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INTRODUCTION 

 

1. Introduction: diabetes – an emerging epidemic of the 21
st
 century 

Diabetes mellitus (DM) is a metabolic syndrome that constitutes a major health 

problem [1,2]. It is estimated that 246 million people worldwide have diabetes and 

that 380 million people will be afflicted with diabetes by 2025. In addition, 3.8 

million people die each year from diabetes [3]. DM is characterized by abnormally 

high levels of plasma glucose, known as hyperglycemia, in the fasting state or after 

the administration of glucose during an oral glucose tolerance test. DM is caused by 

a relative or absolute deficiency in insulin secretion, a resistance to insulin secretion 

or both [4-6]. The World Health Organization recognizes two distinct clinical forms 

of diabetes (Figure 1), type 1 diabetes (T1DM) and type 2 diabetes (T2DM). T1DM, 

also referred to as the juvenile variety of DM, results from an absolute deficiency of 

insulin due to the destruction of insulin-producing pancreatic β-cells. T2DM is a 

multifactorial disease that is characterized by insulin resistance associated with not 

only hyperinsulinaemia and hyperglycemia but also atherosclerosis, hypertension 

and an abnormal lipid profile [7]. T2DM accounts for 90-95% of the diagnosed 

cases of DM [8]. Genetic and environmental factors, increased height and weight 

development, increased maternal age at delivery, and exposure to some viral 

infections have also been linked to the risk of developing T1DM. Several risk 

factors have been associated with T2DM, including obesity, changes in diet and 

physical activity, age, insulin resistance, a family history of diabetes and ethnicity 

[9,10]. Changes in diet and physical activity related to rapid development and 

urbanization have led to a sharp increase in the number of people developing 

diabetes.  

T1DM and T2DM require careful monitoring and control. Without proper 

management, they can lead to very high blood sugar levels, which can result in long-

term damage to various organs and tissues. The major chronic complications of 

diabetes are cardiovascular disease, which is the primary cause of death in people 

with diabetes [11,12]; nephropathy, which can result in total kidney failure and the 

need for dialysis or kidney transplant [13]; neuropathy, which can ultimately lead to 

ulceration and amputation of the toes, feet and lower limbs; and retinopathy, which 

is characterized by damage to the retina of the eye and can lead to a loss of vision. 
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Figure 1. Classification of diabetes mellitus. 

 

2. Targeting Type 2 Diabetes 

Both T1DM and T2DM are chronic conditions that typically cannot be cured. 

However, all forms of diabetes have been treatable since the development of readily 

available insulin in 1921. The enhancement of insulin secretion by pancreatic islet β-

cells is a major goal for the treatment of T2DM. Antidiabetic drugs or hypoglycemic 

agents are medications that work to lower blood glucose concentrations (i.e., the 

amount of sugar in the blood). There are different classes of antidiabetic drugs, and 

their selection depends on the nature of the diabetes and the age and situation of the 

person, as well as other factors. Antidiabetic drugs exert their useful effects through 

(1) increasing insulin levels in the body, (2) increasing the body's sensitivity (or 

decreasing its resistance) to insulin, or (3) decreasing glucose absorption in the 

intestines [14]. 

A list of these agents along with their molecular targets, mechanisms of action 

and side effects related to their use are summarized in Table 1 and are visualized in 

Figure 2. Because of their adverse side effects, most of these treatments are 

considered to be unsatisfactory in terms of the prevention of complications and 

preservation of quality of life. α-glucosidase inhibitors, such as acarbose and 

miglitol, while effective at decreasing the absorption of glucose by interfering with 

the action of α-glucosidases present in the small intestinal brush border, are often 

associated with abdominal bloating, diarrhea and flatulence. Conventional insulin 

secretagogues, such as sulfonylureas and the class of meglitinides, both result in the 
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induction of hypoglycemia. While metformin is the only therapeutic agent that has 

been demonstrated to reduce macrovascular events in T2DM, its use is not 

recommended in conditions in which a patient has decreased renal or hepatic 

function. Metformin is the first-line drug of choice for the treatment of T2DM, 

particularly in overweight and obese patients and those with normal kidney function 

[15]. Agonists of the peroxisome proliferator-activated nuclear receptor (PPAR), 

thiazolidinediones, are able to reduce insulin resistance but are under intense 

scrutiny because of concerns with their safety. In fact, the use of rosiglitazone has 

now been severely restricted in the US and has been completely suspended in 

Europe as a result of concerns regarding its cardiovascular safety [16,17]. Notably, 

insulin, which is used to treat T1DM patients (for whom the hormone is no longer 

produced internally), is also occasionally used for patients with T2DM when other 

medications fail to adequately control blood glucose levels. However, hypoglycemia 

and weight gain are common side effects. Thus, new approaches are needed to treat 

T2DM. One of the desirable approaches to achieve this goal would be to identify 

agents that promote/enhance glucose (nutrient)-dependent insulin secretion [18]. 

 

Figure 2. Some of the important marketed antidiabetic drugs. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Some of the important marketed antidiabetic drugs. 
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Table 1. Drugs and their targets available nowadays for the treatment of diabetes. 

Drug class 
Molecular 

Target 

Mechanism/a

ctions 
Adverse events 

Generic 

Name 
Brand Name 

Insulin Insulin receptor 
Correct insulin 

deficiency 

Hypoglycemia, 

weight gain 

Insulin 

glargine 
Lantus® 

Insulin lispro Humalog® 

Sulfonylureas 
ATP-potassium 

channel 

Stimulate 

insulin 

secretion 

Hypoglycemia, 

weight gain 

Glimepiride Armaryl® 

Glipizide Glucotrol® 

Glyburide Diabeta® 

Meglitinides 
ATP-potassium 

channel 

Stimulate 

insulin 

secretion 

Hypoglycemia, 

weight gain 

Repaglinide Prandin® 

Nateglinide Starlix® 

Biguanides Unknown 

Inhibition of 

hepatic 

glucose output 

Gastrointestinal 

disturbances, 

lactic acidosis 

Metformin Glucophage® 

Thiazolidinedi

ones 
PPARγ 

Increase 

insulin 

sensitivity 

Weight gain, 

edema, anemia 

Pioglitazone Actos® 

Rosiglitazone Avandia® 

α-glucosidase 

inhibitors 

alpha-

glucosidase 

Retard 

carbohydrate 

absorption 

Gastrointestinal 

disturbances 

Acarbose Precose® 

Miglitol Glyset® 

Glucagon-like 

peptide -1 

analogues 

GLP-1 receptor 

Stimulate 

insulin 

secretion 

Gastrointestinal 

disturbances, 

nausea, 

abdominal pain, 

weight loss 

Exenatide Byetta® 

Liraglutide Victoza® 

Dipeptidyl 

peptidase-IV 

inhibitors 

Dipeptidyl 

peptidase-IV 

Increase blood 

concentration 

of the incretin 

GLP-1 

Increased risk 

for infection and 

headache 

Vildagliptin Galvus® 

Sitagliptin Januvia® 

Saxagliptin Onglyza® 

Amylin 

analogues 

Calcitonin 

receptor and 

RAMP1, 

RAMP2 or 

RAMP3 

Slow gastric 

emptying and 

supress 

glucagon 

Nausea Pramlintide Symlin® 
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The 2010 American Diabetes Association Standards of Medical Care in Diabetes 

added the criteria of glycated hemoglobin (HbA1c) levels ≥ 48 mmol/mol (≥6.5%) 

for the diagnosis of diabetes [19]. HbA1c is a form of hemoglobin that is measured 

primarily to identify the average plasma glucose concentration over prolonged 

periods of time. It is essential to monitor therapy with HbA1c and the levels of blood 

glucose and to adjust or advance therapy frequently (every 2 to 3 months) if the 

appropriate goal for each patient has not been achieved. The American Association 

of Clinical Endocrinologists/American College of Endocrinology (AACE/ACE) 

provides therapeutic pathways based on the current levels of HbA1c [20,21], which 

differ from the corresponding recommendation of the American Diabetes 

Association and European Association for the Study of Diabetes (ADA/EASD). In 

case of an initial HbA1c < 7.5%, lifestyle modification alone might be sufficient to 

achieve the goal of HbA1c levels below 6.5%. If this fails, then monotherapy is 

recommended with metformin as the preferred agent. In case of an initial HbA1c 

between 7.7 and 9.0%, pharmacotherapy should be started with a dual approach, 

because monotherapy may be insufficient to attain the 6.5% goal and thus 

inadequate to address the underlying pathophysiology (i.e., insulin resistance with 

advanced β-cell failure, inflammation and lipotoxicity). In addition to metformin, 

GLP-1 agonists/dipeptidyl peptidase-IV (DPP-IV) inhibitors are recommended as 

the first choice with an optional substitution of thiazolidinediones (TZDs) in the case 

of metabolic syndrome. If the initial HbA1c is above 9.0%, therapy should start with 

either a dual or triple approach. Triple therapy should include TZDs in addition to 

metformin plus GLP-1 agonists/DPP-IV inhibitors. In the event that the target of 

6.5% is not reached on a previous regime or if symptomatic hyperglycemia 

develops, the algorithm recommends moving directly to insulin therapy [7,22].  

Extensive research has been conducted on the molecular targets for T2DM, 

including PPARγ, protein tyrosine phosphatase-1B (PTP1B), DPP-IV, glycogen 

synthase kinase-3 (GSK-3), pyruvate dehydrogenase kinase (PDHK), cannabinoid 

receptors, fructose-bisphosphatases, and β3-adrenoceptor (β3-AR), in an attempt to 

develop newer antidiabetic agents [23,24]. These therapeutic targets are important, 

and most of them are suitable for an in silico analysis [8].  

PTP1B is emerging as a strong target for the treatment of T2DM and obesity 

[25]. Genetic data and knock-out mouse model studies indicate a significant role of 

PTP1B in insulin signaling [26,27]. PTP1B knock-out mice have been shown to 

exhibit enhanced insulin sensitivity, as measured by improved glucose clearance 

[26], and are resistant to diet-induced obesity [27]. Many selective and potent 

inhibitors of PTP1B have been discovered. The various classes and current status of 

these molecules have been reviewed extensively elsewhere [28]. The β-ARs belong 

to the superfamily of G protein-coupled receptors (GPCR). Given that selective 

agonists of β3-AR are shown to have thermogenic and hypoglycemic effects in 
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mouse models, β3-AR is currently thought to be an important target for the 

treatment of obesity and T2DM [29,30]. Most of the reported β3-AR agonists 

possess either an arylethanolamine or aryloxypropanolamine substructure. PDHK is 

a group of highly specific enzymes that deactivate the pyruvate dehydrogenase 

complex (PDC), thus impairing carbohydrate metabolism by reducing the oxidation 

of pyruvate [31]. In diabetes, PDHK is activated and leads to the inactivation of 

PDC by ATP-dependent phosphorylation. A number of PDHK inhibitors are now 

available to enable this mechanism to be evaluated as a therapy for diabetes. Aicher 

et al. have reported a series of tetracyclic terpenes with an oxime functional group. 

They found that the oxime group forms hydrogen-bonding interactions with the 

substrate binding sites of PDHK and that these compounds have high potency at this 

target [32]. The endogenous cannabinoid system has been reported to play an 

important role in the regulation of food intake and lipid metabolism [33]. Recent 

reports suggest a role of the CB1 receptor in obesity, insulin resistance and related 

disorders [34]. Thus, there is hope for using CB1 antagonists as a new strategy for 

treating diabetes. In addition, CB1 antagonists are already being studied in relation 

to many other therapeutic areas; and, thus various medicinal chemistry strategies are 

being employed to discover new antagonists for this receptor [35]. PPARγ and DPP-

IV are the therapeutic targets studied in this thesis, and they are described in more 

detail below. 

2.1. Peroxisome proliferator-activated receptor gamma (PPARγ) 

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear 

receptor superfamily that regulate the gene expression of proteins involved in 

energy, glucose and lipid metabolism, the proliferation and differentiation of 

adipocytes and the sensitivity of insulin [36]. They function as cellular sensors that 

activate transcription in response to the binding of natural or synthetic ligands. Three 

receptor subtypes, PPARα, PPARβ/δ and PPARγ, have been identified. Although 

the three subtypes share a high level of sequence and structural homology, they 

exhibit differences in tissue expression and physiological function [37]. PPARα is 

found in the liver, kidney, heart, and muscle. It is important for the uptake and 

oxidation of fatty acids and lipoprotein metabolism. PPARα is the target of lipid 

lowering fibrates. PPARγ is localized in fat, large intestine, and macrophages. It 

plays an important role in adipocyte differentiation. PPAR β/δ is expressed in most 

cell types. Agonists of PPARα and PPARγ are currently approved for use in treating 

dyslipidemia and T2DM, respectively [38]. PPARβ/δ agonists play important roles 

in dyslipidemia, cancer treatment, and cell differentiation within the central nervous 

system. 
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 PPARγ agonists 

TZDs are an important class of synthetic PPARγ agonists. TZDs are antidiabetic 

agents that target adipose tissue and that improve insulin sensitivity. They are 

currently used in the treatment of T2DM. Despite the clinical benefit of these drugs, 

the use of TZDs has been associated with adverse effects, including weight gain, 

increased adipogenesis, renal fluid retention, and possible increased incidence of 

cardiovascular events [39,40]. Therefore, new PPARγ ligands with enhanced 

therapeutic efficacy and reduced adverse effects are needed. A promising new group 

of such ligands are selective PPARγ modulators (SPPARγMs) [39,40]. These 

compounds act as partial agonists of PPARγ and display different binding properties 

when compared with full agonists.  

There is another type of synthetic PPAR agonists called dual PPARα/γ and pan 

PPARα/γ/β/δ ligands. They were developed in an attempt to achieve multiple 

therapeutic benefits; however, these compounds have encountered multiple safety 

issues that have thus far not been resolved [41]. 

 PPARγ mechanism 

PPARs function through the formation of heterodimers with the retinoid X 

receptor (RXR) and dock to the promoter regions of genes, which regulates 

transcription in a ligand-dependent manner through the differential recruitment of 

co-activators and co-repressors [42]. PPARγ can considered a rheostat for insulin 

sensitivity that responds to an integrated nutritional status conveyed through 

multiple signals sensitive to the dietary and endocrine status [43]. 

Like other nuclear receptors, PPARs are modular in structure and contain the 

following functional domains: a N-terminal region, a DNA-binding domain (DBD), 

a flexible hinge region, a ligand binding domain (LBD) and a C-terminal region. The 

DBD contains two zinc finger motifs, which bind to specific sequences of DNA, 

known as hormone response elements, when the receptor is activated. The LBD has 

an extensive secondary structure that consists of 13 α-helices and a β-sheet (see 

Figure 3A) [44]. Natural and synthetic ligands bind to the LBD and either activate or 

repress the trans-activation activity of the receptor. 

Because of their importance as pharmaceutical targets for regulating the fatty 

acid metabolism and antidiabetic drugs and because they provide an interesting 

example of receptors interacting with other molecular partners in a ligand-dependent 

manner, the structure of the PPAR LBD has been intensively studied at the atomic 

level. Since the first experimental X-ray structures of PPARγ were obtained in 1998 

[42,45], numerous structures have been determined for PPARα, PPARγ and PPARδ 
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in both the liganded and apo forms, with or without a co-activator or a co-repressor, 

and in the presence or absence of RXR. 

 

Figure 3. 3D structure of PPARγ along with the secondary structure elements (A). Binding 

models of (B) the PPARγ full agonist Farglitazar (crystal structure 1FM9) and (C) the PPARγ 

partial agonist nTZDpa (crystal structure 2Q5S). Important binding residues are depicted as 

wireframes. Oxygen, nitrogen, and hydrogen atoms are coloured red, blue and white, 

respectively. 

PPARγ is thought to be activated by full agonists via a molecular switch in the 

most carboxy terminal helix, H12, of the LBD [44]. H12 forms part of the ligand-

dependent activation domain AF-2 that closes on the ligand-binding site in response 

to ligand binding. The resulting active form can bind to several co-activator proteins 

that activate the cellular transcriptional machinery [44]. Full agonists occupy the 

large binding site of PPARγ in a U conformation and are generally formed by a 

polar head and a hydrophobic tail [46]. The polar head forms a net of hydrogen 

bonds with the Ser 289, His 323, His 449 and Tyr 473 PPARγ side chains (Figure 

3B). This net of hydrogen bonds is responsible for the conformational change of 

H12 and the activation of PPARγ [46]. Partial agonists, however, activate PPARγ 

using a H12-independent mechanism [47,48]. The key interactions between partial 

agonists and the (LBD) of PPARγ are different, since partial agonists do not use the 

net of hydrogen bonds used by full agonists to bind to PPARγ. This causes a 

reduction in the degree of H12 stabilization that affects the recruitment of co-

activators and that decreases the transcriptional activity of PPARγ [49,50]. With 

only minor differences, most of the currently described partial agonists interact with 
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the LBD of PPARγ through a hydrogen bond with Ser342 [46] and several 

hydrophobic interactions (Figure 3C). These hydrophobic interactions are similar to 

those used by full agonists. A new mechanism has been recently suggested by which 

partial and full PPARγ agonists may improve insulin sensitivity independent of 

receptor agonism. This mechanism consists in blocking the phosphorylation of 

PPARγ [51] and may explain how partial agonists can exhibit similar or higher 

antidiabetic effects than full agonists and the differing side-effect profiles of both 

types of agonists [52]. These partial agonists may then achieve comparable efficacy 

in insulin sensitization through a similar inhibitory effect on PPARγ phosphorylation 

whereas the differences in their agonist potency could be linked to differences in 

side effects [52]. 

2.2. Dipeptidyl peptidase-IV  

The dipeptidyl peptidases (DPPs) are a subclass of the serine protease family. 

Members of this family include DPP I–IV, fibroblast activation protein-α (FAP), 

DPP-8 and DPP-9 [18]. Except DPP-IV all these enzymes remain poorly 

characterized and their natural substrates have not yet been identified [18]. DPP-IV 

is constitutively expressed on epithelial and endothelial cells of a variety of different 

tissues, for example, intestine, liver, lung, kidney and placenta. Recently, DPP-IV 

has emerged as a new treatment option of T2DM [53]. 

 DPP-IV mechanisms 

DPP-IV specifically removes N-terminal dipeptides from substrate containing 

proline or alanine at the penultimate position, transforming them into inactive or 

even antagonistic species. Researchers have found that the activity of two potent 

stimulators of insulin secretion, glucagon-like peptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide (gastric inhibitory polypeptide or GIP), is 

rapidly cleaved by DPP-IV. [54]. The structure of GIP, GLP-1 and GLP-2 reveals a 

highly conserved alanine at position 2, rendering these peptides ideal substrates for 

the DPP-IV.  

Incretin hormones are defined as intestinal hormones released in response to 

nutrient ingestion, which potentiate the glucose-induced insulin response (the 

incretin effect). GLP-1 is an incretin hormone secreted by intestinal L-cells in 

response to meals. It stimulates insulin biosynthesis and secretion, reduces glucagon 

release, slows gastric emptying, reduces appetite, and stimulates regeneration and 

differentiation of islet β-cells [55]. On the other hand, the other most important 

incretin hormone GIP is produced by the duodenal K-cells and is extensively 

involved in glucose metabolism by enhancing insulin secretion [56]. Both peptides 

have very short half-lives because of their rapid degradation by DPP-IV. Therefore, 
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inhibiting DPP-IV prolongs the action of GLP-1 and GIP, which in turn improves 

glucose homeostasis with a low risk of hypoglycemia and potencial for disease 

modification (Figure 4). 

 

Figure 4. Diagram illustrating DPP-IV inhibition for controlling glucose levels. 

 DPP-IV characteristics: structure and binding site 

DPP-IV is an acid transmembrane glycoprotein that consists of a cytoplasmic tail 

(residues 1-6), a transmembrane region (residues 7-28), and an extracellular region 

(29-766) (Figure 5A). The extracellular region can be further subdivided into two 

domains: a) the catalytic domain (residues 508-766), which shows an α/β hydrolase 

fold and contains the catalytic triad Ser630 – Asp708 – His740, and b) an eight-

bladed β propeller domain (residues 56-497), which also contributes to the inhibitor 

binding site [57]. DPP-IV is enzymatically active as a homodimer. 

The DPP-IV binding site is highly druggable in the sense that tight, specific 

binding to the enzyme can be achieved using small molecules with drug-like 

physicochemical properties [57,58]. The different interaction motifs used by DPP-IV 

ligands include the catalytic Ser630, the oxyanion hole Tyr631-Tyr547, the 

hydrophobic S1 pocket created by Tyr 631-Val 656-Trp 659-Tyr 662-Tyr 666-Val 

711, the P2 region Arg 125-Asn 710, and the N-terminal recognition region Glu 

205-Glu 206-Tyr 662 (Figure 5B).  
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The considerable number of DPP-IV crystal structures that have been published 

since 2003 provide a detailed picture of the structural characteristics of the binding 

site and the molecular recognition of small molecules. It is not surprising that a large 

number of diverse DPP-IV inhibitors have been discovered because the binding site 

offers a) a deep lipophilic pocket combined with several exposed aromatic side 

chains to achieve high affinity small molecule binding and b) significant solvent 

access, which allows for the tuning of the physicochemical properties of the 

inhibitors for improved pharmacokinetic behavior [57]. 

Figure 5. A) Human DPP-IV in complex with a fluoroolefin inhibitor (crystal structure 3C45 

with two chains). B) Key interactions between DPP-IV and sitagliptin in two-dimensional 

representation. Residues colored in green are hydrophobic, residues colored in cyan are polar. 

Red residues are negative charged and could act as acceptors, whereas purple residues are 

positive charged and could act as donors. Ligand exposure to the solvent is colored in yellow 

 

3. Natural Products - Alternative medicine 

For thousands of years, medicine and natural products have been closely linked 

through the use of traditional medicines and natural poisons [59,60]. In the last 200 

years, scientific developments have allowed progress in drug research. The first 

systematically studied drugs were plant constituents that are still used today, such as 

salicylic acid, digitoxin, morphine, quinine, and pilocarpine. The discovery, 

isolation, and biological studies of antibiotic compounds from microorganism 

cultures have revolutionized healthcare. Prominent examples of nature-derived 

antibiotics include streptomycin, chloramphenicol, chlortetracycline, cephalosporin 

C, erythromycin and vancomycin [61]. 

Natural products have gone through a long selection process to develop 

interactions with biological targets and are therefore a valuable source of ideas for 

novel chemical entities in drug development [61]. Owing to their diversity, target 
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affinity, and specificity, natural products have demonstrated enormous potential as 

modulators of biomolecular function, have been an essential source for drug 

discovery, and have provided design principles for combinatorial library 

development [62,63]. Natural products have proven to be the richest source of novel 

compound classes for biological studies and an essential source for the discovery of 

new drugs. In addition, natural products offer an advanced starting point in the 

search for highly specific and potent modulators of biomolecular function as well as 

novel drugs [63-65].  

Natural products have played an important role in the traditional treatment of 

T2DM since ancient times [66,67]. The first recorded description of diabetes 

mellitus dates back to the Ebers papyrus in Egypt around 1500 B.C. [68]. Later, in 

India, the early Ayurvedic texts, such as the Sushruta Samhita and the Charaka 

Samhita, which were written in the 4th to 5th century B.C., described the use of 

approximately 760 and 500 species of medicinal plants, respectively. In China, the 

Ben Jing, which was written in about 104 B.C., provided detailed descriptions of 

252 species with reference to those used to treat diabetes [69].  

Plants are one of the most important sources of antidiabetic compounds. In many 

regions of the world, herbal remedies continue to be more accessible and affordable 

than conventional antidiabetic drugs. Additionally, in societies with well-developed, 

modern health care systems, the demand for herbal remedies to complement 

prescribed, modern therapies is growing for many diseases, including diabetes [67]. 

Each region of the world has developed a materia medica of antidiabetic remedies 

based on the local flora [70-72]. Climatic factors and cross-cultural communication 

also play a role. Generally, the use of a particular plant in a number of regions is 

strong evidence for its effectiveness. The families of plants with the most potent 

hypoglycemic effects include Leguminosae (11 species), Lamiaceae (8 species), 

Liliaceae (8 species), Cucurbitaceae (7 species), Asteraceae (6 species), Moraceae 

(6 species), Rosaceae (6 species), Euphorbiaceae (5 species) and Araliaceae (5 

species). The most commonly studied species are Opuntia streptacantha, Trigonella 

foenum-graecum, Momordica charantia, Ficus bengalensis, Polygala senega and 

Gymnema sylvestre (see Table 2 for more detailed information) [73,74]. Moreover, a 

wide range of plant families and types of phytochemicals are associated with 

antidiabetic activity. At the same time, certain groups, such as alkaloids, saponins, 

xanthones and flavonoids, and nonstarch polysaccharides, appear to have effects 

with particular significance to diabetes treatment [69,73]. 
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Table 2. Species of plants reported to be used traditionally to treat diabetes. 

Species Family 
Active Principle for 

antidiabetic activity 

Part 

Used 

Area 

Traditionally 

Used 

Opuntia 

streptacantha 
Cactaceae  

Isoquinoline alkaloid, 

cyanogenetic alkaloids 

Aerial 

parts 
C. America  

Trigonella 

foenum-

graecum 

Fabaceae 
Saponins, 4-

hydroxyisoleucine 

Seed, 

leaf 

Africa, India, 

Middle East 

Momordica 

charantia 
Cucurbitaceae  

Charantin, polypeptide 

(p-insulin), sterols 

Fruit, 

leaf 

Africa, India, C. 

America, 

Australia, Middle 

East 

Ficus 

bengalensis 
Moraceae 

Bengalinoside, 

Phytosterolin, 

flavonoid, glycoside, 

glycosidal fraction 

Bark S.E. Asia 

Polygala 

senega 
Polygalaceae  

Triterpenoid 

glycosides, senegins II 

and III 

Root Asia 

Gymnema 

sylvestre 
Asclepiadaceae 

Gymnemic acids III, 

IV, V, VII, and 

gymnemoside B 

All Tropics 

Numerous mechanisms of actions have been proposed for these plant extracts. 

Some hypotheses relate to their effects on the activity of pancreatic β-cells 

(synthesis, release, cell regeneration/revitalization), an increase in the 

protective/inhibitory effect against insulinase, an increase in insulin sensitivity or the 

insulin-like activity of the plant extracts. Other mechanisms may involve improved 

glucose homeostasis, such as an increase in the peripheral utilization of glucose, 

increased synthesis of hepatic glycogen and/or a decrease in the glycogenolysis 

acting on enzymes, the inhibition of intestinal glucose absorption, a reduction in the 

glycaemic index of carbohydrates and a reduction in the effect of glutathione. All of 

these actions may be responsible for the reduction and or abolition of diabetic 

complications [75]. Plants hold definite promise in the management of DM. The 

isolation and identification of the active constituents of these plants and the 

preparation of standardized doses and dosing regimens may be important for 

improving the hypoglycemic action of these plant products. 
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4. Functional Food in Diabetes 

Foods can be considered functional if they are proven to beneficially affect one 

or more of the target functions in the body, beyond adequate nutritional effects, in a 

way that is relevant to an improved state of health and well-being, a reduction in the 

risk of diseases, or both [76]. Nutraceutical substances with commercial value can 

be obtained from functional foods that have demonstrated a physiological benefit or 

that are capable of providing some sort of protection against a chronic or infectious 

disease [77]. Several natural compounds are described as nutraceutical. The initial 

step in the research and development of a functional food is the identification of a 

specific interaction between one or a few components of this food and a function in 

the organism that is potentially beneficial for health [76]. Often, this interaction 

results from natural products that act as a functional food component.  

Functional foods might have a particularly high impact on the prevention or 

treatment of excessive weight gain and diabetes, for which the link between 

nutrition, biological responses and diseases is clearly established [78]. Many 

functional foods and supplements are promoted as being beneficial for the 

management of diabetes or for reducing the risk of developing diabetes and its 

complications [79]. However, the available evidence on functional foods identified 

in this field is incomplete, primarily because of the lack of diet-based intervention 

trials that are of sufficient duration to be relevant to the natural history of diseases 

such as obesity and diabetes [78]. 

Weight control is an effective technique for the management of diabetes, and 

functional foods promoting weight loss could be developed for those with T2DM 

[80]. Studies have shown that a modest weight loss of 5–10% of body weight is 

associated with improvements in cholesterol, blood pressure and insulin sensitivity, 

which are known risk factors for CVD and T2DM [15,81,82]. However, it may also 

be possible to incorporate functional foods that affect insulin action independently of 

weight loss into the diet. To lower the glycemic index, nuts and peanuts can be 

potentially included in a healthy diet. However, more long-term studies are needed 

to demonstrate the effects of nuts and peanuts on glycemia [80,83]. Given the 

potential benefits of omega-3 FAs on CVD risk, the regular consumption of fish is 

recommended [80,84]. Finally, studies of patients with T2DM also show that 

cinnamon may have the potential to lower glucose levels [85,86]. However, more 

research on the proposed health benefits of cinnamon supplementation is necessary 

before unambiguous recommendations can be made. In conclusion, a growing 

number of individuals are adding functional foods and natural health products to 

their diet to help control blood glucose; however, a large amount of research is still 

needed before the benefits of these supplements can be confirmed and before these 

foods can be recommended routinely for glycemic control [79,80]. A new era of 
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nutrition science is just beginning, and there is the potential for exciting 

developments regarding the role of food in achieving optimal health and in the 

prevention and management of diseases [78]. 

 

5. Computer-aided drug design methods in the discovery of antidiabetic 

drugs 

Computer-aided drug design (CADD) methodologies have made great advances 

and have contributed significantly to the discovery and/or optimization of many 

clinically used drugs in recent years [87]. Drug discovery and development is a 

time-consuming and expensive process. On average, it takes 10–15 y and $500–800 

million to introduce a drug into the market [88,89]. Accordingly, CADD approaches 

have been widely used in the pharmaceutical industry to accelerate the process 

[90,91]. CADD helps scientists focus on the most promising compounds so that they 

can minimize the synthetic and biological testing efforts. In practice, the choice of 

employing CADD approaches is usually determined by the availability of 

experimentally determined 3D structures of the target proteins. Thus, there are two 

major types of drug design: ligand-based drug design and structure-based drug 

design. If protein structures are unknown, various methods of ligand-based drug 

design can be employed, such as quantitative structure activity relationship (QSAR) 

and pharmacophore analysis. If the target structures are known, structure-based 

approaches can be used, such as molecular docking, which employs the 3D 

structures of the targets to design novel active compounds with improved potency. 

As more structures are becoming available, the prediction accuracy will likely 

improve [90]. 

5.1. ADMET properties 

To exert a pharmacological effect in tissues, a compound has to penetrate various 

physiological barriers, such as the gastrointestinal barrier, the blood-brain barrier 

and the microcirculatory barrier, to reach the blood circulation. Once in circulation, 

the compound is subsequently transported to its effector site for distribution into 

tissues and organs, degraded by specialized enzymes, and finally removed from the 

body via excretion. Accordingly, the absorption, distribution, metabolism, excretion, 

and toxicity (ADMET) properties of a compound directly affect its usefulness and 

safety [87]. Thus, a reliable filter for the selection of good candidate drugs for 

development would greatly reduce the time and cost of R&D. Therefore, 

pharmaceutical companies are trying to move ADMET evaluations into the early 

stages of drug discovery [92]. The huge libraries of compounds are typically 

subjected to pre-filtering with the ADMET properties.  
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Lipinski [93] studied the physicochemical properties of 2245 drugs from the 

World Drug Index (WDI) and found that poor absorption and permeation are more 

likely to occur when the molecular weight < 500 g/mol, Clog P < 5, hydrogen bond 

donors < 5 and hydrogen bond acceptors < 10. A “rule of five” was subsequently 

proposed with respect to drug-likeness. However, these rules may only serve as the 

minimal criteria for evaluating drug-likeness. The general rules for assessing 

ADMET properties have been extended to more complex computational and 

mathematical methods [94]. 

5.2. Virtual screening 

Virtual screening (VS) is a computational method for identifying lead 

compounds from a large and chemically diverse compound library. This 

computational method is valuable for discovering lead compounds in a faster, more 

cost-efficient, and less resource-intensive manner compared with experimental 

methods, such as high-throughput screening. However, the generic definition of VS 

is significantly wider and may encompass many different methods [95]. VS 

techniques can be divided into ligand-based and structure-based approaches (see 

Figure 6). Actually, VS is a combination of several techniques that are applied one 

after another, similar to a funnel, so it is defined as VS workflow.  

Successful VS relies on having a scoring method that assigns good scores to 

interesting molecules (usually defined as active against a target protein of interest) 

and worse scores to uninteresting (inactive) molecules. Accordingly, a successful 

virtual screen will provide a set of compounds for experimental screening that is 

highly enriched in active molecules. There are a number of approaches to 

quantifying the success of a particular tool for VS [96,97]. The enrichment factor 

(EF) represents one of the most prominent performance descriptors in VS. EF is 

defined as (TP/n) / (A/N); where TP is the number of hits found at x % of the 

database, n is the number of compounds screened at x % of the database, A is the 

number of actives in the entire database, and N is the number of compounds in the 

entire database. Sensitivity and specificity are also descriptors that assess the 

enrichment of active molecules from a database. Sensitivity (Se, or true positive 

rate) describes the ratio of the number of active molecules found by the VS method 

to the number of all active database compounds. Specificity (Sp, or true negative 

rate) represents the ratio of the number of inactive compounds that were not selected 

by the VS protocol to the number of all inactive molecules included in the database 

[98]. 

The best VS workflow is selected for the prospective VS of large compound 

libraries. This workflow produces a score ordered hit list of database compounds 
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that is usually subjected to post-filtering. As a result, a selection of VS hits is 

obtained that can be tested for activity in biological assays.  

 

Figure 6. Virtual screening methods applied in drug discovery. 

5.3. Ligand-based approaches 

Ligand-based drug design (or indirect drug design) relies on knowledge of other 

molecules that bind to the biological target of interest. Common ligand-based VS 

methods are pharmacophore modeling, similarity analysis and QSARs.  

5.3.1. Ligand-Based Pharmacophore Modeling 

According to the definition of Wermuth et al., a pharmacophore describes the 3D 

arrangement of steric and electronic features that are necessary to trigger or block a 

biological response [99]. Ligand-based pharmacophore model generation relies on 

information regarding the known biological activity of ligands without any structural 

information for the macromolecular target. The elucidation of a shared feature 

pharmacophore is based on the 3D alignment of the conformational models from 

active compounds. A molecular superimposition algorithm arranges the 3D 

structures of the training compounds in such a way that equal chemical 

functionalities are located in similar positions. Pharmacophoric features are then 

placed on the positions where all compounds share a chemical functionality. To 

refine a shared feature pharmacophore, it is also possible to include information 

from inactive compounds in the model generation process.  

Computational models representing pharmacophores have shown unique 

potential in scaffold hopping. Therefore, pharmacophore models are frequently 

applied to generate novel starting points for drug design campaigns [100]. A variety 
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of pharmacophore modeling approaches has been developed, such as 

Catalyst/Discovery Studio, Phase [101], MOE and LigandScout [102]. 

5.3.2. Similarity Analysis 

Similarity search algorithms use techniques such as 2D fingerprints descriptors 

(Fingerprint Similarity Analysis) or 3D shape descriptors (Electrostatic/Shape 

Similarity Analysis) to compare a biological active query molecule with a database 

molecule. 2D fingerprints are bit strings that encode the presence or absence of 

chemical substructures. Originally developed for chemical substructure search, 2D 

fingerprints soon became a popular technique for determining molecular similarity 

between chemical compounds [103]. For the similarity search, the fingerprint of a 

query molecule is compared with the fingerprint of a database molecule. This 

comparison is performed using a metric (e.g., Tanimoto coefficient), which 

expresses the similarity as a score [104]. Popular 2D fingerprint algorithms include 

Scitegic‟s Extended Connectivity Fingerprints (ECFPs), MDL‟s Molecular ACCess 

System (MACCS), Daylight fingerprints and Molprint2D [105]. 

One of the most popular algorithms for 3D shape-based similarity searches is 

Openeye‟s ROCS. This similarity search algorithm not only compares the molecular 

shape of two molecules but also identifies similarities in their chemical feature 

patterns (hydrogen bonds, hydrophobic atoms, anions, cations, and ring moieties). 

Database molecules aligned by ROCS can be re-scored by the EON algorithm, 

which determines the electrostatic similarity between query and database molecules.  

5.3.3. Quantitative Structure-Activity Relationships 

QSAR describes the mathematical relationships between the structural attributes 

and target properties of a set of chemicals [106,107]. QSARs are applied to predict 

the biological activities or ADMET properties of database molecules with similar 

chemical structures. This method is only fruitful if the dataset contains compounds 

that are structurally related to the molecules used to construct the model. Therefore, 

in contrast to lead discovery techniques, such as similarity analysis and 

pharmacophore modeling, QSARs are frequently used in the optimization phases of 

drug design [108]. Many different 1D, 2D, 3D and multidimensional QSAR 

approaches have been developed during the past several decades [107,109]. The 

major differences in these methods include the chemical descriptors and 

mathematical approaches that are used to establish the correlation between the target 

properties and the descriptors. QSAR models are typically created using a training 

set of ligands, and the models are then tested against the test set of ligands.  

1D-QSARs explain biological activity by correlating it with a single value for a 

specific physicochemical property (e.g., log P value) of the ligand. 2D-QSARs also 
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take the structural properties of compounds into account, and the affinity is 

correlated with structural patterns (connectivity, 2D pharmacophore, etc.) without 

considering an explicit 3D representation of these properties [109]. In 3D-QSARs, 

affinity is correlated with the 3D structure of the ligands. Comparative molecular 

field analysis (CoMFA) [110] is perhaps the most popular example of 3D-QSAR. It 

describes the steric and electrostatic fields of ligands aligned in their putative 

bioactive conformation. CoMFA models allow for the prediction of biological 

activity, as well as 3D visualizations of the steric and electrostatic contributions to 

protein-ligand binding. The comparative molecular similarity indices analysis 

(CoMSIA) method calculates three additional molecular field properties 

(hydrophobicity, hydrogen bond acceptors, and hydrogen bond donors) to generate 

3D-QSAR models [111].  

An accurate representation of the bioactive conformation of ligands is crucial in 

3D-QSAR to obtain the correct ligand alignment. If no experimentally determined 

bioactive conformation is available, the conformation has to be predicted using 

protein-ligand docking. mQSAR approaches provide a promising alternative to 

classic 3D-QSAR for drug-discovery purposes . Such ligands are represented as an 

ensemble of configurations using 4D-QSAR techniques. 5D-QSAR and 6D-QSAR 

simulate ligand-induced changes of the binding site or different solvation states, 

respectively, by calculating different models for each possible scenario [109]. 

5.4. Structure-based approaches 

If 3D structural data for a pharmacological target protein is accessible, several 

structure-based VS techniques can be applied for drug design. In general, such 

structure-based methods are computationally more expensive than ligand-based VS. 

However, they provide unique details about protein-ligand interactions and thus are 

valuable tools for lead discovery and optimization [112].  

5.4.1. Homology Modeling 

The large gap between the number of available sequences and the number of 

experimentally solved protein structures, which is limited by the cost, time, and 

experimental challenges inherent to the process of structural determination, could 

possibly be resolved using homology modeling [113]. In the absence of 

experimental structures, homology modeling plays an important role in the structure-

based drug discovery process. Homology or comparative modeling is a process for 

predicting protein structure from the general observation that proteins with similar 

sequences have similar structures. Given an experimentally established protein 

structure (template), models can be generated for a homologous sequence (target) 

that either shares a significant sequence (30% or more) or structural similarity (e.g., 
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class A GPCRs share a common seven trans-membrane helical structure, despite low 

sequence homology between family members) with the template. The process of 

protein homology modeling consists of the following steps: (1) identification of 

known 3D structure(s) of a related protein that can serve as a template; (2) sequence 

alignment of the target and template proteins; (3) model building for the target based 

on the 3D structure of the template and the alignment; and (4) 

refining/validation/evaluation of the models. These steps may be repeated until a 

satisfactory model is built [114]. Although homology models are simplifications of 

the real 3D protein structure and therefore contain errors, their suitability for VS 

campaigns has been proven [114,115]. 

5.4.2. Protein-Ligand Docking  

One of the most common structure-based VS approaches is protein-ligand 

docking. Molecular docking is used for computational schemes that attempt to find 

the best matches between a receptor and a ligand. It involves the prediction of ligand 

conformations and orientation (or posing) within a binding site and attempts to place 

the ligand into the binding site in configurations and conformations appropriate for 

interacting with the receptor [116]. The protein-ligand docking process is divided 

into two major steps: the correct placement of the ligand at the protein binding-site 

and the estimation of ligand affinity using a scoring function [98].  

In theory, the search space consists of all possible orientations and 

conformations of the protein paired with the ligand. However, in practice, it is 

impossible to exhaustively explore the search space with current computational 

resources. Most docking programs account for ligand flexibility, and several attempt 

to model a flexible protein receptor. Each "snapshot" of the pair is referred to as a 

pose. A variety of conformational search strategies have been applied to the ligand 

and to the receptor. These strategies include systematic or stochastic torsional 

searches about rotatable bonds, molecular dynamics simulations, and genetic 

algorithms to "evolve" new low energy conformations [117].  

The evaluation and ranking of the ligand conformations predicted on the basis of 

the search algorithm is a critical aspect of every docking protocol [118]. The ability 

to generate the correct conformation is not sufficient. It is also necessary to be able 

to recognize it. The scoring function should enable the distinction between the true 

binding modes and all of the other alternative modes explored, or between active 

and random compounds. However, a very rigorous scoring function would be 

computationally too expensive and would thus render the analysis of the several 

binding modes unfeasible. Hence, a number of assumptions and simplifications are 

used to reduce the complexity of the scoring functions, with a natural cost in terms 
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of accuracy. For this reason, the lack of a suitable scoring function, both in terms of 

speed and accuracy, is the major bottleneck factor in docking simulations [116].  

In summary, molecular docking is useful for discriminating active molecules 

from inactive compounds and to identify ligand conformations similar to the ones 

observed in the crystal structures of protein-ligand complexes. However, the ranking 

of compounds in terms of their binding affinities is challenging [119]. Some popular 

docking software programs are AutoDock, DOCK, eHiTS, FlexX, Fred, GOLD, 

Glide, MOEDock, and Surflex [118]. 

5.4.3. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations have become increasingly useful in 

studying biological systems relevant to drug discovery [120,121]. In some cases, the 

experimentally derived protein structure may not be suitable for structure-based VS. 

For example, the structure could represent a closed conformation of the protein in 

which the motion of a hinge region blocks the entrance to the ligand-binding pocket. 

For docking-based VS, the open conformation of the target protein has to be 

predicted. Such a prediction of protein conformations can be performed using MD 

simulation [122]. In addition to determining the open conformation of proteins, 

conformations induced by co-factor binding can be predicted by MD simulations 

[123]. With regard to structure-based VS, MD simulations play a pivotal role in 

understanding the features that are important for ligand-binding affinity. This 

information could be employed to select higher-affinity ligands from screening 

processes. 

5.4.4. Structure-Based Pharmacophore Modeling 

Structure-based pharmacophore modeling uses the spatial information regarding 

the target protein to generate a topological description of ligand-receptor interactions 

[100]. 3D structural information on the protein is usually obtained from X-ray 

crystallography or multidimensional nuclear magnet resonance spectroscopy. 

Starting from the 3D coordinates of a ligand bound to a macromolecular target, 

possible interactions between the two binding partners are evaluated. It is essential 

to ensure the reliability of the binding-site residues and ligand coordinates by 

visually inspecting their degree of fitness to the corresponding electron density map 

available, for instance, at the Uppsala Electron Density Server [124]. The next step 

is the manual or automatic analysis of chemical interactions between the ligand and 

the macromolecule. On the basis of opposing chemical functionalities and their 

geometric arrangement toward each other, pharmacophore features are placed on the 

ligand side where interactions are observed. Excluded volume spheres can be placed 

on binding site atoms to indicate sterically unfavorable regions for a mapped ligand 

conformation. Examples for the generation and optimization of structure-based 
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pharmacophore models can be found in the literature [125,126]. Software programs 

that allow for the manual construction of pharmacophores from protein-ligand 

complexes include Schrodinger‟s Phase, Accelrys‟ Discovery Studio, MOE by the 

Chemical Computing Group and Inte:Ligand‟s LigandScout.  

Salam et al. described a novel method for generating structure-based 

pharmacophores using energetic analysis [127]. This method combines 

pharmacophore perception and database screening with protein-ligand energetic 

terms computed with a docking scoring function (i.e., Glide XP) to rank the 

importance of pharmacophore features. The combination of energy terms from a 

structure-based analysis and the speed of a ligand-based pharmacophore search 

results in a method that leverages the strengths of both approaches to produce high 

enrichments with a good diversity of active molecules. 
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CONTEXT AND GOALS 

In the past decade, there has been increased interest in nutrition as a natural way to 

improve quality of life and ameliorate different pathological states. Functional foods 

and nutraceuticals provide an opportunity to obtain a wide variety of health benefits 

from bioactive compounds. 

Type 2 diabetes mellitus (T2DM) is considered to be the “epidemic of the 21st 

century” and, consequently, is one of the main challenges in drug discovery today. 

T2DM is a multifactorial disease that is characterized by insulin resistance associated 

not only with hyperinsulinaemia and hyperglycemia but also with artherosclerosis, 

hypertension and an abnormal lipid profile. While current T2DM therapies that 

increase insulin secretion have been shown to have therapeutically beneficial effects, 

these often suffer from undesirable side effects, such as hypoglycemia and weight 

gain. Thus, there is a substantial unmet medical need for better drugs to treat T2DM. 

In recent years, computer-aided drug design (CADD) methodologies have contributed 

significantly to the discovery and/or optimization of many clinically used drugs. Drug 

discovery and development is a time-consuming and expensive process. CADD helps 

scientists focus on the most promising compounds so that they can minimize the 

synthetic and biological testing efforts. Natural products have played an important role 

in pharmaceutical research, not only from the point of view of the discovery of active 

principles, but also in the research of substances that could be used as lead compounds 

during the development of new drugs. Thus, their potential use in the development of 

new functional foods for specific population sectors is very promising. Unfortunately, 

the identification of novel bioactivities for natural extracts via in vitro or in vivo 

approaches is a complex and expensive process. Thus, virtual screening workflows 

may play an essential role in significantly lowering the research and development 

expenses associated with this identification. 

This doctoral thesis has been developed in the Chemoinformatics Unit of the 

Nutrigenomic Research Group of the Biochemistry and Biotechnology Department of 

the „Rovira i Virgili‟ University of Tarragona. The research interests of this unit are to 

study the bioactivity of new potential ingredients for functional food design and to 

describe the mechanisms of action for these new bioactive compounds in order to 

prevent/reduce the metabolic risk factors associated with metabolic syndromes. In 

particular, this thesis focuses on the identification of new natural compounds as 

antidiabetic drugs. Nuclear receptor peroxisome proliferator-activating receptor γ 

(PPARγ) and the enzyme inhibitor dipeptidyl peptidase-IV (DPP-IV) have been shown 

to be appropriate targets for antidiabetic drugs, and targeting them appears to have 

good prospects for a successful therapeutic approach for treating T2DM. 
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Our specific objectives were:  

1. to contribute to the knowledge of the structural-activity relationships of 

PPARγ full agonists 

To achieve this objective, it will be necessary to develop and validate two 3D-

QSAR models that correlate the structures of known PPARγ full agonists with 

their binding affinities and transactivation activities. 

2. to explore the different binding features of full and partial PPARγ agonists 

This will be necessary to predict molecules that could act as PPARγ partial 

agonists but not as PPARγ full agonists.  

3. to develop and validate a virtual screening (VS) workflow to predict 

natural molecules that can act as PPARγ partial agonists 

The predicted molecules will be candidates for use in functional foods or will 

be lead-hopping candidates for the design of new antidiabetic compounds with 

fewer side effects than PPARγ full agonists. 

4. to select some of the natural molecules that are predicted to be PPARγ 

partial agonists and to validate their bioactivities in vitro 

The clustering of the VS hits with known PPARγ partial agonists will allow for 

the selection of new chemical scaffolds that are unlike the known PPARγ 

partial agonists and the validation of their bioactivity in vitro.  

5. to identify some natural extracts with known antidiabetic activity that 

contain at least one molecule that we predict to be a PPARγ partial agonist 

The application of the previously developed VS workflow to a natural product 

database that contains the natural source(s) of each molecule and the 

identification of which VS hits are present in extracts with known antidiabetic 

activity will allow for the achievement of this objective.  

6. to develop and validate a VS workflow to predict natural molecules that 

can act as DPP-IV inhibitors 

The predicted molecules will be used as lead compounds in drug-design 

projects or in functional foods with antidiabetic properties.  

7. to select some natural molecules that are predicted to be DPP-IV inhibitors 

and to validate their bioactivities in vitro 

These molecules will allow us to verify the reliability of our prediction using an 

in vitro test of the inhibitory effect of some of the selected VS hits on DPP-IV. 
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8. to identify some natural extracts with known antidiabetic activity that 

contain at least one molecule that we predict to be a DPP-IV inhibitor 

The application of the previously developed VS workflow to a natural product 

database that contains the natural source(s) of each molecule and the 

identification of which VS hits are present in extracts with known antidiabetic 

activity will allow us to achieve this objective. 
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CHAPTER 1 

DEVELOPMENT OF DOCKING-BASED 3D-QSAR MODELS FOR 

PPARγ FULL AGONISTS 

 

ABSTRACT 

Peroxisome proliferator-activated receptor gamma (PPARγ) has become an 

attractive molecular target for drugs that aim to treat diabetes mellitus type II, and its 

therapeutic potency against skin cancer and other skin diseases is also currently being 

explored. To study the relationship between the structure of several PPARγ full 

agonists and the trans-activation activity of PPARγ, we have performed a three-

dimensional quantitative structure-activity relationship (3D-QSAR) study of tyrosine-

based derivatives, based on the 3D alignment of conformations obtained by docking. 

Highly predictive 3D-QSAR models, with Pearson-R values of 0.86 and 0.90, were 

obtained for the transactivation activity and binding affinity of PPARγ, respectively. 

These models are in good agreement with the structural characteristics of the binding 

pocket of PPARγ. These results may be useful for the prediction of the trans-activation 

activities of new PPARγ full agonists, and they may also help derive insights to 

improve the bioactivities of the currently known PPARγ agonists. 
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Introduction 

Peroxisome proliferator-activated receptors (PPAR) are fatty acid-activated 

transcription factors that belong to the nuclear hormone receptor family [1,2]. Three 

PPAR isotypes, PPARα, PPARβ/δ and PPARγ, have previously been identified. Each 

of these subtypes appears to be differentiated in a tissue-specific manner and plays a 

pivotal role in glucose and lipid homeostasis [3,4]. PPARγ constitutes a primary target 

for the development of drug candidates for the treatment of type II diabetes. 

Thiazolidinediones (TZDs) represent the first known PPARγ agonists used as oral 

antidiabetic agents [4,5]. In addition, several studies have suggested that oral PPARγ 

full agonists not only exert an antidiabetic effect but also may act as a promising 

therapeutic target for a broad variety of skin disorders, including inflammatory skin 

diseases, such as psoriasis and atopic dermatitis, melanoma and other skin 

malignancies [6-9]. Furthermore, PPARγ full agonists may even induce cell growth 

arrest, apoptosis and terminal differentiation in various human malignant tumors [7]. 

There are several synthetic PPARγ full agonists besides TZDs with high potency and 

selectivity [10-14]. 

Over the past decade, a number of protein structures of the PPARγ ligand-binding 

domain (LBD), co-crystallized with ligands or in the apo-form, have been resolved by 

X-ray crystallography [4,15]. The binding pocket of PPARγ is very large and has a Y-

shaped form, consisting of an entrance (arm III) that branches off into two pockets 

[16]. Arm I is extended toward H12, and arm II is situated between helix H3 and a β-

sheet [16]. Arm I is the only substantially polar cavity of the PPARγ LBD, whereas 

arms II and III are mainly hydrophobic. To show biological activity, only two arms 

need to interact with the ligand; therefore, PPARγ full agonists occupy arms I and II 

[17]. 

It is expected that the use of quantitative structure-activity relationship (QSAR) 

approaches could correlate the observed biological activities with structural changes of 

the ligands [18]. A number of QSAR studies on PPARγ agonists have been performed 

[19-21], some of which have been applied to TZD sets [22,23] and others have been 

performed with non-TZD sets such as tyrosine-based structures [19-21]. Although 

some 3D-QSAR studies of non-TZDs have been reported, none of them have used 

molecular docking to align the molecules and generate the 3D-QSAR model. In 

addition, none of them have analyzed, in parallel, the binding affinity and 

transactivation activity of the compounds analyzed. The present study aims to expand 

the knowledge of structure-activity relationships of PPARγ full agonists by using 

tyrosine-based derivatives for developing two 3D-QSAR models that: a) correlate the 

binding affinity and transactivation activity with the structures of the agonists used to 

develop the models; and b) are able to predict the pIC50 and pEC50 of a set of other 
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PPARγ full agonists not used during the development of the models. The resulting 

models also provide some structural insights for the improvement of PPARγ full 

agonist bioactivities. 

Materials and Methods 

Datasets. A dataset of 49 tyrosine-based compounds with measured pKi (i.e., 

binding affinity) and pEC50 (i.e., transactivation activity) values obtained from the 

same laboratory [10-12] was used to generate two 3D-QSAR models (see Supporting 

Information Table 1 and Figure 1A). The chemical structures of these 49 compounds 

are unequivocally known (i.e., there are either no chiral atoms in their structure or the 

chirality of the molecules is defined), their pEC50 and pKi values span six and five 

orders of magnitude, respectively, and each order of magnitude is represented by 

several compounds. Of the 49 molecules, 25 were randomly assigned to the training 

set, whereas the remaining 24 molecules were assigned to the test set. An additional 

set of 6 thiazolidinediones [10] and 68 indanyacetic acid derivates (for which only 

pEC50 values were available) [14] were used as an external validation set (see 

Supporting Information Tables 2 and 3, Figure 1B and 1C).  

 

Figure 1. Schematic representation of the common parts of PPARγ full agonists. 
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All compound structures were built with ChemDraw Ultra v11.0 (CambridgeSoft 

Corporation, Cambrigde, MA, USA; http://www.cambridgesoft.com), and their 3D 

structures were further minimized with the LigPrep v2.4 program (Schrödinger LLC., 

Portland, USA; http://www.schrodinger.com), using the OPLS_2005 force field at pH 

7.0 and the rest of the parameter values by default. 

Molecular Alignments. The most crucial step for a 3D-QSAR construction model 

is the alignment of the molecules. We chose a structure-based docking strategy that 

was carried out using the poses predicted by docking using the Glide v5.6 program 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com). The 49 tyrosine-

based PPARγ full agonists were docked within the binding site of the 1FM9 structure 

(see Figure 2). Meanwhile the 6 thiazolidinediones and the 68 indanyacetic acid 

derivates used as an external set were docked within the binding sites of the 1FM6 and 

2F4B structures, respectively. The binding site was defined using the Receptor Grid 

Generation panel with the default options. Standard-precision (SP) docking was 

selected for screening the ligands. We selected the flexible docking mode, in which the 

Glide program generates conformations internally during the docking process. We did 

not request any constraint for docking. Each docking run generated at most twenty 

poses per ligand that survived the post-docking minimization process. The GlideScore 

was used as a function of fitness. The best scoring pose was selected for each ligand 

and used as an input structure for the subsequent 3D-QSAR analysis. 

 

Figure 2. Structural alignment of the selected docking poses of the 49 tyrosine-based PPARγ 

full agonists used to develop the 3D-QSAR models. 

Generation of the 3D-QSAR models. The selected conformations of the ligands, 

obtained with the previously described alignment protocol, were used for the 

generation of two 3D-QSAR models, one for pIC50 and the other for pEC50. The Phase 

v3.2 program (Schrödinger LLC., Portland, USA; http://www.schrodinger.com) was 
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utilized to carry out the calculations using the Atom-Based QSAR panel. In atom-based 

QSAR, a molecule is treated as a set of overlapping van der Waals spheres. To encode 

the basic characteristics of the local chemical structure, each atom (and hence each 

sphere) is placed into one of six categories according to a simple set of rules: a) 

hydrogens attached to polar atoms are classified as hydrogen bond donors (D); b) 

carbons, halogens and C–H hydrogens are classified as hydrophobic/non-polar (H); c) 

atoms with an explicit negative ionic charge are classified as negative ionic (N); d) 

atoms with an explicit positive ionic charge are classified as positive ionic (P); e) non-

ionic nitrogens and oxygens are classified as electron-withdrawing (W); and f) all 

other types of atoms are classified as miscellaneous (X) [24]. The QSAR model 

partitions the space occupied by the ligands into a cubic grid. Any structural 

component can occupy part of one or more cubes. The cube size that was selected was 

1Å. The independent variables in the regression are given by the binary-valued 

occupancies (“bits”) of the cubes (by structural components), while the dependent 

variables are the transactivation activity or the binding affinity. The regression is 

performed by constructing a series of models with an increasing number of partial 

least square (PLS) factors. The accuracy of the models increases when the number of 

PLS factors increases, until over-fitting begins to occur.  

Statistical validations of the QSAR models. The performance of the QSAR 

models was evaluated by measuring the accuracy of the predictions. The statistical 

parameters that were used to evaluate the predictions for the training set were as 

follows: a) the coefficient of determination (R²); b) the standard deviation of 

regression (SD); c) the F statistic that measures the overall significance of the model; 

d) the statistical significance (P) that measures the probability that the correlation 

could occur by chance; and e) a stability value that has a maximum value of 1 and 

measures the stability of the model predictions to changes in the training set 

composition. The parameters used to evaluate the predictions for the test set were as 

follows: a) the Q² (i.e., the equivalent of the R² for the test set); b) the root-mean-

square error (RMSE); and c) the Pearson correlation coefficient (r). 

Results and discussion 

Datasets. Although different SAR studies of PPARγ full agonists have been 

reported, we only selected the studies that contain compounds with a wide range of 

both transactivation and binding activity values. The dataset that we selected contained 

49 tyrosine-based PPARγ full agonists [10-12], and Figure 3 shows the correlation 

(R
2
=0.6448) between the experimental transactivation activity (pEC50) and the 

experimental binding activity (pIC50) of these 49 tyrosine-based PPARγ full agonists. 

A relationship between the two variables is expected, because when the binding 

affinity increases, the AF-2 domain will be better stabilized, thus increasing the 

transactivation activity of PPARγ. However, some compounds, such as the compounds 
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3, 4, 6 and 21_2, are slightly away from the line of best fit of Figure 3. Because not all 

the molecular interactions between PPARγ agonists and PPARγ contribute to the 

stabilization of the AF-2 domain and to the trans-activation activity, there are different 

profiles of binding, such as those presented by partial agonists [17]. For this reason, it 

is interesting to study in more detail the structural differences between the features of 

PPARγ full agonists used for binding and those needed to activate the trans-activation 

activity of PPARγ. To do so, two 3D-QSAR models, one for the binding affinity and 

the other for the trans-activation activity were developed and compared. 

 

Figure 3. Correlation between the experimental transactivation activity and the experimental 

binding activity of the 49 tyrosine-based PPARγ full agonists used for the construction of the 

3D-QSAR models. 

Molecular Alignment. A structure-based docking strategy was adopted for 

aligning the 49 tyrosine-based PPARγ full agonists analyzed. This set of PPARγ full 

agonists follows a common structural pattern (see Figure 1) that consists of a three-

module structure, comprising an acidic head linked to an aromatic center and a 

hydrophobic tail. The 49 molecules were docked into the crystal structure of PPARγ, 

and the highest scoring pose was selected for each of the molecules. These selected 

poses are predicted to be the most stable conformation of each molecule for binding to 

the PPARγ active site. All of the selected poses of the 49 analyzed molecules were 

visually inspected to demonstrate that they were able to establish the molecular 

interactions that can establish other PPARγ full agonists. These interactions include 

several hydrogen bonds with residues Ser289, His323, His449 and Tyr473 from arm I 
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of the LBD of PPARγ, and several hydrophobic interactions with residues Phe360 and 

Ile456 from arm I and Ile281, Leu330, Ile341, Leu353 and Met364 from arm II of the 

LBD of PPARγ [17] (Figure 4). Figure 2 represents the final alignment of this dataset. 

The chemical similarity between the compounds analyzed, their excellent alignment 

and the evidence that they can interact with the LBD of PPARγ similarly to other 

PPARγ full agonists, ensuring that a 3D-QSAR model can be obtained from all the 

selected compounds. 

 

Figure 4. The main interactions between PPARγ full agonists (farglitazar colored in green, 

rosiglitazone colored in pink and 2F4B ligand colored in yellow) and the LBD of PPARγ. The 

acidic head of the ligands is involved in a hydrogen bond network with residues of arm I (i.e., 

Ser289, His323, His449 and Tyr473) whereas the remaining residues make hydrophobic 

interactions. Hydrogen bonds of the carboxylic acid from farglitazar are shown by dashed green 

lines. 

3D-QSAR Models. The aligned compounds were used to generate two 3D-QSAR 

models, one for analyzing the binding affinity between the ligands and PPARγ 

(namely the pIC50 model) and the other for analyzing the transactivation activity of 

PPARγ (namely the pEC50 model). Table 1 and Figure 5 show the statistic of the 

constructed 3D-QSAR models. In both models, to avoid an over-fitting effect, two 

PLS factors were chosen. The Pearson correlation coefficient of the pEC50 model was 

0.8625 with an R² of 0.9049 for the training set and a Q² of 0.6966 for the test set. For 

the pIC50 model, the Pearson correlation coefficient was 0.9035 with an R² of 0.9223 

for the training set and a Q² of 0.6385 for the test set.  
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Table 1. Statistics of the best 3D-QSAR models for analyzing the transactivation activity of 

PPARγ (pEC50 model) and the binding affinity (pIC50 model) derived from an 50% randomly 

selected training set. To avoid an over-fitting effect, two factor models (marked in bold) were 

chosen. 

Model # SD R² F P Stability RMSE Q² PearsonR 

pEC50 

 

1 0.92 0.63 39.0 2.28e-06 0.726 0.91 0.59 0.8381 

2 0.47 0.90 104.6 5.78e-12 0.240 0.78 0.70 0.8625 

3 0.27 0.97 233.6 2.77e-16 0.161 0.84 0.68 0.8383 

4 0.17 0.99 434.3 3.97e-19 0.082 0.90 0.59 0.8042 

5 0.11 0.99 818.0 1.73e-21 0.063 0.91 0.59 0.7982 

pIC50 

 

1 0.56 0.63 39.0 2.28e-06 0.723 0.74 0.53 0.9078 

2 0.26 0.92 130.6 6.2e-13 0.164 0.65 0.64 0.9035 

3 0.12 0.99 471.8 2.03e-19 0.070 0.66 0.63 0.8998 

4 0.07 0.99 1023.8 8.05e-23 0.082 0.69 0.58 0.8834 

5 0.04 0.99 2249.6 1.2e-25 0.086 0.71 0.57 0.8721 

 

Figure 5. Scatter plots of the (A) pEC50 and (B) pIC50 models applied to the training set 

(colored in gray) and the test set (colored in black). 

Table 2 shows the accuracy of the two models in predicting the transactivation 

activity and binding affinity of the training and test sets. The predictions of different 

activities have been classified according to the following residual scale (i.e., residual is 

computed as the difference between the experimental activity and the estimated 

activity): residuals lower than 0.8 are considered good predictions; residuals between 

0.8 and 1.6 are considered weak predictions and residuals higher than 1.6 are 

considered poor predictions. The predictions were good for the majority of the training 

molecules of both models. The predictions for the molecules from the test set are also 

good for most cases. Only 5 (i.e., the compounds 5_2, 9, 20, 22_2, 24_2 and 6_2) and 

4 (i.e., the compounds 3, 4, 28_2 and ent-18) out of 22 compounds have a weak 

prediction and only one compound for each model (i.e., compound 11_2 for the 
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transactivation model and compound 5 for the binding model) displayed a poor 

prediction. All these values indicate a reasonably good correlation between the 

predicted and experimental activities and validate the use of both models. 

Table 2. Experimental and predicted values of the transactivation activity (pEC50) and binding 

affinity (pIC50) of the 49 tyrosine-based molecules used for the construction of the 3D-QSAR 

models. Residuals lower than 0.8 are considered good predictions; residuals between 0.8 and 1.6 

are considered weak predictions (marked with an asterisk) and residual higher than 1.6 are 

considered bad predictions (marked with two asterisks). 

Ligands Sets 

Transactivation activity Binding affinity 

Experimental 

Activity 

Predicted 

Activity 
Residual 

Experimental 

Activity 

Predicted 

Activity 
Residual 

2 training 6.64 7.02 -0.38 7.93 7.99 -0.06 

15 training 6.21 6.06 0.15 7.29 7.2 0.09 

18 training 8.04 7.41 0.63 8.85 8.47 0.38 

30 training 6.07 6.26 -0.19 6.79 6.81 -0.02 

13_2 training 8.98 8.35 0.63 8.72 8.38 0.34 

14_2 training 9.61 9.83 -0.22 9.07 9.29 -0.22 

15_2 training 8.82 8.54 0.28 9.05 9.18 -0.13 

16_2 training 8.74 8.97 -0.23 8.85 9.12 -0.27 

18_2 training 5.91 6.46 -0.55 7.56 7.9 -0.34 

19_2 training 5.52 5.39 0.13 7.91 7.72 0.19 

20_2 training 7.51 7.29 0.22 8.59 8.41 0.18 

21_2 training 7.29 7.29 0 6.77 7.2 -0.43 

23_2 training 6.93 7.56 -0.63 8.36 8.72 -0.36 

36_3 training 8.54 8.58 -0.04 8.39 8.33 0.06 

4_2 training 10 10.33 -0.33 8.96 9.31 -0.35 

49_2 training 6.98 6.39 0.59 8.03 7.73 0.3 

5_2 training 6.42 7.62 -1.2 * 8.59 8.65 -0.06 

58_3 training 8.83 8.29 0.54 9.03 8.62 0.41 

59_3 training 9.04 8.89 0.15 8.74 8.64 0.1 

63_3 training 9.15 9.11 0.04 8.43 8.48 -0.05 

65_3 training 9.52 9.06 0.46 8.62 8.57 0.05 

66_3 training 9.24 8.82 0.42 9.01 8.66 0.35 

7_2 training 8.03 8.11 -0.08 9.16 9.02 0.14 

70_2 training 6.57 7.17 -0.6 7.71 7.92 -0.21 

ent-2 training 4.66 4.44 0.22 5.5 5.58 -0.08 

3 test 6.31 6.45 -0.14 5.88 7.22 -1.34 * 

4 test 6.16 6.09 0.07 6.12 7 -0.88 * 

6 test 5.6 6.15 -0.55 5.5 7.14 -1.64 ** 

9 test 4.78 5.94 -1.16 * 6.79 7.3 -0.51 

16 test 7.3 7.73 -0.43 8.19 8.33 -0.14 

20 test 9.47 8.09 1.38 * 8.94 8.43 0.51 

10_2 test 7.91 8.17 -0.26 8.32 8.76 -0.44 

11_2 test 9.9 8.06 1.84 ** 8.8 8.17 0.63 

12_2 test 9.22 8.53 0.69 8.96 8.51 0.45 

17_2 test 8.68 8.46 0.22 9.06 8.92 0.14 
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22_2 test 8.74 7.43 1.31 * 9.11 8.44 0.67 

24_2 test 8.89 7.97 0.92 * 8.66 8.6 0.06 

25_2 test 8.62 7.93 0.69 9.01 8.66 0.35 

26_2 test 7.63 7.95 -0.32 8.58 8.81 -0.23 

28_2 test 6.62 6.76 -0.14 6.98 7.86 -0.88 * 

29_2 test 5.96 6.21 -0.25 7.41 7.67 -0.26 

56_3 test 9.55 9.01 0.54 8.79 8.81 -0.02 

57_2 test 6.49 7.01 -0.52 7.73 8.16 -0.43 

6_2 test 7.09 8.43 -1.34 * 8.7 8.38 0.32 

64_3 test 9.04 8.97 0.07 8.52 8.52 0 

76_2 test 6.72 7.4 -0.68 7.94 8.42 -0.48 

8_2 test 8.97 8.73 0.24 8.75 9 -0.25 

9_2 test 8.43 7.96 0.47 8.9 8.63 0.27 

ent-18 test 6.41 7.11 -0.7 6.98 8.13 -1.15 * 

Table 3. Experimental and predicted values of the transactivation activity (pEC50) and binding 

affinity (pIC50) of the 6 thiazolidinediones used as an external set to validate the models. 

Residuals lower than 0.8 are considered good prediction; residuals between 0.8 and 1.6 are 

considered weak predictions (marked with an asterisk) and residual higher than 1.6 are 

considered bad predictions (marked with two asterisks). 

Ligands 

Transactivation activity Binding affinity 

Experimental 

Activity 

Predicted 

Activity 

Residual Experimental 

Activity 

Predicted 

Activity 

Residual 

2_ciglitazone 4.64 6.58   1.94 ** 5.51 7.14   1.63 ** 

2_pioglitazone 6.23 7.42  1.19 * 5.91 7.60   1.69 ** 

2_troglitazone 6.27 6.82 0.55 6.52 7.26 0.74 

2_rosiglitazone 7.05 7.48 0.43 7.33 7.86 0.53 

2_BRL48482 7.95 7.92 -0.03 7.57 7.87 0.30 

2_AD7057 8.5 8.27 -0.23 8.37 7.93 -0.44 

For a practical assessment of the study, the predictability of the 3D-QSAR models 

was evaluated using two external test sets of 6 thiazolidinediones [10] and 68 

indanyacetic acid derivates [14]. The results of the predictions of the two external sets 

are shown in Tables 3 and 4. In general, the predictions are good, although the models 

over-predict the values of the molecules that have the lowest experimental values. This 

is most likely due to the fact that the test and training sets do not contain molecules 

with experimental values in these ranks of activity. Other than this limitation, our 

models can reasonably predict the order of the activity, i.e., the predicted activity of 

the molecules with the lowest experimental activities tend to be lower than the 

predicted activity of molecules with higher experimental values. This point is relevant 

because when the 3D-QSAR model is applied to the results of a virtual screening, it is 

more important to know which compounds have the highest activity values rather than 

knowing the exact activity value for each compound. Therefore, these results are very 
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encouraging in view of future applications of the study aimed at a) the priorization of 

analogues of active ligands resulting from virtual screening and b) the optimization of 

known PPARγ full agonists. 

Table 4. Experimental and predicted values of the transactivation activity (pEC50) of the 68 

indanyacetic acid derivates used as an external set to validate the transactivation model. 

Residuals lower than 0.8 are considered good predictions; residuals between 0.8 and 1.6 are 

considered weak predictions (marked with an asterisk) and residual higher than 1.6 are 

considered bad predictions (marked with two asterisks).  

Ligands 

Transactivation activity 

Ligands 

Transactivation activity 

Exp. 

Activity 

Pred. 

Activity 
Residual 

Exp. 

Activity 

Pred. 

Activity 
Residual 

10_17a 5.00 6.56  1.56 ** 10_34u 6.32 7.06 0.74 

10_17j 5.00 6.51  1.51 ** 10_34b 6.43 6.89 0.46 

10_17w 5.06 6.80   1.74 ** 10_34an 6.44 6.96 0.52 

10_17i 5.10 6.43  1.33 * 10_34i 6.49 6.80 0.31 

10_17b 5.21 6.65   1.44 ** 10_17n 6.52 6.71 0.19 

10_17v 5.25 6.98   1.73 ** 10_29g 6.52 6.98 0.46 

10_17c 5.25 6.71   1.45 ** 10_34ae 6.52 6.75 0.23 

10_29b 5.39 6.65   1.26 * 10_34o 6.53 7.18 0.65 

10_17e 5.52 6.50   0.98 * 10_34j 6.55 7.00 0.44 

10_17l 5.66 6.56   0.90 * 10_34aa 6.62 7.72   1.10 * 

10_29i 5.74 6.56   0.82 * 10_34t 6.67 7.10 0.43 

10_17q 5.78 6.71   0.93 * 10_34s 6.74 7.09 0.35 

10_17r 5.78 6.79   1.01 * 10_34am 6.75 7.24 0.49 

10_17m 5.82 6.34 0.52 10_17x 6.80 6.93 0.13 

10_17t 5.91 6.96   1.05 * 10_34n 6.94 7.56 0.62 

10_34l 5.92 7.00   1.08 * 10_34m 7.03 7.66 0.64 

10_17d 5.99 6.97   0.98 * 10_34q 7.08 7.42 0.34 

10_34ab 6.00 6.76 0.76 10_34af 7.16 7.13 -0.03 

10_29f 6.01 6.73 0.71 10_34f 7.19 6.80 -0.39 

10_34c 6.02 7.37   1.35 * 10_34h 7.26 7.25 -0.01 

10_17f 6.03 7.11   1.08 * 10_34w 7.31 6.94 -0.37 

10_34ai 6.04 7.19   1.15 * 10_34a 7.32 6.80 -0.52 

10_34ac 6.05 7.37   1.32 * 10_34aj 7.35 7.16 -0.19 

10_34d 6.06 7.37   1.31 * 10_34e 7.35 7.13 -0.22 

10_34ag 6.12 6.94   0.81 * 10_34ak 7.36 7.74 0.39 

10_29c 6.13 7.21   1.08 * 10_34r 7.38 7.24 -0.14 

10_17s 6.15 6.48 0.32 10_34ah 7.39 7.13 -0.26 

10_29a 6.19 6.79 0.61 10_34al 7.47 7.41 -0.05 

10_17g 6.20 6.43 0.24 10_34k 7.48 7.52 0.04 

10_17o 6.24 6.54 0.30 10_34ad 7.57 7.22 -0.35 

10_17u 6.26 6.67 0.41 10_34x 7.70 7.35 -0.35 

10_29d 6.26 6.85 0.59 10_34g 7.74 7.41 -0.34 

10_29h 6.26 6.90 0.64 10_34v 7.77 7.06   -0.71 * 

10_29e 6.31 6.90 0.58 10_34p 7.92 7.26 -0.66 
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Figures 6 shows the representation of the 3D-QSAR models. In these types of 

figures, the cubes that represent the model are displayed and colored according to the 

sign of their coefficient values. Blue and red cubes are usedfor positive and negative 

coefficients, respectively, and indicate regions that increase or decrease the analyzed 

parameter. One of the advantages of using these representations is that the position of 

the cubes in the 3D-QSAR model can be compared with the positions of the amino 

acid residues in the active site. This might provide insight into which functional 

groups are desirable or undesirable at certain positions of a molecule. Figure 6A shows 

the favorable and unfavorable regions for the transactivation activity. The favorable 

region for transactivation is mainly located in regions that interact with arm II of the 

LBD of PPARγ. The contribution of this region is mainly hydrophobic with some 

contribution of electron-withdraw (results not shown). This region corresponds to the 

effector part of PPARγ full agonists and is the most variable region in the molecules 

analyzed (see Figure 1). Although this region is far away from Tyr473 and H12, it 

explains the differences in affinity and potency between very similar glitazones; i.e., 

the larger the effector module, more hydrophobic interactions will occur with arm II of 

the LBD of PPARγ, thus stabilizing better the PPARγ-ligand complex. Figures 6C and 

6E display the cubes of the 3D-QSAR model grid that are occupied by two of the 

compounds analyzed. These representations show which parts of the ligand have a 

positive or negative contribution to the parameter analyzed, which is, in this case, the 

transactivation activity. Figure 6C shows the 4_2 compound, which has one of the 

highest transactivation activities in this series (pEC50=10). Our 3D-QSAR model 

explains the high transactivation activity of this compound because it provides a 

heterocyclic and a phenyl ring at the effector module. In comparison, the compound 

from our ligand dataset with the lowest transactivation activity (i.e., ent-2 with 

pEC50=4.66 in Figure 6E) only interact with arm II through one phenyl ring. 

Moreover, this compound has a (R)-configuration, and it is known that compounds 

with an (S)-configuration, derived from naturally occurring L-tyrosine, are more active 

as PPARγ full agonists [10]. 

Figures 6B, 6D and 6F show a representation of the binding model. In this model, 

the binding affinity of PPARγ is the analyzed variable. Figure 6B shows the favorable 

and unfavorable regions for binding. The favorable region is again located at arm II, 

and the main contribution to the binding affinity of PPARγ is also caused by 

hydrophobic interactions (results not shown). The unfavorable regions are located at 

arm I and at the beginning of arm II. Regarding the first unfavorable region, it 

occupies the place of one internal hydrogen bond in the 2-aminobenzophenone moiety. 

Therefore, the presence of some hydrophobic residues at this position will not allow 

the formation of this internal interaction. The second unfavorable region is due to 

steric clashes with residues Arg288, Leu330 and Ile341. Figures 6D and 6F show the 

3D-QSAR models represented only by the cubic volume elements that are occupied by 

one of the compounds with the highest (i.e., the 7_2 compound with a pIC50 of 9.16) 
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and lowest (i.e., the ent-2 compound with a pIC50 of 5.5) binding affinities, 

respectively. The 7_2 compound fits the blue areas of the 3D-QSAR model perfectly, 

as it can interact with the receptor through the favorable regions at arm II (see Figure 

6D). However, the ent-2 compound does not occupy all of arm II (see Figure 6F), and 

it is not able to make the favorable interactions shown as blue cubes in Figure 6. 

 

Figure 6. Representation of the pEC50 (A) and the pIC50 (B) models. Blue and red cubes 

indicate, respectively, regions that are favorable and unfavorable for the transactivation activity 

or binding affinity to the LBD of PPARγ. Panels (C) and (E) show the cubic volume elements 

that are occupied by one of the compounds of the series with the highest (i.e., 4_2) and the 

lowest (i.e., ent-2) transactivation activity, respectively. Panels (D) and (F) show the cubic 

volume elements that are occupied by one of the compounds of the series with the highest (i.e., 

7_2) and the lowest (i.e., ent-2) binding affinity, respectively. All panels are presented in the 

same relative orientation in order to allow for an easier comparison.  
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Conclusion 

In this work, a structure-based docking strategy was used for aligning the 

molecules, and highly predictive 3D-QSAR transactivation and binding models were 

developed for PPARγ full agonists. These models match well with the known features 

of the different parts of the PPARγ binding site and show that the binding portion of 

the PPARγ agonists is essential for the transactivation activity of PPARγ. The 

hydrophobic interactions between the effector portion and the receptor are also 

important for increasing the transactivation activity of PPARγ. 
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Supporting Information 

Table S1. Smiles of the 49 tyrosine-based compounds used to generate the 3D-QSAR 

models 

Title Smile 

2 c1ccccc1C(=O)\C=C(\C)N[C@H](C([O-])=O)Cc2ccc(cc2)OCc3ccccc3 

3 c1ccccc1C(=O)\C=C(\C)N[C@H](C(=O)N)Cc2ccc(cc2)OCc3ccccc3 

4 c1ccccc1C(=O)\C=C(\C)N[C@H](C(=O)OC)Cc2ccc(cc2)OCc3ccccc3 

4_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)-c5ccccc5 

5_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)nc([nH]4)-c5ccccc5 

6 [O-]C(=O)[C@@H]([NH3+])Cc1ccc(cc1)OCc2ccccc2 

6_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)nc(n4COC)-c5ccccc5 

7_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc(n4)n(C)cc4-c5ccccc5 

8_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCn4nc(cc4C)-c5ccccc5 

9 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCc4ccccc4 

9_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4cc(C)n(n4)-c5ccccc5 

10_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCn4nc(nc4C)-c5ccccc5 

11_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccc(F)cc5 

12_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccc(cc5)OC 

13_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c(c5C)scc5 

14_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c(s5)ccc5C 

15 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCC4(C)CCCCC4 

15_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)-c(no5)cc5C 

16 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCc(nc4)ccc4CC 

16_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccncc5 

17_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)-c5ccncc5 

18 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCN(C)c4cccc[nH+]4 

18_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N(C)C 

19_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)NCCC[NH+](C)C 

20 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccccc5 

20_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)NCCOC 

21_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)N5CCCCC5 

22_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N5CCOCC5 

23_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N5CC[NH2+]CC5 

24_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N5CC[NH+](C)CC5 

25_2 
c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N(CC5)CCN5C(=O) 

OC(C)(C)C 

26_2 
c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)sc(n4)N5CCN(CC5)[S@@] 

(=O)OC 

28_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCc(cc4)ccc4C(C)C 

29_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCc4ccc(Cl)cc4 

30 c1ccccc1C(=N/N)\c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCN(C)c4cccnc4 

36_3 C1CCCCC1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 
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49_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4ccc(Cl)cc4 

56_3 C1CCCCC1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccccc5 

57_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)ncs4 

58_3 c1ncccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccccc5 

59_3 c1cnccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCc4c(C)oc(n4)-c5ccccc5 

63_3 COC(=O)c1c(cccc1)N[C@H](C([O-])=O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

64_3 CCOC(=O)c1c(cccc1)N[C@H](C([O-])=O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

65_3 CCCOC(=O)c1c(cccc1)N[C@H](C([O-])=O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

66_3 CC(C)OC(=O)c1c(cccc1)N[C@H](C([O-])=O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

70_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCOc4ccc(Br)cc4 

76_2 c1ccccc1C(=O)c2c(cccc2)N[C@H](C([O-])=O)Cc3ccc(cc3)OCCSc4ccc(Cl)cc4 

ent-2 c1ccccc1C(=O)\C=C(\C)N[C@@H](C([O-])=O)Cc2ccc(cc2)OCc3ccccc3 

ent-18 c1ccccc1C(=O)c2c(cccc2)N[C@@H](C([O-])=O)Cc3ccc(cc3)OCCN(C)c4cccc[nH+]4 

 

Table S2. Smiles of the 6 thiazolidinediones used as an external validation set. 

Title Smile 

2_AD7057 c1ccccc1-c(n2)oc(C)c2CCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

2_BRL48482 c1cccc(c12)oc(n2)C[NH2+]CCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

2_ciglitazone N1C(=O)S[C@H](C1=O)Cc2ccc(cc2)OCC3(C)CCCCC3 

2_pioglitazone CCc1ccc(nc1)CCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

2_rosiglitazone c1cc[nH+]c(c1C)NCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

2_troglitazone N1C(=O)S[C@H](C1=O)Cc2ccc(cc2)OC[C@@](C)(CC3)Oc(c34)c(C)c(C)c(O)c4C 

 

Table S3. Smiles of the 68 indanyacetic acid derivates used as an external validation 

set. 

Title                                 Smile 

10_17a [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc3ccccc3 

10_17b [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3CC 

10_17c [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3C(F)(F)F 

10_17d [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3OC(F)(F)F 

10_17e [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc3ccc(cc3)OC 

10_17f [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc3ccc(cc3)OCC 

10_17g N#Cc1ccc(cc1)OCCCOc(cc2)cc(c23)CC[C@H]3CC([O-])=O 

10_17i [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3C)ccc3 

10_17j [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3)ccc(C)c3C 

10_17l [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3C)ccc(C)c3 

10_17m [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)cccc3 

10_17n [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(CCC)cc3C(F)(F)F 
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10_17o N#Cc1cc(CCC)c(cc1)OCCCOc(cc2)cc(c23)CC[C@H]3CC([O-])=O 

10_17q [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3C 

10_17r [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3CC 

10_17s N#Cc1cc(OC)c(cc1)OCCCOc(cc2)cc(c23)CC[C@H]3CC([O-])=O 

10_17t [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(cc3C)OCC 

10_17u [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-n4cncn4 

10_17v [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3NC(=O)C)ccc(c3)-n4ccnn4 

10_17w [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc3c(Cl)cc(cc3)-n4cnnc4 

10_17w [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc3c(Cl)cc(cc3)-n4cnnc4 

10_17x [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3C)ccc(c3)-c(sn4)nc4C(F)(F)F 

10_29a [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4ccsc4 

10_29b [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4ccoc4 

10_29c [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(cc4)cc(c45)[nH]cc5 

10_29d [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4cccnc4 

10_29e [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4c(OC)ccnc4 

10_29f [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4cncnc4 

10_29g [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c4c(OC)nc(nc4)OC 

10_29h [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)cccc4C 

10_29i [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(nc4)ccc4C(F)(F)F 

10_34a [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c4nccs4 

10_34aa [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(C)c4C([O-])=O 

10_34ab [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(s4)nc(C)c4C([O-])=O 

10_34ac [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(CO)c4C([O-])=O 

10_34ad [O-]C(=O)Cc1csc(n1)-c(c2)ccc(c2CCC)OCCCOc(cc3)cc(c34)CC[C@H]4CC([O-])=O 

10_34ae [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)scc4OC 

10_34af [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4OC 

10_34ag [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)scc4OCC 

10_34ah [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)scc4OCC 

10_34ai [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4OCC 

10_34aj [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)scc4OC(C)C 

10_34ak [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4OC(C)C 

10_34al [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(c4C)OCC 

10_34am [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(s4)nc(c4C)OCC 

10_34an [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(s4)nc(c4CC)OCC 

10_34b [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c4nccs4 

10_34c [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4C 

10_34d [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)scc4CC 

10_34e [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)scc4CC 

10_34f [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4CC 

10_34g CC(C)(C)c1csc(n1)-c(c2)ccc(c2CCC)OCCCOc(cc3)cc(c34)CC[C@@H]4C([O-])([O-])C 

10_34h [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)scc4C(F)(F)F 

10_34i [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)scc4C(F)(F)F 

10_34j [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)sc(C)c4C 
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10_34k [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)sc(C)c4C 

10_34l [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)sc(c45)CCC5 

10_34m [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)sc(c45)CCC5 

10_34n [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)sc(c45)CCC5 

10_34o [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)ccc3-c(n4)sc(c45)CCCC5 

10_34p [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(n4)sc(c45)CCCC5 

10_34q [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)sc(c45)CCCC5 

10_34r [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(c45)OCCC5 

10_34s [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(s4)nc(c45)OCCC5 

10_34t [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(cc3)c(OC)cc3-c(n4)sc(c45)cccc5 

10_34u CC(=O)c1c(C)nc(s1)-c2ccc(cc2)OCCCOc(cc3)cc(c34)CC[C@H]4CC([O-])=O 

10_34v [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(C)c4C(=O)C 

10_34w CC(=O)c1c(C)nc(s1)-c2cc(OC)c(cc2)OCCCOc(cc3)cc(c34)CC[C@H]4CC([O-])=O 

10_34x [O-]C(=O)C[C@@H]1CCc(c12)cc(cc2)OCCCOc(c3CCC)ccc(c3)-c(s4)nc(C)c4C(=O)N(C)C 
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ABSTRACT 

PPARγ full agonists are molecules with powerful insulin-sensitizing action that are 

used as antidiabetic drugs. Unfortunately, these compounds also present various side 

effects. Recent results suggest that effective PPARγ agonists should show a low 

transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. 

We use several structure activity relationship studies of synthetic PPARγ agonists to 

explore the different binding features of full and partial PPARγ agonists with the aim 

of differentiating the features needed for binding and those needed for the 

transactivation activity of PPARγ. Our results suggest that effective partial agonists 

should have a hydrophobic moiety and an acceptor site with an appropriate 

conformation to interact with arm II and establish a hydrogen bond with Ser342 or an 

equivalent residue at arm III. Despite the fact that interactions with arm I increase the 

binding affinity, this region should be avoided in order to not increase the 

transactivation activity of potential PPARγ partial agonists. 
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Introduction 

Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a ligand-activated 

transcription factor and a member of the nuclear receptor superfamily that plays an 

important role in adipogenesis and glucose homeostasis [1]. PPARγ is activated by 

polyunsaturated fatty acids and their metabolites. This transcription factor regulates 

the expression of adipocyte-specific genes [2]; its function is, therefore, essential to fat 

cell formation, and PPARγ full agonists stimulate triglyceride storage and the 

differentiation of preadipocytes into adipocytes [1]. Some PPARγ full agonists, such 

as thiazolidinediones (TZDs), also have a powerful insulin-sensitizing action  and are 

used as antidiabetic drugs [3]. Unfortunately, TZDs present various side effects, 

including weight gain, increased adipogenesis, renal fluid retention, bone fracture and 

increased incidence of cardiovascular events [4-6]. Other compounds with poor 

agonist activities for PPARγ, called PPARγ modulators or PPARγ partial agonists, 

retain very good antidiabetic effects without these undesired side effects [4]. 

Therefore, several partial agonists of PPARγ are being developed as new-antidiabetic 

drugs [6-8]. Analyses of a large number of crystallographic structures of the PPARγ 

ligand-binding domain (LBD) bound to an agonist have revealed that PPARγ has at 

least two binding modes in a single binding site. These two binding modes correspond 

to full and partial agonists [9]. The binding pocket of PPARγ has a Y-shaped form, 

consisting of an entrance (arm III) that branches off into two pockets. Arm I is 

extended toward H12, and arm II is situated between helix H3 and a β-sheet [10]. Arm 

I is the only substantially polar cavity of the PPARγ ligand-binding domain, whereas 

arms II and III are mainly hydrophobic [10]. Full agonists occupy arm I, making a net 

of hydrogen bonds with the side chains of Ser289, His323, His449 and Tyr473 [9, 11]. 

These interactions stabilize H12 and are responsible for the transactivation activity of 

PPARγ [9, 11]. In addition, full agonists also occupy arm II through a hydrophobic tail 

that is present in all ligands of this class [9, 11]. However, partial agonists interact 

mainly with arm III through a hydrogen bond with Ser342, but also with arm II 

through several hydrophobic interactions [12, 13]. This binding mode causes a lesser 

degree of H12 stabilization and an increase in the stabilization of H3 that affects the 

recruitment of coactivators and decreases the transactivation activity of PPARγ [7, 

14].  

However, the previous model does not explain why compounds with different 

PPARγ transactivation activities show the same insulin-sensitizing power. Recently, 

Choi and coworkers [15] revealed a new mechanism of action for the antidiabetic 

effect of some PPARγ agonists. This mechanism is completely independent of the 

classical PPARγ transactivation activity and relies instead on inhibition of the 

phosphorylation of PPARγ at Ser273, thereby preventing the unregulated expression 

of some genes, including adipsin (a fat-cell-selective gene, the expression of which is 
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altered in obesity) and adiponectin (an insulin-sensitizing adipokine) [15]. This 

alternative mechanism could clarify a long-standing paradox of why PPARγ activation 

by a wide range of ligands does not always correlate with the ligands' in vivo efficacy 

[16]. With this new knowledge, many research groups have had to accordingly shift 

their focus from their past drug discovery efforts on PPARγ, which were focused 

exclusively on potency and agonist activity. It is now necessary to develop effective 

and safe antidiabetic therapies that maximize the inhibition of PPARγ phosphorylation 

at Ser273 and reduce the side effects observed with current PPARγ drugs [8, 15]. It 

seems likely that at least some of the problematic side effects of PPARγ full agonists, 

such as weight gain or fluid retention, may occur through classical agonist action and 

that a substantial portion of the therapeutic benefits of full and partial PPARγ agonists 

occurs through the inhibition of the PPARγ phosphorylation at Ser273 [15]. Thus, an 

effective partial agonist of PPARγ would have a weak transactivation activity and high 

phosphorylation inhibitory activity on PPARγ at Ser273. This kind of compound 

would maintain its antidiabetic effects while reducing undesired side effects. Until 

researchers shift their focus to study the potency of the phosphorylation inhibitory 

activity at Ser273, binding affinity would be used instead to evaluate potential drug 

candidates. In this sense, the antidiabetic potency of PPARγ ligand drugs correlates 

very well with their binding affinities [17]. In the present study, after reviewing the 

binding features of full and partial agonists, we use several structure activity 

relationship (SAR) studies of synthetic PPARγ agonists to explore the different 

binding features of full and partial PPARγ agonists. Our goal was to differentiate the 

features needed for binding from those needed for the transactivation activity of 

PPARγ. Thus, our rationale consists of defining which interactions between the 

ligand-binding domain of PPARγ and its ligands increases the binding affinity without 

increasing the PPARγ transactivation activity. This information would allow us to 

predict the features that will produce optimal PPARγ agonists for use as antidiabetic 

drugs. 

Computational Methods 

Datasets. A dataset of 205 PPARγ agonists with measured IC50 values (i.e., 

binding affinity measured by the displacement of a radiolabeled full agonist) and 

transactivation activity was assembled from several SAR studies [18-29] (see Table 1). 

The IC50 (nM) values were then transformed to -log IC50 (pIC50) (see Supporting 

Information Table S1). The transactivation activities were expressed as the percentage 

of maximal activation relative to the full agonist rosiglitazone (% max activation) (see 

Supporting Information Table S2). All compounds were drawn with ChemDraw Ultra 

v11.0 (CambridgeSoft Corporation, Cambridge, MA, USA; 

http://www.cambridgesoft.com), and their 3D structures were minimized with the 

LigPrep v2.4 program (Schrödinger LLC., Portland, USA) using an OPLS_2005 force 

field at pH 7.0 with the rest of the parameters at default. 
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Table 1. Structure activity relationship (SAR) studies of the PPARγ agonists used in the current 

study. 

series cluster 

transactivation activity 

(% max. activation)
[a] binding affinity pIC50 

ref 

Nº. ligands activity range Nº. ligands activity range 

sar1 1 18 4 - 33 30 6.50 – 8.70 [18] 

sar2 2 11 20 - 51 13 7.77 – 9.00 [19] 

sar3 2 13 21 – 97 17 5.20 – 9.00 [20] 

sar4 2 8 19 - 33 11 6.96 – 9.00 [21] 

sar5 2 18 14 - 47 19 6.14 – 9.00 [22] 

sar6 3 - - 16 5.44 – 7.00 [23] 

sar7 1 - - 30 5.03 – 9.00 [24] 

sar8 4 12 26 - 65 11 4.91 – 8.10 [25] 

sar9 4 9 24 - 71 - - [26] 

sar10 4 10 30 - 92 - - [27] 

sar11 3 20 25 - 89 - - [28] 

sar12 5 17 19 - 93 - - [29] 

[a] % of maximal activation relative to the full agonist rosiglitazone.  

Clustering. A structural similarity analysis of all PPARγ agonists was performed 

using the Canvas v1.2 program (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com). For each compound, a set of MOLPRINT2D 

fingerprints was calculated using the default parameters. A similarity matrix, based on 

the Tanimoto similarities between each set of fingerprints, was calculated. In order to 

classify the compounds into several clusters, a Tanimoto cutoff of 0.8 was used. Seven 

groups of compounds were then obtained. Some of the groups were grouped together 

because the compounds they contained were chemically very similar, i.e. they 

contained the same core scaffold, obtaining at the end five different clusters of 

compounds. The compounds of each cluster represent therefore a group of very similar 

compounds, with an average Tanimoto coefficient of their MOLPRINT2D fingerprints 

greater than 0.8. The similarity matrix was also used as an input for the 

DendroUPGMA server (http://genomes.urv.es/UPGMA/) [30] to represent, as a 

dendrogram, the chemical similarities between molecules. 
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Pharmacophore construction. Energetically optimized, structure-based 

pharmacophores were constructed with the Glide v5.6 program (Schrödinger LLC., 

Portland, USA; http://www.schrodinger.com). This program accurately characterizes 

protein-ligand interactions based on energetic contributions such that energetically 

favorable features are incorporated into the pharmacophore [31]. The Glide XP 

scoring function was used to obtain an energetic description of each complex. The 

pharmacophore sites are ranked based on the Glide XP energies, and the most 

favorable sites are selected for the pharmacophore hypothesis. Aromatic rings were 

considered as hydrophobic groups. The PPARγ residues that interact with the sites of 

the above pharmacophores were visualized with the LigandScout v2.03 program 

(Inte:ligand, Vienna, Austria, http://www.inteligand.com/ligandscout/) [32]. 

Molecular alignments. The most crucial step for a 3D-QSAR construction model 

is the alignment of the molecules. We chose a structure-based docking strategy that 

was carried out using the poses predicted by docking using the Glide v5.6 program 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com). We only analyzed 

compounds with a similar chemical structure that we predicted that have very similar 

binding features to the receptor. These compounds were docked within the binding site 

of the 2Q5P PDB structure. The binding site was defined using the Receptor Grid 

Generation panel with the default options. Standard-precision (SP) docking was 

selected for screening the ligands. We selected the flexible docking mode, meaning 

that Glide internally generated conformations during the docking process. We did not 

request any constraints for docking. Each docking run recorded at most twenty poses 

per ligand that survived the post-docking minimization. GlideScore was used as the 

fitness function. The best scoring pose was selected for each ligand and used as an 

input structure for subsequent 3D-QSAR analyses. Moreover, to confirm that the 

docked poses that we obtained were realistic, we inspected manually the group of best 

scoring poses for each compound of the selected clusters to confirm that they contain 

the important intermolecular interactions with the receptor that we detect at the 

binding features analysis (and that, obviously, are also present in the 2Q5P complex). 

In addition, a cross docking analysis of the molecules used to build the 3D-QSAR with 

other PPARγ conformations derived from PDB complexes (i.e., 2Q5S and 2P4Y) 

showed similar results to the ones obtained with 2Q5P. Thus, this knowledge-based 

selection of docked poses ensures their realism. 

Generation of the 3D-QSAR models. The selected conformations of the ligands, 

obtained with the previously described alignment protocol, were used for the 

generation of a pair of 3D-QSAR models (one for pIC50 and another for the percentage 

of maximal activation). The Phase v3.2 program (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com) was employed to carry out the calculations using the 

Atom-Based 3D-QSAR panel. In the atom-based 3D-QSAR, a molecule is treated as a 

set of overlapping van der Waals spheres. To encode the basic characteristics of the 
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local chemical structure, each atom (and hence each sphere) is placed into one of six 

categories according to a simple set of rules: hydrogen atoms attached to polar atoms 

are classified as hydrogen bond donors (D); carbons, halogens, and C–H hydrogens 

are classified as hydrophobic/non-polar (H); atoms with an explicit negative ionic 

charge are classified as negative ionic (N); atoms with an explicit positive ionic charge 

are classified as positive ionic (P); non-ionic nitrogen and oxygen atoms are classified 

as electron-withdrawing (W); and all other types of atoms are classified as 

miscellaneous (X) [33]. The docking-predicted conformations of each ligand were first 

imported into the program together with their activity data. Then, training and test sets 

were chosen randomly using the Phase program. We chose a high training set 

percentage (80%) because the main aim of our models was to explain the relation 

between the selected ligands and their activities, not to predict activity values. 

Furthermore, in order to discard a possible influence of the splitting of the ligands into 

the training and test subsets on the resulting pair of 3D-QSAR models, we (1) 

randomly selected other 10 different training/test sets, (2) obtained their corresponding 

pairs of 3D-QSAR models, and (3) check their similarity relative to the initial pair of 

models by visual inspection. The 3D-QSAR model partitions the space occupied by 

the ligands into a cubic grid. Any structural component can occupy part of one or more 

cubes. The size of the cubes selected was 1 Å. The independent variables in the 

regression were given by the binary-valued occupancies (“bits”) of the cubes (by 

structural components), while the dependent variables were the transactivation activity 

or the binding affinity. The regression was done by constructing a series of models 

with an increasing number of partial least square (PLS) factors. The accuracy of the 

models increases when the number of PLS factors increases until over-fitting starts to 

occur. 

Statistical validations of the 3D-QSAR models. The performance of the initial 

pair of 3D-QSAR models was evaluated by measuring the accuracy of the predictions. 

The statistical parameters that were used to evaluate the predictions for the training set 

were: a) the coefficient of determination (R²); b) the standard deviation of regression 

(SD); c) the F statistic, which measures the overall significance of the model; d) the 

statistical significance (P), which measures the probability that the correlation could 

occur by chance; and e) a stability value, which has a maximum value of 1 and 

measures the stability of the model predictions with changes in the training set 

composition. The parameters used to evaluate the predictions for the test set were: a) 

Q², the equivalent of R² for the test set; b) the root-mean-square error (RMSE); and c) 

the Pearson correlation coefficient (r). 
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Results and Discussion 

Binding features of partial agonists. A total of 205 structures of PPARγ agonists 

were retrieved from 12 SAR studies (sar1-12) of synthetic PPARγ agonists (Table 1) 

[18-29]. Based on their chemical similarities, these 205 compounds can be grouped 

into five clusters (Figure 1). Cluster 1 is composed of ligands from sar1 (aryl indole-2-

carboxylic acids) and sar7 (N-sulfonyl-2-indole carboxamides), which consist of an 

indole system that contains a carboxylic group or a sulfonyl group at the second 

position [18, 24]. In essence, all of the ligands from this cluster have two lipophilic 

parts on either side of an acidic center. Cluster 2 is the largest family and contains 

compounds from sar2 (3-acylindole-1-benzylcarboxylic acids) [19], sar3 (benzoyl 2-

methyl indoles) [20], sar4 (N-benzyl-indoles) [21] and sar5 (7-azaindoles) [22]. 

Compounds from this cluster have an indole group, like the compounds from cluster 1, 

but otherwise follow a different pattern. These compounds are made up of an acidic 

head and a lipophilic tail.  

 

 

Figure 1. Representation of PPARγ partial agonist clusters. A total of 205 synthetic compounds 

from 12 SAR series were clustered by comparing their MOLPRINT2D fingerprints. The 2D 

structure of a representative member of each cluster is also shown. 
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With the aim of analyzing the binding differences between different PPARγ 

agonists, we constructed at least one energetically optimized pharmacophore [31] for 

each of the above clusters. This methodology quantifies the importance of each 

pharmacophore feature and allowed us to analyze the differences of receptor-ligand 

contacts between clusters. Table 2 shows the eight energy-based pharmacophores 

constructed from eight PDB structures that contain the PPARγ LBD crystallized with a 

partial agonist. Most of the pharmacophore sites are aromatic rings, highlighting the 

importance of hydrophobic interactions for the binding of PPARγ agonists with the 

receptor. Another significant feature is the presence of an acceptor site together with a 

negative site in the majority of the pharmacophores. This site corresponds to a 

carboxylic group present in the majority of the PPARγ partial agonists that forms a 

hydrogen bond with the Ser342 from the LBD of PPARγ. A comparison of the energy-

based pharmacophores between clusters shows that the pharmacophores from clusters 

1, 2 and 3 are similar, although the positions of the hydrophobic sites vary. The 

pharmacophores from clusters 4 and 5 are, however, slightly different. They contain 

an additional donor site, and the hydrophobic sites occupy a different region when 

compared with the pharmacophores from clusters 1, 2 and 3. Table 2 also shows the 

energy-based pharmacophore of a PPARγ full agonist. This pharmacophore has sites 

similar to those of the previous pharmacophores, but their locations are very different, 

highlighting the binding differences between full and partial PPARγ agonists. 
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Figure 2. A) The ligand-binding domain (LBD) of PPARγ complexed with a partial agonist, a 

benzoyl 2-methyl indole derivate (MRL-24 from PDB 2Q5P), colored in blue, superimposed 

with the structure of a full agonist, farglitazar, colored in green. The partial agonist occupies 

mainly arm II and arm III of the LDB of PPARγ, but the full agonist occupies mainly arm I and 

arm II. B) The main interactions between the PPARγ partial agonist MRL-24 and the LBD of 

PPARγ. The conserved hydrophobic interactions between Ile281, Ala292, Ile326, Ile341, 

Leu333, Met348 and Met364 and the hydrophobic sites of MRL-24 are shown. These 

interactions are common to nearly all PPARγ agonists, including full agonists. Hydrogen bonds 

between Ser342 and the carboxylic acid from MRL-24 are also shown by a dashed yellow line. 

This hydrogen bond is conserved between some PPARγ partial agonists but not for full agonists. 
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Table 2. Energy-based pharmacophores for eight structures that contain the PPARγ ligand-

binding domain crystallized with a partial agonist plus one structure complexed with a full 

agonist. Pink spheres represent hydrogen bond acceptors, green spheres represent hydrophobic 

groups, orange rings represent aromatic rings, light-blue spheres represent hydrogen bond 

donors, and red spheres represent negative ionizable groups. The PPARγ residues involved in 

the interaction with the ligand are also shown. All interactions correspond to hydrophobic 

interactions, with the exception of the residues marked with an asterisk, which form hydrogen 

bonds with the polar groups of the ligands. The interactions conserved in the majority of the 

structures that contain a PPARγ agonist are shown in bold. All energetic pharmacophores are 

presented in the same relative orientation in order to allow for an easier comparison. Contact 

residues were defined using LigandScout. 

Cluster 
PDB 

code 
Energetic Pharmacophore 

Contact Residues 

ARM I ARM II ARM III 

 

1 

2Q5S 

 

Ile326  
Phe363 

 

Ile249 

Ile281 

Val339 

Ile341 

Met348 

Leu353 

Met364 

Ala292 

Leu330 

Ser342* 

 

2HFP 

 

Ile326 Ile281 

Met329  

Val339 

Ile341 

Met348 

Leu353 

Met364 

Ile262 

Lys265* 

Arg288 

Ala292 

Leu330 

Leu333 

Ser342* 
 

2 

2Q5P 

 

Ile326  

Tyr327 

Phe264 

Ile281 

Val339 

Ile341 

Met348 

Arg288 

Ala292 

Leu330 

Leu333 

Ser342* 
 

2P4Y 

 

Ile326  
Tyr327 

Phe363 

 

Ile281 

Met329 

Val339 

Ile341 

Met348 

Leu353 

Met364 

Phe287 

Ala292 

Leu330 

Leu333 

Ser342* 
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3 

2Q6S 

 

- Ile249 

Leu255 
Phe264  

Val339  

Met364 

Ala292 

Leu330 

Leu333 

Ser342* 

 

Cmpd 50 

 

Ile326 Leu255 

Ile281 

Val339 

Ile341 

Leu353 

Met364 

Ile262 

Thr268 

Ala292 

Leu330 

Leu333 

Ser342* 
 

4 3KMG 

 

Phe282 
Ser289 * 

Ile326 
Tyr327* 
Phe363 

Leu453 

Leu465 
Leu469 

Ile281 

Val339 

Ile341 

Met348 

Met364 

Arg288* 

Ala292 

Leu330 

Leu333 

Ser342* 

 

5 3LMP 

 

Ile326 Met334 

Leu353 

Met364 

Leu330 
Cys285* 

 

Full 
agonist 

1FM9 

 

Phe282 

Ser289*  

Ile326 
Phe360 

Phe363 
Leu453 

Ile456 

Leu465 
Leu469 

Tyr473* 

Ile281 

Val339 

Ile341 

Met348 

Leu353 

Met364 

Leu330 

 

Table 2 also shows the binding differences between full and partial agonists (and 

between some partial agonists) from the receptor point of view. In this table, the 

PPARγ residues that interact with each site of the pharmacophores are shown. The 

hydrophobic interactions between Ile281, Ala292, Ile326, Ile341, Leu330, Leu333, 

Val339, Met348, Leu353 and Met364 and the hydrophobic sites of the ligands are 

conserved in the majority of the structures (see Table 2), even for the full agonist. The 

residue that interacts through a hydrogen bond with the acceptor/negative site of the 

ligand differs depending on whether the ligand is a full or partial agonist. Partial 

agonists (with the exception of compounds from cluster5) form a hydrogen bond with 
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Ser342. However, the residues that interact through a hydrogen bond in full agonists 

are usually Ser289 and Tyr473. There are other binding differences between partial 

and full agonists. If we split the LBD of PPARγ into three parts, arm I, arm II and arm 

III (see Figure 2), we observe that the partial agonists (with the exception of 

compounds from cluster4) basically interact with arms II and III, but the full agonists 

basically interact with arms I and II (see Table 2). Thus, in agreement with previous 

results [10], our analyses show that full and partial agonists show different binding 

patterns for the LBD of PPARγ. The binding patterns of different partial agonists are 

also slightly different. Ligands from cluster4 occupy arm I, like full agonists, and also 

make two additional hydrogen bonds with Ser289 and Tyr327 (see Table 2). Ligands 

from cluster5 make few contacts with the LBD of PPARγ because they are surrounded 

by several water molecules. The binding profiles of compounds from clusters 1, 2 and 

3 are similar (see Table 2). 

Generation of 3D-QSAR models. We selected the sar1, sar2, sar3, sar4 and sar5 

series of PPARγ agonists for the construction of two 3D-QSAR models. 3D-QSAR 

techniques have efficiently provided models in reasonable agreement with those 

deduced by the crystal structure of PPARγ complexes [34]. We used this methodology 

not for predicting the activity or binding affinity of putative PPARγ agonists, but 

rather to analyze which interactions between the LBD of PPARγ and its ligands 

increase the binding affinity without increasing the PPARγ transactivation activity. 

The sar1, sar2, sar3, sar4 and sar5 series were selected because for these compounds 

we have a wide range of measured IC50 (i.e., binding affinity measured by the 

displacement of a radiolabeled full agonist) values, tested under the same assay 

conditions, and values for the transactivation activity (see Table 1). Ligands from sar8 

were not used because their binding mode is quite different from that used by the 

agonists from clusters 1 and 2 (see Table 2). The sar1, sar2, sar3, sar4 and sar5 series 

form clusters 1 and 2 in Figure 1 and contain a set of 82 indole-based PPARγ agonist 

derivates with a similar binding profile. With these compounds, we constructed two 

atom-based 3D-QSAR models, one analyzing the binding affinity between the ligands 

and PPARγ (called the pIC50 model) and one analyzing the transactivation activity of 

PPARγ (called the transactivation model). For the first model, we used values of 

pIC50, and for the second, we used the percentage of maximal activation relative to the 

full agonist rosiglitazone. Activation levels that reach the maximal activation of 

rosiglitazone are considered full agonists, while those reaching 20-60% of 

rosiglitazone maximal activation are considered partial agonists. Table 3 and Figure 3 

show the statistic fits of the constructed 3D-QSAR models. For both models, as it is 

shown in Figure 3, the activity values of the ligands from the training and test sets are 

homogeneously distributed along all the activity range. In both models, to avoid an 

over-fitting effect, two PLS factors were chosen. The Pearson correlation coefficient 

of the pIC50 model was 0.77 with an R² for the training set and a Q² for the test set of 

0.67 and 0.55, respectively. For the transactivation model, the Pearson correlation 
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coefficient was 0.72 with an R² for the training set and a Q² for the test set of 0.71 and 

0.40, respectively. The low Q² values imply that there is a greater difference between 

the experimental values of binding affinity and transactivation activity and the values 

predicted by each model. This difference is more important when predicting the 

transactivation activity of full agonists (see Figure 3b). This may be due to the fact that 

the great majority of compounds in the dataset used are partial agonists. The R² values 

for the training set are better. As our main purpose was to use the 3D-QSAR models 

for analyzing the interactions between the LBD of PPARγ and a group of similar 

PPARγ agonists, the R² values are more relevant. These R² values and the scatter plots 

for the training set in Figure 3 indicate a reasonably good correlation between the 

predicted and experimental activities and validate the use of both models. 

Table 3. Statistics of the best 3D-QSAR models for analyzing the binding affinity (pIC50 model) 

and the transactivation activity of PPARγ (% max activation model) derived from an 80% 

randomly selected training set. See the Computational Methods section for the meaning of the 

statistical parameters used. To avoid an over-fitting effect, two factor models were chosen. 

Model # SD R2 F P Stability RMSE Q2 Pearsonr 

pIC50 

1 0.62 0.31 26.1 3.8e-06 0.94 0.68 0.14 0.43 

2 0.43 0.67 58.5 1.53e-14 0.49 0.49 0.55 0.77 

3 0.36 0.78 64.5 3.66e-18 0.38 0.57 0.40 0.63 

4 0.24 0.90 121.8 1.2e-26 0.15 0.63 0.26 0.51 

5 0.19 0.94 166.7 1.55e-31 -0.02 0.63 0.25 0.50 

% 

max 

activa

tion 

1 13.64 0.42 38.2 9.36e-08 0.85 17.83 0.28 0.55 

2 9.69 0.71 64.4 8.57e-15 0.55 16.27 0.40 0.72 

3 6.4 0.88 121.1 3.42e-23 0.29 17.61 0.30 0.63 

4 4.75 0.93 175.7 8.78e-29 0.22 17.31 0.32 0.64 

5 2.98 0.97 372.3 9.95e-38 0.15 16.33 0.40 0.72 

Figures 4 and 5 show the representation of the 3D-QSAR models. In these figures, 

the cubes that represent the model are displayed and colored according to the sign of 

their coefficient values. Blue and red cubes are used, respectively, for positive and 

negative coefficients and indicate regions that increase or decrease the analyzed 

parameter. One of the advantages of using these representations is that the position of 

the cubes of the 3D-QSAR model can be compared with the positions of the amino 

acid residues in the active site. This might give an insight as to which functional 

groups are desirable or undesirable at certain positions in a molecule. 
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Figure 3. Scatter plots for the two factors (a) pIC50 and (b) percentage of maximal activation 

models applied to the training set (colored in gray) and the test set (colored in black). 

Figure 4b shows the favorable and unfavorable regions for the binding affinity. 

Similar favorable and unfavorable regions were obtained when ten additional 3D-

QSAR models were generated using different training set selections obtained at 

random (results not shown). The favorable regions for binding are located at regions 

that interact with arms I and II and the right part of arm III (which includes Ser342) of 

the LBD of PPARγ. When viewing the 3D-QSAR model by atom type, we see that the 

hydrophobic (Figure 4c) and the electron-withdrawing contributions (Figure 4d) are 

the most important for the binding affinity of the compounds analyzed (whereas the 

rest of the contributions have a very limited role in binding affinity; results not 

shown). The electron-withdrawing contributions are favorable at arm I, where 

hydrogen bonds with Ser289, His323, His449 and Tyr473 can be established, and arm 

II, where a hydrogen bond with Ser342 is common to most PPARγ partial agonists. 

Hydrophobic interactions are the most important binding forces between PPARγ 

agonists and the LBD of PPARγ. The representation of the 3D-QSAR model in Figure 

4c suggests that, when more hydrophobic interactions occur with arm I and arm II of 

the LBD of PPARγ, a greater binding affinity is seen in the compound. Figures 4e and 

4f display the cubes of the 3D-QSAR model grid that are occupied by two compounds 

from the SAR series analyzed. In these representations, we can see which parts of the 

ligand have a positive or a negative contribution to the parameter analyzed, which is, 

in this case, the binding affinity. Figure 4e shows the sar1_24 compound [18], which 

has one of the lowest binding affinities in this series. Our 3D-QSAR model explains 

the low binding affinity of this compound because, although it can partially interact 

with arm II through a carboxylic group (see the upper blue cubes in Figure 4e), it lacks 

a hydrophobic moiety at indole position 6 to interact with arm I. This compound also 

contains a trifluoromethyl group, a group with high electronegativity, located in the 

hydrophobic environment of arm III (see the red cubes in Figure 4e). When the 
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compound from our ligand dataset with the highest binding affinity (i.e., sar2_1 in 

Figure 4f) is considered in the context of the model, we see an excellent fit with the 

blue areas of the model (see Figure 4f). 

 

Figure 4. Representation of the pIC50 model. The structural alignment of the selected docking 

poses of all compounds (a) was used to construct an atom-based 3D-QSAR model. Blue and red 

cubes indicate, respectively, regions that are favorable and unfavorable for binding to the LBD 

of PPARγ. The thresholds used for considering a region with a positive or negative contribution 

were 1.0 e-02 and -1.4 e-02, respectively. The complete 3D-QSAR model is displayed in panel 

(b), whereas panels (c) and (d) show the hydrophobic and electron-withdrawing contributions, 

respectively. Panels (e) and (f) show the cubic volume elements that are occupied by one of the 

compounds of the series with the lowest (i.e., sar1_24) and the highest (i.e., sar2_1) binding 

affinity, respectively. All panels are presented in the same relative orientation in order to allow 

for an easier comparison. 
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Figure 5 shows a representation of the transactivation model. In this model, the 

transactivation activity of PPARγ is the variable analyzed. Figure 5a shows the 

favorable and unfavorable regions for transactivation activity. Similar favorable and 

unfavorable regions were obtained when ten additional 3D-QSAR models were 

generated using different training set selections obtained at random (results not 

shown). The favorable regions are located at arm I and at part of arm III. Interestingly, 

unfavorable regions are located at arm II and the right part (which corresponds to 

Ser342) of arm III. Figures 5b-d show that the main contribution to the transactivation 

activity of PPARγ is caused by hydrophobic interactions, specifically the hydrophobic 

interactions that can be established with the hydrophobic residues of the LBD of 

PPARγ that form arm II and part of arm I (see Figure 5b). Hydrophobic interactions 

with arm II and part of arm III are marked as unfavorable in the model (Figure 5b). 

This effect is due to the fact that partial agonists do not occupy arm I but do occupy 

arm II and the right part of arm III. In addition, an unfavorable hydrophobic 

interaction is also localized at arm I (see the red cubes at the bottom and left side of 

Figure 5b). A carboxylic group that makes a hydrogen bond with Ser289 may occupy 

this part of the ligand, especially for full PPARγ agonists. This interaction is crucial 

for the stabilization of H12 and for the transactivation activity of PPARγ. Thus, when 

this region is occupied by a hydrophobic group, a hydrogen bond cannot be 

established, and the transactivation activity of PPARγ decreases.  

The importance of this interaction for the transactivation activity of PPARγ is also 

visualized in Figures 5c and 5d, when the electron-withdrawing and negatively 

charged contributions are represented in the transactivation model. In both figures, a 

blue cube at arm I (at the bottom of the figures) represents the importance of polar 

interactions in this region. Figure 5d also shows that the negatively charged 

contributions at the right part of arm III are unfavorable for the transactivation activity. 

This negative contribution reflects the fact that most partial agonists have a carboxylic 

group at this region that forms a hydrogen bond with Ser342. This hydrogen bond 

neither stabilizes H12 nor activates the transactivation activity of PPARγ. As the 

majority of partial agonists form this hydrogen bond and their transactivation activity 

is low, the model marks this interaction as unfavorable for the transactivation activity. 

Figures 5e and 5f show, respectively, the 3D-QSAR model represented only by the 

cubic volume elements that are occupied by one of the most inactive compounds (i.e., 

the sar1_6 compound) and the most active compound (i.e., the sar3_12 compound) in 

terms of transactivation activity. The sar1_6 compound [18] has only a maximal 

transactivation activity of 8% relative to rosiglitazone. Figure 5e shows that this ligand 

basically occupies arm III and arm II of the receptor and makes hardly any of the 

favorable interactions shown as blue cubes in Figure 5. The sar3_12 compound [20] 

has a maximal transactivation activity of 97% relative to rosiglitazone. This compound 

fits the blue areas of the 3D-QSAR model perfectly, as it can interact with the receptor 

through the favorable regions at arms I, II and III (see Figure 5f). 
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Figure 5. Representation of the % of maximal transactivation model. Blue and red cubes 

indicate, respectively, regions that are favorable and unfavorable for the transactivation activity 

of PPARγ. The thresholds used for considering a region with a positive or negative contribution 

were 2.0 e-01 and -2.0 e-01, respectively. The complete 3D-QSAR model is displayed in panel 

(a), whereas panels (b), (c) and (d) show the hydrophobic, electron-withdrawing and negatively 

charged contributions, respectively. Panels (e) and (f) show, respectively, the cubic volume 

elements that are occupied by one of the least actives (i.e., sar1_6) and one of the most actives 

(i.e., sar3_12) compounds. All panels are presented in the same relative orientation in order to 

allow for an easier comparison. 

Arm I of the LBD of PPARγ is an important part for the binding and the 

transactivation activity of PPARγ ligands. The ligands that occupy this arm interact 

with PPARγ through a series of hydrophobic interactions and a net of hydrogen bonds 

with the side chains of Ser289, His323, His449 and Tyr473. These interactions 
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stabilize H12 and are responsible for the transactivation activity of PPARγ [9, 11]. 

When a hydrophobic group occupies the region of the carboxyl group responsible for 

the net of hydrogen bonds with the side chains of Ser289, His323, His449 and Tyr473, 

the transactivation activity of PPARγ decreases (see Figure 5). Other regions of the 

LBD of PPARγ that also contribute to the transactivation activity of PPARγ include 

the regions of arms III and II that are closer to arm I. Hydrophobic interactions in 

these regions are favorable for the transactivation activity of PPARγ (see Figure 5). 

However, the region of arm III furthest from arm II does not contribute to this activity. 

This region, which includes Ser342, is the region most occupied by partial agonists. 

Hydrophobic interactions between the PPARγ residues from arms I and II and the 

hydrophobic groups of PPARγ ligands are very important for their binding (see Figure 

4). In addition, partial agonists can establish a hydrogen bond with Ser342. Because 

arm I contributes significantly to the transactivation activity of PPARγ, this region 

must not be occupied by potential PPARγ partial agonists. 

Conclusion 

The ideal PPARγ partial agonists to be used as antidiabetic compounds should 

show a low transactivation activity but a high binding affinity to inhibit 

phosphorylation at Ser273. Our models suggest that effective partial agonists should 

have a hydrophobic moiety and an acceptor site with an appropriate conformation to 

interact with arm II and to establish a hydrogen bond with Ser342 or an equivalent 

residue. Despite the fact that interactions with arm I increase the binding affinity, this 

region should be avoided in order to decrease the transactivation activity of potential 

PPARγ partial agonists. 
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Supporting information 

Table S1. Experimental and predicted values of the pIC50 (i.e. the binding affinity 

measured by the displacement of a radio-labelled full agonist). 

Ligand Name  QSAR Set 
Experimental 

Activity 

Predicted 

Activity 

Residual 

Activity 

sar5_7a training 6.14 7.25 -1.11 

sar1_24 training 6.50 6.98 -0.48 

sar1_14 training 6.53 6.96 -0.43 

sar1_34 training 6.60 6.54 0.06 

sar3_7 training 6.68 7.36 -0.68 

sar1_38 training 6.69 6.71 -0.02 

sar1_9 training 6.94 7.04 -0.10 

sar1_10 training 6.97 7.12 -0.15 

sar5_12c training 6.98 6.79 0.19 

sar1_13 training 6.99 7.01 -0.02 

sar3_10 training 7.00 7.29 -0.28 

sar1_18 training 7.08 7.51 -0.43 

sar3_15 training 7.10 7.43 -0.33 

sar1_8 training 7.11 7.02 0.09 

sar1_33 training 7.12 7.17 -0.05 

sar5_7b training 7.18 7.62 -0.44 

sar1_11 training 7.22 7.35 -0.13 

sar1_39 training 7.24 7.65 -0.41 

sar5_12b training 7.27 6.97 0.29 

sar1_06 training 7.31 6.85 0.46 

sar3_13 training 7.31 7.77 -0.46 

sar3_16 training 7.35 7.40 -0.05 

sar1_23 training 7.41 7.38 0.03 

sar4_5 training 7.48 7.78 -0.30 

sar4_4 training 7.54 7.96 -0.42 

sar1_15 training 7.57 7.39 0.18 

sar1_1a training 7.59 7.38 0.21 

sar5_12a training 7.60 7.58 0.02 

sar5_12f training 7.64 8.00 -0.36 

sar5_12h training 7.66 8.38 -0.72 

sar1_35 training 7.68 7.23 0.45 

sar4_9 training 7.70 7.69 0.01 

sar1_16 training 7.72 7.44 0.28 

sar1_17 training 7.77 7.61 0.16 

sar2_12i training 7.77 7.95 -0.18 

sar2_12k training 7.80 8.16 -0.36 
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sar1_19 training 7.89 7.56 0.33 

sar1_5 training 7.92 7.03 0.89 

sar2_12f training 7.92 8.06 -0.14 

sar2_12b training 7.96 8.20 -0.24 

sar5_7d training 8.00 8.94 -0.94 

sar2_12d training 8.05 8.29 -0.24 

sar2_12j training 8.30 8.02 0.28 

sar4_7 training 8.30 8.16 0.15 

sar5_7c training 8.30 8.42 -0.12 

sar2_12c training 8.40 7.97 0.43 

sar5_7f training 8.40 7.99 0.41 

sar3_25 training 8.52 8.25 0.27 

sar3_28 training 8.52 8.09 0.43 

sar5_12e training 8.52 8.24 0.28 

sar2_2 training 8.70 8.10 0.60 

sar3_20 training 8.70 8.69 0.01 

sar4_12 training 8.70 8.28 0.42 

sar5_7i training 8.70 8.22 0.48 

sar1_29 training 8.70 9.04 -0.34 

sar2_1 training 9.00 8.21 0.79 

sar2_12a training 9.00 8.11 0.89 

sar3_22 training 9.00 8.88 0.12 

sar5_7h training 9.00 8.27 0.73 

sar5_7j training 9.00 8.99 0.01 

sar3_9 test 6.48 7.24 -0.76 

sar1_12 test 6.92 7.33 -0.41 

sar3_12 test 7.08 7.42 -0.34 

sar4_14 test 7.21 7.95 -0.74 

sar1_7 test 7.31 6.92 0.39 

sar4_13 test 7.38 8.07 -0.69 

sar3_19 test 7.64 7.91 -0.27 

sar5_7e test 7.80 7.82 -0.02 

sar5_12d test 7.82 7.78 0.05 

sar2_12e test 8.10 8.12 -0.02 

sar5_12g test 8.52 8.33 0.19 

sar4_11 test 8.70 7.92 0.78 

sar5_7g test 8.70 8.59 0.11 

sar3_24 test 9.00 8.25 0.75 
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Table S2. Experimental and predicted values of the % of maximal transactivation 

activities relative to the full agonist rosiglitazone. 

 

Ligand 

Name 

 QSAR 

Set 

 Experimental 

Activity 

Predicted 

Activity 

Residual 

Activity 

sar1_39 training 4 16 -12 

sar1_06 training 8 11 -3 

sar1_29 training 12 23 -11 

sar1_14 training 13 28 -15 

sar1_8 training 13 13 0 

sar5_7j training 14 26 -12 

sar1_9 training 15 19 -4 

sar1_15 training 16 18 -2 

sar1_33 training 18 17 1 

sar1_1a training 18 28 -10 

sar1_7 training 18 18 0 

sar4_14 training 19 24 -5 

sar5_7f training 19 20 -1 

sar5_7g training 19 28 -9 

sar5_12g training 20 30 -10 

sar2_2 training 20 24 -4 

sar2_12c training 20 21 -1 

sar5_12e training 21 28 -7 

sar1_17 training 22 26 -4 

sar5_12f training 22 27 -5 

sar4_13 training 22 24 -2 

sar5_7a training 23 23 0 

sar1_23 training 24 22 2 

sar4_12 training 24 23 1 

sar5_12c training 25 31 -6 

sar3_10 training 25 61 -36 

sar4_5 training 26 26 0 

sar1_19 training 27 22 5 

sar2_12j training 27 27 0 

sar5_7i training 27 21 6 

sar2_12e training 27 31 -4 

sar4_11 training 28 24 4 

sar5_12a training 29 23 6 

sar2_12a training 30 20 10 

sar2_1 training 30 38 -8 

sar1_18 training 32 27 5 

sar5_7b training 32 25 7 
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sar4_4 training 32 33 -1 

sar1_34 training 33 23 10 

sar3_25 training 34 31 3 

sar5_7h training 35 29 6 

sar2_12k training 35 22 13 

sar5_7e training 36 27 9 

sar5_12d training 37 37 0 

sar2_12i training 41 30 11 

sar3_13 training 42 41 1 

sar5_7c training 43 50 -7 

sar5_7d training 47 36 11 

sar3_9 training 50 46 4 

sar2_12b training 50 23 27 

sar2_12f training 51 38 13 

sar3_16 training 59 68 -9 

sar3_22 training 75 69 6 

sar3_15 training 86 71 15 

sar3_12 training 97 84 13 

sar1_35 test 14 18 -4 

sar1_38 test 17 22 -5 

sar1_5 test 18 18 0 

sar3_24 test 21 40 -19 

sar5_12b test 23 28 -5 

sar3_28 test 24 30 -6 

sar5_12h test 26 32 -6 

sar4_7 test 31 31 0 

sar3_7 test 33 29 4 

sar4_9 test 33 26 7 

sar3_19 test 47 41 6 

sar2_12d test 48 25 23 

sar3_20 test 97 49 48 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



 

CHAPTER 3 

IDENTIFICATION OF NOVEL PPARγ PARTIAL AGONISTS BY A 

VIRTUAL SCREENING OF NATURAL PRODUCTS 

 

ABSTRACT 

We have developed a virtual screening procedure based on structure-based 

pharmacophore construction, protein-ligand docking and electrostatic/shape similarity 

to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 

natural products and natural product derivatives, 135 compounds were identified as 

potential PPARγ partial agonists with good ADME properties. Ten compounds that 

represent ten new chemical scaffolds for PPARγ partial agonists were selected for in 

vitro biological testing. Five out of eight of these compounds were confirmed as 

PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the 

transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells 

and stimulate the insulin-induced glucose uptake of adipocytes. These results 

demonstrate that our virtual screening procedure is able to find novel scaffolds for 

PPARγ partial agonists. 
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Introduction 

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear 

receptor superfamily that regulate the gene expression of proteins involved in energy, 

glucose and lipid metabolism, adipocyte proliferation and differentiation and insulin 

sensitivity [1]. PPARs act as cellular sensors that activate transcription in response to 

the binding of natural or synthetic ligands. Three subtypes, PPARα, PPARβ/δ and 

PPARγ, have been identified. Although the subtypes share a high level of sequence 

and structural homology [2], they exhibit differences in tissue expression and 

physiological function [3]. Agonists of PPARα and PPARγ are currently approved for 

treating dyslipidemia and type 2 diabetes, respectively [4,5]. Thiazolidinediones 

(TZDs) are one important class of synthetic agonists of PPARγ. TZDs are antidiabetic 

agents that target adipose tissue and improve insulin sensitivity, and they are currently 

being used in the treatment of type 2 diabetes. Despite the clinical benefit of TZDs, 

they have been associated with adverse side effects including weight gain, increased 

adipogenesis, renal fluid retention and a possible increased incidence of cardiovascular 

events [6-8]. Therefore, new PPARγ ligands with enhanced therapeutic efficacy and 

reduced adverse effects are needed. A promising new class of such ligands is that of 

the selective PPARγ modulators (i.e., SPPARγMs) [6-8]. These compounds act as 

partial agonists of PPARγ and display different binding properties than do full agonists 

[9]. 

  

Figure 1. Binding models of (A) the PPARγ full agonist Farglitazar (crystal structure 1FM9) 

and (B) the PPARγ partial agonist nTZDpa (crystal structure 2Q5S). Important binding residues 

are depicted as wireframes with green carbon atoms. Oxygen, nitrogen, and hydrogen atoms are 

colored red, blue and white, respectively. 

The mechanism of PPARγ activation by full agonists is mediated by a molecular 

switch of the H12 α-helix [10]. H12 forms part of the ligand-dependent activation 

domain, AF-2, that closes on the ligand-binding site in response to ligand binding. The 

resulting active form can bind to several co-activator proteins that activate the cellular 
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transcriptional machinery [10]. Full agonists occupy the large binding site of PPARγ 

in a U conformation and generally consist of a polar head and a hydrophobic tail [11]. 

The polar head makes a net of hydrogen bonds with the Ser289, His323, His449 and 

Tyr473 PPARγ side chains (Figure 1A), and this net is responsible for the 

conformational change of H12 and the activation of PPARγ. In contrast, partial 

agonists activate PPARγ by an H12-independent mechanism [12,13], and 

consequently, the key interactions between partial agonists and the ligand-binding 

domain (LBD) of PPARγ are different than those of the full agonists [9] (i.e., partial 

agonists do not bind to PPARγ by the net of hydrogen bonds used by full agonists). 

This causes a lower degree of H12 stabilization, which affects the recruitment of 

coactivators and, in turn, decreases the transcriptional activity of PPARγ [14,15]. With 

minor exceptions, most of the currently known partial agonists interact with the LBD 

of PPARγ through a hydrogen bond with Ser342 [11] and several hydrophobic 

interactions that are similar to those that occur with full agonist binding (Figure 1B). 

Recently, a new mechanism by which partial and full PPARγ agonists act to improve 

insulin sensitivity independent of receptor agonism has been suggested. This 

mechanism consists of blocking the phosphorylation of PPARγ at Ser 273 [16] and 

may explain how partial agonists can exhibit similar or higher antidiabetic effects than 

those of full agonists. This mechanism might also be the reason for the differing side-

effect profiles of the two types of agonists [8]. It is possible that partial and full 

agonists achieve comparable efficacy in insulin sensitization through a similar 

inhibitory effect on PPARγ phosphorylation, whereas the differences in their agonistic 

potency could be linked to the differences in side effects [8]. 

Although there are successful examples of the discovery of new PPARγ agonists 

[14,17-20], including from natural origins [21-24], it has recently been of great interest 

to identify new PPARγ partial agonists from natural products [25,26]. Consequently, 

the goal of this work was to design and apply a virtual screening (VS) workflow to 

identify novel PPARγ partial agonists among natural products. To achieve this goal, 

we (a) designed a VS workflow that includes a filter to remove PPARγ full agonist 

candidates from the sample; (b) validated the performance of the VS with samples of 

known PPARγ agonists (either full or partial) and decoys; (c) applied the VS to a 

database of natural or derivatives of natural compounds; (d) clustered the VS hits with 

known PPARγ partial agonists; and (e) selected 10 different VS hits (from 10 clusters 

where no known PPARγ partial agonists were present) for testing their bioactivity as 

PPARγ partial agonists. Our results show that our VS workflow performs well and is 

able to discover new chemical scaffolds for the design of effective antidiabetics with 

fewer side effects than PPARγ full agonists. 
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Results and Discussion 

Virtual Screening: Description, Validation and Application. The VS workflow 

applied in this study is summarized in Figure 2. It consists of several steps that were 

applied one after another (i.e., the output molecules of one step were the input 

molecules for the next step). The discriminatory power of the VS workflow to identify 

PPARγ partial agonists was evaluated by applying it to a group of 135 known PPARγ 

full agonists (Supporting Information Table 1), 19 known PPARγ partial agonists 

(Supporting Information Table 2) and 3,122 decoys obtained from the DUD database 

[27].  

 

Figure 2. Schematic overview of the VS workflow and the procedure used for selecting the VS 

hits whose bioactivity was experimentally tested. The number of compounds that passed each 

step and the programs used are shown. From an initial set of 89,165 compounds, 135 

compounds were identified as putative PPARγ partial agonists by the VS workflow. Ten of 

these 135 compounds were selected for in vitro testing. 
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Table 1. Validation of each method used in the virtual screening workflow. A dataset of 19 

known PPARγ partial agonists, 135 known PPARγ full agonists and 3122 decoys extracted from 

the DUD database were used. The values represent the number of compounds from each set that 

survived each step when applied sequentially. 

Set of 

Compoun

ds 

Nº of 

Compo

unds 

Structure-based pharmacophore screening 
Electrostat

ic/shape 

similarity 

analysis 

Global 

virtual 

screening 

anti 

pharmacophore 

partial agonist 

pharmacophore 

in vacuo 

conformations 

in vacuo 

conformations 

docking 

poses 

Partial 

Agonists 
19 12 10 8 5 5 

Full 

Agonists 
135 31 11 7 1 1 

Decoys 3122 2204 964 382 16 16 

Enrichment Factor  2.45 1.90 1.98 11.28 39.19 

EFmax 24.27 187.25 98.50 49.63 172.42 

Sensitivity (Se) 77.04% 83.33% 80.00% 62.50% 26.32% 

Specificity (Sp) 29.45% 56.38% 60.10% 95.63% 99.49% 

 

Table 1 shows how many of these molecules survived each VS step and several 

quantitative measures for model quality. Because we were interested in discovering 

novel PPARγ partial agonists but not full agonists, we first developed a structure-

based pharmacophore, called the antipharmacophore, to exclude possible full agonists. 

We used this strategy because full agonists have more clearly defined structural 

features than partial agonists. Using 19 validated crystal structures from known full 

agonists complexed with PPARγ, we created the antipharmacophore model that 

represented the common features of full agonists. This antipharmacophore consisted of 

5 sites (Figure 3A): 2 of them are involved in a hydrogen bond network between the 

ligand and the receptor, and 3 are hydrophobic sites. The PPARγ residues that interact 

with the two sites involved in the hydrogen bond network are Ser289, Tyr473, His323 

and His449. Because the hydroxyl group from serine and tyrosine and the nitrogen 

from the histidine side chain can act as donors and acceptors simultaneously, the two 

sites involved in the hydrogen bond network were defined as having possible dual 

behavior as a hydrogen bond donor and acceptor. Both sites were considered to be 

essential. Two out of the three hydrophobic sites were also mandatory, whereas the 

site located at the effector end (side HF3 in Figure 3A) was defined as optional 

because it regulates the affinity and potency of ligands11. Table 1 shows that 104 out 

of the 135 PPARγ full agonists used in the validation process were identified as full 

agonists by our antipharmacophore model, as were 918 out of 3122 decoys (29%) and 
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7 out of the 19 partial agonists (37%). This represents an enrichment factor (EF) of 

2.45, or 10% of the EF maximum value of 24.3 that would be obtained if all 135 full 

agonists were identified as positive hits in this analysis. Importantly, this is the only 

VS step for which the active set was composed of PPARγ full agonists and the 

inactive set was decoys and PPARγ partial agonists; therefore, the statistics for this VS 

step were calculated using these considerations. The sensitivity (Se) and the specificity 

(Sp) of this step were 77.04% and 29.45%, respectively. The high percentage of partial 

agonists misidentified as full agonists shows that it is sometimes difficult to 

distinguish between both sets. This was confirmed when some partial agonists were 

similar to full agonists and clustered together using a fingerprint similarity analysis 

(results not shown). However, because the aim of the antipharmacophore step was to 

minimize the presence of full agonists, loss of some possible partial agonists at this 

step was tolerated. 

 

Figure 3. Pharmacophores used for the identification of (a) PPARγ full agonists and (B) PPARγ 

partial agonists. Hydrophobic and acceptor/donor sites are colored in green and pink, 

respectively. Excluded volumes are showed as yellow spheres. The ligands farglitazar (from the 

PDB entry 1FM9) and nTZDpa (from the PDB entry 2Q5S) are also represented. 
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Next, a common PPARγ partial agonist pharmacophore, derived from 12 structures 

of PPARγ crystallized with a partial agonist, was applied. This pharmacophore 

consisted of one hydrogen bond acceptor, located on a carboxylic group of the ligand 

that forms a hydrogen bond with Ser342, and three hydrophobic sites located on 

aromatic rings (Figure 3B). From the 12 partial agonists that survived the 

antipharmacophore step, 10 were identified as partial agonists by our partial agonist 

pharmacophore, as were 11 of the 31 full agonists and 964 of the 2204 decoys. 

Therefore, the EF for this VS step was 1.90, which represents 1.02% of the maximum 

EF of 187.25 obtained if all 12 partial agonists would have been identified as true 

positives in this step. The Se and Sp for this step were 83.33% and 56.38%, 

respectively (Table 1). 

To find docking poses that were compatible with the partial agonist 

pharmacophore, the compounds that had at least one conformer, generated in vacuo, 

that matched the partial agonist pharmacophore were also docked to the PPARγ 

structure from 2Q5S. The best docking poses were then matched again to the partial 

agonist pharmacophore. We found that 8 out of 10 partial agonists, 7 out of 11 full 

agonists and 382 out of 964 decoys that survived the previous step have at least one 

docked pose that both was compatible with the PPARγ ligand-binding site and had 

functional groups that match the 3D location of the sites of the partial agonist 

pharmacophore. The EF, Se and Sp for this step were 1.98, 80.00% and 60.10%, 

respectively (Table 1). 

To reduce the number of PPARγ partial agonist candidates, an electrostatic and 

shape similarity analysis was applied. Using the experimental poses of 5 known 

PPARγ partial agonists as queries, 5 out of 8 partial agonists, 1 out of 7 full agonists 

and 16 out 382 decoys were identified as partial agonist candidates by this VS step. 

The EF, Se and Sp for this step were 11.28 (out of an EF maximum of 49.63), 62.50% 

and 95.63%, respectively (see Table 1). 

Table 1 shows that the full VS workflow identified 5 out of 19 partial agonists, 1 

out of 135 full agonists and 16 out of 3122 decoys as partial agonists. Therefore, the 

global EF was 39.19 (22.73% of an EF maximum of 172.42) and the Se and Sp were 

26.32% and 99.49%, respectively. The high Sp and the moderate Se of our procedure 

reflect, respectively, the correct assignment of inactive compounds and the loss of 

potential partial agonists. However, because of the high number of initial compounds 

and the difficulties in differentiating partial from full agonists, we preferred a very 

specific, but less sensible, VS workflow. Table 1 also shows that in terms of 

sensitivity, using the partial agonist pharmacophores was the best step, whereas in 

terms of specificity and EF, the best step was the electrostatic/shape similarity 

analysis. Therefore, the combination of the three steps seems adequate to obtain a VS 

workflow that combines the best of each method. Importantly, the Se and Sp of the 
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antipharmacophore step should not be compared with those for the other VS steps 

because the objective of the antipharmacophore step was to remove full agonists from 

the sample. In that sense, despite the low Sp for this step, its high Se (77.04%) 

suggests that it is adequate for this purpose. 

Upon validation of the VS workflow, it was applied to the Natural Products subset 

of the ZINC database28. From an initial set of 89,165 molecules, compounds with 

poor ADME properties or potentially toxic compounds were discarded, resulting in an 

initial set of 53,656 molecules. After applying the VS workflow described above, a 

group of 135 PPARγ partial agonist candidates were finally identified. Figure 2 shows 

the number of molecules that survived each step of the VS workflow. 

Fingerprint similarity analysis. To reduce the number of hits for biological 

testing while simultaneously increasing the significance of the results (i.e., by 

obtaining new chemical scaffolds for PPARγ partial agonists), a fingerprint cluster 

analysis was done. The 135 partial agonist candidates from the VS were combined 

with a group of 19 known partial agonists (Supporting Information Table 2), and their 

2D fingerprints were calculated. A hierarchical cluster analysis classified the 

compounds into 51 clusters, and 37 of them did not contain any already known partial 

agonists and therefore represented new chemical scaffolds for PPARγ partial agonists. 

Biological testing of selected VS hits. Figure 4 shows the chemical structures of 

the ten compounds (C1-C10) selected for bioactivity testing. They were selected from 

10 of the 37 clusters that corresponded to new chemical scaffolds of PPARγ partial 

agonists, taking into account as a selection criteria their purity, price and availability. 

It is likely that at least some of the problematic side effects of PPARγ full agonists, 

such as weight gain or fluid retention, may be caused by classical agonist interactions. 

A substantial portion of the therapeutic benefits of full and partial PPARγ agonists 

occurs through the inhibition of the PPARγ phosphorylation at Ser273 [16]. Thus, an 

effective partial agonist of PPARγ would have weak or low transactivation activity 

while maintaining the stimulation of glucose uptake [16]. In this sense, the ten selected 

compounds were analyzed in vitro to check whether they bind to PPARγ, activate the 

transactivation activity of PPARγ, and stimulate glucose uptake and differentiation in 

adipocytes. Prior to these analyses, cytotoxicity and viability tests were also 

performed. None of the tested compounds (C1-10) at the concentrations analyzed 

significantly decreased the viability or increased the cytotoxicity in HepG2 and 3T3-

L1 cells (results not shown). 
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Figure 4. Chemical structures and ZINC codes of the 10 compounds suggested to be PPARγ 

partial agonists and selected for bioactivity testing. 

Table 2. Experimental IC50 values and transactivation activity of the selected compounds. 

A competitive binding assay was used to assess the ability of experimental compounds, FMOC 

or rosiglitazone to displace a fluorescent PPARγ ligand from a human-derived recombinant 

PPARγ ligand-binding domain. The concentration of the test compound that results in a half-

maximal shift in the polarization value is defined as IC50. This value is a measure of the relative 

affinity of the test compound for the PPAR ligand-binding domain. The transactivation capacity 

of selected compounds was also determined in HepG2 cells as described in Materials and 

Methods. Results represent the mean ± SEM of at least three separate experiments performed in 

triplicate. Results are expressed as arbitrary firefly luciferase units relative to arbitrary renilla 

luciferase units. 

Compound 

Binding 

affinity 

IC50 (μM) 

Gene Reporter activity at 

10 μM 

Gene Reporter activity at 

100 μM 

mean ± SEM mean ± SEM 

Rosiglitazone 0.39 6.827 ± 2.367** (i) - 

FMOC 18.5 3.387 ± 0.422** - 

C1 12.4 1.767 ± 0.075 2.607 ± 0.323* 

C5 1000 1.713 ± 0.231 1.990 ± 0.276 

C7 252 1.710 ± 0.078 3.437 ± 0.219** 

C8 460 1.700 ± 0.361 2.127 ± 0.167 

C9 585 0.650 ± 0.052 1.043 ± 0.052 

(i) The transactivation activity of Rosiglitazone was assayed at 1 μM. For compounds C2, C3 and C6, no binding was 

observed when assayed at concentrations up to 8 mM. Compounds C4 and C10 were not assayed because of 

solubility problems.  

** p<0.001 * p<0.05 when compared to the control (DMSO) in an Anova test.  
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Figure 5. Results of the PolarScreen PPAR Competitor Assay for all selected compounds, 

except C4 and C10, which had solubility problems. One PPARγ full agonist (Rosiglitazone) and 

one partial agonist (FMOC) were also assayed. Error bars represent one standard deviation from 

the mean of triplicates. 

Figure 5 shows the results of the PolarScreen PPARγ Competitor Assay to determine 

the binding affinity of the selected compounds. Compounds C4 and C10 were not 

assayed due to solubility problems. Compounds C1, C5, C7, C8 and C9 bound to 

PPARγ with different affinities (Table 2). C1 had a moderate binding affinity for 

PPARγ, similar to that of the known PPARγ partial agonist FMOC. Compounds C5, 

C7, C8 and C9 had lower binding affinities. The results for compounds C2, C3 and C6 

were not conclusive when assayed at concentrations up to 8 mM. These results 

validate the predictions of the VS procedure, as five out of eight of the assayed 
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compounds were able to bind PPARγ. Table 2 also shows the transcription activity of 

the five compounds that were able to bind PPARγ and were potential PPARγ partial 

agonists (C1, C5, C7, C8 and C9). Only compounds C1 and C7 had moderate and 

significant transactivation activity at 100 μM, similar to that shown by FMOC (see 

Table 2). These results validate the antipharmacophore step, as none of the assayed 

compounds acted as a PPARγ full agonist. 

Table 3 shows the in vitro effects of these five partial agonists (C1, C5, C7, C8 and 

C9) on the adipogenic activity and the stimulation of glucose uptake in adipocytes. As 

expected from the results of the PPARγ transactivation activity assay, none of the 

assayed compounds induced triglyceride accumulation in 3T3-L1 preadipocytes when 

compared with Rosiglitazone, a well-known PPARγ full agonist that stimulates 

adipogenesis. Table 3 also shows the results of the effects on insulin-induced glucose 

uptake. All of the selected compounds stimulated insulin-induced glucose uptake to 

the same extent or even more than Rosiglitazone and FMOC, with compounds C7, C8, 

and especially C5 being the most effective. Together, these results show that these five 

compounds can be considered to be partial agonists of PPARγ and validate the virtual 

screening protocol developed. 

Table 3. Adipogenic activity and stimulation of glucose uptake by some of the selected 

compounds measured in vitro. The compounds that bind PPARγ were added to 3T3-L1 pre-

adipocytes to test their adipogenic capacity, measured as triglyceride accumulation normalized 

to the effects of rosiglitazone. The same compounds were added to fully differentiated 

adipocytes to test their effects in insulin-stimulated 2-deoxy-[H3]-glucose uptake (insulin 

stimulation is considered 100%). Data are mean ± SEM of at least three biological replicates 

Compound 
Adipogenic 

activity 
Glucose uptake stimulation 

Rosiglitazone 1.000 ± 0.051 118.99 ± 8.543 

FMOC 0.530 ± 0.062** 124.64 ± 7.295 

C1 0.494 ± 0.052** 120.9 ± 13.561# 

C5 0.492 ± 0.036** 140.48 ± 17.385## 

C7 0.519 ± 0.021** 133.54 ± 13.508## 

C8 0.562 ± 0.071** 120.24 ± 6.680## 

C9 0.641 ± 0.025** 120.90 ± 20.410 

**P< 0.05 VS. Rosiglitazone  

##P< 0.05 # P< 0.1 VS. Vehicle 

 

Docking of novel PPARγ ligands. To determine the putative binding mode and 

the potential ligand-target interactions of the five novel PPARγ partial agonists (C1, 

C5, C7, C8 and C9), these compounds were docked to the PPARγ LBD of PDB entry 

2Q5S. Similar docking poses were determined for all sets of compounds (see Figure 

6). The predicted binding modes of all compounds (with the exception of C8) included 
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one hydrogen bond with Ser342 or adjacent residues and several hydrophobic contacts 

with Ile281, Ala292, Ile326, Ile341, Leu330, Leu333, Val339, Met348, Leu353 or 

Met364 from arms II and III of the LBD of PPARγ. These interactions are typical of 

PPARγ partial agonists9. In addition, no hydrogen bond interaction between the five 

compounds and residues His323, Tyr327, His449 and Tyr473 from arm I of the LBD 

of PPARγ (typical of PPARγ full agonists) was predicted. This could explain the lack 

of (or moderate) transactivation activity determined for the five compounds. 

The best docking pose for compound C5 shows that this compound could establish 

three hydrogen bonds with arms II and III of the LBD of PPARγ (Figure 6B). Two of 

these hydrogen bonds include those formed between the carboxylic moiety of the 

compound and the backbones of Ser342 and Glu343. Another hydrogen bond could be 

established between the nitrogen of the quinazoline-2,4-dione moiety and the side 

chain of Ile281 (Figure 6B). In addition, hydrophobic interactions were predicted 

between the rest of the ligand and residues Ile249, Leu255, Arg288, Met348, Val339, 

Ile341, and Met364 from arms II and III. The initial docking of compound C7 to the 

LBD of PPARγ showed that this compound could establish two hydrogen bonds with 

Ser342 and Glu343 (Figure 6C). The small size of this compound may allow the 

binding of a second ligand molecule. This 2:1 binding stoichiometry has been 

described or predicted for other PPARγ partial agonists [25,29]. Based on this, we 

performed a docking study to investigate the possibility that two copies of compound 

C7 could bind simultaneously to PPARγ. Figure 6F shows that an additional copy of 

the C7 compound could interact with arms I and III through several hydrophobic 

interactions. The experimental IC50 and transactivation activity of this compound also 

suggest this possibility. The plot of the PolarScreen PPAR competitor assay for 

compound C7 in Figure 5 shows that the full binding is delayed until high 

concentrations are reached. In the same way, we did not observe significant 

transactivation activity with 10 μM of this compound, but this activity increases 

significantly with 100 μM (see Table 2). These observations agree with a model in 

which one molecule of compound C7 binds to arms II and III of the LBD of PPARγ, 

and when the concentration increases, a second molecule occupies arm I and causes 

transactivation activity.  
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Figure 6. Putative ligand-PPARγ interactions of the best docking poses of compounds (A) C1, 

(B) C5, (C) and (F) C7, (D) C8 and (E) C9. The following key residues of the LBD of PPARγ 

are shown: Ser289, His 323, Tyr473 and His449 from arm I are colored in blue; Leu255, Ile281, 

Ile341 and Met364 from arm II are colored in pink; and Ala292, Ser342 and Glu343 from arm 

III are colored in green. 

Conclusions 

We have shown that a VS workflow based on two structure-based 3D 

pharmacophores (one to exclude potential PPARγ full agonists), protein-ligand 

docking and electrostatic/shape similarity analysis is able to discover novel scaffolds 

for PPARγ partial agonists. Thus, from an initial set of 89,165 natural products and 

natural product derivatives, 135 compounds were defined as potential PPARγ partial 
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agonists. Using a fingerprint similarity analysis, 37 clusters that represent new 

chemical scaffolds for PPARγ partial agonists were defined. Ten compounds from ten 

of these clusters were chosen for bioactivity testing, but two of them were not assayed 

because of solubility problems. Five out of the remaining eight compounds can be 

considered as PPARγ partial agonists because they were able to bind PPARγ with a 

moderate affinity, did not stimulate adipogenesis and enhanced insulin-stimulated 

glucose uptake in vitro. Therefore, our results suggest that our VS workflow is able to 

identify compounds with a high chance of being effective PPARγ partial agonists in a 

molecule database and that this bioactivity is not trivial because their chemical 

structure does not resemble known PPARγ partial agonists. In addition, our data show 

that C5 is an appropriate compound for lead-optimization and the subsequent design of 

more potent and safe antidiabetic drugs. 

Experimental Section 

Dataset of PPARγ Structures Used. Forty-nine structures of the PPARγ LBD co-

crystallized with an agonist were downloaded from the RCBS Protein Data Bank 

(http://www.pdb.org) [30]. For each structure, we determined whether electron density 

maps were available at the Uppsala Electron Density Server (http://eds.bmc.uu.se/eds/) 

[31] and, if available, the goodness-of-fit between these maps and the structures of 

both the ligand and the PPARγ active site. After this preliminary analysis, 18 out of 

the 49 PDB complexes were not further considered in our study due to one of 

following reasons: (a) the electron density maps were not available; (b) either the 

ligand or the PPARγ active site did not fit well on the electron density maps; (c) the 

ligand was a fatty acid; or (d) the ligand could not be identified as either a full or 

partial agonist. The remaining 31 PDB complexes (Table 4) were superposed with the 

DeepView v3.7 program [32] to arrange them in the same relative orientation. Only 

the resulting re-oriented coordinates of the PDB complexes were used in the 

subsequent steps of the workflow. 

Table 4. PDB codes of the ligand-protein complexes used for the generation of the structure-

based pharmacophore models for PPARγ full agonists and PPARγ partial agonists. 

Full agonists 
Partial agonists 

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 

1FM9 1I7I 1FM6 2GTK 2G0G 4PRG 2Q6R 2FVJ 2Q6S 

1RDT 1KNU 1ZGY 3B3K 2G0H  2Q61  2WM0 

1K74 2F4B 2PRG 2ATH   2Q5S   

3BC5 2HWQ 2FVJ 1NYX   2Q5P   

2Q8S 2HWR 1ZEO    2HFP   

      2P4Y   
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Generation of Structure-Based Pharmacophores. LigandScout v2.03 

(Inte:ligand, Vienna, Austria, http://www.inteligand.com/ligandscout/) [33,34] was 

used for the analysis of the 31 PPARγ structures from Table 4 and the analysis of the 

possible interactions between the crystallized ligands and the ligand-binding pocket of 

PPARγ. Individual pharmacophores for the 19 structures of PPARγ crystallized with a 

full agonist (Table 4) were visually inspected to construct a common structure-based 

pharmacophore of full agonists. This pharmacophore (Figure 3A) is formed by 5 sites 

(two hydrogen-bond acceptors and three hydrophobic sites) that are present in most of 

the complexes of full agonists analyzed and are therefore assumed to be responsible 

for the intermolecular interactions that are essential for the activity of PPARγ full 

agonists. We named this pharmacophore the antipharmacophore because we used it to 

exclude putative full agonists when searching for partial agonists. Taking into account 

ligand similarity, we classified the remaining 12 structures of PPARγ crystallized with 

a partial agonist into 5 clusters or families (Table 4). For each cluster, a common 

structure-based pharmacophore for PPARγ partial agonists was defined. The resulting 

pharmacophores contained 5 to 8 sites, mainly hydrophobic sites and some hydrogen-

bond acceptors. A common pharmacophore of 4 sites was then constructed. This 

pharmacophore consisted of one hydrogen-bond acceptor site and three hydrophobic 

sites (Figure 3B). This common pharmacophore contained the sites in common with 

the pharmacophores of each cluster and, in our opinion, the sites that are important for 

the intermolecular interaction between PPARγ and its partial agonists. This common 

pharmacophore, which we called the partial agonist pharmacophore, was used in the 

VS workflow to identify putative PPARγ partial agonists. 

Both pharmacophores were also completed with receptor-based excluded volumes, 

obtained either from 1FM9 for the antipharmacophore or from 2Q5S for the partial 

agonist pharmacophore, that schematically represent the location of the PPARγ 

residues that form the LBD (Figures 3C and 3D). Excluded volumes were added by 

applying the Receptor-Based Excluded Volumes graphic front-end from Phase v3.1 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com) [35] and by setting 

the Sphere filter parameter values to (a) ignoring receptor atoms whose surfaces were 

within 0.25 Å of ligand surface and (b) limiting excluded volume shell thickness to 10 

Å. The rest of the parameters used were the default values. 

Initial Dataset of Natural Compounds. The initial dataset of the natural 

compounds that we used contained 89,165 compounds from the Natural Products 

subset of the ZINC database [28]. This dataset contains commercially available natural 

products and natural-product derivatives. The 3D structures of this initial dataset were 

processed with the LigPrep v2.3 program (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com) to clean them and obtain their corresponding low-energy 

structures. Only one low energy conformation was generated for each molecule. This 

process was carried out with the following parameter values: (a) the force field used 
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was OPLS 2005; (b) all possible ionization states at pH 7.0 ± 2.0 were generated with 

Ionizer; (c) the desalt option was activated; (d) tautomers were generated for all 

ionization states at pH 7.0 ± 2.0; (e) chiralities, when present, were determined from 

the 3D structure; and (f) one low-energy ring conformation per ligand was generated. 

When chirality was not defined, a maximum number of 32 stereoisomers were 

generated. Conformations were built with the Phase program, generating in vacuo a 

maximum number of 200 conformers per structure and using the default Phase 

options. 

Virtual Screening Workflow. Briefly, the VS workflow consisted of several steps 

that must be applied one after another (i.e., the output molecules of one step were the 

input molecules for the next step). Thus, the filters applied and sorted according their 

usage were: (1) an ADME/Toxicity prediction; (2) a structure-based 

antipharmacophore screening for removing PPARγ full agonist candidates; (3) a 

structure-based pharmacophore screening; and (4) an electrostatic/shape similarity 

analysis. 

The initial set of compounds was submitted to an ADME/Tox filter with the FAF-

Drugs2 program [36]. The aim of this step was to discard those molecules that could 

have poor ADME properties or were potentially toxic. Thus, the drug-like properties 

of a compound were evaluated by means of the Lipinski rule [37], and only one 

violation of the rule was allowed. This rule is based on a set of property values (i.e., 

the number of hydrogen bond donors and acceptors, the molecular weight and the 

logP) that were derived from a large number of drugs with good ADME characteristics 

[37]. Hence, molecules that pass the Lipinski rule are expected to be orally active in 

humans. Moreover, molecules containing toxic groups were filtered by using the 204 

substructures for “warhead” chelators, frequent hitters, promiscuous inhibitors and 

other undesirable functional groups available in the FAF-Drugs2 [36] tool. 

Molecules with appropriate ADME/Tox properties were then filtered by a 

structure-based antipharmacophore with the aim of discarding p

agonists. This filter removed from the sample those molecules that had at least one in 

vacuo-generated conformer that matched at least 4 out of 5 sites of the 

antipharmacophore. The fitting between the molecules and the pharmacophore was 

analyzed with the Phase program [33], using a site-matching tolerance of 2 Å for 

acceptor and donor sites and 2.5 Å for hydrophobic, aromatic and negative sites and 

applying the excluded volumes previously generated. The subset of molecules that did 

not match the antipharmacophore was then used to identify possible partial agonists. 

To do this, a second pharmacophore obtained from the common sites of known 

PPARγ partial agonists was used. Equivalent conditions were used for the 

pharmacophore-based searches. Molecules that had at least one in vacuo-generated 
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conformer and matched the 4 sites of the partial agonist pharmacophore were initially 

identified as putative PPARγ partial agonists. 

To find docking poses that were compatible with the partial agonist 

pharmacophore, the molecules identified as putative PPARγ partial agonists were 

docked to the ligand-binding site of 2Q5S. The 32 best docked poses predicted by the 

eHiTS v2009 program (SimBioSys Inc., Toronto, Canada; 

http://www.simbiosys.ca/ehits) [38] were filtered again with Phase through the partial 

agonist pharmacophore, using the same filtering options of the first pharmacophore 

matching, with the exception that now re-orientation of the poses was not allowed 

during the search (i.e., the score in place option was used). 

The poses that passed the pharmacophore and docking screenings were submitted 

to an electrostatic/shape similarity analysis, using the experimental poses of the 

PPARγ partial agonists crystallized at the structures 2G0H, 4PRG, 2Q5S, 2FVJ and 

2Q6S as queries. These five partial agonists are representative of each of the five 

clusters of PPARγ partial agonists defined in Table 4. This analysis was done with 

EON v2.0.1 (OpenEye Scientific Software, Inc., Santa Fe, New Mexico, USA; 

http://www.eyesopen.com) using the Electrostatic Tanimoto combo (ET_combo) score 

as similarity criteria. The ET_combo score is the sum of two calculations: the Shape 

Tanimoto (ST) score, which is a quantitative measure of three-dimensional overlap, 

where 1 corresponds to a perfect overlap, i.e., same shape, and the Possion-Boltzman 

Electrostatic Tanimoto (ET_pb) score that compares the electrostatic potential of two 

small molecules and ranges from 1 (identical potential) to negative values that result 

from the overlap of positive and negative charges. Molecules with an ET_pb score 

greater than 0.3 and an ST score greater than 0.5 were predicted to be potential PPARγ 

partial agonists by the VS workflow. 

Virtual Screening Workflow Validation. The ability of the VS workflow to 

identify PPARγ partial agonists was tested by applying it to a group of 135 known 

PPARγ full agonists (Supporting Information Table 1), 19 known PPARγ partial 

agonists (Supporting Information Table 2) and 3,122 decoys obtained from the DUD 

database [27]. The structures of the 135 full agonists and the 19 partial agonists were 

built with ChemDraw Ultra v11.0 (CambridgeSoft Corporation, Cambridge, MA, 

USA; http://www.cambridgesoft.com/) [39] and cleaned using LigPrep v2.3 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com). For each step of the 

VS workflow, an enrichment factor (EF) and a value for sensitivity (Se) and 

specificity (Sp) were calculated [40]. The EF was defined as the quotient of the 

fraction of active compounds in the sample that survived a particular VS step and the 

fraction of active compounds that were in the sample before applying this step. 

Therefore, the EF represents the ratio of the number of active compounds actually 

retrieved by a method compared with the number expected purely by chance. The 
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maximum EF value (EFmax) at each step was also estimated assuming only the 

known active compounds would survive at each step. Sensitivity (Se) describes how 

well the model correctly identifies active compounds, and it is calculated as the ratio 

between the number of active compounds that survived a particular VS step and the 

number of all active compounds that were in the sample before applying the VS step. 

Specificity (Sp) measures the correct assignment of inactive compounds, and it is 

calculated as the ratio between the number of inactive compounds that were discarded 

at a particular VS step and the number of all inactive molecules that were in the 

sample before applying the VS step. For the estimation of EF, EFmax, Se and Sp at 

the antipharmacophore step, the full agonist set was considered to be the set of active 

compounds. For the rest of the steps, the set of partial agonists was considered to be 

the active compounds. Global EF, EFmax, Se and Sp values for the entire VS process 

were also calculated using the number of active or inactive compounds that survived 

the entire VS workflow and the initial number of compounds before applying the VS 

procedure. 

Structural Similarity Analysis. To select a representative dataset of VS hits for 

testing their bioactivity, the molecules that survived the electrostatic/shape similarity 

filter were merged with a group of 19 known partial agonists (Supporting Information 

Table 2) and clustered with Canvas v1.2 (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com). MOLPRINT2D fingerprints [41] with a fingerprint 

precision of 32 bits were calculated for each molecule, and then a hierarchical 

clustering based on Tanimoto similarities was obtained. The number of clusters was 

defined using the Kelley criterion [42]. Clusters that did not contain any known partial 

agonists were defined as clusters with new scaffolds for PPARγ partial agonists, and 

ten molecules from ten different clusters were selected for further bioactivity tests. 

Reagents and Materials for the Biological Tests. The 10 selected compounds 

[ZINC00083676 (C1), ZINC00201868 (C2), ZINC00914339 (C3), ZINC02118312 

(C4), ZINC02128851 (C5), ZINC02156886 (C6), ZINC03846929 (C7), 

ZINC04040746 (C8), ZINC04085288 (C9), and ZINC08879322 (C10)] were 

purchased from InterBioScreen Ltd. (Moscow, Russia). Their purities were higher 

than 92% or 95%. FMOC-L-Leucine (FMOC) was purchased from Calbiochem 

(Merck, Darmstadt, Germany). Rosiglitazone (BRL) was kindly provided by 

GlaxoSmithKline (Middlesex, UK). The test compounds were dissolved in DMSO, 

aliquoted and kept frozen until use. Cell culture reagents were obtained from 

BioWhittaker (Verviers, Belgium). Bradford protein reagent was obtained from Bio-

Rad Laboratories (Life Sciences Group, Hercules, CA, USA). Insulin (Actrapid) was 

from Novo Nordisk (Bagsvaerd, Denmark). 2-deoxy-[H3]-glucose and ECL detection 

reagent were from Amersham Biosciences (Buckinghamshire, England). 
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Polarscreen PPARγ Competitive Assay. The PPAR ligand-binding competitive 

assay was performed with the PolarScreenTM PPARγ Competitor Assay Green 

according to the manufacturer‟s protocol. Briefly, the PPARγ LBD and the fluorescent 

PPARγ ligand form a complex with a high polarization value. Displacement of the 

fluorescent ligand by PPARγ ligands frees the fluormone in solution to tumble rapidly 

during its fluorescence lifetime, causing a low polarization value. The change in 

polarization value was used to determine the relative affinity of test compounds for the 

PPARγ LBD. Fluorescence polarization was measured using a POLARstar omega 

plate reader (BMG Labtech, Germany) at an excitation wavelength of 485 nm and an 

emission wavelength of 535 nm. Rosiglitazone, a compound with high affinity for 

PPARγ, was used as a positive control. Polarization values were plotted against the 

concentration of the test compound. To discard non-specific effects, DMSO was also 

tested at equivalent concentrations. The concentration of the test compound that 

resulted in a half-maximal shift in polarization value was defined as IC50. This value 

is a measure of the relative affinity of the test compound for the PPAR LBD. Curve 

fitting was performed using GraphPad Prism v4.0 (GraphPad Software, San Diego 

CA, USA; http://www.graphpad.com) following the program instructions. 

Dual-Luciferase Reporter Assay. The activity of overexpressed PPARγ in 

response to its agonists was assessed in HepG2 cells using a PPARγ reporter 

(SABiosciences CCS-3026L). The PPAR reporter is a mixture of a PPAR-responsive 

luciferase construct and a constitutively expressed Renilla construct (40:1). The 

PPAR-responsive luciferase construct encodes the firefly luciferase reporter gene 

under the control of a minimal (m)CMV promoter and tandem repeats of the PPAR 

transcriptional response element. This construct monitors both increases and decreases 

in the transcriptional activity of PPAR. The constitutively expressed Renilla construct 

encodes the Renilla luciferase reporter gene under the control of a CMV immediately 

early enhancer/promoter and acts as an internal control for normalizing transfection 

efficiency and monitoring cell viability. Cells were co-transfected with the PPAR 

reporter and negative control along with the PPARγ expression vector in a 96-well 

plate. After 24 hours of transfection, cells were treated with the total agonist 

rosiglitazone (1 μM), partial agonist FMOC (10 μM) or the selected experimental 

compounds (10 and 100 μM). The dual-luciferase assay was performed with the 

Biotek FLx800 Multi-Detection Microplate Reader using the Promega dual luciferase 

reporter kit (E1910). Promoter activity values are expressed as arbitrary units using a 

Renilla reporter for internal normalization. Experiments were done in at least 

triplicate, and results represent the relative luciferase activity normalized to the 

untreated control. Statistical analysis was carried out by one-way analysis of variance 

(ANOVA) with Dunnett‟s post-hoc test using GraphPad Prism v4.0. Differences were 

considered significant when P < 0.05* or P < 0.001**. 
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Cytotoxicity and Viability Assays of the Experimental Compounds in HepG2 

Cells. HepG2 cytotoxicity induced by the tested compounds was assessed by lactate 

dehydrogenase (LDH) leakage into the culture medium. Following a 24-h exposure to 

compounds C1-C10 (10 and 100 μM), the culture medium was aspirated and 

centrifuged at 3000 rpm for 5 min to obtain a cell-free supernatant. The activity of 

LDH in the medium was determined using a commercially available kit from QCA 

(Amposta, Spain). Aliquots of media and warm reagent were mixed in a 96-well plate 

(Falcon, 353075), and the decrease in absorbance was recorded using a microplate 

spectrophotometer system (Biochrom, UK). Results were analyzed with GraphPad 

Prism v4.0 and presented as LDH activity (mU/ml). 

An MTT test was used to assess viability. HepG2 cells, cultured at a density of 5.0 

× 104 in a 96-well plate in Dulbecco's modified Eagle's medium (DMEM), were 

treated with compounds C1-C10 (10 and 100 μM) for 24 hours. After the medium was 

changed, HepG2 cells were treated with 5 mg/ml MTT (Thiazolyl Blue Tetrazolium 

Bromide) solution (Sigma, M5655) for 4 hours. After cells were dissolved in DMSO, 

the level of formazane was analyzed by measuring the optical density at 570 nm 

against the optical density at 630 nm. Results were analyzed with GraphPad Prism 

v4.0 and are presented as the percent viability of control values. 

3T3-L1 Preadipocyte Cell Culture and Treatment. The 3T3-L1 preadipocyte 

cell line was used to evaluate the adipogenic activity and the stimulation of the insulin-

induced glucose uptake of selected compounds. 3T3-L1 pre-adipocytes were 

propagated and induced to differentiate in DMEM. Proliferating preadipocytes were 

maintained at low density in a culture medium (growth medium) that consisted of 

DMEM supplemented with 10% calf serum, 2 mM glutamine, 100 U/ml penicillin and 

100 µg/ml streptomycin. For the differentiation assay, 2-days post-confluent 

preadipocytes were treated with 200 nM insulin and 1 µM test compound for 6 days in 

DMEM supplemented with 10% fetal bovine serum (FBS). The treatment medium was 

changed every 2 days. Then, toxicity and triglyceride content were measured. For the 

glucose uptake assay, cells were differentiated with a differentiation cocktail as 

previously described43. Briefly, cells were treated with 0.25 µM dexamethasone, 0.5 

mM 3-isobutyl-methylxanthine, and 200 nM insulin for 2 days in DMEM containing 

10% FBS , then switched to the same media containing insulin for 2 more days, and 

then switched to the same media without insulin. Ten days after differentiation was 

induced, cells were treated with the test compounds (1 µM) for 3 more days and used 

for the glucose uptake assay. Cells were also grown in 48-well plates and exposed to 1 

µM of the selected compounds. Cellular viability was assessed by the neutral red assay 

[44]. 

Evaluation of the Adipogenic Activity of the Selected Compounds. Treated 

cells were rinsed twice with PBS, scraped into a 250-µl solution of 50 mM Tris-HCl, 1 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  3                                                     | 117 

mM EDTA and 1 mM b-mercaptoethanol and sonicated. The resulting cell lysates 

were used to determine the total triacylglyceride content, measured using the 

enzymatic glycerol-phosphate oxidase test, following the manufacturer‟s instructions 

(QCA, Amposta, Spain). Results were expressed as the mean ± SEM. The effects were 

assessed using a one-way ANOVA or Student‟s T-test. We used Tukey's Test of 

honestly significant differences to make pairwise comparisons. All calculations were 

performed using SPSS (IBM Corp., New York, USA). 

Glucose Uptake Assay. After the treatment of 3T3-L1 adipocytes cultured on 12-

well plates with the different compounds, the cells were serum-depleted for 3 hours, 

and 200 nM insulin or water (vehicle control) was added for 30 min. Glucose transport 

was determined by measuring the 2-deoxy-d-[3H]glucose uptake as previously 

described45. Protein content assessed by the Bradford method46 was used to 

normalize the glucose transport values. Each condition was run in triplicate. Results 

were expressed as the mean ± SEM. The effects were assessed using a one-way 

ANOVA or Student‟s T-test. We used Tukey's Test of honestly significant differences 

to make pairwise comparisons. All calculations were performed using SPSS. 

Docking of Novel PPARγ Partial Agonists. Docking studies of the PPARγ partial 

agonists C1, C5, C7, C8 and C9 were performed with the software Glide v5.6 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com) on the PPARγ 

crystal structure 2Q5S. For compound C7, an additional docking study was performed 

with the 2HFP structure. The binding site was defined using the Receptor Grid 

Generation panel with the default options. Extra-precision (XP) docking was selected 

for screening the ligands. We selected the flexible docking mode, meaning that Glide 

internally generated the conformations during the docking process. We did not request 

any constraints for docking. Each docking run recorded a maximum of ten poses per 

ligand that survived the post-docking minimization. GlideScore XP was used as the 

fitness function. The best docking poses for the novel PPARγ ligands were selected by 

taking into account not only the docking scores but also the results of the visual 

investigation of all docking poses. Maestro v9.2 and Glide XP Visualizer (Schrödinger 

LLC., Portland, USA; http://www.schrodinger.com) were used for analyzing and 

visually investigating the ligand-protein interactions of the docking poses. 
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Supporting Information 

Table S1. Smiles of the 135 PPARγ full agonists used in the VS validation. 

Title Smile 

ppar001 O=C(O)CCCCCCC/C=C/C=C/[C@@H](O)CCCCC 

ppar002 O=C(O)CCCCCCC[C@@H](O)\C=C\C=C\CCCCC 

ppar003 c1occc1C2=C(C(=O)OCC)C(=O)c(c23)cc(cc3)OC 

ppar004 COc(cc1)cc(c12)C(=O)C(C(=O)OCC)=C2c3ccccc3 

ppar005 O=C(O)CSc(n1)nc(Cl)cc1Nc2cccc(C)c2C 

ppar006 N#Cc1c(SC)cc(oc1=O)-c2ccc(cc2)OCCSC 

ppar007 N1C(=O)S[C@H](C1=O)Cc2ccc(cc2)OCC3(C)CCCCC3 

ppar008 O=C(O)CC[C@@H](O)\C=C\C=C\C/C=C/C/C=C/C/C=C/C/C=C/CC 

ppar009 CC(=O)/C=C(\C)N[C@H](C(=O)O)Cc1ccc(cc1)OCc2ccccc2 

ppar010 N1C(=O)S[C@H](C1=O)Cc(c2)ccc(c23)O[C@H](CC3)Cc4ccccc4 

ppar011 O=C(S1)NC(=O)/C1=C\c2ccc(cc2)OCCN(C)c3ccccn3 

ppar012 c1cccc(c1CC(=O)O)OCC[C@H](C(=C)N2CCC)Oc(c23)cccc3 

ppar013 CN[C@H](C(=O)O)Cc1ccc(cc1)OCCc2c(C)oc(n2)-c3ccccc3 

ppar014 COc(cc1)cc(c12)C(=O)C(CC(=O)OCC)=C2C34C[C@@H]5C[C@H](C3)C[C@H](C4)C5 

ppar015 c1cccc(c12)oc(n2)N(C)CCOc(cc3)ccc3[C@@H](C4=O)SC(=O)N4 

ppar016 c1cccc(c1CC(=O)O)OCC[C@H](C(=O)N2CCCC)Oc(c23)cccc3 

ppar017 c1cccc(c1CC(=O)O)OCC[C@@H](C(=O)N2CC(C)C)Oc(c23)cccc3 

ppar018 c1ccccc1C(\C)=N/OCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar019 n1ccccc1C(\C)=N/OCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar020 c1ncccc1C(\C)=N/OCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar021 c1cnccc1C(\C)=N/OCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar022 CN(C)[C@H](C(=O)O)Cc1ccc(cc1)OCCc2c(C)oc(n2)-c3ccccc3 

ppar023 O=C(S1)NC(=O)/C1=C\c2ccc(cc2)OCCN(C)c(n3)oc(c34)cccc4 

ppar024 c1cccc(c12)oc(n2)N(C)CCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar025 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCC 

ppar026 N1C(=O)O[C@@H](C1=O)CCCc2ccc(cc2)OCc3c(C)oc(n3)-c4ccccc4 

ppar027 CC(=O)N[C@@H](C(=O)O)Cc1ccc(cc1)OCCc2c(C)oc(n2)-c3ccccc3 

ppar028 c1ccccc1-c(n2)oc(C)c2CCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar029 CC[C@@](C(=O)O)(CC1)Oc(c12)cc(cc2)OCCCOc3c(Cl)cc(F)cc3 

ppar030 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCC=C 

ppar031 CO[C@@H](C(=O)O)Cc1ccc(cc1)OCCOc(cc2)ccc2-c3ccc(F)cc3 

ppar032 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCCC 

ppar033 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCC 

ppar034 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCO 

ppar035 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCOC 

ppar036 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCOC 

ppar037 c1ccccc1C(=O)\C=C(\C)N[C@@H](C(=O)N)Cc2ccc(cc2)OCc3ccccc3 
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ppar038 c1ccccc1C(=O)\C=C(\C)N[C@@H](C(=O)O)Cc2ccc(cc2)OCc3ccccc3 

ppar039 c1cccn1[C@@H](C(=O)O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

ppar040 CO[C@@H](C(=O)O)Cc1ccc(cc1)OCCOc(cc2)ccc2-c(cc3)ccc3CC 

ppar041 C1CCCN1[C@H](C(=O)O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

ppar042 N1C(=O)O[C@@H](C1=O)CCCc2ccc(cc2)OCc3c(C)sc(n3)-c4ccccc4 

ppar043 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCC4CCCC4 

ppar044 CC(=O)CCCCN1C(=O)[C@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar045 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCCCC 

ppar046 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCC(C)C 

ppar047 N1C(=O)O[C@@H](C1=O)CCCc2cc(OC)c(cc2)OCc3c(C)oc(n3)-c4ccco4 

ppar048 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCO 

ppar049 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCC[C@@H](C)O 

ppar050 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCF 

ppar051 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCCCF 

ppar052 c1ccccc1C(=O)\C=C(\C)N[C@@H](C(=O)OC)Cc2ccc(cc2)OCc3ccccc3 

ppar053 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCSCCC 

ppar054 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc(cc3)c(Cl)cc3C(C)(C)C 

ppar055 C1CCCCN1[C@@H](C(=O)O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

ppar056 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCC4CCCC4 

ppar057 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCC4CCCC4 

ppar058 CC(=O)CCCCCN1C(=O)[C@@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar059 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCCC 

ppar060 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCC(C)(C)C 

ppar061 NC(=O)CCCCCN1C(=O)[C@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar062 O\N=C(C)\CCCCN1C(=O)[C@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar063 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCCO 

ppar064 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCC(C)(C)O 

ppar065 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCCF 

ppar066 n1cccnc1N[C@@H](C(=O)O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

ppar067 CS(=O)(=O)N[C@@H](C(=O)O)Cc1ccc(cc1)OCCc2c(C)oc(n2)-c3ccccc3 

ppar068 Cc1ccc(C)n1[C@@H](C(=O)O)Cc2ccc(cc2)OCCc3c(C)oc(n3)-c4ccccc4 

ppar069 S1SCC[C@H]1CCCCC(=O)N(C)CCCOc(cc2)c(Cl)cc2CC(=O)O 

ppar070 CC(C)(C)Cc1cc(Cl)c(cc1)OCCCOc(c2)ccc(c23)O[C@@](C3)(C(=O)O)CC 

ppar071 O=C(O)Cn(cc1)c(c12)ccc(c2)OCCCOc(cc3)ccc3C(=O)c4ccc(F)cc4 

ppar072 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCC(F)(F)C 

ppar073 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCC(F)(F)C 

ppar074 N#CC(C)(C)CCCCN1C(=O)[C@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar075 c1ccccc1C(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCc4ccccc4 

ppar076 c1ccccc1C(=O)c2c(cccc2)N[C@H](C(=O)O)Cc3ccc(cc3)OCc4ccccc4 

ppar077 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCCCCC 

ppar078 CO\N=C(C)\CCCCN1C(=O)[C@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar079 S1SCC[C@@H]1CCCCC(=O)NCCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar080 c1ccccc1C(=O)C2=C(CCCC2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCc4ccccc4 
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ppar081 N1C(=O)O[C@H](C1=O)CCCc2ccc(cc2)OCc3c(C)oc(n3)-c(c4)ccc(c45)cccc5 

ppar082 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc(cc3)c(Cl)cc3C(F)(F)F 

ppar083 CC(C)[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc(c(Cl)cc3)cc3C(F)(F)F 

ppar084 S1SCC[C@H]1CCCCC(=O)N(C)CCCOc(cc2)c(Cl)cc2CC(=O)OC 

ppar085 c1ccccc1-c(cc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar086 c1ccccc1-c(cc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar087 CC(C)[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCOc3c(Cl)cc(cc3)OC(F)(F)F 

ppar088 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc3c(Cl)cc(cc3)OC(F)(F)F 

ppar089 O=C(O)[C@](C)(C1)Oc(c12)ccc(c2)OCCCOc3c(Cl)cc(cc3)OCC(F)(F)F 

ppar090 c1cccc(c1CC(=O)O)OCC[C@H](Oc(c23)cccc2)C(=O)N3CCCCCC(F)(F)C 

ppar091 c1ccccc1-c(cn2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar092 c1ccccc1-c(nc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar093 n1ccccc1-c(cc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar094 c1ncccc1-c(cc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar095 c1cnccc1-c(cc2)ccc2C(\C)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar096 c1cccc(c1CC(=O)O)OCC[C@@H](Oc(c23)cccc2)C(=O)N3CCCCCCCCCC 

ppar097 S1SCC[C@@H]1CCCCC(=O)N(C)CCOc(cc2)ccc2C[C@@H](C3=O)SC(=O)N3 

ppar098 O=C(O)C(C)(C)CCCCN1C(=O)[C@@H](Oc(c12)cccc2)CCOc(c3CC(=O)O)cccc3 

ppar099 SCC[C@@H](S)CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H](C2=O)SC(=O)N2 

ppar100 c1ccccc1C(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCC4(C)CCCCC4 

ppar101 c1ccccc1-c(cc2)ccc2C(\CC)=N/OCCOc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar102 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc3c(Cl)cc(cc3)OCC(F)(F)F 

ppar103 CC(C)[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc3c(Cl)cc(cc3)OC(F)(F)F 

ppar104 C1C[C@@](C)(C(=O)O)Oc(c12)cc(cc2)OCCCOc3c(Cl)cc(cc3)OCC(F)(F)F 

ppar105 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc3c(Cl)cc(cc3)SC(F)(F)F 

ppar106 CC[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc(c3CCC)ccc(c3)SC(F)(F)F 

ppar107 CC(C)(C)[C@](C1)(C(=O)O)Oc(c12)ccc(c2)OCCCOc(cc3)c(Cl)cc3CC(F)(F)F 

ppar108 c1ccccc1-c(cc2)ccc2C(\CCC)=N/OCCOc(cc3)ccc3C[C@H](C4=O)SC(=O)N4 

ppar109 
N#CC(=C1)C(=O)C(C)(C)[C@@H](CC2)[C@]1(C)C(=CC3=O)[C@]2(C)[C@@](C)(CC4) 

[C@@H]3[C@H]([C@@]45C(=O)O)CC(C)(C)CC5 

ppar110 c1ccccc1C(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCCc(nc4)ccc4CC 

ppar111 N1C(=O)S[C@@H](C1=O)c2ccc(cc2)OCCCOc(c3CCC)ccc(c3)Oc4ccc(F)cc4 

ppar112 O=C(O)[C@](C(F)(F)F)(C1)Oc(c12)ccc(c2)OCCCOc(cc3)c(Cl)cc3CC(F)(F)F 

ppar113 CCC(C(=O)O)(CC)Cc1ccc(cc1)OCCCOc2c(Cl)cc(cc2)Oc3ccc(F)cc3 

ppar114 COc(c1)cc(OC)cc1\C=C(\C(=O)O)c2ccc(cc2)Oc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar115 c1ccccc1C(=N/N)\c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c4ccccn4 

ppar116 COc(c1)cc(OC)cc1\C=C(\C(=O)OC)c2ccc(cc2)Oc(cc3)ccc3/C=C4/C(=O)NC(=O)S4 

ppar117 COc(c1)cc(OC)cc1C[C@H](C(=O)OC)c2ccc(cc2)Oc(cc3)ccc3/C=C4/C(=O)NC(=O)S4 

ppar118 c1ccccc1[C@H](C(=O)O)Cc2ccc(cc2)OCCCOc3c(Cl)cc(cc3)Oc4ccc(F)cc4 

ppar119 COc(c1)cc(OC)cc1C[C@@H](C(=O)OC)c2ccc(cc2)Oc(cc3)ccc3C[C@@H](C4=O)SC(=O)N4 

ppar120 c1ccccc1Oc(cccc2)c2N[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar121 c1cccc(C2=O)c1-c(c23)cccc3N[C@@H](C(=O)O)Cc4ccc(cc4)OCCN(C)c(n5)oc(c56)cccc6 

ppar122 c1ccccc1C(=O)c2c(cccc2)C[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 
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ppar123 c1ccccc1C(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar124 c1ccccc1C(=O)c2c(cccc2)O[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar125 c1ccccc1CC(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar126 c1ccccc1C(=O)c2c(cccc2)S[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar127 
CC(=O)SCC[C@@H](SC(=O)C)CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H](C2=O)SC(=O) 

N2 

ppar128 c1cccc(C2=O)c1C(=O)c(c23)cccc3N[C@@H](C(=O)O)Cc4ccc(cc4)OCCN(C)c(n5)oc(c56)cccc6 

ppar129 
O=C(O)CCC(=O)SCC[C@@H](S)CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H](C2=O)SC(=O) 

N2 

ppar130 
[NH4]CC(=O)SCC[C@@H](SC(=O)C)CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H](C2=O)SC 
(=O)N2 

ppar131 c1ccccc1S(=O)(=O)c(ccc2)cc2N[C@@H](C(=O)O)Cc3ccc(cc3)OCCN(C)c(n4)oc(c45)cccc5 

ppar132 
c1ccccc1C(=O)c2c(cccc2)N[C@@H](C(=O)O)Cc3ccc(cc3)OCC[C@@H](CC4)Oc(c45)c(C) 

c(C)c(O)c5C 

ppar133 
[NH4]CC(=O)SCC[C@@H](SC(=O)C[NH4])CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H] 
(C2=O)SC(=O)N2 

ppar134 
O=C(O)CCC(=O)SCC[C@@H](SC(=O)C)CCCCC(=O)N(C)CCOc(cc1)ccc1C[C@@H](C2=O) 

SC(=O)N2 

ppar135 
O=C(O)CCC(=O)SCC[C@@H](SC(=O)CCC(=O)O)CCCCC(=O)N(C)CCOc(cc1)ccc1C 

[C@@H](C2=O)SC(=O)N2 

 

Table S2. Smiles of the 19 PPARγ partial agonists used in the VS validation. 

Title Smile 

14 O=C(O)[C@H](C)Oc(ccc1)cc1Cc2c(C)n(c(c23)ccc(c3)OC(F)(F)F)C(=O)c4ccc(cc4)OC 

15 O=C(O)[C@H](C)Oc(c1)ccc(Cl)c1Cn(c(c23)cc(cc3)OC(F)(F)F)c(C)c2-c4noc(c45)cc(cc5)OC 

16 CC(C)(C)c1ccc(cc1)-n(c(c23)cccc3)c(C(=O)O)c2Oc(cc4C(F)(F)F)ccc4 

17 FC(F)(F)c1cc(C(F)(F)F)cc(c1)S(=O)(=O)Nc(cc2-c3cccs3)n(n2)-c4ccc(F)cc4 

1WM0 c1cc(Cl)cc(Cl)c1C(=O)Nc(c2C(=O)O)ccc(c2)OCN/C=C\C 

2G0G s1cccc1-c2cc(NS(=O)(=O)c(cc3F)ccc3)n(n2)-c4ccc(F)cc4 

2HFP c1ccccc1S(=O)(=O)NC(=O)c(n(Cc(cc2C(F)(F)F)ccc2)c(c34)cccc4)c3-c5ccc(cc5)OC 

2Q61 c1ccccc1Sc2c(C(=O)O)n(c(c23)ccc(Cl)c3)Cc4ccccc4 

2Q6R c1ccccc1Sc2c(C(=O)O)n(c(c23)ccc(Cl)c3)Cc4cc(OC)ccc4 

amg-131 c1cc(Cl)cc(Cl)c1C(=O)Nc(c2C(=O)O)ccc(c2)Oc3ncccn3 

fk-614 CCCCCS(=O)(=O)NC(=O)c(c1)ccc(c12)nc(C)n2Cc3c(Cl)cc(Cl)cc3 

FMOC CC(C)C[C@@H](C(=O)O)NC(=O)OCC(c(c-12)cccc2)c3c1cccc3 

gw0072 
c1ccccc1CN(Cc2ccccc2)C(=O)C[C@@H](C3=O)S[C@@H](CCCCCCC)N3CCCCc(cc4) 

ccc4C(=O)O 

kr-62980 c1ccccc1C2=C(C(=O)OCC)/C(=[N+]([O-])\CC)c(c23)cc(cc3)OCCN4CCOCC4 

Metaglidasen CC(=O)NCOC(=O)[C@@H](Oc(cc1C(F)(F)F)ccc1)c2ccc(Cl)cc2 

nTZDpa c1ccccc1Sc2c(C(=O)O)n(c(c23)ccc(Cl)c3)Cc4ccc(Cl)cc4 

pa-082 COc(cc1)c(OC)cc1Cc(c(c23)cc(OC)c(c3)OC)ncc2CN(CC4)CCC4c5c(OC)cccc5 

pat5a O=C(S1)NC(=O)/C1=C\c2ccc(cc2)OC[C@H]3CCCN3c4ccccn4 

s-26948 COC(=O)C(C(=O)OC)Cc1ccc(cc1)OCCn2c(=O)sc(c23)cc(cc3)C(=O)c4ccccc4 
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CHAPTER 4 

IDENTIFICATION OF NATURAL EXTRACTS WITH 

ANTIDIABETIC PROPERTIES THAT CONTAIN PPARγ PARTIAL 

 

ABSTRACT 

Natural extracts have played an important role in the prevention and treatment of 

diseases and are important sources for drug discovery. However, to be effectively used 

in these processes, natural extracts must be characterized through the identification of 

their active compounds and their modes of action. In this paper, from an initial set of 

29,779 natural products that are annotated with their natural source and using a 

previously developed virtual screening procedure (carefully validated experimentally), 

we have predicted as potential peroxisome proliferators-activated receptor gamma 

(PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic 

activity (these molecules are from the plants Achyrocline satureoides, Andrographis 

paniculata, Angelica keiskei, Cryptolepis sanguinolenta, Harungana 

madagascariensis, Salvia miltiorrhiza and Scutellaria baicalensis; the fungi 

Aspergillus terreus and Hericium erinaceum; and the marine species Dysidea villosa 

and Fucus vesiculosus). Six of these molecules are similar to molecules with described 

antidiabetic activity but whose mechanism of action is unknown. Therefore, it is 

plausible that these 12 molecules could be the bioactive molecules responsible, at least 

in part, for the antidiabetic activity of the extracts containing them. In addition, we 

have also identified as potential PPARγ partial agonists 10 molecules from 16 plants 

with undescribed antidiabetic activity but that are related (i.e., they are from the same 

genus) to plants with known antidiabetic properties. These plants (e.g., Annona 

purpurea, Artocarpus gomezianus, Helichrysum stenopterum, Melicope ptelefolia, 

Murraya paniculata, Salvia eriophora, Salvia lanigera, Salvia prionitis, Swertia 

hookeri and Tephrosia watsoniana) represent a new source of potential antidiabetic 

compounds. None of the 22 molecules that we predict as PPARγ partial agonists show 

chemical similarity with a group of 211 known PPARγ partial agonists obtained from 

the literature. Consequently, these molecules are lead-hopping candidates for the 

development of new PPARγ partial agonists. 
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Introduction 

Since ancient times, natural products (NPs) have played an important role in the 

treatment of type 2 diabetes mellitus (T2DM) [1]. Plants are one of the most important 

sources of antidiabetic compounds. Thus, 656 species from 437 genera, representing 

111 plant families, with antidiabetic properties have been identified [1]. The plant 

families most studied as a result of their confirmed antidiabetic effects include 

Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, 

Rosaceae, Euphorbiaceae and Araliaceae [2]. 

Although plant extracts have been used for the treatment of T2DM for hundreds of 

years in India [3,4], China and other parts of the world, more research is needed for 

the identification of their active compounds and their mode of action. Some of the 

active principles associated with the antidiabetic activity of plant extracts are 

alkaloids, saponins, xanthones, flavonoids and nonstarch polysaccharides [1]. Despite 

the wide array of these active principles with a demonstrated antidiabetic activity, to 

date, metformin is the only drug approved for treatment of T2DM derived from a 

medicinal plant [5]. Therefore, the identification of the active compounds and the 

modes of action from plants traditionally used in the treatment of T2DM is an 

important issue for the discovery of new antidiabetic drugs and for the validation, 

standardization and rational use of traditional herbal remedies [1]. 

Numerous mechanisms of antidiabetic actions have been proposed for several plant 

extracts [1,6] and some hypotheses relate their effects to the increase of the insulin-

stimulated glucose uptake. One target of interest for antidiabetic drugs is peroxisome 

proliferators-activated receptor gamma (PPARγ). PPARγ is a member of the nuclear 

receptors superfamily that regulate the gene expression of proteins involved in the 

control of glucose and lipid metabolism [7]. Indeed, the importance of PPARγ in 

regulating the insulin sensitivity has motivated research groups in both academia and 

the pharmaceutical industry to devote increasing efforts toward developing synthetic 

PPARγ agonists, which could be of therapeutic use in patients affected by T2DM [8]. 

Thiazolidinediones (TZDs) are one important class of synthetic agonists of PPARγ. 

TZDs are antidiabetic agents currently used in the treatment of T2DM that target 

adipose tissue and improve insulin sensitivity. Despite the clinical benefit of these 

drugs, the use of TZDs has been associated with adverse effects including weight gain, 

increased adipogenesis, renal fluid retention and possible increased incidence of 

cardiovascular events [9,10]. Therefore, new PPARγ ligands with enhanced 

therapeutic efficacy and reduced adverse effects are needed. A promising new class of 

such ligands is selective PPARγ modulators (i.e., SPPARγMs) [9,10]. These 

compounds act as partial agonists of PPARγ and display different binding properties in 

comparison to full agonists [11]. Several plant extracts have been found to increase 

insulin-stimulated glucose uptake through the action of PPARγ with no or little effect 
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on adipocyte differentiation [6]. Thus, PPARγ partial agonists from natural extracts 

are promising candidates for the treatment of T2DM. 

Based on the hypothesis that it would be possible to identify PPARγ partial 

agonists among medicinal extracts previously used as hypoglycemic agents, the goal 

of the present work was to find natural extracts with known antidiabetic activity that 

contain at least one molecule that we predict as a PPARγ partial agonist through a 

virtual screening (VS) workflow that has previously been carefully validated 

experimentally [12]. Our results provide new information about potential active 

molecules of natural extracts with antidiabetic properties and their mode of action, i.e., 

the increase of the insulin-stimulated glucose uptake through the action of PPARγ. We 

also suggest plants with undescribed antidiabetic activity that may contain PPARγ 

partial agonists and are related to plants with known antidiabetic activity. These plants 

represent a potential new source of antidiabetic extracts. In addition, the new PPARγ 

partial agonists that we have predicted are chemically different from known PPARγ 

partial agonists and could be used as lead-hopping candidates for the development of 

new antidiabetic drugs. 

Results and Discussion 

Virtual Screening Description, Validation and Application. We used a slightly 

modified version of a VS workflow that was previously developed and validated 

experimentally [12] to identify PPARγ partial agonists from a large in-house database 

of compounds. Briefly, the VS used consists of a combination of two pharmacophore 

modeling methods (i.e., one of them to discard potential PPARγ full agonists and the 

second one to identify PPARγ partial agonists), a protein-ligand docking and an 

electrostatic and shape similarity search. The discriminatory power of the VS 

workflow to identify PPARγ partial agonists was evaluated by applying it to a group of 

211 known PPARγ partial agonists obtained from the literature and to 3,122 decoys 

obtained from the DUD database [13]. See Table 1 for data about how many of these 

molecules survived each VS step. Because we were interested in discovering novel 

PPARγ partial agonists but not full agonists, we developed an initial structure-based 

pharmacophore, called the antipharmacophore, to exclude possible full agonists. We 

used this strategy because full agonists present more clearly defined features than 

partial agonists. Although both types of agonists interact with the ligand-binding 

domain of PPARγ through several hydrophobic contacts, their mode of binding, and 

thus their effects, are different [11]. Full agonists are characterized by making a 

hydrogen-bond network with Ser289, Tyr473, His323 and His449 PPARγ residues, but 

most partial agonists form a hydrogen bond with Ser342 [11]. In total, 135 known 

PPARγ partial agonists and 2,204 decoys survived the antipharmacophore step, i.e., 

they were not identified as potential PPARγ full agonists and served as the input 

molecules in the next step (Table 1). From the molecules that survived the 
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antipharmacophore step, 111 known PPARγ partial agonists and 964 decoys were 

identified as PPARγ partial agonists by our partial agonist pharmacophore (Table 1). 

To find docking poses that were compatible with the partial agonist pharmacophore, 

the compounds that had at least one conformer, generated in vacuo, that matched with 

the partial agonist pharmacophore were also docked to the PPARγ structure from 

2Q5S. The best docking poses were then matched again to the partial agonist 

pharmacophore, identifying that 72 out of 111 partial agonists and 382 out 964 decoys 

that survived the previous step have at least one docked pose that simultaneously 

accomplished the following: (a) compatibility with the PPARγ ligand-binding site; and 

(b) possession of functional groups that match the 3D location of the sites of the 

partial agonists pharmacophore. Finally an electrostatic and shape similarity analysis 

was applied. Using the experimental poses of five known PPARγ partial agonists as 

queries, 65 out of 72 partial agonists and 102 out 382 decoys were identified as partial 

agonist candidates by this VS step (Table 1). Overall, our VS workflow identified as 

partial agonists 65 and 102 out of the initial 211 and 3,122 molecules labeled as partial 

agonists and decoys, respectively. Therefore, the Enrichment Factor (EF) of the 

process was 6.15 (a 38.92% of 15.80 that would correspond to the highest possible EF 

value) and the sensitivity (Se) and the specificity (Sp) were 30.81% and 94.99%, 

respectively. The high Sp and moderate Se of our procedure reflect the correct 

assignment of inactive compounds and the loss of potential partial agonists, 

respectively. However, because of the high number of initial compounds and the 

difficulties in differentiating partial from full agonists, we preferred a specific, but less 

sensible, VS workflow. This VS workflow therefore seems adequate to identify 

molecules with antidiabetic properties that could act as PPARγ partial agonists.  

Table 1. Validation and application of the Virtual Screening (VS) workflow. A dataset of 

211 known PPARγ partial agonists and 3,122 decoys extracted from the DUD database were 

used to validate our VS workflow. Once the VS was validated, it was applied to a dataset of 

29,779 natural products (NPs). The numbers represent the number of compounds from each set 

that survived each step when applied sequentially. 

 

Set of 

Compou

nds 

Initial 

Nº of 

Compo

unds 

Structure-based pharmacophore screening 
Electrostatic 

shape 

similarity 

analysis 

anti pharmacophore partial agonist pharmacophore 

in vacuo 

conformations 

in vacuo 

conformations 

docking 

poses 

Partial 

Agonists 
211 135 111 72 65 

Decoys 3,122 2,204 964 382 102 

NP 

database 
29,779 21,705 2,899 935 65 
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Once the VS workflow was validated, it was applied to an in-house database 

formed by 29,779 NPs that contained an annotation of their natural source. After 

applying the VS workflow described above, a group of 65 PPARγ partial agonist 

candidates were ultimately identified (see Table 1 for viewing the number of 

molecules that survived each step of the VS workflow). 

Virtual Screening Hits in Natural Extracts with Known Antidiabetic Activity. 

According to the information available in our in-house NP database, the 65 molecules 

that were predicted by the VS workflow as potential PPARγ partial agonists have been 

isolated from 74 different natural sources. Interestingly, a systematic bibliographic 

search of PubMed (http://www.pubmed.org) revealed that 11 out of these 74 natural 

extracts were described previously as having antidiabetic activity (see Table 2). These 

11 extracts contained 12 molecules that we predict to be PPARγ partial agonists, 

therefore, it is plausible that they could contribute to the observed antidiabetic activity 

of their corresponding extracts. In fact, a search with SciFinder 

(http://www.cas.org/products/sfacad) revealed that 6 out of these 12 natural 

compounds are extremely similar to molecules for which antidiabetic properties have 

already been described (Table 2 and Figure 1), although no mechanism of action has 

been suggested for them. This finding validates our methodology and suggests that the 

mode of action of these molecules could be through PPARγ. The remaining 6 natural 

compounds not identified previously as antidiabetic molecules represent new 

molecules with this activity. The most significant compounds found in these 11 

antidiabetic extracts will be discussed below: 

 The genus name Salvia derives from the Latin salvere meaning “to save” 

perhaps referring to the healing properties of plants from this genus. 

Leafs, roots or flowers from species of Salvia, like Salvia officinalis [14], 

Salvia miltiorrhiza (a regional Chinese variety) [15], Salvia fruticosa [16] 

and Salvia lavandulifolia [17] have been used traditionally worldwide to 

treat diabetes [1]. The molecules deoxyneocryptotanshinone and 

miltionone I, which are found in Salvia miltiorrhiza extracts (Table 2), 

were predicted by our VS as PPARγ partial agonists, and they are 

extremely similar to the main lipophilic diterpene compounds from 

Danshen (i.e., the dried root of Salvia miltiorrhiza), and in particular to 

tanshinone IIA (see Figure 1A for a comparison of the three structures). 

Tanshinone IIA enhances low-dose insulin-mediated tyrosine auto-

phosphorylation of the insulin receptor β-subunit [18]. Although Salvia 

miltiorrhiza extracts have been shown to have anti-atherosclerotic and 

antidiabetic properties [15], there is not any evidence that relates the 

antidiabetic action of the extracts from Salvia miltiorrhiza with PPARγ. 

However, it is known that extracts from the leaves of Salvia officinalis 

activate PPARγ [6]. Deoxyneocryptotanshinone and miltionone I 
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molecules may be useful for the development of a new class of specific 

insulin receptor activators that combine this action with the action of 

PPARγ partial agonists. In addition, we have predicted as PPARγ partial 

agonists three extra molecules from other extracts of Salvia whose species 

have never been described as antidiabetic: (a) sanigerone from Salvia 

lanigera; (b) 12-hydroxysapriparaquinone from Salvia prionitis and 

Salvia eriophora and (c) prionitin from Salvia prionitis (Table 3). These 

molecules are new candidates of PPARγ partial agonists. 

 The 2',5,6'-trihydroxy-6,7,8-trimethoxyflavone that is isolated from the 

roots of four species of plants of the genus Scutellaria (Scutellaria 

baicalensis, Scutellaria adenostegia, Scutellaria alpina and Scutellaria 

ramosissima), was also identified as a PPARγ partial agonist in our VS 

procedure (Table 2). Extracts from Scutellaria baicalensis are prescribed 

in Kampo medicines in Japan [1], and they are reported to enhance the 

antidiabetic activity of metformin [19]. Baicalein (5,6,7-

trihydroxyflavone), a related compound of the flavone hit, isolated from 

the roots of Scutellaria baicalensis (see Figure 1B for a comparison of 

both structures), is an α-glucosidase inhibitor [20]. Scutellaria baicalensis 

extracts may therefore contain more than one active component with 

different modes of antidiabetic action. 

 Cryptolepis sanguinolenta, a shrub indigenous to West Africa, has been 

employed by traditional healers in the treatment of various fevers, 

including malaria [21]. Cryptolepine, an indoloquinolone alkaloid isolated 

from Cryptolepis sanguinolenta, significantly lowers glucose when given 

orally in a mouse model of diabetes [5], and its antihyperglycemic activity 

has been demonstrated by several cryptolepine analogs [22]. 

Cryptolepicarboline is a cryptolepine analog isolated from Cryptolepis 

sanguinolenta [21] (see Figure 1C for a comparison of both structures) 

that we predict as a PPARγ partial agonist (see Table 2). This result 

suggests that the increase of glucose uptake caused by cryptolepine and 

analogous compounds could therefore be mediated by the action of 

PPARγ. 
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Figure 1. Chemical comparison between molecules that we predict as PPARγ partial 

agonists and molecules with described antidiabetic activity. Each row represents the 

comparison of the 2D chemical structure between a molecule predicted as PPARγ partial 

agonists trough our VS workflow and a similar molecule that have been described to present 

antidiabetic activity. 
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 Dysidine is a sesquiterpene quinone from the marine sponge Dysidea 

villosa that greatly promotes glucose uptake in 3T3-L1 cells and shows 

strong insulin-sensitizing activity [23]. The results of our VS procedure 

suggest that an analog of dysidine isolated from Dysidea villosa (see 

Figure 1D for a comparison of both structures) may be a PPARγ partial 

agonist (Table 2). Although it has been suggested that dysidine exhibits 

its cellular effects through the activation of the insulin pathway, possibly 

through the inhibition of protein tyrosine phosphatases [23], it is possible 

that the mode of action of dysidine and analogous molecules could also be 

through the action of PPARγ, or that different components of a Dysidea 

villosa extract show antidiabetic activity through different mechanisms. 

Dysidine and analogous molecules are therefore potential lead compounds 

for the discovery of new antidiabetic compounds. 

 Xanthoangelol F from the Japanese plant Angelica keiskei significantly 

enhances glucose uptake without activating the transactivation activity of 

PPARγ [24]. This agrees with the results of our VS workflow that suggest 

that xanthoangelol F acts as a PPARγ partial agonist (Table 2). This 

compound may therefore belong to the interesting group of PPARγ partial 

agonists that stimulate glucose uptake without promoting the 

transactivation activity of PPARγ and avoid some of the problematic side 

effects of PPARγ full agonists [25]. 

 The remaining 6 molecules predicted as PPARγ partial agonists through 

our VS workflow that belong to extracts with described antidiabetic 

properties (see Table 2) are: (a) 7-hydroxy-3,5,8-trimethoxyflavone from 

Achyrocline satureoides; (b) 5-hydroxy-7,8,2',3'-tetramethoxyflavone 

from Andrographis paniculata; (c) 2,4,6,2',6'-pentamethoxybiphenyl 

isolated from Fucus vesiculosus; (d) hericerin from Hericium erinaceum; 

(e) the molecule with CAS number 78279-81-9 from Aspergillus terreus; 

and (f) bazouanthrone from Harungana madagascariensis. Our results 

suggest that these molecules could be PPARγ partial agonists and that 

extracts containing these molecules could stimulate glucose uptake 

through the action of PPARγ. This information is novel and relevant 

because it is the first time that antidiabetic properties for these molecules 

have been suggested.  
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Table 2. Natural extracts with described antidiabetic activity that contain one molecule that is 

predicted to be a PPARγ partial agonist by our virtual screening protocol (identified by their 2D 

structure and, when available, their common name or CAS number). The bibliographic 

references for each extract are split in three columns where (a) the fifth column reports papers 

that describe the purification of each molecule from the corresponding extract; (b) the sixth 

column reports papers that describe the antidiabetic activity of the corresponding extract; and (c) 

the seventh column reports papers that describe the antidiabetic activity of the corresponding 

molecule or similar molecules (when available). The second column represents the number of 

the cluster that each molecule belongs when they were compared with a group of 211 synthetic 

PPARγ partial agonists. 

Molecule 

CAS number or 

Name 

Clus

-ter 
Extract 

Kingdom 

Family 

Ref. 

Isolation 

Molecule 

from 

Extract 

Ref. 

Antidia

betic 

Extract 

Ref. 

Antidia

betic 

Molecul

e 

 
7-hydroxy-3,5,8-

trimethoxyflavone 

8 
Achyrocline 

satureoides 

Plantae 

Asteracea

e 

[35] [36] - 

 
5-hydroxy-7,8,2',3'-

tetramethoxyflavone 

8 
Andrographis 

paniculata 

Plantae 

Acanthace

ae 

[37,38] [39] - 

xanthoangelol F 

7 
Angelica 

keiskei 

Plantae 

Apiaceae 
[40,41] [21] [21] 

 
78279-81-9 

7 
Aspergillus 

terreus 

Fungi 

Trichoco

maceae 

[42] [43] - 

 
Cryptolepicarboline 

24 
Cryptolepis 

sanguinolenta 

Plantea 

Apocynac

eae 

[17,44] [19] [19] 
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1 Dysidea villosa 

Animalia 

Dysideide

a 

[45] [20] [20] 

 
2,4,6,2',6'-

pentamethoxybiphenyl 

8 
Fucus 

vesiculosus 

Chromalv

eolata 

Fucaceae 

[46] [47] - 

 
bazouanthrone 

3 

Harungana 

madagascarien

sis 

Plantae 

Hypericac

eae 

[48] [49] - 

 hericerin 

7 
Hericium 

erinaceum 

Fungi 

Hericiace

ae 

[50] [51] - 

 
deoxyneocryptotanshi

none 

2 
Salvia 

miltiorrhiza 

Plantae 

Lamiacea

e 

[52] [11] [14] 

 
miltionone I 

2 
Salvia 

miltiorrhiza 

Plantae 

Lamiacea

e 

[53] [11] [14] 

 
2',5,6'-trihydroxy-

6,7,8-

trimethoxyflavone 

8 
Scutellaria 

baicalensis 

Plantae 

Lamiacea

e 

[54] [15] [55] 

Taking into account the fact that extracts from closer species of the same genus may 

share a high number of components, we also look for species that contain a molecule 

that we predict as a PPARγ partial agonist and, although they have been not described 

previously as antidiabetic, they are related (i.e., they belong to the same genus) to 

species with known antidiabetic properties. Thus, we identified 10 molecules isolated 

from 16 different plants, such as Acradenia franklinii, Annona purpurea, Artocarpus 

gomezianus, Euodia lunuankenda, Evodia elleryana, Helichrysum mixtum, 

Helichrysum odoratissimum, Helichrysum stenopterum, Melicope ptelefolia, Melicope 

simplex, Murraya paniculata, Salvia eriophora, Salvia lanigera, Salvia prionitis, 
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Swertia hookeri and Tephrosia watsoniana (Table 3), whose extracts could show 

antidiabetic properties mediated by the action of PPARγ. For example, the 1,3,5,8-

tetramethoxy-9H-xanthen-9-one from Swertia hookeri was identified as a PPARγ 

partial agonist by our VS (see Table 3). However, neither the molecule nor an extract 

from this species has been identified previously as an antidiabetic agent. Nevertheless, 

the whole plants of Swertia japonica and Swertia chirayita have been reported to 

exhibit hypoglycemic effects by oral administration, and the xanthone constituents, 

bellidifolin and methylswertianin, have been isolated as active constituents [26-28]. 

Methylswertianin and bellidifolin are molecules highly similar to the 

tetramethoxyxanthon from Swertia hookeri that we identified as a PPARγ partial 

agonist (see Figure 1E for a comparison of their structures). Our results therefore 

suggest that the antidiabetic action of Swertia species could be mediated at least in part 

by PPARγ. 

The 22 molecules from Tables 2 and 3 that we predict to be PPARγ partial agonists 

are also interesting. To compare their chemical structures with known PPARγ partial 

agonists, we merged their structures with 211 structures of known PPARγ partial 

agonists obtained from the literature. The resulting set was classified into 26 clusters 

according to structure similarity. The 22 NP hits of our VS were classified into 12 

clusters. None of these clusters contained any of the 211 known PPARγ partial 

agonists that were previously merged with the VS hits. Thus, these 22 predicted 

PPARγ partial agonists represent 12 different chemical scaffolds that are different 

from the ones present in known synthetic PPARγ partial agonists. Therefore, these 

scaffolds are lead-hoping candidates for searching for new PPARγ partial agonists. 
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Table 3. Natural extracts that contain one molecule predicted to be a PPARγ partial agonist 

by our VS protocol and that are related to natural extracts that are described to have antidiabetic 

activity. Table shows the natural extracts (i.e., third column), the VS hits that have been purified 

from them (identified by their 2D structure and, when available, their common name or CAS 

number) and that are the related extracts with described antidiabetic activity (i.e., sixth column). 

The bibliographic references for each extract are split in three columns where (a) the fifth 

column reports papers that describe the purification of each molecule from the corresponding 

extract (i.e., ref.1); (b) the seventh column reports papers that describe the antidiabetic activity 

of the related extract (see sixth column, ref.2); and (c) the eighth column reports papers that 

describe the antidiabetic activity of the corresponding or similar molecules when available (i.e., 

ref.3). The second column represents the number of the cluster to which each molecule belongs 

when they were compared with a group of 211 synthetic PPARγ partial agonists. 

 

Molecule 

CAS number or 

Name 

Clu

ster 
Extract 

Kingdom 

Family 

Ref.

1 

Antidiabetic 

Extract 

Ref. 

2 

Ref. 

3 

 
7-hydroxydehydro- 

thalicsimidine 

12 
Annona 

purpurea 

Plantae 

Annonacea

e 

[56] 
Annona 

squamosa 
[57] - 

 
artocarpin 

7 
Artocarpus 

gomezianus 

Plantae 

Moraceae 
[58] 

Artocarpus 

heterophyllus 
[59] - 

 
6-O-Desmethy-

lauricepyron 

4 

Helichrysum 

stenopterum 

Plantae 

Asteraceae 

[60] 

Helichrysum 

plicatum 
[61] - 

Helichrysum 

odoratissimu

m 

[62] 

Helichrysum 

mixtum 
[60] 

Helichrysum 

graveolens 

 
31367-55-2 

5 

Melicope 

ptelefolia 

Plantae 

Rutaceae 
[63] 

Evodia 

officinalis 
[64] - 

Melicope 

simplex 

Plantae 

Rutaceae 
[65] 
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- 

9 
Murraya 

paniculata 

Plantae 

Rutaceae 
[66] 

Murraya 

koeingii 
[67] - 

 
sanigerone 

2 
Salvia 

lanigera 

Plantae 

Lamiaceae 
[68] 

Salvia 

lavandulifoli

a 

[13] - 

 
12-hydroxysapri-

paraquinone 

2 

Salvia 

prionitis 
Plantae [69] 

Salvia 

officinalis 
[10] - 

Salvia 

eriophora 

Plantae 

Lamiaceae 
[70] 

 
prionitin 

11 
Salvia 

prionitis 

Plantae 

Lamiaceae 
[71] 

Salvia 

fruticosa 
[12] - 

 
1,3,5,8-tetramethoxy-

9H-xanthen-9-one 

8 
Swertia 

hookeri 

Plantae 

Gentianace

ae 

[72] 

Swertia 

punicea 
[23] [23] 

Swertia 

japonica 
[24] [73] 

Swertia 

chirayita 
[25] - 

Swertia 

paniculata 
[74] - 

 
nitenin 

10 
Tephrosia 

watsoniana 

Plantae 

Fabaceae 
[75] 

Tephrosia 

purpurea 
[76] - 
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Conclusion 

We have applied an experimentally validated VS workflow based on (a) two structure-

based pharmacophores, (b) protein-ligand docking and (c) an electrostatic/shape 

similarity analysis to identify NPs that may be novel scaffolds for the discovery of 

new PPARγ partial agonists. Thus, from an initial set of 29,779 NPs that are annotated 

with their natural source, we predict 22 molecules to be potential PPARγ partial 

agonists. A subset of 12 of these molecules are present in 11 natural extracts with 

known antidiabetic activity and 10 of them are present in extracts related (i.e., they are 

from species of the same genus) to plants with known antidiabetic activity. None of 

the 22 hits show chemical similarity with 211 known PPARγ partial agonists obtained 

from the literature and, therefore, are new chemical scaffold candidates for the 

development of PPARγ partial agonists. Moreover, our results provide a new 

hypothesis about the active molecules of natural extracts with antidiabetic properties 

and their mode of action, i.e., the insulin-stimulated glucose uptake is increased 

through the action of PPARγ. We also suggest plants with undescribed antidiabetic 

activity that may contain PPARγ partial agonists and are related to plants with known 

antidiabetic activity. These plants represent a new source of potential antidiabetic 

extracts. Consequently, our work opens the door to the discovery of new antidiabetic 

extracts and molecules that can be of use, for instance, in the design of new 

antidiabetic drugs or functional foods focused towards the prevention/treatment of 

T2DM. 

Experimental section 

Initial Dataset of Natural Compounds Used. The initial in-house dataset of 

natural compounds that was filtered through the VS contained 29,779 compounds 

annotated with the natural sources from which they were obtained and the 

bibliographic references that describe how to extract them from each natural source. 

Moreover, according to the FAF-Drugs2 program [29], all of these molecules (a) show 

good ADME properties according to the Lipinski rule of five [30] (i.e., only one 

violation of this rule was allowed) and (b) are not potentially toxic (i.e., they lack 

“warhead” chelators, frequent hitters, promiscuous inhibitors and other undesirable 

functional groups). Conformations and sites for the 3D structures of these 29,779 

compounds were determined during the generation of the corresponding Phase v3.1 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com) [31] databases with 

the Generate Phase Database graphic front-end. The parameter values used during 

this conformer generation were the default values, with the exception of the maximum 

number of conformers per structure, which was increased from 100 (the default value) 

to 200. The conformer sites were generated with definitions made by adding the ability 

to consider aromatic rings as hydrophobic groups to the default built-in Phase 

definitions.  
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Virtual Screening Workflow. The VS workflow used in this work is a slightly 

modified version of a VS workflow developed previously (that was also validated 

experimentally) to identify PPARγ partial agonists in chemical databases [12]. Briefly, 

the VS workflow consisted of several steps that must be applied sequentially (i.e., the 

output molecules of one step were the input molecules for the next step). Thus, the 

filters applied (and sorted according their usage) were the following: (1) a structure-

based antipharmacophore screening; (2) a structure-based pharmacophore screening 

(called partial agonist pharmacophore); and (3) an electrostatic/shape similarity 

analysis (the previously developed VS workflow was altered for the current work with 

lower threshold values for the electrostatic and shape comparisons; see below for more 

details). Moreover, all of the PDB files used in that work were superposed with the 

DeepView v3.7 program (http://spdbv.vital-it.ch/) [32] to ensure that all of them had 

the same relative orientation. From then on, only the resulting re-oriented coordinates 

for these PDB files were used during the subsequent structure-based pharmacophore 

generation and in the steps of the VS workflow where spatial orientation is crucial 

(i.e., pharmacophore-based searches, protein-ligand docking studies and shape and 

electrostatic-potential comparisons). 

The initial set of compounds was filtered by a structure-based antipharmacophore 

with the aim of discarding potential PPARγ full agonists. This pharmacophore is 

formed by 5 sites (two hydrogen-bond acceptors and three hydrophobic sites) that are 

present in most of the validated 19 complexes of full agonists (where validated means 

that the coordinates for the ligand and the PPARγ active site are reliable according to 

their corresponding electron density map) and is completed with receptor-based 

excluded volumes obtained from the PDB file coded as 1FM9. Thus, this filter 

removed from the sample those molecules that had at least one in vacuo-generated 

conformer that matched at least 4 out of 5 sites of the antipharmacophore. The fitting 

between the molecules and the pharmacophore was analyzed with Phase v3.1 [31]. 

The subset of molecules that did not match the antipharmacophore was then used to 

identify possible partial agonists. To accomplish this task, a second pharmacophore 

obtained from the common sites of 12 validated complexes between PPARγ, and a 

partial agonist was used. It consists of one hydrogen-bond acceptor and three 

hydrophobic sites with receptor-based excluded volumes obtained from the PDB file 

coded as 2Q5S. Molecules that had at least one in vacuo-generated conformer and that 

matched with the 4 sites of the partial agonist pharmacophore were initially identified 

as putative PPARγ partial agonists. To find docking poses that were compatible with 

the partial agonist pharmacophore, those molecules identified as putative PPARγ 

partial agonists were then docked to the ligand-binding site of 2Q5S. Thus, the best 32 

docked poses predicted by the eHiTS v2009 program (SimBioSys Inc., Toronto, 

Canada) [33] were filtered again with Phase through the partial agonist 

pharmacophore, using the same filtering options as the first pharmacophore matching, 

except no re-orientation of the poses was allowed during the search. 
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The poses that passed the pharmacophore and docking screenings were submitted 

to an electrostatic/shape similarity analysis, using the PPARγ partial agonists 

crystallized in the structures 2G0H, 4PRG, 2Q5S, 2FVJ and 2Q6S as a queries. This 

analysis was performed with EON v2.0.1 (OpenEye Scientific Software, Inc., Santa 

Fe, New Mexico, USA; http://www.eyesopen.com), using the Electrostatic Tanimoto 

combo (ET_combo) score as the similarity criteria. The ET_combo score is the sum of 

two calculations: (a) the Shape Tanimoto (ST) score, which is a quantitative measure 

of three-dimensional overlap (where 1 corresponds to a perfect overlap, i.e., the same 

shape) and (b) the Possion-Boltzman Electrostatic Tanimoto (ET_pb) score that 

compares the electrostatic potential of two small molecules and ranges from 1 

(identical potential) to negative values that results from the overlap of positive and 

negative charges. In this work, we selected the EON thresholds taking into account the 

results of the comparison between a group of experimental poses for PPARγ partial 

agonists in their complexes with PPARγ. Applying the five query poses against twelve 

other experimental poses, the lowest values for the ET_pb score and ST were 0.2 and 

0.4, respectively. Therefore, both values were used as thresholds during the VS 

electrostatic/shape similarity analysis (where the thresholds used in the original VS 

workflow were 0.3 and 0.5 for ET_pb and ST, respectively [12].  

Virtual Screening Workflow Validation. The ability of the VS workflow to 

identify PPARγ partial agonists was tested by applying it to a group of 211 known 

PPARγ partial agonists obtained from the literature and 3,122 decoys obtained from 

the DUD database [13]. The structures of the 211 partial agonists were built with 

ChemDraw Ultra v11.0 (CambridgeSoft Corporation, Cambridge, MA, USA; 

http://www.cambridgesoft.com/) [34] and were cleaned using LigPrep v2.3 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com). We calculated an 

EF and values for Se and Sp for the global VS workflow [35]. The EF was obtained as 

the quotient between the fraction of actives in the sample that survived the VS 

workflow and the fraction of actives that were initially in the sample. The EF 

therefore represents the ratio of the number of actives actually retrieved by a 

method compared to the number expected purely by chance. Se describes how well 

the model correctly identifies active compounds and it is calculated as the ratio 

between the number of active molecules that survived the VS workflow and the 

number of all active compounds that were initially in the sample. Sp measures the 

correct assignment of inactive compounds. It is calculated as the ratio between the 

number of inactive compounds that were discarded in the VS workflow and the 

number of all of the inactive molecules that were initially in the sample. 

Structural Similarity Analysis. To obtain new scaffolds for PPARγ partial 

agonists, the VS hits were merged with the 211 PPARγ partial agonists previously used 

for validating the VS workflow and clustered with Canvas v1.2 (Schrödinger LLC., 

Portland, USA; http://www.schrodinger.com). Using a fingerprint precision of 32 bits, 
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MOLPRINT2D fingerprints [36] were calculated for each molecule, and then a 

hierarchical clustering, based on Tanimoto similarities, was obtained. The number of 

clusters obtained was defined using the Kelley criterion [37]. 
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CHAPTER 5 

IDENTIFICATION OF NOVEL HUMAN DIPEPTIDYL PEPTIDASE-

IV INHIBITORS OF NATURAL ORIGIN: VIRTUAL SCREENING 

AND ACTIVITY ASSAYS 

 

ABSTRACT  

The large scaffold diversity and properties of natural products, such as structural 

complexity and drug similarity, form the basis of claims that these molecules are ideal 

starting points for drug design and development. Consequently, there has been great 

interest in determining whether natural products show biological activity toward 

protein targets of pharmacological relevance. One target of particular interest is DPP-

IV, a serine protease that specifically removes N-terminal dipeptides from substrates 

containing proline or alanine as the second residue. The most important substrates of 

DPP-IV are incretins whose production, among other beneficial effects, stimulates 

insulin biosynthesis and secretion. Incretins have very short half-lives because of their 

rapid degradation by DPP-IV and, therefore, inhibiting this enzyme prolongs the 

actions of incretins and improves glucose homeostasis. As a result, DPP-IV inhibitors 

are of considerable interest to the pharmaceutical industry. The main goals of this 

study were to (a) use virtual screening to identify potential DPP-IV inhibitors of 

natural origin and (b) evaluate the reliability of our virtual-screening protocol by 

experimentally testing the in vitro activity of selected natural-product hits. 

We predicted that 446 out of the 89,425 molecules present in the natural products 

subset of the ZINC database would inhibit DPP-IV with good ADMET properties. 

Notably, when these 446 molecules were merged with 2,571 known DPP-IV inhibitors 

and the resulting set was classified into 50 clusters according to chemical similarity, 

there were 12 clusters that contained only natural products for which no DPP-IV 

inhibitory activity has been previously reported. Nine molecules from 7 of these 12 

clusters were then selected for in vitro activity testing and 7 out of the 9 molecules 

were shown to inhibit DPP-IV. 

We have demonstrated that our virtual-screening protocol was successful in 

identifying lead compounds for developing new inhibitors for DPP-IV, a target of 

great interest in medicinal chemistry. 
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Introduction 

Type 2 diabetes mellitus (T2DM) is considered to be the “epidemic of the 21st 

century” and, consequently, the development of new therapies is one of the main 

challenges in drug discovery today [1]. While current T2DM therapies that increase 

insulin secretion have proven to have beneficial therapeutic effects, these treatments 

often suffer from undesirable side effects such as hypoglycemia and weight gain [2]. 

Therefore, there is a significant unmet medical need for better drugs to treat T2DM. 

Recently, the inhibition of human dipeptidyl peptidase-IV (DPP-IV; EC 3.4.14.5) 

has emerged as a new treatment option for T2DM [3]. This enzyme belongs to the 

serine protease family and selectively removes N-terminal dipeptides from substrates 

containing proline or alanine as the second residue. The most important substrates of 

DPP-IV are incretins, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP) [4]. GLP-1 is released from intestinal L-cells in 

response to meals and performs the following actions: GLP-1 stimulates insulin 

biosynthesis and secretion, reduces glucagon release, slows gastric emptying, reduces 

appetite, and stimulates the regeneration and differentiation of islet B-cells [5]. 

Alternatively, GIP is produced by the duodenal K-cells and is extensively involved in 

glucose metabolism by enhancing insulin secretion [6]. Both peptides have very short 

half-lives because of their rapid degradation by DPP-IV. Inhibiting DPP-IV prolongs 

the action of GLP-1 and GIP which, in turn, improves glucose homeostasis with a 

lower risk of hypoglycemia. Consequently, DPP-IV inhibitors are of considerable 

interest to the pharmaceutical industry [7]. Intense research activities in this area have 

resulted in the launch of sitagliptin and vildagliptin and the advancement of a few 

drugs, such as saxagliptin, alogliptin and ABT-279, into pre-registration/phase 3 [2]. 

The DPP-IV binding site is highly druggable in the sense that tight, specific 

binding to the enzyme can be achieved with small molecules with drug-like 

physicochemical properties [8,9]. The different interaction motifs used by these DPP-

IV ligands include the catalytic Ser630, the oxyanion hole (formed by Tyr547 and 

Tyr631), the hydrophobic S1 pocket (formed by Tyr631, Val656, Trp659, Tyr662, 

Tyr666 and Val711), the P2 region (formed by Arg125 and Asn710) and the N-

terminal recognition region (formed by Glu205, Glu206 and Tyr662)[8]. Based on the 

analysis of the DPP-IV crystal structures [10-16] and interpretation of the structural-

activity relationship data, both the lipophilic S1 pocket and the Glu205/Glu206 dyad 

can be considered as crucial molecular anchors for DPP-IV inhibition [8]. 

The large scaffold diversity and properties of natural products (NPs), such as 

structural complexity and drug similarity, makes these molecules ideal starting points 

for drug design. The main goal of this paper is to apply a virtual screening (VS) 

protocol to identify NPs with DPP-IV inhibitory activity as well as different scaffolds 
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relative to known DPP-IV inhibitors that could be used as lead compounds in drug-

design. In order to achieve this goal, we first identified complexes between DPP-IV 

and potent reversible inhibitors of non-peptide nature in the PDB. After validating the 

fit of the coordinates of binding site residues and inhibitors onto the corresponding 

electron density map, the validated DPP-IV complexes were overlapped to get the 

experimental poses of the inhibitor in the same orientation. Subsequently, the relative 

contribution of the different intermolecular interactions to the protein-ligand binding 

affinity was quantified to derive structure-based pharmacophores. The resulting 

energetically optimized pharmacophores were used to derive a structure-based 

common pharmacophore that contained key intermolecular interactions between DPP-

IV and the inhibitors. The exclusion volumes were also determined and added to the 

pharmacophore. Lastly, the previous structure-based pharmacophore and a VS 

protocol were used to look for DPP-IV inhibitors in a NPs database [17], and the 

reliability of the prediction was demonstrated using in vitro testing to determine the 

DPP-IV inhibitory effects of selected VS hits. 

Table 1. Codes for DPP-IV structures currently available at PDB. Some PDB structures were 

discarded for the following reasons: (a) the structures were of apo forms without inhibitor, (b) 

inhibitors were covalently linked with Ser630, (c) inhibitors were of oligopeptide nature, (d) 

there were no structural factors available in the PDB or (e) the scripts in the EDS failed to 

produce the map from the structural factors. PDB structures marked with an asterisk (*) have 

mutations in the enzyme to modify the activity. Only the PDB files from the “Valid PDB 

Structures” section with IC50 values ≤ 10 nM (in bold) were used to derive the corresponding 

structure-based common pharmacophore for DPP-IV inhibition (see Figure 1). 

Valid PDB Structures Discarted PDB Structures 

1N1M 2OPH 2RIP (a) (b) (c) (d) (e) 

2FJP 2OQI 3C43 1J2E 1TKR * 1R9N 1RWQ 1X70 

2HHA 2OQV 3C45 1NU6 2AJL 1WCY 2BUB 2OAG 

2I78 2P8S 3CCC 1NU8 2G5T 2BGN 2JID 3CCB 

2IIT 2QJR 3D4L 1PFQ 2G5P 2BGR  3EIO 

2IIV 2QOE 3F8S 1R9M 2G63    

2OGZ 2QT9 3H0C 1TK3 2I03    

2OLE 2QTB 3HAB 1U8E 2QKY    

2ONC 2RGU 3HAC 1W1I 3BJM *    
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Results and discussion 

Common structure-based pharmacophore building and description. There are 

currently 54 entries for DPP-IV in the Protein Data Bank (PDB; http://www.pdb.org; 

see Table 1) [18] but only 10 of those entries correspond to validated complexes of the 

native enzyme with potent reversible inhibitors of a non-peptide nature (see Figure 1). 

As a result, only these 10 entries are suitable for deriving reliable structure-based 

pharmacophores that capture the key intermolecular interactions needed for drugs to 

inhibit DPP-IV. In order to define a common background for DPP-IV inhibition, we 

identified features of inhibitors that make the most important contributions to the 

bioactivity of the ligand by first superposing all 10 PDB files. 

 

Figure 1. Drug-like reversible DPP-IV inhibitors used for the generation of the common 

structure-based pharmacophore with their corresponding IC50 values. The codes of the PDB 

complexes from which the ligand poses were used are also shown. 

Then, the energetic pharmacophores were derived from the resulting coordinates, 

and energetically relevant pharmacophore sites were visually inspected for finding 

common or frequent ones. Figure 2 shows that all 10 pharmacophores have two sites 

in common (one positive/donor and one hydrophobic/aromatic ring) that often make 
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the most important contribution to the protein-ligand binding affinity (see data for sites 

P/D and H/R1 in Table 2). We inferred that these two sites are essential for the 

inhibition of DPP-IV and considered them to be required in the common structure-

based pharmacophore (see Figure 3). Interestingly, previous studies have identified the 

lipophilic S1 pocket (formed by Tyr631, Val656, Trp659, Tyr662, Tyr666 and 

Val711) and the Glu205/Glu206 dyad as crucial molecular anchors for inhibition 

[8,19,20] and, in coherence with this, the mandatory hydrophobic/aromatic ring and 

positive/donor sites interact with the S1 pocket and Glu205/Glu206, respectively. 

 

Figure 2. The relative location of the experimental poses of the ligands in Figure 1 after DPP-

IV superposition. The experimental pose for the most potent inhibitor (i.e., the one at 3C45) is 

shown in black for reference. For each ligand, the energetically-relevant pharmacophore sites 

are shown. Light red and light blue spheres represent the acceptor and donor features, 

respectively. The green spheres and orange torus display the hydrophobic regions and aromatic 

rings, respectively. Blue spheres represent positively charged regions. 

Table 2 also shows that there are two other hydrogen-bond acceptors (A1 and A2) 

and three hydrophobic/aromatic ring sites (H/R2, H/R3 and H/R4) that, although not 

common to all experimental poses, could increase either protein-ligand binding 

affinity or drug-specificity. Moreover, it is remarkable that these sites correspond to 

interactions with other relevant areas from the DPP-IV binding site. For example, the 

two acceptor sites interact with the main chain carbonyl oxygen from Arg125 and 

Asn710 at the P2 region, whereas the hydrophobic/aromatic ring sites interact with 

Tyr547 (at the oxyanion hole), Phe357 and Arg358 among other residues. Therefore, 

these sites were also included as optional sites in the common structure-based 

pharmacophore (see Figure 3). 
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Table 2. Site contribution to the energy-optimized pharmacophores obtained from PDB 

complexes in bold from Table 1. Required and optional sites at the structure-based common 

pharmacophore are shown in cyan and yellow, respectively. Other sites that are not part of the 

structure-based common pharmacophore are shown in grey. PDB complexes with the same raw 

values indicate that the pharmacophore site is shared by these complexes. 

PDB 2FJP 2IIT 2IIV 2QT9 2QTB 2RGU 3C45 3H0C 3HAB 3HAC 

P/D -4,6 -4,13 -4,45 -4,09 -4,54 -1,66 -4,54 -4,81 -4,54 -4,29 

H/R1 0,77 -1,29 -1,36 -1,25 -1,68 -0,075 -0,64 -1,18 -1,1 -1,25 

H/R2 -0,69   -0,66 -0,68    -0,9 -0,69 

H/R3      -1,94     

H/R4       -0,85    

H/R5      -0,56     

A1 -0,64   -0,4 -0,59      

A2   -0,62        

A3 -0,35    -0,35      

A4      -0,44     

 

Figure 3. The structure-based common pharmacophore derived from the alignment of the poses 

in Figure 2 and shown in the context of the 3C45 active site. The pharmacophore is formed by 

two hydrogen-bond acceptors (A1 and A2), one positive/hydrogen-bond donor feature (P/D) 

and 4 hydrophobic/aromatic ring sites (H/R1, H/R2, H/R3 and H/R4). The associated 

tolerances (i.e., radii) of the pharmacophore are 1.8Å for P/D, A1 and A2, 2.0Å for H/R1, H/R3 

and H/R4 and 3.3Å for H/R2. Two out of these seven sites (P/D and H/R1) are required during 

pharmacophore-based searches whereas the remaining five are optional. The P/D site interacts 

with the Glu205/Glu206 dyad whereas the H/R1 site potentially fills the S1 pocket. The 
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residues are colored according to the type of intermolecular interactions involved. For example, 

blue residues interact with donor sites, pink residues interact with acceptor sites and green 

residues are involved in hydrophobic contacts. Light green residues are a part of the S1 pocket. 

VS workflow description and application to the NP subset of the ZINC 

database. The VS workflow (see Figure 4) consisted of several sequential steps where 

the output molecules of one step were the input molecules for the next step and so on. 

The NP subset of the ZINC database was used as the source of molecules to which our 

VS schema was applied to search for new DPP-IV inhibitors. Initially, these 89,425 

molecules were submitted to an ADME/Tox filter with the FAF-Drugs2 tool [21] 

aimed at discarding molecules that were either potentially toxic or exhibited poor 

ADME properties. 

 

Figure 4. Schematic overview of the VS workflow and the procedure used for selecting the VS 

hits that were tested for DPP-IV inhibitory activity. For the VS, the number of compounds that 

passed each step and the programs used are showed. For the selection of VS hits for bioactivity 

testing, the numbers show either how many VS hits are scaffold-hopping candidates for DPP-IV 

inhibition (Fingerprint similarity analysis step) or how many molecules were experimentally 

tested for bioactivity (Biological test step). 
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Molecules with appropriate ADME/Tox properties were then filtered with Phase 

through the structure-based common pharmacophore. Ligands with at least one hit in 

the Phase search were then used in a protein-ligand rigid-docking study and docked 

onto the ligand binding site of the DPP-IV conformation present in the 3C45 PDB file 

[12]. In order to find docking poses that were compatible with the pharmacophore, the 

resulting ligand poses were filtered again with Phase through the structure-based 

common pharmacophore using the same filtering conditions as in the first Phase run 

without reorienting the poses (i.e., the score in place option was used). From these two 

pharmacophore screens, we obtained 4,952 compounds (see Figure 4) with at least one 

pose that was both compatible with the DPP-IV active site and had functional groups 

that match the 3D location of the two compulsory sites and at least one of the optional 

sites of the structure-based common pharmacophore. 

Finally, the poses for the 4,952 compounds from the second pharmacophore screen 

were submitted to a shape and electrostatic-potential comparison with the 

experimental pose of the DPP-IV inhibitor at the PDB file 3C45 (that has the smallest 

IC50 for all the non-peptide reversible inhibitors found in DPP-IV-inhibitor complexes 

at the PDB [12]; see Figure 1). The shape and electrostatic-potential comparison 

identified 446 hit molecules with potential DPP-IV inhibitory activity (see Figure 4). 

Finding new scaffolds of natural origin for DPP-IV inhibitors. One of the most 

important challenges of any VS workflow is the ability to find molecules with the 

required activity but without trivial similarity (in terms of chemical structure) to 

known active compounds. To determine which of the 446 potential DPP-IV inhibitors 

predicted by our VS workflow could be considered as new lead molecules, we merged 

the 446 potential DPP-IV inhibitors with 2,571 known DPP-IV inhibitors that were 

obtained from the BindingDB database [22]. After calculating the 2D fingerprints of 

these inhibitors, the resulting set was classified into 50 clusters by means of a 

hierarchical cluster analysis (data not shown). Notably, 12 out of the 50 clusters 

obtained consisted exclusively of NPs that were previously unidentified as DPP-IV 

inhibitors. The 219 molecules that belong to these 12 clusters are scaffold-hopping 

candidates for DPP-IV inhibition (see Table S1). To prove the reliability of our 

predictions, we selected 9 molecules (C1 and C2 from cluster 30, C3 from cluster 36, 

C4 from cluster 37, C5 and C6 from cluster 41, C7 from cluster 45, C8 from cluster 

49 and C9 from cluster 50) from 7 of these 12 clusters (see Figure 5) and tested their 

effects on the DPP-IV activity using an in vitro assay. 
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Figure 5. Chemical structures and ZINC codes for the 9 molecules selected for experimentally 

testing whether these compounds exhibited DPP-IV inhibitory activity. The insolubility of C4 

and C6 prevented these compounds from being assayed for DPP-IV inhibitory activity. 

The results of this experiment demonstrated that 7 out of the 9 molecules (C1, C2, 

C3, C5, C7, C8 and C9) inhibit DPP-IV (see Figure 6). The remaining molecules, C4 

and C6, could not be solubilized, preventing the evaluation of their DPP-IV inhibitory 

activity. The lack of DPP-IV inhibitory activity for C5, C7 and C9 at 1mM was also 

due to insolubility (see Figure 6). Furthermore, Figure 6 shows that from all the tested 

molecules, C5 is the most potent inhibitor with an IC50 of 61.55 μM (see Figure 7). 

With the exception of C1, which significantly inhibited DPP-IV only at 1 mM, the rest 

of the molecules significantly inhibit DPP-IV at 0.25 mM (see Figure 6) showing a 

dose-response effect. Moreover, a SciFinder search (Chemical Abstracts Service, 

Columbus, Ohio, USA; http://www.cas.org/products/sfacad) of the literature revealed 

that none of these 7 molecules have been reported as antidiabetic drugs. In fact, no 

bioactivity has been described for these 7 molecules. 
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Figure 6. Dose-response results for the in vitro inhibition of DPP-IV by C1, C2, C3, C5, C7, 

C8 and C9. The relative DPP-IV inhibitory activity with or without the selected NPs (vehicle, 

1% DMSO) is shown where each column represents the average ± SEM (n=3 or 4). The 

insolubility of C5, C7 and C9 in DMSO at 1 mM prevented the measurement of DPP-IV 

inhibitory activity . *p<0.05 **p<0.1 vs vehicle, T-student.  

 
Figure 7. DPP-IV inhibitory dose-response curve obtained for C5 via a competitive binding 

assay. 

 

Structural analysis of the inhibition of DPP-IV by C1, C2, C3, C5, C7, C8 and 

C9. The docking of C1, C2, C3, C5, C7, C8 and C9 in the DPP-IV binding site of the 

3C45 structure demonstrated that these molecules match the structure-based common 

pharmacophore in the same orientation, sharing the same intermolecular interaction 

with DPP-IV (see Figures 8 and 9). With the exception of C7 in which the positive 

charge of the tertiary amine forms a salt bridge with Glu205/Glu206 (see panel D of 

Figure 9), all compounds use primary or secondary amines to form hydrogen bond 

interactions with either Glu205 or Glu206 (see Figures 8 and 9). Additionally, all 

molecules filled the S1 pocket (partially in the case of C8, the smallest molecule) 

establishing one intermolecular interaction that corresponds to the compulsory H/R1 

site of our common structure-based pharmacophore (see Figure 3). Moreover, it is 

worthwhile to mention that some molecules could potentially form additional 
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interactions with DPP-IV. For example, the hydroxyl group of C1 could hydrogen 

bond with the side chain of Glu205 in addition to its the typical interaction with 

Glu206 (see panel A in Figure 9). C2 could form an additional hydrogen bond 

between the oxygen of the dioxole moiety and Arg358 (see panel B in Figure 9). C7 

could hydrogen bond with Tyr585 and form additional hydrophobic contacts with 

Phe357, Ile405, Cys551 and Tyr585, due to its large size (see panel D in Figure 9). C9 

could form two additional hydrogen bonds with Tyr662 and the main chain oxygen of 

Glu205. 

 

Figure 8. Docking pose of compound C5 at the 3C45 binding site. 

Figure 8 shows the best docking pose of C5 in the DPP-IV binding pocket where 

its tertiary amine hydrogen bonds with Glu205. The oxygen of the 7-hydroxy-2H-

chromen-2-one moiety could also hydrogen bond with Tyr666. The S1 pocket is 

occupied by the C5 butyl chain that could form hydrophobic interactions with Tyr662, 

Tyr666 and Val711. Finally, the chromene rings of C5 could form π-π interactions 

with Phe357. Compared to the remaining 6 compounds, the high bioactivity of C5 

seems to be related to the presence of additional intermolecular interactions with DPP-

IV. Interestingly, an electrostatic and shape comparison of the 7 poses in Figures 8 and 

9 revealed that the molecule with the highest similarity to the 3C45 ligand (with the 

lowest IC50; see Figure 1) is C5 (results not shown). The ET_combo score for this 

comparison is 1.050 which corresponds to a shape and electrostatic contribution of 

0.628 and 0.422, respectively. Remarkably, the same analysis with C2 (which shows a 
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significant bioactivity as DPP-IV inhibitor; see Figure 6), also has a significant 

ET_combo score of 1.038. 

 
Figure 9. Docking poses for C1, C2, C3, C7, C8 and C9 at the 3C45 binding site. 
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Conclusions 

The challenge of any VS protocol consists of using in silico tools to predict which 

molecules in a database have the required activity against a specific target. The results 

of the present study demonstrate that our VS protocol is highly successful in the non-

trivial identification of DPP-IV inhibitors with no chemical-structure similarities to 

known activities. Therefore, scaffold hopping on this target can be achieved. 

Moreover, this is the first time that anti-diabetic activity has been described for C1 

(i.e., ZINC00171758), C2 (i.e., ZINC01833887), C3 (i.e., ZINC02091906), C5 (i.e., 

ZINC02132035), C7 (i.e., ZINC02113150), C8 (i.e., ZINC00518468) and C9 (i.e., 

ZINC02131242). 

Although the IC50 of the 7 hit molecules indicates their in vitro activity is 

significantly lower than that of most known DPP-IV inhibitors used to derive the 

structure-based common pharmacophore (see Figure 1), it is important to remark that 

these molecules can be used as lead compounds for developing more potent inhibitors 

using structural-activity relationship studies. Furthermore, these 7 molecules were 

selected based on their commercial availability, cost and purity with the primary goal 

of testing the performance of our VS protocol. Therefore, it is possible that there are 

other molecules among the remaining 210 molecules in clusters 10, 29, 30, 36, 37, 38, 

40, 41, 44, 45, 49 and 50 (see Table S1) that could be better starting points for the 

rational drug design of potent and selective DPP-IV inhibitors with chemical scaffolds 

that are different from C5. Remarkably, our work makes a significant contribution to 

the discovery of DPP-IV inhibitors of natural origin (described, at present, for only 

few NPs [23-26]) from a quantitative point of view. Moreover, this work is also 

applicable to screen synthetic molecules databases when looking for antidiabetic 

activity. 

Experimental section 

Criteria for selecting the 3D structures for DPP-IV complexes used to derive 

the common structure-based pharmacophore. Coordinates for complexes between 

DPP-IV and potent reversible inhibitors were obtained from the PDB with the help of 

the following information: (a) LigPlot [27] schemes downloaded from the PDBsum 

website (http://www.ebi.ac.uk/pdbsum/) that were used to confirm the non-peptide and 

reversible character of the DPP-IV inhibitor present in each complex and; (b) IC50 

values directly extracted from the literature describing the complexes (only complexes 

with inhibitors with IC50 ≤ 10 nM were considered). Furthermore, the complexes with 

at least one mutation in their amino acid sequences were discarded. The reliability of 

the binding-site residues and inhibitor coordinates was assessed for the remaining 

complexes by visually inspecting their degree of fitness to the corresponding electron 
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density map available from the Uppsala Electron Density Server (EDS; 

http://eds.bmc.uu.se/eds/) [28].  

Superposition of the selected DPP-IV structures. The coordinates from the PDB 

complexes that met all the mentioned requirements were superposed with the 

DeepView v3.7 program (http://spdbv.vital-it.ch/) [29] to have the complexes in the 

same relative orientation. Only the resulting re-oriented coordinates for these PDB 

files were used during the subsequent structure-based pharmacophore generation and 

in the steps of the VS workflow (i.e., pharmacophore-based searches, protein-ligand 

docking studies and shape and electrostatic-potential comparisons) where spatial 

orientation is crucial. 

Common structure-based pharmacophore for DPP-IV inhibition. Energetic 

structure-based pharmacophores were built from the superposed coordinates of the 

previously selected complexes by means of the Glide-based procedure developed by 

Schrödinger (Schrödinger LLC., Portland, USA; http://www.schrodinger.com) [30]. 

According to this procedure, pharmacophore sites are ranked based on the Glide XP 

energies with the advantage that each contribution to the protein-ligand interactions is 

quantified. Therefore, energetically favorable features can be incorporated into the 

pharmacophore with preference over energetically weaker features. The resulting 

individual energetic pharmacophores were used for the construction of a common 

structure-based pharmacophore for DPP-IV reversible inhibition. This pharmacophore 

consists on two compulsory sites (one positive/donor and one hydrophobic/aromatic 

ring) whereas the remaining acceptor and hydrophobic/aromatic ring sites are optional. 

The associated tolerances for the different sites are 1.8Å for P/D, A1 and A2, 2.0Å for 

H/R1, H/R3 and H/R4 and 3.3Å for H/R2. The pharmacophore was completed with 

receptor-based excluded volumes that schematically represent the location of the DPP-

IV residues that form the binding pocket by applying the Receptor-Based Excluded 

Volumes graphic front-end from Phase v3.1 (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com)[31] to the PDB file 3C45. The Sphere filters parameter 

values were set to the following criteria: (a) ignoring receptor atoms whose surfaces 

were within 0.25 Å of ligand surface; and (b) limit excluded volume shell thickness to 

10 Å. Otherwise, the remaining parameter values used were the default values. 

Ligand selection for VS purposes. Ligands for VS purposes were downloaded 

from the Natural Products subset of the ZINC database [17]. This dataset contains 

89,165 commercially available natural products and natural-product derivatives, 

making the dataset suitable for experimentally testing the success of a VS workflow. 

ADME/Tox filter. The ADME/Tox filter was carried out with the FAF-Drugs2 

tool [21]. The drug-like properties of a compound were evaluated using the Lipinski 

rule [32]. The Lipinski rule is based on a set of property values , such as the number of 
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hydrogen-bond donors and acceptors, the molecular weight and the logP, that were 

derived from drugs with good ADME characteristics. Molecules that adhere to the 

Lipinski rule are expected to be active in humans after oral admission. Only one 

violation of this rule was allowed. Molecules containing toxic groups were filtered 

using the 204 substructures for “warhead” chelators, frequent hitters, promiscuous 

inhibitors and other undesirable functional groups available in the FAF-Drugs2 tool 

[21]. 

Ligand setup. The 3D structures of the ligands for VS purposes were incorporated 

into LigPrep v2.3 (Schrödinger LLC., Portland, USA; http://www.schrodinger.com) 

and improved by cleaning. The cleaning process was carried out using the following 

parameters: (a) the force field used was OPLS 2005; (b) all possible ionization states 

at pH 7.0±2.0 were generated with Ionizer; (c) the desalt option was activated; (d) 

tautomers were generated for all ionization states at pH 7.0±2.0; (e) chiralities were 

determined from the 3D structure; and (f) one low-energy ring conformation per 

ligand was generated. Conformations and sites for the resulting ligand structures were 

determined during the generation of the corresponding Phase [31] databases with the 

Generate Phase Database graphic front-end. Default parameter values were used 

during this conformer generation with the exception of the maximum number of 

conformers per structure, which increased from 100 (the default value) to 200. The 

conformer sites were generated with definitions made by adding the ability to consider 

aromatic rings as hydrophobic groups to the default built-in Phase definitions. 

Structure-based pharmacophore screening. The initial filtering through the 

structure-based common pharmacophore was performed with Phase v3.1 using the 

following steps: (a) search in the conformers database, (b) do not score in place the 

conformers into the structure-based common pharmacophore (i.e., allow reorientation 

of the conformers to determine if they match the pharmacophore or not), (c) match the 

two compulsory sites of the structure-based common pharmacophore and at least one 

of the optional sites, (d) do not have a preference for partial matches involving more 

sites and (e) use the excluded volumes from the structure-based common 

pharmacophore. Default values were used for the rest of the options and parameter 

values used during this search. For the second pharmacophore screening, the same 

filtering options of the first pharmacophore matching were applied with the exception 

that now no re-orientation of the poses was allowed during the search (i.e., the score in 

place option was used) because it was performed by using docked poses. 

Protein-ligand docking during the VS. During the VS, the protein-ligand 

docking was performed with eHiTS v2009 (SimBioSys Inc., Toronto, Canada; 

http://www.simbiosys.ca/ehits) [33]. The receptor was considered to be a rigid body 

and the ligands as flexible such that free rotation was allowed around the single bonds 

of the ligand. Default docking conditions were selected with the exception of the size 
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of the sides of the cubic box encompassing the DPP-IV binding site, which was 

increased from 10 Å to 15 Å. 

Electrostatic and shape similarity screening. The software EON v2.0.1 

(OpenEye Scientific Software, Inc., Santa Fe, New Mexico, USA; 

http://www.eyesopen.com) determines the electrostatic potentials of two compounds 

and consequently calculates the Electrostatic Tanimoto combo score (ET_combo). The 

ET_combo is the sum of the Shape Tanimoto (ST) and the Poisson-Boltzman 

Electrostatic Tanimoto scores. The Shape Tanimoto (ST) score is a quantitative 

measure of three-dimensional overlap where 1 corresponds to a perfect overlap (i.e., 

the same shape) [34]. The Poisson-Boltzman Electrostatic Tanimoto score (ET_pb) 

compares the electrostatic potential of two small molecules where 1 corresponds to 

identical potentials and negative values correspond to the overlap of positive and 

negative charges [35]. Only those molecules that have both ET_pb and ST score 

values higher than 0.623 and 0.244, respectively, were selected and visualized with 

VIDA v4.0.3 (OpenEye Scientific Software, Inc., Santa Fe, New Mexico, USA; 

http://www.eyesopen.com). These threshold values were chosen after analyzing which 

ET pb and ST score values are obtained when the DPP-IV inhibitor in PDB file 3C45 

is compared with the experimental poses of the rest of the inhibitors from which the 

common pharmacophore was derived (see Figure 1). 

Hit selection for further experimental assays on DPP-IV activity. The 

molecules that survived the electrostatics/shape similarity filter were merged with 

2,571 known inhibitors obtained from the BindingDB database [22], and then 

clustered using Canvas v1.2 (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com). MOLPRINT2D fingerprints [36], using a fingerprint 

precision of 32 bits, were calculated for each molecule and then hierarchical 

clustering, based on Tanimoto similarities, was performed resulting in 50 clusters. 

Nine compounds from 7 of the 12 clusters exclusively formed by NPs that were 

previously unidentified as DPP-IV inhibitors were selected based on their commercial 

availability, cost and purity (≥ 92%) for in vitro assays of DPP-IV inhibitory activity. 

These compounds were ZINC00171758 (i.e., C1), ZINC01833887 (i.e., C2), 

ZINC02091906 (i.e., C3), ZINC02118100 (i.e., C4), ZINC02132035 (i.e., C5) and 

ZINC02160434 (i.e., C6), ZINC02113150 (i.e., C7), ZINC00518468 (i.e., C8) and 

ZINC02131242 (i.e., C9), which were all purchased from InterBioScreen, Ltd 

(http://www.ibscreen.com). 

In vitro assay of the effect of selected compounds on the DPP-IV activity. The 

DPP-IV Drug Discovery Kit-AK499 (Enzo Life Sciences International, Inc.) was used 

to conduct DPP-IV inhibition assays. Briefly, 10 µL of each compound were added to 

commercial recombinant human DPP-IV. Stock solutions of the assayed compound 

were made in DMSO and diluted in buffer (50 mM Tris-HCl) to final concentrations 
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ranging from 10-1000 µM in the assay. The final concentration of DMSO in the assay 

was 1%. After 10 minutes of incubation at 37 ºC, the reaction was initiated by the 

addition of the fluorimetric substrate H-Gly-Pro-AMC. Fluorescence was measured 

continuously for 30 minutes at Ex: 380 nm/Em: 460 nm in a microplate reader. At 

least three independent assays were performed, each with two technical replicates. A 

standard DPP-IV inhibitor (P32/98 from Biomol, Germany) served as positive control. 

IC50 calculation. IC50 was determined using GraphPad Prism v4.0 for Windows 

(GraphPad Software, San Diego CA, USA; http://www.graphpad.com) by fitting the 

experimental data from the in vitro assay to a nonlinear regression function using a 

four-parameter logistic equation. 

Docking of Novel DPP-IV Ligands Docking studies of DPP-IV inhibitors C1, 

C2, C3, C5, C7, C8 and C9 were performed with the software Glide v5.6 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com) using the DPP-IV 

protein coordinates that can be found using the 3C45 PDB code. The binding site was 

defined using the default options of the Receptor Grid Generation panel. Standard-

precision (SP) docking was used to screen the ligands. The flexible docking mode was 

selected such that Glide internally generated conformations during the docking 

process. No constraints were selected for docking. Each docking run recorded at most 

ten poses per ligand that survived the post-docking minimization. The best docking 

poses for the novel DPP-IV ligands were selected by not only considering the docking 

scores but also by taking into account the results of the visual inspection of all docking 

poses that was performed with Maestro v9.2 (Schrödinger LLC., Portland, USA; 

http://www.schrodinger.com). 
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Supporting information 

Table S1. Predicted scaffold-hopping candidates for DPP-IV inhibition. This table 

shows ZINC codes for the 219 hit molecules predicted to inhibit DPP-IV that belong 

exclusively to clusters containing NPs that were previously unidentified as DPP-IV 

inhibitors. The best results of the shape and electrostatic-potential comparisons for 

each hit molecule with the ligand of 3C45 crystallized structure are shown. The 

Tanimoto values for the comparison between the electrostatic potentials of the 

molecules (using an outer dielectric of 80) are shown in the ET_PB columns. 

Furthermore, the values for the comparison between shapes are shown in the 

ET_Shape columns. The sum of the ET_PB and ET_Shape values is reported in the 

Combo columns. Hits from each cluster are sorted according to their decreasing 

combo value. ZINC00171758 and ZINC01833887 (cluster 30), ZINC02091906 

(cluster 36), ZINC02118100 (cluster 37), ZINC02132035 and ZINC02160434 (cluster 

41), ZINC02113150 (from cluster 45), ZINC00518468 (cluster 49) and 

ZINC02131242 (cluster 50) were tested in an in vitro assay to validate the success rate 

of our predictions (in bold in Table S1). Due to the insolubility, ZINC02118100 

(cluster 37) and ZINC02160434 (cluster 41) could not be tested. 
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Molecule Cluster 
ET 

PB 

ET 

Combo 

ET 

Shape 
 

ZINC08624216 10 0.670  1.299  0.629  

 

ZINC02095167 30 0.655  1.049  0.394  

ZINC08624227 10 0.664  1.270  0.606  

 

ZINC01867331 30 0.669  1.047  0.378  

ZINC12603399 10 0.660  1.120  0.460  

 

ZINC01815759 30 0.682  1.044  0.362  

ZINC08624212 10 0.679  1.063  0.384  

 

ZINC00177014 30 0.672  1.041  0.369  

ZINC12603352 10 0.647  1.039  0.393  

 

ZINC00171760 30 0.654  1.040  0.386  

ZINC12603382 10 0.628  1.009  0.381  

 

ZINC01713519 30 0.655  1.033  0.378  

ZINC08636132 10 0.737  1.007  0.270  

 

ZINC01801287 30 0.631  1.023  0.392  

ZINC04235298 29 0.732  1.113  0.381  

 

ZINC02103306 30 0.636  1.019  0.384  

ZINC03850486 29 0.629  1.011  0.383  

 

ZINC00206548 30 0.664  1.005  0.341  

ZINC01826519 30 0.691  1.390  0.699  

 

ZINC01801292 30 0.629  0.993  0.364  

ZINC01826518 30 0.716  1.254  0.538  

 

ZINC04073422 30 0.635  0.939  0.304  

ZINC02111476 30 0.747  1.252  0.505  

 

ZINC08623233 30 0.626  0.890  0.263  

ZINC02095165 30 0.702  1.237  0.535  

 

ZINC02104434 36 0.779  1.260  0.481  

ZINC02111654 30 0.680  1.221  0.541  

 

ZINC02147315 36 0.792  1.206  0.414  

ZINC04026917 30 0.766  1.174  0.408  

 

ZINC02091908 36 0.711  1.202  0.490  

ZINC04027780 30 0.745  1.167  0.422  

 
ZINC02091906 36 0.703  1.196  0.493  

ZINC00171740 30 0.764  1.166  0.402  

 

ZINC02126019 36 0.808  1.196  0.389  

ZINC02111107 30 0.689  1.159  0.470  

 

ZINC02126020 36 0.791  1.163  0.372  

ZINC01833886 30 0.703  1.157  0.454  

 

ZINC04088482 36 0.692  1.117  0.425  

ZINC00171758 30 0.629  1.151  0.522  

 

ZINC02104432 36 0.741  1.108  0.367  

ZINC02098064 30 0.736  1.136  0.400  

 

ZINC02154701 36 0.684  1.093  0.409  

ZINC01744114 30 0.733  1.135  0.402  

 

ZINC02157136 36 0.722  1.060  0.337  

ZINC01831741 30 0.666  1.133  0.467  

 

ZINC04085398 36 0.682  1.059  0.377  

ZINC00288906 30 0.661  1.130  0.469  

 

ZINC04089120 36 0.644  1.042  0.398  

ZINC01767546 30 0.688  1.123  0.435  

 

ZINC02098258 36 0.691  1.041  0.350  

ZINC01833887 30 0.686  1.123  0.437  

 

ZINC02103154 36 0.624  1.019  0.394  

ZINC01831742 30 0.660  1.121  0.461  

 

ZINC04084395 36 0.694  1.017  0.323  

ZINC02101423 30 0.687  1.120  0.433  

 

ZINC08635889 36 0.688  1.007  0.319  

ZINC04043691 30 0.720  1.119  0.398  

 

ZINC04089122 36 0.678  1.005  0.327  

ZINC01815758 30 0.626  1.117  0.490  

 

ZINC04086470 36 0.655  0.928  0.273  

ZINC00171737 30 0.770  1.113  0.344  

 

ZINC02103096 37 0.783  1.290  0.507  

ZINC00526001 30 0.669  1.113  0.444  

 

ZINC02118102 37 0.808  1.230  0.421  

ZINC04073289 30 0.699  1.109  0.411  

 

ZINC02118103 37 0.770  1.213  0.443  

ZINC02111026 30 0.626  1.102  0.476  

 
ZINC02118100 37 0.799  1.200  0.401  

ZINC00171675 30 0.681  1.101  0.420  

 

ZINC02118098 37 0.766  1.192  0.427  

ZINC04073208 30 0.662  1.091  0.428  

 

ZINC00206863 37 0.713  1.181  0.468  

ZINC00177015 30 0.760  1.089  0.330  

 

ZINC00206867 37 0.757  1.167  0.410  

ZINC00526000 30 0.646  1.089  0.443  

 

ZINC00244210 37 0.700  1.166  0.466  

ZINC02101849 30 0.697  1.089  0.392  

 

ZINC00201903 37 0.718  1.150  0.431  

ZINC01810429 30 0.690  1.079  0.389  

 

ZINC01791910 37 0.641  1.139  0.498  

ZINC04038362 30 0.721  1.075  0.353  

 

ZINC04046504 37 0.777  1.123  0.346  

ZINC01767542 30 0.731  1.073  0.342  

 

ZINC00201907 37 0.736  1.121  0.385  

ZINC02111059 30 0.644  1.065  0.421  

 

ZINC00244221 37 0.770  1.117  0.347  
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ZINC02098134 37 0.683  1.117  0.433  

 

ZINC02159373 41 0.724  1.107  0.383  

ZINC04046709 37 0.745  1.114  0.369  

 

ZINC00934318 41 0.655  1.103  0.448  

ZINC00206865 37 0.768  1.106  0.337  

 

ZINC02124654 41 0.710  1.103  0.392  

ZINC04045984 37 0.644  1.092  0.448  

 

ZINC02159335 41 0.682  1.096  0.414  

ZINC02111169 37 0.735  1.082  0.347  

 

ZINC02122586 41 0.681  1.089  0.407  

ZINC04084607 37 0.673  1.070  0.397  

 

ZINC02123323 41 0.683  1.089  0.406  

ZINC02098138 37 0.648  1.054  0.406  

 

ZINC02135809 41 0.713  1.084  0.371  

ZINC04046507 37 0.787  1.052  0.264  

 

ZINC02123238 41 0.642  1.074  0.432  

ZINC00244212 37 0.716  1.051  0.335  

 

ZINC02124894 41 0.624  1.068  0.443  

ZINC00374801 37 0.732  1.034  0.301  

 

ZINC02123503 41 0.651  1.066  0.415  

ZINC02108985 37 0.673  1.015  0.342  

 

ZINC02112810 41 0.662  1.061  0.399  

ZINC04045983 37 0.743  1.013  0.270  

 

ZINC02115714 41 0.676  1.049  0.373  

ZINC04085193 37 0.633  1.009  0.375  

 

ZINC02120102 41 0.634  1.046  0.412  

ZINC00244216 37 0.678  1.006  0.328  

 

ZINC02117282 41 0.629  1.043  0.414  

ZINC04090129 37 0.658  0.964  0.306  

 

ZINC02112838 41 0.644  1.027  0.383  

ZINC00526580 37 0.724  0.968  0.244  

 
ZINC02132035 41 0.690  0.983  0.293  

ZINC03852206 37 0.632  0.967  0.335  

 

ZINC00037965 41 0.639  0.973  0.333  

ZINC05396688 37 0.663  1.261  0.598  

 

ZINC02119782 41 0.627  0.972  0.345  

ZINC08295759 37 0.669  1.160  0.491  

 

ZINC02131421 41 0.640  0.963  0.324  

ZINC05439072 37 0.715  1.097  0.382  

 
ZINC02160434 41 0.658  0.963  0.306  

ZINC05396078 37 0.624  1.096  0.472  

 

ZINC08298071 44 0.677  1.151  0.474  

ZINC03841441 37 0.704  1.073  0.369  

 

ZINC08300451 44 0.641  1.116  0.475  

ZINC03842017 37 0.682  1.073  0.392  

 

ZINC00920376 44 0.670  1.097  0.427  

ZINC05397647 37 0.707  1.069  0.362  

 

ZINC08623374 44 0.690  1.075  0.385  

ZINC05433763 37 0.660  1.055  0.395  

 

ZINC00978757 44 0.668  1.070  0.402  

ZINC03841985 37 0.690  1.034  0.344  

 

ZINC12602191 44 0.645  1.051  0.406  

ZINC05399378 37 0.624  1.033  0.410  

 

ZINC08298054 44 0.632  1.037  0.406  

ZINC05433915 37 0.675  1.032  0.357  

 

ZINC08300458 44 0.638  1.021  0.383  

ZINC05398720 37 0.643  1.029  0.386  

 

ZINC08254146 44 0.632  0.959  0.328  

ZINC05409706 37 0.700  1.001  0.301  

 

ZINC08254520 44 0.635  0.918  0.282  

ZINC05399865 37 0.663  0.974  0.312  

 

ZINC08300478 44 0.647  0.918  0.271  

ZINC05410357 37 0.630  0.971  0.341  

 

ZINC00940005 45 0.728  1.238  0.510  

ZINC04270597 37 0.634  0.970  0.336  

 

ZINC03847574 45 0.660  1.184  0.524  

ZINC05440675 37 0.657  0.928  0.271  

 

ZINC00703857 45 0.667  1.115  0.447  

ZINC05433913 37 0.631  0.898  0.267  

 

ZINC01628259 45 0.641  1.098  0.457  

ZINC02138459 41 0.737  1.223  0.485  

 

ZINC03846504 45 0.630  1.059  0.429  

ZINC02117429 41 0.755  1.210  0.455  

 

ZINC01679777 45 0.741  1.039  0.298  

ZINC00407890 41 0.692  1.186  0.494  

 

ZINC03847575 45 0.683  1.028  0.345  

ZINC02122938 41 0.659  1.183  0.524  

 

ZINC02122310 45 0.663  1.012  0.349  

ZINC02114557 41 0.723  1.176  0.453  

 
ZINC02113150 45 0.626  0.965  0.339  

ZINC00132662 41 0.701  1.155  0.454  

 

ZINC03846506 45 0.641  0.942  0.301  

ZINC02125016 41 0.703  1.135  0.432  

 

ZINC03846608 45 0.649  0.936  0.286  

ZINC02124939 41 0.649  1.132  0.483  

 

ZINC04267198 45 0.625  0.904  0.279  

ZINC02159206 41 0.705  1.122  0.417  

 

ZINC00518521 49 0.753  1.150  0.397  

ZINC02125175 41 0.642  1.109  0.467  

 

ZINC01824117 49 0.729  1.088  0.359  
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ZINC00518288 49 0.786  1.071  0.285  

 

ZINC01322729 50 0.637  1.119  0.482  

ZINC00518468 49 0.726  1.070  0.344  

 

ZINC00281064 50 0.635  1.103  0.468  

ZINC00518287 49 0.737  1.023  0.286  

 

ZINC00276052 50 0.649  1.099  0.450  

ZINC01760845 49 0.662  1.003  0.342  

 

ZINC05954633 50 0.663  1.098  0.436  

ZINC00518513 49 0.702  0.993  0.291  

 

ZINC01824688 50 0.626  1.095  0.470  

ZINC01790050 49 0.673  0.963  0.290  

 

ZINC00386493 50 0.670  1.090  0.420  

ZINC03736221 50 0.646  1.245  0.599  

 

ZINC00386492 50 0.634  1.089  0.454  

ZINC00526756 50 0.747  1.240  0.493  

 

ZINC03736224 50 0.637  1.083  0.446  

ZINC00281070 50 0.681  1.231  0.550  

 

ZINC00756618 50 0.674  1.078  0.403  

ZINC02138329 50 0.640  1.231  0.591  

 

ZINC00060358 50 0.669  1.073  0.404  

ZINC01322395 50 0.684  1.229  0.546  

 

ZINC01825160 50 0.672  1.046  0.374  

ZINC02131423 50 0.673  1.214  0.541  

 

ZINC00978630 50 0.649  1.021  0.372  

ZINC00526446 50 0.678  1.213  0.535  

 

ZINC02135841 50 0.675  1.012  0.337  

ZINC02128903 50 0.628  1.176  0.549  

 

ZINC02096126 50 0.654  0.996  0.342  

ZINC03736220 50 0.721  1.173  0.452  

 

ZINC02128246 50 0.671  0.995  0.324  

ZINC02114987 50 0.704  1.141  0.436  

 

ZINC01838604 50 0.659  0.992  0.333  

ZINC00386494 50 0.677  1.133  0.456  

 
ZINC02131242 50 0.644  0.990  0.346  

ZINC00131414 50 0.803  1.129  0.326  

 

ZINC06624000 50 0.648  0.989  0.341  

ZINC00188073 50 0.653  1.128  0.475  

 

ZINC02102133 50 0.631  0.976  0.345  

ZINC02100978 50 0.661  1.127  0.466  

 

ZINC02131243 50 0.638  0.944  0.306  

ZINC00189593 50 0.680  1.126  0.446  

 

ZINC06624017 50 0.655  0.925  0.270  

ZINC04028994 50 0.637  1.123  0.486  
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CHAPTER 6 

IDENTIFICATION OF NATURAL EXTRACTS WITH POTENTIAL 

ANTIDIABETIC PROPERTIES THAT CONTAIN DPP-IV 

INHIBITORS 

 

ABSTRACT 

Natural extracts play an important role in traditional medicines for the treatment of 

diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl 

peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 

diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin 

could be, at least partially, explained by the inhibition of DPP-IV. 

Using an initial set of 29,779 natural products that are annotated with their natural 

source and an experimentally validated virtual screening procedure previously 

developed in our lab [1], we have predicted 12 potential DPP-IV inhibitors from 12 

different plant extracts (i.e., Ephedra alata, Ephedra distachya, Erythrina variegata, 

Galega orientalis, Haloxylon salicornicum, Pennisetum typhoideum, Rauwolfia 

serpentina, Rauwolfia vomitoria, Scoparia dulcis, Tecoma stans, Vinca major and 

Vitis vinifera) that are known to have antidiabetic activity. Seven of these molecules 

are identical or similar to molecules with described antidiabetic activity (although their 

role as DPP-IV inhibitors has not been suggested as an explanation for their 

bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at 

least in part, for the antidiabetic activity of these extracts through their inhibitory 

effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 

molecules from 6 different plants with no described antidiabetic activity but that share 

the same genus as plants with known antidiabetic properties. Moreover, none of the 18 

molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a 

group of 2,342 known DPP-IV inhibitors.  

Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts 

(12 of these plants have known antidiabetic properties, whereas, for the remaining 6, 

antidiabetic activity has been reported for other plant species from the same genus). 

Moreover, none of the 18 molecules exhibits chemical similarity with a large group of 

known DPP-IV inhibitors. In conclusion, our study identified (a) 18 lead-hopping 

candidates for the development of new DPP-IV inhibitors (corresponding to 13 

different chemical scaffolds) and (b) 6 plants with previously undescribed antidiabetic 

activity that could be new sources for antidiabetic extracts. 
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Introduction 

Medical plants play an important role in the management of type 2 diabetes 

mellitus (T2DM) by delaying the development of diabetic complications and 

correcting metabolic abnormalities [2]. Traditional plant-based remedies have been 

and are being used by T2DM patients around the world (e.g., patients belonging to the 

Chinese [3], Indian [4] and Mexican [5] populations), and many scientific studies have 

confirmed the benefits of medicinal plants with hypoglycemic effects on these patients 

[6-9]. Furthermore, during the past few years, some of the new bioactive drugs 

isolated from hypoglycemic plants have been demonstrated to have antidiabetic 

activity with greater efficacy than synthetic oral hypoglycemic agents used in clinical 

therapy regimens [10]. 

The most commonly studied hypoglycemic plants are Opuntia streptacantha, 

Trigonella foenum-graecum, Momordica charantia, Ficus bengalensis, Polygala 

senega and Gymnema sylvestre [10]. Despite their long tradition of use worldwide, 

few of these plants have been tested in modern, large-scale, clinical-type trials to 

determine their efficacies. However, it is clear that more research needs to be 

undertaken on these and other medicinal plants with hypoglycemic effects because, in 

most cases, the bioactive compounds and their modes of action still remain unclear. 

Numerous mechanisms of antidiabetic action have been proposed for extracts of 

the previous mentioned plants, some of them relate to their ability to stimulate insulin 

secretion [11]. Regarding the stimulation of insulin secretion, one target of interest for 

the antidiabetic action of these extracts is the serine protease dipeptidyl peptidase-IV 

(DPP-IV; EC 3.4.14.5) because the inhibition of DPP-IV has been shown to be an 

appropriate treatment for T2DM [12]. DPP-IV specifically removes N-terminal 

dipeptides from substrates containing proline or alanine as the second residue, 

transforming them into inactive or even antagonistic species. The most important 

substrates of DPP-IV are incretins, such as glucagon-like peptide-1 (GLP-1) and 

glucose-dependent insulinotropic polypeptide (GIP), which stimulates insulin 

secretion [13]. Incretin hormones are intestinal hormones that are released in response 

to nutrient ingestion and that potentiate the glucose-induced insulin response. 

Therefore, GLP-1 stimulates insulin biosynthesis and secretion, reduces glucagon 

release, slows gastric emptying, reduces appetite, and stimulates the regeneration and 

differentiation of islet B-cells [14]. On the other hand, GIP is involved in glucose 

metabolism by enhancing insulin secretion [15]. Both peptides have short half-lives 

because of their rapid degradation by DPP-IV. Therefore, inhibiting DPP-IV prolongs 

the action of GLP-1 and GIP, which, in turn, improves glucose homeostasis with a low 

risk of hypoglycemia [12]. 
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The first DPP-IV inhibitor on the market was sitagliptin (by Merck & Co.) [16], 

which was followed by the structurally similar vildagliptin (by Novartis) [17] and 

saxagliptin (by Bristol-Myers Squibb and AstraZeneca) [18]. The efficacy and safety 

profile of DPP-IV inhibitors have been promising and advantageous to date. In 

contrast to sulfonylureas and other antidiabetic drugs, DPP-IV inhibitors do not have 

an intrinsic risk of inducing hypoglycemia, and they are body-weight neutral. Their 

tolerability profile is good, and no specific adverse reactions have been reported [12]. 

The DPP-IV binding site is highly druggable in the sense that tight, specific 

binding to the enzyme can be achieved with small molecules with drug-like 

physicochemical properties [19,20]. The two key binding-site areas for the 

intermolecular interaction of DPP-IV and reversible inhibitors of non-peptide nature 

are the lipophilic S1 pocket (formed by Tyr631, Val656, Trp659, Tyr662, Tyr666 and 

Val711) and the negatively charged Glu205/206 pair [20]. We have recently used 

coordinates from complexes between DPP-IV and potent reversible inhibitors of non-

peptide nature to derive a structure-based common pharmacophore that defines a 

common background for DPP-IV inhibition [1]. This pharmacophore is part of a 

virtual screening (VS) workflow that also includes protein-ligand docking studies and 

shape and electrostatic-potential comparisons [1]. We have applied this VS workflow 

to the 89,425 molecules present in the natural products subset of the ZINC database 

(http://wiki.bkslab.org/index.php/Natural_products_database), and we found that 446 

of these molecules would inhibit DPP-IV with good ADMET properties. Notably, 

when these 446 molecules were merged with 2,342 known DPP-IV inhibitors, and the 

resulting set was classified into 50 clusters according to chemical similarity, there 

were 12 clusters that contained only natural products for which no DPP-IV inhibitory 

activity has been previously reported. Nine molecules from 7 of these 12 clusters were 

then selected for in vitro activity testing, and 7 out of the 9 molecules were shown to 

inhibit DPP-IV (the remaining two molecules could not be solubilized, preventing the 

evaluation of their DPP-IV inhibitory activity) [1]. 

The goal of the present work was to identify natural extracts with known 

antidiabetic activity that contain at least one molecule that we predict to be a DPP-IV 

inhibitor through a slightly modified version of the VS workflow described above [1]. 

Therefore, in this study, we provide new information about the active molecules in 

some natural extracts with antidiabetic properties and suggest that, at least in part, the 

mode of action of these molecules involves stimulating insulin secretion through the 

inhibition of DPP-IV. We also provide a list of plants with no previously described 

antidiabetic activity that may contain DPP-IV inhibitors and that are related to plants 

with known antidiabetic activity. These plants represent a new source of potential 

antidiabetic extracts. In addition, the new DPP-IV inhibitors that we identified are 

chemically different from known DPP-IV inhibitors, and therefore, they could be used 

as lead-hopping candidates for the development of new antidiabetic drugs. 
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Results and discussion 

Virtual screening description and application. We used a slightly modified 

version of a VS workflow that was previously developed and experimentally validated 

[1] to identify DPP-IV inhibitors in a large in-house database of natural products 

(NPs) annotated with their natural source. 

The VS workflow (see Figure 1) consisted of several sequential steps in which the 

output molecules of one step were the input molecules for the next step and so on. 

Central in this workflow is one structure-based common pharmacophore that captures 

the key intermolecular interactions needed for drugs to inhibit DPP-IV; this 

pharmacophore is formed by 2 mandatory sites (i.e., one positive/donor and one 

hydrophobic/aromatic ring) and 5 optional sties (i.e., two hydrogen-bond acceptors 

and three hydrophobic/aromatic ring sites). Both mandatory sites interact with crucial 

molecular anchors for DPP-IV inhibition (i.e., the hydrophobic/aromatic ring interacts 

with the hydrophobic S1 pocket at the DPP-IV binding site, and the positive/donor site 

interacts with the Glu205/Glu206 dyad [20]). Briefly, the VS workflow consists of (1) 

comparing ligand conformers to the common pharmacophore by allowing 

reorientation of the conformers to determine if they match the pharmacophore; (2) 

using ligands with at least one hit in the previous filter in a protein-ligand rigid-

docking study and docking them onto the ligand binding site of the DPP-IV 

conformation present in the 3C45 PDB file; (3) comparing the resulting docking 

conformations to the structure-based common pharmacophore without reorienting the 

poses; and (4) submitting the poses that were hits in the previous filter to a shape and 

electrostatic-potential comparison with the experimental pose of the DPP-IV inhibitor 

in the PDB file 3C45 (the previously developed VS workflow [1] was altered for the 

current work to use slightly lower threshold values for the electrostatic and shape 

comparisons). 

This VS protocol was applied to an in-house database of 29,779 NPs with 

appropriate ADME/Tox properties. The first filter found that 10,883 molecules in our 

database have at least one conformer that after proper reorientation, matches the 

pharmacophore (see Figure 1). Only 332 out of these 10,883 molecules have docked 

conformations that without reorientation, are able to match the pharmacophore (see 

Figure 1). This reduction is useful because it discards those molecules that are 

predicted to bind in a non-productive way to the DPP-IV binding site. Finally, the later 

filter (i.e., electrostatic and shape similarity screening) aims to smooth differences in 

chemical structures and translate them into criteria important for their intermolecular 

interactions with the ligand-binding site. This filter has been reported to be a valuable 

VS tool for the discovery of novel scaffolds [21], and in our case, it was applied to 

rescore the 332 hits that survived the previous filter. Consequently, only those 

molecules that had at least one docked pose that met the following conditions in the 
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comparisons made by EON were predicted to inhibit DPP-IV: (a) ET_pb ≥ 0.468 and 

(b) ST ≥ 0.237. Interestingly, the fact that DPP-IV inhibitors (a) have a significant 

positive electrostatic potential in the region that interacts with the Glu205/Glu206 

dyad (see Figure 1) and (b) that this ligand area matches the mandatory positive/donor 

site justifies the dominance of the electrostatic contribution over the shape 

contribution in the selected thresholds. Finally, the VS workflow identified 84 

molecules with potential DPP-IV inhibitory activity (see Figure 1). 

 

Figure 1. The VS workflow used in the present work. The data beside each VS step show the 

number of molecules that survived it. 

Virtual screening hits in natural extracts with known antidiabetic activity. 

According to the information available in our in-house NPs database, the 84 molecules 

that were predicted by the VS workflow as potential DPP-IV inhibitors have been 

isolated from 139 different natural sources. Interestingly, a systematic bibliographic 

search of PubMed (http://www.pubmed.org) revealed that the extracts of 12 out of 

these 139 natural sources have been reported to exhibit antidiabetic activity (see Table 

1). Moreover, among these 12 sources we found 12 VS hits that may, through their 

role as DPP-IV inhibitors, contribute to the observed antidiabetic activity of their 

corresponding extracts (see Table 1). In fact, a search using SciFinder 

(http://www.cas.org/products/sfacad) revealed that 6 out of these 12 natural 

compounds correspond (or are similar in chemical structure) to molecules with known 

antidiabetic properties (see Table 1). This finding further validates our methodology 

(in addition to the experimental validation of the original VS workflow [1]) and 

suggests that the mode of action of these molecules could involve DPP-IV inhibition. 

The remaining 6 natural compounds not previously reported to have antidiabetic 

properties represent new molecules that may also exhibit this bioactivity. In the next 

paragraphs, the most significant compounds found in these 12 antidiabetic extracts are 

discussed: 
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 N-Nororientaline (CAS number 29079-44-5, see Table 1) has been isolated 

from five plant species from genus Erythrina (i.e., Erythrina variegata [22], 

Erythrina crystagalli, Erythrina indica, Erythrina poeppigiana [22], and 

Erythrina arborescens) and was identified as a DPP-IV inhibitor by our VS 

procedure. Extracts from Erythrina variegata, Erythrina senegalensis, 

Erythrina addisoniae, Erythrina abyssinica, and Erythrina mildbraedii are 

reported to enhance antidiabetic activity [23-27]. Isoprenylated flavonoids 

isolated from Erythrina mildbraedii and prenylflavonoids isolated from the 

Erythrina senegalensis roots have been described as inhibitors of two other 

proteins frequently targeted in T2DM treatment (i.e., protein tyrosine 

phosphatase-1B [25,26] for the former class of molecules and acyl 

CoA:diacylglycerol acyltransferase [24] for the latter class). All of these 

flavonoid compounds are chemically related to our hit. Therefore, the 

antidiabetic action of extracts from these plants may be the result of more 

than one bioactive component and mode of action. 

 Tecostamine, which is found in Tecoma stans, has hypoglycemic properties 

similar to those of tecomine [28]. Our results therefore suggest that the 

hypoglycemic properties of tecostamine could be mediated by the inhibition 

of DPP-IV. In addition, the Tecoma stans aqueous extract posses at least four 

antidiabetic-related activities (i.e., intestinal α-glucosidase inhibition, post-

prandial antihyperglycemic, hypocholesterolemic and hypotriglyceridemic 

effects). Therefore, although it is possible that most of these activities are 

exerted by the phenolic compounds present in the Tecoma stans aqueous 

extract, bioguided studies are necessary to confirm this hypothesis [29]. 

 Epinephrine (also known as adrenaline), which is found in Scoparia dulcis, 

has been reported to improve hypoglycemia [30]. Scoparia dulcis has been 

described as a folk-medicinal plant and has been traditionally used as a 

remedy for diabetes mellitus in India and for hypertension in Taiwan [31]. 

From Indian Scoparia dulcis, an antidiabetic compound named amellin was 

also isolated and characterized by Nath [32].  

 From the same family as epinephrine, two additional compounds were 

predicted by our VS to be potential DPP-IV inhibitors. These compounds are 

(+)-pseudoephedrine (CAS number 90-82-4) and (-)-ephedrine (CAS number 

299-42-3), and both have also been reported to have hypoglycemic activity 

[33]. Both molecules are found in several Ephedra species (Ephedra alata 

[34], Ephedra distachya [35], Ephedra equisetina [36], Ephedra gerardiana 

[35], Ephedra shennungiana [37], Ephedra sinica, Ephedra vulgaris and 

Ephedra pflanze). However, Ephedra distachya and Ephedra alata are the 

only species reported to have antidiabetic properties [33,38]; therefore, we 
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proposed that the remaining Ephedra species may be new sources of 

antidiabetic extracts. 

 The molecules ajmaline and isosandwichine, which are enantiomers with the 

same CAS number, 509-37-5, are found in several Rauwolfia species. 

Rauwolfia vomitoria has been investigated for the content of alkaloids, 

especially those alkaloids with hypotensive and anti-inflammatory properties 

[39] in addition to the antidiabetic properties. Rauwolfia serpentina is also 

used as antidiabetic extract [40]. The remaining species that contain these 

molecules, such as Rauwolfia canescens [41], Rauwolfia degeneri[42], 

Rauwolfia densiflora [43], Rauwolfia heterophylla [44], Rauwolfia indecora, 

Rauwolfia obscura [45] and Rauwolfia tetraphylla [42], are putative 

antidiabetic extracts. 

 Serpinine (CAS number 509-38-6) is isolated from Vinca major and several 

Rauwolfia species (Rauwolfia obscura [45], Rauwolfia tetraphylla, Rauwolfia 

serpentina [46] and Rauwolfia sellowii [1]), belongs to the same cluster as 

ajmaline and isosandwichine (i.e., cluster 78). Therefore, they share similar 

chemical structures and natural sources. Moreover, Vinca major organic leaf 

extract strongly stimulates glucose utilization [47]. 

 One interesting hit predicted to be a DPP-IV inhibitor is an epicatechin 

derivate that is found in Vitis vinifera. An antihyperglycemic effect in 

streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-

sensitive cell lines have been described for grape seed procyanidin extracts 

(GSPE) [48]. In addition, it has been demonstrated that oligomeric 

procyanidins from GSPE activate the insulin receptor by interacting with and 

inducing the phosphorylation of the insulin receptor and that this interaction 

leads to increased glucose uptake [49]. Moreover, several epicatechin 

derivates have been reported to have antidiabetic properties (the most studied 

of which is epigallocatechin gallate [50]). Some findings demonstrate that 

epigallocatechin gallate may be a novel, plant-derived compound capable of 

reducing the risk of type 1 diabetes [51]. Therefore, the DPP-IV inhibition 

induced by this epicatechin derivate may contribute to the antihyperglycemic 

effect of GSPE [48]. 

 The remaining 3 molecules predicted to be DPP-IV inhibitors through our VS 

workflow and that are found in extracts with described antidiabetic properties 

are hydroxysmirnovine from Galega orientalis [52], (-)-halosaline (CAS 

number 26648-71-5) from Haloxylon salicornicum [53] and isochanoclavin-

(I) (CAS number 1150-44-3) from Pennisetum typhoideum [54] (see Table 

1). Our results suggest that these molecules could be DPP-IV inhibitors and 
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that extracts containing these molecules could potentiate the glucose-induced 

insulin response by prolonging the half-lives of GLP-1 and GIP incretins, due 

to the inhibition of DPP-IV. This information is novel and relevant, as no 

mechanism that explains the antidiabetic properties of these extracts has been 

previously suggested. 

Table 1. Natural extracts with reported antidiabetic activity that contain molecules that were 

predicted to be DPP-IV inhibitors by our VS protocol. The first column shows the 2D structure 

of each molecule and, when available, the corresponding common name and/or CAS number. 

The second column shows the number of the cluster in which the corresponding molecule was 

classified when its structure was compared with those of a group of 2,342 known DPP-IV 

inhibitors. The third column shows the scientific name of one of the sources in which the 

antidiabetic activity has been reported (rows in that table are alphabetically sorted based on this 

column). Bibliographic references for each molecule are divided into three columns in which (a) 

the first column presents papers that describe the purification of the molecule from the 

corresponding extract; (b) the second column lists papers that describe the antidiabetic activity 

of the corresponding extract; and (c) the third column lists papers, when available, that describe 

the antidiabetic activity of the corresponding molecule or one that is very similar to it. 

Molecule 

CAS number or Name 
Cluster Extract 

Ref. 

Isolation 

Molecule 

from Extract 

Ref. 

Antidiabeti

c Extract 

Ref. 

Antidiabeti

c Molecule 

 
(+)-pseudoephedrine (90-82-4) 

86 
Ephedra 

alata 
[34] [38] [33] 

 
(-)-ephedrine (299-42-3) 

86 
Ephedra 

distachya 
[35] [33] [33] 

 
N-nororientalin (29079-44-5) 

89 
Erythrina 

variegata 
[22] [23] [24-26] 

 
hydroxysmirnovine 

31 
Galega 

orientalis 
[52] [67]  
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(-)-halosaline (26648-71-5) 

79 

Haloxylon 

salicornicu

m 

[53] [38]  

 
isochanoclavin-(I) (1150-43-2) 

17 
Pennisetum 

typhoideum 
[54] [68]  

 
ajmaline (509-37-5) 

78 
Rauwolfia 

serpentina 
[46] [40]  

 
isosandwichine (509-37-5) 

78 
Rauwolfia 

vomitoria 
[69] [39]  

 
epinephrine (51-43-4) 

86 
Scoparia 

dulcis 
[70] [31] [30] 

 
tecostanine 

98 
Tecoma 

stans 
[71] [29] [28] 

 
serpinine (509-38-6) 

78 
Vinca 

major 
[54] [47]  

 
epicatechin derivate 

91 
Vitis 

vinifera 
[72] [48] [50] 
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Virtual screening hits in natural extracts with no described antidiabetic 

activity. Taking into account that extracts from closely related species of the same 

genus may share a high number of components, we also determined if any of our VS 

hits that were isolated from plants with no described antidiabetic activity belong to the 

same genus as species with known antidiabetic properties. We identified 6 molecules 

isolated from 6 different plants, Aconitum japonicum, Ervatamia officinalis, Solanum 

nudum, Solanum sodomaeum, Stephania cepharantha and Tabernaemontana 

eglandulosa (see Table 2), that meet these criteria. The related species with described 

antidiabetic properties are Aconitum carmichaelii [33], Aconitum moschatum [2], 

Aconitum violaceum [2], Ervatamia microphylla [55], Solanum lycocarpum [56], 

Solanum nigrum [57], Solanum xanthocarpum [58], Stephania hernandifolia [59], 

Stephania glabra [60], Stephania tetrandra [61], and Tabernaemontana divaricata 

[55]. Therefore, it is plausible to hypothesize that these 6 plants could also have 

antidiabetic properties mediated, at least partially, by the inhibition of DPP-IV. 

Finding new scaffolds of natural origin for DPP-IV inhibitors. The 18 

molecules in Tables 1 and 2 that were predicted to be DPP-IV inhibitors are of 

interest. To quantify the number of new scaffolds for DPP-IV inhibitors that were 

identified in our study, we merged the 18 VS hits with 2,342 known DPP-IV 

inhibitors, and the resulting set was classified according to structural similarity into 99 

clusters (results not shown). Interestingly, the 18 hits were classified in 13 clusters 

(see Tables 1 and 2) that do not contain known DPP-IV inhibitors (results not shown). 

Thus, these 18 predicted DPP-IV inhibitors correspond to 13 different chemical 

scaffolds that are unrelated to those present in known DPP-IV inhibitors, and, 

consequently, these new scaffolds could be used either in lead-hopping experiments to 

identify new DPP-IV inhibitors or in structure-activity studies to identify natural-

product derivates with stringer DPP-IV inhibition activity than the original NPs from 

which they are derived. 

Table 2. Natural extracts with no described antidiabetic activity (but from the same genus as 

plants with extracts with described antidiabetic activity) that contain molecules that are 

predicted to be DPP-IV inhibitors by our VS protocol. The first column shows the 2D structure 

of each molecule and, when available, the corresponding common name or CAS number. The 

second column shows the number of the cluster in which the corresponding molecule was 

classified when its structure was compared with those of a group of 2,342 known DPP-IV 

inhibitors. The third column lists the natural extracts from which the VS hits have been purified 

(rows in that table are alphabetically sorted based on this column). The fourth column lists the 

papers that describe the purification of the each molecule from the corresponding extract. The 

fifth column shows which are the extracts from the same genus where the antidiabetic activity 

has been described. Finally, the last column lists papers that describe the antidiabetic activity of 

the corresponding extract. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  6                                                      | 185 

Molecule 

CAS number or Name 
Cluster Extract 

Ref. Isolation 

Molecule 

from Extract 

Antidiabetic 

Extract 

Ref. 

Antidiabetic 

Extract 

 
30373-79-6 

96 
Aconitum 
japonicum 

[73] 

Aconitum 
carmichaelii 

[74] 

Aconitum 
moschatum 

[2] 

Aconitum 
violaceum 

[2] 

 
episilicine 

21 
Ervatamia 

officinalis 
[75] 

Ervatamia 

microphylla 
[55] 

 
solanudine 

97 
Solanum 

nudum 
[76] 

Solanum 

lycocarpum 
[56] 

Solanum 

nigrum 
[57] 

 

2 
Solanum 

sodomaeum 
[77] 

Solanum 
xanthocarpum 

[58] 

 
norjuziphine 

89 
Stephania 

cepharantha 
[78] 

Stephania 
hernandifolia 

[59] 

Stephania 

glabra 
[60] 

Stephania 

tetrandra 
[61] 

 
19637-92-4 

20 
Tabernaemontana 

eglandulosa 
[79] 

Tabernaemontan

a divaricata 
[55] 

 

Conclusions 

In a previous study [1], we developed a VS workflow that was able to distinguish 

successfully molecules that inhibit DPP-IV and molecules that do not inhibit this 

enzyme. We experimentally demonstrated that our VS protocol was able to identify 

DPP-IV inhibitors that (a) were not structurally related to any known molecule that 

inhibits DPP-IV and (b) have never been reported to have antidiabetic activity. In the 
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present work, we applied a slightly modified version of this VS workflow to an in-

house database of 29,779 NPs annotated with their corresponding natural source(s). 

From this initial set of NPs, our VS procedure identified as potential DPP-IV 

inhibitors 84 hit molecules that have been isolated from 96 different natural extracts. 

Interestingly, after an exhaustive bibliographic search, our results demonstrate that we 

are able to predict (a) 12 DPP-IV inhibitors that are present in 12 plant extracts with 

known antidiabetic activity and (b) 6 DPP-IV inhibitors that are present in 6 different 

plants species with no described antidiabetic activity but that share the same genus as 

plants with known antidiabetic properties (consequently, it could be suggested that 

these plants represent a potential new source of antidiabetic extracts). Moreover, none 

of these 18 hits exhibits chemical similarity with 2,342 known DPP-IV inhibitors, and, 

therefore, it is expected that a significant number of these hits could be lead-hopping 

candidates for the development of new DPP-IV inhibitors. At this point, it is also 

interesting to note that the analysis of the chemical structures of these 18 NP hits 

revealed that the majority of them are alkaloids containing basic nitrogen atoms 

(essential for proper interaction with the Glu205/Glu206 dyad). Moreover, our results 

provide a new hypothesis about the mechanisms by which, at least partially, these 12 

extracts exert their antidiabetic effects (i.e., improving glucose homeostasis by 

prolonging the activity of GLP-1 and GIP through DPP-IV inhibition). 

Lastly, we predicted that there are 77 other extracts with no described antidiabetic 

activity that contain at least one out of 65 VS hits. Consequently, our work opens the 

door to the discovery of new antidiabetic extracts of natural origin that could be of use, 

for example, in the design of functional foods aimed at preventing/treating T2DM. 

Therefore, the characterization of such extracts merits further attention, and such work 

is currently underway. 

Experimental section 

Initial dataset of natural compounds used. The database of NPs that was 

screened by the VS workflow contains 29,779 NPs from different origins (e.g., plants, 

and fungi) with appropriate ADME/Tox properties and no chiral ambiguities. An 

important characteristic of this database is that each molecule is annotated with (a) the 

natural sources from which it has been obtained and (b) the bibliographic references 

that describe how to extract the relevant molecule from each natural source. The 3D 

structures of the molecules in this NP database were processed with LigPrep v2.3 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com) using the following 

parameters: (a) the force field used was OPLS 2005; (b) all possible ionization states 

at pH 7.0±2.0 were generated with Ionizer; (c) the desalt option was activated; (d) 

tautomers were generated for all ionization states at pH 7.0±2.0; (e) chiralities were 

determined from the 3D structure; and (f) one low-energy ring conformation per 

ligand was generated. Conformations and sites for the resulting ligand structures were 
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determined during the generation of the corresponding Phase [62] databases with the 

Generate Phase Database graphic front-end. Default parameter values were used 

during this conformer generation process, with the exception of the maximum number 

of conformers per structure, which was increased from 100 (the default value) to 200. 

The conformer sites were generated with definitions made by adding to the default 

built-in Phase definitions the ability to consider aromatic rings as hydrophobic groups. 

Virtual screening workflow. The VS workflow used in this work is the same as 

that described previously [1], except that the conditions of the last filter (i.e., the shape 

and electrostatic potential comparison) were slightly different, as outlined below. 

The VS protocol used a structure-based pharmacophore that was built by (1) 

selecting from the PDB those reliable complexes of human DPP-IV and potent 

inhibitors of non-peptide nature (i.e., IC50 ≤ 10 nM) that bind reversibly to the enzyme; 

(2) using their corresponding DPP-IV coordinates to guide the superposition of the 

remaining PDB files (the resulting re-oriented coordinates for these PDB files were 

also used in the pharmacophore-based searches, protein-ligand docking studies and 

shape and electrostatic-potential comparisons of the VS workflow); (3) using the 

resulting coordinates to derive the corresponding energetic structure-based 

pharmacophores; and (4) building the common structure-based pharmacophore for 

reversible DPP-IV inhibition by prioritizing energetically favorable features over 

energetically weaker ones. The resulting pharmacophore consists of two compulsory 

sites (one positive/donor and one hydrophobic/aromatic ring) and five optional sites 

(i.e., two acceptor sites and three hydrophobic/aromatic ring sites) and was completed 

with receptor-based excluded volumes that schematically represent the location of the 

DPP-IV residues that form the binding pocket in the PDB file 3C45. 

The first step of the VS workflow uses the common structure-based 

pharmacophore to screen the conformer database with Phase v3.1 (Schrödinger LLC., 

Portland, USA; http://www.schrodinger.com) and allows the reorientation of the 

conformers to determine if they match the pharmacophore. Only those ligands with at 

least one conformer that matches the two compulsory sites of the common 

pharmacophore and at least one of the optional sites (without sterically colliding with 

the excluded volumes) survive this VS step. These ligands were docked onto the 

binding pocket of the PDB file 3C45 with eHiTS v2009 (SimBioSys Inc., Toronto, 

Canada; http://www.simbiosys.ca/ehits) [63] using default docking conditions, with 

the exception of the length of the sides of the cubic box encompassing the DPP-IV 

binding site, which was increased from 10 Å to 15 Å. Next, the resulting docked poses 

were again filtered with Phase through the common pharmacophore using the same 

filtering conditions as in the first Phase run (with the exception that no reorientation of 

the docked poses was allowed during the search). Thus, only docking poses 

compatible with the pharmacophore survived this filter. Finally, in the last step of the 
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VS protocol, the poses that were hits in this second pharmacophore screen were 

submitted to a shape and electrostatic potential comparison with the DPP-IV inhibitor 

present in the 3C45 PDB file to rescore the hits. This comparison was completed with 

EON v2.0.1 (OpenEye Scientific Software, Inc., Santa Fe, New Mexico, USA; 

http://www.eyesopen.com) and used the Electrostatic Tanimoto combo (ET_combo) 

score as the similarity criterion. The ET_combo score is the sum of two calculations: 

(a) the Shape Tanimoto (ST) score, which is a quantitative measure of three-

dimensional overlap (where 1 corresponds to a perfect overlap; i.e. the same shape), 

and (b) the Poisson-Boltzmann Electrostatic Tanimoto (ET_pb) score, which compares 

the electrostatic potential of two small molecules and ranges from 1 (identical 

potential) to a negative value that results from the overlap of positive and negative 

charges. In this work, we determined the EON scores by comparing the inhibitor in 

3C45 with the inhibitors found in a group of 24 PDB complexes of DPP-IV and 

reversible drugs that inhibit this protein (i.e., 1N1M, 20GZ, 2FJP, 2HHA, 2I78, 2IIT, 

2IIV, 2OLE, 2ONC, 2OQI, 2OQV, 2QOE, 2QT9, 2QTB, 2RGU, 2RIP, 3C43, 3CCC, 

3D4L, 3F8S, 3H0C, 3HAB, and 3HAC). This comparison of the experimental poses 

of DPP-IV inhibitors yielded threshold values for DPP-IV inhibition that were slightly 

lower than the ones used in the original VS workflow [1] (ET_pb ≥ 0.468 and ST ≥ 

0.237 instead of ET_pb ≥ 0.623 and ST ≥ 0.244), probably because the original 

threshold values were obtained exclusively using  potent DPP-IV inhibitors (i.e., IC50 

≤ 10 nM); in this study, this condition was relaxed slightly. After rescoring with EON, 

only those NPs with at least one conformation with ET_pb ≥ 0.468 and ST ≥ 0.237 

relative to 3C45‟s inhibitor were considered to be DPP-IV inhibitor candidates. 

Structural similarity analysis. The molecules that survived the 

electrostatics/shape similarity filter were merged with 2,342 known DPP-IV inhibitors 

obtained from the BindingDB database [64] and then clustered using Canvas v1.2 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com). MOLPRINT2D 

fingerprints [65], using a fingerprint precision of 32 bits, were calculated for each 

molecule, and hierarchical clustering, based on Tanimoto similarities, was 

subsequently obtained. The number of clusters obtained was defined using the Kelley 

criterion [66], corresponding to a Tanimoto coefficient of 0.775 in this case. 

 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  6                                                      | 189 

References  

1. Guasch L, Ojeda MJ, González-Abuín N, Sala E, Ceretó A, et al. (submitted) 

Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part 

I): Virtual screening and activity assay. . 

2. Howes M, Simmonds M. (2005) Plants used in the treatment of diabetes. In: 

Soumyanath A, editor. Traditional Medicines for Modern Times. Press. 

3. Yin J, Zhang H, Ye J. (2008) Traditional chinese medicine in treatment of metabolic 

syndrome. Endocr Metab Immune Disord Drug Targets 8(2): 99-111. 

4. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A Devasagayam T. (2007) Indian 

herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40(3): 

163-173. 

5. Andrade-Cetto Adolfo, Heinrich M. (2005) Mexican plants with hypoglycaemic 

effect used in the treatment of diabetes. J Ethnopharmacol 99(3): 325-348. 

6. Haque N, Salma U, Nurunnabi T, Uddin M, Jahangir M, et al. (2011) Management 

of type 2 diabetes mellitus by lifestyle, diet and medicinal plants. Pak J Biol Sci 14(1): 

13-24. 

7. Malviya N, Jain S, Malviya S. (2010) Antidiabetic potential of medicinal plants. 

Acta Pol Pharm 67(2): 113-118. 

8. Prabhakar PK, Doble M. (2008) A target based therapeutic approach towards 

diabetes mellitus using medicinal plants. Curr Diabetes Rev 4(4): 291-308. 

9. Qi L, Liu E, Chu C, Peng Y, Cai H, et al. (2010) Anti-diabetic agents from natural 

products--an update from 2004 to 2009. Curr Top Med Chem 10(4): 434-457. 

10. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. (2006) Medicinal plants 

with potential antidiabetic activity - A review of ten years of herbal medicine research 

(1990-2000). Int J Diabetes Metab 14(1). 

11. Prabhakar PK, Doble M. (2011) Mechanism of action of natural products used in 

the treatment of diabetes mellitus. Chin J Integr Med 17(8): 563-574. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



190 |                                                      C h a p t e r  6  

12. Havale SH, Pal M. (2009) Medicinal chemistry approaches to the inhibition of 

dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg Med Chem 17(5): 

1783-1802. 

13. Mentlein R, Gallwitz B, Schmidt W. (1993) Dipeptidyl-peptidase IV hydrolyses 

gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine 

methionine and is responsible for their degradation in human serum. Eur J Biochem 

214(3): 829-835. 

14. Brubaker PL, Drucker DJ. (2004) Minireview: Glucagon-like peptides regulate 

cell proliferation and apoptosis in the pancreas, gut, and central nervous system. 

Endocrinology 145(6): 2653-2659. 

15. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B. (2002) Gastric inhibitory 

polypeptide: The neglected incretin revisited. Regul Pept 107(1-3): 1-13. 

16. Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, et al. (2005) (2R)-4-oxo-4-

[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(24,5-

trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV 

inhibitor for the treatment of type 2 diabetes. J Med Chem 48(1): 141-151. 

17. Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, et al. (2003) 1-

[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: A potent, selective, 

and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic 

properties. J Med Chem 46(13): 2774-2789. 

18. Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, et al. (2005) 

Discovery and preclinical profile of saxagliptin (BMS-477118): A highly potent, long-

acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 

diabetes. J Med Chem 48(15): 5025-5037. 

19. Zettl H, Schubert-Zsilavecz Manfred, Steinhilber D. (2010) Medicinal chemistry 

of incretin mimetics and DPP-4 inhibitors. ChemMedChem 5(2): 179-185. 

20. Kuhn B, Hennig M, Mattei P. (2007) Molecular recognition of ligands in 

dipeptidyl peptidase IV. Current Topics in Medicinal Chemistry 7(6): 609-619. 

21. Sala E, Guasch L, Iwaszkiewicz J, Mulero M, Salvado M, et al. (2011) 

Identification of human IKK-2 inhibitors of natural origin (part I): Modeling of the 

IKK-2 kinase domain, virtual screening and activity assays. PloS One 6(2): e16903. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  6                                                      | 191 

22. Ito K, Haruna M, Furukawa H. (1975) [Studies on the erythrina alkaloids. X. 

alkaloids of several erythrina plants from singapore]. Yakugaku Zasshi 95(3): 358-

362. 

23. Kumar A, Lingadurai S, Shrivastava TP, Bhattacharya S, Haldar PK. (2011) 

Hypoglycemic activity of erythrina variegata leaf in streptozotocin-induced diabetic 

rats. Pharm Biol 49(6): 577-582. 

24. Oh WK, Lee CH, Seo JH, Chung MY, Cui L, et al. (2009) Diacylglycerol 

acyltransferase-inhibitory compounds from erythrina senegalensis. Arch Pharm Res 

32(1): 43-47. 

25. Bae EY, Na M, Njamen D, Mbafor JT, Fomum ZT, et al. (2006) Inhibition of 

protein tyrosine phosphatase 1B by prenylated isoflavonoids isolated from the stem 

bark of erythrina addisoniae. Planta Med 72(10): 945-948. 

26. Na M, Jang J, Njamen D, Mbafor JT, Fomum ZT, et al. (2006) Protein tyrosine 

phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from erythrina 

mildbraedii. J Nat Prod 69(11): 1572-1576. 

27. Nguyen P, Nguyen T, Dao T, Kang H, Ndinteh D, et al. (2010) AMP-activated 

protein kinase (AMPK) activation by benzofurans and coumestans isolated from 

erythrina abyssinica. J Nat Prod 73(4): 598-602. 

28. Hammouda Y, Rashid K, Amer S. (1964) Hypoglycaemic properties of tecomine 

and tecostamine. J Pharm Pharmacol 16: 833-834. 

29. Aguilar-Santamaria L, Ramirez G, Nicasio P, Alegria-Reyes C, Herrera-Arellano 

A. (2009) Antidiabetic activities of tecoma stans (L.) juss. ex kunth. J Ethnopharmacol 

124(2): 284-288. 

30. Ly TT, Hewitt J, Davey RJ, Lim EM, Davis EA, et al. (2011) Improving 

epinephrine responses in hypoglycemia unawareness with real-time continuous 

glucose monitoring in adolescents with type 1 diabetes. Diabetes Care 34(1): 50. 

31. Latha M, Pari L, Sitasawad S, Bhonde R. (2004) Scoparia dulcis, a traditional 

antidiabetic plant, protects against streptozotocin induced oxidative stress and 

apoptosis in vitro and in vivo. J Biochem Mol Toxicol 18(5): 261-272. 

32. Nath CM, Chakrabority KM, Brahmachari DH. (1945) Investigations on the new 

antidiabetic principle (amellin); its role in the reduction of acetone bodies and the 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



192 |                                                      C h a p t e r  6  

increase of alkali reserve of the blood of diabetics. Ann Biochem Exp Med 5(3): 101-

104. 

33. Konno C, Mizuno T, Hikino H. (1985) Isolation and hypoglycemic activity of 

ephedrans A, B, C, D and E, glycans of ephedra distachya herbs. Planta Med (2): 162-

163. 

34. Black OF, Kelly JW. (1927) Pseudo ephedrine from Ephedra alata. Amer. Jour. 

Pharm. 99: 748-751. 

35. Grue-Sorensen G, Spenser ID. (1989) The biosynthesis of ephedrine. Can J Chem 

67: 998-1009. 

36. Osadchii SA, Shults EE, Polukhina EV, Shakirov MM, Vasilevskii SF, et al. 

(2007) Study of alkaloids of the siberian and altai flora 14. synthesis of alkaloid-based 

tertiary N-(3-arylprop-2-ynyl)amines. Russian Chemical Bulletin 56(6): 1261-1267. 

37. Gilg E, Schürholf P. (1930) Die ephedrinhaltigen stammpflanzen der "ma-huang"-

droge. Arch Pharm (Weinheim) 233-239. 

38. Shabana MM, Mirhom YW, Genenah AA, Aboutabl EA, Amer HA. (1990) Study 

into wild egyptian plants of potential medicinal activity. ninth communication: 

Hypoglycaemic activity of some selected plants in normal fasting and alloxanised rats. 

Arch Exp Veterinarmed 44(3): 389-394. 

39. Campbell J, Mortensen A, Molgaard P. (2006) Tissue lipid lowering-effect of a 

traditional nigerian anti-diabetic infusion of rauwolfia vomitoria foilage and citrus 

aurantium fruit. J Ethnopharmacol 104(3): 379-386. 

40. Benzi G, Villa R, Dossena M, Vercesi L, Gorini A, et al. (1984) Cerebral and 

cerebellar metabolic changes induced by drugs during the recovery period after 

profound hypoglycemia. Farmaco Sci 39(1): 44-56. 

41. Gosh et al. (1958) Isolation of serpine and ajmaline from the root of rouvolfia 

Canescens. Naturwissenschaften 45(15): 365. 

42. Gorman M, Neuss N, Djerassi C, Kutney JP, Scheuer PJ. (1957) Alkaloid studies–

XIX: Alkaloids of some hawaiian rauwolfia species: The structure of sandwicine and 

its interconversion with ajmaline and ajmalidine. Tetrahedron 1(4): 328-337. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  6                                                      | 193 

43. Chatterjee A, Talapatra S. (1955) Alkaloids of the roots of rauwolfia densiflora 

benth. and hook,rauwolfia perakensis King and gamble, rauwolfia canescens Linn. 

and rauwolfia serpentina benth. Naturwissenschaften 77: 3551-3553. 

44. Hochstein F, Murai K, Boegemann W. (1955) Alkaloids of rauwolfia heterophylla. 

J Am Chem Soc 77(13): 3551-3554. 

45. Roland M. (1959) [The alkaloids of rouwolfia obscura K. schum]. J Pharm Belg 

14: 347-364. 

46. Sheludko Y, Gerasimenko I, Kolshorn H, Stackigt J. (2002) New alkaloids of the 

sarpagine group from rauvolfia serpentina hairy root culture. J Nat Prod 65(7): 1006-

1010. 

47. van de Venter M, Roux S, Bungu LC, Louw J, Crouch NR, et al. (2008) 

Antidiabetic screening and scoring of 11 plants traditionally used in south africa. J 

Ethnopharmacol 119(1): 81-86. 

48. Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, et al. (2004) Grape seed-

derived procyanidins have an antihyperglycemic effect in streptozotocin-induced 

diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology 

145(11): 4985-4990. 

49. Montagut G, Onnockx S, Vaque M, Blade C, Blay M, et al. (2010) Oligomers of 

grape-seed procyanidin extract activate the insulin receptor and key targets of the 

insulin signaling pathway differently from insulin. J Nutr Biochem 21(6): 476-481. 

50. Song E, Hur H, Han M. (2003) Epigallocatechin gallate prevents autoimmune 

diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 

26(7): 559-563. 

51. Fu Z, Zhen W, Yuskavage J, Liu D. (2011) Epigallocatechin gallate delays the 

onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 105(8): 

1218-1225. 

52. Benn MH, Shustov G, Shustova L, Majak W, Bai Y, et al. (1996) Isolation and 

characterization of two guanidines from galega orientalis lam. cv. gale (fodder galega). 

J Agric Food Chem 44(9): 2779-2781. 

53. Michel K, Sandberg F, Haglid F, Norin T. (1967) Alkaloids of haloxylon 

salicornicum (moq.-tand.) boiss. Acta Pharm Suec 4(2): 97-116. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



194 |                                                      C h a p t e r  6  

54. Brack A. (1962) Verlauf der Alkaloidbildung durch den Clavicepsstamm von 

Pennisetum typhoideum Rich. in saprophytischer Kultur. 54. Mitteilung über 

Mutterkornalkaloide. Arch Pharm Pharm Med Chem 295(7): 510-515. 

55. Fujii M, Takei I, Umezawa K. (2009) Antidiabetic effect of orally administered 

conophylline-containing plant extract on streptozotocin-treated and goto-kakizaki rats. 

Biomed Pharmacother 63(10): 710-716. 

56. Yoshikawa M, Nakamura S, Ozaki K, Kumahara A, Morikawa T, et al. (2007) 

Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and 

antidiabetogenic constituents from the brazilian medicinal plant solanum lycocarpum. 

J Nat Prod 70(2): 210-214. 

57. Villaseñor I, Lamadrid M. (2006) Comparative anti-hyperglycemic potentials of 

medicinal plants. J Ethnopharmacol 104(1-2): 129-131. 

58. Kar DM, Maharana L, Pattnaik S, Dash GK. (2006) Studies on hypoglycaemic 

activity of solanum xanthocarpum schrad. & wendl. fruit extract in rats. J 

Ethnopharmacol 108(2): 251-256. 

59. Mosihuzzaman M, Nahar N, Ali L, Rokeya B, Khan AK, et al. (1994) 

Hypoglycemic effects of three plants from eastern himalayan belt. Diabetes Res 26(3): 

127-138. 

60. Semwal DK, Rawat U, Semwal R, Singh R, Singh GJP. (2010) Anti-

hyperglycemic effect of 11-hydroxypalmatine, a palmatine derivative from stephania 

glabra tubers. J Asian Nat Prod Res 12(2): 99-105. 

61. Tsutsumi T, Kobayashi S, Liu YY, Kontani H. (2003) Anti-hyperglycemic effect 

of fangchinoline isolated from stephania tetrandra radix in streptozotocin-diabetic 

mice. Biol Pharm Bull 26(3): 313-317. 

62. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, et al. (2006) PHASE: A 

new engine for pharmacophore perception, 3D QSAR model development, and 3D 

database screening: 1. methodology and preliminary results. J Comput Aided Mol Des 

20(10-11): 647-671. 

63. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP. (2007) eHiTS: A new fast, 

exhaustive flexible ligand docking system. J Mol Graph Model 26(1): 198-212. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



C h a p t e r  6                                                      | 195 

64. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. (2007) BindingDB: A web-

accessible database of experimentally determined protein-ligand binding affinities. 

Nucleic Acids Res 35(Database issue): D198-201. 

65. Duan J, Dixon SL, Lowrie JF, Sherman W. (2010) Analysis and comparison of 2D 

fingerprints: Insights into database screening performance using eight fingerprint 

methods. J Mol Graph Model 29(2): 157-170. 

66. Kelley LA, Gardner SP, Sutcliffe MJ. (1996) An automated approach for 

clustering an ensemble of NMR-derived protein structures into conformationally 

related subfamilies. Protein Eng 9(11): 1063-1065. 

67. Vuksan V, Sievenpiper JL. (2005) Herbal remedies in the management of diabetes: 

Lessons learned from the study of ginseng. Nutr Metab Cardiovasc Dis 15(3): 149-

160. 

68. Shukla K, Narain JP, Puri P, Gupta A, Bijlani RL, et al. (1991) Glycaemic 

response to maize, bajra and barley. Indian J Physiol Pharmacol 35(4): 249-254. 

69. Ronchetti F, Russo G, Bombardelli E, Bonati A. (1971) A new alkaloid from 

rauwolfia vomitoria. Phytochemistry 10(6): 1385. 

70. Phan MG, Phan TS, Matsunami K, Otsuka H. (2006) Chemical and biological 

evaluation on scopadulane-type diterpenoids from scoparia dulcis of vietnamese 

origin. Chem Pharm Bull 54(4): 546-549. 

71. Costantino L, Raimondi L, Pirisino R, Brunetti T, Pessotto P, et al. (2003) 

Isolation and pharmacological activities of the tecoma stans alkaloids. Farmaco 58(9): 

781-785. 

72. Torres JL, Bobet R. (2001) New flavanol derivatives from grape (vitis vinifera) 

byproducts. antioxidant Aminoethylthioâˆ‟Flavan-3-ol conjugates from a polymeric 

waste fraction used as a source of flavanols. J Agric Food Chem 49(10): 4627-4634. 

73. Takayama H, Okazaki T, Yamaguchi K, Aimi N, Haginiwa J, et al. (1988) 

Structure of two new diterpene alkaloids, 3-epi-ignavinol and 2,3-dehydrodelcosine. 

Chem Pharm Bull (Tokyo) 36(8): 3210-3212. 

74. Konno C, Murayama M, Sugiyama K, Arai M, Murakami M, et al. (1985) 

Isolation and hypoglycemic activity of aconitans A, B, C and D, glycans of aconitum 

carmichaeli roots. Planta Med (2): 160-161. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



196 |                                                      C h a p t e r  6  

75. Zhang H, Wang X, Lin L, Ding J, Yue J. (2007) Indole alkaloids from three 

species of the ervatamia genus: E. officinalis, E. divaricata, and E. divaricata 

gouyahua. J Nat Prod 70(1): 54-59. 

76. Usubillaga A. (1988) Solanudine, a steroidal alkaloid from solanum nudum. 

Phytochemistry 27(9): 3031. 

77. El Sayed KA, Hamann MT, Abd El-Rahman HA, Zaghloul AM. (1998) New 

pyrrole alkaloids from solanum sodomaeum. J Nat Prod 61(6): 848-850. 

78. Kashiwaba N, Morooka S, Ono M, Toda J, Suzuki H, et al. (1997) Alkaloidal 

constituents of the leaves of stephania cepharantha cultivated in japan: Structure of 

cephasugine, a new morphinane alkaloid. Chem Pharm Bull (Tokyo) 45(3): 545-548. 

79. Beek TAV, Verpoorte R, Svendsen AB. (1984) Alkaloids of tabernaemontana 

eglandulosa. Tetrahedron 40(4): 737. 

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION OF NATURAL PRODUCTS AS ANTIDIABETIC AGENTS USING COMPUTER-AIDED DRUG DESIGN METHODS 
Laura Guasch Pàmies 
DL: T. 609-2013



 

SUMMARIZING DISCUSSION  

 

This doctoral thesis has focused on the identification of new natural compounds as 

antidiabetic agents. In that sense, the nuclear receptor peroxisome proliferator-

activated receptor γ (PPARγ) and the enzyme dipeptidyl peptidase-IV (DPP-IV) have 

been shown to be appropriate targets for antidiabetic drugs, and therefore, the 

development of compounds that target these molecules has great potential as a 

successful therapeutic approach in the treatment of type 2 diabetes mellitus (T2DM). 

PPARγ regulates the gene expression of proteins that are involved in glucose and lipid 

metabolism and increases insulin sensitivity. Thiazolidinediones (TZDs) have been 

approved by the American Food and Drug Administration (FDA) as antidiabetic drugs 

that operate by activating PPARγ. However, a side effect of TZDs is weight gain, 

which is caused by increasing adipocyte differentiation and fatty acid storage. Thus, 

partial agonists of PPARγ with decreased adipose tissue side effects are being 

investigated for their utility T2DM therapy. On the other hand, DPP-IV removes N-

terminal dipeptides from substrates containing proline or alanine at the penultimate 

position. GLP-1 and GIP are important active substrates of DPP-IV that have a 

stimulating effect on insulin secretion in a meal-dependent manner. As DPP-IV is 

responsible for the rapid degradation of GLP-1 and GIP levels in plasma, and the idea 

of using DPP-IV inhibitors to increase the half-life of these hormones and prolong its 

beneficial effects has been pursued as a new potential therapeutic approach to the 

treatment of T2DM. Although PPARγ partial agonists and DPP-IV inhibitors have 

different modes of action, they share the same purpose of improving glucose 

homeostasis. Thus, we propose two ways to treat diabetes through activating PPARγ 

and inhibiting DPP-IV. A co-therapy with PPARγ partial agonists and DPP-IV 

inhibitors might be more effective in some cases. 

PPARγ and DPP-IV have been extensively studied, and there is now a considerable 

amount of information related to these targets, including a large number of crystal 

structures. These crystal structures have been useful for applying structure-based 

approaches and obtaining a more accurate view of how the ligands interact in the 

binding site of these targets. However, some crucial aspects of these targets, for 

example, the difference between partial and full PPARγ agonists, remain unsolved. 

The application of 3D-QSAR techniques to PPARγ agonists has been useful in 

predicting the activity of new PPARγ agonists (chapter 1) and discovering the 

essential features that ideal PPARγ agonists require to have an antidiabetic effect 

without the side effects associated with PPARγ full agonists (chapter 2). These 

features include a low transactivation activity with a high binding affinity to inhibit the 
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phosphorylation of PPARγ at Ser273. Our models (chapter 2) suggest that effective 

PPARγ partial agonists should have a hydrophobic moiety and an acceptor site with an 

appropriate conformation to interact with arm II and to establish a hydrogen bond with 

Ser342. Although interactions with arm I increase the binding affinity, this region 

should be avoided in order to decrease the transactivation activity of potential PPARγ 

partial agonists. These interactions primarily consist of the development of a hydrogen 

bond network with the PPARγ residues Ser289, Tyr473, His323 and His449. This 

hydrogen bond network is typical of PPARγ full agonists.  

Moreover, we have applied a virtual screening technique to identify the most 

promising candidates from natural product databases in order to focus experimental 

efforts by eliminating molecules that do not possess the required features. Following 

protocols similar to those used by pharmaceutical industries in drug discovery, we 

have successfully developed two virtual screening (VS) workflows to identify new 

PPARγ partial agonists (chapters 3 and 4) and DPP-IV inhibitors (chapters 5 and 6). 

Our VS workflows are similar, but in each case, we have adapted them to the specific 

ligand-binding site of the corresponding target. Some of the techniques that are used in 

those workflows include ADMET filters, pharmacophore modeling, protein-ligand 

docking and electrostatic-shape similarity analysis. Our results have demonstrated that 

the combination of different computational techniques within the same virtual 

screening workflow generates better results. It is worth noting that once we obtained 

the hits from our VS workflow, we merged these hits with known PPARγ agonists or 

DPP-IV inhibitors. This step is important for identifying compounds with novel 

scaffolds and eliminating trivial PPARγ partial agonists or DPP-IV inhibitors that are 

very similar to compounds with these activities. In our case, we performed this 

analysis by generating the fingerprint of an entire set of molecules and then clustering 

these molecules based on the tanimoto co-efficient. Therefore, our results provide a 

wide range of starting points for the development of antidiabetics drugs.  

Both VS workflows have been validated. The PPARγ workflow was validated 

using both a in silico analysis (using a set of actives and a set of decoys and then 

calculating certain metrics, such as enrichment factor, selectivity and specificity) and 

in vitro analyses that include a PPAR ligand-binding competitive assay, a dual-

luciferase reporter assay, adipogenic activity and a glucose uptake assay. The high 

specificity and the moderate selectivity of our procedure reflect the correct assignment 

of inactive compounds and the loss of potential PPARγ partial agonists (false 

negatives), respectively. However, because of the high number of initial compounds 

and the difficulties in differentiating partial and full PPARγ agonists, we preferred a 

very specific but less sensible VS workflow. In terms of sensitivity, the partial agonist 

pharmacophores proved to be the most useful step whereas in terms of specificity and 

enrichment factor, the most useful step was the electrostatic/shape similarity analysis. 

Therefore, the combination of different steps seems adequate to obtain a VS workflow 
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that combines the best elements of each method. Ten compounds that represent ten 

new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological 

testing, but two of them were not assayed because of solubility problems. Five of the 

remaining eight compounds were confirmed as PPARγ partial agonists. These 

compounds bound to PPARγ, did not stimulate or only moderately stimulated the 

transactivation activity of PPARγ, did not induce the adipogenesis of preadipocyte 

cells and stimulated the insulin-induced glucose uptake of adipocytes. These results 

demonstrate that our VS procedure is able to identify novel scaffolds for PPARγ 

partial agonists (chapters 3 and 4).  

The DPP-IV VS workflow has been validated using an enzymatic assay. Seven out 

of the nine molecules selected were shown to inhibit DPP-IV. The remaining 

molecules could not be solubilized and tested. Although the IC50 of the seven hit 

molecules indicates that their in vitro activity is significantly lower than most known 

DPP-IV inhibitors, it is important to note that these molecules can be used as lead 

compounds for developing more potent inhibitors using structural-activity relationship 

studies. Thus, the results of the present study have demonstrated that our VS protocol 

is highly successful in the nontrivial identification of DPP-IV inhibitors with no 

chemical-structure similarities to known activities (chapters 5 and 6).  

In our VS workflows, we used two different databases of natural products or 

derivatives of natural products. The first one is a subset of the ZINC database that 

contains compounds that are commercially available. This database enabled us to 

check the reliability of our predictions, because we were able to purchase some of the 

hit compounds that were generated by our VS workflow and experimentally test their 

activity. The second database that we used contains molecules that have been reported 

to be purified from a natural source (independent of the stage of commercialization). 

The reason why we screened this second database is the potential applicability of our 

results to the design of new functional foods. In the field of functional foods, the 

repertoire of molecules to be screened is restricted to those found in nature. Therefore, 

VS techniques can be used to identify undescribed bioactivities for known natural 

molecules and, subsequently, increase the number of ingredients that can be used in 

functional food development. At this point, it is important to note that while the 

discovery of new bioactive compounds is very important, the identification of the 

natural source from which these compounds are derived is equally important, because 

it makes little sense to chemically synthesize a natural product for their use in a 

functional food. In fact, the use of a natural extract rich in the desired compound or 

compounds seems to be the ideal solution. Therefore, not only have we been able to 

identify natural products as antidiabetic agents, but we have also been able to discover 

natural extracts that contain these antidiabetic agents. 
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Thus, using the previously developed and validated VS workflows and applying 

tolerant conditions in the last filter (electrostatic and shape similarity analysis), we 

have predicted 22 PPARγ partial agonists (chapter 4) and 19 DPP-IV inhibitors 

(chapter 6) from extracts known to have antidiabetic activity or from related plants 

with undescribed antidiabetic activity (i.e., they are from the same genus as plants with 

known antidiabetic properties). Our results provide new hypothesis about the active 

molecules of natural extracts with antidiabetic properties and the mechanism of action 

for PPARγ activation or DPP-IV inhibition. Some of these molecules have been 

isolated from the plants Achyrocline satureoides, Salvia miltiorrhiza, Scutellaria 

baicalensis, Rauwolfia serpentina and Vitis vinifera, among other natural extracts. We 

also identified plants with undescribed antidiabetic activity that may contain PPARγ 

partial agonists and DPP-IV inhibitors that are related to plants with known 

antidiabetic activity. Some examples of these plants include Aconitum japonicum, 

Annona purpurea, Helichrysum stenopterum, Solanum nudum and Swertia hookeri. 

These plants represent a new source of potential antidiabetic extracts. Furthermore, 

none of the molecules that we predicted show chemical similarity with known PPARγ 

partial agonists or known DPP-IV inhibitors obtained from the literature or databases. 

Consequently, these molecules are lead-hopping candidates for the development of 

new antidiabetic drugs. 

In conclusion, this thesis provides a detailed and effective methodology for the 

identification of natural products that act as antidiabetic agents and a valuable set of 

natural compounds and extracts that act as PPARγ partial agonists or DPP-IV 

inhibitors.
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CONCLUSIONS  

 

1. Using a structure-based docking strategy for aligning the molecules, highly 

predictive 3D-QSAR models have been developed for PPARγ full agonists. 

These 3D-QSAR models may be useful for the prediction of the activities of 

new PPARγ full agonists and also to derive some structural insights for the 

improvement of the bioactivities of known PPARγ agonists. 

2. Effective PPARγ partial agonists should have a hydrophobic moiety and an 

acceptor site with an appropriate conformation to interact with the arm II of 

the LBD of PPARγ and to establish a hydrogen bond with Ser342 or an 

equivalent residue. 

3. Despite the fact that interactions with the arm I the LBD of PPARγ increase 

the binding affinity of PPARγ agonists, this region should be avoided in order 

to decrease the transactivation activity of potential PPARγ partial agonists. 

4. We have developed and validated a virtual screening (VS) workflow based on 

two structure-based 3D pharmacophores (one to exclude potential PPARγ full 

agonists), protein/ligand docking and electrostatic/shape similarity analysis to 

identify compounds with a high chance of being effective PPARγ partial 

agonists and that this bioactivity is not trivial because their chemical structure 

does not resemble known PPARγ partial agonists.  

5. From an initial set of 89,165 natural products and natural product derivatives, 

using our VS workflow, 135 compounds were defined as potential PPARγ 

partial agonists with good ADME properties. Ten compounds that represent 

ten new chemical scaffolds for PPARγ partial agonists were selected for in 

vitro biological testing, but two of them were not assayed due to solubility 

problems. Five out of the remaining eight compounds were confirmed as 

PPARγ partial agonists as they bind to PPARγ, do not or only moderately 

stimulate the transactivation activity of PPARγ, do not induce adipogenesis of 

preadipocyte cells and stimulate the insulin-induced glucose uptake of 

adipocytes. 

6. The compound ZINC02128851 was the best PPARγ partial agonists that we 

obtained. This compound may be used for lead-optimization and the 

subsequent design of more potent and safe antidiabetic drugs. 
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7. We have identified 12 molecules from known antidiabetic natural extracts 

that could be the bioactive molecules responsible, at least in part, of the 

antidiabetic activity of the extracts. These molecules are from the plants 

Achyrocline satureoides, Andrographis paniculata, Angelica keiskei, 

Cryptolepis sanguinolenta, Harungana madagascariensis, Salvia miltiorrhiza 

and Scutellaria baicalensis; the fungi Aspergillus terreus and Hericium 

erinaceum; and the marine species Dysidea villosa and Fucus vesiculosus. 

8. We have also identified as potential PPARγ partial agonists 10 molecules 

from 16 plants with undescribed antidiabetic activity but related, i.e., they are 

from the same genus, to plants with known andiabetic properties. These 

plants (like Annona purpurea, Artocarpus gomezianus, Helichrysum 

stenopterum, Melicope ptelefolia, Murraya paniculata, Salvia eriophora, 

Salvia lanigera, Salvia prionitis, Swertia hookeri, Tephrosia watsoniana) 

represent a new source of potential antidiabetic compounds. 

9. We have provided new hypothesis about these 22 active molecules of natural 

extracts with antidiabetic properties and their mode of action, i.e., the 

increase of the insulin-stimulated glucose uptake trough the action of PPARγ. 

These molecules would act as PPARγ partial agonists and as none of these 

molecules show chemical similarity with 211 synthetic PPARγ partial 

agonists, they are lead-hopping candidates for the development of new 

antidiabetic drugs. 

10. We have developed and validated a VS workflow that is able to enrich novel 

scaffolds for DPP-IV inhibitors that could be useful for drug development in 

the area of type 2 diabetes.  

11. We have predicted that 446 NPs present in ZINC database can act as potential 

DPP-IV inhibitors. From 9 of the resulting VS hits, 7 showed binding affinity 

to DPP-IV in a competitive binding assay. 

12. The compound ZINC02132035 showed the most significant inhibition of 

DPP-IV together with a dose-response effect. This compound may be used 

for lead-optimization to design more potent and safe antidiabetic drugs. 

13. We have predicted as potential DPP-IV inhibitors 13 molecules from known 

antidiabetic natural extracts that could be the bioactive molecules responsible, 

at least in part, of the antidiabetic activity of the extracts. These molecules are 

from the plants Ephedra alata, Ephedra distachya, Erythrina variegata, 

Galega orientalis, Haloxylon salicornicum, Pennisetum typhoideum, 

Rauwolfia serpentina, Rauwolfia vomitoria, Scoparia dulcis, Tecoma, Vinca 

major and Vitis vinifera. 
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14. We have also identified as potential DPP-IV inhibitors 6 molecules from 

plants with undescribed antidiabetic activity but related, i.e., they are from the 

same genus, to plants with known andiabetic properties. These plants (like 

Aconitum japonicum, Ervatamia officinalis, Solanum nudum, Solanum 

sodomaeum, Stephania cepharantha and Tabernaemontana eglandulosa) 

represent a new source of potential antidiabetic compounds. 

15. We have provided new hypothesis about these 18 active molecules of natural 

extracts with antidiabetic properties and their mode of action, i.e., stimulate 

the insulin secretion trough the inhibition of DPP-IV. These molecules would 

act as DPP-IV inhibitors and as none of these molecules show chemical 

similarity with 2,342 known DPP-IV inhibitors, they are lead-hopping 

candidates for the development of new antidiabetic drugs. 

16. Our work also opens the door to the discovery of new natural compounds 

and/or extracts that can be of use in the design of functional foods focused 

toward the prevention or treatment of type 2 diabetes mellitus. 
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