
UNIVERSITAT POLITÈCNICA DE CATALUNYA
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I

Abstract

This thesis studies diffusion phenomena in heterogeneous media, which includes Darcy flow

and diffusive solute transport in geological media. Natural media are heterogeneous at dif-

ferent scales, which induces complexity in diffusion phenomena. The work is centered on

the integration of the effects of heterogeneity on Darcy flow and solute diffusion into large

scale models. The quantification of the effects of heterogeneity in diffusion phenomena is

highly important for a large number of problems such as diffusion and reaction of chemi-

cals and radionuclides in low permeability media, which is essential in subsurface hazardous

waste storage problems, CO2 sequestration performance and groundwater management. In a

stochastic framework we quantify the effects of heterogeneity in large scale models consider-

ing two interrelated strategies that can be called ’coefficient approach’, which deals with the

derivation of effective coefficients to insert in equivalent homogeneous models, and dynamic

approach’, which deals with the upscaling of the local scale equations and the derivation of

large scale formulations which can differ from their local counterparts. Whenever a diffusion

process cannot be described in terms of effective coefficient, that behaviour is named anoma-

lous or non-Fickian. Anomalous diffusion behaviours observed experimentally are frequently

modelled by effective theories such as fractional diffusion equations, continuous time random

walks. One limitation of these models is that often they are rather phenomenological and

the relation to the local scale heterogeneity and dynamics may not be clear. In the dynamic

approach we derive large scale descriptions that can explain anomalous behaviour and link

it with a description of the local scale medium heterogeneity. To this end, we upscale the

local scale governing equations using different methods depending on the type of medium

heterogeneity. For moderately heterogeneous media we upscale flow equation by stochas-

tic averaging. Starting from the classical flow equation at local scale determined by Darcy’s

law, we derive an upscaled non-local effective formulation. The non-local effective formu-

lation is compared with its local counterpart by considering the head response for a pulse

injection. Numerically, we solve flow and diffusion in heterogeneous media using particle

tracking methods. While classical random walk particle tracking is an efficient numerical tool

to solve for diffusion problems in moderately heterogeneous media, strong medium contrasts,

as encountered in fractured media, render this method inefficient. For highly heterogeneous
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media efficiency of classical random walk can be increased by the use of the time domain

random walk (TDRW) method. We rigorously derive the equivalence of the TDRW algorithm

and the diffusion equation and we extend the classical TDRW method to solve diffusion prob-

lem in a heterogeneous medium with multi-rate mass transfer properties. Moreover we use

the TDRW method in connection with a stochastic model for the heterogeneity in order to

upscale heterogeneous diffusion processes. For a certain class of heterogeneity, the upscaled

dynamics obey a CTRW. Analytically we upscale diffusion in highly heterogeneous media by

using a multicontinuum representation of the media. Using volume and ensemble averaging

we derive a multicontinuum model that can explain anomalous diffusion behavior and link it

with a suitable local scale description of the medium heterogeneity. Finally, we integrate the

multicontinuum model derived in the context of aquifer modelling. We derive a multicontin-

uum catchment model that can explain anomalous behavior observed in the aquifer dynamics

at basin scale. We identify the physical mechanisms that induce anomalous behaviour and we

determine the time scales that control its temporal evolution.
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Resumen

Esta tesis estudia fenómenos de difusión, entre los que se incluyen el flujo a la escala de Darcy

y la difusión molecular de solutos, en medios geológicos. Estos medios son heterogéneos

a diferentes escalas, lo que induce complejidad en el fenómeno. El trabajo se centra en la

integración de los efectos de heterogeneidad en el flujo de Darcy y la difusión de solutos

en modelos a gran escala. La cuantificación de los efectos de la heterogeneidad sobre los

fenómenos de difusión es importante para un gran número de problemas que abarcan desde

la cuantificación de la recarga de acuíferos o la interpretación de ensayos de bombeo, hasta

como la difusión de sustancias químicas, necesario por ejemplo para problemas de almace-

namiento de residuos en el subsuelo, o la evaluación de reacciones químicas controladas por

mezcla, como las que tienen lugar en problemas de almacenamiento geológico de CO2. Adop-

tamos un marco estocástico para cuantificar los efectos de la heterogeneidad en los modelos

a gran escala considerando dos estrategias relacionadas entre sí: la de coeficientes efectivos

y la dinámica. La primera consiste en la derivación de coeficientes efectivos para insertarlos

en ecuaciones equivalente a un modelo homogéneo, pero aplicadas a gran escala. En el "en-

foque dinámico", se realiza el opera el cambio de escala, de manera que las formulaciones

a gran escala que se derivan pueden presentar una estructura diferente a las de escala local.

Cuando un proceso de difusión no puede ser descrito en términos de coeficiente efectivo, este

comportamiento se denomina anómalo o no-Fickiano. Los comportamientos anómalos de

difusión observados experimentalmente se modelan habitualmente usando modelos fractales

o modelos de caminos aleatorios. Una de las limitaciones de estos modelos es que tradi-

cionalmente proceden de descripciones fenomenológicas, de manera que la relación con la

heterogeneidad a escala local no es clara, lo que les resta capacidad predictiva. En el enfoque

dinámico derivamos descripciones a gran escala que pueden explicar el comportamiento anó-

malo y vincularlo con una descripción de la heterogeneidad a escala local. Para este fin,

usamos diferentes métodos, dependiendo del tipo de heterogeneidad del medio. Cuando es

moderada, obtenemos ecuaciones de flujo a gran escala utilizando el promedio estocástico.

A partir de la ecuación de flujo clásico a escala local, obtenemos una formulación efectiva

no local. La formulación eficaz, no-local, se compara con su correspondiente local. Numéri-

camente, se resuelve el flujo y la difusión en medios heterogéneos utilizando métodos de
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caminos aleatorios de partículas. Los métodos de caminos aleatorios clásicos son métodos

eficientes para medios poco heterogéneos. Para medios muy heterogeneos es más eficiente

aplicar el método de caminos aleatorios en el dominio temporal (conocido por sus siglas en

inglés, TDRW). En este trabajo derivamos la equivalencia entre el algoritmo del TDRW y la

ecuación de difusión y extendemos el método clásico del TDRW para resolver la difusión en

un medio heterogéneo con mecanismos complejos de atrape múltiple. Además, utilizamos

el método TDRW para obtener una formulación a gran escala. Para una determinada clase

de heterogeneidad, la dinámica observada a larga escala se puede describir con un CTRW.

Analíticamente derivamos la formulacion a gran escala para la difusión en muy heterogéneos

mediante una representación multicontinua de los medios. Aplicando el promedio espacial

y el promedio conjunto (entre realizaciones estocásticas) derivamos un modelo multicontinuo

que explica el comportamiento anómalo de difusión y lo vincula con heterogeneidad local del

medio. Por último, integramos el modelo multicontinuo en el contexto de la modelación de

acuíferos. Derivamos un modelo de acuífero que explica el comportamiento anómalo obser-

vado en la dinámica a escala de cuenca. Se identifican los mecanismos físicos que inducen

comportamiento anómalo y se determinan las escalas de tiempo que lo controlan.
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Chapter 1

Introduction

This thesis studies diffusion phenomena in heterogeneous media. It comprises the under-

standing and quantification of Darcy flow in heterogeneous aquifer and diffusion of a solute

in low permeability media.

Darcy’s law has been derived empirically from experimental observation and it states that

the water flux is linearly proportional to the head loss through the hydraulic conductivity.

Diffusion of a solute is described by Fick’s law. For the Fick’s law the diffusive flux is related

to the gradient of the concentration by the diffusion coefficient. Mathematically, both Darcy’s

law and Fick’s law are equivalent to the Fourier’s law, which, as first, states that the flux

is linearly proportional to a potential loss [Fourier, 1822; Carslaw and Jaeger, 1947]. At the

same epoch, formally equivalent formulations have been discovered in electricity, with Ohm’s

law, that relates electricity current to the gradient of electrical potential through electrical

conductivity and for the elasticity, with the Hooke’s law that relates mechanical stress to the

gradient of displacements through the elasticity modulus [Sanchez-Villa et al., 2006].

The different physical phenomena differ in the range of variability of the parameters that

control the flux in function of the potential loss such as thermal or hydraulic conductivity,

elasticity modulus, for example. Thermal conductivity varies at most by one or two orders of

magnitude in different materials, while hydraulic conductivity can vary by orders of magni-

tude even in apparently homogeneous media [Warren and Root, 1963].

The quantification of the effects of heterogeneity in diffusion phenomena is fundamental

for a large number of problems such as diffusion and reaction of chemicals and radionuclides

in low permeability media, which is essential in subsurface hazardous waste storage problems,

[Wittebroodt et al., 2008], efficient management of groundwater resources, control of seawater

1
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intrusion [Diersch and Kolditz, 2002], contamination problems for predicting situations related

to water quality [Duffy and Lee, 1992], risk assessment, or CO2 sequestration performance [Metz

et al., 2005]. Importance of diffusion in heterogeneous low conductivity material has been

further investigated in relation to transport in highly heterogeneous media such as fracture

formations that are characterized by diffusion of solutes in low permeability regions [Warren

and Root, 1963; Carrera et al., 1998; Dykhne et al., 2005; Gouze et al., 2008a].

Geological materials are highly heterogeneous in terms of physical and chemical proper-

ties, which occur at different scales, as illustrated in Figure 1.1. Figure 1.1 illustrates from

left to right, images of heterogeneous media characterized by heterogeneity ranging from

kilometer scale, to micron scale. Heterogeneity induces complexity and for this reasons, it is

Figure 1.1: Example of heterogeneity at different scale. From the left: fracture granite formation at km
scale, fracture granite formation at m scale, sample of granite at cm scale, X-ray microtomography of
Majorca limestone (Courtesy of Philippe Gouze, CNRS Montpellier).

fundamental to integrate the impact of heterogeneity into large scale models.

The spatially variable nature of hydraulic parameters and diffusive parameters in hetero-

geneous media has lead to the use of stochastic approaches to quantify their impact on the

large scale behavior. Stochastic modeling is used as a tool to describe and quantify in a sys-

tematic manner the impact of spatial variability observed at small scales into an effective large

scale behaviour, plus a way to compute the uncertainty associated with a given prediction

[Freeze, 1975]. In a stochastic framework an heterogeneous medium is seen as a realization of

an ensemble of all possible medium realizations with the same statistical properties and the

spatially varying parameters are modeled as stochastic random fields. The large scale prop-

erties are derived by averaging the local scale properties over the ensemble of all medium

realizations [Gutjahr et al., 1978].

The systematic investigation of the impact of spatial heterogeneity on large scale behaviour

can be addressed by two interrelated strategies, which can be called coefficients approach and

dynamic approach. The coefficient approach quantifies the effect of heterogeneity in terms of

effective coefficients such as effective hydraulic coefficients for flow and effective diffusivity

for diffusion. The behavior on larger scales is described by equivalent homogeneous models
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with large-scale parameters. The dynamics approach deals with the upscaling of the local

scale equations and the derivation of large scale equation which may be different from the

local scale description.

Traditionally, the coefficient approach has been used to characterize the heterogeneity im-

pact on the large scale behavior in terms of effective parameters, such as effective hydraulic

conductivities [Sanchez-Villa et al., 2006] for flow and effective diffusivities for solute diffu-

sion [Pabitra, 2004; Dean et al., 2007]. The evaluation of an effective hydraulic conductivity

has been subject of numerous studies since the 1960s, when Matheron found that the effective

conductivity is bounded by the arithmetic mean KA and the harmonic mean KH of the point

values conductivities [Matheron, 1967]. Matheron derived that in d = 1 dimension the effective

conductivity is given by the harmonic mean of the point values conductivities, for d = 2 di-

mension by the geometric mean and for d = 3 he conjectured that the effective conductivity is

given by: KGeσ2/6 where KG represents the geometric average of the local conductivities, σ2 is

the variance of the natural logarithm of the conductivity field [Matheron, 1967]. The first com-

pact expression for the effective conductivity Ke f f in stationary isotropic conductivity field

for any d dimensional media has been [Gutjahr et al., 1978]: Ke f f = KG
�
1 +

� 1
2 −

1
d
�

σ2�. This

dependency on the spatial dimension can be physically understood by the fact that as the

number of space dimensions increases, the flow avoids more easily the low permeability re-

gions, and thus the medium is more conductive. Exhaustive reviews of the results obtained

for the effective conductivity since the studies of Matheron, are given in Renard and de Marsily

[1997] and Sanchez-Villa et al. [2006]. In the literature, the problem of flow in heterogeneous

media has been addressed principally with the effective coefficient approach, while the prob-

lem of solute diffusion has been addressed frequently in terms of effective coefficients [Pabitra,

2004; Dean et al., 2007] as well as in terms of modified dynamic equations such as fractional

diffusion equations and continuous time random walks [Metzler and Klafter, 2000]. One of the

shortcomings of such effective theories is that often they are rather phenomenological and the

relation to the local scale heterogeneity and dynamics may not be clear.

In fact, experimental and theoretical observations demonstrated that large scale descrip-

tions in terms of effective coefficient could be not enough to the catch the complexity of Darcy

flow and solute diffusion in heterogeneous media. Theoretically, the general applicability of

an effective hydraulic conductivity in the flow equation is put in discussion by the work of

Indelman and Rubin [1996] and successively by Tartakovsky and Neuman [1998a], who derived a

non-local effective equation both in time and space. Anomalous diffusion dynamic in disor-
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dered media has been widely discussed in [Bouchaud and Georges, 1990; Carrera, 1993; Havlin

and Ben-Avraham, 2002a; Dykhne et al., 2005; Dvoretskaya and Kondratenko, 2009]. Experimen-

tally, it has been shown that the coefficient approach is not sufficient to model many observed

phenomena. For flow, the temporal evolution of the hydraulic head at a fixed position is

termed drawdown. Pumping test in heterogeneous media have evidenced that heterogeneity

causes tailing in drawdown curves and scale dependence in diffusion parameters [Sanchez Vila

et al., 1996; Schulze-Makuch, D., Douglas, A. Carlson, Douglas, S. Cherkauer, Malik, 1999; Rovey

and Cherkauer, 1995]. Tailing is defined as late time behaviour in the drawdown curves that

can not be reproduced by the classical models. Pumping tests conducted in natural media

often produce anomalous drawdown curves. For a homogeneous medium, the late time slope

of the drawdown curve should evolve as t−β, with β = 1 − d/2, and d the Euclidean di-

mension of the flow problem. However the experimental evidences suggest flow dimensions

smaller than 2 in planar aquifers or less than 3 in apparently d = 3 dimensional fields [Le

Borgne, 2004; Le Borgne and Gouze, 2008]. Similarly, tracer tests in strongly heterogeneous me-

dia, have evidenced tailing in breakthrough curves [Cortis, 2004; Le Borgne and Gouze, 2008;

Gouze et al., 2008a; Willmann et al., 2008], and scale dependency in diffusion parameters for

advection-diffusion problems [Neuman, 1990; Gelhar et al., 1992]. These kind of behaviors may

be traced back to diffusion in low-permeability medium subregions that lead to solute retar-

dation. Thus, for the understanding of such phenomena it is necessary to quantify diffusion

phenomena in heterogeneous media [Gouze et al., 2008a]. Furthermore, the quantification of

anomalous diffusion-limited reaction rates in heterogeneous environments depends on the

quantification of the first arrival times of a reactant at a target [Condamin et al., 2007].

Anomalous drawdown has been modeled by fractional [Barker, 1988; Acuna and Yortsos,

1995] and multi-fractional [de Dreuzy et al., 2010, 2004; Lods and Gouze, 2008] flow models. One

limit of this kind of models is the importance of the choice of fractal dimension d, which is not

directly related to the spatial organization of hydraulic parameters and it can vary depending

on type of field test performed and on the boundary and initial conditions (e.g. [Little and

Bloomfield, 2010; Zhang, 2004]). For these reasons interpretation of multi-fractal models is

rather difficult [Tessier et al., 1996] and their utility in predictability is limited [Labat et al.,

2002].

Anomalous (non-Fickian) diffusion has been successfully modeled by CTRW model e.g.

[Metzler and Klafter, 2000; Cortis, 2004; Berkowitz et al., 2006; Sanchez-Villa et al., 2006; Gouze et al.,

2008b], multi rate mass transfer (MRMT) models e.g. [Harvey and Gorelick, 1995; Carrera et al.,
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1998; Haggerty and Gorelick, 1995; Lods, 2004] and delayed diffusion models [Dentz and Tar-

takovsky, 2006]. The equivalence between CTRW models and MRMT models has been demon-

strated by Dentz and Berkowitz [2003]. MRMT model and time-fractional model (e.g. [Schumer,

2003]) can be seen as particular cases of CTRW [Dentz and Tartakovsky, 2006]. These model

attribute the anomalous behavior phenomenologically to a distribution of typical transport

time scales (residence time distribution for MRMT, and waiting time distribution in CTRW)

that are due to subscale medium heterogeneity.

Tailing in drawdown and breakthrough curves is ubiquitous phenomenon for Darcy flow

and diffusion in heterogeneous media and its ubiquity suggests that tailing must reflect some-

thing of a fundamental nature [Willmann et al., 2008]. The challenge consists in linking the

large scale effective description with the local scale physical processes and heterogeneity dis-

tribution.

In this thesis we investigate flow and diffusion in heterogeneous media, considering both

the coefficient and the dynamic approach. We use different upscaling methods in order to

link the anomalous behaviour with a description of the heterogeneity.

In the second chapter we upscale flow in heterogeneous media in a stochastic approach. In

a stochastic approach we model spatially variable conductivity as a random function. Starting

from a local scale description we use stochastic averaging to derive an upscaled flow formu-

lation in terms of effective parameters and equations.

In this context, perturbation theory in the fluctuations of hydraulic conductivity has fre-

quently been used to compute effective parameters in heterogeneous media [Drummond and

Hogan, 1987; Dagan, 1993; Renard and de Marsily, 1997; Kitanidis, 1990; Keller, 2001; Neuweiler

et al., 2001; Teodorovich, 2002]. Gutjahr et al. [1978] proposed a compact expression for effective

hydraulic conductivity in d spatial dimensions that has been tested rigorously by Dagan using

small perturbations up to order σ4 [Dagan, 1993], with σ2 the variance of the hydraulic con-

ductivity fluctuations. Also non-perturbative methods such as selfconsistent resummations

and renomalization theory have been used to determine the effective coefficients [Dean et al.,

2007]. Although a lot of attention has been dedicated to the study of effective parameters

through perturbation theory, most of the work has been done for steady state. The transient

problem, has been firstly addressed by Alonso and Krizek [1974] and Freeze [1975] for d = 1

dimensional flow and with a negligible correlation distance.

In the dynamic approach, Indelman and Abramovich [1994] and successively Tartakovsky and

Neuman [1998b] upscaled local flow equation using ensemble average and derived non-local
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formulations for d = 1 and d = 3 dimensional media. We extend the work of Tartakovsky

and Neuman [1998a] by deriving upscaled non-local equations for any d spatial dimension in a

compact formulation. Moreover, we derive jointly large scale coefficients and upscaled equa-

tions and we discuss the diffusion behaviour for a pulse injection comparing the local and the

non-local formulation. By localization of the non-local formulations, we obtain time depen-

dent effective coefficients, which asymptotically tend to the well known values for effective

conductivity [Sanchez-Villa et al., 2006].

The results in Chapter 2 are valid for moderately heterogeneous media. Geological me-

dia, such as fractured formations, however, may be highly heterogeneous. Thus, the results

obtained in Chapter 2 are only of limited applicability. Strong medium heterogeneous rep-

resent a problem both for analytical as well as numerical solution methods. While classical

random walk particle tracking is an efficient numerical tool to solve for diffusion problems in

heterogeneous media, strong medium contrasts, as encountered in fractured and composite

media, render this method inefficient. Chapter 3 is dedicated to diffusion in strongly hetero-

geneous and pixelized media from a random walk perspective. As pointed out above, highly

heterogeneous media and sharp interfaces in the distribution of heterogeneity make the use of

classical RW methods inefficient [McCarthy, 1993; Delay et al., 2005]. Classical RW method can

be very costly because it may require a fine time-discretization in order to ensure that a parti-

cle, in its random trajectory, samples all the heterogeneity [Delay et al., 2002]. McCarthy [1993]

pointed out that classical RW could be very inefficient because particles can spend a lot of

computational time moving in low diffusivity zones. Efficiency of classical random walk can

be increased by the use of the time domain random walk (TDRW) method to solve diffusion in

disordered media. TDRW method was first introduced by McCarthy [McCarthy, 1993], used

by Banton for simulating non-reactive solute transport in d = 1 dimensional porous media

[Banton et al., 1997], by Noetinger for the upscaling of fluid flow in fracture rocks [Noetinger

and Estebenet, 2000] and further developed by Delay and Bodin [Delay et al., 2002; Reimus and

James, 2002; Bodin et al., 2003; Delay et al., 2005]. The TDRW method is closely related to the

CTRW [Dentz and Berkowitz, 2003]. Strictly speaking CTRW describes particles movement as a

random walk in space and in time [Dentz and Tartakovsky, 2006]. As we said before, CTRW has

been successfully used to model anomalous, non-Fickian, transport in geological formations

[Berkowitz et al., 2006; Cortis, 2004; Gouze et al., 2008b] and even transient flow problem [Cortis

and Knudby, 2006]. The equivalence between large scale averaging theory and the CTRW has

been object of the work of Noetinger, B.Estebenet and Quintard [2001].
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In literature we have not found a rigorous derivation of the equivalence between the TDRW

and the flow equation. This however is necessary to adapt the TDRW approach to more

complex transport scenarios that include advection, reaction and trapping mechanisms. In the

first part of Chapter 3 we present a rigorous derivation of the TDRW algorithm demonstrating

its equivalence with the diffusion equation and showing that TDRW is a particular case of a

CTRW, or rather an inhomogeneous CTRW. Moreover we extend the TDRW method to solve

diffusion problem in a heterogeneous medium with multi-rate mass transfer properties using

a statistical representation of the medium.

In the second part of Chapter 3 we use the TDRW method in connection with a stochastic

model for the heterogeneity in order to upscale heterogeneous diffusion processes. For a

certain class of heterogeneity, the upscaled dynamics obey a CTRW.

In Chapter 3, we studied an efficient random walk method to quantify diffusion processes

in heterogeneous media. Chapter 4 considers a multicontinuum representation of a highly

heterogeneous medium, in order to derive the equations that govern large diffusion phenom-

ena. Using volume and ensemble averaging we derive a multicontinuum model that can

explain anomalous diffusion behavior and link it with a suitable local scale description of the

medium heterogeneity.

Double and multi permeability/porosity model have been used in hydrology since the

pioneering ’double-porosity’ model of Barenblatt et al. [1960]. The double porosity of Baren-

blatt and the large number of double-permeability/porosity models have been developed

successively (e.g. [Warren and Root, 1963; Dykhuizen, 1987; Peters and Klavetter, 1988; Dykhuizen,

1990; Bai et al., 1993]) represent the medium as an overlapping of two regions characterized

by strongly different diffusion parameters, that are thus called as ’mobile’ and ’immobile’ re-

gions. The mobile and immobile continua exchange solute mass by linear mass transfer. These

models assume that the mobile and immobile zones are in quasi-equilibrium and mass trans-

fer is modeled as a first order process. Contrary to the above mentioned models, we consider

non-equilibrium in the immobile zone and we derive a multicontinuum model which can ex-

plain anomalous pre-asymptotic and asymptotic behaviour and link the anomalous scaling

with a description of heterogeneity.

In the last chapter we focus on the problem of modeling the dynamic of an aquifer at

basin scale. The dynamic response of a catchment to any recharge process is highly important

for groundwater management. Modeling aquifer dynamic is a challenging problem due to

the variety of physical processes involved and the limited information available on hydraulic
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parameters, aquifer properties and geometry [Scanlon et al., 2002]. Classical recharge mod-

els, as the linear reservoir model and the linear Dupuit model, assume that the aquifer is

homogeneous [Gelhar, 1974]. Aquifers are in general spatial heterogeneous, which gives rise

to a distribution of residence times in the system [Fiori et al., 2009], and thus to a behavior

that cannot be captured by the classical aquifer. In fact, experimental studies on time series

of hydrological records have evidenced that classical models cannot explain some behaviors

observed in the aquifer discharge and head responses to recharge [e.g., Zhang and Yang, 2010;

Labat et al., 2002; Zhang, 2004; Molenat et al., 1999, 2000; Jiménez-Martínez et al., 2012].

Anomalous behavior is frequently modeled with multi-fractal approaches [e.g., Turcotte

and Greene, 1993; Tessier et al., 1996; Kantelhardt et al., 2003; Labat et al., 2011]. A limitation of

these models is that the fractal dimension is not directly linked to the spatial organization of

the aquifer, and it can vary depending on the experimental conditions used to determine it

[e.g., Little and Bloomfield, 2010]. Thus, in Chapter 5, we account for spatial the heterogeneity

of the aquifer by modeling the catchment as a multicontinuum medium. We use the the-

ory developed in Chapter 4 to derive a multicontinuum catchment model which can explain

anomalous behavior and which can, in principle, be parametrized by a suitable description of

the local scale medium heterogeneity.



Chapter 2

Averaged Flow Equation

2.1 Introduction

Flow in heterogeneous media is qualitative and quantitatively different from flow in homoge-

neous media [Indelman and Rubin, 1996; Noetinger, B.Estebenet and Quintard, 2001; Keller, 2001].

The systematic investigation of the impact of spatial heterogeneity on the effective behavior

of flow can be addressed by two interrelated strategies, which can be called coefficients ap-

proach and dynamic approach. The coefficient approach quantifies flow in terms of effective

coefficients such as effective hydraulic coefficients to insert in the classical flow equation. Ef-

fective hydraulic conductivity is commonly requested by numerical models, widely used in

groundwater management, as single effective parameter to consider in the flow equation and

model flow in any d dimensional heterogeneous media. The dynamics approach deals with

the up-scaling of the local scale equation in heterogeneous media. Stochastic average provides

a systematic way to quantify the impact of heterogeneity on flow through heterogeneous me-

dia and the derived effective equation is linked to a statistical description of heterogeneity.

In this chapter we use stochastic methods to determine effective flow coefficient and to ob-

tain an effective upscaled equation for flow in heterogeneous media characterized by spatially

varying hydraulic conductivity. Within a stochastic approach, a spatially varying hydraulic

conductivity in a heterogeneous medium is assumed to be one realization chosen from an

ensemble of conductivity fields. Here we model variable hydraulic conductivity as random

function and the mean behaviour for the hydraulic head, also modeled as a random function,

is obtained considering ensemble average. Starting from a local problem we derive effective

equation that is non local both in time and in space. Non locality implies that a description

of flow in heterogeneous media in terms of effective coefficient could be not enough to catch

9
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the effects of the heterogeneity on the head response. It is well known that averaging flow

in heterogeneous media leads to a non-local equation. The challenge consists in linking the

effective equation and a description of heterogeneity. We use a formalism similar to that of

Indelman and Rubin [1996] or Tartakovsky and Neuman [1998b], who derived non-local effective

flow equation in time and space, using ensemble averaging. The non local nature of flow

in heterogeneous media has been highlighted by Hu and Cushman [1994] who consider non

locality of Darcy’s law for unsaturated flow. Differently from the previous works, we solve

the effective non-local equation for d = 1, 2 and 3 spatial dimension in Laplace space and we

discuss the head response for a pulse injection comparing the non-local formulations and the

classical one. Tartakovsky and Neuman [1998b] noticed that the effect of non-locality is more

pronounced in one dimension that in three, but didn’t give an explanation to the observation.

Here we investigate this aspect and we explain why the effect of non-locality decreases as the

dimensionality of the problem increases. By localization we derive effective coefficients from

the non-local formulations, which asymptotically tend to the well known values of effective

conductivity in heterogeneous media. Thus we demonstrate that effective conductivity com-

puted in terms of spatial moments for a pulse injection in an infinitive medium is equivalent

to the effective conductivity classically defined for a constant head gradient in a bounded

domain.

2.2 Stochastic Average

2.2.1 Stochastic Model

We consider flow in heterogeneous media characterized by spatially varying hydraulic con-

ductivity. Considering that specific storativity s(x) is usually less variable that hydraulic

conductivity K(x), e.g. Indelman and Rubin [1996], for simplicity we take s(x) = s constant and

we set it equal to unity. In this case the flow equation can be written as:

∂h(x, t)
∂t

−∇ · [K(x)∇h(x, t)] = 0 (2.1)

where x = (x1, ..., xd)T with d spatial dimension. In a stochastic framework the spatially vary-

ing hydraulic conductivity is modeled as a spatial random field. On the base of geostatistical

studies hydraulic conductivity is frequently considered lognormal distributed [Law, 1944].

Log-normal model implies a smooth distribution of conductivities about the mean value and
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avoids the unphysical situation of negative conductivity. Here we model K(x) as a multi log-

normal stationary random function with isotropic correlation function. We express K(x) in

term of the log-hydraulic conductivity f (x):

K(x) = e f (x) (2.2)

where f (x) is a multi-Gaussian random field. We decompose the random variable f (x) and

K(x) into their ensemble values f , K and randomly fluctuation parts f �(x) = f (x) − f and

K�(x) = K(x)− K, whose mean are zero by definition. The overbar in the following denotes

the ensemble average or rather the average over all the realization of the random field. Notice

that the mean conductivity K does not depend on x because of stationarity of the random

field. The fluctuating part of the log-conductivity is described by the following multivariate

joint distribution:

p[ f �(x1), ..., f �(xN)] =
e−

1
2 ∑N

i,j=1 f �(xi) C�−1
f (xi−xj) f �(xj)

�
(2π)N det C�f

. (2.3)

with Cf is the covariance matrix and N the number of spatial positions considered in random

field. Considering (2.2) hydraulic conductivity can be expressed in terms of the fluctuations

f �(x) as:

K(x) = KG e f �(x) (2.4)

where KG = e f is the geometric mean of K(x). The ensemble mean K is given by:

K = KG eσ2/2 (2.5)

where σ2 is the variance of the random variable f (x) that, as said before, we chose Gaussian

distributed. Considering (2.5) the deviation K�(x) from the averaged K, can be approximated

as:

K�(x) � KG

�
f �(x)− σ2

2

�
. (2.6)

Therefore, up to order σ2, the covariance function of the fluctuating part of the hydraulic con-

ductivity C(x− x�) = K�(x)K�(x�) can be approximated in function of Cf (x− x�) = f �(x) f �(x�)

by:

C(x− x�) � K2
G Cf (x− x�). (2.7)
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Note that the translational invariance of the random field implies that the correlation of the

fluctuation around the mean value of K at two points depends only on their distance. Con-

sidering that f �(x) is multi Gaussian, stochastically, it is fully characterized by its correlation

function. In the following we consider a Gaussian correlation structure for f �(x). Conse-

quently the covariance function for K�(x) reads:

C(x− x�) � K2
G σ2e−∑d

i=1(xi−x�i)
2/(2l2

i ) (2.8)

where li, i = 1, ..d is the correlation length of the random field f �(x). The correlation length

denotes the typical scale of the spatial fluctuations of the medium. Correlation of f �(x) drop

to zero exponentially fast on length scale larger than l. For simplicity we choose li invariant

for any directions li = l.

Notice that the stochasticity of K(x) is mapped on h(x, t) by the flow equation (2.1). We

decompose the hydraulic head in its ensemble mean and a randomly fluctuating part h(x, t) =

h(x, t) + h�(x, t), the same as we did with the hydraulic conductivity. The aim is to find an

effective equation for h(x, t), which represents the mean behaviour of the hydraulic head in

an heterogeneous medium.

2.2.2 Averaged Flow Equation

In this section we upscale flow in heterogeneous media characterized by a spatially vary-

ing hydraulic conductivity with a stochastic approach and we obtain an effective non-local

formulation for the mean behaviour of the hydraulic head in a heterogeneous medium. As

discussed above, we model hydraulic conductivity and hydraulic head as multivariate ran-

dom fields and we decompose them into their ensemble values, K(x) and h(x, t) plus random

fluctuations about their ensemble values, K�(x) = K(x) − K and h�(x, t) = h(x, t) − h(x, t),

whose means are zero by definition. Note that the ensemble value of hydraulic conductivity

is constant in space because we consider K(x) as a stationary random field. Here the objective

is to find an effective equation for the expected value of the hydraulic head h(x, t), that repre-

sents the mean behaviour of the hydraulic head taking into account the random conductivity

field K(x). We consider the unknown random variables:

h(x, t) = h(x, t) + h�(x, t), h�(x, t) = 0

K(x) = K + K�(x), K�(x) = 0
(2.9)
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and we substitute them into the flow equation (2.1):

�
∂h
∂t

+
∂h�

∂t

�
= ∇ · K ∇h +∇ · K ∇h� +∇ · K� ∇h +∇ · K� ∇h� (2.10)

that we average stochastically. Considering that the expected value of the fluctuating terms

are zero, we get:
∂h
∂t

= ∇ · K ∇h +∇ · K� ∇h�. (2.11)

This is a closure problem because the averaged equation for the averaged h still depends on

the fluctuating term h�.

In order to find an equation for h� in terms of h and close the problem, we subtract equation

(2.11) from equation (2.10) to obtain:

∂h�

∂t
= ∇ · (K ∇h�) +∇ · K� ∇h +∇ · (K� ∇h� − K� ∇h�). (2.12)

This is again a closure problem because the equation for h� depends on ∇h�. We consider a

perturbative closure and we disregard the term K� ∇h� − K� ∇h� and assume that its mean

square value is far smaller than those of other terms in (2.12):

[K�∇h� − K�∇h�]2 � max{(K∇h�)2, (K∇h)2} (2.13)

This is a reasonable assumption for low variance of K(x) because it is a difference between

second order terms in the fluctuation of K and h. Thus we obtain the following equation for

h�:
∂h�

∂t
−∇ · (K ∇h�) = ∇ · K� ∇h, (2.14)

which can be solved by the Green’s function method [Beck et al., 1992]. The Green’s function

g(x, t|x�, τ) for the problem expressed in (2.14) satisfies the following equation:

∂ g(x, t|x�, τ)
∂t

−∇ · [K ∇g(x, t|x�, τ)] = 0 (2.15)

with g(x, t = τ|x�, τ) = δ(x− x�), and natural boundaries conditions, that means that g(x, t|x�, τ)

goes to zero for x to infinity. Notice that this implies that g depends only on the difference

x− x� and t− τ, so that g(x, t|x�, τ) = g(x− x�, t− τ). Solving (2.14) using the Green’s function

method, we multiply both sides of (2.14) times g(x− x�, t− τ), we integrate it over all space
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and from 0 to t in dτ and we obtain the following integral expression for h�:

h�(x, t) =
� t

0
dτ

� ∞

−∞
dx� [∇� · K�∇�h(x, t)] g(x− x�, t− τ). (2.16)

We substitute (2.16) in (2.11) and we obtain a closed equation for h(x, t):

∂h(x, t)
∂t

= ∇ · K∇h(x, t) +∇ ·
� t

0
dτ

� ∞

∞
dx� [∇� · K�(x)K�(x�)∇�h(x�, τ)] ∇ g(x− x�, t− τ).

(2.17)

Considering that ∇g(x− x�, t− τ) = −∇�g(x− x�, t− τ) and the covariance function C(x−

x�) = K�(x)K�(x�) given in (2.8), we obtain:

∂h(x, t)
∂t

= ∇ · K∇h(x, t)−∇ ·
� t

0
dτ

� ∞

−∞
dx�

�
∇� · C(x− x�)∇�h(x�, τ)

�
∇�g(x− x�, t− τ).

(2.18)

Using Green’s identity and then shifting the variables according to x� → x − x� we finally

obtain the integro partial-differential equation for h(x, t):

∂h(x, t)
∂t

= K ∇2h(x, t) +∇ ·
� t

0
dτ

� ∞

−∞
dx� K(x�, τ) ∇ h(x− x�, t− τ) (2.19)

where K denotes the d dimensional tensor

K(x�, τ) = C(x�) ∇� ⊗∇�g(x�, τ) (2.20)

with ∇� is referred to x� and ⊗ indicates the tensor product, that reads [∇⊗∇]ij = ∂/(∂xi∂xj).

Equation (2.19) is an effective equation for the expected value of the hydraulic head h(x, t) for

a random conductivity field K = K(x). The effective equation obtained is non-local both in

time and space and consists of a convolution of the gradient of the expected value of the

hydraulic head ∇h and a kernel K, that can be considered as a memory term. Spatial and

temporal non locality imply that head at a given time t in a given position x, depends on

the head at the previous times τ < t in different positions x�. This dependency is governed

by the kernel given in (2.24), which encapsulates the heterogeneity of the conductivity field,

that we considered multi-log normal so that can be stochastically depicted by the covariance

function C(x− x�). Notice that (2.19) can also be derived using perturbation theory as shown
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in Appendix A.1 in a more systematic way. Equation (2.19) can be re-written as:

∂h(x, t)
∂t

= −∇ · q(x, t) (2.21)

where we introduced a time and space dependent volumetric flux of water q(x, t):

q(x, t) = −
�

K ∇h(x, t) +
� t

0
dτ

� ∞

−∞
dy K(x�, τ) ∇h(x− x�, t− τ)

�
. (2.22)

Analogously to Tartakovsky and Neuman [1998a] we highlight that the flux q(x, t) in an hetero-

geneous media is non-local both in time and in space, depending on the flux at previous times

and in different positions.

Localization in space. If K(x�, τ) is sharply peaked about zero and ∇h(x − x�, t − τ) is

smooth (as it is, because h is the expected value) we can localize h(x− x�, t− τ) in (x, t) and

get rid of the convolution product. In order to evaluate the kernel we consider the Green’s

function g solution of the problem expressed in (2.15), that for any d spatial dimension reads:

g(x, t) =
1

(4πKt)d/2
e−

x2
4Kt (2.23)

and therefore, considering the expression for the covariance given in (2.8), the kernel K(x, t)

for any d dimension is given by:

Kij =
� xixj

4(KGt)2 −
δij

2KGt

�
1

(4πKGt)d/2 e−
x2

4KGt C(x− x�). (2.24)

Notice that in (2.24) we consider KG instead of K as in (2.23) in order to have a consistent

formulation up to σ2 order of approximation. From the expression for the kernel (2.24), we

see that K(x, t) is peaked about x = 0 because of the covariance function C(x) given in (2.8)

that multiplies the expression. This is illustrated in figure 2.1 for the d = 1 case. Under these

conditions, we can localize (2.19), expanding h(x− x�, t− τ) about x = 0 and considering only

the zero order term:

h(x− x�, t− t�) = h(x, t) + x� · ∇h(x, t− t�) +
1
2

x� · ∇ ⊗∇h(x, t− t�) · x� + ... (2.25)

We take into account only the zeroth oreder term. At large distance the gradient of the average

h(x, t) can be expected to be small. Inserting this expression into (2.19), we obtain a non-local



16 CHAPTER 2. AVERAGED FLOW EQUATION

6 4 2 0 2 4 60.08

0.06

0.04

0.02

0

0.02

x

 k
er

ne
l

 

 

  = 1
  = 2
  = 3

Figure 2.1: Kernel K(x, τ) given in (2.24) plotted in function of x for different τ.

expression for h(x, t) only in time:

∂h(x, t)
∂t

= K ∇2h(x, t) +∇ ·
� t

0
dτ KL(τ) ∇ h(x, t− τ) (2.26)

where KL(t) is given by the space integral of the kernel:

KLij(t) =
�

dx Kij(x, t) (2.27)

Inserting (2.24) into (2.27) and executing the integral, we obtain:

KLij(t) = δijKL(t) = −
σ2K2

G
τK

�
1− 2

t
τK

�− d
2−1

(2.28)

where τK = �2/KG for i = 1, ..d. The characteristic time τK represents the typical timescale of

the problem and we discuss it in the following. Note that in the following we leave out the

tensorial notation considering that, for symmetry, KL,ij(t) = 0 for i �= j and KL,ij(t) = KL(t)

for i = 1, ..d.

Localization in time. The kernel KL(t) decreases to zero as t−d/2−1 for times t � τK. In this

regime we can localize equation (2.26) respect to time to obtain:

∂h(x, t)
∂t

= Ke(t) ∇2h(x, t) (2.29)
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where Ke(t) is defined by:

Ke(t) = K +
� ∞

0
dτ KL(τ) (2.30)

Equation (2.29) is a flow equation with a time dependent effective hydraulic conductivity

given by localization in space and in time of the non-local equation (2.19). Solution for the

flow equation with a time dependent conductivity is given in the appendix. In the next section

we discuss the effective hydraulic conductivity.

2.2.3 Effective Hydraulic Conductivity

Effective conductivity for heterogeneous media is defined for steady state problem. Therefore,

analogously to the classical definition of effective conductivity we take the hydraulic head

gradient constant ∇h(x, t) = J and in this case, equation (2.22) reduces to:

q = −
�

K J +
� ∞

0
dτ

� ∞

−∞
dx� K(x�, τ) J

�
. (2.31)

As the head gradient is constant, we do not have anymore a convolution between the kernel

and the gradient, the flow turns to be local, and the effective conductivity Ke f f , as classically

defined is the limit for time to infinity of the localized kernel K(y, τ):

Ke f f = K +
� ∞

0
dt�

� ∞

−∞
dx� K(x�, t�) = lim

t→∞
Ke(t) (2.32)

with Ke(t) defined in (2.30). In the literature of diffusion in disorder media, effective conduc-

tivity Ke f f is defined in terms of the second moment of the scalar quantity which diffuses for

a pulse injection into an infinite medium [Dean et al., 2007]:

Ke f f =
1
2

∂

∂t

�
dx x2

i h(x, t) (2.33)

with h(x, t = 0) = δ(x). This corresponds to the diffusion of a solute in a infinite media

evolving from a point injection as input. In this case Ke(t) corresponds to a time dependent

diffusion coefficient. Here Ke(t) describes dispersion of pressure pulse over time. It can also

be seen as an effective time dependent hydraulic conductivity in a localized version of the

flow equation (2.29). From the definition (2.30) and (2.28) we obtain the following explicit
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expression for Ke(t) in d spatial dimension:

Ke(t) = Ke f f +
σ2KG

d

�
1 + 2

t
τK

�− d
2

(2.34)

with Ke f f given by the well known asymptotic values for the effective conductivity in d spatial

dimension [Gutjahr et al., 1978].

Ke f f =






KG

�
1− σ2

2

�
, d = 1

KG, d = 2

KG

�
1 +

σ2

6

�
, d = 3

(2.35)

Notice that (2.34) is a perturbative approximation of the effective conductivity up to first order

in σ2. Higher order can be derived using perturbation expansion of h presented in Appendix.

In particular, in d = 1, Ke f f is the perturbative approximation of the harmonic mean up to

order σ2. Note that Ke(t) converges to its asymptotic value Ke f f for times t � τK. Thus the

local model (2.29), is well characterized by Ke(t) = Ke f f in the regime where it is valid so that

is becomes:
∂h(x, t)

∂t
= Ke f f ∇2h(x, t) (2.36)

For times t � τK, (2.34) reads:

Ke(t) = Ke f f +
σ2KG

d
2−

d
2

�
t

τK

�− d
2

. (2.37)

Equation (2.37) evidence how fast the effective conductivity tends to its asymptotic value for

any d spatial dimension. For d = 1, Ke(t) tends to its corresponding Ke f f as t−1/2, for d = 2

as t−1 and in d = 3 as t−3/2. In the following we consider the flow problem in 1, 2 and

3 dimensions, we compute the head response for the local and the non-local problem and

we show that Ke(t) is consistent with time dependent effective conductivity obtained using

perturbation’s methods in terms of spatial moment of the hydraulic head defined in (2.34)

derived in the appendix.



2.3. EFFECTIVE BEHAVIOUR 19

2.3 Effective behaviour

In the following we discuss the temporal evolution of the effective conductivity and we eval-

uate the head response for a pulse injection for d = 1, 2 and 3 spatial dimension.

2.3.1 Temporal Evolution of Effective Hydraulic Conductivity

In figure 2.2 we display the temporal evolution of Ke(t/τK) defined in (2.34) for d = 1, 2 and 3

spatial dimensions.
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Figure 2.2: Effective conductivity Ke(t�), plotted in function of the dimensionless time t� = t/τK with
τk = �2/KG, for d =1,2 and 3 dimensional media.

As illustrated in the figure 2.2, Ke(t) is bounded by the arithmetic mean of the local con-

ductivity, for time to zero, and the harmonic mean for larger times. All the Ke(t) for any d

dimension are equal to the arithmetic mean for time to zero and decrease in time to the cor-

respondent well known asymptotic values of Ke f f for d = 1, 2 and 3 dimensional media. The

evolution of the effective hydraulic conductivity depends on the dimensionality of the space.

The characteristic timescale is given by τK, which indicates the typical time for the dispersion

of a pression pulse over a correlation length � of the medium.

Time dependent effective conductivity Ke(t) tends to its corresponding asymptotic value

depending on the dimensionality d = 1, 2, 3 of the problem as t−d/2. This indicates that

with increasing dimension, heterogeneity is sampled with increasing efficiency. This can be

understood by the fact that in d = 2 and d = 3 there are more directions available. Therefore

the system samples in the same time a larger part of the medium heterogeneity for larger

dimension. Notice that Ke(t) also describes the diffusion of a solute evolving from a point
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source in a infinite medium. As said in section 2.2.3, this problem is equivalent to a random

walk in a heterogeneous media, where the mean number of distinct sites visited by a random

walker goes with the square of step number n,
√

n in d = 1, according to n/
√

n in d = 2

and as n in d = 3 [Weiss, 1994]. This quantifies the fact the heterogeneity is sampled faster

with increasing dimension. We will use this notion on distinct number of sites visited also in

Chapter 4.

2.3.2 Drawdown

The mean hydraulic head satisfies equation (2.26), which, for KL,ij = δijKL(t) as given in

equation (2.28), reduces to:

∂h(x, t)
∂t

= K∇2h(x, t) +
� t

0
dτ KL(τ)∇2h(x, t− τ). (2.38)

We consider here an initial boundary value problem that mimics a slug test. Notice that this

corresponds to diffusion of a solute evolving from a point injection. The initial condition is

h(x, t = 0) = δ(x). As boundaries condition we consider that the averaged head is zero at

infinity. Equation (2.38) can be solved analytically in Laplace space. Laplace transform of

(2.38) gives:

λ h∗(x, λ)− [K + K∗L(λ)]∇2h∗(x, λ) = δ(x) (2.39)

In order to solve the previous non-local equation we consider the local diffusion equation:

∂c(x, t)
∂t

− D∇2c(x, t) = 0. (2.40)

The solution of (2.40), for pulse injection as initial condition and natural boundaries condi-

tions, is well known and it is given by the Gaussian distribution:

c(x, t) =
1

(4πDt)d/2 e−
x2

4Dt (2.41)

with d spatial dimension. Notice that the Laplace transform of (2.40) with c(x, t = 0) = δ(x)

is given by:

λ c∗(x, λ)− D∇2c(x, λ) = δ(x). (2.42)

Thus, comparing (2.42) and (2.39) we find that the solution for h∗(x, λ) can be expressed in

terms of the Laplace transform of (2.41) by substituting D = K + K∗L(λ).
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In the following we discuss the behaviours of the drawdown curves, this mean the tempo-

ral evolution of h(x, t) for a fixed position in space. Hydraulic head for d =1, 2 and 3 spatial

dimensions is computed analytically in Laplace space in terms of the Laplace transform of

(2.41) by substituting D = K + K∗L(λ) for and the time behaviour is determined by numerical

Laplace inversion of h∗(x, λ) using a Matlab routine based on the Hoog algorithm [Hollenbeck,

1998].

Drawdown in d = 1 dimension. Considering the Laplace transform of (2.41) for d = 1 the

solution for the mean hydraulic head reads:

h∗(x, λ) =
1�

4 [K + K∗L(λ)] λ
e
−

�
λ

K+K∗L(λ) |x|
(2.43)

and K∗L(λ), given by the Laplace transform of (2.28) for d = 1, is:

K∗L(λ) = KGσ2



1−
√

π

�
l2 λ

2 KG
e

l2 λ
2 K erfc




�

l2 λ

2 KG







 (2.44)

where erfc(·) indicates the complementary error function defined as:

erfc(x) =
2√
π

� ∞

x
e−t2

dt. (2.45)
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Figure 2.3: Drawdown curves for d = 1 dimensional media. Log-normal distributed hydraulic con-
ductivity with geometric mean KG = 1m/day, variance of log K σ2 = 0.2, distance observation point
= 10m. Drawdown curves for different correlation length of log K: l = (1, 0.8, 0.4)m compared with
an equivalent homogeneous representation with Ke f f = KH.
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Figure 2.3 shows drawdown curves in d = 1 dimension for variable correlation lengths of

l = 0.4m, l = 0.8m and l = 1m. We display the solution of the non-local equation (solid lines)

and the local asymptotic equation (dash line). We observe that asymptotically drawdown

curves scale as t−1/2 as in the homogeneous case, but the drawdowns obtained for the non-

local equation arrives earlier than the equivalent homogeneous one. This behaviour can be

explained by the fact that the evolution of h(x, t) in the non-local case is influenced by the

values of conductivity at small times. In average conductivity at small time is given by the

arithmetic mean KA which is larger than the value of the asymptotic effective conductivity:

KA � Ke f f . We furthermore observe that the drawdown curves arrive earlier with increasing

correlation length. For increasing l the length over which the pressure pulse is exposed to an

approximately constant local K value increases. Thus, in average, at small time the pressure

pulse is exposed to an equivalent conductivity higher than its asymptotic value for a large

time. This is also expressed by the evaluation of Ke(t) shows in figure 2.2. As shown in

Figure 2.2 the evolution of Ke(t) is governed by the characteristic time scale τK = l2/KG. For

increasing l, τK increases and Ke(t) is, at the same time larger than for a smaller correlation

length. This explains the earlier arrivals of drawdown for large correlation length.
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Figure 2.4: Drawdown curves for 1 dimensional media. Log-normal distributed hydraulic conductivity
with geometric mean KG = 1m/day, correlation length of log K: l = 0.5m, distance observation
point = 10m. Drawdown curves for different variance of log K: σ2 = 0.1, 0.2, 0.3 compared with an
equivalent homogeneous representation with Ke f f = KH.

In Figure 2.4 we display drawdown curves for the non-local (solid) and the local asymptotic

(dash) models for variable log-conductivity variance. We observe that for the non-local model,

the drawdown arrive earlier with increasing heterogeneity, while for the effective asymptotic

formulation, the opposite holds. As noticed above, the non-local model is influenced by the
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average conductivity at early times, which is larger that its asymptotic value. The arithmetic

mean KA = eσ2/2 increases with σ2 and consequently we have earlier arrival times. The local

asymptotic model is dominated by the harmonic mean KH = e−σ2/2, which decreases with

increasing σ2.

Drawdown in d = 2 dimension Considering d = 2 dimensional media, the hydraulic head

given by Laplace transform of (2.41), is:

h∗(x, λ) =
1

2 π [ K + K∗L(λ)]
K0

��
x2λ

K + K∗L(λ)

�
(2.46)

where K0(·) indicates the modified Bessel function of second kind of order zero and the kernel

K∗L(λ), from Laplace transform of (2.28) for d = 2, is:

K∗L(λ) = −KGσ2

2

�
1− l2λ

2KG
e

l2λ
2KG Ei

�
l2λ

2KG

��
(2.47)

where Ei(·) indicates the exponential integral function defined as:

Ei(x) =
� ∞

x

e−t

t
dt, x > 0. (2.48)

In figure 2.5 we compare the drawdown computed considering the non-local formulation

(solid lines) with σ2 = (0.1, 0.2, 0.3)m with the local asymptotic formulation with Ke f f = KG

(dash line). As illustrated in (2.5) the late time behaviour of drawdown with the non local
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Figure 2.5: Drawdown curves for 2 dimensional problem. Conformal distributed hydraulic conduc-
tivity with geometric mean KG = 1m/day, distance observation point = 10m, correlation length of
log K: l = 2m. Non-local formulation compared with a classical local one with Ke f f = KG.
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formulation scales in time as t−1 as for the homogeneous case and for small variance the

non-local formulation tends to the homogeneous one, but, increasing the variance we get

earlier arrival times as in the d = 1 dimensional case. Notice that for d = 2 dimensional case,

differently that from d = 1, the effective conductivity Ke f f does not depend on the variance.

In figure 2.6 we compare drawdown curves obtained with the non-local formulation (solid

lines) and for the equivalent homogeneous one (dash lines) for different correlation lengths

l = 0.2, 0.5, 10)m. As for the d = 1 case, we observe that varying the correlation length, the

curves differ from the local formulation. For small correlation length the curves obtained with

the non local formulation tend to the ones obtained using KG, but increasing the correlation

length we get earlier arrival time. Drawdown curves for the non-local formulation at early

time can be about one order of magnitude higher respect the homogeneous effective one. The

explanation is the same that for the d = 1 problem. Local effective description is dominated

by Ke f f = KG, while in the non-local formulation, at early times the pressure pulse depends

on the values of conductivity close to the arithmetic mean and KA � KG.
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Figure 2.6: Drawdown curves for 2 dimensional problem. Log normal distributed hydraulic conduc-
tivity with geometric mean KG = 1m/day, distance observation point = 10m, variance of log K:
σ2 = 0.3. Non-local formulation compared with a classical local one with Ke f f = KG.

Drawdown in d = 3 dimension For d = 3 spatial dimension, the Laplace transform of (2.41)

gives:

h∗(x, λ) =
1

4π

1
[K + K∗L(λ)]x

e
−

�
λ

[K+K∗L(λ)] x
(2.49)
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with the kernel K∗L(λ) given by:

K∗L(λ) = −KGσ2 1
3



1− 2
l2λ

2KG
+ 2
√

π

�
l2λ

2KG

� 3
2

e
l2λ
2K erfc




�

l2λ

2KG







 . (2.50)

In figure 2.7 we compare the drawdown for the non local formulation given in (2.49) for
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Figure 2.7: Drawdown curves in a 3 dimensional media for different correlation lengths of log K: l =
(1, 2, 3)m indicated in the figure. Log-normal distributed hydraulic conductivity with geometric mean
KG = 1m/day, variance of log K σ2 = 0.3, distance observation point = 10m. Non-local formulation
(continuous lines) compared with a classical local one (dash line) with Ke f f = KG(1 + σ2/6).

different correlation lengths of the log conductivity field l = (1, 2, 3)m (solid lines) with the

local classical formulation with an effective conductivity given by Ke f f = KG(1 + σ2/6) (dash

line). At late times the curves coincide and hydraulic heads scale asymptotically as t−3/2,

but at early times the ones obtained with the non-local formulation arrive before that the

one obtained with the classical Ke f f . In figure 2.8 we compare the effect of different vari-

ance σ2 = (0.05, 0.1, 0.2)m at early time in the drawdown curves for the non-local formulation

(solid lines) and the classical one with Ke f f = KG(1 + σ2/6) (dash line). Higher variances

imply earlier arrival times. For small variance non local formulation tends to the classical one,

but increasing the variance, the drawdown curves of non-local formulation at early times are

about one order of magnitude higher than the classical ones. Notice that for d = 1 we had

the opposite effect: higher σ2 gives smaller Ke f f while in d = 2 Ke f f is independent from the

variance. Increasing the variance we obtain earlier arrival times both for the non-local and the

asymptotic description, but the effect is more remarkable in the non-local formulation. This

can be explained by the fact that Ke f f is an averaged value for the hydraulic conductivity in

asymptotic regime, where all the heterogeneity is sampled. Differently the non-local formu-
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Figure 2.8: Drawdown curves in a 3 dimensional media for early times. Log-normal distributed
hydraulic conductivity with geometric mean KG = 1m/day, variance of log K σ2 = 0.05, 0.1, 0.2,
distance observation point= 20m, correlation length of log K: l = 3m. Non-local formulation compared
with a classical local one with Ke f f = KG(1 + σ2/6).

lation takes into account the possibility that the pressure pulse reaches the observation point

without sampling all the heterogeneity, but ’choosing’ only the higher conductivity regions.

2.4 Conclusions

In this chapter we used a stochastic method to upscale flow in heterogeneous media charac-

terized by a spatially varying hydraulic conductivity and a constant storativity. In a stochastic

framework we modeled spatially varying hydraulic conductivity as multi-lognormal random

field and we derived an effective equation for the ensemble mean value of the hydraulic head.

The effective equation derived is non local. Non-locality is expressed by the convolution of

the gradient of the mean hydraulic head with a kernel that takes into account a statistical de-

scription of the heterogeneity of the conductivity field. Heterogeneity brings non-locality both

in time and in space in the flow problem an it implies that a description in terms of effective

coefficient is not enough to fully characterize flow in heterogeneous media. We demonstrate

the the well known values for the effective conductivity in d = 1, 2 and 3 dimensional media

can be obtained by localization of the effective equation derived. Localizing both in space and

in space the non local formulation derive we obtain a time dependent effective coefficient and

its asymptotic limit for d = 1, 2 and 3 spatial dimension reduces into the well known value for

effective conductivity in heterogeneous media. We show that effective conductivity computed

in terms of spatial moments for a pulse injection in an infinitive medium is equivalent to the

effective conductivity classically defined for a constant head gradient in a bounded domain.
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Considering localization in space of the effective equation derived, we solved the non-local in

time formulation in Laplace space and we discussed the hydraulic response for a pulse injec-

tion in a d = 1, 2 and 3 spatial dimension. We compared the drawdown curves obtained with

the non-local formulation and with the classical local formulation and the well known values

for the effective conductivity Ke f f in d dimensions [Sanchez-Villa et al., 2006]. Asymptotically

the non-local formulation and the classical description coincide, but in the transient regime

the classical description underestimates earlier arrival times. Indeed the effective values of

Ke f f is defined for steady state condition, when all the heterogeneity is sampled. Non-local

formulation gives earlier arrival times and the effect increases as the variance and the corre-

lation length of the hydraulic conductivity field increase. Higher correlation length implies

longer transitional regime, which, in turns, implies higher underestimation of the earlier ar-

rival times using a local model. Correct estimation of early arrival times is highly important

in particular in groundwater vulnerability problem. The effect of underestimation of early

arrival times is less remarkable for increasing spatial dimension. This is due to the fact that

efficiency in the sampling of heterogeneity depends on the dimensionality of the problem:

increasing spatial dimension, heterogeneity is sampled with increasing efficiency and there-

fore steady state condition is reached earlier. It implies that increasing the dimensionality

of the problem the local description with Ke f f became earlier an effective description of the

heterogeneous problem. The efficiency in the sampling of the heterogeneity can be quantified

in a particle tracking framework, as we discuss in the following chapter dedicated to particle

tracking method. Considering a random walk, the efficiency in the sampling of heterogeneity

is given by the probability for a random walker to explore new sites, which increases with

increasing spatial dimension [Weiss, 1994]. This is reflected also on the temporal evolution

of the effective time dependent hydraulic conductivity Ke(t) computed by localization of the

kernel of the non-local equation in function of the spatial dimension d. Ke(t) tends to the well

known values of the hydraulic conductivity for any d dimension as t−1/2 for d = 1, as t−1 in

d = 2 and according to t−3/2 in d = 3.
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Chapter 3

Diffusion in Heterogeneous Media: a

Random Walk Perspective

I

3.1 Introduction

In this chapter we study diffusion in heterogeneous media characterized by spatially varying

diffusion properties using random walk. Diffusion in heterogeneous media is a ubiquitous

process in nature that describes a range of different physical phenomena [Haus and Kehr, 1987;

Havlin and Ben-Avraham, 2002b; Dean et al., 2007] including chemical transport in low perme-

ability media such as clays and granites [Delay et al., 2002] and in general in immobile regions

of a heterogeneous porous medium [Gouze et al., 2008b], Darcian fluid flow through heteroge-

neous media, heat transport and electric current through a conductor [King, 1987; Drummond

and Hogan, 1987; McCarthy, 1993], as well as diffusion in biological systems [Codling et al.,

2008]. The present work is motivated through the diffusion of chemicals in heterogeneous

low permeability media that are characterized by spatially varying diffusion properties. The

concentration c(x, t) of a dissolved chemical satisfies the diffusion equation

R(x)
∂c(x, t)

∂t
= ∇ · [D(x)∇c(x, t)] , (3.1)

IThe first part of this chapter has been published in the paper Diffusion and Trapping in Heterogeneous Media:
An Inhomogeneous Continuous Time Random Walk Approach, Dentz M., P. Gouze, A. Russian, J. Dweik, F. Delay;
Advances in Water Resources Advances in Water Resources 49 (2012) 13-22.

29



30CHAPTER 3. DIFFUSION IN HETEROGENEOUS MEDIA: A RANDOM WALK PERSPECTIVE

in which D(x) the diffusion coefficient and R(x) is a random retardation coefficient. Notice

that for diffusion of a non-reactive solute R(x) = φ(x) with φ(x) porosity. For diffusion under

linear equilibrium sorption-desorption reaction: R(x) = {[1− φ(x)]kd(x) + φ(x)} where kd is

the distribution coefficient that relates the mobile and the adsorbed concentration. For the case

of the flow of an incompressible fluid through a porous medium, c(x, t) represents hydraulic

head, R(x) = S(x) is the specific storativity and D(x)the hydraulic conductivity. The diffusion

equation (3.1) for heterogeneous media does not have a general closed form solution and is

often approached analytically using perturbation methods [Drummond and Hogan, 1987; King,

1987; Dean et al., 2007], and numerically using finite difference, finite element or finite volume

methods [Patankar, 1980; Crank, 1975]. In this paper, we focus on numerical approaches based

on random walk particle tracking [Kinzelbach, 1987; Drummond and Hogan, 1987]. This numeri-

cal method is based on the fact that equation (3.1) is equivalent to the Langevin equation [e.g.,

Gouze et al., 2008b]

dx(t)
dt

=
∇D[x(t)]

R[x(t)]
+

�

2
D[x(t)]
R[x(t)]

ξ(t), (3.2)

in which x(t) describes the trajectories of the ’solute’ particles that constitute the concentration

distribution c(x, t). In fact, c(x, t) is expressed in terms of the particle trajectory as [Risken,

1996]

c(x, t) =
1

R(x)
�δ[x− x(t)]� , (3.3)

in which δ(x) denotes the d-dimensional Dirac delta-distribution.

The numerical solution of the Langevin equation (3.2) can be very costly because the het-

erogeneous diffusion properties may require a fine time-discretization in order to ensure that

a particle actually ’sees’ the spatial variability [e.g., James and Chrysikolpoulos, 2001; Delay et al.,

2002]. There may be inaccuracies because in some regions of the medium with little variability

a coarse discretization is sufficient while in regions with high variability a fine time discretiza-

tion is required [James and Chrysikolpoulos, 2001]. Also, as pointed out by McCarthy [McCarthy,

1993] in regions of small diffusivity a particle may have to wait at a given site for a large

number of simulation steps, which is inefficient. Furthermore, for pixelized maps of hetero-

geneous media as obtained by X-ray micro-tomography (XMT) [Delay et al., 2002; Gouze et al.,

2008b], see Figure 3.1, diffusion properties are spatially discontinuous, which makes the use
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of Eq. (3.2) complicated because it relies on the calculation of the gradient of the diffusion

coefficient D(x) (see for example [Delay et al., 2005]). Therefore, there is a need for random

walk scheme that can handle this kind of problems. The time domain random walk (TDRW)

approach represents an alternative to the classical random walk (RW) framework. In Section

4.2 we present a rigorous derivation of the TDRW algorithm and a demonstration its equiva-

lence to the diffusion equation. Furthermore, we extend the TDRW to solve diffusion problem

in a heterogeneous medium with multi-rate mass transfer properties using a statistical repre-

sentation of the medium.

Figure 3.1: Left: Numerical cross-section of a connected pore cluster obtained from a d = 3 dimensional
XMT image (5 mm × 5 mm limestone sample), the black color indicates pore space. Right: Equivalent
upscaled porosity map. The arrows indicate possible particle transitions to nearest neighbors.

Heterogeneity brings complexity in diffusion problems, which, in turn, induces uncer-

tainty and anomalous behaviour [Havlin and Ben-Avraham, 2002b; Bouchaud and Georges, 1990].

There are many model that describe non-Fickian/anomalous diffusion phenomena, like CTRW

[Berkowitz et al., 2006; Metzler and Klafter, 2000], delayed-diffusion models [Dentz and Tar-

takovsky, 2006], MRMT models [Haggerty and Gorelick, 1995; Carrera et al., 1998] fractional

diffusion models [Metzler and Klafter, 2000]. Oftentimes these approaches are not linked to

the heterogeneity distribution, which puts a limitation on their predictive capability. Stochas-
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tic modeling provides a systematic way to quantify the heterogeneity impact on diffusion in

heterogeneous media, see also Chapter 3. In section 4.3 we discuss the upscaling of diffusion

in a d = 3 spatial dimension medium characterized by varying R(x) and constant D(x) = D.

Using a stochastic modeling approach we derive an explicit non-local diffusion equation for

the average particle density.

3.2 Time Domain Random Walk

As pointed out in the introduction, numerical solution of Langevin equation can be very

costly, here we present a particle scheme that relies on spatial increments, whose absolute val-

ues are deterministic, combined with random time increment [McCarthy, 1993; Banton et al.,

1997; Noetinger and Estebenet, 2000; James and Chrysikolpoulos, 2001; Delay et al., 2002; Reimus

and James, 2002]. That is, at each random walk step the particle moves a given distance (which

can be given by the pixel size of the discretized medium representation, for example) in a ran-

dom direction, whose probability is calculated from the diffusion properties of the medium.

The time for the step is random, which reflects the stochastic nature of the diffusion process.

There has been in fact a certain ambiguity on how to model the distribution of transition

time. In [McCarthy, 1993], Noetinger and Estebenet [2000] and Delay et al. [2002], for example,

an exponential transition time distribution is employed, while James and Chrysikolpoulos [2001]

and Delay and Bodin [2001] use a log-normal transition time distribution. Ref. [Reimus and

James, 2002] identifies the transition time with the first-passage time to cross a certain distance

by diffusion. The different variants of this methodology have been called continuous time

random walk (CTRW) on random media [McCarthy, 1993; Noetinger and Estebenet, 2000] and

time-domain random walk (TDRW) [Banton et al., 1997; James and Chrysikolpoulos, 2001]. In the

different aforementioned applications, TDRW method has been used for the determination

of effective diffusivity [Delay et al., 2002], effective hydraulic and electrical conductivity [Mc-

Carthy, 1993], for the upscaling of fluid flow in fractured rocks [Noetinger and Estebenet, 2000]

and for the efficient simulation of chemical transport in fracture networks [Delay and Bodin,

2001; Bodin et al., 2003].

The TDRW method is closely related to the continuous time random walk (CTRW) frame-

work [Montroll and Weiss, 1965; Scher and Lax, 1973]. A CTRW describes the stochastic move-

ment of particles as random walk in space and time. The CTRW approach has been used

for the modeling of electron transport in disordered media Scher and Lax [1973], diffusion in
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turbulence [Zumofen and Klafter, 1993], chemical transport in heterogeneous porous media, to

name but a few, see also the exhaustive review paper by Berkowitz et al. Berkowitz et al. [2006].

It has been used successfully to model anomalous transport features in fluctuating environ-

ments. In this context it can be seen as an average transport framework that is based on the

observation that, when looking at average Lagrangian transport dynamics, particles may need

different times to cross the same distance, due to heterogeneous medium properties. Effective

particle dynamics can be described as a CTRW. This is the reason why CTRW is often referred

to as an ensemble averaged transport model. Strictly speaking, it is a model that describes

particle movements as a random walk in space and time coordinates. As pointed out above,

McCarthy [McCarthy, 1993] and Noetinger and Estebenet [Noetinger and Estebenet, 2000] refer

to TDRW as a CTRW method because the time increment is random. The papers on TDRW,

we reviewed above, propose a TDRW algorithm as an efficient solution methodology for the

heterogeneous diffusion equation. However, in none of these papers, have we found a demon-

stration of the formal equivalence of the TDRW algorithm and the diffusion equation, as it

exists for the equivalence of the diffusion equation (3.1) and the Langevin equation (3.2).

3.2.1 Theoretical Development

The solution of the diffusion equation in a classical RW scheme based on equation (3.2) can

be very costly. In this section we present an efficient particle tracking scheme to solve flow in

heterogeneous media.

In this section, we first consider a continuous time random walk (CTRW) [Montroll and

Weiss, 1965; Scher and Lax, 1973; Berkowitz et al., 2006] on an inhomogeneous spatial lattice,

which is characterized by non-stationary spatial transition probabilities and space-dependent

transition time distribution [Berkowitz et al., 2002; Goychuk, 2004; Chechkin et al., 2005]. We then

show that the inhomogeneous CTRW with an exponential transition time distribution solves

the discrete equations that describe diffusion in heterogeneous media. This demonstrates the

equivalence of the time-domain random walk (TDRW) scheme, which was developed for the

solution of heterogeneous diffusion problems [McCarthy, 1993; Noetinger and Estebenet, 2000;

Delay et al., 2002], and CTRW. Based on these results, we discuss an extension of the TDRW

method for heterogeneous diffusion in combination with heterogeneous trapping properties.
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3.2.1.1 Spatially Inhomogeneous CTRW

We consider a spatially inhomogeneous continuous time random walk (CTRW) [e.g., Montroll

and Weiss, 1965; Scher and Lax, 1973] on a lattice defined by the following set of recursion

equations

xi(n + 1) = xj(n) + ξ ij, tn+1 = tn + θj, (3.4)

where the position of lattice point j is denoted by xj. The probability for a spatial transition

ξij between points j and i (i.e. from j to i) is given by wij, the probability density of the

random time increment θj depends on the position of the particle at step n. Its distribution is

given by the transition time density ψj(t). Equation (3.4) describes an inhomogeneous CTRW

because the probabilities wij and ψj(t) for spatial and temporal particle transitions depend on

the particle positions within the lattice.

The particle density gi(t) at point i is defined by

gi(t) =
�
∆[xi − xj(t)]

�
. (3.5)

The angular brackets denote the average over all particles that are launched in the random

walk (3.4) and the function ∆[xi − xj(t)] is 1 if xj(t) = xi and zero otherwise. The random

walk (3.4) describes time as a stochastic process. The number of steps needed to reach time t

is counted by the renewal process nt = max(n|tn ≤ t). The number density gi(t) then reads

in terms of the space-time particle trajectories (3.4) as

gi(t) =
�
∆[xi − xj(nt)]

�
. (3.6)

This expression can be expanded as

gi(t) =
∞

∑
n=0

�
∆[xi − xj(n)]δn,nt

�
. (3.7)

The statement n = nt is equivalent to 0 ≤ t− tn < θi. This condition can be expressed by the

product of two Heaviside functions H(·). Thus, we can write gi(t) as

gi(t) =
∞

∑
n=0

�
∆[xi − xj(n)] H[(θi − (t− t�)] H(t− t�)

�
. (3.8)
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By inserting a Dirac-delta, we obtain

gi(t) =
∞

∑
n=0

� t

0
dt�

�
∆[xi − xj(n)]δ(t� − tn)

� �
H(θj − (t− t�)

�
. (3.9)

We could break the noise average because of the Markovianity of the process (3.4). Executing

the second average explicitly and defining Ri(t) = ∑∞
n=0

�
∆[xi − xj(n)]δ(t− tn)

�
, we obtain

gi(t) =
t�

0

dt�Ai(t�)
∞�

t−t�

dτψi(τ). (3.10)

The Ai(t) describes the probability per time for the particle to just arrive at xi at time t. From

the Markovianity of the process (3.4) we obtain for Ri(t) that

Ai(t) = ρiδ(t) + ∑
[ik]

wik

t�

0

dt�ψk(t− t�)Ak(t�), (3.11)

with ρi = gi(t = 0) the initial particle density at point xi. Notice that (3.11) is a Chapman-

Kolmogorov type equation that describes the probability to just arrive at xi at time t as the

sum over all possible transitions from a position xk to xi of duration t− t�. The notation ∑[ik]

indicates summation over nearest neighbors of pixel i. Combination of (5.32) and (3.11) in

Laplace space gives for the Laplace transform of gi(t) the well known generalized Master

equation [e.g., Kenkre et al., 1973]

λg∗i (λ) = ρi + ∑
[ik]

wikλψ∗k (λ)
1− ψ∗k (λ)

g∗k (λ)− λψ∗i (λ)
1− ψ∗i (λ)

g∗i (λ). (3.12)

The Laplace transform is defined in Abramowitz and Stegun [1965]. Here and in the following,

Laplace transformed quantities are marked by an asterisk, the Laplace variable is denoted by

λ.

3.2.1.2 Equivalence with Heterogeneous Diffusion

In order to establish the equivalence between the inhomogeneous CTRW detailed in in the

previous section and the heterogeneous diffusion equation (3.1), we consider the exponential

transition time density [Berkowitz et al., 2006]

ψj(t) = τ−1
j exp(−t/τj). (3.13)
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Inserting the Laplace transform of (4.7) into (3.12) gives

λg∗i (λ) = ρi + ∑
[ij]

wijτ
−1
j g∗k (λ)− τ−1

i g∗i (λ). (3.14)

Transforming this equation back to real time, we obtain the Master equation

∂gi
∂t

= ∑
[ij]

wijτ
−1
j gj − τ−1

i gi. (3.15)

We now define the transition probabilities wij and transition times τj as

wij =
b�ij

∑[jk] b�kj
, τj =

1
∑[kj] b�kj

, (3.16)

where the b�ij are defined below. By definition the wij fulfill the normalization condition

∑[ji] wij = 1. Inserting these definitions into (3.15), we obtain

∂gi
∂t

= ∑
[ij]

b�ijgj −∑
[ki]

b�kigi. (3.17)

Notice that for b�ij = b�ji, this equation describes diffusion on a lattice with symmetric barri-

ers [e.g., Bouchaud and Georges, 1990].

To establish the equivalence of the Master equation (3.17) and the diffusion equation (3.1),

we need to further specify the b�ij in terms of the retardation coefficient and diffusion coeffi-

cients. Thus, we define now

b�ij =
bij

VjRj
, bij =

SijD̂ij

ξij
, (3.18)

where Vj and Rj are volume and retardation coefficient of pixel j, respectively, Sij denotes the

surface area between pixels i and j and D̂ij is an average diffusion coefficient between pixels i

and j, see Section 3.2.2.1. Notice that the bij are symmetric by definition, while the b�ij and thus

the transition probabilities wij are in general not. Furthermore, we define the rescaled particle

density

ci =
gi

ViRi
. (3.19)
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Inserting (5.14) and (3.19) into (3.17) gives

ViRi
∂ci
∂t

= ∑
[ij]

bijcj −∑
[ij]

bijci. (3.20)

This equation together with definition (5.14) of the bij corresponds to a finite volume dis-

cretization of (3.1) as outlined for example in Delay et al. [2002]. The quantity ci is identified

with the solute concentration in the fluid phase. Thus, in the limit ξij → 0, we obtain the

heterogeneous diffusion equation (3.1). This establishes the equivalence between (3.1) and the

CTRW scheme (3.4) for the transition probabilities wij and mean transition times τj defined as

wij =
bij

∑[jk] bkj
, τj =

VjRj

∑[kj] bkj
, (3.21)

where we used (5.14) in (3.16). Notice that the random walk algorithm based on (3.4) and (3.16)

for the exponential ψi(t) (4.7) is identical to the time domain random walk (TDRW) presented

by Delay et al. [2002]. Delay et al. Delay et al. [2002] deduced the exponential transition time

distribution (4.7) by interpreting (3.20) in terms of single particle transitions. This explicit

demonstration, removes ambiguity with respect to the distribution of transition times.

3.2.1.3 Heterogeneous Diffusion With Multirate Mass Transfer (MRMT)

In the previous section we established the equivalence between the spatially discrete hetero-

geneous diffusion equation (3.1) and the inhomogeneous CTRW (3.4) with (4.7) and (3.21), or

in other words, a TDRW. Here we consider the generalization of this framework to heteroge-

neous diffusion combined with multirate mass transfer (MRMT). The MRMT approach [e.g.,

Haggerty and Gorelick, 1995; Carrera et al., 1998] describes transport in the presence of traps, or

immobile zones, in which the solute can be immobilized for a certain amount of time. The

trapping mechanisms may be chemical such as adsorption, or physical, such as very slow

diffusion. It has been shown in Refs. [Dentz and Berkowitz, 2003] and [Benson and Meerschaert,

2009] that the CTRW and multirate mass transfer modeling approaches are equivalent under

certain conditions. Thus, based on these results and on the observation that a TDRW describes

an inhomogeneous CTRW, we develop in the following a TDRW approach that models particle

transport in heterogeneous media under spatially varying diffusion and trapping properties.

As in the previous section, we start with the formulation of MRMT as an inhomogeneous

CTRW. We then consider the corresponding generalized Master equation and establish the
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equivalence to the spatially heterogeneous diffusion equation with spatially variable mass

transfer. Linear multirate sorption-desorption and in general linear multirate mass trans-

fer can be modeled in the framework of CTRW by introducing a trapping time distribution

p(t) [e.g., Margolin et al., 2003]. The particle transition time then is given by the time spent

in the mobile domain and the sum of trapping times during a transition. The transition time

distribution ψ(t) with traps then is given in terms of the transition time distribution ψ0(t)

without traps as [Margolin et al., 2003]

ψ∗(λ) = ψ∗0 (λ + α [1− p∗(λ)]) , (3.22)

in which α is the trapping frequency during a transition. Benson and Meerschaert Benson and

Meerschaert [2009] studied the case for which the transition time without traps is exponentially

distributed using random walk particle tracking. A similar approach was used by Delay and

co-workers [Delay and Bodin, 2001; Delay et al., 2008] to extend the TDRW method to account

for matrix diffusion in the context of transport in fractured media.

Here, we consider the general case that the trapping time distribution pj(t) and trapping

frequency αj depend on position. Using the Laplace transform of the exponential distribu-

tion (4.7) for ψ∗0(t) in (3.22), we obtain for the ψj(t) of heterogeneous diffusion and MRMT the

expression

ψ∗j (λ) =
1

1 + λτj + αjτj[1− p∗j (λ)]
. (3.23)

Inserting this explicit form in the generalized Master equation (3.12) gives

λg∗i (λ) = ρi + ∑
[ik]

wikλg∗k (λ)
λτk + αkτk[1− p∗k (λ)]

− λg∗i (λ)
λτi + αiτi[1− p∗i (λ)]

. (3.24)

In order to obtain the partial differential equation that governs transport under heterogeneous

MRMT, we identify the wik in (3.24) with

wik =
bikτk
VkRk

, (3.25)

where we used (3.16) and (5.14). Furthermore, we set gi = RiVici, see (3.19). Thus, we can
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rewrite (3.24) as

λRiVic∗i (λ) = RiVici(t = 0) + ∑
[ik]

bik
λc∗k (λ)

λ + αk[1− p∗k (λ)]

−∑
[ik]

bik
λc∗i (λ)

λ + αi[1− p∗i (λ)]
(3.26)

As in the previous, we obtain in the limit ξij → 0 the spatially continuous equation

R(x)λc∗(x, λ)−∇ · D(x)∇µ∗(x, λ)c∗(x, λ) = R(x)c(x, t = 0), (3.27)

in which we defined the memory function

µ∗(x, λ) =
λ

λ + α(x)[1− p∗(x, λ)]
. (3.28)

In real time, we obtain from (3.27) by inverse Laplace transform the non-local heterogeneous

diffusion problem

R(x)
∂c(x, t)

∂t
= ∇ · D(x)∇

t�

0

dt�c(x, t�)µ(x, t− t�). (3.29)

This equation models heterogeneous diffusion together with heterogeneous multirate mass

transfer. In this context, considering R(x) = φ(x), with φ(x) porosity, the mobile solute

concentration cm(x, t) is defined as [Dentz and Berkowitz, 2003]

cm(x, t) =
t�

0

dt�c(x, t�)µ(x, t− t�). (3.30)

The porosity φ(x) now is divided into the mobile and immobile porosities, φm(x) and φim(x),

respectively, such that φ(x)c(x, t) = φm(x)cm(x, t) + φim(x)cim(x, t). The immobile concentra-

tion is denoted by cim(x, t). We consider a scenario for which the solute is initially distributed

in the mobile domain. Thus, by inserting the Laplace transform of (3.30) into (3.27) gives for

the mobile concentration

φ(x)
µ∗(x, λ)

λc∗m(x, λ)−∇ · D(x)∇c∗m(x, λ) = φm(x)cm(x, t = 0), (3.31)

where the right side reflects the fact that initially there is only solute in the mobile domain.
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We now establish the relation between the memory function µ(x, t) and the transfer function

ϕ(x, t) given within the context of MRMT. The MRMT approach gives the following non-local

transport equation for the mobile concentration [e.g., Carrera et al., 1998; Haggerty et al., 2000]

φm(x)
∂cm(x, t)

∂t
+ φim(x)

∂

∂t

t�

0

dt�ϕ(x, t− t�)cm(x, t�)

= ∇ · D(x)∇cm(x, t). (3.32)

The difference to the formulations given in Refs. Carrera et al. [1998]; Haggerty et al. [2000]

are due to the non-zero initial condition employed here. The site-dependent transfer function

ϕ(x, t) encodes the details of the microscopic mass transfer mechanisms between the mobile

and immobile regions [e.g., Harvey and Gorelick, 1995; Dentz and Berkowitz, 2003]. Comparing

the Laplace transform of (3.32) with (3.31) gives the following relation between the memory

function µ∗(x, λ) and the transfer function ϕ∗(x, λ)

µ∗(x, λ) =
φ(x)

φm(x) + φim(x)ϕ∗(x, λ)
. (3.33)

For the relation between the Laplace transforms of the transfer function, ϕ∗(x, λ), and the

trapping time distribution, p∗(x, λ), we obtain by using (3.28)

ϕ∗(x, λ) =
φ(x)

φim(x)
− φm(x)

φim(x)
+

α(x)φ(x)
φim(x)λ

[1− p∗(x, λ)] . (3.34)

3.2.2 Model Setup and Numerical Implementation

We consider diffusion in the d-dimensional domain Ω with the (d− 1)-dimensional bound-

aries BΩ. In the following we use regular meshes in d = 2 and d = 1 spatial dimensions.

Consequently the internodal distance is ξij = ξ is constant. Thus, the interfacial area Sij be-

tween the pixels i and j is constant and given by S = ξd−1 and so is the volume of the pixel,

Vi = V = ξd. The normalized transition probability wij from position j to position i is given

by (5.14).

No flow boundary conditions are treated as a zero diffusion limit (wij = 0). Dirichlet

boundary conditions at the inlet Bin
Ω ⊂ BΩ (constant concentration) are implemented as de-

scribed in the following. The inlet Bin
Ω is formed by Pin pixels. At each of these pixels the

concentration is constant, ci = cin for i = 1, . . . , Pin. Note that for d = 1 spatial dimension

Pin = 1. In the numerical particle tracking simulations, however, we do not prescribe the
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concentration at the inlet boundary, but the number of particles at each node. Therefore, we

consider the number density gi given by (3.19). Its values at the boundary nodes is given

by gin
i = RiVcin. Since the gi are in general not normalized, we define now the normalized

number density as

ni =
gi

∑Pin
j=1 gin

j

=
Rici

cin ∑Pin
j=1 Rj

. (3.35)

This is the observable that we obtain from the TDRW simulations, namely ni is equal to the

number Ni of particles in the pixel normalized by the number of particles N on the boundary,

ni = Ni/N. Thus, the concentration ci at pixel i is given in terms of the ni as

ci = ni
cin ∑Pin

j=1 Rj

Ri
. (3.36)

The number Nin
i of particles at the boundary pixels then are given by

Nin
i = N

Ri

∑Pin
j=1 Rj

(3.37)

for i = 1, . . . , Pin.

An absorbing boundary condition (zero concentration) at the outlet boundary Bout
Ω ⊂ Ω is

implemented by removing particles as they cross Bout
Ω . The outlet boundary is formed by Pout

pixels. Note that Pout = 1 in d = 1 spatial dimension. The cumulative distribution of arrival

times F(t) at the outlet boundary then is given by

F(t) =
1
N

Pout

∑
j=1

Nj(t), (3.38)

where Nj(t) is the number of particles that have crossed the outlet boundary until time t.

Correspondingly, the distribution density of arrival times, f (t), is

f (t) =
1
N

Pout

∑
j=1

∆Nj(t)
∆t

, (3.39)

where ∆Nj(t) is the number of particles that crosses the outlet during the sampling interval

[t, t + ∆t].
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3.2.2.1 Interpixel Diffusion Coefficients

In Section 3.2.1.2, we left intentionally open how to choose the interpixel diffusion coefficients

D̂ij. Frequently, it is determined as the harmonic average between the diffusion coefficient in

adjacent pixels [e.g., Delay et al., 2002]. Here we want to compare the performance of different

choices for the interpixel diffusion coefficient.

To this end, we consider diffusion in a two-dimensional domain of length L = 102ξ and

width d = 50ξ. It is characterized by a spatially varying diffusion coefficient D(x) and constant

retardation R(x) = R = 1. The heterogeneous domain is generated by assigning to each

pixel in the domain randomly diffusion coefficients that are chosen independently, from a

lognormal distribution characterized by the geometric average DG = 0.5 and variance of ln D

given by σ2
ln D = 1. We record the vertically averaged concentration close to the outlet at

x1 = 90ξ and compare it to the analytical solution for the equivalent homogeneous problem.

Specifically, we consider the case of an instantaneous solute pulse at the inlet boundary at

x1 = 0. The position vector here is x = (x1, x2)T.

It was shown by Matheron [1967] that the exact effective diffusion coefficient De for this

setup is given by the geometric mean De = DG of the lognormally distributed D(x). Thus, the

equivalent homogeneous diffusion problem for c(x1, t) = d−1 � d
0 dx2c(x, t) is one-dimensional

and characterized by the geometric mean diffusion coefficient DG,

∂c(x1, t)
∂t

− DG
∂2c(x1, t)

∂x2
1

= 0, (3.40)

with the initial condition c(x1, t = 0) = 0. The boundary condition at the outlet is c(L, t) = 0,

the one at the inlet is c(0, t) = j0δ(t). The solute flux j0 is given by j0 = c0τp with c0 the

concentration on the inlet boundary and τp the pulse duration. The analytical solution for

c(x1, t) then is given by [e.g., Carslaw and Jaeger, 1947]

c(x1, t) = j0
2DGπ

L2

∞

∑
n=1

n sin
�nπx1

L

�
exp

�
−n2DGπ2t

L2

�
, (3.41)

In the following d = 2 dimensional numerical simulations, we apply the concentration

c0 = 1/ξ2. The pulse duration τp is given by the mean diffusion time over one pixel τp =

ξ2/(2DG). Thus, we have j0 = 1/(2DG). At the horizontal boundaries at x2 = 0 and x2 = d

no-flux boundary conditions are specified. The domain size is L = 10 m.

We compare this analytical solution for the exact average diffusion problem (3.40) to the



3.2. TIME DOMAIN RANDOM WALK 43

outcome of the corresponding TDRW simulations for two difference choices of the interpixel

diffusion coefficient, namely (i) the harmonic mean and (ii) the geometric mean of the diffu-

sion coefficients in adjacent pixels. The choice that yields the best comparison with the exact

average solution will be employed in the following numerical simulations.
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Figure 3.2: Vertically averaged concentration at x = 9 m for diffusion in a heterogeneous medium
characterized by a log-normally distributed diffusion coefficient. Comparison of the numerical solutions
for interpixel diffusion coefficients given by the (squares) harmonic and (triangles) geometric mean,
and the (solid line) analytical solution (3.41) with DG = 0.52 m2s−1, and L = 10 m. The number of
pixels used in the TDRW simulation in horizontal direction is 102 and in vertical direction 50. The
simulations were performed using N = 5× 108 particles.

Figure 3.2 displays the vertically averaged and normalized concentration cL(t) close to

the outlet boundary at L = 90ξ obtained from the TDRW simulation for the two different

interpixel diffusion coefficients. It is compared to c(x1, t) for the equivalent homogeneous

medium given by (3.41) with DG = 0.52. We observe that the interpixel diffusion coefficient

given by the geometric mean gives the best agreement with the analytical solution. Therefore,

in the following d = 2 dimensional TDRW simulations we will employ the geometric mean

for the interpixel diffusion coefficients

D̂ij =
�

DiDj. (3.42)
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Note that it is beyond the scope of the present paper to demonstrate that it is the best ap-

proximation for non-lognormal distributions or for three-dimensional transport. This issue

is in fact not specific to the TDRW approach but concerns all discretized methods applied to

heterogeneous diffusion problems.

For the d = 1 dimensional TDRW simulations presented in the following, the interpixel

diffusion coefficient is given by the harmonic mean

D̂ij = DH = 2
DiDj

Di + Dj
. (3.43)

The pulse duration τp is as above given by the mean diffusion time over one pixel τp =

ξ2/(2DH), the boundary concentration, however, is c0 = 1/ξ. Thus, for d = 1 we have

j0 = ξ/(2DH).

Also note that the setup considered here corresponds to a pulsed through diffusion test.

Diffusion experiments (or through diffusion tests) are widely used for measuring the effec-

tive diffusion of low permeability porous media, such as manufactured cements or consoli-

dated argillaceous formations considered as potential host rock for radioactive waste reposi-

tories [Wittebroodt et al., 2008]. At the laboratory scale such experiments consist in applying a

constant concentration gradient across a thin core of rock by maintaining constant concentra-

tion at the two edges (usually a zero concentration at the outlet) and recording the solute flux

at the outlet [Pabitra, 2004].

3.2.2.2 Heterogeneous Diffusion

The heterogeneous diffusion problem (3.1) is solved using the random walk particle tracking

scheme (3.4) with the transition time density (4.7) and the transition probabilities wij and

the mean transition time τj given by (3.21). The transport time is updated for each particle

transition according to

tn+1 = tn + θj, θj = −τj ln(ηn), (3.44)

where the random variable ηn is uniformly distributed in [0, 1].
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3.2.2.3 Diffusion with Multirate Mass Transfer

In Section 3.2.1.3, we showed that MRMT can be modeled in the TDRW context by introducing

particle traps characterized by a given distribution of trapping times. The resulting TDRW-

MRMT model is implemented following Ref. [Benson and Meerschaert, 2009]. First, we note

that the transition time θj, which is distributed according to (4.7), measures the total time the

particle is mobile. During this mobile time, the particle can get trapped at the constant rate

αj, see Section 3.2.1.3. The times the particle are mobile between trapping events is denoted

by θ̂j. Since trapping occurs at constant rate, θ̂j is exponentially distributed

pmj(t) = αj exp(−αjt). (3.45)

The number of trapping events that actually occur during a mobile transition of time θj, nθj ,

is the random number that fulfills

nθj = max

�
n

�����

n

∑
l=1

θ̂jl ≤ θj <
n+1

∑
l=1

θ̂jl

�
. (3.46)

It is a renewal process, and specifically, for the exponential distribution (3.45), it is a Poisson

process. The distribution pn(n|θj) of nθj thus is given by the Poisson distribution

pn(n|θj) =
(αjθj)n

n!
exp(−αjθj). (3.47)

The unconditional distribution of the number of trapping events at pixel j then is given by

pnj(n) =
∞�

0

dtψj(t)pn(n|t) =
n(αjτj)n

(αjτj + 1)n+1 , (3.48)

in which we used (4.7) for ψj(t). Thus, the mean number of trapping events nj at pixel j is

given by nj = αjτj. The overbar in the following denotes the noise average over all particles.

The spatial average of the mean numbers of trapping events per pixel is Ntrap = �nj�. The

spatial average over all pixels is denoted by angular brackets.

In general, the trapping rate αj is spatially distributed and can be considered as a property

of the heterogeneous medium. For the following analysis, we correlate the trapping rate

to porosity φ(x) that we substitute instead of the generic retardation coefficient R(x) and

assume that the noise mean number of traps at pixel j is inversely proportional to porosity,
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nj = Aφ−1
j with A a constant of proportionality. This relates the trapping rate αj to porosity

as αj = A/(φjτj). Note also that the spatial average number of trapping events under this

assumption is given by Ntrap = A/φH, where φH is the harmonic mean of porosity over all

locations. Thus, we can express the proportionality constant A in terms of the average number

of traps per pixel, Ntrap, as A = NtrapφH and therefore set

αj =
NtrapφH

τjφj
, nj = Ntrap

φH

φj
. (3.49)

We now can determine the total transition time, denoted by Θj. It is given by the sum of

the total mobile time θj at pixel j and the sum over the trapping times, denoted here by ϑj,

Θj = θj +
nθj

∑
l=1

ϑjl , (3.50)

where nθj is given by (3.46). Note that the sum on the right hand side denotes a compound

Poisson process. Time now is updated by

tn+1 = tn + Θj. (3.51)

3.2.3 Numerical Simulations

As mentioned in the Introduction, there are many processes driven by diffusive transport in

media displaying heterogeneous diffusion properties. Here, we focus on the diffusion of solute

in porous media. Furthermore, in the following we will assume for simplicity that D(x) =

φ(x)D0 where D0 is the coefficient for free diffusion in water. More general formulations such

as D(x) = φ(x)nD0 as proposed by [Gouze et al., 2008b] can be implemented easily, as well as

the assumption that φ(x) and D(x) are independent.

3.2.3.1 Heterogeneous Diffusion in Porous Media

We consider a scenario which corresponds to a pulse diffusion test which allows to deduce

the distribution of residence times in a heterogeneous rock sample.

The transfer function ϕ(t) for a low permeability rock sample is of central concern for

transport modeling in the framework of multirate mass transfer, see Section 3.2.1.3. It is related

to the distribution of residence times p(t) through expression (3.34). For purely diffusive mass

transfer between a mobile region and immobile regions, which in general is characterized by
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heterogeneous diffusion properties, the transfer function ϕ(t) encodes the fraction of rock

matrix containing connected micro-porosity or inter-grain porosity as well as stagnant and

trapped water [Gouze et al., 2008b]. The transfer function integrates, by definition, all the

information on the geometry and the heterogeneous diffusion properties of the immobile

domain as well as its accessibility to tracer particles from the mobile domain (this means,

the properties of the mobile-immobile interfacial area). Therefore, for a given value of D0,

the memory function can be considered as an intrinsic property of the rock characterizing its

immobile fraction. Gouze et al. [Gouze et al., 2008b] showed that the parameters necessary for

characterizing diffusion in the 3D immobile domain, i.e., mainly the porosity distribution and

the boundary geometry, can be extracted from X-ray microtomography.

By definition, the transfer function is related to the probability that a tracer particle enter-

ing the immobile zone at t = 0 remains in it until time t [Haggerty et al., 2004], see also (3.34).

Consequently, computing the memory function with the TDRW method consists in applying

an instantaneous solute pulse at the mobile-immobile interface and record the residence time

of the particles that enter the immobile domain. As the immobile domain geometry is very

complex (both in terms of boundary conditions and diffusion coefficient variability within

the immobile domain) computations in d = 3 spatial dimensions for pertinent representative

elementary volumes (order of 106 voxels) are usually prohibitive using standard random walk

methods with constant time increments. The TDRW method provides an efficient alternative.

Two examples of computed memory functions are given in Figure 3.3. The first one concerns

the memory function of a sphere of constant porosity for which the analytical solution is

known [Carrera et al., 1998]. In this case we obtain a memory function characterized by a

power-law tail ϕ(t) ∝ t−β with exponent β = 1/2. The second example calculates the memory

function for a natural rock sample (limestone). Figure 3.3 illustrates the long-time tail of ϕ(t)

associated with the natural rock denoting the strong retention of the particles in the immobile

domain triggered by the tortuosity and the variability of the diffusion paths. In this case we

obtain a memory function with exponent β = 1.1.

3.2.3.2 Diffusion with Multirate Mass Transfer

Here we consider the diffusion model combined with multirate mass transfer as described in

Sections 3.2.1.3 and 3.2.2.3. For computational simplicity, we consider a d = 1 dimensional
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Figure 3.3: Residence time distribution ϕ(t) for a homogeneous sphere, and for a heterogeneous lime-
stone sample as obtained from the TDRW simulation.

setup. In the absence of traps, diffusion is described by

φ(x)
∂c(x, t)

∂t
− ∂

∂x
φ(x)D0

∂

∂x
c(x, t) = 0. (3.52)

The equivalent homogeneous model is given by

φA
∂c(x, t)

∂t
− ∂

∂x
φHD0

∂

∂x
c(x, t) = 0, (3.53)

see C.1.

The domain is initially solute free. We consider as boundary conditions a solute pulse at

the inlet, c(0, t) = j0δ(t), and zero concentration at the outlet at x = L, c(L, t) = 0.

The heterogeneous diffusion problem (3.52) is non-dimensionalized by setting x = x̃L,

t = t̃τL and c(x, t) = c̃(x/L, t/τL)j0/τL, where τL = L2/D0. Thus, we obtain from (3.52)

φ(x̃)
∂c̃(x̃, t̃)

∂t̃
− ∂

∂x̃
φ(x̃)

∂

∂x̃
c̃(x̃, t̃) = 0. (3.54)

The non-dimensional inlet boundary condition is given by c̃(x̃ = 0, t̃) = δ(t̃). In the following,

all quantities are non-dimensional, the tildes are omitted for simplicity of notation.

The mass transfer properties in the following are assumed to be uniform, that is, the
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trapping time ϑj is independent of the pixel position, ϑj = ϑ, and therefore pj(t) = p(t). For

illustration, we consider a (truncated) Pareto distribution for the trapping times, which can

account for the occurrence of a broad distribution of heterogeneity length scales,

p(t) =
β

t1[1− (t1/t2)β]

�
t
t1

�−1−β

, t1 < t < t2. (3.55)

The median time scale t1 is related to the smallest, the cut-off time t2 to the largest hetero-

geneity feature. For this d = 1 dimensional scenario the transport equation (3.29) simplifies

to

φ(x)
∂c(x, t)

∂t
=

∂

∂x
φ(x)

∂

∂x

t�

0

dt�c(x, t�)µ(x, t− t�), (3.56)

where the memory function µ(x, t) is given in Laplace space by, see (3.28),

µ∗(x, λ) =
λ

λ + α(x)[1− p∗(λ)]
. (3.57)

The trapping rate α(x) depends on porosity as given by (3.49).

For the numerical simulations presented in the following, the domain is discretized into

102 pixels. For the simulations of heterogeneous diffusion, porosity values are assigned ran-

domly to each pixel according to a truncated Gaussian distribution,

pφ( f ) = A−1
φ Θ( f − φb)Θ(φt − f )

exp
�
− ( f−φA)

2σ2
φ

�

�
2πσ2

φ

, (3.58)

in which the normalization constant Aφ is given by

Aφ =
φt�

φb

d f
exp

�
− ( f−φA)

2σ2
φ

�

�
2πσ2

φ

. (3.59)

The lower cut-off of the porosity distribution is set to φb = 0.2, the upper cut-off to φt = 0.8.

The standard deviation is set to σφ = 0.2. The median time scale t1 in (3.55) is set to t1 =

2.5× 10−3.

Figure (3.4) illustrates the evolution of concentration at x1 = 0.1, x2 = 0.5 and x3 = 0.9

for the heterogeneous model without traps and the equivalent homogeneous model, which
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Figure 3.4: Evolution of solute concentration in an heterogeneous d = 1 dimensional domain at three
different observation points: x = 0.1 (crosses), x = 0.5 (squares), and x = 0.9 (triangles), compared
with solution (3.41) of the equivalent homogeneous model (3.53) with φA = 0.48 and φH = 0.43.

is characterized by the arithmetic and harmonic averages of the porosity values within the

domain, see (3.53) and C.1. Close to the inlet boundary at x1, we observe an intermediate time

regime characterized by a power-law c(x1, t) ∝ t−γ with exponent γ = 3/2. This behavior is

characteristic for diffusion in a homogeneous semi-infinite medium, which is a valid approxi-

mation far away from the outlet boundary. In fact, in the time regime x2 � t � 1, the solution

of (3.53) can be approximated by (see B.2)

c(x, t) =
x exp

�
− x2φA

4φHt

�

�
4πφA/φHt−3/2

, (3.60)

which gives the observed t−3/2 behavior. The characteristic power-law can only be observed

in the intermediate regime x2 � t � 1. The lower bound denotes the typical non-dimensional

diffusion time to arrive at x, while the upper bound, 1, is the non-dimensional diffusion time

to the outlet boundary. Thus, at times larger than 1 particles leave the system at the absorbing

boundary at x = 1 and the approximation of a semi-infinite medium does not hold anymore.

This explains the breakdown of the power-law behavior, that is the cut-off, at time 1. For

x1, this regime is well developed. For increasing x, this regime shrinks and no power-law

behavior is observable.

Figure 3.5 shows the evolution of the solute concentration c(x1, t) with time at x1 = 0.1,



3.2. TIME DOMAIN RANDOM WALK 51

x2 = 0.2 in the presence of traps (NTrap = 3) with β = 2/5 in (3.55) and cut-off times of

t2 = 1, t2 = 103, t2 = 107, t2 = 1010 and t2 = ∞. The peak times are shifted to significantly

larger times compared to the case without traps. The time evolution of concentration is cut-off

now at a scale tc that is given by the trapping rate α, (3.49), and the mean trapping time t,

tc ≈ αt. The trapping rate α here is of the order of 104. This behavior is discussed in C.1 for

an equivalent homogeneous case. For t2 = 1, the mean trapping time t ≈ 0.4, and thus the

cut-off time is of the order of tc ≈ 103. The cutoff time t2 here is much smaller than tc, t2 � tc.

Thus, we can still observe the characteristic t−3/2 behavior in the time regime t2 � t � tc

because in this regime, concentration behaves essentially like in the case without traps, but

characterized by a renormalized diffusion coefficient, see B.2.

As t2 increases, this behavior changes. The peak of c(x, t) becomes wider and c(x, t)

decreases with a flatter slope. As long as the cut-off time is smaller than tc, the evolution of

c(x, t) is essentially truncated at tc.

In the case of a pure power-law, that is t2 = ∞, a persistent power-law regime develops at

asymptotically long times for t � t1α1/β, where α is the trapping rate, see B.2. In this regime

c(x, t) behaves as c(x, t) ∝ t−β. In the case of a finite truncation time t2, an intermediate
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Figure 3.5: Evolution of solute concentration in an heterogeneous d = 1 dimensional at x = 0.1 for
the truncated power-law trapping time distribution (3.55) with β = 0.4 for cut-off times of (pentagons)
t1 = 1, (triangles) t1 = 103, (squares) t1 = 107, (crosses) t2 = 1010 and (circles) t2 = ∞.

power-law regime develops if t2 � t1α1/β � t1. For this scale order the power-law behavior

c(x, t) ∝ t−β can be observed in the regime t1α1/β � t � t2. Concentration c(x, t) is then
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truncated at the cut-off scale t2. These behaviors are discussed in more detail for an equivalent

homogeneous medium in C.1.

3.2.4 Conclusions

TDRW is a computationally robust and efficient method to model diffusion in discretized

heterogeneous media. It is specifically adapted to perform calculations on constant-size vox-

elized media such as 3D porosity images obtained by processing X-ray microtomography. The

efficiency of the method is due to its intrinsic compliance with parallel computing and the few

calculations required. Accordingly, TDRW has often been used for diffusion calculations dur-

ing the last decade, replacing standard methods, such as finite differences, finite elements or

random walk method based on constant time discretization. Nevertheless, to the best of our

knowledge, its equivalence with spatially discretized heterogeneous diffusion equation has

not been formally proved, albeit its ability to reproduce analytical solution for homogeneous

cases has been broadly verified.

In this paper we demonstrated that the TDRW scheme, that is, the CTRW (3.4) charac-

terized by the exponential transition time density (4.7) and the transition probabilities and

mean transition times (3.21), is equivalent to the finite volume discretization of the heteroge-

neous diffusion equation (3.1). Based on this insight, we developed a TDRW particle scheme

that models multiple trapping events (TDRW-MRMT), which can account for linear kinetic

sorption-desorption reactions and solute trapping due to unresolved sub-scale heterogeneity.

We provide an exact numerical algorithm for the implementation of the TDRW-MRMT based

on CTRW theory. The TDRW approach is illustrated for the calculation of the residence time

distribution in heterogeneous rocks. The TDRW-MRMT method is used to study diffusion in

a bounded d = 1 dimensional medium in the presence of traps characterized by a truncated

power-law trapping time distribution. We identify time regimes of anomalous behavior and

discuss the truncation time of the evolution of the concentration distribution at an observation

point in function of the cut-off time scale of the truncation power-law.

In summary, the presented developments provide a solid theoretical basis of the TDRW

method and a novel TDRW-MRMT framework to account for the impact of subscale hetero-

geneities on diffusion behavior in heterogeneous media.
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3.3 Average Diffusion in d = 3 Dimensional Heterogeneous Media

In the previous section we stated that discretized diffusion equation is equivalent to a TDRW

and that TDRW represents an inhomogeneous CTRW. Here we use this framework in the

context of a stochastic model in order to determine the large scale behaviour of diffusion in

heterogeneous media. We consider diffusion in heterogeneous 3 dimensional medium which

is characterized by a random retardation coefficient R(x) and a constant diffusivity D. In this

case equation (3.1) reduces to:

R(x)
∂c(x, t)

∂t
−∇ · D∇c(x, t) = 0 (3.61)

and, similarly to the previous section, in order to use the TDRW derived in the previous

section, we consider:

g(x, t) = c(x, t)R(x). (3.62)

This problem is motivated by upscaling of flow in heterogeneous media with variable stora-

tivity and for diffusion and reaction of radionuclides in low permeability media. From a

theoretical point of view, we have a non-trivial spatially heterogeneous model, whose aver-

aged behaviour can be assessed exactly using stochastic averaging. To date there are only few

models for which this can be done.

The spatially varying retardation R(x) is now modeled as a spatial random field. It is

organized in voxel of length �. Each voxel is assigned independently a random retardation

coefficient from a distribution pR(r). Such medium can be seen as a large scale approximation

of a correlated random field R(x) on scale larger than the characteristic heterogeneity scale.

Figure 3.1 shows a cross section of a realization of R(x). This random retardation model

is equivalent to the random trap model discussed in Bouchaud and Georges [1990]. This can

be seen as follow. The discretized version of (3.61) is given by th Master equation (3.12) for

constant D and Vi = �3, where � is the voxel size. Thus we obtain:

∂gi(t)
∂t

= ∑
[ij]

1
6

gj(t)
τj

− gi(t)
τi

. (3.63)

This Master equation describes diffusion on a d = 3 dimensional cubic lattice with randomly
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assigned trapping time τi at the vertexes. The trapping time is obtained from (3.16) as:

τi =
�2Ri
6D

(3.64)

The distribution is obtained from the distribution pR(r) of the retardation coefficient by map-

ping:

pτ(t) =
6D
�2 pR

�
6Dt
�2

�
. (3.65)

Notice that the values of Ri in different pixels are uncorrelated so that the distribution of Ri

can be statistically characterized by the single point pdf pR.

This equation corresponds to the master equation for diffusion in a random trap model

[Bouchaud and Georges, 1990] in a 3 dimensional cubic lattice. In such model each lattice site is

considered as a trap, with a mean trapping time τi and the transition probability is constant.

Here the trapping time is given by τi = �2Ri/D, where � is the pixel dimension, that we take

constant, and the transition probability is equal to 1/6.

A trap model for which the trapping time at a site is time invariant corresponds to

”quenched” disorder, which differs from ”annealed disorder” in which the properties of the

lattice vary randomly in time. A CTRW describes a random walk in an ” annealed disor-

der”, where at each random step, space and time increment are chosen independently from

the previous steps. In a ”quenched disorder”, the trapping time at a given site is the same

for each visit of the site and it can induce correlation between the successive trapping times

encountered. Whenever this correlation is relevant it induces a diffusion law which averaged

behaviour is different from a CTRW. However the probability of return is related to the di-

mensionality of the problem. Weiss [Weiss, 1994] shows that asymptotically the number of

new sites visited S(n) by a random walker, in function of the number of steps n, depends on

the dimensionality d of the problem:

S(n) ∼






�
8n
π

�1/2

, d = 1,

πn
ln n

, d = 2,

n, d = 3

(3.66)

In 3 dimensions the number of new sites visited increases linearly with the number of steps

and therefore the problem of correlation in successive time increments is avoided and the

average behaviour of a particle tracking in a quenched disorder for a trap model is the same
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of a CTRW. Differently in 1 and 2 dimensional media, if the number of steps n goes to infinity,

the sites are visited an infinitive number of times and different diffusion behaviours arise

[Weiss, 1994; Ben-Avraham and Havlin, 2000].

3.3.1 Theoretical Development

The starting point of the upscaling procedure is equation (3.9) for gi(t). Considering ensemble

average we obtain:

gi(t) =
∞

∑
n=0

� t

0
dt��∆[xi − xj(n)]δ(t� − tn)��H[θj − (t− t�)]� (3.67)

where the overline indicates the ensemble average over all the possible realizations of the

heterogeneous medium. Notice that we can split the disorder average for d dimension d > 2

where, as discussed in the introduction of this section, the number of distinct sites visited

increases linearly with the number of steps and successive time increments are not correlated.

For this reason θj and tn are independent and we can split the disorder average:

gi(t) =
∞

∑
n=0

� t

0
dt��∆[xi − xj(n)]δ(t� − tn)� �H[θj − (t− t�)]� (3.68)

Analogously to the previous section we can re-write (3.68) as

gi(t) =
� t

0
dt� Ai(t�)

� ∞

t−t�
ψ(τ) (3.69)

where

ψ(τ) =
� ∞

0
dτR pτ(τR)

1
τR

e−
τ

τR (3.70)

where τR is a mean transition time for a voxel with a given retardation coefficient R, that, con-

sidering the definition of the mean transition time derived in (3.16), with a constant diffusion

coefficient in 3 dimensional media reads:

τR =
L2R
6D

(3.71)

and pτ is the probability to have a given τR over the realizations, that in function of the

distribution probability of Ri, that we call pR, reads:

pτ(τR) =
6D
L2 pR

�
6DτR

L2

�
. (3.72)
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Notice that the values of Ri in different pixels are uncorrelated so that the distribution of Ri

can be statistically characterized by the single point pdf pR. From a continuous to a discrete

description, Ri can be considered uncorrelated if the correlation lenght of the continuous

coefficient R(x) is of the order of magnitude of the pixel size �. Similarly to (3.11) we can

highlight the recursive character of A re-writing it as:

Ai(t) = ρiδ(t) + ∑
[ik]

1
6

t�

0

dt�ψk(t− t�)Ak(t�), (3.73)

where ρi = gi at t = 0 is the initial particle density at point xi and the factor 1
6 is the transition

probability wi,j given in (3.16) for a constant discretization ξi = � of a 3 dimensional media

with constant diffusion coefficient. Equation (3.69) indicates that the total number of particles

gi(t), is given by the sum over all probabilities that a solute particle reaches the voxel i at

some time t� and the transition to the next site takes more time than t− t�. Analogously to the

previous section, we solve the problem in Laplace space , where (3.69), read:

λgi
∗(λ) = ρi + ∑

[i,k]

1
6

λψ
∗

1− ψ
∗ g∗k −

λψ
∗

1− ψ
∗ g∗i (3.74)

The quantity gi(t) refers to the i-th position on the lattice and its value is representative for

volume the i-th voxel. In the following we pass from a discrete to a continuous description

of the particle density in order to obtain an upscaled formulation of g(x, t) for an observation

scale L larger than the resolution scale �.

g(x, t) =
∞

∑
i

gi(t)�−3
3

∏
d=1

H
�

�
2
− |x1d − xd|

�
(3.75)

where H(·) is the Heaviside function that is equal to 1 is its argument is larger than zero

and zero otherwise. Considering the relation expressed in (3.75) for both gi and ρi in (3.74),

equation (3.74) can be written as:

λg∗(x, λ) = ρ(x) +
∞

∑
i=−∞

∑
[i,k]

1
6

M∗(λ) g∗k (λ)�−3
3

∏
d=1

H
�

�
2
− |x1d − xd|

�
− M∗(λ)g∗(x, λ) (3.76)

where we defined a memory function M∗(λ) given by:

M∗(λ) =
λψ

∗
τR

1− ψ
∗ . (3.77)
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In order to understand how to pass from the discrete gk(t) to the continuous g(x, t) we con-

sider the simpler problem in 1 dimension, where:

g(x, t) =
�
2

∞

∑
i=−∞

[gi−1(t) + gi+1(t)] H(�/2− |xi − x|) (3.78)

that, considering the sampling propriety of the delta Dirac function, with x� = x − �, can be

written as:

g(x, t) =
�
2

∞

∑
i=−∞

�
dx�[δ(x− x� + �)gi−1(t) + δ(x− x� − �)gi+1(t)] H(�/2− |xi − x� − �|) (3.79)

and considering the change of variable i− 1 = j it reads:

g(x, t) =
�
2

�
dx�[δ(x− x� + �) + δ(x− x� − �)]

∞

∑
j=−∞

gj(t) H(�/2− |xj − x�|). (3.80)

Considering (3.75) for d = 1 case, the summation in (3.80) is equal to:

∞

∑
j=−∞

gj(t) H(�/2− |xj − x�|) = g(x�, t) (3.81)

and therefore (3.80) reads:

g(x, t) =
�
2

�
dx�[δ(x− x� + �) + δ(x− x� − �)]g(x�, t) (3.82)

The same procedure can be repeated in the d = 3 case and (3.76) can be written as:

λg∗(x, λ) = ρ(x) +
�

dx�
1
τ

p(x− x�) g∗(x�) M∗(λ)− M∗(λ) g∗(x, λ) (3.83)

where the transition probability p(x− x�), considering 3 dimensional isotropic media, reads:

p(x) =
1
6

3

∑
i=1

[δ(xi − �) + δ(xi + �)] ∏
i �=j

δ(xj). (3.84)

Considering the inverse Laplace transform of (3.83) we obtain a non local equation in time

domain:

∂g(x, t)
∂t

=
� ∞

−∞
dx�

1
τ

p(x�)
� ∞

0
dt� M(t�) g(x− x�, t− t�) −

� ∞

0
dt� M(t�) g(x, t− t�). (3.85)
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Equation (3.85) is a non-local equation both in time and in space because the number of

particle in (x, t) depends also on (x�, t�). In order to get rid of the convolution product between

g(x− x�) and p(x�), we localize g for small x� using Taylor expansion till the second order

approximation, and (3.85) reads:

∂g(x, t)
∂t

=
� ∞

0
dt� M(t�)

� ∞

−∞
dx�

p(x�)
τR

�
x� · ∇g(x�, t− t�) +

1
2

x� · ∇ ⊗∇g(x, t− t�) · x�
�

. (3.86)

The first term in the space integral of (3.86) represents the first moment of the particle distri-

bution and it is equal to zero for each component:

� ∞

−∞
dx�i p(x�i) x�i = 0, (3.87)

while the second term is a tensor and the only non-zero terms, the diagonals terms, represent

the second moments of the particles distribution:

� ∞

−∞
dx� p(x�) x�i x

�
j = 0 i �= j (3.88)

and � ∞

−∞
dx� p(x�) x�2i =

1
3
�2 = 2DτR. (3.89)

Therefore, substituting the previous results in (3.85), we obtain an effective non-local equation

for the total mean number of particles g(x, t):

∂g(x, t)
∂t

= ∇ · D
� ∞

0
dt� M(t�) ∇g(x, t− t�) (3.90)

The effective equation obtained is non local in time and the dynamic of g(x, t) is controlled by a

memory function M(t), which depends on the spatial distribution of the random retardation

coefficient R(x). In order to obtain an effective equation for the total mobile concentration

c(x, t), we consider the Laplace transform of (3.90) that reads:

λg∗(x, λ)−∇ · D M∗(λ)∇g∗(x, λ) = δ(x) (3.91)
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and with the change of variable g∗(x, λ) = c�∗(x, λ)/M∗(λ) we obtain:

λ
1

M∗(λ)
c�∗(x, λ)−∇ · D∇c�∗(x, λ) = δ(x) (3.92)

that is analogous to the Laplace transform of (3.61), so that we identify c�∗(x, λ) ≡ c∗(x, λ) and

we get:

c∗(x, λ) = M∗(λ) g∗(x, λ), R(x)c∗(x, λ) = ϕ∗(λ) c∗(x, λ) (3.93)

where we defined:

ϕ∗(λ) =
1

M∗(λ)
. (3.94)

Equivalently in time domain we have:

c(x, t) =
�

dt�M(t− t�) g(x, t�), R(x)c(x, t) =
�

dt�ϕ(t− t�)c(x, t�) (3.95)

and the upscaled equation for the average concentration reads:

∂

∂t

�
dt�ϕ(t− t�)c− D∇2c = 0. (3.96)

Equation (3.96) is an effective equation non-local in time, where the memory term, ϕ(t− t�),

depends on the spatial distribution of the retardation coefficient R(x). Notice that the upscaled

formulation obtained is the same of the MRMT models [Haggerty and Gorelick, 1995; Carrera

et al., 1998] and Multicontinuum models (see Chapter 5). In MRMT models equation (3.96)

represents the governing equation for the ’mobile’ concentration and the memory term is

given by the exchange of solute between mobile and immobile zones. Indeed considering

(3.1) in the context of diffusion under linear sorption-desorption reaction, c(x, t) refers to the

dissolved solute. The total concentration cT(x, t), is given by the sum of the concentration

of the dissolved solute and of the adsorbed one cad(x, t) = kd(x)c(x, t), where kd(x) is the

distribution coefficient:

ct(x, t) = {[1− φ(x)]kd(x) + φ(x)}c(x, t) = R(x)c(x, t). (3.97)

and (3.96) is an upscaled equation for the concentration of a dissolved solute, or ’mobile’

concentration.
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3.3.2 Conclusions

In this section we used particle tracking method as analytical tool to upscale diffusion in a

stochastic framework. We considered the problem of diffusion in a d = 3 dimensional medium

characterized by a constant diffusivity and a random retardation coefficient. Using the TDRW

derived in the previous section, we derived an upscaled non-local in time diffusion equation,

where the memory function depends on the spatial distribution of the retardation coefficient.

Considering the ubiquity of the diffusion process, this work is motivated by many real prob-

lems as diffusion and reaction of chemicals and radionuclides in low permeability media,

fundamental in waste repository problems or for the upscaling of flow in media characterized

by variable storativity. Although the condition of constant diffusivity and d = 3 could appear

idealized, we point out that this problem represents a particular case of diffusion in hetero-

geneous media that can be rigorously described by a CTRW. A CTRW describes a RW in an

”annealed” disorder [Bouchaud and Georges, 1990], which implies that successive time incre-

ments are completely uncorrelated. In the previous section we demonstrated that discretized

diffusion equation in heterogeneous media corresponds to a TDRW, that, in principle, implies

correlation. This difference implies that only particular cases of diffusion in disordered media

can be rigorously upscaled by a CTRW. Because of this, we claim that the work of Cortis and

Knudby [2006], who upscale flow in heterogeneous media characterized by spatially variable

conductivity using CTRW is not rigorously corrected. Here we show that diffusion in constant

diffusivity media can be mapped into trap model [Bouchaud and Georges, 1990], where transi-

tion probability and transition time are independent, but the fact that a site can be visited by

the same random walker many times induces correlation in the time increments. Anyway the

number of new sites visited in function of the number of steps, depends on the dimensional-

ity of the problem [Weiss, 1994]. In a 1 and 2 dimensional media, asymptotically the number

of new sites visited does not increase linearly with the number of step, the same site can be

visited an infinite number of time and this induces correlation in the random time increments

[Weiss, 1994]. Indeed in a d dimensional lattice with d > 2 the number of new sites visited

increases linearly with the number of steps and it implies that we can upscale properly the

diffusion problem described above and obtain an effective upscaled formulation.



Chapter 4

Anomalous Diffusion in Composite

Media

I

We study diffusion in composite media characterized by strong contrasts in the diffusion

properties. We consider layered geometries consisting of a highly conductive and a (heteroge-

neous) low conductivity layer. For a homogeneous low conductivity layer, diffusion is found

to be sub-diffusive in an intermediate time regime. The mean square displacement scales

as t1/2 for times smaller than the typical diffusion time scale in the low conductivity layer.

Asymptotically, diffusion is normal. For a heterogeneous low conductivity layer, the mean

square displacement evolves subdiffusively as well. It behaves as tα with 1/2 ≤ α ≤ 1. The

exponent α is determined by the distribution of heterogeneous diffusion properties in the

low-conductivity layer. Using spatial and stochastic averaging, we derive explicit non-local

diffusion equations, whose kernels are determined by the heterogeneous diffusion proper-

ties of the low-conductivity layer. For power-law kernels, the obtained partial differential

equations are equivalent to fractional diffusion models. The anomalous diffusion behavior

is studied analytically in terms of the solutions of the non-local diffusion equations, as well

as numerically by direct solution of the diffusion problem in the heterogeneous composite

medium using an efficient inhomogeneous continuous time random walk (CTRW) method.

We focus on the first-passage time distributions, the time evolution of the particle density,

and the mean square displacement. This work sheds some new light on the heterogeneity

mechanisms that may cause anomalous diffusion.

IThis chapter is part of the paper Anomalous Diffusion in Composite Media, Russian A., M. Dentz and J. Carrera,
to be submitted to Phys. Rev. E.
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4.1 Introduction

Diffusion in heterogeneous environments is often found to be anomalous, this means, the

mean squared displacement of a diffusing particle grows as tα, with α �= 1 [Bouchaud and

Georges, 1990; Ben-Avraham and Havlin, 2000; Havlin and Ben-Avraham, 2002a].

Diffusion in heterogeneous media is handled by most of the fields of science: in fluidody-

namics and hydrology considering flow equation in porous and fractured media [Delay et al.,

2002; Keller, 2001; Cortis and Knudby, 2006; Dykhuizen, 1987], in thermodynamic considering

heat equation [Kaviany, 1995] and in all the disciplines dealing with transport processes [Dean

et al., 2007; Diersch and Kolditz, 2002; Drummond and Hogan, 1987; Haggerty and Gorelick, 1995;

Noetinger, 1994] like molecular and particle transport in biology [Codling et al., 2008] or electric

current through conductors in electrodynamics [Dean et al., 2004; King, 1987]. Importance of

diffusion in heterogeneous low conductivity material has been further investigated in relation

to underground nuclear waste disposal [Warren and Root, 1963; Dykhne et al., 2005; Gouze et al.,

2008a; Carrera et al., 1998].

One distinguish in the diffusion processes in the different physical phenomena is the vari-

ability in diffusion parameters. In groundwater hydrology hydraulic conductivity can vary of

order of magnitude even in apparently homogeneous media. Considering heat conduction,

thermal conductivity usually varies at the most of one or two orders of magnitude in different

materials [Carslaw and Jaeger, 1947].

Traditionally the approach is to characterize diffusion in heterogeneous media in terms of

effective parameters, such as effective hydraulic conductivity or effective diffusivity. Exhaus-

tive reviews of the results obtained for the effective conductivity since the studies of Matheron

in the 1960s [Matheron, 1967], are given in [Sanchez-Villa et al., 2006] and [Renard and de Marsily,

1997].

Nevertheless further experimental investigations demonstrate that large scale description

in terms of effective conductivity is not sufficient to model some observed phenomena (e.g.

tailing in drawdown curves [Le Borgne, 2004; Le Borgne and Gouze, 2008]) and scale depen-

dence of diffusion parameters [Sanchez Vila et al., 1996; Schulze-Makuch, D., Douglas, A. Carlson,

Douglas, S. Cherkauer, Malik, 1999]. Actually these observations suggest that the large scale

equations are different from their local counterparts and that a different large scale descrip-

tion is needed.

Anomalous diffusion and anomalous drawdowns are well modeled by fractional [Barker,
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1988; Acuna and Yortsos, 1995] and multi-fractional [de Dreuzy et al., 2010, 2004; Lods and Gouze,

2008] diffusion models. A limitation of these models is that the fractal dimension is not di-

rectly linked to the heterogeneity of the media, it can vary depending on the boundary and

initial conditions (e.g. [Little and Bloomfield, 2010; Zhang, 2004]). For these reasons interpreta-

tion of multi-fractal models is rather difficult [Tessier et al., 1996] and their utility for prediction

is limited [Labat et al., 2002].

CTRW has been successfully used to model non-Fickian transport in disordered media

e.g. [Berkowitz et al., 2006; Cortis, 2004; Gouze et al., 2008b; Sanchez-Villa et al., 2006; Metzler and

Klafter, 2000] and transient flow [Cortis and Knudby, 2006]. The equivalence between large scale

averaging theory and the CTRW has been object of the work of Noetinger et al. [Noetinger,

B.Estebenet and Quintard, 2001] and the equivalence between CTRW and multi rate mass trans-

fer (MRMT) models has been demonstrated by Dentz [Dentz and Berkowitz, 2003]. MRMT

models have been widely used to model transport and flow problems in heterogeneous me-

dia e.g. [Harvey and Gorelick, 1995; Carrera et al., 1998; Haggerty and Gorelick, 1995; Lods, 2004].

A particular CTRW in heterogeneous media, where the distribution of residence time de-

pends by the location, is called time domain random walk (TDRW). This method has been

first introduced by McCarthy [1993], used by Banton for simulating non-reactive solute trans-

port in d = 1 dimensional porous media [Banton et al., 1997], by Noetinger for the upscaling

of fluid flow in fracture rocks [Noetinger and Estebenet, 2000], and further developed by Delay

and Bodin [Delay et al., 2002; Bodin et al., 2003; Delay et al., 2005].

We consider diffusion in composite media. In particular we consider a dual and a multi

continuum model given in Figure 4.1. The dual continuum model is constituted by two

homogeneous layers which represent the mobile region (where the scalar quantity diffuses

faster) and the immobile region (where scalar quantity diffuses slower).

Since the pioneering ’double-porosity’ model of Barenblatt [Barenblatt et al., 1960] a large

number of double-permeability/porosity models have been developed (e.g. [Warren and Root,

1963; Dykhuizen, 1987; Peters and Klavetter, 1988; Dykhuizen, 1990; Bai et al., 1993]). These mod-

els assumes that both the mobile and the immobile zone are in quasi-equilibrium and mass

transfer is modeled as a first order process. Among others, works considering a kinetic ap-

proach are derived using perturbations methods [Zhang and Sun, 2000], or homogenization

method. Complete review of homogenized models for saturated conditions through a het-

erogeneous porous medium is given in [Peszynska and Showalter, 2007], while non-saturated

conditions are considered in [Lewandowska, 2004; Bertin et al., 2000].
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We take into account non-equilibrium effects in the immobile zone, which give raise to

anomalous behaviour and we derive temporally non-local governing equations.

Figure 4.1: On the left: dual continuum model, on the right: multi continuum model. Dual and
multi continuum model are constituted by a ’mobile’ layer of thickness dm and an immobile one of
thickness dim. Vertical arrows between the two layers indicate mass exchange between the mobile and
the immobile regions.

In the following we introduce the problem of diffusion in heterogeneous media, the

medium models taken into account and the numerical method used to test analytical solu-

tions. In the third section we derive non-local governing equation for the up-scaled dual

and the multi continuum model proposed. Successively we give the solutions for the model

derived focusing on anomalous behaviour of mean square displacement, first passage time

distribution and temporal evolution of the concentration and in the last section we focus on

the anomalous behaviour we can obtain with the model derived. Analytical solutions are

tested numerically. Main results are summed and discussed in the conclusions.

4.2 Diffusion in Heterogeneous Media

Diffusion of a scalar quantity C(x, t) in a heterogeneous medium is described by

R(x)
∂C(x, t)

∂t
−∇ · [K(x)∇C(x, t)] = 0. (4.1)

In the context of diffusion of contaminants in low conductivity media, R(x) can be related

to the medium porosity φ(x) and linear equilibrium adsorption properties of the medium

as R(x) = [1 − φ(x)]kd(x) + φ(x) with kd(x) the distribution coefficient, C(x, t) is the non-

adsorbed contaminant concentration, and K(x) the bulk diffusion coefficient. In the context of

heat transport, R(x) stands for heat capacity, C(x, t) temperature, and K(x) thermal conduc-

tivity. For the description of Darcy-scale flow in heterogeneous porous media, R(x) denotes

specific storativity, C(x, t) hydraulic head and K(x) hydraulic conductivity. This work is mo-

tivated through contaminant diffusion in low permeability media, and Darcy-scale flow by
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heterogeneous porous media.

4.2.1 Random Walk Perspective

The diffusion equation (4.1) is equivalent to the Langevin equation [Risken, 1989]

dx(t)
dt

=
∇K[x(t)]
R[x(t)]

+

�

2
K[x(t)]
R[x(t)]

ξ(t), (4.2)

where x(t) denotes the trajectory of a particle, ξ(t) is a Gaussian white noise characterized by

zero mean and �xi(t�)ixi(t�)j� = δ(t− t�) δij.

The scalar C(x, t) is expressed in terms of the particle trajectories x(t) as

C(x, t) = R(x)−1 �δ[x− x(t)]� , (4.3)

where the angular brackets denote the noise average.

The cases of variable conductivity K(x) and constant storativity R(x) = R, on the one

hand, and variable storativity R(x) and constant conductivity K(x) = K, on the other, can

be mapped into the random barrier and random trap models, respectively [Bouchaud and

Georges, 1990]. These models describe diffusion on random lattices. In the random barrier

model, each link of the lattice acts as a symmetrical barrier. For diffusion in a finite domain,

the equilibrium particle density is uniform and accumulation in low conductivity regions is

avoided [Bouchaud and Georges, 1990]. In the random trap model each lattice site is considered

a trap characterized by a random trapping time. In this model, the equilibrium distribution is

proportional to the distribution of trapping times [Bouchaud and Georges, 1990].

4.2.2 Numerical Simulations

Diffusion properties are spatially discontinuous in the proposed models, which makes the

use of (4.2) complicated because of the calculation of the gradient of the conductivity ∇K(x)

[Delay et al., 2005]. Therefore the method of choice is time domain random walk (TDRW),

which relies on spatial increments, whose absolute values are deterministic, combined with

random time increments [McCarthy, 1993; Banton et al., 1997; Delay et al., 2002]. We consider

the TDRW scheme presented in Dentz et al. [2012]. The TDRW that describes the random walk
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equivalent to eq. (4.1), used in the numerical simulations is:

xi(n + 1) = xj(n) + ξ ij, tn+1 = tn + θj, (4.4)

where the position of lattice point j is denoted by xj. The probability for a spatial transition

ξij between points j and i, wij, and the mean transition time τj are given by:

wij =
bij

∑[ik] bkj
, τj =

AjRj

∑[kj] bkj
. (4.5)

where Aj is the area of the pixel j, ∑[ik] indicates the sum over the nearest neighbours of pixel

j and

bij =
∆z,ij(K)ij

∆x
, (4.6)

with (K)ij the harmonic mean of the conductivities of the two pixels i and j, ∆z,ij, the length

of the interface between the pixel i and j, given by the vertical discretization of the domain,

∆x the lag distance between the centres of the two pixels, or the horizontal discretization of

the domain that we take constant, so that the area of the pixel j is given by Aj = ∆x∆z,ij.

According to [Delay et al., 2002], we consider transition time exponentially distributed, and

the transition time density reads:

ψθj(θj) = τ−1
j exp(−θj/τj). (4.7)

Details on the implementation of the numerical simulations are given in Appendix C.3.

4.2.3 Observables

4.2.3.1 Mean squared displacement

Diffusion in heterogeneous media can be characterized by the evolution of the mean-square

displacement (MSD) mij(t), which is defined by

mij(t) =
�

dx xixjc(x, t) = �xi(t)xj(t)�. (4.8)

For normal diffusion, mij(t) evolves linearly in time mij(t) ∼ t. For diffusion in disordered

media this scaling is not valid in general, and it is often found that mij(t) ∼ tβ with β �=

1 Bouchaud and Georges [1990]. For 0 < β < 1 the behavior is termed sub-diffusive, for β > 1,



4.3. MULTICONTINUUM MODEL 67

super-diffusive, and for β = 2 ballistic Havlin and Ben-Avraham [2002a]. Sub-diffusion in

disordered media is typically attributed to trapping in particular regions like dead ends and

bottlenecks that exist in the disordered structure.

4.2.3.2 First passage time distribution

Another quantity of interest is the first passage time distribution (FPTD) of a particle. The

information provided by the FPTD is central in many application ranging from contaminant

transport in geological media (solute breakthrough curves) Berkowitz et al. [2006], to the eval-

uation of reaction rates in diffusion limited reactions Havlin and Ben-Avraham [2002a], to name

a few. The FPTD f (x, t) can be defined by the renewal equation Hughes [1995]

C(x, t) = δ(x)δ(t) +
t�

0

dt� f (x, t�)C(x, t|x, t�), (4.9)

where the propagator C(x, t|x�, t�) solves the diffusion equation (4.1) for the initial condition

C(x, t = t�|x�, t�) = δ(x− x�). In a d = 1 dimensional homogeneous medium, the FPTD scales

asymptotically as f (x, t) ∝ t−3/2.

4.2.3.3 Temporal evolution of the concentration

We will also consider the time evolution of C(x, t) at a given point in space, which in the con-

text of Darcy flow in heterogeneous media is termed drawdown Delleur [1999]. The drawdown

depends on the boundary and initial conditions. For an instantaneous point-like injection into

a d-dimensional homogeneous medium, it scales asymptotically as C(x, t) ∝ t−d/2.

4.3 Multicontinuum Model

4.3.1 Model Medium and Governing Equations

The heterogeneous model medium under consideration is a d = 2 dimensional composite

medium that consists of a mobile, highly conductive layer and a (heterogeneous) immobile,

low conductivity layer, as illustrated in Figure 4.1. For diffusion in this medium, equation (4.1)

can be separated into an equation for the mobile region and one for the immobile region. The

coordinate vector now and in the following denotes x = (x, z)T. Thus, for the mobile regions
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dim ≤ z ≤ d, we obtain

Rm
∂Cm(x, t)

∂t
− Km∇2Cm(x, t) = 0, (4.10)

where we defined cm(x, t) = c(x, t) for dim ≤ z ≤ d. In the immobile region 0 ≤ z ≤ dim,

diffusion is described by

Rim(x)
∂Cim(x, t)

∂t
− Kim(x)∇2Cim(x, t) = 0. (4.11)

The immobile Cim(x, t) is defined analogously by Cim(x, t) = C(x, t) for 0 ≤ z ≤ dim. Conti-

nuity of C(x, t) and flux −K(x)∇C(x, t) are imposed at the interface between the mobile and

immobile layers, at z = dim [Carslaw and Jaeger, 1947], so that at z = dim

Cm(x, t) = Cim(x, t), Km
∂Cm(x, t)

∂z
= Kim(x)

∂Cim(x, t)
∂z

. (4.12)

In the following, we assume no flux conditions at the horizontal boundaries,

Km
∂Cm(x, t)

∂z

����
z=d

= 0, Kim(x)
∂Cim(x, t)

∂z

����
z=0

. (4.13)

Diffusion occurrs in multiple connected continua. Dual continuum models can be divided

into ’double permeability’ and ’double porosity’ models [Zhang and Sun, 2000]. In some ’dual

porosity’ models the immobile regions are constrained to communicate only with the mo-

bile region and mass transfer between the immobile regions is neglected by default. Multi-

continuum model that prevent mass transfer between immobile regions are also termed in

literature ’comb models’ [Havlin and Ben-Avraham, 2002a; Bouchaud and Georges, 1990; Dvoret-

skaya and Kondratenko, 2009].

Here, we assume that the conductivity Km in the mobile layer is much larger than the

maximum conductivity in the immobile layers, Km � maxx∈R{Kim(x)}. This condition allows

to overcome the distinction between ’double permeability’ and ’double porosity’ models, be-

cause the difference in the conductivity between the mobile and the immobile zone makes, by

itself, horizontal diffusion in the immobile layer negligible. Referring to Figure 4.1, double (or

multi) porosity models neglect horizontal diffusion in the immobile layer and immobile zones

act as source terms for the mobile zone.

The simplest multi-continuum model is constituted by the coupling of two homogeneous
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regions. The pioneering double permeability model of Barenblatt et al. [Barenblatt et al., 1960]

models flow through fractured media. In such media, flow takes place essentially only in the

fractures. However, fluid may be transferred into the immobile matrix and then after a certain

time back into the fractures.

In the multi continuum model, heterogeneity of the immobile layer is characterized by

spatially variable bulk immobile conductivity defined by κ(x) = χimKim(x) and spatially vari-

able bulk retardation factor defined by ρ(x) = χimRim(x). We handle spatial heterogeneity

in a stochastic framework. In a stochastic framework a medium is considered as a particular

realization of an ensemble of media with the same statistical properties and spatially vary-

ing conductivity and retardation factor are modeled as spatial random fields. We consider a

stationary and ergodic medium, with a finite correlation. Considering an observation scale

far larger than the correlation scale, we can approximate the medium organization in bins,

where diffusion properties in each bins are independent. Thus, such medium can be com-

pletely defined by a single point distribution of the diffusion parameters. A schema of the

model is given in Figure 4.1. Referring to the figure heterogeneity of the immobile layer is

organized in bins. At each bin is assigned independently a random bulk cinductivity taken

from a distribution pκ(κ) and a random bulk retardation taken from a distribution pρ(ρ).

4.3.2 Vertical Average

In the following, we derive the governing equations for the average mobile particle distribu-

tion cm(x, t), which is defined as

cm(x, t) =
1

dm

d�

dim

dz Cm(x, t). (4.14)

Averaging of (4.10) over the vertical gives for cm(x, t)

Rm
∂cm(x, t)

∂t
− Km

∂2cm(x, t)
∂x2 = −Kim(x)

dm

∂Cim(x, t)
∂z

����
z=dim

, (4.15)

where we used the flux continuity condition (4.12) and the boundary conditions (4.13). Conti-

nuity in c(x, t) at the interface defines the boundary condition for the diffusion problem (4.11)

in the immobile region. The system of equations (4.11) and (4.15) can be closed as follows.

In the model medium under consideration, the conductivity Km in the mobile layer is much

larger than the maximum conductivity in the immobile layers, Km � maxx∈R[Kim(x)]. This
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assumption has two effects on the dynamic of the model: (i) the concentration in the mo-

bile zone equilibrates much faster that the one in the immobile zone, (ii) mass transfer in the

immobile zone is sub-leading compared to the mass transfer in the mobile layer.

These processes are controlled by the characteristic time scales for vertical diffusion in the

mobile and immobile layers, defined by

τm =
d2

mRm

Km
, τim(x) =

d2
imRim(x)
Kim(x)

. (4.16)

Considering τm � minx∈R[τim(x)] the distribution Cm(x, t) in the mobile layer will equilibrate

much faster than Cim(x, t) in the immobile layers. Consequently, at observation times much

larger than τm, we can approximate

Cm(x, t) ≈ cm(x, t). (4.17)

Considering mass transfer in the immobile layer, the condition Km � maxx∈R[Kim(x)] makes

horizontal diffusion in the immobile layer negligible for two inter-related reasons. Firstly be-

cause transition time in the immobile layer is far larger than in the mobile layer and horizontal

diffusion in the immobile layer is slower respect horizontal diffusion in the mobile layer. Sec-

ondly because, in a particle tracking framework, the probability for a particle in the immobile

layer to move in the mobile zone is far higher respect the probability to move horizontally in

the immobile layer.

Thus, we disregard horizontal diffusion in the immobile layers. Based on these assump-

tions, we can approximate the diffusion problem (4.11) in the immobile layer by

Rim(x)
∂Cim(x, t)

∂t
− Kim(x)

∂2Cim(x, t)
∂z2 = 0, (4.18)

with the boundary conditions

Cim(x, t)|z=dm
= cm(x, t), Kim(x)

∂Cim(x, t)
∂z

����
z=0

= 0. (4.19)

These assumptions are validated using particle tracking simulations.

From (4.18), we obtain by vertical integration for the boundary flux term on the right side
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of (4.15)

−Kim(x)
dm

∂Cim(x, t)
∂z

����
z=dim

= Rim(x)
dim
dm

∂cim(x, t)
∂t

, (4.20)

where we defined the average immobile concentration

cim(x, t) =
1

dim

dim�

0

dz Cim(x, t). (4.21)

The diffusion problem (4.18)–(4.19) can be solved explicitly in Laplace space, see Appendix

C.2. The Laplace transform is defined in Abramowitz and Stegun [1965]. Laplace transformed

quantities are denoted here by a tilde, λ is the Laplace variable. In Appendix C.2, we derive

for the average immobile concentration

cim(x, t) =
t�

0

dt�g[t− t�|τim(x)]cm(x, t)− cim(x, 0)
t�

0

dt�g[t− t�|τim(x)] + cim(x, 0). (4.22)

The memory function g[t|τim(x)] is defined in terms of its Laplace transform as

g∗[λ|τim(x)] =
1�

λτim(x)
tanh

��
λτim(x)

�
. (4.23)

The memory function depends on the properties of the immobile region only and it is an

intrinsic characteristic of the medium. Figure 4.2 shows the inverse Laplace transform (5.32)

for a given position x. In this work Laplace inversion is computed numerically using a Matlab

function for numerical inversion by the Hoog algorithm [Hollenbeck, 1998].
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Figure 4.2: Memory function g[t|τim] for an homogeneous immobile zone plotted in function of time
for different values of Kim in double logarithmic scale. Parameters: Rm = 1, Rim = 1, dm = 1, dim =
1, Km = 100, Kim = 1, 10−1 and 10−2. Vertical dashed lines indicate the characteristic timescales
given by the characteritic times of the immobile zones for the different curves: τim = 1, 10 and 102.

The function g[t|τim] decrease as t−1/2 for time smaller than the characteristic time of the

immobile layer τim and then, once the immobile region is in equilibrium, it decreases to zero

exponentially.

Combining (4.22) with (4.20) and using the resulting expression in (4.15), we obtain for the

vertically averaged mobile density cm(x, t) the closed equation

ρm
∂cm(x, t)

∂t
+

∂

∂t

t�

0

dt�ϕ(t− t�|x)cm(x, t) = κm
∂2cm(x, t)

∂x2 + cim(x, 0)ϕ(t|x). (4.24)

We define the mobile and immobile volume fractions by χm = dm/d and χim = dim/d and

the bulk retardation ρm = χmRm and the bulk diffusion κm = χmKm coefficient. The memory

function ϕ(t|x) is defined by

ϕ(t|x) = ρim(x)g[t|τim(x)], (4.25)

with the bulk immobile retardation coefficient ρim(x) = χimRim(x). We also define the

bulk immobile diffusion κim = χimKim(x), thus the characteristic immobile diffusion time

is τim(x) = d2
imρim(x)/κim(x). The total upscaled concentration c(x, t) comprehensive of the

contribution of the mobile and the immobile region, is given by:

c(x, t) =
1
d

� d

0
C(x, t) dz = χmcm(x, t) + χimcim(x, t). (4.26)
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Same initial conditions in the mobile and immobile zone

Considering the same initial condition in the mobile and in the immobile layer cim(x, 0) =

cm(x, 0) we can re-write (4.24) in Laplace space as:

λ [ρm + ϕ∗(λ|x)] c∗m(x, λ)− κm
∂2 c∗m(x, λ)

∂x2 = [ρm + ϕ∗(λ|x)]cm(x, 0). (4.27)

Equivalently, in time domain, equation (4.27) gives the following non-local equation for the

mobile zone, which represents a delayed diffusive model [Dentz and Tartakovsky, 2006]:

∂cm(x, t)
∂t

−
t�

0

D(t− t�|x)
∂2cm(x, t�)

∂x2 dt� = 0 (4.28)

where the function D(t|x) is the inverse Laplace transform of D∗(λ|x) = κm/[ρm + ϕ∗(λ|x)].

Zero initial condition in the immobile zone

Considering a zero initial condition for the immobile zone: cim(x, 0) = 0, the concentration of

the immobile zone in Laplace space, from (4.22), reads:

c∗im(x, λ) = g∗[λ|τim(x)] c∗m(x, λ) (4.29)

and the effective equation for the mobile zone reads:

λ [ρm + ϕ∗(λ|x)] c∗m(x, λ)− κm
∂2 c∗m(x, λ)

∂x2 = ρmcm(x, 0). (4.30)

Thus, in time domain we obtain:

ρm
∂cm(x, t)

∂t
+

� t

0
dt� ϕ(t− t�|x) cm(x, t�)− κm

∂2 cm(x, t)
∂x2 = 0. (4.31)

Comparison of (4.31) and (4.28) evidences that different initial condition in the immobile zone

implies different effective models. Considering the same initial condition in the mobile and in

the immobile zone, that means an equilibrium condition, we obtain the governing eq. (4.28)

which is mass conservative. Differently, starting with a non-equilibrium condition, we obtain

(4.31), which is not mass conservative.
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The total concentration in function of the concentration in the mobile zone is:

c∗(x, λ) = {χm + χimg∗[λ|τim(x)]} c∗m(x, λ). (4.32)

In the following, we distinguish between the dual continuum model, consisting of a high

and low conductivity layer and the multi continuum model characterized by spatially varying

diffusion proprieties in the immobile layer. In order to investigate the diffusion behavior in

the multi-continuum medium, we will further average Equation (4.24) over the distribution of

the diffusion properties in the heterogeneous low conductivity layer.

4.3.3 Ensemble Average

In order to obtain an upscaled effective formulation, we average the effective governing equa-

tions (4.24) and (4.22) horizontally over the immobile zone. Ensemble average over the het-

erogeneity of the immobile zone of equations (4.24) gives:

ρm
∂cm(x, t)

∂t
+

∂

∂t

t�

0

dt�ϕ(t− t�|x) cm(x, t�) = κm
∂2cm(x, t)

∂x2 + cim(x, 0)ϕ(t|x). (4.33)

where the overbar indicates ensemble average. In the last term of eq. (4.33), the initial condi-

tion cim(x, 0) is deterministic and therefore we can break ensemble average:

cim(x, 0)ϕ(t|x) = cim(x, 0)ϕ(t|x). (4.34)

We define a global memory function ϕ(t) given by the ensemble average of the local memory

functions ϕ(t|x) given in (4.25) associated at each immobile zone:

ϕ(t) = ϕ(t|x). (4.35)

The average can be executed explicitly and we obtain:

ϕ(t) = ρ(x)g[t|τ(x)] =
�

dρ
�

dτ pρ,τ(ρ, τ) ρ g(t|τ), (4.36)

where pρ,τ(ρ, τ) is the joint distribution of the variable ρ and τ. In order to further develop

equation (4.36), we consider the expression for g∗(λ|τ) given in (5.32) and we notice that

g∗(λ|τ) is precisely function of the product λτ. This implies that g(t|τ) can be expressed in
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function of the single variable function g�(t/τ) as:

g(t|τ) =
1
τ

g�
�

t
τ

�
(4.37)

where g�(t) ≡ g�(t|1) is the inverse Laplace transform of g∗(λ) ≡ g∗(λ|1). Thus, Eq. (4.36) can

be re-written as:

ϕ(t) = ρ(x)g[t|τ(x)] =
�

dρ
�

dτ pρ,τ(ρ, τ)
ρ

τ
g�

�
t
τ

�
. (4.38)

The joint distribution pρ,τ(ρ, τ) of Eq. (4.38) can be expressed by using of Bayes’ theorem as:

pρ,τ(ρ, τ) = pρ(ρ) pτ(τ|ρ), (4.39)

and the conditional distribution pτ(τ|ρ) is defined in terms of the distribution of conductivity

pκ(κ) as:

pτ(τ|ρ) =
d2

imρ

τ2 pκ

�
d2

imρ

τ

�
. (4.40)

Back to the ensemble average over the governing equation of the mobile zone, considering the

second term of eq. (4.33) we have a problem of closure. We close the equation by a mean field

approximation:

ϕ(t− t�|x) cm(x, t) ≈ ϕ(t|x) cm(x, t). (4.41)

Thus we obtain the following upscaled equation for the average mobile concentration:

ρm
∂cm(x, t)

∂t
+

∂

∂t

t�

0

dt�ϕ(t− t�) cm(x, t�) = κm
∂2cm(x, t)

∂x2 + cim(x, 0)ϕ(t). (4.42)

In order to obtain an upscaled expression for cim(x, t) we average eq. (4.22) and we have:

cim(x, t) =
t�

0

dt� g[t− t�|τ(x)] cm(x, t�)−
t�

0

dt�cim(x, 0)g[t− t�|τ(x)] + cim(x, 0). (4.43)

The initial value cim(x, 0) is deterministic so that the last average in the previous equation

does not represent a closure problem. The closure problem given by g[t− t�|τ(x)] cm(x, t�) is
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closed, as for (4.33), using mean field approximation. Thus we obtain:

cim(x, t) =
t�

0

dt� g(t− t�) cm(x, t�)− cim(x, 0)
t�

0

dt�g(t− t�) + cim(x, 0) (4.44)

where we defined:

g(t) = g[t|τ(x)] =
� ∞

0
pτ(τ) g(t|τ) dτ. (4.45)

The total concentration c(x, t) is obtain from averaging of (4.26) and we easily obtain:

c(x, t) = χmcm(x, t) + χimcim(x, t). (4.46)

Although the characterised time τ(x) depends on the ratio between the bulk retardation ρim(x)

and the bulk conductivity κim(x), the dynamic of system characterized by spatially variable

conductivity or spatially variable retardation factor is very different. Indeed a variable con-

ductivity model corresponds to a barrier model, while a model with a space dependent re-

tardation factor can be mapped into a trap model [Havlin and Ben-Avraham, 2002a]. For this

reason in the following we consider the two cases separately and indeed we obtain differ-

ent results. We consider the two cases: (i) constant ρim = ρ0, variable κim and (ii) constant

κim = κ0, variable ρim.

4.3.3.1 Constant retardation factor

In the case of constant ρim = ρ0 and variable κim(x), the distribution of the retardation factor

can be written as pρ(ρ) = δ(ρ− ρ0), so that the joint distribution in (4.38) is given by:

pρ,τ(ρ, τ) = δ(ρ− ρ0) pτ(τ|ρ) (4.47)

and the marginal distribution of the characteristic times of the immobile zone τ in function of

the distribution of the conductivity pκ(κ) reads:

pτ(τ) =
d2

imρ0

τ2 pκ

�
d2

imρ0

τ

�
. (4.48)

Substituting (4.47) in the expression for the global memory function given in (4.38), we have:

ϕκ(τ) = ρ0

�
dτ pτ(τ)

1
τ

g�
�

t
τ

�
, (4.49)



4.3. MULTICONTINUUM MODEL 77

where the subscript κ of the memory function indicates that it refers to a distribution of bulk

conductivity. Considering the change of variable y = t/τ in the previous equation, we obtain:

ϕκ(t) = ρ0

�
dy

1
y

pτ

�
t
y

�
g� (y) . (4.50)

The previous equation indicates that the temporal behaviour of the memory function ϕκ(t) is

determined by the distribution of the characteristic time of the immobile zone pτ(τ). Com-

paring the definition of ϕκ(t) given in (4.49) and the definition of g(t), given in (4.45), and

considering the relation between g(t) and g�(t/τ) given in (4.37), we see that for a constant

retardation factor ρ0 we have:

g(t) =
ϕκ(t)

ρ0
. (4.51)

4.3.3.2 Constant conductivity

In the case of constant bulk conductivity κim = κ0 in the immobile zone and spatially variable

retardation factor ρim(x), the joint distribution in (4.38) is:

pρ,τ(ρ, τ) = pρ(ρ) δ

�
τ −

d2
imρ

κ0

�
. (4.52)

Consequently, the marginal distribution of the characteristic times results:

pτ(τ) =
�

dρ pρ(ρ) δ

�
τ −

d2
imρ

κ0

�
=

κ0

d2
im

pρ

�
τκ0

d2
im

�
(4.53)

and the memory function for the multi continuum model with variable retardation factor is:

ϕρ(t) =
κ0

d2
im

�
dτ pτ(τ) g�

�
t
τ

�
. (4.54)

where the subscript ρ indicates that the memory function refers to a distribution of bulk

retardation factor. Considering the same change of variable y = t/τ as in (4.49), we obtain:

ϕρ(t) =
κ0

d2
im

�
dy

t
y2 pτ

�
t
τ

�
g� (y) . (4.55)

Comparing the memory functions for the case of variable conductivity, given in (4.50), and

variable retardation factor, given in (4.55), we notice that in both cases the temporal behaviour

of the memory function depends on the distribution of the characteristic time of the immobile
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zone pτ(τ), but the same distribution of characteristic times determines different scaling of

the memory function, because the integrands are different.

4.3.4 Dual Continuum Model

In the following we consider a dual continuum model characterized by a homogeneous immo-

bile zone. The model is similar to the well known comb models for diffusion in disordered me-

dia [Havlin and Ben-Avraham, 2002a]. Anomalous behaviour in comb model has been already

studied. Metzler and Klafter [2000] studied sub-diffusion in comb model by particle tracking

methods and Arkhincheev [2000] deduced an exact solution for a generalized diffusion equa-

tion taking into account a random disappearance and birth of the diffusion particles. More

recently Dvoretskaya and Kondratenko [2009] studied anomalous subdiffusion in comb models

considering an infinite immobile zone and Iomin [2011] derived subdiffusion in fractal comb.

We present the dual continuum model as a particular case of the multi continuum model.

The simpler dual continuum model enables us to discuss some basic feature of the proposed

model. Considering an homogeneous immobile layer characterized by a bulk conductivity κim

and a bulk retardation factor ρim, the joint distribution in the equation of the global memory

function (4.36) is:

ρρ,τ(ρ, τ) = δ(ρ− ρim) δ(τ − τim) (4.56)

with τim = d2
imρim/κim. Thus the memory function g(t) defined in (4.45) and the global

memory function ϕ(t) defined in (4.36) depend on time only. In Laplace space, the memory

function for the dual continuum model, substituting (4.56) in (4.36) and considering (5.32)

with τim(x) ≡ τim, reduces to:

ϕ∗(λ) = ρim
1√

λτim
tanh

�
λτim. (4.57)

Clearly, Eq.(4.57) can be also obtained directly from (4.25) and (5.32) considering a constant

retardation factor ρim(x) = ρim and characteristic time τim(x) = τim.

In the derivation of the multi continuum model we assumed mean ergodicity. In Appendix

C.3 is briefly discussed the error we commit considering ensemble average instead of spatial

average. In the special case of the dual continuum model the fact that we do not need ensemble

average over the immobile zone (because it is homogeneous) implies less assumptions in the

derivation proposed.
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4.4 Diffusion Behaviour

We discuss the diffusion behaviour of the multi continuum model derived in the previous

section using explicit Laplace solutions and numerical simulations. We take into consideration

the mobile concentration of the mobile zone cm(x, t), its mean squared displacement (MSD)

and its first passage time distribution (FPTD). Explicit analytical solutions are given in Laplace

space and temporal behaviour shown in the figures are obtained by numerical inversion of

the solution in Laplace space by using the Hoog algorithm [Hollenbeck, 1998]. Numerical

simulation are performed using the TDRW scheme presented in Section 4.2.2. For brevity we

do not give the solutions for cim(x, t) and c(x, t) that can be easily derived from cm(x, t) by

considering (4.44) and (4.46).

4.4.1 Solutions

Here we give analytical solutions in Laplace space for cm(x, t), its MSD and its FPTD for the

dual and the multi composite models.

4.4.1.1 Mobile concentration cm(x, t)

As initial condition for the mobile zone, we consider a pulse injection in the origin. We model

it as an instantaneous imposed value c0 over an infinitesimal distance d0, centered in x = 0

cm(x, 0) = c0d0δ(x), (4.58)

where δ(x) is the delta function and in case of a finite volume representation d0 can be given by

the discretization of the system. Note that the product c0d0 represents the total mass injected

in the system. Considering in the immobile zone the same initial condition cim(x, 0) = cm(x, 0),

the solution of (4.42) is:

c∗m(x, λ) =

�
ρm + ϕ∗(λ)

4 κm λ
e−

�
λ [ρm+ϕ∗(λ)]

κm |x|, (4.59)

where, for the dual continuum model the memory function ϕ(t) is given in (4.57) and for the

multi continuum model with spatially variable conductivity ϕ(t) ≡ ϕκ(t) given by (4.49) and

for spatially variable retardation factor ϕ(t) ≡ ϕρ(t) given in (4.54).
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4.4.1.2 Mean square displacement

In the following we consider the MSD defined in (4.8) for the mobile concentration. In Laplace

space the definition of the MSD given in (4.8) is:

m∗
2(λ) =

� ∞

−∞
x2 c∗m(x, λ) dx. (4.60)

Substituting in the previous equation the expression for cm(x, λ) given in (5.29) we obtain:

m∗
2(λ) =

2 κm

λ2 [ρm + ϕ∗(λ)] (4.61)

where, as before the memory function ϕ(t) for the dual continuum model is given in (4.57)

and for the multi continuum model in (4.49) for variable conductivity and in (4.54) for variable

retardation factor.

4.4.1.3 First passage time distribution

According to the definition of Risken [1989], the FPTD f (t) for the mobile concentration cm(x, t)

is defined as:

f (t) = −
� xc

−∞

∂cm(x, t)
∂t

dx. (4.62)

where xc is the control point where the FPTD is computed. Considering the effective ex-

pression for cm(x, t) given in (4.28) for the same initial conditions in the mobile and in the

immobile zone, the FPTD reads:

f (t) = −
� xc

−∞

� ∞

0
D(t− t�)

∂2cm(x, t�)
∂x2 dt�dx. (4.63)

where D(t) = D(t|x). Equivalently in Laplace space we have D∗(λ) = κm/[ρm + ϕ∗(λ)] and

executing the integral respect to the space variable, Eq. (4.63) reads:

f ∗(λ) =
κm

ρm + ϕ∗(λ)
∂c∗m(x, λ)

∂x

����
x=xc

. (4.64)

Substituting in the previous equation the solution of c∗m(x, λ) given in (5.29), the FPTD in

Laplace space results:

f ∗(λ) =
1
2

e−
�

λ [ρm+ϕ∗(λ)]
κm |xc| (4.65)
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and as before the memory function ϕ(t) is given in (4.57) for the dual continuum model and

in (4.49) and (4.54) for the multi continuum models.

4.4.2 Dual Continuum Model

In the following we consider the temporal behavior of cm(x, t) for the dual continuum model

given in (5.29), its MSD, and its FPTD. We show that the dual composite model derived can

explain anomalous pre-asymptotic behaviours in diffusion problems. The dual continuum

model derived differ from the classical diffusion equation because of the memory term. Con-

sequently, whenever anomalous behaviour occurs, it must be due to the memory function

ϕ(t).

4.4.2.1 Characteristic times

Here we discuss the characteristic times that control non Fickian behaviour of the dual con-

tinuum model observed in Figure 4.3 and we study if we can obtain anomalous scaling. Con-

sidering that the dual continuum model differs from a normal diffusion model because of the

memory function given in (4.57), we study when the memory function is the leading term in

the expression of cm(x, t) given in (5.29) and if it can scale anomalously.

For time smaller than the characteristic time of the immobile zone t � τim, expanding

(4.57) for small λ for λτim � 1, the Laplace transform of memory function scales as:

ϕ∗(λ) � ρim(λτim)−1/2, (4.66)

or equivalently in time domain like ϕ(t) � ρim
�

π/(τimt). This scaling is leading in the

dynamic of c∗m(x, λ) given in eq. (5.29) and implies anomalous behaviour if ρim (λτim)−1/2 �

ρm. If this condition is not verified, the memory function is sub-leading and c∗m(x, λ) does not

scale anomalously. Conditions λτim � 1 and ρim (λτim)−1/2 � ρm imply in time domain that

anomalous behaviour arises in the following pre-asymptotic regime:

�
ρim
ρm

�−2
τim ≡ τS � t � τim. (4.67)

Time scale separation in (4.67) implies: ρim � ρm as prerequisite to observe anomalous be-

haviour. Anomalous behaviour persists until t � τim with τim = d2
imρim/κim the characteristic

time of the immobile zone, which is the mean time for the immobile zone to reach equilib-
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rium by diffusion along the vertical direction. For λτim � 1 the Laplace transform of memory

function given in (4.57) tends to the constant value:

lim
λτ�1

ϕ∗(λ) � ρim. (4.68)

Thus, asymptotically, for t � τim the double continuum system acts as an equivalent homo-

geneous one with ϕ∗(λ) � ρim.

Anomalous behaviour starts, as indicated in (4.67), for time larger than a characteristic

time that we called τS. In order to give a physical meaning to the characteristic time τS, we

call dz the penetration length of mass solute into the immobile layer by diffusion after time

t = τS, so that τS = d2
z Rim/Kim. Therefore condition in (4.67), t � τS, can be re-written as:

dzRim � dmRm. The previous condition indicates that the amount of mass that has entered

into the immobile zone after time τS is bigger than the amount of mass into the mobile one.

For time smaller than τS, diffusion takes place basically only into the mobile layer and the

contribution of the immobile one is negligible. After the time τS enough solute mass entered

the immobile zone, its contribution is relevant in the dynamic of the system and the scaling

term of the memory function induces anomalous scaling in cm(x, t).

In the following we derive and discuss the anomalous scaling for cm(x, t), its MSD and its

FPTD observable in the pre-asymptotic regime given (4.67) considering the condition ρim �

ρm.

4.4.2.2 Mobile concentration cm(x, t)

We consider temporal evolution of cm(x, t) given by inverse Laplace transform of (5.29). Fig-

ure 4.3 shows the temporal evolutions of cm(x, t) for the dual continuum medium obtained

analytically from eq. (5.29) and numerically using the TDRW particle tracking. We notice that

curves associated at different characteristic times of the immobile zone τim behave differently

for time t < τim. For time t > τim the system behaves as an equivalent homogeneous one and

all the curves scale as cm(x, t) ∼ t−1/2, as in a normal diffusion.
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Figure 4.3: Temporal evolution of cm(x, t) for the dual continuum model using the analytical solution
given in (5.29) and numerical simulaitons for different values of the conductivity of the immobile layer
Kim = 10−1, 10−2, 10−3. Parameters: observation point x = 5, Rm = 1, Rim = 1, dm = 2, dim = 2,
Km = 10. Vertical dashed lines indicate the peak mean arrival time τp,m = x2Rm/Km due to diffusion
in the mobile layer, common for all the curves, and τim = d2

imRim/Kim are the characteristic times of the
immobile zone related to the different curves. Parameters numerical simulation: horizontal and vertical
discretization: ∆x = ∆z = 0.5, number of particles: np = 5 ∗ 106.

Anomalous scaling of the mobile concentration is obtained subtituting the temporal scaling

of the memory function given in (4.66) in the solution for cm(x, t) given in (5.29) and expanding

the obtained equation for λτim � 1, we obtain

c∗m(x, λ) �

�
ρimτ−1/2

im
4κm

λ−3/4. (4.69)

Equivalently, considering the inverse Laplace transform of the previous equation, we derive

that the dual continuum model in time domain gives the following sub-diffusive anomalous

scaling:

cm(x, t) � 1
2 Γ(3/4)

�
ρimκim

d2
imκ2

m

�1/4
t−1/4, (4.70)

where Γ(·) is the gamma function. Figure (4.4) displays inverse Laplace transform of c∗m(x, λ)

given in (5.29) focusing on the anomalous behaviour. Analytical solution istested using nu-

merical simulation. Temporal evolution of cm(x, t) scales anomalously as t−1/4, as derived in

(4.70), for time smaller than τim, and then scales as in a homogeneous medium as t−1/2. The

time that corresponds to the peak in the temporal evolution of the concentration, τp,m, is given

by the diffusion parameters of the mobile zone τp = x2ρm/κm with x the distance of the obser-

vation point. The first characteristic time τS given in (4.67), which indicates when anomalous
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Figure 4.4: Temporal evolution of cm(x, t) using the analytical solution given in (5.29) and TDRW
simulaiton. Parameters: Km = 10, Kim = 10−2, dm = 0.1, dim = 10, Rm = 1, Rim = 1, x = 10.
Dash lines: normal behaviour cm(t) ∼ t−1/2, anomalous subdiffusive behaviour cm(t) ∼ t−1/4, mean
peak arrival time due to the diffusion parameter of the mobile zone τp,m = x2Rm/Km, characteritis
time of the immobile zone to reach equilibrium τim = d2

imRim/Kim. Parameters numerical simulation:
horizontal discretization: ∆x = 1, vertical discretization: ∆z = 0.5, number of particles: np = 106.

behavior starts, is smaller than τp,m and therefore we observe anomalous behaviour straight

after τp,m.

4.4.2.3 Mean square displacement

Substituting the anomalous scaling of the memory function given in (4.66) in the solution for

the MSD given in (4.61) we have:

m∗
2(λ) � 2κm

ρimτ−1/2
im

λ−3/2, (4.71)

which in time domain results:

m2(t) � 4κm

�
τim

π ρ2
im

t1/2. (4.72)

The MSD increases with the square root of time, which indicates a sub-diffusive behaviour.

Asymptotically the memory function ϕ∗(λ) � ρim (see (4.68)) and therefore, considering the

inverse Laplace transform of (4.61), with ϕ∗(λ) constant, the MSD grows linearly with time as

in a classical diffusion problem: m2(t) ∼ t.

Figure 4.5 shows the MSD given in (4.61) and TDRW numerical simulations, focusing on

anomalous behaviour. We observe that for time smaller than τim the MSD increases with time
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as t1/2 and for time larger than τim it increases linearly with time.
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Figure 4.5: Mean square displacement for the dual continuum model. Numerical simulation are
preformed blocking by default horizontal diffusion in the immobile layer (as in ’double porosity’ models)
and without blocking by default horizontal diffusion in the immobile layer (as in ’double permeability’
models). Parameters: κm = 10, κim = 10−2, dm = 1, dim = 1, ρm = 10−3, ρim = 1.

4.4.2.4 First passage time distribution

Considering the anomalous scaling of the memory function given in (4.66) in the expression

for the FPTD given in (4.65) we obtain:

f ∗(λ) =
1
2

e−
�

τ−1/2
im
κm λ1/4|xc|, (4.73)

which corresponds to a Levy stable distribution. Expanding the previous equation for small λ

and using the Tauberian theorem, we obtain that FPTD in time domain scales as f (t) ∼ t−5/4.

Asymptotically, as stated before, ϕ∗(λ) = ρim and the FPTD in time domain results:

f (t) � 1
2

�
ρm + ρim

4 κmπ
|xc|

e−
ρm+ρim

4κm t x2
c

t3/2 . (4.74)

Expanding the previous equation for large times FPTD scales as f (t) ∼ t−3/2, which corre-

sponds to the normal scaling of the FPTD for normal diffusion in d = 1 spatial dimensional

medium. Figure 4.6 illustrates the anomalous scaling of the FPTD for the double continuum

model. In the figure is highlighted the pre-asymptotic anomalous scaling as f (t) ∼ t−5/4 till

τim and the normal scaling as f (t) ∼ t−3/2 for larger time.

Scaling of temporal evolution, mean square displacement and first passage time distribu-
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Figure 4.6: First passage time distribution for the double continuum model. Parameters: xc = 10,
Rm = 0.01, Rim = 1, dm = 10, dim = 10, Km = 10, Kim = 0.01

tion for cm(x, t) are summed in Table 4.1.

Scaling for cm(x, t)
Model Temporal evolution MSD FPTD

asymp. pre-asymp. asymp. pre-asym.. asymp. pre-asym
DC t−1/2 t−1/4 t t1/2 t−3/2 t−5/4

MC κim(x) t−1/2 t−β/2 t tβ t−3/2 t−1−β/2

ρim(x) t−β/2 tβ t−1−β/2

Table 4.1: Anomalous scaling of temporal evolution of cm(x, t), mean square displacement (MSD) and
first passage time distribution (FPTD) for cm(x, t). Initial condition: cm(x, 0) = cim(x, 0) = c0d0δ(x)
with c0d0 = 1. In the table is given asymptotic and pre-asymptotic scaling for the dual continuum
(DC) and the multi continuum (MC) model. For the MC model we consider spatially variable κim(x)
distributed according to a truncated power law distribution and spatially variable ρim(x) distributed
according to a power law distribution. β is the exponent of the truncated and pure power law distribu-
tions and 0.5 < β < 1.

4.4.3 Multi Continuum Model with Constant Conductivity

In this section we consider a multi continuum model where heterogeneity of the immobile

zone is given by a spatially variable retardation coefficient ρim(x). Heterogeneity in the

immobile zone induces a distribution of characteristic time in the immobile zone given by

τ(x) = d2
imρim(x)/κim. The general expression for the distribution of characteristic times of

the immobile zone pτ in function of the distribution of bulk retardation coefficient pρ has

been derived in (4.54). As we noticed for the dual continuum model, scaling of the memory

function can induce anomalous scaling in the temporal evolution of cm(x, t), its MSD and its
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FPTD. In order to obtain an anomalous, or rather fractal, behavior of the memory function

ϕρ(t) we consider a fractal distribution of characteristic times. We take the following power

law distribution:

pτ(τ) =
α

τ1

�τ1

τ

�α+1
Θ(τ − τ1) (4.75)

where the Heaviside function Θ(·) implies a sharp cut off for values τ smaller than the cut

off time τ1 and α < 1. Thus we substitute the power law distribution given in (4.75) into the

global memory function for a spatially varying bulk retardation coefficient given in (4.54) and

re-arranging the terms we obtain:

ϕρ(t) =
κim

d2
im

α τα
1 t−α

� t/τ

0
dy yα−1g�(y) (4.76)

and considering that g�(y) decreases as y−1/2 for y � 1 and then goes exponentially to zero,

the integral in (4.76) can be easily solved. For α < 1 the memory function reads:

ϕρ(t) � κim

d2
im

α τα
1

α− 1/2
t−α. (4.77)

The Laplace transform of the memory function given in (4.77) with α > 1/2 reads:

ϕ∗ρ(λ) � κim

d2
im

α τα
1

α− 1/2
λα−1

Γ(1− α)
. (4.78)

Details on the Lapalce transform performed here and in the following are given in Appendix

C.4.

4.4.3.1 Characteristic times

As discussed above for the dual continuum model, anomalous behaviour arises for ϕ∗(λ) �

ρm. Here, considering the expression for ϕ∗ρ(λ) derived in (4.78), for α < 1, this condition is

always fulfilled for small λ. In time domain, it implies that for large time the memory function

remains the leading term in the expression of the mobile concentration, (5.29), its MSD, (4.61)

and its FPTD, (4.65). Therefore anomalous scaling of the memory function implies asymptotic

anomalous scaling of cm(x, t) and also of its MSD and its FPTD.

Considering the distribution of characteristi times of the immobile zone pτ(τ) given in
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(4.75), we can compute the mean characteritic time of the immobile zone, that is:

τ =
�

τ pτ(τ) dτ =
α

1− α
τ1 (4.79)

with 0.5 < α < 1.

4.4.3.2 Mobile concentration cm(x, t)

Substituting the anomalous scaling of the memory function ϕρ(τ) derived in (4.78) in the

expression for the temporal evolution of cm(x, t) given in (5.29), and expanding it for small λ,

we obtain:

c∗m(x, λ) �
�

κim

d2
im

α τα
1

α− 1/2
1

Γ(1− α)
1

4κm
λ

α
2−1. (4.80)

Equivalently, in time domain, inverse Laplace transform of (4.80) gives cm(x, t) ∼ t−α/2. Figure

4.7 shows temporal evolution of cm(x, t) given by inverse Laplace transform of (5.29) with the

power law distribution of characteristic time in the immobile layer given in (4.75). Temporal

evolution of cm(x, t) scales anomalously according to (4.80). Numerical simulations confirm

analytical solutions.
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Figure 4.7: Temporal evolution of cm(x, t) for the multi continuum model with a spatially variable
bulk retardation factor ρim(x). Continuous line: temporal evolution for cm(x, t) given in (5.29), dots:
TRDW simulation, dash lines: normal scaling (t−1/2) and anomalous scaling t−0.45 Considered param-
eters: Km = 150, Kim = 1, dm = 0.05, dim = 1, Rm = 10−5, xc = 50 and τim distributed according
to the power law distribution given in (4.75) with τ1 = 1, α = 0.9. Parameters numerical simula-
tions: 103 realization with 105 particles each. Horizontal discretization: ∆x = 1, vertical discretization:
∆z = 0.25.
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4.4.3.3 Mean squared displacement

Anomalous behaviour for the MSD is obtained substituting the anomalous scaling of the mem-

ory function ϕρ given in (4.78) into the expression for the MSD given in (4.61). Considering

the limit ϕ∗ρ(λ) � ρm we obtain:

m∗
2(λ) � 2 κm

d2
im

κ0

α− 1/2
α τα

1

Γ(1− α)
λα−1 , (4.81)

and doing the inverse Laplace transform we have the following anomalous scaling: m2(t) � tα.

Figure 4.8 shows the inverse Laplace transform of the MSD given in eq. (4.61) considering

power law distribution of characteristic times compared with numerical simulation. We take

the power law distribution given in (4.75) with α = 0.7. MSD scales anomalously as derived

in (4.81), instead of increasing linearly with time as in a normal diffusion.
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Figure 4.8: Mean square displacement for the multi continuum model with a spatially variable bulk
retardation factor ρim(x). Continuous line: analytical solution given in (4.61), dots: TDRW simula-
tion, dash lines: normal behaviour (m2(t) ∼ t) and asymptotic scaling (m2(t) ∼ t0.7). Parameters:
Km = 10, Kim = 0.1, dm = 1, dim = 10, Rm = 0.005, τim distributed according to the power law
distribution given in (4.75) with τ1 = 1, α = 0.7. Vertical line indicates the characteristic time τS.
Parameters numerical simulation: 103 realization with 105 particles each. Horizontal discretization:
∆x = 1, vertical discretization: ∆z = 0.25.
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4.4.3.4 First passage time distribution

Anomalous scaling of the FPTD is computed by inserting anomalous scaling of the memory

function ϕρ given in (4.78) into the expression for the FPTD derived in (4.65):

f ∗(λ) � 1
2

e
−

�
1

κm
κ0

d2
im

α τα
1

α−1/2
λα

Γ(1−α) |xc|
. (4.82)

Expanding the previous equation for small λ and considering its inverse Laplace transform,

we obtain that the FPTD scales asymptotically as f (t) ∼ t−1− α
2 . Anomalous scaling derived

in (4.82) is tested by numerical simulations. In Figure 4.9 is compared TDRW simulation with

analytical solution for FPTD given in (4.65) for a power law distribution of characteristic time

in the immobile layer with α = 0.7. Numerical simulation and analytical solution coincide

and we observe that FPTD scales anomalously as f (t) ∼ t−1.35 as predicted from (4.82).
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Figure 4.9: FPTD for the multi continuum model with a spatially variable bulk retardation factor
ρim(x). Parameters: κm = 150, κim = 1, χm = 0.05, χim = 1, ρm = 10−5, xc = 50 and τim
distributed according to the power law distribution given in (4.75) with τ1 = 1, α = 0.7. Parameters
numerical simulations: 103 realizations with 105 particles each, horizontal discretization: ∆x = 1,
vertical discretization: ∆z = 0.25.

In Figure (4.10) we test with numerical simulations the anomalous scaling derived analyt-

ically in (4.82) for α = 0.6 and α = 0.9.
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Figure 4.10: FPTD of cm(x, t) for a multi continuum model with a power law distributions of ρim(x).
Parameters: κm = 10, κim = 1, χm = 1, χim = 1, ρm = 0.5, xc = 10, τim power law distributed
according to (4.75) with b = 1 and α indicated in the figure. Parameters numerical simulations:
103 realization with 104 particles each. Horizontal discretization: ∆x = 1, vertical discretization:
∆z = 0.25.

4.4.4 Multi Continuum Model with Constant Retardation Factor

In this section we consider an heterogeneous immobile zone due to spatially variable bulk

conductivity κ(x). Heterogeneity is characterized by a truncated power law distribution of

characteristic times pτ(τ) in the immobile zone.

We choose a truncated power law distribution with a strong power law, instead of a power

law distribution as in the previous section because here, choosing a pure power law gives

normal behaviour. This is due to the different structures of the memory functions for the two

cases, compare (4.54) and (4.49). This is discussed in detail in Appendix C.4.

In order to keep the derivation simple we consider a truncated power law distribution

sharply truncated at two characteristic times τ1 and τ2:

pτ(τ) =
1− β

τ
1−β
2 − τ

1−β
1

τ−β Θ(τ2 − τ) Θ(τ − τ1) (4.83)

where Θ(·) is the Heaviside function, that is equal to one if its argument is larger than zero

and zero otherwise and therefore it implies sharp truncation of the power law distribution for

τ < τ1 and τ > τ2. Considering that conductivity of the mobile zone must be far larger than

the one of the immobile one: Km � maxx∈R{Kim(x)}, we have to consider:

τ1 = min
x∈R

{τ(x)} =
d2

imRim

maxx∈R{Kim(x)} �
d2

im Rim

Km
. (4.84)
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Truncation in the distribution of characteristic times implies that anomalous behavior can not

be observed asymptotically. In the following we discuss the characteristic times which control

anomalous behaviour and the anomalous scaling of the temporal behaviour of cm(x, t), its

related MSD and FPTD.

4.4.4.1 Characteristic times

The memory function for a truncated power law distribution of characteristic times due to a

spatially variable conductivity field is obtain by substituting the truncated power law given

in (5.51) into the expresion for the memory function given in (4.49):

ϕκ(t) =
ρ0 (1− β)

τ
1−β
2 − τ

1−β
1

t−β
� t/τ1

t/τ2

yβ−1 g� (y) dy. (4.85)

From the behaviour of g(t|τ) shown in Figure 4.2, we considering that the function g�(y)

decreases as g�(y) ∼ y−1/2 for y smaller than 1 and then goes exponentially to zero. Because

of the truncation in the power law distribution given in (5.51) the improper integral in (4.85)

can converge and for 1/2 < β < 1 we have:

ϕκ(t) � ρ0
1− β

τ
1−β
2 − τ

1−β
1

t−β

β− 1
2

�
1−

�
t

τ2

�β−1/2
�

. (4.86)

Considering that t � τ2 the second term in the squared bracket is sub-leading and so the

global memory function behave as a truncated power law by itself:

ϕκ(t) � ρ0

τ
1−β
2 − τ

1−β
1

1− β

β− 1
2

t−β. (4.87)

The Laplace transform of the global memory function ϕκ(t) given in (4.86) is

ϕ∗κ(λ) � ρ0

τ
1−β
2 − τ

1−β
1

1− β

β− 1
2

�
λβ−1Γ(1− β)− λ−1/2Γ(0.5)

τ
β−1/2
2

�
(4.88)

and considering the second term in the square brackets sub-leading, we obtain:

ϕ∗κ(λ) � ρ0

τ
1−β
2 − τ

1−β
1

1− β

β− 1
2

λβ−1Γ(1− β). (4.89)

Figure 4.11 illustrates the time behaviour of the global memory function given in (4.86) for

different cut-off τ2 and different exponent β. As illustrated in the figure the global memory
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Figure 4.11: Global memory function for a truncated power law distribution of conductivities. Ana-
lytical expression is given in (4.86). Parameters: χim = 1 and Rim = 1, β and τ2 are indicated in the
figure legend.

functions decrease as t−β till the respectively cut off times τ2 and then go exponentially to

zero.

As discussed previously for the double continuum model, anomalous behaviour of cm(x, t)

is observed in a pre-asymptotic regime, for ϕ∗(λ) � ρm and t � τ2. The combination of these

two conditions, implies that the time t to observe anomalous behaviour must be:

t �
�

ρm

ρ0

β− 1/2
1− β

�
τ

1−β
2 − τ

1−β
1

��− 1
β

= τa. (4.90)

In turn, as for the dual continuum model, it implies that anomalous behaviour is observed for

τ1 � t � τa and time scale separation requires that the bulk retardation of the immobile zone

must be far larger than the bulk retardation of the mobile zone:

ρim ≫ ρm. (4.91)

This condition joint to the model geometry cause that the method of choice for the numerical

simulations, a TDRW, is not very efficient. Because of (4.91), and the definition of transition

time given in (4.5), transition times for the mobile zone are far smaller than transition time

in the immobile zone. And because of the model geometry given in Figure 4.1 and the fact

that κm � maxx∈R{κim(x)}, computational time is spent doing many steps in the mobile zone

where the transition times are extremely far smaller than time increments in the immobile

zone.

Notice that considering a spatially variable bulk conductivity κim(x) or a spatially variable
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bulk retardation coefficient ρim(x), we obtain the same scaling of the memory function.

ϕρ(t) ∼ ϕκ(t) ∼ t−β 1/2 < β < 1 (4.92)

for time t1 � t � τa with τa defined in (4.90).

The same scaling in the global memory function ϕ(t) implies the same anomalous scaling

of temporal evolution of concentration cm(x, t) ∼ t−β/2 (from eq. (4.80)), of MSD m2(t) ∼ tβ

and of FPTD f (t) ∼ t−
β
2−1.

The difference relies in the different distribution we have to consider in order to obtain

anomalous scaling. Considering a spatially varying distribution of conductivity, in order to

have an anomalous behavior we need a cut-off in the distribution, otherwise the memory

function ϕκ(τ) is not integrable for β > 1/2 and with β < 1/2 we do not have anomalous

behaviour because the scaling term is sub-leading. Thus with a spatially variable conductivity

we can have or a fractal distribution of τim and normal behaviour or a truncated fractal distri-

bution of conductivity and anomalous scaling. Differently with a distribution of retardation

coefficient we do not need a cut off in the distribution of characteristic time in order to be

able to integrate ϕρ(τ) and we can have a fractal distribution of τim and anomalous scaling.

Moreover notice the same scaling of the memory function are obtained considering different

scaling in the distributions of characteristic times. Considering a distribution of conductivi-

ties κ(x) the memory function scales as ϕκ(t) ∼ t−β considering a distribution of characteristic

time which scales as pτ(τ) ∼ τ−β (see (4.83)); differently considering a spatially variable re-

tardation factor ρ(x)the same scaling of the memory function ϕρ(t) ∼ t−β is obtained with

a distribution that scales as pτ(τ) ∼ τ−1−β (see (4.75)). For completeness in the following

we give the solutions for the temporal evolution of the mobile concentration, its MSD and its

FPTD.

4.4.4.2 Mobile concentration cm(x, t)

Temporal evolution of cm(x, t) for the multi continuum model is shown in Figure (4.13).

Temporal behaviour is obtained by inverse Laplace transform of (5.29) and ϕ(t) is given in

eq.(4.49). Heterogeneity in the immobile zone is given by a truncated power law distribution

of conductivities in the immobile zone. Analytical solution is verified by numerical simula-

tion. Referring to Figure 4.13 we notice that the peak arrival time tp is given by the parameters

of the mobile zone tp = x2
c Rm/Km. For time larger that cm(x, t) scales as cm(x, t) ∼ t−1/2 as in
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Figure 4.12: Temporal evolution of cm(x, t) for multi continuum model with truncated power law
distributions (TPL) of conductivity in the immobile layer: normal behaviour. Simulation parameters:
Km = 1, dm = 1, dim = 1 Rm = 1, Rim = 1, τim(x) = d2

imSim/Kim(x) : distributed according to
eq. (5.51) with τ1 = 10, τ2 = 108 and β = 0.8. Temporal evolution computed at distance: xc = 2
from the injection point. Parameters numerical simulation:103 realizations with 105 particles each.
Horizontal discretization: ∆x = 1, vertical discretization: ∆z = 0.25.

a normal d = 1 dimensional diffusion process.

Considering the anomalous scaling of the memory function derived in (4.89) and substi-

tuting it in the solution for the c∗m(x, λ) given in eq. (5.29) for small λ we obtain:

c∗m(λ) �
�

ρim

τ
1−β
2 − τ

1−β
1

1− β

β− 1
2

Γ(1− β)
4κm

λ
β
2−1. (4.93)

Equivalently in time domain we have the following anomalous behaviour cm(t) ∼ t−
β
2 with

1/2 < β < 1. In Figure 4.13 are plotted the inverse Laplace transforms of (5.29) computed

numerically [Hollenbeck, 1998], focusing on anomalous scaling.

In Figure 4.13 we observe the different scaling we can obtain for the temporal evolution

of cm(x, t) in function of the distribution of κim(x) derived in (4.93). In the pre-asymptotic

regime discussed previously the concentration of the mobile zone scales as: cm(x, t) ∼ t−
β
2

with 1/2 < β < 1.

4.4.4.3 Mean square displacement

Substituting the scaling behaviour of the global memory function given in (4.89) in the expres-

sion for the MSD derived in (4.61) we have:

m∗
2(λ) =� 2κm

ρim

τ
1−β
2 − τ

1−β
1

Γ(1− β)
β− 1

2
1− β

λ−β−1 (4.94)
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Figure 4.13: Temporal evolution of cm(x, t) given in (5.29) for the multi continuum model consid-
ering a truncated power law distribution of conductivity in the immobile layer. Anomalous scaling:
cm(x, t) ∼ t−

β
2 with 1/2 < β < 1. Parameters: ρm = 10−4, ρim = 1, χm = 0.02, χim = 10,

κm = 40, τim(x) = χ2
imρim/κim(x): distributed according to the truncated power law distribution

given in (5.51) with τ2 = 250, τ2 = 107 and β indicated in the figure from 0.6 to 0.9, distance
observation point from the injection point x = 2.

and considering its inverse Laplace transform we have the following scaling in time domain:

m2(t) � tβ. In Figure 4.14 we plot the MSD for the multi continuum model given in (4.61)

for different truncated distributions of κim(x). Figure 4.14 shows the sub-diffusive anomalous

scaling derived analytically.
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Figure 4.14: Mean squared displacement given in (4.61) for the multi continuum model, considering
a truncated power law distribution of conductivity in the immobile layer. Parameters: ρm = 0.0001,
ρim = 1, χm = 0.02, χim = 10, κm = 40, τim: distributed according to the truncated power law given
in (5.51) with τ1 = 250, τ2 = 107 and β indicated in the figure from 0.6 to 0.9.
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4.4.4.4 First passage time distribution

Anomalous FPTD is obtained substituting (4.89) into the definition of the FPTD derived in

(4.65):

f ∗(λ) � 1
2

e
−

�
ρim
κm

Γ(1−β)

τ
1−β
2 −τ

1−β
1

1−β

β− 1
2

λ
β
2 |x|

. (4.95)

The previous equation corresponds to a Levy stable distribution. Expanding (4.95) for small

λ and using the Tauberian theorem to compute the inverse Laplace transform, we obtain the

follow anomalous scaling for the FPTD: f (t) ∼ t−
β
2−1, with 1/2 < β < 1 (see Appendix

C.4). As seen previously, asymptotically, the Laplace transform of memory function tends to

a constant value. Considering the inverse Laplace transform of (4.65) with ϕ∗(λ) � ρim we

obtain that asymptotically the FPTD scales as f (t) ∼ t−3/2, as in an equivalent homogeneous

medium. In Figure 4.15 we plot the FPTD for the multi continuum model given in (4.65) for

different exponents of the truncated power law distribution of bulk conductivity. We observe

the anomalous scaling of the FPTD derived analytically.
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Figure 4.15: FPTD for the multi continuum model given in (4.65) considering a truncated power law
distribution of bulk conductivity. Parameters: ρm = 10−4, ρim = 1, χm = 0.02, χim = 10, κm = 40,
x = 2, τim: distributed according to the truncated power law given in (5.51) with τ1 = 250, τ2 = 107

and β indicated in the figure from 0.6 to 0.9.

Anomalous scaling for the temporal evolution, MSD and FPTD of cm(x, t) are summed

concisely in Table 4.1.



98 CHAPTER 4. ANOMALOUS DIFFUSION IN COMPOSITE MEDIA

4.5 Conclusions

Anomalous diffusion has been observed largely observed in heterogeneous media and media

heterogeneity gives rise to a distribution of time scales. On this basis, we derived a multi

continuum model characterized by distribution of characteristic times.

The multi continuum models derived lead to anomalous behaviour in diffusion problems

of a scalar quantity cm(x, t). The models link anomalous scaling to a statistical description of

media heterogeneity. The dual continuum model derived shows pre-asymptotic anomalous

scaling, until a characteristic time given by the mean diffusion time in the immobile zone. Un-

like the earlier double porosity/permeability models [Barenblatt et al., 1960; Warren and Root,

1963; Dykhuizen, 1987; Peters and Klavetter, 1988; Dykhuizen, 1990; Bai et al., 1993]), which con-

sider quasi-equilibrium in each zone and first order mass transfer between the mobile and

the immobile regions, we considered non-equilibrium in the immobile zone which origins

anomalous behaviour. In the pre-asymptotic regime a sub-diffusive behaviour leads the MSD

of cm(x, t) scaling as t1/2, its FPTD as t−5/4 and its temporal evolution as t−1/4. Asymptoti-

cally diffusion becomes normal: MSD increases linearly in time, FPTD decreases as t−3/2 and

temporal evolution as t−1/2. In order to have sub-diffusion the bulk retardation coefficient (or

total storativity in the case of flow problem) of the mobile region must be far smaller that the

one of the immobile region. This condition is typically satisfied in fractured media, where

anomalous behaviour is observed. Increasing the heterogeneity of the model, a distribution of

diffusion parameters in the immobile layer leads to a larger range of anomalous sub-diffusive

behaviours. Considering a distribution of conductivity we obtain pre-asymptotic anomalous

behaviour, where MSD of cm(x, t) scales as tβ, FPTD as t−β/2−1 and temporal evolution as

t−β/2, with 0.5 < β < 1. Asymptotically diffusion became normal. Differently a distribu-

tion of retardation coefficients, or storativities considering a flow problem, can model the

same anomalous scaling also asymptotically and not only pre-asymptotically. The results ob-

tained are in accord with the theoretical work of Bouchaud on diffusion in disordered media

[Bouchaud and Georges, 1990]. Bouchaud demonstrated that a barrier model, equivalent to a

variable conductivity model can not lead to an asymptotic anomalous behaviour, while a trap

model, that can be mapped into a variable storativity model, can lead to anomalous asymp-

totic sub-diffusive behaviour. In this work we link the anomalous behavior in diffusion process

to media heterogeneity. Spatial distribution of hydraulic parameters implies in diffusion prob-

lem a distribution of timescales. We link the spatial distribution of diffusion parameters to
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a distribution of timescales and we link the anomalous behaviour to particular distribution

of timescales. We point out that the same time scale distribution in a medium characterized

by variable conductivity and variable retardation coefficient induces different asymptotic be-

haviours. This indicates that the dynamic of a medium characterized by spatially variable

conductivity and spatially variable retardation factor is intrinsically different.
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Chapter 5

Catchment Response in Frequency

Domain

I

Anomalous temporal scaling of catchment responses in discharge and groundwater levels

observed in hydrological systems are commonly explained by fractal models, which, however,

often lack a relation to the medium characteristics and are rather descriptive. Here we employ

a multi-continuum approach to model such anomalous behavior. This approach is based on

a stochastic model description of the medium heterogeneity, and thus, in principle, allows

to relate the catchment response to the distribution of hydraulic parameters. The temporal

scaling of groundwater levels and discharge is quantified in frequency domain by the transfer

function Θ(ω), which is defined as the ratio between the spectra of catchment response and

recharge. The transfer function may scale with frequency ω as Θ(ω) ∼ ω−β. While the

classical linear and Dupuit models predict exponents of β = 2 and β = 1, respectively, the

proposed multi-continuum models can explain exponents 1/2 < β < 2. Moreover we revise

and integrate the classical linear first-order and Dupuit models in the light of the aquifer

dynamics, showing that the scaling exponent of the related transfer functions depends on

the boundary condition chosen at the discharge boundary. We systematically analyze the

catchment response in the proposed multicontinuum models, and identify and quantify the

time scales which characterize the dynamics of the catchment response to recharge.

IThis chapter is part of a paper Temporal Scaling of Groundwater Levels and Discharge in Dual and Multi-Continuum
Catchment Models, Russian A., M. Dentz, T. Le Borgne, J. Carrera and J. Jimenez-Martinez; to be submitted to
Water Resources Research. Part of the work in this chapter have contributed to the paper: A frequency domain
analysis to characterize heterogeneity and recharge mechanisms in a fractured crystalline-rock aquifer Jiménez-Martínez J.,
L. Longuevergne, T. Le Borgne, P. Davy, A. Russian, O. Bour; under review in Water Resources Research.
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5.1 Introduction

The understanding of the relation between aquifer discharge and recharge is a fundamental

problem in hydrology. Often, aquifer discharge into a river or any outfall is the only infor-

mation available when studying the groundwater system of a basin. This information may be

enough to model regional flow, disregarding the details at local scales [Duffy and Lee, 1992].

The discharge of a catchment is a measure for the recharge at basin-scale, and variations in the

discharge represent the dynamic response of an aquifer to changes in recharge. A clear un-

derstanding of the ground water system dynamics and the recharge processes is fundamental

to improve our ability to manage groundwater resources.

Modeling aquifer recharge is a challenging problem due to the variety of physical pro-

cesses involved and the limited information available on hydraulic parameters, aquifer prop-

erties and geometry [Scanlon et al., 2002]. Because of the scarcity of information and the

intrinsic complexity in the recharge process, it is useful to keep the models of aquifer recharge

simple and linked to a stochastic medium description.

One of the main characteristics in aquifer recharge is the temporal variability in the

recharge process. Rainfall enters the aquifer system in an irregular way, but the hydrograph

related to the discharge, q(t), or to the groundwater lever h(x, t), are characterized by a cer-

tain periodicity [e.g., Gelhar and Wilson, 1974; Besbes and De Marsily, 1984; Duffy and Cusumano,

1998; Manga, 1999]. The simplest way to describe this behavior is to consider the catchment

as a linear input-output system, where the input (rainfall) and the output (groundwater head

variation or the consequent discharge) are related linearly through a transfer function. The

transfer function quantifies the action of the aquifer on the discharge dynamics. In this context,

the aquifer is considered a linear filter whose properties depend on the medium characteris-

tics and flow processes in the medium [e.g., Gelhar, 1974; Freeze, 1975; Duffy and Gelhar, 1985;

Juki and Denijuki, 2004; Zhang, 2004]. Spectral analysis provides a useful tool to characterize

the input and output signals and analyze the filter properties of the aquifer [e.g., Gelhar, 1974].

In this framework, the aquifer dynamics are quantified by the power spectrum of the transfer

function, which in the following is termed the frequency transfer function Θ(ω).

Classical aquifer models to determine the transfer function are the linear reservoir (LR)

model and the linear Dupuit (LD) aquifer model [e.g., Gelhar, 1974]. The LR model is 0–

dimensional and thus disregards spatial variations of hydraulic head. The LD model is 1–

dimensional and describes flow in the aquifer based on the linearized Dupuit-Forchheimer
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hypothesis [e.g., Bear, 1972]. These models are illustrated schematically in Figure 5.1. They

predict that for high frequencies ω, the transfer function related to the discharge flux scales

as Θ(ω) ∼ ω−β. The LR model predicts a scaling exponent of β = 2 [Gelhar, 1974], the LD

model a scaling exponent of β = 1 [Gelhar, 1974; Molenat et al., 1999]. The difference in the

scaling exponents implies a difference in the aquifer response dynamics.

Scaling behaviors with exponents β �= 1, 2 are called ’anomalous’. A series of studies

have shown that groundwater levels and discharge signals [e.g., Zhang and Yang, 2010; Labat

et al., 2002; Zhang, 2004; Molenat et al., 1999, 2000; Jiménez-Martínez et al., 2012] as well as

river runoff [e.g., Tessier et al., 1996; Kantelhardt et al., 2003; Zhang, 2005; Kantelhardt et al., 2006;

Koscielny-Bunde et al., 2006; Livina et al., 2007; Little and Bloomfield, 2010] may scale anomalously.

Such behavior cannot be explained by classical recharge models, which are based on the

representation of the aquifer as a homogeneous porous medium. Geological media are in

general heterogeneous and thus the flow dynamics are more complex than in homogeneous

media. Specifically, spatial heterogeneity induces a spectrum of transfer time scales, which

the classical models are not able to describe. For example, after a recharge event, a portion

of water may flow quickly to the discharge point according to the piezometric head gradient,

whereas another portion may infiltrate in low permeability regions and get stored there to

be released slowly at a later time. As indicated by Hurst [1951], long-range correlations in

river responses indicate that water storage and discharge processes occur over a wide range

of temporal scales [Tessier et al., 1996; Fiori et al., 2009; Duffy, 2010].

Anomalous scaling of the frequency transfer function is typically modeled using multi-

fractal approaches [e.g., Turcotte and Greene, 1993; Tessier et al., 1996; Kantelhardt et al., 2003;

Labat et al., 2011]. A limitation of these models is that the fractal dimension is not directly

linked to the spatial organization of the aquifer, and it can vary depending on the experi-

mental conditions used to determine it [e.g., Little and Bloomfield, 2010]. For these reasons, the

interpretation of multi-fractal models is rather difficult [Tessier et al., 1996], which limits their

usefulness for prediction [Labat et al., 2002]. Zhang [2004] pointed out that anomalous scaling

in the aquifer response may be due to medium heterogeneity, or fractality of the recharge

process, or a combination of both.

In this paper we focus on the role of medium heterogeneity for the anomalous scaling of

the aquifer response to recharge. The objective is to establish a physical model that renders a

wide range of water storage scales, that is able to explain anomalous behavior and that allows

to link the anomalous dynamics of the discharge process to the distribution of storage scales
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as reflected in the physical aquifer characteristics. To this end, we consider dual and a multi-

continuum aquifer models that can explain pre-asymptotic anomalous scaling of the transfer

function due to the medium heterogeneity. Early double porosity and double permeabil-

ity models assume that the mobile and the immobile zones are each in quasi-equilibrium and

therefore mass transfer is approximated as a first order process [e.g. Barenblatt et al., 1960; War-

ren and Root, 1963; Dykhuizen, 1987, 1990]. Our approach takes into account non-equilibrium

effects in the immobile zone, which gives rise to anomalous behaviour. In the following, we

revisit and extend the classical recharge models and discuss their physical meanings in the

light of the resulting aquifer dynamics. On the basis of these classical model, we dervie dual

and multi-continuum recharge models which are able to explain anomalous scaling of the

frequency transfer function and link this behavior to a statistical description of the medium

heterogeneity.

In the following we consider two classical models: the linear reservoir (LR) model and

the linear Dupuit (LD) model with different boundary conditions at the discharge point. In

modeling recharge dynamics as an input-output problem, linearity implies that the output

signal (the groundwater level or the consequent discharge) represents a unique response to a

given input (recharge). It is assumed that the recharge r(t) is spatially uniform. Considering

ground water discharge q(t) as output, it can be written as a linear functional of the input

signal r(t),

q(t) =
∞�

−∞

fq(τ) r(t− τ)dτ, (5.1)

where fq(τ) is the discharge impulse response function, or filter, of the system [Wiener, 1949].

This convolution on the right side transforms to a product in frequency domain. The Fourier

transform here is defined by

F(ω) =
∞�

−∞

f (t) exp(−iωt)dt, f (t) =
∞�

−∞

F(ω) exp(iωt)
dω

2π
(5.2)

with i the imaginary unit. Taking the Fourier transform of (5.1) and solving for the Fourier

transform of fq(t), we obtain the complex frequency discharge response function Fq(ω) as the
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ratio of the Fourier transform of the discharge Q(ω) and the recharge R(ω),

Fq(ω) =
Q(ω)
R(ω)

. (5.3)

Its square is the frequency transfer function (FTF) [Box and Jenkins, 1970]:

Θq(ω) = |Fq(ω)|2. (5.4)

The discharge FTF Θq(ω) characterizes the dynamics of the catchment at basin scale and

allows to model recharge dynamics to predict the aquifer response to various hydrological

scenarios.

5.1.1 Linear Reservoir Model

In the LR model an aquifer is considered as a lumped linear reservoir system. It is a 0-

dimensional model, where spatial variation of water levels are neglected and the average

thickness of the saturated zone h(t) is a function of time only [Gelhar, 1974; Bear, 1972]. A

schematic illustration of the model is given in Figure 5.1. The governing equation of the LR

model is

S
dh(t)

dt
= −q(t) + r(t), q(t) = a[h(t)− h0], (5.5)

where S is the storage coefficient [−], q(t) is the outgoing flux per unit area of aquifer surface

[LT−1], a is an outflow constant [T−1], h0 is the reference level of the adjacent outfall body of

water, and r(t) is recharge [LT−1] per unit area of the aquifer. For simplicity in the following

we set the reference level h0 to zero without loss of generality. The discharge FTF for the LR

model is:

Θq(ω) =
1

1 + (t�ω)2 , (5.6)

where t� is a characteristic response time given by t� = S/a [Gelhar and Wilson, 1974]. Frequen-

cies lower than t−1
� are not damped by the system, while for higher frequencies the transfer

function scales as Θq(ω) ∼ ω−2.

In addition to the groundwater discharge q(t), we consider also the groundwater level h(t)
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Figure 5.1: Conceptual illustration of the classical recharge models. From left: LR model, LD model
with Dirichlet BC, Dupuit model with Cauchy BC. In the figures: q(t) stream discharge, r(t) aquifer
recharge, considered uniform, h(x, t) or h(t) hydraulic head, L length of the catchment, h0 head level of
the outfall basin. h0 indicates the imposed fixed head at the BC of the LD model with Dirichlet BC. In
the LR model and in the LD model with Cauchy BC q(t) indicates the imposed flux BC. In the Dupuit
models at x = L no-flux BC at the watershed is imposed.

as output signal in the input-output catchment model. The head FTF, Θh(ω), is given by:

Θh(ω) =
����

H(ω)
R(ω)

����
2

. (5.7)

In the LR model the groundwater head and discharge flux are related by the outflow constant

a as given in (5.5). Setting the reference level h0 to 0, the head FTF Θh(ω) is related to the

discharge FTF as: Θq(ω) = a2Θh(ω). Consequently, the head FTF for the LR model reads:

Θh(ω) =
1

a + (ωS)2 . (5.8)

Notice that the scaling for large frequencies for both the groundwater discharge and the

ground water level is the same Θh(ω) ∼ Θq(ω) ∼ ω−2.
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5.1.2 Linear Dupuit Model

The LD model is based on the linearized form of the Dupuit approximation [Bear, 1972], which

is given by [Gelhar, 1974]

S
∂h(x, t)

∂t
− T

∂2h(x, t)
∂x2 = r(t), (5.9)

where S is storativity, h(x, t) hydraulic head, T transmissivity and r(t) recharge per unit area

of the aquifer. The head frequency transfer function is defined as above as

Θh(x, ω) =
����

H(x, ω)
R(ω)

����
2

. (5.10)

It is obtained from the solution of the temporal Fourier transform of (5.9),

iωSH(x, ω)− T
∂2H(x, ω)

∂x2 = R(ω) + S h(x, 0). (5.11)

In order to compare the discharge flux with the recharge, it is convenient to consider the

discharge per unit area of the surface of the aquifer. Per Darcy’s law, the discharge per unit

area in Fourier space, Q(ω), is given by,

Q(ω) =
T
L

∂H(x, ω)
∂x

����
x=0

. (5.12)

As illustrated in Figure 5.1, the Dupuit model represents an homogeneous catchment with

a no flow boundary condition (BC) at the watershed (Neumann BC) [∂h(x, t)/∂x]x=L = 0. At

the discharge boundary typically prescribed head (Dirichlet BC) is assumed [e.g. Gelhar, 1974;

Molenat et al., 1999]. However, Dirichlet discharge boundary conditions may not always be

realistic and in many situation Cauchy BCs may be more appropriate [e.g., Bear, 1972]. In

the following we discuss the behaviour of the FTF depending on the choice of the discharge

boundary conditions.

5.1.2.1 Dirichlet Boundary Condition

The Dirichlet BC prescribes the head at the discharge boundary at x = 0, h(x = 0, t) = t) = h0.

Without loss of generality we set h0 = 0 in the following. Furthermore, we refer to the LD

model with Dirichlet boundary conditions as LDD model in the following. With this BC, the



108 CHAPTER 5. CATCHMENT RESPONSE IN FREQUENCY DOMAIN

solution of (5.11) is given by

H(x, ω) =
R(ω)
iωS

�
1−

cosh
�
p(ω)

� x
L − 1

��

cosh [p(ω)]

�
, (5.13)

see also [Gelhar, 1974]. We defined here

p(ω) =
�

iωtL, tL = L2S/T. (5.14)

The characteristic response time tL represents the mean diffusion time over the length of the

aquifer. The importance of the aquifer response rate given by t−1
L is discussed in Erskine and

Papaioannou [1997]. Using (5.13) in (5.12) and the definition of the discharge response function

(5.2) we obtain the following expression for the discharge FTF,

Θq(ω) =
1

ωtL
|tanh[p(ω)]|2 . (5.15)

The head FTF defined by (5.10) can be directly read of expression (5.13) and is given by

Θh(x, ω) =
1

ω2S2

�����1−
cosh

�
p(ω)

� x
L − 1

��

cosh [p(ω)]

�����

2

. (5.16)

Notice that Θh(x, ω) and Θq(ω) are characterized by different scalings unlike in the LR model.

For high frequencies, Θq(ω) scales as ω−1. The scaling of Θh(x, ω) depends on the observation

point x. Close to the discharge point at x = 0, it scales as ω−1, that is, like the discharge FTF.

For an observation point near the watershed at x = L and ω � t−1
L it scales as ω−2, which

is the scaling behavior of the LR model at high frequencies. The behaviors of Θq(ω) and

Θh(x, ω) are illustrated in Figures 5.2 and 5.3, respectively.

5.1.2.2 Cauchy Boundary Condition

The Cauchy boundary condition relates the discharge flux with the difference of the boundary

head and a reference head h0 in the outfall as

T
L

∂h(x, t)
∂x

����
x=0

= a [h(0, t)− h0], (5.17)

where a is an outflow constant. Without loss of generality the reference level is set to zero

h0 = 0. Furthermore, we refer to the LD model with Cauchy Boundary conditions as LDC in
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the following. With this BC the solution of (5.11) is given by

H(x, ω) =
R(ω)
iωS

�
1−

cosh
�
p(ω)

� x
L − 1

��

p(ω)T
aL2 sinh[p(ω)] + cosh[p(ω)]

�
, (5.18)

with p(ω) given by (5.14). Notice that for p(ω)T/L2 � a, (5.18) reduces to (5.13). This implies

that in the time regime t � (ST)/(aL)2 the dynamics of the LDD and LDC models are the

same. Using (5.18) in (5.12), the discharge frequency transfer function Θq(ω) is

Θq(ω) =
a2

ω2S2

������
tanh[p(ω)]

tanh[p(ω)] + aL2

p(ω)T

������

2

. (5.19)

That head FTF again can be directly read of from (5.18) according to (5.10) and is given by

Θh(ω) =
1

ω2S2

�����1−
cosh

�
p(ω)

� x
L − 1

��

p(ω)T
aL2 sinh[p(ω)] + cosh[p(ω)]

�����

2

, (5.20)

Notice that for large ω, the head FTF Θh(x, ω) ∼ a−1Θq(ω) ∝ ω−2. Both transfer functions

scale as ω−2. The behavior of the head FTF is at large frequencies independent from the

observation point x, as in the LR model. In fact, in the Appendix D.1 we show that the LR

model can be obtained from the horizontal average of the LDC model.

5.1.3 Discussion

Here we briefly discuss the dynamics of the models presented above focusing on the scaling

of the corresponding transfer functions illustrated in Figures 5.2 and 5.3). The discharge FTF

Θq(ω) for the models considered above are shown in Figure 5.2. The dynamics of Θq(ω)

is controlled by a single characteristic frequency ωL, the aquifer response rate [Erskine and

Papaioannou, 1997]. The aquifer response rate is given by ωL = t−1
L = T/(L2S) for the LD

models and by ωL = t−1
� = a/S for the LR model. For frequencies lower than ωL, Θq(ω) is

equal to one for all the models considered, while for larger frequencies it decreases and scales

according to the related recharge model. For the LDD model, the FTF scales as Θq ∼ ω−1,

and for the LR and LDC models as Θq ∼ ω−2. This means that long time components in the

recharge spectrum, with frequencies lower than the aquifer response rate are not smoothed by

the system and their variations reflect unaltered on the output. Higher frequency components

of the recharge spectra are smoothed according to the model considered. Moreover, Figure 5.2



110 CHAPTER 5. CATCHMENT RESPONSE IN FREQUENCY DOMAIN

shows that the LDC model slightly differs from the LR model only in an intermediate fre-

quency regime, while for ω � t−1
L and ω � t−1

L the two models coincide. For this reason, in

the following, we disregard the first order linear model, and focus on the two LD models.

It is also interesting to note, that Gelhar [1974] derived the outflow constant a, which is

characteristic of the LR model, from the LDD model and obtained a = L2/(3T). In Ap-

pendix D.1 we show that the LR model in fact corresponds to the LDC model. As outlined

above, the behaviors of the LDC and LDD models are different. Thus, we conclude that the

derivation of the outflow constant a from the LDD is rather inconsistent. Alternatively, we

propose to determine a by comparing the response time of the LR model, which is t� = S/a,

and the response time of the LD models tL = L2S/T. This leads to a = L2/T.

10 2 10 1 100 101 102 10310 6

10 4

10 2

100

q (
)

 
 

 

Dupuit
Linear
Cauchy

 2

 1

L = T/(SL2)

Figure 5.2: FTF for discharge Θq(ω). Shown are the (triangles) LDD model, (squares) LDC model
(solid line) LR model. The vertical dotted line indicates the aquifer response rate ωL which is ωL =
t−1

L = T/(L2S) for the LD model and ωL = t−1
� = a/S for the LR model. The parameters used are

S = 1, T = 1, L = 1.

Figure 5.3 displays Θh(x, ω) for the LDD and LDC models for different observation points:

x = L, x = L/20 and x = L/100. All the Θh(x, ω) are constant until the aquifer response rate

ωL discussed above, and then decrease according to respective model behavior. Considering

the LDC model, the scaling of Θh(x, ω) does not depend on the observation point in the

aquifer and it scales as Θh(x, ω) ∼ ω−2 analogously to Θq(x, ω) displayed in Figure 5.2.

For the LDD model, in contrast, the scaling of Θh(x, ω) depends on x. The spatial de-

pendency of Θh(x, ω) in the LDD model introduces a second characteristic time tx = Sx2/T,

which is given by the mean diffusion time from the observation point to the discharge point.

Depending on the observation point x, the head FTF Θh(x, ω) scales as ω−1 until ωx = t−1
x

and for ω � ωx, it scales as ω−2 as in the LDC and LR models. The scaling ω−1 is observed

if we have scale separation between the aquifer response time tL = L2S/T and tx. Close to

the discharge point, the transfer function for the ground water level Θh(x, ω) scales similarly

to Θq(ω). Indeed, the discharge flux is given by Darcy’s law and near the discharge point, for
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x → 0, we can approximate

∂h(x, t)
∂x

����
x=0

� h(x, t)
x

. (5.21)

Note that we set h(x = 0, t) = 0. Thus, Θq(ω) and Θh(x, ω) scale the same way close to the

discharge point. Close to the watershed Θh(L, ω) ∼ ω−2 behaves as for the LR because the

system resembles a linear reservoir.

Furthermore, we observe that the value of the head FTF at ω = 0 depends on the respective

LD model. Taking the limit ω → 0 in Θh(x, ω), (5.13), for the LDD model gives

lim
ω→0

Θh(x, ω) =
����−

x2

2T
+

Lx
T

����
2

(5.22)

For the LDC model we obtain from taking ω → 0 in (5.18),

lim
ω→0

Θh(x, ω) =
����−

x2

2T
+

Lx
T

+
1
a

����
2

. (5.23)

For large values of a, the FTFs of the LDD and LDC models coincide. In general they are

different, however. The values of both FTF decrease at ω = 0 as the observation point gets

closer to the discharge boundary.
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Figure 5.3: Head FTF Θh(ω) for different observation points for the LDD and LDC models. The
vertical dotted lines indicate the characteristic frequencies ωx = t−1

x = T/(x2S) for the different
observation points at x = L, L/20 and L/102. The parameters used are S = 1, T = 1, L = 1.

5.2 Multi-Continuum Recharge Models

In this section we present multi-continuum recharge models which account for the impact of

regions of different hydraulic properties in the aquifer. The models derived assume that the

water entering the aquifer infiltrates into a conductive region through which it may flow to
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the discharge point according to the hydraulic gradient, and from which it may infiltrate into

less conductive zones, where it can get trapped and again slowly released. For simplicity,

the conductive zone is called mobile region, while the less conductive one is called immobile

region. The wide range of temporal scales which characterize natural problems [Tessier et al.,

1996; Fiori et al., 2009; Duffy, 2010], can arise here from an heterogeneous immobile layer,

which statistically described by a distribution of hydraulic parameters. For completeness we

take into account also the case of an homogeneous immobile layer, which reduces the multi-

continuum recharge model to a dual-continuum recharge model. The underlying conceptual

models are illustrated schematically in Figure 5.4.

5.2.1 Model Derivation

The governing equation of the multi-continuum recharge model is given by the flow equation

s(x)
∂h(x, t)

∂t
−∇ · [K(x)∇h(x, t)] = 0, (5.24)

where x = (x, z)T. In the immobile region, 0 < z < dim, specific storativity and hydraulic

conductivity are variable in x–direction, s(x) = sim(x) and K(x) = Kim(x), while in the mobile

region, dim < z < d, both specific storativity and hydraulic conductivity are constant, s(x) =

sm and K(x) = Km. The system is driven by the recharge r�(t) at the upper horizontal boundary

of the mobile layer, which yields the boundary condition

Km
∂h(x, t)

∂z
= r�(t), z = d. (5.25)

At the lower boundary a no flux boundary condition is specified

Kim(x)
∂h(x, t)

∂z
= 0, z = 0. (5.26)

As initial condition we set h(x, 0) = 0. The hydraulic heads in the mobile and immobile

regions are denoted by him(x, t) = h(x, t) for 0 < z < dim, and hm(x, t) = h(x, t) for dim < z < d.

Both head and flux are continuous at the interface between the two mobile and immobile

regions

hm(x, t) = him(x, t), Km
∂hm(x, t)

∂z
= Kim(x)

∂him(x, t)
∂z

, z = dim. (5.27)
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5.2.1.1 Vertical Average

In order to arrive at an effective description, we average the flow equation (5.24) vertically.

The average hydraulic heads in the mobile and immobile regions are defined as

Figure 5.4: On the left: dual-continuum model, on the right: multi-continuum model. The catchment
of longitude L and thickness d = dm + dim is split into a superficial layer of thickness dm, which
represents the mobile layer and a lower less permeable layer, of thickness dim, which is the immobile
layer; q(t) is the stream discharge, r�(t) the aquifer recharge and hm(x, t) and him(x, t) the hydraulic
heads in the mobile and in the immobile zones, respectively.

him(x, t) =
1

dim

dim�

0

dz him(x, t), hm(x, t) =
1

dm

d�

dim

dz hm(x, t) (5.28)

By averaging of (5.24) over the mobile region, we obtain for hm(x, t) the governing equation

Sm
∂hm(x, t)

∂t
− Tm

∂2hm(x, t)
∂x2 = r(t)− Kim(x)

∂him(x, t)
∂z

����
z=dim

, (5.29)

where we used the continuity condition (5.27) and defined the storage capacity Sm = smdm

and transmissivity Tm = Kmdm of the mobile region, as well as recharge r(t) = dmr�(t). The

last term in (5.29) represents the flux at the interface between mobile and immobile regions

and it is obtained from the solution of the flow equation in the immobile domain, which is

given by

sim(x)
∂him(x, t)

∂t
− Kim(x)

∂2him(x, t)
∂z2 = 0, (5.30)

Notice that we have disregarded flow in horizontal direction in the immobile layer because it

is small compared to the one in the more conductive region. Furthermore, we assume that

vertical equilibrium in the mobile layer is reached fast so that we can set hm(x, t) ≈ hm(x, t).
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Thus, the boundary condition for him(x, t) at z = dim, which follows from the continuity

condition (5.27), can be written as him(x, t) = hm(x, t). At z = 0, the no-flux condition reads

as∂him(x, t)/∂z = 0. The averaged immobile head can be expressed in term of the convolution

product [Russian et al., 2012]

him(x, t) =
� t

0
dτ g[t, τim(x)] hm(x, t− τ), (5.31)

with τim(x) = d2
imsim(x)/Kim(x). The kernel function g[t, τim(x)] is obtained from the solution

of (5.30) for the boundary condition him(x, t) = δ(t) at z = dim. In Fourier space, it is given by

g∗[λ, τim(x)] =
1�

iωτim(x)
tanh

��
iωτim(x)

�
. (5.32)

The temporal behavior of g[t, τim(x)], see Figure 5.5 is well known from multirate mass transfer

models for solute transport in multi-continuum media [Haggerty and Gorelick, 1995; Carrera

et al., 1998]. For t � τim, we observe the characteristic t−1/2 behavior, and an exponential

cut-off for t � τim.
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Figure 5.5: Temporal evolution of g(, τim)x for (triangles) τim = 1, (crosses) 10, and (rhombi) 102.
The parameters used are Sim = 1, dim = 1, Tim = 1.

By vertical integration of (5.30), we find that the flux term on the right side of (5.29) is equal

to the time derivative of (5.31). Using this in (5.29), we obtain the non-local flow equation

Sm
∂hm(x, t)

∂t
+

∂

∂t

� t

0
dt�ϕ(x, t− t�)hm(x, t�)− Tm

∂2hm(x, t)
∂2x

= r(t), (5.33)

where we define the memory function ϕ(x, t) by:

ϕ(x, t) = Sim(x)g[t, τim(x)]. (5.34)
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with Sim(x) = dimsim(x). Notice that Eq. (5.38) is analogous to the LD model given in (5.9),

but reflects the presence of different storage time scales in the medium, which gives rise to the

non-local term. The memory function represents the dynamics of the recharge and storage

process in the immobile layer. In this sense, (5.38) can be seen as a time non-local LD model.

5.2.1.2 Ensemble Average

We handle spatial heterogeneity of the immobile zone in a stochastic framework and spatially

varying hydraulic conductivity is modeled as spatial random fields. We consider a stationary

and ergodic medium, with a finite correlation. For an observation scale far larger than the cor-

relation scale of the random medium, we can approximate the medium organization in bins,

where conductivities in each bins are independent. Thus, such medium can be completely

defined by a single point distribution. Referring to Figure (5.4) heterogeneity of the immobile

layer is organized in bins and at each bin is assigned independently a random conductivity

from a distribution.

In order to obtain an upscaled effective formulation, we average the effective governing

equations (5.38) horizontally over the immobile zone. Ensemble average over the heterogene-

ity of the immobile zone of equations (4.24) gives:

Sm
∂�hm(x, t)�

∂t
+

∂

∂t

t�

0

dt��ϕ(t− t�|x) hm(x, t�)� = Tm
∂2�hm(x, t)�

∂x2 + �r(t)� (5.35)

where the square brackets indicate ensemble average. Ensemble average in the second term

of eq. (5.35) can not be executed explicitly. Thus, we use field approximation and we break

the ensemble average:

�ϕ(t− t�|x) hm(x, t)� ≈ �ϕ(t|x)� �hm(x, t)�. (5.36)

We define a global memory function ϕ(t) given by the ensemble average of the local

memory functions ϕ(t|x) associated at each immobile zone:

ϕ(t) = �ϕ(t|x)�. (5.37)
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Thus, we obtain the following upscaled equation:

Sm
∂hm(x, t)

∂t
+

∂

∂t

� t

0
dt�ϕ(t− t�)hm(x, t�)− Tm

∂2hm(x, t)
∂2x

= r(t), (5.38)

where, for brevity of notation, we omit the square brackets. In the following we also omit the

square brackets for brevity of notation.

5.2.1.3 Solutions

Notice that when the mobile and the immobile zone are vertically in equilibrium, as we dis-

cuss in the following, (5.38) reduces asymptotically to a local flow equation for an equivalent

homogeneous media

Sa
∂hm(x, t)

∂t
− Tm

∂2hm(x, t)
∂2x

= r(t), (5.39)

with a total storativity given by: Sa = Sm + �Sim� where �Sim� indicate the ensemble average of

Sim(x) in the multi-continuum case and is equal to Sim in the dual-continuum case. Equation

(5.38) can be conveniently written in frequency domain as

iωSe(ω)Hm(x, ω)− Tm
∂2Hm(x, ω)

∂2x
= R(ω), (5.40)

where we defined an effective function Se(ω):

Se(ω) = Sm + ϕ(ω). (5.41)

In frequency domain, the governing equation of the multi-continuum recharge model (5.40)

is equal in form to the Fourier transform of the LD model given in (5.11), with Se(ω) instead

of S. Consequently, the expression for the frequency transfer functions for the recharge multi-

continuum models, can be obtain by substituting S by Se(Ω) in the respective expressions for

the LD models.

Dirichlet Boundary Condition Thus, solution of (5.40) results: The transfer function for the

multi-continuum model with Dirichlet BC related to the ground water level reads:

H(x, ω) =
R(ω)

iωSe(ω)

�
1− cosh [pe(ω)(1− x�)]

cosh[pe(ω)]

�
, (5.42)
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with pe(ω) =
�

iωτe(ω) and τe(ω) = L2Se(ω)/Tm and the discharge FTF:

Θq(ω) =
����

1
iωτe(ω)

tanh[pe(ω)]
����
2

. (5.43)

Cauchy Boundary Condition Considering Cauchy BC at the discharge, solution of (5.40) is:

H(x, ω) =
R(ω)

iωSe(ω)

�
1− cosh [pe(ω)(1− x�)]

pe(ω)T
aL2 sinh[pe(ω)] + cosh[pe(ω)]

�
(5.44)

and discharge FTF is given by:

Θq(ω) =
����

aL
iωSe(ω)





tanh[pe(ω)]

tanh[pe(ω)] + aL2

pe(ω)T






����
2

. (5.45)

5.2.2 Dual-Continuum Recharge Model

Considering an homogeneous immobile zone, the multi-continuum model reduces to a dual-

continuum one. The governing equation is given by (5.38) with sim and Kim instead of sim(x)

and Kim(x). Considering equation (5.32), where τim(x) = τim, the characteristic time τim

indicates the mean time for the immobile zone to reach equilibrium by diffusion along the

vertical direction. For times larger than τim, considering ω � τ−1
im , the memory function

(5.32) scales as g(ω) ∼ (ωτim)−1/2 and therefore also Se(ω) given in (5.41) can scales as

Se(ω) ∼ ω−1/2 if

Sim(ωτim)−1/2 � Sm. (5.46)

The previous condition is satisfied for ω � (Sim/Sm)2/τim, which identifies a characteristic

threshold frequency ωS or equivalently a characteristic time τS = ω−1
S given by:

τS =
�

Sm

Sim

�2
τim =

d2
im S2

m
Tim Sim

(5.47)

and anomalous scaling of Se(ω) is defined in the interval:

τ−1
im � ω � τ−1

S . (5.48)

In order to interpret the characteristic time τS, when anomalous behaviour starts, we call ∆z

the characteristic penetration of water by diffusion into the immobile layer after the time τS:

∆z =
√

TimτS/Sim and (5.46) can be re-written as: ∆z Sim � dmSm which indicates that the
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amount of water into the immobile layer must be larger than the amount of water into the

mobile one. For time smaller than τS, flow takes place basically only into the mobile layer and

the contribution of the immobile one is negligible. After the time τS enough water infiltrated

into the immobile zone and its contribution is relevant.

In the following we focus on the anomalous scaling of the transfer functions for the dual-

continuum model considering the anomalous scaling of Se(ω) in the pre-asymptotic regime

defined in (5.48).

5.2.2.1 Dirichlet Boundary Condition

Considering the double continuum model with Dirichlet BC, the transfer function given in

(5.43) scales anomalously as:

Θq(ω) � Tm

SimL2

�
ω

τim

�−1/2
(5.49)

instead of the Θq(ω) ∼ ω−1 as in the classical local LD model with Dirichlet BC. For ω larger

than τ−1
S , Θq(ω) tends to the classical scaling Θq(ω) ∼ ω−1. The behaviour of the Θq(ω)

is shown in Figure 5.6. For large ω, which corresponds to short times the flow takes place

essentially only in the more conductive zone and Θq(ω) behaves as in a homogeneous media

characterized by the parameters of the mobile zone. After a time τS enough water has entered

the immobile zone, its contribution is relevant and we can observe anomalous scaling until

time τim, when also the immobile zone is in equilibrium along the vertical direction and the

system behaves as an equivalent homogeneous media and follows the classical behaviour of

the LD model.

The scaling of the head FTF Θh(ω), as discussed previously in Section 5.1.2.1, depends on

the observation point x in the aquifer. Near the watershed, for x to L, instead of the classical

scaling ω−2, in the pre-asymptotic regime given in (5.48), we obtain Θh(ω) ∼ ω−1. At the

discharge point, for x to 0, instead of ω−1 we have Θh(ω) ∼ ω−1/2. For this reason in the

following we point out only the scaling of Θq(ω) which is characteristic of the model and

does not depend on the observation point.
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Figure 5.6: Frequency transfer function for ground water discharge for the dual-continuum model
with Dirichlet BC (triangles). Dots: Θq(ω) considering only the mobile layer; crosses: Θq(ω) for
homogeneous equivalent model with effective storativity given by (5.2.1.3). Anomalous scaling ω−0.5

is indicated with the continuous line. Vertical dashed lines mark the characteristic times (given on the
left side) that control the dynamic of the system: tm = L2Sm/Tm = 10−3, te = L2Sa/Tm = 1.001,
τim = d2

imSim/Tim = 10−2, τS = 10−8 given in (5.47). The parameters used are: Sm = 0.1, Sim = 100,
dm = 0.01, dim = 0.01, Tm = 1, Tim = 0.01, L = 1.

5.2.2.2 Cauchy Boundary Condition

Considering the dual-continuum model with Cauchy BC, the discharge FTF defined in (5.45)

in the pre-asymptotic regime given in eq. (5.48) and discussed previously, scales as:

Θq(ω) ∼ a2τim

S2
im

ω−1. (5.50)

Figure 5.7 shows Θq(ω) as a function of frequency, displaying the anomalous pre-asymptotic

regime between τ−1
im = SimTim/d2

im and τS discussed in equation (5.47) where the Θq ∼ ω−1

instead of ω−1.
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Figure 5.7: Frequency transfer function for ground water discharge in dual-continuum model with
Cauchy BC (squares). Dots: Θq(ω) considering only the mobile layer; crosses Θq(ω) for homogeneous
equivalent model with effective storativity given by (5.2.1.3). Anomalous scaling ω−1 is indicated
with the continuous line. Vertical dashed lines mark the characteristic times (given on the left side)
that control the dynamics of the system: tm = L2Sm/Tm = 10−3, te = L2Sa/Tm = 1.001, τim =
d2

imSim/Tim = 10−2, τS = 10−8 given in (5.47). The parameters used are: Sm = 0.1, Sim = 100,
dm = 0.01, dim = 0.01, Km = 1, Kim = 0.01, L = 1.
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The transfer function related to the ground water level, as previously pointed out for the

Dupuit model with Cauchy BC, for large ω is given by: Θh(x, ω) � Θq(ω)/a2 independently

from the observation point and therefore the same anomalous scaling arises.

5.2.3 Multi-Continuum Recharge Model

Instead of the simple two layers geometry, we consider an heterogeneous immobile zone

that we characterize statistically by a distribution of of characteristic times τim(x). In the

following, considering that the intrinsic storativity is usually less variable respect to the

hydraulic conductivity, we consider an immobile layer of thickness dim, with an intrinsic

storativity sim and a space dependent conductivity Kim = Kim(x), so that the distribution

of τim(x) = d2
imsim/Kim(x), is linked to the distribution of Kim(x). In order to reflect a broad

distribution of mass transfer scales, accounting for the existence of a largest scale (see discus-

sion in Dentz et al. [2004]), we consider a truncated power law distribution of the characteristic

times in the immobile zone that for brevity we call τ:

P(τ) =
1− β

τc

�
τ

τc

�−β

H(τc − τ) (5.51)

where τc is the cut off of the distribution and H(·) is the Heaviside function, which is equal

to one if its argument is larger than zero and zero otherwise. According to Russian et al.

[2012], we consider an exponent β between 0.5 and 1 and we define a global memory function

ψ(t) given by superposition of the local memory function ϕ[τ(x), t] related to each immobile

region:

ψ(t) = �ϕ(τ(x), t)� =
∞�

0

P(τ) g(τ, t) dτ (5.52)

where the square brackets indicate ensemble average over a coarse grain resolution scale.

Considering an exponent of the truncated power law distribution given in (5.51): 1/2 <

β < 1 the global memory function defined in (5.52) results:

ψ(t) = Sim
1− β

β− 1
2

t−β

τ
1−β
c

�
1−

�
t
τc

�β− 1
2
�

(5.53)

Notice that the second term in the squared brackets in (5.53) is sub-leading because of t � τc

and the global memory function behaves as a power law by itself: ψ(t) ∼ t−β. Analogously



5.2. MULTI-CONTINUUM RECHARGE MODELS 121

that for the double continuum model we can identify a pre-asymptotic regime:

τ−1
c � ω � τ−1

S , (5.54)

with τc the cut off time of the truncated power law distribution (5.51) and τS, analogously to

(5.47), is equal to

τS =
�

Sim
Sm

� 1
β−1

τc. (5.55)

where Se(ω) � ψ(ω) ∼ ωβ−1. The characteristic time τS as discussed for the double contin-

uum model represents the time needed so that enough water enters the less permeable layer

and its contribution is relevant in the dynamic of the whole system.

In the following we consider the multi continuum recharge model with Dirichlet and

Cauchy BC and we focus on the anomalous behaviour of the transfer function we can observe

in the pre-asymptotic regime identified in (5.54).

5.2.3.1 Dirichlet Boundary Condition

Considering the multi-continuum recharge model with Dirichlet BC, in the pre-asymptotic

regime given in (5.54) the transfer function related to the ground water discharge (see eq. (5.43))

can have the following anomalous scaling:

Θq(ω) �
����

Tm

L2ωSe(ω)

���� �
Tm

L2Sim

β− 1
2

1− β

τ
1−β
c

Γ(1− β)
ω−β (5.56)

with 0.5 < β < 1. The transfer function related to the ground water level, as discussed above,

depends on the observation point, near the watershed it reads:

Θh(L, ω) =

�
1

Sim

β− 1
2

1− β

τ
1−β
c

Γ(1− β)

�2

ω−2β. (5.57)

which corresponds to the anomalous scaling of the Cauchy model as derived in the following,

while near the discharge point it can scale as Θh(x � 1, ω) ∼ Θq(ω) ∼ ω−β. Figure 5.8

shows the scaling of the head FTF for different exponents β of the hydraulic conductivity

distribution.

As pointed out in Figure 5.9 the dynamic of the multi-continuum model, analogously that

for the double continuum model, is controlled by 3 characteristic times: τS given in (5.55),

τc the cutoff of the truncated power law distribution of characteristic times and the aquifer
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Figure 5.8: Anomalous scaling of the frequency transfer function for the discharge in multi continuum
recharge model with Dirichlet BC. Continuous lines: Θq(ω) for different values of the exponent β of
the truncated power law distribution of τ given in (5.51). Anomalous scaling is highlighted with dash
lines corresponding to ω−β.

response rate for an equivalent homogeneous media te = L2Sa
Tm

. For times shorter than τS or

ω � τ−1
S , flow takes place, essentially, only in the mobile layer, the multi-continuum model

behaves as an homogeneous model characterized by the parameters of the mobile zone and

Θq scales as in the classical Dupuit model Θq ∼ ω−1. Between τS and the cutoff of the

truncated power law distribution τC, the recharge model is affected by the heterogeneity of

the immobile zone and we can have the anomalous scaling given in (5.56). The cut off time

τc represents the largest characteristic time of the immobile layer, for times larger than τc,

the mobile and immobile layer are vertically in equilibrium and the model behaves as an

equivalent homogeneous system, characterized by the asymptotic value of Se(ω) given in

(5.2.1.3). The correspondent equivalent aquifer response time, which determines equilibrium

along the length L of the aquifer, reads: te = L2Sa
Tm

. with Sa = Sm + Sim.

5.2.3.2 Cauchy Boundary Condition

Considering the multi-continuum recharge model with Cauchy BC in the pre-asymptotic

regime discussed previously, we obtain the following pre-asymptotic anomalous scaling for

Θq(ω)defined in (5.45):

Θq(ω) �
�

a
Sim

β− 1
2

1− β

τ
1−β
c

Γ(1− β)

�2

ω−2β (5.58)

and Θh(ω) � Θq(ω)/a2 which corresponds to the limit of Θh for the multi-continuum model

with Dirichlet BC for x → L given in (5.57). Figure 5.10 shows the anomalous scaling for

Θq(ω) of a multi-continuum model with Cauchy BC for different β. Notice that the pre-
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Figure 5.9: Frequency transfer function for ground water discharge in the multi continuum model
with Dirichlet BC (squares, blue) Θq(ω) considering only the mobile layer, (continuous line, red) multi
permeability model, (circles, green) homogeneous equivalent model with effective storativity given by
(5.2.1.3), (dotted line, magenta) power law ω−0.8 in order to evidence the anomalous pre-asintotic
scaling. The vertical dashed lines indicate the characteristic times of the system: tm = L2Sm/Tm,
te = L2Sa/Tm, τc is the cut off of the truncated power law distribution given in (5.51) and τS is given
by (5.55). The parameters used are: sm = 0.05, sim = 1, dm = 1, dim = 1, Tm = 100, cut off of the
power law distribution: τc = 100, exponent β = 0.8.
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Figure 5.10: Anomalous scaling of the frequency transfer function for the discharge Θq(ω) in a multi
continuum model with Cauchy BC. In the figure: Θq(ω) for different values of the exponent of the
power law distribution of characteristic times of the immobile layer given in (5.51): crosses: β = 0.9,
dots: β = 0.8, squares: β = 0.7, triangles: β = 0.6. Dash lines highlight the anomalous scaling ω−2β.
Parameters used: Sm = 1, Sim = 100, dm = 0.01, dim = 0.01, Tm = 1, Tim = 0.05, L = 1, τc = 100.

asymptotic regimes, where anomalous scaling arise, vary with the exponent β according to

(5.54) and (5.55).

5.3 Conclusions

This work deals with the aquifer recharge/discharge dynamic in frequency domain. In the

first part of this paper we revise and extend the classical first order and Dupuit linear models.

We point out that in the Dupuit model the scaling of the transfer function depends on the

boundary condition at the discharge point. Considering Dirichlet boundary condition the

discharge FTF scales as Θq ∼ ω−1, while the head FTF Θh depends on the observation point
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into the basin: near the discharge it scales as Θq while near the watershed as Θh ∼ ω−2

analogously to the first order linear model. Considering Cauchy BC we derive that the transfer

functions for both the discharge flux and the ground water head for large frequency scale as

ω−2, independently from the observation point, as in the first order linear model. Indeed we

show that the first order linear model can be derived by the Dupuit model with Cauchy BC. In

the second part of this paper we derive a multi-continuum recharge model based on a broad

distribution of storage time scales in different regions of a spatially heterogeneous medium.

The model derived can explain anomalous behaviour in a pre-asymptotic regime and link it

to a distribution of hydraulic propriety of the medium. The multi continuum model considers

that water entering the aquifer part flows directly to the discharge point according to the

hydraulic gradient trough a more permeable layer, part gets stored in less permeable regions

to be released slowly. Anomalous dynamic is controlled by two characteristic times related to

the distribution of the hydraulic parameters of the immobile zone. At the beginning flow takes

place, essentially, only in the more permeable zone and the first characteristic time indicates

when the contribution of the immobile zones get relevant and anomalous behaviour arises.

The second characteristic time indicates when anomalous dynamic ends because the system is

in equilibrium and the heterogeneous catchment behave as an equivalent homogeneous one.

The multi continuum model can explain the following pre-asymptotic scaling of the transfer

function: Θq ∼ ω−β for Dirichlet BC, eq. (5.15), and Θq ∼ ω−2β for Cauchy BC, eq. (5.17),

with β between 0.5 and 1. The physical model proposed can explain anomalous scaling

evidenced in literature and link them to the hydraulic parameters distribution as reflected in

the physical aquifer characteristics. For this reason we claim that the models proposed can

be used in modeling aquifer response and their utility in predictability is higher respect the

fractal models.



Chapter 6

Summary and Conclusions

This thesis focuses on the qualitatively and quantitative assessment of heterogeneity in diffu-

sion phenomena. We take into account the flow problem at Darcy’s scale and the diffusion

of solute driven by Fick’s law. These two problems are mathematically equivalent describing

diffusion of a scalar quantity (the hydraulic head for the flow problem or the solute concen-

tration for the diffusion of a solute) due to a potential loss (the head gradient for the flow or

the gradient of the concentration for the diffusion of a solute).

Natural media are heterogeneous at different scales and heterogeneity brings complexity

in the diffusion problem. Spatial variability of diffusion parameters makes a precise descrip-

tion of the media difficult, if not impossible, to obtain. Even if it would be possible to have a

detailed description of the media, the amount of information would be practically impossible

to handle and the large scale behaviour difficult to interpret. Because of these reasons we

choose a stochastic approach. Stochastic approach provides a systematic way to quantify the

effect of heterogeneity into large scale models. This work is centered on the integration of the

effects of heterogeneity on Darcy flow and solute diffusion into large scale models which are

linked with a description of natural media.

Historically, large scale descriptions of flow in heterogeneous media and diffusion phe-

nomena have been given in terms of effective parameters, as effective conductivity for flow

and effective diffusivity for diffusion. Specifically, in Darcy flow, a lot of work has been done

for the estimation of an effective hydraulic conductivity since the studies of Matheron in the

60’s [Matheron, 1967]. Exhaustive reviews for effective conductivity are given in Renard and

de Marsily [1997] and Sanchez-Villa et al. [2006], and for effective diffusivity in Dean et al. [2007].

Nevertheless, as is known, a large scale description in terms of effective parameters in not

125



126 CHAPTER 6. SUMMARY AND CONCLUSIONS

enough to model many phenomena (e.g. tailing in drawdown curves [Le Borgne, 2004] or in

solute residence times in low permeability regions [Le Borgne and Gouze, 2008; Gouze et al.,

2008b] and scale dependency of effective parameters [Sanchez-Villa et al., 2006; Schulze-Makuch,

D., Douglas, A. Carlson, Douglas, S. Cherkauer, Malik, 1999]) and a large scale description in

terms of an equation different from its local counterpart is needed. Whenever the behaviour

of a diffusion process cannot be described by Fick’s law, it is called non-Fickian or anomalous.

The term ’anomalous’ indicates that the mean square displacement does not increase linearly

with time, as in a normal diffusion process, but rather as tβ with β �= 1.

In this thesis we give effective descriptions of large scale behaviours in terms of both effec-

tive coefficients (as effective conductivity or diffusivity) and effective equations different from

their local counterparts. We find large scale description of diffusion in heterogeneous media

that can explain anomalous behaviours and link it with a description of media heterogene-

ity. Depending on the kind of heterogeneity we use different methods to upscale the local

problems and obtain large scale descriptions. We use perturbation theory, particle tracking

methods, spatial and ensemble average.

In the second chapter we upscale flow in heterogeneous media in stochastic framework

using perturbations theory. We consider hydraulic conductivity spatially variable. Starting

from a local scale flow equation given by the Fick’s second law we obtain, after stochastic

average, an effective non-local expression. Similarly to Tartakovsky and Neuman [1998b], we

obtain a non local equation both in time and in space. Non-locality is expressed by a kernel,

which depends on the correlation function that characterize the medium heterogeneity. We

derive a compact formulation for d = 1, 2 and 3 spatial dimension.

Afterwards, we localize the effective formulation in space and we obtain a governing equa-

tion non local only in time. We give analytical solutions in Laplace space for the non-local

in time formulation and we discuss the head response for a pulse injection for d = 1, 2 and

3 spatial dimension. Further, we localize the non-local effective description also in time and

we reduce the non-local formulation into a local flow equation with a time dependent effec-

tive conductivity. We show that the time dependent conductivity obtained by localization can

be equivalently derived in a more systematic way by using perturbation theory in terms of

the second center moment of the hydraulic head. We show that the time dependent effective

conductivity, in the limit for time to infinity, tends to the well known values of effective con-

ductivity in heterogeneous media. For d = 1 it tends to the first order approximation of the

harmonic mean of the local values of conductivity, for d = 2 to the geometric mean and for
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d = 3 to the first order approximation of the Matheron’s conjecture for a d = 3 dimensional

media [Matheron, 1967]. The time dependent conductivity tends to its corresponding effective

value depending on the dimensionality of the problem as t−d/2, that means that in a d = 3

dimensional problem the time dependent conductivity tends to its effective value faster than

in d = 1. It implies that an equivalent homogeneous description can be used earlier in a d = 3

dimensional problem respect that in d = 1.

This aspect is highlighted also comparing the head evolution for a pulse injection com-

puted with the non-local in time formulation derived and the classical local one with the well

known values of effective conductivity [Matheron, 1967]. Asymptotically, the non-local formu-

lation can be localized and the non local formulation is equivalent to the local one, but local

formulation underestimate early arrival times in the drawdown curves: drawdown curves

computed with the non-local formulation starts before than the ones computed with the local

formulation. Note that a correct estimation of early arrival times is highly important for risk

assessment studies and well protection.

The difference in the early arrival time using the local and the non-local formulation in-

creases as the variance and the correlation length of the conductivity field increase. This

behaviour can be explained by the fact that the evolution of head in the non-local case is

influenced by the values of the hydraulic conductivity at small times. In average, conductiv-

ity at small time is given by the arithmetic mean KA, which is larger than the value of the

asymptotic effective conductivity: KA < Ke f f for any d dimension. Effective conductivity is

classically defined for steady state condition, when all the heterogeneity is sampled and at

this time that the non-local formulation can be localized. The characteristic time scale for the

sampling of the heterogeneity τK is given by the correlation length of the medium hetero-

geneity: τK = �2/KG with � the correlation length and KG the geometric mean of the local

hydraulic conductivities values. For time larger than τK the medium heterogeneity has been

sampled, the non-local formulation can be localized and the effects of the heterogeneity can

be described by an equivalent homogeneous model. For t < τK the non-local formulation

must be considered.

The difference between local and non-local formulation is less pronounced for increasing

spatial dimension. For d = 1 the error committed by using localized formulation is higher

than in d = 3. This is because sampling efficiency increases with the dimensionality of the

problem and the non-local formulation can be localized when all the heterogeneity have been

sampled.
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The results obtained in this chapter are only valid for a moderately heterogeneous media.

In case of highly heterogeneous media different upscaling methods must be used. In Chapter

3 we address the problem of diffusion heterogeneous media numerically in a random walk

perspective. Highly heterogeneous media can represent a problem also for particle tracking

methods. Whenever the media are highly heterogeneous or characterized by abrupt interfaces,

classical random walk can be costly because the heterogeneous diffusion properties may re-

quire a fine time-discretization in order to ensure that a particle actually ’sees’ the spatial

variability [James and Chrysikolpoulos, 2001]. In regions of low conductivity a particle may have

to wait at the same site for a large number of simulation steps, which is inefficient [McCarthy,

1993]. Moreover, the presence of discontinuity in the conductivity field makes the use of a

classical random walk complicated because it relies on the calculation of the gradient of the

conductivity [Delay et al., 2005]. Efficiency of classical random walk for these kind of media

can be improved by the time domain random walk (TDRW) method and the continuous time

random walk (CTRW) method.

In Chapter 3 we use TDRW to solve diffusion in heterogeneous media numerically and

to upscale analytically diffusion problems in heterogeneous media. In the first part we show

that flow and diffusion in heterogeneous media can be efficiently solved in a particle tracking

framework by time domain random walk (TDRW) method [McCarthy, 1993; Delay et al., 2002]

and we extend the classical TDRW for multiple trapping process. Classical TDRW method has

been largely used in literature for diffusion and transport problems in heterogeneous media

(e.g. [Banton et al., 1997; Delay and Bodin, 2001; Delay et al., 2005]), but the formal equivalence

between the diffusion equation an the TDRW was missed. We demonstrate the formal equiv-

alence between the diffusion equation and the TDRW and we extend the classical TDRW to

solve diffusion problem in a heterogeneous medium with multi-rate mass transfer properties

in a stochastic framework. In a stochastic framework an heterogeneous medium is seen as re-

alization of an ensemble of all possible realizations with the same statistical properties. TDRW

gives the solution of a diffusion problem in one realization. Solving a diffusion problem in one

realization corresponds to solve diffusion in a ’quenched’ disorder. In a quenched disorder the

spatially variable property of the medium are constant in time. Whenever the spatially vari-

able diffusion properties varies randomly in time the disorder is defined ’annealed’. CTRW

is an annealed model in that at each time step a random time increment is chosen indepen-

dently. For a random walk in a disordered medium there is a certain probability to jump to

a site recently visited and a certain site can be visited a large number of times. If the proper-
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ties assigned at each site are constant in time, as in a quenched disorder, this induces certain

correlation in successive random steps. If the disorder configuration varies at each time step

the fact that the same site can be visited many times does not induce correlation in successive

random steps [Bouchaud and Georges, 1990] and the effective dynamics of such a system obey

a CTRW.

CTRW has been extensively used phenomenologically as large scale model to explain ob-

served large scale anomalous behaviours in diffusion and transport problems (e.g.[Berkowitz

et al., 2006; Cortis and Knudby, 2006]). Large scale models are obtained by ensemble average

over an ensemble of realizations. We point out that if we average the local scale diffusion

equationone does not necessarily obtain a CTRW. Only few diffusion problems can be rig-

orously upscaled to a CTRW. As mentioned above, this is due to the fact that in quenched

disorder successive random steps can be correlated, which represents a problem at the mo-

ment we perform ensemble average to obtain a large scale model. For this reason, upscaling

flow in a spatially variable conductivity medium may not lead to an effective description as a

CTRW, as proposed in Cortis and Knudby [2006].

In the second part of Chapter 3, starting from a TDRW, we upscale analytically a diffusion

problem in a d = 3 dimensional medium with a random retardation coefficient and constant

conductivity deriving a CTRW. A diffusion d = 3 dimensional media with a random retarda-

tion coefficient can be mapped into a CTRW because a random retardation coefficient implies

that transition time and transition probability are independent and d > 2 implies that the

number of new sites visited by a random walker increases linearly with the number of steps,

which, in turns, makes the successive time increments uncorrelated. This upscaling proce-

dure allows to obtain rigorously a CTRW which can model anomalous behaviour in diffusion

problem and is fully parametrized by a distribution of retardation coefficients.

As we previously pointed out, the perturbation method used in the second chapter is a

good choice for a moderately heterogeneous medium. In nature there are many examples of

highly heterogeneous media, as fracture media, ans the results obtained in the second chapter

are not reasonable correct for these type of media. In Chapter 4 we upscale diffusion in highly

heterogeneous media using spatial and ensemble average in a multicontinuum approach.

Diffusion in highly heterogeneous media has been frequently handled using double poros-

ity or permeability models. The pioneering double porosity model of Barenblatt et al. [1960] has

been originally derived for a fracture medium, which is a perfect example of natural medium

characterized by high heterogeneity. Fractures are characterized by very high conductivity
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values and between the fractures there are blocks characterized by very low conductivities

values.

Double porosity/permeability models represent a medium as an overlapping of two re-

gions characterized by strongly different diffusion parameters, called ’mobile’ and ’immobile’

region, which exchange solute mass. The classical double porosity model of Barenblatt et al.

[1960] and successive developments (e.g. [Warren and Root, 1963; Dykhuizen, 1987; Peters and

Klavetter, 1988; Dykhuizen, 1990; Bai et al., 1993]) assume that both the mobile and the immobile

regions are in quasi equilibrium and mass exchange is modeled as a first order process. These

models upscale flow in heterogeneous media, but can not explain anomalous scaling.

In Chapter 4 we derive a dual and a multi continuum model which can explain anomalous

behaviour and link it with a statistical description of the medium heterogeneity. Anomalous

behaviour arises by taking into account non-equilibrium effects in the immobile zone. We

characterize anomalous behaviour by the anomalous scaling of the temporal evolution of the

concentration cm(x, t), its mean square displacement m2(t) and its first passage time distri-

bution f (t). Using space and ensemble average, we derived an effective non-local equation,

equivalent to a delayed diffusion model [Dentz and Tartakovsky, 2006].

Considering an homogeneous immobile zone we derive a dual continuum model which

can model pre-asymptotic sub-diffusive behaviour. Dual continuum model can explain the

following pre-asymptotic scaling: cm(x, t) ∼ t−1/4, m2(t) ∼ t1/2 and f (t) ∼ t−5/4. Asymptoti-

cally, when the medium is in equilibrium, the model behaves as an equivalent homogeneous

one and temporal evolution scales as cm(x, t) ∼ t−1/2, mean squared displacement increases

linearly with time and first time distribution as f (t) ∼ t−3/2. Taking into account an hetero-

geneous immobile zone, we model pre-asymptotic and asymptotic sub-diffusive anomalous

scaling. The multi continuum models derived can explain the following anomalous scaling:

cm(x, t) ∼ t−β/2, m2(t) ∼ tβ and f (t) ∼ t−1−β/2 with 1/2 < β < 1.

Anomalous scaling in flow and diffusion problems can be explained alternatively also by

different models e.g. CTRW models [Metzler and Klafter, 2000; Cortis and Knudby, 2006]), multi

rate mass transfer models [Haggerty and Gorelick, 1995; Carrera et al., 1998], delayed diffusion

models [Dentz and Tartakovsky, 2006] or fractal and multi-fractal models [Ben-Avraham and

Havlin, 2000; Lods and Gouze, 2008; de Dreuzy et al., 2010]. The value of the multi-continuum

model derived relies on the fact that we link the scaling exponent β with a description of the

medium heterogeneity. For this reason we think that the utility in prediction of the model

derived is higher than for fractal model, where the fractal dimension can vary depending on
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the type of field experiment performed to compute it. We link the scaling exponent β to a

distribution of characteristic times of the immobile zone. A characteristic time of an immobile

zone is given by τ = d2Rim/Kim with d thickness of the immobile zone, Rim retardation

coefficient, Kim conductivity. A distribution of characteristic times can be due to a spatially

variable retardation factor Rim or to a spatially variable conductivity Kim. The dynamic of

diffusion in an heterogeneous medium characterized by spatially variable conductivity or

spatially variable retardation coefficient is different. We derive that the same distribution

of characteristic times gives rise to different scaling. A power law (or fractal) distribution

of characteristic times due to a spatially variable retardation factor gives rise to asymptotic

anomalous scaling: considering a power law distribution which scales as pτ(τ) ∼ τ−1−β we

have the following asymptotic scaling for the mean square displacement m2(t) ∼ tβ with

1/2 < β < 1. The same power law distribution of characteristic times due to spatially variable

conductivity, leads to a normal behaviour. Considering a spatially variable conductivity field,

the mean square displacement can scale in a pre-asymptotic regime as in the previous case

considering a truncated power law distribution of characteristic times which scales as pτ(τ) ∼

τ−β. Asymptotically the behaviour became normal.

The different behaviours depending on the variability in the conductivity field or in the

retardation coefficient are in accord with the literature of diffusion in disordered media. In-

deed, considering the literature of diffusion in disordered media, we show that a spatially

variable conductivity field corresponds to a ’symmetric barrier model’, while a spatially vari-

able retardation factor can be mapped into a ’trap model’ and Bouchaud and Georges [1990]

demonstrated that a trap model can lead to asymptotic anomalous behaviour, while a barrier

model cannot.

In the last chapter we look at the problem of anomalous behaviour in the context of catch-

ment modeling. In hydrology the catchment dynamics at basin scale are conveniently char-

acterized by the frequency transfer function (FTF) [Gelhar, 1974]. Under linearity assumption,

the FTF characterizes the dynamic response of an aquifer to any given input. Once a catch-

ment is characterized by a given transfer function, it allows to predict aquifer response to

various hydrological scenarios.

The classical catchment models are the zero dimensional ’linear reservoir model and the

one dimensional linear Dupuit model [Bear, 1972; Gelhar, 1974]. Classical models predict that

at high frequency the FTF scales as ω−α: in the first order linear model α = 2 and in the

Dupuit model, usually considered with Dirichlet boundary condition at the discharge, α = 1
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[Gelhar, 1974]. In the first part of Chapter 6 we analyse the classical models in the light of

recharge dynamic. We show that the scaling of the FTF depends on the discharge boundary

condition and we derive that the Dupuit model with Cauchy boundary condition gives the

same scaling of the first order linear model. We show that the first order linear model can be

derived by horizontal average of the Dupuit model with Cauchy boundary condition at the

discharge.

In nature, different scaling exponents α have been observed [Labat et al., 2002; Little and

Bloomfield, 2010; Zhang and Yang, 2010; Jiménez-Martínez et al., 2012]. This scaling is commonly

explained by fractal of multi fractal models [Turcotte and Greene, 1993; Zhang, 2005; Labat et al.,

2011], which, as we said, often lack a relation to the medium characteristics and are rather

descriptive. A possible reason of anomalous behaviour is the aquifer heterogeneity. In the

second part of Chapter 5 we model the catchment as a multicontinuum medium and we use

the theory developed in the previous chapter to derive a new multicontinuum catchment

model. We derive a physical model that renders a wide range of water storage scales and

is capable to explain anomalous behaviour. The multi continuum model derived can explain

the following anomalous scaling of the FTF: ω−α with 1/2 < α < 1 for Dirichlet boundary

condition at the discharge and with 1 < α < 2 for Cauchy boundary condition. The model

derived allows to link the anomalous dynamics of the discharge process observed in nature

to a distribution of storage scales as reflected in the physical aquifer characteristics.
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A.1 Effective Conductivity Using Perturbation Theory

In the following we derive effective conductivity in term of spatial moment of the hydraulic

head using perturbation theory. We consider the stochastic framework discussed in Chapter

2, where the conductivity field is written as: K(x) = K + K�(x) with K ensemble mean that

for stationary we take constant and K�(x) a random fluctuation. Considering a log-normal

distributed random field, K(x) is conveniently expressed as: K(x) = e f (x) with f (x) the log-

hydraulic conductivity normal distributed. For convenience in the derivation, we consider

the flow equation in Fourier Laplace space. Laplace transform of the hydraulic head h(x, t)

is indicated as h∗(x, λ) and Fourier transform as h̃(k, t). The Laplce transform of the flow

equation in absence of sources and sink, reads:

λh∗(x, λ) −∇ · [K(x)∇h∗(x, λ)] = h(x, 0) (A.1)

with λ the Laplace variable. For brevity of notation the Fourier transform is indicated as:

�

k�
... =

� ∞

−∞

ddk�

(2π)d ... (A.2)

where d is the dimensionality of the space and k the wave vector. The Fourier transform

of (A.1), considering a pulse initial condition h(x, 0) = δ(x), reads:

λh̃∗(k, λ) − 1 + k2Kh̃∗(k, λ) = −
�

k�
K̃�∗(k�) k · [k− k�] h̃∗(k− k�, λ) (A.3)

and re-arranging the terms we obtain:

h̃∗(k, λ) =
1

λ + k2K
− k

λ + k21

�

k�
K̃�∗(k�) k · [k− k�] h̃∗(k− k�, λ) (A.4)

The term 1/(λ + Kk2) is the Fourier Laplace transform of the flow equation for a pulse initial

condition in a homogeneous medium h0(x, t), or rather the zero order perturbation:

h0(x, t) =
e−

x2
4Kt

(4πKt)d/2
(A.5)

Therefore we can re-write equation (A.4) as:

h̃∗(k, λ) = h̃∗0(k, λ)− h̃∗0(k, λ)
�

k�
K̃�∗(k�) k · [k− k�] h̃∗(k− k�, λ) (A.6)
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and considering its inverse Laplace transform we obtain the following integral equation:

h̃(k, t) = h̃0(k, t)−
� t

0
dt� h̃0(k, t− t�)

�

k�
K̃�(k�) k · [k− k�] h̃(k− k�, t�) (A.7)

In order to solve the integral equation (A.7) we use perturbation theory and h(k, t) is expressed

in terms of the series:

h̃(k, t) =
∞

∑
i=0

�i h̃i(k, t). (A.8)

In the following we truncate the perturbation series after second order, thus that h̃(k, t) reads

as:

h̃(k, t) = h̃0(k, t) + � h̃1(k, t) + �2h̃2(k, t). (A.9)

Inserting eq.(A.9) in the integral equation (A.7) we obtain:

h̃(k, t) = h̃0(k, t)+

−
� t

0
dt� h̃0(k, t− t�)

�

k�
� K̃�(k�) k · [k− k�] h̃0(k− k�, t�)+

−
� t

0
dt� h̃0(k, t− t�)

�

k�
� K̃�(k�) k · [k− k�] � h̃1(k− k�, t�)+

−
� t

0
dt� h̃0(k, t− t�)

�

k�
� K̃�(k�) k · [k− k�] �2 h̃2(k− k�, t�).

(A.10)

The zeroth order term is h̃0(k, t), the first order one is:

h̃1(k, t) = −
� t

0
dt� h̃0(k, t− t�)

�

k�
K̃�(k�) k · [k− k�] h̃0(k− k�, t�) (A.11)

and the second one:

h̃2(k, t) =
� t

0
dt� h̃(k, t− t�)

�

k�
K̃�(k�) k · [k− k�]

� t�

0
dt�� h̃0(k− k�, t� − t��) [k− k�]·

�

k��
K̃�(k��) [k− k� − k��] h̃0(k− k� − k��, t��).

(A.12)

Summing and rearranging all the terms till the second order we obtain:

h̃(k, t) = h̃0(k, t) +
� t

0
dt�

� t�

0
dt��

�

k�

�

k��
h̃0(k, t− t�) h̃0(k− k�, t� − t��) h̃0(k− k� − k��, t��)

k · [k− k�]K̃�(k�)K̃�(k��) [k− k�] · [k− k� − k��].

(A.13)
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In order to obtain an effective description we consider stochastic average and from the previ-

ous equation we have

h̃(k, t) = h̃0(k, t) +
� t

0
dt�

� t�

0
dt��

�

k�

�

k��
h̃0(k, t− t�) h̃0(k− k�, t− t�) h̃0(k− k� − k��, t��)

k · [k− k�] K2
GCf f (k�) (2π)d δ(k� + k��) [k− k�] · [k− k� − k��],

(A.14)

where the overline indicates the ensemble average. The terms K2
GCf f (k�) (2π)dδ(k� + k��) are

the Fourier transform of covariance function of the random fluctuation K�(x�)K�(x��) expressed

in term of the Fourier transform of covariance function of f �(x):

f (k�) f (k��) =
�

x
ei k�x f (x)

�

x
ei k�� ·x f (x) = Cf f (k�) (2π)dδ(k� + k��) (A.15)

considering that, as in Chapter 2, K�(x)K�(x�) = K2
GCf f (x− x�).

The integral in Eq. (A.14) can be simplified as:

h̃(k, t) = h̃0(k, t) +
� t

0
dt�

� t�

0
dt��

�

k�
h̃0(k, t− t�) h̃0(k− k�, t− t�) h̃0(k, t��)

k · [k− k�] Cf f (k�) (2π)d [k− k�] · [k] K2
G.

(A.16)

In the following we compute the effective conductivity in term of the second center mo-

ment of the hydraulic head:

Ke f f
jl (t) =

1
2

dm(2)
jl (t)
dt

(A.17)

where the diagonal components of the second spatial center moment in Fourier space, omit-

ting the subscript jj for brevity, reads:

m(2) = (−i)2 ∂2

∂k2 h̃(k, t)
����
k=0

(A.18)

Therefore the second center moment of the hydraulic head as given in eq. (A.16), is:

m(2) = 2Kt− 2
� t

0
dt�

� t�

0
dt��

�

k�
h̃0(−k�, t� − t��) k�2 Cf f (k�) K2

G (A.19)

where h̃0(k, t) = e−Kk2t and therefore h̃0(0, t) = 1 and
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∂2h̃0(k, t)
∂k2

����
k=0

= −2Kt. (A.20)

Considering the covariance Cf f (x− x�) Gaussian:

Cf f (x− x�) = σ2
f f e

∑d
j

(x−xj)
2

2�2
j (A.21)

and assuming statistical isotropy: �j = � for j = 1, ..d with d spatial dimension, in Fourier

space, we obtain:

Cf f (k) = �
√

2π e−
k2�2

2 (A.22)

Therefore, in Fourier space, the effective conductivity, computed using perturbation theory

till second order perturbation, reads:

Ke f f = K−
� t

0
dt�

� ∞

−∞

ddk�

(2π)d k�2e−Kk�2t� σ2
f f (2π)d/2 �3 e−

1
2 k�2 �2

K2
G (A.23)

In the following we compute the Ke f f for d = 1, 2 and 3 spatial dimension.

Effective conductivity in a d=1 dimensional medium

Considering a one dimensional medium and solving the integrals (A.23) for d=1 dimension

we have:

Ke f f = K− K2
G

σ2

K

�
1− ��

2 K t + �2

�
(A.24)

and considering a consistent formulation till second order perturbation, expanding K till σ2:

K = KG(1 + σ2/2) we obtain:

Ke f f = KG

�
1− σ2

2
+

σ2��
2 KG t + �2

�
(A.25)

Notice that its asymptotic value for large time: Ke f f � KG(1 + σ2/2) is the first order approx-

imation for the harmonic mean KH:

KH = KG e−
σ2

f
2 � KG

�
1− σ2

2

�
(A.26)
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which is the well known value for effective condutivity in a d = 1 dimensional medium

[Sanchez-Villa et al., 2006].

Effective conductivity in a d=2 dimensional medium

Solving eq.(A.23) for d=2 dimensions and considering a consistent formulation, as discussed

above, we have:

Ke f f = KG

�
1 +

σ2

2
− KG

σ2 t
2 KG t + l2

�
(A.27)

The asymptotic value for time to infinity is the geometric mean, which is the well known value

for effective conductivity for d = 2 spatial dimension [Matheron, 1967]. Analytical expression

for the time dependent conductivity has been tested numerically using classical random walk

method (see Appendix A.2).

Effective conductivity in a d=3 dimensional medium

The solution of (A.23) for d = 3 spatial dimension, considering a consisten formulation, leads:

Ke f f = KG

�
1 +

σ2

6
+

σ2 �3

3 (2 KG t + �2)3/2

�
(A.28)

and the asymptotic value for this time dependent effective conductivity is:

Ke f f = KG

�
1 +

σ2

6

�
(A.29)

The previous expressison is the first order expansion of Matheron’s conjecture for effective

conductivity in a d = 3 heterogeneous medium log-normally distributed [Sanchez-Villa et al.,

2006]. Analytical expression for the time dependent conductivity has been tested numerically

using classical random walk method (see Appendix A.2).

A.2 Comparison of Effective Coefficients Using Perturbation The-

ory and RW

We compute numerically effective conductivity for a log-normal conductivity field using clas-

sical random walk particle tracking method. Effective conductivity has been computed in
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terms of the second center moment of the particle distribution [Dean et al., 2007]. Log-normal

conductivity field have been generated using the Karhunen Loeve expansion of a stationary

function (see Appendix A.4). Numerical simulations have been used to verify the analyti-

cal results for effective coefficients obtained using perturbation method (see Chapter 2 and

Appendix A.1). Figure A.1 shows that numerical simulations are in accord with analytical

results.

Figure A.1: Effective conductivity for d = 2 and d = 3 spatial dimensional medium computed
analytically using perturbation method (green lines) and numerically using classical RW (red lines) .
For d = 2 spatial dimension (left) effective conductivity starts from the arithmetic mean of the local
values (blue line) and decreases till the geometric mean of the local conductivities values. For d = 3
spatial dimension (right) effective conductivity starts from the arithmetic mean of the local values
(blue line) and decreases till the effective steady state valued conjectured given by Ke f f = KGe1+σ2/6

[Matheron, 1967].
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A.3 Time Dependent Effective Conductivity

In the following we solve the following flow equation caracterized by a time dependent con-

ductivity:

S
∂h(x, t)

∂t
− Ke(t)∇2h(x, t). (A.30)

Considering the proprieties of Fourier transform, the Fourier transform of (A.30) reads:

S
∂h̃(k, t)

∂t
+ Ke(t)k2h̃(k, t) (A.31)

where k is the Fourier variable, and solution of (A.31) is given by:

h̃(k, t) = e−k2 � t
0 Ke(t�)dt� (A.32)

that in time domain is:

h(x, t) =
1�

4π 1
S

� t
0 Ke(t�)dt�

e
− x2S

4
� t

0 Ke(t�)dt� . (A.33)
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A.4 Generation of Random Fields

In order to use particle tracking methods and compute effective parameter as stochastic aver-

ages over a large number of realizations, we generate random fields of hydraulic conductivity

using the Karhunen Loève expansion of a stationary function.

In the theory of stochastic processes, the Karhunen Loève expansion is a representation of

a stochastic process as an infinite linear combination of orthogonal functions, analogous to a

Fourier series representation of a function on a bounded interval. The distinction is that here,

the Fourier coefficients are random variables. The Karhunen Loeve expansion of a stationary

random function f (x) is:

f (x) = lim
N→∞

σf f
√

2
√

N

N

∑
l=1

cos(k(l) · x + φ(l)) (A.34)

where: σf f is the standard deviation of the random function f (x); k(l) are identical and inde-

pendently distributed RV, distributed according to P(k); φ(l) are identical and independently

uniformly distributed in [0, 2π].

In order to create a random field f (x), characterized by a given correlation Cf f (x), we have

to use the KL expansion with a random variable k distributed as the Fourier transform of the

correlation function Cf f (x) divided by 2π. In case of a Gaussian correlated field we have:

P(k) =
C̃ f f (k)

2π
=

l e− k2 l2
2

√
2π

(A.35)

where C̃ f f is the Fourier transform of Cf f . In Figure (A.2) are given 3 examples of random

fields generated using the Karhunen Loeve expansion of a stationary random function.

Figure A.2: Gaussian correlated random fields generated using Karhunen Loeve expansion of a sta-
tionary random function.
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B.1 Equivalent Homogeneous Model

We seek the equivalent homogeneous model for the heterogeneous diffusion equation (3.52).

The homogeneous model is defined as

φe ∂c(x, t)
∂t

− De ∂2c(x, t)
∂x2 = 0, (B.1)

with the effective porosity φe and effective diffusivity De. The aim is to determine these

effective porosities. To this end, we consider the following criteria. The effective model (B.1)

should reproduce the correct average steady state concentrations and solute fluxes. The steady

state concentration cs(x) = limt→∞ c(x, t) satisfies

∂

∂x
φ(x)D0

∂

∂x
cs(x) = 0. (B.2)

For the first criterion we consider a situation with no flux boundary conditions in a

bounded domain. The solution is cs(x) = c0 = constant. Thus, we obtain in equilibrium

for the average bulk concentration g(x, t) = φ(x)c(x, t)

gs(x) = φ(x)cs(x) = φ(x)c0. (B.3)

The effective porosity φe is equal to the arithmetic average porosity φe = φA.

The second criterion refers to the average flux. We consider a scenario characterized by

unit concentration at the inlet at x = 0 and zero concentration at the outlet at x = L. The

solution for the concentration distribution then is given by

cs(x) = −φH

L

x�

0

dx�

φ(x)
(B.4)

with φH the harmonic average porosity. Thus, the average solute flux is given by

φ(x)D0
∂cs(x)

∂x
= φHD0

∂cs(x)
∂x

. (B.5)

This result is of course well known. The effective diffusivity De in the flux term is given by

De = φHD0.
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B.2 Diffusion and Multitrapping in Finite Domain

The solution for the diffusion problem (3.53) in Laplace space is given by

c∗(x, λ) =
sinh

�
(1− x)

�
λφA
φH

�

sinh
��

λφA
φH

� . (B.6)

This can be checked by inspection. At times small compared to the dimensionless diffusion

scale, which here is equal to 1, this means for λ � 1, this expression can be approximated by

c∗(x, λ) = exp

�
−x

�
λφA
φH

�
. (B.7)

The solution for c(x, t) is then given by inverse Laplace transform and yields (3.60).

We now consider the equivalent case of homogeneous diffusion with multirate mass trans-

fer. For simplicity we set here φA = φH (note that for the parameter values used for the

simulations in Section 3.2.3.2, φA ≈ φH)

∂c(x, t)
∂t

=
∂2

∂x2

t�

0

dt�c(x, t�)µ(t− t�). (B.8)

The memory function (3.57) is independent of space. Note that c(x, t) denotes the total solute

concentration, the injection, however, is with respect to the mobile solute only. Thus, by virtue

of (3.30), the boundary condition for c(x, t) is expressed as

t�

0

dt�c(x = 0, t�)µ(0, t− t�) = δ(t). (B.9)

The solution of (B.8) in Laplace space is given by

c∗(x, λ) =
sinh

�
(1− x)

�
λ

µ∗(λ)

�

µ∗(λ) sinh
��

λ
µ∗(λ)

� . (B.10)

Inserting expression (3.57) for µ∗(λ) gives the Laplace transform of concentration in function



146APPENDIX B. APPENDIX DIFFUSION IN HETEROGENEOUS MEDIA: A RANDOM WALK PERSPECTIVE

of p∗(λ)

c∗(x̃, λ) =
λ + α[1− p∗(λ)]

λ

sinh
�
(1− x)

�
λ + α[1− p∗(λ)]

�

sinh
��

λ + α[1− p∗(λ)]
� . (B.11)

In order to analyze the behaviors and regimes, we need to determine the behavior of p∗(λ).

For this purpose, we consider the Laplace transform of the truncated power-law (3.55), which

is given by

p∗(λ) =
1

1− (t1/t2)β

�
exp(−λt1)− (t1/t2)β exp(−λt2)

�

+
(λt1)β

1− (t1/t2)β
[Γ(1− β, λt1)− Γ(1− β, λt2)] , (B.12)

where Γ(α, x) is the incomplete Gamma function [Abramowitz and Stegun, 1965]. Note that

here 0 < β < 1. For times larger than the cut-off time t2, which corresponds to λ � t−1
2 , this

expression can be approximated by

p∗(λ) ≈ 1− tλ, t = t1
β

1− β

(t2/t1)1−β − 1
1− (t1/t2)β

. (B.13)

Note that t is the mean trapping time. Inserting the latter into (B.11) gives

c∗(x̃, λ) = (1 + αt)
sinh

�
(1− x)

�
λ(1 + αt)

�

sinh
��

λ(1 + αt)
� . (B.14)

Let us consider now the λ range for which the argument of the hyperbolic sine is small

compared to 1. This is the case for λ � (1 + αt), which gives in time, t � (1 + αt) = tc.

The scale tc is essentially given by the trapping rate α and the mean trapping time. This scale

corresponds to the time at which concentration is cut-off. Specifically, if the cutoff time t2 is

much smaller than tc, t2 � tc, we observe the characteristic t−3/2 behavior in the time regime

t2 � t � tc because in this regime, concentration behaves as in the case without traps, but

characterized by a renormalized diffusion coefficient.

In the time regime t1 � t � t2, (B.13) can be approximated by

p∗(λ) ≈ 1− aβλβ, aβ = tβ
1 Γ(1− β) (B.15)
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Inserting the latter into (B.11), gives

c∗(x, λ) = (1 + αaβλβ−1)
sinh

�
(1− x)

�
λ + αaβλβ

�

sinh
��

λ + αaβλβ
� . (B.16)

For λ � t−1
1 [αΓ(1− β)]−

1
β , this means, if the argument of the hyperbolic sine is small, this

expression can be approximated as

c∗(x, λ) ≈ αaβλβ−1, (B.17)

which yields the power-law behavior

c(x, λ) ∝ t−β (B.18)

for times t � t1[αΓ(1− β)]
1
β . Note, however, that this power-law behavior can only be ob-

served if the cut-off scale t2 is larger than t1[αΓ(1− β)]
1
β . In this case, one obtains the inter-

mediate power-law time regime t1[αΓ(1− β)]
1
β � t � t2.
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C.1 TDRW Numerical Implementation

Here we give details on the numerical simulation used to validate analytical solutions of the

proposed model using TDRW scheme. In the numerical simulations the discretized concen-

tration Ci(t), is given in term of the particle density n�i(t), computed as the number of particles

in the i-th bin divided by the total particle number N:

n�i(t) = lim
N→∞

Ni(t)
N

. (C.1)

Considering the following initial condition:

C(x, t = 0) =
1

dm + dim
δ(x), (C.2)

so that �
C(x, t)dx = 1, (C.3)

initially we have in the mobile and in the immobile layer:

� ∞

−∞
dx

� dim

0
dz Cim(x, t = 0) =

dim
dm + dim

� ∞

−∞
dx

� d

dim

dz Cm(x, t = 0) =
dm

dm + dim

(C.4)

The upscaled concentration are given by the average over the vertical direction as defined in

(4.14) and therefore the initial conditions for the upscaled concentrations are:

cm(x, t = 0) = cim(x, t = 0) =
1

dm + dim
δ(x). (C.5)

As explain in Dentz et al. [2012] the particle traking is eprformed for the qunatity ni = Ri∆Vci

with ∆V the discretization of the domani, assumed constant, and Ri the retardatio factor.

Consequently for the particle density ni the initial condition results:

nm(x, t = 0) = χmRm∆x δ(x) nim(x, t = 0) = χimRim∆x δ(x) (C.6)

with χm = dm/(dm + dim) and χim = dim/(dm + dim). From this we obtain that:
�

dx [nm(x, t)+

nim(x, t)] = χmRimL + χimRimL which is not in general equal to one. We perform the particle

tracking by the injection Nm and Nim particles respectively in the mobile and in the immobile
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layer homogeneously distributed at x = 0 along the vertical direction. Nm and Nim are given

by:

Nm(t = 0) =
dmRm

dmRm + dimRim
N Nim(t = 0) =

dimRim
dmRm + dimRim

N (C.7)

Thus the initial condition for the particle density n�i(t) = Ni(t)/N is:

n�m(t = 0) =
χmRm

χmRm + χimRim
n�im(t = 0) =

χimRim
χmRm + χimRim

(C.8)

Thus, in order to obtain the ni(t) that we actually want to determine, we have to multiply the

outcome of our TDRW simulation by a factor of (χmRim + χimRim)

nm(t) = n�m(t) (χmRim + χimRim) nim(t) = n�im(t) (χmRim + χimRim) (C.9)

and finally the averaged total concentration c(x, t) can be expressed in terms of the numeri-

cally determined densities n�i(t) as:

c(x, t) =
�

χm
n�m(x, t)
dmRm

+ χim
n�im(x, t)
dimRim

�
(χmRm + χimRim). (C.10)
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C.2 Solution of Diffusion in the Immobile Zone

Here we derive the expression for the memory function g[t|τim(x)] given in (5.32) and the

expression for cim(x, t) given in terms of cm(x, t) and g[t|τim(x)] in (4.22). Derivation is given

in Laplace space by solution of (4.18) with (4.19) as boundary conditions. In Laplace space

equation (4.18) reads:

λ Rim(x) C∗im(x, λ)− Kim(x)
∂2C∗im(x, λ)

∂z2 = Rim(x) Cim(x, 0) (C.11)

In order to solve the previous equation we define the auxiliary function:

a(x, t) = Cim(x, t)− Cim(x, 0) (C.12)

which solve, in Laplace space, the following equation:

λ Rim(x) a∗(x, λ)− Kim(x)
∂2a∗(x, λ)

∂z2 = 0 (C.13)

with boundaries conditions:

∂a∗(x, 0, λ)
∂z

= 0 a∗(x, dim, λ) = c∗m(x, λ)− Cim(x, 0)
λ

, (C.14)

and a(x, 0) = 0 as initial condition. Therefore we consider its associated Green’s function

G∗(x, λ) which solves equation (C.13) with boundary conditions:

∂G∗(x, 0, λ)
∂z

= 0 G∗(x, dim, λ) = 1. (C.15)

Thus, a∗(x, λ) can be re-written as:

a∗(x, λ) = G∗(x, λ)
�

c∗m(x, λ)− Cim(x, 0)
λ

�
(C.16)

and C∗im(x, λ) as:

C∗im(x, λ) = G∗(x, λ)
�

c∗m(x, λ)− Cim(x, 0)
λ

�
+

Cim(x, 0)
λ

. (C.17)
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The Green’s function G∗(x, λ), solution of eq. (C.13) with (C.15) boundary conditions, is:

G∗(x, λ) =
cosh

��
λ z2Rim(x)

Kim(x)

�

cosh

��
λ d2

imRim(x)
Kim(x)

� . (C.18)

Averaging eq. (C.17) over the z direction we obtain:

c∗im(x, λ) = g∗(x, λ)
�

c∗m(x, λ)− cim(x, 0)
λ

�
+

cim(x, 0)
λ

(C.19)

where we defined:

c∗(x, λ) =
1

dim

� dim

0
C∗(x, λ) dz g∗(λ|τim(x)) =

1
dim

� dim

0
G∗(x, λ) dz. (C.20)

with τim(x) = d2
imRim(x)/Kim(x). The result g∗[x|τim(x)] of the vertical integration of (C.18) is

given in eq. (5.32) in the text. Considering the inverse Laplace transform of (C.19) we obtain

(4.22).
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C.3 Laplace Transforms

The Laplace transform of tα for α > −1 is

L{tα} =
� ∞

0
dttαe−λt (C.21)

= λ−1−α
� ∞

0
dttαe−t (C.22)

= λ−1−αΓ(α + 1), (C.23)

where Γ(·) is the gamma function [Abramowitz and Stegun, 1965]. Differently, considering

the Laplace transform of t−α−1 with α > 1, the previous integral is not normalizable. For

1 < α < 2 the behaviour of the Laplace transform of h(t) = t−α can be approximate by [Dentz

and Berkowitz, 2003]:

h∗(λ) � 1− cαλα (C.24)

with

cα ≡
� ∞

0
dt t h(t). (C.25)
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C.4 Multi Continuum Model with Constant Retardation Factor: Power

Law Distribution

In this appendix we consider the anomalous behaviours we can obtain considering a multi

continuum model where heterogeneity of the immobile zone is given by a spatially variable

conductivity. As we have seen previously, anomalous behaviour is due to anomalous scal-

ing of the memory function ϕ(t) that here we indicate with ϕκ(t). The memory function

for a variable conductivity field, ϕκ(t), is expressed in function of a distribution of charac-

teristic times of the immobile zone as derived in (4.49). In order to obtain an anomalous,

or rather fractal, behaviour in ϕκ(t) we consider a fractal distribution of characteristic times.

Spatial distribution of characteristic times is due to a spatially variable conductivity field so

that τ(x) = d2
imρim/κim(x). We consider the following normalized power law distribution of

characteristic times:

pτ(τ) =
τ

β−1
1

Γ(β− 1)
e−τ1/τ

τβ
(C.26)

where β > 1 for normalization of the distribution pτ(τ). We substitute in equation for the

global memory function:

ϕκ(t) = t−β τ
β−1
1

Γ(β− 1)

� ∞

0
e−

τ1
t x xβ−1 g� (x) dx (C.27)

Considering that g�(x) decreases exponentially for x > 1 (see equation (5.32) or figure 4.2), the

previous improper integral converges for β > 1/2; although we already have β larger than

1 in order to normalize the distribution p(τ). In order to pass in Laplace space, considering

that β > 1, we use the Tauberian theorem Dentz and Berkowitz [2003]:

L{t−β} ∼ 1− (λτ)β−1 + ... (C.28)

Therefore when we consider the behaviour for time to infinity (or equivalently λ � τ−1), the

global memory function tends to 1. When we substitute this result in the equation (5.29) we see

that asymptotically, expanding c∗m(x, λ) for small λ, we have c∗m(x, λ) ∼ λ−1/2, or equivalently,

in time domain: cm(x, t) ∼ t− 1
2 , which corresponds to a normal scaling. Note that considering

a variable retardation field and a power law distribution of characteristic times we obtained an

anomalous scaling while here, considering a spatially variable conductivity field a distribution

of characteristic times does not lead to anomalous behaviour.
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158 APPENDIX D. APPENDIX CATCHMENT RESPONSE IN FREQUENCY DOMAIN

D.1 First Order Linear Model from Dupuit Model

Here we derive the zero dimensional LR model from a higher dimensional model. Horizontal

average over the catchment size L of the governing equation of the LD model, given in (5.9),

with Cauchy BC, gives:

S
d�h(t)�

dt
= −a [h(x = 0, t)− h0] + r(t), (D.1)

where

�h(t)� =
1
L

� L

0
h(x, t) dx. (D.2)

Expression (D.1) is analogous to the governing equation of the LR model given in (5.5), except

for the local term h(x = 0, t). The two equations are equivalent if we can approximate h(x =

0, t) � �h(t)�, which implies that the piezometric gradient in the aquifer is small. Furthermore,

without any assumption on the piezometric gradient, the two models are equivalent at very

small or large times. At large times, for t � tL with tL = L2S/T the system is horizontally in

equilibrium, h(x, t) = �h(t)� and the two models are equivalents. At short times t � tL the LR

model and the integrated LD model with Cauchy BC also coincide considering equilibrium

initial boundary conditions: h(x, 0) = h0 that implies: h(0, t � tL) � �h(t � tL)�. LR model

and LD model with Cauchy BC, are compared in Figure 5.2. Indeed considering horizontal

integration of the head FTF for the LD model with Cauchy BC given in (5.18) we have:

�Θh(ω)� =
1
L

� L

0
Θh(x, ω) dx =

����
1

iωS




1− a
iωS

tanh[p(ω)]
tanh[p(ω)] + aL2

Tp(ω)






����
2

. (D.3)

In the limit of ω � T/(SL2), first order Taylor expansion of (D.3), for p(ω) � 1, leads to

Θh(ω) =
����

1
a + iωS

����
2

, (D.4)

which is equivalent to the head FTF of the LR model Θh(ω) given in (5.8). In fact the charac-

teristic time tL we take into account for the Taylor expansion is the mean diffusion time over

a catchment of size L; t � tL implies that the catchment is horizontally in equilibrium and we

can neglect spatial variation of the hydraulic head as in the LR model.
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