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Chapter 1

Introduction

Biological diversity must be treated more
seriously as a global resource, to be in-
dexed, used, and above all, preserved.
Three circumstances conspire to give this
matter an unprecedented urgency. First,

exploding human populations are degrad-

HI" HI‘I:»RMTI‘ ing the environment at an accelerated rate,

[

especially in tropical countries. Second, science is discovering
new uses for biological diversity in ways that can relieve both hu-
man suffering and environmental destruction. Third, much of the
diversity is being irreversibly lost through extinction caused by
the destruction of natural habitats, again especially in the tropics.
Overall, we are locked into a race. We must hurry to acquire the
knowledge on which a wise policy of conservation and development

can be based for centuries to come.

E.O. Wilson, 1988

1.1 Setting the problem

If we are to preserve our threatened biodiversity we meed to hurry to acquire the

knowledge on which a wise policy of conservation and development can be based for
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centuries to come (Wilson, |1988). To succeed in such an endeavour, we rst need data
and analytical tools to gain such knowledge and second, we need to be able to convey this
knowledge to the research and conservation management communities so that it can be

put to good use.

The knowledge of species distributions is fundamental in conservation practice. Ideally,
in order to model the distribution of a given species, we would need a large, ne-resolution,
unbiased set of presences and absences. In reality, we are often limited to sets of species
occurrence data which are scarce, presence-only, biased, not extensive and at coarse
resolutions (Newbold, 2010; [Niamir et al., 2011). Although the size of species occurrence
data as a whole can be huge (GBIF} 2013a)), this is not so at the level of individual taxons
or species, and numerous references in the scienti ¢ literature point at that problem,
e.g. (Guisan et al. (2006a)); Pearson et al.| (2007)); Platts et al. (2010). Yet, The need for
information on the distribution of single species is of central importance to conserving

biodiversity (Robertson et al., 2010).

Our main asset to deal with this data conundrum is the wide range of analytical tools
we have at our disposal. Recent advances in statistics, computer science and information
technologies have allowed the emergence of the eld of biodiversity informatics (Schnase
et al., 2003; Peterson et al. 2010) and its application to conservation planning and
management (Soberon and Peterson, 2004). This can be used to tackle "the unprecedented
urgency with which biodiversity needs to be indexed, used, and above all, preserved” (|Wilson
(1988), p.3). The increasing digital availability of biodiversity occurrence data ([Yesson et al.,
2007; |Anderson), [2012) and protected area boundaries (IUCN-UNEP] 2013) combined with
novel methods in species distribution modelling (Franklin, 2009; [Peterson et al., 2011) can
greatly enhance the analysis of biodiversity conservation and help devise e ective actions
aimed at its preservation and, hopefully, succeed in the true protection of our world s
natural heritage. A wide range of species distribution modelling methodologies are aimed
at dealing with the wide range of data situations, from presence-only to presence-absence

data (Franklin, [2009; Peterson et al) 2011). Yet, the challenge is enormous.
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Aim

This dissertation aims at making a contribution on methods for dealing with con-
straints in biodiversity data, speci cally species occurrences, for producing maps useful
in conservation management and plannning using species distribution modelling as a
tool. It concentrates on the modelling of species of conservation interest and of alien
invasive species since they embody two complementary objectives: preserving values and
avoiding threats. The speci ¢ examples have been chosen because of the di erent particular
modelling di culties they pose: a) narrowly-distributed endemics with scarce but high
quality data and b) scarce, biased, ne-resolution data of unknown quality but which have
an abundant, reliable, coarse-resolution data counterpart. This latter example deals also
with the equilibrium assumption problem inherent to modelling the distribution of invasive

species (Vaclav k and Meentemeyer} 2012)).

A design and implementation of an information system on protected areas which
bridges the analysis of spatial patterns of biodiversity, i.e. species distributions, with
its protection is also provided. Protected areas play a crucial role in the preservation of
biodiversity (Rodrigues et al., 2004bla) and their coverage area is considered a surrogate
indicator of its protection (Chape et al., 2005 Jones et al., [2011)). If we are to monitor
the progress of biodiversity protection over time, information systems are needed which
can deal with changes in protected area boundaries over time. This dissertation provides

a design and implementation of such an information system.

The aim of this dissertation is two-fold:

To explore the use of scarce, problematic species occurrence data to derive information
which is useful in conservation planning and management and which can contribute

to the knowledge necessary to preserve the world s biodiversity.

To use information systems technology as a tool to organize and convey information
on biodiversity protection which, in combination with species distribution maps,
can help the research and conservation management communities and, ultimately,

society at large.
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In this chapter I brie y frame the research in its broader scienti ¢ context. First, I
present the nature of biodiversity data at the species level and state the need to express
it in a spatial context. Second, I outline the role of species distribution modelling in
providing distribution or range maps. Finally, I argue for the use of information systems

for biodiversity conservation, centered on protected areas.

1.2 Biodiversity data

The term biodiversity refers to the diversity or variation in biological entities or life
itself, at all levels, from genes to biomes, as well as the ecological and evolutionary processes
that give birth to and maintain it. As the Convention on Biological Diversity (United
Nations Environmental Programmme (UNEP), 1992)) de nes it as follows: Biological
diversity means the variability among living organisms from all sources including, inter
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which
they are part: this includes diversity within species, between species and of ecosystems.
The focus of this dissertation is on using primary data to obtain secondary or derived data
which can be useful in the conservation of biodiversity (see Box 1). The quantity and
quality of species distributional data can profoundly in uence the quality of products that
are then used to direct (or misdirect) conservation action (Robertson et al. 2010). Figure
[1.1] provides a general overview of biodiversity data. Among all of their levels, from the
genes to the Biosphere, this dissertation is centered at the species data level. At this level,
I will analyse the quantity and quality dimensions of data and how the di erent types of
data require di erent modelling approaches. Data collection is beyond the scope of this

dissertation, it will only be mentioned indirectly.

In this section we will take a broad view of two of the dimensions of biodiversity data:
quantity and quality.
Quantity of biodiversity data. Data scarcity or data deluge

There is a wealth of data which have been recorded over the centuries in an ad hoc way

by natural historians, museums, scientists and the like in the form of museum specimens,
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site inventories, citations in technical and scienti ¢ literature, etc. (Chapman and Busby,
1994; Chapman et al 2005). Over the last two decades these data have been translated into
digital repositories by both governmental and non-governmental organizations, investing
considerable amounts of nancial resources (Robertson et all [2010). These databases
represent an invaluable and still largely untapped potential asset of data for science
and conservation (Funk and Richardson) 2002; Graham et al., 2004; Suarez and Tsutsui,
2004} |Guisan et al., 2006b; |[Franklin, 2009 [Robertson et al., 2010). GBIF, the Global
Biodiversity Information Facility, which collates data from digital databases around the
world, exempli es the size of existing data. Currently (as of 3 January 2012), it contains
over 380 million data records coming from close to 10 000 datasets and 456 publishers, of

which around 335 million are georeferenced (GBIF} 2013a).

However, despite the availability of this wealth of data as a whole, we are still far away
from what would be necessary in order to be e ective in conserving our biodiversity. Two
terms have been coined to de ne the knowledge shortfall in biodiversity data. First, there is
the Linnean (Raven and Wilson), [1992) shortfall which refers to the gap between the known
species and the total amount of living species (an estimated existing 8.7 million versus 1.2
million which have been described (Mora et al., [2011))). Second, there is the Wallacean
(Lomolino et al., 2004) shortfall which refers to the existing gap of information on the
spatial distribution of species, that is, from our inferred distributions to the real species
distributions. More recently, Ladle and Whittaker| (2011)) referred to a third shortfall as
the gap between species extinctions by anthropogenic (past, present and future) action

and real extinctions.

When dealing with data from single species or taxons the reality is that data are
usually scarce, in contrast with the above mentioned wealth of data on biodiversity as a
whole. Although methods exist for dealing with scarce data (Pearson et al., 2007} Elith
et al., 2006} Phillips et al., 2006; Bean et al., 2012; [Marcer et al., [2012)), the practical
advantages of a large amount of data are undeniable not only current data but also
historical, which allow us to understand changes in distributions. The major source of

historical data comes from museum collections (Boakes et al., [2010)).
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INTRODUCTION

BOX 1 - Types of Biodiversity Information

Primary data - Primary data is composed of species occurrence
data or raw data comprising observational data such as specimens,
field notes and any direct information of observational data, held in
museum collections and herbaria and in universities, governmental
and non-governmental organizations and private individuals
(Chapman), 2005b; |Goddard et al. 2011). In summary, these
are data records that locate a particular species in a place at a

particular point in time (Jiménez-Valverde et al., 2010).

Secondary or derived data - Secondary species data are biodi-
versity information products such as range maps or diversity maps
which are derived from primary biodiversity data. They repre-
sent downstream information products from the original occurrence
records. These secondary products are needed, and are certainly at-
tractive, but should always refer back in a repeatable and traceable

manner to the primary data (Peterson, 2010).

me=="
==
n‘l l! #*l-.f.I‘l'
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Images sources: Kew Botanical Garden, Natural History Museum (London), Harvard University Press,

W. L. R. Oliver (IUCN)

Quality of biodiversity data

The quality of this wealth of biodiversity data is far from being adequate for biodiversity

planning and management. Important drawbacks include the lack of repeated observations

across space and time, the lack of absence data, bias (taxonomic, spatial and temporal)

and, mostly, the excessive coarseness of resolution (Margules and Pressey, 2000; |Pressey;,

2004).

Quality in biodiversity data is a multifaceted issue (see Figure and several aspects

of it (extent, bias, accuracy, resolution, organization and availability) may hinder its use.
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Figure 1.1: The dimensions of biodiversity data at the species level. Source: own
elaboration.

Being aware of these aspects and shortcomings and having them documented as metadata

is as important as solving them.

Extent The extent or comprehensiveness of the data clearly a ects their usefulness in
biodiversity distribution studies. It is an obvious fact that in order to know or infer species
distributions in a particular area or region it is indispensable to have occurrence records
from that area or region. Biodiversity is spread all over the world; however, biodiversity
data is very patchy and concentrated in regions mainly of the developed world
et al. [2000). For the vast majority of species, there is a shortage of data regarding their
actual distribution at varying scales (local, regional, global), i.e. the Wallacean shortfall.

Moreover, most data collections pertain to political or cultural geographical units hence

lacking in biological meaning (Whittaker et al) [2005). Not only the spatial extent is

important but also the temporal and taxonomic extent of the data. Temporal extent refers

to the time span for which there exist biodiversity observations. When modelling the
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distribution of a given species it is important to have data that matches the temporal
span of the predictor variables used (Peterson et al., 2011)). Taxonomic extent refers to

the number of taxons for which there is data; its lack known as Linnean shortfall.

Bias The quality of the data in relation to their extent is tightly bound to the
existence of bias. Bias refers to the probability with which a given site, species or time
will be sampled (Boakes et al 2010)). Biodiversity data tend to have taxonomic, spatial
and temporal bias (Boakes et all 2010; Martin et al. 2012). This is due to the fact
that, for a given study area, most of it comes from ad hoc studies instead of planned
systematic surveys. Although data abound for parts of the world and for some speci ¢
groups of species (e.g plants), in other large parts of the world and for the majority
of species, data describing distributions are very scarce (Newbold, 2010)). Because the
environment is tightly coupled with geography. Spatial or geographical bias is implicitly
related to environmental bias. For species distribution modelling, the kind of bias that
a ects predicted distributions is precisely the environmental bias rather than the spatial

bias.

Accuracy Accuracy measures the closeness of the observed value to the true value, e.g.
how close an observed z, ¥y, z coordinate of a species observation is to the true coordinate
it occupies. This example refers to spatial accuracy, which a ects georeferencing quality.
Even with groups such as plants and vertebrates for which a larger amount of digitised
data exists, a high-quality georeference for each specimen or citation is lacking (Anderson,
2012). Temporal accuracy is further facet of species occurrence data quality, but one which
is not usually limiting; most species distribution studies try to infer current or potential
distributions from occurrence data of a much ner resolution than that of the expected
output map. Accuracy can also be applied at the taxonomic level and it re ects whether

species or taxons have been correctly identi ed.

Resolution Research in biogeography, macroecology and conservation planning is often
based on the analysis of grid maps of species richness (Graham and Hijmans, [2006).

Knowing the spatial distribution of biodiversity at di erent scales is an important issue in
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conserving it (Richardson and Whittaker, |2010). What is usually referred to as spatial
resolution is the size of grid cells (square being the most frequently used form). Occurrence
records can take di erent types of georeferencing such as pairs of x,y coordinates and
toponyms. In any case, they are usually converted to grid form prior to modelling exercises,
except when they are already directly georeferenced as square grid cells (e.g. 1-by-1 km

Universal Transverse Mercator cells).

Despite the fact that the term resolution is normally associated with its spatial sense,
it needs also to be taken into account in its temporal and taxonomic sense. The former
relates to the size of the temporal interval to which a species occurrence is associated.
For example, a specimen in a natural history collection may have in its tag its year of
collection which would give us a resolution of 1 year. Poor temporal resolution is more
frequent with historical records, e.g. some old species observations can only be temporally

referenced to a century.

Taxonomic resolution is the classi cation level at which a given individual is identi ed,
from kingdom to levels below species (subspecies, varieties, etc.). The usual target unit
for modelling is that of species (Robertson et al., 2010). Lower resolution taxons such
as genus (e.g. Quercus sp., Bromus sp., ...) may be more di cult to model due to the
diverse ecological requirements of the species they contain. Nevertheless, predicting their

distribution may be sensible in some studies (Marshall et al., 2006).

Organization Data organization is quite often not taken into account when considering
data quality, in spite of the fact that it ensures its consistency. Archiving in organized
repositories for the long-term storage of biodiversity data within a corporate infrastructure
with protocols for data entry is essential (Gioial, 2010)). Ensuring a good design for the
organization of data, e.g. through the use of relational databases, is a crucial step to avoid
errors such as data duplication, orphaned keys and the like (Chapman), 2005a). Researchers
have at their disposal unprecedented computer power with which to use a plethora of
modelling techniques, old and new, which empowers them to perform sophisticated analysis.

Each software application which implements a modelling technique requires the data to
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be fed in a speci ¢ custom-made format. Having correctly organized primary biodiversity
data has a big impact on the e ciency with which it can be used in research, i.e. the time
needed for data preparation and curation for modelling purposes is all but negligible. The
more organized and documented through metadata the original primary data is, the easier
and better their conversion for the speci ¢ analysis at hand. Metadata allows for data

discovery, interpretation and appropriate use, and even automated use (Michener, [2006).

Availability Before being able to analyze and summarise biodiversity data into maps,
it is necessary to make all legacy and current data about when and where species oc-
cur available and easy to use (Guralnick and Hill, 2009). Even where formalized data
archiving is practised, this does not necessarily translate into easy access to data (Gioia,
2010). Despite remarkable progress in recent years, most biodiversity data in museum
holdings or literature remains unavailable in an adequate digital format. In the last three
decades, considerable e ort has been put into the digitising of these data into publicly
available species distribution atlases. Such databases represent a wealth of data on species
distribution and an indispensable asset for science and conservation (Funk and Richardson,
2002; |Graham et al., 2004} Suarez and Tsutsuil, 2004; |[Franklinl, 2009; [Robertson et al.,
2010). Availability can also be considered a facet of quality; for data to be used it needs
to be readily available (e.g. through metadata-enabled discovery (Michener, 2006))). In
this respect, the computer revolution, database and GIS science and technology and the

Internet have become an indispensable tool in biodiversity research.

1.3 Mapping for biodiversity conservation

Conservation planning and management involve determining which areas need to be
managed for the persistence of biological diversity and natural values, a task which is
inherently spatial (Pressey et al. 2007)). The range or geographic distribution of species
constitutes one of its fundamental dimensions (Anderson, [2012). Knowing the drivers that
cause changes in biodiversity and where they occur is also important for devising policies

for biodiversity conservation (Sala et al.l 2000).
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Since we do not have detailed direct data on species distributions, reliable predictions
are necessary (Guisan et al 2006b)). We need tools to infer from incomplete data, often
scarce, where these values are located. In the case of species, intensive research and
development in recent years has produced a set of powerful inference tools for species
distribution modelling (see Figure [L.5)). These are now available to exploit the wealth
of data increasingly held in easily accessible biodiversity databases for uses such as the
call for a reduction on biodiversity loss made by The Millenium Development Goals
and the Convention on Biological Diversity (United Nations Development Programme,
2009; (Convention on Biological Diversity, 2010). Filling the biogeographical information
shortfalls and improving the accuracy of forecasts are challenges which lie ahead in the

eld of conservation biogeography (Richardson and Whittaker 2010; Ladle and Whittaker,

2011). In summary, we need maps of values, of threats and of sites to protect.

Maps of values. As it has already been stated, biodiversity refers to the variability of
life on Earth, at all its levels, from genes to ecosystems and biomes, which leads us to the
deduction that probably there should be conservation strategies in all of them. Arguably,
the most prominent discrete unit of biodiversity is that of species. Species provide us
with innumerable values and services: social, economical and spiritual. For these to be
preserved we rst need to locate where they are distributed and what their ecological
requirements are; 7.e we need maps. Given the sheer number of species on Earth, we have

to set priorities to allocate limited economic and human resources available.

Specially rich areas or hotspots (see Figure need to be identi ed and mapped in
order to optimally allocate these limited resources. Hotspots have exceptional concentra-
tions of endemic species which, at the same time, are under signi cant habitat loss (Myers
et al., [2000). One of such areas is the Mediterranean basin. Current technologies and tools
can be used to perform ne analysis of the distribution of species in hotspots susceptible

to be protected.

Maps of threats. Numerous studies exist that analyse the pressure or threats posed to

Earth s biodiversity (Sala et al.l 2000; [Petit et al., [2001; Gerard et al., [2010). Along with
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Figure 1.2: 25 biodiversity hotspots as proposed by |Myers et al.| (]2000[)

habitat destruction, land conversion for agriculture and development, climate change and

pollution, invasive species constitute a growing threat to native biodiversity (IUCN} 2013

‘Andreu and Vilal [2011)). Their spread outside their natural past or present distribution
cost our economies on the order of hundreds of billions of dollars each year
et all 2008 [Butchart et al 2010} Vila et al) 2011}, [Pysek et all 2012; [United Nations|

Environmental Programmme, 2013)).

Thus, apart from giving protection where values lie, we also need to identify areas that
may be a ected by negative vectors such as invasive alien species (IAS) in order to prevent

or mitigate their spread. Developing risk maps representing the potential distribution of

IAS is a necessary step towards e ective management (Peterson and Vieglais, [2001} Sharma|
et all [2005; [Roura-Pascual et all, [2009; Richardson and Whittaker], 2010; [Jimenez-Valverde)
2011)). Tt is necessary to make the best use of all available information for maximizing

the limited nancial resources (Nielsen et al., [2008)).

As an example, Figure [1.3|shows the global distribution of Ailanthus altissima, a global
invasive tree native to China and North Vietnam which conspicuously colonises a broad

array of native habitats, often with proli ¢ populations, displacing native species, among
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Q - . Aflanthus allizsima (Miller) Swingle

Figure 1.3: World distribution of Ailanthus altissima, a global invasive tree native to
China and North Vietnam (Kowarik and Saumel, 2007). Native range is shown as striped
polygons while invaded range is shown as black points and polygons.

Figure 1.4: The World Database on Protected Areas (WDPA) Monthly Release, by ITUCN
and UNEP-WCMC, October 2012. In blue: fully or partially marine, in green: terrestrial

other impacts.

Maps of protected sites. Protected areas are a cost-effective measure to protect

biodiversity (Bruner et al [2001; Balmford et al., 2002; [Rodrigues et all 2004b). They are

land or marine areas which have been designated as such in order to preserve natural values

chosen by society, groups or individuals (Ladle and Whittaker, 2011). In conservation
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planning, boundaries of protected areas are a vital piece of information. Most protected
area boundaries have been delineated with incomplete knowledge of the distribution of
the biodiversity values they intended to protect (Rondinini et al.l 2006)), leaving gaps
of protection as a result. As more and more information becomes available and new
modelling tools are being developed, these gaps need to be assessed and solved (e.g.
through gap analysis (Scott et al.,|1993))). To accomplish this, cartography on protected
areas boundaries is needed. In order to assess the level of biodiversity protection we need

digital geodatabases on protected areas boundaries (see Figure .

In summary, the combination of maps representing the values to preserve, the threats
to avoid and protected area boundaries can empower decision-makers when taking con-
servation actions. Species distribution modelling allows for the generation of distribution

maps out of occurrence data.

1.4 Species distribution modelling

Species distribution modelling (SDM) is a set of statistical tools which, by combining
observations of species occurrences and environmental data, allow us to hypothesise the
conditions under which species can survive, and thus to delimit the areas where we might
expect to nd a species (Elith and Leathwick, 2009; Higgins et al., 2012)). SDM is also
often cited under di erent terms such as environmental niche modelling, ecological niche

modelling or habitat suitability modelling in the scienti c literature.

SDM has experienced an explosive growth in recent years, enhanced by the increasing
general availability of occurrence data in digital databases, from sources such as natural
history collections and the scienti c literature among others, and by new developments in
statistics and information technology (Graham et al., [2004; Phillips et al., |2006; [Franklin,
2009; Elith and Leathwick, 2009; Peterson et al., 2011]).

SDM can be aimed at answering two di erent kinds of questions: a) why are species
distributed the way they are, and b) where are species distributed. In the rst case, the

goal is to identify the environmental variables determining the distribution of the species
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across geographical and environmental space. In the second case, the goal is to predict
where the species may be present. Each case serves di erent purposes: in the rst case,
understanding the ecological requirements and constraints of the species; and mapping
the species distribution, usually for conservation purposes (conservation planning, reserve

design, biodiversity assessment, etc.).

Justification for SDM. If we had direct occurrence data for every species at any
given scale and time frame, SDM would not be needed. Provided we also had extensive
environmental and biotic data, also at any given scale and time frame, we would be able
to calculate the environmental niche of any given species at any given moment in time.
However, such ideal conditions of data availability are far from being met even for any
given single species. Although in some cases data may seem abundant, they are still very
scarce for such a goal. Moreover, given the vast number of species and the limited human
and economical resources available, achieving this monumental task may never be in our
reach, at least in the foreseeable future. Given the global pressing conservation needs and
the need to understand how species respond to their environment, SDM are an invaluable

set of tools at our disposal.

SDM and data availability. In order to infer species distributions, we need data on
species presences and absences as well as data on the biotic and abiotic environments
which determine the ecology of species. With these, we can t a function between the
response variable (presence/absence) and the set of independent variables or environmental
predictors (biotic and abiotic). With respect to the environmental predictors, while
there is a growing availability of extensive spatially-explicit data on abiotic predictors
(temperatures, precipitation, soil, etc.), extensive spatially-explicit data on biotic predictors
is rarely available. With respect to the response variable, the vast majority of data available
are only presences. Having data on species absences is the exception rather than the norm.
Moreover, when data on species absences is available, it is at least subject to discussion,
since true species absences from geographical space are very di cult to con rm (Anderson,

2003). Such situation about data requirements and availability has driven the development
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of a plethora of modelling methods, speci cally tailored to deal with di erent scenarios of
data availability (see Figure . When only presence data is available several strategies
are possible (Figure [L.5]): a) use only presences (BIOCLIM, HABITAT, DOMAIN, SVM),
b) create pseudoabsences by sampling the area where the species has not been cited
(GARP) and c) use only presences and compare them to the environmental background in

which they occur (MAXENT, ENFA).

Modelling without absence data

Methods that can infer species distributions from presence-only data are very much in
need since there are vast stores of such data held in natural museums and herbaria and
absence data is rarely available (Graham et al., [2004; Phillips et all 2006). As we have
seen, several methods exist to model species distributions when there is no absence data.
Among these, the maximum entropy modelling approach (Maxent) stands out among
the best performers for this kind of data even when data are scarce (Elith et al., |2006;
Hernandez et al., 2006; Phillips and Dud ki, 2008} (Wisz et al., 2008}, |[Elith and Graham),
2009; Thorn et all 2009 Costa et al., |2010)) and bias is present (Rebelo and Jones, 2010).
Although Maxent is not a strict presence-only method like BIOCLIM or DOMAIN; it has
better discriminatory power (Peterson et al., 2011]). Maxent uses presence-only data in
combination with data on environmental variation across the study area, background data

in Maxent terms.

Maximum entropy modelling Maxent is a general-purpose method for making pre-
dictions or inferences from incomplete information. It originates in the eld of statistical
machine learning and is widely used in other knowledge elds as diverse as astronomy,
signal processing or natural language processing (Jaynes, [1957; Phillips et al., [2004, 2006)).
Recently, this modelling technique has been widely used by the species distribution mod-
elling community thanks to the fact that it has been adapted, made easily available
through a speci cally-developed software package (with a user-friendly interface), tested
and speci cally explained for ecologists (Phillips et al. 2004} [2006; Elith et all 2011]).

There are abundant examples of its application to many kinds of distributional studies:
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species richness (Newbold et al., [2009)), invasive species (O Donnell et al., 2012), climate
change e ects on species distributions (Franklin et al., 2012), endemism areas (Herzog
et al., 2012), protection quality (Nobrega and De Marco Jr, 2011) and rare species (Marino

et al., [2011) among others.

Maxent (Phillips et al. 2004, [2006; Elith et al.. |2011) uses data on the environmental
background on which the species exists and tries to estimate a probability distribution
which is the most uniform or spread out and, at the same time, which satis es the
constraints imposed by the available occurrence records and the environments in which
they occur but no more (Phillips et al., |2006). In other words, it estimates the target
distribution of the species with maximum entropy, subject to the constraint that the
expected value of each feature under this estimated distribution matches its empirical
average. This distribution agrees with only what is actually known and avoids assumptions
not supported by the data. According to its authors (Phillips et al., 2006), its main
advantages are: a) it requires only presence data and environmental information for the
study area, b) it works with both continuous and categorical data and their interactions,
¢) it is deterministic and amenable to mathematical analysis, d) over- tting is avoidable,
e) bias can be treated, f) output is continuous, which allows to set di erent thresholds
to produce binary maps and, g) it works well with scarce data. Its main disadvantages
are: a) it is not as mature a method as other classical statistical approaches such as GLM
(Nelder and Wedderburn|, [1972) or GAM (Hastie and Tibshirani, [1986), b) regularization

needs to be studied and applied to overcome over- tting, and c) it needs speci ¢ software.

The software package o ers the possibility to work on Auto features mode, which means
that Maxent decides which kind of functions to t depending on the nature of the data it
is fed. This is a widely used operating option since Maxent has already been calibrated to
work with di erent species pertaining to di erent taxonomic groups, with di erent number
of occurrence records and di erent species prevalence (Phillips and Dud k;, 2008]). The user
has the freedom to choose among di erent tting possibilities (linear, quadratic, product,

threshold and hinge). The hinge option approximates it to a GAM (Elith et al., [2011]).

The output of Maxent are raw probabilities which sum to one across the whole studied
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area and is, hence, scale dependent (Phillips and Dud k; [2008). Since the raw format in
Maxent can be di cult to interpret, recent versions of Maxent include a logistic output
which estimates the probability of presence or suitability of the site for the species (Phillips
and Dud ki, [2008). However, since absence data is not used, results should be interpreted
as potential relative suitabilities of each site of the study area in relation to the general
background available (Phillips et al. [2006). In order to estimate a true probability of
presence, information on absences should also be available and fed to the model (Peterson

et al., 2011)).



23

1.4. SPECIES DISTRIBUTION MODELLING

(1102) |70 72 uosIOlRg pue E

urpuel uo paseq Afrerired ‘uoryeroqerp um(Q :00Imog “eyep jo sodAy Aq spoyjour Sur[ppour UOHNGLISIP $o10ads UTR[ G ] 9INJI]

6661 ‘sigjed pue ||amy20ls

€¥61 "Siid PUB Y20[NJIN

0661 ‘edideyss ﬁ 1y8

861 “|e j@ uewialg h 14YD
166} ‘Uewpaud ﬁ SHYIN

9861 ‘lueliysqll pue ayseH |.----- m NVYD
2.6} 'WINGISPP3/\\ pue JaplaN ﬁ W19

600T “[e }o Zouny

600Z e 13 J9[inyL

18|jepopusdo

souasqeopnasd ; asuasaid

aauasqe / aauasaid

Bupsessioy siquissus.

aowoig

200T “Ie 8 [s21H

punoiByjaeq / ssuasaid

9002 “Ie 13 sduiud

$00Z “[e j8 0ND

€66l "' 1@ h@a—_wn_._&u

Kuo-ssusseud

1661 '$320D pue Jajepm

1661 ‘Rasng




24 CHAPTER 1. INTRODUCTION

Model calibration and validation

When calibrating a model it is necessary to have a clear conceptualization of the
parameters involved and the extent of that study area. In this respect, Soberon and
Nakamura (2009) proposed the BAM diagram, a heuristic scheme useful for analyzing the

interplay between movements, abiotic and biotic environments (see Box 2).

In model calibration, parameters are adjusted so that model output validation achieves
a de ned degree of performance, i.e. agrees with observed data. Datasets for calibration
and validation should be independent of each other. In an ideal situation, a separate
independent set of occurrence data would be held out of calibration data and would be
used to evaluate the performance of the generated model. The main goal of calibration is
to develop a model that ts well to data but which, at the same time, does not over- t

(Peterson et al., [2011)), that is, it works well with other sets of data.

When calibrating a model, the choice of environmental predictors is an important
decision. They should be chosen based on biological reasons (Elith and Leathwick, [2009),
i.e. variables known or suspected to have an in uence on limiting the distribution of the
species being modelled at the given scale and time frame. Very often, this information
is not known before running the model itself. Actually, the modelling process itself is
often used to determine which variables a ect species distribution. Usually, an iterative
sequence of model runs helps in deciding the best nal set of predictors. Another issue
to take into account is the autocorrelation among predictors since it can hinder model
interpretation (Dormann et al., 2008). A possible solution is using principal component
analysis to transform the variables into a set of orthogonal uncorrelated variables. However,
when the purpose of the study is predictive only, as in this thesis, autocorrelation can
be left untreated as it does not a ect Maxent predictive performance (Kuemmerle et al.,

2010)).
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BOX 2 - The BAM Diagram

The BAM (biotic, abiotic, movements) diagram is a heuristic scheme to illustrate the
relation between the biotic, abiotic or environmental and movement environments in
SDM introduced by Soberén and Nakamura, (2009). It helps to represent and visualize
as a simple model a much complicated reality with interplays between environment

and biology.
G

Go

.- 2 :
= Hmmmts’

&

The A (abiotic) circle represents the geographical region where the abiotic environ-
mental conditions meet the species requirements for its survival. B is the region
where biotic conditions (competitors, predators, etc.) allow for the existence of viable
populations. Finally, M is the region which has been accessible to the species dispersal
over time. Gy is the intersection A N B N M, which represents the actual distribution
of the species. Gy is the intersection A N B N M€ which represents the potential
distribution areas of the species, that is, reachable areas not yet colonized. Black
tree icons represent true absences of the species while coloured tree icons represent
presences. Different modelling techniques using different kinds of data calculate
different concepts. When no absence data is available, what is being calculated is
Gy U Gy. Gy can only be estimated when true absence data is available, which is
seldom the case. In the case of presence-only modelling with background data, the

background data should be extracted only from M.

M° stands for complementary of M
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With respect to occurrence data, it is often the case that no independent dataset
on which to evaluate performance is available. Under these circumstances, an accepted
approach is to randomly choose a given percentage of occurrences, not to be used during
the calibration process, and keep them apart as a test dataset. A better approximation
are cross-validation techniques, usually k-fold cross-validation (Fielding and Belll 1997)).
In k-fold cross-validation, the available dataset is divided into k£ groups. Then, the model
is built with k-1 groups and the k' group is used for validation. This procedure is then
repeated k times until all groups have been used for validation. A particular case of
cross-validation is the leave-one-out technique, in which, as its name indicates, groups are
composed of one single occurrence (k equals the number of occurrences). Leave-one-out
techniques are a useful option when data are very scarce (Pearson et al. |2007). Still
another option is bootstrap sampling, i.e. sampling with replacement. Cross-validation
techniques ensure that any given point is used both in calibration and in testing. Also, k
estimates of accuracy are obtained, which can then be averaged to have a nal performance
estimate with standard deviation. Finally, a measure of t of the model to the data is

obtained.

Performance measures The accuracy of species distribution models needs to be quan-
ti ed in order to evaluate predictive ability. Predictive ability or performance refers to how
close the predicted distribution is to the observed data and hence to the actual distribution.
However, questions such as how credible the model is in ecological terms should also
be addressed, specially when the modelling aim is to explain the species distribution
(Franklin, 2009). Errors are inherent to modelling since models are approximations to
the real world which leave unexplained variance. Errors can arise from factors such as
model misspeci cation (e.g. choosing an inadequate set of predictors), data errors (e.g.
introducing spatial error when georeferencing or misidentifying a species) and choice of an

inadequate modelling technique, among others.

Model outputs are in the form of continuous probability maps. If, as in most cases, the
desired outcome are binary maps (presence/absence or suitable/unsuitable areas), they

need to be converted by setting a cut-o threshold. All sites, i.e. pixels or grid cells, with
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a probability value below the selected threshold are assigned to 0 and the rest to 1. With
a binary map the performance of a model, how it classi es each occurrence point, can be
evaluated. There are two types of model performance measures: a) threshold-independent,
which evaluate performance across all thresholds and, b) threshold-dependent, whose

performance evaluation is bound to a speci ¢ threshold.

Any given measure of performance uses a confusion matrix of predicted versus observed
values (Table [1.1)). With this matrix the number of true positives and negatives and false
positives and negatives can be obtained and then used to calculate di erent performance

measure indices (Sensitivity, Speci city, False negative rate, False positive rate, Kappa,

etc.).
Table 1.1: Threshold-dependent accuracy measures, after Franklin (2009)
OBSERVED
PRESENT ABSENT

= " o Total

E PRESENT True positive False positive predicted present

S

2 Total

= . :

g ABSENT False negative ITrue negative predicted absent

Total Total
observed present observed absent

Threshold-independent measures. Threshold independent measures much better
than threshold-dependent measures in one sense; they allow to validate the model as
a continous probability map and therefore, once validated, it can be used for di erent
purposes by setting di erent thresholds to convert them to binary maps (Franklin| |2009).
However, behind the scenes, thresholds are still actually set to measure accuracy across

the probability range.

Probably the most widely used threshold-independent accuracy measure is the Area
Under the Curve (AUC), a parameter of the Receiver Operating-Characteristic (ROC)
curve (Hanley and McNeil, |1982)). The ROC curve is a graphical representation of the

trade-o s between false positives and false negatives at any given threshold and its AUC
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relates to the probability of ranking higher a species presence than a species absence. In
this kind of plots, an AUC of 0.5 means that the classi er is not better than random and
above 0.5 that the classi er is better than random. When evaluating presence-only models,
this measure can be interpreted as an indication of the discrimination between presence of
the species and background rather than presence and absence (Phillips et al. 2009). |Liu
et al. (2009) lists other threshold-independent measures of accuracy which can be used in
SDM, among them the Maximum Overall Accuracy, the Maximum kappa, the Gini index

and the point biserial correlation coe cient.

Threshold-dependent measures. In contrast with threshold-independent mea-
sures of performance, these measures refer only to a given threshold value. If di erent
thresholds need to be used for the purpose at hand, then each generated binary map needs
to be evaluated separately. Prior to measuring accuracy a threshold must be set to convert
models to binary maps. There are many di erent options for threshold setting and they
have been discussed by many authors (Liu et all 2005; |[Jimenez-Valverde and Lobo, 2007;
Freeman and Moisen, [2008; [Nenzen and Araujol, 2011} |Jimenez-Valverde, 2012; Bean et al.,
2012). Many of the threshold options rely on having both presence and absence data,
which is not available in presence-only modelling. Without absence data these thresholds
cannot be calculated. For presence-only data, several thresholding options exist, among
them: xed threshold like 0.5 (Li et al. [1997; Manel et all [1999; Bailey et al., 2002]),
Minimum Predicted Area (MPA) (Engler et al., 2004) and Minimum Training Presence
(MTP) (Pearson et al., [2007)).

The xed threshold option is quite an arbitrary one and could be left to cases where
a very conservative approach is needed, e.g. if 0.5 is chosen anything any better than
random will be predicted as present/suitable, or also, when a prede ned overall predicted
area is needed. The other two thresholds are much more meaningful. MPA minimizes
omission errors and the area predicted to be suitable. Models with lower MPAs are
more parsimonius and, therefore, could be considered better (Franklin, 2009)). The MTP
threshold is equivalent to the lowest estimated value at the site of any occurrence point.

This option sets the cut-o at a point where, by de nition, all observed occurrence records
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will fall inside the predicted area, thus ensuring a zero omission rate. MTP is a very
appropriate option when the purpose is to de ne suitable areas for conservation with a set
of occurrence data which is known to be free of georeferencing and identi cation errors.
Also, MTP makes sense ecologically since it includes all sites that are at least as suitable

as those where the species has been recorded as present (Pearson et al., [2007)).

Model outputs: distribution or range maps

Species distribution or range maps re ect either the species presence or its terrain-
suitability across geographical space; which is very useful information in conservation
planning and management (Robertson et al., [2010)). Species richness across space is very
heterogenous (Gaston, 2000) due to the widely di erent types of species distributions:
scattered, clustered, etc. Species distribution can be de ned as the set of all grid elements
in a speci ¢ sampling period of time where the probability of nding the species exceeds

some given threshold (Peterson et al., 2011).

Knowledge of species distributions or ranges is necessary to elaborate speci ¢ action
plans for their conservation and ensure their inclusion in protected areas, two important
conservation actions to ensure species survival (Cuttelod et al., 2008)). Several methods
exist to generate species range maps: point occurrence data, expert-drawn maps, species
distribution models and hybrid approaches (Graham and Hijmans|, 2006). Before the
availability of modern modelling techniques and extensive digital readily-available envi-
ronmental data, range maps needed to be drawn by expesrts or directly derived from
observations in grid format. Currently, SDM allow us to infer probability maps of species
presence which, in conjunction with threshold setting, can be converted into binary maps,

7.e. range maps.

The species range area of these maps depends on the scale at which they are generated.
In general, since species can not be mapped down to the actual size of their individuals,
they must be generalized to some spatial resolution value. Modelled species range maps
can then be used to assess species conservation and protection and to generate maps of

biodiversity richness and hotspots by overlaying individual species maps, which can then
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be used in biodiversity conservation planning. Also, when applied to alien invasive species,
these maps can be used to guide conservation actions speci cally tailored to avoid species

invasions and the resulting impoverishment in native biodiversity (e.g. [Thuiller et al.

(2005); Wilson et al.| (2007)); Vaclav k and Meentemeyer (2012)).

Use of species range maps in conservation

Distribution or range maps derived from SDM have important direct applications
in conservation: biodiversity discovery (populations, species limits, unknown species),
conservation planning, species reintroductions, vulnerability to invasion, planning protected
areas, etc. (Peterson et al., [2011). Species geographic ranges, and their change over time
represent fundamental ecological and evolutionary characteristics of species which have
direct use in assessing and predicting extinction risk (Gaston, 2003)), a fundamental concept

in conservation biology.

Species ranges and risk of extinction Range size is one of the main measures in
evaluating the risk of exinction of a given species. In particular, two measures of size are
used for such purpose, the Extent Of Occurrence (EOO) and the Area Of Occupancy
(AOO). IUCN] (2001) de nes EOO as the area contained within the shortest continuous
imaginary boundary which can be drawn to encompass all the known, inferred or projected
sites of present occurrence of a taxon, 7.e. the area that lies within the outermost
geographic limits of the occurrence of a species. It is normally measured by the method of
the minimum convex polygon or convex hull of all occurrence data. AOQO is de ned as the
area within its EOO which is occupied by a taxon, excluding cases of vagrancy (IUCN|
2001). The size of the AOO is dependent on the scale, the grain size or resolution, used to
map the species. ITUCN suggests to use a grid size of 2x2 km to measure it. EOO and
AOO measures are used in criteria Bl and B2 of ITUCN red listing guidelines (IUCN]| 2001}
IUCN Standards and Petitions Subcomittee, 2011)).

Analyzing species protection Protected areas are a crucial tool in reducing the
risk of species extinction, hence in conserving the world s biodiversity (Rodrigues et al.,

2003; (Chape et al., [2005; Barr et al., 2011} Butchart et al) 2012) and thus, in reducing
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the risk of species extinction. The combination of spatially-explicit models of species
of conservation interest with existing reserve networks can be a very powerful tool in

conservation management and planning.

These types of analysis are paramount to answering a question of importance to

the conservation of biological diversity: how e ective are protected areas at conserving

biodiversity ? (Margules and Pressey, 2000; Brooks et al., |2004; Chape et al., 2005}

Langhammer et al. [2007; [Suthterland et al., 2009). This can be answered by gap analysis

(Scott et al., [1993; Rodrigues et al., 2003; Brooks et al., [2004; Dudley and Parish, 2006}

D Amen et al., 2013)).

Systematic use of gap analysis is an important tool in identifying conservation gaps,
provide conservation information for conservation managers, guide speci ¢ resource man-

agement activities and mitigation actions to counter the e ect of climate change (U.S:

\Geological Survey| 2013; [United Nations Environment Programme, 2013)). Gap analysis

is interpreted as a strategy for achieving comprehensive, representative and e ectively
managed networks of protected areas. In gap analysis, explicit biodiversity representation
targets are spatially set and then compared to the existing network of protected areas in
order to analyze to which degree they are met. Then, priorities for expanding the protected

area network, based on the principles of irreplaceability and vulnerability, are identi ed to

achieve the targets for all features (Langhammer et al) 2007). This information can then

be combined with spatial layers of land ownership, stewardship and management status in

order to correctly direct conservation action (Scott et all 1993; |Jennings, |2000)).

Preventing TAS spread Not only identifying the intersection between conservation
targets and reserve networks is important but also the intersection of these with threats. In
this respect and as we have previously seen, IAS are one of such threats. The ever-increasing

number of alien species and the costs associated with them justi es the development of

preventive risk management plans or strategies (Sandlund et all [1999; Pimentel et al.|

2005; |Andreu and Vilal [2010). These can be enhanced by the generation of risk maps of

potential TAS spread, particularly so in protected areas, if they provide one of the main
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tools in biodiversity protection and safeguard native species from extinction. These risk
maps are a necessary step towards e ective management (Jimenez-Valverde et al., [2011;
Richardson and Whittaker, 2010) and resources should be focused where they will achieve

the greatest bene t (van Wilgen et al. 2011).

An important point to be taken into consideration when modelling TAS is that they may
not have reached equilibrium in their new invaded environment, an important assumption
in species distribution modelling (Vaclav k and Meentemeyer, [2009). IAS are normally not
in equilibrium but in the process of expansion in a new environment and thus, extrapolation
is needed (Kearney, [2006; [Vaclav k and Meentemeyer, [2012). However, in certain areas
where TAS have been established for an extended period of time, this equilibrium can be

assumed (Williamson et all 2009; |Gasso et al., 2010) and SDM used safely in this respect.

1.5 Biodiversity Conservation Information Systems

Knowledge about biodiversity is paramount to its conservation; even more so if we
take into account the pressing needs set by the ever increasing risk of biodiversity loss due
to human action. In order to gain this knowledge, data at all levels is needed, both from
the research and management domains: from genes to biomes and from local conservation
actions to global ones. Two types of very speci ¢ and important data for conservation

management and planning are species occurrence data and protected area boundaries.

Primary data on biodiversity has been captured over the decades in an unstructured,
analog form: museum collections, scienti ¢ and technical literature, cartographical sheets,
etc. Data such as taxon lists, species geographical atlases or protected area boundaries
were compiled with a local, regional or national focus and each item represented at a single
scale or resolution. There are vast quantities of them which need to be collected, organised
and made accessible in order to be put to use in conservation research, management
and planning. Biodiversity and protected areas information is needed in the research
domain, and governmental organisations are required and recommended by competent

bodies to make all this information public (European Environment Agency, [2007; Moritz
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et al) 2011). Currently many di erent institutions around the world are in the process of
digitising this information. Safeguarding them through databasing with georeferences and

date stamps is critical (Boakes et al., 2010).

In the last decades, there has been a huge increase in the availability of digitised
information on biodiversity and protected areas in the form of GIS layers and geodatabases
(Newbold, [2010). However, the simple translation from analogical to digital format is
not su cient. The relevant information they contain needs to be isolated and coded in
some sort of structured format (database, xml, etc.) to make them readable by software
agents. Georeferenced databases on the distribution of both protected areas and species is
critically important, yet neither their structure nor their content is su cient for the task

of analyzing distributional patterns and coverage degree (Brooks et al., 2004]).

Since biodiversity data are complex, sophisticated information architectures are needed
to handle them. With the advent of the digital revolution, we now have the tools
to standardise, homogenise and aggregate this information. Current information and
communication technologies o er an unprecedented opportunity to greatly enhance the
handling, analysis and public dissemination of environmental information (Soberon and
Peterson, 2004). Information systems are technological solutions aimed at solving the
capture, storage, analysis and retrieval of data on a given knowledge eld. Once in an
information system, all sorts of outputs can be obtained from these data, e.g. simple
queries, automated lists and reports, web mapping tools or species distribution maps
derived from modelling tools. The combination of these needs and the current technological
revolution has led to the emergence of the new eld of biodiversity informatics, which
deals with the application of information technologies to the management, algorithmic
exploration, analysis and interpretation of primary data regarding life, particularly at the

species level of organisation (Soberon and Peterson, [2004)).

Handling biodiversity data for research or management purposes, even if in digital
format, is a very time consuming task. Data needs to be prepared and organised for every
task at hand. In order to make the most e cient use of researchers and managers time,

access and analysis of these data needs to be made as agile as possible. This requires data
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in an integrated, coherent repository which obeys common standards such as common
reference systems, controlled vocabularies, coding schemes and the like. In order to make
the best use of both geographical and biological information, it must be captured in a
standardised format to allow the union and intersection of both types of information

(Reusser and Lee, 2011)).

Not only homogenising and structuring the data is important but also the tools
needed to exploit this information. Conservation Information Systems must deal with
heterogeneous geographical and ecological data (alphanumerical attributes, vector and
raster maps, documents, images, etc.) and information systems should provide the means
to deal with all this kind of data in an integrated manner. It is necessary to hand
researchers and managers comprehensive tools which allow to reach all these data from
the same system, instead of via di erent software tools (da S. Torres et al., [2006; Reusser
and Lee, 2011)). The pipeline between suppliers and users needs to be cleared. We need
systems whereby data of di erent kinds, from many sources, can be combined (Scholes

et al., 2008).

A desired scenario of would be that of a centralized gateway to data repositories
of worldwide information on species occurrences which can be queried for standardised
well-structured metadata-enhanced datasets on any given species for any given region
and time period. Modelling tools, software packages, would understand and accept some
sort of agreed format on species occurrence data as input. This would free modellers
from the tedious and time-consuming task of data compilation and preparation, freeing
them to focus only with the problem at hand, saving countless hours of data management.
This scenario has not been achieved yet. However, several initiatives are clearly going in
that direction, the most prominent one being that of the Global Biodiversity Information

Infrastructure or GBIF (GBIF) 20134).

From the point of view of information access, uni ed repositories of data can be
achieved by di erent means. A rst obvious one is to design and develop a unique, central
geodatabase containing all data coming from many di erent sources. This requires technical

sta which has previously homogenised and integrated the information (an example of it
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would be the World Database on Protected Areas, see below). A second option would
be that of a federated or virtual database where data can be accessed through a single
data portal which retrieves information from di erent separate databases through a web
services gateway (an example of it would be GBIF, see below). A distributed database
is comprised of loosely coupled sites, connected over a computer network and hosted in
separate computing facilities which may not even be in the same physical location. With
this option, there needs to be a compromise on basic standards between the di erent
institutions hosting the distributed databases so that the system can function properly.
The hosting institutions may hold their data in very di erent systems but must agree to a
given standard and web service of data interchange. In summary, the di erent systems
must be interoperable, 7.e. each system must be accessible by other systems without
signi cant human and technical interaction (Maso, 2012). In this scenario, each institution
is responsible for data stewardship and curation. In order to avoid dealing with the
expensive task of collecting and organising information, a third option, far-fetched at the
moment, would be needed. This would need arti cially intelligent systems which can
interpret unstructured and non-standardised information on their own and provide us with
digested information. Meanwhile, the development of user-friendly, robust information

systems is a must.

The need for readily available biodiversity information has been acknowledged at
all levels, from local to regional, national and global institutions (governmental, non-
governmental and international organisations) and there are innumerable initiatives (see
Box 3 for some of the most relevant) at all these scales to collate such information in
publicly available databases. Some leading international initiatives have become the leaders
in terms of setting standards and in collecting and providing species and protected areas
data: the Global Biodiversity Information Facility (GBIF) and the World Database on
Protected Areas (WDPA), respectively.
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BOX 3 - FExamples of relevant Global Conservation Information Systems

GBIF Global Biodiversity Information Facility (http://www.gbif.org)
WDPA  World Database on Protected Areas (http://www.wdpa.org)

EOL Encyclopedia of Life (http://eol.org/)

BHL Biodiversity Heritage Library (http://www.biodiversitylibrary.org/)
TOL Tree of Life (http://tolweb.org/tree/)

FishNet  Global Network of Icthyology Collections (http://www. shnet2.net/)
HerpNet Global Network of Herpetological Collections (http://herpnet.org/)
ManIS ~ Mammal Networked Information System (http://manisnet.org/)

VertNet  Global Network of Vertebrate Collections (http://www.vertnet.org/)

Digital atlases of species’ occurrences

Species occurrence data are compiled into digital species atlases, i.e. computerised
databases of spatially-explicit species occurrences, normally in grid or raster format at
di erent resolutions, coming from sources such as museum collections, herbaria and
technical and scienti c literature. These data are being compiled and made accessible over
the Internet at an ever increasing speed (Soberon and Peterson, [2004). Since they come
from disparate un-coordinated ad-hoc data sources they show numerous shortcomings which
need to be addressed when used (see Section [1.2)). Such challenges include the treatment
of location and identi cation errors and of temporal and spatial bias. Maintenance and
quality control of these databases is of high importance. Exponential technological change
also poses a challenge for keeping these systems up-to-date and migrating them to new

technological tools in order to prevent them from becoming locked in obsolete tools.

It is estimated that there are more species still to be discovered than those we already
know, greatly varying among di erent groups of organisms; e.g while it is estimated that
above 95% of mammals are already known, this number goes down below 5% in the case

of nematodes (Sche ers et al., [2012). Our knowledge is incomplete, taxonomy is still an
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evolving endeavour and phylogenetic trees are being re ned continuously. Without an
inventory list of the world s species, and still in the process of checking if every species
is correctly classi ed, developing a spatially-enabled biodiversity database is a daunting
challenge, yet unavoidable given the pressing conservation needs. Whatever knowledge we

have needs to be put to use in conservation.

Among digital species atlases, GBIF stands out as the largest single gateway to species

occurrence data which is global in scope (Yesson et al.l 2007).

Protected areas’ databases

The part of the present dissertation which deals with information systems concentrates
on protected areas databases. The importance of protected areas in preserving biodiversity
and serving as a surrogate indicator of biodiversity makes the organisation of information
on protected area boundaries in digital geodatabases a very important task for conservation
evaluation. Besides being usable by itself, protected area boundaries can be combined
with models of distributions of species of conservation interest to perform gap analysis
and determine where conservation e orts should be placed (Scott et al.l 1993; Rodrigues
et al.l 2004b; Langhammer et al. 2007; United Nations Environmental Programmel [2008;
Jantke et al., |2011) and with models of distributions of IAS to determine the risk of
invasion (Richardson and Whittaker, [2010). Advances in data availability and in the
science of conservation planning enable us to act strategically in the face of increasing
human pressure (Rodrigues et al., 2004b). As is the case with biodiversity data, protected
area boundaries need to be homogenised and integrated into geodatabases. This will ease
its use in gap analysis and biodiversity protection assessments. In this respect, the World
Database on Protected Areas (IUCN-UNEP] 2010) is the most comprehensive dataset on
the world s terrestrial and marine protected areas. Other databases are only national or
supra-national in scope, such as the Collaborative Australian Protected Area Database
(Australian Department of the Environment, Water, Heritage and the Arts, 2008]), the
Protected Areas Database of the United States(Greenlnfo Network, 2008) or the European

Common Database on Designated Areas (European Environment Agency,, 2009c), to cite
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the largest three.

An important but often neglected aspect on the information of protected areas bound-
aries is time. Protected areas are not static legal entities over time but undergo changes in
their regulations which follow the legal and socioeconomic contexts at any given moment.
These changes may not only a ect the existing set of regulations but also their boundaries;
i.e. they get extended, reduced, reclassi ed, amalgamated with neighbouring sites, re-
named, etc. (Fish et al., [2005). Having structured historical information on protected-area
boundaries for all protection categories in a given territorial extent allows to monitor
protected-area coverage over time and, thus, biodiversity protection. Also, it is possible
to explore the social, economical and political factors driving changes in protected-area
coverage and thus, hopefully, discover some hidden socioeconomic processes or drivers

which govern how society decides whether to value and protect biodiversity.

1.6 Dissertation structure

This dissertation is structured as follows:

Chapter 2 deals with the distribution modelling of rare species of conservation
interest in order to obtain maps for assessing the degree of protection and extinction
risk. Several narrowly distributed endemics of the Western Mediterranean have been

used as an example.

Chapter 3 explores how useful species distribution modelling tools are to generate
ne-resolution maps from existing occurrence data in biodiversity atlases or databases.
IAS are taken as an example for generating maps which can be useful as a conservation

tool to prevent and mitigate IAS spread.

Chapter 4 provides a design and implementation of an information system on
protected areas which can handle historical changes in boundaries and help to

monitor biodiversity protection over time. This information system has already been
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developed and deployed and is being used by the Catalan governmental stewards of

this kind of information.
Chapter 5. General discussion and conclusions.

Appendices. Supplementary materials for the di erent chapters
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2.1 Abstract

Range maps provide important information in species conservation management,
specially in the case of rare species of conservation interest. For the vast majority of
cases, this information can only be estimated by means of species distribution modelling.
When absence data is unavailable, modelled distribution maps represent the spatial
variation of the degree of suitability for the species rather than their realized distribution.
Although discerning potentially suitable areas for a given species is an important asset in
conservation, it is necessary to estimate current distributions in order to preserve current
populations. This work explores the use of species distribution modelling for species of
conservation interest when their Extent of Occurrence (EOO) is well-known and there is
quality occurrence data. In this case, derived binary maps of potentially suitable areas can
be obtained and used to assess the conservation and protection status of a given species in
combination with the EOO and existing protected area networks. Seven species which are
rare and endemic to the Western Mediterranean have been used as an example. Valuable
information for conservation assessment such as potentially suitable areas, EOO, Areas of
Occupancy (AOO) and degree of protection is provided for this set of species. Also, the
existing informal view among experts that these species have range sizes much smaller
than their potentially suitable area is con rmed. This could probably be attributed to

important currently unknown predictor variables and to historical phylogeographic factors.

Keywords
species of conservation interest, rare species, species distribution modelling, occupancy,

range maps, Western Mediterranean
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2.2 Introduction

A crucial aspect in the conservation of a species is the knowledge of the area it occupies.
i.e. its range map and size. This kind of information is needed when evaluating its risk
of extinction (Collar, |1996; TUCN]|, 2001; Rodrigues et al., |2006) and when assessing its
degree of protection (Scott et all 1993; Rodrigues et al., 2004blja). However, for the
vast majority of species such information is either non-existent or very poor at any given
scale (Newbold, 2010); this is known as the Wallacean shortfall (Lomolino et al. 2004).
This problem is aggravated when considering rare species, for which occurrence data
tends to be very scarce. Collecting enough data from species surveys to delineate species
ranges is an impractical and very expensive task (Niamir et al) 2011). When no planned
and systematic surveys exist, the only source of information available is presence-only
data coming from opportunistic citations of species which can be found in the technical
and scienti c literature or in digital atlases compiled by public or private organizations
(Anderson|, 2012)). Estimating the distribution of species by means of modelling tools

becomes the only solution available when performing conservation assessments.

Studies abound which have successfully applied species distribution modelling tech-
niques to existing species occurrence data in order to predict spatially-explicit species
ranges even when data is scarce and presence-only (Elith et al., [2006; Pearson et al., [2007;
Phillips and Dud k; 2008; Rebelo and Jones, 2010; |(Gogol-Prokurat| 2011; Razgour et al.,
2011)). Species distribution modelling has been shown to be useful when modelling rare
species with narrow ranges and available quality data (Sarda-Palomera et al., [2012)). Also,
in the case of rare species, observations of occurrence normally represent a comprehensive

view of their distribution and capture a large part of it (Lomba et al., [2010).

In order to make decisions in conservation and protection of species, binary maps of
presence/absence or suitable/unsuitable areas are much more preferred by conservation
decision-makers than continuous probability models. A threshold value is needed to
convert probability maps into these binary maps (Fielding and Bell, {1997; |Liu et al.,

2005; |Jimenez-Valverde and Lobo| 2007). These binary maps can then be used as species
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distributions and to calculate their range sizes and assess their conservation status and
protection. Knowledge of species ranges is a necessary step to elaborate speci ¢ action

plans for their conservation and ensure their inclusion in protected areas, two important

conservation actions to ensure species survival (Cuttelod et al., 2008). Extent of Occupancy

(EOO) and Area of Occupancy (AOQO) are accepted surrogate measures of species ranges
used in assessing the extinction risk of species (IUCN| 2001)). These are measures which

try to re ect the species realized distribution. Yet, when no absence data is available, what

we get are distributions close to potential ranges for the species (Jimenez-Valverde et al.|

2008; [Lobo, 2008])). Therefore, when using species distribution modelling techniques in

conservation assessments, these di erences between realized versus potential distributions

need to be explicitly accounted for and explained.

Protected areas are one of the main conservation policy tools to address biodiver-

sity protection, i.e. preserve species and ecosystems from human impact (Convention

on Biological Diversity, 2010; Butchart et al), 2012)). Protected area coverage is used

as a surrogate indicator or proxy of biodiversity conservation status (United Nations|

[Environment Programmel, [2009; [United Nations Development Programmel, 2009; [United

Nations Environment Programmel 2006; [European Environment Agencyl, 2005, Millenium)|

Ecosystem Assessment), [2005; |(Chape et al., 2005)). Normally, Protected areas are designated

to protect species based on existing current known distributions, not potentially suitable

areas. It has been found that protected area systems are highly ine cient since they do

not always cover key species (Jackson et al., 2009). Also, knowledge of the discrepancy

between realized and potential distributions can contribute not only to assess conservation

and protection status (Attorre et al., 2012) but also to identify possible areas for the

translocation of species.

The Mediterranean Basin is a threatened biodiversity hotspot with a high human

population density (Cincotta et al. 2000; Myers et al., 2000; [Underwood et all [2009)

which drives important processes of land use change, habitat fragmentation and habitat

loss, specially in coastal areas (Vogiatzakis et all, 2005; |Gerard et al., [2010)). It is a region

of high conservation risk where there is an important disparity between habitat loss and
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protection (Hoekstra et al. [2005)). It is one of the world s most diverse regions with
respect to plants (Cowling et al., [1996; [Medail and Verlaque|, [1997; Medail and Quezel,
1999). Its exceptional number of endemic plants (13000 out of an estimated total of
25000), representing 4.3% of all plant species globally, make it a hyper-hot candidate for
conservation support (Mittermeier et al., [1998; Myers et al., 2000; Olson and Dinerstein,
2002)) even more so when considering that over 1900 of them are threatened or extinct
(Brooks et al., [2002). Endemic species have restricted geographic ranges and are prone
to become endangered and at risk of extinction, an even higher risk when they are also
rare. Knowledge of endemic plant distributions is much needed in the Mediterranean
Basin (Kark et al. 2009). Despite the existence of an extensive protected area network,
particularly in the European side, there is little knowledge of the amount of suitable and
actual ranges of species of protection interest that fall into protected areas. In addition,
endemisms are a specially signi cant case for which the determination of those ranges is
of outmost importance. Conservation actions should ensure that species currently listed
as threatened are su ciently protected (Margules and Pressey, [2000; Underwood et al.,

2009).

The purpose of this paper is threefold: a) to develop a methodology for assessing
range sizes and conservation status of rare species, b) to explore the discrepancy between
realized and potential ranges when using species distribution modelling with presence-only
data and nally, ¢) to estimate range sizes for seven case-study western Mediterranean

endemisms of conservation interest.

2.3 Methods

Area of study

The study area is the Western Mediterranean as de ned by those areas of Mediter-
ranean climate inside the bounding box with the following coordinates: west=2300000 m,
south=930000 m, east=5100000 m and north=2600000 m (Lambert Azimuthal Equal Area
(LAEA))(see [2.1). We de ned Mediterranean climate zones by a broadly drawn polygon
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comprising categories csa, csb and csc in Koppen-Geiger climate classi cation (Kottek
et al [2006). The study area has been limited to the Western Mediterranean and not the
whole basin since none of the study plants has ever been found east of Italy. The extent of

the study area used when modelling the distribution of species needs careful consideration

since it has important consequences in the outcome of the model (Sarda-Palomera et al.|

2012); e.g. increasing its area increases the AUC values (Jimenez-Valverde et al., [2008)).

The appropriate extent of analysis should correspond to those areas that have been acces-

sible by the species over relevant periods of time (Barve et al., [2011)); i.e. region M in a

BAM diagram (Soberon and Peterson) 2005; |Soberon and Nakamura, 2009). Our study

area comprises most of the Iberian peninsula, southern France, western and southern Italy,
two thirds of northern Morocco, northern Algeria and northern Tunisia. All data in this

study has been projected to LAEA-ETRS89 and used at this coordinate system.
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Figure 2.1: Study area corresponds to the dark grey area on the map. This area represents
the mediterranean climate region within the western mediterranean bounding box (west=-
10.573961, south=28.930152, east=21.237540, north=51.369878 (WGS 84 EPSG:4326)).
It represents our assumed M area, as in (Soberon and Peterson, 2005)
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Data

Species data Table lists the seven vascular plant species considered in this study
(endemic to the Western Mediterranean). These species have been selected with the
criteria of a) being endemic to the Western Mediterranean, b) having quality occurrence
data available at 1 km resolution with a minimum of 10 occurrence points per species, ¢)
being taxonomically unambiguous at the species level and without separate subspecies
at di erent locations in the study area, and d) being of scienti ¢ interest due to the
disagreement between their known ranges and their apparently potential available areas.
All are restricted to the middle eastern coast of the Iberian Peninsula and the Balearic
Islands except for Fuphorbia squamigera Loisel. and Helianthemum caput-felis Boiss.
which have also been cited in the north of Africa (see Figures and [2.3). Occurrence
records have been compiled from multiple sources (scienti ¢ papers, monographs and
herbaria records) and are considered quality records; i.e. it can be safely assumed that
they have been correctly identi ed and georeferenced. This will be an important point to
take into account when selecting a threshold to obtain binary maps from the models (see

below).

Table 2.1: Study species. Column n occ. is the number of occurrences available per species
at 1000 m resolution

Species n occ.
Asplenium magoricum Litard. 19
Carduncellus dianius (Webb) G. Lopez 24
Diplotazis ibicensis (Pau) Gomez Campo 72
FEuphorbia squamigera Loisel. 52
Helianthemum caput-felis Boiss. 50
Medicago citrina (Font Quer) Greuter 10

Silene hifacensis Rouy ex Willk. 25
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Environmental predictors We used the set of 19 bioclimatic variables which represent
a combination of annual trends, seasonality and extreme conditions relevant to species
physiological tolerances (Nix, 1986). We added two more variables: distance to the
coast (these plants are clearly distributed along the coast) and soil pH (presence of these
plants seems to be clearly associated with soil pH) (see table 2). Bioclimatic variables
were obtained from the WorldClim database (Hijmans et al., 2005). pH was prepared
by completing the information provided by the European Soil Database (European Soil
Data Centre, |2012) with information provided by the Harmonized World Soil Database
(FAO/ITASA /ISRIC/ISSCAS/JRC, 2012) for the North of Africa. Distance to the coast
was computed using boundaries extracted from GADM database of Global Administrative
Areas (http://www.gadm.org). Since the aim of this study is not explanatory but predictive
and since collinearity does not seem to a ect predictive performance when using Maxent
(Kuemmerle et al.l [2010), all predictors were kept when modelling and no collinearity
analysis between predictors was done. All environmental predictors were prepared in the

ETRS89 / ETRS-LAEA coordinate system (EPSG:3035) at 1000 m resolution.

Solving resolution issues These endemic species have restricted narrow coastal ranges,
which means that some records are very close to the coastline. Due to resolution issues,
some of these records may fall in no-data pixels of the environmental set of predictors, that
is, they are sea-pixels in the predictors layers. For each predictor variable we assigned
the value of their closest neighbour to these no-data pixels or the mean value if more than
one neighbour was present. This allowed us to keep all occurrence records for modelling,

instead of having to discard valid occurrence points from already scarce data.

Species distribution modelling

Modelling approach Occurrence records for these rare endemics are presence-only
and scarce. Techniques for dealing with such conditions have been developed in the last

few years. One of such techniques is maximum entropy modelling (Maxent), which has
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Table 2.2: Set of environmental predictors used. All predictors were projected to ETRS89
/ ETRS-LAEA (EPSG: 3035) coordinate system

Bioclimatic variables

Annual mean temperature

Minimum temperature of the coldest month
Mean temperature of the coldest year quarter
Mean temperature of the warmest year quarter
Mean temperature of the wettest year quarter
Mean temperature of the driest year quarter
Maximum temperature of the warmest month
Annual mean precipitation

Precipitation of the coldest year quarter
Precipitation of the driest month

Precipitation of the driest year quarter
Precipitation of the warmest year quarter
Precipitation of the wettest month
Precipitation of the wettest year quarter
Annual temperature range

Mean temperature diurnal range

[sothermality

Temperature seasonality

Precipitation seasonality

Mean solar radiation of the least radiated quarter

Mean solar radiation of the most radiated quarter
Soil variables

pH

Physical variables

Distance to coast

been proved valid in conservation assessment for modelling species distributions with
scarce presence-only data (Phillips et al. [2006; Elith et al., 2006} |[Pearson et al., [2007;
Elith et al., 2011; Rebelo and Jones|, [2010). We used Maxent software (version 3.3.3k,
http://www.cs.princeton.edu/ schapire/maxent/). MaxEnt estimates the distribution of

maximum entropy constrained in such a way that expected values for predictor variables
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match their empirical average. Its logistic output can be interpreted as the relative
environmental suitability of each pixel in relation to the background of the study area
(Phillips et al., 2006} Phillips and Dud k;, [2008]). Models were run using the default set of

parameters of the software and using the whole set of environmental predictors (Table

532).

Dealing with spatial autocorrelation Spatial autocorrelation (SAC) needs to be
taken into account in order to avoid in ation of accuracy measures (Veloz, 2009). We used
a preventive approach to SAC avoidance by preparing several a priori autocorrelation
treatments as in Marcer et al.|(2012). For each species, we prepared four di erent sets of
records corresponding to minimum euclidean distances (1500m, 3000m, 4500m, 6000m),

ve sets corresponding to minimum environmental distances according to the Gower metric
(Gower}, |1971)) (0.025, 0.050, 0.75, 0.1, 0.125) and one set with all occurrence records.
Residual SAC (observed occurrence minus probability of occurrence) was then measured
as in De Marco Jr et al| (2008); Nunez and Medley| (2011)); Vaclav k and Meentemeyer
(2012); Marcer et al. (2012) using Monte-Carlo simulation of Moran s I autocorrelation
coe cient using package spdep in R (Bivand et al., 2011). All models with signi cant
residual SAC were discarded (25 out of 70).

Model evaluation and selection We validated the remaining 45 models by partly
following the methodology described in [Pearson et al. (2007). When the number of
occurrences was low (in our case, < 25) it was feasible to calculate the 2V possible D
statistics (as proposed by [Pearson et al| (2007)). In these cases, we used the software
prepared by those authors and which they made available as supplementary information in
their work. On the other hand, for higher number of occurrences we designed an alternative
test. We split the number of occurrences, N, into M groups with the an equal number of
elements, % Although this approach does not work when N is a prime number, there
was no such case. Next, we implemented a jackknife leave—%—out procedure whereby

M occurrence maps were computed with the Maxent algorithm by leaving % occurrence

data points out each time. We de ned the test criterion D* simply as the sum of all
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successes, where success for each map was de ned as the number of points that were
correctly predicted:

M N
D* = lel where x = 0,..., 37
1=

Notice that, in this case, we abandoned the weighting strategy of |Pearson et al.| (2007) for

the sake of simpli cation. All possible simulated D* values were calculated by assuming

ES

that each x; could take on any value between 0 and % and we checked whether D3, ...,

D3y erveq- When this inequality was true we added the probability of obtaining the simulated

D* value as de ned by:
M
P = ‘HlB(xia %71)1)

where B is the probability mass function of a binomially distributed random variable and
p; is the proportion of the study area that was predicted by the corresponding map, as in
Pearson et al.| (2007). For the sake of comparison between our proposed methodology and
that of |Pearson et al. (2007)) we calculated the D* index and its associated probability for
one species and for all possible number of groups M, and veri ed whether all resulting

probabilities were similar.

Of all accepted models and for each species, we chose the model with the highest
success rate when considering all test points from all cross-validation folds; 7.e. number of
correctly classi ed test points divided by the total number of test points. See Table (we
used a threshold-dependent validation, test AUC of Maxent is only given for informative
purposes). Finally, we run again the chosen models with the whole set of occurrences to

obtain the nal suitability map. Maps of these models can be found in Appendix A.

Geographic range

Potential range maps can be derived from species distribution models by applying
a cut-o threshold value to determine suitable and unsuitable areas. EOO and AOO
are both valid measures of range size under IUCN criteria for the red listing of species.

EOOQ is the area contained within the shortest continuous imaginary boundary which can
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be drawn to encompass all the known, inferred or projected sites of present occurrence
of a taxon, excluding cases of vagrancy while AOO is the area within its extent of
occurrence which is occupied by a taxon, excluding cases of vagrancy (IUCN| 2001).

Measures of overall potential range area, EOO and AOO are given in Table

Extent of occurrence (EOQ) For each species, EOO was computed as the area
resulting from applying the convex hull method (package dismo in R; Hijmans et al.
(2012)) to all available occurrence points for each species. The area occupied by clearly
unsuitable habitat (in our case, the sea) inside the hull was subtracted from the total.

This method is acknowledged by IUCN as a valid measure of the EOO (IUCN] [2001]).

Threshold selection In order to calculate AOO we need binary maps which can be
obtained from continuous probability models by setting a threshold value above which the
location is considered suitable. Since our occurrence data are accurate and reliable (for
correct species identi cation and georeferencing) we used the MTP (Minimum Training
Presence) value as threshold. MTP is the logistic threshold that results in inclusion of
all training presences. This also ensures a zero omission rate, which is a desired outcome
when trying to de ne suitable areas for species of conservation interest with limited ranges.
Also, MTP can easily be argued ecologically since it includes all sites that are at least as
suitable as those where the species has been recorded as present (Pearson et al., |2007)).
Since our aim is to calculate the suitable area for the species, the inclusion of all areas
with a probability value above MTP seems a sensible decision. We converted the chosen
models (Table 3) into binary maps by setting all values below MTP as zero and all values

equal or above MTP as one (see Appendix A and B).

Area of occupancy We used R (R Core Team| 2012)) packages raster (Hijmans and
van Etten, 2012) and dismo (Hijmans et al., [2012)) to calculate the total suitable area of
the species (we refer to it as PSA (Potentially Suitable Area)) and the Area of Occupancy
(AOO) de ned as the PSA within the EOO (Extent of Occurrence). All areas were
calculated at 1000 m resolution but, for AOO, we also calculated it at 2000 m resolution in

order to follow the guidelines given by IUCN (IUCN Standards and Petitions Subcomittee,
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2011) for assessing the conservation status of a species.

Assessing the protection status of species

We prepared a raster layer of protected sites by combining information from Natura 2000
boundaries (European Environment Agency, http://www.eea.europa.eu) for the European
part of our study area with information from the World Database on Protected Areas
(IUCN and UNEP}, 2009)) for the African part of it. The protection layer was obtained at 100
m resolution. We changed the resolution of our binary maps of suitability /unsuitability to
match the resolution of the protected areas layer. Then, we calculated the percentage of 100
m cells of PSA, EOO and AOO that were covered by protected areas as provided in Table
2.5 In the table shown, an indication of the conservation status of each species according
to criteria B1 and B2 of IUCN is given (IUCN Standards and Petitions Subcomittee,
2011]).

2.4 Results

Distribution models and range maps for seven narrow-range endemic plant species of
the western Mediterranean have been provided (see Figure , Figure and Appendix
A. For these species, the authors only have evidence of a former study on Helianthemum
caput-felis (Zaragoz et all |2012)) dealing only with the analysis of open source software for
AQOO calculation. Table shows the best models per species (a gure for each model is
available in Appendix A). Except for Medicago citrina, all species needed some sort of SAC
treatment (two euclidean and four environmental) which implied losing some occurrences
for modelling (2.4). After SAC treatment, occurrence records diminished from as low
as 42% for Euphorbia squamigera to as high as 64% for Silene hifacensis. Occurrence
records available for modelling ranged from as low as 9 (Asplenium majoricum and Silene
hifacensis) up to 40 (Diplotazis ibicensis). Success rates for classi cation of test points
were very high, ranging from 0.889 (Asplenium majoricum and Silene hifacensis) to 0.975
(Diplotazis ibicensis). Test AUC is provided only for informative purposes and ranges

from 0.968 to 0.999.
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We tested how the proposed D* described above, which we applied when the number
of cases was 25, performed when compared to the methodology in [Pearson et al. (2007)).
We computed D* for the Helianthemum caput-felis dataset (24 cases, see Table 3) for
M=2, 4, 6 and 8 groups. The corresponding probability p was in all cases larger than the
case where M=24, although always very small and signi cative. That is, D* performs in
our test more conservatively than the original D in |Pearson et al.| (2007), although the

di erences are always very small and negligible within the context of our study.

Table 2.3: A list of the nally chosen models selected by having the highest success rate,
alphabetically ordered. Column Test AUC is given only for informative purposes. Column
SAC treatment indicates which of the corresponding treatments led to the nally chosen
model. Column Nr. occ. indicates the number of occurrences used per species. Column
MTP is the Minimum Training Presence threshold used when generating the binary maps

Species Nr. occ. SAC treatment Success rate Test AUC MTP
Asplenium majoricum 9 gower (0.125) 0.889 0.968 0.2982
Carduncellus dianius 11 euclidean (1500 m) 0.909 0.998 0.2185
Diplotazis ibicensis 40 gower (0.025) 0.975 0.998 0.0764
FEuphorbia squamigera 30 gower (0.075) 0.933 0.882 0.2131
Helianthemum caput-felis 24 gower (0.025) 0.917 0.997 0.1543
Medicago citrina 10 none 0.900 0.999  0.5829
Silene hifacensis 9  euclidean (4500 m) 0.889 0.997  0.3799

Table shows the PSA, EOO, AOO calculated at 1000 m resolution, AOO calculated
at 2000 m resolution and the corresponding proportions of EOO with respect to PSA and
AOO with respect to both PSA and EOOQO. These proportions serve as an index of how
close the species distribution is to its potential range and to its extent of occurrence. This
can be seen in Figures and FEuphorbia squamigera appears to be the species which
uses more of its potential range (71.3%) and Carduncellus dianius is the one which is
more narrowly distributed in relation to its PSA (only 3.0% of its PSA is EOO). As for
the relation of AOO to EOO, three species (Asplenium majoricum, Carduncellus dianius
and Silene hifacensis) have a suitable area of 88% or more of their EOO, three of them

(Diplotazis ibicensis, Helianthemum caput-felis and Medicago citrina) appear to have
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their suitable areas sparsely distributed within their EOO and in one case, Euphorbia

squamigera, slightly more than half its AOO is EOO.

Table 2.4: Species ranges in square kilometers. Columns: PSA (Potentially Suitable
Area as determined by MTP threshold), EOO (Extent of Occupancy), AOO;; (Area
of Occupancy calculated at 1000 m resolution), AOOy; (Area of Occupancy calculated
at 2000 m resolution), EOO/PSA (Proportion of EOO in relation to PSA), AOO/PSA
(Proportion of AOO in relation to PSA), AOO/EOO (Proportion of AOO in relation to
EOO)

Species PSA EOO AOO;x AOOy, EOO/PSA AOO/PSA AOO/E00
Asplenium majoricum 56706 6695 6566 7132 0.118 0.116 0.981
Carduncellus dianius 9227 280 268 348 0.030 0.029 0.957
Diplotaxis ibicensis 5250 3005 1044 1488 0.572 0.199 0.347
FEuphorbia squamigera 325269 231977 135646 143428 0.713 0.417 0.585
Helianthemum caput-felis 11195 2039 927 1484 0.182 0.083 0.455
Medicago citrina 973 586 137 268 0.602 0.141 0.234
Silene hifacensis 2365 215 190 284 0.091 0.080 0.884

Table [2.5] shows the percentages of PSA, EOO and AOO which are protected by the
current existing protected areas and an evaluation of the conservation status of the seven
species according to IUCN s criterion B (Geographic range size and fragmentation, decline
or uctuations) (IUCN Standards and Petitions Subcomittee, 2011)). B1 is based on EOO
and B2 is based on AOO. Fragmentation, decline or uctuations have not been evaluated
in this study. This study provides information for a rst assessment of conservation
status for four species not yet evaluated by IUCN (IUCN| 2012)): Asplenium majoricum,
Carduncellus dianius, Euphorbia squamigera and Helianthemum caput-felis. It is important
to note that in order to qualify for criterion B, meeting the requirements for EOO and
AQOO is not su cient since information on fragmentation, decline and uctuation is also

necessary. Thus, the information contributed by this study only regards to geographical

range, that is EOO and AOO.
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Figure 2.2: For four of the study species, a general overview map (left column) and close-up
(right column) of the Extent of Occurrence. In both columns, the green lines represent
the polygon corresponding to the Extent of Occurrence (EOO). In the left column, the
dark grey zones represent the Potentially Suitable Area (PSA). In the right column, the
darkest grey zones represent the Area of Occupancy (AOQO), that is, the PSA within EOO
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Figure 2.3: Idem as Figure

Suitability and protection maps showing spatially explicit protection for each species
PSA, EOO and AOO as well as an extensive evaluation of the protection of PSA, EOO

and AOO given by each specific protected area are available in Appendixes B and C.

2.5 Discussion

The approach to obtain models, range maps and range sizes used in this study makes

a methodological contribution to the conservation assessment of rare species in the line

of |Attorre et al.|(2012)). In biogeography studies and conservation management, both
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Table 2.5: Species conservation status and protection. Column PSApgr indicates the
percentage of PSA that is protected, column FOOppg indicates the percentage of EOO
that is protected and AOOpp the percentage of AOO that is protected. Columns ITUC Npg,
and IUC Np, indicate the evaluation made by this study for each species according to the
range part of criteria B1 (CR: <100 km?, EN: <5000 km?, VU: <20000 km?) and B2 (CR:
<10 km?, EN: <500 km?, VU: <2000 km?) of TUCN. Column IUC N¢yr indicates the
current IUCN assessment (IUCN| [2012). IUCN categories: CR (Critically Endangered),
EN (Endangered), VU (Vulnerable), LC (Least Concern), NE (Not Evaluated))

Species PSApr EOOpr AOOpr IUCNp; IUCNpg; IUCNgeyr
Asplenium majoricum 24.6 22.2 22.4 VU LC NE
Carduncellus dianius 22.8 17.9 17.9 EN EN NE
Diplotazis ibicensis 23.9 18.4 22.2 EN VU LC
Euphorbia squamigera 19.9 13.0 18.9 LC LC NE
Helianthemum caput-felis 20.3 14.6 27.6 EN VU NE
Medicago citrina 27.9 15.3 24.9 EN EN CR
Silene hifacensis 27.5 22.5 22.9 EN EN EN

realized and potential distributions are of much interest realized distributions to ensure
conservation and potential distributions as candidate areas for relocation or for discovering

unknown populations (Wilson et al., [2011; Thorn et al., [2009; Peterson et all 2011).

It is necessary to explicitly distinguish between realized and potential distributions
when modelling species distributions since di erent methods and data will lead to diferent
outcomes. Both presences and absences are necessary when modelling realized distributions
(Jimenez-Valverde et al., 2008 Soberon and Nakamura, [2009; |Jimenez-Valverde, 2012).
Absence data, specially when considering coarse grid data, is very hard to obtain and
justify since absences may be of false origin, i.e. the species is present but has not been
observed (Gu and Swihart, 2004). In our case, only presence data is available and the
outcome of our model should be considered as PSA. The studied species represent a set of
rare species of high conservation interest in a well-surveyed zone for vascular plants at
1000 m resolution. According to experts, for these species, it can be safely assumed that
their occurrence points closely approximate their extent of occurrence (EOO); i.e though
not impossible, it is unlikely that new occurrences will be found outside their current EOO.
Therefore, the PSA which falls inside the EOO can be considered a good approximation
to the AOO of the species.
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In the case of rare species in well-surveyed areas where their EOO is well-known,
the models resulting from species distribution modelling can be interpreted in terms of
realized and potential distributions. With presence-only data, the potentially suitable
area within EOO is the best approximation we can have to a realized distribution or
AQOO. Moreover, when the purpose of these modelling exercises is to generate valuable
information for conservation e orts the selection of the MTP threshold is an adequate
one to generate binary maps of suitability /unsuitability (Pearson et al. 2007). Therefore,
in these circumstances, the knowledge gained from the modelled current and potential
distribution of the species can be used to assess the conservation of the species by generating

maps and reports of their protection status (see Supplementary Materials).

Conservation can t a ord to wait until enough information is available for a given species
since we may end up losing the species in the process. It thus becomes necessary to make
the best informed decisions possible at any given moment. Combining expert judgement
with modelling tools can be the best solution at hand. Using this approach, we have
provided valuable conservation and protection assessment status for these seven species.
This protocol can t be considered de nitive but it can be repeated as new occurrence data
becomes available, specially so in the unlikely case that it enlarges the current known
EOO of the species. One can envisage an information system which uses this protocol and
provides up-to-date conservation assessments for rare species where the PSA, EOO and

AOQ are automatically updated.

The species in our study were also selected because they puzzled botanists due to the
fact that their EOO seems very restricted if one considers the apparently available suitable
area that they have at their disposal, i.e. Grinnellian niche. This study contributes to
con rming and highlighting this fact as can be seen in Table 2.4, The models do show a
much wider suitable area for each of the seven species than the area they actually occupy.
Except for Asplenium majoricum whose dispersion is by anemocory, the other six species
are dispersed by barochory alone (Medicago citrina shows zoocory to a lesser degree).
For these six species, one can argue that their restricted current range compared to their

available suitable area is due to historical phylogeographical reasons as well as to their
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form of dispersal. For Asplenium majoricum this argument does not hold and we should
point to other reasons such as the use of an excessively restricted set of predictor variables.
It may be argued that, except for Asplenium majoricum, the area where the species has
had historical access because of its movement and colonizing capacities, the M region
as in [Soberon and Peterson| (2005) and |[Soberon and Nakamura| (2009), appears to be
their current extent of occurrence. If so, given that some authors argue that the extent of
analysis should correspond to those areas that have been accessible by the species over
relevant periods of time (Barve et al., 2011)), further modelling e orts might be made using

only their EOO or a slightly bu ered EOO.

For the particular case of Fuphorbia squamigera, our model shows a high suitability
index in the Provence zone in France, outside the estimated EOO. It is interesting to
note that the rst description of this species was done in the area of Toulon (Loiseleur{
Deslongchamps, [1807)). However, apart from this rst citation, the plant has not been
found again, which has always made botanists doubt about it in the rst place (this is the
reason why we have excluded this presence in our modelling occurrence data) and think
this may be a case of misidenti cation. Our results lend support for the correctness of this

rst citation. If it were to be con rmed, this citation would add to the validity of the PSA
obtained from the models although the EOO and AOO would need to be recalculated.
This also reinforces the fact that these models show PSA rather than realized distributions.
The set of predictor variables used in this study, combined with the lack of absences in
our modelling technique, is not su cient to restrict the output distribution to the realized

distribution.

Table shows the absolute values found in this study for each species PSA, EOO and
AOOQO. Interestingly, the EOO of Asplenium majoricum, which is dispersed by anemocory,
represents only about 12% of the available PSA. As stated above, this could be explained
by the lack of appropriate predictor variables in this study. On the other hand, its EOO is
almost covered by its AOO, which can be explained by its dispersal form. However, more
hidden factors seem to play an important role in its distribution since very few occurrences

are available for this area. For the remaining species, which are dispersed by barocory,
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there is a wide span of values of the relation AOO/EQQ, from 23.4% to 95.7%. Contrary
to the case of Asplenium majoricum one would expect these values to be low due to their
form of dispersal. Here, there are also hidden factors at play which are outside the scope
of this study, although it does not seem to be the case at present, predation may have

played its role historically.

Species distribution modelling for rare species in well-surveyed areas can provide a
good approximation to species realized and potential distributions. These distributions can
be overlaid with the network of protected areas and give valid assessments of conservation
status and protection. Table provides an assessment of the protection given by current
protected areas to each species PSA, EOO and AOO and valuable information for the
classi cation of each species according to IUCN categories of threatened species (IUCN
Standards and Petitions Subcomittee|, 2011). From a conservation management perspective,
the protected percentage of EOO and AOO can give an indication of how well-covered the
range of the species is by protected areas. Also, the information regarding the presence
of part of the species PSA in each protected area can be of great use should relocation
e orts be considered for enlarging the current EOO and thus, add to the probability of
the species persistence (a comprehensive list of the protected areas that contain part of

each species PSA is given in Appendix C).

2.6 Conclusions

Species distribution modelling is a valid tool for generating valuable information for
conservation management when dealing with rare species in well-surveyed areas. The use
of well-known EOOs of species with modelled maps of suitability o ers a way to discern
between an approximation of realized and potential distributions. This paper provides
probability models and range maps for seven rare endemic vascular plants of the western
Mediterranean for the rst time and a rst quantitative assessment of their realized and
potential distributional areas, their degree of protection and information useful to assess

their degree of threat.
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Except for one case, the PSAs for the set of studied species are much larger than
their corresponding EOOs. This con rms the previously existing expert view which was
unsupported by data that these species are much more restricted in range than the area
that appears to be suitable for them. Although not explored in this study, this is probably
due to a combination of historical phylogeographical reasons and to the absence of some
environmental or biotic predictors which could contribute to determine the species spatial

distribution.
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3.1 Abstract

Aim There is a wealth of information on species occurrences in biodiversity data banks,
albeit presence-only, biased and scarce at the ne resolutions. Moreover, in biodiversity
conservation mne-resolution species maps are in need. New techniques for dealing with
this kind of data have been reported to perform well. However, when good coarser scale
data are available, are these ne-resolution maps robust enough to also explain coarser
distributions ? We present a new methodology for testing this hypothesis and apply it to

invasive alien species (IAS).
Location Catalonia, Spain.

Methods We used species presence records from the Biodiversity data bank of Catalo-
nia to model the distribution of ten IAS which, according to some recent studies, achieve
their maximum distribution in the study area. To overcome problems inherent with the
data, we prepared di erent correction treatments: three for dealing with bias and ve for
autocorrelation. We used the MaxEnt algorithm to generate models at 1 km resolution
for each species and treatment. Acceptable models were upscaled to 10 km and validated

against independent 10 km occurrence data.

Results Out of a total of 150 models, 20 gave acceptable results at 1 km resolution
and 12 passed the cross-scale validation test. No apparent pattern emerged which could
serve as a guide on modelling. Only four species gave models that also explained the

distribution at the coarser scale.

Main conclusions Although some techniques may apparently deliver good distribu-
tions maps for species with scarce and biased data, they need to be taken with caution.
When good independent data at a coarser scale are available, cross-scale validation can
help producing more reliable and robust maps. When no independent data are available
for validation, however, new data gathering eld surveys may be the only option if reliable

ne-scale resolution maps are needed.

Keywords Invasive alien species, atlas, biodiversity databases, Catalonia, cross-scale

validation, maxent, Spain, species distribution models
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3.2 Introduction

For centuries, species occurrences have been recorded in an ad hoc way by natural
historians, museums, scientists and the like in the form of museum specimens, site
inventories, citations in technical and scienti c literature, etc. (Chapman and Busby,
1994; |Chapman, 2005b). In the last two to three decades, both governments and non-
governmental organizations have invested considerable nancial resources on the digitizing
of these data into digital species distribution atlases and making them publicly available.
Ideally, they should o er reliable, high quality data which withstands public, scienti ¢ and
legal scrutiny (Robertson et al., 2010). Such databases represent a wealth of information
on species distribution and an indispensable asset for science and conservation (Funk
and Richardson, |2002; |Graham et al., 2004; |Suarez and T'sutsui, 2004} Franklin, 2009;
Robertson et al.l 2010). However, since these data usually come from opportunistic or ad
hoc sources rather than well-planned surveys, they present some important drawbacks:
they are presence-only in nature, are highly biased and may show spatial agregation
derived from sampling biases. Also, since they are laborously compiled from analog
sources, they are di cult and costly to georeference and hence, coarser resolutions tend
to dominate (Margules and Pressey, 2000; Pressey|, 2004)). As a result, most data in this
kind of biodiversity databases are often too coarse for use in conservation planning and
management, where ne grained maps (i.e. 1 km or better) are needed (McPherson et al.,

2006}, \Guralnick and Hill, 2009; Niamir et al., 2011]).

Planned systematic surveys of species presence and abundance could provide the most
precise, accurate and unbiased information on the spatial distribution of biodiversity.
However, such surveys are expensive to conduct for large regions, even for a single species
(Robertson et al., [2010). Given the current accelerated trend in world-wide biodiversity
loss and the urge for addressing conservation problems, it becomes of utmost importance
to nd ways and methodologies to make the best use of this already available information

(Newbold} 2010; Venette et al., |2010).

Such databases or atlases of species occurrences still represent a largely untapped
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potential of information which can play an important role in conservation biogeography
(Richardson and Whittaker], 2010). Fortunately, in the last few years the community of
species distribution modelling has witnessed the appearance of new tools and methodologies
from the elds of statistics and arti cial intelligence which have the potential to address
the problems inherent in these data. Some of these tools have been specially tailored to
model presence-only data even when only few occurrences are available and problems such
as bias and autocorrelation are present. One of such techniques, maximum entropy, has
been judged among the best performers in distribution modelling for such kind of data

(Elith et al., 2006)).

In many cases, applying these novel techniques to the scarce ne-resolution data can
yield distribution maps with high validation scores. The question is whether we can take
advantage of coarser data, which are relatively abundant and for some regions close to
the species true distribution, to further validate these maps and nd out their reliability.
Having models that explain data at ne resolutions while being consistent with coarser
resolution data is important (McPherson et al., [2006; Niamir et al., 2011) as it can yield

more robust and reliable distribution maps for conservation.

The existence of databases with such information provides an opportunity to check this
hypothesis. A specially relevant piece of information for conservation which can potentially
be derived from these costly data banks are current and historical distributions of Invasive

Alien Species (IAS).

The spread of IAS, driven mainly by human activities, is increasing worldwide (Butchart
et al.l2010) and pose potential problems not only to native biodiversity but also to economic
development and human well-being (Vitousek et al.,|1997; Taylor and Irwin, 2004; |Pimentel
et al., 2005} |Chytry et all 2009; Pejchar and Mooney, 2009; [Pysek et al., 2010; Vila et al.,
2011). Having risk maps representing the potential distribution of IAS is a necessary step
towards e ective management (Richardson and Whittaker, 2010; |Jimenez-Valverde et al.,
2011). Using all information in species inventories and atlases, coarse and ne resolution
records, is essential in making the most out of limited nancial resources (Nielsen et al.,

2008).
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We test whether fine-resolution maps of IAS can be obtained from existing biodiversity
databases which are robust enough to explain occurrences at different scales held in the
database and, if so, whether a general methodology can be devised. We use different bias

and autocorrelation treatments to deal with problems inherent with such data.

3.3 Methods

Area of study

Catalonia is a region of around 32000 km? located in the northeastern part of the
Iberian Peninsula (Figure [3.1]). It ranges in elevation from 0 to over 3000 m.a.s.1, from the
Mediterranean coast up to the Pyrenees. Its environmental conditions are highly variable
due to its complex location and topography. Although dominated by the mediterranean
climate it also has continental and atlantic influences. Mediterranean and Eurosiberian
biogeographic regions dominate while Subalpine and Alpine types appear in the upper zones
of the Pyrenees. There is a trend of decreasing precipitation and increasing temperature
towards the south (Ninyerola et al., 2000). It is a highly humanized territory, particularly
around the Barcelona metropolitan area. The rest of the region is dominated by forests and

agroforestry mosaics with relatively large human influence although with lower intensity.

Figure 3.1: Study area
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Database. As a case study we use the Biodiversity Databank of Catalonia (BDBC,
http://biodiver.bio.ub.es/biocat/) (Font et all 2009). Catalonia is a region with a rich
history in Botany which is re ected in the holdings of the database. For an area of around
32000 km?, the BDBC contains above 1.5 million of plant species citations from sources
such as scienti c articles, PhD theses and local oras. Due to historical recording tradition
among botanists and to the cost of obtaining ner georeferences, most of its data is at
a coarse resolution of 10 km. Catalonia is a well-surveyed region for vascular plants at
10 km resolution. BDBC contains also more than 180000 plant occurrence records at
1 km resolution. The geographical distribution of TAS as re ected by 10 km-resolution
occurrence records in the BDBC can be considered to approximate its true distribution for
our study area (Pino et al., 2005). Therefore, when developing models at ner resolutions
their geographic distribution should be coherent with the distribution obtained from

mapping the coarser data.

Species data

[AS may violate the assumption made in species distribution modelling (Petersonl [2005)
that species are at equilibrium with their environment (Austin, |2002; |Araujo and Pearson,
2005; |[De Marco Jr et al., 2008); i.e. they may not realize their full range (Zimmermann
et al., [2010; |Vaclav k and Meentemeyer, 2012)). According to some studies (Williamson
et al., 2009; Gasso et all 2010), neophytes reach their maximum range around 150 years
since their introduction in the Iberian peninsula. We used this criterion (more than 150
years since introduction) for the selection of TAS species, in addition to availability of data
at 1 km resolution. The selection resulted in the 10 species shown in Table (see also
Appendix D). Of these, four of them are included in the list of DAISIE s one-hundred
worst invaders in Europe (DAISIE, 2011): Ailanthus altissima, Opuntia ficus-indica, Ozalis

pes-caprae and Robinia pseudoacacia.

Data independence across scales. Occurrence data at di erent resolutions in biodi-
versity atlases may not be independent; i.e. occurrence records at coarser resolutions may

have their origin in records at ner resolutions. In order to overcome this problem we
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Table 3.1: List of selected TAS for modelling

Species Abrv. lkmﬂ 10kmﬂ Int Yr
20 124

Agave americana L. aga XVIh 411
Ailanthus altissima (P. Mill.) Swingle  aia 43 213 1818 192
Amaranthus albus L. ama 29 194 1861 149
Conyza canadiensis (L.) Cronquist coc 73 307 1784 226
Datura stramonium L. das 31 230 XVIt 411
Oenothera biennis L. oeb 55 80 1848 162
Opuntia ficus-indica (L.) P. Mill. opf 13 102 XVIth 411
Ozxalis pes-caprae L. OXp 12 41 1850 160
Robinia pseudoacacia L. rop 66 257 X VI 211
Xanthium spinosum L. xas 56 252 XVIII* 211

*Number of 1 km occurrences

®Number of 10 km occurrences

“Introduction date

INumber of years since introduction (conservative estimate)

only accepted 10 km squares which had at least one citation more per species than the
number of 1 km citations contained therein; i.e. there is at least one 10 km occurrence
record which is independent from 1 km data. This procedure also allowed us to use all

occurrences records at 1 km resolution.

Environmental data.

We used 19 bioclimatic variables (Nix, 1986]) (Table which represent a combination
of annual trends, seasonality and extreme conditions relevant to species physiological
tolerances. We added two more variables regarding radiation (mean radiation of the least
radiated quarter and mean radiation of the most radiated quarter) and three more variables
that may partially explain distribution of IAS (distance to main harbours, distance to
the coast and degree of anthropization) (Brooks| 2007; Vicente et al., [2010)) (See Table
3.2). We calculated the bioclimatic variables using the Digital Climatic Atlas of Catalonia
(DCAC) (Ninyerola et al., 2000) which holds monthly data on temperature, precipitation
and radiation for the whole of Catalonia. We calculated the degree of anthropization using

the Land Cover Map of Catalonia (CREAF - Centre for Ecological Research and Forestry
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Applications, 2009; Ibanez and Burriel, 2010). Each land cover category was assigned a
value between one (least anthropization) and ve (most anthropization) (Table B.2)). Then,
to represent the degree of anthropization we calculated a weighted average scaled between

0 and 100 for each 1 km square grid.

Since our goal is to predict species distributions rather than discerning which factors
a ect their distribution, all predictors were used for modelling each species. Extracting
collinearity from the model was not necessary. Though it can hinder model interpretation,

it does not a ect Maxent predictive performance (Kuemmerle et al., [2010).

Species distribution modelling

Modelling involved a ve-step process as shown in Figure [3.2] In the rst step, we
modelled the species distribution at the ner resolution of 1 km following the methodology
described in Case 1 (Elith et al.,2011). These authors use di erent alternative background
scenarios to account for bias, and cross-validation techniques to validate models developed
with presence-only data of Banksia prionotes from an atlas database. Accounting for
bias and autocorrelation is an important issue in species distribution modelling, specially
in presence-only models (Legendre, |1993; |Legendre et al. |2002; |Segurado et al., 2006;
Phillips et al., 2009; Newbold, [2010; Merckx et al., 2011)). Since we expect mne-grained
casually-collected data to show a number of biases, we included three bias correction
treatments and ve spatial autocorrelation correction treatments (see below) to evaluate

the potential of these data to derive ecologically sound species distribution models.

This resulted in a total of 15 models per species. In a second step, only those models
with an AUC (area under the curve) 0.7 not showing residual spatial autocorrelation
were selected. In a third step, these selected models were upscaled to a coarser resolution
of 10 km using a probabilistic model (see Equation . In step four, upscaled models
were validated against the independent 10 km dataset and only those with an AUC 0.7
at 10 km resolution (AUC,q,) were selected. Therefore, their originating ne-scale models
were, among the previously selected ones, the ones which showed acceptable predictions

at both scales. Finally, in step ve, if more than one ne-scale model per species had
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Table 3.2: Set of environmental predictors used in modelling

Bioclimatic variables

Annual mean temperature

Minimum temperature of the coldest month
Mean temperature of the coldest year quarter
Mean temperature of the warmest year quarter
Mean temperature of the wettest year quarter
Mean temperature of the driest year quarter
Maximum temperature of the warmest month
Annual mean precipitation

Precipitation of the coldest year quarter
Precipitation of the driest month

Precipitation of the driest year quarter
Precipitation of the warmest year quarter
Precipitation of the wettest month
Precipitation of the wettest year quarter
Annual temperature range

Mean temperature diurnal range

[sothermality

Temperature seasonality

Precipitation seasonality

Mean solar radiation of the least radiated quarter

Mean solar radiation of the most radiated quarter

Landscape and physical variables

Anthropization degree

1 - Natural forests, shrublands, wetlands, grasslands, rock outcrops and screes, bare soil, beaches, glaciers and
snow cover and continental waters, 2 - Recently burnt areas and reforestations, 3 - Crops and tree plantations, 4 -
Agricultural water bodies and quarrying areas, 5 - Dense and sparse urban areas and roads

Coast distance

Harbour distance

been selected, we determined the best one by selecting that with the highest AUC at
1 km resolution (AUC;;). Despite concerns on the use of AUC for comparing species

distribution models, this metric can safely be applied when evaluating model performance

within species (Lobo et al., [2008; Blach-Overgaard et all 2010).
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Figure 3.2: Outline for the proposed modelling workflow. Step one corresponds to the
modelling of each species at 1 km resolution with three different bias treatments and five
different autocorrelation treatments, which gives a total of 15 models per species. In Step
two, we check for residual autocorrelation, calculate the AUC and select only those models
with no residual spatial autocorrelation and with an AUC > 0.7. In Step three, previously
selected models are upscaled to 10 km resolution by probabilistic calculations. In Step
four, a ROC analysis is performed using independent data at 10 km resolution. Models
with an AUC > 0.7 tell us which models at 1 km resolution are accepted. Finally, in Step
five, if more than one model per species at 1 km resolution has been accepted, we define
the best model as the one which has the maximum AUCy,.
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Bias correction treatments Background samples should be chosen to re ect the
spatial bias and thus, to minimize the e ects of bias in the data (Phillips et al., 2009;
Veloz, 2009; Elith et al., [2011]). We prepared three di erent background scenarios: a) the
entire study area (coded as whole_area ), b) 1 km-squares with presence of vascular plants
citations (coded as vascularslk ) and c¢) 1-km squares with presence of IAS citations

(coded as invasivelk ). See Table [3.3|

Autocorrelation correction treatments Spatial autocorrelation may falsely in ate
AUC measures for species distribution models with presence-only data (Segurado et al.,
2006; Velozl, 2009) and environmental autocorrelation may have the same e ects. There is
no established methodology for accounting for spatial autocorrelation when dealing with
presence-only data (Dormann et al., 2007). Autoregressive models are not applicable since
both presence and absence data would be needed (Allouche et al., 2008)). We used an
approach a priori similar to (Segurado et al 2006; |Pearson et al., 2007)) which consisted
in ltering occurrences by setting a minimum spatial and environmental distance between
them and then checking for residual autocorrelation. We prepared ve treatments for
modelling each species. The rst implied including all available presences without ltering
them. The second and third involved randomly ltering and selecting occurrences so
that any occurrence were at least at a spatial distance of 2830 m (two 1 km squares)
and 4250 m (three 1 km squares) from each other, respectively. For the fourth and

fth treatment we used a minimum multivariate environmental distance based on the
Gower s distance index with values 0.05 and 0.1, respectively (higher values resulted in
an excessive reduction in occurrences). Models were then checked for signi cant residual
autocorrelation (observed occurrence minus probability of occurrence as in (De Marco
Jr et all 2008; |[Nunez and Medley, 2011; Vaclav k et al., [2012)) by using Monte-Carlo
simulation of Moran s I autocorrelation coe cient using package spdep in R (Bivand et al.

2011)). Only those models with a pvalue  0.05 were accepted (as shown in Table [3.3)).
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Modelling and validation at 1 km resolution. We used MaxEnt software, version
3.3.3e, (Phillips et al., 2006; Phillips and Dud k|, 2008)). MaxEnt is a presence-background
modelling tool based on the maximum entropy principle. There is a wide agreement
among the species distribution modelling community in considering it the best available
tool for presence-only data, even when only a limited number of occurrence records is
available (Elith et all 2006; [Hernandez et al., [2006} Phillips and Dud ki, 2008; [Wisz et al.,
2008; Elith and Graham)| 2009; [Thorn et al. 2009; Costa et al. 2010) and with bias
present (Rebelo and Jones, 2010). MaxEnt estimates the distribution of maximum entropy
constrained in a way that expected values for predictor variables match their empirical
average (Phillips et al.l 2006)). We used the logistic output of the model which indicates
the relative environmental suitability of each pixel in relation to background for the study

area (Phillips and Dud k| 2008).

We ran the model for each species with default options using the whole set of environ-
mental predictors (Table and following the methodology explained in Case 1 of (Elith
et all 2011). A total of 150 models were generated, which correspond to ten species times
three bias scenarios times ve autocorrelation correction treatments. When dealing with
data from atlas databases, randomly partitioning occurrence data into training and test
sets and using cross-validation techniques is often the only solution available to calibrate
and test a model. We used ten-fold cross-validation and then used the average of all
models as the nal one. As a goodness-of- t measure we used the test AUC. As it is
usually the norm in species distribution modelling we accepted only models with an AUC

0.7. Models with an AUC 0.9 are considered as excellent (Swets, [1988)). As mentioned
above, we only accepted models with no residual autocorrelation as tested by Moran s I

autocorrelation coe cient.

Upscaling and cross-scale validation We assumed that habitat quality is related to
probability of presence and upscaled each accepted model at 1 km resolution (AUCy

0.7 and no residual spatial autocorrelation) to 10 km resolution by a basic calculation of
probabilities (Equation . We computed the probability of presence for each iy, 10 km

square of the study area (Pjogm.), given the predicted probability of presence for each 1
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km square contained within it (pigm, ;). If we subtract 1 from this probability we obtain
the probability of absence for this j;;, 1 km square. For a given 7;, 10 km square to have
an absence, all of its 100 1 km squares need also to be absences. Therefore, by multiplying
the probabilities of absence for each j;, 1 km square we get the probability of absence for
the 7;, 10 km square. Finally, by subtracting the probability of absence for a i;, 10 km
square from 1 we get its probability of presence (Piogm.;)-
100

iy Progm: =1 31:[1 (1 pikm,) (3.1)
We then performed a Receiver Operating Characteristic (ROC) analysis (ROCR package in
R (Sing et al.,[2009)) and computed the AUCy; value for each upscaled 10 km model using
the independent data set at 10 km resolution. To ensure accurate prediction assessment,
independent test sets should be available (Loiselle et al.l |2008; |Veloz, 2009). Again, those
models with an AUC;q, value 0.7 were accepted. Finally, of all models accepted for
each species we selected the one with the highest AUC;; value at 1 km resolution as the
best one. In sum, we obtained a set of distribution maps which perform well at the ner
resolution and which also predict independent records at the coarser resolution acceptably.

We think these models can be considered robust and reliable given the data available.

3.4 Results

Overall, AUC test values at 1 km resolution (AUC; ) ranged from as low as 0.37 to as
high as 0.96 (including models with residual autocorrelation) while their corresponding
upscaled models at 10 km resolution ranged from 0.45 to 0.93 (Table . Out of 150
models, 101 had an AUC,x  0.7. Of these, only 20 showed no signi cant residual spatial
autocorrelation (Moran s p-value from Monte-Carlo simulation — 0.05) . The 20 that
performed well at 1 km resolution are shown in Table AUC, gk test values for the
accepted 20 models ranged from 0.7 to 0.94 and correspond to seven of the ten modelled
species. The other three, Amaranthus albus, Conyza canadensis and Datura stramonium,
did not perform well when modelling at 1 km resolution. Ozalis pes-caprae had the highest

number of acceptable models at 1 km resolution but, still, the unacceptable models were
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the majority, ten out of 15. The rest had between 11 and 14 unacceptable models. The
worst models, those with an AUCy;, 0.5, were four models of Amaranthus albus and one

of Datura stramonium. All of these models used the invasivelk bias treatment.

When evaluating performance at 10 km resolution 12 of these nal 20 models had
an AUCygx 0.7 and were considered as acceptable distribution models given the data
available. These are: Agave americana (two models), Opuntia ficus-indica (four models),
Ozalis pes-caprae ( ve models) and Xanthium spinosum (one model). Models marked
with an asterisk correspond to our best models (see Table and Figure ; 1.e. those

with the maximum AUC; g value when more than one model per species was accepted.

Half of the 12 nally accepted models required no bias treatment while the other
half performed better when a bias treatment was applied, although only one of them
showed preference for the background o ered by IAS citation areas. With respect to
autocorrelation treatment, six performed better with some sort of spatial autocorrelation
correction, while ve did so with environmental autocorrelation correction. One model
needed no autocorrelation correction while none seemed to prefer the environmental
correction with the shortest distance and, nally, only one model did not need either bias
or autocorrelation treatment, which corresponded to Ozalis pes-caprae. This model also
coincides with the best one of all of them, although care should be taken when comparing

AUC values between species (Lobo et all 2008; Blach-Overgaard et al., [2010]). See Table

for a summary.

Three species, Ailanthus altissima, Oenothera biennis and Robinia pseudoacacia, did
not pass the cross-scale validation cut (see Table 3.3). They had models which were
acceptable at 1 km resolution but, once scaled, did not o er acceptable predictive power
at 10 km. Thus, their ner resolution models were discarded as not being robust enough:
i.e. they could not explain the independent data set at 10 km resolution. As an example,
Figure|3.4/shows two models that, while having passed the cut at 1 km resolution modelling,

show an AUC;q, around 0.5 which is not better than random.

On a per species basis, Agave americana performed well under the whole_area and
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Figure 3.3: Best models per species among all the accepted models. Only four species
resulted in nally valid models at 1 km resolution. For these species, those shown in the

gure are the ones with max(AUCy). Legend scale ranges from 1.0 (maximum suitability)
to 0.0 (no suitability). Black empty squares represent records of presence at 10 km
resolution.
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vasculars1k bias treatments and for spatial autocorrelation correction with a minimum
distance of 4250 m. Its best model was the one with the bias treatment whole_area.
Opuntia ficus-indica performed well under whole_area and vasculars1k bias treatments
and under both environmental and spatial occurrence lItering, its best model being the
one with the whole_area bias treatment and a spatial autocorrelation correction with
a minimum distance of 2830 m. Ozxalis pes-caprae performed well under all three bias
treatments and under both spatial and environmental autocorrelation correction. Its best
model required no bias or autocorrelation treatment at all. Finally, for Xanthium spinosum
the only successful treatment was the vascularsik bias treatment and the environmental
autocorrelation correction with a minimum distance of 0.1. Reduction in the number of
available occurrences after autocorrelation correction for the nal four best models were:
Agave americana from 20 to 12, Opuntia ficus-indica from 13 to ten, Xanthium spinosum
from 56 to 22 and no reduction for Ozxalis pes-caprae since its best model resulted in the

one without autocorrelation correction.

Table 3.4: Number of nally accepted models per bias and autocorrelation treatment.
Columns whole_area, vasclk and invik indicate the bias treatment scenarios for the whole
study area, vascular plants at 1 km and TAS at 1 km, respectively. Rows correspond to
autocorrelation treatments: sp_0, sp_2830 and sp_4250 correspond to minimum spatial
distances of 0 m (i.e. no treatment), 2830 m and 4250 m respectively, while env_005 and
env_01 correspond to minimum environmental distances of 0.05 and 0.1 using the Gower
dissimilarity index, respectively.

whole_area vasclk invlk Total

sp_0 1 0 0 1
sp_2830 1 2 0 3
sp-4250 2 1 0 3
env_005 0 0 0 0
env_01 2 2 1 5
Total 6 5 1 12
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(a)  Robinia  pseudoacacia, AUC,1x=0.83, (b) Ailanthus  altissima, AUC,x=0.82,
AUC19x=0.52 AUC19x=0.50

Figure 3.4: Examples of models that did not work. Even though these two models had a
high AUC, g value and showed no residual autocorrelation, they had an AUC;ox close
to 0.5 and are thus, not better than random. Legend scale ranges from 1.0 (maximum
suitability) to 0.0 (no suitability). Black empty squares represent records of presence at
10 km resolution.

3.5 Discussion

Our results show that species distribution maps derived from presence-only records
held in biodiversity databases or atlases should be used with caution. Apparently, high
scores in predictive power from species distributions can be obtained from scarce, biased
and autocorrelated presence records using modern tools such as MaxEnt. However, our

work shows that these results can be misleading when confronted with independent data at

di erent scales. Other authors have reached similar conclusions (Wisz et al., 2008). If the

distribution of a species was well-known at two di erent scales, these should necessarily

be coherent with one another. In order to generate reliable mne-resolution distribution

maps, these need to be in accordance across scales (Niamir et al) 2011). For a given

species, its real distribution map at a ne scale should match its real distribution map at
a coarser scale once upscaled. This seems not to be the case for some species, indicating

that either the modelled distributions at ne resolution are wrong or that the known
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distributions at the coarser scale are, in fact, incomplete. For a well-surveyed region for
vascular plants such as our study area the latter case seems unlikely. Therefore, if one
accepts this assumption, our results suggest that distribution maps at the ner scales are
not as good as they appear to be. If used for decision-making in conservation, they may

not accomplish the objectives for which they are meant.

Of the 20 models that performed well at 1 km resolution, only 12 were coherent with
data at 10 km resolution. Species-wise, it might seem that good ne-scale predictive maps
could be derived from the biodiversity database for seven species. However, mne-scale
distribution maps were in accordance with their coarser scale data for only four of them
(Table . We can thus consider the ne-resolution maps for these four species to be
su ciently reliable for biodiversity conservation. Coarse resolution data do not often
match the requirements of conservation planning (Araujo et al., 2005) but, when this data
are assumed to re ect the distribution of the species at the coarse scale, they can be used
to make a cross-scale validation of modelled ne-scaled distribution maps, even if high
predictive scores had been obtained. The resulting maps will be much more reliable and

robust and will help decision-makers better meet their conservation goals.

Atlas data commonly su er from bias and autocorrelation problems (Robertson et al.,
2010)). Treating both hindrances is paramount to developing robust and reliable species
distribution models (Segurado et al., | 2006; Merckx et al., 2011). We tried several bias and
autocorrelation correction scenarios but did not nd any particular pattern in our results
that can help in establishing protocols for distribution modelling. The nal outcome of the
modelling process can only be known on a case-by-case basis. In some instances, applying
minimum spatial distances between occurrence records resulted in models without residual
spatial autocorrelation while in some other cases it was the application of a minimum
environmental distance which solved the problem. Except for a single case, Ozxalis-pes
caprae, we always needed to apply some sort of occurrence ltering in order to get rid of

residual spatial autocorrelation.

The nal message that can be taken from this study is to be always skeptical of

ne-resolution maps obtained when modelling species distributions from scarce and biased
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data, even though they score high when measuring their predictive power. Given that
current modelling techniques and computer power allow us to run many models per species
taking into account di erent scenarios of bias and autocorrelation correction treatments,
it is always sensible to do so and check, on a case-by-case basis, which one works best.
Having a set of independent data to validate the model seems indispensable. Cross-scale
validation, when possible, is a good solution to produce reliable and robust maps which

can then be used to make better conservation decisions.

3.6 Conclusions

Casual observations at ne resolution in biodiversity atlases or databases have the
potential to generate continuous species distribution maps through species distribution
modelling, providing powerful tools for conservation management and planning. However,
scarcity and strong biases in the data may prevent these from being possible for many
species. Although high validation scores can be obtained when modelling this kind of
data, there is the risk that the distribution maps re ect the data distribution rather than
the true species distribution. Cross-scale validation of the data with species distribution
information at a coarser scale appears as a consistent protocol to check the validity
and robustness of ne resolution models and thus, make them much more reliable for

decision-makers in conservation.

Fine-scale resolution maps can be derived from biodiversity atlases with problems of
data scarcity, bias and autocorrelation. However, if no independent set of data is available
to further validate them, results should be taken with precaution. When good coarser
scale data is available, cross-scale validation appears as a good choice for checking the
robustness of the data. When these options are not available, new eld surveys may be

the only option if reliable ne-scale maps are needed.
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4.1 Abstract

Protected-area coverage is an internationally-recognized surrogate indicator for mea-
suring biodiversity conservation. To measure trends in biodiversity conservation over
time, historical records on protectedarea boundaries are needed. Protected-area systems
represent a challenge in information management for public environmental organizations.
Protected areas may be subjected to changes which must follow a mandatory multiple-step
administrative process. A wealth of information is generated which needs to be stored in
a way that eases the handling process and for future reference. We present an information
system which handles both change on protected-area boundaries over time and their related
administrative processes. It also provides distributed data maintenance functionality as
well as integrated alphanumeric, le and cartographic information handling. We discuss
the actual implementation of the system for handling Natura 2000 sites in the Catalan and
Spanish contexts. The designed system is applicable to other European Union member

states.

Keywords protected areas, protected areas coverage, Natura 2000, historical trends,
biodiversity indicators, information systems (IS), conservation databases, protected area

boundaries
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4.2 Introduction

Protected areas are legal instruments specially dedicated to the protection and mainte-

nance of biological diversity (IUCN| [2010). Protected-area coverage is widely used as a

surrogate indicator, prozy, for estimating trends in the protection of biodiversity (United

Nations Environment Programme], 2009} United Nations Development Programme, 2009;

\United Nations Environment Programme], 2006; European Environment Agency, [2005;

Millenium Ecosystem Assessment)|, 2005; Chape et all 2005). Protected area coverage is

calculated by adding the area of each protected area in a given region as de ned by their

boundaries.

The Convention on Biological Diversity (United Nations Environmental Programmme,

(UNEP), 1992)) strongly recommends that signing parties establish a system of protected

areas in order to conserve biological diversity. Spatially-enabled databases are needed

to perform gap analysis and evaluate nature protection (UNEP - WCMC, 2008} [Scott|
, 1993). Such evaluations provide important insight on where new resources should

be placed (Brooks et al., 2004; |Scott et al., 1993)). To analyze trends in nature protection

over time historical boundary records are needed.

Nature protection frameworks at the regional, national and international levels conform
a series of overlapping cartographic boundaries and regulations which represent not only
a major challenge for decision-making but also for information management in public
environmental organizations. These organizations need tools for querying and analyzing
this intricate and geographically-tied web of legal texts. These tools not only serve the
purpose of well-organized, accessible, comprehensive, quality and up-to-date historical
repositories of information but can also assist them in dealing with long legal processes

with con icting parties.

Current technological development in information and communication technologies
(ICT) o ers an unprecedented opportunity to greatly enhance the handling, analysis
and public dissemination of environmental information. Governmental organizations are

required and recommended by competent bodies to make public such information (The
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Council of the European Communities, 2003; [World Commission on Protected Areas
(IUCN)|, 2005). They are responsible for providing reports and accounts of statistics on

protected areas including historical information (European Environment Agency| 2007).

The European Union nature protection policy is based upon Natura 2000, a coherent
ecological network of protected areas comprising Special Areas of Conservation(SAC)
(The Council of the European Communities, 1992)) and Special Protection Areas(SPA)
(The Council of the European Communities, |1979). European Union member states are
responsible for submitting to the European Union a list of Sites of Community Importance
(SCI) for approval and declaration as SAC. After this process, protected areas may also
still preserve their former protection category. Thus, Natura 2000 represents a further level
of legal complexity. In the case of Catalonia, in a single administrative process, 73 new
protected areas have been added to the already existing list of other types of protected

areas managed by the Catalan government (Generalitat de Catalunyal 2006, |2007)).

Protected areas are not static legal entities over time but undergo changes in their
regulations which follow the legal and socioeconomic contexts at any given moment. These
changes may not only a ect the existing set of regulations but also their boundaries; i.e.,
they get extended, reduced, reclassi ed, amalgamated with neighbouring sites, renamed,
ete. (Fish et all 2005). To be legally valid, each of these changes must undergo a
mandatory, strict and prede ned administrative process that involves a series of steps
starting at the initial proposal by the promoting party, e.g., the public administration, and
ending with the publication of the approved legal text in the o cial governmental bulletin.
Each of these steps may introduce interim changes in the working set of boundaries;
some of them due to claims placed by a ected parties, i.e., local administrations and the
public in general. An accurate handling of all this information is crucial for an e ective
guidance of the process and for ensuring adequate treatment of this external participation.
Historical digital archives, 7.e., databases, represent a fundamental tool for handling all
this information. They also provide the base from which it is possible to understand the
historical context of protected area establishment (UNEP - WCMC| 2008; |United Nations

Economic Commission for Europe (UNECE), 1998) and evaluating protected area coverage
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over time is possible.

Handling of historical information in reference protected area databases To
our knowledge, only the World Database on Protected Areas (WDPA) holds information on
historical changes in protected areas (UNEP - WCMC|, 2009; |Chape et al., 2005; Fish et al.
2005). However, the scope and aim of the WDPA is quite di erent from the information
system we present. WDPA is a global compilation of information o ered via a web site
in a digested way. As of February 2010, Natura 2000 sites are still not available at the
WDPA (IUCN-UNEP, 2010; UNEP - WCMC, [2009). We present an information system
which handles historical versions of protected area boundaries and assists in handling the

administrative work involved in protected area declaration, modi cation and termination.

The Protected Areas Database of the United States of America is a collaborative
e ort between governmental and non-pro t organizations. Its latest downloadable version,
released April 2009, does not contain historical information and its plans only include
the da