

Lightweight and Static Verification of

UML Executable Models

Elena Planas

Advised by: Dr. Jordi Cabot and Dr. Cristina Gómez

Doctoral Thesis
– February 10, 2013 –

LIGHTWEIGHT AND STATIC

VERIFICATION OF UML

EXECUTABLE MODELS

Student:

Advisors:

Elena Planas Hortal

Dr. Jordi Cabot Sagrera

Dr. Cristina Gómez Seoane

Elena Planas Hortal

Estudis d’Informàtica, Multimèdia i Telecomunicació
Rambla del Poblenou, 156
08018 - Barcelona (Spain)

eplanash@uoc.edu

A la meva família,
per acompanyar-me en aquest camí.

A dissertation presented by Elena Planas Hortal in partial fulfillment of the requirements
for the degree of Doctor per la Universitat Politècnica de Catalunya

Barcelona, February 10, 2013

Agräıments

Doing a PhD thesis is a lonely task that

cannot be carried out alone.

Anonym

Aquesta tesi és el resultat d’uns quants anys de feina, durant els quals he rebut el suport,
tan professional com personal, de moltes persones. Aquests agräıments són per tots vosaltres.

En primer lloc, vull donar les gràcies als meus directors de tesi, al Dr. Jordi Cabot i a
la Dra. Cristina Gómez, per donar-me l’oportunitat de treballar i aprendre al seu costat. Al
Jordi, moltes gràcies per aportar una visió clara i resolutiva dels problemes, pels seus consells
precisos que sempre m’han resultat molt útils i per la seva disponibilitat des de qualsevol lloc
del món. A la Cristina, moltes gràcies pel seu rigor cient́ıfic i grau d’exigència, i també per la
seva proximitat, dedicació i interès constant. A tots dos, moltes gràcies per la vostra orientació
i suport que m’han permès arribar fins aqúı.

Molt́ıssimes gràcies a totes les persones que han col.laborat directament amb el desenvolu-
pament d’aquesta tesi. Un agräıment molt especial al David Sánchez, per haver-me ajudat amb
la implementació de la tesi, però sobretot pel seu entusiasme en tot moment. També a l’Esther
Guerra i al Juan de Lara, per permetre’m ampliar la visió del meu propi treball aplicant-lo a
d’altres camps.

També vull donar les gràcies als examinadors d’aquesta tesi: el Dr. Antoni Olivé i a la Dra.
Ruth Raventós, de la Universitat Politècnica de Catalunya (UPC), al Dr. Robert Clarisó, de la
Universitat Oberta de Catalunya (UOC), al Dr. Vicente Pelechano, de la Universitat Politècnica
de València (UPV) i al Dr. Manuel Wimmer, de la Vienna University of Technology (TUWien)
per acceptar formar part del tribunal. També, als revisors externs que van llegir una versió
prèvia d’aquesta tesi i em van fer arribar els seus suggeriments per millorar-la.

A tots els meus companys del Grup de Modelització Conceptual (GMC): Gràcies pels vostres
comentaris i consells al llarg del desenvolupament d’aquesta tesi. Un agräıment especial a
l’Antonio Villegas i al David Aguilera, per proporcionar-me la plantilla d’aquesta tesi i resoldre
els meus dubtes de LATEX amb una rapidesa incrëıble.

A tots els companys i amics dels estudis d’Informàtica, Multimèdia i Telecomunicació de la
UOC. Al Josep Prieto, per donar-me totes les facilitats per poder acabar aquesta tesi. Al Santi
Caballé i a l’Elena Rodŕıguez, per haver-se fet càrrec de les meves assignatures mentre jo he
estat redactant aquest document. Als meus companys de despatx, el David Bañeres i el Jordi
Conesa, pels moments compartits al llarg de tots aquests anys. A l’Àgata Lapedriza, l’Àngels
Rius, i tants d’altres, per formar part del meu dia dia.

A very special acknowledgment (in english) to all my dutch collegues from the Software
Engineering and Technology group (SET) at the Eindhoven University of Technology (TU/e).

Thanks specially to Mark van den Brand for allowing me to take part of his group and for
the useful discussions we had during my stay in Eindhoven. Also many thanks to the rest of
the people of the group: Ulyana Tikhonova, Yanja Dajsuren, Luna Luo, Luc Engelen, Bogdan
Vasilescu, Tom Verhoe↵, Anton Wijs, John Businge, Maarten Manders, Arjan van der Meer
and Ruurd Kuiper for sharing her time with me. Dank u wel!

També vull donar les gràcies a tots els amics i amigues que, fora del meu entorn laboral,
m’han ajudat a desconnectar de la feina i, de vegades sense saber-ho, m’han injectat la motivació
necessària per seguir endavant. A la Déborah, la M.Àngels, la Raquel i el Joan, gràcies per
estar sempre a prop malgrat la distància. A les meves amigues de dansa, la Núria, la Marta,
la Laia, la Raquel l’Ariadna, la Ópal i la Clara, per la seva amistat més enllà de la dansa. I a
les amigues tribaleres, la Marta C., la Śılvia, la Cristina, la Marga i la Marta A., per fer dels
divendres un dels millors dies de la setmana. I també als amics de Campdevànol, la Laura, en
Gil, l’Anna, el Páez i l’Urbon, per les nostres trobades i viatges sempre memorables.

Vull agrair a la meva famı́lia la seva estimació i suport constant al llarg de tota la vida.
Molt especialment als meus pares, Imma i Joan, pel seu interès en aquesta tesi, malgrat encara
no els hi hagi sabut explicar bé de què va. A la meva germana, Esther, per ser tan important a
la meva vida. A la meva àvia, pel seu afecte per damunt de tot. I un record molt especial pel
meu avi, que encara que no hagi pogut veure el final d’aquesta tesi, estic segura que n’estaria
molt orgullós.

Finalment, i molt important per mi, moltes, molt́ıssimes gràcies a l’Hug per compartir la
vida amb mi. Gràcies per la teva paciència i comprensió en els moments dif́ıcils, per recolzar-me
i animar-me en tots els projectes però, sobretot, pel teu amor incondicional. I moltes gràcies
també a la seva famı́lia (especialment a la Isabel), que també és la meva famı́lia.

A totes aquelles persones que d’una manera o altra m’han ajudat, encara que el seu nom
no figuri de forma expĺıcita en aquestes ĺınies; sense elles tampoc hauria estat possible.

This work has been partly supported by the

Ministerio de Ciencia y Tecnoloǵıa under

TIN2008-00444 project, Grupo Consolidado.

B

Abstract

Executable models play a key role in many development methods (such as MDD and MDA)
by facilitating the immediate simulation/implementation of the software system under devel-
opment. This is possible because executable models include a fine-grained specification of the
system behaviour using an action language. Executable models are not a new concept but are
now experiencing a comeback. As a relevant example, the OMG has recently published the
first version of the “Foundational Subset for Executable UML Models” (fUML) standard, an
executable subset of the UML that can be used to define, in an operational style, the structural
and behavioural semantics of systems. The OMG has also published a beta version of the “Ac-
tion Language for fUML” (Alf) standard, a concrete syntax conforming to the fUML abstract
syntax, that provides the constructs and textual notation to specify the fine-grained behaviour
of systems. The OMG support to executable models is substantially raising the interest of
software companies for this topic.

Given the increasing importance of executable models and the impact of their correctness
on the final quality of software systems derived from them, the existence of methods to verify
the correctness of such models is becoming crucial. Otherwise, the quality of the executable
models (and in turn the quality of the final system generated from them) will be compromised.

Despite the number of research works targetting the verification of software models, their
computational cost and poor feedback makes them di�cult to integrate in current software
development processes. Therefore, there is the need for suitable and useful methods to check the
correctness of executable models and tools integrated to the modelling tools used by designers.

In this thesis we propose a verification framework to help the designers improve the quality
of their executable models. Our framework is composed of a set of lightweight and static
methods, i.e. methods that do not require executing the model in order to check the desired
property. These methods are able to check several properties over the behavioural part of an
executable model (for instance, over the set of operations that compose a behavioural executable
model) such as syntactic correctness (i.e. all the operations in the behavioural model conform
to the syntax of the language in which it is described), executability (i.e. after the execution
of an operation, the reached system state is -in case of strong executability- or may be -in
case of weak executability- consistent with the structural model and its integrity constraints)
and completeness (i.e. all possible changes on the system state can be performed through the
execution of the operations defined in the executable model). For incorrect models, the methods
that compose our verification framework return a meaningful feedback that helps repairing the
detected inconsistencies.

!

!

Contents

I Preface 1

3

1.1 Software development . 3

1.1.1 Introducing Model-Driven Development . 5

1.1.2 Adopting Action Semantics for UML . 6

1.2 Software quality . 6

1.2.1 Software Models quality . 9

1.3 Problem Statement . 10

1.4 Research Questions . 10

1.5 Research Method . 11

1.6 Contributions of this thesis . 13

1.6.1 Contributions in the context of Design-Science Research 14

1.6.2 Publications . 15

1.7 Thesis Outline . 16

II Background 17

19

2.1 Overview . 20

2.1.1 Why do we need executable models? . 22

2.2 Specifying executable models . 23

2.2.1 Structural Model . 23

2.2.2 Behavioural Model . 27

2.3 Summary . 39

41

3.1 Frameworks for evaluating the quality of models 41

3.2 Practices to improve the quality of models 43

3.2.1 The emergence of Lightweight Formal Methods 49

3.3 Summary . 51

i

CONTENTS

III Contributions 53

55

4.1 Presentation . 55

4.2 Executable Models . 56

4.3 Correctness Properties . 57

4.4 Verification Methods . 60

4.5 Summary . 62

63

5.1 Syntactic Correctness Definition . 63

5.2 Verifying the syntactic correctness . 66

5.2.1 CreateObjectAction . 67

5.2.2 DestroyObjectAction . 69

5.2.3 ReclassifyObjectAction . 70

5.2.4 AddStructuralFeatureValueAction . 72

5.2.5 ClearStructuralFeatureAction . 74

5.2.6 CreateLinkAction . 75

5.2.7 DestroyLinkAction . 77

5.2.8 ClearAssociationAction . 78

5.2.9 CallOperationAction . 79

5.2.10 Flaws and lacks in UML/fUML metamodels 81

5.3 Summary . 83

85

6.1 Execution Paths . 85

6.1.1 Constructing the Model-Based Control Flow Graph 86

6.1.2 Computing the Execution Paths from the MBCFG 90

6.2 Executability Definition . 94

6.2.1 Weakly Executable operations . 95

6.2.2 Strongly Executable operations . 96

6.2.3 Non Executable operations . 97

6.2.4 Comparative relation . 97

6.3 Verifying the Executability of Alf operations 98

6.3.1 Step 1: Analyzing the existence of Potentially Violating Actions 100

6.3.2 Step 2: Discarding the Potentially Violating Actions 105

6.3.3 Step 3: Classifying the operation . 136

6.3.4 Feedback . 137

6.3.5 Example of use . 137

6.4 Discussion . 149

6.4.1 Assumptions of our method . 149

6.4.2 Limitations of our method . 149

6.4.3 Performance of our method . 150

6.5 Summary . 151

ii

CONTENTS

153

7.1 Completeness Definition . 153

7.2 Verifying the completeness . 155

7.2.1 Step 1: Computing Required Actions (RA) 156

7.2.2 Step 2: Computing Existing Actions (EA) 159

7.2.3 Step 3: Computing Missing Actions (MA) . 159

7.2.4 Step 4: Classifying the Behavioural Model 161

7.3 Summary . 161

163

8.1 Introduction to model-to-model transformations 164

8.1.1 Exogenous out-place transformations with ATL 166

8.1.2 Endogenous in-place transformations with Graph Transformation Rules 169

8.2 Verifying ATL rules . 173

8.2.1 Weak Executability of an ATL rule . 174

8.2.2 Completeness of ATL rule’s set . 180

8.3 Verifying Graph Transformation rules . 184

8.3.1 Weak executability of Graph Transformation rules 184

8.4 Summary . 201

203

9.1 General Overview and Architecture . 203

9.2 Alf Editor . 206

9.3 Alf Verifier . 207

9.3.1 Input . 208

9.3.2 Lightweight Static Analysis . 208

9.3.3 Feedback . 209

9.4 Summary . 211

213

10.1 Experiment 1: Evaluating the relevance of our verification framework . . 214

10.1.1 Design of the experiment . 214

10.1.2 Results of the experiment . 219

10.2 Experiment 2: Evaluating the efficiency of the lightweight and static

methods . 221

10.2.1 Design of the experiment . 222

10.2.2 Results of the experiment . 223

225

11.1 Dimensions of the related work . 225

11.1.1 Domain . 226

11.1.2 Property . 227

11.1.3 Method . 228

11.2 Comparing the Related Works . 228

iii

CONTENTS

11.2.1 Verification of UML Models . 229
11.2.2 Verification of M2M Transformations . 234

237

12.1 Contributions . 237
12.1.1 Quality Properties for Executable Models . 238
12.1.2 Lightweight methods for verifying Executable Models 239
12.1.3 Feedback . 239
12.1.4 Application in Model Transformations . 240

12.2 Directions for Further Research . 240

243

iv

Part I

Preface

1

The White Rabbit put on his specta-

cles. “Where shall I begin, please your

Majesty” he asked. “Begin at the begin-

ning,” the King said gravely, “and go on

till you come to the end; then stop.”

Lewis Carroll

1
Introduction

1.1 Software development

“The entire history of software engineering is that of the rise in levels of abstraction” said Grady
Booch in his talk “The Promise, the Limits, the Beauty of Software” [21]. This history has
a direct relationship with the history of computer programming [183], where many di↵erent
programming languages have been developed in order to increase the levels of abstraction (see
Figure 1.1).




 

 
















  






Figure 1.1. Rise in levels of abstraction in programming languages.

3

CHAPTER 1. INTRODUCTION

Programmers of the first computers had to use machine language (a binary language con-
sisting of 0s and 1s to represent the status of a switch). Machine language, which is referred to
as a first generation programming language (1GL), could be used to communicate directly with
the computer. However, using machine language was di�cult, error-prone and the programs
were platform specific. Then, 1GL programming was quickly superseded by similarly machine
specific, but mnemonic, second generation languages (2GL) known as assembly languages or
assembler. Assembly languages are similar to machine languages, but they are much easier to
program in because they allow using meaningful names or abbreviations instead of numbers. Al-
though assembly languages were easier to use for humans than machine language, the programs
were still platform specific. Later in the 1950s, assembler, which had evolved to include the
use of macro instructions, was followed by the development of the third generation languages
(3GL), referring to high-level languages, such as BASIC, FORTRAN, COBOL, PASCAL, ADA,
C, C++, Java, etc. High-level programming languages have English-like instructions and are
easier to use than machine language and assembler.

Lying above high-level languages are languages called fourth generation languages (4GL),
which are programming languages (closest to human languages) or programming environments
designed with a specific purpose in mind, such as the development of commercial business
software. Some fourth generation languages are Clipper, FoxPro, SQL, MATLAB, etc. The
4GL was followed by e↵orts to define and use a fifth generation languages (5GL), which are
programming languages based around solving problems using constraints given to the program,
rather than using an algorithm written by a programmer. Most constraint based and logic
programming languages and some declarative languages are fifth generation languages. Fifth
generation languages are used mainly in artificial intelligence research and neural networks.
Some fifth generation languages are Prolog, OPS5, and Mercury. 4GL and 5GL projects are
more oriented toward problem solving and systems engineering.

Today, instead to evolve to more abstract programming languages, there is a growing trend
toward using models rather (or before than) code. Models are abstract representations of the
code. They are the next logical, and perhaps inevitable, evolutionary step in the ever-rising
level of abstraction at which software engineers express software solutions. In fact the software
engineering community envisages a future in which, rather than elaborate an analysis product
into a design product and then write code, developers of the future will use tools to translate
abstract application constructs into executable entities.

This shift is made possible by the confluence of two main factors:

• The Model-Driven Development (MDD) paradigm.

• The adoption of the Precise Action Semantics for the Unified Modeling Language (UML)
specification by the Object Management Group (OMG).

In the next subsections we review these factors and discuss the implications of them relative
to the future of software development.

4

1.1. SOFTWARE DEVELOPMENT

1.1.1 Introducing Model-Driven Development

Model-Driven Development (MDD) [10, 162] is a software development paradigm that
emphasizes the use of models as the primary artifact in all phases of the development life-cycle.
MDD promotes the automatic generation of the system implementation based on its model,
either directly or by first transforming the model into a new model adapted to the specific
features and characteristics of the target platform.

MDD was practiced by di↵erent organizations using di↵erent architectures and tools. How-
ever, the Object Management Group (OMG) standardized this practice by publishing standard
specifications for MDD and renamed this paradigm as Model-Driven Architecture (MDA).
Then, MDA [110] is the OMGs particular vision of MDD and thus relies on the use of OMG
standards (such as Meta-Object Facility (MOF), XML Metadata Interchange (XMI), Unified
Modeling Language (UML), Common Warehouse Metamodel (CWM), among others). In the
MDA paradigm there are two kinds of models: PIM (Platform-Independent Model), that pro-
vides a formal specification of the structure and behaviour of the system by abstracting away
technical details, and PSM (Platform Specific Model), that specifies the system in terms of the
implementation constructs that are available in one specific implementation technology. MDA
essentially calls for the mapping of a PIM onto a PSM.

The MDA paradigm provides an important benefit: the intellectual capital invested in the
PIM is forever protected from changes or advances in the underlying technologies. The PIM lets
you model a solution both visually and at the higher level of abstraction. Then, MDA avoids
the necessity of re-writing applications to take advantage of newer technology. Assuming that
there will always be a next greatest technology, the profit of using MDA is very significant.

Both MDD and MDA can be regarded as a specific practices of Model-Driven Engineer-

ing (MDE), because MDE goes beyond of the pure development activities and encompasses
other model-based tasks of a complete software engineering process (e.g. the Model-Driven
Reverse Engineering of a legacy system). All the variants of Model-Driven Whatever are often
referred to with the acronym MD* (Model-Driven star) [24] (see Figure 1.2).









Figure 1.2. Relationship between the di↵erent MD* acronyms.

5

CHAPTER 1. INTRODUCTION

1.1.2 Adopting Action Semantics for UML

The usefulness of MDD and MDA paradigms largely depends on the possibility to define ex-
ecutable models (i.e. models which can be run). Executable models are detailed enough in
order to be used to (semi)automatically implement the software system. For this purpose, in
2001 the OMG introduced the Precise Action Semantics for UML. Since then, actions have
evolved to the latest standards fUML [125] (a precise semantics for actions) and Alf [124] (a
precise text-based action language). These standards provide an unambiguous set of actions for
specifying the behavioural aspects of a UML model to a level of detail such that a self-contained
and completely executable application can be generated from that model. For instance, these
standards include actions to support the synchronous manipulation of objects (create, read,
write, delete), the generation and handling of asynchronous events (signals) and the logical
constructs that support the specification of algorithms (conditional and loop structures).

The breakthrough notions of using an action language to specify the behaviour in a UML
model are that: (1) the action language allows designers to define behavioural specifications
at a higher level of abstraction; and (2) the action language is independent of any specific
underlying technology in the execution environment. This implies that actions allow only
direct manipulation of elements at the model level. To accomplish that goal, designers give
up low-level control (for instance, pointer manipulation, persistence, data storage, and so on).
Instead, application configuration deals with such issues at code generation time. Because
an action language (and indeed the entire PIM UML model) is by definition independent of
the underlying execution technology, designers can target the application solution to multiple
and diverse execution platforms, even future platforms that did not exist at the time the PIM
was developed. Then, the adoption of an action language supports the viability of executable
models.

1.2 Software quality

One of the pivotal issues during the software development, either using models or directly code,
is the quality of these representations.

Quality is a complex and multifaced concept which is often defined by what is lacking rather
than by its contents. Lack of quality leads to failures. For instance, in 2010, Toyota announced
a recall of almost half million new hybrid cars. The cars, including Toyota’s Prius line, had a
software defect, which would cause a lag in the anti-lock-brake system. Class-action lawsuits
resulting from those recalls, including the software defect, were estimated to cost Toyota as
much as $3 billion. More recently, in 2012, Nokia discovered that its Lumia 900 smartphone
had been introduced with a software bug that could prevent users connecting to the Internet.
After less than fifteen days a software update to fix the problem was released. However, the
cost of this issue was estimated in $10 million on likely sales in that period.

These are only two recent examples of history’s software bugs. They point out that human
errors are unavoidable. However, in order to avoid that errors become disasters, it is highly
important (specially in concurrent and critical systems) to check the system quality before its

6

1.2. SOFTWARE QUALITY

release.

The meaning of quality has been widely discussed. Everybody agrees that quality is an
important property of products, but what does quality really mean? In 1984 Garvin [68]
identified five major approaches of defining the quality of a product arising from scholars
in several disciplines (philosophy, economics, marketing, and operations management). They
provided the following definitions for the quality of a product:

• Transcendental approach: Quality is an “innate excellence” that cannot be defined
precisely, but it is intuitively and universally recognizable through experience.

• User-based approach: Quality is fitness for intended use.

• Value-based approach: Quality is defined in terms of costs and prices: A quality
product is one that provides performance at an acceptable price or conformance at an
acceptable cost.

• Manufacturing-based approach: Quality is the conformance to the product’s require-
ments.

• Product-based approach: Quality is a precise and measurable variable that reflects
the presence or absence of an assessable and desired product properties.

Later, in 2000, the ISO/IEC 9126 [88] (an international standard for the evaluation of soft-
ware quality consistent with ISO 9000 [87], a family of standards related to quality management)
defined the quality of a software as: “The totality of features and characteristics of a product
or service that bear on its ability to satisfy stated or implied needs”.

The above definition of software quality may be applied within the context of several dimen-
sions of software. Unhelkar [174] classifies UML-based software quality into seven categories
(from lower to higher level of abstraction):

• Data quality: Focused on the data, resulting in quality work ensuring integrity of the
data.

• Code quality: Focused on the programs and their underlying algorithms.

• Model quality: Focused on software models and their meanings. It covers the quality
of models, modelling languages and even transformations performed on models.

• Architecture quality: Focused on the ability of the system to be deployed in operation.

• Process quality: Focused on the activities, tasks, roles and deliverables employed in
developing the software.

• Management quality: Focused on the plan, budget and monitoring, as well as the
“soft” or human aspects of a project.

• Quality environment: Focused on all aspects of creating and maintaining the quality
of a project, including all of the above aspects of quality.

Similarly, ISO/IEC 9126 [88] classifies software quality into four categories:

7

CHAPTER 1. INTRODUCTION

• Process quality: Quality of the software lifecycle processes.

• Internal quality: Quality of the intermediate products, including static and dynamic
models, documentation and source code.

• External quality: Quality of the final system as assessed by its external behaviour.

• Quality in use: E↵ect of the system in use - the extent to which users can achieve their
goals using the system.

Despite the above classifications into categories, there is a relevant connection between the
di↵erent categories of quality. For instance, improving quality of models (internal quality) will
help to improve quality of the final system (external quality).

Although several definitions and classifications of software quality have been proposed, cur-
rently there is no agreed definition about what does quality for these specific categories of
software mean. The meaning of quality for all these specific categories should be consistent
with ISO/IEC 9126 [88], as all the categories exist in the context of a software system. Besides,
it should also be consistent with ISO 9000 [87], as a software system is simply a particular type
of product (see Figure 1.3).



  



  

 






Figure 1.3. The context of model quality.

Since this thesis is focused on the development phases, in which only internal properties of
the software can be measured, we focus on internal quality (in particular, on model quality)
and we adopt (and adapt) the definition proposed in [113] as:

The quality of a software model is the degree to which a set of internal properties (also
called quality goals in the literature) is present.

8

1.2. SOFTWARE QUALITY

1.2.1 Software Models quality

Traditionally, the focus of software quality has been on evaluating the final product [115].
However, according to the Boehm’s first law (1975) [19]: “Errors are most frequent during the
requirements and design activities and are the more expensive the later they are removed” (see
Figure 1.4).

Figure 1.4. Boehm curve.

Most errors occur in early phases of the system development (i.e. during the requirements
ellicitation and design phases). An error analysis made by Endres in 1975 [57] concluded that
“about 60-70% of all errors to be found in a project are either requirements or design errors”.
Requirement errors are made when the developer does not know the domain. Nobody tells the
developer that she is trying to solve the wrong problem until she interacts with the stakeholders
again, which may be as late as deployment. On the other hand, design errors are found by the
responsible developer, the developer of a related construct, or by a user who discovers the
problem either accidentally or through a review process. In this thesis we focus on design
errors over platform independent and executable models.

The cost of an error depends on when it is removed. Several studies conclude that the cost
of repairing an error is the higher the longer it stays in the product. For instance, Fagan [61]
determine that “the cost of rework in the later stages of a project can be greater than 100 times
the cost of correction in the early stages”. More recently, in 2001, a study conducted by Boehm
and Basili [17] pointed out that “about 80% of avoidable rework seem to come from 20% of the
defects”.

As a consequence of Boehm’s first law, the cost of the errors rises with their lifespan (i.e.
the time between introduction of an error and its removal). Since errors are unavoidable, it is
highly important to reduce its lifespan, i.e. to remove the errors as soon as possible after the
time of commission.

In the context of MDD and MDA paradigms, where models are the basis of the whole
development process, the quality of the models has a high impact on the final quality of software
systems derived from them [121]. It means that a quality model (i.e. a model that fulfills several
correctness properties) will lead to a higher quality information system. As a consequence, note
that models may directly a↵ect both the e�ciency (i.e. time, cost and e↵ort of development)
and the e↵ectiveness (i.e. quality of the information system derived from them) of information
systems development.

9

CHAPTER 1. INTRODUCTION

1.3 Problem Statement

Based on the previous discussion we formulate the problem statement that is central to this
thesis as:

Given the increasing importance of executable models and the impact of their correctness
on the final quality of the software systems derived from them [121], the existence of methods
to verify the correctness of executable models is becoming crucial. Otherwise, the quality of
the executable models (and in turn the quality of the final system generated from them) will
be compromised. Despite the number of research works targetting the verification of software
models, their computational cost and poor feedback makes them di�cult to integrate in current
software development processes. Therefore, there is the need for suitable and useful methods to
check the correctness of executable models and tools integrated to the modelling tools used by
designers.

The list of open problems presented in [127] by Olivé includes the Complete and Correct
Executable Schemas. Similarly, Genero et al. [69] suggest that more work is needed on model
quality assessment. More precisely, Perseil [132] also points out that additional work remains
to be done to verify Alf specifications. These overall goals are aligned with the purpose of this
thesis.

1.4 Research Questions

To address the problem statement stated in Section 1.3, we formulate the main research question
this thesis aims to answer as follows:

Main Research Question: How can the quality of executable models be improved?

In order to answer this research question, we decompose it into four specific research ques-
tions.

According to our definition of model quality, the first step in addressing the main research
question is to define the internal quality properties that we take into account when analyzing
the quality of executable models.

Research Question 1 (RQ1): How can the quality of executable models be decomposed
into quality properties?

Once quality has been decomposed into several quality properties, each property can be
individually assessed. Several types of methods (static/dynamic and non-formal/formal) can
be used for checking the quality of software models.

Research Question 2 (RQ2): What methods can be employed to support the verification
of the quality properties of executable models?

10

1.5. RESEARCH METHOD

One important goal of our research is to provide information to help the designer improving
her models before implementing them.

Research Question 3 (RQ3): What kind of feedback can help the designer to improve her
executable models?

The main objects of our research are executable models. However, executable models can
encompass various types of models (i.e. model of a software system, model to model transfor-
mations, and so on).

Research Question 4 (RQ4): What kinds of executable models can be verified using these
methods?

1.5 Research Method

Along the development of this thesis we have followed the basic criteria of the Design-Science
Research (DSR) paradigm.

Design-Science Research (DSR), proposed by Hevner et al. in [83], is a problem-solving
paradigm that consists of activities concerned with the construction and evaluation of technol-
ogy artifacts to meet organizational needs as well as the development of their associated research
theories. Figure 1.5 presents the DSR paradigm for understanding, executing, and evaluating
information systems research combining behavioural-science and design-science paradigms.

Figure 1.5. Design-Science Research paradigm.

11

CHAPTER 1. INTRODUCTION

Furthermore, Hevner et al. [83] propose a set of guidelines for conducting and evaluating
DSR. They are summarized in Table 1.1.

Table 1.1. Design-Science Research Guidelines, adapted from [83].

Guideline Description
Guideline 1: Design as an Artifact DSR must produce a viable artifact in the

form of a construct, a model, a method, or
an instantiation.

Guideline 2: Problem Relevance The objective of DSR is to develop
technology-based solutions to important
and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and e�cacy of a design
artifact must be rigorously demonstrated
via well-executed evaluation methods.

Guideline 4: Research Contributions E↵ective design-science research must pro-
vide clear and verifiable contributions in
the areas of the design artifact, design
foundations, and/or design methodologies.

Guideline 5: Research Rigor DSR relies upon the application of rigor-
ous methods in both the construction and
evaluation of the design artifact.

Guideline 6: Design as a Search Process The search for an e↵ective artifact requires
the usage of available means to reach de-
sired ends while satisfying laws in the prob-
lem environment.

Guideline 7: Communication of Research DSR must be presented e↵ectively
both to technology-oriented as well as
management-oriented audiences.

According to [83], the fundamental principle of design-science research is that knowledge
and understanding of a design problem and its solution are acquired in the building and appli-
cation of an artifact. That is, DSR requires the creation of an innovative, purposeful artifact
(Guideline 1) for a specified problem domain (Guideline 2). Because the artifact is purposeful,
it must yield utility for the specified problem. Hence, thorough evaluation of the artifact is
crucial (Guideline 3). Novelty is similarly crucial since the artifact must be innovative, solv-
ing a heretofore unsolved problem or solving a known problem in a more e↵ective or e�cient
manner (Guideline 4). In this way, design-science research is di↵erentiated from the practice
of design. The artifact itself must be rigorously defined, formally represented, coherent, and
internally consistent (Guideline 5). The process by which it is created, and often the artifact
itself, incorporates or enables a search process whereby a problem space is constructed and a
mechanism posed or enacted to find an e↵ective solution (Guideline 6). Finally, the results of
the design-science research must be communicated e↵ectively (Guideline 7) both to a technical
audience (researchers who will extend them and practitioners who will implement them) and to
a managerial audience (researchers who will study them in context and practitioners who will
decide if they should be implemented within their organizations).

Additionally to the set of guidelines proposed in [83], some authors extend this paradigm

12

1.6. CONTRIBUTIONS OF THIS THESIS

by suggesting a methodology for conducting DSR in information systems. According to the
methodology presented by Pe↵ers et al. in [131], the DSR process includes six steps (see Figure
1.6): (1) problem identification, motivation and relevance, (2) definition of the objectives for a
solution, (3) design and development of an artifact for solving the problem, (4) demonstration
about the usefulness of the artifact, (5) evaluation of the solution to determine its e↵ectiveness
and e�ciency, and (6) communication to the research community.

Figure 1.6. Design-Science Research Methodology.

1.6 Contributions of this thesis

In this thesis we propose a verification framework to help the designers improve the

internal quality of their executable models (see Figure 1.7). Our framework is composed
of a set of static methods that do not require to execute the model in order to check the desired
property. Each of these methods assesses the verification of a specific correctness property, in
particular:

• Syntactic correctness. An executable model is syntactically correct if all the elements
in the model conform to the syntax of the language in which it is described.

• Executability. An entity of behaviour1 of an executable model is executable if, after its
execution, the reached system state is - in case of strong executability - or may be - in case
of weak executability - consistent with the structural model and its integrity constraints.

• Completeness. The whole executable model is complete when all possible changes on
the system state can be performed through the execution of the behaviour entities defined
in the executable model. Otherwise, there will be parts of the system that users will not
be able to modify since no available behaviour addresses their modification.

1In this introductory chapter, by entity of behaviour we mean a piece of behaviour which is part of a
behavioural model such as a UML behavioural diagram, a MSM transformation, etc.

13

CHAPTER 1. INTRODUCTION



















Figure 1.7. Verification framework overview.

We consider all the above properties (syntactic correctness, executability and completeness)
are mandatory properties such that all correct executable models should satisfy.

The input of all the methods that compose our verification framework is an executable

model (consisting of a UML action-based executable model - see Chapter 2 - or in a model to
model (M2M) transformation - see Chapter 8 -). As a result, each particular method provides
a meaningful feedback (showing what is wrong, why, and suggesting repairing procedures) to
the designer.

1.6.1 Contributions in the context of Design-Science Research

The characteristics of our research have a clear relationship with the guidelines of DSR paradigm
[83] and the DSR methodology [131] presented in Section 1.5. In the following we show how
DSR has been applied to this thesis according to the guidelines of Table 1.1:

• Design as an Artifact. The artifacts obtained from our research are a set of static verifica-
tion methods within the context of a verification framework and a tool which implements
these methods.

• Problem Relevance. As we have introduced, given the increasing importance of executable
models and their impact on the quality of the final software systems derived from them,
the existence of methods to verify the correctness of such models is becoming crucial.

• Design Evaluation. The proposed framework has been evaluated through experimenta-
tion.

• Research Contributions. The contributions of our research are the artifacts themselves.

• Research Rigor. This research has been conducted by DSR methodology.

• Design as a Search Process. This thesis has been driven iteratively. In each iteration, we
search a new refined solution to discover an e↵ective solution to our problem.

• Communication of Research. We have published the main contributions of this thesis in
research publications aimed to communicate the research results (see Section 1.6.2).

14

1.6. CONTRIBUTIONS OF THIS THESIS

1.6.2 Publications

Most of the contributions of this thesis have been already published in the following publications
(chronologically ordered):

International Conferences & Workshops:

• Elena Planas: A Framework for Verifying UML Behavioural Models. In: Proceedings of
the 21st International Conference on Advanced Information Systems Engineering (CAiSE
Doctoral Consortium 2009). Amsterdam, The Netherlands, June 2009 [135].

• Elena Planas, Jordi Cabot, Cristina Gómez: Verifying Action Semantics Specifications
in UML Behavioural Models. In: Proceedings of the 21st International Conference on
Advanced Information Systems Engineering (CAiSE 2009), volume 5565 of LNCS, pages
125-140. Amsterdam, The Netherlands, June 2009 [137].

• Elena Planas, Jordi Cabot, Cristina Gómez, Esther Guerra, Juan de Lara: Lightweight
Executability Analysis of Graph Transformation Rules. In: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2010), pages
127-130. Leganés-Madrid, Spain, September 2010 [141].

• Elena Planas, Jordi Cabot, Cristina Gómez: Two Basic Correctness Properties for ATL
Transformations: Executability and Coverage. In: Proceedings of the 3rd International
Workshop on Model Transformation with ATL (MtATL 2011), volume 742 of CEUR
Workshop proceedings, pages 1-9. Zurich, Switzerland, July 2011 [140].

• Elena Planas, Jordi Cabot, Cristina Gómez: Lightweight Verification of Executable Mod-
els. In: Proceedings of the 30th International Conference on Conceptual Modeling (ER
2011), volume 6998 of LNCS, pages 467-475. Brussels, Belgium, November 2011 [139].

• Elena Planas, David Sanchez-Mendoza, Jordi Cabot, Cristina Gómez: Alf-verifier: An
Eclipse Plugin for Verifying Alf/UML Executable Models. In: Proceedings of the 31st
International Conference on Conceptual Modeling (ER Workshops 2012), volume 7518 of
LNCS, pages 378-382. Florence, Italy, October 2012 [143].

National Conferences:

• Elena Planas, Jordi Cabot, Cristina Gómez: Verificación de la ejecutabilidad de opera-
ciones definidas con Action Semantics. In: Actas de los Talleres de las Jornadas de
Ingenieŕıa del Software y Bases de Datos (DSDM - JISBD 2008), Vol. 2, No. 3, pages
62-71. Gijón, Spain, October 2008 [136].

Research Reports:

• Elena Planas, Jordi Cabot, Cristina Gómez: Verifying Action Semantics Specifications
in UML Behavioural Models (Extended Version). LSI-09-6-R LSI Research Report, UPC
(2009) [138].

15

CHAPTER 1. INTRODUCTION

1.7 Thesis Outline

In this thesis we report the results of our research addressing the quality of executable models.
This section gives an outline of the structure of the remaining of this document, which is
structured in several parts:

Part II: Background: This part presents the context where this thesis is based on.

• Chapter 2: Executable Models. This chapter reviews the basic concepts about exe-
cutable models and introduces the OMG standards to represent them (UML, fUML and
Alf).

• Chapter 3: Quality of Models. This chapter reviews some well-known frameworks
for evaluating the quality of models and classifies some of the main practices to analyze
the correctness of a model.

Part III: Contributions: This part presents the contributions of this thesis.

• Chapter 4: Verifying Executable Models. This chapter roughly describes the verifi-
cation framework where the methods provided in this thesis are organized on. The various
methods are explained in detail in Chapters 5 to 8.

• Chapter 5: Syntactic correctness. This chapter provides a precise definition of the
syntactic correctness property and presents a specific lighweight and static method to
assess this property over a UML action-based behavioural model as part of an executable
model.

• Chapter 6: Executability. This chapter provides a precise definition of the executabil-
ityproperty and presents a specific lightweight static method to assess this property over
a UML action-based behavioural model as part of an executable model.

• Chapter 7: Completeness. This chapter provides a precise definition of the complete-
ness property and presents a specific lightweight static method to assess this property
over a UML action-based behavioural model as part of an executable model.

• Chapter 8: Application to M2M Transformations. This chapter adapts the previ-
ous methods to be used in the context of model to model transformations.

• Chapter 9: Tool Implementation. This chapter presents the architecture of a proto-
type tool that implements the most relevant methods proposed as part of our verification
framework.

• Chapter 10: Experimentation. This chapter presents an experimentation to evaluate
the relevance and the e�ciency of our verification framework.

• Chapter 11: Related Work. This chapter discusses the related work, including a
comparison of our methods with respect to other existing methods in the literature.

• Chapter 12: Conclusions. This chapter exposes the conclusions of this thesis and
points out further research lines.

16

Part II

Background

17

Models that don’t execute are like cars

without engines.

Stephen Mellor

2
Executable Models

It is widely accepted that “a model is a simplified representation of a complex reality, usually for
the purpose of understanding that reality, and having all the features of that reality necessary
for the current task or problem” [27]. We build models to improve our understanding of
something complex. Architects build models of a proposed building to show a costumer what
to expect; airplane manufacturers test models in a wind tunnel for flight attributes; and software
developers build models of projects they undertake.

Software models can be used in many ways. Models can be used only informally, that is,
sketching out a few diagrams to discuss the abstractions before coding. Models can also be
used as a blueprint that specifies the software structure. This approach intends near one-to-one
correspondence between the models and the code. Then, a tool can generate code based on
these models, and the developer fills in the rest using the models as a guide. However, if the
developer finds a better solution while coding, the model will no longer reflect the code.

But software models (from now on we call them simply “models”) can do better than this.
They can be described in su�cient detail to be directly executed. Executable models are
neither sketches nor blueprints. As their name suggests, executable models can be executed
and translated into code. In this sense, executable models act just like code, but they are
described at a higher (and platform independent) level of abstraction.

The aim of this chapter is to provide an outline about executable models. It is divided
into three sections: Section 2.1 defines what an executable model is and which improvements
it can contribute to conceptual modelling; Section 2.2 describes how an executable model may
be specified using the OMG standard languages devoted to executable modelling; and finally,
Section 2.3 summarizes and concludes the chapter.

19

CHAPTER 2. EXECUTABLE MODELS

2.1 Overview

Broadly, a software development process based on models involve two main steps (see Fig-
ure 2.1): (1) the modellers create models and deliver them to the developers; and then (2)
the developers create software artifacts (in the best case) based on these models and, in some
cases, they provide feedback to the modellers. This lifecycle outlines several problems. For
instance, developers could choose not to follow the models, or they could decide not to provide
any feedback to the modellers. Besides, it is hard to keep the models and software artifacts
synchronized during the development (and maintenance), and it is also hard to verify the cor-
rectness of models before development.















Figure 2.1. How a model-based development process usually works.

The adoption of the Model-Driven Development (MDD) paradigm [10, 162] can cope with
the above problems. As we introduced in Chapter 1, the MDD paradigm gives the model a
central role in the development process. It promotes the automatic generation of the system
implementation based on its model, either directly or by first transforming the model into a
new model adapted to the specific features and characteristics of the target platform.

However, the power of MDD cannot be fully exploited without the use of executable models,
where “executable” means that it is possible to write an engine program (i.e. a model compiler)
that executes (or runs) the model. According to Sage et al. [155], an executable model “is a
dynamic model that can be used to analyze the properties of the architecture and it can also
be used to carry out simulations”.

Although the OMG (Object Management Group) has recently published several standards
related to executable models (see them in Section 2.2.2), neither of these standards include a
definition about what an executable model is. We contribute our own definition based on the
definition provided by E. Seidewitz (one of the authors of the new OMG standards related to
executable modelling) in [30]:

An executable model is a model with a behavioural specification detailed enough so that it
can be systematically implemented or executed in the production environment.

Executable models are not a new concept. In 1992 D. Harel (the creator of the statecharts
notation) predicted that in the future most developments will be based on an executable spec-
ification [77]. Few years later, in 2001, Stephen J. Mellor and Mark J. Balcer published the

20

2.1. OVERVIEW

xUML (eXecutable UML [167]), a software development methodology which relies on a subset
of the UML notations (class diagram, statechart diagram, action language, etc.) designed to
precisely define the semantics of executable models.

In the recent years, executable models have experienced a comeback, becoming a relevant
topic by the OMG. As a relevant example, this organization has recently published the first
version of the “Foundational Subset for Executable UML Models” (fUML) standard [125] (see
Section 2.2.2), an executable subset of the UML that can be used to define, in an operational
style, the structural and behavioural semantics of systems. The OMG has also published a beta
version of the “Action Language for fUML” (Alf) standard [124] (see Section 2.2.2), a concrete
syntax conforming to the fUML abstract syntax, that provides the constructs and textual
notation to specify the fine-grained behaviour of systems. The OMG support to executable
models is also substantially raising the interest of software companies for this topic [54].

According to E. Seidewitz [161], the combination of executable models within the MDD
paradigm, makes possible a new and improved software development process based on two
main steps (see Figure 2.2): (1) the modellers create executable models and iteratively verify
and update them; and once the models are correct (2) the executable models are deployed in a
production environment. There are several alternative strategies to deploy executable models.
One way is through code-generation [82], i.e. using a model compiler (many times defined as
a model-to-text transformation) to generate a lower-level representation of the model using
existing programming languages and platforms (e.g. Java). Another way is through model
interpretation [151], i.e. using a virtual machine able to directly read and run the model.

In this thesis, we only focus on the first step of the development process, in particular,
on ensuring the correctness of executable models at design time. Whatever is the strategy to
deploy the executable model (code-generation or model interpretation), such model should be
correct before its deployment.















Figure 2.2. How a MDD-based development process using executable models usually works.

21

CHAPTER 2. EXECUTABLE MODELS

2.1.1 Why do we need executable models?

The use of executable models is being promoted given the value they can contribute:

• Executable models increase productivity by raising the level of abstraction.
In [25], Brooks concludes that “the number of bugs per line of code is constant regardless
of what level of abstraction you are working at”. Designing at higher levels of abstraction
requires less code for the same functionality. Therefore there are fewer bugs per function
when coding at a higher level of abstraction, resulting in higher productivity.

Figure 2.3. Abstraction increases productivity.

If we look at the languages used to design software (see Figure 2.3), the improvement
in productivity was dramatic when the move was made from the assembly language to
the first high-level languages. Nowadays, moving from high-level languages to executable
modelling languages represents a similar advance. Executable models are at the next
higher layer of abstraction, abstracting away both specific programming languages and
decisions about the organization of the software.

• Executable models reduce costs by describing systems independently of their implemen-
tation and then compiling to each software platform. Executable models allow for the true
separation of concerns. This significantly increases the ease of reuse and lowers the cost
of software development. This also enables executable models to be cross-platform and
not tied to any specific programming language, platform or technology, so an executable
model can be deployed in various software environments without change. In this way,
models can survive for decades.

• Executable models improve quality of the final system by facilitating early verification.
They allow the modeller to verify the design before any code is written. Then, defects
may be found sooner by execution, avoiding to waste e↵ort in constructing the wrong
code.

22

2.2. SPECIFYING EXECUTABLE MODELS

2.2 Specifying executable models

A model must describe both the structure of the system it represents (what it is?) and its be-
haviour (what it does?). For being executable we must put special emphasis on the behaviour’s
description, so that it must be precise enough to be executed.

Since its standardization by the OMG in 1997, the UML (Unified Modeling Language) [154]
has become a de facto standard to specify models. UML provides a unified graphical notation
for the representation of various aspects of software systems.

In this document, unless otherwise indicated, we assume that executable models are written
using the OMG standards. However, as we explain in Chapter 8, the ideas presented in this
document could be adapted to models specified by means of other languages.

We represent an executable model (ExM) as a 2-tuple hSM, BMi, where:

• SM is a structural model, and

• BM is a behavioural model.

Sections 2.2.1 and 2.2.2 review the concepts of structural and behavioural model respectively
and how they can be specified using the standard languages provided by the OMG.

2.2.1 Structural Model

The structural model specifies the static part of an information system, i.e. the general knowl-
edge about the system domain [128].

We represent an structural model (SM) as a UML class diagram, that is, a 5-tuple hcl,
attr, assoc, gen, ici, where:

• cl is a set of classes,

• attr is a set of attributes of each class,

• assoc is a set of associations among classes,

• gen is a set of generalizations among classes, and

• ic is a set of integrity constraints (i.e. conditions that must be satisfied in all states of an
information system [128]).

All elements in the class diagram are assumed to be correct instances of the corresponding
metaclasses of the UML metamodel [126].

Some integrity constraints (mainly cardinalities and disjointness/covering constraints in
generalizations) may be graphically represented in the CD, while the rest of them may be
textually specified in OCL [123].

23

CHAPTER 2. EXECUTABLE MODELS

In this thesis we take into account a subset of integrity constraints, in particular those that
conform to one of the syntactic patterns shown in Table 2.1. According to [43] these constraints
are the most commonly used integrity constraints in UML models. Table 2.1 is divided into
several columns:

• Constraint : Identifies the constraint type.

• Abbreviation: Shows the abbreviated notation that we use throughout this document.

• Description: Briefly describes the meaning of each constraint.

• Formalization: Provides its formal description in OCL.

Table 2.1. Constraint types supported by our method.

Constraint Abbreviation Description Formalization in OCL

Minimum
cardinality
of a class

Cmin(cl) Expresses the mini-
mum objects of class
cl that must exist
simultaneously.

context cl inv:

cl.allInstances()

->size() >= Cmin(cl)

Maximum
cardinality
of a class

Cmax(cl) Expresses the maxi-
mum objects of class
cl that may exist si-
multaneously.

context cl inv:

cl.allInstances()

->size() <= Cmax(cl)

Minimum
cardinal-
ity of an
association

Cmin(as,r) Expresses the mini-
mum multiplicity of
the member end (i.e.
role) r of an asso-
ciation as between
cl (with role r) and
cl’.

context cl inv:

cl.r->size() >=

Cmin(as,r)

Maximum
cardinal-
ity of an
association

Cmax(as,r) Expresses the maxi-
mum multiplicity of
the member end (i.e.
role) r of an asso-
ciation as between
cl (with role r) and
cl’.

context cl inv:

cl.r()->size() <=

Cmax(as,r)

Mandatory
attribute

Mand(attr,
cl)

Expresses the at-
tribute attr of class
cl must have at
least one value.

context cl inv: not

cl.attr->oclIsUndefined()

Covering of
a general-
ization

Cov(cl,
{cl1,. . . , cl

n

})
(cl generalizes
cl1,. . . , cln)

Requires each in-
stance of cl to be
an instance of at
least one cl

i

.

context cl inv:

self.oclIsTypeOf(cl1)
OR ... OR

self.oclIsTypeOf(cl
n

)

Continued on next page

24

2.2. SPECIFYING EXECUTABLE MODELS

Table 2.1 – continued from previous page

Constraint Abbreviation Description Formalization in OCL

Disjointness
of a gener-
alization

Disj(cl,
{cl1,. . . , cl

n

})
(cl generalizes
cl1,. . . , cln)

Requires each in-
stance of cl to be
instance of at most
one cl

i

.

context cl inv:

self.oclIsTypeOf(cl
i

)

implies not

self.oclIsTypeOf(cl
x

),
where x,i=1..n and x 6=i.

Identifier of
an attribute

ID(attr,cl) Expresses the
attribute attr

uniquely identifies
instances of cl.

context cl inv:

cl.allInstances() ->

isUnique(attr)

Symmetry
of a re-
cursive
association

Sym(as) Guarantees if an ob-
ject o1 is as-related
to o2, then o2 is as-
related to o1.

context cl inv: self.r

-> forAll(o|o.r ->

includes(self)), where
r is a member end of as.

Asymmetry
of a re-
cursive
association

Asym(as) Guarantees that if
an object o1 is as-
related to o2, then o2
is not as-related to
o1.

context cl inv: self.r

-> forAll(o|o.r ->

excludes(self)), where
r is a member end of as.

Irreflexivity
of a re-
cursive
association

Irrefl(as) Guarantees that an
object o is never as-
related to itself.

context cl inv:

self.r->excludes(self),
where r is a member end of as.

Value com-
parison

ValueComp
(attr,op,v)

States a restriction
on the value of the
attribute attr: the
expression attr op

v (where op is a
comparison operator
and v is a value)
must be true.

context cl inv:

self.attr <op> v

Referential
integrity
constraint

Referential(cl,
as)

Guarantees each par-
ticipant in the asso-
ciation as (in which
cl participates) is
an instance of its cor-
responding class.

context cl inv: not

self.r->oclIsUndefined()

Example 1 As an example throughout this document we will use the class di-
agram shown in Figure 2.4, meant to (partially) model the menus o↵ered by a
restaurant chain. The class diagram contains information about the restaurant
branches, the menus they o↵er (the price of each menu is the same in all branches)
and the courses (at least three) that compose each menu. A course may have several

25

CHAPTER 2. EXECUTABLE MODELS

substituting courses, which are suggested to the customer when the desired course
is sold out. Discounts for special menus can be o↵ered.
In addition to the cardinalities included in the CD, on the bottom, a subset of its
most representative constraints are expressed in OCL (left) and using our abbrevi-
ated representation (right). First constraint (menuPrimaryKey) states the name
of a menu uniquely identifies it. Second constraint (atMost3SpecialMenus)
states there may exist at most three special menus simultaneously. Third con-
straint (validDiscount) states the discount of a special menu must be at least
10 (per cent). Last constraint (symmetricAssociation) states the association
CanBeSubstitutedBy is symmetric, i.e. if a course c1 can be substituted by a
course c2 then c2 can also be substituted by c1.















































 












Figure 2.4. Excerpt of a restaurant chain class diagram.

An information system maintains a representation of the system state in its information
base. The state of the system at any given point in time is the set of instances of the classes
and associations defined in the class diagram that exist in the domain at that time [128].

Example 2 Given the class diagram of Figure 2.4, a possible system state called
currentState would be a state in which there is a restaurant branch with address
“Sardenya Street, 457, Barcelona”, which o↵ers a non-special menu called ”Anticrisis
menu” for 5e.

A state s satisfies an integrity constraint ic i↵ ic evaluates to true in this state. We denote
by Satisfies(s,ic) the proposition that represent the state s satisfies the integrity constraint ic.
Otherwise, we say that the constraint is unsatisfied or violated.

Let ExM = hSM , BMi be an executable model, a system state s is consistent regarding
SM i↵ 8 ic 2 SM , Satisfies(s,ic). We denote by IsConsistent(s,SM) the proposition that
represent the state s is consistent regarding the structural model SM .

26

2.2. SPECIFYING EXECUTABLE MODELS

Example 3 The state currentState (see Example 2) does not satisfy the mini-
mum cardinality constraint of the association IsComposedOf in the role course
(Cmin(IsComposedOf,course)=3), since the menu “Anticrisis menu” does not
contain any course.

That is: Satisfies(currentState,Cmin(IsComposedOf,course)=3) = false.

Therefore, the previous state is not consistent with our the structural model
(RestaurantChain CD) of Figure 2.4.

That is: IsConsistent(currentState,RestaurantChain CD) = false.

2.2.2 Behavioural Model

The behavioural model specifies the dynamic part of an information system, i.e. the valid
changes in the system state, as well as the functions that the system can perform [128].

In UML there are several alternatives to specify the behaviour of a system, for instance,
using use case diagrams, activity diagrams, statechart diagrams, etc. The above diagrams
usually work at a high level of abstraction. However, as we have introduced, in order to be
executable, the behavioural models must be detailed enough. For this reason, we believe the
best way to precisely define the behaviour of an executable model is using low-level actions.
In this thesis, in order to define a detailed behavioural model, we use action-based operations.
Operations (which are attached to UML classes) are sequences of atomic steps that users may
execute to query and/or modify the information modelled in the structural model (SM).

In this document we assume that a behavioural model (BM) is composed of a set of action-
based operations hop1,. . . , opni.

We consider all operations of the behavioural model are executed in an atomic transaction.
This means that the sequence of actions in the operations either all occur or nothing occurs. A
guarantee of atomicity prevents updates to the information base occurring only partially, which
can cause greater problems than rejecting the whole series outright.

In order to model behavioural executable models in general, and operations in particular,
whilst the UML specification is necessary, it is not su�cient. This is because of two facts:

1. UML is not specified precisely enough to be executed. Although UML defines some
execution semantics it is not expressive enough to describe each computable function.
However, this is not fully clear because UML semantics is not as precisely defined as
necessary to clarify this question.

2. Graphical modelling notations are not good for detailed specifications. Graphical notation
tends to be very tedious for exhaustive specifications, confusing the specification rather
than enhance it. Diagrams are preferred when the diagram is intuitive, but if the diagram
is more verbose than a textual representation, then textual is preferred.

In order to overcome these issues the OMG has extended the UML standard to allow the
models to be executable. In particular, two new standards has been recently added to the

27

CHAPTER 2. EXECUTABLE MODELS

UML standard: the “Foundational Subset for Executable UML Models” (fUML) [125] and the
“Action Language for fUML” (Alf) [124]. In the following we introduce both standards and we
exemplify its usage.

OMG standards for specifying executable models: fUML and Alf

The Foundational Subset for Executable UML Models (also known as “Foundational
UML”) (fUML) [125] is an executable and simplified subset of the standard UML that can be
used to define, in an operational style, the structural and behavioural semantics of systems (see
Figure 2.5).

 





Figure 2.5. fUML overview.

In order to precisely specify the fine-grained behaviour, fUML includes the concept of action.
An action is the fundamental unit of behaviour specification. It takes a set of inputs (input pins)
and converts them into a set of outputs (output pins), where a pin is a typed and multiplicity
element that provides values to actions and accepts result values from them. Some of the actions
modify the state of the system in which the action is executed.

Actions were added first to the UML 1.4 in 2001 as the Precise Action Semantics. Since then,
actions have evolved with the evolution of UML standardization (in fact, some features from
UML have been excluded from the fUML to make this subset fully executable). However, nor
UML 2.X neither fUML provide any concrete textual syntax for actions, but they only provide
an abstract syntax (textually described) which is not really precise. Without an easy-to-use
concrete and well-defined syntax, the creation of executable UML models remains a di�cult
task.

In order to cover this lack, the OMG proposed on October 2011 the Action Language for

Foundational UML (Alf) [124], the first beta version of a concrete syntax conforming to the
abstract syntax of the standard fUML. Essentially, Alf is an unambiguous, concise and readable
textual language to specify executable models in the context of UML. Alf can be attached to
any place that a UML behaviour can be. For instance, Alf sentences can be used directly to
specify the behaviours of the transitions on a statechart diagram, the method of an operation
or the classifier behaviour of an active class.

Further, Alf also provides an extended notation that may be used to specify structural
modeling elements. Therefore, it is possible to specify a UML model entirely using Alf, though
Alf syntax only directly covers the limited subset of UML structural modeling available in the
fUML subset. However, in this thesis we use UML instead of Alf to represent the structural
part of a model. This is because of: (1) we believe a graphical notion of the structural model
is more intuitive to understand; and (2) the fUML subset (nor Alf) does not allow to define
integrity constraints associated to the class diagram, an element that the methods presented in

28

2.2. SPECIFYING EXECUTABLE MODELS

this thesis take into consideration.

But, why do we need Alf? We can wonder why we cannot use Java, C++ or another
programming language. Programming languages are not designed to manipulate the elements
of a model. They do not provide the facilities that we need to be able to express the actions
in a model in a clear and precise, yet abstract, manner. However, programming languages
allow the developer to manipulate all sorts of implementation-specific features that are wholly
inappropriate in a PIM (Platform Independent Model). For instance, it is commonplace in
modelling to want to navigate across an association (i.e. finding the associated object/s at the
other end of an association). With a programming language we would need to know how the
association is going to be implemented, for instance with pointers, and therefore navigate the
association using pointers. This immediately makes the model implementation platform specific.
However, Alf allows to navigate the association simply and concisely, without restricting the
ways in which associations can be implemented.

Then, Alf is a platform independent language that works at the same semantic level as the
rest of the UML model. This means that actions allow to directly manipulating the elements
of the PIM (no assumptions are made about middleware, implementation language or soft-
ware design policy) and they are capable of being translated into di↵erent implementations for
di↵erent platforms and languages.

Syntactically, Alf is based on several key design principles:

• Alf has a largely C-legacy (“Java like”) syntax, since that is most familiar to the com-
munity that programs detailed behaviours. Nevertheless, Alf allows UML textual syntax
when it exists (e.g., colon syntax for typing, double colon syntax for name qualification,
etc.).

• Alf provides a naming system that is based on UML namespaces for referencing elements
outside of an activity but also provides for the consistent use of local names to reference
flows of values within an activity.

• Alf does not require graphical models to change in order to accommodate use of the action
language (e.g., special characters are allowed in names, arbitrary names are allowed for
constructors, etc.). Further, while Alf maps to the fUML subset in order to provide its
execution semantics, it is usable in the context of models not limited to the fUML subset.

• Alf uses an implicit type system that allows but does not require the explicit declaration
of typing within an activity, always providing for static type checking, based at least on
typing declared in the structural model elements.

• Alf has the expressivity of OCL in the use and manipulation of sequences of values. These
sequence expressions are fully executable in terms of fUML expansion regions, allowing
the simple and natural specification of highly concurrent computations.

Before the adoption of Alf, several action languages emerged (some of them are proprietary).
As an example, some existing action languages precursors of Alf are: Object Action Language
(OAL) [147], Shlaer-Mellor Action Language (SMALL) [111], Action Specification Language

29

CHAPTER 2. EXECUTABLE MODELS

(ASL) [96], That Action Language (plus an extra L) (TALL) [108], Starr’s Concise Relational
Action Language (SCRALL), Platform-independent Action Language (PAL) and PathMATE
Action Language (PAL). Alf is also such a language, but one that is an OMG standard that can
be consistently implemented across a number of tools, promoting the same sort of interoper-
ability for textual behavioural specification that the UML standard already does for graphical
modeling. So this is the reason why in this thesis we focus on Alf language. However, the ideas
presented in this document would be adapted to any of the above action languages.

Even though the framework proposed in this thesis is fully-fUML/Alf compliant, in this
document we focus on the write actions (actions that modify the system state) of Figure 2.6
since they are the ones that can compromise the correctness properties we present in the next
chapters.















 



 







Figure 2.6. Extract of the fUML metamodel (Actions Package).

In addition to these actions, Alf also provides additional actions (to read values, declare
variables, etc.) that are not explicitly described in this document since they do not impact on
the correctness properties that we deal with in this thesis. As any programming language, Alf
also includes a set of statements to coordinate the basic actions in action sequences, conditional
blocks or loops. For more information about the Alf action language, please refer to [124].

In order to illustrate the use of the above actions, in the following we show three operations2,
which describe an excerpt of the behaviour of our restaurant chain running example (see the
class diagram in Figure 2.4).

Example 4 Operation newCourse (in the context of class Course) creates a
new course in the system.

activity newCourse(in description:String,

in substitutingCourses:Course[*]) {
Course c = new Course();

c.description = description;

for (i in 1.. substitutingCourses!size()) {
CanBeSubstitutedBy.createLink(replaced=>c,

replacement=> substitutingCourses[i]);

}
}

2Operation methods are specified as UML activities in Alf.

30

2.2. SPECIFYING EXECUTABLE MODELS

Example 5 Operation addMenu (in the context of class Menu) adds a new menu
to the system.

activity addMenu(in name:String, in price:Real, in

courses:Course[3..*]) {
if (!Menu.allInstances()!exists(m|m.name= name)) {
Menu m = new Menu();

m.name = name;

m.price = price;

for (i in 1.. courses!size()) {
IsComposedOf.createLink(menu=>m,course=> courses[i]);

}
}

}

Example 6 Operation classifyAsSpecialMenu (in the context of class Menu)
classifies a menu as a special menu.

activity classifyAsSpecialMenu(in discount:Real) {
if (discount � 10) {
classify self to SpecialMenu;

self.discount = discount;

}
}

In the following we show the complete description of each Alf action we deal with in this
thesis. Tables 2.2 to 2.10 show the description of each concrete action of Figure 2.6. Each table
is divided into two parts:

1. fUML: Provides information about the action according to the fUML standard [125]. It
is divided into several rows:

• Description: Provides a general description of the action.

• Abstract syntax : Provides an extract of the fUML metamodel showing the relevant
attributes and associations of the action.

2. Alf : Provides information about the action according to the Alf standard [124]. It is
divided into several rows:

• Concrete syntax : Provides a concrete textual syntax for the action.

• Concrete semantics: Describes the semantics of the action. Note that the semantics
provided by Alf is more precise than the semantics provided by fUML. Besides,
in some cases, both semantics are not entirely equivalent. Since our operations are
based on Alf statements, in the rest of the document we assume the precise semantics
described by the Alf standard.

• Example of use: Provides an example of use and their meaning.

• Considerations: Optionally, describes some considerations which will be applied in
the rest of this document.

31

CHAPTER 2. EXECUTABLE MODELS

Table 2.2. CreateObjectAction.

fU
M
L Description

Instantiates a classifier, i.e. creates an object that conforms to a stati-
cally specified classifier and puts it on an output pin at runtime.

Abstract
syntax

    



A
lf

Concrete
syntax

<object> = new <type>([<tuple>]), where: typemust resolve
to a class or a constructor operation (but not both at a time) and tuple
is an optional list of expressions used to provide the arguments for the
invocation.

Concrete
semantics

The statement creates and returns an object. If tuple is not empty, it
is used to specify values for the attributes of the new object value. If a
named tuple is used, then the names must correspond to the names of
the attributes of the class. Arguments are matched with attributes of
the named class, with the attributes being considered as in parameters.
Each argument expression must be to the corresponding attribute.

Example of
use

c = new City(); //creates on object of the class City without ini-
tializing any of its attributes
c = new City::transferred(cityInfo); //creates an object
of the class City and calls the constructor transferred on that
object with the argument cityInfo
c = new City(name=>‘‘Barcelona’’); //creates a object of
the class City and initializes its attribute name

Considera-
tions

Action <object> = new <type>([<tuple>]) (when type is a
class) can be decomposed into two actions: (1) a <object> = new
<type>() action; and (2) a <object>.<attribute> = value
(see Table 2.5) action for each attribute of the tuple. Sim-
ilarly, the action <object> = new <type>([<tuple>]) (when
type is a constructor operation) can be decomposed into two ac-
tions: (1) a <object> = new <class>() action (where class
is the class which owns the constructor operation); and (2) a
<object>.<attribute> = value (see Table 2.5) action for each
attribute of the tuple. In the rest of this document, we assume this
composed action is always expressed in its extended version.

32

2.2. SPECIFYING EXECUTABLE MODELS

Table 2.3. DestroyObjectAction.

fU
M
L Description

Destroys the object on its input pin at runtime. The object may be
a link object, in which case the semantics of DestroyLinkAction also
applies.

Abstract
syntax

 





A
lf

Concrete
syntax

<object>.destroy()

Concrete
semantics

Destroys an object from its class and any immediate superclasses
(if such exists). Unlike fUML, in Alf object destruction is always
done with isDestroyLinks=true and isDestroyOwnedObjects=true,
because this is the expected high-level behaviour for object destruction.
This means that links in which the object participates and the objects
owned be the object are destroyed along with the object.

Example of
use

c.destroy(); //destroys the object c

Table 2.4. ReclassifyObjectAction.

fU
M
L Description

Changes the type(s) of an object by adding given classifiers to the object
and removing given classifiers from that object. Multiple classifiers may
be added and removed at a time.

Abstract
syntax

    


 




A
lf

Concrete
syntax

classify <object> [from <oldCl>] [to <newCl>]

Concrete
semantics

Dynamically reclassifies an already existing object. The statement iden-
tifies an already existing object (which must have a class as its static
type) and the classes from which (oldCl) and/or to which (newCl)
the identified object is to be reclassified. All qualified names listed in
the oldCl and newCl lists must resolve to classes, must be subclasses
of the static type of the object and none of them may have a common
superclass that is a subclass of the static type of object (that is, they
must be disjoint subclasses). If the from list is given as “*”, then all
the current classes of the identified object are removed and replaced
with the classes in the to list. In this case, the to list must not be
empty.

Example of
use

classify m from SpecialMenu; //Removes m from
SpecialMenu
classify m to SpecialMenu; //Adds m to SpecialMenu

33

CHAPTER 2. EXECUTABLE MODELS

Table 2.5. AddStructuralFeatureValueAction.

fU
M
L Description Adds values of the input pin to a structural feature of a given object.

Abstract
syntax




  





 













A
lf

Concrete <object>.<attribute> = <value>
syntax <object>.<attribute>->add([<position>],<value>)

Concrete
semantics

Adds value as a new value for the attribute of the object. If
position is not empty, it is used to specify the position where the
value is added. Unlike fUML, in Alf add structural feature value is
done with isReplaceAll=true, because this is the expected high-level
behaviour. This means that existing value/s of the attribute of the
object is/are removed before adding the new value.

Example of
use

restaurantBranch.phone = ‘‘111111111’’; //Sets
‘‘111111111’’ as the new value for the attribute phone of
object restaurantBranch
restaurantBranch.phone->add(2,‘‘999999999’’); //Adds
‘‘999999999’’ as a new value in the second position for the attribute
phone of object restaurantBranch

Considera-
tions

In order to homogenize the document, in the following chapters we
use the simple version of the action, i.e. <object>.<attribute> =
<value>. However, all the conclusions over this action could be also
applied to the alternative version of this action.

34

2.2. SPECIFYING EXECUTABLE MODELS

Table 2.6. ClearStructuralFeatureAction.

fU
M
L Description Removes all values of a structural feature.

Abstract
syntax




  







 




A
lf

Concrete
syntax

<object>.<attribute>[[<position>]] = null

Concrete
semantics

If position is not empty, removes the position-th value of the
attribute from object. If position is empty, removes all values
of the attribute from object object. Note that, since “null” rep-
resents the empty collection, not a value itself, the statement removes
the values, it does not assign some “null” value.

Example
of

restaurantBranch.phone = null; //Removes all values of
phone from restaurantBranch

use
restaurantBranch.phone[2] = null; // Removes the second
value of the collection restaurantBranch.phone

Considera-
tions

In order to homogenize the document, in the following chapters we
use the simple version of the action (without specifying a position), i.e.
<object>.<attribute> = null. However, all the conclusions over
this action could be also applied to the second version of this action.

35

CHAPTER 2. EXECUTABLE MODELS

Table 2.7. CreateLinkAction.

fU
M
L Description Creates a link between two or more objects.

Abstract
syntax

   

 










A
lf

Concrete
syntax

<association>.createLink

([<role1>[<position1>]=>]<object1>,
[<role2>[<position2>]=>]<object2>)

Concrete
semantics

Creates a new link (i.e. an instance of an association) in the
association with end values object1 (with role1) and object2
(with role2). association must resolve to an existing association
and must not be abstract. If some association end is ordered, then the
position of a link for the end can be indicated using an index. If
an index is not given for an ordered end, then the default is *, which
indicates adding the link at the end.

Example of
use

IsLocatedIn.createLink(restaurantBranch=>rb,
city=>c); //Creates a link of the association IsLocatedIn
between the restaurant branch rb and the city c
IsLocatedIn.createLink(rb,c); //Creates the same link as be-
fore
IsLocatedIn.createLink(restaurantBranch[1]=>rb,
city=>c); //Inserts the rb at the beginning of the list of restaurant
branches for the city c

Considera-
tions

As is usual in the conceptual modelling community [112], we assume be-
tween two objects there may exist at most one link, i.e. isUnique = true.
Then, in order to homogenize the document, in the following chapters
we use the simple version of the action (without specifying a position),
i.e. <association>.createLink([<role1>=>]<object1>,
[<role2>=>]<object2>). However, all the conclusions over this
action could be also applied to the complete version of this action.

36

2.2. SPECIFYING EXECUTABLE MODELS

Table 2.8. DestroyLinkAction.

fU
M
L Description Destroys a link between two or more objects.

Abstract
syntax

   

 










A
lf

Concrete
syntax

<association>.destroyLink

([<role1>[<position1>]=>]<object1>,
[<role2>[<position2>]=>]<object2>)

Concrete
semantics

Destroys the link (i.e. an instance of an association) in the
association with end values object1 (with role1) and object2
(with role2). If some association end is ordered, then the position
of a link for the end can be indicated using an index. If an index is
not given for an ordered end, then the default is *, which indicates
destroying the link from the end.

Example of
use

IsLocatedIn.destroyLink(rb,c); //Destroys the link of the as-
sociation IsLocatedIn between the objects rb and c

Considera-
tions

As is usual in the conceptual modelling community [112], we
assume between two objects there may exist at most one
link, i.e. isUnique = true. Then, in order to homogenize
the document, in the following chapters we use the sim-
ple version of the action (without specifying a position), i.e.
<association>.destroyLink([<role1>=>]<object1>,
[<role2>=>]<object2>). However, all the conclusions over this
action could be also applied to the complete version of this action.

Table 2.9. ClearAssociation.

fU
M
L Description

Destroys all links of an association in which a particular object partic-
ipates.

Abstract
syntax

   

 

A
lf

Concrete
syntax

<association>.clearAssoc(<object>)

Concrete
semantics

Destroys all links of the named association that have at least one
end with value object.

Example of
use

IsLocatedIn.clearAssoc(c); //Destroys all links from associa-
tion IsLocatedIn in which the city c participates

37

CHAPTER 2. EXECUTABLE MODELS

Table 2.10. CallOperationAction.

fU
M
L Description

Transmits an operation call request to the target object, where it may
cause the invocation of associated behaviour.

Abstract
syntax






















A
lf

Concrete
syntax

[<result>]=<object>.<operation>([<arguments>])

Concrete
semantics

Dispatches the operation in the context of the object. If the
operation has arguments, they are matched to parameters of the
operation by order. If the operation has a return parameter, then
the output pin of the call operation action corresponding to that pa-
rameter is the result source element for the feature invocation action.
Otherwise it has no result source element.

Example of
use

menu.classifyAsSpecialMenu(discount); //Invokes the op-
eration classifyAsSpecialMenu(in r: Real) in the context of
class Menu with the argument discount

38

2.3. SUMMARY

2.3 Summary

Executable models are models with a behavioural specification detailed enough so that they
can be systematically implemented or executed in the production environment. Executable
models are now increasing its popularity given the benefits they can contribute: increase the
productivity, reduce costs and improve the quality of software systems.

Traditional UML diagrams are not specified precisely enough to be executed. In order to
overcome this issue, the OMG has recently added two standards focused on making the models
executable: (1) fUML [125], an executable subset of UML that provides an abstract syntax for
actions; and (2) Alf [124], a concrete syntax of fUML abstract actions.

Table 2.11 summarizes the main modification actions provided by fUML (see its complete
description in Section 2.2.2), the corresponding concrete syntax provided by Alf and a brief
description of the update each action performs. In addition to the actions shown in Table 2.11,
Alf also provides additional actions (to read values, declare variables, etc.) that are not shown
above since they do not compromise the correctness properties we deal with in this thesis. As
any programming language, Alf also includes a set of statements to coordinate the basic actions
in action sequences, conditional blocks or loops.

Alf allows specifying detailed behaviours at a higher level of abstraction. Such behaviours
are specified more at the level of what is to be done, rather than how it is to be done in a
specific implementation platform. Indeed, the real power of executable modeling going forward
relies on keeping the entire behavioural specification at such a higher level of abstraction.

Executable modelling originates a new developing paradigm, aligned to MDD, where models
act just like code: programming in UML. This is the next grand challenge for the Software
Engineering community [161].

39

CHAPTER 2. EXECUTABLE MODELS

Table 2.11. Modification actions provided by fUML and concrete syntax in Alf.

fUML Action Alf Syntax Description
Create Object Ac-
tion

<object> = new <type>() Creates and returns a new
object of class type.

Destroy Object
Action

<object>.destroy() Destroys the object object.

Reclassify Object
Action

classify <object> [from
<oldCl>] [to <newCl>]

Removes object from classes in
oldCl and adds it as a new in-
stance of classes in newCl.

Add Structural
Feature Value
Action

<object>.<attribute> =
<value>

Sets value as the new value for
the attribute attribute of ob-
ject object.

Clear Structural
Feature Action

<object>.<attribute> =
null

Removes all values of the
attribute from the object.

Create Link Action <association>.createLink
([<role1>=>] <object1>,
[<role2>=>] <object2>)

Creates a new link (i.e. as-
sociation instance) in the bi-
nary association association
between object1 (with role1)
and object2 (with role2).

Destroy Link Ac-
tion

<association>.destroyLink
([<role1>=>] <object1>,
[<role2>=>] <object2>)

Destroys the link (i.e. asso-
ciation instance) in the binary
association association be-
tween object1 (with role1)
and object2 (with role2).

Clear Association
Action

<association>.clearAssoc
(<object>)

Destroys all links of the named
association that have at least
one end with value object.

Call Operation Ac-
tion

[<result>]=<object>.
<operation>([<arguments>])

Invokes the operation in the
context of the object with
arguments.

40

Quality is never an accident. It is always

the result of intelligent e↵ort.

John Ruskin

3
Quality of Models

As we introduced in Chapter 1, quality is a complex concept the meaning of which has been
widely discussed. In the context of modelling, the quality of a model is the degree to which
a set of internal properties is present.

In the context of MDD, where models are the basis of the whole development process, the
quality of the models has a high impact on the final quality of software systems derived from
them [121]. It means that a quality model will lead to a higher quality information system.
Hence, models may directly a↵ect both the e�ciency (time, cost, e↵ort) and the e↵ectiveness
(quality of the results) of information systems development.

The aim of this chapter is to give a global view of the state of the art in quality assessment.
It is divided into three sections: Section 3.1 reviews the main quality frameworks proposed in
the literature; Section 3.2 outlines a representative set of existing methods that can be used to
ensure the quality of an input specification; and finally, Section 3.3 summarizes and concludes
the chapter.

3.1 Frameworks for evaluating the quality of models

Most approaches to quality evaluation decompose the concept of quality into a set of lower level
quality properties (also called “goals”) which may be precisely measured.

At the level of software quality, for instance, since 2001 there is an international standard
(ISO/IEC 9126 [88]) for evaluating the quality of software systems. This standard decomposes

41

CHAPTER 3. QUALITY OF MODELS

the concept of software quality into six quality properties, which are further divided into 24
quality sub-properties, measured by 113 quality metrics. Previously (in 1976), in the same line,
Boehm [18] and Dromey (in 1995) [51] provided simplified alternatives consisting of a single
level of properties.

Even though an international standard for evaluating the quality of software systems exists
[88], no equivalent standard for evaluating specific software quality categories (such as data,
code, model, process, etc.) has so far been proposed. Although there is no generally accepted
guidelines, there is a broad set of research proposals devoted to evaluating the quality of data
[134, 180, 181], code [166] and processes [119], among others.

In the context of model quality, which is the topic of this thesis, also relevant frameworks
has been proposed. In [115] the most relevant proposals are reviewed. Some of them focus on
entity relationship (ER) models [114, 168] or object oriented (OO) models [12], among others.
Regarding conceptual models, one of the earliest and widely referred framework is the Lind-
land et al. framework [106]. This framework relies on four main concepts (see the boxes of
Figure 3.1):

• Language (L): All the statements that can be made according to a specific syntax (de-
scribed by means of an alphabet plus its grammar).

• Domain (D): All possible statements that would be correct and relevant for solving the
problem.

• Model (M): The set of statements actually made.

• Audience interpretation (I): The set of statements that the audience thinks the model
contains.

Figure 3.1. Lindland’s framework main concepts (boxes) and relationships (edges).

Based on these concepts, Lindland defines three relationships (i.e. model quality goals)
among them (see the edges of Figure 3.1):

42

3.2. PRACTICES TO IMPROVE THE QUALITY OF MODELS

• Syntactic quality: The more closely the model adheres to the language rules, the higher
the syntactic quality.

• Semantic quality: The more similar the model and domain, the better semantic quality,
the more di↵erent, the worse semantic quality.

• Pragmatic quality: The more similar the model and the audience interpretation, the
better pragmatic quality, the more di↵erent, the worse pragmatic quality.

The Lindland framework has been later extended in several works. In 2006 Krogstie et al.
[99] added other quality goals such as organizational quality (i.e. whether a model fulfills the
goals of modelling and that all the goals of modelling are addressed through the model) and
technical pragmatic quality (i.e. being interpretable by tools). Additionally, Soldheim et al.
[164] defined two new quality goals relevant for MDD: transformability and maintainability. In
the same line, in 2007, Nelson et al. [118] added perceptual, descriptive and inferential quality
as quality goals.

Other works redefine the Lindland framework. For instance, in 2005, Unhelkar et al. [175]
replaced the pragmatic quality by aesthetics quality (with focus on symmetry and consistency
in order to improve the look and to help understanding).

As we will see in the next chapter, for the purpose of contextualizing the quality properties
considered in this thesis, we adopt the well-known Lindland’s quality framework.

3.2 Practices to improve the quality of models

In order to assess whether a model meets the above quality goals, several methods can be
employed. All these methods aim to validate and verify (V&V) the model.

The IEEE [86] defines validation as the “confirmation by examination and provisions of
objective evidence that the particular requirements for a specific intended use are fulfilled”. On
the other hand, the same standard defines verification as the “confirmation by examination
and provisions of objective evidence that specified requirements have been fulfilled”.

Applying the above definitions in the modelling context, validation is an activity that
answers the question: “Are we developing the right model?”, that is, whether all the knowledge
in the model is su�ciently correct and relevant to the problem domain. On the other hand,
verification is an activity that answers the question “Are we developing the model right?”,
that is, whether the model satisfies quality properties such as consistency. According to the
ISO/IEC 9126 [88] classification, validation aims to check the external quality and verification
aims to check the internal quality.

In this thesis, we focus on the verification of the internal quality of executable models.

The methods applicable to V&V are called analytical methods. Analytical methods

43

CHAPTER 3. QUALITY OF MODELS

are suitable for software V&V in general, and for model (requirements, design specifications,
executable models, code, test cases, project plans, etc.) V&V in particular.

In this thesis, we classify analytical methods regarding two perspectives: (1) the mode how
the analysis is done; and (2) the level of formalization. This classification is an oversimplification
for the purpose of this thesis.

First, regarding the mode how the analysis is done, we classify analytical methods in two
categories:

• Static methods. Static methods examine a model and reason over all the possible
behaviours that might arise at run time [58]. It means that the model is read by humans,
or pursued by a computer, but not executed as a program. Hence, static methods work
at “compile time”.

• Dynamic methods. Dynamic methods operate by executing a program (in our case, a
model) and observing its executions [58]. It means that the model is run (or executed)
by means of a computer. Hence, dynamic methods work at “run time”.

Second, regarding their level of formalization, we classify analytical methods in two cate-
gories:

• Formal methods. Wing [184] describes formal methods as “mathematically based tech-
niques for describing system properties. Such formal methods provide frameworks within
which people can specify, develop and verify systems in a systematic, rather than ad-hoc
manner”. In [38] Clarke reports that “in the past, the use of formal methods in prac-
tice seemed hopeless. The notations were too obscure, the techniques did not scale, and
the tool support was inadequate or too hard to use. There were only a few non-trivial
case studies and together they still were not convincing enough to the practicing software
or hardware engineer. Few people had the training to use them e↵ectively on the job”.
However, in the last decades we have begun to see a more promising picture of formal
methods because of the advent of formal notations (such as the Z notation [165]), the use
of formal methods on industrial case studies [48] (which increases the confidence in using
formal methods) and the commercial tools for supporting formal analysis. Plate et al.
[144] argue that the main benefit of using formal methods is that “formal notations can
be unambiguously interpreted and provide extensive means to express abstraction. These
notations can be used to formally verify characteristics of the design”. Formal methods
has been mainly applied in hardware design [97]. However, they cut across almost all
areas in computer science and engineering, so they are also suitable for software design.

• Non-formal methods. Unlike formal methods, non-formal methods do not try to follow
a rigorous approach but to use informal techniques. Non-formal methods has the advan-
tage that the user does not need be an expert in understanding mathematical models.
They are easy to illustrate and can be used to V&V models written in natural language
increasing the participation from non-technical stakeholders. As a drawback, given its
non-formality, they can be ambiguous and can provide a non-precise result.

44

3.2. PRACTICES TO IMPROVE THE QUALITY OF MODELS

In the following, we briefly review some of the existing analytical methods, classifying them
into the above categories (see Figure 3.2). Note that, again, our classification is an oversimpli-
fication which only includes a subset of the many existing methods devoted to V&V. Note also
that, although we classify model checking as a dynamic method, some types of model checking
may be also considered as a static method [72].



 







  








Figure 3.2. Verification&Validation relevant methods.

Walkthrough

The IEEE [85] standard defines a walkthrough as “a static analysis technique in which a designer
or a programmer leads members of the development team and other interested parties through
a software product, and the participants ask questions and make comments about possible
errors, violation of development standards, and other problems”. A software product might be
a software design document or program source code, but use cases, business process definitions,
test case specifications, and a variety of other technical documentation may also be walked-
through.

In general, a walkthrough has one or two broad objectives: (1) to gain feedback about the
technical quality or content of the software product analyzed; and/or (2) to familiarize the
audience with the content.

Review

The IEEE [85] standard defines a review as “a process or meeting during which a software
product is presented to project personnel, managers, users, customers, user representatives,
or other interested parties for comment or approval”. The IEEE [85] also defines a technical
review as “a systematic evaluation of a software product by a team of qualified personnel that
examines the suitability of the software product for its intended use and identifies discrepancies
from specifications and standards. Technical reviews may also provide recommendations of al-
ternatives and examination of various alternatives”. Technical reviews di↵er from walkthroughs
in its specific focus on the technical quality of the product reviewed.

The purpose of a technical review is to arrive at a technically superior version of the work
product reviewed, whether by correction of defects or by recommendation or introduction of
alternative approaches.

45

CHAPTER 3. QUALITY OF MODELS

Inspection

Inspection is the key method for static and non-formal analysis. The IEEE [85] standard defines
an inspection as “a visual examination of a software product to detect and identify software
anomalies, including errors and deviations from standards and specifications. Inspections are
peer examinations led by impartial facilitators who are trained in inspection techniques. Deter-
mination of remedial or investigative action for an anomaly is a mandatory element of a software
inspection, although the solution should not be determined in the inspection meeting”.

Compared to the technical reviews and walkthoughs, inspections are more structured. The
IEEE standard [85] states that inspections should be done according to the project plan. It is
usually not just done on demand. An inspection is therefore regarded as a proper examination
activity rather than an activity to evaluate a work product for suitability.

The inspection process was developed by Fagan [60] in the mid-1970s and it has later been
extended and modified. The process should have entry criteria that determine if the inspection
process is ready to begin. This prevents unfinished work products from entering the inspection
process. The entry criteria might be a checklist including items such as “The document has
been spell-checked”.

In the early 1970s, walkthroughs, reviews and inspections began to be applied to analyze
the source code of programs. Myers [117] argues that “for many years, most of us in the
programming community worked under the assumptions that programs are written solely for
machine execution and are not intended for people to read, and that the only way to test a
program is to execute it on a machine. This attitude began to change through the e↵orts of
program developers who first saw the value in reading code as part of a comprehensive testing
and debugging regimen”.

Since then, the above techniques has been mainly applied to analyze source code [65, 145].
However, these techniques can also be applied in earlier phases of the software development
such as requirements specification [146] or design [60, 171].

Data-Flow Analysis

Data-Flow Analysis derives information about the dynamic behaviour of a program by only
examining the static code [120]. It gathers information about possible set of values calculated
at various program points. The Control Flow Graph (CFG), which represents all alternatives
of control flow in a program, is utilized for determining where to propagate the values between
di↵erent program points.

There are several Data-Flow Analysis that compute various properties, such as the liveness
analysis (to determine which variables are referenced beyond a particular program point) or
reaching definitions analysis (to statically determine which definitions may reach a given point
in the code).

Data-Flow Analysis was first used as a data structure in compilers [116] for code optimization

46

3.2. PRACTICES TO IMPROVE THE QUALITY OF MODELS

purposes. Later, this method was adopted extensively in the software engineering community,
in particular by the software testing community (e.g. [15, 34, 78]). Besides, there have been
works applying Data Flow Analysis on models, mainly based on UML Sequence Diagrams [67].

Constraint-Based Analysis

Constraint-Based Analysis is a technique for inferring implementation types (or representa-
tion/concrete types) [5]. Implementation types are sets of classes. In contrast to interface types
(or abstract/principal types), they deliver the low-level information that is typically needed by
compilers and other tools.

Constraint-Based Analysis consists of two phases [7]: constraint generation and constraint
resolution. The first phase produces constraints from a program text that give a declarative
specification of the desired information about the program. The second phase computes this
desired information by finding the sets of values that satisfy the constraints. A solution is an
assignment from set variables in the constraints to the finite descriptions of such sets of values.

So far, Constraint-Based Analysis has been mainly applied to analyze source code of pro-
grams [79].

Abstract Interpretation

Abstract Interpretation [47] is a theory of discrete approximation which can be applied to the
semantics of (specification or programming) languages. Abstract Interpretation formalizes the
idea that a semantics can be more or less precise according to the considered observation level
[46].

Given a programming or specification language, Abstract Interpretation consists of giving
several semantics linked by relations of abstraction. A semantics is a mathematical character-
ization of a possible behaviour of the program. The most precise semantics, describing very
closely the actual execution of the program, are called the concrete semantics. For instance,
the concrete semantics of an imperative programming language may associate to each program
the set of execution traces it may produce, where an execution trace being a sequence of pos-
sible consecutive states of the execution of the program; a state typically consists of the value
of the program counter and the memory locations (globals, stack and heap). More abstract
semantics are then derived; for instance, one may consider only the set of reachable states in
the executions (which amounts to considering the last states in finite traces).

Abstract Interpretation has been successfully used in di↵erent areas for the verification and
optimization of systems [45].

Testing

Testing is probably the most popular method used for the dynamic verification of a program
or system. It does this by running a discrete set of test cases, where a test case consists of

47

CHAPTER 3. QUALITY OF MODELS

input values and their expected output. The test cases are suitably selected from a finite, but
very large, input domain. During testing the actual behaviour is compared with the intended
or expected behaviour. The emphasis of software testing is to validate and to verify the design
and the initial construction. Unlike to many other engineering products, where the emphasis is
on testing the correct reproduction, software testing is part of the development steps, not the
manufacturing process.

Agarwal [4] states a number of rules that can serve well as testing objectives: (1) Testing
is a process of executing a program with the intent of finding an error; (2) A good test case is
one that has a high probability of finding an undiscovered error; and (3) A successful test is
one that uncovers an as-yet undiscovered error. Then, the major testing objective is to design
tests that systematically uncover types of errors with minimum time and e↵ort.

Testing techniques has been extensively used for testing source code of programs. Various
code-driven testing frameworks have come to be known collectively as xUnit. These frameworks
allow testing of di↵erent elements (units) of software, such as functions and classes. The main
advantage of xUnit frameworks is that they provide an automated solution with no need to
write the same tests many times, and no need to remember what should be the result of
each test. Such frameworks are based on a design by Beck [14], originally implemented for
Smalltalk as SUnit. From there, the framework was ported to other languages such as JUnit
(for Java), CppUnit (for C++), NUnit (for .NET). They are all referred to as xUnit and are
usually free, open source software. They are now available for many programming languages
and development platforms.

In the context of MDD, testing techniques has also been applied for testing models. In these
approaches the artifact under test is a model instead of source code. Some examples are [133],
an approach for testing UML design models to uncover inconsistencies; [50] an Eclipse plug-in
for animating and testing UML models; and [169] a method which applies the principles of
TDD (Test-Driven Development) to conceptual modeling.

Model Checking

Model checking [39] is an automatic technique for verifying systems. It was originally developed
in 1981 by Clarke and Emerson [36, 37]. The essential concept behind model checking is to
(mathematically) prove whether a given model satisfies a certain specification property (such
as liveness (reachability of path), safety (deadlock freeness), etc.) by generating and analyzing
all the potential executions at run-time and evaluating if for each (or some) execution the given
property is satisfied. Sometimes a more formal definition can be found: Given a model M and
a formula �, model checking is the problem of verifying whether or not � is true in M .

As shown in Figure 3.3, traditional model checking is composed of three major steps:

1. Define a formal model of the system that is subject to verification by creating a model of
the system in a propositional temporal logic language that fits the model checker’s input
language. Those modeling languages are usually tight coupled to the model checker itself,
like the PROMELA language of the SPIN model checker [84].

48

3.2. PRACTICES TO IMPROVE THE QUALITY OF MODELS

Figure 3.3. Model checking overview.

2. Provide a particular system property that should be proved. In other words, a question
about the system’s behaviour is formulated that should be answered by the model checker.

3. Invoke the model checking tool and receive a notification whether the given system prop-
erty was fulfilled or not. In case the system property could not be verified, a counterex-
ample execution is generated to finger-point to the source of error in the input model.

Model checking methods su↵er from the state-explosion problem [177], (i.e. the number
of potential executions to analyze grows exponentially in terms of the size of the model, the
domains of the parameters, etc) even though a number of optimizations are available in order
to alleviate the problem by using a subset or an abstraction of the set of states. Unfortunately,
their use tends to restrict the set of analysis or verification questions that can be answered,
making it impossible to discuss the methods without some taxonomy of the questions.

Model checking has been applied so far mainly to hardware circuit designs [28, 109] and
communication protocols [55]. In the last decade, model checking has also been applied to
software models verification [104, 157] (see more details in Chapter 11).

3.2.1 The emergence of Lightweight Formal Methods

Formal methods have o↵ered great benefits, but often at a heavy price. Formal methods can
provide guarantees of correctness, but, except in safety-critical work, the cost of full verification
is prohibitive and early detection of errors is a more realistic goal. Heitmeyer [80] argues that
“a significant barrier in applying formal methods is the widespread perception among software
developers that formal notations and formal analysis techniques are di�cult to understand and
apply. Moreover, software developers often express serious doubts about the scalability and
cost-e↵ectiveness of formal methods”. Hence, for everyday software development, in which the
pressures of the market don’t allow full-scale formal methods to be applied, a more lightweight
approach is called for.

49

CHAPTER 3. QUALITY OF MODELS

The term “lightweight formal methods” was popularized over fifteen years ago, following
the publication of a round-table article “An Invitation to Formal Methods” by Saiedian [156].
Two contributions came under the heading “Formal Methods Light”.

In one article [93] Jones argued for a rigorous approach with a formal basis, but suggested
using a less-than-completely formal approach (rather than a fully formal approach) in most
development cases. According to Jones, the use of formal methods in a lighter way is both
a key to using them on larger-scale applications and a way of penetrating fields outside the
safety-critical area.

On the other hand, Jackson and Wing [91] suggested that, “to make analysis economically
feasible, the cost of specification must be dramatically reduced”. Hence, they advocated a
lightweight approach to formal methods in which cost-e↵ectiveness is achieved by developing
partial specifications (with a focused application) than can be analyzed automatically. Accord-
ing to them, the elements of a lightweight approach are the following:

• Partiality in language. Until now, specification languages have been judged primarily on
their expressiveness, with little attention paid to tractability. Some languages were from
the start designed with tool support in mind, but they are the exception. Tools designed
as an after-thought can provide only weak analysis, such as type checking. The tendency
(in Z [165] especially) to see a specification language as a general mathematical notation
is surely a mistake, since such generality can only come at the expense of analysis (and,
moreover, at the expense of the language’s suitability for its most common applications).

• Partiality in modelling. Since a complete formalization of the properties of a large system
is infeasible, the question is not whether specifications should focus on some details at
the expense of others, but rather which details merit the cost of formalization. The naive
presumption that formalization is useful in its own right must be dropped. There can be
no point embarking on the construction of a specification until it is known exactly what
the specification is for; which risks it is intended to mitigate; and in which respects it will
inevitably prove inadequate.

• Partial analysis. A su�ciently expressive language, even if designed for tractability, can-
not be decidable, so a sound and complete analysis is impossible. Most specifications
contain errors, and so it makes more sense to sacrifice the ability to find proofs than the
ability to detect errors reliably. A common objection to this approach is that it reduces
analysis to testing, since one can no longer infer from the omission of reported errors
the absence of actual errors. But this much-touted weakness of testing is not its major
flaw. The problem with testing is not that it cannot show the absence of bugs, but that
it fails to show their presence. A model checker that exhausts an enormous state space
finds bugs much more reliably than conventional testing techniques, which sample only a
minute proportion of cases.

• Partiality in composition. For a large system, a single partial specification will not su�ce,
and it will be necessary to compose many partial specifications, at the very least to
support some analysis of consistency. How to compose di↵erent views of a system is not

50

3.3. SUMMARY

well understood, and has only minimal support from specification languages, since it does
not fit the standard pattern of “whole-and-part” composition.

Both articles [91, 93], in di↵erent ways, were calling on the formal methods community to
develop methods and tools that provide at least some of the benefits of formalism, without
requiring the wholesale application of highly specialized technology.

Later publications suggest to work on the same direction. For instance, Heitmeyer [80]
argues the need for practical formal methods and suggests a number of guidelines for making
formal methods lightweight (and thus more accessible to software developers), such as: (1)
minimize e↵ort and expertise needed to apply the method (i.e. o↵er a language that software
developers find easy to use and easy to understand, make formal analysis as automatic as
possible, and provide good feedback); (2) provide a suite of analysis tools; (3) integrate the
method into the user’s development process; and (4) provide a powerful and customizable
simulation capability. In the same line, Larsen et al. [103] advocate for the usage of formal
methods in an agile context. They argue that both agile and formal methods are just that:
sets of techniques that should be combined to suit the needs of the product and the character
of the development team.

As an example, a popular lightweight formal method is the Alloy analyzer [89], a tool which
can be used to analyze (partial) models written in the Alloy specification language. The Alloy
analyzer can generate instances of model invariants, simulate the execution of operations defined
as part of the model, and check user-specified properties of a model. It can perform incremental
analysis of (partial) models as they are constructed, and provide immediate feedback to users.

In this thesis we follow the principles of lightweight formal methods promoted by the above
authors. We believe that, in order to software practitioners can benefit from formal methods,
these methods need to be user-friendly, robust and powerful. It means that the designer should
not need to have advanced mathematical training nor need he have theorem proving skills.

As we will see in the next chapters, in order to make formal methods more accessible to
software developers, in this thesis we propose a set of methods aligned to the fundamentals of
lightweight formal methods.

3.3 Summary

Even though an international standard for evaluating the quality of a software system exists
[88], no equivalent standard for evaluating the quality of a model has so far been proposed.
However, there have been several proposals for evaluating it. For the purpose of contextualizing
the quality properties considered in this thesis, we adopt the well-known Lindland’s quality
framework [106] (see Section 3.1).

In order to assess whether a model meets the desired quality goals, several methods can
be employed. In this chapter, we have reviewed and classified a subset of the most relevant

51

CHAPTER 3. QUALITY OF MODELS

analytical methods that have been used in several fields of computer science, both in hardware
and software (mainly to source code) verification:

• Static and non-formal methods : Walkthroughs, reviews and inspections.

• Static and formal methods: Data-Flow Analysis, Constraint-Based Analysis and Abstract
Interpretation.

• Dynamic and non-formal methods: Testing.

• Dynamic and formal methods: Model Checking.

Additionally to the above methods, in the last years, the emergence of the lightweight formal
methods (see Section 3.2.1) has gained attention. The term “lightweight” is used to indicate
that the methods can be used to perform partial analysis on partial specifications, without a
commitment to developing and base-lining complete, consistent and formal specifications [52].

As we explain in the next chapters, in this thesis we develop several lightweight and static
methods for verifying internal correctness properties of executable models.

52

Part III

Contributions

53

Nothing is particularly hard if you divide

it into small jobs.

Henry Ford

4
Framework Overview

As we introduced in the previous chapters, the aim of this thesis is to provide a set of lightweight
methods to help the designers improve the internal quality of their executable models. The
methods provided as part of this thesis are organized in a verification framework.

This chapter provides an overall picture of the verification framework we propose in this
thesis. It is divided into five sections: Section 4.1 provides a broad overview of the three axis
that compose our framework; Sections 4.2 to 4.4 describe each axis in detail; and finally, Section
4.5 summarizes and concludes the chapter.

4.1 Presentation

According to the vision of Weber et al. [182], we understand a framework as a holistic and
concise description of concepts and methods relating to a specific domain. In this thesis, as we
introduced in Chapter 1, we propose a framework to help the designers improve the internal
quality of their executable models. Then, our framework is based on three axis (see Figure 4.1):
(1) the executable models (domain); (2) the correctness properties (concepts) that executable
models should accomplish; and (3) the verification methods (methods) that can be used to
determine whether the correctness properties are fulfilled by the input executable model. In
the next sections we review each of these axis.

55

CHAPTER 4. FRAMEWORK OVERVIEW

 





























Figure 4.1. Framework overview.

4.2 Executable Models

The first axis of our framework consists in the executable models. As we described in Chapter
2, an executable model is a model with a behavioural specification detailed enough so that it
can be systematically implemented or executed in the production environment.

Executable models are the domain in which the correctness properties are defined. They
are also the domain in which our verification methods are applied.

As we introduced in Chapter 2 an executable model (see Figure 4.2) is composed by a
structural model and a behavioural model (in this thesis, we assume the behavioural model is
described as a set of low-level operations detailed enough using an action language). Besides,
when not otherwise indicated, we assume executable models are written using the following
OMG standards: (1) UML (Unified Modeling Language) [126], which is used to specify the
structural model; (2) OCL (Object Constraint Language) [123], which is used to specify the
integrity constraints that cannot be graphically expressed using UML; and (3) Alf [124] (Action
Language for Foundational UML), which is used to specify the behaviour of low-level operations
in the context of the structural model.











Figure 4.2. Executable Models overview.

However, as we explain in Chapter 8, the ideas presented in this document can be adapted
to models specified by means of other languages such as model transformations languages.

56

4.3. CORRECTNESS PROPERTIES

4.3 Correctness Properties

The second axis of our framework consists in the correctness properties that we believe all
executable models should accomplish. One of the contributions of this thesis has been to identify
and precisely define several correctness properties over executable models, in particular, over
the behavioural model.

In the following we briefly describe the properties addressed in our framework and contextu-
alize them in the Lindland et al. framework for evaluating the quality of models [106]. A deeper
and more formal definition of each correctness property may be found on the next chapters.

Syntactic correctness

An action-based operation is syntactically correct if all the statements in the operation conform
to the syntax of the language in which it is described (i.e. Alf action language [124]).

Example 7 Consider the excerpt of the class diagram shown in Figure 4.3 and
the operation addCourseToMenu (in the context of class Menu) to add a course
to the self menu.









Figure 4.3. Excerpt of the structural model.

activity addCourseToMenu(in course: Course) {
IsComposedOf.createLink(course=> course);

}

The above operation is not syntactically correct because of one parameter (the
menu) is missing in the create link action. Then, this action does not conform to
the concrete syntax for the create link action we introduced in Chapter 2.

Note that we focus on the syntactic correctness of the operation, i.e. we assume that the
UML class diagram is syntactically correct (e.g. associations are defined between at least two
classes, multiplicities are coherent, and so on).

Executability

The executability of an action-based operation is its ability to be executed without breaking the
integrity constraints defined in the structural model. Executability can be studied regarding
two levels of correctness. On the one hand, an action-based operation is weakly executable
when there is a chance that a user may successfully execute the operation, i.e. when there is

57

CHAPTER 4. FRAMEWORK OVERVIEW

at least an initial state of the system for which the execution of the actions included in the
operation evolves this state to a new system state that satisfies all the integrity constraints of
the structural model. On the other hand, an action-based operation is strongly executable when
it is always successfully executed, i.e. when every time a user executes the operation, the e↵ect
of the actions included in it evolves the initial state of the system to a new system state that
satisfies all the integrity constraints of the structural model.

Example 8 Consider the excerpt of the class diagram shown in Figure 4.3 and
the operation addMenu (in the context of class Menu) to add a new menu to the
system.

activity addMenu(in name: String, in price: Real) {
Menu m = new Menu();

m.name = name;

m.price = price;

}

Since we consider that operations are executed in an atomic transaction, the above
operation is not weakly neither strongly executable because of, after its execution,
we always reach a system state in which the new menu is not linked to any course,
a situation forbidden by the minimum 3 multiplicity of association IsComposedOf
at the role course (Cmin(IsComposedOf,course)=3).

We consider the two levels of correctness are important. On the one hand, weak executability
guarantees a basic level of correctness that could probably be achieved directly by the designers
without using verification tools. On the other hand, strongly executability guarantees a full
level of correctness that is more di�cult to be achieved directly by the designers (see the results
of our experiment in Chapter 10). In any case, and taking into account that weak executability
is easier to verify than strong executability, the designer should choose which level of correctness
she wants to guarantee.

Completeness

A set of action-based operations is complete when all possible changes on the system state
can be performed through the execution of these operations. Otherwise, there will be parts of
the system that users will not be able to modify since no available behaviour addresses their
modification.

Example 9 Consider the excerpt of the class diagram shown in Figure 4.3 and a
behavioural model composed by the operations addCourse (in the context of class
Course) to add a new course to the system, and deleteMenu (in the context of
class Menu) to remove an existing menu from the system.

58

4.3. CORRECTNESS PROPERTIES

activity addCourse(in description: String, in category:

CourseCategory) {
Course c = new Course();

c.description = description;

}

activity deleteMenu() {
self.destroy();

}

The above behavioural model is incomplete since, for instance, actions to remove
courses or to create menus are not specified, forbidding users to perform such kind
of changes on the data.

Considerations

The above correctness properties may be contextualized in the Lindland et al. framework for
evaluating the quality of models [106] we introduced in Chapter 3.

According to this framework, our correctness properties may be classified in two of the three
model quality goals (see Figure 4.4):

• Syntactic quality. Since syntactic correctness relates the model with the language rules,
we consider this property works at the syntactic level of the model’s correctness. Then,
ensuring syntactic correctness improves the syntactic quality of the executable model we
are analyzing.

• Semantic quality. Since executability and completeness relate the model with the
correct interpretation of the domain, we consider these properties work at semantic level
of the model’s correctness. Then, ensuring executability and completeness improve the
semantic quality of the executable model we are analyzing.









 



Figure 4.4. Contextualization of our correctness properties.

The more lower the quality goal, the more fundamental the correctness property is. It means
that the syntactic quality ensures a fundamental quality level that all executable models should
guarantee; the semantic quality ensures a significant quality level that all executable models
should also guarantee; and the pragmatic quality ensures a desirable quality level that all

59

CHAPTER 4. FRAMEWORK OVERVIEW

executable models could guarantee. According to this classification, we believe that syntactic
correctness, executability and completeness are mandatory properties that all correct executable
models should fulfill.

The above correctness properties can be checked independently. However, we recommend
to check them in the following order (see Figure 4.5):

1. Firstly, we suggest to verify the syntactic correctness property of each operation of
the behavioural model. Syntactic correctness is a requisite to guarantee the rest of the
properties, then, it should be checked at the beginning.

2. Secondly, we suggest to verify the executability and completeness properties in par-
allel. Any change for correcting a non-executable operation or a non-completeness be-
havioural model (for instance, adding an action to an operation) may influence both
properties. Then, we recommend to check both properties iteratively until we reach a
correct model.








Figure 4.5. Suggested order to verify our correctness properties.

4.4 Verification Methods

All the above correctness properties aim to improve the internal quality of models, so they
can be checked using analytical methods. Then, the last axis of our framework consists in
the verification methods that can be used to check whether an executable model satisfies the
mentioned correctness properties. As part of this thesis, we have developed a set of methods
for verifying such correctness properties. Each of them verifies a specific property over an input
executable model.

All the verification methods proposed in this thesis are based on an static analysis of the
input executable model, i.e. on examining the model (without executing it) and reason over all
possible behaviours that might arise at run time. On the other hand, the verification methods
proposed in this thesis are lightweight. It means that they are formal (since they reason over
a model formalized in a specific language) but they are not too costly to be applied (since, for
instance, they do not require translate the input model into a more precise language in order
to perform the verification).

Each of our verification methods (see Figure 4.6) takes as input an executable model and
return either a positive answer, meaning that the behavioural model fulfills the desired property,
or a corrective feedback expressed in the same language used to model the behaviour. In

60

4.4. VERIFICATION METHODS










Figure 4.6. Verification methods overview.

the following chapters the several methods provided as part of our verification framework are
described in detail.

At this point it is important to note that syntactic correctness has been widely studied in
the context of programming languages and also in the context of modelling languages. Then,
in Chapter 5 we do not focus on the algorithm to check the syntactic compliance but we
focus on the syntactic rules that must be checked during the verification. On the other hand,
executability (see Chapter 6) and completeness (see Chapter 7) have been less studied so far.
Besides, given its complexity, we consider the study of these properties is the main contribution
of this thesis. This is the reason why in this thesis we put special emphasis on these two
properties.

If we consider the verification methods as a black box, all the methods proposed in this
thesis follow the guidelines proposed by Heitmeyer [80] to producing practical formal methods.
In particular, all of them hold the following features:

• Use of an easy language. Our methods reason over a model formalized in the same
language used by the designers. The input model and the feedback provided are expressed
in the same language used by the reasoning engine, facilitating the understandability of
the whole method.

• Automatization. All our methods are “pushbutton”, meaning that they can work with
autonomy. Only when verifying the strongly executability (see Chapter 6), the user inter-
vention may be required in order to make the results of the reasoning more accurate.

• Feedback. The designer is provided with easy-to-understand feedback useful in correcting
the possible detected errors. Instead of a counterexample, our methods provide the source
of the errors and one or more possible reparations to solve them.

• Suite of tools. Our tools are integrated in a verification framework to work together.

• Integration into the development process. CASE tools can benefit from our verification
methods if, once the designer has defined the executable model, the CASE tool integrates
our methods in order to verify the correctness properties proposed in this thesis. We
believe that, in order to be integrated into the development process, all the methods
should provide a response in a cost-e↵ective time. In this sense, our verification methods
provide feedback in a reasonable time since they do not require to execute the model.

61

CHAPTER 4. FRAMEWORK OVERVIEW

Since all the methods proposed as part of our framework are lightweight, we believe they
are useful for the software engineering community.

As a trade-o↵, the methods proposed in this thesis can only work over executable models
with limited expressiveness. Regarding the structural model, our method does not take into
account all possible integrity constraints but only those that conform with one of the types
described in Section 2.2.1 (see Chapter 2). Regarding the behavioural model, our method is not
able to verify operations that contain recursive invocations (since recursive invocations, as we
will see later, generate infinite paths). Nevertheless, recursive operations could be transformed
into their imperative counterparts before the application of our methods.

4.5 Summary

In order to organize the contributions of this thesis, we propose a verification framework to
help the designers improve the internal quality of their executable models. Our framework is
based on three axis:

1. Executable models: Executable models are the subject of our analysis.

2. Correctness properties: There are several correctness properties that executable mod-
els should accomplish. We identify and define three fundamental correctness properties
over behavioural executable models (i.e. action-based operations): syntactic correctness,
executability and completeness.

3. Verification methods: Several verification methods that can be used to determine
whether the above correctness properties are satisfied by the input executable model.

In the next chapters we study in depth each of the proposed properties as well as the
verification methods we have developed to check them.

62

Language is a process of free creation;

its laws and principles are fixed, but the

manner in which the principles of genera-

tion are used is free and infinitely varied.

Even the interpretation and use of words

involves a process of free creation.

Noam Chomsky

5
Syntactic correctness

The aim of this chapter is to precisely define the notion of syntactic correctness and to describe
the fundamentals to check whether an action-based operation satisfies this property.

This chapter is divided into three sections: Section 5.1 precisely defines the syntactic cor-
rectness property; Section 5.2 provides the fundamentals to determine whether an action-based
operation satisfies this property; and finally, Section 5.3 summarizes and concludes the chapter.

5.1 Syntactic Correctness Definition

All languages have a syntax, i.e. a set of rules about how elements of the language can be
combined together meaningfully in that language. For instance, Latin has their own syntax,
and so do Java, XML and UML. Then, specifications written in a specific language must comply
with the syntax imposed by the language in which they are defined. This relationship between
the specification and the language in which it is described is known as conformance.

As an example, in the context of UML, a UML model must conform to the UML metamodel
(which defines the abstract syntax all the models should satisfy). In the same way, the UML
metamodel must conform to the MOF metametamodel (which, in its turn, must conform to
itself). Figure 5.1 shows these relationships between models. To verify the syntactic correct-
ness of a model (in our case, a set of action-based operations), we focus on the conformsTo
relationship between the model (i.e. the operations) and its metamodel (i.e. the UML/fUML
metamodel).

63

CHAPTER 5. SYNTACTIC CORRECTNESS













Figure 5.1. Conformance relationship.

In order to precisely define the conformance rules, the UML [126] and fUML [125] meta-
models include a set of constraints - also called Well-Formedness Rules (WFR) - that restrict
the possible set of valid (or well-formed) models.

At this point it is important to note that the UML and fUML metamodels are not completely
consistent regarding its WFRs. On the one hand, the fUML metamodel includes some WFR
which are not defined on the UML metamodel. Besides, fUML does not explicitly include most
of the WFR contained in the UML metamodel. However, since fUML is a subset of UML, we
assume all fUML models must also satisfy the WFR defined in the UML metamodel. This is
the reason why, in the rest of the chapter, we mention both UML and fUML. Note also that
Alf does not define additional WFR, since it only defines a concrete syntax conforming to the
fUML abstract syntax. This means that the syntactic correctness is defined with respect to the
abstract syntax.

The UML/fUML metamodels include WFRs for each element of the metamodel. In this
thesis we only focus on such WFRs that a↵ect action elements, since they are the ones aimed
at preventing syntactic errors in action-based operations. As an example, the UML metamodel
includes a WFR to ensure that, when the value of an attribute is modified (using the action
AddStructuralFeatureV alueAction), the type of the new value is the same as the type of the
attribute.

In the following we show how this WFR may be formally expressed in OCL. Check Figure
5.2 to see the metaclasses which participate in this WFR.

WFR: The type of the value input pin is the same as the type of the structural feature.
context WriteStructuralFeatureAction inv: self.value->notEmpty()

implies self.value.type = self.structuralFeature.type

The above WFR expresses that, if the value of the input pin is not empty, then the type
of this value (self.value.type) must be equal to the type of the attribute - i.e. the struc-
tural feature - to be modified (self.structuralFeature.type). This WFR belongs to

64

5.1. SYNTACTIC CORRECTNESS DEFINITION





 


 


 

 







Figure 5.2. Excerpt of the UML metamodel.

theWriteStructuralFeatureActionmetaclass. Since AddStructuralFeatureV alueAction spe-
cializes such metaclass, the action AddStructuralFeatureV alueAction must also satisfy this
WFR.

Then, we consider an Alf-based operation is syntactically correct when all the actions in-
cluded in the operation satisfy all the WFRs defined in the UML/fUML metamodels. Note
that each rule only a↵ects a unique action, i.e. there are no WFRs that a↵ect the combination
of several actions.

We denote by IsSyntacticallyCorrect(a,op,SM) the proposition that represent the action a
in the operation op is syntactically correct with respect to the structural model SM , i.e. it
satisfies all the WFRs defined in the UML/fUML metamodels.

Then, more formally:

Let ExM = hSM,BMi be an executable model, an operation op 2 BM is syntactically

correct i↵ 8 a 2 Actions(op) IsSyntacticallyCorrect(a,op,SM).

Where Actions(op) returns a list of all actions included in the operation op.

Example 10 Consider the excerpt of the class diagram shown in Figure 5.3
and the operation setCategory (in the context of class Course) to modify the
category of the self course.

activity setCategory(in newCategory: Integer) {
self.category = newCategory;

}

65

CHAPTER 5. SYNTACTIC CORRECTNESS













Figure 5.3. Excerpt of the structural model.

The above operation is not syntactically correct because of the type of the
newCategory parameter (Integer) is not the same as the type of the attribute
cateogry (CourseCategory). Then, in order to correct this syntactic error, the
designer should change the type of the newCategory parameter to a
CourseCategory. The repaired operation is:

activity setCategory(in newCategory: CourseCategory) {
self.category = newCategory;

}

Note that, in the context of programming languages, the term syntactic correctness simply
refers to the conformity to a concrete syntax. In this thesis, we extend this meaning to the
conformity to the abstract syntax, which in the programming languages context is usually
referred as semantic correctness.

5.2 Verifying the syntactic correctness

In order to verify whether an action a is syntactically correct, there is the need to check whether
a conforms to all the WFR that may impact on their syntactic correctness.

Nowadays, existing UML editors do enforce syntactic correctness, checking the compliance
of the edited model regarding (a subset of) the WRFs defined in the UML specification. This is
the reason why in this thesis we do not focus on the algorithm to check this compliance. Instead,
we list the WFRs that must be checked when defining action-based operations, including some
corrections and extensions to the rules provided by the UML and fUML standards.

In the following subsections, we review the rules that must be taken into consideration when
verifying the syntactic correctness of an action-based operation. For each action type we show
a table with the following information:

• First row (Id) shows the identifier for the WFR.

• Second row (description) describes (textually and formally in OCL) the WFR.

• Third row (Source) points out the source of the rule. Some rules directly proceed from
UML/fUML metamodels, while others are new rules that we believe they should be added

66

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

to these metamodels to be considered during a syntactic analysis. It is also important
to note that, in some cases, the formal description provided by the OMG metamodels
contains errors. In this chapter, we also correct them.

5.2.1 CreateObjectAction

Table 5.1 shows the WFRs that must be taken in consideration for each CreateObjectAction
(<object> := new <cl>) appearing in an action-based operation.

Roughly, these rules check that: (1) the input classifier <cl> is able to be instantiated (rules
1 to 4); (2) the types of <object> and <cl> are consistent (rule 5); and (3) the multiplicity
of the returned object is (1,1) (rule 6).

Figure 5.4 shows an excerpt from the UML metamodel concerning CreateObjectAction
action to help understanding the OCL expressions mentioned in Table 5.1.



 





 

















Figure 5.4. Excerpt from the UML metamodel concerning CreateObjectAction action.

67

CHAPTER 5. SYNTACTIC CORRECTNESS

Table 5.1. Well-Formedness Rules for CreateObjectAction action.

Id Well-Formedness Rule Source

1 Description The classifier must be a class. fUML
Formalization context CreateObjectAction inv:

self.classifier.oclIsKindOf(Class)

2 Description The classifier cannot be abstract. UML
Formalization context CreateObjectAction inv: not

(self.classifier.isAbstract = true)

3 Description The classifier cannot be an association class. UML
Formalization context CreateObjectAction inv:

not (self.classifier.oclIsKindOf
(AssociationClass))

4 Description The classifier cannot be the supertype of a covering gen-
eralization set (in a covering generalization, instances of
the supertype cannot be directly created).

Added

Formalization context CreateObjectAction inv: not
(isSupertypeOfAcoveringGeneralization
(self.classifier)), where
isSupertypeOfAcoveringGeneralization(cl)
returns true if cl is supertype of a covering generaliza-
tion set.

5 Description The type of the result pin must be the same as the clas-
sifier of the action.

UML

Formalization context CreateObjectAction inv:
self.result.type = self.classifier

6 Description The multiplicity of the output pin is 1..1. UML
Formalization context CreateObjectAction

inv: self.result.lower = 1 and
self.result.upper = 1

(OCL
cor-
rected)

68

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

5.2.2 DestroyObjectAction

Table 5.2 shows the WFRs that must be taken in consideration for each DestroyObjectAction
(<object>.destroy()) appearing in an action-based operation.

Roughly, these rules check that: (1) the multiplicity of the <object> is (1,1) (rule 1); and
(2) the <object> has no type.

Figure 5.5 shows an excerpt from the UML metamodel concerning DestroyObjectAction
action to help understanding the OCL expressions mentioned in Table 5.2.













Figure 5.5. Excerpt from the UML metamodel concerning DestroyObjectAction action.

Table 5.2. Well-Formedness Rules for DestroyObjectAction action.

Id Well-Formedness Rule Source

1 Description The multiplicity of the input pin is 1..1. UML
Formalization context DestroyObjectAction

inv: self.target.lower = 1 and
self.target.upper = 1

(OCL
cor-
rected)

1 Description The input pin has no type. UML
Formalization context DestroyObjectAction inv:

self.target.type->size() = 0

69

CHAPTER 5. SYNTACTIC CORRECTNESS

5.2.3 ReclassifyObjectAction

Table 5.3 shows theWFRs that must be taken in consideration for eachReclassifyObjectAction
(classify <object> [from <oldCl>] [to <newCl>]) appearing in an action-based
operation.

Roughly, these rules check that: (1) old (<oldCl>) and new (<newCl>) classifiers are able
to be removed/added as an old/new classifiers for the <object> (rules 1 to 3); and (2) the
<object> may be reclassified (rules 4 and 5).

Figure 5.6 shows an excerpt from the UML metamodel concerning ReclassifyObjectAction
action to help understanding the OCL expressions mentioned in Table 5.3.


























Figure 5.6. Excerpt from the UML metamodel concerning ReclassifyObjectAction action.

70

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

Table 5.3. Well-Formedness Rules for ReclassifyObjectAction action.

Id Well-Formedness Rule Source

1 Description All the old and new classifiers must be classes. fUML
Formalization context ReclassifyObjectAction inv:

self.oldClassifiers->forAll(oclIsKindOf
(Class)) and self.newClassifiers->forAll
(oclIsKindOf(Class))

2 Description None of the new classifiers may be abstract. UML
Formalization context ReclassifyObjectAction inv: not

(self.newClassifiers->exists (isAbstract
= true))

3 Description None of the new classifiers may be the supertype of a
covering generalization set (in a covering generalization,
instances of the supertype cannot be directly created).

Added

Formalization context ReclassifyObjectAction inv:
not (self.newClassifiers->exists(c |
isSupertypeOfAcoveringGeneralization(c) =
true)), where
isSupertypeOfAcoveringGeneralization(cl)
returns true if cl is supertype of a covering generaliza-
tion set.

4 Description The multiplicity of the input pin is 1..1. UML
Formalization context ReclassifyObjectAction

inv: self.object.lower = 1 and
self.object.upper = 1

(OCL
cor-
rected)

5 Description The input pin has no type. UML
Formalization context ReclassifyObjectAction inv:

self.object.type->size() = 0
(OCL
cor-
rected)

71

CHAPTER 5. SYNTACTIC CORRECTNESS

5.2.4 AddStructuralFeatureValueAction

Table 5.4 shows the WFRs that must be taken in consideration for each AddStructuralFea-
tureValueAction (<object>.<attribute> = <value>) appearing in an action-based op-
eration.

Roughly, these rules check the consistency with respect to: (1) the <value> (rules 1 to 3);
(2) the result <object>.<attribute> (rules 4 and 5); (3) the <object> (rule 6); and (4)
the <attribute> (rules 7 to 10).

Figure 5.7 shows an excerpt from the UML metamodel concerning AddStructuralFeatureVal-
ueAction action to help understanding the OCL expressions mentioned in Table 5.4.








 

 

 


 



























Figure 5.7. Excerpt from the UML metamodel concerning AddStructuralFeatureV alueAction ac-
tion.

Table 5.4. Well-Formedness Rules for AddStructuralFeatureV alueAction action.

Id Well-Formedness Rule Source

1 Description A value input pin is required. UML
Formalization context AddStructuralFeatureValueAction

inv: self.value->notEmpty()

2 Description The multiplicity of the value input pin is 1..1. UML
Formalization context WriteStructuralFeatureAction inv:

self.value.lower = 1 and self.value.upper

= 1

(OCL
cor-
rected)

Continued on next page

72

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

Table 5.4 – continued from previous page

Id Well-Formedness Rule Source

3 Description The type of the value input pin is the same as the type
of the structural feature.

UML

Formalization context WriteStructuralFeatureAction

inv: self.value->notEmpty()

implies self.value.type =

self.structuralFeature.type

4 Description The type of the result output pin is the same as the type
of the inherited object input pin.

UML

Formalization context WriteStructuralFeatureAction

inv: result->notEmpty() implies

self.result.type = self.object.type

5 Description The multiplicity of the result output pin must be 1..1. UML
Formalization context WriteStructuralFeatureAction

inv: result->notEmpty() implies

self.result.lower = 1 and

self.result.upper = 1

(OCL
cor-
rected)

6 Description The multiplicity of the object input pin must be 1..1. UML
Formalization context StructuralFeatureAction

inv: self.object.lower = 1 and

self.object.upper = 1

(OCL
cor-
rected)

7 Description The structural feature must not be static. UML
Formalization context StructuralFeatureAction inv:

self.structuralFeature.isStatic = false

8 Description The structural feature must either be owned by the type
of the object input pin, or it must be an owned end of
a binary association with the type of the opposite end
being the type of the object input pin.

UML

Formalization context StructuralFeatureAction

inv: self.structuralFeature.

featuringClassifier.oclAsType(Type)->

includes(self.object.type) or

self.structuralFeature.oclAsType

(Property).opposite.type =

self.object.type

9 Description The visibility of the structural feature must allow access
to the object performing the action.

UML

Continued on next page

73

CHAPTER 5. SYNTACTIC CORRECTNESS

Table 5.4 – continued from previous page

Id Well-Formedness Rule Source
Formalization context StructuralFeatureAction inv:

let host : Classifier = self.context

in self.structuralFeature.visibility =

public or host = self.structuralFeature.

featuringClassifier.type or

(self.structuralFeature.visibility

= protected and host.allSupertypes

-> includes(self.structuralFeature.

featuringClassifier.type)))

10 Description The structural feature has exactly one featuringClassifier. UML
Formalization self.structuralFeature.featuringClassifier

->size() = 1

5.2.5 ClearStructuralFeatureAction

Table 5.5 shows the WFRs that must be taken in consideration for each ClearStructuralFea-
tureAction (<object>.<attribute> = null) appearing in an action-based operation.

Roughly, these rules check the consistency with respect to: (1) the result of the action
(<object>.<attribute>) (rules 1 and 2); (2) the <object> (rule 6 of Table 5.4); and (3)
the <attribute> (rules 7 to 10 of Table 5.4).

Figure 5.8 shows an excerpt from the UML metamodel concerning ClearStructuralFeature-
Action action to help understanding the OCL expressions mentioned in Table 5.5.






 

 

 

 




























Figure 5.8. Excerpt from the UML metamodel concerning ClearStructuralFeatureAction action.

74

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

Table 5.5. Well-Formedness Rules for ClearStructuralFeatureAction action.

Id Well-Formedness Rule Source

1 Description The type of the result output pin is the same as the type
of the inherited object input pin.

UML

Formalization context ClearStructuralFeatureAction
inv: result->notEmpty() implies
self.result.type = self.object.type

2 Description The multiplicity of the result output pin must be 1..1. UML
Formalization context ClearStructuralFeatureAction

inv: result->notEmpty() implies
self.result.lower = 1 and
self.result.lower = 1

(OCL
cor-
rected)

See WFRs 6 to 10 of Table 5.4.

5.2.6 CreateLinkAction

Table 5.6 shows the WFRs that must be taken in consideration for each CreateLinkAction
(<association>.createLink([<role1>=>]<obj1>,[<role2>=>]<obj2>)) ap-
pearing in an action-based operation.

Roughly, these rules check the consistency with respect to: (1) the <association> (rule
1), (2) the end data (<role1> and <role2>) (rules 2 to 6); and (3) the input pins (<obj1>
and <obj2>) (rules 7 and 8).

Figure 5.9 shows an excerpt from the UML metamodel concerning CreateLinkAction action
to help understanding the OCL expressions mentioned in Table 5.6.








 














 













 















Figure 5.9. Excerpt from the UML metamodel concerning CreateLinkAction action.

75

CHAPTER 5. SYNTACTIC CORRECTNESS

Table 5.6. Well-Formedness Rules for CreateLinkAction action.

Id Well-Formedness Rule Source

1 Description The association cannot be an abstract classifier. UML
Formalization context CreateLinkAction inv: not

(self.association().isAbstract =
true) where association() returns the
association of the action: association =
self.endData->asSequence().first().end.
association

2 Description All end data must have exactly one input object pin. UML
Formalization context WriteLinkAction inv:

self.endData->forAll(value->size() = 1)
(OCL
cor-
rected)

3 Description All end data must belong to exactly association. Added
Formalization context WriteLinkAction inv:

self.endData->forAll(end.association->size()
= 1)

4 Description The visibility of at least one end must allow access to the
class using the action.

UML

5 Description The association ends of the link end data must all be
from the same association and include all and only the
association ends of that association.

UML

Formalization context LinkAction inv: self.endData->
collect(end) = self.association()->
collect(memberEnd)

(OCL
cor-
rected)

6 Description The association ends of the link end data must not be
static.

UML

Formalization context LinkAction inv: self.endData->
forAll(end.oclisKindOf (NavigableEnd)
implies end.isStatic = false)

7 Description The action must have at least two input pins. Added
Formalization context LinkAction inv:

self.inputValue-> size() >= 2

8 Description The input pins of the action are the same as the pins of
the link end data and insertion pins.

UML

Formalization context LinkAction inv:
self.inputValue-> asSet() = let ledpins
: Set = self.endData-> collect(value) in
if self.oclIsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType
(LinkEndCreationData).insertAt) else
ledpins

76

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

5.2.7 DestroyLinkAction

Table 5.7 shows the WFRs that must be taken in consideration for each DestroyLinkAction
(<association>.destroyLink([<role1>=>]<obj>,[<role2>=>]<obj2>)) ap-
pearing in an action-based operation.

Roughly, these rules check the consistency over: (1) the end data (<role1> and <role2>)
(rules 2 to 6 of Table 5.6); and (2) the input pins (<obj1> and <obj2>) (rules 7 and 8 of
Table 5.6).

Figure 5.10 shows an excerpt from the UML metamodel concerning DestroyLinkAction
action to help understanding the OCL expressions mentioned in Table 5.7.



 

 









 























Figure 5.10. Excerpt from the UML metamodel concerning DestroyLinkAction action.

Table 5.7. Well-Formedness Rules for DestroyLinkAction action.

Id Well-Formedness Rule Source

Same WFRs 2 to 8 of Table 5.6.

77

CHAPTER 5. SYNTACTIC CORRECTNESS

5.2.8 ClearAssociationAction

Table 5.8 shows theWFRs that must be taken in consideration for each ClearAssociationAction
(<association>.clearAssoc(<object>)) appearing in an action-based operation.

Roughly, these rules check that: (1) the type of the <object> is the same as the type of one
association ends of the <association> (rule 1); and (2) the multiplicity of the <object> is
(1,1) (rule 2).

Figure 5.11 shows an excerpt from the UML metamodel concerning ClearAssociationAction
action to help understanding the OCL expressions mentioned in Table 5.8.















 

 










Figure 5.11. Excerpt from the UML metamodel concerning ClearAssociationAction action.

Table 5.8. Well-Formedness Rules for ClearAssociationAction action.

Id Well-Formedness Rule Source

1 Description The type of the input pin must be the same as the type
of at least one of the association ends of the association.

UML

Formalization context ClearAssociationAction inv:
self.association->exists(end.type =
self.object.type)

2 Description The multiplicity of the input pin is 1..1. UML
Formalization context ClearAssociationAction

inv: self.object.lower = 1 and
self.object.upper = 1

(OCL
cor-
rected)

78

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

5.2.9 CallOperationAction

Table 5.9 shows the WFRs that must be taken in consideration for each CallOperationAction
([<result>]=<object>.<operation>([<arguments>])) appearing in an action-based
operation.

Roughly, these rules check that: (1) the arguments of the invocation are consistent with the
parameters of the operation (rules 1 to 3); and (2) the type of the <object> is consistent with
the class that holds the <operation> (rule 4).

Figure 5.12 shows an excerpt from the UML metamodel concerning CallOperationAction
action to help understanding the OCL expressions mentioned in Table 5.9.



  




 

















 












Figure 5.12. Excerpt from the UML metamodel concerning CallOperationAction action.

79

CHAPTER 5. SYNTACTIC CORRECTNESS

Table 5.9. Well-Formedness Rules for CallOperationAction action.

Id Well-Formedness Rule Source

1 Description The number of argument pins and the number of owned
parameters of the operation of type in and inout must be
equal.

fUML

Formalization context CallOperationAction
inv: self.argument->size() =
self.operation.ownedParameter-> select(p
| p.direction = in or p.direction =
inout)->size()

(OCL
added)

2 Description The number of result pins and the number of owned pa-
rameters of the operation of type return, out, and inout
must be equal.

fUML

Formalization context CallOperationAction
inv: self.result->size() =
self.operation.ownedParameter-> select(p
| p.direction = return or p.direction =
out OR p.direction = inout)->size()

(OCL
added)

3 Description The type, ordering, and multiplicity of an argument or
result pin is derived from the corresponding owned pa-
rameter of the operation.

fUML

4 Description The type of the target pin must be the same as the type
that owns the operation.

fUML

Formalization context CallOperationAction inv:
self.target.type = self.operation.class

(OCL
added)

80

5.2. VERIFYING THE SYNTACTIC CORRECTNESS

Then, in order to verify whether an action-based operation is syntactically correct, we
suggest using an existing modelling tool able to check the compliance of the model regarding
the above reviewed WFRs.

5.2.10 Flaws and lacks in UML/fUML metamodels

In order to conclude this chapter, we would like to remark that our analysis of the Action
packages of UML (v2.4.1) [126] and fUML (v1.0) [125] metamodels has detected several lacks
and flaws that compromise the correctness of these specifications. Most of them has been fixed
in the tables of the previous section. In the following we summarize these deficits and suggest
possible corrections for them:

Flaws

1. UML 2.4.1 contains references to “forall” OCL operation (see Figure 5.13) instead of
“forAll”. In some cases, the use of this operation is incorrect (they invoke it using
“.forAll” instead of “->forAll”). It also contains references to “oclisKindOf” (see Figure
5.14) OCL operation instead of “oclIsKindOf”.

Figure 5.13. Excerpt from the UML metamodel concerning WriteLinkAction metaclass description
(page 318 of [126]).

Figure 5.14. Excerpt from the UML metamodel concerning LinkAction metaclass description (page
282 of [126]).

2. In UML 2.4.1, constraints restricting the multiplicity of input and output pins refer to a
multiplicity attribute (see Figure 5.15) that does not longer exist in this version of the
UML metamodel (it exists in the version 1.5 of the UML metamodel). From UML 2.0, pins
are subtypes of
MultiplicityElement and thus we should use the upper and lower attributes instead.

Figure 5.15. Excerpt from the UML metamodel concerning ClearAssociationAction metaclass de-
scription (page 272 of [126]).

81

CHAPTER 5. SYNTACTIC CORRECTNESS

3. UML 2.4.1 defines the result member end from CallAction metaclass as a subset of
Action :: input association (see Figure 5.16). It should be a subset of Action :: output
association.

Figure 5.16. Excerpt from the UML metamodel concerning CallAction metaclass description (page
268 of [126]).

4. UML 2.4.1 references the argument attribute in the constraints of the
ReclassifyObjectAction metaclass (see Figure 5.17). This attribute does not exist in
this version of the metamodel. Instead, the attribute object should be used.

Figure 5.17. Excerpt from the UML metamodel concerning ReclassifyObjectAction metaclass de-
scription (page 301 of [126]).

5. UML 2.4.1 references the connection member end in the constraints of the LinkAction
metaclass (see Figure 5.18). This member end does not exist in this version of the meta-
model. Instead, the member end memberEnd should be used.

Figure 5.18. Excerpt from the UML metamodel concerning LinkAction metaclass description (page
282 of [126]).

Lacks

1. In UML 2.4.1, it is not clear the relationship between the InstanceSpecification,
V alueSpecification and Pin metaclasses. Since input and output pins must hold
InstanceSpecification (e.g. in the CreateObjectAction action) and V alueSpecification
(e.g. WriteStructuralFeature actions) values, both kind of values need to be converted to
instances of the Pinmetaclass which is not possible with the current metamodel structure.

2. In fUML 1.0, the semantic of attributes neither associations is not specified. Besides, as
we have mentioned, this specification does not include most of the constraints included

82

5.3. SUMMARY

in the UML 2.4.1 metamodel. We assume fUML models must satisfy both the UML and
fUML WFRs.

3. The fUML specification is not complete. For instance, regarding the CreateObjectAction
action, fUML does not specify whether attributes or links are initialized when creating
an object. Fortunately, Alf specification clarifies this lack of precision.

5.3 Summary

In this chapter we have reviewed the syntactic correctness property of action-based operations.

We consider an action-based operation is syntactically correct when all the actions in-
cluded in the operation satisfy the Well-Formedness Rules defined in the fUML/UML meta-
models.

In this chapter we have reviewed and corrected the WFR proposed in the UML/fUML
metamodels. Besides, we have added new rules that we believe they should be considered when
verifying the syntactic correctness of an action-based operation.

83

CHAPTER 5. SYNTACTIC CORRECTNESS

84

The execution of any thing considerable

implies in the first place previous perse-

vering meditation.

William Godwin

6
Executability

The aim of this chapter is to precisely define the notion of executability regarding two levels
of correctness (weak and strong) and to describe a lightweight and static method we propose
to check whether an Alf-based operation satisfies this property. In order to define the notion
of executability, we need to previously introduce the notion of execution paths of an operation,
which refers to all the possible sequences of actions that may be followed during the operation
execution.

This chapter is divided into five sections: Section 6.1 precisely defines the notion of execution
path and explains how the execution paths of an operation may be computed; Section 6.2
precisely defines the executability properties we address in this chapter; Section 6.3 describes
the method we propose to verify the executability of an action-based operation; then, since
executability is the more complex property and the more deeply studied along this thesis,
Section 6.4 discusses about the pros and cons of our method; and finally, Section 6.5 summarizes
and concludes the chapter.

6.1 Execution Paths

The execution of an action-based operation may be described in terms of the sequence of changes
the operation applies on the system state. The correctness property addressed in this chapter
is based on an analysis of the possible execution paths allowed by the actions that define the
operation e↵ect, that is, the possible sequences of actions that may be followed during the
operation execution.

85

CHAPTER 6. EXECUTABILITY

In the next subsections we describe a way where operations can be represented in order to
obtain its execution paths (Section 6.1.1); and how execution paths may be computed from this
previous representation (Section 6.1.2).

6.1.1 Constructing the Model-Based Control Flow Graph

In order to determine the possible execution paths of an operation (i.e. the sequences of changes
it may induce), we propose to draw each operation as a Model-Based Control Flow Graph
(MBCFG). A MBCFG is a directed graph which extrapolates the traditional ideas of Control
Flow Graph (CFG)3, a directed digraph which represents the program code, to represent the
information of a model (in our case, operations as part of an executable behavioural model).

Formally, a directed graph (or digraph) [20] G = (V , A) consists of a finite set V of vertices
(or nodes) and a set A ✓ V ⇥ V of arcs. An arc (v1, v2) has source v1 and target v2 and is
said to go from vertex v1 to vertex v2. Note that if v1 = v2 it is a self � loop.

In order to represent Alf operations as MBCFGs, we consider that each operation is an
instance of the Activity metaclass from fUML (see the fUML metamodel excerpt in Fig-
ure 6.1). An Activity contains several ActivityNodes (ActivityNode generalizes the metaclass
ExecutableNode, which in turn generalizes the metaclass Action). Then, each action can be
either one of the actions from the Actions package (see an excerpt of them at Section 2.2.2),
a ConditionalNode (which represents an exclusive choice among some number of alternatives)
or a LoopNode (which represents a loop with setup, test, and body sections). We also use two
fake nodes: an initial node (representing the first instruction in the operation) and a final node
(representing the last one). These two nodes do not change the operation e↵ect but help in
simplifying the presentation of our MBCFG.












 







Figure 6.1. Fragment of the fUML metamodel Actions Package.

A Model-Based Control Flow Graph (MBCFG) for an operation op is a 2-tuple (V
op

, A
op

).
The corresponding vertices (V

op

) and arcs (A
op

) are obtained applying the following rules:
• Every activity node (i.e. action) in op is a vertex in V

op

. In order to simplify the MBCFG,
we only consider actions that may modify the system state (i.e. modification actions) and

3As we introduced in Chapter 3, CFGs are used on Data-Flow Analysis [120].

86

6.1. EXECUTION PATHS

structured actions (i.e. conditionals or loops). It means that we skip other types of actions
(as actions to read values or to declare and initialize variables) since they do not a↵ect
the result of our analysis.

• An arc from a vertex v1 to v2 is created in A
op

if v1 immediately precedes v2 in an ordered
sequence of nodes.

• A vertex v representing a conditional node n is linked by an arc to the vertices v1, . . . , vn
representing the first activity node for each clause (i.e. the then clause, the else clause,
. . .) in n. All vertices of each clause are englobed into a dashed line box. The last vertex
in each clause is linked to the vertex v

next

immediately following n in the sequence of
executable activities. If n does not include an else clause, an arc between v and v

next

is
also added to A

op

.

• Each arc from a conditional node to its first clause vertex is labelled with the condition of
the conditional structure. Each arc to an else clause (or the arc between the conditional
node and the the v

next

if there is not an else clause) is labelled with the negation of the
above condition.

• A vertex v representing a loop node n, is linked by an arc to the vertex representing
the first activity node for n.bodyPart (returning the list of actions in the body of the
loop) and the vertex v

next

immediately following n in the activity. The last vertex in
n.bodyPart is linked back to v (to represent the loop behaviour).

• Each arc from a loop node to its first vertex is labelled with the condition fulfilled in the
first execution of the loop followed by the times the loop is executed.

• A vertex representing an OperationCall action is replaced by the sub-digraph correspond-
ing to the called operation op0 as follows: (1) the initial vertex of op0 is connected with
the vertex that precedes the OperationCall activity node in the main operation; (2) the
final vertex of op0 is connected with the vertex/ces that follow the OperationCall; and
(3) the parameters of op0 are replaced by the arguments in the call.

During the construction of our MBCFG we assume several facts. In the following we explain
and justify these assumptions:

• We assume the body of all conditional and loop structures is reachable (given the proper
input values). This means that the condition of all conditional and loop structures may
be satisfied (i.e. it may evaluate to true) and then the body of these structures may
be executed. This assumption is made because of, as we will see in the next sections,
our analysis takes into account all the actions which are part of an execution path. On
the other hand, this assumption is based on the accepted criteria that unreachable code
should be eliminated [16, 42].

• We assume that operations to be analyzed do not include recursive invocations (i.e. in-
vocations to herself). This assumption is made because of recursive invocations generate
infinite paths (given that the recursive invocation is replaced by the sub-diagraph corre-
sponding to the operation itself, then, this replacement process never finishes) that are
not able to be addressed by the techniques proposed in this thesis. Nevertheless, recursive
operations could be transformed into their iterative counterparts before the application of
our techniques [9]. On the other hand, iterative invocations always generate finite paths
since the body of a loop contains a finite number of actions and then it always generate
a finite set of nodes.

87

CHAPTER 6. EXECUTABILITY

Example 11 Consider the excerpt of the class diagram shown in Figure 6.2 and
the following operations: addCourse (in the context of class Course) which adds
a new course to the system); setCourseDescription (in the context of class
Course) which modifies the description of a course; addSubstituteCourse (in
the context of class Course) which adds a substituting course to the self course; and
addDessertsMenu (in the context of class Menu) which adds a menu composed
only of desserts. Suppose operation checkCategory(c:Course) is already de-
fined. To simplify the graphs, we do not show the body of this operation.

















 







Figure 6.2. Excerpt of the structural model.

activity addCourse(in description: String, in category:

CourseCategory, in substitutingCourses: Course[*]) {
Course c = new Course();

c.description = description;

c.category = category;

for (i in 1.. substitutingCourses!size()) {
CanBeSubstitutedBy.createLink(replaced=>c,

replacement=> substitutingCourses[i]);

}
}

activity setCourseDescription(in newDescription: String) {
self.description = newDescription;

}

activity addSubstitutedCourse(in course: Course) {
if (self.category == course.category) {
CanBeSubstitutedBy.createLink(replaced=>self,

replacement=> course;

}
}

88

6.1. EXECUTION PATHS

activity addDessertsMenu(in name: String, in price: Real, in

courses: Course[*]) {
Menu m = new Menu();

m.name = name;

m.price = price;

for (i in 1.. courses->size()) {
if (courses[i].category == Dessert)

IsComposedOf.createLink(menu=>m,course=> courses[i]);

else checkCategory(courses[i]);

}
}

Figures 6.3 to 6.6 show the MBCFGs for the operations addCourse,
setCourseDescription, addSubstitutedCourse and addDessertsMenu

respectively.




















Figure 6.3. MBCFG of addCourse operation.



Figure 6.4. MBCFG of setCourseDescription operation.









Figure 6.5. MBCFG of addSubstitutedCourse operation.

89

CHAPTER 6. EXECUTABILITY



 








  






  









 

Figure 6.6. MBCFG of addDessertsMenu operation.

6.1.2 Computing the Execution Paths from the MBCFG

An execution path of an operation op is a finite and not empty (we discard the possible
empty paths) sequence of actions starting at the initial vertex and ending at the final vertex
in the MBCFG, that is, a sequence of actions that may be followed during the operation
execution. For trivial operations (e.g. with neither conditional nor loop nodes) there is a single
execution path but, in general, several ones will exist.

More formally, an execution path is a sequence of arcs (v
ini

, v1), (v1, v2), ..., (vi�1, vi), (vi,
v
end

) where the target of the arc (v
i�1, vi) equals the source of the arc (v

i

, v
i+1).

We represent an execution path p as a set of terms and guards {terms, guards}, where:

terms = {< t1,multiplicity1, action1 >| {z }
term

1

, . . . , < t
n

,multiplicity
n

, action
n

>| {z }
termn

}

• t
i

is a unique identifier for the term and specifies the position of the action
i

inside the
path.

• action
i

is the ith-action of the path.

• multiplicity
i

indicates the number of times that action
i

is executed. The multiplicity
i

of
the term is equal to “1” when action

i

is not included in any loop structure. For actions
within loops, multiplicity is either the number of times the loop is executed (if we can
deduce the concrete number of iterations) or simply an abstract variable (“N”4) otherwise.

4If an action is included into two loops, its multiplicity will be “N1*N2” and so forth.

90

6.1. EXECUTION PATHS

guards = {< g1, condition1, tini
1

, t
end

1

>| {z }
guard

1

, . . . , < g
m

, condition
m

, t
inim , t

endm >| {z }
guardm

}

• g
i

is an unique identifier of the guard.

• condition
i

is a boolean expression over the parameters and variables of the path that
evaluates to true immediately before the term t

inii is executed. The condition
i

is the
condition of the conditional or loop structure (or its negation, when dealing with else
branches).

• t
inii and t

endi (tinii  t
endi) identify the first and the last terms englobed by the condition

i

.

Given a MBCFG
op

graph for an operation op, the set of execution paths (Paths(op)) for
op is defined as Paths(op) = allPaths(MBCFG

op

), where allPaths(MBCFG
op

) returns the
set of all paths in MBCFG

op

that start at the initial vertex (the vertex corresponding to the
initial node), end at the final vertex and do not include repeated arcs.

For those MBCFGs in which appear one or several conditional structures within a loop,
all the branches of the conditional are concatenated in the same execution path, each with a
multiplicity equal or lower to the loop multiplicity (see Example 15). This performance allows to
take into account that some iterations of an execution may follow one branch of the conditional
while others may follow another branch.

To illustrate the algorithm for computing the execution paths given a MBCFG, in the
following we show the execution paths of the operations introduced in the previous subsection.

Example 12 Operation addCourse has two execution paths (see Figure 6.7):
p1

addCourse

is the sequence of actions executed when the substitutingCourses

array does not contain any course; and p2
addCourse

is the sequence of actions exe-
cuted otherwise. Note that the first path has three terms (t1, t2 and t3) but it does
not have any guard. On the other hand, the second path has four terms and one
guard (g1).

Execution paths for operation addCourse:

p1
addCourse

= {
{ <t1, 1, Course c = new Course()>,

<t2, 1, c.description = description>,

<t3, 1, c.category = category>}, {} }
p2

addCourse

= {
{ <t1, 1, Course c = new Course()>,

<t2, 1, c.description = description>,

<t3, 1, c.category = category>,

<t4, substitutingCourses!size(),CanBeSubstitutedBy.createLink(re-

placed=>c,replacement=> substitutingCourses[i])> },
{<g1, substitutingCourses!size()>0, t4, t4>} }

91

CHAPTER 6. EXECUTABILITY











































Figure 6.7. Execution paths for the addMenu operation.

Example 13 Operation setCourseDescription has a single execution path
(see Figure 6.8).




Figure 6.8. Execution paths for the setCourseDescription operation.

Execution path for operation setCourseDescription:

p
setCourseDescription

= {
{ <t1, 1, self.description = newDescription>}, {} }

Example 14 Operation addSubstitutedCourse has also a single execution
path (see Figure 6.9), (note that we discard the empty path): p

addSubstitutedCourse

is
the sequence of actions executed when self.category == course.category

(see the guard g1 from p
addSubstitutedCourse

).











Figure 6.9. Execution paths for the addSubstitutedCourse operation.

92

6.1. EXECUTION PATHS

Execution path for operation addSubstitutedCourse:

p
addSubstitutedCourse

= {
{ <t1, 1, CanBeSubstitutedBy.createLink(replaced=>c,replacement=>

substitutingCourses[i])> },
{<g1, self.category == course.category, t1, t1>} }

Example 15 Finally, operation addDessertsMenu has two execution paths (see
Figure 6.10), (note that we discard the empty path): p1

addDessertsMenu

is the se-
quence of actions executed when courses->size()==0; and p2

addDessertsMenu

is
the sequence of actions executed otherwise (see the guard g1 from p2

addDessertsMenu

).
Note that both branches of the conditional structure which appear inside the loop
are concatenated in the same path (see p2

addDessertsMenu

) with multiplicity lower
or equal to the total multiplicity of the loop. This allows to take into account that
some iterations of the loop may follow the if branch while others may follow the
else branch.



 








  






  









 



 








  






  









 





Figure 6.10. Execution paths for the addDessertsMenu operation.

93

CHAPTER 6. EXECUTABILITY

Execution paths for operation addDessertsMenu:

p1
addDessertsMenu

= {
{ <t1, 1, Menu m = new Menu()>,

<t2, 1, m.name = name>,

<t3, 1, m.price = price> } , { } }

p2
addDessertsMenu

= {
{ <t1, 1, Menu m = new Menu()>,

<t2, 1, m.name = name>,

<t3, 1, m.price = price>,

<t4,  courses->size(), IsComposedOf.createLink(menu=>m,course=>

courses[i])>,

<t5,  courses->size(), checkCategory(courses[i])> },
{ <g1, courses->size()>0, t4, t5>,

<g2, courses[i].category==Dessert, t4, t4>,

<g3, courses[i].category!=Dessert, t5, t5> } }

6.2 Executability Definition

Prior to define the executability property, we need to describe the meaning of execution of an
execution path of an operation. The execution of an execution path p over a system state s,
generates a new state s0 where the changes described in p have been applied to s.

We denote by AllExecutions(p,s) = {s01,. . . ,s0n} all the possible (potentially infinite) execu-
tions of the execution path p over a system state s, that is, all the possible states (s01,. . . ,s

0
n

)
that may be reached (depending on the input arguments used to call the operation) by applying
p in s.

Example 16 All executions of the single path of the operation
newCity (defined in the context of class City) when it is applied over an empty sys-
tem state (i.e. a state in which no object exists) are
AllExecutions(p

newCity

,emptyState) = {state1,. . . ,staten}, where state1, . . . , staten
are states where a city with a specific name (given by the input argument name)
has been created.

activity newCity(in name: String){
City c = new City();

c.name = name;

}

The following subsections describe the types of executability regarding the states of the
system that can be reached after applying an operation.

94

6.2. EXECUTABILITY DEFINITION

6.2.1 Weakly Executable operations

We consider an operation is weakly executable (WE) if it may generate a consistent state, but
it is not guaranteed to do so: at least one of the many possible executions of the operation
during the life span of the system will be successfully executed but probably not all of them
(e.g. depending on the input arguments).

In other words, an operation is WE if there is a chance that a user may successfully execute
it, i.e. if exists at least an initial state and a set of arguments for the operation parameters
for which the execution of the actions included in the operation evolves the initial state of the
system to a new state that satisfies all the integrity constraints of the structural model. Note
that weak executability does not require all executions of the operation to be successful.

More formally:

Let ExM = hSM,BMi be an executable model, an operation op 2 BM is weakly exe-

cutable (WE) i↵ 9 p 2 Paths(op) ^ 9 s IsConsistent(s,SM) ^ 9 s’ 2 AllExecutions(p,s) |
IsConsistent(s’,SM).

Where Paths(op) returns the execution paths of the operation op; and, as we stated in
Chapter 2, IsConsistent(s,SM) states whether the state s is consistent regarding the structural
model SM .















































 












Figure 6.11. Excerpt of a restaurant chain class diagram.

Example 17 Operation newCourse (defined in the context of class Course) is
not WE since it never may generate a consistent system state regarding the struc-
tural model we used along this thesis (see Figure 6.11). Every time we try to create
a new course c but we do not assign any category for it, we reach an inconsistent
system state where c has no category, a situation forbidden by the structural model
that defines the attribute category as mandatory (Mand(category,Course)),
i.e. it must have at least one value.

95

CHAPTER 6. EXECUTABILITY

activity newCourse(in description: String,

in substitutingCourses:Course[*]) {
Course c = new Course();

c.description = description;

for (i in 1.. substitutingCourses!size()) {
CanBeSubstitutedBy.createLink(replaced=>c,

replacement=> substitutingCourses[i]);

}
}

Example 18 Instead, operation classifyAsSpecialMenu (defined in the con-
text of class Menu) is WE since we are able to find an execution scenario (a system
state that contains less than three special menus) where the menu can be successfully
subtyped.

activity classifyAsSpecialMenu(in discount: Real) {
if (discount � 10) {
classify self to SpecialMenu;

self.discount = discount;

}
}

Note that classifying an operation as WE does not mean that every time this op-
eration is executed the new system state will be consistent with the integrity con-
straints. For instance, if the system state where we apply the above operation
already contains three special menus, the operation will fail because of the integrity
constraint Cmax(SpecialMenu)=3, which defines the class SpecialMenu may
have at most three instances.

6.2.2 Strongly Executable operations

We consider an operation is strongly executable (SE) if it is guaranteed to always generate a
consistent state: all the executions of the operation (regardless of the input values provided to
the operation and the initial system state where the operation is applied over) reach a consistent
state with respect to the structural model and their integrity constraints.

In other words, an operation is SE if it is always successfully executed, i.e. if every time we
execute the operation (whatever values are given as arguments for its parameters), the e↵ect of
the actions included in the operation evolves the initial state of the system to a new state that
satisfies all integrity constraints of the structural model. Note that, unlike weak executability,
strong executability requires all executions of the operation to be successful.

More formally:

Let ExM = hSM,BMi be an executable model, an operation op 2 BM is strongly exe-

cutable (SE) i↵ 8 p 2 Paths(op) ^ 8 s IsConsistent(s,SM) ^ 8 s’ 2 AllExecutions(p,s) IsCon-
sistent(s’,SM).

96

6.2. EXECUTABILITY DEFINITION

Example 19 As we have seen, operation classifyAsSpecialMenu is not SE
since after its execution we may violate the maximum cardinality integrity constraint
of class SpecialMenu (Cmax(SpecialMenu)=3), in particular, when the system
state where the operation is applied already contains three special menus.

Example 20 Instead, operation addMenu (defined in the context of class Menu)
is SE since we may guarantee it will never violate any integrity constraint of the
structural model after their execution.

activity addMenu(in name: String, in price: Real, in courses:

Course[3..*]) {
if (!Menu.allInstances()!exists(m|m.name= name)) {
Menu m = new Menu();

m.name = name;

m.price = price;

for (i in 1.. courses!size()) {
IsComposedOf.createLink(menu=>m,course=> courses[i]);

}
}

}

Note that, in this case, the operation addMenu includes a guard (i.e. a precondition)
to guarantee the changes this operation performs will only be executed in a safe
context.

6.2.3 Non Executable operations

Operations that are not WE (nor SE), are non executable. Non executable operations never
generate a consistent system state. After their execution, they always reach a system state that
violates some integrity constraints of the structural model (e.g. some cardinality constraints).

More formally:

Let ExM = hSM,BMi be an executable model, an operation op 2 BM is non executable

i↵ 8 p 2 Paths(op) ^ 8 s IsConsistent(s,SM) ^ 8 s’ 2 AllExecutions(p,s) ¬IsConsistent(s’,SM).

Example 21 Since newCourse is not WE, it is non executable.

6.2.4 Comparative relation

The previous properties can also be characterized in terms of probabilities. In [11], A. J. Ayer
established that “a proposition is said to be verifiable, in the strong sense of the term, if and only
if, its truth could be conclusively established in experience. But it is verifiable in the weak sense,
if it is possible for experience to render it probable”. Then, we can say that non executable
operations generate a consistent state with probability 0, weakly executable operations generate

97

CHAPTER 6. EXECUTABILITY

a consistent state with probability strictly greater than 0 and strongly executable operations
generate a consistent state with probability exactly 1 (see Figure 6.12).












Figure 6.12. Types of executability.

Making sure that all operations are weakly executable ensures a first basic level of correct-
ness. Besides, making sure that all operations are strongly executable ensures a full level of
correctness, by facilitating a lot the development (and run-time e�ciency) of the system: since
we know that operations always leave the system in a consistent state, we can avoid checking
at the end of each operation execution whether all constraints are satisfied which improves
the e�ciency of the system. Building (and executing) such integrity checking mechanism is
an error-prone and time-consuming process that can be avoided when using our method to
guarantee the correctness of all operations.

We consider the two levels of correctness are important. On the one hand, weak executability
could probably be achieved directly by the designers (without using code generation neither
verification tools) and it is less costly to verify. On the other hand, strongly executability is
more di�cult to be achieved directly by the designers (see the results of our experiment in
Chapter 10) but it is also more costly to verify. In any case, the designer should choose which
level of correctness wants to guarantee.

On the other hand, non executable operations are completely useless since every time a
user tries to execute them (regardless the provided input values) an error arises because some
integrity constraints become violated.

As a final remark, notice also that weak executability is a necessary (but not su�cient)
condition for strong executability. Then SE operations are a subset of WE operations (see
Figure 6.13).










Figure 6.13. Executability classification.

6.3 Verifying the Executability of Alf operations

The lightweight method we have developed for verifying the executability property (see Figure
6.14) takes as input an executable model composed by a structural model (a UML class diagram)

98

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

and an Alf-based operation (as part of the behavioural model). We consider all the operations
of the behavioural model are syntactically correct. Then, our method returns either a positive
answer, meaning that the operation is WE/SE or a corrective feedback (see Section 6.3.4),
consisting in a set of actions and guards that should be added to the operation in order to
make it WE/SE. Note that, extending the operation with the provided feedback is a necessary
condition but not a su�cient one to immediately guarantee the WE/SE of the operation since
the added actions may in its turn induce other constraint violations. Therefore, the extended
operation must be iteratively reanalyzed with our method until we reach a WE/SE status.

Figure 6.14. Executability method overview.

When analyzing the WE/SE of an operation we must take into account all the possible exe-
cution paths (see Section 6.1): an operation is WE i↵ at least one of its execution paths is WE;
and it is SE i↵ all its executions paths are SE. Therefore, prior to checking the weak/strong exe-
cutability of an operation, our method performs a pre-processing step to compute its execution
paths (Step 0). Once the execution paths have been computed, Steps 1 and 2 of the method are
applied on each path p until we recognize a WE path (in case of verifying weak executability)

99

CHAPTER 6. EXECUTABILITY

or until we check all paths are SE (in case of verifying strong executability). First, Step 1 (see
Section 6.3.1) individually analyzes each action in the path p to see whether it may violate
some integrity constraints of the structural model. Then, Step 2 (see Section 6.3.2) performs
a contextual analysis of each potentially violating action to see whether other actions or con-
ditions in p compensate or complement its e↵ect to ensure that we sometimes/always reach a
consistent state at the end of the operation execution. If all potentially violating actions can
be discarded we can conclude that p is WE/SE. Finally, Step 3 (see Section 6.3.3) classifies
the operation depending on the results obtained in the previous step. If at least one of the
execution paths of the operation is WE, the operation is classified as WE. If all its execution
paths are SE, the operation is classified as SE. Otherwise, the operation is non executable.

Our method performs an over-approximation analysis. Over-approximation is due to the
lack of exhaustiveness in the comparison of conditions in the operation to favor the e�ciency
of the process. This implies that our method may return false positives, that is, it may return
as a non-WE/SE an operation which is actually WE/SE. On the other hand, the method does
not return false negatives (in our opinion, more critical than the above), that is, when it states
that an operation is WE/SE, this statement is always true5. This over-approximation may
be manually eliminated by the designer if she decides to intervene during the second step of
the method in order to disambiguate the situations that cannot be computed in a lightweight
manner. We believe this is a reasonable trade-o↵ for the verification method we propose. Section
6.4 discusses more about this question.

In the following subsections we describe in detail the three main steps of our verification
method (Sections 6.3.1, 6.3.2 and 6.3.3) and the feedback it provides (Section 6.3.4). Finally,
Section 6.3.5 illustrates the use of our method by using our running operations.

6.3.1 Step 1: Analyzing the existence of Potentially Violating Actions

First step of our verification method analyzes each term6 in the path to see whether the
e↵ect of the action included in the term can change the system state in a way that some integrity
constraints of the structural model become violated. If so, this action is declared as Potentially
Violating Action (PVA) and we refer to the constraints the PVA can violate as Susceptible
Violated Constraints (SVC). If the path has no PVAs, it is WE/SE (and if we are checking if
the operation is WE, we can directly confirm it at this step). Otherwise, we need to continue
the analysis with the next step.

In order to detect the PVAs we have defined a set of rules that automatically determine the
actions that may violate each integrity constraint of the structural model. Table 6.1 shows these
rules. First column (Susceptible Violated Constraint (SVC)) shows each constraint our method
supports (see them at Section 2.2.1) and second column (Potentially Violation Actions (PVAs))
determines the modification actions each constraint may violate. Several subrows for the same
integrity constraint indicate several actions that may violate this constraint. Sharp sign (#)
represents irrelevant variables and consecutive letters (x, y,. . .) represent free variables that

5This statement is true as long as the assumptions we discuss in Section 6.4 are fulfilled.

100

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

may be bound to any value in the term. Note that, when the minimum cardinality constraint
of a class (Cmin(cl)) or of an association (Cmin(as,role)) is not restricted (i.e. it is equal
to zero), then no action may violate this constraint. Similarly, when the maximum cardinality
constraint of a class (Cmax(cl)) or of an association (Cmax(as,role)) is not restricted (i.e.
it is equal to “*”), then no action may violate this constraint.

Table 6.1. Rules to determine the actions that may violate each integrity constraint.

Susceptible Vio-
lated Constraint
(SVC)

Potentially Violating Actions (PVAs)

1 Cmin(cl) 6=0 o.destroy, where o is an instance of class cl or of a subclass of
cl

classify x from oldCl, where oldCl includes the class cl
or one of its subclasses

2 Cmax(cl) 6=* x = new cl()

x = new cl’(), where cl’ is a subclass of cl
classify x to [newCl], where newCl includes the class cl
(only applies when cl is child of a generalization)

3 Mand(attr,cl) x = new cl()

x = new cl’(), where cl’ is a subclass of cl
classify x to newCl, where newCl includes the class cl

(only applies when cl is child of a generalization)
x.attr = null, where x.oclIsTypeOf(cl) or
x.oclIsTypeOf(cl’), where cl’ is a subclass of cl

4 Cmin(as,r) 6=0 x = new cl(), where cl (or one of its superclasses) participates
on the association as with role r’ (r’ is the opposite role to r in
as)
classify x to newCl, where newCl includes the class cl and
cl (or one of its superclasses) participates on the association as

with role r’ (r’ is the opposite role to r in as) (only applies when
cl is child of a generalization)
as.destroyLink(r=>x,r’=>y), where r’ is the opposite role
to r in as

as.clearAssoc(o), where o participates on the association as

with role r’ (r’ is the opposite role to r in as)

5 Cmax(as,r) 6=* as.createLink(r=>x,r’=>y), where r’ is the opposite role
to r in as

6 Disj(cl,{cl1,...,
cl

n

})
classify x to newCl, where newCl includes one cl

i

7 Cov(cl,{cl1,...,
cl

n

})
classify x from oldCl, where oldCl includes one cl

i

8 ID(attr,cl) o.attr = #, where o is an instance of the class cl or of a subclass
of cl

Continued on next page

101

CHAPTER 6. EXECUTABILITY

Table 6.1 – continued from previous page

Susceptible Vio-
lated Constraint
(SVC)

Potentially Violating Actions (PVAs)

9 Sym(as) as.createLink(r=>x,r’=>y), where r and r’ are the roles
which participate in as

as.destroyLink(r=>x,r’=>y), where r and r’ are the roles
which participate in as

10 Asym(as) as.createLink(r=>x,r’=>y), where r and r’ are the roles
which participate in as

11 Irrefl(as) as.createLink(r=>x,r’=>x), where r and r’ are the roles
which participate in as

12 ValueComp
(attr,op,v)

o.attr = #, where o is an instance of the class which owns attr
or of one of its subclasses

13 Referential(cl,as) classify o from oldCl, where o.oclIsTypeOf(cl) (be-
fore classifying o), oldCl includes the class cl and cl partici-
pates on the association as (only applies when cl is child of a
generalization)

In the following we discuss each row of Table 6.1:

1. First row determines the actions that may violate a minimum cardinality constraint of
a class cl when it is di↵erent to zero (Cmin(cl) 6=0). This constraint may be violated
when we destroy an object of class cl or of a subclass of cl, that is, when the number
of instances of cl is decreased (first subrow); or when we take out an object from class
cl or from one of its subclasses (second subrow).

2. Second row determines the actions that may violate a maximum cardinality constraint of
a class cl when it is di↵erent to “*” (Cmax(cl) 6=*). This constraint may be violated
when we create an object of class cl (first subrow) or of a subclass of cl (second subrow);
or when we classify an object to class cl (third subrow).

3. Third row determines the actions that may violate a mandatory attribute constraint
(Mand(attr,cl)). This constraint may be violated when we create an object of class cl
(first subrow) or of a subclass of cl (second subrow); when we classify an object to class
cl (third subrow); or when we remove the value of the attribute (fourth subrow).

4. Fourth row determines the actions that may violate a minimum cardinality constraint
of an association as in the role r when it is di↵erent to zero (Cmin(as,r) 6=0). This
constraint may be violated when we create a new object of class cl (where cl or one of
its superclasses participates on the association as with role r’, and r’ is the opposite
role to r in as) (first subrow); or when we classify an object to cl (second subrow); or
when we destroy a link of as (third subrow); or when we clear the association as (fourth
subrow).

102

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

5. Fifth row determines the action that may violate a maximum cardinality constraint of an
association as in the role r when it is di↵erent to “*” (Cmax(as,r) 6=*). This constraint
may be violated when we create a link of as.

6. Sixth row determines the action that may violate a disjointness of a generalization con-
straint (Disj(cl,cl1,...,cln), where cl generalizes cl1,...,cln). This constraint may be vio-
lated when we classify an object to one subclass of cl.

7. Seventh row determines the action that may violate a covering of a generalization con-
straint (Cov(cl,cl1,...,cln), where cl generalizes cl1,...,cln). This constraint may be vio-
lated when we take o↵ an object from one subclass of cl.

8. Eight row determines the action that may violate a identifier of an attribute constraint
(ID(attr,cl)). This constraint may be violated when we assign a new value to the
attribute attr of an object of type cl.

9. Ninth row determines the actions that may violate a symmetric constraint of a recursive
association as (Sym(as)). This constraint may be violated when we create (first subrow)
or destroy (second subrow) a link of as.

10. Tenth row determines the action that may violate an asymmetric constraint of a recursive
association as (Asym(as)). This constraint may be violated when we create a link of as.

11. Eleventh row determines the action that may violate a irreflexive constraint of a recursive
association as (Irrefl(as)). Similarly, this constraint may be violated when we create a
link of as.

12. Twelfth row determines the action that may violate a value comparison constraint over
an attribute (ValueComp(attr,op,v)). This constraint may be violated when we assign
a new value to the attribute attr.

13. Finally, thirteenth row determines the action that may violate a referential constraint over
an association (Referential(cl,as)). This constraint may be violated when we take o↵ an
object from the class which participates on the association as. Note that this constraint
is not violated when we destroy an object of type cl, because the Alf semantics for the
action DestroyObject ensures the destruction of all links in which the destroyed object
participates.

In this first step, the rules of Table 6.1 are applied over all the integrity constraints that
appear in the input structural model. As a result, we obtain the set of potentially violating
actions that may violate each integrity constraint of the structural model. Then, we may
determine whether a path p contains PVAs by comparing this set of actions with the set of
actions which appear in p. All actions in the intersection of both sets are PVAs (see Figure
6.15).

In order to do this comparison a mapping between the PVAs obtained from Table 6.1 and the
actions of the path has to be done. An action of the first set (cointaining generic PVAs) can be
mapped onto an action of the second set (containing specific PVAs obtained from the operation
paths) when the following conditions are satisfied: (1) both actions are from the same type

103

CHAPTER 6. EXECUTABILITY










Figure 6.15. Potentially Violating Actions (PVAs).

(e.g. CreateObject, ReclassifyObject, etc.); (2) the model elements referenced by the actions
coincide (e.g. both CreateObjects create objects of the same class); and (3) all instance-level
parameters of the generic PVA (i.e. variables x, y,...) can be bound to the parameters of the
specific PVA (irrelevant variables - i.e. # - may be bound to any parameter value in the specific
PVA).

Example 22 In order to illustrate how this comparison is done, consider a
simplified version of our initial class diagram (see Figure 6.16) and the operation
addSpecialMenu (defined in the context of class SpecialMenu) to add a new
special menu to the system.
























Figure 6.16. Simplified class diagram to illustrate how PVAs are obtained.

activity addSpecialMenu(name: String, discount: Real) {
SpecialMenu sm = new SpecialMenu();

sm.name = name;

sm.discount = discount;

}

Table 6.2 shows the PVAs (second column) and the SVCs they may violate (first
column) according to Table 6.1.

Table 6.3 shows the actions of the single path of operation addSpecialMenu (first
column) and points out which of them are PVAs (second column).

Then, the single execution path of the operation addSpecialmenu has three PVAs:

• First action (SpecialMenu sm = new SpecialMenu()) may violate three
constraints: (1) Cmax(SpecialMenu)=3, (2) Mand(name,Menu) and (3)
Mand(discount,SpecialMenu).

• Second action (sm.name = name) may violate one constraint: ID(name,Menu).

104

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.2. Computing the PVAs according to Table 6.1.

SVCs PVAs that may violate the SVC

Cmax(SpecialMenu)=3 x = new SpecialMenu()
classify x to SpecialMenu

Mand(name,Menu) x = new Menu()
x = new SpecialMenu()
o.name = null, where o is an instance
of Menu or of SpecialMenu

Mand(discount,SpecialMenu) x = new SpecialMenu()
classify x to SpecialMenu
o.discount = null, where o is an in-
stance of SpecialMenu

ID(name,Menu) o.name = #, where o is an instance of
Menu or of SpecialMenu

ValueComp(discount,>=,10) o.discount = #, where o is an in-
stance of SpecialMenu

Table 6.3. Obtaining PVAs from operation addSpecialMenu.

Actions of the operation addSpecialMenu Is PVA?

SpecialMenu sm = new SpecialMenu() Yes
sm.name = name Yes
sm.discount = discount Yes

• Last action (sm.discount = discount) may also violate one constraint:
ValueComp(discount,>=,10).

If the intersection of both sets is the empty set, there are no PVAs (and then, the path
is WE and SE). Otherwise, we need to continue the analysis with the next step in order to
determine whether the path is WE/SE or not.

6.3.2 Step 2: Discarding the Potentially Violating Actions

It may happen that the context in which a PVA is executed within the path guarantees that
the e↵ect of the PVA is not going to actually violate any of its SVCs. In these cases, the PVA
may be discarded. Roughly, there are two ways to discard a PVA: (1) when the path contains
a guard (i.e. a precondition) that ensures the PVA will only be executed in a safe context;
and (2) when the path contains another action which counters or complements the e↵ect of the
PVA in order to maintain the integrity of the system after executing the operation.

In this second step, our method analyzes each PVA returned by the previous step and tries
to discard them by analyzing the two possibilities commented above. If all PVAs that may
compromise the WE/SE of the path can be discarded, then it is classified as WE/SE. If not,
the path is marked as non-WE/SE and the corresponding corrective feedback is provided (see
Section 6.3.4).

105

CHAPTER 6. EXECUTABILITY

Note that, if a PVA may violate several SVCs, the PVA may be discarded i↵ it satisfies all the
conditions to avoid violating each SVC.

Next subsections (see Tables 6.5 to 6.22) describe the conditions that the path must satisfy
in order to discard a specific PVA when it may violate a specific SVC.

Before reading the tables

In order to facilitate the understanding of the following tables, first we show an empty table
(see Table 6.4) describing the content of each cell.

Note that the three types of patterns (formal, Alf and textual description) are equivalent
ways to express the conditions to discard a specific PVA when it may violate a specific SVC
(both indicated in the caption of the table). Note also that several subrows indicate several
di↵erent alternative conditions that can be used to discard that PVA; meaning that at least
one of them must be satisfied by the path.

Note also that, when we are verifying whether an operation is WE, we have more alter-
natives to discard a PVA than when we are verifying whether it is SE. This is because, since
we are verifying a weaker property, there may be more scenarios which satisfy the property.
Consequently, the conditions to discard a PVA in order to make an operation SE is a subset of
the conditions to discard a PVA in order to make the same operation WE.

As we introduced, the conditions in the tables are expressed as patterns that should be
matched to the path. When trying to match guard expressions (for instance, conditional struc-
tures) we follow a syntactic approach, i.e. we do not try to formally prove the expression in the
path implies the expression in the guard (which would be too costly for general expressions)
but just to check whether a path expression matches one of the syntactic variation patterns
predefined for the condition (even if tables only show one possible syntactic pattern, we have
computed several variations for most of them). When the algorithm cannot conclude the impli-
cation it assumes that one does not imply the other. This is why the method over-approximates
the results (as a necessary trade-o↵ to foster the e�ciency of the method) as commented in the
introduction of this section. The designer could optionally participate in this step to manually
identify those implications that were not found by the method using its syntactic approach.

PVA: CreateObject: o = new cl()

This subsection shows the conditions to discard a PVA of type CreateObject (term
<t

i

, 1, o = new cl()>) when it may violate a constraint (SVC) of type maximum cardi-
nality of a class (see Table 6.5), mandatory attribute (see Table 6.6) or minimum cardinality
of an association (see Table 6.7).

7n is the multiplicity of o = new cl() and classify x to [cl] in t
j

. . . t
i�1.

8m is the multiplicity of o.destroy() (o.oclIsTypeOf(cl)) and classify x from [cl] in t
j

. . . t
i�1.

9nTerms is the number of terms of the path we are addressing.
10The method requires a di↵erent DestroyObjectAction (destroy) / ReclassifyObjectAction (classify

from) action for each PVA.

106

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.4. Example table. The caption of each table contains the formal description of the term which
acts as PVA: <t

i

, multiplicity
i

, action
i

>. The caption also indicates in what case the conditions of
the table have to be applied, i.e. which specific constraint (SVC) is avoided to be violated when the
PVA may be discarded.

Property Conditions to discard the PVA

Row States whether the
condition must hold
only when verifying
weak executability
(indicated as WE) or
both weak and strong
executability (indicated
as WE/SE).

Formal
pattern

Describes the discarding pattern expressed
in reference of the terms and guards that
the path should or should not include in
order to discard the PVA (when it may
violate the SVC) indicated in the caption
of the table. Note that most of the for-
mal patterns include references to i, j, k,...
variables, where i makes reference to the
position of the PVA inside the path (as can
be seen in the caption of the table), and j,
k,... make reference to the position of the
rest of the actions wrt the PVA (some of
them also appear in the footnotes of the
table). Note also that the sharp sign (#)
represents irrelevant variables.

Alf pat-
tern

Describes the discarding pattern expressed
in reference of Alf statements that the path
should or should not include in order to
discard the PVA (when it may violate the
SVC) indicated in the caption of the ta-
ble. Note that some Alf patterns include
the PVA - meaning that the PVA should
be executed before or after some specific
actions - while others do not include it -
meaning that the position of the PVA is
irrelevant inside the path -.

Description Describes the discarding pattern expressed
using a textual description describing what
the path should or should not include in
order to discard the PVA (when it may vi-
olate the SVC) indicated in the caption of
the table.

107

CHAPTER 6. EXECUTABILITY

Table 6.5. Alternative conditions to discard a PVA of type CreateObject (term
<t

i

, 1, o = new cl()>) when it may violate a constraint (SVC) of type maximum cardinality of
a class: Cmax(cl) 6=*.

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <g#, cl.allInstances()!size()<Cmax(cl)-n7+m8,
t
j

, t
k

>, 1jiknTerms9

Alf pat-
tern

if (cl.allInstances()!size()<Cmax(cl)-n7+m8{

o = new cl(); //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when cl has already the maximum number of instances.

2 WE/SE Formal
pattern

9 <t
j

, �1, x.destroy()10>, x.oclIsTypeOf(cl) and 8
i,j

Alf pat-
tern

x.destroy()10; //x.oclIsTypeOf(cl)

Description The path includes an action to destroy an instance of cl that
compensates the creation of the new object.

3 WE/SE Formal
pattern

9 <t
j

, �1, classify x from cl10>,
x.oclIsTypeOf(cl) and 8 i,j

Alf pat-
tern

classify x from cl10; //x.oclIsTypeOf(cl)

Description The path includes an action to classify an object from cl to
another class in order to compensate the creation of the new
object. Note that this row only applies when cl is part (as a
child) of a generalization set.

4 WE Formal
pattern

n7-m8<Cmax(cl)-Cmin(cl), 1ji

Alf pat-
tern

x1.destroy(); //x1.oclIsTypeOf(cl)

...
x
m

.destroy(); //x
m

.oclIsTypeOf(cl)
y1 = new cl();
...
y
n

= new cl();
o = new cl(); //PVA
//n7-m8<Cmax(cl)-Cmin(cl)

Description The total number of creations minus deletions of objects of class
cl before the PVA does not exceed the di↵erence between the
maximum and the minimum cardinalities of cl.

108

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Example 23 In order to illustrate how Table 6.5 operates, consider a variant
of our initial class diagram (see Figure 6.17) and the operation addSpecialMenu

(defined in the context of class SpecialMenu) to add a new special menu to the
system.











Figure 6.17. Simplified class diagram to illustrate the use of Table 6.5.

activity addSpecialMenu() {
SpecialMenu sm = new SpecialMenu();

}

The operation addSpecialMenu is WE since it satisfies the 4th row of Table 6.5:
the total number of creations (without considering the PVA) (n=0) minus deletions
(m=0) does not exceed the di↵erence between the maximum
(Cmax(SpecialMenu)=3) and the minimum (Cmin(SpecialMenu)=0) cardinal-
ities of class SpecialMenu, i.e. 0-0<3-0. It means that this operation will be
successfully executed when we are not close to the maximum number of objects (i.e.
at most two existing special menus).

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 to 3 of Table 6.5).

In order to become SE, the operation addSpecialMenu must satisfy one of the
following conditions:

1. As row 1 of Table 6.5 states, the path contains a guard to ensure the PVA is
only executed when there exist less than three special menus. The result of
adding this guard to the operation is:

activity addSpecialMenu row1Added() {
if (SpecialMenu.allInstances()!size() < 3){
SpecialMenu sm = new SpecialMenu();

}
}

2. As row 2 of Table 6.5 states, the path includes an action to destroy an existing
special menu to compensate the creation of the menu sm. The result of adding
this action to the operation is:

109

CHAPTER 6. EXECUTABILITY

activity addSpecialMenu row2Added() {
SpecialMenu existingSm = getSpecialMenu();

existingSm.destroy();

SpecialMenu sm = new SpecialMenu();

}

Where the operation getSpecialMenu() returns an existing special menu.

3. As row 3 of Table 6.5 states, the path includes an action to take o↵ an existing
special menu from SpecialMenu. The result of adding this action to the
operation is:

activity addSpecialMenu row3Added() {
SpecialMenu existingSm = getSpecialMenu();

classify existingSm from SpecialMenu;

SpecialMenu sm = new SpecialMenu();

}

Table 6.6. Conditions to discard a PVA of type CreateObject (term <t
i

, 1, o = new cl()>)
when it may violate a constraint (SVC) of type mandatory attribute: Mand(attr,cl).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <t
j

, �1, o.attr = #>, i<j

Alf pat-
tern

o = new cl(); //PVA

...
o.attr = #;

Description The path includes, after the PVA, at least one action to initial-
ize the attribute attr.

Example 24 In order to illustrate the how Table 6.6 operates, consider a variant
of our initial class diagram (see Figure 6.18) and the operation
addRestaurantBranch (defined in the context of class RestaurantBranch)
to add a new restaurant branch to the system.





Figure 6.18. Simplified class diagram to illustrate the use of Table 6.6.

activity addRestaurantBranch() {
RestaurantBranch rb = new RestaurantBranch();

}

The operation addRestaurantBranch is not WE nor SE since it does not satisfy
the necessary condition for being WE/SE (row 1 of Table 6.6). Then, after the
execution of this operation we always reach an inconsistent state of the system where

110

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

the new restaurant branch has no address (a situation forbidden by the constraint
Mand(address,RestaurantBranch)).

In order to become WE/SE, as row 1 of Table 6.6 states, the operation
addRestaurantBranch should include, after the creation of the new restaurant
branch, at least one action to initialize its attribute address. The result of adding
this action to the operation is:

activity addRestaurantBranch row1Added(in address: String) {
RestaurantBranch rb = new RestaurantBranch();

rb.address = address;

}

Table 6.7. Conditions to discard a PVA of type CreateObject (term <t
i

, 1, o = new cl()>) when
it may violate a constraint (SVC) of type minimum cardinality of an association: Cmin(as,r

b

) 6=0.
Note: r

b

may be replaced for the opposite role of as (i.e. r
a

).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <t
j

, �Cmin(as,r
b

), as.CreateLink(r
a

=>o,r
b

=>x)>, i<j

Alf pattern o = new cl(); //PVA
...
for (i in 1..�Cmin(as,r

b

)) {
...
as.createLink(r

a

=>o,r
b

=>x);
...

}
Description The path includes, after the PVA, at least Cmin(as,r

b

) actions to
create a link of as between the new object o (with role r

a

) and
another object (with role r

b

).

Example 25 In order to illustrate how Table 6.7 operates, consider a variant of
our initial class diagram (see Figure 6.19) and the operation addMenu (defined in
the context of class Menu) to add a new menu to the system.






Figure 6.19. Simplified class diagram to illustrate the use of Table 6.7.

activity addMenu() {
Menu m = new Menu();

}

The operation addMenu is not WE nor SE since it does not satisfy the neces-
sary condition for being WE/SE (row 1 of Table 6.7). Then, after the execu-
tion of this operation we always reach an inconsistent state of the system where
the new menu is not linked to any course (a situation forbidden by the constraint
Cmin(IsComposedOf,course)=3).

111

CHAPTER 6. EXECUTABILITY

In order to become WE/SE, as row 1 of Table 6.7 states, the operation
addMenu should include, after the creation of the new menu, at least three actions
to create a link of IsComposedOf between the new menu (m) and any course.

activity addMenu row1Added(in courses: Course[3..*]) {
Menu m = new Menu();

for (i in 1..� courses!size()){
IsComposedOf.createLink(menu=>m,course=> courses[i]);

}
}

PVA: DestroyObject: o.destroy()

This subsection shows the conditions to discard a PVA of type DestroyObject (term
<t

i

, 1, o.destroy()>) when it may violate a constraint (SVC) of type minimum cardinality
of a class (see Table 6.8).

Example 26 In order to illustrate how Table 6.8 operates, consider a variant of
our initial class diagram (see Figure 6.20) and the operation destroySpecialMenu
(defined in the context of class SpecialMenu) to destroy an existing special menu.











Figure 6.20. Simplified class diagram to illustrate the use of Table 6.8.

activity destroySpecialMenu() {
self.destroy();

}

The operation destroySpecialMenu is WE since it satisfies the 4th row of Table
6.8: the total number of deletions (without considering the PVA) (n=0) minus cre-
ations (m=0) does not exceed the di↵erence between the maximum
(Cmax(SpecialMenu)=*) and the minimum (Cmin(SpecialMenu)=1) cardinal-
ities of class SpecialMenu, i.e. 0-0<*-1. It means that this operation will be
successfully executed when we are not close to the minimum number of objects (i.e.
at least two existing special menus). However, this operation is not SE since it does
not satisfy any of the necessary conditions for being SE (rows 1 to 3 of Table 6.8).

In order to become SE, the operation destroySpecialMenu must satisfy one of
the following conditions:

112

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.8. Alternative conditions to discard a PVA of type DestroyObject (term
<t

i

, 1, o.destroy()>, where o.oclIsTypeOf(cl)) when it may violate a constraint (SVC) of
type minimum cardinality of a class: Cmin(cl) 6=0.

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <g#, cl.allInstances()!size()>Cmin(cl)+n7-m8,
t
j

, t
k

>, 1jiknTerms9

Alf pat-
tern

if (cl.allInstances()!size()>Cmin(cl)+n7-m8

){
o.destroy(); //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when cl has already the minimum number of instances.

2 WE/SE Formal
pattern

9 <t
j

, �1, x = new cl()11>, 8 i,j

Alf pat-
tern

x = new cl();

Description The path includes at least one action to create an instance of
cl that compensates the deletion of the object o.

3 WE/SE Formal
pattern

9 <t
j

, �1, classify x to cl11>, 8 i,j

Alf pat-
tern

classify x to cl10; //x.oclIsTypeOf(cl)

Description The path includes at least one action to classify an object to
cl in order to compensate the deletion of the object o. Note
that this row only applies when cl is part (as a child) of a
generalization set.

4 WE Formal
pattern

m8-n7<Cmax(cl)-Cmin(cl), 1ji

Alf pat-
tern

x1 = new cl();

...
x
n

= new cl();
y1.destroy(); //y1.oclIsTypeOf(cl)
...
y
m

.destroy(); //y
m

.oclIsTypeOf(cl)
o.destroy(); //PVA
//m8-n7<Cmax(cl)-Cmin(cl)

Description The total number of deletions minus creations of objects of class
cl before the PVA does not exceed the di↵erence between the
maximum and the minimum cardinalities of cl. Note that if
Cmax(cl)=*, we consider it tends to infinite.

113

CHAPTER 6. EXECUTABILITY

1. As row 1 of Table 6.8 states, the path contains a guard to ensure the PVA is
only executed when exists more than one special menu. The result of adding
this guard to the operation is:

activity destroySpecialMenu row1Added() {
if (SpecialMenu.allInstances()!size() > 1) {
self.destroy();

}
}

2. As row 2 of Table 6.8 states, the path includes an action to create a new special
menu to compensate the deletion of self. The result of adding this action to
the operation is:

activity destroySpecialMenu row2Added() {
SpecialMenu sm = new SpecialMenu();

self.destroy();

}

3. As row 3 of Table 6.8 states, the path includes an action to classify an exist-
ing special menu to SpecialMenu. The result of adding this action to the
operation is:

activity destroySpecialMenu row3Added() {
Menu m = getMenu();

classify m to SpecialMenu;

self.destroy();

}

Where the operation getMenu() returns an existing menu.

PVA: AddStructuralFeatureValue: o.attr = value

This subsection shows the conditions to discard a PVA of type AddStructuralFeatureValue

(term <t
i

, 1, o.attr = value>) when it may violate a constraint (SVC) of type value
comparison (see Table 6.9) or identifier (see Table 6.10). Note that both constraints may only
a↵ect the strong executability of an operation (since we are always able to find the proper input
values to make the operation WE).

Example 27 In order to illustrate how Table 6.9 operates, consider a variant
of our initial class diagram (see Figure 6.21) and the operation setDiscount

(defined in the context of class SpecialMenu) to modify the value of the attribute
discount.










Figure 6.21. Simplified class diagram to illustrate the use of Table 6.9.

114

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.9. Conditions to discard a PVA of type AddStructuralFeatureValue (term
<t

i

, 1, o.attr = value>, where o.oclIsTypeOf(cl)) when it may violate a constraint (SVC)
of type value comparison: ValueComp(attr,op,v).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, value op v, t
j

, t
k

>, 1jiknTerms9

Alf pat-
tern

if (value op v){

o.attr = value; //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the comparison stated in the constraint is not sat-
isfied.

activity setDiscount(in newDiscount: Real) {
self.discount = newDiscount;

}

The operation setDiscount is WE (since weak executability does not impose any
condition in this case). It means that this operation will be successfully executed
when the proper value (i.e. a value greater than 10) is given to the input argument
newDiscount.

However, this operation is not SE since it does not satisfy the condition for being
SE (row 1 of Table 6.9). In order to become SE, the operation setDiscount

should contain a guard to ensure the PVA is only executed when the comparison
newDiscount>=10 is satisfied. The result of adding this action to the operation
is:

activity setDiscount row1Added(in newDiscount: Real) {
if (newDiscount >= 10) {
self.discount = newDiscount;

}
}

Table 6.10. Alternative conditions to discard a PVA of type AddStructuralFeatureValue (term
<t

i

, 1, o.attr = value>, where o.oclIsTypeOf(cl)) when it may violate a constraint (SVC) of
type identifier: ID(attr,cl).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, !cl.allInstances()!exists(x|x.attr =

value), t
j

, t
k

> AND 69 <t
l

, �1, y.attr = value>,
1jliknTerms9 and x 6=y 6=o

Alf pat-
tern

if (!cl.allInstances()!
exists(x|x.attr=value)){
//value is not assigned to other object

Continued on next page

115

CHAPTER 6. EXECUTABILITY

Table 6.10 – continued from previous page

Property Conditions to discard the PVA

o.attr = value; //PVA

...

}
Description The path contains a guard that guarantees there is no another

object of type cl with the same value at the attribute attr.

2 SE Formal
pattern

9 <g#, x.attr = value, t
j

, t
k

> AND 9 <t
l

, 1, x.attr
= value2>, 1jlknTerms9, l<i and value26=value

Alf pat-
tern

if (x.attr = value){

...

x.attr = value2;

...

o.attr = value; //PVA

...

}
Description The path contains an object x of class cl with value value

for the attribute attr. The value of attr for x is changed to
another value.

3 SE Formal
pattern

9 <g#, x.attr = value, t
j

, t
k

> AND 9 <t
l

, 1,
x.destroy()>, 1jlknTerms9, l<i

Alf pat-
tern

if (x.attr = value){

...

x.destroy();

...

o.attr = value; //PVA

...

}
Description The path contains an object x of class cl with value value

for the attribute attr. The object x is destroyed.

4 SE Formal
pattern

9 <g#, x.attr = value, t
j

, t
k

> AND 9 <t
l

, 1, classify
x from cl>, 1jlknTerms9, l<i

Alf pat-
tern

if (x.attr = value){

...

classify x from cl;

...

o.attr = value; //PVA

...

}
Continued on next page

116

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.10 – continued from previous page

Property Conditions to discard the PVA
Description The path contains an object x of class cl with value value

for the attribute attr. The object x is reclassified from cl to
another class where attr does not belongs to. Note that this
row only applies when cl is part (as a child) of a generalization
set.

Example 28 In order to illustrate how Table 6.10 operates, consider a variant of
our initial class diagram (see Figure 6.22) and the operation setName (defined in
the context of class Menu) to modify the name of the self menu.








Figure 6.22. Simplified class diagram to illustrate the use of Table 6.10.

activity setName(in newName: String) {
self.name = newName;

}

The operation setName is WE (since weak executability does not impose any con-
dition in this case). It means that this operation will be successfully executed when
the proper value (i.e. a name di↵erent to the name of all existing menus) is given
to the input argument newName.

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 to 4 of Table 6.10).

In order to become SE, the operation setName must satisfy one of the following
conditions:

1. As row 1 of Table 6.10 states, the path contains a guard to ensure the PVA is
only executed when there is no other menu with the same name in the system.
The result of adding this guard to the operation is:

activity setName row1Added(in newName: String) {
if (!Menu.allInstances()!exists(x|x.name= newName)){
self.name = newName;

}
}

2. As row 2 of Table 6.10 states, the path includes an action to change the name
of an existing menu with name name. The result of adding this action to the
operation is:

117

CHAPTER 6. EXECUTABILITY

activity setName row2Added(in newName: String, in newName2:

String) {
if (Menu.allInstances()!exists(x|x.name= newName)){
Menu m = getMenu(newName);

m.name = newName2;

self.name = newName;

}
}

Where the operation getMenu(name) returns the menu with name name.

3. As row 3 of Table 6.10 states, the path includes an action to destroy the existing
menu with name name. The result of adding this action to the operation is:

activity setName row3Added(in newName: String) {
if (Menu.allInstances()!exists(x|x.name= newName)){
Menu m = getMenu(newName);

m.destroy();

self.name = newName;

}
}

Note that, in this example, row 4 of Table 6.10 does not apply since the class
Menu is not a child of a generalization set.

PVA: ClearStructuralFeatureAction: o.attr = null

This subsection shows the conditions to discard a PVA of type ClearStructuralFeature-

Action (term <t
i

, 1, o.attr = null>) when it may violate a constraint (SVC) of type
mandatory attribute (see Table 6.11).

Table 6.11. Alternative conditions to discard a PVA of type ClearStructuralFeatureAction (term
<t

i

, 1, o.attr = null>, where o.oclIsTypeOf(cl)) when it may violate a constraint (SVC) of
type mandatory attribute: Mand(attr,cl).

Property Conditions to discard the PVA
1 WE/SE Formal

pattern
9 <t

j

, Cmin(attr), o.attr = #>, i<j

Alf pat-
tern

o.attr = null; //PVA

...
for (i in 1..� Cmin(attr)) {
...
o.attr = #;
...

}
Description The path includes, after the PVA, at least Cmin(attr) actions

to add new values to the attribute, where Cmin(attr) is the
minimum cardinality of the attribute attr according to the
class diagram.

118

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Example 29 In order to illustrate how Table 6.11 operates, consider a variant
of our initial class diagram (see Figure 6.23) and the operation clearAddress

(defined in the context of class RestaurantBranch) to clear the address of the
self restaurant.





Figure 6.23. Simplified class diagram to illustrate the use of Table 6.11.

activity clearAddress() {
self.address = null;

}

The operation clearAddress is not WE nor SE since it does not satisfy the
necessary condition for being WE/SE (row 1 of Table 6.11). Then, after the execu-
tion of this operation we always reach a inconsistent state of the system where the
restaurant self does not have any address assigned.

In order to become WE/SE, as row 1 of Table 6.11 states, the operation
clearAddress must include one action (since the minimum cardinality of the
address attribute is equal to 1) to add a new value to the attribute address.
The result of adding this action to the operation is:

activity clearAddress(in newAddress: String) {
self.address = null;

self.address = newAddress;

}

PVA: CreateLink: as.createLink(r
a

=>o1,rb=>o2)

This subsection shows the conditions to discard a PVA of type CreateLink (term
<t

i

, 1, as.createLink(r
a

=>o1,rb=>o2>) when it may violate a constraint (SVC) of type
maximum cardinality of an association (see Table 6.12), symmetric association (see Table 6.13),
asymmetric association (see Table 6.14) or irreflexive association (see Table 6.15).

Table 6.12. Alternative conditions to discard a PVA of type CreateLink (term
<t

i

, 1, as.createLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may violate a
constraint (SVC) of type maximum cardinalily of an association: Cmax(as,r

b

) 6=*. Note: r
b

may be
replaced for the opposite role of as (i.e. r

a

).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <g#, o1.rb!size()<Cmax(as,r
b

)-o12+p13, t
j

, t
k

>,
1jiknTerms9

Alf pat-
tern

if (o1.rb!size()<Cmax(as,r
b

)-o12+p13){

as.createLink(r
a

=>o1,rb=>o2); //PVA

Continued on next page

119

CHAPTER 6. EXECUTABILITY

Table 6.12 – continued from previous page

Property Conditions to discard the PVA

...

}
Description The path contains a guard that prevents the execution of the

PVA when as has already the maximum number of links.

2 WE/SE Formal
pattern

9 <t
j

, �1, as.destroyLink(r
a

=>o1,rb=>x)14>, 8 i,j

Alf pat-
tern

as.destroyLink(r
a

=>o1,rb=>x)14;

Description The path includes an action to destroy a link of as that com-
pensates the creation of the new link.

3 WE/SE Formal
pattern

9 <t
j

, 1, o1 = new cl()>, j<i AND 69 <t
k

, �Cmax(as,r
b

),
as.createLink(r

a

=>o1,rb=>x)>, k<i
Alf pat-
tern

o1 = new cl();

/* Less than Cmax(as,r
b

) links of as where o1
participates are created */

...

as.createLink(r
a

=>o1,rb=>o2); //PVA

Description The path includes the creation of the object o1 and does not
assign Cmax(as,r

b

) links or more before the PVA.

4 WE/SE Formal
pattern

9 <t
j

, 1, classify o1 to [cl]>, j<i AND 69 <t
k

,
Cmax(as,r

b

), as.createLink(r
a

=>o1,rb=>x)>, k<i
Alf pat-
tern

classify o1 to [cl];

/* Less than Cmax(as,r
b

) links of as where o1
participates are created */

...

as.createLink(r
a

=>o1,rb=>o2); //PVA

Description The path includes an action to classify the object o1 to the
class cl without assigning Cmax(as,r

b

) links or more before
the PVA. Note that this row only applies when cl is part (as
child) of a generalization set.

5 WE Formal
pattern

o12-p13<Cmax(as,r
b

)-Cmin(as,r
b

), 1ji

Alf pat-
tern

as.destroyLink(r
a

=>o1,rb=>x1);

...

as.destroy(r
a

=>o1,rb=>x
p

);

as.createLink(r
a

=>o1,rb=>y1);
...

as.createLink(r
a

=>o1,rb=>y
o

);

as.createLink(r
a

=>o1,rb=>o2); //PVA

Continued on next page

120

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.12 – continued from previous page

Property Conditions to discard the PVA

//o12-p13<Cmax(as,r
b

)-Cmin(as,r
b

)

Description The total number of link creations minus link deletions of as-
sociation as before the PVA does not exceed the di↵erence
between the maximum and the minimum cardinalities of asso-
ciation as.

Example 30 In order to illustrate how Table 6.12 operates, consider a variant of
our initial class diagram (see Figure 6.24) and the operation addLocation (defined
in the context of class RestaurantBranch) to link the self restaurant branch
with its location.










Figure 6.24. Simplified class diagram to illustrate the use of Table 6.12.

activity addLocation(in c: City) {
IsLocatedIn.createLink(restaurantBranch=>self,city=>c);

}

The operation addLocation is WE since it satisfies the 5th row of Table 6.12: the
total number of link creations (without considering the PVA) (o=0) minus link dele-
tions (p=0) does not exceed the di↵erence between the maximum
(Cmax(IsLocatedIn,city)=1) and the minimum (Cmin(IsLocatedIn,city)=0)
cardinalities of the association IsLocatedIn in the role city, i.e. 0-0<1-0. It
means that this operation will be successfully executed when we are not close to the
maximum number of links (i.e. when rb is not linked to any city).

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 to 4 of Table 6.12).

In order to become SE, the operation addLocation must satisfy one of the follow-
ing conditions:

1. As row 1 of Table 6.12 states, the path contains a guard to ensure the PVA is
only executed when the restaurant branch is not linked to any city. The result
of adding this guard to the operation is:

activity addLocation row1Added(in c: City) {
if (self.city->size() < 1){
IsLocatedIn.createLink(restaurantBranch=>self,city=>c);

}
}

2. As row 2 of Table 6.12 states, the path includes an action to destroy an existing
link of IsLocatedIn between self and its current city. The result of adding
this action to the operation is:

121

CHAPTER 6. EXECUTABILITY

activity addLocation row2Added(in c: City) {
if (self.city->size() == 1){
IsLocatedIn.destroyLink(restaurantBranch=>self,city=>self.

city);

IsLocatedIn.createLink(restaurantBranch=>self,city=>=>c);

}
}

3. As row 3 of Table 6.12 states, the path includes the creation of the restaurant
branch and does not assign any city before the PVA. The result of adding this
action to the operation is:

activity addLocation row3Added(in c: City) {
RestaurantBranch rb = new RestaurantBranch();

IsLocatedIn.createLink(restaurantBranch=>rb,city=>c);

}
Note that, in this example, row 4 of Table 6.12 does not apply since the class
RestaurantBranch is not a child of a generalization set.

Table 6.13. Conditions to discard a PVA of type CreateLink (term
<t

i

, 1, as.createLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may vio-
late a constraint (SVC) of type symmetric association: Sym(as).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <t
j

, 1, as.createLink(r
b

=>o1,ra=>o2)>, 8 i,j

Alf pat-
tern

as.createLink(r
b

=>o1,ra=>o2)

Description The path includes the creation of the symmetric link.

Example 31 In order to illustrate how Table 6.13 operates, consider a variant of
our initial class diagram (see Figure 6.25) and the operation
addSubstituteCourse (defined in the context of class Course) to add a sub-
stituting course to the self course.












 


Figure 6.25. Simplified class diagram to illustrate the use of Table 6.13.

activity addSubstituteCourse(in c: Course) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

}

The operation addSubstituteCourse is not WE nor SE since it does not satisfy
the necessary condition for being WE/SE (row 1 of Table 6.13). Then, after the

122

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

execution of this operation we always reach a inconsistent state of the system where
the course self can be substituted by c but c cannot be substituted by self.

In order to become WE/SE, as row 1 of Table 6.13 states, the operation
addSubstituteCourse must include one action to create the symmetric link.
The result of adding this action to the operation is:

activity addSubstituteCourse row1Added(in c: Course) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

CanBeSubstitutedBy.createLink(replaced=>c,replacement=>self);

}

Table 6.14. Conditions to discard a PVA of type CreateLink (term
<t

i

, 1, as.createLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may vio-
late a constraint (SVC) of type asymmetric association: Asym(as).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, !o2.rb!includes(o1), tj , tk>, 1jiknTerms9

Alf pat-
tern

if (!o2.rb!includes(o1)){

as.createLink(r
a

=>o1,rb=>o2); //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the symmetric link does not exist.

2 SE Formal
pattern

9 <t
j

, 1, as.destroyLink(r
b

=>o1,ra=>o2)>, 8 i,j

Alf pat-
tern

as.destroyLink(r
b

=>o1,ra=>o2);

Description The path includes an action to destroy the symmetric link.

Example 32 In order to illustrate how Table 6.14 operates, consider a variant of
our initial class diagram (see Figure 6.26) and the operation
addSubstituteCourse2 (defined in the context of class Course) to add a sub-
stituting course to the self course.












 


Figure 6.26. Simplified class diagram to illustrate the use of Table 6.14.

activity addSubstituteCourse2(in c: Course) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

}

123

CHAPTER 6. EXECUTABILITY

The operation addSubstituteCourse2 is WE (since weak executability does not
impose any condition in this case). It means that this operation will be successfully
executed when the symmetric link does not exist in the system (i.e. c cannot be
replaced by self).

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 and 2 of Table 6.14).

In order to become SE, the operation addSubstituteCourse2 must satisfy one
of the following conditions:

1. As row 1 of Table 6.14 states, the path contains a guard that prevents the
execution of the PVA when c can be replaced by self. The result of adding
this guard to the operation is:

activity addSubstituteCourse2 row1Added(in c: Course) {
if (!c.replacement->includes(self)) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

}
}

2. As row 2 of Table 6.14 states, the path contains an action to destroy the
symmetric link. The result of adding this action to the operation is:

activity addSubstituteCourse2 row2Added(in c: Course) {
CanBeSubstitutedBy.createLink(replacement=>self,replaced=>c);

CanBeSubstitutedBy.destroyLink(replaced=>self,replacement=>c);

}

Table 6.15. Conditions to discard a PVA of type CreateLink (term
<t

i

, 1, as.createLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may vio-
late a constraint (SVC) of type irreflexive association: Irrefl(as).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, o1 6=o2, tj , tk>, 1jiknTerms9

Alf pat-
tern

if (o1!=o2){

as.createLink(r
a

=>o1,rb=>o2); //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the two member ends are the same object.

Example 33 In order to illustrate how Table 6.15 operates, consider a variant of
our initial class diagram shown in Figure 6.27 and the operation
addSubstituteCourse3 (defined in the context of class Course) to add a sub-
stituting course to a course.

activity addSubstituteCourse3(in c: Course) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

}

124

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS












 


Figure 6.27. Simplified class diagram to illustrate the use of Table 6.15.

The operation addSubstituteCourse3 is WE (since weak executability does not
impose any condition in this case). It means that this operation will be successfully
executed when c and self are not the same object.

However, this operation is not SE since it does not satisfy the condition for being
SE (row 1 of Table 6.15).

In order to become SE, the operation addSubstituteCourse3 should contain a
guard to ensure the PVA is only executed when c and self does not refer to the
same object. The result of adding this guard to the operation is:

activity addSubstituteCourse3 row1Added(in c: Course) {
if (c != self) {
CanBeSubstitutedBy.createLink(replaced=>self,replacement=>c);

}
}

PVA: DestroyLink: as.destroyLink(r
a

=>o1,rb=>o2)

This subsection shows the conditions to discard a PVA of type DestroyLink (term
<t

i

, 1, as.destroyLink(r
a

=>o1,rb=>o2)>) when it may violate a constraint (SVC) of type
minimum cardinality of an association (see Table 6.16) or a symmetric association (see Table
6.17).

Example 34 In order to illustrate how Table 6.16 operates, consider a variant of
our initial class diagram (see Figure 6.28) and the operation
eliminateRelatedCourse (defined in the context of class Menu) to eliminate
course from a menu.

activity eliminateRelatedCourse(in c: Course) {
IsComposedOf.destroyLink(menu=>self,course=>c);

}

The operation eliminateRelatedCourse is WE since it satisfies the 5th row of
Table 6.16: the total number of link deletions (without considering the PVA) (p=0)

11The method requires a di↵erent CreateObjectAction (new) / ReclassifyObjectAction (classify to)
action for each PVA.

12o is the multiplicity of as.createLink(r
a

=>o1,r
b

=>x) in t
j

. . . t
i

.
13p is the multiplicity of as.destroyLink(r

a

=>o1,r
b

=>x) in t
j

. . . t
i

.
14The method requires a di↵erent destroyLink action for each PVA.
15The method requires a di↵erent createLink action for each PVA.

125

CHAPTER 6. EXECUTABILITY

Table 6.16. Conditions to discard a PVA of type DestroyLink (term
<t

i

, 1, as.destroyLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may vio-
late a constraint (SVC) of type minimum cardinality of an association: Cmin(as,r

b

) 6=0. Note: r
b

may be replaced for the opposite role of as (i.e. r
a

).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <g#, o1.rb!size()>Cmin(as,r
b

)+o12-p13, t
j

, t
k

>,
1jiknTerms9

Alf pat-
tern

if (o1.rb!size()>Cmin(as,r
b

)+o12-p13){

as.destroyLink(r
a

=>o1,rb=>o2); //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when as has already the minimum number of links.

3 WE/SE Formal
pattern

9 <t
j

, 1, o1.destroy()>, i<j

Alf pat-
tern

o1.destroy();

Description The path includes the destruction of the object o1.

3 WE/SE Formal
pattern

9 <t
j

, �1, classify o1 from cl>, i<j

Alf pat-
tern

classify o1 from cl

Description The object o1 is reclassified from cl to another class where as
does not belongs to. Note that this row only applies when cl
is part of a generalization set.

4 WE Formal
pattern

p13-o12<Cmax(as,r
b

)-Cmin(as,r
b

), 1ji

Alf pat-
tern

as.createLink(r
a

=>o1,rb=>x1);

...
as.createLink(r

a

=>o1,rb=>x
o

);
as.destroyLink(r

a

=>o1,rb=>y1);
...
as.destroy(r

a

=>o1,rb=>y
p

);
as.destroy(r

a

=>o1,rb=>o2); //PVA
//p13-o12<Cmax(as,r

b

)-Cmin(as,r
b

)
Description The total number of link deletions minus link creations of as-

sociation as before the PVA does not exceed the di↵erence
between the maximum and the minimum cardinalities of asso-
ciation as.

126

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS






Figure 6.28. Simplified class diagram to illustrate the use of Table 6.16.

minus link creations (o=0) does not exceed the di↵erence between the maximum
(Cmax(IsComposedOf,course)=*) and the minimum
(Cmin(IsComposedOf,course)=3) cardinalities of association IsComposedOf

in the role course, i.e. 0-0<*-3. It means that this operation will be successfully
executed when we are not close to the minimum number of links (i.e. at least three
related courses). However, this operation is not SE since it does not satisfy any of
the necessary conditions for being SE (rows 1 to 4 of Table 6.16).

In order to become SE, the operation eliminateRelatedCourse must satisfy
one of the following conditions:

1. As row 1 of Table 6.16 states, the path contains a guard to ensure the PVA is
only executed when the menu self is related with more than three courses.
The result of adding this guard to the operation is:

activity eliminateRelatedCourse row1Added(in c: Course) {
if (self.course()->size > 3) {
IsComposedOf.destroyLink(menu=>self,course=>c);

}
}

2. As row 2 of Table 6.16 states, the path includes an action to create a new link
between the menu self and another course to compensate the deletion of the
link. The result of adding this action to the operation is:

activity eliminateRelatedCourse row2Added(in c: Course, in

c2: Course) {
IsComposedOf.createLink(menu=>self,course=>c2);

IsComposedOf.destroyLink(menu=>self,course=>c);

}
Note also that, in this example, row 3 of Table 6.16 does not apply since the
class Menu is not a child of a generalization set.

Example 35 In order to illustrate how Table 6.17 operates, consider a variant of
our initial class diagram (see Figure 6.29) and the operation
eliminateSubstituteCourse (defined in the context of class Course) to elim-
inate a substituting course from a course.

activity eliminateSubstituteCourse(in c: Course) {
CanBeSubstitutedBy.destroyLink(replaced=>self,

replacement=>c);

}

The operation eliminateSubstituteCourse is not WE nor SE since it does
not satisfy any of the necessary conditions for being WE/SE (rows 1 to 3 of Table

127

CHAPTER 6. EXECUTABILITY

Table 6.17. Conditions to discard a PVA of type DestroyLink (term
<t

i

, 1, as.destroyLink(r
a

=>o1,rb=>o2)>, where o1.oclIsTypeOf(cl)) when it may vio-
late a constraint (SVC) of type symmetric association: Sym(as).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <t
j

, 1, as.destroyLink(r
b

=>o1,ra=>o2)>, 8 i,j

Alf pat-
tern

as.destroyLink(r
b

=>o1,ra=>o2);

Description The path includes an action to destroy the symmetric link.

2 WE/SE Formal
pattern

9 <t
j

, 1, classify o
k

from (cl)>, k = {1,2}, i<j

Alf pat-
tern

classify o
k

from (cl)>; //k = {1,2}

Description The path includes an action to reclassify from cl one of the
objects which participates in the PVA. Note that this row only
applies when cl is part (as child) of a generalization set.












 


Figure 6.29. Simplified class diagram to illustrate the use of Table 6.17.

6.17). Then, after the execution of this operation we always reach a inconsistent
state of the system where the course c can be substituted by self but self cannot
be substituted by c.

In order to become SE, the operation eliminateRelatedCourse must satisfy
one of the following conditions:

1. As row 1 of Table 6.17 states, the path includes an action to also destroy the
symmetric link. The result of adding this action to the operation is:

activity eliminateSubstituteCourse row1Added(in c: Course) {
CanBeSubstitutedBy.destroyLink(replaced=>self,

replacement=>c);

CanBeSubstitutedBy.destroyLink(replacement=>self,

replaced=>c);

}

Note also that, in this example, row 2 of Table 6.17 does not apply since the
class Menu is not a child of a generalization set.

128

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

PVA: ClearAssociation: as.clearAssoc(o1)

This subsection shows the conditions to discard a PVA of type ClearAssociation

(term <t
i

, 1, as.clearAssoc(as)>) when it may violate a constraint (SVC) of type mini-
mum cardinality of an association (see Table 6.18).

Table 6.18. Conditions to discard a PVA of type ClearAssociation (term
<t

i

, 1, as.clearAssoc(o1)>, where o1.oclIsTypeOf(cl)) when it may violate a constraint
(SVC) of type minimum cardinality of an association: Cmin(as,r

b

) 6=0. Note: r
b

may be replaced for
the opposite role of as (i.e. r

a

).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9<t
j

, �Cmin(as,r
b

), as.createLink(r
a

=>o1,rb=>x)15>,
i<j

Alf pat-
tern

o = new cl(); //PVA

...
for (i in 1..Cmin(as,r

b

)){
...
as.createLink(r

a

=>o1,rb=>x)15;
...

}
Description The path includes at least Cmin(as,r

b

) actions which create
a link of as between the object o1 (with role r

a

) and another
obect (with role r

b

).

2 WE/SE Formal
pattern

9 <t
j

, �1, classify o1 from cl>, i<j

Alf pat-
tern

classify o1 from cl;

Description The path includes an action to reclassify o1 from cl to another
class where as does not belongs to. Note that this row only
applies when cl is part (as child) of a generalization set.

129

CHAPTER 6. EXECUTABILITY

Example 36 In order to illustrate how Table 6.18 operates, consider a variant
of our initial class diagram (see Figure 6.30) and the operation clearCourses

(defined in the context of class Menu) to clear all the courses related with a menu.






Figure 6.30. Simplified class diagram to illustrate the use of Table 6.18.

activity clearCourses() {
IsComposedOf.clearAssoc(self);

}

The operation clearCourses is not WE nor SE since it does not satisfy any of
the necessary conditions for being WE/SE (rows 1 to 3 of Table 6.18). Then, after
the execution of this operation we always reach a inconsistent state of the system
where the menu self is not composed of any course.

In order to become WE/SE, the operation clearCourses must satisfy one of the
following conditions:

1. As row 1 of Table 6.18 states, the path includes the creation of at least
Cmin(IsComposedOf,course) links of IsComposedOf between the menu
self and any courses. The result of adding this action to the operation is:

activity clearCourses row1Added(in courses: Courses[3..*])

{
IsComposedOf.clearAssoc(self);

for (i in 1.. courses->size()) {
IsComposedOf.createLink(menu->self,course-> courses[i]);

}
}

Note also that, in this example, row 2 of Table 6.18 does not apply since the
class Menu is not a child of a generalization set.

PVA: ReclassifyObject: classify o from cl
r

This subsection shows the conditions to discard a PVA of type ReclassifyObject

(term <t
i

, 1, classify o from cl
r

>) when it may violate a constraint (SVC) of type cov-
ering (see Table 6.19) or of type referential (see Table 6.20). Note that, when an object is
reclassified to a new subclass, the constraint minimum cardinality of a class may also be vio-
lated. Then, the conditions shown in Table 6.8 must also be satisfied.

Example 37 In order to illustrate how Table 6.19 operates, consider a variant of
our initial class diagram (see Figure 6.31) and the operation
eliminateFromSpecialMenu (defined in the context of class Menu) to take o↵
a menu from the subclass SpecialMenu.

130

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.19. Conditions to discard a PVA of type ReclassifyObject (term
<t

i

, 1, classify o from cl
r

>, where cl generalizes cl1,. . . ,cln) when it may violate a con-
straint (SVC) of type covering: Cov(cl,{cl1,..., cln}).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, o.oclIsTypeOf(cls), tj , tk>, 1jiknTerms9,
s=1,. . . n, s 6=r

Alf pat-
tern

if (o.oclIsTypeOf(cl
s

)){ //s=1,...n, s6=r

classify o from cl
r

; //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the object o belongs to another subclass.

2 SE Formal
pattern

9 <t
j

, �1, classify o to cl
s

)>, cl
s

=cl1,. . . cln (or one of
its subclasses), s 6=r

Alf pat-
tern

classify o to cl
s

;

Description The path includes an action to reclassify the object o to another
subclass.







 

Figure 6.31. Simplified class diagram to illustrate the use of Table 6.19.

activity eliminateFromSpecialMenu() {
classify self from SpecialMenu;

}

The operation eliminateFromSpecialMenu is WE (since weak executability
does not impose any condition in this case). It means that this operation will be
successfully executed when self belongs to more subclasses.

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 and 2 of Table 6.19).

In order to become SE, the operation eliminateFromSpecialMenu must satisfy
one of the following conditions:

1. As row 1 of Table 6.19 states, the path includes a guard to ensure the PVA is
only executed when the menu self belongs to another subclass. The result
of adding this guard to the operation is:

131

CHAPTER 6. EXECUTABILITY

activity eliminateFromSpecialMenu row1Added() {
if (self.oclIsTypeOf(GourmetMenu) OR

self.oclIsTypeOf(DailyMenu)) {
classify self from SpecialMenu;

}
}

2. As row 2 of Table 6.19 states, the path includes an action to reclassify the menu
self to another subclass. The result of adding this action to the operation is,
for instance:
activity eliminateFromSpecialMenu row2Added() {
classify self from SpecialMenu to DailyMenu;

}

Note that the designer could classify self to GourmetMenu instead of DailyMenu.

Table 6.20. Conditions to discard a PVA of type ReclassifyObject (term
<t

i

, 1, classify o from [cl
r

]>, where cl generalizes cl1,. . . ,cln) when it may violate a
constraint (SVC) of type referential: Referential(cl

r

,as).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <g#, o.ra!isEmpty(), t
j

, t
k

>, where r
a

is the member
end of as opposed to cl

r

Alf pat-
tern

if (o.r
a

!isEmpty()){

classify o from cl
r

; //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the object o does not participate in the association
as.

2 WE/SE Formal
pattern

9 <g#, o.ra!notEmpty(), t
j

, t
k

>, where r
a

is the member
end of as opposed to clAND 9<t

l

, 1, as.clearAssoc(o)>,
1jlkinTerms9

Alf pat-
tern

if (o.r
a

!notEmpty()){

as.clearAssoc(o);
classify o from cl

r

; //PVA
...

}
Description If the object o participates in the association as, all the existing

links are destroyed before the execution of the PVA.

3 WE Formal
pattern

-

Alf pat-
tern

-

Description The minimum cardinality of the association as in the role r
(where r is the opposite role to the class cl

r

), is zero (i.e.
(Cmin(as,r)=0)).

132

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Example 38 In order to illustrate how Table 6.20 operates, consider a variant of
our initial class diagram (see Figure 6.32) and the operation
eliminateFromGourmetMenu (defined in the context of class Menu) to take o↵
a menu from the subclass special menu.










Figure 6.32. Simplified class diagram to illustrate the use of Table 6.20.

activity eliminateFromGourmetMenu() {
classify self from GourometMenu;

}

The operation eliminateFromGourmetMenu is WE since it satisfies the 3th row
of Table 6.20: the minimum cardinality of the association IsProposedBy in the
role chef is zero (Cmin(IsProposedBy,chef)=0). It means that this operation
will be successfully executed when the gourmet menu self does not have any chef
assigned.

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 and 2 of Table 6.20).

In order to become SE, the operation eliminateFromGourmetMenu must satisfy
one of the following conditions:

1. As row 1 of Table 6.20 states, the path includes a guard to ensure the PVA is
only executed when the menu self is not related to any chef. The result of
adding this guard to the operation is:

activity eliminateFromGourmetMenu row1Added() {
if (self.chef->isEmpty()) {
classify self from GourometMenu;

}
}

2. As row 2 of Table 6.20 states, if the menu self is related to one chef, the path
includes an action to destroy the existing link. The result of adding this action
to the operation is, for instance:

activity eliminateFromGourmetMenu row2Added() {
IsProposedBy.clearAssoc(self);

classify self from GourometMenu;

}

133

CHAPTER 6. EXECUTABILITY

PVA: ReclassifyObject: classify o to cl
r

This subsection shows the conditions to discard a PVA of type ReclassifyObject

(term <t
i

, 1, classify o to cl
r

>) when it may violate a constraint (SVC) of type disjoint-
ness (see Table 6.21) or covering (see Table 6.22). Note that, when an object is reclassified to
a new subclass, the constraints maximum cardinality of a class, the mandatory of an attribute
and the minimum cardinality of an association may also be violated. Then, the conditions
shown in Tables 6.5, 6.6 and 6.7 must also be satisfied.

Table 6.21. Conditions to discard a PVA of type ReclassifyObject (term
<t

i

, 1, classify o to [cl
r

]>, where cl generalizes cl1,. . . ,cln) when it may violate a con-
straint (SVC) of type disjointness: Disj(cl,{cl1,..., cln}).

Property Conditions to discard the PVA

1 SE Formal
pattern

9 <g#, !o.oclIsTypeOf(cls), tj , tk>, 1jiknTerms9,
8 s=1. . . n, s 6=r

Alf pat-
tern

if (!o.oclIsTypeOf(cl
s

)){ //8 s=1...n, s 6=r

...
classify o to cl

r

; //PVA
...

}
Description The path contains a guard that prevents the execution of the

PVA when the object o belongs to another subclass.

2 SE Formal
pattern

9 <t
j

, 1, classify o from cl
s

)>, cl
s

=cl1,. . . cls (or one of
its subclasses), s 6=r

Alf pat-
tern

classify o from cl
s

; //cl
s

=cl1,...cls (or one of
its subclasses), s 6=r

Description The path includes an action to reclassify the object o from any
other subclass.

Example 39 In order to illustrate how Table 6.21 operates, consider a variant of
our initial class diagram (see Figure 6.33) and the operation
classifyAsGourmetMenu (defined in the context of class Menu) to classify an
existing menu as gourmet menu.







 

Figure 6.33. Simplified class diagram to illustrate the use of Table 6.21.

134

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

activity classifyAsGourmetMenu() {
classify self to GourmetMenu;

}

The operation classifyAsGourmetMenu is WE (since weak executability does
not impose any condition in this case). It means that this operation will be success-
fully executed when self does not belongs to another subclass.

However, this operation is not SE since it does not satisfy any of the necessary
conditions for being SE (rows 1 and 2 of Table 6.21).

In order to become SE, the operation classifyAsGourmetMenu must satisfy one
of the following conditions:

1. As row 1 of Table 6.21 states, the path includes a guard to ensure the PVA is
only executed when the menu self does not belongs to another subclass. The
result of adding this guard to the operation is:

activity classifyAsGourmetMenu row1Added() {
if (!self.oclIsTypeOf(SpecialMenu) and

!self.oclIsTypeOf(DailyMenu)) {
classify self to GourmetMenu;

}
}

2. As row 2 of Table 6.21 states, the path includes an action to reclassify the
menu self from any other subclass. The result of adding this action to the
operation is:

activity classifyAsGourmetMenu row2Added() {
classify self from self.oclIsTypeOf(self.oclType()16);

classify self to GourmetMenu;

}

Table 6.22. Conditions to discard a PVA of type ReclassifyObject (term
<t

i

, 1, classify o to cl
r

>, where cl generalizes cl1,. . . ,cln) when it may violate a constraint
(SVC) of type covering: Cov(cl

r

,{cl
r

1

,..., cl
rn}).

Property Conditions to discard the PVA

1 WE/SE Formal
pattern

9 <t
j

, 1, classify o to cl
rw)>, cl

rw=cl
r

1

,. . . ,cl
rw (or one

of its subclasses)
Alf pat-
tern

classify o to cl
rw; //cl

rw=clr1,...,clrw (or one
of its subclasses)

Description The path includes an action to reclassify the object o to a
subclass of cl

r

.

Example 40 In order to illustrate how Table 6.22 operates, consider a variant of
our initial class diagram (see Figure 6.34) and the operation

16Despite the function oclType():Classifier is included in the latest versions of the OCL standard, this
function is not well defined, since in UML an instance may have several types (and classifiers) but the function
return just one classifier. In this thesis we assume this function returns the most specialized classifier.

135

CHAPTER 6. EXECUTABILITY

classifyAsDailyMenu (defined in the context of class Menu) to classify an ex-
isting menu as daily menu.







 

    



Figure 6.34. Simplified class diagram to illustrate the use of Table 6.22.

activity classifyAsDailyMenu() {
classify self to DailyMenu;

}

The operation classifyAsDailyMenu is not WE nor SE since it does not satisfy
the necessary condition for being WE/SE (row 1 of Table 6.22). Then, after the
execution of this operation we always reach a inconsistent state of the system where
the menu self is not classified to any subclass of DailyMenu.

In order to become SE, the operation classifyAsDailyMenu must includee an
action to reclassify the menu self to a subclass of DailyMenu. The result of
adding this action to the operation is, for instance:

activity classifyAsDailyMenu row1Added() {
classify self to DailyMenu;

classify self to Firday;

}

Note that the designer could classify self to another subclass (Monday to Thursday)
instead of Friday.

6.3.3 Step 3: Classifying the operation

Last step of our method classifies the operation depending on the results obtained in the previous
step regarding each execution path of the operation.

If at least one of the execution paths of the operation is WE, the operation is classified as
WE. If all its execution paths are SE, the operation is classified as SE. Otherwise, the operation
is classified as non-executable. See an example of this step in Section 6.3.4.

136

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

6.3.4 Feedback

Besides determining the executability of an operation, a distinguishing feature of our method
is that for non-WE/SE operations it returns valuable information to help designers identifying
and correcting the detected errors. This feedback information is expressed in terms of the
operation itself so it can be easily understood and processed by the designer. For non-WE/SE
operations, our method provides two kinds of informations.

First, the returned feedback identifies why the operation is not WE/SE. For each non-
WE/SE path our method provides the list of PVAs that could eventually induce a violation of
the integrity constraints together with the specific list of SVCs that those PVAs could violate.

Second, the returned feedback explains how the designer may fix these (potentially) violating
scenarios by providing a set of possible repair alternatives that should be included in the non-
WE/SE execution paths of the operation. These alternatives are expressed as a finite set of
terms and guards to be added to the path and correspond to the rows (of the tables of the
Section 6.3.2) of those PVAs that cannot be discarded. The designer should choose the most
appropriate alternative in her context.

These repair alternatives can be automatically integrated in the operation body by following
two rules:

• Each suggested guard g=<g
i

,condition
i

,t
inii ,tendi> is translated as a new conditional

structure with condition condition
i

, starting before t
inii and ending after t

endi .

• Each suggested term t=<t
i

,multiplicity
i

,action
i

> is translated as a new action in the
operation. If the term has multiplicity “1”, the action is added once. Otherwise, the
action is included inside a loop that is executed multiplicity

i

times.

6.3.5 Example of use

This section illustrates the complete process our lightweight and static method carries out in
order to verify the weak and strong executability of an input Alf-based operation.

In order to show how our method internally works, we use three operations (newCourse,
addMenu and classifyAsSpecialMenu) as example:

Operation newCourse creates a new course in the system.

activity newCourse(in description: String,

in substitutingCourses:Course[*]) {
Course c = new Course();

c.description = description;

for (i in 1.. substitutingCourses!size()) {
CanBeSubstitutedBy.createLink(replaced=>c,replacement=> substituting-

Courses[i]);

}
}

137

CHAPTER 6. EXECUTABILITY

Operation addMenu adds a new menu to the system.

activity addMenu(in name: String, in price: Real, in courses:

Course[3..*]) {
if (!Menu.allInstances()!exists(m|m.name= name)) {
Menu m = new Menu();

m.name = name;

m.price = price;

for (i in 1.. courses!size()) {
IsComposedOf.createLink(menu=>m,course=> courses[i]);

}
}

}

Operation classifyAsSpecialMenu classifies a menu as a special menu.

activity classifyAsSpecialMenu(in discount: Real) {
if (discount � 10) {
classify self to SpecialMenu;

self.discount = discount;

}
}

Step 0: Computing the execution paths

Prior to check the weak/strong executability of an operation, our method performs a pre-
processing step to compute its execution paths (see section 6.1).

Figures 6.35, 6.36 and 6.37 show the MBCFGs (Model-Based Control Flow Graph) for our
running operations.















Figure 6.35. MBCFG of newCourse operation.

Operation newCourse has two execution paths: p1
newCourse

is the sequence of actions exe-
cuted when the new course does not have substituting courses, and p2

newCourse

(as g1 states) ex-
ecuted otherwise. Actions included in the loop have
multiplicity= substitutingCourses!size(), given that they will be executed exactly
substitutingCourses!size() times (as stated by the loop condition).

138

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Execution paths for operation newCourse:

p1
newCourse

= {
{ <t1, 1, c = new Course()>,

<t2, 1, c.description = description>}, {} }
p2

newCourse

= {
{ <t1, 1, c = new Course()>,

<t2, 1, c.description = description>,

<t3, substitutingCourses!size(), CanBeSubstitutedBy.createLink(replaced=>c,

replacement=> substitutingCourses[i])>},
{<g1, substitutingCourses!size()�1, t3, t3>} }






















Figure 6.36. MBCFG of addMenu operation.

Operation addMenu has also two execution paths: p1
addMenu

is the sequence of actions
executed when the new menu does not contain any course, and p2

addMenu

(as g1 states) executed
otherwise. Note that we automatically discard the empty path.

Execution path for operation addMenu:

p1
addMenu

= {
{ <t1, 1, m = new Menu()>,

<t2, 1, m.name = name>,

<t3, 1, m.price = price> },
{<g1, !Menu.allInstances()!exists(m|m.name= name), t1, t3>} }
p2

addMenu

= {
{ <t1, 1, m = new Menu()>,

<t2, 1, m.name = name>,

<t3, 1, m.price = price>,

<t4, 1, IsComposedOf.createLink(menu=>m,course=> courses[i])> },
{<g1, !Menu.allInstances()!exists(m|m.name= name), t1, t4>,

<g2, courses!size()�1, t4, t4>} }

  

Figure 6.37. MBCFG of classifyAsSpecialMenu operation.

Finally, operation classifyAsSpecialMenu has a single execution path.

139

CHAPTER 6. EXECUTABILITY

Execution paths for operation classifyAsSpecialMenu:

p
classifyAsSpecialMenu

= {
{ <t1, 1, classify self to SpecialMenu>,

<t2, 1, self.discount = discount>},
{<g1, discount�10, t1, t2>} }

Once the execution paths have been computed, Steps 1 and 2 of our method are applied on
each path until we recognize a WE path (in case of verifying weak executability) or until we
check all paths are SE (in case of verifying strong executability).

Step 1: Analyzing the existence of Potentially Violating Actions

Step 1 of our method (see Section 6.3.1) analyzes individually each action in the path p to see
whether it may violate some integrity constraints of the structural model.

Applying the rules of Table 6.1 to the whole class diagram of Figure 6.38 we obtain the set
of possible PVAs derived from the structural model. Table 6.23 shows these PVAs. For each
SVC, we show the set of PVAs that may violate it (sharp sign (#) represent irrelevant variables
and consecutive letters (x, y,. . .) represent free variables that may be bound to any value in
the term).















































 












Figure 6.38. Excerpt of a restaurant chain class diagram.

140

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Table 6.23. PVAs of class diagram of Figure 6.38 according to Table 6.1.

SVCs PVAs

Cmax(SpecialMenu)=3 x = new SpecialMenu()
classify x to SpecialMenu

Mand(name, City) x = new City()
x.name = null, where x.oclIsTypeOf(City)

Mand(address,
RestaurantBranch)

x = new RestaurantBranch()

x.address = null,
where x.oclIsTypeOf(RestaurantBranch)

Mand(name, Menu) x = new Menu()
x = new SpecialMenu()
x.name = null, where x.oclIsTypeOf(Menu)

Mand(price, Menu) x = new Menu()
x = new SpecialMenu()
x.price = null, where x.oclIsTypeOf(Menu)

Mand(discount,
SpecialMenu)

x = new SpecialMenu()

classify x to SpecialMenu
x.discount = null, where x.oclIsTypeOf(SpecialMenu)

Mand(description,
Course)

x = new Course()

Mand(category,
Course)

x = new Course()

Cmin(IsLocatedIn,
city)=1

x = new RestaurantBranch()

IsLocatedIn.destroyLink(restaurantBranch=>x,
city=>y)
IsLocatedIn.clearAssoc(x),
where x.oclIsTypeOf(RestaurantBranch)

Cmin(IsComposedOf,
course)=3

x = new Menu()

x = new SpecialMenu()
IsComposedOf.destroyLink(menu=>x, course=>y)
IsComposedOf.clearAssoc(x),
where x.oclIsTypeOf(Menu)

Cmax(IsLocatedIn,
city)=1

IsLocatedIn.createLink(restaurantBranch=>x, city=>y)

ID(name, Menu) x.name = #, where x.oclIsTypeOf(Menu)
Sym(CanBeSubs-
titutedBy)

CanBeSubstitutedBy.createLink(replaced=>x,
replacement=>y)
CanBeSubstitutedBy.destroyLink(replaced=>x,
replacement=>y)

ValueComp
(self.discount,>,10)

x.discount = #, where x.oclIsTypeOf(SpecialMenu)

141

CHAPTER 6. EXECUTABILITY

Intersecting the set of PVAs shown in Table 6.23 with the actions that appear in the terms
of the execution paths of our running operations, we obtain the PVAs for each path.

In the following we show the PVAs for the two execution paths of operation newCourse.
First path (p1

newCourse

) contains one PVA: c = new Course() (PV A1), which may vio-
late two mandatory constraints (when the attributes description and category are not
initialized). Second path (p2

newCourse

), in addition to the above, contains another PVA:
CanBeSubstitutedBy.createLink(replaced=>c,replacement=> substituting-

Courses[i]) (PV A2), which may violate the symmetricAssociation constraint (when
the opposite link is not created).

Potentially Violating Actions (PVAs) of path p1
newCourse

and Susceptible Violating Constraints

(SVC) they may violate:

• PV A1: c = new Course()

SV C1.1: Mand(description, Course)

SV C1.2: Mand(category, Course)

Potentially Violating Actions (PVAs) of path p2
newCourse

and Susceptible Violating Constraints

(SVC) they may violate:

• PV A1: c = new Course()

SV C1.1: Mand(description, Course)

SV C1.2: Mand(category, Course)

• PV A2: CanBeSubstitutedBy.createLink(replaced=>c,replacement=> substitu-

tingCourses[i])

SV C2.1: Sym(CanBeSubstitutedBy)

Similarly, first path of addMenu (p1
addMenu

) contains two PVAs. The first PVA, m =

new Menu() (PV A1), may violate two mandatory constraints (when the attributes name

and price are not initialized) and one minimum cardinality constraint of the association
IsComposedOf (when the new menu contains less than three courses). The second PVA,
m.name = name (PV A2), may violate the identifier constraint ID(name,Menu) (when the
system state contains another menu with the same name). Second path of addMenu (p1

addMenu

)
contains exactly the same PVAs.

Potentially Violating Actions (PVAs) of path p1
addMenu

and Susceptible Violating Constraints (SVC)

they may violate:

• PV A1: m = new Menu()

SV C1.1: Mand(name, Menu)

SV C1.2: Mand(price, Menu)

SV C1.3: Cmin(IsComposedOf,course)=3

• PV A2: m.name = name

SV C2.1: ID(name, Menu)

142

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Potentially Violating Actions (PVAs) of path p2
addMenu

and Susceptible Violating Constraints (SVC)

they may violate:

• PV A1: m = new Menu()

SV C1.1: Mand(name, Menu)

SV C1.2: Mand(price, Menu)

SV C1.3: Cmin(IsComposedOf,course)=3

• PV A2: m.name = name

SV C2.1: ID(name, Menu)

Finally, the single path of classifyAsSpecialMenu contains two PVAs. First PVA,
classify self to SpecialMenu (PV A1), may violate a mandatory constraint (when
the attribute discount is not initialized) and a maximum cardinality constraint of class
SpecialMenu (when the system state contains already three special menus). Second PVA,
self.discount = discount (PV A2), may violate the validDiscount constraint (when
self.discount<10).

Potentially Violating Actions of path p
classifyAsSpecialMenu

and Susceptible Violating Constraints

(SVC) they may violate:

• PV A1: classify self to SpecialMenu

SV C1.1: Mand(discount,SpecialMenu)

SV C1.2: Cmax(SpecialMenu)=3

• PV A2: self.discount = discount

SV C2.1: ValueComp(self.discount, >=, 10)

Since all paths of our running operations are susceptible to be non-WE and non-SE (given
that all of them contain some PVAs that may a↵ect its executability) we must proceed with
the second step of our method.

Step 2: Discarding the Potentially Violating Actions

Step 2 of our method (see Section 6.3.2) performs a contextual analysis of each potentially
violating action to see whether other actions or conditions in p compensate or complement its
e↵ect to ensure that we sometimes/always reach a consistent state at the end of the operation
execution. If all potential violation actions can be discarded we can conclude that p is WE/SE.

In order to illustrate the full usage of the tables shown in Section 6.3.2, in the following we
try to discard the PVAs identified during the previous step. For each PVA and SVC of each
path, we identify the conditions (table) that the path must satisfy to discard that PVA (for
the sake of simplicity, we only show the formal pattern; the equivalent Alf and textual patterns
can be found on the tables of Section 6.3.2). Before each condition we indicate whether it must
hold when verifying weak executability (WE) or both weak and strong executability (WE/SE).
Then, {sat by t

i

} or {sat by g
i

} states that the condition is satisfied by the term/guard i in the
path, while {not sat} states the opposite.

As we justified in the first step, first path of newCourse operation (p1
newCourse

) has one

143

CHAPTER 6. EXECUTABILITY

PVA. According to Table 6.6, in order to discard the PV A1 when it may violate the SV C1.1, the
path must include, after the PVA, at least one action to initialize the attribute description.
The second term of p1

newCourse

(<t2, 1, c.description = description>) contains this
initialization, then, we can ensure the PV A1 will never violate the SV C1.1. Similarly, in order
to discard the PV A1 when it may violate the SV C1.2, the path must include, after the PVA, at
least one action to initialize the attribute category. There is no term in p1

newCourse

which
contains this initialization. Then, the PV A1 will always violate the SV C1.2 and, consequently,
PV A1 cannot be discarded. Hence, our method concludes p1

newCourse

is not WE/SE.

Conditions to discard the PVAs of path p1
newCourse

:

• PV A1 (c = new Course()), SV C1.1 (Mand(description,Course)):

Table 6.6: (WE/SE) 9 <t
j

, �1, c.description = #>

{sat by t2}

• PV A1 (c = new Course()), SV C1.2 (Mand(category,Course)):

Table 6.6: (WE/SE) 9 <t
j

, �1, c.category = #>

{not sat}

Besides the above PVA, second path of newCourse operation (p2
newCourse

) has another
PVA. According to Table 6.13, in order to discard the PV A2 when it may violate the SV C2.1,
the path must include the creation of the symmetric link. There is no term in p2

newCourse

which
contains this link creation. Then, the PV A2 will always violate the SV C2.1 and, consequently,
PV A2 cannot be discarded. Since p2

newCourse

contains two PVAs that cannot be discarded,
our method concludes p2

newCourse

is neither WE/SE.

Paths p2
newCourse

and p1
newCourse

(which is a subset of the former) do not satisfy all the
required conditions to be WE/SE, hence, our method concludes these paths are not WE/SE.

Conditions to discard the PVAs of path p2
newCourse

:

• PV A1 (c = new Course()), SV C1.1 (Mand(description,Course)):

Table 6.6: (WE/SE) 9 <t
j

, �1, c.description = #>

{sat by t2}

• PV A1 (c = new Course()), SV C1.2 (Mand(category,Course)):

Table 6.6: (WE/SE) 9 <t
j

, �1, c.category = #>

{not sat}

• PV A2 (CanBeSubstitutedBy.createLink(replaced=>c,replacement=>

substitutingCourses[i])), SV C2.1 (Sym(CanBeSubstitutedBy)):

Table 6.13: (WE/SE) 9 <t
j

, 1, CanBeSubstitutedBy.createLink

(replacement=>c, replaced=> substitutingCourses[i])>

{not sat}

As we justified in the first step, second path of addMenu operation (p2
addMenu

) (p1
addMenu

is not explicitly shown since it is a subset of this one) has two PVAs. According to Table 6.6, in
order to discard the PV A1 when it may violate the constraints SV C1.1 and SV C1.2, the path

144

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

must include, after the PVA, at least one action to initialize the attributes description and
price. The second (<t2, 1, m.name = name>) and third (<t3, 1, m.price = price>)
terms of this path contain these initializations, then, we can ensure the PV A1 will never violate
the constraints SV C1.1 nor SV C1.2.

Besides, according to Table 6.7, in order to discard the PV A1 when it may violate the
SV C1.3, the path must include, after the PVA, at least three actions to create a link of
IsComposedOf between m and any course. This condition is satisfied by the fourth term
of the path (<t4, 1, IsComposedOf.createLink(menu=>m,course=> courses[i])>)
i↵ the condition courses!size()�3 is true. Our lightweight method cannot solve this
inequality, hence, it suppose it is not true (returning a false positive). However, if the user
intervenes during this step, she may easily conclude the above inequality is always true, since
the multiplicity of the input parameter courses is at least 3. Then, PV A1 may be actually
discarded when verifying both weak and strong executability.

Finally, the PV A2 may violate the SV C2.1 only when verifying whether the path is SE.
According to Table 6.10 there are three alternatives to discard this PVA. The first alternative is
satisfied by the first guard of the path (<g1, !Menu.allInstances()!exists(m|m.name=
name), t1, t4>), then, PV A2 may be discarded.

Since both PVAs may be discarded, this path is WE/SE.

Conditions to discard the PVAs of path p2
addMenu

:

• PV A1 (m = new Menu()), SV C1.1 (Mand(name,Menu)):

Table 6.6: (WE/SE) 9 <t
j

, �1, m.name = #>

{sat by t2}

• PV A1 (m = new Menu()), SV C1.2 (Mand(price,Menu)):

Table 6.6: (WE/SE) 9 <t
j

, �1, m.price = #>

{sat by t3}

• PV A1 (m = new Menu()), SV C1.3 (Cmin(IsComposedOf,course)=3):

Table 6.7: (WE/SE) 9 <t
j

, �3, IsComposedOf.createLink(menu=>m,course=>x)>

{sat by t4 i↵ courses!size()�3 }

• PV A2 (m.name = name) ,SV C2.1 (ID(name,Menu)):

Table 6.10, Row 1: (SE) (9 <g#, !Menu.allInstances()!exists(x|x.name= name),

t�1, t4> AND 69 <t
l

, �1, y.name = name>)

{sat}

Table 6.10, Row 2: (SE) (<g#, x.attr = name, t
j

, t
k

> AND 9 <t
j

, 1, x.name = value2>),

value2 6= name

{not sat}

Table 6.10, Row 3: (SE) (<g#, x.attr = name, t
j

, t
k

> AND 9 <t
j

, 1, x.destroy()>)

{not sat}

145

CHAPTER 6. EXECUTABILITY

As we justified in the first step, the single path of classifyAsSpecialMenu operation
(p

classifyAsSpecialMenu

) has two PVAs. According to Table 6.6, in order to discard the PV A1

when it may violate the SV C1.1, the path must include, after the PVA, at least one action to
initialize the attribute discount. The second term of the path (<t2, 1, self.discount =

discount>) contains this initialization, then, we can ensure the PV A1 will never violate the
SV C1.1.

Besides, according to Table 6.5, in order to discard the PV A1 when it may violate the
SV C1.2, the path should satisfy one of the four alternative conditions (three if we are verifying
if the path is SE). In this case, only the last alternative (row 4) is satisfied, then, the method
concludes PV A1 regarding SV C1.2 may be discarded when verifying the weak executability but
not when verifying the strong executability.

Finally, according to Table 6.9 the PV A2 regarding SV C2.1 may be discarded if the path
contains a guard that prevents the execution of the PVA when the comparison stated in the
constraint is not satisfied. This condition is satisfied by the first guard of the path (<g1,
discount�10, t1, t2>), then, PV A2 may be discarded.

All conditions to make the p
classifyAsSpecialMenu

path WE are satisfied, thus, our method
concludes this path is WE. Otherwise, not all conditions to make this path SE are satisfied,
thus, this path is not SE.

Conditions to discard the PVAs of path p
classifyAsSpecialMenu

:

• PV A1 (classify self to SpecialMenu), SV C1.1 (Mand(discount,SpecialMenu)):

Table 6.6: (WE/SE) 9 <t
j

, �1, self.discount = #>

{sat by t2}

• PV A1 (classify self to SpecialMenu), SV C1.2 (Cmax(SpecialMenu)=3):

Table 6.5, Row 1: (WE/SE) 9 <g#, SpecialMenu.allInstances()!size()<3, t1, t�1>

{not sat}

Table 6.5, Row 2: (WE/SE) 9 <t
j

, �1, x.destroy()>, x.oclIsTypeOf(SpecialMenu)

{not sat}

Table 6.5, Row 3: (WE/SE) 9 <t
j

, �1, classify x from SpecialMenu>,

x.oclIsTypeOf(SpecialMenu)

{not sat}

Table 6.5, Row 4: (WE) n-m=0<Cmax(SpecialMenu)-Cmin(SpecialMenu)=3-0=3

{sat}

• PV A2 (self.discount = discount), SV C2.1 (ValueComp(self.discount,>=,10)):

Table 6.9: (WE/SE) 9 <g#, self.discount>=10, t2, t�2>

{sat by g1}

146

6.3. VERIFYING THE EXECUTABILITY OF ALF OPERATIONS

Step 3: Classifying the operation

Step 3 of our method (see Section 6.3.3) classifies the operation (see Table 6.24) depending on
the results obtained in the previous step. If at least one of the execution paths of the operation
is WE, the operation is classified as WE. If all its execution paths are SE, the operation is
classified as SE.

Table 6.24. Classification of our running operations.

Operation is weakly executable? is strongly executable?
newCourse No No
addMenu Yes Yes
classifyAsSpecialMenu Yes No

Since both path of operation newCourse are not WE neither SE, our method concludes
the operation newCourse is not WE neither SE. Section 6.3.4 shows how to correct this.

Since both paths of addMenu are WE/SE, the method concludes this operation is WE and
SE.

Since the single path of classifyAsSpecialMenu is WE but not SE, the method con-
cludes this operation is WE but not SE.

The non-WE/SE operations should be repaired as the feedback points out.

Feedback

The non-satisfied conditions computed in the previous step are returned as feedback. In the
following we examine the feedback returned by our method when verifying our running opera-
tions.

For newCourse operation, our method returns the following feedback:

Conditions that should be satisfied by the path p2
newCourse

:

• In order to avoid the PV A1 (c = new Course()) violates the SV C1.2

(Mand(category,Course)), the following term should be added:

(WE/SE) 9 <t
j

, �1, c.category = #>

• In order to avoid the PV A2 (CanBeSubstitutedBy.createLink

(replaced=>c,replacement=> substitutingCourses[i])) violates the SV C2.1

(Sym(CanBeSubstitutedBy)), the following term should be added:

(WE/SE) 9 <t
j

, 1, CanBeSubstitutedBy.createLink

(replacement=>c,replaced=> substitutingCourses[i])>

Next, we show the repaired operation once the feedback provided by our method has been
integrated. The added sentences are emphasized in bold type. Each added sentence fixes one

147

CHAPTER 6. EXECUTABILITY

of the problems detected in the previous section.

activity newCourse(in description: String, in substitutingCourses:

Course[*], in category: CourseCategory) {
Course c = new Course();

c.description = description;

c.category = category;

for (i in 1.. substitutingCourses!size()) {
CanBeSubstitutedBy.createLink(replaced=>c,

replacement=> substitutingCourses[i]);

CanBeSubstitutedBy.createLink(replacement=>c,

replaced=> substitutingCourses[i]);

}
}

The initialization of the attribute category ensures the constraint
Mand(category,Course) will never be violated and the new created link ensures the sym-
metric constraint Sym(CanBeSubstitutedBy) will never be violated. After applying this
changes, the operation newCourse becomes WE and SE.

For addMenu operation, our method returns the following feedback:

Conditions that should be satisfied by the path p2
addMenu

:

If courses!size()�3, then, p2
addMenu

is WE and SE.

Otherwise, in order to avoid the PV A1 (m = new Menu()) violates the SV C1.3

(Cmin(IsComposedOf,course)=3), the following term should be added:

(WE/SE) 9 <t
j

, �3, IsComposedOf.createLink(menu=>m,course=>x)>

Note that, since the multiplicity of the courses parameter is at least 3, the designer may
easily conclude the above inequality is always true. Then, addMenu operation is WE and SE.

When verifying if the operation classifyAsSpecialMenu is SE, our method returns the
following feedback:

Conditions that should be satisfied by the path p
classifyAsSpecialMenu

:

• In order to avoid the PV A1 (classify self to SpecialMenu) violates the SV C1.2

(Cmax(SpecialMenu)=3), one of the following conditions should be added:

9 <g#, SpecialMenu.allInstances()!size()<3, t1, t�1>

9 <t
j

, �1, x.destroy()>, where x.oclIsTypeOf(SpecialMenu)

9 <t
j

, �1, classify x from SpecialMenu>,

where x.oclIsTypeOf(SpecialMenu)

148

6.4. DISCUSSION

Next, we show the repaired operation once the first repair alternative provided by our
method has been integrated.

activity classifyAsSpecialMenu(in discount:Real) {
if (discount � 10 and SpecialMenu.allInstances()!size()<3) {
classify self to SpecialMenu;

self.discount = discount;

}
}

6.4 Discussion

In this section we expose the assumptions our method for verifying the executability of opera-
tions relies on and discuss their limitations in order to evaluate its pros and cons.

6.4.1 Assumptions of our method

Our method to verify whether an operation is WE/SE assumes all Alf operations are syntacti-
cally correct (see Chapter 5). This is a reasonable assumption necessary to begin our analysis.

According to the widely accepted criteria about the elimination of the unreachable code
[16, 42], our method also assumes the body of all conditional and loop structures are reachable
(given the proper input values). This means that the condition of all conditional and loop
structures may be satisfied (i.e. they can evaluate to true) and then the body of these structures
may be executed. Otherwise, the actions in those paths that may be needed to compensate
the e↵ect of a PVA could not be used and thus falsify the results of the method. Roughly, this
SAT-problem could be tackled with UML/OCL verification tools [32] adding the test condition
as an additional constraint to the model and checking if the extended model is still satisfiable.
However, this analysis, would worsen the e�ciency of our method. It is up to the designer to
decide whether this is needed or not.

6.4.2 Limitations of our method

Our method for verifying the executability of action-based operations presents several trade-o↵s
that are required to enable our lightweight analysis.

As we introduced, one limitation of our method is the fact that our it performs an over-
approximation analysis. This implies that it may classify as a non-WE/SE an operation which
is actually WE/SE (but not the other way round, the method never marks as WE/SE an
operation which is not actually executable).

This over-approximation can be resolved by the designer by participating in the second step
of the method in order to disambiguate some situations that cannot be automatically computed
without resorting to a search-based approach (which would then limit the benefits of the static

149

CHAPTER 6. EXECUTABILITY

analysis we perform). For instance, the method could ask for user intervention to determine
whether two conditions are equivalent or one implies the other.

Our method is able to determine this in a number of cases but assumes the worst case
scenario when it cannot be sure. Instead of extending the method with a simulation compo-
nent to decide these situations (since, as said above, this would hinder the e�ciency of the
method), the designer could directly decide this by herself since the type of queries for which
our method requires the user intervention, are basic inequalities that a designer may easily solve
by examining the operation.

Example 41 When verifying the operation addMenu the user intervention is
required to determine whether “ courses!size()” is greater or equal to 3. As
we have seen, since the multiplicity of the courses parameter in the addMenu
operation is at least 3, the designer may easily conclude the above inequality is
always true.

Besides, our method is not indicated to consider all the possible integrity constraints that
may be defined in the structural model. Although some new constraints could be added to
our patterns (adding the proper conditions in the tables of Steps 1 and 2 of our method), our
method is not suitable to address complex integrity constraints. This is because the constraints
our method addresses are constraints that conform to a well-known pattern that has been
previously studied. The e↵ort to add any possible pattern that an OCL integrity constraint
can conform to is practically impossible.

6.4.3 Performance of our method

The time complexity of our method is exponential (wrt the size of the MBCFG) in the worst
case (when all the terms of the operation are PVAs and none of them may be discarded).

The time complexity of the whole method is determined by the complexity of each step:

• Step 0: Computing the set of execution paths. The time complexity of this step of the
method is exponential wrt the size of the MBCFG, since it consists of passing through
all the statements of the operation in order to construct the MBCFG and, next, passing
through the MBCFG in order to determine the existing execution paths.

• Steps 1 and 2: Analyzing the existence of PVAs and discarding PVAs. The time com-
plexity of the steps 1 and 2 of the method is polynomial wrt the number of the possible
execution paths, since they imply passing through several nested loops to: (step 1) de-
termining the PVAs of each path of the operation; and (step 2) trying to discard each
PVA.

• Step 3: Classifying the operation. The time complexity of the step 3 of the method is
linear since it consists in examining the results obtained on the previous step in order to
classify the operation.

150

6.5. SUMMARY

As a result, the time complexity of the whole method is exponential wrt the size of the
MBCFG. Note that, although the time complexity is exponential, it is una↵ected by the size of
the structural model (i.e. the number of classes, attributes, integrity constraints, etc). In this
sense, our method is still faster than other non-lightweight formal methods that su↵er from the
state explosion problem (see some of them in Chapter 11).

Note also that the time complexity when verifying the weak executability is lower than the
time complexity when verifying the strong executability, since in the former we must apply
the method until we reach a WE path while in the second we must apply the method over
all the paths of the operation. This, together with the second main and distinguishing benefit
of our method (the kind of feedback provided to the user), justify the above assumptions and
limitations.

6.5 Summary

Our method for verifying the executability of an action-based operation classifies the operations
in several levels of correctness regarding the state of the system they reach after executing:

• Non executable operations, that is, operations that never reach a consistent system state
after executing.

• Weakly executable (WE) operations, that is, operations that may reach a consistent system
state after executing, but are not guaranteed to do so.

• Strongly executable (SE) operations, that is, operations that always reach a consistent
system state after executing, regardless of the input values provided to the operation and
the initial system state where the operation is applied over.

In order to classify an operation into one of the above types, we propose a lightweight and
static method based on several steps:

1. Step 0: Computing Execution Paths. Prior to check the executability of an opera-
tion, our method computes all its execution paths according to the process explained in
section 6.1.

2. Step 1: Analyzing the existence of Potentially Violating Actions. For each
path, our method analyzes individually each action to see if it may violate some integrity
constraints of the structural model. See more details in Section 6.3.1.

3. Step 2: Discarding Potentially Violating Actions. Then, our method performs
a contextual analysis of each potentially violating action (PVA) to see if other actions
or conditions in the path compensate or complement its e↵ect to ensure that we some-
times/always reach a consistent state at the end of the operation execution. If all PVAs
may be discarded, the method concludes the path is WE/SE. See more details in Section
6.3.2.

151

CHAPTER 6. EXECUTABILITY

4. Step 3: Classifying the operation. Finally, our method classifies the operation de-
pending on the results obtained in the previous step. If at least one of the execution paths
of the operation is WE, the operation is classified as WE. If all its execution paths are SE,
the operation is classified as SE. In case of non-WE/SE, the method returns a correcting
feedback. See more details in Section 6.3.3.

152

My goal is simple. It is a complete un-

derstanding of the universe, why it is as

it is and why it exists at all.

Stephen Hawking

7
Completeness

The aim of this chapter is to precisely define the notion of completeness and to provide a
lightweight and static method to determine whether a behavioural model based on a set of
action-based operations satisfies this property.

This chapter is divided into three sections: Section 7.1 precisely defines the completeness
property; Section 7.2 describes a lightweight and static method we propose to determine whether
a behavioural model satisfies this property; and finally, Section 7.3 summarizes and concludes
the chapter.

7.1 Completeness Definition

Users may evolve the system state by executing the set of operations that compose the be-
havioural model.

We consider a behavioural model (i.e. a set of action-based operations) is complete if all
possible changes (inserts/updates/deletes/ . . .) on all parts of the system state can be per-
formed through the execution of those operations. Otherwise, there will be parts of the system
that users will not be able to modify since no behavioural elements address their modification.

Example 42 Consider the excerpt of the class diagram shown in Figure 7.1 and
a behavioural model composed by the operations addCourse and deleteMenu

shown in the following.

153

CHAPTER 7. COMPLETENESS

























Figure 7.1. Excerpt of the structural model.

activity addCourse(in description: String, in category:

CourseCategory) {
Course c = new Course();

c.description = description;

c.category = category;

}

activity deleteMenu(in menu: Menu) {
menu.destroy();

}

This behavioural model is incomplete since, for instance, actions to destroy courses
or to create menus are not specified, forbidding users to perform such kind of changes
on the data.

The possible changes on the system state are determined by the modifiable elements in
the structural model (i.e. the elements whose value or population can be changed by the user
at run-time). For instance, the population of a class may change during the life-span of the
system. As an example, in our restaurant chain structural model, menus can be added and
deleted along the time.

Given a structural model (SM), ModifiableElements(SM) returns the set of all modifiable
elements in SM.

Each modifiable element requires specific actions to be modified. For instance, a class cl
requires an action to create instances of cl and an action to destroy instances of cl.

Given an element e of the structural model, RequiredActions(e) returns the set of necessary
actions to modify the element e of the structural model.

154

7.2. VERIFYING THE COMPLETENESS

Then, more formally:

Let ExM = hSM,BMi be an executable model, BM is complete i↵ 8 e 2 ModifiableEle-
ments(SM) ^ 8 a 2 RequiredActions(e) 9 op 2 BM | IsWeakExecutable(op) and a 2Actions(op).

Where IsWeakExecutable(op) returns true if op is weakly executable, and Actions(op) re-
turns a list of all the actions included in the operation op.

We feel this property is important to guarantee that no behavioural elements are missing in
the model. Clearly, it may happen that a class diagram contains some elements that designers
do not want the users to modify but then those elements should be defined, for instance, as
derived information.

7.2 Verifying the completeness

The method we have developed for verifying the completeness property (see Figure 7.2) takes
as input an executable model composed by a structural model (a UML class diagram) and
a behavioural model (a set of Alf operations). We consider all the input operations are syn-
tactically correct and (weak) executable. Then, our method returns either a positive answer,
meaning that the behavioural model is complete, or a corrective feedback, consisting in a set of
actions that should be included in some operation of the behavioural model in order to make
it complete.

Figure 7.2. Completeness method overview.

155

CHAPTER 7. COMPLETENESS

Our method is based on four steps. Step 1 (see Section 7.2.1) computes the required actions
that the behavioural model should include. Step 2 (see Section 7.2.2) computes the existing
actions included in the input behavioural model. Step 3 (see Section 7.2.3) determines the
missing actions, i.e. those actions that should be included in the behavioural model but they
do not belong to. Finally, Step 4 (see Section 7.2.4) classifies the behavioural model depending
on the result obtained in the previous step.

At this point we would like to remark that the method proposed in this thesis verifies the
completeness regarding the modifications over the structural model (i.e. it does not consider
reading/querying actions). As we stated in Chapter 2, in this thesis we focus on modification
actions. However, our method could be extended to consider the completeness regarding other
types of actions.

7.2.1 Step 1: Computing Required Actions (RA)

First step of our verification method computes the required actions (RA) that the behavioural
model should include, i.e. those actions that allow modifying all the modifiable elements of the
structural model.

Given a class diagram, their modifiable elements are determined according to the following
rules:

• A class is modifiable as long as it is not an abstract class and it is not the supertype
of a complete generalization set (instances of such supertypes must be created/deleted
through their subclasses).

• An attribute is modifiable when it is not derived17.

• An association is modifiable if none of its member ends are derived. Aggregations and
compositions are treated as associations.

• A generalization is always modifiable since objects may be classified from/to their sub-
classes.

Example 43 Applying the above rules to the class diagram of Figure 7.1, our
method determines its modifiable elements (see Table 7.1).

Once the modifiable elements have been identified, our method determines the required
actions to modify each modifiable element. Table 7.2 shows the required actions for each
element type. Sharp sign (#) represents irrelevant variables and consecutive letters (x, y,. . .)
represent free variables that may be bound to any value in the action.

17Read-only attributes are considered modifiable because users must be able to initialize their value (and
similar for read-only associations).

156

7.2. VERIFYING THE COMPLETENESS

Table 7.1. Example: Modifiable elements of the structural model shown in Figure 7.1.

Type Element
Class Menu

SpecialMenu
Course

Attribute name (from Menu)
price (from Menu)
discount (from SpecialMenu)
description (from Course)
category (from Course)

Association IsComposedOf(Menu,Course)
Generalization Menu generalizes SpecialMenu

Table 7.2. Required actions to modify each element of the structural model.

Element Required actions to modify the el-
ement

Description

Class cl x = new class(), where
class is equal to cl or one of
its subclasses

A modifiable class cl requires an
action to create instances of cl
or of one of its subclasses

x.destroy(), where x is an in-
stance of cl or of one of its sub-
classes

A modifiable class cl requires an
action to destroy instances from
cl or from one of its subclasses

Attribute attr
from cl

x.attr = #, where x is an in-
stance of cl or of one of its sub-
classes

A modifiable attribute attr re-
quires an action to modify its
value

Association as
between cl (with
role r

a

) and cl’
(with role r

b

)

as.createLink(r
a

=>x,
r
b

=>y), x is an instance of cl
and y is an instance of cl’

A modifiable association as re-
quires an action to create links of
as

as.destroyLink(r
a

=>x,
r
b

=>y) OR
as.clearAssoc(x), where
x is an instance of cl and y is
an instance of cl’

A modifiable association as re-
quires an action to destroy some
or all links of as

Generalization g,
where cl general-
izes {cl1,..., cln}

classify x from oldCl,
where oldCl ⇢ {cl1,..., cln}

A modifiable generalization g re-
quires an action to reclassify ob-
jects from a subclass of cl

classify x to newCl,
where newCl ⇢ {cl1,..., cln}

A modifiable generalization g re-
quires an action to reclassify ob-
jects to a subclass of cl

157

CHAPTER 7. COMPLETENESS

Example 44 Applying the rules of Table 7.2 to the modifiable elements identified
in Table 7.1 our method determines the required actions. They are listed in Table
7.3:

Table 7.3. Example: Required actions to modify each modifiable element (see Table 7.1).

Element Required actions to modify the element
Class Menu x = new Menu() OR x = new SpecialMenu()

x.destroy(), where x is an instance of Menu or of
SpecialMenu

Class SpecialMenu x = new SpecialMenu()
x.destroy(), where x is an instance of SpecialMenu

Class Course x = new Course()
x.destroy(), where x is an instance of Course

Attribute name (from
Menu)

x.name = #, where x is an instance of Menu or of
SpecialMenu

Attribute price
(from Menu)

x.price = #, where x is an instance of Menu or of
SpecialMenu

Attribute
discount (from
SpecialMenu)

x.discount = #, where x is an instance of
SpecialMenu

Attribute
description
(from Course)

x.description = #, where x is an instance of Course

Attribute category
(from Course)

x.category = #, where x is an instance of Course

Association
IsComposedOf
(Menu,Course)

IsComposedOf.createLink(menu=>x,course=>y),
where x is an instance of Menu and y is an instance of
Course
IsComposedOf.destroyLink(menu=>x,course=>y)
OR IsComposedOf.clearAssoc(x), where x is an
instance of Menu and y is an instance of Course

Generalization
Menu generalizes
SpecialMenu

classify x from SpecialMenu

classify x to SpecialMenu

The set of required actions do not contain repeated actions. It means that, if two modifiable
elements require the same action to be modified, this action is added only once in the required
actions set. Note also that the required actions set may contain subsets of disjoint actions,
meaning that at least one of the disjoint actions must exist in the behavioural model.

Example 45 The set of required actions for our example (where repeated actions
have been removed) is:

158

7.2. VERIFYING THE COMPLETENESS

Required actions (RA) for the structural model of Figure 7.1:

x = new Menu() OR x = new SpecialMenu()

x.destroy(), where x is an instance of Menu or of SpecialMenu

x = new Course()

x.destroy(), where x is an instance of Course

x.name = #, where x is an instance of Menu or of SpecialMenu

x.price = #, where x is an instance of Menu or of SpecialMenu

x.discount = #, where x is an instance of SpecialMenu

x.description = #, where x is an instance of Course

x.category = #, where x is an instance of Course

IsComposedOf.createLink(menu=>x,course=>y), where x is an instance of

Menu and y is an instance of Course

IsComposedOf.destroyLink(menu=>x,course=>y) OR

IsComposedOf.clearAssoc(x), where x is an instance of Menu and y is an instance

of Course

classify x from SpecialMenu, where x is an instance of SpecialMenu

classify x to SpecialMenu, where x is an instance of Menu

7.2.2 Step 2: Computing Existing Actions (EA)

Second step of our verification method computes the existing actions (EA), that is, those actions
that are included in the operations of the input behavioural model.

This step simply retrieves a set of non repeated actions that appear on the operations that
compose the behavioural model we are verifying. Equivalent actions (i.e. actions of the same
type that address the same model elements although the instance-level parameters are not
required to be equal) are added only once in the set of existing actions. For instance, the
actions Menu m1 = new Menu() and Menu m2 = new Menu() are equivalent since both
create a new menu to the system and then only one of them (regardless which one) should be
included in the existing actions set.

Example 46 Given the behavioural model composed by the operations addCourse
and deleteMenu, the set of existing actions is:

Set of existing actions (EA) from addCourse and deleteMenu operations:

Course c = new Course()

c.description = description

c.category = category

menu.destroy()

7.2.3 Step 3: Computing Missing Actions (MA)

Third step of our verification method computes the missing actions (MA), that is, those actions
that should be included in some operation of the behavioural model but they do not belong
to any operation. In order to obtain the missing actions, our method computes the di↵erence
between the set of required actions (RA) (those computed in the Step 1) and the set of existing

159

CHAPTER 7. COMPLETENESS

actions (EA) (those computed in the Step 2) and returns a (maybe empty) subset of missing
actions (MA).

During the comparison between the required actions and the existing actions, we do not
take into account the concrete values of the elements which participate in the action. It
means that irrelevant values (#) and free variables (x, y, . . .) of the required actions may
map to any concrete value/variable of the existing actions. For instance, the existing action
menu.destroy() covers the required action x.destroy() since the object menu maps to
the free variable x.

Example 47 Table 7.4 shows the di↵erence between the required actions and the
existing actions.

Table 7.4. Example: Di↵erence between the required actions and the existing actions.

Required Actions Existing Actions Missing?
x = new Menu() OR x = new SpecialMenu() Yes
x.destroy(), where x is an instance of Menu or of
SpecialMenu

menu.destroy() No

x = new SpecialMenu() Yes
x.destroy(), where x is an instance of
SpecialMenu

Yes

x = new Course() c = new
Course()

No

x.destroy(), where x is an instance of Course Yes
x.name = #, where x is an instance of Menu or of
SpecialMenu

Yes

x.price = #, where x is an instance of Menu or of
SpecialMenu

Yes

x.discount = #, where x is an instance of
SpecialMenu

Yes

x.description = #, where x is an instance of
Course

c.description =
description

No

x.category = #, where x is an instance of
Course

c.category =
category

No

IsComposedOf.createLink(menu=>x,
course=>y)

Yes

IsComposedOf.destroyLink(menu=>x,
course=>y)OR IsComposedOf.clearAssoc(x)

Yes

classify x from SpecialMenu, where x is an
instance of SpecialMenu

Yes

classify x to SpecialMenu, where x is an in-
stance of Menu

Yes

Then, the set of missing actions that should be included in some action of the
behavioural model is:

160

7.3. SUMMARY

Set of missing actions (MA):

x = new Menu() OR x = new SpecialMenu()

x = new SpecialMenu()

x.destroy(), where x is an instance of SpecialMenu

x.destroy(), where x is an instance of Course

x.name = #, where x is an instance of Menu or of SpecialMenu

x.price = #, where x is an instance of Menu or of SpecialMenu

x.discount = #, where x is an instance of SpecialMenu

IsComposedOf.createLink(menu=>x,course=>y), where x is an instance of

Menu and y is an instance of Course

IsComposedOf.destroyLink(menu=>x,course=>y) OR

IsComposedOf.clearAssoc(x), where x is an instance of Menu and y is an instance

of Course

classify x from SpecialMenu, where x is an instance of SpecialMenu

classify x to SpecialMenu, where x is an instance of Menu

7.2.4 Step 4: Classifying the Behavioural Model

Last step of our method classifies the behavioural model depending on the result obtained in
the previous step.

If the set of missing actions (MA) is empty, it means that the sets RA (required actions)
and EA (existing actions) contain exactly the same elements (i.e. all the required actions exist
in the operations of the input behavioural model). Then, the behavioural model is complete.
Otherwise, the behavioural model is incomplete and our method returns as feedback the subset
of actions that are required but they are not included in any operation of the behavioural model.

Example 48 Since the set of missing actions of our example is not empty, our
method concludes the input behavioural model is not complete. As a result, the
method provides the set of actions shown in the previous example. These actions
should be added in some operation of the behavioural model in order to being
complete.

7.3 Summary

In this chapter we have reviewed the completeness property of a behavioural model based on a
set of action-based operations.

We stated that a behavioural model is complete when all possible changes (inserts/up-
dates/deletes/ . . .) on all parts of the system state can be performed through the execution
of those operations. Otherwise, there will be parts of the system that users will not be able to
modify since no behavioural elements address their modification.

Finally, we have described a lightweight and static method for checking the above property.
In case of the checked property is not satisfied, our method returns a correcting feedback to

161

CHAPTER 7. COMPLETENESS

help the designers repair the input model.

162

The greatest happiness is to transform

one’s feelings into action.

Madame de Stael

8
Application to Model-to-Model

Transformations

Models are neither isolated nor static entities. As part of the MDE process, models are merged
and aligned (e.g. to create a global representation of the system from di↵erent views to rea-
son about multi-viewpoint consistency), refactored (to improve their internal structure without
changing their observable semantics), refined (to detail high-level models), and translated (to
other languages/representations, e.g. as part of code-generation or verification/simulation pro-
cesses) [24].

All these operations on models are implemented as model transformations, which automate
the translation of models between a source and a target language using a model transformation
language. Model transformations are in many ways similar to traditional software artifacts (for
instance, they require maintenance, they have to be changed according to changing require-
ments, they should be preferably reused, and so on). Therefore, they need to be verified as
well.

The aim of this chapter is to adapt part of the verification methods we have presented in the
previous chapters to the context of model-to-model (M2M) transformations. In particular, in
this chapter we address the weak executability (see Chapter 6) and the completeness (see Chap-
ter 7) properties. We focus on these two properties according to the Proof of Concept (PoC)
principle, i.e. we develop a partial solution (focused on these two properties) to demonstrate
the feasibility of our methods in the context of M2M transformations. Both methods must be
adapted from the version described in the above chapters since now the input is a M2M trans-
formation instead of an Alf-based operation. Besides, as we will see in this chapter, given the

163

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

structural di↵erences between action-based operations and M2M transformations, some steps
of the original methods may be simplified while others must be extended.

This chapter is divided into four sections: Section 8.1 introduces M2M transformations;
Sections 8.2 and 8.3 describe how di↵erent types of M2M transformations may be verified using
our lightweight static methods; and finally, Section 8.4 summarizes and concludes the chapter.

8.1 Introduction to model-to-model transformations

In a general sense, a model-to-model (M2M) transformation is a program which takes one or
more models as input (i.e. source models) to produce one or more models as output (i.e. target
models) based on some well-defined rules [24].

More formally, as shown in Figure 8.1, a model transformation has to define the way for
generating a target model Mb, conforming to a metamodel MMb, from a source model Ma con-
forming to a metamodel MMa. The model transformation itself (Mt) is also defined as a model.
This transformation model has to conform to a transformation metamodel (MMt) that defines
the model transformation semantics. As the other metamodels, the transformation metamodel
has, in turn, to conform to the considered metametamodel.















  





Figure 8.1. Model Transformation schema.

Note that the nomenclature used by the model transformations community di↵ers from that
used by the conceptual modelling community (see Figure 8.2). In the model transformations
community, the term model refers to the source and target models which participate in the
transformation. These models, according to the OMG vision, may be described at di↵erent
levels of abstraction: M0 (i.e. a transformation from/to object models), M1 (i.e. a transforma-
tion from/to UML models), M2 (i.e. a transformation from/to a UML metamodel), etc. In the
modelling community context, however, the term model always refers to the user model (M1
level). In this chapter we use the nomenclature adopted by the model transformations com-
munity, i.e. we consider that a model may be described at di↵erent (but only one) abstraction
levels according to the OMG vision. In particular, the models considered as a source and target
models of the transformations presented in this chapter are at the M0 level of the OMG.

164

8.1. INTRODUCTION TO MODEL-TO-MODEL TRANSFORMATIONS















  










































Figure 8.2. Model Transformation schema (left) vs UML/MOF instantiation hierarchy according to
the OMG vision (right).

M2M transformations may be classified in several categories according to di↵erent perspec-
tives (see Figure 8.3):

• According to the number of input and output models, M2M transformations may be
classified in: (1) one-to-one transformations, having one input/output model; or (2) one-
to-many/many-to-many transformations, when several models are required.

• According to the languages in which the input/output models are defined, M2M trans-
formations may be classified in: (1) exogenous transformations, when they are defined
between two di↵erent languages (for instance, in the MDA scenario, a transformation
from a platform-independent model, e.g. a UML model, to a platform-specific model,
e.g. a Java model); or (2) endogenous transformations, when they are defined within one
language (for instance, a model refactoring).

• According to the implementation paradigm they rely on, M2M transformations may be
classified in: (1) in-place transformations, for rewriting a model by creating, deleting and
updating elements in the input model (used, for instance, to refactor models); or (2) out-
place transformations, for generating the output model from scratch (used, for instance,
in a code generation scenario). Note that in-place transformations are specially suited
for endogenous transformations, while out-place transformations are specially suited for
exogenous transformations.

In order to understand the remaining of this chapter, in the following we present how
exogenous transformations may be specified as out-place transformations using ATL (see Section
8.1.1) and how endogenous transformations may be specified as in-place transformations using
Graph Transformation rules (see Section 8.1.2).

165

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS


























Figure 8.3. Classification of model-to-model (M2M) transformations regarding several perspectives.

8.1.1 Exogenous out-place transformations with ATL

This section briefly introduces some preliminary concepts to define exogenous out-place trans-
formations and presents a running example that will be used in Section 8.2.

In the remaining of this chapter we presume exogenous out-place transformations are speci-
fied using the ATL [94] language. We choose that language because it is one of the most widely
used transformation languages, both in academia and industry, and there is mature tool sup-
port available. However, the ideas presented in this chapter could also be adapted to models
specified by means of other languages such as Query-View-Transformation language (QVT)
[122], Triple Graph Grammars (TGG) [160], Epsilon Transformation Language (ETL) [98] or
RubyTL [49].

ATL is designed as a hybrid model transformation language containing a mixture of declar-
ative and imperative constructs. ATL transformations are uni� directional meaning that if a
transformation from language A to language B is required, and vice versa, two transformations
have to be developed. ATL transformations are operating on read-only source models and pro-
ducing write-only target models. This means that, during the execution of a transformation,
source models may be queried but no changes to them are allowed. In contrast target model
elements are created, but should not be queried directly during the transformation.

Metamodels

ATL rules (see Figure 8.4) describe the transformation from a source model (which conforms
to a source metamodel) to a target model (which conforms to a target metamodel) by relating
its metamodels. The source and target metamodels are described in the Ecore language (which
allows to formally define its structure).

Example 49 In the rest of this section we make use of a running example that
describes a simple transformation between people and students.

The transformation is defined between the Person metamodel (see Figure 8.5 left)
and the Student metamodel (see Figure 8.5 right). The Person metamodel
(PersonMM) consists of people having a name, surname, age and college name.
Besides, people may know other people (in a symmetric way). On the other hand,
the Student metamodel (StudentMM) consists of students having a full name.

166

8.1. INTRODUCTION TO MODEL-TO-MODEL TRANSFORMATIONS















  





Figure 8.4. Schema of an ATL Model Transformation.

Students study at a college and they must be enrolled in at least one subject.





















 

 











Figure 8.5. PersonMM (source metamodel) and StudentMM (target metamodel).

ATL Rules specification

A transformation defined in ATL is represented as a module (preceded by the keyword module).
A module is defined in the header section of an ATL transformation by starting the name of the
transformation module and declaring the source (preceded by the keyword from) and the target
(preceded by the keyword create) model(s) which are typed by their metamodels. There can
be more than one input model and output model for an ATL transformation.

The body of and ATL transformation is composed by a set of transformation rules and
helpers which are stated in arbitrary order after the header section. Each rule describes how
(part of) the target model should be generated from (part of) the source model, i.e. how the
source model elements are matched and navigated to create and initialize the target model
elements.

An ATL rule is introduced by the keyword rule followed by the rule’s name. Rules are
mainly composed of a source pattern and a target pattern. The source pattern (preceded by
the keyword from) filters the subset of source model elements that are concerned by the rule

167

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

by defining one or more source pattern element(s). In particular, an obligatory model element
type has to be stated for each source pattern element as well as an optional filter (a condition
expressed as an OCL expression, restricting the rule to elements of the source model that
satisfy certain constraints) may be defined for the complete source pattern. On the other hand,
the target pattern (preceded by the keyword to) describes how the target model elements
are created from the source ones. Each target pattern element can have several bindings (also
defined as OCL expressions) that are used to initialize the features of the target model elements.

There are two kinds of declarative rules in ATL:matched rules and lazy rules. The former are
automatically matched on the source model - as their name suggests - by the ATL execution
engine according to the rule’s source pattern, whereas the latter has to be explicitly called
from another rule giving the transformation developer more control over the transformation
execution. In this chapter we focus on matched rules, although the methods proposed here
could be extended to address other kinds of ATL rules.

On the other hand, a helper can be seen as an auxiliary function that enables the possibility
of factorizing some ATL code used in di↵erent points of the transformation. Helpers may
represent attributes which are accessible throughout the complete transformation or operations
which calculate a value for a given context object and input parameters. Opposed to rules,
helpers cannot produce target model elements; they can only return values which are further
processed within rules.

Example 50 Let’s assume that the following requirement has to be fulfilled by
the transformation from Person to Student: For each Person instance in the
source model, a Student instance has to be created in the target model. The full
name of the student has to be set linking together the name and surname of the
person. Besides, a college instance has also be created (with the college name from
the person) and related to the new student.

The ATL rule that implements the above requirement (using a helper) is:

module Person2Student:

create OUT: StudentMM from IN: PersonMM

helper context PersonMM!Person def:

getFullName(): String = self.name + ’ ’ + self.surname;

rule Person2Student {
from p: PersonMM!Person

to s: StudentMM!Student (

fullName <- p.getFullName(),

college <- c

),

c: StudentMM!College (

name <- p.collegeName

)

}

168

8.1. INTRODUCTION TO MODEL-TO-MODEL TRANSFORMATIONS

8.1.2 Endogenous in-place transformations with Graph Transformation Rules

This section briefly introduces some preliminary concepts to define endogenous in-place trans-
formations using Graph Transformations and presents a running example that will be used in
Section 8.3.

Graph Transformation [56] is a declarative, rule-based technique for expressing in-place
transformations based on the fact that models and metamodels can be expressed as graphs
(with typed, attributed nodes and edges), and thus, manipulated using graph transformation
techniques.

This formalization is specially useful to define in-place transformations in order to support
model animation, simulation, optimization, execution, evolution and refactorings/redesigns.
Furthermore, they are so general that also out-place transformations may be formulated with
them.

Graph Transformations are now gaining increasing popularity due to their visual form (mak-
ing rules intuitive) and formal nature (making rules amenable to analysis). For example, graph
transformations can be used to describe the operational semantics of modelling languages for
implementing a model execution engine, taking the advantage that it is possible to use the
abstract syntax and sometimes even the concrete syntax of the modeling language in the rules,
which then become very intuitive to the designer.

Metamodel

Graph Transformation rules describe transformations within the same metamodel (see Figure
8.6). In the remaining of this chapter we use a Domain Specific Visual Language (DSVL) to
contextualize endogenous transformations.

Example 51 Figure 8.7 shows the metamodel, represented in UML, that defines
the syntax of the DSVL. This metamodel includes elements of type conveyor that
can be connected to other conveyors, to generators of parts, to containers or
to machines (being mandatory that each conveyor is connected to either a machine
or a container, as the xor constraint indicates). Conveyors can contain parts up
to its maximum capacity (attribute capacity), which is controlled by the OCL
integrity constraint defined on class Conveyor. Parts can either be transported
in a conveyor or processed in a machine, but not both simultaneously. Containers
are terminal elements that count the number of parts that have finished. Finally,
production systems must contain exactly one generator, as expresses the first OCL
integrity constraint.

Example 52 Figure 8.8 shows a model conformant to the previous metamodel,
using the abstract syntax on the top and the visual concrete syntax at the bot-
tom. The model contains one generator (depicted as a triangle), three conveyors
(lattice boxes), one machine (coloured square), two containers (circles) and three

169

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS













  















Figure 8.6. Schema of a GTR Model Transformation.





















































  














Figure 8.7. Domain Specific Visual Language (DSVL) metamodel.

parts (white squares). The first conveyor contains two parts and therefore is full,
while the machine is busy processing a part. All associations in the metamodel are
bidirectional, but we have used arrows in the concrete syntax, which do not a↵ect
navigability. For all associations - except for those that include a part as associa-
tion end - the arrow in the concrete syntax helps identifying the input and output
components in the production chain.

170

8.1. INTRODUCTION TO MODEL-TO-MODEL TRANSFORMATIONS

Figure 8.8. Example production system model.

Graph Transformation rules specification

A graph grammar is made of a set of rules and an initial graph (called host graph) to which
the rules are applied. Each rule is made of a left hand side (LHS) and a right hand side (RHS)
graph. The LHS expresses the pre-conditions for the rule to be applied, whereas the RHS
contains the rule’s post-conditions. The updates that are going to be carried out are implicitly
defined in both sides. More precisely, the execution of a transformation rule produces the
following e↵ects: (1) all elements that only reside in the LHS are deleted; (2) all elements that
only exist in the RHS are added; and (3) all elements that reside in both sides are preserved.
To mark that an element in the RHS is equivalent to an element in the LHS, the elements must
have the same identifier assigned.

Example 53 The rule newMachine (see Figure 8.9) incorporates a new machine
to the plant, receiving parts initially processed by an existing overloaded machine.
The LHS of this rule states that there has to exist a machine (m1) connected to two
conveyors (c1 and c2). The RHS shows that a new machine (m2) has been added
and one of the conveyors has been linked to m2 instead of m1.

In order to apply a rule to the host graph, a morphism (often also referred as occurrence
or match) of the LHS has to be found in the host graph. If several matches are found, one
is selected randomly. Then, the rule is applied by substituting the match by the RHS. This
process is called direct derivation. The grammar execution proceeds by applying the rules in
non-deterministic order, until none of them is applicable.

171

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Figure 8.9. Rule newMachine.

Even though Graph Transformation rules are declarative, in the rest of this chapter we use a
compact and operational notation used e.g. in tools like Fujava (www.fujava.de). The elements
created by the rules are enclosed in a polygon labelled new, while the elements deleted by the
rules are enclosed in a polygon labelled del.

Example 54 Figure 8.10 shows some rules describing the DSVL operational
semantics using the compact notation. Rule startMachine starts the processing
of a part by a free machine, and then its state changes to busy. The value of the
attribute busy before and after applying the rule is controlled by the attribute
condition and computation sections, expressed in OCL. Rule endMachine finishes
this processing and deposits the processed part in an output conveyor, if it is not
full (checked by the attribute condition). Rule advance moves parts through
conveyors. Rule generate produces a new part in the chain. Rule terminate
stores a part in a container and increases its attribute finished in one unit. Rule
newMachine, as we introduced, incorporates a new machine to the plant. Finally,
rule optimize maximizes the use of conveyors by allowing two machines to share
them as output.

A major concern of a rule-based approach such as Graph Transformations is to control the
application of rules. The LHS of a rule specifies what must exist in a graph to execute the
rule. However, often it is required to describe what must not exist in a host graph to apply
a rule. Therefore, Negative Application Conditions (NACs) have been introduced for Graph
Transformations. A NAC is a graph that describes a forbidden sub-graph structure, i.e. the
absence of specific nodes and edges must be granted. A graph transformation rule containing
a NAC is executed when a match for the LHS is found and the NAC is not fulfilled. Not only
one NAC can be specified for a rule, but several NACs are possible.

Example 55 Rule disconnectGenerator disconnects a generator. Note that
this rule uses a NAC that forbids the generator that is going to be turned o↵ is
connected with more than one conveyor.

There are two main formalizations of algebraic graph transformation [153]: DPO (Double-
PushOut approach) and SPO (Single-PushOut approach). From a practical point of view, their
di↵erence is that deletion has no side e↵ects in DPO. That is, when a node in the host graph
is deleted by a rule, the node can only be connected through those edges explicitly deleted by
the rule. This condition is called dangling edge condition. Instead, in SPO dangling edges are

172

8.2. VERIFYING ATL RULES

Figure 8.10. Some rules of the DSVL simulator.

Figure 8.11. Rule disconnectGenerator.

removed by the rewriting step. A second di↵erence is related to the injectivity of matches. A
match can be non-injective, which means for example that two nodes with compatible type in
the rule may be matched to a single node in the host graph. If the rule specifies that one of
them should be deleted and the other one preserved, DPO forbids applying the rule at such
a match, while SPO allows its application and deletes both nodes. In DPO, this is called the
identification condition. The method presented in Section 8.3 of this chapter supports both
formalizations, although in the examples we assume SPO rules.

8.2 Verifying ATL rules

In this section we adapt the methods we presented in Chapters 6 (see Section 8.2.1) and 7 (see
Section 8.2.2) to verify the weak executability and the completeness of ATL rules.

173

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

8.2.1 Weak Executability of an ATL rule

We consider an ATL rule r is weakly executable (WE) if it has a chance of being successfully
executed. That is, if there is at least a given set of elements that matches with the source
model for which the execution of the rule r generates a target model consistent with the target
metamodel and its integrity constraints. Otherwise r is useless, as every time it is executed, an
error arises because the target model violates some integrity constraints.

A more formal definition of this property may be found in Chapter 6.

Example 56 Rule Person2Student is not weakly executable since every time
we create a new student and we do not associate it to any subject, we reach
an erroneous target model where the minimum 1 cardinality of the association
IsEnrolledIn (see Figure 8.5 right) is violated.

module Person2Student:

create OUT: StudentMM from IN: PersonMM

helper context PersonMM!Person def:

getFullName(): String = self.name + ’ ’ + self.surname;

rule Person2Student {
from p: PersonMM!Person

to s: StudentMM!Student (

fullName <- p.getFullName(),

college <- c

),

c: StudentMM!College (

name <- p.collegeName

)

}

As we will see later, in this case, our method reports that, in order to create a new
student, we need to relate it to at least one subject within the same rule execution.

Verifying the weak executability of an ATL rule

To determine whether an ATL rule is weakly executable we have adapted the method we
presented in Chapter 6 to address ATL transformations instead of action-based operations.

In this case, our lightweight static method (see Figure 8.12) takes as input the source and
the target metamodels on which the ATL transformation rule is defined and the ATL rule itself.
As before, our method returns either a positive answer, meaning that the ATL rule is WE, or
a corrective feedback, consisting in a set of updates that should be added to the rule in order
to make it WE.

When verifying ATL matched rules, the method presented in Chapter 6 may be simplified
since ATL matched rules do not allow forking the execution of the rules, hence, a single execution

174

8.2. VERIFYING ATL RULES

Figure 8.12. Weak executability of ATL rules method overview.

path exists. Then, the first step of the method analyzes individually each update the rule
performs to see if it may violate some integrity constraint of the target metamodel. Next, the
second step performs a contextual analysis of each potentially violating update to see if other
updates in the rule compensate its e↵ect to ensure that we may generate a consistent target
model. Finally, the third step of the method classifies the rule depending on the results obtained
in the previous step: if all potentially violating updates can be discarded we can conclude the
rule is WE; otherwise, the rule is non-WE (in fact, it is non-executable) and the method returns
a feedback in order to repair the rule.

In the following we describe in more detail each step, using an example to illustrate the
whole process.

Step 1: Analyzing the existence of Potentially Violating Updates. First step of our
verification method analyzes each update in the rule to see if its e↵ect creates a target model
element that can violate some integrity constraints of the target metamodel. If so, this update
is declared as Potentially Violating Update (PVU) and we refer to the constraints the PVU
can violate as Susceptible Violated Constriants (SVCs). If the rule has no PVUs, it is WE.
Otherwise, we need to continue the analysis with the next step.

In order to detect the PVUs we have adapted the rules presented in Chapter 6 to auto-
matically determine the integrity constraints of the target metamodel each update may violate.
Table 8.1 shows these rules. First column (Susceptible Violated Constraint (SVC)) shows each
constraint our method supports18 and second column (Potentially Violation Updates (PVUs))

18The constraints covered by this method are: Mand(attr,cl); Cmin(cl) and Sym(as). Note that additional
constraints could be considered adapting the rules presented in Chapter 6.

175

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

determines the updates in the ATL rule that may violate each constraint. All PVUs are ex-
pressed textually in ATL language.

Table 8.1. Rules to determine the ATL updates that may violate each integrity constraint.

Susceptible Potentially Violating Updates (PVUs)
Violated
Constraint
(SVC)

1 Mand(attr,cl) x:targetMM!cl
x: targetMM!cl’, where cl’ is a subclass of cl in the target
metamodel

2 Cmin(as,r) 6=0 x:targetMM!cl, where cl (or one of its superclasses) participates
on the association as with role r’ (r’ is the opposite role to r in
as)

3 Sym(as) x:... r <- y, where r represents any member end of the asso-
ciation as

In the following we discuss each row of Table 8.1:

• First row determines the updates that may violate a mandatory attribute constraint
(Mand(attr,cl)). This constraint will be violated when we create an object of class cl
(first subrow) or of a subclass of cl (second subrow) in the target model.

• Second row determines the update that may violate a minimum cardinality constraint
of an association as in the role r when it is di↵erent to zero (Cmin(as,r) 6=0). This
constraint will be violated when we create a new object of class cl in the target model
(where cl or one of its superclasses participates on the association as with role r’, and
r’ is the opposite role to r in as).

• Third row determines the update that may violate a symmetric constraint of a recursive
association (Sym(as)). This constraint will be violated when we create a link of as in
the target model.

In this first step, the above rules are applied over all the integrity constraints that appear
in the target metamodel. As a result, we obtain a set of potentially violating updates that may
violate the existing integrity constraints in the target metamodel.

Example 57 Applying the rules of Table 8.1 to the target metamodel of Figure
8.13 we obtain the set of possible PVUs derived from the target metamodel. Table
8.2 shows, for each SVC, the set of PVUs that may violate it.

Then, we may determine if a rule r contains PVUs by comparing the set of updates of Table
8.2 with the set of updates which appear in r. All updates in the intersection of both sets are
PVUs. As explained in Chapter 6, all the instance-level parameters of the generic PVU (i.e.
variables x, y, ...) may be bound to any concrete value in the rule.

176

8.2. VERIFYING ATL RULES



  



  








 

Figure 8.13. StudentMM (target metamodel).

Table 8.2. PVUs derived from the target metamodel of Figure 8.5 according to Table 8.1.

SVCs PVUs

Mand(fullName, Student) x:StudentMM!Student
Mand(name, College) x:StudentMM!College
Mand(id, Subject) x:StudentMM!Subject
Cmin(StudiesAt, college)=1 x:StudentMM!Student
Cmin(IsEnrolledIn, subject)=1 x:StudentMM!Student

Example 58 In the following we show the PVUs for the rule Person2Student.
This rule contains two PVUs. First, the creation of a new student (update
s:StudentMM!Student) may violate one mandatory constraint (when the at-
tribute fullName is not initialized) and two minimum cardinality constraints (when
the new student is not linked to any college or subject). Second, the creation of
a new college (update c:StudentMM!College) may violate one mandatory con-
straint (when the attribute name is not initialized).

Potentially Violating Updates (PVUs) of the rule Person2Student and Susceptible

Violating Constraints (SVC) they may violate:

• PV U1: s:StudentMM!Student

SV C1.1: Mand(fullName, Student)

SV C1.2: Cmin(StudiesAt, College)

SV C1.3: Cmin(IsEnrolledIn, Subject)

• PV U2: c:StudentMM!College

SV C2.1: Mand(name, College)

Since the rule Person2Student is susceptible to be non-WE (given that it contains
several PVUs that may a↵ect its executability) we must proceed with the second
step of our method.

Step 2: Discarding Potentially Violating Updates. Similarly to what we explained in
Chapter 6, it may happen that the context in which a PVU is executed within the transformation
rule guarantees that the e↵ect of the PVU is not going to actually violate any of its SVCs. In
these cases, the PVU may be discarded.

In this second step, our method analyzes the set of PVUs returned by the previous step and
tries to discard them. If all PVUs that may compromise the WE of the rule can be discarded,
then it is classified as WE. If not, the rule is marked as non-WE and the corresponding corrective
feedback is provided.

177

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Note that, if a PVU may violate several SVCs, the PVU may be discarded i↵ it satisfies all
conditions to avoid violating each SVC.

Table 8.3 describes the conditions that the ATL rule must satisfy in order to discard a
specific PVU when it may violate a concrete SVC. Conditions are described in two equivalent
ways: (1) as an ATL pattern; and (2) using a textual description.

Table 8.3. Necessary conditions to discard the PVUs that may a↵ect the weak executability of an
ATL rule.

PVU SVC Conditions to discard the PVU when it may violate
the SVC

o:targetMM!cl Mand(attr,cl) ATL pattern o:... attr<-#
Description The rule includes an update to

initialize the attribute attr of
the object o.

Cmin(as,r) ATL pattern o:... r<-x, where
x->size()�Cmin(as,r)

Description The rule includes at least
Cmin(as,r) updates to create
a link of as between the new
object o and another object
(with role r0).

o:... r <- x Sym(as) ATL pattern o:... r’<-y
Description The rule includes an update to

create the symmetric link.

178

8.2. VERIFYING ATL RULES

Example 59 In the following we try to discard the PVUs identified previously.

As we justified in the previous step, the rule Person2Student has two PVUs.
According to Table 8.3, in order to discard the PV U1 (s:StudentMM!Student)
when it may violate the SV C1.1 (Mand(fullName,Student)), the rule must in-
clude an update to initialize the attribute fullName of the student s. The rule
contains this initialization (s:... fullName<-p.getFullName()), then, we
can ensure the PV U1 will not violate the SV C1.1.

On the other hand, in order to discard the same PVU when it may violate the SV C1.2

(Cmin(StudiesAt,College)), the rule must include at least one update to create
a link of StudiesAt between s and a college. The rule contains this link cre-
ation (s:... college<-c), then, we can ensure the PV U1 will not violate the
SV C1.2. Similarly, in order to discard the same PVU when it may violate the SV C1.3

(Cmin(IsEnrolledIn,Subject)), the rule must include at least one update to
create a link of IsEnrolledIn between s and a subject. The rule does not
contain this link creation, then, the SV C1.3 will be always violated for the rule
Person2Student.

Finally, in order to discard the PV U2 (s:StudentMM!College) when it may
violate the SV C2.1 (Mand(name,College)), the rule must include an update to
initialize the attribute name from the college c. The rule contains this initialization
(c:... name<-p.collegeName), then, we can ensure the PV U2 will not vio-
late the SV C2.1.

Conditions to discard the PVUs of rule Person2Student:

• PV U1 (s:StudentMM!Student), SV C1.1 (Mand(fullName,Student)):

The rule includes an update to initialize the attribute fullname of the object s.

{satisfied by the update s:... fullName<-p.getFullName()}

• PV U1 (s:StudentMM!Student), SV C1.2 (Cmin(StudiesAt,College)):

The rule includes at least one update to create a link of StudiesAt between s and

a college.

{satisfied by the update s:... college<-c}

• PV U1 (s:StudentMM!Student), SV C1.3 (Cmin(IsEnrolledIn,Subject)):

The rule includes at least one update to create a link of IsEnrolledIn between s

and a subject.

{not satisfied}

• PV U2 (s:StudentMM!College), SV C2.1 (Cmin(StudiesAt,College)):

The rule includes an update to initialize the attribute name of the object c.

{satisfied by the update c:... name<-p.collegeName}

In summary, all PVUs may be discarded except the PV U1, since it may violate the
SV C1.3.

Step 3: Classifying the ATL rule. Last step of our method classifies the ATL rule depending
on the results obtained in the previous step. If all the PVUs may be discarded, the rule is WE.

179

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Otherwise, the rule is classified as non-WE (and, in fact, it is non-executable). If this is the
case, our method returns as feedback the conditions that should be added in the rule in order
to make it WE.

Example 60 Since the rule Person2Student contains a PVU which cannot be
discarded (see PV U1 and SV C1.3), this rule is non-WE.

In order to make the rule WE, the method suggests that the rule should include
at least one update to create a link of the IsEnrolledIn association between the
student s and a subject.

In the following we show the same rule once the suggested update (emphatized in
bold type) has been added. Note that, besides the creation of a link between s and
a subject, we have also added the proper updates to create a subject and initialize
its id attribute.

module Person2Student:

create OUT: StudentMM from IN: PersonMM

helper context PersonMM!Person def:

getFullName(): String = self.name + ’ ’ + self.surname;

rule Person2Student {
from p: PersonMM!Person

to s: StudentMM!Student (

fullName <- p.getFullName(),

college <- c,

subject <- sj

),

c: StudentMM!College (

name <- p.collegeName

)

sj: StudentMM!Subject (

id <- ‘‘default’’

)

}

8.2.2 Completeness of ATL rule’s set

We consider a set of ATL rules is complete19 if it allows addressing all elements of the source
and target metamodels participating in the ATL transformation. Then, this property may be
viewed regarding two perspectives: source-completeness and target-completeness.

19This property can also be found in the literature as coverage.

180

8.2. VERIFYING ATL RULES

Source-completeness

We consider a set of ATL rules is source-complete when all the elements of the source
metamodel may be navigated through the execution of these rules. Otherwise, there will be
elements of the source metamodel with no relevance in the transformation.

Example 61 The set composed by the single rule Person2Student is not
source-complete since, for instance, rules to navigate the age attribute and the
Knows association are not specified.

Target-completeness

We consider a set of ATL rules is target-complete when all the elements of the target meta-
model may be created and initialized through the execution of these rules. Otherwise, there
will be elements of the target metamodel that users will not be able to create/initialize since
any ATL rule addresses their treatment.

Example 62 As an example, the set composed by the single rule
Person2Student is not target-complete since, for instance, rules to create ob-
jects of type Subject are not specified, forbidding users to create new subjects on
the target model.

A more formal definition of this property may be found in Chapter 7.

Verifying the source and target completeness of an ATL rule’s set

To determine whether a set of ATL rules is complete we propose applying a four step process
(see Figure 8.14). This process may be automated and integrated into a tool for editing ATL
rules.

Step 1: Computing the metamodel elements (ME). First step consists in determining
the metamodel elements that should be addressed by the rules. When verifying the source-
completeness, the metamodel elements are all those elements of the source metamodel that
should be navigated through the rules, i.e. classes, attributes and associations of the source
metamodel. On the other hand, when verifying the target-completeness, the metamodel ele-
ments are all those elements of the target metamodel that should be created or initialized,
i.e. non-abstract classes, classes which are not the supertype of a complete generalization set,
non-derived attributes and non-derived associations of the target metamodel.

Example 63 First column of Tables 8.4 and 8.5 shows the metamodel elements
for our running source and target metamodels respectively.

Step 2: Computing the addressed elements (AE). Second step consists in determining
the addressed elements by the rules set. When verifying the source-completeness, the addressed

181

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Figure 8.14. Completeness of ATL rules set method overview.

elements are those which are navigated in the rules, i.e. those elements which appear in the
from part of some rule or those which are navigated in the to part of some rule. On the
other hand, when verifying the target-completeness, the addressed elements are those which
are created or initialized in the to part of some rule.

Example 64 Second column of Tables 8.4 and 8.5 shows the addressed elements
(by the rule Person2Student) for our running source and target metamodels
respectively. For each addressed element, we show the update in the rule which
addresses that element.

Step 3: Computing the non-addressed elements (non-AE). Third step consists in com-
puting the non-addressed elements, that is, those elements that should be addressed in some
rule but they are not treated in any rule. In order to obtain the non-addressed elements, our
method computes the di↵erence between the set of the metamodel elements (ME) (those com-
puted in the Step 1) and the set of addressed elements (AE) (those computed in the Step 2)
and returns a (maybe empty) subset of non-addressed elements (non-AE).

Step 4: Classifying the ATL rules set. Last step of our method classifies the ATL rules
set depending on the result obtained in the previous step. If the set of non-addressed elements
(non-AE) is empty, the sets ME (metamodel elements) and AE (addressed elements) contain
exactly the same elements (i.e. all metamodel elements are addressed by the ATL rules of the
input set). Then, the ATL rules set is complete. Otherwise, this set is incomplete and our
method returns as feedback the subset of updates that should be added in some rule to make
the set complete.

182

8.2. VERIFYING ATL RULES

Example 65 All elements that contain “No” in the second column of Tables 8.4
and 8.5 are non-addressed elements of our running source and target metamodels
respectively.

Example 66

Tables 8.4 and 8.5 show the source and target completeness of our running example.

Table 8.4. Source-completeness example.

Metamodel elements (from the
source metamodel PersonMM)

Is addressed (i.e. navigated)?

class Person Yes (update p:PersonMM!Person of rule
Person2Student)

attribute name (from Person) Yes (update fullName<-p.getFullName() of
rule Person2Student)

attribute surname (from Person) Yes (update fullName<-p.getFullName() of
rule Person2Student)

attribute age (from Person) No
attribute collegeName (from
Person)

Yes (update name<-p.collegeName of rule
Person2Student)

association Knows (from Person to
Person)

No

The set composed by the single rule Person2Student is not source-complete since
there is no rule that allows to navigate the age attribute and the Knows association
of the source metamodel.

Table 8.5. Target-completeness example.

Metamodel elements (from the tar-
get metamodel StudentMM)

Is addressed (i.e. navigated)?

Student class Yes (update s:StudentMM!Student of rule
Person2Student)

attribute fullName (from
Student)

Yes (update fullName<-p.getFullName() of
rule Person2Student)

class College Yes (update c:StudentMM!College of rule
Person2Student)

attribute name (from College) Yes (update name<-p.collegeName of rule
Person2Student)

class Subject No
attribute id (from Subject) No
association StudiesAt (from
Student to College)

Yes (update college<-c of rule
Person2Student)

association IsEnrolledIn (from
Student to Subject)

No

On the other hand, the set composed by the same rule is not target-complete
since there is no rule that allows to create objects of type Subject, links of
IsEnrolledIn association neither initialize the id attribute from Subject.

In order to make the set source and target complete, new updates addressing these
missing elements should be added in some rule.

183

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

8.3 Verifying Graph Transformation rules

In this section we adapt the method we presented in Chapter 6 to verify the weak executability of
Graph Transformation rules. We do not present the specific method to verify the completeness
of a set of Graph Transformation rules, because it does not have significant di↵erences from the
method presented in Chapter 6.

8.3.1 Weak executability of Graph Transformation rules

We consider a graph transformation rule r is weakly executable (WE) if it has a chance of
being successfully executed. That is, if we can find at least one host graph G on which r can be
applied and the direct derivation G =>

r

H generates a graph H consistent with the system’s
integrity constraints. Otherwise r is useless, as every time it is executed, an error arises because
H violates some integrity constraints.

A more formal definition of this property may be found in Chapter 6.

Example 67 Rule newMachine is not weakly executable since every time we
create a new machine and we do not associate it to any output conveyor, we reach
an erroneous state where the minimum 1 cardinality of the Input association in
the role in (see Figure 8.16) is violated. As we will see later, in this case, our
method reports that, in order to create a new machine, we need linking the new
machine with an input conveyor and updating its busy attribute within the same
rule execution.

Figure 8.15. Rule newMachine.

Example 68 Instead, rule startMachine is weakly executable since we are
able to find an execution scenario where we can successfully move a part from a
conveyor to a machine.

Example 69 Rules optimize and disconnectGenerator, on the other hand,
are not weakly executable since, although they do not violate any constraint, the
single scenario in which they could be successfully applied is forbidden by the rule
definition.

184

8.3. VERIFYING GRAPH TRANSFORMATION RULES





















































  














Figure 8.16. Metamodel.

Figure 8.17. Rule startMachine.

Figure 8.18. Rules optimize and disconnectGenerator.

Verifying the weak executability of a Graph Transformation rule

To determine whether a Graph Transformation rule is weakly executable we adapt the method
we presented in Chapter 6 to address graph transformations instead of action-based operations.

In this case, our lightweight static method (see Figure 8.19) takes as input a metamodel on
which the graph transformation rule is defined and the Graph Transformation rule itself. As
before, our method returns either a positive answer, meaning that the graph transformation
rule is WE, or a corrective feedback, consisting in a set of updates that should be added to the

185

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

rule in order to make it WE.

Figure 8.19. Weak executability of Graph Transformation rules method overview.

When verifying Graph Transformation rules, the method presented in Chapter 6 must be
adapted in several ways. On the one hand, since Graph Transformation rules do not allow
forking the execution of the rules, a single execution path exists, hence, there is not need
to compute several alternative execution paths. Then, the first step of the method analyzes
individually each update the rule performs to see if it may violate some integrity constraint
of the metamodel. Next, the second step performs a contextual analysis of each potentially
violating update to see if other updates in the rule compensate its e↵ect to ensure that we
may generate a consistent target model. On the other hand, afterward the above process it
is necessary to add an additional third step to check that at least one of the safe scenarios in
which the Graph Transformation rule will leave the system in a consistent state can actually
be a match for the rule considering its LHS and NACs. Finally, fourth step of the method
classifies the rule depending on the results obtained in the previous step: if all potentially
violating updates can be discarded and there is a valid match in which the rule can be applied,
we can conclude the rule is WE; otherwise, the rule is non-WE (in fact, it is non-executable)
and the method returns a feedback in order to repair it.

186

8.3. VERIFYING GRAPH TRANSFORMATION RULES

Step 1: Analyzing the existence of Potentially Violating Updates

First step of our verification method analyzes each update in the rule to see if its e↵ect can
update the target model in a way that some element may violate some integrity constraints of
the metamodel. If so, this update is declared as Potentially Violating Update (PVU) and we
refer to the constraints the PVU can violate as Susceptible Violated Constriants (SVCs). If the
rule has no PVUs, it is WE. Otherwise, we need to continue the analysis with the next step.

In order to detect the PVUs we adapt the rules presented in Chapter 6 that automatically
determine the integrity constraints of the metamodel each update may violate. Table 8.6 shows
these rules. First column (Susceptible Violated Constraint (SVC)) shows each constraint our
method supports20 and second column (Potentially Violation Updates (PVUs)) determines the
updates in the graph transformation rule that may violate each constraint.

In the following we discuss each row of Table 8.6:

1. First row determines the update that may violate a minimum cardinality constraint of
a class cl when it is di↵erent to zero (Cmin(cl) 6=0). This constraint will be violated
when we destroy an object of class cl, that is, when the number of instances of cl is
decreased. Note that this rule only applies when Cmin(cl) = Cmax(cl) since for the
rest of the situations we are always able to find a scenario in which the constraint will not
be violated.

2. Second row determines the update that may violate a maximum cardinality constraint
of a class cl when it is di↵erent to “*” (Cmax(cl) 6=*). This constraint will be violated
when we create an object of class cl. As before, note that this rule only applies when
Cmin(cl) = Cmax(cl) since for the rest of the situations we are always able to find a
scenario in which the constraint will not be violated.

3. Third row determines the update that may violate a mandatory attribute constraint
(Mand(attr,cl)). This constraint will be violated when we create an object of class cl.

4. Fourth row determines the updates that may violate a minimum cardinality constraint
of an association as in the role r when it is di↵erent to zero (Cmin(as,r) 6=0). This
constraint will be violated when we create a new object of class cl (where cl participates
on the association as with role r’, and r’ is the opposite role to r in as) (first subrow).
Additionally, if Cmin(as,r) = Cmax(as,r), this constraint will be also violated when we
destroy a link of as (second subrow).

5. Fifth row determines the update that may violate a maximum cardinality constraint of an
association as in the role r when it is di↵erent to “*” (Cmax(as,r) 6=*). If Cmin(as,r)
= Cmax(as,r), this constraint will be violated when we create a link of as.

20The constraints covered by this method are: Mand(attr,cl), Cmin(as,r), Sym(as), Subset(r,as,r’,as’)
(which indicates that the objects with role r’ in the association as’ are a subset of the objects with role r in
the association as, taking the same departing instance at the opposite ends) and Xor(as,as’,cl) (to represent
that the associations as and as’ share one participant of class cl, and any instance of the shared class may have
links from only one of the associations [128]. In this thesis we restrict to xor constraints where the participant
associations have multiplicity 0..1 in the non-shared role). Note that additional constraints could be considered
adding the rules presented in Chapter 6.

187

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Table 8.6. Rules to determine the Graph Transformation updates that may violate each integrity
constraint.

Susceptible Violated Potentially Violating Updates (PVUs)
Constraint (SVC) Graphical pattern Description

1
Cmin(cl) 6=0 (only ap-
plies when Cmin(cl) =
Cmax(cl))

where x is an
instance of cl

Destroy an object of class cl

2
Cmax(cl) 6=* (only ap-
plies when Cmin(cl) =
Cmax(cl))

where x is an
instance of cl

Create a new object of class
cl

3 Mand(attr,cl) where x is an
instance of cl

Create a new object of class
cl

4 Cmin(as,r) 6=0 where x is an
instance of cl and cl par-
ticipates on as

Create a new object of class
cl, where cl participates on
the association as with role
r’ (r’ is the opposite role
to r in as)

Cmin(as,r) 6=0
(only applies when
Cmin(as,r) =
Cmax(as,r))

where the de-
stroyed link belongs to as

Destroy a link of the associa-
tion as between two objects

5

Cmax(as,r) 6=*
(only applies when
Cmin(as,r) =
Cmax(as,r))

where the cre-
ated link belongs to as

Create a link of the associa-
tion as between two objects

6 Xor(as,as’,r)
where x is an

instance of cl and cl is the
shared participant between
as and as’

Create an object of class cl,
where cl is the shared par-
ticipant in the associations
as and as’

where the cre-
ated link belongs to as

Create a link of the associa-
tion as between two objects

where the cre-
ated link belongs to as’

Create a link of the associ-
ation as’ between two ob-
jects

where the de-
stroyed link belongs to as

Destroy a link of the associa-
tion as between two objects

where the de-
stroyed link belongs to as’

Destroy a link of the associ-
ation as’ between two ob-
jects

188

8.3. VERIFYING GRAPH TRANSFORMATION RULES

6. Finally, sixth row determines the update that may violate a xor constraint between two
associations (Xor(as,as’,cl)). This constraint will be violated when we create an object
of class cl (first subrow); or when we create/destroy a link of one of the associations that
participate in the constraint (second to fifth subrows).

In this first step, the above rules are applied over all the integrity constraints that appear in
the metamodel. As a result, we obtain a set of potentially violating updates that may violate
the integrity constraints existing in the metamodel.

Example 70 Applying the rules of Table 8.6 to the metamodel of Figure 8.16 we
obtain the set of possible PVUs. Table 8.7 shows, for each SVC, the set of PVUs
that may violate it.

Table 8.7. PVUs derived from the metamodel of Figure 8.16 according to Table 8.6.

SVCs PVUs

Graphical pat-
tern

Description

Cmin(Generator)=1 (since
Cmin(Generator) =
Cmax(Generator))

Destroy an object of class
Generator

Cmax(Generator)=1
(since Cmin(Generator) =
Cmax(Generator))

Create a new object of
class Generator

Mand(capacity,Conveyor)
Create a new object of
class Conveyor

Mand(finished,Container)
Create a new object of
class Container

Mand(busy,Machine)
Create a new object of
class Machine

Cmin(Gen,conveyor)=1
Create a new object of
class Generator

Cmin(Conv,conveyor)=1
Create a new object of
class Container

Cmin(Input,in)=1
Create a new object of
class Machine

Cmin(Output,out)=1
Create a new object of
class Machine

Xor(Conv,Output,conveyor)
Create an object of class
Conveyor

Continued on next page

189

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Table 8.7 – continued from previous page

SVCs PVUs

Graphical pat-
tern

Description

Create a link of the asso-
ciation Conv between a
conveyor and a container

Create a link of the asso-
ciation Output between
a conveyor and a ma-
chine

Destroy a link of he asso-
ciation Conv between a
conveyor and a container

Destroy a link of the
association Output be-
tween a conveyor and a
machine

Xor(InConveyor, InMachine,
part)

Create an object of class
Part

Create a link of the asso-
ciation InConveyor be-
tween a part and a con-
veyor
Create a link of the asso-
ciation InMachine be-
tween a part and a ma-
chine
Destroy a link of the as-
sociation InConveyor

between a part and a
conveyor
Destroy a link of he asso-
ciation InMachine be-
tween a part and a ma-
chine

Then, we may determine whether a rule r contains PVUs by comparing the above
set of updates with the set of updates appearing in r. All updates in the intersection
of both sets are PVUs. As explained in Chapter 6, all the instance-level parameters
of the generic PVU (i.e. variables x, y, ...) may be bound to any concrete value in
the rule.

Example 71 In the following we show the PVUs for the rule newMachine.

190

8.3. VERIFYING GRAPH TRANSFORMATION RULES

This rule contains three PVUs (see Figure 8.20). First, creating a new machine
(PV U1, where the machine m2 maps to the free variable x in the generic PVU)
violates one mandatory constraint (when the attribute busy is not initialized) and
two minimum cardinality constraints (when the new machine is not linked to any
conveyor according to the Input and Output associations). Second, creating a
new link of the association Output (PV U2, where c2 maps to x and m2 maps to
y) violates the xor constraint between the associations Output and Conv. Finally,
destroying a link of the association Output (PV A3, where c2 maps to x and m1

maps to y) violates the same constraint as before.

Figure 8.20. PVUs for the rule newMachine.

Potentially Violating Updates (PVUs) of rule newMachine and Susceptible Violating

Constraints (SVC) they may violate:

• PV U1: Creating a new machine m2

SV C1.1: Mand(busy,Machine)

SV C1.2: Cmin(Input,in)

SV C1.3: Cmin(Output,out)

• PV U2: Creating a new link of the association Output between the conveyor c2 and

the machine m2

SV C2.1: Xor(Conv,Output,conveyor)

• PV U3: Destroying a link of the association Output between the conveyor c2 and the

machine m1

SV C3.1: Xor(Conv,Output,conveyor)

Since the rule newMachine is susceptible to be non-WE (given that it contains
three PVUs that may a↵ect its executability) we must proceed with the second step
of our method.

Example 72 In the following we show the PVUs for the rule startMachine.
This rule contains two PVUs (see Figure 8.21). First, the creation of a new link of
the InMachine association (PV U1, where p maps to x and m maps to y) violates
the xor constraint between the associations InConveyor and InMachine (when
the same part is already linked to a conveyor). Similarly, the destruction of an
existing link of the InConveyor association (PV U2, where p maps to x and c

maps to y) violates the same xor constraint (when the same part is not linked to
any machine).

191

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Figure 8.21. PVUs for the rule startMachine.

Potentially Violating Updates (PVUs) of rule startMachine and Susceptible Violating

Constraints (SVC) they may violate:

• PV U1: Creating a new link of InMachine between the part p and the machine m

SV C1.1: Xor(InConveyor,InMachine,part)

• PV U2: Destroying an existing link of InConveyor between the part p and the

conveyor c

SV C2.1: Xor(InConveyor,InMachine,part)

Since the rule startMachine is susceptible to be non-WE (given that it contains
two PVUs that may a↵ect its executability) we must proceed with the second step
of our method.

Example 73 Rules optimize and disconnectGenerator do not contain
PVUs. Then, we can skip the second step of the method (which consists in discarding
the PVUs), but we must check the applicability conditions (see Step 3) in order to
conclude whether they are WE.

Step 2: Discarding Potentially Violating Updates

Similarly to what we explained in Chapter 6, it may be happen that the context in which
a PVU is executed within the transformation rule guarantees that the e↵ect of the PVU is not
going to actually violate any of its SVCs. In these cases, the PVU may be discarded.

In this second step, our method analyzes the set of PVUs returned by the previous step and
tries to discard them. As before, note that, if a PVU may violate several SVCs, the PVU may
be discarded i↵ it satisfies all conditions to avoid violating each SVC.

Table 8.8 describes the conditions that the Graph Transformation rule must satisfy in order
to discard a specific PVU when it may violate a concrete SVC.

192

8.3. VERIFYING GRAPH TRANSFORMATION RULES

Table 8.8. Necessary conditions to discard the PVUs that may a↵ect the weak executability of a
Graph Transformation rule.

PVU SVC Conditions to discard the PVU when it may violate

the SVC

where x is an
instance of cl

Mand(attr,cl)
Graphical
pattern

Description
The rule includes an update to
initialize the attribute attr of
the object o

Cmax(cl)
Graphical
pattern

where x is an in-
stance of cl

Description
The rule includes an update to
destroy an object of class cl

Cmin(as,r)
Graphical
pattern

where each link be-
longs to as

Description
The rule includes Cmin(as,r)
updates to create a link of as

where the object o participates

Xor(as,as’,r)
Graphical
pattern

where the link between o and
y belongs to as and the link
between to o and z belongs to
as’

Description
The rule includes an update to
create a link of as OR of as’
where the object o participates

where o is an
instance of cl

Cmin(cl)
Graphical
pattern

where x is an in-
stance of cl

Description
The rule includes an update to
create an object of class cl

where the created
link belongs to as

Cmax(as,r)
Graphical
pattern where the link between o and y

belongs to as

Continued on next page

193

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Table 8.8 – continued from previous page

PVU SVC Conditions to discard the PVU when it may violate

the SVC

Description

The rule includes an update to
create the object o OR to destroy
a link of as between o and an-
other object

Xor(as,as’,r)
Graphical
pattern

where the link between o and
y belongs to as and the link
between o and z belongs to as’

Description

The rule includes an update to
create the object o OR to destroy
a link of as in which o partici-
pates OR to destroy a link of as’
in which o participates

where the de-
stroyed link
belongs to as

Cmin(as,r)
Graphical
pattern where the link between o and y

belongs to as

Description

The rule includes an update to
destroy the object o OR to cre-
ate a link of as between o and
another object

Xor(as,as’,r)
Graphical
pattern

where the link between o and
y belongs to as and the link
between o and z belongs to as’

Description

The rule includes an update to
destroy the object o OR to cre-
ate a link of as in which o par-
ticipates OR to create a link of
as’ in which o participates

Example 74 As we justified in the previous step, the rule newMachine has
three PVUs. According to Table 8.8, in order to discard the PV U1 (creating a new
machine) when it may violate the SV C1.1 (Mand(busy,Machine)), the rule must
include an update to initialize the attribute busy of the machine m2. The rule does

194

8.3. VERIFYING GRAPH TRANSFORMATION RULES

not contain this initialization, then, the PV U1 will always violate the SV C1.1.

On the other hand, in order to discard the same PVU when it may violate the
SV C1.2 (Cmin(Input,in)), the rule must include at least an update to create
a link of the Input association between m2 and a conveyor. The rule does not
contain this link creation, then, we can ensure the PV U1 will always violate the
SV C1.2. Similarly, in order to discard the same PVU when it may violate the
SV C1.3 (Cmin(Output,out)), the rule must include at least an update to create a
link of the Output association between m2 and a conveyor. The rule contains this
link creation, then, the PV U1 regarding the SV C1.3 may be discarded.

In order to discard the PV U2 (creating a new link of the association Output be-
tween c2 and m2) when it may violate the SV C2.1 (Xor(Conv,Output,conveyor)),
the rule must satisfy one of the following conditions: (1) it includes an update to
create the object c2; or (2) it includes an update to destroy a link of the Output
association in which c2 participates; or (3) it includes an update to destroy a link
of the Conv association in which c2 participates. The rule satisfies the second
condition, then, we can ensure the PV U2 will not violate the SV C2.1.

Similarly, in order to discard the PV U3 (destroying a link of Output between
c2 and m1) when it may violate the SV C2.1 (Xor(Conv,Output,conveyor)),
the rule must satisfy one of the following conditions: (1) it includes an update to
destroy the object c2; or (2) it includes an update to create a link of the Output
association in which c2 participates; or (3) it includes an update to destroy a link
of the Conv association in which c2 participates. The rule satisfies the second
condition, then, we can ensure the PV U3 will not violate the SV C3.1.

195

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

Conditions to discard the PVUs of rule newMachine:

• PV U1 (creating a new machine m2), SV C1.1 (Mand(busy,Machine)):

The rule includes an update to initialize the attribute busy of the machine m2.

{not satisfied}

• PV U1 (creating a new machine m2), SV C1.2 (Cmin(Input,in)):

The rule includes an update to create a link of Input where the machine m2 partici-

pates.

{not satisfied}

• PV U1 (creating a new machine m2), SV C1.3 (Cmin(Output,out)):

The rule includes an update to create a link of Output where the machine m2 partici-

pates.

{satisfied, since the rule creates a link of Output between c2 and m2}

• PV U2 (creating a new link of the association Output between the conveyor c2 and

the machine m2), SV C2.1 (Xor(Conv,Output,conveyor)):

The rule includes an update to create the object c2 OR to destroy a link of Output

in which c2 participates OR to destroy a link of Conv in which c2 participates.

{satisfied, since the rule destroys a link of Output between c2 and m1}

• PV U3 (destroying a link of the association Output between the conveyor c2 and the

machine m1), SV C3.1 (Xor(Conv,Output,conveyor)):

The rule includes an update to destroy the object c2 OR to create a link of Output

in which c2 participates OR to destroy a link of Conv in which c2 participates.

{satisfied, since the rule creates a link of Output between c2 and m2}

In summary, all PVUs may be discarded except the PV U1, since it may violate the
constraints SV C1.1 and SV C1.2.

Example 75 As we justified in the previous step, the rule startMachine has
two PVUs. According to Table 8.8, in order to discard the PV U1 (creating a new
link of the association InMachine between p and m) when it may violate the SV C1.1

(Xor(InConveyor,InMachine,part)), the rule must satisfy one of the following
conditions: (1) it includes an update to create the object p; or (2) it includes an
update to destroy a link of the InConveyor association in which p participates; or
(3) it includes an update to destroy a link of the InMachine association in which p
participates. The rule satisfies the second condition, then, we can ensure the PV U1

will not violate the SV C1.1.

Similarly, in order to discard the PV U2 (destroying a link of InConveyor between
p and c) when it may violate the SV C2.1 (Xor(InConveyor,InMachine,part)),
the rule must satisfy one of the following conditions: (1) it includes an update to
destroy the object p; or (2) it includes an update to create a link of InConveyor in
which p participates; or (3) it includes an update to destroy a link of InMachine
in which p participates. The rule satisfies the second condition, then, we can ensure
the PV U2 will not violate the SV C2.1.

196

8.3. VERIFYING GRAPH TRANSFORMATION RULES

Conditions to discard the PVUs of rule newMachine:

• PV U1 (creating a new link of InMachine between the part p and the machine m),

SV C1.1 (Xor(InConveyor,InMachine,part)):

The rule includes an update to create the object p OR to destroy a link of InCon-

veyor in which p participates OR to destroy a link of InMachine in which p par-

ticipates.

{satisfied, since the rule destroys a link of InConveyor between p and c}

• PV U2 (destroying a link of InConveyor between the part p and the conveyor c),

SV C2.1 (Xor(InConveyor,InMachine,part)):

The rule includes an update to destroy the object pOR to create a link of InConveyor

in which p participates OR to create a link of InMachine in which p participates.

{satisfied, since the rule creates a link of InMachine between p and m}

In summary, all PVUs of the rule startMachine may be discarded.

Step 3: Checking applicability conditions

The discarding of all PVUs ensures that there are graphs for which the updates performed
by the graph transformation rules do not induce any constraint violation. However, in addition,
we have to make sure that at least one of these graphs is consistent with the LHS and NACs
of the rule, that is, it can provide a valid match for the rule.

Example 76 The rule optimize has no PVUs but it is not weakly executable
since the single scenario in which the rule could be successfully executed (the one
in which the conveyor c is not the output of any machine before executing the rule)
is forbidden by its LHS (which forces the conveyor to be the output of machine m2
in order to be a match for the rule).

In this step we characterize the applicability conditions that guarantee the host graphs
where we can successfully execute a rule also provide a valid match for the rule. Note that
we do not check the general applicability of the rule but only whether some relevant scenarios
are possible. The applicability conditions are defined as anti-patterns (i.e. a kind of graph
constraints [56]) expressing conditions that cannot be found in the rule, as otherwise those
patterns would exactly forbid the match that makes the rule weakly executable.

Example 77 In the previous optimize example, the anti-pattern would state
that the LHS cannot contain a graph pattern including a link of the Output asso-
ciation between c and a machine.

Table 8.9 shows the conditions that describe the forbidden patterns. First column (Update)
depicts the update that may generate a new applicability condition (where n represents the
number of occurrences of the update in the rule). Second column (When?) indicates when the
condition must be generated. Finally, last column (Forbidden pattern) expresses the condition
by means of representing the forbidden pattern in the rule (where m represents the multiplicity

197

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

of the opposite update21). Once instantiated for a particular rule, these patterns are presented
to the user visually in the form of graph constraints.

Example 78 The rule newMachine must satisfy one applicability condition.
Given that the rule contains the creation of a new link of the association Output and
Cmax(Output,in)=16=*, the third row of Table 8.9 must be taken into account.
Then, the rule cannot have more than Cmax(Output,in)-n+m=1-1+1=1 link of
Output in its LHS. The rule contains one link (the link between c2 and m1) in its
LHS, then, the forbidden pattern does not exist and the applicability condition is
satisfied.

Note that, otherwise, the destruction of the link of the association Output does
not induce additional applicability conditions since the requisites stated in the fifth
row (second column) of Table 8.9 do not hold.

Example 79 Similarly, the rule startMachine must satisfy one applicabil-
ity condition. Given that the rule contains the creation of a new link of the as-
sociation InMachine and Cmax(InMachine,machine)=16=*, the third row of
Table 8.9 must be taken into account. Then, the rule cannot have more than
Cmax(InMachine,machine)-n+m=1-1+0=0 links of InMachine in its LHS.
The rule does not contain any link of InMachine in its LHS, then, the forbid-
den pattern does not exist and the applicability condition is satisfied.

Example 80 The rule optimize must satisfy one applicability condition. Given
that the rule contains the creation of a new link of the association Input and
Cmax(Input,out)=16=*, the third row of Table 8.9 must be taken into account.
Then, the rule cannot have more than Cmax(Input,out)-n+m=1-1+0=0 links of
InMachine in its LHS. The rule contains one link (the link between m1 and c) in
its LHS, then, the forbidden pattern appears and the applicability condition is not
satisfied.

Example 81 The rule disconnectGenerator must satisfy one applicability
condition. Given that the rule contains the destruction of a link of the association
Gen and Cmin(Gen,conveyor)=1>0 and m=0<Cmin(Gen,conveyor)=1, the
fifth row of Table 8.9 must be taken into account. Then, the rule cannot have a
NAC with at least Cmin(Gen,conveyor)-m=1-0=1 links of the association Gen

(excluding the link which is going to be destroyed). The rule contains a NAC with
the above forbidding pattern (in particular, one link between g and c2), then, the
forbidden pattern appears and the applicability condition is not satisfied.

Step 4: Classifying the Graph Transformation rule

Last step of our method classifies the Graph Transformation rule depending on the results
obtained in the previous steps. If all PVUs may be discarded and the rule fulfills the applicability

21The opposite update of an update is the update with contrary e↵ect in which the same element participates
(e.g. the opposite update of “create an object” is “destroy an object” (and vice versa)).

198

8.3. VERIFYING GRAPH TRANSFORMATION RULES

Table 8.9. Forbidden patterns for each update.

Update
When the applicability con-
dition must hold?

Forbidden pattern

n creations of
objects of class cl (where
o1... on are instances of cl)

Cmax(cl) 6=*

Having more than
Cmax(cl)-n+m objects
of class cl in the LHS of
the rule

n deletions of
objects of class cl (where
o1... on are instances of cl)

Cmin(cl)>0 and
m<Cmin(cl)

Having a NAC with at least
Cmin(cl)-m objects of class
cl (excluding the objects to
be destroyed)

n creations of
links of the association as
where the object o partici-
pates

Cmax(as,r) 6=* (where r is
the opposite role to the
member end o)

Having more than
Cmax(as,r)-n+m links
of the association as in the
LHS of the rule

A creation of
a link of as’ (where the link
between o and p belongs to
the association as’)

Exists a constraint of type
Subset(as,r,as’,r’)

Having a NAC with a link
of as between the objects o
and p

n deletions of
links of the association as
where the object o partici-
pates

Cmin(as,r)>0 and
m<Cmin(as,r) (where
r is the opposite role to
the member end o) and the
rule does not include the
destruction of the object o.

Having a NAC with at
least Cmin(as,r)-m links of
the association as (exclud-
ing the links to be destroyed)

A deletion of
a link of as’ (where the link
between o and p belongs to
the association as’)

Exists a constraint of type
Subset(as,r,as’,r’)

Having a NAC with a link
of as between the objects o
and p

199

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

conditions, it is WE. Otherwise, the rule is classified as non-WE (and, in fact, it will be non-
executable). If this is the case, our method returns as feedback the conditions/applicability
patterns that should be added/removed to/from the rule in order to become WE.

Example 82 Although the rule newMachine satisfies his applicability condition
(see Step 3) not all of its PVUs may be discarded (see Step 2). Then, our method
classifies this rule as non-WE. In order to repair it, our method returns as feedback
the set of updates the rule should include in order to become WE. In this case, two
updates should be added in the rule in order to make it WE: (1) a new link of the
association Input between the machine m2 and a conveyor should be created in
order to avoid violating the constraint Cmin(Input,in)=1; and (2) an attribute
computation to initialize the attribute busy of the machine m2 should be added to
avoid violating the constraint Mand(busy,Machine). Note that the participant
objects not created by the rule (i.e. the conveyor x) must be present in its LHS.
Figure 8.22 shows the rule once this feedback has been added.

Figure 8.22. Rule newMachine correctly repaired.

Example 83 Otherwise, the rule startMachine satisfies his applicability con-
dition (see Step 3) all its PVUs may be discarded (see Step 2). Then, our method
classifies this rule as WE, meaning that there is at least one host graph in which
the rule can be successfully applied.

Example 84 Although the rule optimize does not contain PVUs, it does not
satisfy its applicability condition. Then, our method classifies this rule as non-WE.
In order to repair it, our method returns as feedback the forbidden pattern that
should be removed from the LHS of the rule (see Figure 8.23).

Figure 8.23. Feedback for rule optimize.

Example 85 Although the rule disconnectGenerator does not contain PVUs,
it does not satisfy its applicability condition. Then, our method classifies this rule
as non-WE. In order to repair it, our method returns as feedback the forbidden
pattern that should be removed from the LHS of the rule (see Figure 8.24).

200

8.4. SUMMARY

Figure 8.24. Feedback for rule disconnectGenerator.

8.4 Summary

Models are neither isolated nor static entities. As part of the MDE process, models may be
manipulated using model transformations, which automate the translation of models between
a source and a target language using a model transformation language. Model transformations
are in many ways similar to traditional software artifacts. Therefore, they need to be verified
as well.

With this purpose, in this chapter we have adapted the methods presented in Chapters
6 and 7 to verify model-to-model (M2M) transformations instead of action-based operations.
In particular, we adapted the above methods to verify exogenous out-place transformations
represented by means of ATL rules [94] and endogenous in-place transformations represented
by means of Graph Transformation rules [56]. Although both formalisms are mainly declarative,
they can be analyzed regarding the set of individual changes they perform and, therefore, they
may be analyzed using our lightweight and static methods.

Note that, an alternative solution to tackle the same problem would be to design an exoge-
nous M2M transformation from ATL/GTr (as a source language) to Alf action language (as a
target language). Then, after applying this transformation to the input M2M transformation
model we want to verify, we could directly apply the methods presented in the previous chapters
of this thesis. However, in order to be independent of any other language and given that in
some cases (see Section 8.3.1) the original method must be extended to cover the particularities
of the new language, we preferred to adapt the original method to directly deal with ATL and
Graph Transformations.

Regarding the executability property, the methods presented in this chapter are only able
to check the weak executability of a M2M transformation. However, these methods could be
extended in order to verify the strongly executability of a transformation adapting the ideas
presented in Chapter 6. Similarly, the syntactic correctness could also be adapted to the M2M
context.

201

CHAPTER 8. APPLICATION TO MODEL-TO-MODEL TRANSFORMATIONS

202

Never worry about theory as long as the

machinery does what it’s supposed to do.

Robert A. Heinlein

9
Tool Implementation

In order to prove the feasibility of our approach, we have built a prototype tool that implements
a subset of the methods proposed along this thesis. In particular, our tool focuses on the
verification of the weak and the strong executability of Alf-action-based operations defined
in the context of a UML class diagram. We focus on the executability property because we
consider this is one of the most important (and also the more complex to be implemented)
contributions of this thesis.

Then, the aim of this chapter is to explain how our method for verifying the weak and the
strong executability has been internally implemented using specific technologies. It is divided
into four sections: Section 9.1 provides an overview of our tool and its architecture; Section 9.2
describes how the Alf Editor has been implemented; Section 9.3 describes how the Alf Verifier
has been implemented; and, finally, Section 9.4 summarizes and concludes the chapter.

9.1 General Overview and Architecture

Our tool is conceived as an Eclipse plug-in. The plug-in itself, their source code, user manuals
and other information can be downloaded from [142].

Eclipse is an open source IDE platform launched by Borland, IBM, MERANT, QNX Soft-
ware Systems, Rational Software, Red Hat, SuSE, TogetherSoft and Webgain in 2001. Since
then, the still growing Eclipse community has become rather big. Eclipse is mainly known as
an IDE for Java development, but actually Eclipse is much more. Eclipse is intended to serve
as a platform for a whole variety of di↵erent tools. The “Platform Plug-in Developer Guide”

203

CHAPTER 9. TOOL IMPLEMENTATION

[53] describes the challenge that Eclipse should take on as: “What we all want is a level of
integration that magically blends separately developed tools into a well designed suite. And
it should be simple enough that existing tools can be moved to the platform without using
a shoehorn or a crowbar. The platform should be open, so that users can select tools from
the best source and know that their supplier has a voice in the development of the underlying
platform”.

Then Eclipse is essentially an extensible platform that supports a plug-in architecture (see
Figure 9.1), i.e. Eclipse o↵ers a common and platform independent user interface that allows
developers to create plug-ins supplying tools for di↵erent tasks. The platform consists of layers
of plug-ins, each layer defining extensions to extension points of lower layers. Plug-ins are
components that provide a certain type of service within the context of the Eclipse workbench.
Extensions are the central mechanism for contributing behaviour to the platform. Plug-ins can
define their own extension points for further customization.

Figure 9.1. Eclipse plug-in architecture.

Moreover, Eclipse also provides a very active online support for developers, mature docu-
mentation (see [41]) and a hosting (based on Google code) to publish open source projects that
build technology based on the Eclipse platform.

In the recent years, the modelling community has been involved into Eclipse with the Model
Development Tools (MDT) project, a set of plug-ins that converts Eclipse into a modelling
environment. Among the main functionalities provided by the MDT, there is the UML2Tools,
a set of GMF (Graphical Modeling Framework) based editors for viewing and editing UML
models; the OCL, an implementation of the Object Constraint Language (OCL) OMG stan-
dard for EMF (Eclipse Modeling Framework) based models; and the BPMN2, an open source
component to provide a metamodel implementation based on the Business Process Model and
Notation (BPMN) 2.0 OMG specification, among others.

The Eclipse support to UML and the wide popularity of this platform in the software
development community are the main reasons why we have chosen Eclipse as the basis to
develop our prototype tool. Then, our tool (see Figure 9.2) is conceived as an Eclipse plug-in.
Our plug-in uses the available UML2Tools plug-in for editing part of the UML executable model
we deal with.

Figure 9.3 shows the general view of our tool implementation. As a first step, the de-
signer specifies the UML executable model (s)he wants to deal with. This executable model is

204

9.1. GENERAL OVERVIEW AND ARCHITECTURE

Figure 9.2. General architecture of our plug-in.

composed by:

• A structural model composed by a UML class diagram plus a set of OCL integrity

constraints. The structural model is represented using the graphical modelling environ-
ment provided by the UML2Tools Eclipse plug-in [173].

• A behavioural model composed by a set of Alf-based operations. The behavioural
model is represented using our Alf Editor (see Section 9.2).

Once the executable model is provided, the designer is able to invoke the core of our veri-
fication method (see Section 9.3). Finally, the feedback provided by the method is displayed,
integrated into the Eclipse interface.

Figure 9.3. Overview of our Eclipse plug-in.

205

CHAPTER 9. TOOL IMPLEMENTATION

9.2 Alf Editor

In order to verify the input executable model we need to depict the structural model and
the behavioural model in an internal representation that can be automatically queried by the
verification method.

The structural model (i.e. the UML class diagram and the OCL integrity constraints) is
drawn using the UML2Tools (see Figure 9.4), which automatically processes the model and
stores it as an instance of the UML metamodel classes.

Figure 9.4. Eclipse plug-in screenshot: defining the structural model using UML2Tools.

However, when we started to develop our plug-in, no similar support existed to specify and
parse the behavioural model (i.e. the Alf-based operations)22. Then, the first part of the plug-in
developed as part of this thesis consists in an Alf textual editor that is able to define operations
according to the Alf syntax and store them as Java classes.

In order to create the Alf Editor two main components are required: (1) the Alf front-end,
to define the Alf-based operations into the Eclipse environment; and (2) the Alf parser, to
ensure the grammatical structure of the input Alf-based operations is consistent with the Alf
grammar and to instantiate these operations as Java classes.

The above components has been created with the help of Xtext [186], an open source
framework (as part of the Eclipse Modeling Framework (EMF)) for creating editors for custom
languages (both as a Domain-Specific Language (DSL) and a general purpose programming
language). Unlike standard parser generators (such as ANTLR or JavaCC), Xtext not only

22When we started to develop our Eclipse plug-in (at the beginning of year 2011), no support to specify Alf-
based models was available. In fact, several companies and researches were working in that topic, but only one
of them (the Papyrus team [130]) had a mature grammar of the Alf language. Nowadays, several initiatives like
Papyrus have been emerged. Although our verification method uses our Alf Editor, it could be also integrated
with other existing editors of this language.

206

9.3. ALF VERIFIER

generates a parser, but also a metamodel and a fully featured, customizable Eclipse-based IDE.

To create the above components, Xtext departs from a grammar of the language we want to
deal with (in our case, the Alf grammar). With this purpose, we use the Alf grammar provided
by the Papyrus team, which is consistent with the Alf standard specification [124]. The Alf
grammar is composed by a set of formation rules that describe how to form valid operations
according to the Alf syntax.

As a result, we obtain an Alf Editor which constitutes a new Eclipse tab in the main view
(see Figure 9.5). Using this tab, the designer is able to define a set of Alf-based operations
which are stored in a file with extension .alf. On the other hand, we have developed an engine
that analyzes each operation and instantiates it as a set of Java classes that will be later used
by the Alf Verifier (see Section 9.3).

Figure 9.5. Eclipse plug-in screenshot: defining the behavioural model in the Alf Editor tab.

9.3 Alf Verifier

The Alf Verifier implements the lightweight static method presented in Chapter 6. In the
next subsections we explain the input and the output of the verifier as well as the internal
implementation of our method. We use the operations discussed in Chapter 6 to illustrate how
the designer can verify an executable model using our tool.

207

CHAPTER 9. TOOL IMPLEMENTATION

9.3.1 Input

The Alf Verifier takes as input the structural and the behavioural models selected by the user
through the Eclipse interface (see Figure 9.6). The user may also select what operations (s)he
wants to verify (one specific or all) and the property (s)he wants to check (weak or strong
executability).

Figure 9.6. Eclipse plug-in screenshot: selecting the input executable model to be verified.

9.3.2 Lightweight Static Analysis

When the user clicks the button Verify Weak Executability or Verify Strong Executability the
core of our method is invoked. It is implemented as a set of Java classes that carry out all the
steps our method performs. For each operation to be verified, it performs the following steps:

Step 0: Computing Execution Paths

In order to compute the execution paths, our tool represents each operation as a directed graph,
where each vertex represents an action of the operation and each arc represents the precedence
between actions. Once the graph is constructed, it is parsed to extract all execution paths as we
explained in Chapter 6. Each path is internally represented as an array of terms (representing
each action in the path) and guards (representing each boolean expression over the path).

Once the paths have been computed, steps 1 and 2 are applied on each execution path until
a WE path is recognized (in case of verifying the weak executability) or until ensuring all paths
are SE (in case of verifying the storng executability).

208

9.3. ALF VERIFIER

Step 1: Analyzing the existence of Potentially Violating Actions (PVAs)

This step is split in two tasks. First, the tool determines the actions that could violate each
integrity constraint of the structural model. In order to do it, the tool queries the input
structural model and applies the rules shown in the Step 1 of Chapter 6.

Second, the above set of actions is compared with the set of actions included in the terms
of the execution path that is being analyzed. All actions in the intersection of both sets are
considered PVAs. The PVAs are stored in a hash table, where each PVA acts as a key and their
associated elements are the set of constraints (SVCs) it may violate.

Step 2: Discarding PVAs

This step implements the tables shown in the Step 2 of Chapter 6 in order to try to discard
each PVA returned by the previous step. The discarded PVAs are marked as discarded while
the rest of the PVAs are enriched with the conditions that should be satisfied in order to avoid
the violations. These conditions will be returned as feedback.

Step 3: Classifying the operation

The last step classifies each operation depending on the results obtained in the previous step.
If at least one execution path of the operation is WE, the operation is classified as WE. If all its
execution paths are SE, the operation is classified as SE. Otherwise, the operation is classified
as non-executable. If that is the case, the method returns a meaningful feedback (see Section
9.3.3) to help the user to repair the operations.

9.3.3 Feedback

As we explained in Chapter 6 our method returns a feedback that (in case of the verified
operation is non-executable) it points out why (i.e. which actions in the operation may violate
some integrity constraints of the structural model) and how the designer can fix these errors
(providing a set of possible repairing alternatives that should be included in the operation).
This feedback is expressed in terms of the Alf language and it is displayed into the Eclipse
interface (see Figure 9.7)).

As an example, consider the operation classifyAsSpecialMenu introduced in Chapter
6, which classifies a menu as special menu.

activity classifyAsSpecialMenu(in discount:Real) {
if (discount � 10) {
classify self to SpecialMenu;

self.discount = discount;

}
}

209

CHAPTER 9. TOOL IMPLEMENTATION

As we have seen in Chapter 6, this operation is not strongly executable since as the feedback
informs (see Figure 9.7) it violates the constraint Cmax(SpecialMenu) = 3 of the structural
model.

Figure 9.7. The feedback shows why the operation classifyAsSpecialmenu is not SE.

Besides, the feedback suggests (see Figure 9.8) several repairing alternatives to avoid this
violation. Note that some of these alternatives include the PVA (inside a comment), meaning
that the code to be added must appear before/after the PVA. If the PVA is not included, it
means that place where the suggested coded must be added does not matter.

Figure 9.8. The feedback suggests how the operation classifyAsSpecialmenu may be fixed.

When the designer adds one of the suggested repairing alternatives to the operation, it
becomes strongly executable (see Figure 9.9). But it may be the case that the added code

210

9.4. SUMMARY

generates new PVAs making the operation non-executable again. If that is the case, the feedback
should be added iteratively until we obtain a correct operation.

Figure 9.9. Operation classifyAsSpecialmenu correcly repaired.

As we commented in Chapter 6 our method may require the user intervention to disam-
biguate some situations that cannot be computed by our lightweight method. As an example,
when verifying the operation addMenu the user intervention is required to determine if the
inequality courses->size() >= 3 is true (see Figure 9.10). In this case, since the pa-
rameter courses contains at least three courses, the above inequality is always true, making
the operation strongly executable. Otherwise, in case that the inequality was not true, as the
feedback points out (see Figure 9.10), the designer should add the suggested code, in this case,
ensuring that the menu m is linked with at least three courses.

activity addMenu(in name:String, in price:Real, in courses:Course[3..*])

{
if (!Menu.allInstances()!exists(m|m.name= name)) {
Menu m = new Menu();

m.name = name;

m.price = price;

for (i in 1.. courses!size()) {
IsComposedOf.createLink(menu=>m,course=> courses[i]);

}
}

}

9.4 Summary

In this chapter we have explained the fundamentals of the prototype tool we developed to prove
the feasibility of our approach. We implemented this prototype as a plug-in integrated into the
Eclipse platform, one of the most popular development platforms in the software development
community.

Our plug-in focuses on the implementation of the method presented in Chapter 6 to verify
the weak/strong executability of Alf-based operations, since it is one of the most important
contributions of this thesis. However, the rest of the properties presented in this thesis (syntactic

211

CHAPTER 9. TOOL IMPLEMENTATION

Figure 9.10. The tool requires the user intervention when verifying the operation addMenu.

correctness and completeness) could also be integrated in our prototype.

On the other hand, this implementation could also be adapted and integrated into a tool
for editing ATL rules (in order to verify the weak/strong executability of an ATL rule) or into
a tool for editing Graph Transformation rules (in order to verify the weak/strong executability
of a Graph Transformation rule).

212

Supposing is good, but finding out is bet-

ter.

Mark Twain

10
Experimentation

According to the Design-Science Research (DSR) paradigm proposed by Hevner et al. [83], the
evaluation of the designed artifacts produced as a result of the research process is crucial.

The evaluation of the designed artifacts may rely on several methodologies available in the
knowledge base such as observation (case studies, field studies, ...), analysis (static analysis,
architecture analysis, optimization, ...), experimentation (controlled experiments, simulation,
...), testing (functional black box, structural white box, ...), etc.

Despite widespread interest in evaluating the produced artifacts, in the software engineer-
ing field there is still a little guidance on which methodologies are suitable to which research
problems, and how to choose amongst them. In [163], Easterbrook et al. provide a basis for
both understanding and selecting from the variety of methods applicable to empirical software
engineering. Following the criteria suggested by these authors, we selected experimentation
as the method to evaluate several features of the result of our research (i.e. our verification
framework and our prototype tool). An experiment is an investigation of a testable hypothesis
where one or more independent variables are manipulated to measure their e↵ect on one or
more dependent variables. This methodology has been largely used in software engineering
[13, 95, 170].

This chapter is structured in two sections. Section 10.1 describes our first experiment to
evaluate the relevance of our verification framework and Section 10.2 describes our second
experiment to evaluate the e�ciency of our prototype tool.

213

CHAPTER 10. EXPERIMENTATION

10.1 Experiment 1: Evaluating the relevance of our verifica-

tion framework

The purpose of the first experiment was to evaluate the relevance of the verification framework
proposed in this thesis. In order to justify the need for verification frameworks, we show
that writing correct executable operations by hand and without any kind of support (such as
verification or code generation tools) is not easy.

Our first hypothesis can be formulated as: “writing executable operations by hand is error
prone”.

In the next subsections we explain how this experiment was designed (see Section 10.1.1)
as well as its results and conclusions (see Section 10.1.2).

10.1.1 Design of the experiment

Participants

A total of one hundred people (14% female and 86% male) participated in our experiment.
All the participants were grad students of a Software Engineering course of the Computing
Engineering Bachelor taught at the Open University of Catalonia (UOC). All the students
had a good background about modelling in UML and good programming skills (using object
oriented languages such as Java or C++). Besides, most of the students had a job related to
his studies.

Tasks

The participants were asked to carry out two tasks. Both tasks were part of a mandatory
activity (which also contained other tasks) that all students had to deliver to pass the course.

As a starting point, the students were provided with a UML class diagram (see Figure
10.1) representing a car sharing system. This class diagram contains information about the
drivers and the passengers registered in the system (both of them must be accepted by the
supervisors of the system before being able to use the whole functionalities) and the cars
(together with its insurance) that each driver holds. Each driver is responsible of at least one
route. Routes may have associated incidences, that store information about unpleasant trips.
Although the original class diagram contained more elements and integrity constraints, here we
show a simplified version for the purpose of Task 1.

Based on the above class diagram, two tasks were formulated:

Task 1: Designing correct operations. The first task that was asked to the participants
was about designing a set of action-based operations. In the definition of the task we put special

214

10.1. EXPERIMENT 1: EVALUATING THE RELEVANCE OF OUR VERIFICATION
FRAMEWORK









































 

















































































































 

Figure 10.1. Starting point for Task 1.

emphasis in the correctness of the operations, saying that “a correct operation is invoked in
a consistent scenario and leaves the system in a new scenario also consistent with the class

215

CHAPTER 10. EXPERIMENTATION

diagram and all its integrity constraints” (i.e. the operations should be executable). However,
we do not explicitly said that the operations should be syntactically correct, since we consider
this is an intrinsic property that any designer/programmer knows.

Prior to develop the task, the participants were introduced to action-based operations and
Alf action language. As an example, we provided the participants with the createSupervisor
operation (in the context of class User), which creates a new supervisor in the system:

activity createSupervisor(in username: String, in password: String, in

location: Location) {
if (!User.allInstances()->exists(u|u.username= username)) {
User u = new User();

u.username = username;

u.password = password;

u.userType = ‘‘Supervisor’’;

LivesIn.createLink(user=>u,location=> location);

}
}

We suggested the use of the Alf action language, but the participants could choose to use
another action language or any imperative language based on pseudocode.

As part of this task, the operations to be designed were the following:

• Operation createIncidenceAboutDriver (in the context of class Passenger): When
a passenger feels a travel has not been satisfactory, using this operation (s)he is able to
create a new incidence about the driver who is responsible of the route. The type of the
new incidence must be TravelNotSatisfactory.

One acceptable solution to accomplish this requirement is:

activity createIncidenceAboutDriver(in incidentNumber: Integer, in

date: Date, in route: Route) {
//Create the incidence and initialize its mandatory attributes

IncidentAboutDriver i = new IncidentAboutDriver();

i.incidentNumber = incidentNumber;

i.date = date;

i.incidentType = ‘‘TravelNotSatisfactory’’;

//Link the new incidence to a Route and a Passenger

RefersTo.createLink(incident=>i,route=> route);

IsAuthorOf.createLink(passenger=>self,incident=>i);

}

• Operation replaceCar (in the context of class Car): When a driver decides to eliminate
one of its cars, using this operation s(he) is able to remove this car of the system and
replace all the routes assigned to the removed car to another existing car belonging to the
same driver.

One acceptable solution to accomplish this requirement is:

216

10.1. EXPERIMENT 1: EVALUATING THE RELEVANCE OF OUR VERIFICATION
FRAMEWORK

activity replaceCar(in newCar: Car) {
//Assign all the routes of the deleted car to the new car

Routes[*] routesList = self.route;

for int i=1 to routesList->size() {
Goes.destroyLink(car=>self,route=>routesList[i]);

Goes.createLink(car=> newCar,route=>routesList[i]);

}
//Destroy the object (car) itself

self.destroy();

}

Remember that, in Alf, the links in which a destroyed object participates and the objects
owned by this object are destroyed along with the object itself. Then, in this case, the
insurance of the destroyed car and the link between this car and its insurance is destroyed
during the destruction of the car.

• Operation admitDriver (in the context of class PendingDriver): Using this oper-
ation, a supervisor can accept a driver (i.e. classify it from class PendringDriver to
AcceptedDriver). Note that, in order to satisfy the class diagram multiplicities, the
accepted driver must be responsible of at least one route.

One acceptable solution to accomplish this requirement is:

activity admitDriver(in routeId: String, in departureTime: String,

in duration: Time, in availableSeats: Integer, in expirationDate:

Date, in from: Location, in to: Location, in car: Car) {
classify self from PendingDriver to AcceptedDriver;

Route r = new Route();

r.routeId = routeId;

r.departureTime = departureTime;

r.duration = availableSeats;

r.periodicity = periodicity;

r.expiration = expiration;

GoesFrom.createLink(route=>r,from=> from);

GoesTo.createLink(route=>r,to=> to);

IsResponsibleOf.createLink(driver=>self,route=> route);

Goes.createLink(car=> car,route=>r);

}

Note that in this solution a new route is created to be linked with the accepted driver.

Task 2: Designing a complete operation’s set. The second task that was asked to the
participants was about providing the signature (context, name and parameters) of a set of
operations. In the definition of the task we put special emphasis in the completeness of the
operations set, saying that “the set of operations should allow to create/delete all the elements
of the class diagram and its relationships as well as to modify the value of its attributes”. In
order to prevent the task was too tedious, we delimited the class diagram in which this task
was focused on (see Figure 10.2).

Then, the expected solution was the following:

217

CHAPTER 10. EXPERIMENTATION











 




Figure 10.2. Starting point for Task 2.

(context PendingDriver) activity createPendingDriver(in driverLicenseCode:

String, in driverLicenseExpiration: Date, in bankAccountNumber:

String): PendingDriver

(context AcceptedDriver) activity createAcceptedDriver(in

driverLicenseCode: String, in driverLicenseExpiration: Date, in

bankAccountNumber: String, in comments: String[0..1]): AcceptedDriver

(context Route) activity createRoute(in responsible: AcceptedDriver):

Route

(context Driver) activity setDriverLicenseCode(in newLicenseCode: String)

(context Driver) activity setDriverLicenseExpiration(in

newLicenseExpiration: String)

(context Driver) activity setBankAccountNumber(in newBankAccountNumber:

String)

(context AcceptedDriver) activity setComments(in newComments: String)

(context PendingDriver) activity destroyPendingDriver()

(context AcceptedDriver) activity destroyAcceptedDriver()

(context Route) activity destroyRoute()

(context PendingDriver) activity admitDriver()

(context PendingDriver) activity rejectDriver()

(context Driver) activity relateDriverWithRoute(in route: Route)

(context Driver) activity unrelateDriverWithRoute(in route: Route)

Experiment environment

Given the characteristics of the course, the students worked together in mixed groups of five
people. Then, we had twenty groups of five students each. As a result, we obtained twenty
solutions to be analyzed.

The resolution of the complete activity (composed by these two tasks and nine more tasks
to evaluate the contents of the course) lasted for three weeks. During this time period, the
students were able to work collaboratively, ask questions to the teacher and search any kind of
information to help resolving the proposed tasks.

218

10.1. EXPERIMENT 1: EVALUATING THE RELEVANCE OF OUR VERIFICATION
FRAMEWORK

10.1.2 Results of the experiment

As a result of our first experiment, we obtained twenty solved activities to be analyzed (one for
each group of students). From Task 1, we obtained sixty operations (three operations for each
group) to be analyzed individually. From Task 2, we obtained twenty sets of operations (one
set for each group) to be analyzed together.

Our analysis was focused on checking whether the operations obtained from Task 1 were
syntactically correct and executable. On the other hand, it was also focused on checking whether
the sets of operations obtained from Task 2 were complete. Since not all operations were specified
using the Alf action language, the operations were manually examined.

Syntactic correctness

First of all, we analyzed whether the sixty operations obtained from Task 1 were syntactically
correct. Surprisingly, only 45% of the examined operations were syntactically correct (see Figure
10.5). It means that a significant number of them contained syntactical errors. We classified
these errors into several categories (see Figure 10.3):

• Structural errors. In this category we classified those errors that were related with the
structure of the language. For instance, to miss the return sentence in an operation
which is not void, to use variables that have not been defined before, to miss semicolons, to
write too many parentheses or wrong use of the language constructors (i.e. if sentences,
for each sentences, and so on). These errors represent a 37% of the syntax errors
analyzed in our experiment.

• Typographical errors. In this category we classified those mistakes made during the typing
process. These errors represent a 21% of the syntax errors analyzed in our experiment.

• Wrong/missing arguments in actions. In this category we classified those errors that
were directly related with the syntax of the actions of the action language used to
specify the operations. For instance, to miss parameters in an action (e.g., to use
IsResponsibleOf.createLink(route=>r) instead of IsResponsibleOf.

createLink(driver=>self,route=>r)), to use inconsistent parameters in an ac-
tion (e.g., to use IsResponsibleOf.createLink(driver=>self,car=>c)) or to
exchange the order of the parameters inside an action (for instance, to use classify
self from AcceptedDriver to PendingDriver in order to accept a
pending driver), among others. These errors represent a 42% of the syntax errors an-
alyzed in our experiment.

Given that syntactic correctness is a pre-requisite for the rest of the correctness properties
we address in this thesis, we manually corrected the non-syntactically correct operations before
verifying its executability.

219

CHAPTER 10. EXPERIMENTATION

Figure 10.3. Classification of the syntactic errors found in Task 1.

Executability

Second, we analyzed whether the sixty operations obtained from Task 1 were executable (clas-
sifying them into weakly and strongly executable) or not (classifying them as non-executable).
We concluded that 68% of the operations were non-executable and only 32% were executable
(in particular, 32% where weakly executable while 26% of them were also strongly executable23)
(see Figure 10.4). It means that, although the statement of the Task 1 puts special emphasis
on the correctness of the designed operations, most of the operations designed by the students
left the system in a state which was inconsistent with the class diagram and/or some of its its
integrity constraints.

Figure 10.4. Executability of the analyzed operations.

Completeness

Finally, we analyzed whether the twenty sets of operations obtained from Task 2 were complete.
We concluded that 90% of the analyzed sets were incomplete (i.e. only 10% of them were
complete) (see Figure 10.5). It means that, although the statement of the Task 2 puts special
emphasis on the completeness of the set of designed operations, almost all sets of operations
did not allow to create/delete all the elements of the class diagram and its relationships as well
as to modify the value of its attributes.

23Note that, since weak executability is a pre-requisite for strong executability, all strongly executable opera-
tions are also weakly executable.

220

10.2. EXPERIMENT 2: EVALUATING THE EFFICIENCY OF THE LIGHTWEIGHT AND
STATIC METHODS

Conclusions

To sum up, as can be seen in Figure 10.5, 45% of the operations obtained from Task 1 of our
experiment were syntactically correct (then, 55% of them were not syntactically correct), 32%
were weakly (but not strongly) executable and 26% were weakly and strongly executable (then,
68% were non-executable). On the other hand, only 10% of the sets of operations obtained
from Task 2 were complete (then, 90% were incomplete).

Figure 10.5. Correctness of the analyzed operations.

As a conclusion, this experiment evidences that designers are not able to easily write correct
executable operations by themselves. We believe this conclusion clearly supports the need for
methods able to evaluate the quality of the operations. Besides, to be useful, those methods
should be easily integrated in the modelling tools used by practitioners.

With this purpose, all the methods developed as part of this thesis try to help the designers
during the design of the behaviour that composes an executable model and can be helpful to
detect and correct the problems observed during this experiment.

10.2 Experiment 2: Evaluating the e�ciency of the lightweight

and static methods

Traditional formal verification methods (as model checking) usually su↵er from the so-called
state explosion problem, meaning that the size of the underlying state space grows exponentially
in terms of the size of the model to be verified. This trade-o↵ compromises the e�ciency of these
methods. As a consequence, they tend to be used to verify a limited subset of systems (mainly
critical systems). In contrast, lightweight and static methods are generally more e�cient and,

221

CHAPTER 10. EXPERIMENTATION

thus, they are suitable to be integrated into the development tools to be used during the
development process.

In order to assesses whether lightweight static methods are e�cient (considering e�ciency as
the ability to accomplish a purpose with a reasonable time), the purpose of the second experiment
was to evaluate the e�ciency of our prototype tool for verifying the executability of Alf-based
operations (see Chapter 9).

Our second hypothesis can be formulated as: “our lightweight static tool to verify the
correctness of Alf-based operations is e�cient, i.e. it is able to perform the verification in a
reasonable time”.

10.2.1 Design of the experiment

Sample

Most of the input models used in this second experiment were small UML/Alf executable
models. In particular, this experiment took as input two UML/Alf executable models that has
been introduced along this thesis: (1) the restaurant chain system, introduced in Chapter 2;
and (2) the car sharing system, introduced in the Section 10.1 of this chapter. In order to
measure the e�ciency of our tool, we execute it using several input models and computing its
execution time.

In order to guarantee that our tool is also e�cient when using large models, we also used a
large model artificially created for this purpose.

Variables

As we said, the objective of the experiment was to evaluate the e�ciency of our prototype
tool. In order to evaluate this feature, we measured the time consumed during the verification
process. In particular, we focus on the time consumed when verifying whether the operations
were strongly executable since, in general, it is worse than the time consumed when verifying
the weak executability.

During the experiment we take into account the following variables:

1. Size of the input structural model (class diagram). The number of classes, attributes, as-
sociations, generalizations and integrity constraints (considering both the graphical con-
straints and the textual ones) of the input class diagram.

2. Size of the input operation to be verified. The number of actions, conditionals and loops
of the input operation.

3. Running time. The time (in milliseconds) that takes the verification. This running time
contemplates the whole process, i.e. parsing the structural and behavioural models, com-

222

10.2. EXPERIMENT 2: EVALUATING THE EFFICIENCY OF THE LIGHTWEIGHT AND
STATIC METHODS

puting the execution paths of the operation to be verified, computing its PVAs, discarding
the PVAs, classifying the operation and returning the corresponding feedback.

Experiment environment

The experiment was run on a Windows XP laptop, with an Intel Pentium processor, 1.73 GHz,
and 1.0 Gb RAM.

10.2.2 Results of the experiment

Table 10.1 details the performance results for the experiments we conducted with our Eclipse
plug-in. We verified eight Alf-based operations using our prototype. For those operations that
were not executable, we verify them again until reached an executable operation. Then, “op
(1)” makes reference to the first time the operation op was verified, while “op (2)” makes
reference to the second time.

A brief description of each variable may be found in Section 10.2.1.

Conclusions

As can be seen in Table 10.2.1, the median running time is 3704 milliseconds (i.e. 3.7 seconds).
All the executions using small executable models (see rows 1 to 9 of Table 10.2.1) take less than
4 seconds, whilst the large model (see row 10 of Table 10.2.1) takes almost 5 seconds. However,
in both cases we consider this is a reasonable execution time (compared to those verification
methods that simulate the behaviour and may take several minutes).

Although we would like to evaluate the performance of our tool using big models from a real
environment, we believe these preliminary results points out the e�ciency of our lightweight
static tool. Besides, even that we have only used an artificial large model, our experiment shows
the scalability of our method.

As a conclusion, we believe the proposed method is e�cient, and then, it is suitable to be
integrated in the development process tools used by the designers.

223

CHAPTER 10. EXPERIMENTATION

Table 10.1. Performance results for our prototype tool.

Operation (iteration) Class diagram size Operation
size

Running
time

1 newCourse (1) 6 classes, 8 attributes, 4 asso-
ciations, 1 generalization, 13
constraints

3 actions, 1
loop

3641 ms

2 newCourse (2) 6 classes, 8 attributes, 4 asso-
ciations, 1 generalization, 13
constraints

3 actions, 1
loop

3593 ms

3 addMenu (1) 6 classes, 8 attributes, 4 asso-
ciations, 1 generalization, 13
constraints

4 actions, 1
conditional,
1 loop

3579 ms

4 classifyAs-
SpecialMenu (1)

6 classes, 8 attributes, 4 asso-
ciations, 1 generalization, 13
constraints

2 actions, 1
conditional

3522 ms

5 classifyAs-
SpecialMenu (2)

6 classes, 8 attributes, 4 asso-
ciations, 1 generalization, 13
constraints

2 actions, 1
conditional

3563 ms

6 createSupervisor (1) 13 classes, 28 attributes, 7
associations, 3 generaliza-
tions, 46 constraints

5 actions 3546 ms

7 createIncidence-
AboutDriver (1)

13 classes, 28 attributes, 7
associations, 3 generaliza-
tions, 46 constraints

6 actions 3516 ms

8 replaceCar (1) 13 classes, 28 attributes, 7
associations, 3 generaliza-
tions, 46 constraints

4 actions, 1
loop

3531 ms

9 admitDriver (1) 13 classes, 28 attributes, 7
associations, 3 generaliza-
tions, 46 constraints

11 actions 3578 ms

10 scalabilityTest (1) 100 classes, 200 attributes,
40 associations, 10 general-
izations, 100 constraints

100 actions,
10 condi-
tionals, 5
loops

4969 ms

224

He who sees things grow from the begin-

ning will have the best view of them.

Aristotle

11
Related Work

Verification of the correctness of software models has been a topic extensively addressed in the
literature. The work related to this thesis can be analyzed regarding three dimensions: (1) the
domain, i.e. the type of model to be verified; (2) the correctness properties to be verified; and
(3) the type of method employed to perform the verification.

In this chapter we review the previous work on verifying models according to the above
dimensions. Firstly, Section 11.1 describes the three dimensions and briefly cites the related
works. Then, Section 11.2 reviews the most representative works wrt the above dimensions and
compares our proposal with them.

11.1 Dimensions of the related work

According to the three axis of the framework proposed in Chapter 4 (domain, property and
method), the related work can be analyzed regarding three perspectives (see Figure 11.1):

• Domain. Refers to the kind of model to be verified.

• Property. Refers to the correctness property to be verified.

• Method. Refers to the type of method employed to perform the verification.

In the rest of this section we briefly describe these dimensions.

225

CHAPTER 11. RELATED WORK































































Figure 11.1. Related Work dimensions.

11.1.1 Domain

The domain dimension refers to the kind of model to be verified.

In the software modelling context, the focus of the verification may be the structural model
or the behavioural model. Regarding the first group, there is a long tradition of methods
devoted to the problem of verifying structural models. For instance, [102, 148, 150] verify
several correctness properties over UML class diagrams.

Regarding the second group, there is also a broad set of research proposals devoted to
the problem of verifying behavioural models. For instance, in the UML context, there are
works focusing on verifying statechart diagrams [104, 105, 129], sequence diagrams [74], activity
diagrams [3, 1, 22, 59], operations [33, 70, 149], xUML models [75, 185], or on verifying the
consistent interrelationship between them [2, 44, 71], among others. On the other hand, in
the model transformation context, there are also works focusing on the verification of M2M
transformations described by means of QVT [178, 8], ATL [178, 179], Xtend [178], or graph
transformation rules [31, 152], among others.

In Section 11.2 we review in detail the most related works.

226

11.1. DIMENSIONS OF THE RELATED WORK

11.1.2 Property

The property dimension refers to the correctness property to be verified.

Along the history of software engineering, several properties of software models have been
addressed. In the following subsections we review the origin of the correctness properties studied
in this thesis and we briefly introduce other properties that has been studied in the literature.

Syntactic Correctness

Syntactic correctness has its origin in programming languages. Syntactic correctness is a very
well-known property that all programs written in a specific programming language must satisfy.
In this context, compilers [6] are the responsible of checking whether the code of a program is
correctly written in terms of the syntax of the programming language. The compiler recognizes
well-formed and ill-formed programs, reporting errors, if any.

In a higher level of abstraction, syntactic correctness may also be checked in models, model
transformations and any high-level representation conforming to a language (or metamodel).
As an example, the UML specification [126] provides several Well-Formedness Rules (WFR) to
ensure the syntactic correctness of models.

The most popular modelling tools used today (such as MagicDraw, ArgoUML, Poseidon or
Eclipse UML2Tools) include some basic syntactic checks focused on the UML class diagram
(e.g. to check that associations have at least two association ends). At most, some of them
provide also syntactic checks over OCL integrity constraints (e.g. to check that the structure
of the constraint is consistent with the OCL language). Regarding the tools that also allow the
inclusion of actions (like Papyrus [130], which includes an Alf editor) they only include some
basic syntactic checks. The current version of Papyrus, for instance, includes an Alf parser (to
check the Alf code fulfills the Alf syntax) but it does not yet include advanced analysis to check
the issues we propose in Chapter 5.

Executability

Executability has also been briefly studied in programming languages [81].

In a higher level of abstraction, as syntactic correctness, executability may be checked in
models, model transformations and any high-level representation conforming to a language (or
metamodel). As an example, [33] and [149] verify the executability of declarative operations
represented by means of the OCL language. In Section 11.2 we review these works in more
detail.

227

CHAPTER 11. RELATED WORK

Completeness

The meaning of completeness is so broad that it can be applied to many di↵erent contexts. Olivé
argues that “a conceptual model must be complete” meaning that “a complete conceptual model
includes all knowledge relevant to the Information System” [127]. According to this definition,
Tort et al. [169] propose a Test Driven Development (TDD) approach to develop complete
conceptual models.

The above definition refers to the external quality of models. However, the notion of com-
pleteness we adopt in this thesis refers to the internal quality of models. Aligned with our
notion, for instance, [178] verifies the completeness of a M2M transofrmation. In Section 11.2
we review this work in more detail.

Other properties

Besides the correctness properties studied along this thesis, an extensive list of additional prop-
erties over behavioural models has been studied. For instance, there are works focusing on
checking properties such as: deadlocks-free [3, 22, 105, 129], livelocks-free [22, 105, 129], safety
[74, 75, 104], liveness [22, 74, 104], applicability [33], consistency [2, 71], or domain-specific
properties [8, 152, 179, 185], among others.

In Section 11.2 we describe these properties and the main works that address them.

11.1.3 Method

Finally, themethod dimension refers to the type of method employed to perform the verification.

As we explained in Chapter 3, a variety of methods can be used to analyze a model. They
can be classified into static/dynamic and formal/non-formal/lightweight.

As we will explain in Section 11.2, most of the related works [3, 2, 1, 33, 31, 71, 104, 105,
129, 149, 152] require translating the input model into a formalism where a dynamic and formal
verification method (such as a solver, a model checker or a theorem prover) is available. Only
few works [100, 178, 179] use static analysis to verify the models.

11.2 Comparing the Related Works

In this section we compare the works related with this thesis. According to the first dimension
(domain), we classify the related approaches into those that focus on UML models (see Section
11.2.1) and those that focus on model to model transformations (see Section 11.2.2).

228

11.2. COMPARING THE RELATED WORKS

11.2.1 Verification of UML Models

A lot of research has been devoted to the problem of V&V (verify and validate) UML models.
As we introduced, many works focus on the structural model [102, 148, 150], however, the works
more related to our are those which focus on the behavioural model.

Although there is no work addressing exactly the same problem of our focus (i.e. verifying
the syntactic correctness, the executability and the completeness of UML action-based opera-
tions), a lot of research has been done to address similar problems. In this section we review the
related works that have at least one dimension (kind of model, property verified or verification
method) in common with our work.

Table 11.1 classifies the related works that deal with the verification of UML behavioural
models and positions our work in relation with them. For each approach, we include the
following information:

• Work. References the work.

• Model. Indicates the kind of behavioural model targetted.

• Supported Constraints. Indicates whether OCL integrity constraints are considered when
analyzing the models.

• Include Actions?. Indicates whether UML actions can be added to specify fine-grained
details of the model.

• Property. Enumerates the main correctness properties addressed by the work.

• Method. Indicates the basic method employed during the verification.

• Repairing Feedback. Indicates whether the approach returns some kind of repairing feed-
back beyond a simple yes/no answer (or a counterexample).

As can be seen in Table 11.1, there are lots of works targetting the verification of several
types of UML behavioural diagrams (statechart diagrams, activity diagrams, etc.). The most
related items of each work are colored in Table 11.1.

Lilius et al. [105, 129] propose the vUML tool, a verification tool that uses the SPIN model
checker [84] to detect basic error types on UML statechart diagrams. The detected errors
are: deadlocks (a deadlock is a common problem in concurrent models and it is produced when
is not possible to dispatch any event in any object), livelocks (an object contains a livelock if
none of the states marked with the “progress” stereotype are visited infinitely often during a
normal execution of the model), reaching a state marked as invalid (invalid states are introduced
by the designer and represent an error condition on the statechart; the verification will fail if a
state marked as invalid is reached), violating a constraint of an state (if a constraint does not
hold, the verification fails), sending an event to a terminated object (it is an error to send events
to a terminated object) and queue overruns (each object has a finite input queue associated
that holds the events sent to the object until they are processed; sending an event to a full
queue produces an error). Similarly, Latella et al. [104] translate UML statechart diagrams to
PROMELA (the specification language of the SPIN model checker [84]) to allow the designer
to automatically verify basic correctness properties such as: safety (the statechart diagram is

229

CHAPTER 11. RELATED WORK

Table 11.1. UML related methods comparison.

Domain
Work Model Supported

Con-
straints

Include
UML
Ac-
tions?

Property Method Repairing
Feedback?

Lilius et al.
[105, 129]

Statechart
diagrams

None No Deadlocks,
livelocks, etc.

Model
checking

No

Latella et al.
[104]

Statechart
diagrams

None No Safety, live-
ness

Model
checking

No

Grosu et al.
[74]

Sequence di-
agrams

None No Safety, live-
ness

Model
checking

No

Eshius et al.
[59]

Activity dia-
grams

None No Safeness, etc. Model
checking

No

Bouabana-
Tebibel et al.
[22]

Activity dia-
grams

None No Deadlocks,
livelocks,
liveness, etc.

Model
checking

No

Brosch et al.
[26]

Statechart
diagrams
and sequence
diagrams

No No Consistency Model
Checking

No

Gogolla et al.
[70]

Declarative
operations

Yes (all) No Validation
checks

Animation No

Cabot et al.
[33]

Declarative
operations

Yes (all) No WE, SE etc. Constraint
program-
ming

No

Queralt et al.
[149]

Declarative
operations

Yes (sub-
set)

No WE etc. Query
contain-
ment

No

Abdelhalim
et al. [3, 1]

Activity dia-
grams

None Yes
(fUML)

Deadlock free Model
checking

No

Abdelhalim
et al. [2]

Statechart
diagrams,
activity
diagrams

None Yes
(fUML)

Consistency Model
checking

No

Graw et at.
[71]

Statechart
diagram,
sequence
diagrams

None Yes
(fUML)

Consistency Model
checking

No

Hansen et al.
[75]

xUML model None Yes
(xUML)

Safety Model
checking

No

Xie et al.
[185]

xUML model None Yes
(xUML)

Domain-
specific prop-
erties

Model
checking

No

Bousee et al.
[23]

SysML
statechart
diagram

Yes Yes
(Alf)

Safety Theorem
proving

No

Lai et al.
[100]

Activity dia-
gram

No Yes
(Alf)

Basic redun-
dancies

Static
analysis

No

our work imp-OP Subset Yes
(Alf)

Syntactic cor-
rectness, weak
and strong
executability,
completeness

Static
analysis

Yes

230

11.2. COMPARING THE RELATED WORKS

free from invalid transitions) and liveness (all valid transitions are possible). Likewise, Grosu
et al. [74] study the safety and liveness properties over UML sequence diagrams.

Eshius et al. [59] translate UML activity diagrams to NuSMV (a symbolic model verifier
[35]) to allow the designer to automatically verify a subset of the correctness properties that can
be expressed in PLTL-X (a variant of the Past Linear Temporal Logic [107]) such as: safeness
(an activity is safe if each node can be active at most once at the same time). Similarly,
Bouabana-Tebibel et al. [22] translate UML activity diagrams to Object Petri Nets [92] and
analyze the Petri Nets using a model checker to allow the designer to verify properties such
as: deadlock-free (there are no UML states that prevent any activity to be invoked eventually),
livelock-free (there are no loops of activities on the diagram) and quasi-liveness (guarantees
that each UML activity can be invoked eventually). Furthermore, Brosch et al. [26] translate
UML statechart diagrams and sequence diagrams to PROMELA [84] to allow the designer to
automatically verify the consistency between both diagrams.

Other works, as our work, are focused on UML operations. For instance, the USE tool
by Gogolla et al. [70] receives a UML class diagram and a set of declarative operations and it
is able to validate the structure/behaviour according to the designer expectations (such as the
consistency of UML models and the independence of OCL constraints) through animation and
certification. Similarly, Cabot et al. [33] translate declarative operations (expressed by means of
OCL pre- and postconditions) into a Constraint Satisfaction Problem (CSP) [172] to allow the
designer to automatically verify several correctness properties such as: weak executability (an
operation is weakly executable if its postcondition is satisfiable, that is, if there is a legal input
satisfying the precondition for which we can find a legal output satisfying the postcondition) and
strong executability (an operation is strongly executable if, for every legal input satisfying the
precondition, there is a legal output that satisfies the postcondition). Besides, they verify other
properties such as: applicability (an operation is applicable if the precondition is satisfiable,
i.e. if there is an input where the precondition evaluates to true), redundant precondition (the
precondition of an operation is redundant if it is true for any legal input), correctness preserving
(an operation is correctness preserving if, given a legal input, each possible output satisfying
the postcondition is also legal), immutability (an operation is immutable if, for some input, it
is possible to execute the operation without modifying the initial snapshot) and determinism
(an operation is non-deterministic if there is a legal input that can produce two di↵erent legal
outputs, e.g. di↵erent result values or di↵erent final snapshots). In the same line, Queralt et
al. [149] translate declarative operations into logic to allow the designer to automatically verify
several correctness properties such as: applicability and weak executability.

The above works by Cabot et al. [33] and Queralt et al. [149] are the closest to our work
since they verify the executability of operations defined at the model level. In the following
we itemize the similarities and di↵erences of both works with respect to ours:

• A significant di↵erence wrt our work is that both the above works [33, 149] depart from
declarative operations specified by means of OCL pre and postconditions, instead of using
imperative specifications24 based on actions.

24Although our aim is not to compare declarative and imperative specifications, it is worth to note that there
are methods that transform declarative operations into imperative ones [29].

231

CHAPTER 11. RELATED WORK

• Regarding the expressivity of the input model, a strong point of [33] wrt our work is that
they deal with more expressive models since they do not have any structural limitation,
i.e. they consider general OCL constraints (annotated to the class diagram) during his
analysis. On the other hand, Queralt et al. [149], as our work, take into account only a
subset of OCL integrity constraints. In particular, they are not able to deal with those
OCL expressions that include arithmetic operations, since they cannot be expressed in
the logic representation they use to perform the verification.

• Regarding the method used to perform the verification, both works use dynamic and for-
mal methods. In particular, Cabot et al. [33] use a Constraint Programming (CP) solver
to search for a state of the domain in which all the constraints that define the problem are
satisfied at the same time. On the other hand, Queralt et al. [149] use the Constructive
Query Containment Method (CQC-Method) [63] to construct a state that fulfills a goal
(i.e. the property) and satisfies all the constraints in the model. Both methods may be
classified as dynamic and formal according to the classification we presented in Chapter
3. It means that both methods require to execute the model to search (in CP) or to con-
struct (in CQC) the proper state. Although both methods show o↵ about its e�ciency,
none of them describe its time complexity.

• A weak point wrt our work is that both works [33, 149] do not provide any repairing
feedback. When the checked property is not satisfied, Cabot et al. [33] return a coun-
terexample represented by means of a UML object diagram. Similarly, Queralt et al. [149]
return a binary response to indicate whether the input test (designed to validate/verificate
a specific property) is satisfied or not. Although both approaches point out the source of
the problem, they do not indicate how the user can correct the error. This is because of
the focus of the analytical methods is on exploring the model in order to find a solution
(but not on finding errors).

• Finally, regarding the completeness of the method, this feature is not guaranteed by
Cabot et al. [33] since they restrict the domains of the variables in order to guarantee
decidability. It means they may fail to find an existing solution (i.e. as our work -when
the user does not intervene-, they can return false positives, that is, they may conclude
that a property is not satisfied although it is actually satisfied outside the search space
explored during the verification). On the contrary, the method proposed by Queralt et
al. [149] is complete (i.e. when an example for a property exists, it will always be found)
but, in change, it is semi-decidable since it does not guarantee termination in all cases
(since the query containment problem for the general case of queries and databases that
the CQC method can cover is undecidable [62]). However, they have identified the cases
in which their method may not terminate, so the designer is aware of this fact before
performing the verification.

As can be seen in Table 11.1, although there are a lot of works addressing the verification
of UML behavioural models, only a subset of these works support the inclusion of UML ac-

tions as part of the specification of their input behavioural UML diagrams (even when this is
indeed allowed by the UML standard). For instance, Abdelhalim et al. [3, 1] translate UML
activity diagrams (which include fUML abstract actions) into the Communicating Sequential

232

11.2. COMPARING THE RELATED WORKS

Processes (CSP) modelling language [158] to allow the designer to check whether the model is
deadlock-free using a model checker. In another work [2] the same authors take as input a UML
statechart diagram and a UML activity diagram (which includes fUML abstract actions) for
each state of the statechart. Then, these diagrams are translated into a CSP (Communicating
Sequential Processes) formalization in order to check the consistency between each UML stat-
echart diagram and its corresponding fUML activity diagram using a model checker. Similarly,
Graw et at. [71] transform UML statechart diagrams and UML sequence diagrams (both in-
cluding the abstract syntax of UML 2.0 Action Semantics) into compositional Temporal Logic
of Actions (cTLA) [101] formalization language in order to verify several consistency checks
using a model checker.

Other works allow the inclusion of actions in the context of xUML models. For instance,
Hansen et al. [75] translate xUML models into the process algebra mCRL2 [73] in order to verify
safety properties in a domain-specific scenario (such as interlockings in the railway industry, to
ensure that trains neither collide nor derail) using symbolic model checking. Similarly, Xie et
al. [185] translate xUML models into S/R (the input language of the COSPAN model checker
[76]) to allow the designer to verify domain-specific properties specified in logic.

Although there are several works [1, 3, 2, 71, 73, 75] addressing the verification of UML
executable models including actions, only two recent works [23, 100] are aligned with the new
standard Alf action language (all the above works use a non-standard action language to
specify the concrete syntax of actions). Bousse et al. [23] translate SysML [66] statechart
diagrams (including Alf actions) to the B formalization [159] in order to check safety properties
using theorem prover techniques. On the other hand, Lai et al. [100] propose a preliminary
framework to verify basic redundancies over Alf activities (such as detecting unused activities or
unused class members). The verification relies on static analysis and uses a library of suspicious
patterns to detect the above anomalies. However, none of these works check any of the properties
we deal with in this thesis.

As also can be seen in Table 11.1, most of the related works require translating the input
model into a formalism where a dynamic verification method (such as a solver, a model
checker or a theorem prover) is available. For instance, Cabot et al. [33] translate the model
into a Constraint Satisfaction Problem (CSP) [172] and then use a Constraint Programming
solver. Queralt et al. [149] translate the model into logic and then use a the Constructive
Query Containment Method (CQC-Method) [63]. Bousse et al. [23] translate the model into
the B formalization [159] in order to use theorem proving techniques. Other broad set of works
translates the model into the specification language of a model checker in order to check the
input property. For instance, Lilius et al. [105, 129], Latella et al. [104] and Brosch et al. [26]
translate the model to PROMELA (the specification language of the SPIN model checker [84]);
Abdelhalim et al. [3, 2, 1] translate the model into the Communicating Sequential Processes
(CSP) [158] (the specification language of the Failures-Divergences Refinement tool (FDR2)
[64]); Graw et at. [71] transform the model into compositional Temporal Logic of Actions
(cTLA) [101] (the specification language of the TLC (Temporal Logic Checker) [187]).

Model checkers work by generating and analyzing all the potential executions at run-time
and evaluating whether for each (or some) execution scenario the given property is satisfied.
Even with the several optimizations available (as partial order reduction or state compression),

233

CHAPTER 11. RELATED WORK

methods based on model checking su↵er from the state-explosion problem (i.e. the number of
potential executions to analyze grows exponentially) compromising the e�ciency of the method.
Therefore, in general, it is not possible to explore all possible executions. This implies that the
results provided by these methods may be not complete, i.e. the absence of a solution cannot be
used as a proof, because a property may be satisfied outside the search space explored during
the verification.

However, the above formal dynamic methods are more potent wrt our lightweight static
method. It means that these methods are allowed to verify arbitrary properties (previously
formalized in the proper language) considering a more expressive model (allowing all types of
integrity constraints) and without requiring the user intervention.

As suggested in [58], static and dynamic analysis can interact. In this sense, we believe the
lightweight static methods presented in this thesis could be used to perform a first correctness
analysis, basic to ensure a fundamental quality level on action-based operations. Then, designers
could proceed with a more detailed analysis adapting the current approaches presented above
to the verification of behaviours specified with Alf. For instance, example execution traces that
lead to an error state would help designers to detect particular scenarios not yet appropriately
considered.

Finally, we would like to remark that most of the cited methods just provide a binary
response (showing whether the model satisfies the given property or not) and, at most some
provide example execution traces that do (not) satisfy the property (i.e. a counterexample).
However, none clearly identify the source of the problems nor assist the designer to repair them.
Instead, a clear benefit of our method is the kind of feedback provided, that helps the designer
repairing her models.

11.2.2 Verification of M2M Transformations

Since quality of model transformation is a more recent topic, less work has been done in this
direction. However, relevant e↵orts have been recently done to explore this area.

Table 11.2 classifies the related works that deal with the verification of M2M transformations
and positions our work in relation with them. For each approach, we include the following
information:

• Work. References the work.

• Domain. Indicates the kind of behavioural model targetted.

• Property. Enumerates the main correctness properties addressed by the work.

• Method. Indicates the basic method employed during the verification.

• Repairing Feedback. Indicates whether the approach returns some kind of feedback beyond
a simple yes/no answer.

As before, the most related items of each work are colored in the Table 11.2.

In the context of exogenous out-place transformations (i.e. using transformation lan-
guages), Anastasakis et al. [8] formalize QVT [122] model transformations in Alloy [90] (a

234

11.2. COMPARING THE RELATED WORKS

Table 11.2. M2M related methods comparison.

Work Domain Properties Method Repairing
Feedback?

Anastasakis
et al. [8]

QVT M2M Trans-
formations

Domain-specific
properties

Simulation No

Vieira et al.
[179]

ATL M2M Transfor-
mations

Domain-specific
properties

Static
Analysis

No

Vallecillo et
al. [176]

ATL M2M Transfor-
mations

Domain-specific and
syntax related prop-
erties

Testing No

Amstel et al.
[178]

ATL, QVTo and
Xtend M2M Trans-
formations

Covering (i.e. com-
pleteness) et al.

Static
analysis

Yes

Cabot et al.
[31]

Graph Transforma-
tion Rules

WE, SE, et al. Constraint
Program-
ming

No

Rivera et al.
[152]

Graph Transforma-
tion Rules

Domain-specific
properties

Model
Checking

No

our work ATL Transfor-
mations, Graph
Transformation
Rules

WE, SE, complete-
ness

Static
Analysis

Yes

first-order relation specification language). Then, the Alloy analyzer simulates these transfor-
mations to explore the potential combinations of target models that can be generated by the
given transformation rules. Besides, several types of domain-specific assertions can be used to
verify that a target model will always be well-formed given the transformation rule. Note that
using assertions one could specify our executability property over QVT transformations. How-
ever, this property should be redefined for each domain. Similarly, Vieira et al. [179] provide
an API to manipulate ATL [94] transformation elements in order to assist the designer during
the inspection of the model transformations. On the other hand, Vallecillo et al. [176] propose
a testing based method to check the correctness of ATL transformations. To do that, first
they define the requirements that a transformation has to fulfill (i.e. its expected behaviour).
Afterward, they generate several input test models, which are then automatically transformed
into output models and checked against the set of requirements defined for the transformation,
using the USE tool [70].

However, the most related work dealing with exogenous out-place M2M transformations
is one by Van Amstel et al. [178]. In this work, the authors provide several metamodel
completeness visualization techniques (they use the term coverage instead of completeness)
that can be used to visually analyze the relation between a model transformation and the
metamodels in which it is defined on. The first property, metamodel coverage, analyzes what
elements (metaclasses, attributes and references) of the input/output metamodels are covered
by the transformation. An input metamodel element is covered if it serves as input for a
transformation function in the transformation, while an output metamodel element is covered
if it is generated as output by a transformation function in the transformation. The second
property, metamodel coverage relation, trace the relation between a transformation element

235

CHAPTER 11. RELATED WORK

and the metamodel element it covers. The result of the checked properties is visually presented
using two helpful visualization techniques. When verifying the first property, the metaclasses
and references that are covered by the transformation are colored, while the attributes that are
covered are underlined. When verifying the second property, a line between a metaclass and
a transformation element exists if and only if the metaclass is covered by the transformation
element. Both visualizations may be zooming and navigated in order to understand in detail
the completeness of a model transformation and to find errors during development. Similarly
to our method, this work uses static analysis to check the previous properties. With respect
to our method, this work has the advantage that it uses visualization techniques that help the
designer to comprehend the feedback. Even though this work also deals with other correctness
properties (metrics for measuring model transformations, and structure and trace analysis), it
does not check the executability neither the syntactic correctness of M2M transformations.

In the context of endogenous in-place transformations (i.e. using graph transformation
languages), Rivera et al. [152] translate graph transformation rules into a Maude specification
[40] (a rewriting logic-based language with formal analysis support). Then, using the tools and
techniques that Maude provides, they perform simulation, reachability and model-checking to
analyze specific-domain properties of such models.

However, the most related work dealing with graph transformations is one by Cabot et al.
[31]. In this work, the authors translate graph transformation rules into OCL declarative opera-
tions and then use their UML2CSP tool [32] (which translates the OCL invariants into CSP) to
allow the designer to automatically verify the weak/strong executabilily of graph transformation
rules among other properties. However, even though the results of their analysis are presented
in a graphical front-end tool, they do not provide any kind of feedback to help the designers
repair her erroneous rules.

236

A young martial artist kneeling before the Master Sensei in a

ceremony to receive a hard-earned black belt. After years of

relentless training, the student has finally reached a pinnacle of

achievement in the discipline.

“Before granting the belt, you must pass one more test”, says

the sensei. “I am ready”, responds the student, expecting per-

haps one final round of sparring. “You must answer the essential

question: What is the true meaning of the black belt?” “The

end of my journey”, says the student. “A well-deserved reward

for all my hard work.” The sensei waits for more. Clearly, he is

not satisfied. Finally, the sensei speaks. “You are not yet ready

for the black belt. Return in one year.”

A year later, the student kneels again in front of the sensei.

“What is the true meaning of the black belt?” asks the sen-

sei. “A symbol of distinction and the highest achievement in our

art”, says the student. The sensei says nothing for many minutes,

waiting. Clearly, he is not satisfied. Finally, he speaks. “You are

still not ready for the black belt. Return in one year.”

A year later, the student kneels once again in front of the sensei.

And again the sensei asks: “What is the true meaning of the

black belt” “The black belt represents the beginning – the start

of a never-ending journey of discipline, work, and the pursuit of

an ever-higher standard”, says the student. “Yes. You are now

ready to receive the black belt and begin your work.”

The Parable of the Black Belt

12
Conclusions

Executable models play a key role in many development methods by facilitating the immedi-
ate simulation/implementation of the software system under development. Given its increasing
importance and the impact of their correctness on the final quality of software systems derived
from them, the existence of methods to verify the correctness of such models is becoming cru-
cial. The aim of this thesis has been to propose a framework for assessing and improving the
quality of executable models based on actions. To define the scope of this thesis, in Chapter 1
we formulated the main research question as follows: How can the quality of executable models
be improved?

The aim of this chapter is to summarize the contributions of this thesis regarding the above
research question (Section 12.1) and to provide directions for further research related to the
topic of this thesis (Section 12.2).

12.1 Contributions

In Chapter 1 we decomposed the main research question into four specific research questions.
In this section we reexamine these research questions in order to summarize the contributions
of this thesis.

237

CHAPTER 12. CONCLUSIONS

12.1.1 Quality Properties for Executable Models

In Chapter 2 we defined an executable model as “a model with a behavioural specification
detailed enough so that it can be systematically implemented or executed in the production
environment”. Previously, in Chapter 1 we defined the quality of a model as “the degree to
which a set of internal properties (also called quality goals) is present”. In order to study the
quality of executable models, in Chapter 1 we set out the first research question (RQ1): How
can the quality of executable models be decomposed into quality properties?

In Chapter 4 we proposed a set of correctness properties that we believe all executable
models (consisting of a set of action-based operations) should accomplish to ensure their internal
quality. Some of these properties were previously studied in the literature (for instance, to verify
the source code of a program). However, in this thesis we redefined its meaning to deal with
action-based operations defined within a model.

Then, the correctness properties we addressed in this thesis can be summarized as:

• Syntactic correctness (see Chapter 5). An action-based operation is syntactically cor-
rect if all the statements in the operation conform to the syntax of the language in which
it is described (i.e. the Alf action language [124]). According to the Lindland et al.
framework for evaluating the quality of models [106], syntactic correctness works at the
syntactic level of model’s correctness, then, ensuring this property improves the syntactic
quality of the executable model we are analyzing.

• Executability (see Chapter 6). The executability of an action-based-operation is its
ability to be executed without breaking the integrity constraints defined in the structural
model. Executability can be studied regarding two levels of correctness. On the one hand,
an action-based operation is weakly executable when there is a chance that a user may
successfully execute the operation, i.e. when there is at least an initial state of the system
for which the execution of the actions included in the operation evolves this state to a
new system state that satisfies all integrity constraints of the structural model. On the
other hand, an action-based operation is strongly executable when it is always successfully
executed, i.e. when every time a user executes the operation, the e↵ect of the actions
included in it evolves the initial state of the system to a new system state that satisfies
all integrity constraints of the structural model. According to [106], executability works
at the semantic level of model’s correctness, then, ensuring this property improves the
semantic quality of the executable model we are analyzing.

• Completeness (see Chapter 7). A set of action-based operations is complete when all
the possible changes on the system state can be performed through the execution of
these operations. Otherwise, there will be parts of the system that users will not be able
to modify since no available behaviour address their modification. According to [106],
as executability, completeness works at the semantic level of model’s correctness, then,
ensuring this property improves the semantic quality of the executable model we are
analyzing.

The more lower the quality goal, the more fundamental the correctness property is. It means
that the syntactic quality ensures a fundamental quality level that all executable models should

238

12.1. CONTRIBUTIONS

guarantee; and the semantic quality ensures a significant quality level that all executable mod-
els should also guarantee. According to this classification, we believe that syntactic correctness,
executability and completeness are mandatory properties that all correct executable models
should guarantee.

12.1.2 Lightweight methods for verifying Executable Models

In Chapter 3 we introduced several types of methods that can be employed for checking the
quality of models. Then, our second research question (RQ2) was: What methods can be
employed to support the verification of the quality properties of executable models?

In this thesis we proposed specific methods for verifying the proposed correctness properties.
Chapters 5 to 7 describe in detail each method. In summary, we would like to remark that all
the proposed methods are lightweight, i.e. they directly reason over a model formalized in Alf
language, they are based on a static analysis of the model (i.e. no execution of the behaviour
is required) and they provide meaningful feedback. This leads on a set of methods that can be
easily integrated in the current software development processes and CASE tools.

As a trade-o↵, our lightweight static methods are not able to verify other arbitrary properties
that can be logically formulated. Besides, they may require (only when verifying executability)
the user intervention in order to return a more precise result. For these reasons, we believe the
methods presented in this thesis could be used to perform a first correctness analysis, basic to
ensure a fundamental quality level on action-based operations. Then, designers could proceed
with a more detailed analysis adapting other methods (such as model checking) to perform a
more complete verification.

In order to prove the feasibility of the methods proposed in this thesis, we have built a
prototype tool (see Chapter 9) that implements the methods for verifying the weak and strong
executability of an executable model consisting in a UML class diagram and a set of Alf-based
operations.

12.1.3 Feedback

In order to guarantee the usefulness of the methods presented in this thesis, we set out the third
research question (RQ3): What kind of feedback can help the designer to improve her executable
models?

Actually, one of the goals of our verification framework is to provide a useful feedback
to help the designers improve her models. To achieve this goal, all the verification methods
proposed in this thesis return either a positive answer, meaning that the model achieves the
checked property, or a corrective feedback otherwise. In order to make the corrective feedback
understandable to the designer, it is always expressed in the same language used to express the
input model (i.e. Alf actions, ATL sentences or graph transformation elements).

In this sense, we would like to remark that all the related works studied (see Chapter 11)

239

CHAPTER 12. CONCLUSIONS

only provide a binary response (whether the model satisfies the property or not) and, at most,
some of them provide (counter)example execution traces that do (not) satisfy the property.
None of them identify the source of the problems nor assist the designer to repair them, which
is one of the goals of our proposal.

12.1.4 Application in Model Transformations

The properties presented in this thesis can also serve to analyze the quality of other types
of models. As a consequence, the methods presented in this thesis may be applied in other
contexts. This led to the fourth research question (RQ4): What kinds of executable models can
be verified using these methods?

Model transformations automate the translation of models between a source and a target
language using a model transformation language (such as ATL or graph transformation rules).
Model transformations are in many ways similar to traditional software artifacts (for instance,
they may change according to the user expectations, they may be reused, and so on). Therefore,
they need to be verified as well. In Chapter 8 we adapted our lightweight and static methods to
the context of model to model transformations. In particular, we redefined our weak executability
and completeness properties in the context of model transformations and we redesigned the
previous methods to verify these properties in the context of M2M transformations.

12.2 Directions for Further Research

The work proposed in this thesis can be extended in many ways. In this section we present
several directions for further research in this area, according to the three dimensions of our
framework.

Domain

Regarding the kind of model to be verified, the executable models addressed in this thesis could
be extended. In order to be more expressive, new types of OCL constraints could be considered.
Adding constraints imply to identify its OCL pattern and to extend the methods proposed in
this thesis to address these constraints. However, note that - as we justified in Chapter 6 - not
all possible constraints can be added to our method.

On the other hand, the methods presented in this thesis could also be applied in other
types of executable models. In the context of UML, for instance, other behavioural diagrams
including actions to define the low level behaviour (such as activity diagrams or statechart
diagrams) could be analyzed in terms of the properties addressed in this thesis. Also BPM
models could be analyzed concerning similar properties.

240

12.2. DIRECTIONS FOR FURTHER RESEARCH

Properties

Regarding the properties to be verified, the definition of some properties proposed in this thesis
could be extended. In particular, as we stated in Chapter 7, the meaning of the completeness
property could be extended to consider not only the modification actions appearing in the model
but also the reading actions.

Besides, other semantic properties could be added in our verification framework. One ex-
ample is the applicability of an operation, considering that an operation is applicable if it may
be invoked, i.e. if the required parameters to invoke the operation may be created executing
other operations existing in the behavioural model. In other words, an operation is applicable
if its execution requires an empty initial state or a state that may be built executing other
existing operations. This property, as the rest of the properties proposed in this thesis, may be
statically analyzed reasoning over the input/output parameters of the operations.

Method

Regarding the method employed to perform the verification, the verification framework pre-
sented in this thesis could be complemented with other dynamic formal methods to allow the
verification of more complex and specific properties. In this way, for instance, two concrete
research lines could be addressed:

1. The first line consists in providing an automatic translation between our Alf-based oper-
ations and OCL pre- and postconditions in order to be able to use the UML2CSP tool
[32]. Using this tool, the designers could directly check additional properties such as
applicability (an Alf-based operation is applicable if it may be invoked) or determinism
(an Alf-based operation is non-deterministic if there is a legal input that can produce
two di↵erent legal outputs, e.g. di↵erent result values or di↵erent final snapshots) among
others.

2. The second line consists in providing an automatic translation between our Alf-based
operations and the input language of a model checker (such as PROMELA [84] or Maude
[40]). Then, the designers could also perform simulation, reachability and model checking
to analyze specific-domain properties over the Alf-based behavioural model. However,
note that this translation requires expertise on the formal notation.

On the other hand, regarding the kind of feedback provided by our methods, its represen-
tation could be improved by using visualization techniques like those proposed in [178].

The study of the proposed further work will help to extend our verification framework to
be more complete. The verification framework should integrate all the studied properties and
its respective verification methods (both lightweight and no-lightweight) in all the addressed
domains. Then, a set of guidelines should be proposed to help the designers choose the most

241

CHAPTER 12. CONCLUSIONS

appropriate verification method for the model they have defined, depending on the target
property and the verification trade-o↵s (expressiveness, completeness, e�ciency,...) they are
ready to accept.

In summary, given the increasing importance of executable models in the most relevant
software development methods used today, the assessment of the correctness of such models is
a research topic that should be studied in more deep.

242

Bibliography

[1] Abdelhalim, I., Schneider, S., and Treharne, H. An integrated framework for
checking the behaviour of fUML models using CSP. International Journal on Software
Tools for Technology Transfer (2002, DOI: 10.1007/s10009-012-0243-0).

[2] Abdelhalim, I., Schneider, S., and Treharne, H. Towards a Practical Approach
to Check UML/fUML Models Consistency using CSP. In ICFEM (2011), pp. 33–48.

[3] Abdelhalim, I., Sharp, J., Schneider, S. A., and Treharne, H. Formal Verifica-
tion of Tokeneer Behaviours Modelled in fUML using CSP. In ICFEM (2010), pp. 371–
387.

[4] Agarwal, B., Tayal, S., and Gupta, M. Software Engineering and Testing. Infinity
Science Series. Jones & Bartlett Publishers, Incorporated, 2009.

[5] Agesen, O. Constraint-Based Type Inference and Parametric Polymorphism. In SAS
(1994), pp. 78–100.

[6] Aho, A., Lam, M., Sethi, R., and Ullman, J. Compilers: Principles, Techniques,
and Tools, vol. 1009. Pearson/Addison Wesley, 2007.

[7] Aiken, A. Introduction to Set Constraint-Based Program Analysis. Sci. Comput. Pro-
gram. 35, 2 (1999), 79–111.

[8] Anastasakis, K., Bordbar, B., and Kster, J. M. Analysis of Model Transforma-
tions via Alloy. In MoDeVVa (2007), pp. 47–56.

[9] Arsac, J., and Kodratoff, Y. Some Techniques for Recursion Removal from Recur-
sive Functions. ACM Trans. Program. Lang. Syst. 4, 2 (Apr. 1982), 295–322.

[10] Atkinson, C., and Kühne, T. Model-Driven Development: A Metamodeling Founda-
tion. IEEE Software 20, 5 (2003), 36–41.

[11] Ayer, A. Language, Truth and Logic. Penguin Books, 1936.

[12] Bansiya, J., and Davis, C. G. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Trans. Software Eng. 28, 1 (2002), 4–17.

[13] Basili, V. R. The role of experimentation in software engineering: past, current, and
future. In Proceedings of the 18th international conference on Software engineering (Wash-
ington, DC, USA, 1996), ICSE ’96, IEEE Computer Society, pp. 442–449.

243

BIBLIOGRAPHY

[14] Beck, K. Simple Smalltalk Testing: With Patterns. Tech. rep., First Class Software,
Inc., 1989.

[15] Bertolino, A., and Marré, M. Automatic Generation of Path Covers Based on the
Control Flow Analysis of Computer Programs. IEEE Trans. Softw. Eng. 20, 12 (Dec.
1994), 885–899.

[16] Bishop, P. G. Estimating residual faults from code coverage. In SAFECOMP (2002),
pp. 163–174.

[17] Boehm, B. W., and Basili, V. R. Software Defect Reduction Top 10 List. IEEE
Computer 34, 1 (2001), 135–137.

[18] Boehm, B. W., Brown, J. R., and Lipow, M. Quantitative Evaluation of Software
Quality. In ICSE (1976), pp. 592–605.

[19] Boehm, B. W., McClean, R. K., and Urfrig, D. B. Some Experience with Auto-
mated Aids to the Design of Large-Scale Reliable Software. SIGPLAN Not. 10, 6 (Apr.
1975), 105–113.

[20] Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics. Springer, 1998.

[21] Booch, G. The Promise, the Limits, the Beauty of Software, 2007.

[22] Bouabana-Tebibel, T., and Belmesk, M. An Object-Oriented Approach to Formally
Analyze the UML 2.0 Activity Partitions. Information & Software Technology 49, 9-10
(2007), 999–1016.

[23] Bousse, E., Mentré, D., Combemale, B., Baudry, B., and Takaya, K. Aligning
SysML with the B Method to Provide V&V for Systems Engineering. In Model-Driven
Engineering, Verification, and Validation 2012 (MoDeVVa 2012) (Innsbruck, Autriche,
Sept. 2012).

[24] Brambilla, M., Cabot, J., and Wimmer, M. Model Driven Software Engineering in
Practice. Morgan & Claypool, 2012.

[25] Brooks, F. P. The Mythical Man-Month : Essays on Software Engineering, anniver-
sary ed. Addison-Wesley Pub. Co, Aug. 1995.

[26] Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl,
M., and Wimmer, M. Towards Scenario-Based Testing of UML Diagrams. In TAP
(2012), pp. 149–155.

[27] Brown, D. An Introduction to Object-Oriented Analysis: Objects and UML in plain
English. Wiley, 2002.

[28] Burch, J. R., Clarke, E. M., McMillan, K. L., and Dill, D. L. Sequential Circuit
Verification Using Symbolic Model Checking. In DAC (1990), pp. 46–51.

[29] Cabot, J. From Declarative to Imperative UML/OCL Operation Specifications. In ER
(2007), pp. 198–213.

244

BIBLIOGRAPHY

[30] Cabot, J. The New Executable UML Standards:
fUML and Alf. http://modeling-languages.com/

new-executable-uml-standards-fuml-and-alf/, 2011.

[31] Cabot, J., Clarisó, R., Guerra, E., and de Lara, J. A UML/OCL framework for
the analysis of graph transformation rules. Software and System Modeling 9, 3 (2010),
335–357.

[32] Cabot, J., Clarisó, R., and Riera, D. UMLtoCSP: a tool for the Formal Verification
of UML/OCL models using Constraint Programming. In ASE (2007), pp. 547–548.

[33] Cabot, J., Clarisó, R., and Riera, D. Verifying UML/OCL Operation Contracts.
In IFM (2009), pp. 40–55.

[34] Chusho, T. Test Data Selection and Quality Estimation Based on the Concept of
Essential Branches for Path Testing. IEEE Trans. Softw. Eng. 13, 5 (May 1987), 509–
517.

[35] Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. NUSMV: A New
Symbolic Model Checker. STTT 2, 4 (2000), 410–425.

[36] Clarke, E. M., and Emerson, E. A. Design and Synthesis of Synchronization Skele-
tons Using Branching-Time Temporal Logic. In Logic of Programs (1981), pp. 52–71.

[37] Clarke, E. M., Emerson, E. A., and Sistla, A. P. Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program.
Lang. Syst. 8, 2 (1986), 244–263.

[38] Clarke, E. M., and Wing, J. M. Formal Methods: State of the Art and Future
Directions. ACM Comput. Surv. 28, 4 (1996), 626–643.

[39] Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

[40] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
and Talcott, C. L., Eds. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic (2007), vol. 4350 of
Lecture Notes in Computer Science, Springer.

[41] Clayberg, E., and Rubel, D. Eclipse Plug-ins, 3 ed. Addison-Wesley Professional,
2008.

[42] Click, C., and Cooper, K. D. Combining analyses, combining optimizations. ACM
Trans. Program. Lang. Syst. 17, 2 (1995), 181–196.

[43] Costal, D., Gómez, C., Queralt, A., Raventós, R., and Teniente, E. Improving
the definition of general constraints in UML. Software and System Modeling 7, 4 (2008),
469–486.

[44] Costal, D., Sancho, M.-R., and Teniente, E. Understanding Redundancy in UML
Models for Object-Oriented Analysis. In CAiSE (2002), pp. 659–674.

245

http://modeling-languages.com/new-executable-uml-standards-fuml-and-alf/
http://modeling-languages.com/new-executable-uml-standards-fuml-and-alf/

BIBLIOGRAPHY

[45] Cousot, P. Abstract Interpretation Based Formal Methods and Fture Challenges. In
Informatics (2001), pp. 138–156.

[46] Cousot, P. Constructive Design of a Hierarchy of Semantics of a Transition System by
Abstract Interpretation. Theor. Comput. Sci. 277, 1-2 (2002), 47–103.

[47] Cousot, P., and Cousot, R. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Aproximation of Fixpoints. In POPL
(1977), pp. 238–252.

[48] Craigen, D., Craigen, D., Canada, O., Canada, O., Gerhart, S., Gerhart, S.,
Ralston, T., and Brown, R. H. An International Survey of Industrial Applications
of Formal Methods Volume 2 Case Studies. 1993.

[49] Cuadrado, J. S., Molina, J. G., and Tortosa, M. M. RubyTL: un Lenguaje de
Transformación de Modelos Extensible. In DSDM (2006).

[50] Dinh-Trong, T. T., Ghosh, S., France, R. B., Hamilton, M., and Wilkins, B.
UMLAnT: an Eclipse plugin for animating and testing UML designs. In ETX (2005),
pp. 120–124.

[51] Dromey, R. G. A Model for Software Product Quality. IEEE Trans. Software Eng. 21,
2 (1995), 146–162.

[52] Easterbrook, S. M., Lutz, R. R., Covington, R., Kelly, J., Ampo, Y., and
Hamilton, D. Experiences using lightweight formal methods for requirements modeling.
IEEE Trans. Software Eng. 24, 1 (1998), 4–14.

[53] Eclipse. Platform Plug-in Developer Guide. http://www.eclipse.org/

documentation/.

[54] Eclipse. Modeling Platform / Eclipse Con Europe Nov 2 2011. http://wiki.

eclipse.org/ModelingPlatform/EclipseConEuropeNov2_2011, 2011.

[55] Edelkamp, S., Leue, S., and Lluch-Lafuente, A. Directed Explicit-State Model
Checking in the Validation of Communication Protocols. STTT 5, 2-3 (2004), 247–267.

[56] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. Fundamentals of algebraic
graph transformation. Springer-Verlag, 2006.

[57] Endres, A. An Analysis of Errors and Their Causes in System Programs. SIGPLAN
Not. 10, 6 (Apr. 1975), 327–336.

[58] Ernst, M. D. Static and dynamic analysis: synergy and duality. In PASTE (2004),
p. 35.

[59] Eshuis, R. Symbolic Model Checking of UML Activity Diagrams. ACM Trans. Softw.
Eng. Methodol. 15, 1 (2006), 1–38.

[60] Fagan, M. E. Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal 15, 3 (1976), 182–211.

246

http://www.eclipse.org/documentation/
http://www.eclipse.org/documentation/
http://wiki.eclipse.org/ModelingPlatform/EclipseConEuropeNov2_2011
http://wiki.eclipse.org/ModelingPlatform/EclipseConEuropeNov2_2011

BIBLIOGRAPHY

[61] Fagan, M. E. Advances in Software Inspections. IEEE Trans. Software Eng. 12, 7
(1986), 744–751.

[62] Farré, C., Teniente, E., and Urṕı, T. The constructive method for query contain-
ment checking. In DEXA (1999), pp. 583–593.

[63] Farré, C., Teniente, E., and Urṕı, T. Checking Query Containment with the CQC
method. Data Knowl. Eng. 53, 2 (2005), 163–223.

[64] Formal Systems Oxford. FDR 2.91 manual, 2010.

[65] Freedman, D. P., and Weinberg, G. M. Handbook of Walkthroughs, Inspections, and
Technical Reviews: Evaluating Programs, Projects, and Products, 3rd ed. Dorset House
Publishing Co., Inc., New York, NY, USA, 2000.

[66] Friedenthal, S., Moore, A., and Steiner, R. A Practical Guide to SysML: Systems
Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[67] Garousi, V., Briand, L. C., and Labiche, Y. Control Flow Analysis of UML 2.0
Sequence Diagrams. In Proceedings of the First European conference on Model Driven
Architecture: foundations and Applications (Berlin, Heidelberg, 2005), ECMDA-FA’05,
Springer-Verlag, pp. 160–174.

[68] Garvin, D. What does product quality really mean? Sloan Management Review 1, 26
(1984), 469–486.

[69] Genero, M., Piattini, M., and Chaudron, M. R. V. Quality of UML models.
Information & Software Technology 51, 12 (2009), 1629–1630.

[70] Gogolla, M., Büttner, F., and Richters, M. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program. 69, 1-3 (2007), 27–34.

[71] Graw, G., and Herrmann, P. Transformation and Verification of Executable UML
Models. Electr. Notes Theor. Comput. Sci. 101 (2004), 3–24.

[72] Groce, A., and Joshi, R. Extending Model Checking with Dynamic Analysis. In
VMCAI (2008), pp. 142–156.

[73] Groote, J. F., Mathijssen, A., Reniers, M. A., Usenko, Y. S., and van Weer-
denburg, M. The Formal Specification Language mCRL2. In MMOSS (2006).

[74] Grosu, R., and Smolka, S. A. Safety-Liveness Semantics for UML 2.0 Sequence
Diagrams. In ACSD (2005), pp. 6–14.

[75] Hansen, H. H., Ketema, J., Luttik, B., Mousavi, M. R., van de Pol, J., and
dos Santos, O. M. Automated Verification of Executable UML Models. In FMCO
(2010), pp. 225–250.

[76] Hardin, R., Har’El, Z., and Kurshan, R. COSPAN. In 8th International Conf. on
Computer Aided Verification (1996).

247

BIBLIOGRAPHY

[77] Harel, D. Biting the Silver Bullet - Toward a Brighter Future for System Development.
IEEE Computer 25, 1 (1992), 8–20.

[78] Harrold, M. J., and Soffa, M. L. Interprocedual Data Flow Testing. SIGSOFT
Softw. Eng. Notes 14, 8 (Nov. 1989), 158–167.

[79] Heintze, N. Set-Based Analysis of ML Programs. In LISP and Functional Programming
(1994), pp. 306–317.

[80] Heitmeyer, C. On the need for practical formal methods. In In Formal Tech-
niques in RealTime and Real-Time Fault-Tolerant Systems, Proc., 5th Intern. Symposium
(FTRTFT’98 (1998), Springer Verlag, pp. 18–26.

[81] Hermenegildo, M. V., Puebla, G., Bueno, F., and López-Garćıa, P. Integrated
program debugging, verification, and optimization using abstract interpretation (and the
ciao system preprocessor). Sci. Comput. Program. 58, 1-2 (2005), 115–140.

[82] Herrington, J. Code Generation in Action. Manning Publications Co., Greenwich,
CT, USA, 2003.

[83] Hevner, A. R., March, S. T., Park, J., and Ram, S. Design Science in Information
Systems Research. MIS Quarterly 28, 1 (2004), 75–105.

[84] Holzmann, G. Spin Model Checker, the: Primer and Reference Manual, first ed.
Addison-Wesley Professional, 2003.

[85] IEEE. Standard for Software Reviews, IEEE Std 1028-1997. Electronics, March (1998).

[86] IEEE. Standard for Software Verification and Validation, IEEE Std 1012-1998. Electron-
ics (1998).

[87] International Standards Organization (ISO). ISO Standard 9000-2000: Quality
Management Systems: Fundamentals and Vocabulary, 2000.

[88] International Standards Organization (ISO), International Electrotech-
nical Commission (IEC). ISO Standard 9126: Software Product Quality, 2001.

[89] Jackson, D. Alloy: a Lightweight Object Modelling Notation. ACM Trans. Softw. Eng.
Methodol. 11, 2 (Apr. 2002), 256–290.

[90] Jackson, D. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[91] Jackson, D., and Wing, J. Lightweight Formal Methods. ACM Comput. Surv. 28,
4es (1996), 21.

[92] Jensen, K., and Kristensen, L. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, 2009.

[93] Jones, C. B. Formal Methods Light. ACM Comput. Surv. 28, 4es (1996), 20.

[94] Jouault, F., and Kurtev, I. Transforming Models with ATL. In MoDELS Satellite
Events (2005), pp. 128–138.

248

BIBLIOGRAPHY

[95] Juristo, N., and Moreno, A. M. Basics of Software Engineering Experimentation,
1st ed. Springer Publishing Company, Incorporated, 2010.

[96] Kennedy Carter. UML ASL Reference Guide, 2003.

[97] Kern, C., and Greenstreet, M. R. Formal Verification in Hardware Design: a
survey. ACM Trans. Design Autom. Electr. Syst. 4, 2 (1999), 123–193.

[98] Kolovos, D. S., Paige, R. F., and Polack, F. The Epsilon Transformation Lan-
guage. In ICMT (2008), pp. 46–60.

[99] Krogstie, J., Sindre, G., and Jørgensen, H. D. Process Models Representing
Knowledge for Action: a Revised Quality Framework. EJIS 15, 1 (2006), 91–102.

[100] Lai, Q., and Carpenter, A. Defining and verifying behaviour of domain specific
language with fUML. In Proceedings of the Fourth Workshop on Behaviour Modelling -
Foundations and Applications (New York, NY, USA, 2012), BM-FA ’12, ACM, pp. 1:1–
1:7.

[101] Lamport, L. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst. 16, 3
(1994), 872–923.

[102] Lano, K., Clark, D., and Androutsopoulos, K. UML to B: Formal Verification of
Object-Oriented Models. In IFM (2004), pp. 187–206.

[103] Larsen, P. G., Fitzgerald, J. S., and Wolff, S. Are formal methods ready for
agility? a reality check. In FM+AM (2010), pp. 13–25.

[104] Latella, D., Majzik, I., and Massink, M. Automatic Verification of a Behavioural
Subset of UML Statechart Diagrams Using the SPIN Model-Checker. Formal Asp. Com-
put. 11, 6 (1999), 637–664.

[105] Lilius, J., and Paltor, I. vUML: A Tool for Verifying UML Models. In ASE (1999),
pp. 255–258.

[106] Lindland, O. I., Sindre, G., and Sølvberg, A. Understanding Quality in Conceptual
Modeling. IEEE Software 11, 2 (1994), 42–49.

[107] Manna, Z., and Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, 1992.

[108] Marc J. Balcer, C. B., and Epperson, D. That Action Language (plus an extra
L). Tech. rep., 1989.

[109] McMillan, K. L. AMethodology for Hardware Verification Using Compositional Model
Checking. Sci. Comput. Program. 37, 1-3 (2000), 279–309.

[110] Mellor, S. J., Scott, K., Uhl, A., and Weise, D. MDA Distilled: Principles of
Model-Driven Architecture, vol. 88. Addison-Wesley, 2004.

[111] Mellor and Balcer. Shlaer-Mellor Action Language, 1997.

249

BIBLIOGRAPHY

[112] Milicev, D. On the Semantics of Associations and Association Ends in UML. IEEE
Trans. Software Eng. 33, 4 (2007), 238–251.

[113] Mohagheghi, P., Dehlen, V., and Neple, T. Definitions and approaches to model
quality in model-based software development - A review of literature. Information &
Software Technology 51, 12 (2009), 1646–1669.

[114] Moody, D. L. Metrics for Evaluating the Quality of Entity Relationship Models. In ER
(1998), pp. 211–225.

[115] Moody, D. L. Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data Knowl. Eng. 55, 3 (2005), 243–276.

[116] Muchnick, S. S. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[117] Myers, G. J., and Sandler, C. The Art of Software Testing. John Wiley & Sons,
2004.

[118] Nelson, H. J., and Monarchi, D. E. Ensuring the Quality of Conceptual Represen-
tations. Software Quality Journal 15, 2 (2007), 213–233.

[119] Nelson, H. J., Poels, G., Genero, M., and Piattini, M. A Conceptual Modeling
Quality Framework. Software Quality Journal 20, 1 (2012), 201–228.

[120] Nielson, F., Nielson, H. R., and Hankin, C. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[121] Nugroho, A., and Chaudron, M. R. V. Evaluating the Impact of UML Modeling on
Software Quality: An Industrial Case Study. In MoDELS (2009), pp. 181–195.

[122] Object Management Group (OMG). Query/View/Transformation (QVT), version
1.0, April 2008.

[123] Object Management Group (OMG). Object Constraint Language Specification
(OCL), version 2.0, February 2010.

[124] Object Management Group (OMG). Concrete Syntax for UML Action Language
(Action Language for Foundational UML - ALF), Beta 2, December 2011.

[125] Object Management Group (OMG). Semantics of a Foundational Subset for Exe-
cutable UML Models (FUML), version 1.1, February 2011.

[126] Object Management Group (OMG). Unified Modeling Language (UML) Superstruc-
ture Specification, version 2.4.1, August 2011.

[127] Olivé, A. Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In CAiSE (2005), pp. 1–15.

[128] Olivé, A. Conceptual Modeling of Information Systems. Springer-Verlag, 2007.

[129] Paltor, I., and Lilius, J. Formalising UML State Machines for Model Checking. In
UML (1999), pp. 430–445.

250

BIBLIOGRAPHY

[130] Papyrus. http://www.papyrusuml.org (last visit: February 2013).

[131] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. A Design
Science Research Methodology for Information Systems Research. J. of Management
Information Systems 24, 3 (2008), 45–77.

[132] Perseil, I. ALF formal. ISSE 7, 4 (2011), 325–326.

[133] Pilskalns, O., Andrews, A. A., Knight, A., Ghosh, S., and France, R. B.
Testing UML Designs. Information & Software Technology 49, 8 (2007), 892–912.

[134] Pipino, L., Lee, Y. W., and Wang, R. Y. Data Quality Assessment. Commun. ACM
45, 4 (2002), 211–218.

[135] Planas, E. A Framework for Verifying UML Behavioral Models. In CAiSE Doctoral
Consortium (2009).

[136] Planas, E., Cabot, J., and Gómez, C. Verificación de la Ejecutabilidad de Op-
eraciones definidas con Action Semantics. In Talleres de las Jornadas de Ingenieŕıa del
Software y Bases de Datos (DSDM - JISBD) (2008), pp. 62–71.

[137] Planas, E., Cabot, J., and Gómez, C. Verifying Action Semantics Specifications in
UML Behavioral Models. In CAiSE (2009), pp. 125–140.

[138] Planas, E., Cabot, J., and Gómez, C. Verifying Action Semantics
Specifications in UML Behavioral Models (Extended Version). Available from:
http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=1044.

[139] Planas, E., Cabot, J., and Gómez, C. Lightweight Verification of Executable Models.
In ER (2011), pp. 467–475.

[140] Planas, E., Cabot, J., and Gómez, C. Two Basic Correctness Properties for ATL
Transformations: Executability and Coverage. In MtATL (2011), pp. 1–9.

[141] Planas, E., Cabot, J., Gómez, C., Guerra, E., and de Lara, J. Lightweight
Executability Analysis of Graph Transformation Rules. In VL/HCC (2010), pp. 127–
130.

[142] Planas, E., and Sanchez-Mendoza, D. Alf-verifier: A lightweight tool for verifying
UML-Alf executable models. http://code.google.com/a/eclipselabs.org/p/
alf-verifier/, 2012.

[143] Planas, E., Sanchez-Mendoza, D., Cabot, J., and Gómez, C. Alf-verifier: An
Eclipse Plugin for Verifying Alf/UML Executable Models. In ER Workshops (2012),
pp. 378–382.

[144] Plat, N., van Katwijk, J., and Toetenel, H. Application and Benefits of Formal
Methods in Software Development. Softw. Eng. J. 7, 5 (Sept. 1992), 335–346.

[145] Porter, A., Siy, H., Toman, C. A., and Votta, L. G. An Experiment to Assess the
Cost-Benefits of Code Inspections in Large Scale Software Development. In Proceedings of
the 3rd ACM SIGSOFT symposium on Foundations of software engineering (New York,
NY, USA, 1995), SIGSOFT ’95, ACM, pp. 92–103.

251

http://code.google.com/a/eclipselabs.org/p/alf-verifier/
http://code.google.com/a/eclipselabs.org/p/alf-verifier/

BIBLIOGRAPHY

[146] Porter, A. A., and Votta, L. G. Comparing Detection Methods For Software Re-
quirements Inspections: A Replication Using Professional Subjects. Empirical Software
Engineering 3, 4 (1998), 355–379.

[147] Project Technology Inc. BridgePoint Object Action Language Reference Manual,
Mentor Graphics, 2009.

[148] Queralt, A., and Teniente, E. Reasoning on UML Class Diagrams with OCL Con-
straints. In ER (2006), pp. 497–512.

[149] Queralt, A., and Teniente, E. Reasoning on UML Conceptual Schemas with Oper-
ations. In CAiSE (2009), pp. 47–62.

[150] Queralt, A., and Teniente, E. Verification and Validation of UML Conceptual
Schemas with OCL Constraints. ACM Trans. Softw. Eng. Methodol. 21, 2 (2012), 13.

[151] Riehle, D., Fraleigh, S., Bucka-Lassen, D., and Omorogbe, N. The Architecture
of a UML Virtual Machine. In OOPSLA (2001), pp. 327–341.

[152] Rivera, J. E., Guerra, E., de Lara, J., and Vallecillo, A. Analyzing Rule-
Based Behavioral Semantics of Visual Modeling Languages with Maude. In SLE (2008),
pp. 54–73.

[153] Rozenberg, G., Ed. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations (1997), World Scientific.

[154] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language Refer-
ence Manual, 2. ed. Addison-Wesley, Boston, MA, 2005.

[155] Sage, A., and Rouse, W. Handbook of Systems Engineering and Management. Wiley
Series in Systems Engineering and Management. John Wiley & Sons, 2009.

[156] Saiedian, H. An Invitation to Formal Methods. Computer 29, 4 (Apr. 1996), 16–17.

[157] Schäfer, T., Knapp, A., and Merz, S. Model Checking UML State Machines and
Collaborations. Electr. Notes Theor. Comput. Sci. 55, 3 (2001), 357–369.

[158] Schneider, S. Concurrent and Real Time Systems: The CSP Approach (Worldwide
Series in Computer Science). John Wiley & Sons, Sept. 1999.

[159] Schneider, S. The B-Method: An Introduction. Cornerstones of Computing. Palgrave
Macmillan, Oct. 2001.

[160] Schrr, A. Specification of Graph Translators with Triple Graph Grammars. In Proc.
of the 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG ‘94),
Herrsching (D (1995), Springer.

[161] Seidewitz, E. Programming in UML: Why and How. 2nd Joint Eclipse / OMG Sym-
posium.

[162] Selic, B. The Pragmatics of Model-Driven Development. IEEE Softw. 20, 5 (Sept.
2003), 19–25.

252

BIBLIOGRAPHY

[163] Shull, F., Singer, J., and Sjøberg, D. I. Guide to Advanced Empirical Software
Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[164] Solheim, I., and Neple, T. Model Quality in the Context of Model-Driven Develop-
ment. In MDEIS (2006), pp. 27–35.

[165] Spivey, J. M. The Z Notation: a Reference Manual. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[166] Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L. Code Quality
Analysis in Open Source Software Development. Inf. Syst. J. 12, 1 (2002), 43–60.

[167] Stephen J. Mellor, M. J. B. Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley, 2002.

[168] Thalheim, B. Entity Relationship Modeling - Foundations of Database Technology.
Springer, 2000.

[169] Tort, A., Olivé, A., and Sancho, M.-R. An Approach to Test-Driven Development
of Conceptual Schemas. Data Knowl. Eng. 70, 12 (2011), 1088–1111.

[170] Travassos, G. H., Santos, P. S. M. d., Mian, P. G., Neto, A. C. D., and Biol-
chini, J. An environment to support large scale experimentation in software engineering.
In Proceedings of the 13th IEEE International Conference on on Engineering of Complex
Computer Systems (Washington, DC, USA, 2008), ICECCS ’08, IEEE Computer Society,
pp. 193–202.

[171] Travassos, G. H., Shull, F., and Carver, J. Working with UML: A Software Design
Process Based on Inspections for the Unified Modeling Language. Advances in Computers
54 (2001), 35–98.

[172] Tsang, E. Foundations of Constraint Satisfaction, 1993.

[173] UML2Tools. http://www.eclipse.org/modeling/mdt/?project=uml2tools (last visit:
February 2013).

[174] Unhelkar, B. Process Quality Assurance for UML-Based Projects. Addison-wesley
Object Technology Series. Addison-Wesley, 2003.

[175] Unhelkar, B. Verification and Validation for Quality of UML 2.0 Models. Wiley Series
in Systems Engineering and Management. John Wiley & Sons, 2005.

[176] Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., and Hamann, L.
Formal Specification and Testing of Model Transformations. In SFM (2012), pp. 399–
437.

[177] Valmari, A. The State Explosion Problem. In Petri Nets (1996), pp. 429–528.

[178] van Amstel, M., and van den Brand, M. G. J. Model Transformation Analysis:
Staying Ahead of the Maintenance Nightmare. In ICMT (2011), pp. 108–122.

253

BIBLIOGRAPHY

[179] Vieira, A., and Ramalho, F. A Static Analyzer for Model Transformations. In Third
International Workshop on Model Transformation with ATL (MtATL) (2011).

[180] Wand, Y., and Wang, R. Y. Anchoring Data Quality Dimensions in Ontological
Foundations. Commun. ACM 39, 11 (1996), 86–95.

[181] Wang, R. Y., and Strong, D. M. Beyond Accuracy: What Data Quality Means to
Data Consumers. J. of Management Information Systems 12, 4 (1996), 5–33.

[182] Weber, F., Wunram, M., Kemp, J., Pudlatz, M., and Bredehorst, B. Stan-
dardisation in Knowledge Management – Towards a Common KM Framework in Europe,
2002.

[183] Wexelblat, R. History of programming languages. ACM monograph series. Academic
Press, 1981.

[184] Wing, J. M. A Specifier’s Introduction to Formal Methods. IEEE Computer 23, 9
(1990), 8–24.

[185] Xie, F., Levin, V., and Browne, J. C. Model Checking for an Executable Subset of
UML. In ASE (2001), pp. 333–336.

[186] Xtext. www.xtext.org/ (last visit: February 2013).

[187] Yu, Y., Manolios, P., and Lamport, L. Model Checking TLA+ Specifications.
In Proceedings of the 10th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (London, UK, UK, 1999), CHARME
’99, Springer-Verlag, pp. 54–66.

254

