historical data for the Canary islands, hence, not

contributing with new statistical methodology. The results cannot be compared

with those from the Canary Islands because TPV data is phonolitic and Canary

Islands covers only effusive eruptions.

Chapter 6 presents the conclusions regarding the statistical methodologies

presented in this thesis and talks about future research.
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Chapter 2

A long-term volcanic hazard

event tree for Teide - Pico Viejo

stratovolcanoes (Tenerife, Canary

Islands)

2.1 Introduction

Assessing eruption risk scenarios in a probabilistic way has recently become one

of the main challenges of modern volcanology. The main reason for that is the

need to look for 1) a straight forward way to assess the relative likelihoods of

different ways in which a volcanic system may evolve in the future or more ur-

gently when a new eruptive process starts; and 2) a simple way to transfer this

information to the corresponding decision makers, without loosing essential in-

formation. In most cases, a logic-tree of volcanic events and impacts tends to be

constructed on the basis of the volcanological scenarios that can be defined us-

ing the existing geological and historical volcanological records [Marzocchi et al.,

2004, 2006; Newhall and Hoblitt, 2002]. Probability weights for the various logic-

tree branches are assigned through statistical analysis of data or formal elicitation

of expert volcanological judgment [Aspinall, 2006; Aspinall and Woo, 1994]. An

elicited risk assessment undertaken during a live volcanic crisis was conducted

16



for Montserrat [Aspinall and Cook, 1998]. Although previous experience shows

that probabilities are not always well understood by decision makers or even by

scientists, this is a necessary discipline to forecast and predict the complex and

random behavior of volcanic systems and quantify and explain the underlying

uncertainty. Additionally, in the case of an actual volcanic crisis the statistical

methodologies serve as a tool in the elaboration of a cost/ benefit analysis, in

relation to the decisions to be made by the authorities (i.e. emergency plans,

evacuation). This should help them understand the complexities of the problem

and envisage the potential consequences of making poorly informed decisions.

The construction of a probability event tree to estimate the volcanic hazard is

based on the existence of a good volcanological record, allowing a precise recon-

struction of the past history of the volcano. This allows us to determine eruption

scenarios that can quantitatively define the future eruptive behavior and potential

impact of the volcano. However, problems arise when the knowledge of the past

volcanological history is poor, the geochronological data are scarce and histori-

cal activity has not occurred or has not been recorded in the existing chronicles.

Some recent eruptions such as those from Montserrat or Pinatubo have encoun-

tered this problem (Aspinall and Cook [1998], and references therein; Newhall

and Punungbayan [1996]). In these cases, the lack of knowledge of previous un-

rest and, more crucial, of the precursors of previous eruptive events, precludes

using repetitive patterns of precursors to anticipate new eruptions (see Sandri

et al. [2004]).

This is the case of Teide - Pico Viejo twin stratovolcanoes, which form one of

the largest active volcanic complexes in Europe. Since the current information

on their past activity is scarce and they have not shown clear signs of activity

in historical times, they could be classified as dormant volcanoes [Connor et al.,

2006; Szakács, 1994]. However, they have produced several central and flank

vents, effusive and explosive eruptions during the last 5000 years, the last one

having occurred about 1000 years ago [Carracedo et al., 2003, 2007]. This, to-

gether with the presence of permanent fumarolic activity at the summit of Teide

and the occurrence of a recent unrest episode [Garćıa et al., 2006; Gottsmann

et al., 2006; Mart́ı et al., 2009], reminds us that Teide - Pico Viejo are potentially

active volcanoes that could erupt again in the near future. Despite the potential

17



risk that these volcanoes represent for the island of Tenerife, extensively popu-

lated and one of the main tourist destinations in Europe, much remains to be

learned about Teide - Pico Viejo’s eruptive history. The fact that many eruption

mechanisms, magma compositions, and vent sites can be distinguished from their

products [Ablay and Mart́ı, 2000; Carracedo et al., 2007; Mart́ı et al., 2008b],

complicates the definition of eruption scenarios and the establishment of erup-

tion patterns that could be used as a guide to predict the future behavior of these

twin stratovolcanoes.

This paper presents a first attempt to construct a probability, longterm event

tree for Teide - Pico Viejo stratovolcanoes. First, we study the possible location

of future vents based on the available geological and geophysical data. Second, we

analyze the different eruption types that have characterized the volcanic activity

from Teide - Pico Viejo during the last 35 ka. And third, we create the event

tree structure using the information obtained in the two previous steps and we

define the formalized statistical procedure for the elicitation of expert judgment

that should be used to assign a probability of occurrence to each branch of the

event tree.

2.2 Background geology and past volcanic ac-

tivity

Teide - Pico Viejo stratovolcanoes started to grow up about 180 190 ka ago at

the interior of the Las Cañadas caldera (Fig. 2.1). This volcanic depression orig-

inated by several vertical collapses of the former Tenerife central volcanic edifice

(Las Cañadas edifice) following explosive emptying of high-level magma chamber.

Occasional lateral collapses of the volcano flanks also occurred and modified the

resulting caldera depression [Mart́ı and Gudmundsson, 2000; Mart́ı et al., 1994b,

1997]. The construction of the present central volcanic complex on Tenerife en-

compasses the formation of these twin stratovolcanoes, which derive from the

interaction of two different shallow magma systems that evolved simultaneously,

giving rise to a complete series from basalt to phonolite [Ablay et al., 1998; Mart́ı

et al., 2008b].

18



The structure and volcanic stratigraphy of the Teide - Pico Viejo stratovolca-

noes were characterized by Ablay and Mart́ı [2000], based on a detailed field and

petrological study. More recently, Carracedo et al. [2003, 2007] have provided

the first group of isotopic ages from Teide - Pico Viejo products, and Mart́ı et al.

[2008b] analyses their explosive activity. The reader will find in these works a

more complete description of the stratigraphic and volcanological evolution of

Teide- Pico Viejo.

Teide - Pico Viejo stratovolcanoes mostly consist of mafic to intermediate

products, being felsic materials volumetrically subordinate overall (see Mart́ı et al.

[2008b], Fig. 1). Felsic products, however, predominate in the recent output of the

Teide - Pico Viejo system. Eruptions at Teide and Pico Viejo stratovolcanoes have

occurred from their central vents but also from a multitude of vents distributed

on their flanks (Fig. 2.1). Mafic and phonolitic magmas have been erupted from

these vents. The Santiago del Teide and Dorsal rift axes, the two main tectonic

lineations currently active on Tenerife, probably join beneath Teide - Pico Viejo

complex [Ablay and Mart́ı, 2000; Carracedo, 1994]. Some flank vents at the

western side of Pico Viejo are located on eruption fissures that are sub-parallel

to fissures further down the Santiago del Teide rift, and define the main rift axis.

On the eastern side of Teide some flank vents define eruption fissures orientated

parallel to the upper Dorsal rift.

The eruptive history of the Teide - Pico Viejo (see Fig. 7 in Mart́ı et al.

[2008b]) comprises a main stage of eruption of mafic to intermediate lavas that

form the core of the volcanoes and also infill most of the Las Cañadas depression

and the adjacent La Orotava and Icod valleys. About 35 ka ago the first phono-

lites appeared, and, since then, they have become the predominant composition

in the Teide - Pico Viejo eruptions. Basaltic eruptions have also continued mostly

associated with the two main rift zones. The available petrological data suggest

that the interaction of a deep basaltic and a shallow phonolitic magmatic sys-

tems beneath central Tenerife controls their eruption dynamics (see Mart́ı et al.

[2008b]). Most of the phonolitic eruptions from Teide - Pico Viejo show signs

of magma mixing, suggesting that eruptions were triggered by intrusion of deep

basaltic magmas into shallow phonolitic reservoirs.

Phonolitic activity from Teide - Pico Viejo shows a recurrence of around 250
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Figure 2.1: Simplified geological map of Teide, based on Ablay and Mart́ı [2000].
Eruptive products from the Teide - Pico Viejo stratovolcanoes are identified ac-
cording to their composition (mafic, intermediate and felsic). Pre - Teide - Pico
Viejo rocks are undifferentiated (darkest grey). LP: La Palma; EH: El Hierro; G:
Gomera; GC: Gran Canaria; T: Tenerife; L: Lanzarote;F: Fuerteventura.
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- 1000 years, according to the isotopic ages published by Carracedo et al. [2003,

2007]. Phonolitic eruptions from Teide and Pico Viejo range in volume from 0.01

to 1 km3 and have mostly generated thick lava flows and domes, some of them

associated with minor explosive phases, and some subplinian eruptions, such as

the Montaña Blanca at the eastern flank of Teide, 2000 years ago.

Some significant basaltic eruptions have also occurred from the flanks or the

central vents of the Teide - Pico Viejo stratovolcanoes. All basaltic eruptions

have developed explosive strombolian to violent strombolian phases leading to

the construction of cinder and scoria cones and occasionally producing intense

lava fountaining and violent explosions with the formation of ash-rich eruption

columns. Violent basaltic phreatomagmatic eruptions have also occurred from the

central craters of the Teide - Pico Viejo stratovolcanoes, generating high-energy,

pyroclastic density currents.

According to Mart́ı et al. [2008b], the total volume of magma erupted in

the last 35 ka is of the order of 1.5-3 km3, 83% corresponding to phonolitic

magmas, while the rest includes basaltic and intermediate magmas. Therefore,

phonolitic eruptions have been less frequent but much more voluminous than

basaltic eruptions. All phonolitic activity has been concentrated at the central

vents and flanks of the Teide - Pico Viejo stratovolcanoes. Basaltic eruptions

during this period have also occurred through the rift zones.

2.3 The Teide - Pico Viejo event tree

The event tree for the Teide - Pico Viejo stratovolcano was established using a

methodology similar to that proposed by Newhall and Hoblitt [2002] and Mar-

zocchi et al. [2004, 2006], and following a similar systematic and structure than in

Neri et al. [2008]. However, a significant difference with regard to these previous

models is due to the fact that in previous cases only the possibility of central

vent eruptions is considered, i.e. there is only one possible vent, while in Teide -

Pico Viejo many vent sites are possible, including central and flank vents, having

significantly different hazard implications. In addition, the stratigraphic record

from Teide and Pico Viejo shows that both volcanoes may either behave inde-

pendently or erupt simultaneously [Ablay and Mart́ı, 2000]. Therefore, we had
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to include in our event tree, at initial stages in the estimation process, the pos-

sible vent locations, in addition to all possible outcomes of the volcanic unrest.

We include all possible options for the evolution of volcanic unrest, even those

that have a very low probability of occurrence but which have been recognized

in the geological record of Teide - Pico Viejo. Compared to the previous models

[Marzocchi et al., 2004; Neri et al., 2008; Newhall and Hoblitt, 2002], we built

our probability event tree to include the first phases of the long-term volcanic

hazard estimation, since we have only geological data and no relevant historical

or monitoring data is available. Hence, the subsequent risk branches, such as sec-

tors affected, distance of runouts, exposure or vulnerability cannot be properly

estimated in this paper.

2.3.1 Location of future vents

The first stage involves an analysis of the potential location of future vents. Teide

- Pico Viejo have undergone several flank and central vent eruptions and these

have been of basaltic and phonolitic composition, without any apparent struc-

tural or petrological pattern that could explain such random eruption behavior

[Mart́ı et al., 2008b]. The lack of a good surveillance network makes the identi-

fication of future vents more challenging than in other similar volcanoes. It has

been generally assumed that future eruptive activity on Tenerife, if any, should

be of basaltic nature, far from the central Teide system, and generate short lava

flows and small cinder cones [Carracedo et al., 2003, 2007]. However, there are no

scientific reasons to rule out the possibility of an eruption, basaltic or phonolitic,

from Teide - Pico Viejo. On the contrary, all the petrological, geochronological

and volcanological data available, suggest that Teide - Pico Viejo cannot be con-

sidered as extinct volcanoes at all [Ablay and Mart́ı, 2000; Mart́ı et al., 2008b]

and that they could erupt again in the near future, even in a violent way.

In addition to field studies [Ablay and Mart́ı, 2000], numerical experiments

have been used to investigate the possible factors that determine the occurrence

of either a central or a flank eruption at Teide - Pico Viejo. We have considered

a wide range of situations in which the main physical conditions of the volcanic

system have been changed (topography, size, depth and shape of the magma
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chambers, presence of deviatoric stresses, internal structure of the volcano) [Mart́ı

et al., 2006]. The results obtained show that the main control on the pathway that

phonolitic magma will follow to leave the shallow chamber and reach the surface

is exerted by the stress field distribution around and above the chamber, being

this a function of the shape and depth of the magma chamber. An alternative

explanation is that the magma follows paths around any massive blockage such

as recent intrusions. In the case of basaltic eruptions, which are fed by much

deeper magmas, we think that a structural control resulting from the interaction

between the rift systems and the central complex, rather than the geometry

and location of the pressure source at depth, determines the exact location of

the vent(s) in each eruption. Comparison of these results with the available

geological [Ablay and Mart́ı, 2000] and geochronological [Carracedo et al., 2003,

2007] information suggests that the number of flank eruptions occurred on Teide

- Pico Viejo during the time period considered is slightly higher than that of the

central vent eruptions.

2.3.2 Eruption types and eruption scenarios

The second stage in the construction of the Teide - Pico Viejo event tree involved

the identification and characterization of all the effusive and explosive eruption

types that have been associated with the Teide - Pico Viejo central complex dur-

ing the last 35 ka. This is the maximum period that we can investigate from

surface geology and also represents an upper time limit for the appearance of the

first phonolites on that volcano. Despite this could be regarded as a long time

interval because the record of older events is incomplete, it gives us a minimum es-

timate. Teide - Pico Viejo’s eruptive activity has been associated with both, mafic

(basalts, tephri-phonolites) and felsic (phono-tephrites and phonolites) magmas,

and has produced a large variety of eruption types: mostly effusive (lavas and/or

domes), strombolian, violent strombolian and sub-plinian magmatic eruptions,

as well as phreatomagmatic eruptions of mafic magmas and phreatic explosions.

There is no any apparent control on the style of the eruption by the vent location,

so that we assumed a priori that similar eruptions can occur from both flank and

central vents on Teide - Pico Viejo. The set of eruptive types we have included
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in the event tree represents the largest or the most explosive event that occurs

in the course of an eruption that might include many events and eruption styles.

Table 2.1 summarizes the characteristics of the main Teide - Pico Viejo eruption

types. A more detailed description of the eruptive activity of Teide - Pico Viejo

is given in Mart́ı et al. [2008b].

2.3.3 Event tree structure

The third stage included the generation of the event tree (nodes and branches)

using the information obtained in the two previous stages, to later assign a prob-

ability of occurrence to each branch using the elicitation of expert judgment

procedure presented in the next section. As for other volcanoes [Marzocchi et al.,

2004, 2006; Neri et al., 2008; Newhall and Hoblitt, 2002], the estimation was car-

ried out for all the branches of each node for the Teide - Pico Viejo event tree,

progressing from general to specific events (Fig. 2.2). From the study of the

different eruption types identified on Teide - Pico Viejo, we can deduce that all

of them, including the phreatic episode from Pico Viejo [Ablay and Mart́ı, 2000]

require the presence of fresh magma, either mafic or felsic, at shallow depths in

the volcanoes. However, we did not discard the possibility of starting an erup-

tion process from an unrest directly associated with the hydrothermal system or

event due to external triggers, such as regional tectonics, if eruptible magma is

present in the system. Therefore, we assumed a precursory step as an unrest

episode, regardless of it is magmatic, hydrothermal or tectonic, characterized by

an anomalous increase of seismic activity, ground deformation, gravity changes,

gas emissions, and so on.We started by considering whether the unrest episode

could lead to a sector collapse that then could trigger an eruption or not. If an

eruption is expected regardless of the existence of sector collapse, this could be

from the central vent (s) (either Teide or Pico Viejo) or from any of the volcano’s

flanks. In any of these cases, there are several possibilities, mainly controlled by

the composition (mafic or felsic) of the erupting magma, according to what has

been observed in the period considered in our study. The construction of our

event tree continued with the inclusion in the following sequence of nodes and

branches of the different possible eruptions and related hazards that may occur
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Figure 2.2: The volcanic event tree for Teide - Pico Viejo. Six stages of eruptive
progression from general to more specific events (from left to right) are presented.
Nodes from which subsequent multiple different outcomes (branches) of the erup-
tive process are possible at each stage are indicated by white squares. Nodes that
represent the termination of a particular process are represented by black squares.
a) shows an overview of the primary branches of Teide - Pico Viejo event tree
as far as eruptive style. The set of eruptive types we have included in the event
tree represents the largest or the most explosive event that occurs in the course
of an eruption that might include many events and eruption styles. Expanded
tree details including hazards are shown for: b) the scenario of a central vent
eruption; c) the flank vents scenario; and, d) the case of a magmatic eruption
triggered by sector failure. In addition to the authors of the paper, the following
scientists have also participated in the experts elicitation judgement: J. Andújar,
A. Bertagnini, R. Chioni, O, Cornellá, A. Folch, A. M. Garćıa, MJ. Jiménez, Neri,
T. Ongaro, G. Queiroz, M. Rosi, L. Sandri, C. Soriano, R. Spence, F. Teixidé,
M. Todesco, G. Toyos, G. Zuccaro.
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Fig. 2.2 (continued).
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Fig. 2.2 (continued).
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Fig. 2.2 (continued).
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from Teide - Pico Viejo (see Table 2.1 and Fig. 2.2a-d).

As we have indicated before, it would be premature at this stage to continue

the construction of the Teide - Pico Viejo event tree adding the corresponding

steps concerning the potential impacts of each hazard, as there is still some basic

information missing. However, the structure proposed will allow the event tree

to be extended at any moment and to adapt it for a short-term hazard assess-

ment when information from volcano monitoring from Teide - Pico Viejo will be

available.

2.3.4 Statistical methodology: The Teide - Pico Viejo ex-

pert elicitation procedure

The ultimate aim of a volcanic hazard event tree is to assign probabilities to the

different eruption possibilities or scenarios that we can envisage from the eruption

history of the volcano and our knowledge of other analogous volcanoes. An event

tree aims to quantitatively estimate both long- and short-term volcanic hazard.

In order to achieve this objective, we use a methodology based on Elicitation of

Expert Judgment. In particular, the so-called Classical Model developed in Delft

[Bedford and Cooke, 2001]. Other statistical procedures as well as other methods

to elicit expert judgments are available. The Classical Model is a performance-

based formalized procedure for the elicitation of expert judgments which allows

to derive uncertainty distributions over model parameters using expert judgment.

This approach provides a basis for weighted averaging of subjective opinions. The

weights are derived from the experts’ calibration and information performances,

measured by the so-called seed variables [Aspinall, 2006].

Within the EXPLORIS Project, the approach adopted for parameterizing

event probability nodes on event trees was to elicit values from colleagues (see

Fig. 2.2a-d) in a structured manner, and to use Cooke’s (1991) classical model

mentioned above implemented in the computer program EXCALIBR [Cooke and

Solomatine, 1990] for the quantification of the corresponding collective scientific

uncertainty (Note that the software has recently changed its name to EXCAL-

IBUR). The classical model is unique in that it embodies a performance-based

expert scoring scheme, by which weights are ascribed to individual experts on
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the basis of empirically determined calibration and informativeness scores. The

expert’s assessments are treated as statistical hypotheses and the probability at

which these hypotheses would be rejected is used to provide a score for calibration

(under the assumption that the calibration variables are independent realizations

of the experts’ distributions). A second factor, the informativeness of the expert,

is defined as the relative information of his or her distributions with respect to

some specified background measure. The theory of strictly proper scoring rules

is used to combine calibration and informativeness scores expressed as a product,

and from these results the so-called performance- based decision-maker is formed

from a weighted combination of the judgments of the group of experts involved.

In EXPLORIS, the processing of group elicitations utilized a variant of the

EXCALIBR application in which the power of the statistical hypothesis test and

the significance level for rejection were adjusted so that all participants obtained

some positive weight for their opinions; this approach is termed constrained op-

timization weighting [Aspinall, 2006]. The purpose of doing this was to limit

the chances that any individual expert might be unduly penalized in their mea-

sured performance just as a result of any particular property or bias in the set of

seed questions that had been selected for calibration. Thus, the outcome of an

EXCALIBR calibration exercise is a set of numerical scores for the panel of ex-

perts involved, each individual’s score representing his or her empirical success in

making uncertainty judgments about known parameters or values. Within all the

EXPLORIS volcano groups, there was a tendency for the majority of participants

to be over-confident in their judgments, and to receive reduced relative weighting

accordingly this is a widespread characteristic of almost all groups of experts,

in any scientific or engineering discipline. However, the EXCALIBR procedure

accounts for such traits in an objective and traceable way and provides a rational

and neutral pooling of diverse opinions.

In the case of Teide - Pico Viejo, more than 30 experts (Fig. 2.2) from the

EXPLORIS project participated in the elicitation process. For every node on the

Teide - Pico Viejo event tree, the experts provided their individual opinions as

the relative likelihoods of occurrence of the alternative pathways for the way the

course of the eruption could progress, and these opinions are pooled using the

weights obtained from the EXCALIBR calibration procedure. The outcomes of
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this process are recorded as numerical probability values on the event tree shown

on Fig. 2.2a-d. On each branch, the results are given as three numbers: the

median probability (i.e. 50 percentile value for the distribution of opinions pro-

vided by the group), together with corresponding 90% credible interval bounds

(i.e. approximate 5 percentile and 95 percentile distributional values). This way

of representing the collective scientific uncertainty associated with forecasting

volcanic hazards is uniquely different to that of other approaches, and gives for-

mal, quantitative expression to all the uncertainties involved, essential for any

comprehensive probabilistic risk assessment.

In the particular case of Teide - Pico Viejo, due to the lack of information

on their past geology and recent volcanic activity, two questions where posed to

the referees regarding the nodes with two branches of the first steps of eruptive

progression (outcome and location) (Fig. 2.2). This makes a significant difference

compared to other event trees, such as the one for Vesuvius [Neri et al., 2008],

from which there is a good set of data and most of the experts know the corre-

sponding volcanoes very well. In such cases, only one question (three percentiles)

is asked for one branch since the three percentiles of the other branch are simply

the complement. In our case, the reason to elicit both probabilities and their

complement in separate questions for binary branches is due to the general lack

of knowledge on Teide - Pico Viejo and, consequently, as away to test the expert

understanding of the method and the volcano, just looking at how stable the

paired answers were. Consequently, in our example the credible intervals do not

need to be complementary. Although, the resulting numbers from the Teide -

Pico Viejo elicitation were not always very consistent, we decided to show them

as a first indication of the great uncertainty we have to deal with when working

with a poorly known volcano.

The following are examples of some of the group’s judgements for scenarios

relating to the next eruption of Teide - Pico Viejo. According to Fig. 2.2, if

unrest occurs, it is considered 11.5 more likely that no sector failure will en-

sue (conditional probability given unrest=92%) than a sector failure (conditional

probability=8%) will happen. Note that the probabilities we discuss refer to the

50 percentile confidence level. On this basis, it is concluded there is a 1-in-12.5

chance of a sector failure, given unrest. Of course, these probabilities would be
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updated in the light of data, observations or evidence that is detected in relation

to the unrest episode, when it develops.

Moving across the tree on Fig. 2.2, if an eruption should occur, the collective

view is that a flank eruption (conditional probability=74%) is 2.8 more likely

than a central vent eruption (conditional probability=26%). Again, these values

are based solely on the available geological data and interpretations of that in-

complete data, and could easily be modified by indicators from emerging unrest

(e.g. seismological data suggesting dike propagation at a flank location).

If the next eruption of Teide - Pico Viejo is from a central vent (Fig. 2.2),

the expert elicitation provides the following guidance about relative likelihoods of

the eruptive style that may ensue, assuming that the possible eruption scenarios

are mutually exclusive: the most likely scenario is either a mainly effusive erup-

tion (conditional probability =29%) or a Strombolian intensity explosive erup-

tion (conditional probability=26%). Less likely next are either a Violent Strom-

bolian scenario (conditional probability=15%) or an eruption of predominantly

phreatic activity (conditional probability=13%). The other possible scenarios

are a Phreatomagmatic eruption (conditional probability=9%) or a sub-Plinian

or larger eruption (conditional probability =8%). Although these last two are

the least likely possibilities, neither is judged to be highly unlikely - either has a

chance of about 1-in-10 of being experienced in a future central vent eruption.

On Fig. 2.2b-d the last columns of the Teide - Pico Viejo event tree in its

present form, show the hazards that could accompany each of the different erup-

tive style scenarios. Here, the relevant individual conditional probabilities are not

exclusive, as more than one hazard may be present in any one eruption episode.

The overall likelihood of any particular hazard being manifest in the next erup-

tion of Teide - Pico Viejo, whatever its eruptive style or vent location, can be

calculated by summing up the compounded conditional probabilities across all

those branches which lead to a termination node with that hazard.

The next stage in the enhancement of the Teide - Pico Viejo event tree should

be to expand it to add further branches that represent factors important for risk

assessment, such as flow directivity and run out distances, for example. As with

the initial eruptive scenario stages of the Teide - Pico Viejo event tree, described

here, these further elements can also be derived from expert judgment, but in this
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case extensively informed by physical modeling results, as well as the geological

record. This said, the rational quantification of scientific uncertainty remains the

key reason for adopting a formalized expert elicitation approach.

With the data and knowledge currently available for Teide - Pico Viejo, the

median probabilities and their uncertainty spreads, shown on Fig. 2.2a-d, are

expected to be stable against most plausible alternative interpretations if no

new information emerges, in which case they can be modified significantly. For

instance, if unrest develops, many of the conditional probabilities on the Teide

- Pico Viejo event tree could change in response to the occurrence of precursors

that are robust indicators of certain aspects of forthcoming activity. In this sense,

any volcanic event tree should be regarded as an evolving, organic object, which

requires attention (and pruning) as new information emerges.

2.4 Discussion and conclusions

We propose a volcanic hazard event tree for Teide - Pico Viejo that shows all

possible outcomes of volcanic unrest at progressively higher degrees of detail.

The construction of the current version of the Teide - Pico Viejo event tree is

based on the past eruptive history of the volcano and corresponds to its long-

term volcanic hazard assessment. Moreover, the Teide - Pico Viejo event tree

can be easily extended to account for short-term hazard assessment (in case of

volcanic crisis) when precise monitoring data from the volcano will be available.

The Teide - Pico Viejo event tree has been constructed following previous

models [Marzocchi et al., 2004, 2006; Neri et al., 2008; Newhall and Hoblitt, 2002]

and it is based on similar concepts. It uses a statistical approach based on Expert

Judgment Elicitation to ascribe the appropriate probabilities and to determine

the corresponding uncertainty for the different possible events that could occur,

based on available past geological data.We have conducted this process among

the participants of the EXPLORIS project using the performance-based Classical

Model for expert judgment elicitation. However, there is a significant difference

between the present Teide - Pico Viejo event tree and the reference models we

have used in its construction. This difference relates to the need to allow for

several possible vent sites, instead of a single one as is the case in the previous
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models. The actual location of the vent will condition the resulting hazards and,

in particular, their potential impacts, as the vent position will determine the area

affected by each volcanic process. This is clear in the case of Teide - Pico Viejo

from which eruptions have occurred not only from the central vent area but also

from any of its flanks. Therefore,we have included in our event tree a new step for

the progression of the eruption that considers the location of the eruptive vent.

However, it is important to remark that this is correct for the present situation

but if we get to the future step of hazard to specific location, the central vs flank

distinction will not be specific enough.

The Teide - Pico Viejo event tree considers all possible volcanic processes that

could occur according to the available past information, even those with a low

probability of occurrence. In this sense,we have to mention that the structure

of the event tree has to be simple but as informative as possible. We have to

keep in mind that a volcanic hazard event tree has to be prepared for showing to

decision makers, who will not necessarily be familiar with volcanic or probabilistic

terminology. The role of scientists should be just to advise decision makers, so

that if a possible outcome is not shown in the event tree and it finally occurs,

scientists could be regarded as at fault.

Volcanoes are complex, non-linear natural systems that rarely follow a con-

stant pattern of behavior. Although we can establish some general eruptive pat-

terns for certain group or types of volcanoes, each volcano will at the end behave

in its own particular way, different from the others. In the case of Teide - Pico

Viejo, as in many other volcanoes around the World, the information we have

on its past eruptive history and on its present state of activity is incomplete,

and requires much more effort before being more confident that we can precisely

forecast its future behavior. This said, the event tree we have presented in this

paper is a contribution to advancing and rationalizing our current knowledge on

Teide - Pico Viejo, and to providing a useful tool to help the society increase its

confidence that any future threat of the volcano is properly assessed, according

to the main objectives of the EXPLORIS project.
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Chapter 3

Bayesian event tree for long-term

volcanic hazard assessment:

Application to Teide - Pico Viejo

stratovolcanoes, Tenerife, Canary

Islands

3.1 Introduction

Assessing eruption risk scenarios in probabilistic ways has become a main chal-

lenge in modern volcanology (Newhall and Hoblitt [2002]; Marzocchi et al. [2004,

2006, 2007]; Aspinall [2006]; Neri et al. [2008]; Mart́ı et al. [2008a]). Volcanic

risk is usually defined as the product of volcanic hazard, value and vulnerabil-

ity, where volcanic hazard is the probability of any particular area being affected

by a destructive volcanic event within a given period of time; the value is the

number of human lives at stake, or the capital value (land, buildings, etc.), or

the productive capacity (factories, power plants, highways, etc.) exposed to the

destructive events; the vulnerability is a measure of the proportion of the value

likely to be lost as a result of a given event (Blong [2000]).

Short and long term eruption forecasting are defined based on the expected
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characteristic time in which the process shows significant variations. During a

quiet phase of the volcano the time variations occur in time intervals significantly

longer than during unrest. For the purpose of this paper, long term forecasting

refers to the time window before the volcanic system goes into unrest, and short

term forecasting refers to the unrest phase. Consequently, long term forecasting

is based on historical and geological data, and theoretical models, while short

term forecasting is complemented with continuous monitoring data.

The complexity of any volcanic system and its associated eruptive processes,

together with the lack of data that characterize many active volcanoes, par-

ticularly those with long recurrences, make volcanic hazard quantification very

challenging, as there is often not enough observational data to build a robust

statistical model.

Despite the limitations in the construction of an event tree usually imposed by

the lack of knowledge on the past and present behavior of active volcanoes, it is

clear from the works previously cited and experiences on volcanic crises (Aspinall

et al. [1998]) that the construction of an event tree is a major step in the hazard

assessment. Most of the research done so far is based on a deterministic approach

for short-term forecasting (e.g., Kilburn [2003]; Hill et al. [2001]). The alternative

approach is probabilistic (e.g., Newhall and Hoblitt [2002]; Aspinall and Woo

[1994]; Marzocchi et al. [2004, 2006, 2007]). Newhall and Hoblitt [2002] proposed

a general event tree scheme to estimate the probability of all the relevant possible

scenarios of a volcanic crisis and, in general, to quantify the volcanic hazard and

risk. Later, Marzocchi et al. [2007] developed a probabilistic tool for long- and

short- term eruption forecasting based on Bayesian methodology and fuzzy logic

using event trees.

Event trees developed using Bayesian methodology assume that unrest is

caused by internal (magmatic) triggers only. However, there are volcanic sys-

tems where unrest episodes and, occasionally, eruptions may also be caused by

external triggers (geothermal, seismic) (Tárraga et al. [2006], Gottsmann et al.

[2007], Carniel et al. [2008]). In computing the long term probability of an erup-

tion if we only consider magmatic triggers as the source of the unrest we would

be underestimating the total probability, since we need to account for the long

term probability that the eruption is originated by a geothermal unrest (when a
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hydrothermal system exists) or by a seismic unrest. On the other hand, event

trees developed using Elicitation of Expert Judgment have a human decision com-

ponent which adds an additional source of bias to the model, require the event

tree structure to be as simple as possible, do not account for the epistemic and

aleatory uncertainties and require the elicitation team to meet in order to update

the probabilities each time new data arrives.

In order to show the limitations of the previous attempts and the need for a

more extensive structure we use the example of Teide - Pico Viejo stratovolca-

noes, as they present alternative scenarios (i.e., nodes and branches) than those

included in the previous event tree structures and may experience unrest triggered

by external causes such as regional seismicity or oscillations in the hydrothermal

system. Teide - Pico Viejo stratovolcanoes form one of the largest volcanic com-

plexes in Europe, situated on the island of Tenerife, extensively populated and

one of the main tourist destinations in Europe. There is scarce information on its

past activity and the volcanoes have not shown clear signs of activity in histori-

cal times. However, it has produced several central and flank vent, effusive and

explosive eruptions during the last 5000 years, the last one about 1000 years ago

(Carracedo et al. [2007]). It has permanent fumarolic activity at the summit of

Teide volcano and the occurrence of a recent unrest episode (Mart́ı et al. [2009]),

reminds us that these volcanoes are presently quiescent, but potentially active

and could erupt again in the near future. For this reason, research is needed to

assess the volcanic hazard and forecast the range of potential volcanic eruptions.

Since we rely on geological and geophysical data, aleatory (stochastic) and epis-

temic (data or knowledge limited) uncertainties are significant, and we need to

find a way to minimize them.

The aleatory (stochastic) uncertainty is a consequence of the intrinsic com-

plexity of a system, hence our limitation in predicting the evolution of the system

in a deterministic way. The aleatory uncertainty introduces a component of ran-

domness in the outcomes, regardless of our physical knowledge of the system.

The epistemic uncertainty is directly related to our knowledge of the system and

the quality and quantity of data we have about the system. The more data we

have, the better we know the system and the lower the epistemic uncertainty

(Woo [1999]).
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A first attempt to asses the volcanic hazard for Teide - Pico Viejo has been

made by Mart́ı et al. [2008a], following the 2004-2005 seismic volcanic crisis on

Tenerife (Mart́ı et al. [2009]), who have proposed an event tree using Elicitation of

Expert Judgment to assign a probability of occurrence to each possible eruptive

scenario. However, the nature of the methodology applied required the event tree

to be as simple as possible, grouping events which may require to be analyzed

individually (eg. Origin of the unrest), and leaving out relevant nodes (eg. Type

of composition of the magma). Also, despite the corrections applied according

to the relative relevance (weight) of each expert, the method has still a strong

human decision component which adds an additional source of bias to the final

results.

In this paper, we present an event tree structure which accounts for external

triggers (geothermal, seismic) as additional sources of volcanic unrest and looks

at the hazard from different types of magma composition and different vent lo-

cations. We then take the available geological data for Teide - Pico Viejo from

the last 8 ka and run it through a Bayesian model built following this new event

tree structure. The result is an estimation of the long term probability for each

possible scenario. We compare both Elicitation and Bayesian methods applied

to Teide - Pico Viejo. Also, we compare the results from the Bayesian event tree

developed here allowing for external triggers with previous Bayesian event tree

structures. This is a new step in the development of useful tools for volcanic

hazard assessment, but additional studies will be needed to define the precursors

and monitoring parameters for each eruptive scenario in order to estimate the

short term probabilities.

3.2 Background geology and past volcanic ac-

tivity in the Teide - Pico Viejo volcanic com-

plex

Teide - Pico Viejo stratovolcanoes started to grow up about 180-190 ka in the

interior of the Las Cañadas caldera (Fig. 3.1). This volcanic depression origi-

nated by several vertical collapses of the former Tenerife central volcanic edifice
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Figure 3.1: (a) Simplified geological and topographic map of Tenerife illustrating
the general distribution of visible vents. RDG: Roques de Garćıa; G: Guajara;.
T: Teide volcano; PV: Pico Viejo volcano; MB: Montaña Blanca. SRZ: Santiago
rift zone; DRZ: Dorsal rift zone; SVZ: Southern volcanic zone. Black symbols:
mafic and intermediate vents; White symbols: felsic vents; Stars: historic and
sub-historic vents; Circles: other vents. Names and locations of landslide valleys
are also shown. Coordinates refer to 20 km squares of the Spanish national grid
(UTM). (b) Simplified geological map of the central part of Tenerife Island. Black
squares and rings indicate flank and central vent eruptions, respectively. White
boxes include the age in yBP of phonolitic events and black boxes those of mafic
events. The figure does not include all the eruptions from Teide - Pico Viejo
stratovolcanoes, only those dated by Carracedo et al. [2007]).
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(Las Cañadas edifice) following explosive emptying of a high-level magma cham-

ber. Occasional lateral collapses of the volcano flanks also occurred and modified

the resulting caldera depressions (Mart́ı et al. [1994a]). The construction of the

present central volcanic complex on Tenerife encompasses the formation of these

twin stratovolcanoes, which derive from the interaction of two different shallow

magma systems that evolved simultaneously, giving rise to a complete series from

basalt to phonolite (Mart́ı et al. [2008b]).

Eruptions at Teide and Pico Viejo stratovolcanoes have occurred from their

central vents but also from a multitude of vents distributed on their flanks (Fig. 1)

(Mart́ı and Geyer [2009]). Mafic and phonolitic magmas have been erupted from

these central and flank vents. The Santiago del Teide and Dorsal rift axes, the

two main tectonic lineations currently active on Tenerife, probably join beneath

the Teide - Pico Viejo complex (Ablay and Mart́ı [2000]). Some flank vents at the

western side of Pico Viejo are located on eruption fissures that are sub-parallel

to fissures further down the Santiago rift, and define the main rift axis. On the

eastern side of Teide some flank vents define eruption fissures orientated parallel

to the upper Dorsal rift.

The eruptive history of the Teide - Pico Viejo comprises a main stage of

eruption of mafic to intermediate lavas that form the core of the volcanoes and

also infill most of the Las Cañadas depression and the adjacent La Orotava and

Icod valleys. About 35 ka the first phonolites appeared, and, since then, they

have become the predominant composition in the Teide - Pico Viejo eruptions.

Basaltic eruptions have also continued mostly associated with the two main rift

zones, but also through some flank vents. The available petrological data suggest

that the interaction of a deep basaltic and a shallow phonolitic magmatic systems

beneath central Tenerife controls their eruption dynamics (Mart́ı et al. [2008b]).

Most of the phonolitic eruptions from Teide - Pico Viejo show signs of magma

mixing, suggesting that eruptions were triggered by intrusion of deep basaltic

magmas into shallow phonolitic reservoirs.

Phonolitic activity from Teide -Pico Viejo shows a recurrence of around 250-

1000 years, according to the isotopic ages published by Carracedo et al. [2003,

2007]). Phonolitic eruptions from Teide and Pico Viejo range in volume from 0.01

to 1 km3 and have mostly generated thick lava flows and domes, some of them
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associated with minor explosive phases, and some with subplinian eruptions, such

as the Montaña Blanca at the eastern flank of Teide, 2000 years ago (Mart́ı et al.

[2008b]).

Some significant basaltic eruptions have also occurred from the flanks or the

central vents of the Teide - Pico Viejo stratovolcanoes, with a recurrence of around

80-150 years according to the historic record. All basaltic eruptions have devel-

oped explosive strombolian to violent strombolian phases leading to the construc-

tion of cinder and scoria cones and occasionally producing intense lava fountaining

and violent explosions with the formation of ash-rich eruption columns. Violent

basaltic phreatomagmatic eruptions have also occurred from the central craters of

the Teide - Pico Viejo stratovolcanoes, generating high-energy, pyroclastic density

currents.

According to Mart́ı et al. [2008b], the total volume of magma erupted in

the last 35 ka is of the order of 1.8-3 km3, 83% corresponding to phonolitic

magmas, while the rest includes basaltic and intermediate magmas. Therefore,

phonolitic eruptions have been less frequent but much more voluminous than

basaltic eruptions in the recent history of Teide - Pico Viejo.

In summary, several possible eruptive scenarios can be envisaged for the Teide

- Pico Viejo stratovolcanoes according to their most recent volcanological history

(Fig. 3.2). These include central and flank vent magmatic and phreatomagmatic

eruptions of phonolitic and basaltic magmas, phreatic explosions, and sector col-

lapses. All these scenarios may be preceded by unrest episodes of different origins

and can generate a significant number of products (hazards). Each potential sce-

nario is assigned a probability of occurrence.

3.3 Teide - Pico Viejo Bayesian Event Tree

An event tree is a tree graph representation of events in the form of nodes and

branches. Each node represents a step and contains a set of possible branches

(outcomes for that particular category). The nodes are alternative steps from a

general prior event, state, or condition through increasingly specific subsequent

events to final outcomes. The event tree includes all relevant possible outcomes of

volcanic unrest at progressively higher degrees of detail. In the Bayesian model
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Figure 3.2: Schematic representation of the most relevant potential unrest and
eruptive scenarios for Teide - Pico Viejo stratovolcanoes (see text for more ex-
planation).

developed here, one condition is that the branches in each node are mutually

exclusive and exhaustive.

To account for the possibility of flank vent eruptions, as opposed to only

central eruptions, geothermal or seismic unrest, as opposed to only magmatic,

phonolitic or basaltic composition, as opposed to no composition, and other rel-

evant volcanic hazard possibilities for Teide - Pico Viejo, we have developed a

new event tree structure which expands and complements that one previously

proposed by Newhall and Hoblitt [2002] and Marzocchi et al. [2004, 2006, 2007],

where Bayesian methodology was applied, and by Mart́ı et al. [2008a], where

Eliciting Expert Judgment was used.

Figure 3.3 shows the Bayesian event tree developed for Teide - Pico Viejo

stratovolcanoes based on the geological information gathered from Figure 3.2.

All events in each node are assumed mutually exclusive and exhaustive, this is,

they do not happen simultaneously and the sum of probabilities of occurrence for

different events in one node sums up to one.
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3.3.1 Node 1: Unrest

Given that we have the capacity to differentiate the origin of the precursory

signals, we define unrest as any modification of the background activity of the

volcano recorded by the monitoring network and which may or may not be fol-

lowed by an eruption of any kind.

The previous event tree (Mart́ı et al. [2008a]) started with the volcano at

unrest (including external triggers), to make the event tree as simple as possible.

That leaves out the computation of the probability of unrest and the origin of

this unrest. The Bayesian methodology used here allows to further expand this

node into two new branches, “unrest” and “no unrest” in a given time window τ ,

and add a new node which accounts for the origin of this unrest. When there is

no unrest we will compute the long term probabilities based on past data, expert

judgment, scientific beliefs, etc., using the Bayesian methodology as explained

in the next section. This will allow us to estimate the absolute probability of a

specific event given past information, for example, the long term probability of a

VEI 3 or less, basaltic, central vent, magmatic eruption with magmatic unrest in

a given time window τ given information derived from past eruptions.

Short term probabilities could be computed in the event of some degree of

unrest, provided that monitoring data was available. However, for the scope of

this paper, we will only discuss long term probabilities.

3.3.2 Node 2: Origin of the Unrest

We define four types of unrest likely to happen in Teide - Pico Viejo stratovolca-

noes: Magmatic, Geothermal, Seismic, and Other. Assuming in the future, in an

optimal situation we can define the precursors which identify the source of the

unrest, it is crucial in a complex system like Teide - Pico Viejo to differentiate

between unrest caused by internal triggers or caused by external triggers, which

ultimately may condition the outcome and further development of the system.

The previous Teide event tree grouped all types of unrest in a unique branch

called “unrest”, and previous event trees defined for other volcanoes consider so

far only one type of unrest of magmatic origin. From the study of the differ-

ent eruption types identified on Teide - Pico Viejo, we can deduce that all of
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Figure 3.3: Bayesian Event Tree for Teide - Pico Viejo. The six steps of estimation

progress from general to more specific events (left to right). Any branch ending with

“Clone” is identical to the detailed branch. Each branch contains the % long term

absolute (posterior) probability of occurrence.
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them, including the phreatic episode (Ablay and Mart́ı [2000]), require the pres-

ence of fresh magma, either mafic or felsic, at shallow depths in the volcanoes.

However, we do not discard the possibility of starting an eruption process from

an unrest directly associated with the hydrothermal system or even due to ex-

ternal triggers, such as regional tectonics, if eruptible magma is present in the

system. In fact, the existence of an active hydrothermal system below Teide -

Pico Viejo is evidenced by the presence of fumaroles and indirectly by geophys-

ical data (Pérez et al. [1996], Coppo et al. [2008]). Volcanic unrest related to

hydrothermal rather than to magmatic activity has been documented in similar

volcanic systems (Gottsmann et al. [2003, 2007]). It is also important to mention

that the interior of Tenerife is currently reacting to changes in the regional stress

field or regional tectonics (Carniel et al. [2008], Tárraga et al. [2006], Mart́ı et al.

[2009]), so a seismic trigger for unrest cannot be ruled out.

Volcanic unrest and subsequent eruption represent an increase of the internal

pressure of the volcanic system. This pressure increase may be caused directly

by intrusion of new magma and/or pressurization of the associated hydrothermal

system, or indirectly by reducing the external loading by a sector collapse or

opening of a fracture during a tectonic episode. Because we define unrest based

on geophysical and geochemical signals recorded by the monitoring network, we

accept that the unrest (i.e the variation in this recorded signals) may derive from

changes in the magma chamber due to intrusion of new (fresh) magma (magmatic

unrest), changes in the hydrothermal system, having a magmatic origin or not

(geothermal unrest) or changes in the host rock caused by regional seismicity

(seismic unrest). However, there is also a possibility for a false unrest when non

volcanic signals are recorded together with the volcanic ones. This is for example

the case of variations in the recharge and extraction of meteoric water in/from

the shallow aquifer inside the Las Cañadas caldera, which may cause changes

in the gravity field, ground deformation, and even seismicity not related to any

volcanic activity.

3.3.3 Node 3: Outcome of the Unrest

We consider here the outcome of the unrest being of four different types:
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1 - Magmatic eruption: Triggered directly by a magmatic unrest, which may

or may not be preceded by a sector failure, or triggered indirectly by a geothermal

or seismic unrest, in which case, external decompression of the shallow volcanic

system would be required. This could be achieved by sector failure or tectonic

fracture opening.

When the unrest is geothermal or seismic, for a magmatic eruption to occur

we would need a sector collapse first or fracture opening to decompress the whole

system, so when we talk about a magmatic eruption originated by a geothermal or

seismic unrest, we assume that a sector failure or a tectonically induced fracture

opening have previously occurred.

2 - Sector failure: Triggered by a magmatic, geothermal or a seismic unrest.

In this branch the outcome is the sector collapse itself, not being followed by an

eruption. A sector failure followed by a magmatic eruption is considered in the

previous branch (magmatic eruption), caused indirectly by a magmatic unrest

which triggered a sector collapse.

3 - Phreatic eruption: Triggered by unrest of any type, where no magma is

involved in the eruption.

4 - No eruption: There is unrest but no further outcome develops.

3.3.4 Node 4: Location

Teide - Pico Viejo has undergone several flank and central vent eruptions without

any apparent structural or petrological pattern that could explain such random

eruption behaviour (Mart́ı et al. [2008b], Mart́ı and Geyer [2009]). The lack of

a good surveillance network and detailed knowledge on past activity makes the

identification of future vents more challenging than in other volcanoes better

known and monitored (eg. Vesuvius, Popocatépetl, etc).

Mart́ı and Geyer [2009] show that the main control on the pathway of phono-

litic magma between the shallow magma chamber and the surface is exerted by

the stress field distribution around and above the chamber, this being a function

of the shape and depth of the magma chamber. Comparison of these results

with the available geological and geochronological information suggests that the

number of flank eruptions that occurred on Teide - Pico Viejo during the time

47



Figure 3.4: DEM (Digital Elevation Model) of the central part of Tenerife Island
showing the sectors distribution used to define the different source areas of the
hazardous events (eruptions, sector collapses, lahars, etc) considered in the event
tree.

period considered (last 8000 years) is slightly higher than that of the central vent

eruptions.

With respect to previous work (Mart́ı et al. [2008a]), this node is an expansion

of the node “Location” by segmenting the “Flank Vent” branch. Aside from the

central vent location, we segmented the flank vent location into “North”, “South”,

“East” and “West”. Further segmentation is possible. The reason for this is that

the impact of the different hazards that have occurred from each eruption may

differ significantly depending on the exact location of the vent. The abrupt

topography of the Teide - Pico Viejo and their surroundings, together with the

presence of important topographic barriers such as the Cañadas caldera wall,

impose a different level of hazard and risk depending on what side of the volcano

the eruption occurs. The north side of the volcano is the area that poses the

greater risk, due to the densely populated area and lack of any topographical

protection from gravity driven flows.

Hence, node 4 “Location” segments the area around Teide - Pico Viejo volcano
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complex into five sectors (Figure 3.4): Central, North, South, East, and West.

3.3.5 Node 5: Composition

Unlike previous event trees, the composition node is a new contribution. Teide

- Pico Viejo’s eruptive activity has been associated with both mafic (basaltic,

tephri-phonolites) and felsic (phono-tephrites and phonolites) magmas. Hence,

the magma composition will determine two main types of eruptions, basaltic or

phonolitic, and they will have different hazard implications, as phonolitic magmas

are associated with more violent eruptions than basaltic magmas.

There are two feeding systems in Teide - Pico Viejo that should be associated

with different precursors. These will allow us to determine if the eruption is go-

ing to be associated with the phonolitic or the basaltic system. This conditions

where the eruption is going to take place and the composition of the erupting

magma, which will influence the level of hazard and the magnitude of the erup-

tion. Phonolitic eruptions are more common in the central vents of Teide - Pico

Viejo and their flanks, while basaltic eruptions are randomly distributed on the

stratovolcanoes but also inside the caldera. It is obvious that outside and inside

the caldera basaltic volcanism is tectonically controlled by the rift systems, which

also affects the plumbing systems that allow deep magma to rise into the central

complex (Ablay and Mart́ı [2000], Mart́ı et al. [2008b]). However, the structural

constraints of the rift system that allow basaltic magma to reach the surface in

Teide - Pico Viejo are still not clear. Therefore in terms of forecasting future

eruptions from Teide - Pico Viejo it will be crucial to clearly distinguish between

precursory activity of basaltic and phonolitic magmas. Thus, the composition

in Node 5 to be of two types: basaltic or phonolitic. The importance in distin-

guishing these two outcomes for node 5 is the different level of hazard that is

associated with each one (Mart́ı et al. [2008b]).

3.3.6 Node 6: Size

Teide - Pico Viejo’s eruptive activity has produced a large variety of eruption

types and magnitudes. This node represents the magnitude of the eruption in
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terms of the volcanic explosive index (VEI), categorized here in four possible

outcomes: VEI ≥ 5, VEI = 4, VEI = 3, VEI ≤ 2.

Basaltic eruptions recorded in the geological record of Teide - Pico Viejo

mostly correspond to strombolian to violent strombolian eruptions (VEI 2, VEI

3), while phonolitic eruptions may generate eruptions of VEI 5 or higher. The

hazards that this wide range of eruptions have generated in the past and may

produce in the future is rather variable and include lava flows and lahars of

different volumes and run out distances, ash fallout, pumice-lapilli fallout, ballistic

bombs and pyroclastic density currents.

3.4 Bayesian Model for Teide - Pico Viejo Event

Tree

In Bayesian statistics, probability has the subjective interpretation. Bayesians use

probability to make statements about the partial knowledge available concerning

some underlying process or “state of nature” (un-observable or as yet unobserved)

in a systematic way. The fundamental principle of Bayesian statistics is that what

is known about anything that is incompletely or imperfectly known is described

by a probability or probability distribution.

Bayesians regard both the observed data y and the unknown parameters θ as

random variables. Posterior inference about θ is then conditional on the particular

realization of y actually observed.

This is in contrast to classical inference, where only the data are regarded as

random, while parameters θ are treated as fixed but unknown. Classical infer-

ence is not just conditional on the observed data, but on what might have been

observed under repeated sampling.

Suppose we have data y and unknowns θ. We posit a model which specifies

the likelihood p(y|θ).
From a Bayesian point of view, θ should have a probability distribution re-

flecting our uncertainty about it, and as y is known, should be conditional on

θ.

Therefore our knowledge about θ is expressed through its posterior distribu-
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tion p(θ|y):

p(θ|y) ∝ p(θ)× p(y|θ) (3.1)

posterior ∝ prior× likelihood (3.2)

3.4.1 The prior distribution

The prior distribution, p(θ), expresses our uncertainty about θ before seeing the

data. The posterior distribution, p(θ|y), expresses our uncertainty about θ after

seeing the data.

The only requirement for the prior distribution is that it should represent the

knowledge about θ before observing the current data. The prior can be specified

entirely subjectively, depend on past data or be weak or non-informative.

We model the prior distribution for the jth event at the kth node with a Dirich-

let distribution, which is the generalization of the Beta distribution, (Marzocchi

et al. [2007]):

θpriork ≈ DiJk(αk1, αk2, ..., αkJk) (3.3)

Where Jk is the number of possible mutually exclusive and exhaustive events

at the kth node, and αk1, αk2, ..., αkJk are the parameters of the distribution in

that particular node. The choice of the Dirichlet (Beta) distribution is itself

rather subjective. In general, theoretical models, a priori beliefs, and/or expert

elicitation give estimation of the expected average of the prior distribution that

represents the “best guess”. Further details on this choice can be found in Mar-

zocchi et al. [2004].

The Expected value (mean) E and variance V of the priori random variable

(Eq. 3.3) from the kth node and the nth event, which follows a Dirichlet distribu-

tion, are:

E[θkn] =
αkn(∑Jk
i=1 αki

) (3.4)
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V [θkn] =
αkn

(∑Jk
i=1 αki − αkn

)
(∑Jk

i=1 αki

)2 (∑Jk
i=1 αki + 1

) (3.5)

The expected value of those distributions represents an estimation of the

aleatory uncertainty, i.e., the intrinsic (and unavoidable) random variability due

to the complexity of the process. The dispersion around the average (i.e. the

variance) represents an estimation of the epistemic uncertainty, due to our lim-

ited knowledge of the process. The estimation of the epistemic uncertainty is very

important for correct comparison between the probabilities of different hazards,

and the confidence limits that are ascribed to them (Woo [1999]). The variance

can be seen as a sort of “confidence degree” of our a priori information, i.e., an

evaluation of the epistemic uncertainties. The confidence degree is set up by writ-

ing the variance in terms of “equivalent number of data” (λk) (Marzocchi et al.

[2007])

λk =

Jk∑
i=1

αki − Jk + 1 (3.6)

And then,

V [θkn] =
E[θkn](1− E[θkn])

λk + Jk
(3.7)

The higher λk the larger our confidence on the reliability of the model, hence

we need more past data to modify significantly the prior, but if we believe that

the prior is poorly informative, λk is small, and so even a small number of past

data can drastically modify the prior. In our case, we will use the minimum value

for λk which is 1, this is the maximum possible epistemic uncertainty, since some

of the past geological records we have are not accurate.

3.4.2 The likelihood function

The likelihood function allows us to use the past data (yk) at node k to modify

the a priori beliefs or priori distributions. In our model the data for each event

in each node is a random variable that follows a multinomial distribution, which
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is the generalization of the binomial distribution. In our case, we have:

[yk|θk] ≈MuJk (yk1, yk2, ..., ykJk ; θk) (3.8)

Where Jk is the number of possible mutually exclusive and exhaustive events

at the kth node. Note this distribution assumes the data of the set yk are iid, this

is, independent and identically distributed.

3.4.3 The posterior Distribution

Since the Dirichlet and Multinomial are conjugate distributions, the posterior

distribution for θk is still a Dirichlet:

θposteriork ≈ DiJk (αki + yki,∀i = 1...Jk) (3.9)

Where the parameter αki will be determined by:

αki = E[θki] (λki + Jk − 1) (3.10)

As discussed before, E[θkn] is the central value inferred by a priori models

and/or of the theoretical beliefs, and will account for the aleatory uncertainty,

while λki controls the confidence at which E[θkn] is considered a reliable estimate

and will account for the epistemic uncertainty. Both these parameters will be

inputs to the model.

3.4.4 The total probability

Once we have all the probability density functions for each branch in each node

and the conditional probability assessment calculated, we combine all these prob-

abilities to estimate the total long-term probability of a particular event. For ex-

ample, the long term probability of having a magmatic unrest with central vent

basaltic eruption in the time interval (t0, t0 + τ) is P (U ∩Mo ∩Me ∩ C ∩B) =

θpostU .θpostMo
.θpostMe

.θpostC .θpostB (3.11)
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Where U is unrest, Mo is magmatic origin, Me is magmatic eruption, C is central

and B is basaltic.

3.5 Long term hazard at the nodes for the Teide

- Pico Viejo event tree based on existing

data: Computation and Results

Suppose we have 80 time windows investigated (n1 = 80) out of which 18 have had

unrest (y11 = 18, y12 = 62), and we want to compute the long term probability

of unrest in the next time window τ (each time window 100 years long) using

Bayesian Inference. According to equation 3.9 the posterior probability follows a

Dirichlet distribution of parameters (α11+18) and (α12+62), where α11 = α12 = 1

(Eq. 3.10), E[θ11] = E[θ12] = 0.5 (prior weight) and λ11 = λ12 = 1 (data weight).

Hence, the long term probability of having an unrest in the next time window is

the expected value of a random variable that follows a Dirichlet distribution with

parameters (1 + 18) and (1 + 62), which by definition (Eq. 3.4) is:

α11 + y11
(α11 + y11) + (α12 + y12)

=
1 + 18

1 + 1 + 80
= 0.2317

Using R, a free language and environment for statistical computing and graph-

ics (available at http://www.r-project.org/), a code has been developed to apply

the above Bayesian model to the Teide - Pico Viejo data (code available upon

request). Table 3.1 shows eighteen eruptions recorded geologically for the last

eight thousand years, using a time window of one hundred years, we have eigh-

teen events in the last eighty time windows. Table 3.2 shows the input data for

the model.

There are no historical records to know if there where any false alarms. We

assume that all the eruptions geologically documented here where preceded by

volcanic unrest. Hence, during the 80 time windows of 100 years each, there were

18 episodes of unrest versus 62 of no unrest.

The probability function named ltvh, programmed in R, computes the long-

term probability vector (last column of Table 3.2) for each node, and is defined
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Table 3.1: Geological records of eruptions at Teide - Pico Viejo volcanic com-
plex for the last eight thousand years (data from Ablay and Mart́ı [2000], Car-
racedo et al. [2007]; unpublished data). Since there are no historical records,
we assumed that an episode of unrest correspond to each eruption geologically
documented. (Mag.=Magmatic; E=Eruption; W=West side; N=North side;
C=Central; S=South side; E=East side. Comp.=Composition; B=Basaltic;
P=Phonolitic)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Eruption
name

Year Unrest Origin Outcome Location Comp. VEI

Chahorra 1798 Yes Mag. Mag. E W B ≤ 2

Mta Reven-
tada

895 bp Yes Mag. Mag. E N B ≤ 2

Lavas
Negras

1150 bp Yes Mag. Mag. E C P 3

Roques
Blancos

1714 bp Yes Mag. Mag. E N P 4

Mta Blanca 2000 bp Yes Mag. Mag. E E P 3

PV surges (2528-
2000) bp

Yes Mag. Mag. E C B ≤ 2

Hoya del
Cedro

(2528-
2000)bp

Yes Mag. Mag. E N P 4

Mta Majua (2528-
2000) bp

Yes Mag. Mag. E S P ≤ 2

Mta de la
Cruz

(2528-
2000) bp

Yes Mag. Mag. E E P ≤ 2

Arenas
Blancas

(2528-
2000) bp

Yes Mag. Mag. E E P ≤ 2

Mta Los
Conejos

(2528-
2000) bp

Yes Mag. Mag. E E P ≤ 2

Bocas de
Maria

(2528-
2000) bp

Yes Mag. Mag. E E P ≤ 2

Mta Las
Lajas

(2528-
2000) bp

Yes Mag. Mag. E E P ≤ 2

El Bo-
queron

2528 bp Yes Mag. Mag. E N P 4

Cañada
Blanca

(5911-
2528) bp

Yes Mag. Mag. E C P 3

Abejera
Baja

5911 bp Yes Mag. Mag. E N P 4

Abejera
Alta

5486 bp Yes Mag. Mag. E N P 4

Pico Cabras (7900-
5486) bp

Yes Mag. Mag. E N P 4
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Table 3.2: Long term probability estimation for each branch of the event tree,
using Bayesian Inference and geological records. Past events are based on the
geological records for the last 80 time windows (each time window is 100 years)
shown in Table 3.1. Weights for the prioris, aleatory and epistemic uncertainties
are equally distributed across branchs of the same node based on the assumption
of non-informative priors. (Prob.=Probability)

Node # Node Branch Past
events

Prior
weight

Data
weight

Prob.
(%)

1 unrest yes 18 0.5 1 0.2317

1 unrest no 62 0.5 1 0.7683

2 origin magmatic 18 0.25 1 0.8636

2 origin geothermal 0 0.25 1 0.0455

2 origin seismic 0 0.25 1 0.0455

2 origin other 0 0.25 1 0.0455

3 outcome Magmatic
Eruption

18 0.25 1 0.8636

3 outcome Sector Fail-
ure

0 0.25 1 0.0455

3 outcome Phreatic
Eruption

0 0.25 1 0.0455

3 outcome No Erup-
tion

0 0.25 1 0.0455

4 location Central 3 0.2 1 0.1739

4 location North 7 0.2 1 0.3478

4 location South 1 0.2 1 0.087

4 location East 6 0.2 1 0.3043

4 location West 1 0.2 1 0.087

5 composition Basaltic 3 0.5 1 0.2

5 composition Phonolitic 15 0.5 1 0.8

6 size VEI ≥ 5 0 0.25 1 0.0455

6 size VEI4 6 0.25 1 0.3182

6 size VEI3 3 0.25 1 0.1818

6 size VEI ≤ 2 9 0.25 1 0.4545
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as:

f(pb1, pb2, pb3, pb4, pb5, pb6, y1, y2, y3, y4, y5, y6) (3.12)

where:

pb1, ..., pb6 are the Jk*2 matrices containing the E[θki], λki parameter infor-

mation for each node (k = 1, ..., 6) and each event within each node (i = 1, ..., Jk)

(Table 3.2, Prior and Data weight columns). Weights are equally distributed

based on the assumption of non-informative priors.

y1, ..., y6 are the vectors with the geological and geophysical data for each

node, each vector is of dimension 1 ∗ Jk (Table 3.2, Past events column).

Due to the fact that each volcano is unique, we cannot use validation data

from analogs. To validate the model we used the previous model BET EF already

published (Marzocchi et al. [2007]) and verify that the new extended model yields

the same results as the former one when the same parameters are given. After

the model has been validated for accuracy of the results, below we present some

examples and interpretations.

The event tree on Figure 3.3 shows the long term probabilities computed with

the model presented above, this is, the posterior probabilities computed as shown

in Section 4.3. This probabilities are also shown in the last column of Table 3.2

and are then used to compute the total long term probability for each eruptive

scenario (Eq. 3.11) as explained in Section 4.4. Some examples are shown below.

According to our model, the long term probability of a basaltic central vent

magmatic eruption with magmatic unrest in the next time window is: 0.2317 *

0.8636 * 0.8636 * 0.1739 * 0.20 = 0.6%. This is, the probability of an unrest

(0.2317), times the probability that this unrest is magmatic (0.8636), times the

probability that this magmatic unrest derives into a magmatic eruption (0.8636),

times the probability that this magmatic eruption is central (0.1739), times the

probability that the composition is basaltic (0.20), is 0.6%. Similarly, the long

term probability of a phonolitic central vent magmatic eruption with magmatic

unrest in the next time window is: 0.2317 * 0.8636 * 0.8636 * 0.1739 * 0.80

= 2.4%, four times the probability of a central magmatic eruption of basaltic

composition.

The branch called “Yes” in the tree node “Unrest” refers to episodes of un-
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rest that could either evolve into false alarm or into eruption. Even though we

assume the 18 geologically documented eruptions followed unrest, the model also

computes a probability of false alarm, this is, having an unrest which does not

evolve into an eruption: 0.2317 * 0.0455 * (0.8636 + 0.0455 + 0.0455) = 1.01%.

The probability of “No Eruption” would be the sum of the probability of a

false alarm, this is, 1.01%, plus the probability of a false unrest (0.2317 * 0.0455 =

1.05%), plus the probability of no unrest of the volcanic system (76.83%). Thus,

the long term probability of not having an eruption in the next time window is

78.89%.

To compute the long term probability of having a magmatic eruption of any

origin in the next time window, we have to consider all the sources that can trigger

a magmatic eruption (magmatic, geothermal or seismic unrest). This is, the long

term probability of having a magmatic eruption caused by (1) a magmatic unrest

(0.2317 * 0.8636 * 0.8636 = 17.28%), (2) a geothermal unrest (0.2317 * 0.0455 *

0.8636 = 0.91%), (3) a seismic unrest (0.2317 * 0.0455 * 0.8636 = 0.91%). Thus,

the long term probability of having a magmatic eruption in the next time window

is 19.10%.

3.6 Discussion and conclusions

We have developed a new event tree model for long term volcanic hazard assess-

ment based on Bayesian methodology and that represents a step forward with

respect to previous attempts based on the same methodology or the elicitation of

expert judgment. We have applied this new model to the particular case of Teide

- Pico Viejo stratovolcanoes, but it may be applied to other active volcanoes.

In comparison with previous event trees based on Bayesian methodology

(Newhall and Hoblitt [2002], Marzocchi et al. [2007]), the model presented here ac-

counts for the possibility of the unrest being caused by external triggers (geother-

mal, seismic), and adds new nodes with two additional sources of volcanic hazard

based on the composition of the magma and different vent locations. With re-

spect to event trees based on Elicitation of Expert Judgment (Neri et al. [2008],

Mart́ı et al. [2008a]) the new model does not have the additional source of bias

that the human decision component adds to the final results of the elicitation
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method, controls for the epistemic and aleatory uncertainties, and allows the

level of segmentation and complexity of the event tree structure to be as com-

plete and extensive as needed, with the only requirements of mutually exclusive

and exhaustive events in each node. It also permits to automatically update the

probabilities when new data arrives or the system becomes active and monitoring

data on precursors exists, as opposed to the eliciting method which requires the

group of experts to meet each time new data arrives to update the probabilities.

However, during a volcanic crisis, Elicitation and Bayesian models are needed and

the elicitation team should provide input and interpretation to the probabilities

from the updated Bayesian model.

In order to understand the differences between this new model of event tree

and the previous ones, let us to consider the example presented in this paper.

With respect to previous hazard assessment, we have expanded the existing event

tree for Teide Pico Viejo (Mart́ı et al. [2008a]) and estimated the long term prob-

ability of an eruption when this can be caused by internal as well as external

triggers, consider magma composition as an additional source of hazard and seg-

mented the flank vent location into four lateral locations. To do this we have

used Bayesian methodology applied to a more detailed and complete event tree

scheme. By doing this, we have been able to account for additional eruptive sce-

narios that were not contemplated before and more accurately estimate the long

term probabilities of an eruption within a given time window.

Therefore, in a volcanic system like the one formed by the Teide - Pico Viejo

stratovolcanoes we may consider different possibilities of unrest, each one with its

associated probability. However, if we do not contemplate the possibility of an

unrest caused by external triggers, parts (2) and (3) in the example presented in

the previous section to compute the probability of having a magmatic eruption

would be set to zero, and the total probability of having a magmatic eruption

would be computed only for the case of the unrest being magmatic, in the example

in previous section, this is (17.28%). In this case, the result should be the same as

the one computed with the BET EF (Marzocchi et al. [2007]), where the weight

assigned to the branches “geothermal” and “seismic” in node 2 “origin” would be

zero and all the weight would go for the remaining two branches “magmatic” and

“other”. However, in the future some volcanic systems may want to considered
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the possibility of an eruption caused by external triggers, as we have done here

for Teide - Pico Viejo, in which case this new event tree could be applied to that

volcano. On the other hand, if we consider only the origin of the unrest being

magmatic on a volcanic system with an hydrothermal system underneath or high

seismic activity, then we are underestimating the volcanic hazard of an eruption,

as the probability of an eruption originated by a geothermal or seismic unrest

would be embedded in the residual probability of “other” origin and not taken

into account. This would happen if we use the abovementioned BET EF model

to compute the probability of a magmatic eruption in Teide - Pico Viejo, which

yields a 17.28% versus the 19.10% computed with our model, since the former

only considers internal (magmatic) triggers.

Assuming the same probability of unrest than in our Bayesian event tree,

and using the Eliciting event tree made for Teide - Pico Viejo to compute the

probability of an eruption (Mart́ı et al. [2008a]), we get: ((unrest) 0.2317 * (no

sector failure) 0.92 * (eruption) 0.23) + ((unrest) 0.2317 * (sector failure) 0.08 *

(eruption) 0.44) = 5.72% , while the probability of an eruption computed with

the Bayesian model, as explained in the previous section, is 19.10%, more than

three times higher.

Despite these differences between the different methods, we believe that Ex-

pert Elicitation and Bayesian Inference complement each other and must be used

simultaneously during volcanic crises, where Bayesian approach provides a way to

quick and automatically update the final probabilities, but the lack of information

on precursors and triggers for each branch makes it impossible to automatically

compute the short term probabilities. Further research is needed to define the

precursors and automate the Bayesian event tree to be used in the short term.

Our event tree does not include a node with all the different geological hazards

from the eruption (lahars, pyroclastic flow, ash fall, etc.) because these events

can happen simultaneously, hence are not mutually exclusive, which is one of the

conditions we made on the Bayesian model. Again, further work is needed to

address this issue. However, the method accounts for the aleatory (intrinsic) and

epistemic (due to scarce knowledge) uncertainties, allowing us to merge theoreti-

cal models, geological data and expert elicitation exercises to assign a long term

probability to each eruptive scenario in a more realistic manner.
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The new method allows us to estimate the long-term probability during a

quiet period of the volcano, being useful for land use policy, and will be of use for

estimating and automatically updating the short term probabilities when moni-

toring data are obtained during unrest.

Although this method is specifically applied to the Teide - Pico Viejo stra-

tovolcanoes in Tenerife, it can be used with other similar volcanoes as it offers

a wider structure in comparison with previous event trees that have a more re-

stricted structure and do not include some relevant eruptive scenarios which are

likely in the Teide - Pico Viejo but also in many other composite volcanoes.
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Chapter 4

Statistical data analysis of the

CCDB (Collapse Caldera

Database): Insights on the

formation of caldera systems

4.1 Introduction

Collapse calderas are defined as volcanic depressions that result from the disrup-

tion of the magma chamber roof due to down faulting during the course of an

eruption [Branney, 1995; Druitt and Sparks, 1984; Gudmundsson, 1988, 1998;

Lipman, 1984; Mart́ı et al., 1994a; Smith, 1979; Smith and Bailey, 1968; Walker,

1984; Williams, 1941; Williams and McBirney, 1979]. The diameter of these vol-

canic depressions, usually more or less circular or elliptical in form, is many times

greater than the diameter of the associated eruptive vents [Lipman, 1997, 2000].

Despite their low frequency of occurrence, large pyroclastic eruptions and associ-

ated collapse calderas represent one of the most catastrophic geologic events that

have occurred on the Earth’s surface during Phanerozoic times, causing consider-

able impacts on the environment (e.g. climate) and on human society (e.g. Tamb-

ora, 1815 [Newhall and Dzurisin, 1988], Krakatau, 1883 [Newhall and Dzurisin,

1988; Self and Rampino, 1981; Simkin, 1983] and Pinatubo, 1991 [Dartevelle
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et al., 2002; Hattori, 1993; Lipman, 2000]). Additionally, collapse calderas have

received considerable attention due to their link to ore deposits and geothermal

energy resources [Lipman, 2000]. Calderas have been analyzed through field stud-

ies, analogue models and numerical simulations. Several attempts to determine

the relationships between caldera size and various parameters such as magma

chambers size have been made in previous studies [Hughes and Mahood, 2008;

Smith, 1979; Spera and Crisp, 1981]. Also some reviews on collapse calderas have

been published [Cole et al., 2004; Lipman, 1997; Mart́ı et al., 2008c]. However,

some important aspects on caldera dynamics and structure still remain uncertain

and controversial.

Traditionally, field studies have constituted the most important way to in-

vestigate and understand volcanic processes. Since dealing with such a large

amount of information from original sources is usually unfeasible, easier-to-use

databases compiling the existing information on field studies of collapse calderas

are required. Recently, Geyer and Mart́ı [2008] have presented the “Collapse

Caldera DataBase (CCDB)” (http://www.GVB-csic.es/CCDB.htm), a compre-

hensive catalogue including most of the known or identified collapse calderas

produced by either explosive eruptions or effusive basaltic activity. The final

aim of the CCDB is to update the current field based knowledge on calderas,

by merging together the above mentioned databases and complementing them

with the existing peer-reviewed articles on calderas. The current version of the

CCDB contains more than 473 calderas worldwide and the included information

comes from around 400 peer-reviewed papers. In addition to its intrinsic value

as database, this extensive data compilation should become an accessible and

useful tool for caldera studies, by the application of accurate and comprehensive

numerical analyses.

The area of the caldera is a variable that results from the caldera process and

depends on other variables that control it, in statistical terms, a function of some

independent variables. These independent variables include the size and shape

of the magma chamber, the depth of the magma chamber, strength of host rock,

influence of regional and local tectonics, size of the caldera-forming eruption,

etc. [Acocella et al., 2000, 2001, 2004; Folch and Mart́ı, 2004; Geyer et al., 2006;

Gudmundsson, 1998; Gudmundsson et al., 1997; Kennedy et al., 2004; Lavallée
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et al., 2004; Mart́ı et al., 1994a; Roche and Druitt, 2001; Roche et al., 2000].

Therefore, understanding how these variables determine the area of the caldera

will broaden our understanding of the dynamics of the corresponding volcanic

system.

The objective of this paper is to study the area of the caldera by means of

a statistical analysis, on a homogeneous sample of the CCDB. We look for some

pattern or statistical association between the size of the caldera and those key

variables which define the geodynamic environment where caldera develops. Such

a key variables are assumed to be directly related and have an impact on the size

of a caldera structure, helping explain the dynamics of such volcanic systems.

First, we extract a uniform sample from the CCDB database with the relevant

variables for the study and then perform a statistical analysis using ANOVA

(Analysis of Variance) on the selected variables.

Most of the findings of the statistical analysis performed here are already as-

sumed from a geological point of view [Cole et al., 2004; Lipman, 1997; Mart́ı

et al., 2008c; Smith, 1979]. The aim of this paper is to study and test quantita-

tively some of those geological assumptions already shared by volcanologists, and

to uncover other facts that would have gone unnoticed otherwise.

4.2 The Collapse Caldera DataBase (CCDB)

Information included in the CCDB was compiled from a wide range of primary

and secondary sources of information, which are referenced for each database en-

try. These information sources include the IAVCEI and the Smithsonian Museum

of Natural History databases (http://www.iavcei.org/ and http://www.volcano.si.edu/,

respectively) and the works of Spera and Crisp [1981], Walker [1984] and Newhall

and Dzurisin [1988]. Additionally, Geyer and Mart́ı [2008] performed a compre-

hensive compilation of the most representative publications.

Originally the CCDB contained data on 361 calderas. Further updates have

allowed to release a new version of the database that includes 473 calderas world-

wide. The CCDB is available online at the website of the CSIC Group of Vol-

canology of Barcelona (http://www.GVB-csic.es/CCDB.htm). The CCDB archi-

tecture is based on the principle that all the information concerning the different
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calderas included in the database has to be comparable and consistent enough for

future comparisons and data analyses [Geyer and Mart́ı, 2008]. The information

included in the CCDB can be classified into the following classes: caldera depres-

sion (e.g. dimensions, morphology, age), caldera-forming deposits (e.g. volume

and thickness of the deposits), associated magmatic system (e.g. magma com-

position), geodynamic setting where the caldera is located (e.g. crustal type,

plate tectonic setting), type of pre-caldera volcanism, caldera-forming eruption

sequence (deduced from the sequence of deposits) and post-caldera evolution (e.g.

post-caldera volcanism, resurgence, caldera erosion). The reader is addressed to

the original paper and the CCDB website (http://www.GVB-csic.es/CCDB.htm)

to get more information on each class.

All the information included in the CCDB comes from published data and

the references used in each case are adequately indicated. In some cases, due to

the scarcity or ambiguity of the available information or the lack of consensus it

is difficult or almost impossible to decide objectively on the specific information

concerning the classes. This is, for example, the case of the calderas in Italy. The

models that are generally invoked to explain the origin of volcanism in central

Italy consider either subduction and back-arc mantle updoming [Di-Girolamo,

1978; Doglioni, 1991; Keller et al., 1994; Peccerillo, 1985; Thompson, 1977], or

intracontinental rift environment unrelated to subduction [Cundari, 1979; Decan-

dia et al., 1998; Stoppa and Lavecchia, 1992]. In these cases we have indicated

the existing discrepancies by putting a “?” instead of the corresponding class.

This implies that the information for some calderas is incomplete and we have

not used these examples in our statistical study. The only exception is for those

calderas associated with the Basin and Range tectonics. The last version of the

CCDB includes the class “Basin and Range” to characterize the tectonic setting

of many of the calderas located in North America (e.g. Platoro, Bachelor). There

exist different hypotheses concerning the origin of the Basin and Range extension

which include, beyond others, rifting processes related to the subducting slab (i.e.

back-arc rifting) [Dickinson, 2002] or lithospheric extension without the influence

of the preceding subduction process [Hawkesworth, 1995; Hooper et al., 1995].

In such case, we would assign to the tectonic setting a “?” instead of deciding

between a plate tectonic class, however, this would leave more than 30 calderas

65



without information concerning the Plate Tectonic Setting. Thus, we have de-

cided to include a special class “Basin and Range” to be able to include these

calderas in the analysis. In the future, further information concerning the Basin

and Range taphrogen will help to constrain better the tectonic setting of these

collapse calderas.

4.3 The CCDB Sample Data for the study

A sample of the 473 calderas and four relevant variables have been selected for the

analysis of the Caldera Area. The selection was done based on variable relevance

and available data. The missing values are due to lack of information or consensus,

so we look at variables with at least 50% of non missing data. The selected

variables are: Caldera Area, Rock Suite, Crustal Type, Plate Tectonic Setting and

World Region. Table 4.1 shows all variables in the CCDB and the percentage

of missing information in each one (see Geyer and Mart́ı [2008] for further detail

on each variable). The variable Caldera Area has 402 calderas with the area

informed. There is a considerable number of variables with high percentage of

missing data, and therefore not suitable for the study. Of those variables with at

least 50% of non missing data, variable Age is not relevant to explain the size, Rock

Suite shows in better format the same information than Magma Composition. In

the case of Plate Tectonic Setting and Tectonic Faulting, whereas the first variable

describes the plate tectonic setting, the second gives information about the type

of local and regional structures that may have influenced pre-caldera volcanism,

caldera formation and/or the distribution of post-caldera volcanism. Since we

are interested in defining the geodynamic environment in general terms we use

the variable Plate Tectonic Setting, however further detailed analysis of specific

caldera samples have to consider also the regional/local information contained

in the variable Tectonic faulting. With the above, to analyze Caldera Area, the

relevant variables available for the study, with sufficient information to carry out

an analysis of the geodynamic environment where calderas form are: Rock Suite,

Crustal Type and Plate Tectonic Setting. Last, for informative purposes, we will

look at the distribution of calderas according to World Region. In the future, the

analysis can be further expanded provided new information becomes available.
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Table 4.1: CCDB Variables with Caldera Area informed and their missing values
(N = number of calderas). A detailed explanation of the different variables can
be found in Geyer and Mart́ı [2008] and the CCDB website (http://www.GVB-
csic.es/CCDB.htm).

Calderas with Area informed: 402 Missing N Missing % Include

Age 90 24
Subsidence (km) 346 86
Volume (km3) 346 94
Subsidence type/geometry 287 71
Thickness of deposits (km) 348 87
Volume of deposits (km3) 239 80
Volume magma DRE (km3) 275 88
Magma composition 77 19
Rock suite 59 30 Yes
Chamber depth (km) 367 93
Plate tectonic setting 75 28 Yes
Crustal type 55 22 Yes
Tectonic faulting 118 33
Pre-caldera volcanism 220 54
Timing caldera onset 311 77
Post caldera volcanic activity 287 71
Latitude 11 3
Longitude 11 3
World region 0 0 Yes
Subregion 0 0
Max. diameter (km) 26 4
Min. diameter (km) 27 4
Regional pre-caldera doming 0 0
Post-caldera resurgence 0 0
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Table 4.2 shows all five variables and their categories. The definition of the

individual categories was established by Geyer and Mart́ı [2008] and has been re-

cently revised for the new version of the CCDB (http://www.GVB-csic.es/CCDB.htm).

The different crustal types (Table 4.3) and plate tectonic settings have been de-

fined on the basis of consulted references [Carey, 2005; Condie, 1993; Kearey and

Vine, 1996; Turcotte and Schubert, 2002; Uyeda, 1982]. For the particular case

of Plate Tectonic Setting we have included Figure 4.1 to illustrate each cate-

gory. According to Plate Tectonic Setting 59% of the calderas are located in the

Chilean-type subduction, Basin and Range and continental rift. Regarding the

Crustal Type (excluding category “unknown”) calderas are grouped in six differ-

ent categories, with 75% of the calderas located in the continental silicic (thin,

≤ 30 − 35 km, and thick, > 30 − 35 km) and transitional thick crust. Of the

402 calderas, 14% have missing Crustal Type information. Similarly, there are

twelve different types of Rock Suite composition, apart from a 15% of calderas

with unknown composition. Of these, 194 calderas (48%) are of calc-alkaline felsic

composition.

Figure 4.1: Sketch of the different plate tectonic settings.
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Table 4.2: Summary of variables from sample CCDB used for the analysis (Note:
% are over the 402 calderas with the area informed. N = number of calderas)

Caldera Area Plate Tectonic Setting N %

Calderas: 402 Unknown 75 19
Min: 0.03 km2; Max: 4712 km2 Chilean-type subduction 159 40
Mean:206 km2; Std dev:477 km2 Basin and Range 44 11

Continental rift 32 8
Crustal Type N % Hotspot 24 6
Unknown 55 14 Hotspot near/over oceanic ridge 24 6
Continental silicic thick crust 115 29 Island arc collision, transform
Continental silicic thin crust 105 26 boundary, triple plate junction 16 4
Transitional thick crust 80 20 Mariana-type subduction 15 4
Oceanic basaltic thin crust 25 6 Continental back-arc rifting 13 3
Oceanic basaltic thick crust 16 4 World Region N %
Transitional thin crust 6 1 North America 79 20

Japan and Mariana Islands 53 13
South America 36 9

Rock Suite N % Mediterranean 35 9
Unknown 59 15 Africa 33 8
Calc-alkaline felsic 194 48 Central America 30 7
Alkaline felsic 28 7 Kamtchatka and Mainland Asia 24 6
Peralkaline-alkaline 21 5 Indonesia 23 6
Calc-alkaline intermediate 17 4 Alaska 17 4
Tholeiite 16 4 Melanesia 14 3
Calc-alkaline intermediate-felsic 15 4 New Zealand, Tonga and
Alkaline mafic 11 3 Kermadec Islands 10 2
Calc-alkaline mafic 11 3 Kurile Islands 10 2
Calc-alkaline alkaline 10 2 Atlantic Islands 9 2
Alkaline intermediate 5 1 Iceland 8 2
Calc-alkaline mafic-felsic 5 1 Hawaii 7 2
Peralkaline-calc-alkaline 4 1 Antartica 6 1
Alkaline mafic-felsic 3 1 Philippines 4 1
Alkaline intermediate-felsic 2 0.5 Indian Ocean 2 0.5
Calc-alkaline mafic-intermediate 1 0.2 Caribbean 2 0.5

69



Table 4.3: Classes of the Crustal Type variable. The transitional crust has an
intermediate composition between the continental and the oceanic crust. Although
the main common crustal divisions are: oceanic, transitional and continental, it
is typical to find zones of thinned or thickened crust for examples in areas of
continental rifting or very thick transitional crust in highly evolved island arcs.
Consequently, an accurate classification has to take into account both parameters:
thickness and composition. The thickness thresholds from thick to (standard-
) thin are established according to the definition of Condie [1993]. Important
problems appear classifying island arcs. Their composition should be theoretically
transitional (e.g. Izu-Osawa arc) [Condie, 1993]. However, these may range from
almost oceanic (e.g. Western Aleutians) to practically continental (e.g. Japan)
[Condie, 1993; Kearey and Vine, 1996].

Crustal Type Thickness (km) Composition

Continental silicic thick (C) > 30-35 silicic (granitic)
Continental silicic (standard-)
thin (Cd)

≤ 30-35 silicic (granitic)

Oceanic basaltic thick (O) ≥ 10-15 mafic (primarily basaltic)
Oceanic basaltic (standard-) thin
(Od)

< 10-15 mafic (primarily basaltic)

Transitional thick (T) ≥ 20-25 intermediate composition
Transitional (standard-) thin
(Td)

< 20-25 intermediate composition

Table 4.4 shows the distributions of the various populations of Caldera Area

to be compared. Calderas in continental silicic thick crust have the largest mean

area (411 km2), as well as those with peralkaline-calc-alkaline (357 km2), calc-

alkaline alkaline (333 km2) and calc-alkaline felsic rock composition (322 km2).

Calderas associated with hotspot (863 km2) and in the Basin and Range (368

km2) plate tectonic setting are by far the largest on average.

4.4 The Statistical Methodology

Our hypothesis is that the area of the caldera depends on Crustal Type, and/or

Rock Suite, and/or Plate Tectonic Setting, the main variables that define the

geodynamic environment where the caldera develops, in addition to the size and

depth of the magma chamber, two variables that are not included in the CCDB
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Table 4.4: Distribution of Caldera Area (km2) according to Crustal Type, Rock
Suite and Plate Tectonic Setting. (Note: values for the mean, standard deviation,
minimum and maximum are in km2. N = number of calderas)

Crustal Type N Mean Std Dev Min. Max.

Continental silicic thick crust 104 411 794 1 4712
Continental silicic thin crust 87 206 338 1 2000
Transitional thick crust 66 102 111 0 471
Oceanic basaltic thin crust 24 27 33 0 163
Oceanic basaltic thick crust 13 61 51 15 184
Transitional thin crust 3 44 30 24 79

Rock Suite N Mean Std Dev Min. Max.

Calc-alkaline felsic 173 322 662 2 4712
Peralkaline-alkaline 21 49 51 3 170
Alkaline felsic 20 79 108 1 380
Tholeiite 15 52 48 10 184
Calc-alkaline intermediate 13 103 94 13 358
Alkaline mafic 11 36 48 0 163
Calc-alkaline intermediate-
felsic

11 220 191 7 550

Calc-alkaline alkaline 10 333 266 20 628
Calc-alkaline mafic 10 46 49 0 151
Calc-alkaline mafic-felsic 4 55 45 31 123
Peralkaline-calc-alkaline 4 357 279 33 707
Alkaline mafic-felsic 3 68 115 1 201
Alkaline intermediate 1 20 . 20 20
Calc-alkaline mafic-
intermediate

1 24 . 24 24

Plate Tectonic Setting N Mean Std Dev Min. Max.

Chilean-type subduction 144 191 314 0 2160
Basin and Range 44 368 366 47 1500
Continental rift 31 101 111 1 434
Hotspot near/over oceanic
ridge

24 38 43 0 184

Hotspot 21 863 1575 10 4712
Continental back-arc rifting 12 158 124 11 363
Island arc collision, transform
boundary, triple plate junc-
tion

11 69 65 13 236

Mariana-type subduction 10 47 33 20 102
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but which have been clearly identified as crucial in experimental and numerical

models of collapse calderas (see Mart́ı et al. [2008c] for a review). The question

of interest is whether this dependence really exists. The statistical methodology

used to analyze this hypothesis, given the number of calderas and the variables in

the dataset, is a “Nonparametric one-way unbalanced ANOVA using the Kruskal-

Wallis test” [Rice, 1995].

In analysis of variance (ANOVA), a continuous response variable, Caldera

Area, known as a dependent variable, is measured under experimental conditions

identified by classification variables (Crustal Type, Rock Suite, Plate Tectonic

Setting), known as independent or explanatory variables. The variation in the

response variable is assumed to be due to effects in the classification variables,

with random error accounting for the remaining variation. In general, the pur-

pose of analysis of variance (ANOVA) is to test for significant differences in the

response variable among two or more classification groups, in our case by looking

at the group mean Caldera Area. The name “Analysis of Variance” is derived

from the fact that in order to test for statistical significance between means, we

are actually comparing (i.e., analyzing) variances.

In our case we have the response variable, Caldera Area, and three classi-

fication variables, Crustal Type, Plate Tectonic Setting and Rock Suite. Each

classification variable has two or more categories which make different groups of

calderas. We want to look at Caldera Area in each of these groups and determine

if the mean area is statistically different across different groups. The qualitative

variables (Crustal Type, Plate Tectonic Setting, Rock Suite) serve to distinguish

between (potentially) different populations (groups).

When we compare one unique dependent variable, Caldera Area, against one

classification variable which has two or more categories we call the design one-way

ANOVA. If each classification group has unequal number of calderas, we call the

experiment unbalanced, as opposed to a balanced experiment where the number of

calderas are equal for all groups. Additionally, when the observations (number of

calderas) in the response variable (Caldera Area) are assumed to be independent

from each other, but we do not have enough evidence to assume a particular

distributional form, such as the normal (due to insufficient data), we then need

to use nonparametric procedures to perform the ANOVA analysis, in our case,
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the Kruskal-Wallis test [Rice, 1995]. Due to the small number of calderas in some

of the groups we don’t have enough evidence to assume a normal distribution

of the data, that is why we have to use nonparametric procedures. With the

Kruskal-Wallis test, the observations are pooled together and ranked. The data

are replaced by their ranks. This replacement has the effect of moderating the

influence of outliers.

The observations are pooled together and ranked. Let Rij be the rank of Yij

in the combined sample. Let

R̄i. =
1

Ji

Ji∑
j=1

Rij (4.1)

be the average rank in the ith group. Let

R̄.. =
1

N

I∑
i=1

Ji∑
j=1

Rij =
N + 1

2
(4.2)

where N is the total number of calderas. Let

SSB =
I∑
i=1

Ji(R̄i. − R̄..)
2 (4.3)

be a measure of the dispersion of the R̄i.. Under the null hypothesis that the

probability distributions of the I groups are identical, the statistic

K =
12

N(N + 1)
SSB (4.4)

is approximately distributed as a Chi-square random variable with I − 1 degrees

of freedom. This test statistic is then used to perform a hypothesis testing.

A statistical hypothesis testing is a method of making statistical decisions

using experimental data. In frequency probability, these decisions are almost

always made using null-hypothesis tests; that is, ones that answer the question

“Assuming that the null hypothesis is true, what is the probability (p-value) of

observing a value for the test statistic that is at least as extreme as the value that

was actually observed?”
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In practice, a statistical package is used to compute the K statistic and the

p-value. Most statistical softwares can perform this type of analysis.

In statistical hypothesis testing, the p-value is the probability of obtaining a

result at least as extreme as the one that was actually observed, assuming that

the null hypothesis is true. It is computed using the K statistic defined above.

In statistics, a result is said to be “statistically significant” if is unlikely to

have occurred by chance. Hence, after a result has been tested empirically using

hypothesis testing, and proven to be statistically significant, we have statistical

evidence to reject the null hypothesis that the differences observed are due to

random variability alone in favor of the alternative that the differences are due

to the specific characteristics of each group. The amount of evidence required

to accept that an event is unlikely to have arisen by chance is known as the

significance level or critical p-value. In statistics, popular levels of significance

are 5% (0.05), 1% (0.01) and 0.1% (0.001), the lower the p-value falls below the

significance level, the greater the statistical evidence. See Rice [1995] for further

explanation on p-values. So at the 5% level of significance we can say that there

is enough statistical evidence to reject the null hypothesis that the groups are

identical, in favor of the alternative hypothesis that the groups are different.

In our case the null hypothesis is that the caldera sizes are the same for

each group, and the alternative hypothesis is the opposite, i.e., the caldera sizes

are different for each group. The aim of the test is to find enough statistical

evidence (using the Kruskal-Wallis test) to reject the null hypothesis in favor of

the alternative. To do this, we compute and look at the p-value. If the p-value

is less than or equal to 0.05 or 0.10 (the lower the better), we can then say that

there is enough statistical evidence to reject the null hypothesis that the calderas

have the same size for all groups, and accept the alternative hypothesis that the

caldera sizes vary depending on what group they belong to (each group will be

determined by the different categories in the classification variables explained

earlier).

We use the statistical package SAS 9.1.3. Copyright (c) 2002-2003 by SAS

Institute Inc., Cary, NC, USA. SAS (r) 9.1 (TS1M3) Licensed to DEPT. D ES-

TADISTICA I INVESTIGACIO OPERATIVA, Site 0081102002.
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4.5 Statistical Analysis and Results

We start performing the analysis with one variable at the time, grouping the

response variable Caldera Area according to the different categories of the ex-

planatory variable. We can start with either Crustal Type, Plate Tectonic Setting

or Rock Suite as the explanatory grouping variable. The final result is the same

regardless of which grouping variable we start with. Of the 402 calderas with the

area informed, a total of 297 calderas have data in variables Crustal Type, Rock

Suite and Plate Tectonic Setting simultaneously. We use these 297 calderas for

the study.

We are performing hypothesis testing on Caldera Area only and the explana-

tory variables are used independently to make the groups. They contribute with

different and relevant information to explain the geodynamic environment where

calderas form. Due to the nature of the methodology used, a correlation analysis

does not apply as it would in regression analysis. The areas are assumed to be

independent and hence, based on the area, the groups tested are assumed to be

independent.

4.5.1 Crustal Type, Rock Suite, Plate Tectonic Setting

Table 4.5 shows an example of the Kruskal-Wallis test output explained in previ-

ous section, using SAS statistical software. Any statistical software can be used to

easily compute the p-value, if not computed manually. We see that grouping the

response variable according to the six different categories of Crustal Type, we ob-

tain a p-value lower than 0.0001 (less than 5%), which means that there is enough

statistical evidence at the 5% level of significance to say that the Caldera Area is

not the same for all six different categories of Crustal Type, suggesting they have

different caldera sizes. The mean score for oceanic basaltic thin and thick and

transitional thin suggests these categories may have similar areas. When tested

together, the p-value is greater than 5%, indicating the area is not significantly

different across these three categories. We make a unique group of 40 calderas

and call it oceanic basaltic (thin, thick), transitional thin (Table 4.6). We want to

see which crustal type categories are significantly different from each other. For

this, we need to do a pair-wise Kruskal-Wallis test on all different pairs. Table 4.6
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Table 4.5: Kruskal-Wallis test output using SAS Statistical software. See text for
details.

Crustal Type Calderas Sum of Expected Std Dev Mean
Scores Under H0 Under H0 Score

Continental silicic thick
crust

104 19431 15496 706 187

Oceanic basaltic thin crust 87 13206 12963 674 152
Transitional thick crust 66 8621 9834 615 131
Continental silicic thin
crust

24 1336 3576 403 56

Oceanic basaltic thick
crust

13 1380 1937 303 106

Transitional thin crust 3 281 447 148 94

Kruskal-Wallis Test

Chi-Square 56
DF 5
Pr > Chi-Square <.0001

Table 4.6: Pair-wise Kruskal-Wallis result at the 5% level of significance for
Caldera Area classified according to Crustal Type (significant difference < 0.05,
not significant ≥ 0.05)

Crustal Type C Cd T Od, O, Td

Continental silicic thick (C) 0.0045 < .0001 < .0001
Continental silicic thin (Cd) 0.0045 0.1115 < .0001
Transitional thick (T) < .0001 0.1115 < .0001
Oceanic (thin (Od), thick (Od)) < .0001 < .0001 < .0001
Transitional thin (Td)
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shows these combinations and the p-value of the test for each pair. The p-value

is lower than 0.05 for most combinations. Calderas in continental silicic thick

have an area significantly different than those in continental silicic thin, transi-

tional thick and oceanic (thin, thick), transitional thin. Same applies to the other

pairs, except when calderas in transitional thick and continental silicic thin are

tested against each other, suggesting this two categories could be grouped. Using

Kruskal Wallis test we have identified three groups of calderas with different area

according to the crustal type environment where they develop (Table 4.7). There

are 104 calderas in continental silicic thick crust with a mean area of 411 km2,

153 calderas in continental silicic thin and transitional thick crust with a mean

area of 161 km2, and 40 calderas in oceanic basaltic (thin, thick), transitional

thin crust with a mean area of 39 km2.

Performing the same pair-wise analysis for Plate Tectonic Setting and Rock

Suite we have identified three groups of plate tectonic setting and two groups of

rock suite (Table 4.7). Calderas in Basin and Range, and hotspot form one group

of 65 calderas with a mean area of 528 km2. Calderas in continental rift, conti-

nental back-arc rifting, Chilean-type subduction, island arc collision, transform

boundary and triple plate junction form a second group of 198 calderas with a

mean area of 168 km2. Calderas in Mariana-type subduction and hotspots near

or over an ocean ridge form the third group of 34 calderas with a mean area of 41

km2. According to Rock Suite there are two groups with clearly different caldera

area, 211 calderas with calc-alkaline (felsic, intermediate, intermediate-felsic),

calc-alkaline alkaline and peralkaline-calc-alkaline composition with a mean area

of 304 km2 (going forward we will refer to this group as composition A), and 86

calderas with other rock suite (alkaline, tholeiitic, other) which have a mean area

of 55 km2 (going forward we will refer to this group as composition B).

The Kruskal-Wallis test shows enough statistical evidence to say that calderas

in different geodynamic environments yield groups with significantly different

Caldera Area according to the three classification variables (Crustal Type, Plate

Tectonic Setting and Rock Suite). This is an indication of some sort of pattern

in the geodynamics of the volcanic setting.

To further explore this pattern, we now want to look at the interaction of

these grouped variables all together and look for possible group combinations
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Table 4.7: Crustal Type, Plate Tectonic Setting and Rock Suite variables have
been regrouped according to the size of the calderas in each category, based on
Kruskal-Wallis Test (p-value < 0.05)

Calderas Mean (km2)

Crustal Type Groups

1 - Continental silicic thick 104 411
2 - Continental silicic thin, Transitional thick 153 161
3 - Oceanic basaltic (thin, thick), Transitional thin 40 39

Plate Tectonic Setting Groups

1 - Basin and Range, Hotspot 65 528
2 - Continental back-arc rifting, Continental rift, Is-
land arc collision, triple plate junction, transform
boundary, Chilean-type subduction

198 168

3 - Mariana-type subduction, Hotspot near/over
oceanic ridge

34 41

Rock Suite Groups

1 - Calc-alkaline (felsic, intermediate, intermediate-
felsic), Calc-alkaline alkaline, Peralkaline-calc-alkaline

211 304

2 - Alkaline, Tholeiite, Calc-alkaline (mafic, mafic-
felsic, mafic-intermediate), Peralkaline-alkaline

86 55

with significantly different areas. To do this, we cross the three explanatory

variables and their new categories as shown in Table 4.7. We then outline all the

different combinations as we have done earlier for each variable alone, and do a

pair-wise Kruskal-Wallis test on them. Table 4.8 shows the result of this process,

which suggests that we can classify calderas according to the geological conditions

or geodynamic environment where they form. In this sense, we can distinguish

three main groups or caldera settings (GE1, GE2, and GE3 ), with a relationship

existing between these groups and the area of the associated calderas.

In particular, when composition A group is combined with continental silicic

thick crust (whether in Basin and Range, hotspot or Chilean-type subduction)

or combined with continental silicic thin crust (whether in Basin and Range,

hotspot or continental rift), the result is a group of 110 calderas with significantly

large area (460 km2 on average). Composition A group in continental silicic thin
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Table 4.8: Geodynamic environments (GE) according to Rock Suite, Crustal Type
and Plate Tectonic Setting. (Composition A: calc-alkaline (felsic, intermediate,
intermediate-felsic), calc-alkaline alkaline, peralkaline-calc-alkaline. Composi-
tion B: alkaline, tholeiitic, calc-alkaline (mafic, mafic-felsic, mafic-intermediate),
peralkaline-alkaline).

GE Rock Suite Crustal Type Plate Tectonic Setting Calderas Mean
(km2)

GE 1 Composition A Continental
silicic

Basin and Range, 110 460

thick Hotspot,
Chilean-type subduc-
tion

Continental
silicic

Basin and Range,

thin Hotspot,
Continental rift

GE 2 Composition A Continental
silicic

Continental back-arc
rifting,

92 142

thin Chilean-type subduc-
tion

Transitional
thick

Island arc collision,

Transform boundary,
Triple plate junction,
Chilean-type subduc-
tion

GE 3 Composition A Transitional Mariana-type subduc-
tion

95 54

(thin, thick)
Oceanic
basaltic
(thin, thick),

Composition B any any
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crust (either continental back-arc rifting or Chilean-type subduction), as well

as transitional thick (whether in Chilean-type subduction, island arc collision,

transform boundary or triple junction) create a second geodynamic environment

of 92 medium size calderas (142 km2 on average). There is a third geodynamic

environment with relatively small calderas (95 with 54 km2 on average) formed by

those with composition A in either transitional (thin, thick) or oceanic basaltic

(thin, thick) crust located in Mariana-type subduction, and those calderas of

composition B type regardless of the crustal type and plate tectonic setting where

they develop.

Hence using the Kruskal-Wallis analysis of variance we have identified three

main groups of caldera settings or geodynamic environments with statistically

different areas of the associated calderas. Table 4.9 shows some examples in each

group and Figure 4.2 summarizes step-by-step the segmentation process used to

identify the three groups.

To describe GE1, GE2 and GE3 in more detail we have included a boxplot

of Caldera Area according to the geodynamic environment group (Figure 4.3).

A boxplot is a graphical display that shows in a glimpse, several very important

elements describing the data: median (50th percentile or second quartile) Q2 ),

interquartile range IQR, lower quartile (25th percentile) Q1, higher quartile (75th

percentile) Q3, and smallest and largest observation. In addition, a boxplot is

very useful to identify abnormal data (outliers). Horizontal lines are drawn at

the median and at the upper and lower quartiles and are joined by vertical lines

to produce the box. Then a vertical line is drawn up from the upper quartile

to the most extreme data point that is within a distance of 1.5 (IQR) of the

upper quartile. A similarly defined vertical line is drawn down from the lower

quartile. Short horizontal lines are added to mark the ends of these vertical lines.

Each data point beyond the ends of the vertical lines is marked with a circle,

and they are considered abnormal or unusual data (outliers) for this particular

distribution.

Group GE1 has 110 calderas with a mean of 461 km2, a standard deviation

of 784 km2, median of 201 km2, Q1 79 km2 and Q3 510 km2. According to

the median, 50% of the calderas in GE1 group have an area above 201 km2.

According to Q3, 75% have an area below 550 km2. The fact that the mean
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Table 4.9: Some examples of calderas according to the GE group where they
develop. CALC: Calc-alkaline; PERALK: Peralkaline; int: intermediate. (Not
all calderas are included, only a few examples in each group)

GE Caldera Area Rock Suite Crustal
Type

Plate Tectonic Setting

1 Blacktail 4712 CALC felsic C Hotspot
1 Kilgore 3770 CALC felsic C Hotspot
1 Yellowstone II 2435 CALC felsic C Hotspot
1 Cerro Galan 550 CALC felsic C Chilean-type subduction
1 Platoro 358 CALC int C Basin and Range
1 Vilama II 550 CALC int-felsic C Chilean-type subduction
1 Mc Dermitt 707 PERALK-calc-

alkaline
Cd Hotspot

1 Santana 628 CALC alkaline C Basin and Range
2 Ranau 251 CALC felsic Cd Chilean-type subduction
2 Kutcharo 430 CALC int-felsic C Chilean-type subduction
2 Rotorua 363 CALC felsic Cd Continental back-arc rifting
2 Bulusan 95 CALC felsic T Island arc collision
3 Las Cañadas 22 Alkaline felsic Od Hotspot
3 Sierra Quemada 28 Alkaline felsic C Chilean-type subduction
3 Nabro 50 Alkaline felsic Cd Continental rift
3 Tofua 20 CALC felsic O Mariana-type subduction
3 Witori 32 CALC felsic T Mariana-type subduction
3 Longonot 3 PERALK-

alkaline
Cd Continental rift

3 Tousside 28 PERALK-
alkaline

C Hotspot

3 Cinco Picos 38 PERALK-
alkaline

Cd Hotspot near/over oceanic
ridge

3 Cinque Denti 28 PERALK-
alkaline

Cd Continental rift

3 Cerro Azul 10 Tholeiite Od Hotspot near/over oceanic
ridge
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is significantly higher than the median indicates the existance of calderas with

unusually large size shifting the distribution towards higher values. As we see in

Figure 4.3, there is a group of 8 calderas with area ranging from 1402 to 4712 km2.

These Caldera Area values are significantly larger than the values of the other 102

calderas in this group. The inclusion of these 8 calderas in group GE1 explains

the large mean with respect to Q2. Also, the disperssion of the values around the

mean, this is, the standard deviation, is high, 784 km2, suggesting the observation

values are not concentrated around the mean but rather disperse towards large

values. This measures of location (Q1, Q2, Q3, mean) and dispersion (standard

deviation) suggest the existance of outliers which deserve further attention. These

outliers could be due to measurement errors or to observations with exceptional

geological characteristics apart from the type of rock composition, the crustal

type or the plate tectonic settings defined in these groups that make them larger

than usual. The boxplot technique in Figure 4.3 has identified 8 calderas as

outliers in group GE1, 5 calderas in group GE2 and 9 calderas in group GE3.

Similarly for group GE2, a mean of 142 km2 versus a median of 79 km2 and a

standard deviation of 228 km2 is indicating the distribution of the Caldera Area

is slightly skewed towards high values, suggesting the existence of some calderas

with unusually large values for this group. Similar effect is observed in group

GE3, with a mean of 54 km2 versus a median of 28 km2 and a standard deviation

of 66 km2, suggesting once more the existance of large caldera sizes for this group.

Clearly, calderas in GE1 are the largest in size, group GE2 hosts medium size

calderas and GE3 calderas of small size with respect to the other groups. Also,

we can see from the shape of the boxplots that the central part of the distribution

is somewhat skewed towards high values. Further attention should be given to

the outliers, especially those with an unusually large size which should respond to

particular structural constraints other than the geodynamic environment where

they form.
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Figure 4.2: Stepwise segmentation of variables by Caldera Area using Kruskal-
Wallis test. Three groups of calderas with average areas significantly different can
be distinguished according to the characteristics of the geodynamic environment
where they form. We distinguish three main geodynamic environments, named
GE1, GE2, and GE3, which preferentially host large, medium, and small calderas,
respectively.
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Figure 4.3: Boxplots of geodynamic environment groups for Caldera Area (Note
the different scales in the y axes. See text for explanation.)
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4.5.2 Distribution of the Caldera Groups according to

World Region

For information purposes, lets look at the location of the calderas in each geo-

dynamic environment. The map on Figure 4.4 shows the world distribution of

calderas in each group, and Table 4.10 gives more detail of the regions in each

group. In particular, 65 out of 110 calderas from group GE1 are located in North

America, and 30 out of 92 calderas in group GE2 are located in the Japan and

Mariana Islands.

Table 4.10: World Region distribution of calderas according to their geodynamic
environment

GE 1 GE 2 GE 3

South America 25 Japan and Mariana Africa 29
North America 65 Islands 30 Atlantic Islands 9
Mediterranean 2 Alaska 12 Melanesia 8
Kamtchatka, Asia 6 Indonesia 10 Iceland 8
Central America 12 Central America 10 South America 7

Kurile Islands 8 North America 6
Kamtchatka, Asia 8 Hawaii 6
New Zealand, Tonga Alaska 4
and Kermadec Islands 5 Central America 4
Mediterranean 2 Mediterranean 3
Melanesia 2 Japan and Mariana
Philippines 2 Islands 3
North America 2 Kamtchatka, Asia 3
Antartica 1 Indean Ocean 2

New Zealand, Tonga
and Kermadec Islands 2
Indonesia 1

Total 110 92 95

As mentioned earlier, this is only for information purposes as the geographical

location is not by itself a variable that may be combined with the others we have

considered in our statistical analysis. However it is interesting to see where the

different types of calderas are preferentially located, as this, in addition to its

possible relation with a specific plate tectonic setting, could also be related to
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the different degree of knowledge of the geology of each region, which is some-

thing totally unrelated to the geodynamic environment where calderas form. As

an example, we can see that the number of calderas in North America is consid-

erably higher than in the other studied regions (see Fig. 4.4). It is reasonable

to think that this high number of calderas is due to the fact that this area has

been more intensively studied and thus more calderas have been detected and/or

more information is available. This unusual high number of calderas could also

be due to better preservation conditions and observation possibilities of the area

or because this area is especially prone to the occurrence of caldera-forming erup-

tions. Hence, it is worth analyzing the tectonic and magmatic evolution of North

America in this context during future work.

Figure 4.4: Geographical location of each group.

4.6 Discussion and conclusions

One of the main restrictions of the statistical analysis presented in this paper is

the CCDB itself. Despite being a comprehensive catalog of most known calderas,

it is still incomplete. Some of the examples included are poorly constrained, in-
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formation on some classes (i.e.: tectonic setting, rock suite, type of crust, etc.)

is lacking, and probably a large number of representative examples are still not

included. The construction of the CCDB is an ongoing process that requires

permanent updates with the inclusion of the new relevant information published

in the scientific literature. For this reason, our statistical analysis has only con-

sidered a sample of 297 calderas (a 63% of the total), for which the information

required to undertake this study was available. Therefore, it would be logical to

realize that completion of the missing data and/or inclusion of new examples in

future updates could imply changes in the results of the present study. However,

the statistical methodology used here is appropriate for the data considered and

provides reliable and accurate results about the different caldera types and re-

lated geodynamic environments. Therefore, future modifications of the CCDB

should reinforce the results obtained here and allow to explore further extension

and segmentation of the current groups.

Field studies and analogue and numerical modeling suggest that the original

area of a collapse caldera is directly related to the size and depth of the associated

magma chamber (see Mart́ı et al. [2008c] and references herein), although further

increases of the caldera size, not directly associated with the collapse process itself,

may occur due to erosion, landsliding or later tectonics [Acocella and Rossetti,

2002; Acocella et al., 2004; Geshi, 2009; Holohan et al., 2005; Lipman, 1997;

Spinks et al., 2005]. The results obtained from our statistical analysis show that

caldera size is strongly dependent on the geodynamic environment where caldera

develops, i.e. type and nature of crust, magma composition and plate tectonic

setting. This dependency of caldera area on the characteristics of the associated

magma chamber and on the geodynamic environment where it develops supports

the idea of Jellinek and DePaolo [2003] that the caldera size is related to magma

supply. This is governed by the mantle thermal regime, the crust composition

and thickness, and the tectonic regime (extensional or compressional), three of

the main aspects that define a geodynamic environment.

From the data analysed, we are able to group collapse calderas in three differ-

ent geodynamic environments (Table 4.8): GE1, GE2 and GE3. Despite the fact

that collapse calderas may develop in any geodynamic environment and show a

wide range of sizes, our statistical analysis reveals that calderas formed in GE1
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have on average an area of 461 km2, in GE2, around 142 km2 and in GE3 54 km2

(Table 4.8). If we arbitrarily classify the studied calderas according to their size

in large (≥ 300 km2), medium (300 - 100 km2) and small (<100 km2), we can

see that GE1 calderas are characteristically the largest ones. GE2 preferentially

hosts medium to small calderas, whereas in GE3 we mostly find small calderas

(Fig. 4.5). It is evident from Figure 4.5 that the size of calderas decreases from

GE1 to GE3. However, as seen in the boxplot analysis (Figure 4.3), there are

several outliers in each group. The reasons for such remarkable exceptions are not

studied in this work but deserve further investigation as they should respond to

particular structural and petrogenetical constraints in addition to the geodynamic

environment where they develop.

Figure 4.5: Area of the calderas for each defined geodynamic environments: GE1,
GE2 and GE3. The additional classification of large (≥ 300 km2), medium (300 -
100 km2) and small (≤ 100 km2) calderas is also indicated. Data from the CCDB
[Geyer and Mart́ı, 2008]. (Note: Refer to Figure 4.3 and corresponding text for
bandwidth and outliers explanation in each group.)
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The tendency of calderas of a particular size to form depending on a preferen-

tial geodynamic environment, therefore suggests that there is a link between the

physicochemical conditions and time scales to generate magma and accumulate

it at shallow depths. In other words, the amount of magma able to be erupted

during a caldera-forming eruption depends on the geodynamic environment. This

statement is relevant when discussing the formation of large calderas. It is gen-

erally accepted that there is a positive linear relationship between the area of the

caldera and the volume of material extruded during the eruption [Smith, 1979].

So, large calderas, which are always associated with calc-alkaline silicic magmas

(CCBD in Geyer and Mart́ı [2008]), are related to the eruption of large volumes

of magma. Thus, they require large magma chambers, i.e. the geodynamic envi-

ronments where they occur must allow the production and accumulation of great

amounts of silicic magmas. The ultimate source of magma is the upper mantle.

Whether the silicic magma comes from crystal fractionation of mantle derived

magmas, or directly from melting of continental crust induced by thermal in-

puts of basaltic magma [Huppert and Sparks, 1988], or from partial melting of

metasediment-MORB melanges in subduction zones [Castro et al., 2010], accu-

mulation and storage of large amounts of silicic magma in the crust will require a

long-term and a relative high mantle magma supply [Jellinek and DePaolo, 2003].

Therefore, GE1 must preferentially enhance these conditions in comparison with

GE2 and GE3. Although the purpose of this paper is not to take further this dis-

cussion on the link between caldera area and the key geodynamics it is important

to remark that the relationship between the driving force in the caldera system

(i.e. magma) and its response (i.e. caldera area) is ultimately depending on the

magma supply. Magma supply, accumulation and storage in each of the three

geodynamic environments we have identified to group collapse calderas deserve

a detailed investigation in order to get a more comprehensive picture on how

calderas form.

Numerical and analogue models have demonstrated that the formation of large

calderas is restricted to volcanic systems with a magmatic reservoir located at

shallow depths [Folch and Mart́ı, 2004; Geyer et al., 2006; Gudmundsson, 1987,

2007; Mart́ı et al., 1994a; Roche and Druitt, 2001]. Thus, in addition to the pre-

vious considerations on the relationship between geodynamic environment and

89



caldera size, another aspect we should take into account to understand the for-

mation of large collapse calderas is to figure out the approximate size of the

magma chambers required to generate them. For this, we may assume that the

volume of magma extruded during the eruption corresponds to all the erupt-

ible magma inside the reservoir [Jellinek and DePaolo, 2003; Mart́ı et al., 2000].

However, this volume does not necessarily correspond to the total volume of the

magma chamber, i.e. it may be smaller. In fact, after the caldera-forming erup-

tion there may be non-eruptable magma (i.e. non-compressible) remaining in

the magma chamber. Non-eruptable magma may include mafic magma but also

crystal rich near-to-solidus mush. Figure 4.6(a) shows the volume of extruded

magma for all examples of calderas, which have this information in the CCDB

[Geyer and Mart́ı, 2008], in each geodynamic environment we have considered.

We can see here that the most voluminous magma chambers (volumes > 100

km3) preferentially occur in GE1. We can also see how the volumes of extruded

magma and hence of the total volumes of the corresponding magma chambers

differ between a few orders of magnitude when passing from GE1 to GE3. In

the first case, the magma chamber volumes are of the order of hundreds to thou-

sands of cubic kilometers. It is evident that to get such amount of magma it is

necessary a very productive magma source and very efficient accumulation and

storage mechanisms, probably acting over a long time period (e.g.: 105 to 106

years, for 1000 km3 of silicic magma, Jellinek and DePaolo [2003]). In addi-

tion to extensive fractional crystallization of basaltic magma generation of large

batholitic bodies has to be associated with melting and differentiation of conti-

nental crust [Annen and Sparks, 2002; Huppert and Sparks, 1988; Johnson et al.,

1989; Lipman, 1984, 1988; Seager and McCurry, 1988], or generation of primary

silicic magmas by sub-lithospheric melting of tectonic mélanges composed of a

mixture of subducted oceanic crust and sediment [Castro et al., 2010], if we want

to satisfactorily explain the volumes of silicic magmas involved in large caldera

eruptions. This implies that the generation of batholitic-size magma chambers

that should be related to large calderas requires a relatively thick continental

crust in order to achieve the physical conditions required to accumulate such a

large amount of silicic magmas. Additionally, the emplacement of silicic magma

within the shallow continental crust marks the final stage in magma chamber
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formation. However, the way in which magma accumulates in the shallow crust

has been a point of discussion during the last decades and is still a matter of con-

siderable debate [Burov et al., 2003; Castro et al., 2010; Cruden, 1998; Petford

and Clemens, 2000; Petford et al., 1993, 2000; Petraske et al., 1978; Watanabe

et al., 1999; Wickham, 1987].

Figure 4.6: (a) Volume of extruded magma for calderas located in the differ-
ent geodynamic environments: GE1, GE2 and GE3. Data from the CCDB.
(b) Values of magma chamber thickness (h) for small, medium and large
calderas. Assuming that the magma chamber shape is proxy to a lentil, its
minimum thickness h (vertical extension) can be calculated considering that
Ve = 4/3π(a/2)(b/2)(h/2), where a and b are the axes of the caldera (i.e. the
horizontal axes of the magma chamber according to our approximation), and Ve
the volume of extruded deposits. (Note: Refer to Figure 4.3 and corresponding
text for bandwidth and outliers explanation in each group.)

Despite of the fact that the emplacement mechanisms of silicic magmas into

the shallow crust is beyond the main purpose of this paper, we consider impor-

tant to “visualize” at least the dimensions of the magma chambers we are dealing

with. For this, we may calculate the thickness (vertical extension) of the magma

chambers related to the caldera-forming eruptions analysed in the paper. Assum-

ing that the area of the caldera is approximately equivalent to the projection at
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surface of the magma chamber [Folch and Mart́ı, 2004; Mart́ı et al., 1994b] and

that the magma chamber shape is proxy to a lentil, and knowing the extruded

volume of magma, we can calculate a minimum value of h. Results are illustrated

in Figure 4.6(b) for all calderas of all three geodynamic environments. We can

observe how the thickness of the magma chamber decreases from GE1 to GE3.

The values illustrated in Figure 4.6(b) suggest a direct relationship between the

thickness of the crusts and the maximum thickness of the magma chambers. In

other words, GE1 is more suitable to accommodate magma in thicker chambers,

not necessarily larger in volume, than the other geodynamic environments.

In summary, the results obtained in this study confirm quantitatively the gen-

erally accepted idea that the characteristics of collapse calderas are influenced by

the characteristics of the geodynamic environment where they develop, in par-

ticular the mantle thermal regime, the crust composition and thickness, and the

tectonic regime. The conditions to form large calderas are closely related to those

controlling the emplacement and evolution of silicic plutons in the shallow crust,

so both processes should be studied together as part of the same geodynamic

process. However, the environmental conditions that allow a volcanic systems to

host a collapse caldera do not influence the dynamics of caldera subsidence, as it

is indicated by the fact that similar caldera collapse mechanisms are recognized

in all geodynamic environments.
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Chapter 5

Volcanic hazard assessment for

the Canary Islands (Spain) using

Extreme Value Theory

5.1 Introduction

The Canary Islands are one of the major oceanic island groups of the world and

have a long magmatic history, which began at the bottom of the ocean more

than 40 million years ago [Araña and Ortiz, 1991]. The Canary Islands are an

active volcanic region where all islands except for La Gomera show Holocene

volcanic activity. Historical volcanism (last 600 years) has been reported on the

islands of La Palma (1430, 1585, 1646, 1677, 1712, 1949, 1971), Tenerife (1492,

1704, 1706, 1798, 1909) and Lanzarote (1730-1736, 1824). In all cases, they have

been eruptions of basaltic magmas characterized by emission of lava flows and

construction of scoria cones.

The Canary Islands are a populated ultra-peripheral Spanish region and one

of the most popular touristic destinations in Europe. The presence of recurrent

historical volcanism in this region is a good reason to undertake volcanic hazard

assessment in order to guarantee the safety of its inhabitants and of its numerous

visitors. Volcanic hazard is the probability of any particular area being affected

by a destructive volcanic event within a given period of time [UNESCO, 1972]. As
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for any active volcanic region, volcanic hazard assessment at the Canary Islands

requires knowing how volcanism has behaved in the past and determining the

recurrence of volcanic eruptions. The first can be approached by detailed physical

volcanology studies of past eruptions, in particular of those for which there exist

historical chronicles (Table 5.1). The recurrence or eruption frequency needs to be

based on historical records and precise dating of older events. Unfortunately, this

is not an easy task as the reconstruction of the geological record of this volcanic

region is far from accurate, lacking systematic dating of recent eruptions, and the

historical records are imprecise and lack detail in some cases.

Despite these limitations we still can do an analysis of the volcanic hazard

using the available historical data, covering the last 600 years since the Spaniards

occupied the archipelago. A set of fifteen relatively well documented eruptions

form the historical volcanism of the Canary Islands (Table 5.2). A few other

eruptions have also been reported in historical times but their age and location is

imprecise and do not constitute reliable information. Most of the historical erup-

tions in the Canary Islands have been short lived (from few weeks to few months)

basaltic, strombolian to violent strombolian eruptions, which have generated sco-

ria cones of different sizes and lava flows of different extent [Romero, 1991]. All

the eruptions occurred in historical time, which goes from 1402 to present, have

typically been separated a few tens of years but in some cases some have occurred

in a very narrow period of time (e.g. Arafo, Fasnia, Siete Fuentes in Tenerife), or

have lasted for some years (Timanfaya eruption in Lanzarote, 1730-1736).

Studies of volcanic time series have been done using stochastic principles to

study eruption patterns on specific volcanoes or volcanic groups [De la Cruz-

Reyna, 1991, 1993; Klein, 1982; Reyment, 1969; Wickman, 1976]. Bebbington

and Lai [1996a] applied a Weibull renewal model to describe the patterns of New

Zealand volcanoes. Other studies used transition probabilities of Markov chains

[Aspinall et al., 2006; Bebbington, 2007; Carta et al., 1981], change-point detec-

tion techniques [Burt et al., 1994; Mulargia et al., 1987], Rank-order statistics

[Pyle, 1998], Bayesian analysis of volcanic activity [Ho, 1990; Ho et al., 2006;

Marzocchi et al., 2008; Newhall and Hoblitt, 2002; Sobradelo and Mart́ı, 2010;

Solow, 2001], non-homogeneous models [Bebbington and Lai, 1996b; Ho, 1991a],

a mixture of Weibull distributions [Turner et al., 2007], geostatistical hazard-
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estimation methods [Jaquet and Carniel, 2006; Jaquet et al., 2000], and a mixture

of exponential distributions [Dzierma and Wehrmann, 2010a,b; Mendoza-Rosas

and De la Cruz-Reyna, 2009, 2010]. Extreme-value methods have been applied

to geological and historical eruption time series combined [Mendoza-Rosas and

De la Cruz-Reyna, 2010, 2008] and historical series of large volcanic magnitudes

[Coles and Sparks, 2006].

In this paper we use the historical volcanism to perform hazard assessment

at the Canary Islands. Due to the limitations inherent to the available data,

including its short sample time, and incomplete reporting of small and interme-

diate magnitudes, as well as uncertainties in the age, intensity and magnitude of

the eruptions, we will use a method for the best estimate of the volcanic hazard

based on a Non-Homogeneous Poisson process with a Generalized Pareto Dis-

tribution (GPD) as intensity function (NHGPPP) [Coles, 2001; Mendoza-Rosas

and De la Cruz-Reyna, 2010, 2008]. This method has already been applied to

other volcanoes for which little or incomplete data exists, like the Citlaltepetl vol-

cano database with only six eruptions, or El Chichón volcano with 12 eruptions

[Mendoza-Rosas and De la Cruz-Reyna, 2010, 2008]. This is the case with our

time series of volcanic records for the Canary Islands. The methodology do not

require stationarity or completeness for the full eruptive series, since it depends

on the number of excesses of eruptions large enough to represent the behavior of

the studied volcanoes.

First, we analyze the historical eruptive series to assess independence and

homogeneity of the process. Second, we perform a Weibull analysis of the dis-

tribution of repose time between successive eruptions. Third, we analyze the

non-homogeneous Poisson process with a generalized Pareto distribution as in-

tensity function.

5.2 Geological setting

The Canary Islands are a roughly linear 500 km long chain grown on the passive

margin of the African Plate within the eastern Central Atlantic Ocean (Fig. 5.1).

The Canarian archipelago is the result of a long volcanic and tectonic activity

that started at around 60 Ma ago [Le Bas et al., 1986; Marinoni and Pasquaré,
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1994; Robertson and Stillman, 1979].

Several contrasting models have been proposed to explain the origin of the

Canary Islands. These include a hotspot origin [Carracedo et al., 1998; Hoernle

and Schmincke, 1993; Schmincke, 1982], a propagating fracture from the Atlas

[Anguita and Hernán, 1975; Le Pichon and Fox, 1971], and mantle decompression

melting associated with uplift of tectonic blocks [Araña and Ortiz, 1991]. How-

ever, each and every one of the latter hypotheses presents some inconsistencies

with the local and regional geology. A unifying model has been proposed by

Anguita and Hernán [2000] who considers the existence of a residual of a fossil

plume under North Africa, the Canary Islands, and western and central Europe

defined through seismic tomography [Hoernle et al., 1995]. Thus, volcanism is

assumed to occur there where an efficient fracture system allows the magma to

ascent [Anguita and Hernán, 2000], i.e. the central European rift system, the vol-

canic provinces of the westernmost Mediterranean (Balearic and Alborán basins),

Iberia, the Canary Islands and Cape Verdes [Hoernle et al., 1995].

Although all islands except for La Gomera show Holocene volcanic activity,

historical volcanism has been restricted to the La Palma, Lanzarote and Tenerife

islands (see Fig. 5.1). In all cases historical eruptive activity has been related to

basic magmas ranging in intensity from strombolian to violent strombolian, and

has originated scoria cones and lavas. In most cases the historical eruptions have

occurred on the active rift zones along eruptive fissures occasionally generating

alignments of cones. The duration of the eruptions ranges from a few weeks to

a few months, except in the case of the Timanfaya eruption in 1730 that lasted

for six years. The total volumes of extruded magma range from 0.01 to >1.5

km3 (DRE), in the case of Timanfaya. The eruption sequences that may be

deduced from the successions of deposits differ from one eruption to another and

reveal that eruptions did not follow a common pattern. In all cases the resulting

volcanic cones were constructed during single eruptive episodes (i.e.: they must

be referred to as monogenetic) commonly including several distinctive phases that

do not show significant temporal separations between them.
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Figure 5.1: Distribution of historical volcanism in the Canary Islands.

5.3 Historical records of volcanic eruptions in

the Canary Islands

Table 5.2 shows the data used for this study. It includes fifteen clearly different

volcanic eruptions historically documented between 1430 and 1971 for which the

eruption magnitude has been computed using existing information on lava and

pyroclast volume. These data have been compiled from the original informa-

tion on Table 5.1 and complemented with data on surface extent and volume of

erupted products calculated from the geological maps at 1:25000 of IGME (Span-

ish Geological Survey, www.igme.es) and from a field revision of the historical

eruptions that we have undertaken in this study.

In compiling the historical dataset of volcanic eruptions for the Canary Is-

lands only those eruptions with well documented references and clearly described

eruptive processes have been considered. There are documents that make ref-

erence to other possible eruptions, but the date and/or location is not clear.

These eruptions have not been included until further documentation sources are
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confirmed.

Table 5.2: Volcanic Eruptions dataset used in the study for the volcanic hazard
assessment of the Canary Islands (M=Magnitude)

Event
ID

Location Volcano Date (start/end) Lava
volume
(Km3)

Pyroclast
volume
(Km3)

M

1 La Palma Tacante 1430/1440 ? 0.038 0.026 4
2 Tenerife Colon eruption 1492 ? 0.051 0.006 4
3 La Palma Tehuya 1585 May19/Aug10 0.026 0.004 4
4 La Palma Tigalate 1646 Oct2/Dec21 0.029 0.000 4
5 La Palma Sant Antonio 1678 Nov17/Jan21 1677 0.037 0.006 4
6 Tenerife Sietefuentes /Fasnia 1704 Dec31/Jan16 1705 0.006 0.002 3
7 Tenerife Arafo 1704 Feb2/Mar27 1705 0.070 0.008 4
8 Tenerife Arenas Negras 1706 May5/Jun13 0.045 0.014 4
9 La Palma Charco 1712 Oct9/Dec3 0.034 0.021 4
10 Lanzarote Timanfaya 1730 Sep1/Apr16 1736 3.804 0.000 6
11 Tenerife Chahorra 1798 Jun9/Sep15 0.028 0.009 4
12 Lanzarote Tao/ Nuevo del Fuego/

Tinguatón
1824 Jul31/Oct24 0.001 0.000 2

13 Tenerife Chinyero 1909 Nov19/Nov27 0.010 0.005 4
14 La Palma Nambroque, Duraznero

and Llano del Banco
1949 Jun24/Jul30 0.029 0.050 4

15 La Palma Tenegúıa 1971 Oct26/Nov18 0.018 0.005 4

The original dataset includes fifteen volcanic eruptions historically documented

between 1430 and 1971 in three different islands (Lanzarote, Tenerife, La Palma).

We have also considered the eruption of Montaña Cangrejo in Tenerife (Erupción

de Colón in Table 5.1), that is supposed to have been observed by Columbus in

his way to America and that has now been confirmed by Carracedo et al. [2007,

2010]. We have considered as one unique event the eruptions of Siete Fuentes

(from 31/12/1704 to 05/01/1705) and Fasnia (from 05/01/1705 to 16/01/1705)

in Tenerife. The Arafo eruption (from 02/02/1705 to 27/03/1705) happens later

in time and the materials have a slightly different composition than Fasnia and

Siete Fuentes, suggesting that this could be a different eruption. The eruptions of

Tao, Nuevo del Fuego and Tiguantón in Lanzarote are considered as one unique

event. They have been listed in Romero [1991] as different episodes but they are

clearly related in terms of timing, petrology and location of vents on the same
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eruptive fissure.

In order to classify the eruptions and apply the NHGPPP, we have calculated

for each case the total volume of extruded magma (DRE) based on the volume

of exposed materials (lavas and pyroclastic deposits), so our total volumes are

minimum estimates (Table 5.2). Although rapid erosion of tephra and uncertain

lava flow thicknesses may cause problems in making accurate calculations, order

of magnitude determinations still provide a useful comparison between eruptions.

We have made the volume estimates calculating separately the volumes of tephra

and lavas for each eruption. Tephra and lava volumes have been calculated with

the help of a DEM at a resolution of 5 m, the digital geological maps of IGME

at 1:25000, and checking extension and thicknesses variations of the deposits and

lavas in the field.

Volcanic eruptions are natural phenomena where the frequency of the events

decreases as their size or magnitude increases. The fact that the magnitude

distribution is irregular is not necessarily an indication of incompleteness in the

catalog. When we are dealing with a historical catalog it is very difficult that

a high magnitude eruption goes unnoticed. Compared with other volcanoes,

a catalog of 15 eruptions in 600 years seems consistent. There are no records

of any more high magnitude eruptions in historical times, other than the high

magnitude eruption of Timanfaya. For this reason, we assume that the catalog

for high magnitude eruptions in historical times is complete. On the other hand,

the historical records for the oldest low magnitude eruptions are not as clear and

accurate as for the most recent low magnitude eruptions.

To deal with the difficulties derived from the possible lack of catalog complete-

ness for the Canary Islands, the hazard estimates for the full series are computed

using the magnitude of the volcanic eruption. This is based on the logarithmic

scale for magnitude [Pyle, 2000]:

M = log10[mass(tephra + lava)erupted(kg)]− 7

We have calculated the total magnitude of each eruption (in Kg) assuming a

density for the basaltic magma of 2850 kg/m3 (Table 5.2).
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5.4 The method: Extreme value theory (EVT)

Volcanic eruption datasets are usually small and the eruptive recurrence is usually

very long, and as it happens with other natural phenomena like earthquakes,

tsunamis, etc. the higher the magnitude the longer the time interval in between

events. To face this problem of working with small datasets, and to be able

to obtain a mathematical quantification of the volcanic hazard as accurate as

possible, we look for methods that allow us to work with databases which are

small and sometimes incomplete [Begueŕıa, 2005; Coles, 2001; Davison and Smith,

1990]. These methods are part of a branch of statistics called Extreme value

theory, where as the name implies, extreme values are atypical and rare events

located at the tail of the distribution.

Just as the normal distribution proves to be the important limiting distribu-

tion for sample sums or averages, as is made explicit in the central limit theorem,

another family of distributions proves important in the study of the limiting be-

haviour of sample extrema. This is the family of extreme value distributions. Ex-

treme value theory and the central limit theory are derived in a similar manner.

Both consider the limiting distributions of independent identically distributed

(iid) random variables under an affine transformation. In the absence of empir-

ical or physical evidence for assigning an extreme level to a process, an asymp-

totic argument is used to generate extreme value models. But extreme values are

scarce, making it necessary to estimate levels that are much higher than those

that have already been observed. In fact, the goal of an extreme value analysis is

to quantify the statistical behavior of processes at unusually high levels. In par-

ticular, extreme value analysis requires an estimation of the probability of events

that are more extreme than any that have ever been observed. This implies an

extrapolation from observed levels to unobserved levels. Extreme value theory

provides a family of models to make such extrapolation. In fact there are no more

serious competitor models than those provided by extreme value theory (Coles

2001).

There are different Extreme value theory methods [Coles, 2001]. Depending

on how we define our extreme values we select the method. In our case is more

convenient to define our values as peaks or exceedances over a threshold, and so
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we use the Exceedances over a threshold (EOT) method to sample the original

data, i.e. Xi > u for some value of i. This method is based on a limiting function

called GPD, as opposed to the Annual Maximum method with is based on the

Gumbel distribution as the limiting function.

The family of GPDs describes the behavior of individual extreme events. It

considers observations from a collection of iid random variables where we keep

those that exceed a fixed threshold u. As we increase the threshold, the two-

parameter GPD family represents the limiting behavior of this new collection of

random variables. This makes the family of GPDs a suitable choice for modeling

extreme events.

The EOT method includes all the values of the variable that exceed an a-

priori established threshold, u, fixed according to the model needs, providing a

physically based definition of what must be considered an extreme event. The

choice of the threshold value has a strong subjective component. This random

variable is defined by the transformed random variable

Y = X − u, for all X > u

where Y is the excess over the threshold u.

The parameter that will be used as random variable to estimate the probability

of occurrence of a future eruption, and thus the volcanic hazard, will be the

time interval T between eruptions , also called repose period, together with the

magnitude M.

The generalized Pareto distribution can be fitted to data on excesses of high

thresholds by a variety of methods including the maximum likelihood method

(ML) and the method of probability weighted moments (PWM). We use the

Davison and Smith [1990] graphical method. The NHGPPP is appropriate for our

time series because it is less sensitive to the possible time dependence of the large-

magnitude eruption sequence, since it only considers the number of exceedances

over a threshold of a series that may be stationary or not. In this respect, it

takes into account the limitations in the data mentioned earlier and provides an

accurate and reliable estimate. Additionally, this methodology is appropriate

for linking historical and geological records should they become available in the
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future. So this method sets the base for future analyses and updates should

geological records were found.

As a first step before model fitting is undertaken, a number of exploratory

graphical methods provide useful preliminary information about the data and in

particular their tail. We explain these methods in the next section. To apply the

NHGPPP for volcanic hazard assessment we first need to examine the data to

assess independence between successive events and homogeneity of the process.

To test for independence we will use a serial correlation scatterplot and to test for

homogeneity we first assess the stationarity by using the autocorrelation function

(ACF) and the Dickey-Fuller unit root test. These tests should be done on a

portion of the time series in which no significant eruption data are missing, which

in most cases is the historical eruption dataset of intermediate-to-high eruption

magnitudes.

After independence and homogeneity have been assessed, we do a Weibull

analysis of the repose periods between eruptions to quantitatively describe the

stationarity of the series through the distribution shape parameter. The fur-

ther from 1 the shape parameter is, the more evidence that the process is not

stationary.

After the data has been analyzed we apply the NHGPPP to estimate the

volcanic hazard. The method is applied to an independent, non-overlapping series

of events occurring in a space B with an intensity density λ(xi), where xi are the

B -domain variables where the process develops. In our case xi are the coordinates

T (time) and eruption magnitude M of a two-dimensional space.

5.5 Statistical analysis of the Canary Islands his-

toric volcanic data using EVT

Assuming that past history of a volcano should reflect at least some relevant

features of its expected future behavior, we look at the time series of historical

volcanic eruptions in the Canary Islands. The time series dataset has fifteen

volcanic events historically documented since 1402 [Romero, 1991].
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5.5.1 Exploratory analysis of the Canary Islands volcanic

data

5.5.1.1 Independence and stationarity assessment

The time independence of the repose periods is a necessary condition for the

methods applied here to be appropriate, otherwise they would not satisfy the

renewal process definition. A time series where the inter-event times are in-

dependent and identically distributed is considered a renewal process [Cox and

Lewis, 1966]. To test the independence of successive repose intervals we use a

serial correlation scatterplot, where each repose interval is plotted against the

previous. The diagram in Fig. 5.2 shows a large dispersion of points and the

correlation coefficient between consecutive repose times is 0.3062, indicating a

very low serial correlation.

Figure 5.2: Scatterplot of consecutive repose intervals for the Canary Islands time
series.

We do not have enough evidence to say that consecutive repose intervals are

time-dependent. If new geological data arrives in the future we do not rule out
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the possibility of a new outcome for the time-dependence analysis, but for the

time being, based on the available data, we assume independence of repose times

based on the above mentioned tests.

Next, we look at the stationarity of the process. A time series is stationary

if its underlying statistical structure does not evolve with time. The correlogram

is a simple diagram which can help diagnose non-stationarity. If a series is non-

stationary then the theoretical autocorrelations will be nearly 1 for all lags k.

Thus, if the estimated correlogram fails to die down (or dies down very slowly),

the series is non-stationary. The theoretical correlogram is a plot of the theoret-

ical autocorrelations between consecutive repose periods of lag k, corr(xt, xt−k),

against k. Fig. 5.3 shows the autocorrelation function (ACF) of the Canary

Islands time series.

Figure 5.3: Autocorrelation function for the repose periods of the Canary Islands
time series.

The argumentation of the non-stationarity based in the shape of the ACF is

arguable since the ACF is sensible to seasonal variations which at the same time

could correspond to a stationary process. For this reason, to assess stationarity

we complement the visual ACF analysis in Fig.5.3 with the Dickey-Fuller unit

root test.

The Dickey-Fuller unit root test was proposed by Dickey and Fuller [1979].

In its most basic form, the test compares the null hypothesis H0 : xt = xt−1 + εt,

i.e., that the series is a random walk without a drift, against the alternative
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hypothesis H1 : xt = c + αxt−1 + εt where c and α are constants with | α |< 1.

According to H1, the process is a stationary AR(1) with mean µ = c/(1−α). To

see this, note that, under H1 we can write xt = µ(1 − α) + αxt−1 + εt, so that

xt − µ = α(xt−1 − µ) + εt. Table 5.3 shows the SAS output for the Dickey-Fuller

test. The test statistic has a value of -2.5224, and is associated with a p-value

of 0.3734, indicating that there is not enough statistical evidence to reject the

null hypothesis that the series is not stationary. This result is consistent with the

visual analysis of the ACF, where the series fails to die down.

Table 5.3: Dickey-Fuller Unit Root test

Test setup:
H0: Series is not stationary
H1: Series is stationary
reject H0 if p-value < 0.05

Results:
Dickey-Fuller = -2.5224, p-value = 0.3734
p-value > 5%, not enough statistical evidence to reject
the hypothesis that the series is not stationary

In this preliminary analysis of the time series no significant correlation was

found, thus we can assume independence of consecutive repose periods. Addi-

tionally, we found no evidence to assume that the series is stationary, so based on

the ACF and the Dickey-Fuller test for stationarity, we can say that the Canary

Islands volcanic eruptions time series is not stationary.

5.5.1.2 Distribution of the repose periods: Weibull versus Exponen-

tial

We look at the Weibull distribution to analyze the characteristics of consecutive

repose periods and quantitatively describe the stationarity characteristic of the

time series through the distribution shape parameter.

The Weibull distribution has been widely applied in statistical quality control,

earthquake hazard assessment, and many other applications. It has also been used

to model volcanic eruption sequences [Bebbington and Lai, 1996a; Ho, 1991b,

1995]. The 2-parameter cumulative Weibull distribution and survival functions
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are given by

F (t) = 1− exp−(t/α)k

and

S(t) = 1− F (t)

respectively, where α is a scale parameter, and k is a shape parameter.

The shape parameter reflects the stationary or non-stationary character of the

time series [Yang and Xie, 2003]. In the present paper, we obtain the distribution

parameters using a fairly simple graphical method [Bebbington and Lai, 1996b].

The probability of having a repose period of duration greater than t has been

obtained from the survival function 1− F (t).

Figure 5.4: Distribution of observed repose intervals with duration greater than
T decades (bars) for the Canary Islands since 1402. The survival Weibull distri-
bution shows a much better fitting than the exponential distribution.

The resulting Weibull distribution parameters are 1.63 for the shape param-

eter and 4.37 for the scale parameter. Fig. 5.4 shows the comparison between

Exponential and Weibull distributions. We see that the Weibull survival function

provides better fit to the repose periods than the exponential function, because

the shape parameter accounts for the non-stationarity of the time series. Addi-
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tionally, the shape parameter value being far from one confirms once more the

non-stationarity of the process, as a shape of one would correspond to an expo-

nential, which models very well stationary data, which is not the case here.

5.5.2 Volcanic hazard assessment for the Canary Islands

We then estimate the volcanic hazard for the Canary Islands using the NHGPPP.

A Poisson process is a collection {N(t) : t ≥ 0} of random variables, where N(t)

is the number of events that have occurred up to time t (starting from time

0). These events occur continuously and independently of one another. The

number of events between time a and time b, N(b) − N(a), is said to have a

Poisson distribution of intensity λ. When the rate parameter, or intensity, of the

process is not constant, the Poisson process is said to be non-homogeneous, and

the generalized rate function is given by λ(t). As seen in a preliminary analysis

of the data, the Canary Islands time series is non-stationary, and we will model

the volcanic hazard with a non-homogeneous Poisson process (NHPP). Since we

use the EOT method to sample the original data, we can use the GPD to model

the intensity of the NHPP. Hence, we will be using a NHGPPP to estimate the

volcanic hazard for the Canary Islands. (See Mendoza-Rosas and De la Cruz-

Reyna [2008] for further details on this methodology).

To calculate the probabilities of occurrence of an eruption in the different

magnitude classes we use the number of excesses inferred from the eruption oc-

currence rate of each class magnitude, this is, the events above a certain threshold

u (Xi − u, for some i).

For the particular case of volcanic eruptions, the magnitude of the eruptions

and the time of their occurrence are viewed as points in a two-dimensional space,

which formally is the realization of a point process [Cox and Isham, 1980]. The

intensity measure Λ(B) of this two-dimensional Poisson process on the space

B = [t1, t2] with [t1, t2] ⊂ [0, 1] is given by

Λ(B) = (t2 − t1)
[
1− β(x− u)

θ

]1/β
(5.1)

where β, and θ are the parameters of the GPD.
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The GPD is described by a shape parameter β, a scale parameter θ, and a

location parameter u (threshold), and has the following cumulative distribution

function:

Gβ,θ(y) = 1− (1− βy

θ
)1/β for β 6= 0

Gβ,θ(y) = 1− e−y/θ for β = 0

Another related property of the GPD refers to the mean excess: if Y = X−u
is a GP-distributed variable, then the mean excess over threshold u is:

E(X − u|X > u) =
θ − βu
1 + β

(5.2)

for β > −1, u > 0 and θ − uβ > 0

The sample mean excess plot is given by:

x̄u =

∑
i:xi>u

(xi − u)

Nu

(5.3)

where Nu is the number of excess xi over a threshold u

Davison and Smith [1990] introduced a diagnostic plot to decide how well the

model fits the data. The mathematical basis for this method is Eq. (5.2), where

the key feature is that if Y is GPD then the mean excess over a threshold u,

for any u > 0, is a linear function of u [Begueŕıa, 2005; Coles, 2001; Lin, 2003].

In Fig. 5.5 we plot the mean of the excesses, obtained with Eq. (5.3), vs their

thresholds.

The x-axis is the threshold and the y-axis is the sample mean of all excesses

over that threshold. As we can see, the mean excess follows a nearly straight

line, with a R2 of 0.8415, suggesting a good fit. A regression line of mean of

exceedances over the threshold has been added to confirm the series follows the

GPD. Since we are working with effusive eruptions only, we assumed an upper

bound of six for the estimation of the magnitudes, and mapped the probabilities

to the [1,6] magnitude interval. Hence, according to Davison and Smith [1990],

the preceding results indicate that the NHGPPP is satisfactory and appropriate

to model the Canary Islands eruptive time series.

The Pareto generalized parameters for the process, derived from the regres-
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Figure 5.5: Plot of exceedance and excess mean vs. threshold for the Canary
Islands.

sion parameters on Fig. 5.5 and Eq. (5.2) are 0.104 for shape and 1.711 for the

scale. Using Eq. (5.1) we calculate the intensity of the NHGPPP and obtain the

eruption occurrences. Table 5.4 and Fig. 5.6 show the probability of occurrence

of at least one eruption exceeding a specific magnitude over different time periods.

Table 5.5 displays the intensity of the two-dimensional Poisson process, computed

using Eq.(5.1), which also serves as a measure of parameter uncertainty and the

volatility of the probability results. This is the expected value of the distribution

(µi), where i = 1, 2, 3, 4 are the number of eruptions, and represents an estima-

tion of the intrinsic (and unavoidable) random variability due to the complexity

of the process; and the standard deviation (σi, i = 1, 2, 3, 4), which represents

an estimation of the epistemic uncertainty due to our limited knowledge of the

process.

Based on the existing historical data, the probability of an event in the Canary

Islands increases more rapidly in the first 20 years, with a 99.84% chance of an

event of magnitude greater than one in the next 20 years and leveling out after

that at 99.99 %. There is a probability of 27.58% of an event of magnitude

between 1 and 6 in the next 12 months and 3.71% of an event of magnitude

between 4 and 6 for the same period. There is ongoing work to assess more

accurately the data in the volcanic eruptions catalog for the Canary Islands. In

this respect, these probability results may vary should new geological records be
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Table 5.4: Probability of at least one event of Magnitude > x in the next t years,
based on the intensity rates from Table 5.5.

Years Magnitude> 1 Magnitude> 2 Magnitude> 3 Magnitude> 4

1 27.58% 15.80% 8.20% 3.71%
20 99.84% 96.79% 81.92% 53.06%
50 99.99% 99.98% 98.61% 84.90%
75 99.99% 99.99% 99.84% 94.13%
100 99.99% 99.99% 99.98% 97.72%

available.

Table 5.5: Measures of parameter uncertainty: the intensity of the two-
dimensional Poisson process, computed using Eq.(5.1), is the expected value of
the distribution (µi), where i = 1, 2, 3, 4 are the number of eruptions, and rep-
resents an estimation of the intrinsic (and unavoidable) random variability due
to the complexity of the process; and the standard deviation (σi, i = 1, 2, 3, 4),
which represents an estimation of the epistemic uncertainty due to our limited
knowledge of the process.

Years µ0 σ0 µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4
1 0.32 0.57 0.17 0.41 0.09 0.29 0.04 0.19 0.01 0.11
20 6.45 2.54 3.44 1.85 1.71 1.31 0.76 0.87 0.25 0.50
50 16.13 4.02 8.60 2.93 4.28 2.07 1.89 1.38 0.63 0.79
75 24.20 4.92 12.90 3.59 6.41 2.53 2.84 1.68 0.95 0.97
100 32.27 5.68 17.19 4.15 8.55 2.92 3.78 1.94 1.26 1.12

5.6 Discussion and conclusions

The Canary Islands are an active volcanic region densely populated and visited

by several millions of tourists every year. Nearly twenty eruptions have been

reported by written chronicles in the last 600 years. This gives an average of an

eruption every 25-30 years, which suggests that the probability of having a new

eruption in the near future is not so low. Under these circumstances and in order

to reduce the potential volcanic risk of this region, it is highly recommendable

to undertake hazard assessment, and determine the eruption recurrence for the

area.
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Figure 5.6: Probabilities calculated with NHGPPP of at least one eruption, with
a Magnitude greater than one.

Recent volcanism in the Canary Islands is not well known and is poorly con-

strained in terms of age of the eruptions. For the island of Tenerife alone, Car-

racedo et al. [2007, 2010] have conducted a systematic geochronological study for

Teide and the volcanism associated with the rifts zones, but this study is still far

from being complete. Therefore, the data catalog to be used for statistical and

probabilistic assessment of the Canary Islands to establish the eruption recur-

rence is formed uniquely by historical records. The model can be easily updated

in the future should new volcanic records be dated.

As in any data analysis, we should be aware of various layers of uncertainty,

perhaps magnified in an extreme value analysis. On one level, there is the pa-

rameter uncertainty, even if we had abundant, good quality data to work with

and a good model, our parameter estimates are still subject to a standard error.

Model uncertainty is also present - we may have good data but a poor model.

Using extreme value methods we are at least working with a good class of models,

but they are applicable over high thresholds and we must decide where to set the

threshold. If we set the threshold too high we have few data and we introduce

more parameter uncertainty. If we set the threshold too low we lose our theo-

retical justification for the model. But even more serious than parameter and

model uncertainty is the data uncertainty. It is never possible to have enough
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data in an extreme value analysis. Table 5.5 shows an estimation of the parame-

ter uncertainty for our model, the expected value of the distribution (µi), where

i = 1, 2, 3, 4 are the number of eruptions, which is an estimation of the aleatoric

uncertainty due to the complexity of the process, and the standard deviation (σi,

i = 1, 2, 3, 4) which represents an estimation of the epistemic uncertainty, due to

our limited knowledge of the process.

Extreme value methods do not predict the future with certainty, but they do

offer good models for explaining the extreme events we have seen in the past

[McNeil, 1997]. Even with a good tail estimate we cannot be sure that the future

does not hold some unexpected catastrophic volcanic eruption. The extreme

value method used in this paper to assess the volcanic hazard for the Canary

Islands do not predict the future with certainty, but it is a model based on

rigorous mathematical theory concerning the behaviour of extrema. Based on

past experience [Mendoza-Rosas and De la Cruz-Reyna, 2008], the GPD is a

good approximation in the tail for our volcanic data, and the probability results

yielded by the extreme value method used here to assess the volcanic hazard for

the Canary Islands should not be neglected. It may well be that, by trial and

error, some other distribution can be found which fits the data even better in the

tail, but such a distribution would be an arbitrary choice, and we would have less

confidence in extrapolating it beyond the data.

The probability results obtained are very high. This is partly due to the

fact that the area of study is the quasi linear 500 Km long chain grown on the

passive margin of the African Plate containing the actual Canarian archipelago,

this is, several possible vent locations for an eruption. Also, we must consider

the fact that we are measuring magnitudes (total erupted volumes) and not VEI

(Volcanic Explosivity Index) Newhall and Self [1982]. The VEI is a combination

of volume of products, eruption cloud height and qualitative observations. It is

mainly applied to explosive eruptions and is not appropriate for eruptions which

are mainly effusive. This is the reason why we have used magnitude instead of

VEI and limited the study to level of magnitudes up to six. However, the eruption

magnitude, measured as total erupted volume only takes into account one of the

three measures of the VEI, hence, the probability estimates for volume alone

are expected to be higher than the estimates for volume of products, eruption
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cloud height and qualitative observations combined, since one is a subset of the

other. With this in mind, given the current data, it is not surprising to observe

a probability of 27.58% of having a volcanic event of magnitude greater than 1

in the next year in the Canary Islands, most likely in any of the three for which

historical data exist (Lanzarote, Tenerife, La Palma) but without excluding the

other four islands. Even if there are no historical records documented for all

the islands, we cannot rule out the probability of an event forming there since

they are part of the same archipelago and there are traces of previous volcanic

eruptions. We do not have enough data to do an individual hazard analysis for

each island alone.

It is important to highlight the fact that the Canary Islands have a probability

greater than zero of undergoing a new volcanic event in the upcoming years.

Hence, these results should be taken into account in the assessment of volcanic

risk and in the design of prevention and response measures, particularly of major

eruptions to which larger areas may be one hundred per cent vulnerable.

The results obtained only apply to the probabilities of having a basaltic erup-

tion in the near future, as historical volcanism has been always represented by

this kind of eruptions. However, the existence of several eruptions of phonolitic

magmas from Teide in Holocene times on the island of Tenerife, the last one hav-

ing occurred only 1000 year ago [Carracedo et al., 2007], reminds us that hazard

assessment should also consider phonolitic eruptions. Despite being concentrated

during Holocene exclusively on Tenerife, these eruptions may generate hazards

that could have a much greater impact than basaltic eruptions, so their potential

effects should not be neglected in a more complete volcanic hazard assessment

for the Canary region.
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Chapter 6

Conclusions

Volcanoes are complex, non-linear natural systems that rarely follow a constant

pattern of behavior. Due to the limited scientific observability of the interior of a

volcano, there is a lot of uncertainty in forecasting volcanic eruptions. Although

we can establish some general eruptive patterns for certain group or types of

volcanoes, each volcano will at the end behave in its own particular way, dif-

ferent from the others. In the case of Teide - Pico Viejo, as in many other

volcanoes around the world, the information we have on its past eruptive history

and present state of activity is incomplete, and requires much more effort before

being more confident that we can forecast its future behavior precisely. For this

reason, we need quantitative risk-based methods for decision-making under un-

certainty to be developed and applied to volcanology.The interdisciplinary science

of mathematics applied to the study of volcanology and volcanic hazard is an im-

portant approach, which helps understand volcanic processes by integrating keen

volcanological insights with sound statistical modeling and artful application of

computational power.

In this work we have presented different statistical methodologies and used

different statistical software (R, SAS) to interpret volcanic data and assess vol-

canic hazard, using Teide - Pico Viejo stratovolcanoes (TPV) and the Canary

Islands archipelago as the case study for the historical and geological volcanic

data. The statistical methods, based on the nature of the data, aim to extract

information about the future behavior of the volcano by looking at the geolog-

ical and historical activity of the volcanic system, considering that the volcanic
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database is incomplete and inaccurate.

The first methodology uses the so-called Classical model, a statistical ap-

proach based on expert judgment elicitation, to assign probabilities and deter-

mine the corresponding uncertainty for the different possible events that could

occur, based on available past geological data. This method is very appropri-

ate when none or little past data exists. It relies strongly on the judgment and

knowledge of the scientific experts invited to the elicitation, and because of this

there is a strong subjective component in the final probabilities. This method

was used to successfully outline for the first time a probability event tree with all

the possible eruptive scenarios of TPV, and assign a probability of occurrence to

each scenario. This manuscript “A long-term volcanic hazard event tree for Teide

- Pico Viejo stratovolcanoes (Tenerife, Canary Islands)” has been published on

October 17th, 2008 in the Journal of Volcanology and Geothermal Research 178

(2008) 543-552. Rank 45 over 155 journals from multidisciplinary Geosciences,

with impact factor 1.921 in the JCR. Authors: J. Mart́ı, W.P. Aspinall, R. So-

bradelo, A. Felpeto, A. Geyer, R. Ortiz, P. Baxter, P. Cole, J. Pacheco, M.J.

Blanco, C. Lopez. Authors contribution: J. Mart́ı is the leader volcanologist of

the project and participated as member of the elicitation team. W.P. Aspinall

coordinated the Elicitation of expert judgment sessions where the volcanic ex-

perts J. Mart́ı, A. Felpeto, A. Geyer, R. Ortiz, P. Baxter, P. Cole, J. Pacheco,

M.J. Blanco, and C. Lopez participated to design the event tree and collect the

data. J. Mart́ı developed the volcanology part of the manuscript, W.P. Aspinall

and R. Sobradelo were responsible for the statistical part of the exercise.

The second methodology uses Bayesian Inference to develop a new event tree

model for long term volcanic hazard assessment, that represents a step forward

with respect to previous attempts based on the same methodology or the elic-

itation of expert judgment. In comparison with previous event trees based on

Bayesian methodology, this model accounts for the possibility of the unrest being

caused by external triggers (geothermal, seismic), and adds new nodes with two

additional sources of volcanic hazard based on the composition of the magma

and different vent locations. With respect to event trees based on Elicitation

of expert judgment the new model does not have the additional source of bias

that the human decision component adds to the final results of the elicitation
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method, controls for the epistemic and aleatory uncertainties, and allows the

level of segmentation and complexity of the event tree structure to be as com-

plete and extensive as needed, with the only requirements of mutually exclusive

and exhaustive events in each node. It also permits to automatically update the

probabilities when new data arrives or the system becomes active and monitor-

ing data on precursors exists, as opposed to the eliciting method which requires

the group of experts to meet each time new data arrives to update the proba-

bilities. However, during a volcanic crisis, Elicitation and Bayesian models are

needed and the elicitation team should provide input and interpretation to the

probabilities from the updated Bayesian model. The new method allows us to

estimate the long-term probability during a quiet period of the volcano, being

useful for land use policy, and will be of use for estimating and automatically

updating the short term probabilities when monitoring data are obtained during

unrest. Although this method is specifically applied to the Teide - Pico Viejo

stratovolcanoes in Tenerife, it can be used with other similar volcanoes as it of-

fers a wider structure in comparison with previous event trees that have a more

restricted structure and do not include some relevant eruptive scenarios which

are likely in the Teide - Pico Viejo but also in many other composite volcanoes.

This manuscript “Bayesian event tree for long-term volcanic hazard assessment:

Application to Teide - Pico Viejo stratovolcanoes, Tenerife, Canary Islands” has

been published on May 21st, 2010 in the Journal of Geophysical Research vol

115, B05206 (2010), doi:10.1029/2009JB006566. Rank 18 over 155 journals from

multidisciplinary Geosciences, with impact factor 3.082 in the JCR. Authors: R.

Sobradelo and J. Mart́ı. Authors contribution: R. Sobradelo developed, imple-

mented and interpreted the Bayesian methodology. J. Mart́ı contributed with the

volcanological part as well as the design of the volcanic event tree.

The third method is a non-parametric one-way unbalanced ANOVA with the

Kruskal-Wallis test to identify groups of volcanic calderas statistically and signif-

icantly different, according to area, which may belong to a particular geodynamic

environment. This method is used to study a unique dependent variable against

one classification variable which has two or more categories, where each classifica-

tion group has unequal number of observations. Additionally, since the observa-

tions in the response variable are assumed to be independent from each other, but
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we do not have enough evidence to assume a particular distributional form, such

as the normal (due to insufficient data), we need to use non-parametric proce-

dures to perform the ANOVA analysis, in our case, the Kruskal-Wallis test. The

results obtained from our statistical analysis show that caldera size is strongly

dependent on the geodynamic environment where caldera develops, i.e. type and

nature of crust, magma composition and plate tectonic setting. From the data

analyzed, we are able to group collapse calderas in three different geodynamic en-

vironments: GE1, GE2 and GE3. The results obtained confirm quantitatively the

generally accepted idea that the characteristics of collapse calderas are influenced

by the characteristics of the geodynamic environment where they develop, in par-

ticular the mantle thermal regime, the crust composition and thickness, and the

tectonic regime. This manuscript “Statistical data analysis of the CCDB (Col-

lapse Caldera Database): Insights on the formation of caldera systems” has been

published on September 16th, 2010 in the Journal of Volcanology and Geothermal

Research 198 (2010) 241-252. Rank 45 over 155 journals from multidisciplinary

Geosciences, in the JCR with impact factor 1.921. Authors: R. Sobradelo, A.

Geyer and J. Mart́ı. Authors contribution: R. Sobradelo performed the statistical

analysis. A. Geyer provided the volcanic caldera dataset as well as, together with

J. Mart́ı, the volcanological insights and interpretation.

The fourth statistical methodology NHGPPP (Non-homogeneous generalized

Pareto-Poisson process) uses extreme value theory to study eruptive time series

combining geological and historical records. This method has been chosen to

analyze the Canary Islands volcanic time series given the limitations in the data,

this is, short time interval of data, probable absence of large events, incomplete

reporting of small and intermediate magnitudes, and uncertainties in the age

and magnitude of the eruptions. The probability results obtained are very high.

This is partly due to the fact that the area of study is the quasi linear 500

Km long chain grown on the passive margin of the African Plate containing

the actual Canarian archipelago, this is, several possible vent locations for an

eruption. Also, we must consider the fact that we are measuring magnitudes

(total erupted volumes) and not VEI (Volcanic Explosivity Index). Even if there

are no historical records documented for all the islands, we cannot rule out the

probability of an event forming there since they are part of the same archipelago
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and there are traces of previous volcanic eruptions. We do not have enough

data to do an individual hazard analysis for each island alone. This manuscript

“Volcanic hazard assessment for the Canary Islands (Spain) using Extreme Value

Theory” has been submitted for publication to Natural Hazards Earth System

Sciences on 15th February 2011. Rank 70 over 155 journals from multidisciplinary

Geosciences, with Impact Factor 1.357 in the JCR. Authors: R. Sobradelo, J.

Mart́ı, A.T. Mendoza-Rosas and G. Gómez. Authors contribution: R. Sobradelo

designed and implemented the statistical method with the help and supervision

of A.T. Mendoza-Rosas and G. Gómez, whilst J. Mart́ı provided the data for the

study and the volcanological explanation and interpretation.

Future research work includes: completing the Bayesian event tree with a

short term probability model to be used during a volcanic crisis; building an

evacuation model to link the Bayesian probability event tree and the decision

making process; update models when new volcanic calderas data and new ge-

ological records on volcanic eruptions for the Canary Islands become available;

and making the computer program written to compute the Bayesian probabilities

user friendly and available for the scientific community to use.
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Appendix: R Code for the

Bayesian event tree

We include here the computer program written in R statistical language, to auto-

matically compute the long-term probability of an event within the next t years,

using Bayesian inference. This code was developed for the probability tree model

presented in chapter three.
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#ltvh   function to compute the absolute probability for the 
#   Long-Term Volcanic Hazard Assessment 
#   for a generic explosive volcano GIVEN a time window t 
#   allowing for several outcomes in each node.  
#    
#   This is, since the event has not happened yes, we compute 
#   the absolute probability P(Y_1^N = 1,Y_2^N = 1, Y_3^N = 
1|Y_1,Y_2,Y_3) 
#   given the observed data Y_1, Y_2, Y_3 
#   Uses the Dirichlet function (generalization of the Beta)  
#   for the prior and the Multinomial for the likelihood. 
#   The conjugate prior is a Dirichlet(alpha).    
# 
#   ASSUMPTIONS: 
#   - multiple outcomes in each node. 
#   - outcomes are mutually exclusive and exhaustive. 
#    - uniform priors  
# 
# 
# IMPUT 
#  pb1, ..., pb6 = the J_k*2 are the matrices of past belief, containing the 
E[theta_ki], lamda_ki  
#  parameter information for each node (k = 1, ..., 6) and each event within 
each node (i = 1, ..., Jk)  
#  (Prior and Data weight). Weights are equally distributed based on the 
assumption of non-informative priors. 
# 
# 
#  y1, ..., y6 = the vectors with the geological and geophysical data for each 
node, each 
#  vector is of dimension 1*J_k (Past events). 
# 
# OUTPUT 
#  probvector vector of long term probabilities in each node 
# 
 
  
ltvh<- function(pb1,pb2,pb3,pb4,pb5,pb6,y1,y2,y3,y4,y5,y6) 
{ 
 
  #Node1:Yes No  
  #Node2:Magmatic Geothermal Seismic Other  
  #Node3:Magmatic_Eruption Sector_Failure Phreatic_Eruption No_Eruption  
  #Node4:Central North South East West  
  #Node5:Basaltic Phonolitic  
  #Node6:VEI 5+ VEI 4 VEI 3 VEI 2-  
   
  #apbcv = a priori belief central value. Is the central value inferred by a 
priori models 
  #and/or of the theoretical beliefs 
 
  #cre = confidence reliable estimate. Is the  confidence at which apbcv is 
considered a  
  #reliable estimate, this is an evaluation of the epistemic uncertainties. The 
confidence 



  #degree is set up by writing the variance in terms of "equivalent number of 
data". This is 
  #a more friendly measure that the variance of the confidence on the prior 
distribution, or, 
  #in other terms, of the epistemic uncertainty. In general, the higher the 
value, the larger 
  #our confidence on the reliability of the model, so that the number of past 
data needed to  
  #modify significantly the prior must be larger. On the contrary, if we believe 
that the prior 
  #is poorly informative, then the value must be small, so that even a small 
number of past data  
  #can drastically modify the prior. The minimum possible value is 1 and this 
number represent  
  #the maximum possible epistemic uncertinty. In the limit case of maximum 
ignorance, the value is 1,  
  #this is the reliability of our model is comparable to the information given 
by on datum, and 
  # a mean equal to .5 we obtain a prior uniform distribution. 
 
  #NOTE: these two parameters (apbcv and cre) are part of the alphas value.  
  #So, in node k, for each of the ith events:  
  #alpha_ki = apbcv_ki (cre_ki + J_k - 1), where apbcv_ki and cre are imputs, 
and 
  #apbcv_ki = alpha_ki/sum(alpha_ki;i=1...J_k) and  
  #cre=sum(alpha_ki;i=1...J_k) - J_k +1 
  #so, past_belief, pb: pb_k = matrix of, pb[,1] = apbcv and pb[,2] = cre for 
node K. 
 
 
  assign("pb1",pb1 ) 
  assign("pb2",pb2 ) 
  assign("pb3",pb3 ) 
  assign("pb4",pb4 ) 
  assign("pb5",pb5 ) 
  assign("pb6",pb6 ) 
  assign("y1",y1 ) 
  assign("y2",y2 ) 
  assign("y3",y3 ) 
  assign("y4",y4 ) 
  assign("y5",y5 ) 
  assign("y6",y6 ) 
 
   
#node1: UNREST 
  #random variable = number of unrest episodes in 1 time window 
  #compute probability of unrest, given observed data 
 
  outcome1<-c("Yes","No") 
  alpha1 <- matrix(1,ncol=length(y1)) #alpha of the Dirichlet distribution 
  a1  <- matrix(0,ncol=length(y1)) 
  eoy1<- matrix(0,ncol=length(y1)) 
  E1  <- matrix(0,ncol=length(y1)) 
  for (j in 1:length(y1)) 
  { 
    alpha1[j]= pb1[j,1]*( pb1[j,2] + length(y1) - 1)  
    a1[j]  =alpha1[j]+y1[j] 



  } 
  for (j in 1:length(y1)) 
  { 
    eoy1[j]=a1[j]/(sum(alpha1)+ sum(y1))  
    E1[j]  =eoy1[j] 
  }  
#node2: ORIGIN 
  #random variable=number of event episodes in 1 time window 
  #compute probability of the event, given observed data 
 
  outcome2<-c("Magmatic","Geothermal","Seismic","Other") 
  alpha2 <- matrix(1,ncol=length(y2))#alpha of the Dirichlet distribution 
  a2  <- matrix(0,ncol=length(y2)) 
  eoy2<- matrix(0,ncol=length(y2)) 
  E2  <- matrix(0,ncol=length(y2)) 
  for (j in 1:length(y2)) 
  {  
    alpha2[j]= pb2[j,1]*( pb2[j,2] + length(y2) - 1) 
    a2[j]  =alpha2[j]+y2[j] 
  } 
  for (j in 1:length(y2)) 
  { 
    eoy2[j]=a2[j]/(sum(alpha2)+ sum(y2))  
    E2[j]  =eoy2[j] 
  }  
#node3: OUTCOME 
  #random variable=number of events in 1 time window 
  #compute probability of an event, given observed data 
 
  outcome3<-c("Magmatic Eruption","Sector Failure","Phreatic Eruption","No 
Eruption") 
  alpha3 <- matrix(1,ncol=length(y3))#alpha of the Dirichlet distribution 
  a3  <- matrix(0,ncol=length(y3)) 
  eoy3<- matrix(0,ncol=length(y3)) 
  E3  <- matrix(0,ncol=length(y3)) 
  for (j in 1:length(y3)) 
  {  
    alpha3[j]= pb3[j,1]*( pb3[j,2] + length(y3) - 1) 
    a3[j]  =alpha3[j]+y3[j] 
  } 
  for (j in 1:length(y3)) 
  {  
    eoy3[j]=a3[j]/(sum(alpha3)+ sum(y3))  
    E3[j]  =eoy3[j] 
  }  
#node4: LOCATION 
  #random variable = number of events in this location in 1 time window 
  #compute probability of an event in this location, given observed data 
 
  outcome4<-c("Central","North","South","East","West") 
  alpha4 <- matrix(1,ncol=length(y4))#alpha of the Dirichlet distribution 
  a4  <- matrix(0,ncol=length(y4)) 
  eoy4<- matrix(0,ncol=length(y4)) 
  E4  <- matrix(0,ncol=length(y4)) 
  for (j in 1:length(y4)) 
  {  
    alpha4[j]= pb4[j,1]*( pb4[j,2] + length(y4) - 1) 



    a4[j]  =alpha4[j]+y4[j] 
  } 
  for (j in 1:length(y4)) 
  {  
    eoy4[j]=a4[j]/(sum(alpha4)+ sum(y4))  
    E4[j]  =eoy4[j] 
  }  
#node5: COMPOSITION 
  #random variable = number of events in this location in 1 time window 
  #compute probability of an event in this location, given observed data 
 
  outcome5<-c("Basaltic","Phonolitic") 
  alpha5 <- matrix(1,ncol=length(y5))#alpha of the Dirichlet distribution 
  a5  <- matrix(0,ncol=length(y5)) 
  eoy5<- matrix(0,ncol=length(y5)) 
  E5  <- matrix(0,ncol=length(y5)) 
  for (j in 1:length(y5)) 
  {  
    alpha5[j]= pb5[j,1]*( pb5[j,2] + length(y5) - 1) 
    a5[j]  =alpha5[j]+y5[j] 
  } 
  for (j in 1:length(y5)) 
  { 
    eoy5[j]=a5[j]/(sum(alpha5)+ sum(y5))  
    E5[j]  =eoy5[j] 
  }  
#node6: ERUPTION SIZE 
  #random variable=number of events in 1 time window 
  #compute probability of an event, given observed data 
 
  outcome6<-c("VEI 5+","VEI 4","VEI 3","VEI 2-") 
  alpha6 <- matrix(1,ncol=length(y6))#alpha of the Dirichlet distribution 
  a6  <- matrix(0,ncol=length(y6)) 
  eoy6<- matrix(0,ncol=length(y6)) 
  E6  <- matrix(0,ncol=length(y6)) 
  for (j in 1:length(y6)) 
  {  
    alpha6[j]= pb6[j,1]*( pb6[j,2] + length(y6) - 1) 
    a6[j]  =alpha6[j]+y6[j] 
  } 
  for (j in 1:length(y6)) 
  {  
    eoy6[j]=a6[j]/(sum(alpha6)+ sum(y6))  
    E6[j]  =eoy6[j] 
  }  
  
  column1=matrix(c(outcome1,outcome2,outcome3,outcome4,outcome5,outcome6),21,1) 
  column2=format(matrix(c(E1,E2,E3,E4,E5,E6),21,1),digits=3) 
  probvector=matrix(c(column1,column2),21,2) 
 
  #OUTPUT 
  return(probvector) 
 } 
 
 
  # EXAMPLE: 



  # This example reads the past data from a csv file previously saved in C, and 
runs the ltvh.r program on this data. 
  # write the address on your C drive where the past_data.csv file is. Make sure 
you keep the same template and structure, 
  # otherwise it will affect the matrix order when the program reads in the 
data: 
 
  ltvh_data = read.csv("C:/event_tree/past_data.csv", header = TRUE, sep = ",") 
  
 
  # DO NOT MODIFY CODE FROM HERE ON: 
 
  y1=c(ltvh_data[1,4],ltvh_data[2,4]) 
  y2=c(ltvh_data[3,4],ltvh_data[4,4],ltvh_data[5,4],ltvh_data[6,4]) 
  y3=c(ltvh_data[7,4],ltvh_data[8,4],ltvh_data[9,4],ltvh_data[10,4]) 
  
y4=c(ltvh_data[11,4],ltvh_data[12,4],ltvh_data[13,4],ltvh_data[14,4],ltvh_data[1
5,4]) 
  y5=c(ltvh_data[16,4],ltvh_data[17,4]) 
  y6=c(ltvh_data[18,4],ltvh_data[19,4],ltvh_data[20,4],ltvh_data[21,4]) 
  
  z1=c(ltvh_data[1,5],ltvh_data[2,5]) 
  z2=c(ltvh_data[3,5],ltvh_data[4,5],ltvh_data[5,5],ltvh_data[6,5]) 
  z3=c(ltvh_data[7,5],ltvh_data[8,5],ltvh_data[9,5],ltvh_data[10,5]) 
  
z4=c(ltvh_data[11,5],ltvh_data[12,5],ltvh_data[13,5],ltvh_data[14,5],ltvh_data[1
5,5]) 
  z5=c(ltvh_data[16,5],ltvh_data[17,5]) 
  z6=c(ltvh_data[18,5],ltvh_data[19,5],ltvh_data[20,5],ltvh_data[21,5]) 
  
  w1=c(ltvh_data[1,6],ltvh_data[2,6]) 
  w2=c(ltvh_data[3,6],ltvh_data[4,6],ltvh_data[5,6],ltvh_data[6,6]) 
  w3=c(ltvh_data[7,6],ltvh_data[8,6],ltvh_data[9,6],ltvh_data[10,6]) 
  
w4=c(ltvh_data[11,6],ltvh_data[12,6],ltvh_data[13,6],ltvh_data[14,6],ltvh_data[1
5,6]) 
  w5=c(ltvh_data[16,6],ltvh_data[17,6]) 
  w6=c(ltvh_data[18,6],ltvh_data[19,6],ltvh_data[20,6],ltvh_data[21,6]) 
  
  pb1=cbind(z1,w1) 
  pb2=cbind(z2,w2) 
  pb3=cbind(z3,w3) 
  pb4=cbind(z4,w4) 
  pb5=cbind(z5,w5) 
  pb6=cbind(z6,w6) 
  
 
  # RUN THE LTVH.R PROGRAM ON THE DATA: 
   
   
  ltvh(pb1,pb2,pb3,pb4,pb5,pb6,y1,y2,y3,y4,y5,y6) 
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A. Garćıa, J. Vila, R. Ortiz, R. Maciá, R. Sleeman, J.M. Marrero, N. Sánchez,
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Islands): an overlapping collapse caldera generated by magma-chamber migra-

tion. Journal of Volcanology and Geothermal Research, 103(1-4):161–173, 2000.

ISSN 0377-0273. doi: 10.1016/S0377-0273(00)00221-3. 18

J. Mart́ı, G. J. Ablay, L. T. Redshaw, and R. S. J. Sparks. Experimental studies

of collapse calderas. Journal Geological Society London, 151:919–929, 1994a.

41, 62, 64, 89

J. Mart́ı, J. Mitjavila, and V. Ara na. Stratigraphy, structure and geochronology
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