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Summary 

 

Nonlinear fibre beam models, due to its intrinsic simplicity and computational efficiency, 

are often an adequate alternative to the complex nonlinear plane and solid FE models for 

the assessment of entire frame structures. For the cases in which shear strains are 

negligible, fibre beam models had reached a high level of accuracy in a wide range of 

structural applications. Nevertheless, simulations of structural concrete members 

undergoing relevant shear stresses cannot be performed by these models, as nonlinear 

shear effects and shear-bending interaction are neglected. In its turn, the presence of shear 

stresses in cracked reinforced concrete (RC) elements leads to a rather complex resistant 

mechanism which numerical modelling is neither straightforward nor clearly established.  

Within this problematic, the formulation proposed in this thesis is an upgrade version of an 

existent flexural fibre beam model for the time-dependent analysis of segmentally 

constructed RC frames by taking into account the shear effects. The model is devised for 

the analysis of 2D RC and prestressed frame elements under combined axial, bending and 

shear forces. Shear-bending interaction is taken into account by means of a hybrid 

kinematic/force-based sectional approach. The key characteristics of the proposed model 

are: (i) at the material level RC is simulated through a smeared cracked approach with 

rotating cracks; (ii) at the fibre level an iterative procedure guarantees equilibrium between 

concrete and transversal reinforcement, allowing to compute the biaxial stress-strain state 

of each fibre; (iii) at the section level a uniform shear stress flow is assumed in order to 

estimate the internal shear stress-strain distribution and (iv) at the element level, the 

Timoshenko beam theory takes into account the deformation due to shear. Also, discrete 

crack representation is performed by means of an external algorithm that prints the 

cracking development in the elements. 

As a result, the relevant attributes of the proposed formulation can be resumed as: (i) its 

capability for considering shear effects in both service and ultimate levels; (ii) the time 

step-by-step solution procedure enables taking into account the time-dependent response 

due to creep and shrinkage of concrete, temperature variations and relaxation of 

prestressing steel considering the multiaxial stress-strain state of the fibres and; (iii) the 

sequential type of analysis allows capturing the strengthening effects, accounting for the 

state of the structure prior to the intervention. 
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vi 
 

After the description of the proposed formulation, the model is validated through 

experimental tests available in the literature, as well as through an experimental campaign 

carried out by the author. Accordingly, the capacity of the model to efficiently reproduce 

the behaviour of shear critical beams is demonstrated. Experimental measurements of 

deflections, principal strains and directions in concrete, distortions, strains the longitudinal 

and transversal reinforcement and cracking patterns are compared with the results 

computed by the proposed model. In general, a fairly good fitting is achieved. The 

importance of including shear-bending interaction in the numerical analysis is underlined 

by comparing the results with the ones provided by the pure flexural basis model. 

The influence of transversal stresses on the time-dependent response of shear and bending 

dominant beams is also studied with the proposed model. Considering shear effects in 

modelling the time-dependent response of diagonally cracked RC and prestressed beams is 

found to be relevant. However, its main influence is related with the instantaneous 

response; the differed deflection correspondent to distortion is found to be rather 

insignificant. Also, the influence of restraint strains due to shrinkage in the latter response 

of shear critical beams is numerically assessed. The previous damage brought by the 

restraint strains affected the long-term load carrying capacity of the beams failing in shear. 

Subsequently, the proposed model is successfully used to predict the experimental results 

of a shear damaged and subsequently strengthened RC beam, available in the literature. An 

alternative strengthening solution for the damaged beam based on post-tensioned stirrups is 

numerically analysed. This technique showed to be effective to avoid brittle shear failure 

allowing for the development of all the flexural capacity of the repaired beam. In general, 

the importance of considering shear-bending interaction and previous damage in the 

numerical assessment of strengthened RC beams is revealed. 

Finally, the response of a dismantled prestressed concrete bridge, with deficient shear 

resistance, submitted to full-scale tests is successfully simulated with the proposed model. 

In addition, different strengthening proposals based on post-tensioning measures are 

studied for this bridge. In this manner, the capacity of the model to determine the safety of 

existent structures and to analyse the performance of strengthening measures is 

demonstrated.  
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Chapter 1 
 

 

INTRODUCTION 

 

 

 

 

1.1 Background and motivation 

Computer-aided nonlinear analysis procedures for reinforced concrete (RC) structures are 

very established in both engineering and research fields. In fact, these tools are essential to 

design complex new projects, perform safety assessment of existing structures and support 

key decisions of change of use, demolition or strengthening. Researchers continuously aim 

to enhance the numerical models in order to better approximate the computation to the 

phenomenology of the response of RC structures.  

In one hand, further advances related to the material response and to the structural 

mechanics are ceaselessly sought after. However, in the other hand, the singular 

characteristics of RC, such as, non homogeneity and nonlinear behaviour, cracking, force 

distribution, time-dependent characteristics, bond slip, dowel action, aggregate interlock, 

etc., which are difficult to understand and to simulate numerically, act as drawbacks in 

terms of solutions for its computational mechanics.  

Due to this intricacy and to the difficulty to link the complex numerical models to the 

design and assessment of real structures, an alternative research trend seeking to maintain 
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the numerical tools as simple as possible and accurate enough to assist engineering practice 

is supported by many researchers. Accordingly, the work developed in the ambit of the 

present thesis is inserted into this former category of numerical models for the analysis of 

RC structures.  

The need for assessment and strengthening of aged RC infrastructures is becoming a major 

concern in developed countries due to the deterioration of the materials, the greater loading 

demand (such as increasing traffic loads in bridges) and the drop of governmental funds for 

new construction, leading to a new tendency of increasing the life-span of existing 

infrastructures.  

Relating to existing RC structures, the design of strengthening procedures implies, on one 

hand, the knowledge of the current state of the structure and, on the other hand, an accurate 

prediction of the efficiency of the repair or retrofit measures. Also, a correct assessment of 

the state of the structure is of paramount importance in order to take an accurate decision 

and to carry out a proper intervention. Therefore, numerical models able to perform life-

time assessment analysis of entire structures and predict the response of strengthening 

proposals are required for these purposes. Accurate analyses are only possible if the time-

dependent behaviour, the phased construction and the nonlinear behaviour of the structures 

are considered. 

The Finite Element Method (FEM) is nowadays the most used computational tool for the 

nonlinear analysis of RC structures. One of the key differences between the available 

models based on the FEM to simulate frame structures is its order, as it is schematically 

represented in Figure 1.1: solid (3D), plane stress (2D) and linear (1D) finite elements 

(FE). 

In design or assessment of real frame structures, the use of complex nonlinear 2D and 3D 

FE programs can turn out to be impracticable due to the difficulty to define all the required 

constitutive input variables, the high computational costs and the huge amount of 

generated data that makes the handling of results a very time-demanding and complex task. 

Instead, discrete FE models with distributed non-linearity represent a good compromise 

between simplicity and accuracy, allowing for complex nonlinear analysis without the need 

of a great computational cost and permitting a more straightforward results’ interpretation 

and understanding of the structural response. 
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Solid elements of 8 nodes 

  
Plane stress elements of 4 nodes 

 
 

Linear elements of two nodes 
 

a) 
 

b) 

Figure 1.1 – Example of FE models: a) meshes, b) elements 

Pertaining to the specific case of fibre beam models, the Navier-Bernoulli plane section 

theory and the use of a fibre sectional discretization combined with accurate uniaxial 

constitutive laws, proved to be an accurate and rational solution for the cases where shear 

strains are negligible. A schematic representation of its general characteristics is given in 

Figure 1.2. Effectively, nonlinear fibre beam elements had been developed for more than 

30 years (Kang and Scordelis 1980; Buckle and Jackson 1981; Chan 1982; Marí 1984; 

Ulm, Clement et al. 1994, are some examples). This approach allows fairly accurate 

analyses of flexural dominant RC frames to be obtained. Moreover, its inherent simplicity 

and computational efficiency contributed to make this approach a particularly 

advantageous solution.  

For these reasons, nonlinear fibre beam models are increasingly seen as an adequate 

alternative to the complex nonlinear plane and solid FE models to perform nonlinear life-

time analyses of entire frame structures. Evidencing this fact is the great research effort to 

enhance this type of models that has emerged in the last decades, covering aspects such as 

segmental construction, time-dependent effects, improved constitutive laws, bond slip, 

joint simulation, etc. Due to this endeavour, fibre beam models had reached a high level of 

development (Marí 2000). 
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Figure 1.2 – Characteristics of the fibre beam models 

Nevertheless, traditional fibre beam models neglect shear effects and its interaction with 

other internal forces. Consequently, accurate simulation of structural members that are 

submitted to important shear forces cannot be done by Navier-Bernoulli models. In fact, 

neglecting shear effects can be critical for some existing structures, designed with old shear 

provisions, or for those susceptible to fail in shear. In addition, checking safety in shear 

when a structure is strengthened in bending is fundamental, as the increase of bending load 

capacity may produce a change of failure mode; this is a task that cannot be performed by 

pure bending modelling strategies. Also, disregarding shear can lead to unsafe estimations 

of strength and ductility, which can be particularly dangerous in the assessment of existing 

structures with low quantities of transversal reinforcement.  

Solving this handicap of the fibre beam models is imperative to supply plain and precise 

nonlinear models to an industry that is opening doors to the use of nonlinear FE analysis in 

the practical structural activity. In fact, this tendency is present not only for the design of 

safer and more economical new infrastructures, but especially for the assessment of the 

older ones. 

However, including shear effects in these models is not an easy task. The existent 

behavioural models for shear, at both kinematic and constitutive levels, are far away from 

the bending models in terms of rationality and generality. As it is generally accepted 

among researchers, shear mechanism in RC elements is complex and not straightforward to 

model numerically (Bairán and Marí 2007). As it is represented in Figure 1.3, this great 

complexity in relation to the flexure models is mostly due to the multiaxial stress state that 

is generated along with the strong nonlinear behaviour found in diagonally cracked 

concrete.  



Introduction 5

 

 

 
                                       a)                                                                       b) 

Figure 1.3 – Strain and stress state in cracked concrete: a) uniaxial (bending) and b) multiaxial 
(bending and shear) 

Thereby, in the presence of shear forces the plane section hypothesis is no longer strictly 

valid due to the appearance of distortion. Also, a sort of different force contributions and 

interactions to the shear resistant mechanism, such as shear stresses in the uncracked 

compression zone, remaining tension transferred along the crack plane, aggregate 

interlock, dowel action at the longitudinal reinforcement and the resisting mechanism of 

the transversal reinforcement, are not plainly reproduced. In addition, the significant 

nonlinearities brought by the non-orthogonal cracks and the strain-softening of the 

concrete make the analyses quite vulnerable to numerical instabilities and convergence 

problems, which is also a critical handicap of these types of models.  

Even though, an extensive research effort on shear in RC elements has emerged in the last 

years. This exertion was largely motivated by a range of historically episodes of shear 

failures that took place during the last century. Relating to non-seismic accidents, in 1955 

and 1956, in the U.S.A., a series of American Air Force Warehouses failed in shear (Figure 

1.4a) and these accidents strongly influenced the following ACI code in 1963 in terms of 

shear design. Since this code, ACI has required a minimum amount of stirrups area 

whenever the design shear load exceeds half of the shear strength provided by concrete. In 

1991 in Norway, a concrete deep water structure – the Sleipner offshore oil platform 

(Figure 1.4b) – failed under shear dominant loading conditions, causing an enormous 

economic lost. The post-accident investigations discovered that the root cause of the failure 

resulted from inaccurate structural design calculations by means of complex FE analysis: 

the shear stresses were underestimated by 47%, leading to an insufficient design of 

transversal reinforcement and thickness of the cell walls; the loss of the structure was due 
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to the failure of a cell wall under a water head of 65 meters when it was designed to be at 

70 meters, leading to a strong crack and leakage. Careful FE analyses of the structure 

performed after the accident predicted failure to occur at a depth of 62m, which 

approximately matches what actually happened (Collins, Vecchio et al. 1997). More 

recently, a highway overpass failed suddenly in Quebec in 2006 (Governement du Québec 

2007) right after a structural inspection (Figure 1.4c), causing human losses.  

 
a) American Air Force warehouses 1955-56 

 
b) Sleipner offshore oil platform, Norway 1991 

 
c) Highway overpass, Quebec, 2006 

 

 
d) Shear failure of the Hanshin expressway, Kobe 

earthquake 1995 

 
e) Shear failure of the piers of a bridge, Taiwan 

earthquake 1999 

 
f) Pier shear failure of the bridge crossing Bio Bio 

River in Chile earthquake in 2010 

Figure 1.4 – Structural shear failures 
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Regarding seismic accidents, the failures observed in concrete structures in the important 

earthquakes of the last years are mostly related to shear; some noteworthy examples are: 

Loma Prieta earthquake in 1989, Northridge in 1994, Kobe in 1995 (Figure 1.4d), Taiwan 

in 1999 (Figure 1.4e) and Chile in 2010 (Figure 1.4f). Disasters like these ones contributed 

to recognize the current feeble state of knowledge regarding shear design and putted this 

topic on the agenda of many research groups worldwide. 

From this research effort an assortment of different approaches to model the shear resistant 

mechanism of RC had emerged, with different levels of accuracy and computational costs. 

However, despite the development of more and more sophisticated models, the gap 

between the scientific level analysis and the design methods for Civil Engineering practice 

has increased. In fact, the most used analytical procedure in shear design is the Mörsch 

truss analogy that was developed more than a century ago. This design methodology is 

based on the theory of plasticity and, for that reason, is more representative of the ultimate 

loading stage.  

Moreover, even at the present, there is no agreement between different standards 

concerning the design of RC elements to shear. This disparity leads to important 

differences in the solutions given by different codes, and in some cases unsafe solutions 

are reported (Collins, Bentz et al. 2008). This disagreement between standards’ procedures 

and the difficulties to pass new models to the design field are mainly due to the inexistence 

of a worldwide accepted shear theory.  

Hence, it is globally recognised in the civil engineering community that shear mechanisms 

are not-well understood and more research is needed in this field. Moreover, the 

development of accurate and simple shear models for the everyday design is a priority. As 

a matter of fact, several models were developed in the recent years with the goal of 

extending the fibre beam elements to analysis including shear (Navarro 2009; Saritas and 

Filippou 2009; Ceresa, Petrini et al. 2010; Mohr, Bairán et al. 2010), but still without 

reaching consensus. In fact, fibre beam models can accurately simulate the behaviour of 

RC frames under combined normal and shear forces, by means of multiaxial constitutive 

equations and suitable kinematic section assumptions (Bairán and Marí 2007). 

The response of RC structures under high shear forces may also be influenced by the time-

dependent phenomena, the procedures of phased construction, by the deterioration and 

damage agents and by the repair and retrofit measures. Therefore, this is the overall 

problematic that moved this thesis. The inclusion of nonlinear shear effects into an existent 
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enhanced pure flexural fibre beam model able to simulate time-dependent and segmental 

constructed frame structures was the paramount objective of this thesis. For this purpose, a 

nonlinear fibre beam model with shear-bending interaction was developed. The outcome of 

this thesis is a numerical tool that enables a vast type of analyses with affordable 

computation times and straightforward interpretation of results, being adequate for 

nonlinear structural analysis in the engineer practice.  

 

1.2 Scope and objectives 

The general objective of this thesis is the development of a numerical model for the 

nonlinear and time-dependent analysis of existing and strengthened RC frame structures by 

taking into account the axial force-shear-bending interaction. Hence, as already mentioned, 

the model developed in this thesis intends to broaden the capabilities of an existing basic 

flexural fibre beam approach, to deal with applications where shear has a dominant role. 

Therefore, the proposed formulation is based on the numerical model CONS originally 

developed at University of California (Berkeley) by (Marí 1984) and extended at the 

Universitat Politècnica de Catalunya - BarcelonaTECH (UPC) (Marí 2000). It is a 

displacement-based FE model for the material and geometric nonlinear and time-dependent 

analysis of reinforced, prestressed and composite concrete frames.  

Regarding the extension of the flexural filament beam model for the inclusion of shear 

effects, the present work can be seen as a natural development of the previous experiences 

in this field, achieved in the Doctoral Thesis of Bairán (Bairán 2005) and Mohr 

(Mohr 2011), in an attempt to develop a simpler and less time consuming computational 

model. 

Therefore, the model proposed in this thesis is devised for analyses of 2D RC frames under 

combined axial, bending and shear forces. The features of time-dependent and sequential 

analysis available in the basic model are exploited in the proposed model by extending its 

application to the case of RC structures under multiaxial stress states. 

To achieve the general objective of this thesis a set of specific goals were considered: 

 To organize and adapt the existent basis code in order to meet the requirements for 

the implementation of the shear model. 
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 Development of a nonlinear section model for coupling of shear and normal forces, 

suitable for fibre beam formulations. 

 Extension of the shear-flexure section model for the element level, allowing for the 

consideration of shear flexibility at the structural level. 

 Implementation of the shear model into the basic model by maintaining the existent 

features of time-dependent and segmental construction procedures. 

 Validation of the proposed model through benchmarks of shear critical RC frame 

elements available in literature. 

 Struggle for solutions for the numerical instabilities that are typically found on the 

computation of cracked concrete and brittle failures. Implementation of 

continuation methods in order to improve the performance of the proposed model 

in analysing shear-critical problems. 

 Adapt the time-dependent analysis model for the case of biaxial stress states, in 

order to be coherent with the mechanical shear model.  

 Study the influence of shear in the long-term response of RC frame structures. 

 Extent the shear model to segmentally constructed sections. 

 Implementation of numerical features that allow simulating repair of structures to 

shear: supply of extra stirrups and transversal reinforcement prestressing. 

 Evaluate the accuracy of the numerical model to simulate shear damaged and 

strengthened RC frame structures. 

 Perform numerical studies on the assessment of real structures submitted to high 

shear forces and design strengthening solutions. 

 

1.3 Research significance 

The research significance of the work developed in this thesis is the implementation of a 

nonlinear shear-bending interaction formulation into a fibre beam model. By implementing 

a shear-analysis procedure in the existent non-linear and time-dependent FE program it is 

possible to perform time-dependent and evolutive construction analyses of structures under 

high shear forces. As the formulation is based on the fixed stress approach, the effects of 

shear reinforcement in the resistant mechanism of shear-critical beams are properly 

simulated, in contrast with existent proposals. 
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By these means and motivated by its computational efficiency, it is intended to create an 

alternative numerical tool to the high complex 2D/3D FE models for the nonlinear 

assessment of shear critical frame structures, both at service and ultimate limit states. Also, 

meeting the rising need for repair or strengthening of existent structures, the proposed 

model aims to be a practical engineering tool to accurately assess the structural behaviour 

and also serving as a decision tool for repair or demolitions acts. An introduction to the 

study of the long-term responses of frame structures submitted to important shear stresses 

is a further contribution of this work. 

 

1.4 Outline and contents of this thesis 

The present thesis is divided into 7 chapters. After this first opening chapter that points out 

the overall context, the most relevant motivations and objectives of the research work, an 

overall description of the state-of-the art is presented in Chapter 2. This second chapter is 

focused on the topics that are essentially related with the ambit of the research work 

carried out in this thesis. Being so, it makes a generally description of the fibre beam 

models and the very high advanced state they reached for the case of pure bending 

analysis. Afterwards, the complexity of the phenomenology and modelling of the shear 

resistant mechanism of RC elements is revised. Existent kinematic and constitutive 

theories are discussed, as well, as its adaptability to fibre beam models. Subsequently, a 

general view on the subject of repair and strengthening of existent structures is presented, 

focussing on the importance of time-dependent models able to assess the actual state of the 

structures to predict the efficiency of repair or strengthening projects. Finally, a general 

discussion on the state-of-the-art is presented. The context in which the present research is 

inserted in, and the gap of knowledge that it pretends to fill, are remarked. Accordingly, 

the options taken in the development of the numerical model, which were supported by 

previous findings reported in the literature, are highlighted.  

Chapter 3 describes in detail the proposed model – the hybrid beam-column model 

including shear effects. The explanation of the constitutive equations used for concrete and 

reinforcement, the state determination procedure at the fibre level and the assumptions 

taken at both the section and element levels are exhaustively presented. The validation of 

the model is carried out though different benchmarks of shear critical beams available in 

the literature and also by own experimental tests. The various validation examples try to 
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embrace different shear-related characteristics of the RC beams, such as, geometry, 

reinforcement, loading scheme, cracking patterns, failure modes, etc.  

In Chapter 4 the numerical analyses are enlarged for the cases of RC frames. An 

experimental validation of a RC frame test available in the literature, focused on the shear-

related mechanism and on its influence on the overall response of the frame, is presented. 

Afterwards, a parametric study on the influence of the level of longitudinal restraint on the 

ultimate response of shear-critical beams that belong to frames is carried out with the 

proposed model.  

Subsequently Chapter 5 presents an overall discussion on the topic of shear effects and 

time-dependent responses of RC frames. It is noteworthy that this chapter is not the 

foremost ambition of this thesis. However, it is a natural and logic choice to take profit of 

the existent features of the basic flexural model and adapt them to the new shear model. 

Also, including time-dependent capabilities in the proposed shear model is relevant to 

perform life-time analysis of in-service frame structures with some shear damage. 

Accordingly, the time-dependent behaviour of concrete available in the basic model for the 

1D case is enlarged to the 2D case. The validation of the model is carried out through a 

typical flexural benchmark and an experimental campaign on diagonally cracked beams 

under sustained load, both available in the literature. The parametric study presented in 

Chapter 3 on the response of shear critical beams belonging to frames is enlarged in 

Chapter 5 by considering the effects of restrained shrinkage and study its influence on the 

ultimate resistance. A general discussion on the influence of shear effects on the long-term 

deflection of beams and on its subsequently ultimate load is also sustained through another 

parametric study. It is important to say that this chapter handles very complex problems 

and is a first insight, leaving a wide range of questions to be solved in future research. 

In Chapter 6 the proposed time-dependent shear model is enlarged in order to considerer 

the features of segmental construction. By these means, the step-by-step nonlinear 

sequential type of analysis allows capturing the strengthening effects accounting for the 

state of the structure prior to intervention. After the description of the new features of the 

shear model accounting for segmental construction, a validation example based on 

experimental tests carried out on previously shear damaged and subsequently strengthened 

beams is presented. Alternative shear strengthening solutions based on vertical prestress 

are also analysed. Finally, an application of the proposed model to the numerical 

assessment and study of a possible strengthening solution for a real structure (the 

Wassnerwald Bridge in Switzerland) is presented. Actually, this chapter represents the 
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most relevant significance of this thesis, which is, to predict the response of existent shear-

critical RC frame structures and study the efficiency of suitable strengthening 

interventions. 

The main conclusions of the research work developed in the ambit of this thesis are drawn 

in Chapter 7, along with the proposals for future work. The use of the proposed fibre beam 

model to study structural problems related with shear and strengthening are the main path 

left open for future research.  

 



 

 

 

 

Chapter 2 
 

 

STATE OF THE ART ON FE MODELS FOR FRAME 

STRUCTURES 

 

 

 

2.1 Preamble 

Structural analysis can be performed by means of numerical models that simulate the 

geometry, the materials’ properties, the applied loads, the support conditions and the 

construction sequence in order to obtain the structural response. The characteristics of the 

models depend on the objective of the analysis. For instance, studying local effects with 

multiaxial stress states - such as, punching of a slab around a column - requires 3D FE 

models to obtain a satisfactory response. However, when the purpose of the analysis is to 

obtain the general response of a frame (without focusing in the local effects, e.g., the 

joints’ behaviour), more global models, based on linear elements, are generally adequate 

even when considering the nonlinear behaviour of the structure. Actually, many structures 

can be assimilated to planar or spatial frame members, and their proper simulation can be 

achieved through 1D FE models. In effect, these models present a good balance between 

accuracy, simplicity and computational demanding for the analysis of frame structures. 

Within 1D FE there are two main categories, depending on how nonlinearities are 

considered: lumped and distributed (or smeared). Regarding lumped models, the nonlinear 

behaviour of the frame elements is considered in concentrated points, usually located at the 
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end of the beams and columns or at their midpoints. These models have been extensively 

used in the dynamic and seismic analysis of RC multi-storey frames. In fact, the simplicity 

of such formulation is its major advantage; however, there are some handicaps that limit 

their application: predefined definition of the inelastic zones; a priori assumptions of the 

parameters of the model (moment-curvature, moment-rotation, etc.) and the difficulty to 

calibrate the many parameters involved. Members with extensive damage and plasticity 

cannot be accurately analysed with this type of models.  

Distributed nonlinearity has been proposed by researchers in order to overcome the 

problems of the lumped models and to be able to reach better correlations with 

experimental tests and broaden its range of applications. Therefore, in these models the 

structure is divided into elements interconnected by nodes and the material nonlinearities 

are introduced at each control section. The element behaviour is determined through the 

numerical integration of the response of key sections that are monitored throughout the 

analysis. In the specific case of fibre beam elements, each section is discretized into 

longitudinal fibres which allows accounting for the axial-bending interaction in a direct 

and rational manner and also tracing the uniaxial nonlinear response of each fibre. 

Two main beam theories are usually used in frame element models: Euler-Bernoulli (EBT) 

and Timoshenko (TBT). In the EBT it is assumed that plane sections remain plane and 

normal to the longitudinal deformed axis of the element and thus no shear deformation is 

considered. In this way, the EBT is capable of capturing the behaviour of beams subjected 

to normal forces (axial forces and bending moments) but is not able to considerer the 

influence of shear strains. In turn, the TBT assumes that plane sections remain plane but 

not necessarily normal to the longitudinal axis, so the shear deformation is considered. As 

the Timoshenko theory still assumes that the section remains plane, it means that a 

constant shear strain distribution is considered through the cross section. In Reddy’s 

second and third order beam theories (RBT) (Reddy and Wang 1997) the shear strain 

distribution is not assumed as constant, since the straightness assumption for the section is 

no longer considered. In these cases, quadratic or cubic variations of shear strains are 

assumed, leading to null shear stresses at the top and bottom faces of the beam. 

Frame element models are generally formulated either by displacement-based or force-

based approaches. On one hand, the displacement-based approach (stiffness method) is 

related to the classical finite element formulation (Zienkiewicz 1977): predefined shape-

functions are used to interpolate the displacements in the element as functions of the nodal 

displacements; the Virtual Work Principle is used to determine the stiffness matrix and the 
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load vector for each FE. Since this is an approximate method, a refined mesh is needed in 

order to achieve a satisfactory accuracy. On the other hand, in the force-based approach 

(flexibility method) the sectional forces are directly related to element forces through the 

beam’s internal equilibrium equations (Scapone, Filippou and Taucer 1996). Therefore, 

this method is theoretically exact. In the classical fibre beam approach, the stiffness 

method has demonstrated accurate performances. However, various attempts on the 

consideration of shear effects on fibre beam models have relied on the flexibility-based 

approach, as it will be later addressed on this chapter. 

The research work on nonlinear shear analysis developed in this thesis is in the ambit of 

displacement-based, 1D finite element models with distributed non-linearity. For this 

purpose, a flexural fibre beam model is used as a basis platform for the development of the 

shear model: the nonlinear and time-dependent model for the analysis of reinforced and 

prestressed concrete frames CONS (Marí 1984; Marí 2000). This model is founded on the 

FEM and on the Bernoulli’s beam theory for the nonlinear and time-dependent analysis of 

3D reinforced, prestressed and composite concrete frames. It allows the consideration of 

the nonlinear material and geometrical structural behaviour, as well as the non-mechanical 

strain fields caused by creep, shrinkage, aging and temperature gradients. Also, the time 

step-by-step analysis allows the simulation of segmental construction.  

In this chapter, after a brief description of the existent basic model for axial-bending 

analysis, the more relevant theories available for modelling RC elements under transversal 

forces are presented. Specifically, the previous works on complex shear models 

(Bairán 2005; Mohr 2011) that gave rise to the development of the simplified shear model 

in this thesis are addressed in more detail. Also, regarding the implementation of shear 

formulations in fibre beam models, the previous proposals are explained and reviewed, by 

pondering their main advantages and drawbacks. Accordingly, the fibre beam model with 

shear effects developed in this thesis is clearly contextualized in relation with the existent 

proposals.  

The main goal of the proposed numerical model developed in this thesis is the simulation 

of shear damaged structures and the evaluation of the efficiency of different strengthening 

solutions towards increasing safety. In this ambit, an overview of the repair and 

strengthening technologies and materials for shear damaged RC structures is presented. 

Also, the essential characteristics needed in a numerical model in order to accurately 

simulate interventions in damaged structures are examined. 
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Finally, after setting the background context of this work, a discussion on the present state 

of the art is presented, focusing on the contributions that the proposed numerical model 

aims to reach. 

 

2.2 Nonlinear fibre beam model for bending-axial analysis 

The basic flexural fibre beam model CONS is briefly described in the following. Its 

general characteristics, such as, geometric nonlinearities, prestressing, time-dependent 

analysis and segmental construction, were maintained in the model developed in this 

thesis. Exhaustive descriptions of the theoretical background of the basic model can be 

found in (Marí 1984;Marí 2000). 

 

2.2.1 Finite element formulation 

The general characteristics of the basic model CONS are: 

- the use of a beam-type linear Hermitian finite element, 

- the cross-sections are discretized into concrete fibres and longitudinal steel 

filaments, 

- each fibre and filament are assumed to be in a 1D strain-stress sate, 

- the plane section theory is adopted as the sectional kinematic law, 

- shear strains are not considered, 

- transversal reinforcement is neither considered, 

- perfect bond between concrete and steel is assumed, 

- both material and geometrical nonlinearities are considered. 

2.2.1.1. Hermitian finite element 

The FE used is the Hermitian beam element with 13 degrees of freedom (Chan 1982 and 

Marí 1984). Accordingly to Figure 2.1, in each external node three displacements (u, v, w) 

and three rotations (θx, θy, θz) are considered and an additional axial displacement node is 

adopted in the middle length (un). This additional node is not located in the element’s 

boundaries; therefore, it is possible to eliminate it by static condensation as it is not needed 

to maintain displacement continuity along the mesh. However, the internal node is 
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necessary for internal compatibility and equilibrium within the element’s length if the 

response is nonlinear or a variation of neutral axis position is expected between internal 

sections. 

 

Figure 2.1 – Fibre beam in model CONS (Marí 2000) 

The shape functions (Ni) that determine the displacement fields in the local x-axis of the 

beam (u0, v0, w0) from the nodal displacements are (Figure 2.2): linear functions for the 

axial displacements and torsion twist at the end nodes (N1 and N2); cubic polynomials for 

the transverse displacements (N1 and N2) and rotations (N3 and N4); and a quadratic 

function for the middle-node axial displacement (N3) with zero displacement in the 

boundary nodes and maximum in the inner node (this is also referred as bubble function), 

given as, 
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Figure 2.2 – Shape functions in model CONS 

The Navier-Bernoulli’s plane section theory is the adopted kinematic law, which can 

accurately reproduce the coupled axial-bending response of the beam element as function 

of the generalized strains. Accordingly, from the displacements (u0, v0, w0) the axial 

displacement ux and the axial strain εx in the section are obtained as 

0 0
0x

w v
u u z y

x x

 
  

 
(2.4)

2 2
0 0 0

2 2x
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  
  

(2.5)

The dependency between strains ε and nodal displacements d is given by the 

transformation matrix B as 

Bd  (2.6)

B LN (2.7)

where L is the derivate operator of the shape functions N. 

The element stiffness matrix Ke is obtained through the application of the Virtual Work 

Principle resulting in the following expression: 

T T T
e x xV L

K B DB dv B GJ B dx   (2.8)

where D is the stiffness matrix; torsional stiffness is determined along the element length 

in a separated manner through a uncoupled constitutive law by means of the axial 

transformation matrix Bx and the torsional stiffness GJ. The element internal resisting load 

vector Fe is given by: 
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T
e x xV L

F B dv B T dx   (2.9)

where σ is the internal stress vector and Tx is the torque force. The numeric integrations are 

performed by the Gauss Quadrature Method (Zienkiewicz and Taylor 2004) with two 

Gauss points in each finite element. 

2.2.1.2. Plane section theory 

RC sections of arbitrary shape are divided into concrete fibres and longitudinal steel 

filaments, as presented in Figure 2.3a. Consequently, it is possible to assign different 

materials to different fibres and filaments in a cross-section. Each fibre is assumed to be in 

an uniaxial strain-stress sate and the Bernoulli’s theory is adopted as the kinematic law 

(Figure 2.3b). Hence, the behaviour under normal and tangential forces is considered 

uncoupled, and the influence of shear and torsion on the normal deformations is not taken 

into account. Bond-slip is neglected, as perfect adherence between concrete and steel is 

considered.  

 
                                                                  a)                                                  b) 

Figure 2.3 – Sectional model: a) fibre discretization and b) plane section theory 

Consequently, the increment of axial strain Δε in each fibre is given by 

0( , ) . .y zy z z y           (2.10)

where (ε0, y, z) are the generalized strains in the cross section (respectively, the axial 

strain, the curvature with respect to the y-axis and the curvature with respect to the z-axis). 

The correspondent stresses are determined through: 

( , ) ( )nm
Ty z E        (2.11)
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where ET is the tangent stiffness and Δεnm is the non-mechanical strain due to time-

dependent phenomena. 

Accordingly, the increment of normal forces and bending moments in a cross section (ΔN, 

ΔMy, ΔMz) are given by the stress integration along the area A of the fibres and filaments: 

( , )
S

N y z dA    
( , ).y S

M y z z dA    
( , ).z S

M y z y dA     

(2.12)

The bending stiffness matrix of the cross section is also computed as the integration of the 

contributions of each fibre and filament along the cross section as, 

Ts
EA E dA   

2.Ts
EIZ E y dA   

.Ts
ESY E z dA   

2.Ts
EIY E z dA 

.Ts
ESZ E y dA   

. .Ts
EYZ E y z dA   

(2.13)

and in this manner, the relationship between generalized normal strains and forces in a 

cross section can be written as 

0

y y

z z

N EA ESY ESZ

M EIY EYZ

sym EIZM






     
          
         

(2.14)

where the coupling between bending and axial forces is considered by the cross terms of 

the stiffness matrix.  

The full sectional stiffness matrices include, in a decoupled manner, the shear forces Vy 

and Vz and the torsion moment Tx and their corresponding strains γy, γz and x. 

Consequently, the cross elements of the sectional stiffness matrix associated with coupled 

shear-bending-torsion forces are null. The shear stiffness GAy
* and GAz

* are set as linear 

throughout the entire analysis and the torsion stiffness GJ is given by a pre-defined torsion-

strain law (Tx - x).  
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(2.15)

The exact evaluation of the stiffness matrix is not a necessary requirement for the solution 

of the equilibrium in a nonlinear analysis, as the iterative process allows its continuous 

correction until reaching the converged solution, as long as the internal forces are 

evaluated properly. 

2.2.1.3. Constitutive laws 

The uniaxial stress-strain curve considered for concrete is presented in Figure 2.4a, in 

which cracking and load reversals are included. Also tension stiffening is considered: after 

cracking, the tensile stress does not drop to zero, but decreases gradually with the 

increasing strain according to a hyperbolic law. In what concerns the reinforcement steel, a 

bilinear stress-strain relationship is assumed with load reversals as presented in Figure 

2.4b. 

  

                                                a)                                                                        b) 

Figure 2.4 – Constitutive models in CONS: a) concrete and b) steel (Marí 1984) 

A trilinear model proposed by (Chan 1982) is considered to simulate the torsion of the 

element. This model considers three stages defined by different torque-twist (Tx-x) linear 
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equations: cracking; full yielding of the reinforcement and ultimate failure. The unloading 

in each phase is assumed to be elastic, considering the initial stiffness. 

Pertaining to the time-dependent constitutive laws of concrete, the considered non-

mechanical strains εnm(t) in the instant of time t are due to creep εc(t), shrinkage εsh(t), 

aging εa(t) and thermal εT(t) effects:  

nm c sh T a
c c c c c       

(2.16)

The total strain εt(t) at each time step is given by the direct sum of the mechanical εm(t) and 

non-mechanical εnm(t) strains. 

Regarding creep phenomenon, the increment of strain with time under sustained stress is 

determined through an age-dependent integral formulation based on a Dirichlet series 

(Bazant and Wu 1973). This analytical creep model is fitted, by means of the least squares 

method, to the empirical expression proposed by the Model Code 1990 (MC-90, CEB-FIP 

1992). The linear relationship between stresses and long-term strains is assumed and the 

superposition principle is considered. Concrete shrinkage is taken as a non-stress and non-

thermal influenced volume change caused by water losses from the concrete to the 

environment. The MC-90 code function is used in the numerical model to compute the 

shrinkage strain. 

In the Model Code 2010 (MC-2010, FIB 2010), new empirical relations for creep 

determination calibrated on the basis of laboratory tests are proposed, resulting into smaller 

values of the creep coefficient, comparatively with the MC-90. Pertaining to shrinkage, in 

the MC-2010, total shrinkage is subdivided into autogenous and drying shrinkage, 

resulting into higher swelling strains in comparison with the MC-90. 

The decrease in the mechanical strain due to aging of concrete is considered through a 

correction stress factor. This factor is a function of the mechanical strain at each time step 

(Marí 1984). Lastly, temperature strains occur when the section is subjected to a 

temperature gradient and is determined through the coefficient of thermal expansion of the 

material (Marí 1984).  

In the basic model, the time-dependent strains are uniaxial. In the proposed model, this 

time-dependent analysis procedure was maintained. However, due to the presence of shear 

stresses, the analysis capabilities were enlarged from the 1D to the 2D stress states. For this 
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reason, a more detailed description of the modelling of the long-term deformations is given 

in Chapter 5 for the case of 2D stress-strain states. 

2.2.1.4. Geometric nonlinearity 

To account for the geometric non-linearity, an updated Lagrangian Formulation is used 

(Chan 1982).The stiffness matrix and the internal forces of each element are determined 

with reference to local coordinates. Then, before assemblage of the global equilibrium 

equations, the local coordinate systems are transformed to global coordinates through a 

transformation matrix. In the analysis considering geometric nonlinearity, this 

transformation matrix is continuously updated in each increment of nodal displacement to 

account for the relative displacements between the two ends of the element. Thus, the local 

system for each element is continuously changing directions as the structure deforms. 

The geometric nonlinearity is also considered through the nonlinear form of the strain 

displacement relationship, as 



2 2 2
1

2x

Linear term
Nonlinear term

du du dv dw

dx dx dx dx


               
       

(2.17)

The geometrical stiffness matrix Kg is obtained by substituting the shape functions of the 

Hermitian element on the nonlinear term of Eq. (2.17), 

 
 V

T
gk C C dv  (2.18)

where C is the matrix that represents the nonlinear relation between displacements and 

strains, and is added to the elastic stiffness matrix Ke. Hence, the assemblage of the global 

matrix is performed with the total element stiffness Ke+Kg, and the equilibrium equations 

take the form of: 

( ). e e g eF K K d (2.19)

which is solved in order to determine the displacements within the iterative scheme of 

Newton-Raphson. 
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2.2.2 Prestressing steel 

The effect of prestress (in pre- and post-tensioned structures) is considered as an equivalent 

load vector that is in equilibrium with the forces of the prestressing tendons (Figure 2.5). 

On one hand, the contribution of prestress to the element end forces is determined by the 

transformation of the prestress force into equivalent nodal loads and bending moments. On 

the other hand, the prestress steel contribution to the stiffness of the element is added (after 

bonding in the case of post-tension) assuming an average eccentricity of the tendon 

segment; conversely, elastic increments of prestressing forces are also considered after 

bonding. 

 

Figure 2.5 – Prestressing consideration in CONS (Marí 1984)  

A multilinear stress-strain curve is used for prestressing steel. The prestressing losses due 

to friction and anchorage slip are considered in the determination of the prestressing forces 

acting at each time-step (Van Greunen 1979). Stress relaxation is also taken into account 

through the relaxation curve proposed by (Magura, Sozen et al. 1964). 

 

2.2.3 Time-dependent analysis 

The time step-by-step analysis scheme allows accounting for the time-dependent 

phenomena of creep, shrinkage, aging and temperature variations. A step-forward 

integration is performed by continuously adding the results obtained at each time step to 

the previous ones, until reaching the end of the analysis. 

The increment of non-mechanical strains Δεnm occurring during a time interval, from time 

tn-1 to tn, is evaluated first. Afterwards, the initial strain approach (Kabir 1976) is adopted 

to compute the structural response during a time-step due to the non-mechanical strains. In 

this manner, the correspondent equivalent nodal load increment due to non-mechanical 

strains ΔFnm at time tn is given by 
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nm T nm

V
F B D dv   (2.20)

Thus, the load increment to be applied in the structure ΔFn at the instant tn is determined by 

adding ΔFnm to the increments of external nodal load ΔRi
n and the unbalanced load vector 

left over from the previous time step ΔRu
n-1.  

 

2.2.4 Segmental construction features 

The phased characteristic of the model CONS allows accounting for modifications 

occurring during the life-time of a structure. This includes the simulation of segmental 

construction procedures and subsequent later changes, in which repair and strengthening 

interventions are included. In a specific manner, in each construction phase, any variation 

of transversal and longitudinal geometry, structural scheme, connections between 

elements, boundary conditions, applied loads and materials properties can be reproduced 

by the numerical model.  

Schematic representations of several segmental constructed structures are presented in 

Figure 2.6: a) segmental constructed bridges requiring continuous changing of the 

longitudinal scheme and b) segmental constructed cross-sections requiring evolutionary 

transversal scheme, which encloses changes on the geometry and reinforcement of the 

cross-section.  

 
                                            a)                                                                          b) 

Figure 2.6 – Segmental construction: a) longitudinal and b) cross section (Marí 2000) 
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Another relevant feature of the model is the fact that each cross section is composed by 

several filaments that can be made from different concrete and steel types, with different 

active and removal timings. For this reason, it is possible to simulate deterioration and 

repair procedures, such as: loss and replacing of concrete and reinforcement, sealing of 

cracks, enlargement of concrete cross section and adding of reinforcement, external 

prestressing, repair the cross section with different materials, etc. 

 

2.2.5 Code organization 

The computer algorithm that implements CONS was originally written in FORTRAN77 

language, and presents a module configuration in a way that can be improved by changing, 

adding or replacing subroutines. In a general manner, the basic model presents four loops, 

as it is schematically represented in Figure 2.7: (i) constructive phases, (ii) time steps, (iii) 

load steps and (iv) iterative procedure.  

Pertaining to the outer loop, in each construction phase changes on longitudinal and 

transversal geometry, loading and boundary conditions may take place. Therefore, data 

about structural geometry, external joint loads, temperature distributions and material 

constitutive laws have to be compiled at the start of each phase.  

Subsequently, the time that passes from one constructive phase to another is divided into 

time steps. In each time step the materials’ properties are updated and the increments of 

non-mechanical strains and the correspondent equivalent load vector ΔFnm are computed. 

The load vector F is also updated. 

Then, the total load obtained in each time step F is divided into several load steps ΔF. In 

each load step, the global equilibrium equations, which account for the nonlinear response 

of the materials at the current stress stage, are solved through the direct stiffness method.  

In the inner loop, the iterative Newton-Raphson procedure is performed within each load 

step until convergence is achieved. The convergence can be controlled either by norms of 

loads, displacements or sectional strains. In this manner, it is possible to trace the structural 

load-displacement curve along the different stages of the material behaviour: elastic, 

inelastic (cracking included) and ultimate ranges.  

The basic model was reorganized in the ambit of this work in order to be able to clearly 

identify the different levels of analysis within a structure, and to be ready to incorporate the 
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proposed shear formulation. Although, the general loops formerly described were 

maintained. 

 

Figure 2.7 – General scheme of the nonlinear and time-dependent model CONS 

 

2.2.6 Applications 

The nonlinear model CONS has been extensively validated and used for performing 

structural analyses of flexural dominant cases, some examples are (Marí 1984; Marí and 

Valdés 2000; Marí 2000; Marí and Bairán 2008). These analyses comprised theoretical and 

parametric studies, modelling of laboratorial tests and practical applications regarding 
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existent structures. From the many conducted applications, four cases are pointed out in the 

following, representing the type of analyses and results that are possible to accomplish 

with the model CONS. 

For consulting purposes during the design phase, a nonlinear analysis of the 250m span 

arch bridge Los Tilos (Figure 2.8) was carried out. The bridge was segmentally constructed 

and the presence of important transversal and longitudinal loads demanded accurate 

numerical studies to predict structural safety and functionality, both during the constructive 

process and also along its service life. The nonlinear model allowed ensuring that the 

dimensions, materials, support conditions and constructive method complied with the 

functionality and security demands (Marí 2003). 

 

Figure 2.8 – Los Tilos bridge analysed with CONS (Marí 2003) 

The experimental tests performed by (Souza and Appleton 1997b) on RC beams previously 

damaged in flexure and subsequently strengthened were simulated with the model CONS 

(Figure 2.9). The strengthening measures consisted on the application of extra longitudinal 

steel and enlargement of the concrete cross-section web (Figure 2.9c). As the model is able 

to take into account the effects of existing damages previously to the strengthening 

interventions, a very good fitting between the numerical and experimental results was 

achieved, as can be observed in Figure 2.10 (Marí and Bairán 2009). 
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a) 

  b) 

c) 

Figure 2.9 – Experimental tests on flexural damaged and subsequently strengthened RC beams by 
(Souza and Appleton 1997): a) load test, b) cross section of the damaged beam and c) cross-section 

after strengthening 

 

Figure 2.10 – Force-displacement curve of the beam after strengthening (Marí and Bairán 2009) 

A theoretical application analysis of a 3-span continuous RC pedestrian bridge affected by 

corrosion of the upper reinforcement and concrete cover of the top face was also carried 

out with the nonlinear model CONS (Figure 2.11). The efficiency of a retrofit measure 

consisting on replacing the degraded concrete by a new and thicker layer was studied, by 

evaluating its performance during service time and in failure. The predicted reduction of 

the carrying capacity of the bridge due to the development of corrosion with time is 

presented in Figure 2.12a. In addition, the computed deflection at the central section of the 

bridge is depicted in Figure 2.12b, for the cases with and without degradation, and after 

being retrofitted. It was observed that the retrofit measures avoids the collapse and keeps 
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the deflection parallel to the curve without degradation, although an increment of the 

deformations is observed due to the initial damage. 

 

Figure 2.11 – Elevation and cross section of the RC pedestrian bridge (Marí and Bairán 2008) 

 
                                        a)                                                                                          b) 

Figure 2.12 – Predicted response of a RC pedestrian bridge with time: a) load carrying capacity and 
b) displacement at mid-span (Marí and Bairán 2008) 

The long-term behaviour under sustained load of a continuous precast concrete girder 

bridge was studied through a laboratorial test, and it was also simulated with the numerical 

model CONS (Marí and Valdés 2000). The model consisted on a 24m long post-tensioned 

continuous box girder bridge beam with two spans and a U-shape cross-section (Figure 

2.13a). It was segmentally constructed in laboratory accordingly to the phases presented in 

Figure 2.13b. The computed results achieved a very good agreement with the experimental 

data (Figure 2.14), demonstrating its capability to simulate complex time-dependent 

structural behaviour. The proper simulation of the construction process showed to be 

essential in the correct prediction of the latter response of the beam.  
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                                  a)                                                                              b) 

Figure 2.13 – Study of the long-term behaviour of a continuous precast concrete beam under 
sustained load: a) experimental model in the laboratory and b) construction process (Marí and 

Valdés 2000)  

 

Figure 2.14 – Deflection at the centre of the longest span (Marí 2000)  

The presented examples demonstrated that the model CONS is a powerful tool for 

assessment of structures during design, construction, service and ultimate stages. It is also 

capable of evaluating the serviceability and durability performance during the life-time of 

damaged and degraded structures, as well as predicting the efficiency of strengthening and 

retrofit measures. Moreover, for the cases of dominant bending loading, its accuracy and 

aptness for a very wide range of structural applications has been demonstrated. 

In fact, what motivated most the extension of this numerical model to the cases where 

shear effects are dominant or cannot be neglected was the good past experience in 

analyzing and assessing complex structures. Actually, the potential and accuracy of this 

numerical tool, as well as its range of applications and studies, will increase significantly 

with the incorporation of a nonlinear element with due account of shear. 
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2.3 Shear models for RC 

2.3.1 Mechanisms of shear resistance 

The research on the shear resistance mechanism of RC beams goes back to end of the 19th 

century with the appearance of steel strips as stirrups in the constructions. It was after the 

work of Ritter and Mörsch (Figure 2.15a) that a proposal for the determination of the shear 

behaviour and shear capacity appeared: the truss model. This model explains the shear 

carrying mechanism of a RC beam through a truss analogy (Figure 2.15b): the flow of 

stresses is idealized as a series of diagonal concrete struts in compression (shaded concrete 

strips) and tension ties of reinforcement; the force components in each element are 

determined through statics. This approach is the basis of the current shear design methods.  

  
                                                 a)                                                                   b) 

Figure 2.15 – Research on shear by Mörsch in 1908: a) shear failure of a T-shape beam without 
stirrups and b) truss model (adapted from Balázs 2010) 

Leonhardt and Walther (1961), through their early experimental tests on shear critical RC 

beams, stated that the complexity of the shear mechanism is the large number of 

parameters involved and the difficulty to understand each one in a separate manner and its 

influence on the other parameters. Accordingly, as conclusions of the experimental 

campaign, the factors affecting the shear strength of RC beams were settled as: the quality 

of concrete; the degree of reinforcement; the quality of the bond between the reinforcement 

and the concrete; the curtailment of flexural reinforcement; the quality of the anchorage of 

the reinforcement bars; the shape and the effective depth of the cross-section; the type of 

loading and the moment-shear ratio. 

As explained by (Park and Paulay 1994), shear is resisted in a RC element via two 

mechanisms: the beam-action and the arch-action. As the shear force is the derivative of 

the bending moment, it consists of two terms: (i) variation in the flexural forces acting with 
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a constant lever arm (beam-action) and (ii) constant flexural forces acting with a variable 

lever arm (arch-action). Pertaining to beam elements, the contribution of the beam-action is 

usually more important than the arch-action. The former is only important after yielding, 

when the neutral axis experiments relevant variation or bond-slip of the longitudinal 

reinforcement occurs. 

The load carrying mechanism of a beam involves a system of principal tensile and 

compressive stresses that continuously change directions and magnitudes along the 

different cross sections. The resistance mechanism of a cracked RC element subjected to 

shear is composed by a sort of different contributions of forces (Figure 2.16a): shear 

stresses in the uncracked compression zone, shear stresses along the crack plane by means 

of aggregate interlock, dowel action of the longitudinal reinforcements and, residual 

tension transferred along the crack plane.  

 
                                                a)                                                                                       b) 

Figure 2.16 – Mechanism of shear resistance: a) concrete and b) transversal reinforcement 
(Bairán 2005)  

The presence of stirrups in RC beams introduces a truss resisting mechanism (Figure 

2.16b). Strut-and-tie models, which are based in this mechanism, are the more widely used 

methods to design RC beams in shear. This design methodology is based on the theory of 

plasticity and, for that reason, it is more representative of the ultimate loading state. Apart 

from the truss-action, transversal reinforcement also provides support for the dowel action 

of the longitudinal steel, contributes to aggregate interlock by limiting the crack width and 

increases the confinement in the areas under compression and the bonding resistance. 

When the principal tensile stresses reach the tensile strength of concrete, cracks 

perpendicular to these principal stresses appear. In a beam under concentrated or 

distributed loading, vertical cracks appear in the pure bending areas and diagonal cracks 

appear in the web in regions with high shear stresses (Figure 2.17a). Shear cracks can also 

appear as a development of existent vertical cracks. The formation of cracks causes the 



34 Chapter 2

 

transference of the sustained stresses to the transversal reinforcement and the diagonal 

compression concrete struts. This stress transference is highly dependent on the geometry 

of the cross-section and on the quantity and direction of the stirrups.  

Hence, different shear failures may occur in RC beams: (i) ‘diagonal tension failure’ 

(Figure 2.17b), which happens when diagonal cracks pass through the transversal 

reinforcement, the beam is separated in two pieces and the longitudinal steel is pushed to 

the bottom (this mechanism is also typical of beams without transversal reinforcement, 

failure occurring suddenly through a main diagonal crack); (ii) ‘web reinforcement failure’, 

when the transversal reinforcement yields and fails in the truss-mechanism generated in 

beams with numerous shear cracks, (iii) ‘web compression failure’ (Figure 2.17c), which 

occurs when the stresses on the diagonal struts reach the compressive strength of concrete 

and crush before yielding of the stirrups and, (iv) ‘anchorage failure’ (Figure 2.17d), when 

there is a loss of anchorage of the longitudinal reinforcement in the support, and the 

compressive struts lose support and the beam fails in shear along the web.  

 
a) 

 
b) 

 
c) 

 
d) 

Figure 2.17 – Shear in RC beams: a) cracking, b) diagonal tension failure, c) web crushing failure 
and d) anchorage failure (Leonhardt 1988)  

From the time of Ritter and Mörsch until nowadays, and especially during the last decades, 

extensive experimental campaigns were carried out, focusing on different aspects of the 

shear mechanism. From all this experimental research a huge quantity of empirical 

formulations appeared, and a variety of models for the shear resistance mechanism of RC 

had been proposed; a general research review on this topic is given in (Collins, Bentz and 

Sherwood 2008). In that prominent research work, many aspects about the shear resistance 

mechanism of plain and reinforced concrete were discussed: concrete contribution to shear 
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resistance; effects of prestressing; size effect; minimum quantity of transversal 

reinforcement; inclination of the main diagonal cracks; concrete-steel bonding; influence 

of force’s interaction; etc. Even tough, due to complexity of the mechanisms and the large 

number of parameters involved, diverse cumbersome issues remain unclear and, for this 

reason, consensus and generality on shear resistance of RC elements has not been 

accomplished. 

The complexity of the phenomenology of shear in RC is reflected on the difficulty to find 

solutions for its computational modelling. In fact, the development of nonlinear FE models 

allowed performing shear analyses of RC structures. However, these powerful FE models 

are still struggling with the accuracy of constitutive models and the very high demands of 

computational resources, instability and convergence problems (Broo 2008). Pertaining to 

frame models with inclusion of shear effects, it is aimed to give accurate solutions with 

low computational time requirements. In this ambit, the existent proposals essentially 

distinguished from each other in terms of the shear kinematic assumptions taken at the 

sectional level, and to the type of multiaxial constitutive equations, as it will be discussed 

in the following. 

 

2.3.2 Constitutive models 

In the fibre beam formulations, the nonlinear responses of the element and section are 

directly determined from the nonlinear behaviour of the fibres. Consequently, the accuracy 

of the results is directly correlated on the precision of the constitutive models. In the case 

of the traditional fibre beam elements, since only normal stresses are considered, the 

constitutive laws are limited to the uniaxial case. When shear is considered, the fibres are 

no longer under a uniaxial stress-strain state. In this manner, suitable constitutive models 

able to account for diagonal cracking and multiaxial strain-stress states are essential to 

incorporate shear effects into fibre beam models.  

However, modelling the concrete behaviour under multiaxial strain-stress states is not a 

straightforward task. Aspects such as cracking for low stresses levels, nonlinear 

relationships between stresses and strains, the different concrete behaviour under 

compression and tension, and the softening phenomena, generate a very anisotropic 

behaviour when concrete is submitted to multiaxial stress states.  
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There is a wide variety of constitutive models for the analysis of RC structures under 

multiaxial stress states. Some examples are: (i) the microplane models proposed by 

(Bazant and Ozbolt 1990; Ozbolt and Bazant 1992; Carol, Prat and Bazant 1992; Carol and 

Bazant 1997); (ii) the damage and fracture mechanics models proposed by (Bazant and Oh 

1985) and; (iii) the plasticity models (Chen 1982). A comprehensive review on this topic 

can be found in (CEB 1996). 

The smeared crack models, in turn, consider cracking as a distributed effect with 

directionality and cracked concrete is simulated as a continuous medium with anisotropic 

characteristics (Petrangeli and Ozbolt 1996). This approach is particularly suitable for fibre 

beam models considering combined loading, as the information about the direction of 

damage is remitted to a single integration point.  

By seeking for a rational and general model for the behaviour of RC in shear, an extensive 

experimental campaign was carried out in the University of Toronto, involving tests of RC 

panels subjected to bi-dimensional stress states (Figure 2.18). The Modified Compression 

Field Theory – MCFT (Vecchio and Collins 1986) was developed by Vecchio and Collins 

in 1982 in the context of this experimental work, as a smeared-crack model with rotating 

cracks, considering cracked concrete as a material with their own stress-strain 

relationships. The main assumptions of the MCFT are (Figure 2.19): 

- the reinforcement is considered smeared in concrete, 

- cracks are distributed in concrete and are able to rotate continuously, 

- loads are applied uniformly in the element, 

- equilibrium and compatibility equations are evaluated through the average value of 

the stresses and strains both in the crack plane and in the concrete between cracks, 

- local check of the stress state is performed at the crack plane to account for the 

possible steel yielding, 

- principal directions of the stress and strain tensors coincide, 

- MCFT is loading history independent 

- it assumes perfect bond between reinforcement and concrete, 

- shear stresses in the reinforcement are assumed as null, 

- independent constitutive relationships are considered for concrete and steel. 



State of the art on FE models for frame structures 37

 

 

Figure 2.18 – RC panel element tested by (Vecchio and Collins 1986)  

 
                        a)                                                             b)                                                              c) 

Figure 2.19 – MCFT: a) RC panel subject to in-plane stresses; b) average concrete strains; and c) 
free body diagram (Wong and Vecchio 2002) 

The Disturbed Stress Field Model – DSFM was presented by (Vecchio 2000) as a further 

improvement of the MCFT, motivated by the experimental observation of the different 

principal angles of the stress and strain tensors after cracking and yielding. Thus, DSFM is 

a mixed formulation of fully rotating-crack and fixed-crack approaches, in which the 

principal directions of stresses and strains do not coincide; this difference is taken into 

account as a shear crack-slip through a strain offset. 

Parallel to the development of the MCFT, in the University of Houston an experimental 

campaign on the behaviour of RC membranes was carried out by Hsu and his group. As 

result, a theory named Rotating-Angle Softened Truss Model - RA-STM (Hsu 1988) was 

developed, differing from the MCFT on the softening model and stress-strain relationships 

for concrete in compression and tension. The tension-stiffening model in el MCFT is 

referred to the concrete and requires checking the crack state (control of the aggregate 

interlock), whilst in the RA-STM it is referred to the steel. In this manner, safety check at 

the crack level is not necessary in the RA-STM, as the stress-strain relation for steel 
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already takes into account the possibility of local yielding at the crack. In addition to this 

model, the Houston group also proposed the Fixed-Angle Softened Truss Model - FA-

STM (Pang and Hsu 1996), which assumes that concrete struts remain with the same 

inclination as the initial cracks, which can be defined as the principal stress directions in 

concrete at the onset of cracking.  

The constitutive model OU3DC proposed by (Bairán 2005) and used by (Mohr 2011) is 

based on the rotating-smeared crack approach, dividing the total strains in two 

components, the mechanical and non-mechanical strains. The mechanical strain component 

reflect the changes in the stress state and the non-mechanical strain component represent 

an offset that is not directly related with the state of the material (may include the influence 

of temperature and time-dependent deformations). In turn, the mechanical strain is 

decomposed in an elastic (fully recovered after unloading) and a plastic (remaining after 

unloading) part. The backbone equations for concrete in compression and tension are 

defined in each principal direction. The current compression strength and cracking stress in 

the backbone curves are determined through a 3D failure surface of Willam and Warnke 

(Figure 2.20).The effects of confinement of the transversal steel are accounted for in the 

model. A model for lateral deformations of concrete under cyclic uniaxial compression 

developed by (Osorio, Bairán and Marí 2012) is considered. For reinforcement, uniaxial 

models are used. 

 
Figure 2.20 – 3D failure surface for the constitutive determination of the concrete state (Bairán and 

Marí 2007)  

The constitutive formulation used in the model proposed in this thesis is based on the 

MCFT. For this reason, a more comprehensive description of this formulation is presented 

in the following.  
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2.3.2.1. Modified Compression Field Theory 

The MCFT consists in four sets of relationships: compatibility, equilibrium, constitutive 

laws and crack check. 

Compatibility: Perfect bond between concrete and steel is considered. In this case, the 

average strain in concrete is equal to the average strain in the reinforcement (Figure 2.21a). 

               
                                                a)                                                                        b) 

Figure 2.21 – Compatibility assumptions in MCFT: a) average concrete strains and b) Mohr´s 
Circle of average strains (Vecchio and Collins 1986)  

Through the 2D strain state of the element (εx, εy, γxy), the average concrete principal strains 

(εc1, εc2) and the principal strain direction θε1 (assumed to be equal to the principal stress 

direction), can be determined through the Mohr’s circle of strains (Figure 2.21b): 
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Equilibrium: The resultant applied stresses in the x- and y-directions are resisted by the 

average stresses (Figure 2.22), composed by the stresses in concrete (fcx, fcy) and in 

reinforcement (fsx, fsy). The externally applied shear stress is balanced by the average shear 

stress in concrete υxy. The reinforcement is considered smeared through the ratios ρx, ρy in 

the x-and y-directions, and average stresses in concrete can be determined by applying the 

Mohr’s circle (Figure 2.22c). 
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                                         a)                                     b)                                            c) 

Figure 2.22 – Equilibrium assumptions in MCFT: a) average concrete stresses; b) average concrete 
stresses in principal directions and; c) Mohr’s circle of average stresses (Vecchio and Collins 1986) 

Constitutive laws: The empirical stress-strain curves for the material modelling were 

derived through the experimental tests performed in the RC panels. Regarding concrete in 

compression, the constitutive laws relates the principal compressive stress fc2 with the 

principal compressive strain εc2. During the panel element tests, it was found that the 

stress-strain relations in cracked RC under 2D stress state are significantly different than 

the ones obtained in uniaxial element tests. In fact, the compressive strength and stiffness 

of cracked concrete decreases in the presence of the coexistent principal tensile strain εc1 in 

the direction normal to compression. This phenomenon led to the development of the so-

called ‘compression softening formulation’ (Figure 2.23a), in which the maximum 

compression stress in cracked concrete fp is expressed as function of the principal tensile 

strain ε1 (Vecchio and Collins 1986). 

 
                                               a)                                                                                    b) 

Figure 2.23 – Constitutive models for concrete in MCFT: a) compression and b) tension (Vecchio 
and Collins 1986) 

Concerning to concrete in tension (Figure 2.23b), the pre-cracking response is given by a 

linear function. The cracking strain εcr is determined as function of the concrete cylinder 

compressive strength fc
’ through the ACI expression (ACI Committee 318 1995) or the 
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function proposed by (Bentz 2000). After cracking, tensile stresses are resisted by concrete 

between the cracks until high levels of tensile strains, corresponding to the so-called 

‘tension stiffening phenomenon’, in which the tension stiffening factor F(ε1) (see 

expression in Figure 2.23a) was proposed by (Vecchio and Collins 1986), later modified in 

(Collins and Mitchell 1987) and more recently by (Bentz 2000). 

Steel is simulated through a bilinear relationship, in both the x- and y-directions, between 

the average stresses (fsx, fsy) and the average strains (εsx, εsy). 

Crack check: Tension stiffening allows concrete to carry average tensile stresses after 

cracking (Figure 2.24a). However, in a crack concrete does not carry tensile stresses, so an 

increment in the reinforcement is generated in order to equilibrate the average tensile 

stresses (Figure 2.24b). For this reason, the transmission of this stresses along the cracks 

requires ensuring that the reserve capacity of the reinforcement is not reached. Interface 

shear stresses υci in the concrete cracked surface develop as consequence of the local 

increment of reinforcement stresses. MCFT limits this value through the aggregate 

interlock mechanism formulation proposed by (Walraven 1981) (Figure 2.24c), which sets 

a limit to the concrete tensile principal stress, i.e., it limits the tension stiffening effects as:  
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                          a)                                          b)                                                 c) 

Figure 2.24 – Crack check in MCFT: a) average and b) local stresses at a crack (Wong and Vecchio 
2002) and; c) Aggregate interlock (Vecchio and Collins 1986) 

This limiting expression is a crucial procedure of the MCFT, as disregarding it can 

generate unsafe results. Though, crack check expressions are function of the average crack 

width w, considered as the product of the average concrete stress and the average spacing 

perpendicular to cracks, whose determination is not simple nor well defined. In conclusion, 
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the MCFT has proved to be a powerful tool in predicting the structural response of RC 

beams in shear. 

 

2.3.3 Sectional kinematic approaches considering shear effects 

The plane section hypothesis gives an adequate relationship between normal strains and 

stresses when a cross section is only submitted to normal forces. However, when tangential 

forces are applied this formulation is no longer valid due to the appearance of distortion. In 

fact, actual distribution of shear strains and stresses in the cross-section is complex and 

state-dependent, showing important variations while cracking is developing, and when 

approaching the ultimate state; in addition, it also depends on the geometry and distribution 

of the reinforcement.  

The presence of shear forces generates a variation of the bending moments along the 

beam’s axis. Due to this bending increment, a fibre in the longitudinal direction is 

submitted to an increment of axial stresses that are equilibrated by out-of-plane stresses, as 

deduced by Jourawski in 1856 (Figure 2.25).  

 

 

a) b) 

Figure 2.25 – In plane shear stresses in a beam deduced by Jourawski in 1856: a) internal forces in 
a beam and b) equilibrium in a fibre 

Hence, the equilibrium equation of the fibre is given by: 
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and the shear stress at any point of the section τxz(z) can be written as: 
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In case of isotropic-elastic material, the solution for the former equation is straightforward 

and well-known:  
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where Q(z) is the first moment of area integrated from the bottom of the section to point z 

and b(z) is the width of the cross section at the coordinate z. By means of the elastic 

tangential modulus G, the shear strain γxz can be directly written as: 
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However, due to the different nonlinear responses along compression and tension, cracked 

concrete presents a strong anisotropic behaviour, in which coupling of normal and 

tangential stresses and strains appears. In this case, the determination of shear stresses and 

strains along a cracked cross section becomes a difficult task, as it is dependent on the state 

of the material and on the sectional geometry. Hence, this problematic is the essence of the 

difficulty of modelling nonlinear response of RC sections with the presence of shear 

forces. In this manner, finding a solution or approximation for Eq. (2.27) and Eq. (2.28) is 

the basis for a kinematic constraint to model shear in cracked RC sections (Bairán and 

Marí 2007). 

In attempting to extend frame models to loading conditions that include shear effects, 

several theories for the kinematic sectional response under tangential and normal forces 

were developed. In this manner, sectional kinematic models for RC under coupled loading 

forces can be divided in two general groups: 

(i) ‘The approaches considering the inter-fibre equilibrium’, where shear stress-strain 

distributions are state-dependent and consequently change during loading. These 

approaches are equivalent to the force-based sectional model, as internal equilibrium 

between fibres is satisfied. Models that belong to this group are highly complex, and are 

able to consider force-interaction in its formulation with high accuracy. However, its high 

complexity and computational demanding limit their straightforward application in fibre 

beam models. The models Dual Section Analysis (Vecchio and Collins 1988), 
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Longitudinal Stiffness Method (Bentz 2000), TINSA (Bairán 2005) and the model of 

(Mohr 2011) belong to this type and are subsequently described. 

(ii) ‘The fixed pattern approaches’, where an a priori fixed kinematic constraint is assumed 

in the cross section. These approaches are equivalent to the displacement-based sectional 

model, and estimate the internal shear stress-strain distribution in the cross section (τ-γ) by 

assuming a shear strain or stress pattern constant during the whole loading process 

(Vecchio and Collins 1988). The inter-fibre equilibrium, in these cases, is not directly 

verified, as compatibility in the transversal direction is not guaranteed. These proposals are 

less computational demanding and less accurate than the previous ones.  

A comprehensive state of the art report on sectional models for RC elements under 

tangential and normal forces is offered in (Bairán and Marí 2007). The sectional kinematic 

models with more relevance to the development of this thesis are presented in the 

following section.  

2.3.3.1. Dual Section analysis 

The Dual Section analysis was originally proposed by (Vecchio and Collins 1988), 

pretending to solve numerically the gradient of normal stresses generated by the presence 

of shear forces (Figure 2.25), by applying the Finite Difference Method (Figure 2.26a): 
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in which it is required the evaluation of the normal stresses in two different sections (σx(x1), 

σx(x2)), separated by a distance s. From the equilibrium of the two controlled sections, the 

distribution of shear strains and stresses is determined through an iterative procedure, 

schematically presented in Figure 2.26b.  

It is clear that this proposal is not a sectional model as it needs information outside the 

section. Also, a special beam element has to be formulated in order to integrate separately 

shear and bending. Besides being a rigorous analysis approach where inter-fibre 

equilibrium is accomplished, it is time consuming, has problems of stability and cannot be 

introduced easily into a FE code as an independent sectional model. 
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                                  a)                                                                           b) 

Figure 2.26 – Dual section analysis: a) body diagram of a concrete fibre and b) solution procedure 
(Vecchio and Collins 1988) 

2.3.3.2. The Longitudinal Stiffness Method 

The Longitudinal Stiffness method is a local sectional model that satisfies inter-fibre 

equilibrium and was proposed by (Bentz 2000) in order to enhance the accuracy and 

stability of the Dual Section Analysis method. In this method, the chain-rule is used to 

determine the gradient of normal stress as the derivative of the stress with respect of the 

element’s axis. It requires an initial shear strain pattern as a function of the average 

sectional shear deformations (that can be assumed as the Jourawski solution), 
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where A is the area of cross section. This shear strain profile is used for the further load 

steps. The Bernoulli’s plane section that computes the axial strain is combined with the 

current strain pattern. In this manner, the strains in each fibre are determined from the axial 

strain, curvature and average shear strain of the cross section, 
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and the differential increment of stress is given by 
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where Dt is the tangent stiffness matrix of the fibre. Equilibrium in the transversal direction 

is achieved through static condensation of the term σz. In this manner, the derivative of the 

normal and shear stresses with respect to the x-axis is computed through the chain-rule and 

considering Eq. (2.32) and Eq (2.34) as: 
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Hence, in contrast to the Dual Section Analysis, this formulation only requires information 

from a cross-section of the frame. Only 1D shear flows are considered, and for this reason, 

its application is limited to in-plane bending and shear. 

2.3.3.3. Theory of Bairán-Marí 

The model proposed by (Bairán 2005) solves the problem of the total six force interactions 

at the section level. By applying equations from the theory of continuum solid mechanics, 

the model considers inter-fibre equilibrium without any assumption about the stress or 

strain distributions. This implies that the distributions of shear strains and stresses change 

continuously depending on the state of the section. This theory was implemented in the 

computer program TINSA - Total Interaction Nonlinear Sectional Analysis. The detailed 

theoretical formulation and validation examples can be found in (Bairán and Marí 2006; 

Bairán and Marí 2006; Bairán and Marí 2007a; Bairán and Marí 2007b). The main 

characteristics of the model are outlined in the following. 

The cross section is simulated as a 2D domain under the six internal forces and 

correspondent strains (Figure 2.27a): axial, shear along y- and z-axis, bending along y- and 

z-axis and torsion. The cross section is discretized into plane elements of concrete, linear 
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elements for transversal steel and point elements for longitudinal steel. Accordingly, the 

stresses applied in a fibre are represented in Figure 2.27b. 

 

 

                                          a)                                                                                  b) 

Figure 2.27 – Theory of Bairán-Marí: a) sectional problem domain and b) fibre equilibrium (Bairán 
and Marí 2007a)  

The sectional displacement field u is defined by the Bernoulli’s plane section theory ups in 

addition to a three-dimensional warp-distortion field uw, as schematically represented in 

Figure 2.28a. In this sense, the additional displacements uw represent an improvement of 

the plane section approach to approximate the actual displacement of the solid, see Figure 

2.28b. 

 

                                     a)                                                                        b) 

Figure 2.28 – Theory of Bairán-Marí: a) displacement field and b) typical solution on the PS-
distortion system (Bairán and Marí 2007b) 

The sectional warp-distortion field uw is considered as an interpolation through the nodal 

displacements by a shape function (NF): uw ≈ NFdF. The nodal warping values dF are 

considered as a function of the generalized sectional strains of the beam element 

(ζ*): dF = A(ζ*). The considered generalized strain vector in the section ζ* is composed by 
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the axial strains, the bending curvatures, the torsion curvature and its derivatives with 

respect to the x-axis 
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and is obtained from the six-component vector of generalized strains es as: 
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where matrix Ω defines the generalized shear strains in the reference axis of the beam 

element as functions of the bending curvature derivatives and matrix Ξ considers the 

derivatives of the axial and torsion strains as functions of the correspondent applied loads. 

A is the distortion matrix that relates the generalized strains and its derivatives with the 

nodal values of the section’s distortion strains, and is accomplished by internal equilibrium 

considerations, strain compatibility equations and energetic balance. 

The six strain components of the cross sectional deformation field are obtained as: 
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where NPS is a matrix of shape functions determined from Bernoulli’s plane theory and BF 

is the distortion interpolation matrix. The differential equations of equilibrium and 

compatibility among fibres are defined and solved numerically. 

This model is independent of the constitutive equation, hence any type of 3D model can be 

used. In particular, the original work used the orthotropic multiaxial nonlinear equation for 

concrete OU3DC previously described in Section 2.3.2, which considers cracked induced 

anisotropy.  

Hence, the six-component stress field σ is obtained through the nonlinear 3D constitutive 

equation with the generalized form 

 PS w PS wD D          (2.42)

[ ]T
x y z xy xz yz       (2.43)
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where D is the full material stiffness matrix. Applying the Virtual Work Principle, the 

sectional stiffness matrix Ks is obtained: 

* *T

s s s

T T
s

K

K B DB dA

 

   
(2.44)

where the matrix B* evaluates the material 3D strain field as function of the beam element 

sectional strains. The accomplished stiffness matrix is full, considering all the couplings 

between the 6 forces. 

The model is able to reproduce the force interaction within a cross section, such as coupled 

normal and tangential forces, for any shape and any reinforcement layout. As this model 

treats forces and deformations in a single cross section it can be independently 

implemented in any program of structural analysis with bar elements, regarding any type of 

beam element formulation. 

In Figure 2.29, a result of the model TINSA representative of its capacity to account for 

force coupling is represented in the predicted curves of moment-curvature of a RC cross 

section for different levels of shear force. It is notable, that for lower shear-spans and 

consequently increasing shear forces, there is an important reduction of ductility and 

ultimate bending moment. 

 
Figure 2.29 – Moment-curvature curves for various shear forces (shear-spans) (Bairán 2005) 

The model TINSA proved to be accurate in predicting the sectional response under 

complex multiaxial loading conditions. However, its high complexity and computational 

demanding makes implementation in structural programs to be quite challenging.  
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2.3.3.4. Theory of Mohr-Bairán-Marí 

The work of Mohr was motivated by the challenge of extending the model TINSA of 

(Bairán 2005) from the section to the element level. Due to the high computational 

complexity and demanding of TINSA, in order to accomplish its initial goal, Mohr had to 

take some simplicity assumptions. Accordingly, the deviation from the model TINSA 

consisted on the development of a simpler sectional model where shear deformations are 

defined through a series of polynomials in order to solve the fibre equilibrium equations. 

This sectional theory was introduced into a flexibility-based finite element model. In this 

manner, Mohr et. al. (Bairán, Marí and Mohr 2010) proposed a model for the analysis of 

RC structures submitted to combined normal and tangential forces. A detailed description 

of this model can be found in (Mohr 2011). 

This model was devised for structural analysis of 2D frames and it was developed in two 

levels. At the section level, the formulation handles the interaction between axial force, 

bending moment and shear. The cross-section is subdivided in concrete fibres, and 

longitudinal and transversal reinforcement are discretized as well (Figure 2.30a). At the 

element level, a flexibility-based approach is considered (Figure 2.30b). 

 

                                               a)                                                                b) 

Figure 2.30 – Definition of the domain of the model of Mohr: a) section and b) element levels 
(Mohr, Bairán and Marí 2010) 

Based on the TINSA formulation, the displacement in each fibre u is given by the sum of 

the plane-section displacement uPS with the warp-distortion displacement field uw: 

PS wu u u  (2.45)

in which the warp and distortion fields are approximated through a series of polynomial 

shape functions (Figure 2.31). These shape functions, which modulate the distribution of 
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warping and distortion along the cross-section, are obtained from the generalized strains of 

the beam element, are state dependent and are determined from internal equilibrium 

considerations.  

 

Figure 2.31 – Approximation of the warping and distortion fields by means of series of generalized 
displacements (Mohr, Bairán and Marí 2010)  

In this manner, the multiaxial strain state in a fibre e = [εx εy γ]
T is given by 

PS w
s se B e B Ae  (2.46)

where BPS is the transformation matrix related with the plane section assumption and Bw is 

the transformation matrix related with the warp-distortion field; es = [ε0 γ0 φ]T are the 

generalized strains of the beam element and A represent the coefficients that modulate the 

warp-distortion shape functions.  

Multiaxial stresses in a fibre σ = [σx σy τ]
T are computed through an orthotropic uniaxial 

constitutive model that considers directional damage and crack induced anisotropy through 

a rotation crack approach. Stresses are also decoupled into a plane-section and a distortion 

component. Through application of the Principle of Virtual Works, the generalized internal 

forces in the section σs = [N V M]T are determined by the integration of the generalized 

internal forces along the fibres: 

PS T wT
s B dA A B dA     (2.47)

and, in turn, the section’s stiffness matrix ks is computed as 
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      
T TPS PS PS w T wT PS T wT w

sk B DB dA B DB dA A B DB dA A B DB dA (2.48)

where D is the constitutive matrix of the fibre, that is generally full, and which explicitly 

reproduces the coupling between axial, bending and shear forces of diagonally cracked 

sections.  

It is noteworthy that different approaches for the sectional model can be achieved by 

considering different numbers of terms of the series of polynomials N: (i) no consideration 

of shear distortion (N = 0 - 0SD) leads to the classical Navier Bernoulli beam theory; (ii) 

linear shear-distortion (N = 1 – 1SD) represents the Timoshenko-based theory as a constant 

shear distribution is assumed along the section, however, as vertical strains and distortion 

exists this approach differs from the classical Timoshenko beam and; (iii) nonlinear shear-

distortion (N = 6 - NLSD) is the key proposal of the model and adequately approximates 

the strains and stresses distributions in the cross section.  

In order to illustrate the level of accuracy of these different approaches, the results of the 

simulation of a shear critical beam are compared in Figure 2.32. It can be observed that, 

with the presence of important shear loads, both the Timoshenko (1SD) and the Bernoulli 

(0SD) theories are incapable of good predictions. In contrast, the nonlinear shear-distortion 

model (NLSD) gives very accurate results accounting for the coupling of normal and shear 

forces. 

 

Figure 2.32 – Force-displacement curve of a shear critical beam (Mohr 2011) 

In the following, the model TINSA of Bairán and the model of Mohr are compared. The 

shear force - strain curves for a cross section of a beam tested by (Kani 1977) are depicted 

in Figure 2.33, along with the predictions computed by both models. The similarity of the 

responses predicted by both models, and the accuracy levels achieved in relation to the 

experimental test, are remarkable.  
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Figure 2.33 – Shear force-strain curve in a cross-section (Mohr 2011) 

In spite of the greater simplicity and lesser computational demand of the model of Mohr in 

comparison with TINSA of Bairán, there are still some drawbacks for its direct 

implementation in general bar models related with processing time and numerical stability. 

2.3.3.5. Fixed pattern approaches 

The Fixed Strain Approach proposed by (Vecchio and Collins 1988) determines the shear 

response of a cross section by assuming an a priori fixed pattern for the tangential strain. 

In this manner, as represented in Figure 2.34a, the normal strains εx are determined through 

the Bernoulli’s plane section hypotheses and a kinematic law for the distortion γxz is 

assumed. The strains in each fibre (εx, γxz), are determined as functions of the generalized 

strains in the cross section (ε0, φy, γ0). 

 

                                                     a)                                                                         b) 

Figure 2.34 – Fixed strain approach: a) assumptions and b) stresses applied in a fibre 

The stress tensor σ = (σx, σz, τxz)
T and the material stiffness D (full matrix of dimensions 

3x3) of the fibre are determined through nonlinear uniaxial equivalent constitutive laws for 

concrete and steel. The stresses applied in a fibre are represented in Figure 2.34b; the 

Experimental
Numerical TINSA 
Numerical Mohr et. al.
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existence of vertical normal stresses σz is incompatible with the equilibrium in the 

transverse direction of each fibre. In this manner, the contribution of steel in tension σz
s and 

concrete in compression σz
c must cancel altogether: 

0c s
z z T z      (2.49)

in which 

21 22 23
c
z x z xzD D D      (2.50)

s
z s zE 

Es is the elasticity modulus of the steel, whose contribution is accounted by means of the 

percentage quantity of transversal reinforcement ρT. Through the former equations, the 

vertical strain εz can be determined as function of the axial strain εx, the shear deformation 

γxz and the material stiffness matrix D as 

  21 23

22

, , x xz
z x xz

T s

D D
f D

D E

   



  

 (2.51)

In this equation it is visible that the section’s distortion is needed to reach vertical 

equilibrium, and for this reason a suitable strain kinematic constraint for shear strain must 

be used. Compatibility and fibre equilibrium along the vertical direction are not explicitly 

verified. In its turn, shear stress τxz in a fibre is determined through the constitutive 

equation: 

31 32 33xz x z xzD D D      (2.52)

This approach has been considered by several authors (Petrangeli, Pinto et al. 1999; Güner 

2008 and Ceresa; Petrini et al. 2009) because of its straightforward implementation in a 

Timoshenko based FE model: the constant distortion of the element is taken as the fixed 

strain in the cross section. However, this model usually underestimates the vertical strains 

and, for this reason, predicts lower stresses in the stirrups after the onset of diagonal 

cracking, as pointed out in (Vecchio and Collins 1988; Bairán and Marí 2007; Navarro 

2009; Mohr 2011). 

The Fixed Stress Approach was also proposed by (Vecchio and Collins 1988) and 

considers the plane section theory coupled with a fixed shear stress constraint as 

represented in Figure 2.35. In this manner, a mixed strain εx and stress τxz input information 

is generated for each fibre. 
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Figure 2.35 – Fixed Stress Approach 

As for the case of the Fixed Strain Approach, the equilibrium equation in the vertical 

direction is established in Eq.(2.49) and the shear stress τxz for each fibre is set through the 

constitutive equation in Eq.(2.52). Pertaining to the Fixed Stress Approach, from the 

consideration of these former equations the vertical strain εz and the distortion γxz are 

determined as functions of the axial strain εz, the shear stress τxz and the material stiffness 

matrix D as: 

   23 31 33 21 23
*
22 33 23 32

, , x xz
z x xz

D D D D D
f D

D D D D

 
  

 
 


(2.53)
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22 33 23 32
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x xz

xz x xz

D D D D D
f D

D D D D

 
  

 
 


(2.54)

where D22
* is the equivalent stiffness in the vertical direction that accounts for both 

concrete and transversal steel. In the same manner as in the Fixed Strain Approach, with 

this formulation strain compatibility in the transversal direction is not guaranteed and 

internal fibre equilibrium is not directly established.  

In order to compare the accuracy achieved by different models, the results computed by the 

approximate methods based on the Fixed Pattern Approaches and by the more rigorous 

Dual Section model are presented in Figure 2.36. In a general way, both approximate 

approaches give fairly similar results to those obtained with the Dual Section Analysis. 

However, the Fixed Strain Approach tends to concentrate the shear stresses in the 

compressive regions of the section, underestimating the strain in the tension side. In its 

turn, the Fixed Stress Approach slightly overestimates the strains and underestimates the 

stress. Nevertheless, this last method allows capturing a good prediction of the sectional 

response whenever an adequate choice of the shear flow is given. 
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Figure 2.36 – Shear flow and strain distribution determined with dual section analysis and fixed 
pattern approaches (Vecchio and Collins 1988) 

2.3.3.6. Model of Valipour and Foster 

Valipour and Foster (2007) developed a flexibility based beam-column element for 

nonlinear analysis of RC frames under static and cyclic loads. The model was based on the 

direct integration method. In this approach, the fibre beam element framework is 

maintained and a network of integration points in the section is used to determine the 

stiffness matrix.The solution scheme used is the secant stiffness method for increasing 

computational stability. 

The formulation for inclusion of shear effects is based on the Fixed Stress Approach. In 

fact, the actual shear stress distribution deviates from symmetric predefined forms due to 

the different nonlinear behaviour of concrete in tension and compression, plastic 

deformation of steel and concrete cracking. The shear stress flow profiles are dependent on 

several parameters, such as, quantity of transversal reinforcement, load levels, etc. The 

contribution of the cracked or crushed zones of concrete to the shear resistance is less than 

that of the intact zones. Thus, different proposals for shear stress functions were analysed: 

(i) a simple parabolic distribution; (ii) a 4th order polynomial function; (iii) an exponential-

polynomial function and (iv) a five point multi-linear function. The three last functions are 
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state dependent; the parameters that characterize their shapes are defined through the 

following conditions: 

- Null shear stresses at the top and bottom edges of the element  

0
2xy

h
y     

 
(2.55)

0
2xy

h
y    

 
(2.56)

- The expansion of the equilibrium equations for a 2D case allows writing the 

relationship between the gradients of the shear stress and the gradient of the 

longitudinal and vertical stresses as: 

0xyxx

x y

 
 

 
(2.57)

0xy yy

x y

  
 

 
(2.58)

- The finite difference scheme is used to estimate the longitudinal gradient of 

stresses along the edge of a segment Δx of the element as: 

1i i
xx x x

x x

   


 
(2.59)

The multi-linear shear distribution is represented in Figure 2.37: the angles α and β 

represent the slope of the shear function at the end points; τ2 and τ4 are determined by 

trigonometric rules and τ3 is determined from the equilibrium equation between shear 

stresses and the shear force V applied in the section, by adopting a constant shear stress in 

the section.  

As the model does not considers equilibrium in the vertical direction in each fibre, an 

explicit function for the vertical stress is provided. At the material level, a uniaxial law is 

considered for modelling the concrete behaviour, disregarding the 2D strain-stress state 

generated by the presence of the shear forces. The results of the four types of shear stress 

patterns were compared with the nonlinear 2D displacement-based FE model ATENA 

(Cervenka, Jendele and L. & Cervenka 2005) in the analysis of a beam under shear forces. 

Accordingly, the shear stress distributions along a cross-section are presented in Figure 

2.38, for different force levels V. 
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                                                      a)                                                        b) 

Figure 2.37 – Shear stress distribution over the height of the section: a) continuous and b) 
multilinear functions (Valipour and Foster 2007) 

 
 

 
 

Figure 2.38 – Shear stress distribution along a RC section, adapted from (Valipour and 
Foster 2007)  
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It can be observed that, with the increasing of damage, the stress flow is less equally 

distributed in the cross section, being more concentrated in the uncracked areas. The 

different shear distributions considered presented diverse results: the exponential-

polynomial and the 4th order polynomial give similar results and correlate reasonably with 

ATENA predictions; instead, the parabolic pattern is the one with more deviation from the 

other assumptions, being the difference more accentuate for higher load levels. Studies on 

the shear stress profiles can be also found in (Bairán 2005; Mohr 2011) for different cross-

sections and loads. 

The model is able to take into account the shear influence on the flexibility and deflection 

of structures, but is not prepared to catch shear failure modes. Stirrups are only accounted 

for through the appropriate parameters that define the stress-strain relationship of confined 

concrete. Also, no interaction between normal and shear forces is considered at the 

constitutive level.  

 

2.3.4 Proposals for frame structural analysis including shear 

Several models were developed in the recent years with the goal of broadening fibre beam 

models from the classical 1D formulation to analyses considering 2D and 3D strain-stress 

states. The different models differ from each other in the shear kinematic assumptions 

taken at the sectional level, in the type of multiaxial constitutive equations and also in the 

approach of stiffness or flexibility base of the FE formulations. Comprehensive states of 

the art on this topic can be found in (Bairán and Marí 2007; Ceresa, Petrini and 

Pinho 2010).  

In a general way, fibre beam models with shear effects can be divided in two main groups: 

(i) formulations that consider independent approaches for flexural and shear deformations 

and (ii) models that aim to capture the structural response through rational constitutive 

laws and adequate sectional kinematics.  

In the following, some relevant proposals within the two groups are briefly presented. The 

main characteristics, advantages and drawbacks are pointed out. Accordingly, it is also 

commented how the previous proposals influenced the decisions taken for the 

accomplishment of the model proposed in this thesis. 
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2.3.4.1. Uncoupled shear effects 

Within this first group, there are fibre beam elements that determine the shear components 

through truss models (strut-and-tie analyses) and add it to the analysis from the flexure 

beam model (Figure 2.39a). An example of these type of models is the proposal of (Guedes 

and Pinto 1997). In this manner, shear and normal forces are considered in an uncoupled 

fashion. Moreover, truss models do not take into account other shear resistance 

mechanisms, such as, dowel action, aggregate interlock, and concrete contribution to shear 

resistance. 

 

                                     a)                                                                                       b) 

Figure 2.39 – Models with uncoupled shear effects: a) truss analogy (Guedes and Pinto 1997) and 
b) shear force-distortion curves (Marini and Scapone 2006)  

Other proposal is to use uncoupled empirical shear stress-strain equations for the 

consideration of shear effects. In this ambit, (Marini and Scapone 2006) presented a bar 

model for plane frames under monotonic and cyclic loading that included axial, bending 

and shear effects. Force-based 2D Timoshenko beam theory was assumed. The classical 

fibre beam section approach allowed for coupling of axial and bending forces, whilst shear 

was considered uncoupled through a nonlinear empirical shear force-strain equation 

(Figure 2.39b). 

Despite their simplicity, these models fail to obtain accurate solutions for the behaviour of 

shear critical RC elements where the interaction between normal and tangential forces is 

relevant. 

2.3.4.2. Coupled normal-shear formulations 

The coupling of shear and normal forces on the nonlinear response of a structure is 

considered by means of sectional and element formulations. These models aim to 
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accomplish normal-shear interaction by means of rather complex constitutive formulations 

and kinematic approaches. Consequently, these models are more complex and accurate 

than the previous ones, although, in turn, they are more computational demanding and 

susceptible to numerical instabilities and convergence problems. The model developed in 

the ambit of this thesis is inserted in this type of models that consider normal-shear forces 

in a coupled manner. In addition to the work of (Bairán, Marí and Mohr 2010) and of 

(Valipour and Foster 2007) already described, other relevant proposals for modelling shear 

effects in fibre beam models are listed in the following. 

Vecchio and Collins (1988) used the dual section method in the sectional analysis of fibre 

beam elements to predict the response of RC beams subjected to shear. The numerical 

program developed in this ambit (Vector5) was based on the MCFT and is able to perform 

nonlinear frame analyses under monotonic loading, including shear effects. A dual-section 

analysis was also used by (Ranzo 2000) in a beam element to study the behaviour of RC 

elements under seismic loading.  

Vecchio and Emara (1992) proposed a frame analysis algorithm with force-based layer 

elements including shear at the sectional level through a fixed stress pattern approach. The 

MCFT was used as constitutive model at the material level. The algorithm is based on 

matrix analyses to determine the forces applied in the element, which is a rather simplified 

approach that does not account for the coupling of normal-shear effects on the stiffness of 

the element.  

Petrangeli, Pinto and Ciampi (1999) developed a flexibility-based fibre beam FE model 

using the plane section hypothesis in conjunction with predefined functions for the shear 

strain. The equilibrium in the vertical direction was imposed in each fibre. The biaxial 

constitutive law used was based on the microplane theory. This was a pioneer proposal in 

including shear effects into cyclic analysis of RC sections by means of fibre beam models 

and, for this reason, it is an important reference in this research ambit. 

Güner (2008) improved the previously developed program Vector5 (Vecchio and Collins 

1988) for cyclic and reverse loading conditions. It consists on a global frame analysis 

model with a layered sectional approach. Shear at the cross section is considered through 

different options based on Fixed Pattern Approaches: uniform shear flow, uniform shear 

strain and parabolic shear strain distributions. A reformulated version of the MCFT to 

account for cyclic loading was used as the constitutive law for RC. It was concluded that 
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shear-strain-based approaches are less time consuming, less computationally demanding 

and more stable into the post-peak regimes then shear-stress-based approaches.  

Ceresa, Petrini, Pinho and Sousa (2009) presented a 2D displacement-based Timoshenko 

beam element. At the sectional level, a plane section assumption is used to determine axial 

strains, along with the consideration of a constant shear strain distribution along the 

section. The MCFT is adopted as the constitutive law. ‘Bubble functions’ were presented 

as linear shape functions linked to the transversal displacement field, to overcome the shear 

locking problems of the Timoshenko beam theory. This model was used to simulate the 

cyclic responses of RC elements. 

Navarro (2009) presented a 1D frame FE model for the analysis of reinforced and 

prestressed concrete sections under combined loading. The model is based on the 

Timoshenko beam element and the MCFT was used as the constitutive model for RC. The 

assumption of the constant shear strain of the Timoshenko beam theory was studied along 

with improved shear strain profiles. 

Saritas and Filippou (2009) presented a flexibility based FE model with shear 

consideration. The nonlinear response of the cross sections accounts for the interaction of 

axial force, bending moment and shear force. This coupling of forces is achieved through 

numerical integration of an inelastic multi-axial material model over the cross-section. 

Mullapudi and Ayoub (2010) contribution is a 2D force-based model for shear critical RC 

columns under seismic loading, using the Soft Membrane Model at the constitutive level. 

Coupling of normal-shear forces were accounted at the section and element levels.  

Stramandinoli and La Rovere (2012) presented a FE fibre beam model for the nonlinear 

analyses of RC beams taking into account the shear deformation. The model was based on 

the classical Timoshenko beam theory and the MCFT was used as the constitutive model, 

along with a tension-stiffening equation developed by the authors; a constant shear strain 

was assumed for all the fibres along the cross-section. The model presented some 

inaccuracy as far as predicting the behaviour of shear reinforced critical beams was 

concerned.  

From the previously exposed, the models that use simplified approaches to model shear 

effects, like the constant shear strain assumption have been extensively used due to their 

computational robustness (Vecchio and Collins 1988; Petrangeli, Pinto and Ciampi 1999; 

Güner 2008; Ceresa, Petrini, Pinho and Sousa 2009; Mohr, Bairán and Marí 2010). 
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However, inaccurate results in beams highly reinforced for shear have been reported in 

(Vecchio and Collins 1988; Mohr, Bairán and Marí 2010), which is explained by the fact 

that strains and stresses in the stirrups are deficiently simulated through this assumption. 

Furthermore, in (Stramandinoli and La Rovere 2012) it was stated that the behaviour of 

beams with low transversal reinforcement ratio was better represented numerically than for 

beams with high transversal reinforcement ratio. This is highly unexpected, as the concrete 

shear resistant mechanism is dependent on many random variables of difficult definition 

(aggregate interlock, tensile strength, etc.) in comparison with the well-defined parameters 

of the shear resistant mechanism of the stirrups (geometric characteristics and steel 

material properties). 

This fact is evidenced in the stress-strain curves in the stirrups of the beam presented in 

Figure 2.40. The complex formulations (TINSA and Model of Mohr – PM 6SF) are able to 

accurately predict the experimental strains in the stirrups, whilst the constant strain 

assumption (1SF) predicts almost no loading of the stirrups. For this reason, in order to 

validate fibre beam FE models with inclusion of shear effects, the following key aspects of 

the response of RC elements must be represented: force-displacements curves; failure 

mechanism and force-strains curves in the stirrups. These results are essential to prove that 

the numerical simulation is representing well the resistance mechanism of a shear critical 

element. 

 

Figure 2.40 – Stresses in the transversal reinforcement (Mohr 2011) 

The strategy for inclusion of shear effects in the basic model CONS had to consider several 

input conditions: the original version of CONS is already a fairly complex model able of 

comprehensive nonlinear structural analysis by accounting for time-dependent phenomena 

and segmental construction procedures; the influence of shear effects on these features is 

not easy to understand nor to consider numerically. Therefore, to guarantee consistency 
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between shear effects and the original characteristics of CONS, the implemented shear 

model should be maintained as simple as possible ensuring an adequate accuracy. The 

previous complex models developed in the same research team (TINSA by Bairán and the 

Model of Mohr) are highly accurate but lack some computational efficiency and stability. 

Due to this great complexity, their implementation in CONS was expected to be 

impracticable. In this manner, the path chosen in this thesis for the implementation of a 

shear formulation in the model CONS was based on simplified approaches. Assuming a 

constant shear strain along a cracked reinforced cross-section is an over-simplification that 

does not reflect its behaviour satisfactorily. Conversely, the assumption of constant shear 

stress distribution was taken as basis of the proposed sectional shear model. 

 

2.3.5 Algorithm performance 

Modelling shear effects in RC elements involves a great computational effort in handling 

the nonlinearities brought by the diagonal cracks, the strain-softening phenomena and the 

fragile failure modes. For this reason, these nonlinear models are quite vulnerable to 

numerical instabilities and convergence problems. Some authors reported these problems 

in the analysis of RC elements submitted to important tangential stresses; the objectivity of 

the numerical solutions and the difficulties to obtain converged results for the entire 

loading path of the structure were also discussed (Borst and Nauta 1985; Borst 1987; 

Abdollahi 1996). 

Concerning to shear critical problems, limit points appear along the analysis (Figure 2.41), 

brought by a sort of strong material nonlinearities, such as diagonal cracking, softening and 

stirrups yielding, which need to be surpassed in order to guarantee numerical stability. 

Hence, it is essential to control and limit these problems in order to ensure robust and 

efficient analysis. Also, as there is no ductility in the shear failure mode, it is important to 

guarantee that a fragile shear failure is well captured by the model, and not hindered by a 

sudden stop of the analysis in non-convergent intermediate limit points (Park, Klingner and 

Wheat 1995). 
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                                                  a)                                                                   b) 

Figure 2.41 – Discontinuity points: a) intermediate limit and b) softening 

Accordingly, advanced solution procedures such as line searches and continuation 

techniques are essential to reach efficient, stable and robust solution algorithms based on 

Newton-Raphson iterative approaches (Crisfield 1996). Line searches are methods that 

speed up the convergence by reducing the number of iterations. Continuation methods, 

such as the arc-length and its variants (Figure 2.42a), consider an additional restrictive 

constraint in the system of equations for the solution of the problem. These approaches, 

also named Constrained Methods, lead to a variation on the load step during the iterative 

loop, so that the representative vector of the iterative solutions lies on the restrictive 

adopted constraint. This technique enhances the efficiency of complex nonlinear problems 

by detecting and overpassing limit points in the structural analysis. There are different 

proposals for the additional constraint condition allowing for different levels of complexity 

and efficiency. For example, the updated normal plane (Figure 2.42b)), which is a 

linearized version of the arc-length method, has shown to attain very good results with 

much less computational effort than the classical arch-length method (Póvoas 1991).  

 
                                               a)                                                                             b) 

Figure 2.42 – Continuation techniques: a) arch-length and b) updated normal plane methods 
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The comprehensive description of the theory, implementation and efficiency of these 

methods can be found in (Crisfield 1996). In the proposed model a continuation technique, 

the updated normal plane method, was implemented. 

 

2.4 Repair and strengthening of existing structures 

The assessment and strengthening of existing RC structures is a topic of great urgency, due 

to the advanced aging stage reached by many infrastructures in developed countries. 

Besides being a problem that is on the agenda of many research groups and public 

administrations worldwide, it is far from being solved. In fact, there is an increasing 

demand for accurate structural life-time assessment methods able to evaluate the needs of 

intervention in aging infrastructures and designing efficient strengthening or retrofit 

measures. Standards and advice committees are clear about the future directions of RC 

structures: increase their lifespan, rationalize the materials’ consumption, improve the 

strengthening techniques and, therefore, contribute to promote the sustainable development 

of the construction field. 

Deterioration and damage of existing RC structures, due to aggressive environmental 

conditions and permanent or accident loading, leads to a reduction of structural 

performance and service life-time. Strengthening or retrofit measures can increase the life-

span of existing structures and also improve structural performances. However, 

understanding and predicting the competence of the strengthening measures is essential to 

achieve adequate interventions in damaged existing structures. This can only be 

accomplished by a deep understanding of the strengthening materials and techniques, 

associated with numerical models able to accurately simulate damaged structures and 

predict the efficiency of possible strengthening interventions. 

Strengthening measures to increase bending capacity of structures, such as longitudinal 

external prestress, longitudinal fibre reinforced polymers (FRP), the enlargement of 

concrete cross sections and the application of extra longitudinal reinforcement, have been 

extensively studied and applied in the past (a general state of the art description focused on 

FRP strengthening is given in (Bakis, Bank, Brown et. al. 2002)). The same cannot be said 

about shear. In fact, the efficiency of different strengthening techniques in shear critical 

RC structures is not well known. Actually, in relation to shear critical structures, the 

resistant mechanism of a strengthened element is even more complicated to understand and 
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to predict than the original one. For this reason, this topic is currently motivating a vibrant 

research effort both on experimental and analytical approaches in order to better 

understand the particularities of shear strengthening and to apply it in practice with 

adequate safety. Also, numerical models able to accurately take into account these 

strengthening procedures are needed. 

 

2.4.1 Materials and techniques 

Regarding shear strengthening techniques, some common methods for RC beams are 

represented in Figure 2.43 (Taljsten 2003). Adding extra transversal steel and enlarging the 

concrete beam web (Figure 2.43a) are, perhaps, the most commonly used methods. Hence, 

the existing concrete on the top of the slab is removed, new extra stirrups are put around 

the cross section and new concrete is casted or sprayed to the element. This method is 

efficient in increasing the shear capacity, as long as the adhesion between new and old 

concrete is ensured (Souza and Appleton 1997a). However, it is a very intrusive and time-

consuming intervention. 

For cases demanding for a slight augment of shear resistance, the application of steel 

reinforced shotcrete (Figure 2.43b) or epoxy bounded steel plates (Figure 2.43c) are some 

common alternatives. The drawback of these methods is the risk of bonding loss due to the 

fact that the strengthening material is not anchored to the compressive zone.  

The application of steel tendons, as represented in Figure 2.43d and in Figure 2.43e, are 

efficient methods to increase shear resistance of RC cross-sections. These tendons can 

either be post-stressed or not. In fact, post-tensioning repair techniques are a well-

recognised and widely used retrofitting method for enhancing flexural capacity of RC 

frame structures, and its application can be expanded to the improvement of shear strength. 

The use of prestressed transversal reinforcement can provide an active confinement to the 

concrete section and allow the development of the flexural capacity of beams. 

Experimental studies on shear critical beams demonstrated that the inducement of 

transverse compressive forces by means of prestressed transversal reinforcements 

augmented the shear capacity, increased the ductility and was able to avoid brittle shear 

failures (Collins and Roper 1990; Aboutaha and Burns 1994; Adhikay and Mutusuyoshi 

2006). In this intervention, special attention has to be paid to the position of the existing 

longitudinal reinforcement, as there is the risk of cutting it off during drilling. 
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a) Extra stirrups and concrete 

 
b) Steel fibre concrete 

 
c) Epoxy bonded steel plates 

 
d) External steel tendons (with or 

without transversal prestressing) 

 
e) Internal steel tendons (with or 

without transversal prestressing) 

 
f) Fibre reinforced polymers (FRP) 

Figure 2.43 – Shear strengthening methods for RC beams 

The use of externally bounded FRP, represented in Figure 2.43f, has shown to be an 

efficient technique of strengthening and retrofitting a damaged RC element. The reasons 

for its popularity are: immunity to corrosion, low weight, very high tensile strength, the 

stiffness can be adapted to the design requirements, large deformation capacity and 

practically unlimited availability of dimensions and shapes. Besides the many advantages, 

some drawbacks also exist, such as, linear elastic failure without plastic deformations, high 

cost, possible incompatibilities of thermal expansion coefficients with concrete and loss of 

stiffness when exposed to high temperatures, brittle delamination failures modes, 

especially if the laminate is not anchored in the concrete compression zone. Concerning to 

shear strengthening, FRP can be externally bonded with the direction of the fibres 

coincident to that of maximum principal tensile stresses, or as much parallel as possible. In 

this manner, the most effective solution is to bond the reinforcement with an angle of 

approximately 45º, however, in practice, it is more common to bind it vertically. Premature 

failure through debonding must be avoided, as it is an inefficient usage of the FRP 

material, brings premature failure and prevents the strengthened member from reaching 

their full capacity. To avoid anchorage failure FRP must be wrapped around the beam or 

must be anchored in the compressive zone. (FIB 2006)  
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The fact that shear resistance mechanism of non-strengthened elements is not totally 

clarified, acts like a drawback in the analysis of the strengthened elements, as the 

complexity of the problem increases significantly when a strengthening material is added 

to the element. In fact, the contribution and efficiency of FRP to shear strengthening is 

neither well understood nor defined. Aspects such as the determination of the optimal 

strengthening configuration for each case, the resistance mechanism of the strengthened 

element, the contribution of FRP to shear resistance, the bonding mechanism and the 

overall efficiency of this solution is currently motivating many experimental research 

works; some examples are (Hadi 2003, Mosallam and Banerjee 2007, Bukhari, Vollum, 

Ahmad and Sagaseta 2010, Kachlakev and McCurry 2000, Khalifa and Nanni 2002 and 

Taljsten 2003). 

 

2.4.2 Modelling strategies 

An existent structure cannot be submitted to safety evaluation on the basis of the same 

principles as for new structures. Its own singularities, such as the ageing and 

environmental damaging of the materials, the doubts and unknowns about the design 

project, the changes on the loading demands and on the geometric characteristics along 

their service-life require specific assessment strategies. In this ambit, numerical models 

able to perform life-time analyses that consider all the relevant changes (material 

properties, geometry, supports and loading conditions, etc.) are needed to ensure an 

accurate assessment of the state of the structure, and to determine the needs for an 

intervention. Moreover, in order to predict the efficiency of the strengthening or retrofit 

measures, the analysis of the strengthened structures has to consider the damaged state 

previous to intervention. This is only possible if segmental construction features are 

available in the nonlinear numerical model. Examples of phased and time-dependent 

nonlinear analyses for the assessment of existing RC structures focused on the shear 

capacity are (Plos and Gylltoft 2006, Broo 2008, Saether, Kantad, Overli et. al. 2010), 

being accomplished through complex and time-consuming 2D and 3D FE models. 

Numerical modelling of RC shear-strengthened members has not been extensively studied, 

and the existing nonlinear FE models are usually focused on the simulation of FRP 

techniques; some examples are (Lee, Ha and Afzal 2008, Hoque, Rattanawangcharoen and 

Shah 2007, Kim and Vecchio 2008). The influence of many parameters in the response of 

the strengthened structures, such as the amount of steel stirrups, concrete compressive 
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strength, stiffness of the FRP, amount and direction of FRP and shear span-to-effective 

depth ratio are of difficult consideration in the numerical models (Godat, Labossière and 

Neale 2012a). These existent models are mainly struggling with the FRP/concrete interface 

behaviour, as full strain compatibility between the two materials seems to be quite 

questionable. Accordingly, failures by loss of bonding between FRP and concrete are 

difficult to predict numerically (Godat, Labossière, Neale and Chaallal 2012b).  

Pertaining to the numerical simulation of strengthened RC structures by means of the 

various techniques mentioned, fibre beam models can be a proper solution. The possibility 

of defining different types of materials in the cross section due to the filament 

discretization makes these models adequate to deal with this problem (Nitereka and Neale 

1999). In what concerns to flexural strengthened elements, the nonlinear FE model CONS 

(Marí 2000) is able to account for the previous damage state of the structure, through the 

time-step and segmental analysis procedures. In this ambit, the nonlinear fibre beam model 

with due account of shear-bending interaction developed in this thesis can broaden its 

applications to shear critical structures. 

 

2.5 Discussion on the state of the art 

From the presented state of the art, the following key ideas can be pointed out: 

- 1D FE models with distributed nonlinearity, as it is the case of the fibre beam 

model CONS, allow for complex nonlinear and time-dependent analyses of 

flexural-dominant RC frame structures with affordable computational costs. 

However, their incapacity for comprising shear effects in an appropriate manner 

acts as a handicap towards the range of its application. 

- The shear resistance mechanism in RC elements and the interaction between 

normal and tangential forces are complex, not clearly defined and not 

straightforward to model numerically. 

- Different approaches for the inclusion of shear effects into fibre beam models have 

been proposed with different levels of accuracy and complexity, differing in the 

constitutive and kinematic hypothesis assumed. 

- Accurate simulations of the shear resistance mechanism and its interaction with 

other forces are achieved by complex analysis models; however their numerical 
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instability and very high computational demand difficult their incorporation into 

fibre beam models. 

- Simplified theories for modelling shear in RC (based on the a priori assumption of 

stress and strain distributions) are considered for frame models, being less accurate 

than the complex models but with higher computational efficiency. 

- Regarding the increasing need for assessment and strengthening solutions for aging 

RC structures, nonlinear and time-dependent fibre beam models can be an efficient 

option for performing life-time analysis. 

- In contrast to bending, shear strengthening in both experimental and numerical 

fields is still an open issue; aspects such as loss of bonding, optimal configuration 

of the strengthening measures and the various parameters affecting the resistance 

mechanism of the strengthened elements are attracting extensive research efforts. 

Within the present state of the art, the model proposed in this thesis intends to be an 

original contribution in the ambit of fibre beam models with the inclusion of shear effects, 

by taking into account time-dependent behaviour of concrete and the possibility to simulate 

segmental constructed structures, as well as strengthening procedures. Regarding the basis 

of the sectional model, the choice of the Fixed Stress Pattern Approach was motivated by 

its simpler and less computational demanding characteristics, in comparison with the 

complex models (TINSA of Bairán (2005) and the model proposed by Mohr (2011)) and 

by being more accurate than the strain-based simplified approach. By choosing a 

simplified model for shear, expected interferences in the original characteristics of the 

basic model (time-dependent and segmental analysis) by the consideration of normal and 

tangential forces are sought to be minimized. 

Focusing on the general problematic of assessment and strengthening of existing 

structures, the relevant characteristics of the model proposed in this thesis are: (i) 

capability for considering shear effects in both service and ultimate levels; (ii) considering 

strengthening procedures accounting for the state of the structure prior to the intervention, 

and (iii) ability to capture possible changes in the failure mode produced by the retrofit 

measures. 

The numerical simulation of shear strengthening and retrofitting of damaged RC structures 

through fibre beam element procedures, to the author’s knowledge, has not been carried 

out to date. In fact, it can be a suitable alternative to the more complex and 

computationally demanding 3D models for the determination of structural capacity. 

Service life modelling and the determination of the efficiency of strengthening measures 
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can be performed in a deterministic manner. Accordingly, the model can also give support 

to decisions regarding maintenance planning and optimal intervention solutions that 

comply with the desired strength capacity of the structures.  



 

 

 

 

Chapter 3 

 

 

A HYBRID FIBRE BEAM-COLUMN MODEL 

INCLUDING SHEAR EFFECTS 

 

 

 

3.1 Introduction 

Traditionally, nonlinear fibre beam models do not consider shear stresses, or simply treat it 

as linear elastic without interaction with normal stresses. Therefore, simulations of 

structural RC members undergoing relevant shear effects cannot be performed directly by 

these models.  

Hence, the model to be presented in this chapter intends to broaden the fibre beam 

approach to applications where shear has a dominant role. It is based on the Timoshenko 

theory, being devised for analyses of 2D RC frames under combined axial, bending and 

shear forces. One key feature of the novel model is that a hybrid sectional formulation is 

used: along with the plane section theory, a constant shear stress flow is assumed to 

simulate the shear resistant mechanism. A smeared crack approach with full rotating cracks 

is used to model the constitutive behaviour of concrete under tension. Tension-stiffening 

and softening effects are included. Transversal reinforcement is considered smeared in 

concrete, while longitudinal rebars are simulated through the use of steel filaments. 



74 Chapter 3

 
The option of using the fixed shear stress rather than the fixed shear strain approach was 

motivated by the significant limitations of the former assumption, reported in literature 

(presented in the Section 2.3.4.2). In turn, as concluded in (Bairán and Marí 2007) the 

fixed stress approach used in the novel model, although not guaranteeing compatibility 

between the fibres, gives satisfactory results in the simulation of the shear-resistant 

mechanism of reinforced cracked concrete cross-sections. By these means, a simplified 

sectional formulation is developed, based on a hybrid approach in which the input 

variables take into account the curvature, the axial beam’s strain and the applied shear 

force.  

The model proposed in this chapter will be used to perform numerical simulations of a set 

of experimental tests of beams submitted to important shear stresses. The comparison of 

the experimental observations with the numerical predictions in terms of failure loads, 

collapse mechanisms, displacements, strains and crack patterns will deserve a particular 

attention in the validation of the model. 

 

3.2 Proposed model 

3.2.1 Material level 

3.2.1.1. Constitutive model for concrete 

A smeared cracked approach is assumed to model the constitutive behavior of the cracked 

concrete, treated as a material with orthotropic average stress-strain curves. The adopted 

concrete 2D constitutive model is formulated in terms of average principal strains 

ε12=[ε1 ε2]
T and average principal stresses σ12=[ σ1 σ2]

T, in which the principal directions of 

the strain and stress tensors are assumed to be coincident (average in this context means 

that an average behaviour between the uncracked and cracked areas of concrete is 

considered). According to Figure 3.1 there are three possible stress states: biaxial 

compression, tension-compression and biaxial tension. In this formulation subscripts ‘1’ 

and ‘2’ represent maximum and minimum principal strains and stresses, respectively. 

Tensile principal strains and stresses are assumed as positive. 
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a)                                             b)                                               c) 

Figure 3.1 – Concrete stress states: a) biaxial compression; b) tension-compression; c) biaxial 
tension 

The backbone 1D equation for concrete in compression is the Hognestad parabola 

(Hognestad, Hanson and McHenry 1955)  
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(3.1)

where εp is the strain at the peak stress fp, and the latter depends on the 1D compressive 

strength of concrete fc
’ 

'
p ci cf k f (3.2)

Factor β accounts for the compressive weakening of concrete that takes place when a 

tensile strain 1 occurs perpendicularly to the actual compressive strain 2 (in a tension-

compression state), and is given by the equation proposed by (Vecchio and Collins 1986): 
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Factor kc2 is the one proposed by (Kupfer, Hilsdorf and Rusch 1969), to take into account 

the compression strength enhancement in direction ‘2’ due to a compressive stress σ1 

applied along direction ‘1’ (biaxial compression state, ε1<0 and ε2<0): 
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E2 is taken as the tangent elasticity modulus which is determined through the derivation of 

the backbone curve for concrete in compression, neglecting the variations of both softening 
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and strength enhancement factors as shown in Eq. (3.5). According to the previous material 

formulation this is a simplification; however, it allows a symmetric constitutive matrix for 

the cracked concrete.  
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 (3.5)

Plastic behaviour of concrete that develops during compressive loading is accounted for 

through the plastic strain ε2
p 
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p

E

   (3.6)

As depicted in Figure 3.2a, phases of unloading and partial reloading in compression are 

considered through straight lines, in accordance to the elasticity modulus of concrete E0.  

         
a)                                                                                b) 

Figure 3.2 – Constitutive behaviour of concrete: a) compression, b) tension 

According to Figure 3.2b, before onset of cracking concrete in tension performs with a 

linear-elastic behaviour, where εcr is the strain that corresponds to the peak tensile stress ft: 
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If the material has not been in compression before, the plastic strain ε2
p is null, otherwise it 

acts like a strain offset. After cracking tension softening is represented by the curve 

(Cervenka 1985); following recommendations of previous studies (Mohr, Bairán and Marí 

2010), the parameters of the Cervenka curve have been considered as c=sy and k2=0.5, 
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where sy is the yielding strain of reinforcement, which implies that tension stiffening 

vanishes upon yielding of reinforcement.  

After cracking the tensile stiffness of concrete is reduced, and softening is included in the 

model by using a damage variable dt1: 
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 (3.8)

The secant elasticity modulus E1 is determined through the use of the damage variable as 

1 1 0(1 )dtE E   (3.9)

Unloading and partial reloading performs by the straight line function (Figure 3.2b): 

   1 1 0 1 21 pdt E      (3.10)

with the damage variable dt1 remaining constant during these phases. 

In the principal referential axes, the 2D stress-strain state of the concrete can be written as 

follows 
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 (3.11)

where E1 and E2 are the stiffness modulus in each principal direction (secant modulus for 

the case of tension (Eq. (3.9)) and tangent modulus for the case of compression (Eq.(3.5))) 

and G12 is the transversal modulus determined by the expression that follows (which 

imposes that the angles of the principal directions of the stresses and strains are the same 

(Bazant 1983)): 
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At the material level, the 2D average concrete strains at the x-z coordinate system (defined 

in Figure 3.1) are denoted by εxz=[εx εz γxz]
T. As according to the concrete constitutive law 

the principal stresses σ12=[σ1 σ2]
T are computed as a function of the principal strains 

ε12=[ε1 ε2]
T, the strain tensor εxz has to be rotated so as to get ε12. Then, the principal 

stresses σ12 are rotated back to the x-z referential, resulting into the average stress tensor 
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σxz=[σx σz τxz]

T. In the same manner, the material stiffness matrix D12 that is defined at the 

principal directions should be rotated onto the x-z referential, to render Dc. 

These referential transformations can be performed by the use of the following rotation 

matrices Tε and Tσ: 
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where θ is the angle between the principal tensile strain and the x-axis. 

Principal strains and stresses vary in each load step, and consequently the principal 

directions also change. The state variables of the material - the plastic strain in 

compression ε2
p and the tensile damage dt1 - cannot be incremented in its principal values, 

because the principal referential is continuously rotating. For this reason, the history state 

variables have to be accumulated in a fixed referential. Therefore, state variables are 

computed in an incremental fashion in the current principal system, and are subsequently 

rotated to the fixed local x-z coordinate system and accumulated, and stored to be used in 

the next load step. The state update numerical procedure used in the model is based on the 

formulation proposed by (Vecchio 1999), summarily described in the flowchart of Figure 

3.3. 
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Inputs 

Load step n, iteration i 
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x ε

m
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m
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Rotate plasticity variables from the x-z referential to the 1-2 principal referential 
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Call constitutive equations for concrete 
Inputs: ε12, ε
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Figure 3.3 – Flowchart of the state update algorithm of concrete 

 

3.2.1.2. Constitutive model for the reinforcement 

Steel reinforcement is modelled with the bilinear 1D constitutive relationship depicted in 

Figure 3.4, where fsy and εsy are the yielding stress and strain and fsu and εsu are the ultimate 
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stress and strain, respectively. Unloading and partial reloading are performed along straight 

lines parallel to the initial elastic branch given by the elasticity modulus Es.  

 

Figure 3.4 – Constitutive behaviour of steel 

 

3.2.2 Fibre state determination 

The cross section is discretized into two types of fibres, as presented in Figure 3.5: (i) the 

non shear resistant ones, submitted only to 1D axial stresses, and (ii) the shear resistant 

fibres, submitted to a multiaxial stress-strain state. Since no compatibility of lateral strains 

between fibres is considered in the formulation, the model is not capable of automatically 

provide the level of contribution of each fibre to the shear strength resistance as a function 

of the fibre position. This division is performed considering the following criteria: (i) for 

traditional cross section geometries, such as rectangular or I-shaped, it is considered that 

the fibers that pertain to the web (disregarding the cover area) are 2D fibers; (ii) 

particularly for the I-shaped cross sections, an effective area of the compressive flanges 

can be considered to contribute to the shear resistant mechanism and assigned as 2D fibers 

- the effective width of the flange can be determined accordingly to (Zararis, 

Karaveziroglou and Zararis 2006); (iii) for complex geometries a more sophisticated 

analysis with the model TINSA (Bairán and Marí 2006a; Bairán and Marí 2006b) is 

required, in order to determine the portion of section that is preponderant for resisting 

shear forces (recommendations from design codes like the EC2 (CEN 2004) can be used as 

well, as simplified criteria). In the validation examples presented in this chapter, options (i) 

and (ii) are considered. 

σ

εεsp

fsy

fsu

εsy εsu

Es
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Figure 3.5 – Assumptions of the model at the section level 

As represented in Figure 3.5, along with the plane section theory that computes the axial 

strain εx as 

0( ) .x yz z     (3.17)

(where ε0 is the axial strain at the section reference axis and y is the curvature with respect 

to the y-axis), the adopted model assumes a shear stress τ* along the section defined as 

* 0

* * shear resistant fibres

non shear resistant fibres0

G A 


 
  
 

 (3.18)

where G* is the transversal modulus, γ0 is the distortion at the neutral axis and A* is the 

summation of the areas of the shear resistant fibres. In this manner the plane section theory 

is coupled with a shear stress constraint, and the determination of the fibre state is 

performed using a hybrid stress-strain input information. 

For each fibre, given the axial strain in concrete εx and the assumed shear stress τ*, and 

using the equilibrium, compatibility and constitutive equations, the strain and stress states 

and the stiffness matrix of the fibre are determined, as it will be explained with the 

following equations. As the non shear resistant fibres have null shear stresses they are 

under uniaxial stress-strain state only (Figure 3.6a), whereas the shear resistant fibres are 

submitted to a 2D stress-strain state (Figure 3.6b).  
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a)                                                                            b) 

Figure 3.6 – Stresses applied in a fibre 

Considering the 2D stress-strain state of the concrete part of the shear resistant fibre, upon 

rotation of the principal stiffness matrix D12 (Eq. (3.11)) to the local x-z referential, a 3×3 

stiffness matrix Dc is obtained: 
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 
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 (3.19)

A shear resistant concrete fibre can have different nk configurations of transversal steel 

(different dispositions of stirrups), which are accounted for in the model through its 

volumetric ratio ρst,k and are submitted to axial stresses σz
st (along direction z). The 

increment of axial stresses in the transversal reinforcement Δσz
st (along the z-direction) are 

computed according to 

0 0

0 0

;z st z

st

D   
   
   
      
   

 ,

,
1

0 0 0

0 0

0 0 0

;
kn

st k

st st st st st st k
k k k

A
D E E E

s b
 



 
 

  
     

 
  (3.20)

The total transversal steel is taken into account by summing the contributions of the 

different stirrups configurations (Ast,k is the area of transversal steel, bk is the width of the 

cross-section and sk is the longitudinal spacing of each configuration of stirrups k). 

Compatibility requirements impose that the vertical strain in concrete and the strain in the 

transversal reinforcement are equal, being denoted as εz. No bond slip is considered. 

Along direction z the incremental tensile stresses in the transversal steel Δσz
st must 

equilibrate the incremental compression stresses in concrete Δσz
c, that is: 
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From Eq. (3.19) the concrete stress along direction z is computed as 

21 22 23

c

z x z xzD D D          (3.22)

Replacing Eq. (3.22) into Eq. (3.21) and making use of Eq. (3.20), the equilibrium in the 

vertical direction becomes: 

21 22 23 0x z st st zxzD D D E            (3.23)

In addition to this equilibrium requirement, another condition needs to be fulfilled in order 

to determine the fibre state: the computed increment of shear stress Δτxz must equate the 

imposed increment of shear stress given by the fixed stress constraint Δτ*: 

* 0xz     (3.24)

By solving the system of the two Eqs. (3.23) and (3.24), the 2D stress-strain of the fibre 

(composed by concrete and smeared transversal reinforcement) is obtained, and the 

complete stiffness matrix of the fibre Dfibre is computed as the summation of both 

contributions (concrete and transversal reinforcement): 
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22 22 st stD D E   (3.25)

The unknown increments of the vertical axial strain Δεz and shear strain Δγxz can be 

determined as functions of the increments of Δεx and Δτ* according to: 

   23 31 33 21 23

22 33 23 32

*
*, , x

z x fibre

D D D D D
f D

D D D D

 
  

 
    



 
 (3.26)
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 
  

 
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

 
(3.27)

The complete mathematic derivations of Eq. (3.26) and (3.27) are presented in Annex A. 
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3.2.2.1. Innermost iterative procedure 

In order to achieve both requirements – equilibrium of stresses along the vertical direction 

(Eq. (3.21)) and the fixed stress constraint in the transversal direction (Eq. (3.24)) -, an 

innermost iterative procedure within the fibre level is needed. After computation of the 2D 

fibre strain and stress states, Eqs. (3.23) and (3.24) are checked and the unbalanced vertical 

δσz and tangential δτxz stresses are respectively computed as 

st c
z st z z         (3.28)

*
xz xz      (3.29)

The longitudinal axial strain increment Δεx is kept fixed and the iterative loop goes through 

the correction of the vertical δεz and transversal δγxz strains, which are computed through 

the following expressions as functions of the unbalanced stresses δσz and δτxz: 

  33 23

22 33 32 23

, , z xz
z xz z fibre

D D
f D

D D D D

    
 


 (3.30)

  22 32

22 33 32 23

, , z
xz xz z fibre

D D
f D

D D D D

    
 


(3.31)

The complete mathematic derivations of Eq. (3.30) and Eq. (3.31) are presented as well in 

Annex A. The strain corrections (Δεz
it, Δγxz

it) are introduced in the next iteration, until both 

the unbalanced vertical δεz and tangential stresses δτxz almost vanish: 

it
z z z       (3.32)

it
xz xz xz      (3.33)

Once convergence is achieved (i.e., δεz≈0 and δτxz≈0), the state determination of the fibre is 

accomplished. As stress σz is null and the section model does not include εz, a static 

condensation must be applied 
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2221 23
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
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         

        

 (3.34)

and thus 
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where Kfibre is the condensed stiffness matrix of the fibre. The transversal modulus used in 

Eq. (3.18) to estimate the constant shear stress applied to the section is given by 

* 32 23
33

22

D D
G D

D
   (3.36)

and its initial value is considered as E0/2. 

 

3.2.3 Element and section models 

A schematic representation of the main characteristics of the filament beam model is 

presented in Figure 3.7. A 2-noded Timoshenko FE with linear shape functions N1 and N2 

was implemented in accordance to the formulation presented in (Oñate 1995). For the 2D 

case, the displacement field is a function of two displacements, axial u and vertical w, and 

a rotation θy. In the Timoshenko beam theory it is assumed that undeformed plane sections 

perpendicular to the beam axis remain plane, but not necessarily normal to the longitudinal 

axis after deformation. An average rotation of the section due to distortion is considered in 

order to maintain valid the plane section assumption. The total rotation θy of the cross 

section is then 

0y

w

x
 


 


 (3.37)

where γ0 is the additional rotation due to shear. 

 

Figure 3.7 – Fibre beam element 
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The generalized strains in the cross section are the axial strain ε0, the shear rotation γ0 and 

the curvature y: 

0

u

x






 (3.38)

0 y

w u w

x z x
 
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(3.39)
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



(3.40)

Thus, the kinematic equations that relate the nodal displacements aj=[uj wj θyj]
T of each 

node j to the generalized sectional strains ε0=[ε0 γ0 y]
T at the Gauss points are given by the 

transformation matrix B as: 
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 (3.41)

At the sectional level the relationship between the generalized strains ε0 determined on the 

axis of the FE and the strains on each fibre εfibre=[εx γxz]
T is given by the transformation 

matrix T as: 

0

0

1 0
;

0 1 0

x

xz fibre
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z
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
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 
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         

 

 (3.42)

After the fibre state determination, contributions of the concrete (denoted as ‘c’) and 

transversal reinforcement (denoted as ‘st’) to the stiffness matrix Ksec and to the internal 

load vector Ssec of the section can be computed by accounting for the contributions of the 

stiffness matrices Kfibre and forces Sfibre of all the fibres (shear resistant and non-shear 

resistant): 

sec
T

fibre

c stK T K T dA    (3.43)

sec
T

fibre

c st
S T S dA

   (3.44)

where A represents the area of each fibre. Filaments of longitudinal reinforcement are 

assumed to be submitted only to axial strains as  



A hybrid fibre beam-column model including shear effects 87

 

 
0

0

1 0
;

0 0 0
x

y

sl slsl

z
T T



 



 

 
  
     

 

 (3.45)

Bond slip is neglected, and the steel stress state is determined through the 1D constitutive 

law represented in Figure 3.4. The steel contribution to the sectional stiffness and internal 

load vector (denoted as ‘sl’) is also given by the summation of the stiffness and the forces 

of each filament: 

sec
Tsl sl

sl slK T E T dA   (3.46)

sec
Tsl sl

sl xS T dA  (3.47)

Accordingly, the sectional stiffness matrix Ksec and the internal load vector Ssec are 

obtained by adding the contributions of the concrete, of the transversal reinforcement 

fibres and of the longitudinal steel filaments: 

sec sec sec
c st slK K K   (3.48)

sec sec sec
c st sl

S S S
  (3.49)

Shear deformation at the FE level is considered as an average rotation constant along the 

cross-section, resulting into an important simplification of the sectional behaviour. Taking 

advantage of the hybrid nature of the sectional formulation, which implies both kinematic 

(axial strains ε0 and curvatures y) and force (shear stresses τ*) entities, a shear 

deformation correction can be performed. In fact, there is a difference between the average 

distortion γ0 of the Timoshenko FE (determined in Eq. (3.39) and used in Eq. (3.42)) and 

the average of the shear strains γxz on each fibre (determined in Eq. (3.27)). Consequently, 

to accomplish compatibility between the two types of distortions, a residual force Vz,ul is 

determined as 

, sec

0 0

00

z ul ulV K 

   
   
   
     

 (3.50)

      , sec sec sec1, 2 2, 2 3, 2z ul ulV K K K    (3.51)

where the unbalanced shear strain is given by  

0 ,ul xz m    (3.52)
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and γxz,m is the average of the shear strains in a cross-section considering each fibre 

weighted by its area A. The residual shear force is included in the internal force vector of 

the section as 

,sec z z ul

y

N

S V V

M

 

 
 
 
 
 

 (3.53)

Making use of the sectional concept presented in this model, the classical FEM definitions 

(Zienkiewicz and Taylor 2004) of the element stiffness matrix Kelem and of the internal load 

vector Felem can be written as 

secelemK B K B dx   (3.54)

sec

T
elemF B S dx  (3.55)

Each element has one Gauss Point located at its mid length. Reduced integration is used in 

order to avoid shear locking. 

 

3.2.4 Procedure for nonlinear analysis 

The implementation of the proposed model is illustrated by the flowchart of Figure 3.8, 

where two iterative loops are marked: (i) an outermost one, which corresponds to the 

standard Newton-Raphson (NR) procedure for determination of the displacement 

increments through the global equilibrium equations, and (ii) the innermost iteration loop, 

which corresponds to the state determination of the shear resistant fibres. 

Considering the outermost iterative procedure, and in order to overcome intermediate limit 

points, an arc-length based on the Updated Normal Plane (Crisfield 1996) was 

implemented in the code. The stop of the outermost iterative procedure is caused by 

material failure and not by convergence problems or numerical instabilities, as 

demonstrated in the subsequent examples of validation of the model. Hence, it is possible 

to determine the structural response along the different stages of the material behaviour: 

elastic, cracked, yielded and ultimate ranges. In its turn, the innermost iteration procedure 

at the fibre level is often not able to continue the computation beyond material failure.  
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Figure 3.8 – Flow chart of the proposed model 

 

3.2.5 Representation of concrete cracking 

Although the constitutive equation for concrete is based on the smeared crack approach, 

discrete cracking patterns are graphically represented after a post-processing of the 

multiaxial strain tensor, by means of an external algorithm. As at each Gauss point the 

principal strains and directions are known (they are outputs of the numerical model), when 

the principle tensile strain in each fibre reaches the critical strain (ε1> εcr), an orthogonal 

line with the inclination of the correspondent principal direction is printed. 
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Due to the non-verticality of the cracks, the information of the strain state in the location of 

the crack path does not correspond to a single Gauss point. Consequently, as schematically 

represented in Figure 3.9, the strain state corresponding to the location of a crack is 

obtained using a linear interpolation between the strain states of the two close-most Gauss 

points. In summary, for a given load step in which cracking has started the following 

procedure is pursued: (i) determination of the x-z coordinates of the crack-tip settled in the 

previous load step; (ii) evaluation of the strain state in this point through interpolation; (iii) 

check the development of the crack by comparing the principle tensile strain with the 

critical strain. 

 
Figure 3.9 – Scheme of the post-processing method for the representation of the cracks 

Along with the strain state of each fibre, the x-coordinate were the first crack appears 

(which is randomly assumed) and the crack spacing are the necessary input information to 

this external algorithm. The average crack spacing sm is determined according to the 

Spanish Structural Concrete Code – EHE (CPH 2008) or to the EC2 (CEN 2004), limited 

by a maximum value correspondent to the stirrups spacing (that are usually the weakest 

points were vertical cracking starts). The option to represent the lines with the thickness 

proportional to the average crack width wm determined as 

1m mw s   (3.56)

is available in this post-process algorithm, where ε1 is the principal tensile strain 

determined by the numerical model for each fibre at each Gauss point. The formation and 

development of the cracks are not related to the size of elements, as long as a 

mesh-independent simulation is ensured. 
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3.3 Validation of the model 

3.3.1 Overview 

The experimental tests that were simulated with the proposed model for validation 

purposes will be presented in the following. Different beam tests were chosen in order to 

embrace diverse types of cross-sections and reinforcement, loading schemes and failure 

modes. 

(i) The Stuttgart shear tests 

The first test simulated with the model proposed in this thesis is taken from the wide 

experimental campaign performed by (Leonhardt and Walther 1961), selecting the case of 

T-beams specimens with light stirrup reinforcement under concentrated loads until shear 

failure. The goal of this test is to examine the influence of the web width on the shear 

strength of the beams. A deep validation is carried out considering displacements, strains 

in reinforcement and in the concrete struts and cracking patterns. The sectional response 

given by the proposed model is compared with more complex and accurate numerical 

models. Numerical sensitivity analyses are carried out in order to assess the influence of 

the mesh on the response of the model (longitudinal and transversal discretization and 

division between 1D and 2D fibres). The key conclusions about the mesh sensitivity are 

taken into account in the subsequent examples of validations. 

(ii) The Vecchio and Shim tests 

The classical series of beams tested by (Bresler and Scordelis 1963) were recreated in 

(Vecchio and Shim 2004) to determine the repeatability of the results. From this 

experimental campaign that consisted in a total of four series of three beams, each with a 

rectangular cross section, two beams are simulated with the model proposed in this thesis: 

one with shear failure and the other with flexural failure. Validation is carried out through 

load-displacement curves. The numerical results are used to demonstrate the efficiency of 

the proposed model to capture the increment of stresses in the longitudinal reinforcement 

due to shear, and the development of stresses in the stirrups along the beam. Also, the 

predicted response of a shear-span section for different load levels is presented.  

 

 



92 Chapter 3

 
(iii) The Kaufmann’s beams 

The VN series of experiments carried out by Kaufmann and Marti in the ‘Beam Element 

Tester’ (BET) in Zurich (Kaufmann and Marti 1996) consisted in I-shaped specimens 

loaded in shear until failure, with a null bending moment at mid-span. The two specimens 

simulated with the proposed model differ in the load scheme: one beam has a null axial 

force, whilst the other is subjected to a constant compressive axial force of 1MN. The 

experimental data available to compare with the numerical predictions consists of principal 

strains and angles, strains in stirrups and cracking patterns. The influence of confinement 

brought by axial force on the response of the beams is evaluated. 

(iv) The experimental tests at UPC 

A series of shear beams were tested at the Laboratory of Structural Technology at UPC in 

May of 2010, in the ambit of a research project for the study of the influence of high 

quantity of fine aggregate in the shear resistance of RC beams. In this work, only the case 

of beams with conventional concrete is presented. This experimental campaign consisted in 

four shear critical beam specimens with different quantities of longitudinal and transversal 

reinforcement. The validation of the proposed model is carried out by means of 

displacements and vertical, horizontal and diagonal strains measured in concrete. 

All the presented experimental tests were performed under monotonic loading. Parallel to 

the analysis with the proposed model, numerical simulations with the flexural fibre beam 

basis model CONS (Marí 2000) (described in Section 2.2) are also performed. The same 

meshes and material properties are used in both simulations. Thus, by comparing the 

results computed by both the basis and the proposed models it is possible to evaluate the 

importance of considering shear effects in the analyses.  

 

3.3.2 The Stuttgart shear tests 

3.3.2.1. Description 

The benchmark simulated with the proposed model belongs to the classical shear beam 

tests carried out in Stuttgart and reported in (Leonhardt and Walther 1961). The series of 

test under study relate to one rectangular and three T-shaped cross section beams, with 

light stirrup reinforcement and tested till failure under concentrated loading. The goal of 

this test was to examine the influence of the web width on the shear strength of the beams. 
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The dimensions and reinforcement of the four beams (ET1, ET2, ET3, and ET4), with 

varying web widths (b=0.3m, 0.15m, 0.10m and 0.05m, respectively), are presented in 

Figure 3.10. The location of the sensors related to the most significant experimental 

information used for validation of the model is also indicated in this figure; experimental 

results presented for the stresses in the stirrups are average values given by the four strain 

gauges located in the transversal reinforcement multiplied by its Young’s modulus. In a 

analogue manner, diagonal compressive stresses in concrete where calculated with the aid 

of the stress-strain curve determined experimentally in concrete specimens by means of the 

shortening strains measured at 45º in the web. The beams were designed to fail in shear; all 

beams have the same tensile reinforcement (four 20mm diameter rebars) and vertical two-

leg stirrups (6mm diameter rebars) with a constant spacing of 0.11m at the shear region. 

The ratio of transversal reinforcement ρst varied from 0.17% of the beam with wider web 

(ET1) to 1.03% of the beam of narrower web (ET4). The measured material properties for 

the beams were: fc
’ = 28.5MPa and E0 = 23.8GPa for concrete, fsy = 420MPa and Es = 210 

GPa for longitudinal reinforcement, fsy = 320MPa and Est = 210GPa for transversal 

reinforcement; the tensile strength of concrete was taken in the present analysis as 

ft = 0.3(fc
’)0.666 = 2.8 MPa. 

 
Figure 3.10 – Characteristics of the Stuttgart shear tests 

The meshes of the numerical models are represented in the Figure 3.11. The specimens 

were simulated with 20 beam FEs with the same length, and the cross section was 
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discretized into fibres 5mm thick. The fibres of the web that do not belong to the concrete 

cover area are considered the ones that contribute to the shear resistance. No shear resistant 

fibres were considered in the flanges. Load (P) was applied as nodal forces in an 

incremental form until failure.  

 

 

Figure 3.11 – Model of the Stuttgart shear tests 

3.3.2.2. Results and discussion 

In accordance with the reported observations, with the exception of ET1 all the other 

beams failed in shear: ET2 showed a shearing failure with crushing of the flexural 

compressive zone at the end of the main shear crack; ET3 showed crushing of concrete in 

addition to web failure, as a result of yielding of the stirrups and crushing of the diagonal 

concrete struts; ET4 failed by concrete crushing of the web after general yielding of the 

stirrups. Even though ET1 specimen had failed by crushing of the concrete in the bending 

region, there were vast diagonal cracks in the shear region. Accordingly to the numerical 

simulations, all beams failed by crushing of concrete in the web after extensive yielding of 

stirrups, with the exception of ET1 in which failure of longitudinal reinforcement was 

achieved. As summarized in Table 3.1, failure mechanisms and load carrying capacities 

were satisfactorily predicted by the proposed numerical model. In contrast, the flexural 

model provided predictions quite far from the experimental data, due to its intrinsic 

limitations. 
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Table 3.1 Summary of experimental and computed results at failure 

Beam 
Experimental 

Proposed shear-bending 
model 

Basic flexural model 

Pu (kN) Failure mode Pu (kN) Failure mode Pu (kN) Failure mode 

ET1 241 Bending 
a 240 Shear/Bending* 290 Bending*** 

ET2 
ET3 
ET4 

240 Shear/Bending 
b 238 Shear** 283 Bending*** 

240 Shear 
b,c 234 Shear** 282 Bending*** 

179 Shear 
c 179 Shear** 280 Bending*** 

a
 Crushing of concrete in bending region. 

b
 Crushing of the flexural compressive zone at the end of the main shear crack. 

c Web failure of the diagonal compressive due to yielding of stirrups. 
*

 Failure of longitudinal reinforcement, crushing of concrete and extensive yielding of stirrups. 
**

 Extensive yielding of stirrups and crushing of the concrete web. 
***

 Failure of longitudinal reinforcement. 

Computed and measured displacements at mid-span are compared in Figure 3.12. In 

general, a very good agreement between experimental data and numerical results computed 

by the proposed model is observed. Regarding the results from the flexural model, it is 

clear that it is not suitable to analyse this type of structural elements where shear is of 

relevance, as it results in non-safe predictions. Significance of shear deformation in the 

total displacements is visible by comparing the results from the shear model with the pure 

bending model. Specimens ET1, ET2 and ET3 reached approximately the same failure 

load, however, the ultimate displacements were different. The beams with narrower webs 

were more flexible and presented higher ultimate displacements. Beam ET4 reached a less 

load level than the other specimens. This influence of the web width on the response of the 

beams was well capture by the proposed model. Also, the differences between predictions 

of the flexural and shear models increased for the beams width narrower web widths, as 

shear effects become more relevant. The deflection of the beams for an applied load of 

120kN are depicted in Figure 3.13, where the same conclusions can be drawn: the 

proposed model reproduces the experimental behaviour, capturing the effects of the 

varying web widths on the flexibility of the beam; the basic flexural model underestimates 

the deflections and does not accounts for the web width influence, as similar predictions 

are given for the 4 specimens.  
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Figure 3.12 – Mid-span displacements of the Stuttgart shear tests 

  

  
Figure 3.13 – Deflection of the beams for an applied load of 120kN 

Average normal stresses in the stirrups are presented in Figure 3.14 for the 4 beam tests. In 

general a quite good fitting is achieved between the numerical and experimental results, 

especially in the case of the beams with thinner webs (ET2 and ET3). According to the 
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graphics, the diagonal cracking load that coincides with the moment where the stirrups 

start to work, is very well reproduced by the model: in thick webs (beams ET1 and ET2) 

the stirrups start to take up load only for high loads (circa P=150kN and P=100kN, 

respectively); on the other hand, in thinner webs (beams ET3 and ET4) the diagonal 

cracking starts earlier (circa P=75kN and P=50kN, respectively). For the beams with 

thicker webs (ET1 and ET2) the model tends to overestimate the stirrup stresses. It must be 

highlighted that the experimental measurements are extremely dependent on the crack 

locations, as if the crack does not cross the scanned zone the strain data will be less than 

the real average strain in the stirrups. For the beams with thinner webs (ET3 and ET4) the 

load for which the stirrups reach yielding is quite accurately predicted by the numerical 

model. In this case, there are no results from the basic flexural model, as it does not 

consider shear reinforcement. 

 

 
Figure 3.14 – Average normal stresses in the stirrups in the Stuttgart shear tests 

The variation of the stirrup stresses along the shear-span of the beams is presented in 

Figure 3.15 for two load levels: P=120kN and P=180kN. The experimental data consists on 

the average of several measured points, in which considerable variations depending on the 

position and length of the shear cracks are reported (Leonhardt and Walther 1961). The 

overestimation of the stirrup stresses by the model is again perceived in this graphics. Even 

though, given the limitations of the experimental measurements used for comparison, the 
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development of the stirrup stresses with the load is acceptably reproduced by the proposed 

model. Moreover, it is noticed in the experimental data that the stresses in the stirrups 

increase with the decreasing of the web width. This influence is also present in the 

predicted numerical results, especially for the lower load level. 

 

 

 
Figure 3.15 – Stresses in the stirrups at various sections along the shear span of the beams for the 

loads 120kN and 180kN 

The experimental diagonal stresses in concrete are compared in Figure 3.16 with the 

computed results for the three T-shaped beams. The numerical values correspond to the 

average of the stresses in the fibres corresponding to the location and length of the sensor 

sc represented in Figure 3.10. The experimental measures were taken at an angle of 45º and 

the computed principal angles took values around 50º and 60º. Hence, in order to perform a 

direct comparison between numerical and experimental data, the presented computed 

results correspond to the stresses at the angle of 45º. Although the tendency of the 

numerical predictions is quite similar to the measured one, it is evident that the model 

generally underestimated the diagonal concrete stresses. In fact, the numerical prediction 

of concrete stresses is a non-straightforward task, as it is totally reliant on the constitutive 

equations, which in turn depend on many random aspects that characterize concrete 
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behaviour. Even tough, the influence of the thickness of the web in the diagonal 

compressive stresses in concrete is captured by the numerical model. 

 
Figure 3.16 – Diagonal stresses in concrete in the Stuttgart shear tests 

Contour levels of the tensile stresses in the stirrups σz
st and of the concrete longitudinal 

compressive stresses σz
c along the ET3 beam are depicted in the maps of Figure 3.17 for 

the last converged load step. By analysing both colour maps, it is noticed an extensive 

yielding of the stirrups, and very high concrete compressive stresses in the web, the latter 

reaching values very close to the concrete strength (including compression softening 

effects), meaning that the beam is near collapse. Thus, the non-convergence of the 

subsequent load increment was caused by the vast material damages, and not by other sorts 

of numerical instabilities.  

 
 

σz
st 

 

σx
c 

Figure 3.17 – Computed results for the last converged load step of the ET3 specimen: stresses σz
st in 

the shear reinforcement and concrete longitudinal stresses σx
c (MPa) 

In relation to the prediction of crack patterns, Figure 3.18 allows comparing the 

experimental and the computed crack patterns for the beams ET1 and ET3 at failure, in 

which a correct correlation is observed. In beam ET1 the flexural vertical cracks reached 

approximately the same length as the diagonal cracks in the shear span. In contrast, beam 

ET3 presented longer shear cracks, reaching the compressive flange in comparison with 

bending cracks. Also, higher inclinations of cracks in the shear span were observed for 

beam ET3 in comparison with beam ET1. These differences on the crack patterns of the 
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beams were well caught by the numerical model, which evidences the higher influence of 

shear effects on the narrower web beam (ET3). 

Et1 

 
 

 

 
 

Et3 

 
 

 
Figure 3.18 – Crack-patterns for the ET1 and ET3 specimens at failure 

In the following, the distributions of strains and stresses in concrete and reinforcement 

along a cross-section located at the shear-span of beam ET1 (x=0.675m) are presented in 

Figure 3.19 for a load level near failure (240kN). The results computed by the proposed 

model are compared with more accurate and complex formulations – the TINSA model 

(Bairán 2005) and the model of Mohr (Mohr 2011) described in Sections 2.3.3.3 and 

2.3.3.4, respectively. Predictions from the flexural model are also included. 

The prediction of the proposed shear model for the longitudinal concrete strain distribution 

(Figure 3.19a) nearly matches the ones from the more complex models of Mohr and 

TINSA; in contrast, the flexural model predicts lower neutral axis positions and lower 

sectional rotations. The distributions of longitudinal stresses in concrete (Figure 3.19c) 

computed by the shear-sensitive models are particularly different from the flexural model 

predictions, especially in the area below the neutral axis. In the case of the flexural model, 

concrete tensile stresses due to tension stiffening appear in this zone. Instead, due to the 

shear-bending resistant mechanism, compressive stresses in this area, which correspond to 

the longitudinal component of the diagonal compressive struts, are obtained in a very 

similar way by the proposed shear model and by the model of Mohr and TINSA. As the 

equilibrium of forces and moments in the cross-section has to be fulfilled, these 

compressive stresses in the tensile zone of the cross-section must be balanced through an 

increment of tensile stresses in the longitudinal reinforcement. This is the reason for the 
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existence of the so-called ‘tension-shift effect’, noticed in Figure 3.19e, where higher 

stresses in the tensile reinforcement are predicted by the shear related models in 

comparison to the flexural model. 

The distribution of vertical strains in concrete (Figure 3.19b) presents maximum values in 

the tensile area of the section. The proposed shear model gives a triangular shaped 

distribution of strains, which approximates quite well the predictions from the more 

complex models. Although, due to the simplified fixed concrete stress assumption taken in 

the shear model formulation, an overestimation of concrete strains in the bottom of the 

tensile area is noticed. Transversal reinforcement is yielded in this area (Figure 3.19f), 

where the steel stresses are similarly predicted by the three models that include shear 

effects. Pertaining to the vertical stresses in concrete (Figure 3.19d), the more complex 

shear models (model of Mohr and TINSA) provide rather discontinuous patterns; even 

though the proposed model fits adequately these distributions.  

The constant shear stress along the cross-section assumed in the proposed shear model is 

represented in the Figure 3.19h. Considering the parabolic-shape distribution predicted by 

the more accurate model TINSA, it can be observed that such simplified assumption is 

very representative of the state of the section. As a consequence of that hypothesis, the 

shear strains (represented in Figure 3.19g) in the bottom part of the tensile zone of the 

section are overestimated by the proposed shear model when compared to the results from 

the model of Mohr and TINSA. Nevertheless, the overall shape of the shear strain 

distribution given by the proposed shear model is in good accordance with the more 

complex formulations. 
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a) Longitudinal strains in concrete 

 
b) Vertical strains in concrete 

 
c) Longitudinal stresses in concrete 

 
d) Vertical stresses in concrete 

 
e) Stresses in longitudinal reinforcement 

 
f) Stresses in transversal reinforcement 

 
g) Shear strains in concrete 

 
h) Shear stresses in concrete 

Figure 3.19 – Strain and stress states at the section x=0.675m of ET1 beam for P=240kN 
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3.3.2.3. Influence of mesh refinement 

A mesh sensitivity analysis was carried out in order to check the influence of the size of 

the FEs and fibres in the accuracy of the results. For this purpose, considering the original 

model of beam ET3, other simulations were carried out varying the length of the FEs 

(0.075m, 0.15m and 0.3m) and varying the width of the fibres (0.003m, 0.005m, 0.01m, 

0.015m and 0.025m). The mid-span displacements computed by the models with different 

meshes are presented in Figure 3.20. The original simulation, which corresponds to FEs 

with 0.15m of length and fibres with 0.005m of width, and the experimental data are also 

included in these graphics. A small influence of both the varying length of the FEs (see 

Figure 3.20a) and of the fibre widths (Figure 3.20b) can be observed. In general, FE 

lengths of 0.1m to 0.2 m and fibre widths of 0.005m to 0.01m are found to guarantee 

mesh-independent results. Relatively tighter meshes gave very similar results. These key 

conclusions about the dimensions of the meshes will be taken into account in the following 

simulations with the proposed model.  

 
     a)                                                                                      b) 

Figure 3.20 – Mesh dependency analysis: a) influence of the length of the FEs and b) influence of 
the width of the fibres 

In order to demonstrate the importance of a correct division of the cross section into 1D 

(non shear resistant) and 2D (shear resistant) fibres, additional simulations of beam ET3 

were carried out: (i) considering all fibres in a cross section as shear resistant (only 2D 

fibres) and (ii) taking only part of the flanges as shear resistant fibres (effective width 

determined according to the proposal of (Zararis, Karaveziroglou and Zararis 2006)). In the 

original simulation only the fibres that belong to the web were considered shear resistant. 

In these additional simulations, the original mesh was used (FEs with a length of 0.15m 

and fibres with a width of 0.005m). The predictions of the mid-span displacement under 

the applied load provided by these various simulations are depicted in Figure 3.21 along 

with the experimental data. 
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Figure 3.21 – Mesh dependency: influence of division into 1D and 2D fibres 

It can be observed that the ultimate shear resistance slightly increases, and the response of 

the model becomes stiffer, when all the cross-section is considered shear resistant. In this 

case, the difference between the shear model prediction and the experimental behaviour 

would increase if all fibres were considered shear resistant. Similar response to the original 

model is obtained when the effective width of the web is considered. 

 

3.3.3 Vecchio and Shim tests 

3.3.3.1. Description 

The series of beams tested by (Vecchio and Shim 2004) in Toronto were a reproduction of 

the experiments by (Bresler and Scordelis 1963). In total, four series of three beams with 

rectangular cross sections subjected to point loads were tested. They differed from each 

other in the amount of shear reinforcement, span length, cross-section dimensions and 

concrete compressive strength. The measured experimental data were the applied load and 

the displacement at mid-span. From this set of beams, specimens VSA1 and VSA3 were 

analysed in order to demonstrate the capabilities of the model to capture different failure 

mechanisms: shear-compression failure (VSA1) and flexure-compression failure (VSA3). 

The characteristics of the beams in terms of geometry, reinforcement and instrumentation 

are presented in Figure 3.22. The material properties of concrete, longitudinal and 

transversal steel are listed in Table 3.2. 
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Figure 3.22 – Geometry, reinforcement and instrumentation of the Vecchio and Shim beams 

Table 3.2 Material properties of the Vecchio and Shim beams 

Beams Concrete Longitudinal steel Transversal steel 

VSA1 
fc = 22.6 MPa 
fct = 2.37 MPa 
Ec = 36.5 GPa Ø25.2mm: 

fsy = 440 MPa 
Es = 210 GPa 

Ø29.9mm: 
fsy = 436 MPa 
Es = 200 GPa 

fsy = 600 MPa 
fsu = 649 MPa 
Es = 200 GPa 

VSA3 
fc = 43.5 MPa 
fct = 3.13 MPa 
Ec = 34.3 GPa 

fsy = 600 MPa 
fsu = 651 MPa 
Es = 200 GPa 

In what concerns the numerical simulation, the FE meshes of the models are represented in 

Figure 3.23: VSA1 was discretized into 20 FEs and VSA3 into 32 FEs; the cross section 

was divided into fibres with approximately 0.016m of width; steel filaments were 

simulated according to their positions in the beam, and shear reinforcement was considered 

smeared in the shear resistant fibres. Apart from the concrete cover, all the fibres were 

considered shear resistant. Load (P) was applied as nodal forces, in an incremental form 

until failure. 

 

Figure 3.23 – Model of the Vecchio and Shim beams 
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3.3.3.2. Results and discussion 

According to the experimental data (Vecchio and Shim 2004), beam VSA1 failed in shear-

compression under two simultaneous effects: crushing of the concrete in compression near 

the point of application of the load, and crushing of the diagonal concrete struts. Severe 

diagonal-tension cracks were developed in the later load stages. As the shear-span ratio of 

this specimen is 3.75, shear effects are important. In contrast, beam VSA3 exhibited a 

flexure-compression failure, with crushing of concrete in the compression zone, starting 

from the de zone under the loading plate. Unlike the VSA1 specimen, diagonal tension 

cracking was minor and flexural cracks were dominant. The shear-span ratio of beam 

VSA3 is 6.56, so the influence of shear must be of minor importance. 

As far as the ultimate loads is concerned, a summary of the experimental results and of the 

numerical predictions from the proposed shear model and the basic flexural model are 

presented in Table 3.3. In general the proposed shear model provides better estimations of 

the ultimate load and displacement than the basic model; however, the difference is more 

significant for the case of beam VSA1, where shear plays a key role in the resistant 

mechanism.  

Table 3.3 Summary of experimental and computed results at failure 

Beam Experimental Proposed model1 Basic model2 Exp / Num1 Exp / Num2 

 
Ultimate load Pu (kN) 

Pu,exp (kN) Pu,shear Pu,flex Pu,exp/Pu,shear Pu,exp/Pu,flex 

VSA1 459 445 483 1.03 0.95 
VSA3 420 431 445 0.97 0.94 

 
Ultimate mid span deflection δ (mm) 

δu,exp δu,shear δu,flex δu,exp/δu,shear δu,exp/δu,flex 
VSA1 18.8 15.3 9.8 1.23 1.92 
VSA3 51.0 56.7 34.4 0.90 1.48 

 Failure mode 

VSA1 Shear-Compression Shear Bending √ x 

VSA3 Bending Bending Bending √ √ 

The experimental deflections at mid-span are compared with the numerical results in 

Figure 3.24. Concerning to the shear model, a good fitting with the experimental results is 

achieved for the two specimens. In the case of beam VSA1, a fragile failure is predicted by 

the model and the more accentuated influence of shear is noticed. In fact, the results of the 

flexural model deviate more from the experimental data in the case of beam VSA1. For 
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beam VSA3 the difference between the flexural and the shear models is not as significant 

as in the case of the VSA1, as shear influence is small. Even though, a better fitting to the 

VSA3 experimental curve is achieved with the shear model.  

     a)                                                                                      b) 

Figure 3.24 – Load-displacement curves at mid span: a) beam VSA1 and b) beam VSA3 

Regarding the computed stresses in the reinforcement, in Figure 3.25 the longitudinal σx
sl 

and transversal σx
st stresses along the beam VSA1 are presented for different levels of the 

applied load (P). Concerning the longitudinal stress distribution in Figure 3.25a, a 

comparison between the shear and flexural models is presented: the increment of stresses 

due to the shear resistant mechanism is captured by the proposed model, being more 

accentuated for higher levels of loading. Stresses in shear reinforcement (Figure 3.25b) can 

only be computed by the proposed shear model, which predicted the development of 

yielding and the generally yielded state along the entire beam at the ultimate load. 

 
                                               a)                                                                                     b) 

Figure 3.25 – Stresses in reinforcement along x-axis of beam VSA1: a) longitudinal and b) 
transversal steel  
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Pertaining to the section level, computed stress and strain distributions along the 

quarter-span section of beam VSA1 are presented in Figure 3.26 for three load levels: (i) 

P = 50kN, the limit of the linear elastic state, (ii) P = 300kN, the onset of the diagonal 

cracked state and (iii) P = 445kN, the failure stage. The graphics represent the typical 

development of the sectional response determined by the proposed shear model.  

The distribution of the axial stresses σx in concrete is presented in Figure 3.26a: the linear 

behaviour of the first load stage changes to the nonlinear one for the latter load stages; 

higher compression forces appear at the top of cross section and low compression forces 

develop in the cracked area to equilibrate the shear related ‘tension-shift effect’ in the 

longitudinal reinforcement. At failure, the neutral axis rises and the concrete compression 

stresses in the top of the cross section increases. 

 
a) Longitudinal stresses in concrete 

 
b) Shear stresses in concrete 

 
c) Shear strains in concrete 

 
d) Axial stresses in transversal reinforcement 

Figure 3.26 – Strains and stresses computed in the quarter-span section of beam VSA1 

The assumption of a constant shear stress τxz flow adopted in the sectional analysis is 

illustrated in Figure 3.26b. As a consequence of this assumption, the shear strain 

distribution γxz takes the shape presented in Figure 3.26c: nearly triangular, with 

approximately null values in the uncracked top area and higher values in the bottom of the 

cracked area of the cross section. For the linear state, transversal strains and stresses take 
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very small values; it is only after diagonal cracking that shear stresses and distortions rise 

significantly. Figure 3.26d presents the computed stress distribution for the transversal 

reinforcement σz
st, where null stresses are presented in the linear state and the development 

of yielding is noticed for the two higher load levels. 

 

3.3.4 Kaufmann’s beams 

3.3.4.1. Description 

The benchmark to be presented next belongs to the VN series of experiments carried out 

by Kaufmann and Marti in the ‘Beam Element Tester’ (BET) (Kaufmann and Marti 1996). 

The testing device was designed to reproduce the behaviour of typical B-regions on beam 

elements, and to apply sectional forces corresponding to the ultimate resistances of 

large-sized RC girders. The VN series is composed by identical specimens monotonically 

loaded in shear until failure, with a null bending moment at mid-span, as schematically 

represented in Figure 3.27. The analyzed specimens are the beams VN2 and VN4, whose 

geometry, reinforcement and material properties are presented in Figure 3.28. Beam 

specimen VN2 has a null axial force, whilst beam VN4 is subjected to a constant 

compressive axial force of 1MN. The beam specimens are 5.84m long, with an I-shaped 

0.78m high cross-section. The width of the web is 0.15m, presenting an enlargement near 

the supports to increase the shear resistance at these locations. Shear reinforcement content 

is relatively low (ρst=0.335%), and the longitudinal reinforcement was designed so as to 

remain elastic until failure. 

 

Figure 3.27 – Internal forces in the beam specimens VN2 (N=0) and VN4 (N=1MN) by Kaufmann 
and Marti 
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The experimental results to be presented, concerning to concrete strains and crack angles, 

correspond to average values measured in the web in a segment 1.60m long at the centre of 

the beam, and using a 0.40m grid of strain sensors placed as a rosette (see Figure 3.28). 

Both beams VN2 and VN4 were simulated via the proposed shear model, with 38 FEs with 

the same length and discretizing the cross-section into 59 fibres, as shown in Figure 3.29. 

Longitudinal rebars were modelled in their positions in the cross section. Concerning to the 

load application, in the case of VN4 the axial force was applied in the first loading step. 

Shear force was imposed, for both beams, in an incremental form until failure. 

 

Figure 3.28 – Geometry, reinforcement and material properties of beams VN2 and VN4 

 
Figure 3.29 – Longitudinal and transversal mesh of the numerical model 
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3.3.4.2. Results and discussion 

In accordance with the reported observations (Kaufmann and Marti 1996), collapse was 

due to failure of the web in the central part of the specimens for all the tests. In specimen 

VN2 (results in Table 3.4) collapse was governed by stirrup failure, after some minor 

spalling of the web concrete cover. Specimen VN4 (results in Table 3.5) failed due to 

concrete crushing in the web. 

Table 3.4 Summary of experimental/calculated and computed results of VN2 specimen in failure 

VN2 
Experimental / 

determined* 
Shear model Flexural model 

Vu (kN) 548 545 1400 

Failure 

mode 
Shear failure: stirrup 

failure 
Shear failure: crushing of concrete 
after extensive yielding of stirrups

Bending failure: failure of 
longitudinal reinforcement 

σu,z
st (MPa) 565* 538 - 

* Determined according to (Kaufmann 1998) 

Table 3.5 Summary of experimental/calculated and computed results of VN4 specimen in failure 

VN4 
Experimental / 

determined* 
Shear model Flexural model 

Vu (kN) 564 545 1400 

Failure 

mode 
Shear failure: web 

crushing 
Shear failure: crushing of concrete 
after extensive yielding of stirrups 

Bending failure: failure of 
longitudinal reinforcement 

σu,z
st (MPa) 568* 539 - 

* Determined according to (Kaufmann 1998) 

According to the numerical simulations, both tests failed by crushing of concrete in the 

web after extensive yielding of stirrups. In the case of VN2 failure mode, it seems that a 

less pronounced effect of the compression softening (due to confinement of the 

compressive chords) would bring slightly higher values of the compressive strength, and 

stirrup rupture could be predicted. Besides this, the load capacities of the girders were 

satisfactorily predicted, as well as the fragile shear failure modes, as summarized in Table 

3.4 for VN2 and in Table 3.5 for VN4. Also in these tables, the ultimate values for the 

stresses in the stirrups (σu,z
st) determined in the test (Kaufmann 1998) are compared with 

the predictions from the proposed shear model: a general good accordance between the two 

is perceived. In addition, results from the pure flexural fibre beam model CONS (Marí 

2000) are included in these tables, showing that this approach is not suitable to analyze this 

type of structural problem. 
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The confinement effect of the compression force applied to the VN4 specimen was not 

perceived in the ultimate resistance of the shear model, as the same failure load was 

predicted for the two beams. However, this effect was noticed in the later development of 

cracks in beam VN4, when compared with VN2, as to be showed afterwards. 

Contour levels of the tensile stresses in the stirrups and of the compressive stresses in the 

concrete along the beam’s length are depicted in Figure 3.30 for the last converged load 

step. By analyzing both colour maps, it is noticed an extensive yielding of the stirrups, and 

high compressive stresses in the web, reaching values very close to the concrete strength 

(including compression softening effects), meaning that the girder is near collapse. Thus, 

the non-convergence of the next load increment is caused by the vast materials’ damages, 

and not by other sorts of numerical instabilities. 

 

σz
st 

 

σx
c 

 

 

τxz
c 

Figure 3.30 – Results at the last converged load step for the VN2 specimen: stresses in shear 
reinforcement σz

st, axial stresses in concrete σx
c and shear stresses τxz

c in concrete (MPa) 

The measured and numerically computed average concrete strains in the beam segments 

1.60m long, at the location of the rosettes of sensors, are compared as well for specimens 

VN2 and VN4. The average principal tensile and compressive strains are depicted in 

Figure 3.31 and Figure 3.32, respectively, and the angle θ of the average principal 

compressive strain with the longitudinal axis of the beam is presented in Figure 3.33. In 

general, an acceptable concordance between numerical and experimental results is 

observed. Cracking takes place earlier in the experiments than in the numerical model, as 

large increments of ε1 are observed in a gradual manner. For this reason, overall stiffness is 

slightly overestimated by the numerical model before the yielding of the stirrups. For 

higher load stages, after yielding of stirrups, principal compressive strains in the 

experiments are lesser than the ones predicted numerically, inducing to a less pronounced 

effect of compression softening in concrete. Again, confinement brought by the stirrups 

must have had greater effect than the one taken into account in the numerical model. In 
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what concerns to the principal directions, the numerically predicted angles present 

evolutions similar to the experimentally measured ones. However, for VN2 specimen the 

compressive struts presented a delayed rotation, motivated by the higher cracking load. At 

failure, the angle of approximately 15º for both specimens is well predicted by the 

numerical model. This flat inclination of the compressive struts at failure is due to the low 

shear reinforcement ratio in these beams. 

 
Figure 3.31 – Average principal concrete tensile strain ε1 

 
Figure 3.32 – Average principal concrete compressive strain ε2 

  

Figure 3.33 – Average principal angle θ 
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Test and numerically computed average vertical strains εz in concrete in the measuring area 

are compared in Figure 3.34 for both specimens, with good agreements being found. Also, 

the computed average stresses in the shear reinforcement are presented in Figure 3.35. The 

sudden increase in the stress evolutions happens when crack of concrete occurs, and the 

stirrups start to work to equilibrate the forces released by the concrete. According to these 

graphics, estimation values for the so-called concrete contribution to shear resistance Vc 

can be made (approximately 360kN for VN2 and 410kN for VN4). Also, in the former 

figure the ultimate stress state of the stirrups determined by the model proposed by 

(Kaufmann 1998) showed good conformity with the numerical predictions. 

  
Figure 3.34 – Average vertical concrete strains εz 

 
Figure 3.35 – Average stresses σz

st in the stirrups 
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beam VN4 (brought by the applied compression force) is perceived in the later 

development of the experimental observed cracks in contrast to the VN2 specimen 

(without compression force). This difference is well captured by the numerical model, as 

can be observed by comparing the predicted cracking patterns previous to failure of Figure 

3.36 and Figure 3.37.  

V=365 kN (66.6% ultimate load) 

V=545 kN (99.4% ultimate load)

V=548 kN (Failure load) 

Figure 3.36 – Cracking patterns at different load levels for beam VN2 

V=357 kN (63.3% of ultimate load) 

V=508 kN (90.1% of ultimate shear load) 

V=564 kN (Failure load) 

Figure 3.37 – Cracking patterns at different load levels for beam VN4 

 

3.3.5 Experimental tests at UPC 

3.3.5.1. Description 

The experimental set-up built in the Laboratory of Structural Technology of the Technical 

University of Catalonia (UPC) is represented in Figure 3.38. The experimental campaign 
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consisted of 4 beams: 2 made with conventional concrete and other 2 made with concrete 

with high quantity of fine aggregates. Only the two beams made with conventional 

concrete are considered, one with and the other without transversal reinforcement in the 

shear span. Each side of the beams presented different quantities of longitudinal 

reinforcement. From these two beams two experimental tests were performed in each side, 

resulting into a total of four experimental tests (CSM, CSM, CTM and CTA). The 

geometry, reinforcement and material properties of the beams are represented in Figure 

3.39 and the main characteristics of the experimental tests are resumed in Table 3.6.  

 

Figure 3.38 – Experimental set-up 

The first two tests were performed with the supports LS1 and RS1, with a 3.0m span 

between them, and a cantilever of 2.25m from the support RS1 and the load applied at 

1.2m from support LS1. Afterwards, the beam was turned around and the two subsequent 

tests were carried out with the supports RS2 and LS2, with the same span and cantilever 

dimensions, and the load applied at 1.2m from support RS2. 
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Figure 3.39 – Geometry, reinforcement and material properties of the beams tested at UPC 

Table 3.6 Summary of the characteristics of the shear tests 

Beam Test Supports 
Load 

distance (to 
support, m) 

h(m) b(m) d(m) 

Tensile 
longitudinal 

reinforcement 

Transversal 
reinforcement 

Bars Asl(mm2) Bars ρst (%) 

I 
CSM LS1 / RS1 1.20 (LS1) 0.45 0.225 0.40 3Ø20 942 - - 
CSA LS2 / RS2 1.20 (RS2) 0.45 0.225 0.40 5Ø20 1571 - - 

II 
CTM LS1 / RS1 1.20 (LS1) 0.45 0.225 0.40 3Ø20 942 Ø6//0.25 0.13 
CTA LS2 / RS2 1.20 (RS2) 0.45 0.225 0.40 5Ø20 1571 Ø6//0.20 0.10 

The beams where loaded until failure under displacement controlled conditions. The 

response of the beams was monitored as schematically represented in Figure 3.40: 

deflection displacements were taken at three points, 0.6m, 1.2m and 2.1m from the left 

support; a rosette was placed in the concrete face at 0.6m from the left support, and it was 

composed by two longitudinal, two vertical and one diagonal strain gauges. From the strain 

rosette, besides measuring the longitudinal and vertical strains in concrete, it was possible 

to determine the average concrete distortion and the compressive principal angle. 
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Regarding the numerical simulation, the FE mesh is presented in Figure 3.41. Load was 

incrementally applied in the model until failure. 

 

Figure 3.40 – Scheme of the experimental setup 

 

Figure 3.41 – Model of beam tests 

3.3.5.2. Results and discussion 

Shear failure was observed in the four experimental tests. For the beams without stirrups 

(CSM and CSA) a fragile shear mode occurred through the sudden opening of the main 

shear crack, combined with the loss of anchorage of the longitudinal reinforcement. The 

beams with transversal reinforcement presented less brittle failures, with higher anchorage 

lengths of the longitudinal reinforcement and overall yielding of the stirrups.  

The experimental and computed values of failure loads are presented in Table 3.7. Shear 

reinforcement increased significantly the shear resistance of the beams: 75kN for the case 

of the beams with low longitudinal reinforcement (CSM and CTM) and 186kN for the 

beams with larger longitudinal reinforcement (CSA and CTA). The increment of 

longitudinal reinforcement had a considerable influence only on the tests with stirrups, as 

shear resistance of beam CTA was significantly higher than that of beam CTM 

(approximately 147kN). In the case of the beams without transversal reinforcement, shear 

resistance is less influenced by the amount of longitudinal steel (the difference between 

CSA and CSM was around 36kN), as the concrete strength is the mainly variable that rules 

the resistance mechanism. 

Good predictions of failure loads and mechanisms were obtained by the proposed shear 

model for all the tests. Also, the role of the two types of reinforcement in the shear 

resistance of the beams was well captured. As expected, the purely flexural-based model 
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gave unrealistic predictions of failure, with very high ultimate loads for bending failure 

modes. 

Table 3.7 Summary of the experimental and computed results of the beams tested in UPC 

Shear 
test 

Experimental Proposed model Flexural model 
Pu  

(kN) 
Failure 
mode 

Pu 

(kN) 
Failure 
mode 

Pu  
(kN) 

Failure 
mode 

CSM 145.4 Shear 138.1 Shear 308.3 Bending 
CSA 181.1 Shear 165.7 Shear 448.3 Bending 
CTM 220.1 Shear 224.3 Shear 308.3 Bending 
CTA 367.3 Shear 336.31 Shear 448.3 Bending 

The load-displacement curves of the 4 tested beams are presented in Figure 3.42, along 

with the computed results. An initial stiffness discrepancy is observed in both the basic 

flexural and the shear models, which can be attributed to uncertainties in the support 

displacements and existence of pre-cracking. The proposed shear model presents and 

acceptable fitting with the experimental results, whereas inadequacy of the purely flexural 

model to simulate these tests is evident. 

a) CTM 
 

b) CTA 

c) CSM d) CSA 

Figure 3.42 – Load-displacement curves 
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The horizontal strains at the top and bottom of the rosette (see positions of the sensors in 

Figure 3.40) are compared in Figure 3.43 with the numerical results computed by the 

proposed shear model. In general, a relatively accurate prediction is accomplished by the 

model. However, the model is stiffer than the experimental test, especially in the case of 

the tensile fibres (bottom). In the compression zone (top) a better fitting is achieved with 

the experimental strain curve. 

 
a) CTM 

 
b) CTA 

 
c) CSM 

 
d) CSA 

Figure 3.43 – Longitudinal concrete strains in the shear span 

The average concrete strains measured in the vertical direction are depicted in Figure 3.44 

along with the numerical predictions. For the case of the beam with stirrups (CTA and 

CTM tests represented in Figure 3.44a and Figure 3.44b, respectively) the agreement 

between the experimental observations and the numerical predictions is good. In fact, the 

load level for which the stirrups start to work, as well as the ultimate strain, are well 

reproduced by the numerical model. As this experimental data is very dependent on the 

positions of the cracks, the fitting can be considered satisfactory. For the cases of no shear 

reinforcement (CSA and CSM tests represented in Figure 3.44c and Figure 3.44d, 

respectively) the developed strains are very low, because of the very brittle failure that 

happens for the first opened crack. Even though, the shear model is able to capture the end 
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of the concrete shear contribution that corresponds to the sudden increase of strains. When 

this stage is reached, as there is no shear reinforcement to absorb the vertical stresses, the 

beam collapses suddenly. Regarding the specimens with shear reinforcement, the proposed 

model predicts the yielding of the stirrups in the entire shear span at failure (observed in 

the contour colour map of Figure 3.45 for test CTA), which is in accordance with the 

experimental evidence.  

 
a) CTM 

 
b) CTA 

 
c) CSM  

d) CSA 

Figure 3.44 – Vertical concrete strains in the shear span 

 
Figure 3.45 – Stirrup stresses σz

st at failure in the shear span of beam test CTA, x=[0-1.4m] (MPa) 

Average distortions in concrete determined with the data provided by the strain rosette are 

compared with the numerical predictions in Figure 3.46, where a reasonable fitting is 

observed. The start of diagonal cracking correspondents to a sudden increase of distortions 
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in the presented curves: the beams with stirrups still developed larger distortions and 

carried extra load (Figure 3.46a and Figure 3.46b), whilst the beams without stirrups 

reached failure right after this stage (Figure 3.46c and Figure 3.46d), presenting very low 

values of distortion.  

 
a) CTM 

 
b) CTA 

 
c) CSM 

 
d) CSA 

Figure 3.46 – Concrete distortions in the shear span 

Also, the average principal compressive angles are compared in Figure 3.47 with the 

predictions of the proposed model for the 4 beam tests (the average inclinations of the 

cracks observed in the experiments are included in the graphics as dots). The noise 

observed in the experimental data is due to the high sensitiveness of the measurements to 

the presence of the cracks. Regarding the principal strain angles, it can be observed that the 

computed results captured satisfactorily the experimental tendencies. 

Distortions and principal compressive angles represented in Figure 3.46 and Figure 3.47 

are determined by means of the average values correspondent to the fibres located in the 

strain rosette. 

According to the observation of the experimental tests, cracking starts vertically due to 

bending, and then shear cracks appear with an inclination angle of approximately 45º. 
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Then, with the increment of shear loading these cracks rotate, being influenced by the 

amount of transversal and longitudinal reinforcement. For the beams without shear 

reinforcement (CSM and CSA tests) there are less formation of cracks and failure happens 

due to the opening of a main diagonal crack. In turn, the existence of shear reinforcement 

(CTM and CTA tests) allows the propagation of more cracks that rotate with the increment 

of load, reaching inclinations greater than 45º. 

 
a) CSM 

 
b) CSA 

 
c) CTM 

 
d) CTA 

Figure 3.47 – Principal angle in concrete in the shear span 

The experimental cracking patterns at failure are presented in Figure 3.48 and Figure 3.49. 

In this figures, comparisons between the effects of the types of reinforcement on the 

cracking patterns are presented: (i) in Figure 3.48 the beams with stirrups are compared 

with the beams without stirrups, for the same longitudinal reinforcement ratios (CSM 

versus CTM and CSA versus CTA); (ii) in Figure 3.49 the beams with low and high 

longitudinal reinforcement ratios are compared for the cases of non-existence and 

existence of stirrups (CSA versus CSM and CTA versus CTM). According to Figure 3.48 

the existence of shear reinforcement increases the number of cracks and higher angles 

between the cracks and the beam axis are achieved. Conversely, according to Figure 3.49 

there is no relevant influence of the quantity of longitudinal reinforcement on the ultimate 
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crack patterns of the tests, as both the quantity and inclination of the cracks are very 

similar. 

a) b) 

Figure 3.48 – Influence of stirrups on the cracking patterns at failure: a) tests with low quantity of 
longitudinal reinforcement and b) tests with high quantity of longitudinal reinforcement 

a) b) 

Figure 3.49 – Influence of the quantity of longitudinal steel on the cracking patterns at failure: a) 
tests without stirrups and b) tests with stirrups 

Observed and computed cracking patterns at failure are represented in Figure 3.50. For the 

case of the beams without stirrups (CSM and CSA) the numerical model is not able to 

predict the main diagonal crack at failure; only the secondary cracks are relatively well 

reproduced. On the other hand, for beams with stirrups (CTM and CTA) the computed 

cracking patterns are representative of the observed ones, as there is a good 

correspondence of the crack propagation and inclinations.  
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a) b) 

Figure 3.50 – Cracking patterns at failure: a) experimental observation (photograph and graphic 
scheme) and b) computed results 

 

3.4 Conclusions 

A fibre FE beam model for the study of RC frame elements subjected to shear, bending 

and axial forces was presented in this chapter. At the element level, the Timoshenko 

beam’s theory is used to take into account the shear deformation. A hybrid 

kinematic/force-based formulation is used at the section level, comprising the plane section 

theory with a fixed shear stress constraint. The non-orthogonal and full-rotating smeared 

crack concept is adopted for concrete at the constitutive level, to account for shear-

bending-axial interaction effects. Biaxial constitutive laws are used to simulate the RC 

behaviour. For the steel reinforcement, a uniaxial bilinear stress-strain curve is assumed. 

Longitudinal reinforcement is simulated by the use of filaments, and transversal 

reinforcement is considered smeared in the concrete fibres. Discrete crack representation is 

performed by means of an external algorithm that prints the development of the crack 
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patterns in the elements. Pertaining to numerical efficiency, the model is robust enough to 

treat problems with vast cracking patterns and fragile failures, such as the typical shear 

critical cases. 

With the objective of validating the proposed numerical model three benchmarks available 

in the literature were analysed, aiming to embrace different aspects of the shear-related 

response of beams: 

(i) The Stuttgart shear tests consisting into T-shaped beams failing in shear demonstrated 

that the model is able to reproduce the failure load and mechanism of shear critical 

beams. Longitudinal stresses in stirrups, diagonal concrete stresses and the concrete 

contribution for shear resistance were well determined by the proposed model.  

(ii) From the classical experimental campaign of Bresler and Scordelis, recreated by 

Vecchio and Shim, two beams were analysed: one with a shear critical failure and the 

other with a ductile flexural failure mechanism. The model load-displacement curves 

showed a good accordance with the experimental results. The capacity of the model to 

capture the increment of stresses in the longitudinal reinforcement due to the shear 

resistant mechanism was demonstrated. 

(iii) The Kaufmann’s test, consisting in two-large scale shear critical beams monotonically 

loaded in shear until failure with null bending moment at mid-span, were numerically 

simulated. Measured web principal strains and directions in concrete, strains in the 

stirrups and cracking patterns were compared with the ones from the numerical model, 

with fairly good results. 

Moreover, the experimental campaign carried out at UPC consisting on four shear critical 

beam specimens with different quantities of longitudinal and transversal reinforcement was 

presented. The numerical and experimental results were compared in terms of 

displacements, strains and cracking patterns. In a general way, a good fitting of the model 

predictions to the experimental observations was perceived in the different parameters 

analysed. In particular, the capability of the model to properly account for the contribution 

of the stirrups in the shear resistance of the beams was highlighted. 

The experimental tests were also simulated with the flexural basic model CONS 

(Marí 2000), to assess the importance of including shear effects in fibre beam models for 

this type of analysis. Also, distributions of strains and stresses determined along a shear-
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critical cross section were compared with the results of two other rather more complex 

models - the TINSA model (Bairán 2005) and the model of (Mohr 2011). 

Finally, from all the analyses performed the following general conclusions regarding the 

proposed model for shear-bending interaction can be drawn:  

 For the cases of beams submitted to high shear stresses the ultimate load and failure 

mechanism are fairly well reproduced by the proposed model. 

 Shear critical beams cannot be simulated through pure flexural fibre beam models 

as extremely unsafe predictions are obtained by continuing the analysis until 

reaching bending failure. 

 In addition to the accuracy in predicting the failure load, the proposed shear model 

is able to reproduce the deflection of the beams, including shear deformations. 

 The fixed stress approach considered in the proposed formulation enables to 

accurately predict the development of stresses in the stirrups, and by these means, 

ensure proper simulations of beams with and without transversal reinforcement. 

 Sectional shear-related results computed by the proposed model revealed a 

reasonably agreement with the more complex and accurate force-interaction 

models, in terms of distribution of strains and stresses along the cross section. 

It can also be concluded that fibre beam models, as the one proposed in this thesis, may 

accurately simulate the structural response of beams under combined normal and shear 

forces, provided that multiaxial constitutive equations are used for concrete and 

appropriate kinematic assumptions are taken into account at fibre and sectional levels.  

In view of its relative simplicity and computational efficiency, the fibre beam models can 

be seen as an alternative to complex 2D and 3D FE approaches for nonlinear analyses of 

entire structures. In the next chapter, the numerical simulations are extended to the cases of 

RC frames. 



 



 

 

 

 

Chapter 4 
 

 

SHEAR RESPONSE OF RC FRAMES 

 

 

 

 

4.1 Introduction 

In the previous chapter, the fibre beam model including shear-bending interaction 

developed in this thesis was presented and validated with experimental tests on shear 

critical beams. In this chapter the analyses are extended to RC frames, with the goal of 

evaluating the influence of shear related parameters in their structural response.  

Firstly, an experimental test of a RC frame available in literature is simulated with the 

numerical model. The key objective of this study is to verify the accuracy of the proposed 

model in predicting the behaviour of RC frames. The shear related response of the frame 

and the capability of the numerical model to take it into account are underlined. 

Afterwards, a parametric study on the influence of the restraint brought by the columns in 

the ultimate resistance of a shear critical beam belonging to a frame is carried out with the 

proposed model.  
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4.2 Experimental validation 

4.2.1 Description 

The experimental test performed by (Vecchio and Emara 1992) on a large-scale, single bay 

and two-storey RC frame is simulated with the proposed numerical model. Although this 

frame actually failed in bending, an insight investigation into the shear related parameters 

and their influence in the frame behaviour was the focus of the experimental test. 

The geometry and loading of the frame are presented in Figure 4.1. A constant axial load 

of 700kN was firstly applied to the columns, and then a lateral load Q in the 2nd storey 

beam was incrementally applied until failure. The frame was based in a heavily RC 

foundation, which in turn was fixed onto the lab strong floor. Deflections, longitudinal and 

transversal strains in concrete and strains in longitudinal reinforcement were monitored. 

The following material properties were adopted in the numerical model: fc
’ = 30MPa, 

E0 = 28.6GPa and ft = 1.8MPa for concrete; fsy = 418MPa and Es = 192.6GPa for the 

longitudinal reinforcement; fsy = 454MPa and Es = 210GPa for the transversal 

reinforcement. 

 
Figure 4.1 – Frame tested by Vecchio and Emara 
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The FE mesh used to simulate the frame is represented in Figure 4.2. Both cross sections of 

the columns and beams were discretized into fibres 10mm thick. Filaments of longitudinal 

reinforcement were placed in their actual positions, and transversal steel taken as smeared 

in the concrete fibres. With respect to the extra stiffness of the overlapping sections located 

at the column-beam joints and at the end of the columns, FEs with linear-elastic shear 

stiffness were considered in these locations as signalized in Figure 4.2 by N1B, S1B, N2B, 

S2B, BNC and BSC, to prevent unrealistic shear failures in these regions (letters N and S 

stand for ‘north’ and ‘south’ locations). In relation to the support conditions, the following 

elastic springs taking into account the restraining effects of the foundation were used: 

KV = 343349kN/m and Kθy = 180663kNm. 

 
Figure 4.2 – Discretization of the test RC frame 

 

4.2.2 Results and discussion 

Numerical predictions are compared with the experimental measurements on the frame, as 

it can be seen in Figure 4.3 for the lateral displacements at the 2nd storey, in Figure 4.4 for 

the rotation at the 2nd storey north-joint and in Figure 4.5 for the axial strain in the 

longitudinal reinforcement in the north-column bottom end. The overall behaviour of the 

frame under increasing load is accurately predicted by the proposed model, as a general 
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acceptable fitting between experimental and numerical results is observed. In relation to 

the lateral displacement and rotation (Figure 4.3 and Figure 4.4), the shear model slightly 

overestimates the real stiffness of the structure. As the local strain measurements were 

correctly reproduced, this small differences observed at the global deformations of the 

frame can be attributed to the difficult definition of the real stiffnesses at the base column 

supports. The stop of the innermost iterative procedure at the fibre level that occurs at the 

ultimate load stage does not allow the computation to proceed along the ductile post-failure 

path. Hence, even though the linearized arc-length is used, the stop of the analysis occurred 

due to the non-convergence of the iterative procedure of the fibres in which concrete is 

crushed.  

To evaluate the influence of the shear effects on the overall response of the frame, the 

results correspondent to the flexural model CONS (Marí 2000) are included in these 

graphics. Pertaining to the lateral displacements at the top storey in Figure 4.3, although 

the load capacity of the frame was similarly predicted by both models, influence of shear is 

evidenced by allowing a load-deflection evolution more close to the real performance of 

the structure. In fact, for loading stages near failure, an average of 17% of the lateral 

displacement is related to shear effects. However, influence of shear is not perceived in the 

rotation at the top-north joint (Figure 4.4) and strain in the longitudinal reinforcement 

(Figure 4.5), as both shear and flexural models presented similar predictions. 

 
Figure 4.3 – Lateral displacements at the top storey 
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Figure 4.4 – Rotation at the top-north joint 

 
Figure 4.5 – Strain in the longitudinal reinforcement in the north column bottom end 

In Table 4.1 a summary of the main experimental observations of the frame response are 

listed, together with the development of material damages computed by the proposed shear 

model. This comparison is divided into three stages: cracking propagation, yielding of 

reinforcement and failure. In general, a strong correlation between the overall model 

predictions and the experimental observations is visible at all stages. In particular, lateral 

loads causing first yielding of longitudinal reinforcement and its subsequent propagation 

were quite accurately predicted by the shear model. Experimental failure of the frame 

involved the formation of plastic hinges at all the extremities of the beams and columns 

bases, due to yielding of both the tensile and compressive longitudinal reinforcement, as 

well as limited concrete crushing. The computed damages at failure were mainly due to the 

formation of plastic hinging at the column bases BNC and BSC, as well as to yielding of 

the transversal reinforcement and failure of the longitudinal reinforcement at BNC. Also, 

the 1st and 2nd storey beams were predicted to be extensively cracked, as experimentally 

observed. 
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Table 4.1 Analytical and experimental results for the behaviour of the two-story frame 

Experimental Observations Numerical results (proposed shear model) 

Stage1: Cracking propagation 

Q=52.5 kN 
Flexural cracking at the bottom face 
of the N1B and at the top face of the 

S1B 
Q=41 kN 

Flexural cracking at the N1B and 
S1B 

Q=145 kN 
Flexural cracking at the BNC and 
BSC; Web shear cracks in the first 

story beam 

Q=101 kN 
 

Flexural cracking at BNC and BSC 

Q>145 kN 
Propagation of cracking throughout 
all members; Response of structure 

becomes progressively softer 
Q=121 kN 

Web shear cracks in the N1B and 
S1B 

Stage 2: Yielding of reinforcement 

Q=264 kN 
First yielding of the longitudinal 

bottom reinforcement at N1B 
Q=266 kN 

First yielding of longitudinal 
reinforcement at S1B 

Q=287 kN 
Yielding of the longitudinal top 

reinforcement at S1B 
Q=276 kN 

Yielding of longitudinal 
reinforcement at N1B 

Q=323 kN 
Yielding at the BNC and BSC; 

Hinging at N1B and S1B 

Q=313 kN 
Yielding of longitudinal 
reinforcement at BSC 

Q=322 kN 
Yielding of longitudinal 

reinforcement at N2B and S2B 

Q=324 kN 
Yielding of the longitudinal 
reinforcement at the BNC 

Stage3: Hinging formation and failure 

Q=329 kN 
Concrete crushing and hinging at the 
BNC and BSC; hinging at N2B and 

S2B 
Q=326 kN 

Concrete crushing at the BNC and 
BSC; yielding of transversal 

reinforcement at  BNC 

Q=332 kN 
Failure; ductile hinging at the ends 
of the beams and at the bases of the 

columns 
Q=327 kN 

Failure of longitudinal 
reinforcement 

Concerning to sectional responses, the experimentally observed and numerically predicted 

strains at the base of the north column are compared in Figure 4.6. The numerical results 

refer to the average of the three first FEs starting from the column base. It can be seen that 

the shear model was able to reproduce accurately the curvature, axial strain and shear 

strain of the section. By comparing the results predicted by the flexural and shear models, 

it can be noticed that the influence of shear in the sectional curvature (Figure 4.6a) and 

axial strain (Figure 4.6b) is not significant. 

Although the failure mechanism was mostly flexural, shear strains in the columns reached 

important values, especially for later loading stages, as it is correctly predicted by the shear 

model (Figure 4.6c). Accordingly to the description of the experimental test (Vecchio and 

Emara 1992), large diagonal cracks were observed in the 2nd storey north beam-column 

joint and in the base of the columns. Maximum shear stresses were also numerically 

determined at these locations for the ultimate load. 
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a) 

b) 

c) 

Figure 4.6 – Sectional deformations in the north column bottom: a) curvature, b) axial strain and c) 
shear strain 

Relating to the importance of considering shear effects in the analysis, normal-shear 

interaction effects cause a reduction of the flexural stiffness of the members, and 

consequently a decrease of the lateral stiffness of the frame. Relative proportions of total 

shear in the base of the north and south columns computed by different strategies of 

analysis are presented in Figure 4.7: nonlinear analyses (obtained with flexural and shear 

models) are able to reproduce the significant shear redistribution caused by the axial 

deformation of the beams, as well as by the faster stiffness degradation that occurs in the 

north column; linear analysis gives the unrealistic result that 50% of the shear force is 

carried by each column at all loading stages.  
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Figure 4.7 – Base shear distribution between the north and south columns 

Concerning the two nonlinear analyses, higher shear force distribution among the two 

columns (north and south) is predicted by the shear model in comparison to the flexural 

model, due to the greater deterioration of the north column stiffness brought by the 

interaction of shear-bending forces. 

 

4.3 Parametric study: influence of frame restraint on the 

response of a RC shear critical beam 

The present parametric study has the objective of evaluating the effects of restraint due to 

the columns on the ultimate response of a shear critical beam. The effects of the generated 

compression struts in the load carrying capacity of shear critical beams belonging to 

frames are determined by the proposed model. Additionally, the importance of considering 

shear effects on this type of simulations is discussed. 

The shear critical beam VSA1 analyzed in the Section 3.3.3 is used in the numerical 

simulations as part of a RC frame. The FE mesh (Figure 3.24) and material properties 

(Table 3.2) of the beam used in the validation example are kept unchanged. Thereby, the 

parametric study includes various geometries of the columns, which generate different 

restraints, in order to evaluate its influence in the beam response. The restraint effects of 

the columns were simulated through elastic supports at both extremities of the beam. The 

translation and rotation stiffnesses, Kx and Kθy, were determined in accordance to the 

geometric characteristics of the columns, as represented in Figure 4.8, where Ec is the 

elasticity modulus of the concrete, I is the second moment of area of the cross section and 

L is the beam length. 
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Figure 4.8 – Parametric study on the influence of frame effects on the response of a shear-critical 
beam 

Firstly, the two extreme support conditions were considered: (i) simply supported beam 

VSA1 (Kx=0 and Kθy=0) and (ii) fully clamped at both ends VSA1_0 (Kx=∞ and Kθy=∞). 

Computations with the proposed shear and flexural models were carried out. The 

corresponding numerical predictions are presented in Figure 4.9, in terms of the mid-span 

force-displacements curves. Pertaining to the simply supported beam, both models give 

similar predictions for the ultimate load; however, the consideration of shear effects is 

determinant to achieve a correct deflection, as also mentioned in Section 3.3.3. The double 

fixed-ended beam (VSA1_0) presents an increase of the load carrying capacity, with a 

higher difference between the predictions of the shear and flexural models in terms of 

ultimate load. Shear failure is predicted for a lower load in comparison with the flexural 

model, and this difference is more prominent in the case of the double-fixed ended beam. 

In terms of displacements, this beam (VSA1_0) is less influenced by the shear deformation 

in its deflection, as the difference between the deflections predicted by the shear and 

flexural models are less pronounced then in the case of the simple supported beam 

(VSA1). 
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Figure 4.9 – Force-displacement curves for VSA1 and VSA1_0 beams: simple supported and 

double fixed-ended 

Along with the consideration of the two extreme support situations, intermediate values of 

restraint representing different columns of the frame were analyzed. The considered 

variable parameters were the length L and the height h of the column’s cross section (see 

Figure 4.8) and the concrete Young’s modulus Ec, as listed in Table 4.2. A summary of the 

results computed by the proposed shear model at the ultimate load stage are presented in 

Table 4.2, and the mid-span force-displacement curves are depicted in Figure 4.10.  

Table 4.2 Summary of the variables considered on the parametric study and the results 
correspondent to the ultimate response of the shear-critical beams 

Beam in 
frame 

Columns Supports Results at failure load 

L 
(m) 

h 
(m) 

b 
(m) 

Ec 
(MPa) 

Kx 
(kN/m) 

Kθy 
(kNm) 

Failure 
mode 

Pu 
(kN) 

δu 
(mm) 

VSA1 0 0 0 0 0 0 Shear 444.8 15.3 

VSA1_0 ∞ ∞ ∞ ∞ ∞ ∞ Shear 653.0 3.7 

VSA1_1 3 0.3 0.3 30 13500 27000 Shear 470.0 7.9 

VSA1_2 3 0.4 0.3 30 32000 64000 Shear 552.4 9.0 

VSA1_3 3 0.5 0.3 30 62500 125000 Shear 580.7 8.8 

VSA1_4 4 0.3 0.3 30 7594 20250 Shear 490.7 8.6 

VSA1_5 4 0.4 0.3 30 18000 48000 Shear 577.6 10.0 

VSA1_6 4 0.5 0.3 30 35156 93750 Shear 575.7 9.1 

VSA1_7 3 0.3 0.3 35 15750 31500 Shear 481.9 7.8 

VSA1_8 3 0.4 0.3 35 37333 74667 Shear 581.3 9.3 

VSA1_9 3 0.5 0.3 35 72917 145833 Shear 580.0 8.5 

VSA1_10 4 0.3 0.3 35 8859 23625 Shear 532.4 9.4 

VSA1_11 4 0.4 0.3 35 21000 56000 Shear 456.9 7.2 

VSA1_12 4 0.5 0.3 35 41016 109375 Shear 561.7 8.7 

In general, the increase of the column stiffness (associated to higher values of Kx and Kθy) 

induces an increment of the load carrying capacity and a decrease of the ultimate deflection 
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of the beam. In fact, the combination of lower bending moments acting concomitantly with 

the shear forces delays the shear failure for higher load levels. This can be observed in 

Figure 4.11, where the ultimate load is depicted as a function of Kx and Kθy for all the 

situations studied. Shear failure mechanism was predicted in all the analyses. 

 
Figure 4.10 – Force-displacement of the beam with different levels of support restraint 

 
                                       a)                                                                            b) 

Figure 4.11 – Ultimate load of the beam vs level of restraint of the columns: a) longitudinal 
stiffness and b) rotational stiffness 

Also, due to the restraint at the supports, the stresses acting on the compressive struts can 

reach higher values and contribute to the increment of the load carrying capacity of the 

beams. The distribution of the compressive principal stresses is represented in the maps of 

Figure 4.12, starting from the simple supported case, and increasing the level of restraint 

due to the columns until the double clamped condition at both extremities is reached. It is 

observed that as the level of restraint increases there are higher compressive stresses along 

the web of the section in the shear-span, and the flow of principal compression stresses 

inclines towards the direction of the supports.  
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VSA1 
Pu=445kN 

VSA1_10  
Pu=532kN 

VSA1_3 
Pu=581kN 

VSA1_0 
Pu=653kN 

Figure 4.12 – Distribution of the computed minimum principal stress (compression) along the 
beams for the ultimate load 

This example, despite showing rather expected results, is relevant to demonstrate how a 1D 

fibre beam model can actually simulate the performance of shear critical beams that belong 

to frames, capturing its multiaxial response. Also, it is an introduction to the problem of 

how restraint influences the response of beams that are critical to shear. This study will be 

continued in the next chapter by including time-dependent effects, namely shrinkage 

strains. 

 

4.4 Conclusions 

In this chapter, the examples analyzed with the proposed fibre beam model that accounts 

for shear-bending interaction were extended to the simulation of entire RC framed 

structures. 

At first, an experimental test consisting of a two-storey frame under monotonic load until 

failure was presented. The aim of this validation example was to assess the accuracy of the 

model in predicting the response of RC frames and to determine the importance of 

including shear effects in the analysis. A good fitting was achieved between the numerical 

and the experimental results, in terms of both global and local responses. Also, computed 
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shear strains were in good conformity with the experiments. In general, an accurate 

simulation of the response of the frame under lateral load was determined by the model, 

not only in the ultimate load stage but also through the flexural and shearing crack 

formation and subsequent propagation. The inclusion of shear effects in the analysis 

revealed to be important in the prediction of the deformation of the frame. 

The parametric study presented subsequently aimed to evaluate the influence of the column 

restraint in the shear-related mechanisms of the beam, namely, its influence on the 

deflection response with increasing load and the ultimate load capacity. Another goal was 

to assess the accuracy of the numerical model in capturing the restraint frame effects in the 

response of a RC shear critical beam. The proposed model predicted a general augment of 

the load carrying capacity of the beams with the increase of restraint brought by stiffer 

columns. The compression stresses generated in the web of the cross section by the 

restraint of the columns increases the shear resistance of the beam. As the ratio of stiffness 

between the column and the beam increases, the shear resistance of the beam also 

increases. 



 



 

 

 

 

Chapter 5 
 

 

SHEAR EFFECTS AND TIME-DEPENDENT 

RESPONSE OF CONCRETE BEAMS 

 

 

 

5.1 Introduction 

In this chapter the fibre beam model for shear-bending interaction is enlarged in order to 

include the time-dependent features of creep and shrinkage in concrete, temperature 

gradients and relaxation of prestressed steel. In this manner, the original algorithm for the 

time step-by-step analysis available in the basic model CONS (Marí 2000) is adapted to the 

case of multiaxial stress states. The time-dependent model presented in (Van Greunen 

1979) for the nonlinear analysis of reinforced and prestressed concrete slabs and panels by 

means of 2D plane elements is adapted to the case of the 1D fibre beam elements with 

consideration of a 2D stress-strain state in the fibres. 

The inclusion of the time-dependent behaviour in the proposed fibre beam model with 

inclusion of shear effects is a natural and logic choice, in order to take advantage of these 

potentialities already available in the basic model. For a matter of coherence, as the shear 

model considers multiaxial stress-strain state in the fibres, the non-mechanical time-

dependent strains must be considered multiaxial as well.  
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In the regular cases the level of damage and specifically diagonal cracking in RC frame 

structures under service life conditions must not be very high. However, in service 

structures with shear damage due to insufficient transversal reinforcement may also exist. 

In the assessment of the structural safety of these structures and in the design of a repair 

intervention, life-time structural analysis must account for the shear effects and for the 

materials’ time-dependent responses. The purpose of this chapter is to perform a 

preliminary study on the significance of considering the multiaxial time-dependent 

behaviour of concrete beams and, in this manner, to open a possible theme for future work. 

Firstly, in this chapter the adopted models to simulate the time-dependent phenomena of 

concrete creep and shrinkage, temperature variations and relaxation of prestressing steel 

under multiaxial stress states are described. Afterwards, a benchmark typically used to 

calibrate the time-dependent analysis of reinforced and prestressed beams under sustained 

load is simulated with the proposed model. These tests are flexural-dominant and the 

purpose of this validation is to guarantee the accuracy of the model for the case of bending. 

Subsequently, experimental tests on diagonally pre-cracked beams under sustained load are 

simulated with both the shear and flexural models. The importance of considering shear 

effects and multiaxial time-dependent strains in predicting the response of these beams is 

pursuit with this example.  

Numerical studies on the shear-related time-dependent behaviour of RC beams are carried 

out subsequently in this chapter. Assessing the importance and understanding the 

phenomena of shear in the time-dependent response of RC frame elements in both service 

and ultimate load stages is the main goal of these analyses. In fact, pertinent questions can 

be raised on this subject:  

 ‘may high shear stresses affect the time-dependent response of shear-critical 

beams?’ 

 ‘may time-dependent phenomena such as creep and shrinkage influence the 

ultimate resistance of shear critical beams?’ 

 ‘what happens to the response of a shear critical beams when shrinkage pre-

cracking exists?’ 

Based on numerical analysis, this chapter provides a general discussion on these issues.  

It is noteworthy that the experimental data available on the time-dependent response of 

shear critical RC beams is very scarce and limited. For this reason, a deep validation and 
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quantification of the long-term development of the shear related parameters was not 

possible to be accomplished and is left as an open issue for the future. 

 

5.2 Implementation of time-dependent features in the RC frame 

model 

5.2.1 Overview 

Shear-bending interaction is taken into account in the proposed model at different levels: 

element, section and fibre. As the shear resistant fibres are submitted to 2D stress-strain 

states (in contrast with the 1D strain-stress state of the pure flexural fibres), the 1D 

time-dependent analysis originally presented in the basic model CONS (Marí 2000) is 

extrapolated to the 2D case, as described in the following. Time-dependent effects are 

taken into account through a biaxial formulation within a time-step procedure based on the 

work of (Van Greunen 1979). 

In order to simulate the nonlinear response influenced by the phenomena of creep, 

shrinkage, relaxation of prestressing steel and temperature changes of reinforced and 

prestressed concrete structures, two key features are needed: (i) a time-dependent material 

model and the strategy to its numerical implementation and (ii) a solution procedure for the 

time-dependent analysis within the scheme of FEM. 

Both of these topics will be presented in the following, relating to the solution scheme 

adopted for the consideration of time-dependent analysis in the proposed fibre beam model 

with inclusion of shear effects. 

 

5.2.2 Material model for concrete 

Creep of concrete is the increase in strain under sustained load after the instantaneous 

elastic deformation at the time of loading. This phenomenon affects the serviceability of 

RC elements and causes prestress losses. A great quantity of factors influence the creep 

properties of concrete, such as: strength, age at loading, volume and elasticity modulus of 

the aggregate, relative humidity of the environment, temperature, thickness of the element, 

stress state, load duration, etc. Some of these factors are of difficult quantification and can 
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take values with high levels of variation, which makes the modelling of concrete creep a 

difficult task. Even though structures are subjected to multiaxial stress states, research on 

creep under multiaxial load conditions is scarce and many times not conclusive. In fact, 

extensive experimental research and development of numerical models were conducted to 

the uniaxial case (Bazant and Carol 1993; Bazant and Guang-Hua 2008). Deterministic 

models for creep as the ones proposed by (ACI Committee 209 1970; CEB-FIP 1992) 

establish correlations between analytical formulations and experimental data from tests 

undertaken in laboratory, providing relatively simple equations to predict this time-

dependent concrete phenomenon. 

Concrete shrinkage can be defined as the volume change that occurs with time due to loss 

of water and the chemical reaction of hydration. This phenomenon is typically assumed as 

stress and temperature independent, and is influenced by many factors, such as, age of 

concrete when finishing curing, water-to-cement ratio, environmental relative humidity, 

size of the element and fine aggregate and air contents. Model Code 1990 (CEB-FIP 1992) 

also suggests an equation to approximately determine the shrinkage strain to be used in 

numerical modelling.  

Creep and shrinkage are known as coupled phenomena, however, as it is generally 

accepted, they are treated separately in the model of the present thesis. The effects of 

temperature variations are also considered in an independent fashion. Within a time-step of 

the analysis, an incremental method is used to compute the non-mechanical strains. By 

these means, each component of strain - stress-dependent (creep) and stress-independent 

(shrinkage and thermal) - is determined separately, and afterwards, by assuming the 

principle of superposition, all the strain components are summed.  

Hence, the 2D non-mechanical strain vector εnm depends on time t and is divided into two 

types of strains: the stress-dependent εc and the stress-independent ε0: 

     0nm ct t t     (5.1)

The biaxial stress-dependent strains εc depend on the level of stress that the material is 

subjected to, and in this model only creep deformations are treated as such: 

 

c
x

c c
z

c
xz

t


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

 
 

  
 
 

 (5.2)
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Strains due to shrinkage and temperature variations are considered stress-independent and 

are treated as volume changes ε0, and for this reason, do not contemplate shear 

deformations:  

 

0

0 0

0 0 0

sh T
x x x

sh T
z z zt

  

   

     
     

       
     
     

 (5.3)

The format of the biaxial shrinkage strain vector in this equation was also used in (Chong, 

Foster and Gilbert 2008). 

 

5.2.2.1. Creep 

The principle of superposition of creep strains, which states that the strain at a given time 

is the sum of the strains caused by the loads applied during their respective durations, is 

considered in this model. It is inherent to this assumption that during each time step the 

stress state is kept constant. Fulfilment of this hypothesis is ensured by a correct choice of 

the size of the time steps during the analysis. Creep responses in compression and tension 

are assumed to be equal before cracking, but after concrete cracking no creep strain is 

considered under tension. 

Concerning to the range of typical service stress levels applied to concrete in actual 

structures, experimental data on biaxial creep supports the feasibility of adding the various 

creep strains due to multiaxial stresses (Bazant 1988), by considering that the principles of 

isotropy, linearity and superposition are valid. By these means, according to (Bazant 1988) 

the strain tensor in concrete due to creep εc is given by the following constitutive 

relationship for an aging material under a multiaxial stress for a given time t 

   
0

'
( ) ', ', '

'

tc
e

t
t B J t t t T dt

t





 

  (5.4)

where for the 2D case 

   , ,
Tc c c c

x z xzt     (5.5)

   , ,
T

x z xzt    (5.6)
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(5.7)

where σ is the stress tensor and Be is an elastic-like matrix for an isotropic material with a 

unit elastic modulus for isotropic materials. Creep compliance J (t’, tt’, T) is a function of 

the age of concrete and of the stress tensor σ (t’) applied at the instant of loading t’, as well 

of the temperature T. The ratio between the lateral creep strain and the creep strain in the 

direction of the applied load is given by the Poisson’s ratio υc.  

It is worth mentioning that the superposition principle and the Poisson’s ratio resulting 

from creep of concrete under multiaxial stress states is rather controversial, not only by 

difficulties of measurement and because of the variability on the experimental devices, but 

also due to the many parameters influencing concrete creep. Non validity of the 

superposition principle for the cases of biaxial stresses is supported by some authors 

(Gopalakrishnan, Neville and Ghali 1969; Gopalakrishnan, Neville and Ghali 1970), by 

founding through experimental tests that the effective creep Poisson’s ratio under 

multiaxial compression can be lesser than the one under uniaxial compression, and 

dependent on the level of principal stresses. Some other authors argue that the multiaxial 

creep Poisson’s ratio varies with time and does not depend on the stress states (Kim, Kwon 

and Kim 2006). Conversely, the conclusion that concrete creep under multiaxial states of 

stresses can be satisfactorily predicted in practice by assuming a constant Poisson’s ratio 

equal to the static elastic value, along with a theoretical model for creep under uniaxial 

stresses, is also sustained by many authors (Illston and Jordaan 1972; Bazant 1988; Kim, 

Kwon and Kim 2005; Kim, Kwon and Kim 2006). In the present model, as it was 

considered by (Kabir 1976; Van Greunen 1979), the creep Poisson ratio υc under biaxial 

stresses will be taken as constant and equal to the elastic value for concrete. This 

simplification assumption along with the superposition principle is seen as accurate enough 

for structural analyses.  

Regarding these assumptions, and starting from the creep model implemented in CONS 

(Marí 1984) for the 1D case, its generalization to the biaxial state is straightforward. 

Therefore, regarding the formulation derived by (Bazant and Wu 1973), the biaxial creep 

strain tensor given by the integral of Eq. (5.4) can be determined through a Dirichlet series 

    '
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J t t t T a t e   



 
 
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in which ai are scale factors dependent on the age of loading t’, λi are retardation times that 

govern the shape of the logarithmic decaying creep curve, φ(T) is the shift function that 

depends on the temperature, t is the considered time and m are the number of the Dirichlet 

terms used to approximate the compliance function. The many parameters involved in this 

equation are determined by applying the minimum square method to an experimentally 

obtained creep characterization curve. 

Algorithmic implementation of the Dirichlet series is performed by means of the hidden 

variables formulation (Bazant and Wu 1973), which does not require the storage of all 

previous stress states for the determination of the creep strain increment in a time 

integration algorithm. Consequently, the demand of computation time and storage for a 

creep analysis is considerably reduced. By these means, and relating to the computational 

solution procedure, the time domain is divided into time steps Δtn that go from tn to tn+1 

1n nnt t t    (5.9)

and the integral of Eq. (5.4) is solved through the following expression 

 ', ',c
n neB J t t t T     (5.10)

In the approximation through the Dirichlet series it comes 
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and the increment of creep strain Δεn
c is determined as 
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where Ain is the hidden state variable vector, given by 

  1
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i nT t
in in n inA A e a   

    (5.13)

Therefore, in the extended format for the biaxial stress-strain state determination of the 

strain increment vector due to creep involves the following expressions (considering m=3): 
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In order to start the analysis (n=1) the first hidden variable vector Ai1 is given as 
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The empirical expression adopted for the 1D creep deformation is the one proposed in the 

Model Code 1990 (CEB-FIP 1992) 
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where t’ is the age of concrete loading and t is the actual time. Creep coefficient  is 

determined as 

   0, ' 'ct t t t     (5.19)

where the basic creep coefficient o depends on the compressive strength of concrete, on 

the environmental relativity humidity and on the element cross-section dimensions. βc is 

the coefficient that describes the development of creep with time, and is a function of the 

age of loading, of the environmental relativity humidity and on the element cross-section 

dimensions. 

Determination of the creep compliance function is accomplished by fitting, through the 

least square method, its aging scale parameters ai to the empirical expression considered. 

Constants λi are set as 10-i (λ1=0.1, λ2=0.01; λ3=0.001) and three terms on the Dirichlet 

series are considered (m=3). In this manner, regarding Eq. (5.8) the following system of 

simultaneous equations is obtained 
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(5.20)

which is solved to determine the values of ai that better fit the empirical curve. Typical 

values for ai are around 1×10-7 and 2×10-7. 

In this thesis it is assumed that linear creep occurs. For 1D stress states this approximation 

is considered valid whenever the compressive stress is less than 45% of the concrete 

strength. This value can be considered as the threshold for which no damage due to 

compressive stresses occurs. For multiaxial stress states this threshold level depends on 

whether the concrete is compressed in multiple directions or subjected to compression-

tension states. This is a topic that requires further basic research and is out of the ambit of 

this thesis. 

 

5.2.2.2. Stress-independent strains 

Biaxial shrinkage strain εsh is given by the vector of stress-independent volume changes:  

   , , 0
Tsh sh sh

x zt    (5.21)

The expression proposed in the Model Code 1990 (CEB-FIP 1992) is applied to compute 

the increment of shrinkage strain as  

 0    sh
x cs s st t ;      0    sh

z cs s st t  (5.22)

in which ts is the age of concrete at the start of shrinkage. The coefficient of basis 

shrinkage εcs0 is a function of the compressive strength of concrete, of the cement type and 

of the environmental relative humidity; βs is the coefficient that describes the development 

of shrinkage with time and depends on the dimensions of the element cross-section. 

Effects of the temperature variations are accounted for by means of the stress independent 

strain vector εT 

   , , 0  
TT T T

x zt  (5.23)

and the increment of strain is determined by 
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   1       T
x n nt T T T ;        1       T

z n nt T T T  (5.24)

through the coefficient of thermal dilatation of concrete  and the differences of 

temperature T between the time steps n and n-1. 

The stress independent strain vectors εsh and εT are used in Eq. (5.3) as part of the 2D non-

mechanical strain vector εnm. 

 

5.2.3 Material model for the active reinforcement 

As reinforcement is considered under a 1D stress-strain state, the methodology adopted in 

the basic model CONS for the consideration of time-dependent losses of prestress are 

maintained here, and for this reason it will not be detailed further. In brief terms, the loss of 

prestress that occurs with time is due to the effects of shrinkage and creep of concrete, to 

the relaxation of the prestressing steel and to the interaction between all them. Its 

implementation in the numerical model is performed through the fictitious initial stress 

concept proposed by (Hernández and Gamble 1975) and also used in (Kang 1977; 

Van Greunen 1979). In this method, in order to take into account losses due to creep and 

shrinkage, a fictitious initial stress, lower than the actual one, is defined, so that a pure 

relaxation curve is used for computing the relaxation losses. The stress relaxation during a 

time interval is given by the formulation proposed by (Magura, Sozen and C.P 1964), 

which was calibrated with large number of experimental data. 

 

5.2.4 Solution procedure 

5.2.4.1. Initial strain approach 

The response of a structure  accounting for the time-dependent effects is determined during 

a time step through the initial strain approach derived by (Zienkiewicz 1977) and also used 

by (Kabir 1976; Van Greunen 1979; Marí 1984). Load is applied at time tn and is kept 

constant along the time step Δtn, and it is assumed that during the latter the stress state of 

the structure is constant. At each instant t the total strain vector in a fibre εt(t) is given by 

the sum of the mechanical εm(t) and non-mechanical εnm(t) strain vectors: 

     t m nmt t t    (5.25)
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The non-mechanical strain vector in each fibre is given by the summation of the different 

contributions due to creep εc, shrinkage εsh and thermal gradients εT 

       nm c sh Tt t t t       (5.26)

which in the 2D strain state correspond to 

     ; ;

t m nm
x x x

t m nmt m nm
z z z

t m nm
xz xz xz

t t t

  

     

  

     
     

       
     
     

 (5.27)

The incremental form of the equivalent nodal force vector in the FE due to non-mechanical 

strains, Felem
nm, is given by: 

nmnm T
elem V

F B D dV    (5.28)

However, according to the proposed model for shear-bending interaction described in 

Chapter 3, the element equivalent force vector due to non-mechanical strains is computed 

in incremental form by the following expression, making use of the concept of sectional 

equivalent force vector increment Ssec
nm: 

sec
nm nmT
elemF B S dx   (5.29)

where B is the FEM transformation matrix (see Eq. (3.41)). The increments of the 

equivalent load force and of the non-mechanical strain vectors for the 2D case are  

sec ;

nm

nm
z

y

N

S V

M

 
    
  

nm

x
nm

xz

y


 



 
    
  

 (5.30)

In turn, the sectional equivalent force vector due to non-mechanical strains, Selem
nm, which 

includes concrete and the smeared transversal reinforcement, is determined in incremental 

form by 

sec
Tnm nm

fiberS T S dA   (5.31)

where the transformation matrix T relates the generalized strains in the section with the 

strains in the fibre as described in Eq. (3.42). In each fibre, as the concrete and stirrups are 

in equilibrium in the vertical direction, and consequently the resultant vertical stresses are 
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null, the equivalent internal load vector due to initial strains Sfibre
nm is computed 

incrementally as  

nm nm
fibre fibreS K   

            ;
nm
xnm

fibre nm
xz

S




 
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D D
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 
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 

nm
nm x

nm
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




     
  

 
(5.32)

by means of the condensed constitutive matrix of the fibre, whose terms assume the 

following values: 

* * 12 2312 21
11 11 13 13

22 22

* *32 21 32 23
31 31 33 33

22 22

     
 
      

D DD D
D D D D

D D
D D D D

D D D D
D D

 (5.33)

in accordance to the determination of the stiffness matrix of the fibre presented in 

Eq. (3.35). 

The input variables needed to perform the fibre state determination are the mechanical 

longitudinal strain (see Eq. (3.17)) and the shear stress (Eq. (3.18)) applied in each fibre. In 

the presence of non-mechanical strains, the input equations are rewritten as: 

0

**
00

* ** *

( ) . ( )
;y

t m t nm
x x x xz z z

G AG A

     

  

       

  

   
 

 
 (5.34)

It is to be remarked that in these assumptions non-mechanical strains are taken into account 

only in the longitudinal direction: in fact, as a consequence of the hypothesis assumed by 

the shear-bending interaction model, neither the vertical nor the transversal non-

mechanical strains are accounted for in this stage. 

On the other hand, the output mechanical strains (vertical and distortion) resultants of the 

fibre state determination (Eq. (3.26) and Eq. (3.27)) are computed as functions of the 

mechanical longitudinal strain, of the imposed tangential stress and of the current damage 

state of the fibre as 

 
 

*

*

, ,

, ,

m m
z x

m m
xz x

f state

f state

  

  

 



 (5.35)
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In this manner, in order to accomplish the total strains the non-mechanical strains are 

added to the correspondent computed mechanical strains as 

*t m nm
z z z

t m nm
xz xz xz

  

  

  


 
 (5.36)

Note that in the z-direction εz
nm* is not directly given by the non-mechanical strain εz

nm. 

Actually, the presence of stirrups in the fibres do not allow for the free deformation of the 

concrete in the z-direction. In order to take into account the restraining effects to the 

imposed deformations brought by the presence of stirrups, the equilibrium in the z-

direction, originally written in Eq. (3.21), is rewritten for the case of non-mechanical strain 

as 

*c st

z st z

nm
zD       (5.37)

or, in terms of strains, as 

*
st

nm
c z st z zD E D     (5.38)

resulting into the following expression for the non-mechanical strains in the vertical 

direction, including the restraining effects of the stirrups in the fibre: 

* 1

1
nm nm nmc st
z z z

c st st st c

D E
with n

D E n D
  

 
  

 
 (5.39)

The stiffness of concrete present in this expression (Dc) corresponds to the element D22 of 

the stiffness matrix of the concrete fibre determined in Eq. (3.19), and Est and ρst 

correspond to the Young’s modulus and the volume ratio of the transversal steel. 

 

5.2.4.2. Finite element implementation 

In order to compute the time-dependent response of structures the period of analysis is 

divided into time steps, and the non-mechanical strains are continuously updated. In terms 

of strains, a step-forward integration scheme in the time domain is performed by 

continuously adding the results obtained at each previous time step. In its turn, the 

response of a structure during a time step is determined through the initial strain approach 

previously described. 
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The general modular format of the numerical solution procedure available in the model for 

performing time-dependent analysis is presented in the flowchart of Figure 5.1. It is worth 

mentioning that this flowchart is an extension of the analogous one previously showed in 

Chapter 3, Figure 3.8, for the case of the fibre beam model for shear-bending interaction, 

by adding the loop correspondent to the time step analysis. 

 

Figure 5.1 – Flowchart of the proposed model for time-dependent analysis 
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Accordingly, the increment of non-mechanical strains Δεnm that occurs during the time 

interval Δtn is given by the summation of the different contributions (creep εc, shrinkage εsh 

and thermal gradients εT). Then, the equivalent nodal force vector in the element due to the 

non-mechanical strains Felem
nm is determined in incremental form. Afterwards, this load 

vector is assembled into the structural equivalent load vector and, in case it exists, the 

relaxation load vector of prestressing steel is added. Load is then applied at time tn and 

then is kept constant for the time step Δtn. Then the resultant nodal displacement 

increments and the strain increments in the sections are determined. The fibre state 

determination is afterwards performed. Subsequently, the determination of the current 

internal loads is made, and convergence is checked. The residual forces are computed and 

the correspondent structural displacements are updated within the Newton-Raphson 

iteration loop. Once convergence is accomplished, the analysis proceeds to the next time 

step and continues until the last time step is reached. 

 

5.3 Validation of the model for time-dependent analyses 

5.3.1 Overview 

In contrast to the case of bending, experimental campaigns focused on shear-related time-

dependent response of RC frames are not profuse in the scientific literature. Therefore, 

firstly the validation of the model is carried out through the simulation of a bending creep 

benchmark: the partially prestressed flexural beams tested under sustained load by (Espion 

and Halleux 1991). In this example, due to the relatively low cracking level and non-

existence of diagonal cracks, the importance of shear in the analysis is expected to be 

rather irrelevant. Even though, this validation is important to ensure that the enlargement 

of the time-dependent model from the 1D to the 2D case was successfully accomplished. 

Subsequently, experimental tests focused on the shear related influence on the long-term 

deflection of beams carried out by (Nie and Cai 2000) are simulated. The tested specimens 

were pre-cracked with diagonal cracks and submitted to sustained load. The importance of 

considering shear effects in the time-dependent analysis of these beams should be of great 

importance. However, to the author’s knowledge, there is no other experimental campaign 

focused on shear related creep parameters and the measurement of the influence of 

distortion on the long-term deflection of the beams was not performed. 
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5.3.2 Partially prestressed flexural beams 

A series of partially prestressed concrete beams were tested in the University of Brussels 

between 1981 and 1986 by (Espion and Halleux 1991). These tests are a recognized 

benchmark (Espion 1993) usually used to validate FE models for the time-dependent 

behaviour of RC beams (Cruz 1994; Ferraz 2010). The experimental tests were composed 

by simple supported beams with 8.0m of span and rectangular cross-sections, differing on 

the quantity of passive reinforcement, prestressing forces applied and load history. The 

beams had no transversal reinforcement. The tests were performed with constant load 

during 4.5 years.  

From the experimental campaign two beams (LT05Q and LT08Q) with phased load levels 

were simulated with the proposed model, in order to determine their deflections along 

time. The geometric characteristics and reinforcement of the beams are reproduced in 

Figure 5.2, and the material properties are indicated in Table 5.1. A prestress force of 

1228kN per tendon was applied by post-tension at the age of 14 days in one of the 

extremities. The prestress tendons of beam LT05Q have a linear variation with an 

inclination of 3.2º with the horizontal between the load points and the supports, and the 

ones of beam LT08Q have constant eccentricities. Besides the dead load, the beams were 

submitted to two concentred loads Q at different time stages, as presented in the Table 5.2. 

 

 
Figure 5.2 – Characteristics of the experimental test of Espion and Halleux: structural scheme, 

geometry and reinforcement 
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Table 5.1 Material properties of the Espion and Halleux beams 

Tests Concrete 
Steel 

Active reinforcement 
Steel 

Passive reinforcement 

LT05Q 

fc = 33.9 MPa 
fct = 3.0 MPa 
Ec = 30.75 GPa 
εcu = 3.5×103 fsy = 1715 MPa 

fsu= 1892MPa 
Es = 200 GPa 

fsy = 500 MPa 
Es = 200 GPa 

LT08Q 

fc= 34.9 MPa 
fct = 3.0 MPa 
Ec = 31.04 GPa 
εcu = 3.5×103 

Table 5.2 Loading history of the Espion and Halleux beam tests 

Tests Time (days) Dead weight (kN/m) Q (kN) 

LT05Q 

0 < t < 14 0 0 
14 < t < 28 3.332 0 
28 < t < 84 0 16.5 

84 < t < 1642 0 63.75 

LT08Q 

0 < t < 14 0 0 
14 < t < 28 3.332 0 
28 < t < 85 0 16.5 

85 < t < 1642 0 63.75 

Pertaining to the numerical model, the FE mesh used for the simulation of these beams are 

presented in Figure 5.3. A simulation with the basic model CONS was also carried out 

with the same mesh. 

 

 

Figure 5.3 – Model of the beam tests by Espion and Halleux  

Appearance of cracking on both beams when submitted to 63.75kN was reported 

(Espion 1993). The crack patterns predicted by the proposed model after the application of 

the second load phase are represented in Figure 5.4, in which only vertical flexural cracks 
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appear, being consistent with the experimental observation. Also, as expected, the lesser 

prestressed beam LT5Q presents more extensive cracking than beam LT8Q. 

 

 
Figure 5.4 – Predicted crack patterns for the Espion beams after application of Q=63.75kN 

The time-dependent responses of the beams under the two-phase load levels are depicted in 

Figure 5.5, along with the numerical predictions of the proposed shear model and the 

flexural basic model (CONS). The results computed by other flexural fibre beam models 

(Cruz 1994; Ferraz 2010) are also included. For both beams, and before the application of 

the second load increment at the age of 85 days, the proposed model predicts the 

experimentally observed behaviours quite accurately. Afterwards, the difference between 

the experimental and the computed results increases, as also observed with the other 

numerical model predictions. Even though, as the beams presented cracking at this stage, 

the smeared crack approach and the nonlinear constitutive equations for concrete allow the 

proposed model to provide good predictions of the experimental observations, in 

comparison to the other models. The computation based on the linear constitutive 

equations (Ferraz 2010) is the one that deviates more from the measured response. 

 
                                               a)                                                                                   b) 

Figure 5.5 – Time-dependent deflection of the Espion and Halleux beams: a) LT5Q and b) LT8Q 

Unsurprisingly, shear effects are of small importance in these creep tests, as the predictions 

computed by the shear model are similar to the ones from the flexural model. It can be 

noticed that the larger differences between the two numerical models are observed in the 

less prestressed beam LT05Q, which presented earlier and more extensive cracking. In this 

case, less creep deflection is predicted by the shear model in comparison with the flexural 
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model. This is due to the fact that the presence of shear forces diminishes the compression 

stresses in the uncracked top area of the cross section for the same applied bending 

moment. As the creep deflection of the beam is mainly dependent on the compression 

stresses, the shear model predicts less time-dependent displacements for cracked cross-

sections than the flexural model. This aspect will be addressed latter in this chapter (in 

Section 5.4.2). 

 

5.3.3 Beams with diagonal cracking 

Experimental creep tests on diagonally pre-cracked beams under sustained load were 

performed by (Nie and Cai 2000). The goal of this experimental campaign was to assess 

the contribution of shear to the long-term deflection of RC beams. For this reason, the 

specimens were designed to develop both flexural and diagonal cracking. Also, in order to 

determine the load level to apply in the creep tests that ensured significant diagonal 

cracking, previous short-term loading tests on analogous beams were carried out. By these 

means, the sustained load was chosen so as to cause diagonal cracking with widths of circa 

0.2-0.3mm in the specimens. The geometry, reinforcement and other details of the simple 

supported beams are presented in Figure 5.6. The beams were tested under two-point 

loading with a shear span ratio of 2.5. From all the specimens tested, the ones with vertical 

transversal reinforcement were considered for simulation, whose characteristics are 

detailed in Table 5.3. The analyzed beams distinguished from each other in the ratios of 

longitudinal ρsl and transversal ρst reinforcement and in the concrete strength fc
’. The 

duration of the long-term tests were of 3 months, and only mid-span deflection data is 

available. The general information about the applied loads, correspondent diagonal crack 

widths and deflections are resumed in Table 5.4. 

 

Figure 5.6 – Geometry and scheme of the beam tests by Nie and Cai 
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Table 5.3 Reinforcement and material characteristics of the Nie and Cai beam tests 

Beam 
Longitudinal 
reinforcement 
ratio ρsl (%) 

Transversal 
reinforcement 

Stirrups 
ratio 
ρst (%) 

Longitudinal 
steel 

fsy (MPa) 

Transversal 
steel 

 fsy (MPa) 

Concrete 
f’c (MPa) 

B1 2.5 Ø8//200 0.25 462 293 38 
B2 3.4 Ø8//200 0.25 462 293 38 
B3 2.5 Ø8//100 0.50 462 293 38 
B5 2.5 Ø8//100 0.50 462 293 41 
B6 2.5 Ø8//100 0.50 462 293 41 

Table 5.4 Experimental information on the Nie and Cai beam tests 

Beam 
Sustained load 

(kN) 
Initial diagonal 

crack width (mm) 
Initial deflection at 

mid-span (mm) 
Deflection increment 
after 90 days (mm) 

B1 220 0.2 2.9 2.0 
B2 210 0.2 3.0 1.7 
B3 220 0.2 2.4 2.1 
B5 220 0.2 2.5 1.8 
B6 260 0.3 3.1 1.5 

The experimental tests were simulated with the proposed shear model and with the flexural 

basic model. The mesh used in both numerical models is presented in Figure 5.7, and the 

reinforcement ratios and material properties considered are presented in Table 5.3. Firstly, 

the predicted crack patterns by the shear model after the application of the instantaneous 

load are represented in Figure 5.8 for the specimens B1 and B6. Despite of the 

unavailability of experimental observations of the crack patterns, the predictions agree with 

reported evidence of significant diagonal cracking.  

 

                   
Figure 5.7 – Model of the beam tests by Nie and Cai 
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B1 

B6 

Figure 5.8 – Predicted cracking patterns of beams B1 and B6 after application of the sustained 
loads 

The experimental deflections at mid-span with time for all the analysed beams are depicted 

in Figure 5.9a, along with the predictions from the shear and the flexural models. In a 

general view, the instantaneous deflection is well predicted by the shear model, in contrast 

to the systematic lesser deflection computed by the flexural model. This difference 

evidences the significant importance of shear in the behaviour of these specimens. The 

exception to these remarks is beam B2, were the predictions of the proposed model differ 

significantly from the measured response. In fact, this specimen presented rather 

unexpected results, as it can be straightforwardly observed in Table 5.4: it has more 

longitudinal reinforcement, the same material properties and less sustained load than 

specimen B1, however the instantaneous deflection is comparatively higher. Diversely, and 

as expected, the numerical models predict lesser instantaneous deflection for beam B2 than 

for beam B1. 

Regarding the long-term response, even though the numerical analyses systematically 

predict lower deflection in comparison to the experimental data, in a general manner the 

proposed model gave acceptable predictions, as it can be observed in Figure 5.9a. 

Pertaining to the shear model, the contributions of bending and shear to the total long-term 

deflection of the beam are represented in the graphics of Figure 5.9b. In general, it is 

observed that distortion only plays a significant role in the instantaneous deflection, being 

almost insignificant in the long-term phase.  
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                                            a)                                                                                         b) 

Figure 5.9 – Deflection at mid span vs. time: a) computed results and experimental data and b) 
predicted contributions of shear and bending by the proposed shear model 
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As the magnitude of shear effects was not explicitly measured in this experimental 

campaign, key aspects of the validation of the model are left incomplete. In fact, measuring 

the time-dependent development of transversal strains in concrete and axial strains in the 

stirrups in RC elements with significant diagonal crack is aimed to be accomplished in 

future works. Despite of the limitations of this shear related validation, the capacity of the 

proposed model to perform numerical analysis on time-dependent response on shear 

critical elements was demonstrated and will be further explored in the parametric studies to 

be presented in the following. 

Pertaining to the linear creep assumption, the stress levels for which this approximation is 

considered to lose validity (for 1D cases) were not achieved. The distribution of principal 

compression stresses in concrete after the application of the instantaneous load in beams 

B1 and B6 is presented in Figure 5.10. It can be observed that the stresses in the concrete 

struts do not exceed 45% of the compressive strength (the threshold for validity of the 

linear creep assumption), which corresponds to 17MPa for the specimen B1 and 19MPa for 

the specimen B6. 

B1 

B6 

Figure 5.10 – Computed principal compression stresses in concrete for beams B1 and B6 after 
application of the instantaneous load (MPa) 

 

5.4 Parametric studies 

5.4.1 Overview 

The analyses to be presented henceforward, which aim to check the influence of shear-

related characteristics on the time-dependent performance of RC frames, are purely 
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numerical. By these means, the classical shear beam test VSA1 (Vecchio and Shim 2004), 

submitted to an instantaneous incremental load until failure at the age of 38 days - 

simulated with the proposed model in Section 3.3.3 - is used as the reference example in 

this section. 

These numerical studies include two different approaches: (i) to determine the influence of 

shear in the late deflection and load capacity of a beam after long-time creep deformation, 

and (ii) to evaluate the effects of restrained shrinkage in the ultimate resistance of a shear 

critical beam. This study is a continuation of the one presented in the Section 4.3 

(concerning the influence of restraint in the shear capacity of a beam in a frame) by 

including the effects of a previous stress state due to shrinkage. 

The modelling strategy used in Chapter 3 for validation of the fibre beam formulation with 

inclusion of shear effects is considered in the present numerical studies, assuming the same 

geometry and reinforcement characteristics (Figure 3.23), material properties (Table 3.2) 

and mesh discretization (Figure 3.24).  

 

5.4.2 Time-dependent performance of shear-critical beams 

The simple supported beam VSA1 was loaded at 40% of the ultimate load (Pu=460kN) at 

the age of 38 days, and this load remained until the age of 10000 days, as summarily 

presented in Table 5.5. The response of the beam under sustained load was determined 

with both the basic and the proposed models, in order to determine the importance of 

considering shear effects in this type of analysis. 

The global responses predicted by both fibre beam models are presented in Figure 5.11a, 

through the deflections computed along the beam for the ages of 38 and 10000 days. By 

comparing the results of the two models it is noticed that the shear model predicts higher 

instantaneous and long-term deflections after creep deformation. According to Figure 

5.11b, which reproduces only the time-dependent deflections, both models give fairly 

similar predictions of the beam vertical displacements due to creep. Even though the final 

long-term deflection takes higher values in the prediction by the shear model, this is only 

due to the higher instantaneous deflection. In fact, in the long-term the shear model gives a 

slight less deflection due to creep than the flexural model. This is better observed in the 

force-displacement curves of Figure 5.12, where the instantaneous deflection predicted by 

the shear model is much higher, and the time-dependent deformation slightly decreases. 
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The same conclusions can be drawn from the graphics of Figure 5.13, where the mid-span 

deflections are represented as function of time. The shear model predicts higher deflections 

in comparison with the flexural model (Figure 5.13a), however, the time-dependent 

deflection due to creep are similarly predicted by both models (Figure 5.13b), with slight 

lesser values attributed to the shear model. 

Table 5.5 Loading history 

Time (days) P (kN) 
t<38 0 

38<t<10000 185 (0.4Pu) 

 
                                                 a)                                                                                 b) 

Figure 5.11 – Vertical deflections along the beam under sustained load: a) total deflection for t=38 
and t=10000 days and b) time-dependent deflection after t=10000days 

 
Figure 5.12 – Load vs. mid-span displacements 
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                                            a)                                                                           b) 

Figure 5.13 – Displacements at mid-span vs. time: a) total displacement and b) time-dependent 
portion of creep deflection 

The instantaneous and long-term deflections of the beams predicted by the shear and 

flexural models are compared in Table 5.6. Although the instantaneous deflection 

computed by the shear model is higher than the one computed by the flexural model, the 

time-dependent deflection is reduced when shear effects accounted for. The lesser 

deflection due to creep predicted by the shear model is related to the decrease of the 

compression stresses in the uncracked top are of the cross section in the presence of shear 

forces. This aspect can be observed in Figure 5.14, in which the longitudinal stresses in 

concrete along the quarter-span section after the application of load (t=38days) are 

depicted for the shear and flexural models.  

Table 5.6 Deflections at mid-span (mm) 

Deflections Shear model Flexural model 
Total instantaneous t=38 3.70 2.61 
Total Long-term t=10000 5.45 4.41 

Increment due to creep 1.75 1.80 

 

 
Figure 5.14 – Stresses in concrete computed in the quarter-span section after application of the load 

(t=38days) 
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Subsequently, it is intended to determine the magnitude of the contributions of bending and 

shear related strains on the time-dependent response of the beam due to creep. To 

accomplish this, in Figure 5.15 the total displacement of the beam predicted by the 

proposed shear model is depicted along with the fractions of displacements due to the 

bending curvature  and to the deformation due to shear distortion γ. The prediction of the 

pure flexural model is also included in these graphics for comparison. In Figure 5.15a the 

total long-term deflection is represented, whilst in Figure 5.15b only the time-dependent 

creep part of the displacement is depicted. The few influence of the distortion on the long-

term deflection of the beam is observed, as the creep deflection of the beam is highly 

dominated by the flexure mechanism. It is also remarkable that the fraction of total 

displacement due to bending curvature predicted by the shear model is very similar to the 

results provided by the flexural model. Again in Figure 5.15b it is observed the decrease of 

creep displacement when shear is taken into account. 

 
                                            a)                                                                           b) 

Figure 5.15 – Displacements at mid-span vs time (contributions of bending and shear curvatures): 
a) total displacement and b) time-dependent deflection 
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effects of creep in the increment of stresses in the longitudinal reinforcement are less 

pronounced when shear effects are considered, than when they are not. By these means, as 

it is perfectly observable in Figure 5.17a, the predicted long-term total stress in the 
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as its time-dependent response gives less increment of stresses in steel due to creep than 

the flexural model. 

 
Figure 5.16 – Applied load vs. stresses in the longitudinal reinforcement at the shear-span 

 
                                            a)                                                                           b) 

Figure 5.17 – Axial stresses in the longitudinal reinforcement at shear-span vs. time: a) total 
stresses and b) increment of stresses due to creep  

The stresses in the transversal reinforcement computed by the proposed shear model are 

depicted in Figure 5.18 for a fibre in the bottom part of the cross-section located in the 

shear span. It is observed that for the applied load the stirrups were activated but reached 

very low stress levels (approximately 7MPa). Afterwards, the stresses in the stirrups 

presented a slight diminution with time (approximately 1MPa). The paradigmatic issue in 

these results is that at the fibre level, due to equilibrium requirements in the vertical 

direction, the vertical strains in concrete and reinforcement are of tensile nature, but the 

stresses in concrete are of compression. In this manner, when a crack appears the 

transversal reinforcement has strains and stresses applied with the same signal (tension), 

but concrete has strains and stresses with opposite signs. So, if relaxation of the concrete 

fibre occurs due to compressive creep, owing to the equilibrium requirements the stirrups 

in the fibre also experience relaxation. The validity of these results lacks experimental 

validation, which is, an interesting object for future work. 
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                                            a)                                                                         b) 

Figure 5.18 – Axial stresses in the transversal reinforcement on the shear-span: a) with load and b) 
with time 

After being under sustained load for 10000 days, the beam is now loaded incrementally 

until failure. By these means, it is aimed to determine the effects of shear in the ultimate 

resistance of the beam after long-term deformation due to creep. The loading history of this 

analysis is presented in Table 5.7. The responses of the beam after creep deformation 

computed by the flexural and shear models are represented in Figure 5.19. Regarding these 

graphics, as expected, no relevant difference in the ultimate load capacity of the beam after 

long-term creep was predicted to occur, which must be related to the low influence of the 

second-order effects in this element.  

Table 5.7 Loading history 

Time (days) P (kN) 
t<38 0 

38<t<10000 185 
t>10000 Load until failure Pu 

 

 
                                            a)                                                                            b) 

Figure 5.19 – Results of the beam loaded until failure after creep deformation: a) displacement-
time curves and b) force-displacement curves 
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5.4.3 Response of shear critical beams after restraint shrinkage 

The stress state resultant from the restraint of shrinkage strains in concrete can influence 

the later response of beams. In this manner, as the proposed model is able to perform time-

dependent analysis with the influence of shear effects in the resistant mechanism of RC 

elements, this section aims to evaluate the effects of shrinkage restrained strains on the 

ultimate resistance of shear critical beams.  

The parametric study considered in the Section 4.3 for the instantaneous analysis of the 

load carrying capacity of shear critical beams belonging to frames is analysed again, but 

now including the effects of long-term concrete shrinkage and creep, prior to applying the 

external load until failure. By comparing both analyses for different restraint levels - the 

instantaneous short-term test and the tests after long-term shrinkage - it is possible to 

assess the influence of the offset time-dependent strains in the later response of shear 

critical beams belonging to frames.  

Accordingly, the same mesh and material properties of the numerical model presented in 

the Section 3.3.3 (Figure 3.24 and Table 3.2, respectively) are assumed for the present 

study. Moreover, the same frame scheme and restraint levels brought by the elastic 

supports that represent the columns previously considered in Figure 4.8 are also assumed 

here. The single variation in the present analysis is that, before the application of load until 

reaching failure, the beam is considered under the effects of shrinkage and creep for 10000 

days. During this time the beam is only subjected to dead load and creep is related to the 

stress state generate by shrinkage. By these means, the time step-by-step procedure 

available in the proposed model computes the time-dependent strain and stress states in the 

beam before the application of the external load. As the flexural basis model was already 

concluded to be inappropriate for the analysis of beams with important shear stresses, this 

parametric study will be carried out only by the proposed shear model. Thus, after the 

10000 days of shrinkage and creep acting on the frame, the beam is incrementally loaded 

until failure. 

The variables considered in the parametric study are presented in Table 5.8 along with the 

results of the load tests: the short-term one at the age 38 days and the late age load test 

performed at 10000 days. The ultimate failure load (Pu) computed by both analyses (short-

term and late age load test) are depicted in Figure 5.20a as function of the axial restraint 

stiffness Kx and in Figure 5.20b as function of the rotational restraint stiffness Kθy of the 

columns. It is observed that the offset strains brought by the long-term restraint shrinkage 
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affect the ultimate shear resistance of the beam, decreasing the failure load. This decrease 

is noticed in the Figure 5.21, where the ratio between the ultimate loads of the late age 

(long-term Pu,∞) and the early age (short-term Pu,0) tests are depicted as function of the 

axial (Figure 5.21a) and rotational (Figure 5.21b) restraints. In fact, in a general way the 

long-term load carrying capacity of the beam decreased an average of 11.3% in relation to 

the short-term load test. A tendency for larger decreases of the ultimate load under higher 

levels of restraint is observed. In fact, for the limit situation of double end-fixed beam 

(VSA1_0) the decrease on the ultimate load was of 135kN, which corresponds to a 21.1% 

loss in the load carrying capacity of the late age test in relation to the correspondent test 

performed at early age. 

Table 5.8 Summary of the variables considered in the parametric study and the results 
correspondent to the ultimate response of the shear-critical beam VSA1 

Beam in 
frame 

Columns Supports 
Short-term failure 

t=28 days 
Long-term failure 

t=10000 days 

L 
(m) 

h 
(m) 

b 
(m) 

E 
(MPa) 

Kx 
(kN/m) 

Kθy 
(kNm) 

Failure 
mode 

Pu,0 
(kN) 

δu,0 
(mm) 

Failure 
mode 

Pu,∞ 
(kN) 

δu,∞ 
(mm) 

VSA1 0 0 0 0 0 0 Shear 444.8 15.3 Shear 464.0 16.1 

VSA1_0 ∞ ∞ ∞ ∞ ∞ ∞ Shear 653.0 3.7 Shear 515.0 3.7 

VSA1_1 3 0.3 0.3 30 13500 27000 Shear 470.0 7.9 Shear 442.0 8.3 

VSA1_2 3 0.4 0.3 30 32000 64000 Shear 552.4 9.0 Shear 490.0 8.5 

VSA1_3 3 0.5 0.3 30 62500 125000 Shear 580.7 8.8 Shear 540.0 8.8 

VSA1_4 4 0.3 0.3 30 7594 20250 Shear 490.7 8.6 Shear 442.0 8.2 

VSA1_5 4 0.4 0.3 30 18000 48000 Shear 577.6 10.0 Shear 450.0 8.1 

VSA1_6 4 0.5 0.3 30 35156 93750 Shear 575.7 9.1 Shear 510.0 8.7 

VSA1_7 3 0.3 0.3 35 15750 31500 Shear 481.9 7.8 Shear 470.0 8.4 

VSA1_8 3 0.4 0.3 35 37333 74667 Shear 581.3 9.3 Shear 505.0 8.7 

VSA1_9 3 0.5 0.3 35 72917 145833 Shear 580.0 8.5 Shear 548.0 8.8 

VSA1_10 4 0.3 0.3 35 8859 23625 Shear 532.4 9.4 Shear 387.0 7.4 

VSA1_11 4 0.4 0.3 35 21000 56000 Shear 456.9 7.2 Shear 441.0 7.7 

VSA1_12 4 0.5 0.3 35 41016 109375 Shear 561.7 8.7 Shear 530.0 8.9 
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a)                                                                                       b) 

Figure 5.20 – Ultimate load of the beam vs. level of restraint of the columns for the long-term and 
short-term analysis: a) longitudinal stiffness and b) rotational stiffness 

 
a)                                                                                       b) 

Figure 5.21 – Ratio of the ultimate load of the beam for the long-term and short-term analysis vs. 
level of restraint of the columns: a) longitudinal stiffness and b) rotational stiffness 

Concerning the prediction of the level of damage in the beams caused by the time 

dependent shrinkage, the crack patterns computed by the model at the age of 10000 days 

are depicted in Figure 5.22 for two extreme situations: the simple supported beam (VSA1) 

and double end-fixed beam (VSA1_0). The restraint strains caused by the effects of 

shrinkage were enough to cause vast cracking to beam VSA1_0. Nevertheless, vast 

cracking was only predicted in this extreme situation; in the intermediate levels of restraint 

no relevant cracking was predicted. Even tough, the restraint of the shrinkage strains 

induces initial stresses in the beam that influence its later load carrying capacity, which 

was captured by the numerical model.  
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VSA1 
t = 10000 days 

VSA1_0 
t = 10000 days 

Figure 5.22 – Crack patterns after 10000 days of shrinkage and creep 

The initial tensile strain caused by the restraint shrinkage diminishes the concrete 

contribution to the shear resistance and causes a sooner activation of the transversal 

reinforcement. This can be observed in Figure 5.23 for the simple supported (VSA1) and 

double end-fixed (VSA1_0) beams, were the stresses in the transversal reinforcement σz
st at 

the mid-shear span are depicted as function of the applied shear force V for the cases of 

short-term and late age (long-term) test. As the beams fail in shear by failure of the 

transversal reinforcement, when stirrups start to be loaded for lower shear forces they also 

reach a lower ultimate load. In this manner, the initial stresses caused by restrained 

shrinkage strains influence the shear resistance of beams with tensile shear failure. This 

effect of the previous cracking or tensile strain state in concrete on the concrete 

contribution to shear resistance and on the ultimate shear resistance of beams was 

experimentally found in (Sato and Kawakane 2008) for the case of the early age shrinkage 

and in (Fernandez 2011) for the case of shear-critical beams under tensile stresses.  

 
    a)                                                                                       b) 

Figure 5.23 – Stresses in the transversal reinforcement in the mid-shear span vs. shear force: a) 
simple supported beam and b) double end-fixed beam 
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Figure 5.23) is depicted for the various levels of restrain and for the short-term (Vc,0) and 

long-term (Vc,∞) cases. In Figure 5.25, the ratio between the concrete contribution to shear 

resistance for the short-term and long-term test (Vc,0/Vc,∞) are presented. Later age tests 

after restrained shrinkage present lower values for the contribution of concrete to shear 

resistance, and the ratio between the values correspondent to the short and long-term tests 

presents a tendency to increase for higher restraint levels.  

 
  a)                                                                              b) 

Figure 5.24 – Concrete contribution to shear resistance vs. level of restraint of the columns for the 
long-term and short-term analysis: a) longitudinal stiffness and b) rotational stiffness 

 
a)                                                                               b) 

Figure 5.25 – Ratio of the concrete contribution to shear resistance of the beam for the long-term 
and short-term analysis vs. level of restraint of the columns: a) longitudinal stiffness and b) 

rotational stiffness 
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models for the time-dependent response of concrete were extended in order to maintain the 

consistency with the 2D stress-strain state present in the shear resistant fibres. By these 

means, an existent time-dependent analysis procedure for plane elements was adapted to 

the case of the 1D fibre beam element model with inclusion of shear effects.  

The validation of the model was performed with two experimental tests available in the 

literature: (i) a typical flexural benchmark on partially prestressed beams, in which the 

influence of shear was not important; (ii) a set of diagonally pre-cracked RC beams under 

sustained load, in which shear effects were relevant. The first example was chosen to 

ensure that the extension of the time-dependent model from the 1D to the 2D strain state 

was performed correctly, and that for the shear negligible cases the model was also 

performing accurately. Pertaining to the creep experimental tests on diagonally cracked 

beams, the shear effects were important and the proposed shear model achieved a better 

fitting with the experimental data, in comparison to the pure flexural model. However, the 

difference between the results of the two models was mostly observed in the instantaneous 

deflections. The influence of shear in the long-term deflection was not straightforwardly 

evaluated from these experimental tests. Actually, the scarcity of experimental tests 

focused on the shear related parameters on the time-dependent behaviour of RC frame 

structures inhibited a proper validation. 

Subsequently a series of numerical studies on the time-dependent performance of shear-

critical RC beams were carried out. Starting from a previously studied case – the VSA1 

beam presented in Chapter 3 - the beam was submitted to a sustained load correspondent to 

40% of its ultimate resistance, and the correspondent time-dependent response was 

computed by the numerical model. By these means, it was observed that the deflection of 

the beam was predicted to achieve significantly higher values with the consideration of 

shear effects. However, the differences between the results of the shear and flexural 

models are essentially due to the instantaneous portion of the total deflection. In fact, the 

time-dependent deflection due to distortion was rather insignificant. Moreover, the 

relaxation of the stresses in the stirrups with time, due to the decrease of compressive 

stresses in concrete in the vertical direction, was predicted by the shear model. After the 

time-dependent analysis, the beam was incrementally loaded until failure. No influence of 

the sustained load and creep phenomena on the ultimate resistance of the beam was 

observed, as expected. 

Afterwards, as a continuation of the parametric study on the influence of restraint effects 

on shear critical beams belonging to frames presented in Chapter 4, an analogous study 
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was carried out by considering long-term shrinkage before loading. By these means, it was 

observed that the presence of restraint strains due to shrinkage had an effect on the ultimate 

response of the beam. A considerable decrease of the ultimate load was predicted by the 

numerical model (5-20%), as consequence of the previous damage and stress states 

brought by the time-dependent effects of shrinkage. This effect is due to decrease of the 

concrete contribution to shear resistance when previous tensile strain states are applied to 

the beam, leading to the activation of the transversal reinforcement for lower loading 

levels. It was observed that, for higher levels of restraint, the decrease on the shear 

resistance of the beam was higher in relation to the short-term analysis.  



 

 

 

 

Chapter 6 
 

 

NUMERICAL ASSESSMENT AND 

STRENGTHENING INTERVENTIONS ON SHEAR 

CRITICAL CONCRETE STRUCTURES 

 

 

 

6.1 Introduction 

In this chapter, the proposed nonlinear and time-dependent fibre beam model is enhanced 

in order to simulate the response of existent RC and prestressed structures subjected to 

repair and strengthening interventions. The proposed shear model was implemented in the 

existing flexural fibre beam model for the time-dependent analysis of segmental 

constructed RC frames (Marí 2000). By these means, along with the possibility of 

simulating shear critical problems, the model is able to reproduce evolutionary 

construction phases, such as repair or strengthening interventions. In fact, modelling 

strengthening procedures as phases of an evolutionary construction is a suitable way to 

predict the behaviour of strengthened elements, as the previous damage can influence their 

final responses. 

The proposed model is validated with experimental results concerning a shear damaged 

and subsequently strengthened RC beam, available in the literature. Relevance of 

considering the shear-bending interaction and the previous damages in the numerical 

assessment of strengthened RC beams is highlighted. An alternative strengthening solution 
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for the same damaged beam, based on using post-tensioned steel stirrups, is numerically 

analysed as well.  

Afterwards the numerical model is used to assess the beams of the girders of the 

Wassnerwald bridge, put into service in Swiss in 1969 and dismantled in 1996, because the 

shear resistance requirement was no longer satisfied according to actual design codes. The 

beams were fully prestressed, and only a minimum reinforcement quantity was used as 

stirrups. The dismantled beams were used to perform full-scale tests up of to failure by the 

Institute of Structural Engineering IBK of the Swiss Federal Institute ETH in Zurich. The 

goal of these tests was to assess the ‘real’ load carrying capacity of the bridge, and in this 

manner infer the structural safety and strengthening needs of other existent bridges of the 

same type. These in situ full-scale experimental tests are reproduced by the proposed 

numerical model. Afterwards, different strengthening proposals for the beams regarding 

prestress solutions are analysed. 

The proposed fibre beam model, with inclusion of shear effects, can be specially 

appropriate and useful for this kind of analysis, which includes the assessment of existent 

and strengthened structures. By these means, this chapter aims to demonstrate the original 

and essential contribution of this thesis, which consists in the development of a numerical 

tool to perform numerical assessment of damaged frame structures and predict the response 

of strengthening interventions. 

 

6.2 Enhancement of the proposed model for simulation of 

strengthening interventions 

Regarding that the proposed formulation for the consideration of shear-bending interaction 

in a fibre beam model was implemented on the numerical model CONS (Marí 2000), its 

time-dependent and sequential analysis features are exploited by extending its application 

to the case of RC structures under important shear stresses. By these means, the time step-

by-step analysis allows the simulation of segmental construction procedures and 

subsequent later changes, in which repair and strengthening interventions are included. The 

required adaptations in the proposed model in order to allow for the simulation of 

strengthening procedures within a step-by-step time integration domain are detailed 

presented in the following. 
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6.2.1 Segmental construction analysis 

The flowchart of the algorithm that implements the proposed model with segmentation 

construction capabilities is presented in Figure 6.1. It includes three global loops, which 

run through: (i) the constructive phases, (ii) the time steps and (iii) the load steps. It is 

noteworthy that the algorithm is a continuation of the one related to the load steps 

presented in Chapter 3 for the proposed shear-bending fibre beam model (see Figure 3.8), 

and of the one related to the time-steps for the time-dependent analysis in Chapter 5 

(Figure 5.1), adding a loop for the construction phases. 

Most modifications that may take place during the construction process and along the 

service life of a structure - such as changes in the cross-sectional and longitudinal 

geometry, structural scheme, material properties and applied loads - can be simulated by 

the proposed model, through the available step-by-step solution scheme for the nonlinear 

problem. Deterioration and repair procedures may also be modelled due to the possibility 

to consider different concrete and steel types, with different activation and removal 

timings, for each fibre and each filament in a cross-section. Hence, the following 

operations related to retrofitting and strengthening of existing structures can be simulated: 

substitution of damaged concrete parts, enlargement of the concrete cross-section, 

introduction of new reinforcement bars (longitudinal and transversal), placement or 

removal of temporary shores, imposed movements and application of external prestressing.  
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Figure 6.1 – Flowchart of the global model 
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6.2.2 Evolutive section assumption for shear 

Pertaining to the simulation of the evolutionary section response, the mixed 

kinematic/force-based assumptions are represented in Figure 6.2: both the original and the 

added fibres for strengthening are assumed to comply with the plane section theory. Before 

strengthening procedures the constant shear force V is carried by the area A* of the shear 

resistant fibres; after strengthening the constant increment of shear stress ΔV along the 

cross-section is equally distributed between the original and the added fibres, and the 

effective shear area increases of A*
stren (the area of the strengthening shear resistant fibres). 

 
Figure 6.2 – Assumptions of the evolutionary sectional model 

By assuming this hypothesis of identical stress distribution in the shear effective area of the 

strengthened section, possible differences between the distribution of shear stresses of the 

original and repair materials/fibres are neglected. 

Furthermore, the historical plasticity and damage variables of the original fibres are kept 

memorized (unchanged) when the new strengthening fibres are activated. Hence, influence 

of previous damages in the structure, which can be particularly relevant, is accounted for in 

the model. 

 

6.2.3 Simulation of post-tensioned stirrups 

Strengthening of RC elements to shear with post-tensioned stirrups is an efficient method 

to increase the shear capacity of the structure, allowing for the development of its full 

flexural capacity. Transversal reinforcement is considered smeared in the shear resistant 

fibres, as described in Section 3.2.2. If vertical prestress is applied at a given time-step, the 

prestressed stirrups are activated with a given stress as schematically represented in Figure 

6.3. 
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Figure 6.3 – Simulation of post-tensioned stirrups 

By these means, the equilibrium of stresses in concrete and transversal steel in the vertical 

direction at the fibre level, originally stated in Eq. (3.21), is rewritten in order to account 

for this extra increment of tensile force 

0c st sp

z st z sp z          (6.1)

where ρsp is the volumetric ratio and Δσz
sp is the increment of axial stresses (along 

direction z) of the prestressed stirrups. The prestress is considered in the model as an offset 

strain εz
p as 

  0c

z st s sp sp

p
z z zE E          (6.2)

where Esp is the elasticity modulus of the prestressing steel. Through this equilibrium 

requirement the concrete fibre is submitted to an active confinement when the vertical 

prestress is applied, and existing stirrups made with ordinary reinforcement will be pre-

compressed. 

The 1D constitutive law for ordinary reinforcing steel presented in Figure 3.4 is also used 

for the simulation of prestressing steel. 

 

6.3 Experimental validation: Souza and Appleton beam tests 

6.3.1 Description 

The experimental tests of shear damaged and subsequently strengthened RC beams carried 

out by (Souza 1990; Souza and Appleton 1997a) were simulated with the proposed model. 

With this example it is aimed to validate the capacity of the model to numerically assess 
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the behaviour of existent damaged and strengthened RC elements under high shear forces. 

Among the several specimens with different strengthening techniques tested in the 

experimental campaign, the selected ones relate to the beams repaired with shotcrete and 

additional closed stirrups. The geometry characteristics, loading conditions, reinforcement 

details and material properties of the experimental tests are indicated in Figure 6.4: the 

specimen after strengthening is represented in black line, whereas the original beam before 

strengthening is represented in grey colour. The specimens are 2.07m long, having T-

shaped cross-sections with heights of 0.20m for the original beams and of 0.245m after 

strengthening, and web thicknesses of 0.08m and 0.13m, prior and after strengthening, 

respectively. The original beam has a very low shear reinforcement ratio (0.2%), with the 

purpose of simulating a design error; an extra stirrups ratio of 0.246% was added to the 

strengthened beam. The beams are heavily reinforced for bending, in order to guarantee 

high shear damages and failure after strengthening.  

The original beam (WPB1) was loaded incrementally until appearance of considerable 

damage at the load level near the shear resistance. Afterwards the beam was completely 

unloaded and the strengthening work was carried out: the concrete cover of the web was 

removed; vertical holes were opened in the flanges in order to fix the additional transversal 

reinforcement and then filled with cement past; the extra longitudinal reinforcement was 

placed and shotcrete was added until the desired cross-section dimensions were reached. 

No treatment was applied to the cracks caused by the first loading tests. After the 

strengthening procedures, the beam (WPB1R) was submitted to increasing load until 

failure in a second test. 

In addition to the WPB1 and WPB1R tests two reference tests were also considered: (i) 

one specimen with the same characteristics of the non-strengthened beam (DW) and (ii) 

one specimen with the same characteristics of the strengthened beam (RW2). Both 

reference specimens were not submitted to any previous damage or strengthening 

intervention and were loaded until failure. The non-strengthened reference beam test (DW) 

allows determining the level of damage applied to WPB1 specimen, i.e. how near it was to 

failure load before strengthening interventions. By comparing specimens WPB1R with the 

reference RW2 the influence of the previous damage on the response of the strengthened 

beam is induced. The names of the tests were maintained as in the original data 

(Souza 1990). The recorded experimental data consisted on displacements (by means of 

displacement transducers), localized strains in reinforcement (using electric gauges), 
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strains and crack widths in concrete (through extensometers) and observed cracking 

patterns.  

In total, three shear beam tests were simulated with the proposed model: (i) the reference 

original beam DW, (ii) the reference strengthened beam RW2 and (iii) the previously 

damaged and then strengthened beam (WBP1-WPB1R). The FE model and the 

cross-section idealization by means of concrete fibres and steel filaments is represented in 

Figure 6.5.  

 

Side-view 

 
Plan-view 

 

                              Cross-section                                                        Material properties 

Figure 6.4 – Geometry, reinforcement and material properties of the shear beam tests by Souza and 
Appleton  
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.

 

 

Figure 6.5 – - Numerical model adopted for the Souza and Appleton’s shear beam tests 

Concerning to the load application, in the case of the reference beams (DW and RW2) the 

vertical load was incrementally imposed until failure. In the case of the damaged and 

subsequently strengthened beam, firstly the vertical load P was applied incrementally to 

the original beam (WPB1) until reaching 54kN, and then was unloaded until P  0. 

Afterwards strengthening concrete and reinforcement were activated (WPB1R), and the 

load was again incrementally applied until failure. An identical simulation was performed 

with the pure flexural fibre beam model CONS (Marí 2000), to evaluate the importance of 

taking into account the nonlinear shear effects in this analysis. 

 

6.3.2 Results and discussion 

6.3.2.1. Failure loads and collapse modes 

According to the experimental observations (Souza 1990), the three beam specimens 

loaded until failure in laboratory failed in shear. In the case of beam WPB1R the 

strengthening intervention proved to be very successful, allowing for a correct transference 

of load between old and added materials, as the stirrups remained well anchored and the 
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bond between the repair and original concrete was achieved. Collapse was caused by 

failure of the external stirrups and compressive crushing of the concrete web. The 

reference beam RW2 showed a similar performance to that of beam WPB1R, with a shear 

failure induced by the rupture of the internal and external stirrups, in correspondence to the 

location of a diagonal crack. In Table 6.1 a summary of the experimental and computed 

results at failure for the three analyzed beams is presented. Good predictions of the 

ultimate shear force and failure mode were given by the proposed model. In contrast, and 

as expected, the basic flexural model CONS showed to be inadequate for the simulation of 

these shear influenced beam tests, providing unsafe estimations of the failure loads. 

Table 6.1 Summary of experimental and computed results at failure 

Beam 
Experimental 

Proposed model 
(shear-bending model) 

Basic model 
(pure bending model) 

Vu (kN) Failure mode Vu (kN) Failure mode Vu (kN) Failure mode 

DW 38 Shear a 39 Shear* 47 Bending** 

RW2 88 Shear b 91 Shear* 116 Bending** 

WPB1R 91 Shear c 90 Shear* 101 Bending** 
a Web failure due to a main diagonal crack. 
b Stirrups failure in the position of a main diagonal crack. 
c Stirrups failure and crushing of the concrete compression flange. 
* Stirrups failure and crushing of the concrete web. 
** Failure of longitudinal reinforcement. 

 

6.3.2.2. Global response 

Experimentally observed mid-span beam deflections are compared with the numerically 

computed ones in Figure 6.6. Relating to the damaged and strengthened specimen (WPB1 

– WPB1R) and for a better interpretation of the graphics, the results related to the test 

performed before strengthening (WPB1) and to the test performed after strengthening 

(WPB1R) are represented separately. As it can be seen, very good agreement between the 

experimental results and the numerical predictions with the shear-bending model has been 

obtained for all the studied cases. This occurs even in the strengthened beam WPB1R, in 

which the shear stress distribution cannot be uniform in all the section due to the previous 

damage. By analysing Figure 6.6 it is also clear that the pure flexural model is not suitable 

to simulate these shear-critical beams, as their predictions are very different from the 

experimental observations in terms of deflections and ultimate loads. 
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By comparing the strengthened beam WPB1R with its reference ‘twin’ RW2 a quite 

similar behaviour is perceived. The residual damage of the beam WPB1 (such as plastic 

strains in concrete and cracking) had few influence on its final response (WPB1R). No 

yielding of the reinforcement was observed during the previous damage test. The same 

aspects were found in the numerical simulation, as no relevant decrease in the stiffness and 

in the ultimate load were predicted for the previously damaged beam WPB1R when 

compared with the reference specimen RW2.  

 

 

Figure 6.6 – Displacements at mid-span 

Average curvatures y measured at mid-span are depicted in Figure 6.7, along with the 

numerical predictions for the strengthened beams RW2 and WPB1R. In these graphics a 

more ductile experimental response of the reference beam RW2 is observed, in comparison 

to the one from beam WPB1R. In relation to the results computed by the proposed shear 

model, they fit better to the experimental observations for beam WPB1R, although 

relevance of shear is evident in both beams. 
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Figure 6.7 – Curvatures at mid-span for the strengthened beams 

 

6.3.2.3. Stress-strain state in the longitudinal reinforcement 

The strain measurements at the bottom longitudinal reinforcement, mid shear span, are 

compared in Figure 6.8 with the model predictions for x
sl. For the case of the strengthened 

beams (WPB1R and RW2) the presented results correspond to the reinforcement added in 

the strengthening intervention. The importance of considering shear effects in the 

numerical simulations is, in this case, particularly evident. 

The increment of axial strain in the tensile longitudinal reinforcement in the presence of 

shear forces (the ‘tension-shift’ effect) is a consequence of the shear-bending interaction 

mechanism. This effect, observable in Figure 6.8 in the higher strains computed by the 

shear model in contrast with the ones of the pure flexural model, is well captured by the 

proposed model and allows a good fitting with the experimental data. In the case of the 

strengthened beam WPB1R, the residual damage does not play an important role in the 

development of the stresses in the longitudinal reinforcement, as experimental and 

computed results are quite similar to the respective reference specimen RW2. This is due 

to fact that there was no previous yielding of the longitudinal reinforcement during the first 

loading stage. 
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Figure 6.8 – Strains in the longitudinal reinforcement at the shear span (x=0.36m) 

The strain x
sl in the bottom longitudinal reinforcement along the beam’s length, predicted 

by the shear and flexural models, is presented in Figure 6.9 for different load levels. In 

relation to the strengthened beams (RW2 and WPB1R), the reinforcement added in the 

strengthening intervention is the one considered in the graphics. The available 

experimental data are also included (Souza 1990). It is noteworthy that the experimental 

data correspond to average values, which depend on the crack location. It can be observed 

that the ‘tension-shift’ effect in the shear span is only reproduced by the proposed shear 

model. The peaks of x
sl in the curves of the shear model when passing from the area of 

null shear force between applied loads to the shear spans represent this ‘tension-shift’ 

effect of increment of strains due to the presence of shear.  Pertaining to the strengthened 

beams (Figure 6.9b), greater experimental strains in the pure bending region and lower 

strains in the shear span are found for the reference beam RW2, in comparison to WPB1R. 

In relation to numerical predictions, no significant differences between the beams RW2 

and WPB1R are found.  
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P/2=15kN P/2=52kN 

P/2=25kN P/2=76kN 
a) b) 

Figure 6.9 – Strains in the tensile longitudinal reinforcement along the beam: a) non-strengthened 
reference beam DW; b) strengthened beams RW2 and WPB1R 

The axial stresses x
sl on the original bottom reinforcement at the mid-shear span predicted 

by the proposed shear model for both strengthened beams RW2 and WPB1R are compared 

in Figure 6.10. A slight increase of x
sl is noticed for beam WPB1R in relation to RW2 for 

earlier load stages; the curve of the previously damaged beam WPB1R presented no bulge 

(related with the tension-stiffening effect) in contrast with the curve of the reference beam 

RW2. This is due to the fact that the original reinforcement of the strengthened beam is 

immediately loaded, as concrete in that area is already cracked by the previous damage (as 

will be presented next in Section 6.3.2.6). The observation of this fact was also mentioned 

in the discussion of the experimental results of the strengthened beams tested 

(Souza 1990). For later load stages, axial stresses in the longitudinal reinforcements are 

identical for both beams.  

Experimental DW

Flexural model DW

Shear model DW

Experimental RW2 Experimental WPB1R

Flexural model RW2 Flexural model WPB1R

Shear model RW2 Shear model WPB1R

P/2 P/2 P/2 P/2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1 1.5 2

ε x
sl
(E
‐3
)

Beam's length (m)

DW

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2

ε x
sl
(E
‐3
)

Beam's length (m)

RW2

WPB1R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε x
sl
(E
‐3
)

DW

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ε x
sl
(E
‐3
)

WPB1R
RW2



Numerical assessment and strengthening interventions on shear 
critical concrete structures 193 

 

Figure 6.10 – Axial stresses in the original bottom longitudinal steel at the mid-shear span 
(x=0.36m), for the strengthened beams (shear model predictions) 

 

6.3.2.4. Stress-strain state in the transversal reinforcement 

Numerical predictions and experimental measurements of the strains z
st in the stirrups are 

presented in Figure 6.11 for all the analysed beams. The strain sensors are located in a 

cross-section at the mid-shear span (x=0.36m), and 5.5cm above the bottom of the closed 

stirrups. The presented measurements concern to the original transversal reinforcement, for 

both the non-strengthened and strengthened beams. According to Figure 6.11, the visible 

change in the inclination of the numerical and experimental curves coincides with the start 

of the diagonal cracking, when the concrete contribution to shear resistance (i. e. the 

contribution of concrete to the tension ties of the shear resistant mechanism of a beam) is 

over and the stirrups start to carry the tensile stresses generated by the shear mechanism. It 

is important to underline that these experimental measurements are very much dependent 

on the position of the cracks. This influence is more important for the cases of widely 

spaced stirrups, when few diagonal cracks appear and failure occurs through a major crack. 

As a consequence, the comparison of the numerical predictions with the experimental data 

is not straightforward, due to the discrete nature of cracking and to the position of the 

strain sensors with respect to the closest crack. Even though, by analysing the experimental 

and the shear model graphics an overestimation of the strains by the numerical model is 

perceived. However, for the case of the beams with lesser spaced stirrups (RW2 and 

WPB1R) the fitting is better. In this case there are no predictions from the flexural model, 

as the transversal reinforcement is not taken into account.  
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Figure 6.11 – Axial strains in transversal reinforcement at the mid-shear span (x=0.36m) 

The axial stresses z
st in the transversal reinforcement, at the same location of the 

measurements presented in Figure 6.11, are depicted in Figure 6.12 for the strengthened 

beams. The influence of the previous damage brought by the first loading test in their later 

responses after strengthening is noticed: a sooner ending of the concrete contribution and 

the consequent earlier activation of the stirrups is observed for beam WPB1R in 

comparison with beam RW2. Regarding the beam WPB1R (original and strengthening 

reinforcements), and during the first loading stages, the original transversal reinforcement 

is activated sooner and reached higher stresses z
st than the strengthening shear 

reinforcement; for a later stage an identical behaviour is however observed. In the case of 

the reference beam RW2, the original and strengthening stirrups presented identical 

responses, so only the stresses z
st in the original reinforcement are presented in Figure 

6.12.  
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Figure 6.12 – Axial stresses in the transversal steel at the mid-shear span (x=0.36m) for the 

strengthened beams 

Still concerning to the strengthened beams, distributions of stresses z
st along direction z at 

the mid-shear span cross-section (x=0.36m) are depicted in Figure 6.13 for a loading stage 

near failure (P/2=90kN). Higher stresses appear in the cracked part of the cross-section, 

and nearly null stresses occur in the compressed top region. At this load stage, steel 

yielding at the bottommost part is observed, being more pronounced for the WPB1R beam. 

Original and strengthening reinforcement of both beams presents a quite similar behaviour. 

 
Figure 6.13 – Axial stresses in transversal reinforcement along the mid-shear span cross-section 

(x=0.36m) for P/2=90kN 
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presented in Figure 6.14 for the strengthened beams. Regarding the WPB1R beam, both 
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strains are observed. In fact, along with the effects of the previous damage, this difference 

is due to the lesser shear resistant area that is considered in the model of WPB1R beam, in 

comparison to the model of beam RW2 (see Figure 6.5). The plastic shear strain of the 

original fibre in the previously damaged beam WPB1R is perceived by the offset of the 

curve in Figure 6.14b. 

 
a) b) 

Figure 6.14 – Concrete shear stresses a) and strains b) at the mid-shear span (x=0.36m) for the 
strengthened beams 

The concrete normal stress distributions x
c along the vertical direction in the web of the 

shear critical cross-section of the strengthened beam WPB1R are depicted in Figure 6.15, 

for a loading stage near failure (P/2=90kN). Results computed by both the proposed shear 

and the flexural models are presented. The absolute different predictions from the two 

models, especially in the area below the neutral axis, are noteworthy. In the case of the 

pure flexural model tensile stresses due to tension stiffening appear in this zone. 

Conversely, compressive stresses are computed by the shear model, which correspond to 

the longitudinal component of the diagonal compressive struts. Identical results were found 

for the reference beam RW2. 

 
Figure 6.15 – Longitudinal stresses in concrete along the web of the shear critical cross-section at 

x=0.36m for the WPB1R beam (P/2=90kN) 
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6.3.2.6. Cracking 

An illustration of the observed cracking patterns for the maximum load stage is presented 

in Figure 6.16, along with the predictions from the proposed shear model. A general good 

representation of the observed cracking is achieved, with vertical cracks at the bending 

span and diagonal cracks in the shear span. In comparison to the reference test RW2, it is 

clear on the crack representations provided by the numerical model the more extensive 

cracking, as well as the greater inclinations of the diagonal cracks, of the previously 

damaged and subsequently strengthened beam WPB1R. 

 

 

 
a) b) 

Figure 6.16 – Cracking patterns 

 

6.3.3 Alternative shear strengthening technique 

In the following, an alternative strengthening solution for the shear beam test WPB1R 

(Souza 1990) is analysed numerically. Thus, starting from the numerical shear model of 

the previously damaged beam, the extra stirrups of the original strengthening were 

replaced by vertical prestressing rebars. 
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6.3.3.1. Description 

The characteristics of the alternative strengthening solution are presented in Figure 6.17: 

16mm diameter rebars were used as stirrups at a spacing of 200mm; post-tensioning was 

applied vertically; the prestressed bars were tensioned to 53% of its yielding strength at an 

initial pre-elongation of 0.002; the rebars were anchored to the beam top and bottom faces. 

Properties of the prestressing steel are (according to the notation of Figure 3.4): 

fsy=1050MPa, Es=200GPa, fsu=750MPa and εsu=0.07.  

 
 

 
Figure 6.17 – Alternative strengthening solution by using prestressed vertical stirrups (beam 

WPB1R-VP) 

Material properties of the concrete and ordinary steel, as well as the geometry and 

reinforcement of the damaged non-strengthened beam WPB1, are the same of the original 

test (see Figure 6.4). The enlargement of the concrete cross-section is also the same as for 

the experimental test WPB1R, in terms of geometry and material properties. The numerical 

model is analogous to the case of the simulation of the experimental test WPB1R (Figure 

6.5), the only difference being in the definition of the transversal prestressing steel. 

Similarly to the WPB1R beam test, the original beam was firstly loaded until P=54kN to 

induce an initial cracking. Then it was unloaded until approximately null load, and 

afterwards the strengthening concrete, the longitudinal reinforcement and the prestressed 

stirrups were activated, and the load was incrementally applied until failure. 
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6.3.3.2. Numerical results and discussion 

Deflections at mid-span for the strengthened beam with prestressed stirrups (WPB1R-VP) 

are depicted in Figure 6.18, along with the numerical results of the original beam WPB1R. 

Post-tensioned stirrups produce a considerable increase in the stiffness and in the shear 

resistance of the damaged beam, allowing for the full development of its flexural strength. 

Therefore, the brittle shear failure of the original strengthened beam changed to a ductile 

flexural mechanism. Relating to other shear-related aspects of the behaviour of the beam, it 

was observed that the use of the prestressed stirrups caused a decrease of the average 

concrete distortion γxz (see Figure 6.19), as well as an increase of the angle of the 

compressive concrete struts θ at the shear span (see Figure 6.20).  

 
Figure 6.18 – Displacements at mid-span for WBPB1R and WPB1R-VP beams 

 
Figure 6.19 –Average concrete distortion at the shear span for WPB1R and WPB1R-VP beams 
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Figure 6.20 – Average angle of the compressive concrete struts with the beam axis at the shear span 

for WPB1R and WPB1R-VP beams 

Numerical strains in the ordinary (passive) and pre-stressed (active) transversal 

reinforcement at the mid-shear span of WPB1R-VP beam are presented in Figure 6.21. It 

can be observed that the stress growth in the stirrups progresses very slowly with the 

external load increase, and only happens for a load level much higher than in the WPB1R 

beam (see Figure 6.11). This load stage corresponds to the start of the diagonal cracking 

(when the strains in the stirrups start to increase): at the beginning the passive stirrups were 

under compression due to the imposed transversal compression, and only started to be in 

tension after V=50kN; active pre-stressed stirrups had nearly constant tensile stresses until 

this load stage, and afterwards there was a smooth stress increment. Both types of stirrups 

remained elastic until the beam failure.  

 
Figure 6.21 –Strains in the transversal reinforcement in the shear span of WPB1R-VP beam 

Figure 6.22 reproduces the development of strains and stresses in the shear reinforcement 

of beam WPB1R-VP (both in the original (inner) and in the strengthening pre-stressed 

rebars), which are compared to the passive stirrups of beam WPB1R (both the original and 

strengthening passive rebars). In Figure 6.22a (for the inner reinforcement) and in the 
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0

20

40

60

80

100

0 50 100 150

θ
(˚
)

V (kN)

WPB1R
WPB1R‐VP

‐0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150

ε z
st
(E
‐3
)

V (kN)

passive
active



Numerical assessment and strengthening interventions on shear 
critical concrete structures 201 

 

WPB1R) it can be observed that for beam WPB1R-VP post-tensioning allow for a later 

strain development and no yielding is predicted, in contrast to what is foreseeable for beam 

WPB1R. The offset of strains and stresses in the prestressed stirrups in the WPB1R-VP 

beam is noticed in curves of Figure 6.22c and Figure 6.22d, respectively, through the initial 

values of strains and stresses at the start of loading that correspond to the post-tensioning. 

The resulting pre-compression of the inner stirrups when transversal prestress is applied is 

also observable in Figure 6.22b. 

 
a) Strains in the original inner stirrups 

 
b) Stresses in the original inner stirrups 

 
c) Strains in the strengthening stirrups 

 
d) Stresses in the strengthening stirrups 

Figure 6.22 – Strains and stresses in the strengthening transversal reinforcement in the shear span 
of beams WPB1R (passive) and WPB1R-VP (active) 

Strains in the longitudinal reinforcement εx
sl at the mid-shear span of WPB1R-VP beam are 

reproduced in Figure 6.23, where post-yielding of steel is perceived, almost reaching the 

ultimate plastic strain. In contrast, the longitudinal steel in beam WPB1R remains elastic 

until shear failure (see Figure 6.8).  
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Figure 6.23 – Strains in the longitudinal reinforcement at the mid-shear span of WPB1R-VP beam 

Concerning the prediction of cracking, as the non-strengthened initial beams are the same 

for the cases of WPB1R and WPB1R-VP, the initial damage is equal. However, the 

propagation of the diagonal cracking of the strengthened beam with prestressed stirrups 

happens at later load stages, and with higher inclinations in relation to the beam’s 

longitudinal axis as illustrated in Figure 6.24. 

 

WPB1R-VP 

 

WPB1R 

Figure 6.24 – Cracking pattern of beams WPB1R-VP and VPB1R at failure load 
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The beams came from a dismantled bridge (Lehnenviadukt Wassnerwald), built in 1969. 

The cross-section of the bridge consisted of four prefabricated prestressed concrete girders, 

and a road deck of in situ cast concrete, as illustrated in Figure 6.25. 

Insufficient structural safety for bending and shear according to design codes at that time 

was reported. As the beams were highly prestressed and had a low shear reinforcement 

ratio (0.25%) a special attention was paid to shear strength. In fact, the initial goals of the 

research project were to assess the shear strength of the beams and to study strengthening 

solutions. However, even applying different test set-ups, shear failure was not reached 

before bending failure. Extra shear resistance was found to exist in this structure, even 

against the predictions of the actual codes.  

 

Figure 6.25 – Geometry of the cross-section of the Wassnerwald bridge (Zwicky and Vogel 2000) 

The experimental full-scale tests were simulated with the proposed shear model with the 

objective of evaluating its capacity to reproduce the overall response of the beams. Also, it 

was aimed to verify if the model is able to predict the effective shear strength of 

prestressed beams with very low shear reinforcement.  

Simulations with the pure flexural fibre beam model CONS are also included, to 

determinate the importance of including shear effects in the analysis. Also, the results of 

the numerical simulation using the FE code DIANA with 3D FE, carried out by (Pimentel, 

Figueiras and Bruhwiler 2007), is included. The comparison of the proposed 1D shear 

model with fibre beam elements with the 3D FE model of DIANA aims to demonstrate 
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that, the former can be a good alternative to analyse entire existent structures, with the 

evident advantages of simplicity and promptness. 

Afterwards, in order to demonstrate the capabilities of the proposed numerical model to 

study dissimilar strengthening solutions of existing structures, two different solutions are to 

be presented: (i) a shear strengthening technique using vertical prestress and (ii) a bending 

strengthening through external longitudinal prestress. The resistance capacity of the 

strengthened beams is assessed through the proposed model. As the beams are 

shear-critical according to actual design codes, the consideration of shear effects in the 

nonlinear model is of paramount importance. Although the failure mechanism of the beams 

was bending dominant, it is essential to diagnose safety towards shear forces after 

strengthening.  

 

6.4.2 Full-scale in situ tests 

6.4.2.1. Description 

The geometry and reinforcement characteristics of the dismantled beams are presented in 

Figure 6.26. Prestress consisted of pre-tensioned wires, mainly concentrated at the bottom 

of the web, and a post-tensioned tendon with a parabolic shape. The ordinary (passive) 

longitudinal and transversal reinforcement consisted of welded steel meshes. Extra 

reinforcement was placed near the supports. The beams were tested up to failure, and 

measurements included the monitoring of vertical deflections, strains in the concrete 

surface, cracking inclinations and crack-widths.  

Two experimental tests with different load configurations (PV1 and PV4) were considered 

for simulation. The FE mesh of the adopted numerical model is presented in Figure 6.27, 

which is the same for both tests: 65 FE with approximately 0.32m of length and fibres with 

width from 0.13m to 0.17m. Shear resistant fibres were considered only in the 

cross-section web. The material properties used in the numerical model are indicated in 

Table 6.2, which correspond to the average results of the experimental tests on concrete 

and steel specimens extracted from the bridge. Pertaining to prestress, the following stress 

values in steel are referred (Zwicky and Vogel 2000): 1160MPa of initial prestress of the 

wires after immediate losses, and 1300MPa of initial post-tension of the parabolic tendon. 

Long term prestress losses were considered in the numerical model as 25% for the tension 

wires and 30% for the post-tension tendon (Pimentel, Figueiras and Bruhwiler 2007). 
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Side-view 

 
Cross-sections 

Figure 6.26 – Geometry and reinforcement of the beams of the Wassnerwald bridge 

 

 
Figure 6.27 – Model of the beams of the Wassnerwald bridge 
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Table 6.2 Material properties of the beams of the Wassnerwald bridge (Zwicky and Vogel 2000) 

Tests 
Concrete 

(cast in situ) 
Concrete 

(precast beam) 
Pre-stress steel Ordinary steel 

PV1 

fc = 56.5 MPa 
fct = 2.41 MPa 
Ec = 37.0 GPa 
εcu = 3.6×103 

fc = 73.6 MPa 
fct = 2.64 MPa 
Ec = 34.5 GPa 
εcu = 2.17×103 

fsy = 1500 MPa 
fsu= 1700 MPa 
Es = 210 GPa 
εsu = 26.2×103 

fsy = 515 MPa 
fsu= 625 MPa 
Es = 200 GPa 
 

PV4 

fc= 74.3 MPa 
fct = 1.73 MPa 
Ec = 40.15 GPa 
εcu = 2.89×103 

fc= 83.3 MPa 
fct = 3.02 MPa 
Ec = 37.7 GPa 
εcu = 2.12×103 

The prestress and the self-weight of the beams were applied simultaneously in the first load 

step. Pre-stress with values of 910MPa were applied in the wires and 870MPa in the 

post-tension tendon. Afterwards, vertical load was incrementally applied until failure.  

 

6.4.2.2. PV1 test 

The set-up of the test is represented in Figure 6.28, which includes a 4-point loading 

configuration, a span of 20.7m (equivalent to the one in the original structure) and a shear 

span of 6.36m. The girder failed in bending in the middle region. Shear strength exceeded 

the theoretical predictions and no sign of shear failure was observed.  

 
Figure 6.28 – In situ test PV1 

Force-deflection curves for the PV1 test are depicted in Figure 6.29. An overall good 

prediction was achieved by all the numerical models, including the cracking and ultimate 

load stages. In fact, due to the flexural dominant behaviour of the beam the difference 

between the responses given by the flexural and the shear models are rather small. Even 

though, the proposed shear model approximates better the experimental curve. It is 

particularly relevant to observe the similar responses of the 1D proposed model and the 

Pimentel et al. 3D model. Only the ultimate strain is rather differently predicted: the 3D 

model estimation is much more ductile than in the experimental test (almost the double of 
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the ultimate experimental displacement is achieved), in contrast to the lesser ultimate 

displacement predicted by the proposed shear model. A summary of the experimental and 

numerical results at failure is presented in Table 6.3. Bending failure was predicted by all 

the numerical simulations, with failure of the pretension wires at the web, in the middle of 

the beam.  

 
Figure 6.29 – Force-displacement at mid-span for beam PV1 

Table 6.3 Summary of the experimental and numerical results for test PV1 

PV1 Experimental Shear model Flexural model 3D DIANA (Pimentel 
et al. 2007) 

Pu (kN) 597 555 612 637 

Failure mode Bending Bending Bending Bending 

The crack pattern at failure experimentally observed and the one predicted by the proposed 

shear model are presented in Figure 6.30. A generally good representation of the 

development and inclination of the cracks is achieved with the shear model. It is 

noteworthy that the separation of the diagonal cracks in the web of the beam (due to shear) 

is much greater than the vertical ones at the bottom due to bending; aspect that the model is 

not able to represent. 

 

 
Figure 6.30 – Experimental and predicted crack patterns at failure for the PV1 test 
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Activation of the transversal web reinforcement was reported in a region at a 4.0m distance 

from the loading points, exceeding the yielding strain of the web reinforcement but without 

reaching the failure strain. The proposed shear model also predicted an extensive yielding 

of shear reinforcement in the shear spans, as demonstrated by the distribution of the 

vertical strain in the stirrups for the load P=505kN, presented in Figure 6.31. It is observed 

that the yielding strain, which takes the value of 2.575×103, is exceeded in the shear spans 

near the loading point. 

 
Figure 6.31 – Vertical strains at PV1 test for P=505kN 

 

6.4.2.3. PV4 test 

The set-up of the experimental in situ test PV4 is represented in Figure 6.32. The aim of 

this test was to obtain a shear failure through the crushing of the web concrete, which did 

not happened. The main span was reduced to 18.6m and a 3-point loading configuration 

was considered, with a distance of 3.8m between the left support and the load application 

point. The position of a vertical strain gauge TZ measuring strains in concrete is also 

represented in this Figure.  

The beam also failed in bending at the loading point, however, an abrupt failure with no 

strain-softening behaviour was reported. It was also mentioned that the shear resistance 

determined according to the codes at that time was exceeded in 93% (Zwicky and 

Vogel 2000). 

 

Figure 6.32 – In situ test PV4 
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The experimental force-deflection curve is depicted in Figure 6.33, along with the 

predictions from the numerical models. In this case, as shear stresses are more significant, 

the difference between the shear and the flexural model curves is more accentuated in 

comparison to the PV1 test. Even predicting a lower ultimate load, an acceptable fitting 

between the proposed shear model and the experimental data is perceived. In turn, the 3D 

model gives a better prediction of the failure load, but the ultimate displacement is much 

higher than the experimental one. A summary of the experimental and computed responses 

of the beam test at failure is given in Table 6.4. Bending failure was predicted by all the 

models. In the proposed shear model, along with the failure of the longitudinal bottom web 

reinforcement, an extensive yielding of stirrups was predicted in the shear span. 

 
Figure 6.33 – Force-displacement under load for beam PV4 

Table 6.4 Summary of the experimental and numerical results for test PV4 

PV4 Experimental Shear model Flexural model 
3D DIANA (Pimentel 

et al. 2007) 

Pu (kN) 1345 1265 1323 1367 

δu (mm) 142 101 98 264 

Failure mode Bending Bending Bending Bending 

Average strains in the vertical direction (correspondent to concrete and the stirrups) in the 

shear span are depicted in Figure 6.34, where is observed that the load correspondent to the 

activation of the transversal reinforcement is well reproduced by the shear model. In turn, 

the 3D model predicts a sooner activation of the stirrups, but fits better the following 

development of the strains.  

It is reported that the transversal reinforcement reached yielding in a region from 2.5m of 

the left support towards the loading point, but stirrup failure was not achieved. Similar 

predictions were given by the proposed shear model, as it can be observed in the 
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distribution of the stirrup strains along the beam in Figure 6.36 for a load P = 1200kN. The 

yielding stirrup strain is 0.002575, value that is extensively exceeded in the shear span near 

the loading point. 

 
Figure 6.34 –Strains in the vertical direction in the shear span for beam PV4 

 
Figure 6.35 – Vertical strains at PV1 test for P=1200kN 

Observed crack pattern at failure and the correspondent prediction from the shear model 

are presented in Figure 6.36. A high concentration of cracks in the shear span near the 

point of load application is indicated by the proposed model, corresponding to the region 

of extensive yielding of the stirrups. Generally speaking, the damage of the beam at failure 

is well reproduced by the numerical model. 

 

 
Figure 6.36 – Experimental and predicted crack patterns at failure for the PV4 test 
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6.4.3 Strengthening solutions 

6.4.3.1. Preamble 

The decision of dismantling the Wassnerwald bridge was based on the lack of safety found 

according to the standards at that time. Two possible strengthening solutions are analysed 

with the proposed shear model.  

As the beams had minimum transversal reinforcement, shear resistance was originally the 

main concern. Consequently, a strengthening solution towards increasing shear resistance 

by means of extra stirrups vertically prestressed is initially presented. As the beams 

actually failed in bending, a shear strengthening measure can be inefficient to increase the 

load capacity of the bridge.  

Hence, a flexural strengthening solution applying extra longitudinal external prestress was 

studied afterwards. Even with a bending dominant failure, the consideration of the shear 

effects in the nonlinear analysis is of paramount importance in order to reach a realistic 

prediction of the behaviour. Also, it is essential for verifying shear safety when the 

structure is strengthened to bending. 

The strengthened beams were simulated considering the PV4 test configuration and the 

same meshes and material properties were used in the simulations.  

 

6.4.3.2. Addition of vertical prestress 

The shear strengthening solution presented in the following consists of adding vertical 

prestress bars with 36mm of diameter, with a 400mm spacing. The properties of the 

prestressing steel bars were considered as: fsy=970MPa, Es=205GPa, fsu=1070MPa and 

εsu=0.07. A post-tension of 690MPa (based on 90% of the yielding strength, and assuming 

20% for the total prestress losses) is assumed to be applied vertically. The prestress rebars 

were anchored to the top and bottom faces of the beam and the web was enlarged as 

represented in Figure 6.37. 
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Figure 6.37 – Shear strengthening proposal for the Wassnerwald bridge 

The global behaviour of the strengthened beam is expressed by the force-deflection curve 

depicted in Figure 6.38, together with the experimental and numerical ones of the original 

beam. As the failure mechanism, against the expectations, ended up to be flexural critical, 

the increment of shear resistance made no difference in the failure load of the strengthened 

beam. A later cracking load and a stiffer response of the strengthened beam are also 

observed, in comparison with the original one. 

 
Figure 6.38 – Displacement under load for the test PV4: original and shear strengthened beams 
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6.4.3.3. Longitudinal external prestress 

The strengthening solution with longitudinal external post-tensioned tendons is presented 

in Figure 6.39. It consisted of two external rebars with a 36mm diameter, with a linear 

configuration. The properties of the prestressing steel bars were considered as: 

fsy=1500MPa, Es=210 GPa, fsu=1700MPa and εsu=0.0262. A post-tension stress of 870MPa 

was applied at each external tendon.  

 

 
Figure 6.39 – Strengthening proposal of the Wassnerwald bridge by post-tensioned longitudinal 

reinforcement 

The response of the strengthened beam is represented by the force-deflection curve 

depicted in Figure 6.40, where the numerical and experimental curves of the original beam 

are included as well. A greatly improved performance, both in terms of the cracking and of 

the failure loads, was attained with this strengthening solution. In fact, the strengthened 

beam almost doubled its load carrying capacity, reaching a flexural failure for an total 

external force of 2184kN. As a result of with this preliminary analysis, this proposal could 

be a possibility for a strengthening intervention to the existent bridge.  



214 Chapter 6

 

 
Figure 6.40 – Force-displacement under load for the test PV4: original and flexural strengthened 

beams 

 

6.5 Conclusions 

In this chapter, the proposed model was enhanced in order to analyse existent RC 

structures subjected to repair and strengthening interventions. In this ambit, the relevant 

attributes of the proposed formulation are: (i) its capability for considering shear effects in 

both service and ultimate levels and (ii) the step-by-step nonlinear sequential type of 

analysis, which allows capturing the strengthening effects, accounting for the state of the 

structure prior and after the interventions. 

In order to validate the proposed model, an experimental test available in the literature, 

with previously shear damaged beams and subsequently repaired and loaded until failure, 

was simulated. The entire loading history and repair procedures of the test were modelled, 

along with the reference beams (without previous damage or strengthening interventions). 

An acceptable fitting of the model predictions to the experimental results was observed, 

namely relating to the ultimate shear strength, the shear failure mechanism, the deflections, 

the strains in the longitudinal and transversal reinforcement and the diagonal cracking 

patterns. Importance of the shear-bending interaction in the numerical analysis was 

underlined by comparing the results of the shear model with the ones provided by the pure 

flexural FE model.  

Also, an alternative strengthening solution for the damaged beam based on post-tensioned 

stirrups was numerically analysed. This technique showed to be effective to avoid brittle 

shear failure, allowing for the development of all the flexural capacity of the repaired 
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beam. Consequently, the original shear brittle failure mode changed to the ductile flexural 

one. 

Afterwards, the numerical assessment of an existent bridge was presented. The 

experimental full scale in situ tests carried out on the beams of a dismantled bridge in 

Swiss (Wassnerwald Viaduct) were analysed with the proposed shear model. As the beams 

were heavily prestressed and had a minimum reinforcement as stirrups, shear resistance 

was the main concern. At the end, only bending failures were achieved and loading 

capacities were substantially higher than the ones determined through the standard codes. 

The general response of the beam tests, both in cracked and ultimate stages, was 

reasonably well reproduced by the proposed shear model. 

Afterwards, two strengthening solutions for the bridge were analysed with the proposed 

model: one towards increasing the shear capacity of the beam by applying vertical 

prestressed stirrups, which proved to be inefficient as the failure mechanism was flexural 

dominant; and other with external longitudinal post-tensioned tendons that allowed a 

significant increase of the load carrying of the beams.  

Therefore, the strengthening solutions analysed with the proposed model demonstrate its 

most relevant significance: the ability to predict the response and the load capacity of 

existent shear-critical RC structures and supporting the design of feasible strengthening 

interventions. 

Actually, existent structures may not be assessed according to actual standard norms in the 

same way as new structures. This is a very complex topic that has special urgency to be 

developed. In fact, accurate assessment of existence structures can actually prevent 

expensive strengthening, or premature dismantling of whole structures. Nonlinear FE 

models, as the one proposed in this thesis, can be a tool in the assessment of aging 

structures. 



 



 

 

 

 

Chapter 7 
 

 

CONCLUSIONS 

 

 

 

 

7.1 General results and conclusions 

The model presented in this thesis aims to extend the capabilities of a pure bending 

displacement-based fibre beam approach for the time-dependent analysis of segmentally 

constructed RC structures with relevant shear forces. Shear effects are introduced by 

means of a mixed kinematic/force-based sectional approach, in which the plane section’s 

theory is used to determine the normal strains in each fibre, along with the assumption of a 

fixed shear stress flow along the section. At the element level, the Timoshenko beam’s 

theory accounts for the shear deformation. The non-orthogonal and full-rotating smeared 

crack concept is used to simulate the response of cracked concrete under multiaxial stress 

states. A discrete crack representation is performed by means of an external algorithm that 

prints the development of the crack patterns in the finite elements.  

The time-dependent structural response under phenomena such as concrete creep and 

shrinkage, temperature variations and relaxation of prestressing steel under multiaxial 

stress states is available within a time-step analytical procedure. In addition, the model is 

able to simulate the response of existing RC frame structures subjected to repair and 

strengthening interventions through a step-by-step nonlinear sequential analysis. 
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The goals listed in Section 1.2 are considered fulfilled, having been successfully 

accomplished the following aims of this research work: 

 An enhanced shear-sensitive fibre beam element model, suitable for the numerical 

simulation of the nonlinear response along the service life of existing RC frame 

structures, was developed and implemented. The model considers the interaction of 

normal and shear forces at service and ultimate limit stages. 

 Along with the possibility of simulating shear-critical problems, the model is able 

to reproduce evolutive construction, such as repair procedures, by means of 

time-dependent and segmental construction modelling features.  

 Time-dependent effects such as concrete creep and shrinkage, as well as prestress 

relaxation, are taken into account, regarding the multiaxial stress and strain states 

generated by the presence of shear forces. 

 The step-by-step nonlinear sequential type of analysis allows capturing the 

strengthening effects, accounting for the state of the structure prior to the 

retrofitting and upgrading interventions. 

 Fulfilling the rising need for repair or strengthening of existing structures, the 

model can be used to accurately assess the structural behaviour of existing RC 

frames, in order to evaluate the needs of intervention and also to design a safe 

repair or retrofit intervention. 

 Due to its computational efficiency the model is feasible for engineering practice 

applications, being a suitable alternative tool to complex nonlinear higher-order FE 

analyses. 

From the results attained in the several numerical simulations performed, the general 

conclusions drawn from this research work can be pointed out as it follows: 

 Shear critical RC frame structures cannot be correctly simulated by means of 

flexural fibre beam models. 

 Shear effects influence the overall performance of the structures, and affect the 

deflections and the development of cracking at the service-life load stages. They 

also influence the load carrying capacities and structural failure modes at the 

ultimate stages. 

 The simplified approach of constant shear stress throughout the height of the 

cross-section, along with the smeared crack approach, proved to be adequate for 
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efficiently predicting the development of diagonal concrete cracking, the yielding 

of transversal reinforcement and the shear failure modes. 

 The proposed fibre beam model reproduced accurately the structural response of 

shear critical beams and frames. 

 The inclusion of shear effects is essential for the numerical assessment of existent 

and strengthened structures, as the strengthening measures can change the failure 

mode from flexural- to shear-based.  

 Existent damaged structures may also lack of shear resistance and require shear 

strengthening interventions. Their responses can only be accurately determined by 

numerical formulations that include the shear-bending interaction and are capable 

of predicting shear failure modes. 

 Consideration of the damages previous to the interventions is essential to achieve 

an adequate accuracy in the analysis of strengthened beams and frames.  

 Pertaining to numerical efficiency, the model is robust enough to treat problems 

with vast cracking patterns and fragile failures, such as the typical shear-critical 

cases. 

In the ensuing section the specific conclusions related to each part of the research work 

developed in this thesis are presented. 

 

7.2 Specific conclusions 

7.2.1 Inclusion of shear effects in a fibre beam model 

In order to validate the proposed model, various experimental tests on shear-critical RC 

beams and frames, both available in the literature and carried out by the author, were 

simulated. From these numerical analyses and comparisons with the experimental data, the 

following conclusions can be set: 

 The numerical model was able to reproduce the failure loads and mechanisms of 

shear critical beams (shear-tension and shear-compression). 

 Importance of including the shear-bending interaction in the numerical analysis was 

underlined by comparing the results of the shear- and of the pure flexural–based FE 

models. In the former case, only bending failures are possible and the strain 
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increments in the longitudinal reinforcement due to the shear resistant mechanism 

are neglected.  

 Fairly good predictions of the overall experimental behaviour were provided by the 

proposed shear model. Experimental measurements were compared with the 

computed results - displacements, principal strains and directions in concrete, 

distortion in concrete webs, strains in the longitudinal and transversal 

reinforcement - and a good fitting was generally obtained. 

 The fundamental hypothesis of the sectional model – constant shear stress flow 

along the height of the cross-section – allowed to achieve good predictions of the 

response of RC elements without the need of great computational resources. 

 Regarding that the proposed shear model is based on simplified assumptions, its 

capacity to properly account for the contribution of the stirrups in the shear 

resistance of the beams was remarkable.  

 The validity of the model for analysing shear critical elements is also verified for 

the case of beams without transversal reinforcement.  

 Cracking patterns of RC beams with transversal reinforcement were accurately 

predicted by the numerical model, in terms of direction and propagation of cracking 

during the loading history. 

 

7.2.2 Shear effects and time-dependent analyses 

The influence of shear on the long-time response due to concrete creep and shrinkage of 

diagonally cracked RC elements was analysed with the numerical model, based on 

experimental tests available in literature. Also, parametric studies on the influence of 

restraint strains due to shrinkage on the ultimate response of shear critical beams were 

carried out. From this research, the following conclusions are set: 

 Considering shear effects in the numerical simulation of the time-dependent 

response of diagonally cracked beams is required in shear dominated situations, to 

ensure a correct prediction of the total deflections. 

 Shear effects had a strong influence on the instantaneous behaviour of 

shear-dominated RC applications, but a much lesser impact in the long-term 

deformation. 

 The consideration of shear effects slightly reduces the computed increment of 

deflection due to creep as, for a cracked cross-section, the presence of shear 
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stresses leads to lower longitudinal stresses in concrete in the uncracked area, for 

the same applied bending moment.  

 Relaxation of the stresses in the stirrups with time due to the decrease of 

compressive stresses in concrete in the vertical direction was predicted by the 

numerical model. However, this effect did not present a relevant significance in the 

analysis. 

 Restraints to shrinkage-induced strains affected the long-term response of shear 

critical beams. The damage and initial tensile strain caused by the restrained 

shrinkage strains diminish the load carrying capacity of the beams (circa 5-20% of 

the ultimate load) as it reduces the concrete contribution to shear resistance and 

causes the activation of the transversal reinforcement for lower loading levels.   

 

7.2.3 Modelling damaged and shear strengthened concrete elements 

An experimental test available in the literature with previously damaged shear critical 

beams, and subsequently strengthened and loaded until failure, was simulated with the 

model. The entire loading history and repairing procedures of the test were modelled, 

along with the reference beams (without previous damage or strengthening interventions). 

After being validation with the experimental data and based on the former experimental 

test, an alternative strengthening technique based on using external post-tensioned stirrups 

was numerically analysed. 

Lastly, the model was applied to the assessment of a real bridge that was dismantled and 

submitted to full-scale tests. The bridge was deficient in shear resistance, in light of the 

current design codes. Different strengthening solutions based on external prestress were 

numerically studied. 

From these numerical analyses on shear damaged and strengthened structures the 

following conclusions are derived: 

 The proposed model is accurate for simulating shear damaged and strengthened RC 

beams.  

 An acceptable fitting of the model predictions to the experimental observations was 

observed for the shear strengthened beams, namely in what concerns to the ultimate 

shear strength, the failure mode, the deflections, the strains in the longitudinal and 

transversal reinforcement and the diagonal cracking patterns.  
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 Modelling strengthening procedures through phased-analysis is essential to attain 

good predictions of the behaviour of strengthened beams, as the previous damage 

can influence its final response. 

 The transversal post-tension strengthening technique, which is a rather efficient 

method towards increasing the shear capacity of RC beams, was accurately 

simulated by the proposed model. 

 Post-tensioned tendons showed to be effective to avoid brittle shear failures, by 

allowing the development of all the flexural capacity of the repaired beams. 

Consequently, the original shear brittle failure mode changed to the ductile flexural 

one. 

 The model predicted the response of an existent prestressed concrete bridge with 

good accuracy, and demonstrated efficiency for checking the performance of 

different strengthening solutions. 

 The failure of the beams of bridge was dominated by bending and the shear 

strengthening solution by means of vertical prestressed stirrups was not efficient in 

increasing its load carrying capacity, as failure was predicted to occur by crushing 

of the concrete strut in the web. 

 Strengthening of the beams of the bridge regarding longitudinal external post-

tensioning was predicted to be efficient in increasing significantly its ultimate 

loading. 

 

7.3 Original contributions 

The main contribution of the research work developed in this thesis was centred on the 

implementation of a nonlinear shear-bending interaction formulation, based on the fixed 

stress approach into a fibre beam model. Also, the enlargement to shear-critical cases of 

the basic flexural model capabilities to simulate the time-dependent and segmental 

construction features generated a fibre beam model with unique characteristics, resulting 

into a powerful and functional computational tool.  

Hence, the original contributions of the model developed in this thesis are: 

 Consideration of normal-shear force interaction in the resistance mechanism, as 

well as, shear contribution to deflection during all the nonlinear path of the 
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structure under loading by means of a computationally efficient nonlinear fibre 

beam model. 

 Correctly simulate the load carrying capacity and failure mechanisms of shear-

critical RC frame structures, with or without transversal reinforcement. 

 Consideration of time-dependent analysis, such as, creep, shrinkage, ageing, 

prestress loss, regarding the multiaxial strain-stress state generated by the presence 

of shear forces. 

 Performing life-time analysis, that accounts for any changes in the structural layout 

and strengthening/retrofit interventions, through a segmental constructive analysis 

procedure. The state of the structure previous to change or intervention is 

accounted for in the subsequent analysis. 

 Simulates shear-strengthening interventions, including the application of extra 

stirrups and concrete section and transversal post-tensioned tendons. 

 

7.4 Future developments 

As a consequence of the numerous analyses that are possible to be undertaken with the 

enhanced shear-bending fibre beam model, many research subjects are left opened. Some 

topics need experimental tests in order to validate some model’s assumptions; others 

require further numerical improvements to increase the accuracy and computational 

stability. As the model is written in a modular scheme, the incorporation of new 

formulations can be accomplished in a direct and straightforward manner. 

The future work proposals are related with the enhancement of the nonlinear numerical 

model for life-time analysis of strengthened structures presented in this thesis. In this 

manner, it is aimed to attain better numerical approaches for the assessment of existing 

structures and to check the performance of strengthening procedures. All the developments 

in the ambit of computational models require suitable experimental tests for its proper 

validation. Hence the main proposals for future research works are briefly described as 

follows:  

 Experimental tests on the time-dependent response of diagonally cracked RC 

concrete beams. 

The shear effects on the time-dependent response of cracked RC beams are still 

considerably unknown. In fact, experimental tests and numerical analyses focused 



224 Chapter 7

 

on this ambit are scarce. Also, the effects of creep and restrained shrinkage in the 

behaviour of shear critical elements, both in service and ultimate stages, are not 

clearly defined. In this thesis a brief insight into this topic has been made; however, 

it needs further development. Shear-focused experimental tests on diagonally 

cracked beams under sustained loading are needed, in order to better understand 

this phenomenon. The experimental work is also essential for the development of 

more accurate numerical models in this field. 
 

 Shear sectional assumption for evolutive and strengthened cross-sections. 

Research on the stress distribution between old and new parts in RC strengthened 

elements is required. The simplification hypothesis assumed in this thesis, of 

identical stress distribution in the shear effective area of the whole strengthened 

section, neglects possible differences on the distributions of the shear stresses 

among the original and the repairing materials. The shear stress distribution along a 

cross-section can be more accurately studied through advanced models (e.g., model 

TINSA (Bairán and Marí 2006; Bairán and Marí 2006)). An improved solution for 

the assumption taken in the proposed model can be based on a phased-analysis 

version of this advanced model. 
 

 Shear stress assumption for complex geometries. 

The constant shear stress distribution along the height of the beam web assumed in 

the proposed model showed to be accurate for the cases of rectangular and T-

shaped cross-sections. For other complex cross-sectional geometries a more 

sophisticated analysis with the model TINSA (Bairán and Marí 2006; Bairán and 

Marí 2006) is required, in order to determine the portion of section that is 

preponderant for resisting to shear forces. This subject deserves further 

developments, in order to provide the criteria for the definition of fixed shear stress 

patterns for beams with complex cross-section configurations. 
 

 Enhanced shear stress patterns. 

Development of enhanced patterns for the distribution of shear stresses in the cross 

section associated with key stages of damage – e.g. linear, cracked, advanced shear 

cracking and yielding of transversal reinforcement and near failure – based on the 

assumption that damaged fibres carry less shear stresses than undamaged ones. In 

this manner, the shape of the shear stress flow would change during the analysis, in 

some key strategic pre-defined points, by concentrating the shear stresses in the less 
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damaged cross-section zones. This would increase the accuracy of the model by 

approximating it to the actual shear resistance mechanisms. This could also 

enhance the numerical performance of the model for post-peak analyses, by 

assisting the innermost iteration procedure at the fibre level to continue the 

computation beyond material failure. 
 

 Experimental tests on the time-dependent response of strengthened elements.  

Development of experimental tests on shear critical RC elements submitted to 

previous mechanical and environmental damages, and subsequently strengthened 

via different solutions, is commendable. The experimental observation would also 

support the development of more accurate numerical formulations in this ambit. 

Influence of the time-dependent phenomena on the mechanical response of the 

strengthened RC elements could also be studied.  
 

 Constitutive and bond-slip models for strengthening materials. 

The simulation of fibre reinforced polymers (FRP) can be included in the numerical 

model by means of a new constitutive law. Also, implementation of a suitable 

bond-slip model at the new-old concrete and concrete-FRP interfaces would be 

advantageous. In this manner, the model would be able to simulate strengthened 

shear-critical RC frame structures with higher accuracy and enlarging its 

application to the use of FRP.  
 

 Account for fibre reinforced concrete. 

Implementation of a constitutive equation for fibre reinforced concrete is proposed 

in order to be able to simulate shear-critical elements made with this material. Also, 

by these means, it will be possible to simulate strengthening interventions towards 

increasing shear capacity by means of enlarging the cross-section with fibre 

reinforced concrete. 
 

 Flexibility-stiffness mixed finite element 

Capturing the contribution of shear to the deflection of the elements is not an easy 

task to accomplish by means of fibre beam models. In fact, the proposed model 

considers shear flexibility at the element level as a constant additional rotation of 

the cross-section, resulting into an important simplification of the sectional 

behaviour. For this reason, the element shear rotation is corrected through residual 

forces, by means of the average sectional distortion determined from the sectional 
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model. This correction of shear distortion at the element level is needed because of 

the characteristics of the model: displacements are used to approximate 

flexural-based strains and forces are used to approximate shear strains and 

stiffnesses; and they are both linked to a displacement-based FE model. 

In fact, as the sectional model developed in this thesis is based on a mixed 

formulation (force and strains as inputs and outputs), the natural way to passing it 

to the element level should be by means of a mixed FE formulation. A 

flexibility-stiffness mixed element, in which the nodal displacements would be 

used to approximate the normal strains and curvatures (bending-related variables), 

and a force node in the element would be used to determine stresses, would be the 

ideal formulation format. This is a conceptual proposal for an element explicitly 

devised for the mixed sectional model developed in this thesis. By this means, the 

numerical model could increase its accuracy and numerical stability. 
 

 Seismic actions 

Given its relative simplicity and computational efficiency, beam filament models 

are a powerful tool for design purposes, namely for applications where seismic 

actions are involved. For this reason, the proposed model could be extended for 

seismic loading cases. In this manner, shear influence on the structural response 

and shear failure mechanisms could be intrinsically detected in the analysis of 

damaged and strengthened structures. 
 

 Partially prestressed concrete elements 

The model developed in this thesis can be used to study partially prestressed 

concrete elements, including its redistribution capacity and overall structural 

response in service and ultimate stages. In this manner the model can act as a key 

tool for the development of a performance-based design methodology for the 

consideration of non-linear structural behaviour in the design stage. 
 

 Reliability analyses 

The deterministic nonlinear numerical model developed in this thesis could be 

introduced to a probabilistic framework, in order to perform reliability analysis of 

bending and shear critical structures. In this ambit, due to its inherent 

computational efficiency, the proposed nonlinear fibre beam model with shear-

bending interaction could determinate the structural capacity with few 

computational and processing-time demands. Also, time-dependent deterministic 
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analyses can be broadened to probabilistic analyses for each point in time. Service-

life modelling and the determination of the efficiency of strengthening measures 

were performed in a deterministic manner by the proposed nonlinear fibre beam 

model. But by taking into account the probabilistic life-time approach, the 

structural reliability could be evaluated concerning different strengthening 

alternatives. 
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Annex A 

 

The mathematic operations related to the fibre state determination, presented in Chapter 3 - 

A hybrid fibre beam-column model including shear effects – are detailed described in the 

following. 

Derivation of Eq. (3.26) and Eq. (3.27) presented in the Section 3.2.2: increment of 

vertical strain Δεz and shear strain Δγxz, respectively correspondent to the equations 

(A13) and (A15) of this Annex. 

The incremental strain and stress state of a fibre is related through the stiffness matrix Dfibre 

as 

11 12 13

2221 23

31 32 33

x x

z z

xz xz

D D D

D D D

D D D

 

 

 

 

  

 

    
    
    

        

; 22 22 st stD D E   

(A1) 

from which the increment of stress in the z-direction Δσz
c and the increment of shear stress 

Δτxz can be, respectively written as 

21 22 23

c

z x z xzD D D          (A2) 

31 32 33xz x z xzD D D           (A3) 

Equilibrium along z-direction imposes that the sum of the increment of stresses in 

transversal steel Δσz
st and in concrete Δσz

c is null: 

0c st

z st z      (A4) 

Replacing Eq. (A2) into Eq. (A4), the equilibrium in the vertical direction can be written as 

21 22 23 0x z st st zxzD D D E            (A5) 

The computed increment of shear stress Δτxz must equal the imposed increment of shear 

stress given by the fixed stress constraint Δτ*, imposing that: 

* 0xz      (A6) 

By replacing Eq. (A3) into Eq. (A6), the former equation comes as 
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31 32 33

*
x z xzD D D           

(A7) 

In this manner, a system of two equations can be solved in order to determine the 

increment of vertical Δεz and shear Δγxz strains: 

(i) Equilibrium in the vertical direction: 

21 22 23 0x z st st zxzD D D E            (A8a) 

 21 22 23 0x z st st xzD D E D          (A8b) 

 21 22 23 0x z xzD D D      
 (A8c) 

(ii) Constitutive relation of shear stresses: 

31 32 33

*
x z xzD D D           

(A9) 

Hence, the former system of the two equations is written as 

 21 22 23
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0x z
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(A10b)

and can be reorganized as 

 
 

21 22 23

31 32

33

*

0x z

x z

xz

xz

D D D

D D

D

  

 




     

     
 


 
(A11a) 

(A11b)

Replacing Δγxz of Eq (A11b) into equation (A10a) and reorganizing, results in: 
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21 22 31 32

33
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D
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(A12b) 
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Consequently, the increment of vertical strain Δεz can be written as 

 23 31 33 21 23

33 22 23 32
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(A13) 

Replacing Δεz given by Eq. (A13) into Eq. (A11b) and rearranging the ensuing equation, 

results in the following expressions: 
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From the previous deduction, the increment of shear strain Δγxz can be written as 

 
 

22 32 21 31 22

33 22 23 32

*
x

xz

D D D D D

D D D D




   
 


 

(A15) 
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Derivation of Eq. (3.30) and Eq. (3.31) presented in the Section 3.2.2.1: unbalanced 

vertical δεz and tangential δγxz strains at the innermost iterative procedure at the 

fibre level, respectively given by equations (A23) and (A25) of this Annex. 

Regarding the equilibrium condition at the vertical direction (Eq. A4), the unbalanced 

vertical stresses can be determined as 

st c
z st z z         (A16) 

Due to the imposed shear constraint, the unbalanced shear stress is determined as 

*
xz xz       (A17) 

Within the innermost iteration at the fibre level, the increment of longitudinal axial strain 

Δεx (determined through the plane section theory) is kept fixed. So, the remaining 

unbalanced strains and stresses can be written as follows, making use of the reduced form 

of the stiffness matrix Dfibre as 

22 23

32 33

z z

xz xz

D D

D D

 

 

    
    

    
; 22 22 st stD D E   

(A18) 

Accordingly, the unbalanced stress in the vertical direction δσz is given by: 

22 23z z xzD D     (A19) 

and the unbalanced shear stress δτz is written as 

32 33xz z xzD D     (A20) 

Hence, the system the two former equations can be rewritten in order to determine the 

unbalanced increment of vertical strain δεz and shear strain δγxz as 

23

22

32

33

z xz
z

xz z
xz

D

D
D

D

 

 

 
  
  

(A21a) 

(A21b)

By replacing Eq. (A21b) into Eq. (A21a) and rearranging, the following expressions come 

out: 
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 33 23 32

22 33

z xz z
z

D D D

D D

  


 
  

(A22a) 

33 23 23 32

22 33

z xz z
z

D D D D

D D

    


 

(A22b) 

22 33 23 32 33 23z z z xzD D D D D D     
 

(A22c) 

 22 33 23 32 33 23z z xzD D D D D D      
(A22d) 

Hence, the unbalanced increment of vertical strain δεz can be written as 

33 23

22 33 23 32

z xz
z

D D

D D D D

  


  

(A23) 

Subsequently, by replacing Eq. (A23) into Eq. (A21b) and rearranging it, the following 

expressions appear: 

33 23
33 32

22 33 23 32

z xz
xz xz

D D
D D

D D D D

   
 


 

(A24a) 

   22 33 23 32 32 33 23

33
22 33 23 32

xz z xz

xz

D D D D D D D
D

D D D D

  


  


  

(A24b) 

 22 2233 33 23 32 33 23 32 32 33 32 23xz xz xz z xzD D D D D D D D D D D D D        
 

(A24c) 

 22 2233 33 23 32 33 32 33xz xz zD D D D D D D D D      
(A24d) 

 22 2233 23 32 32xz xz zD D D D D D    
 

(A24e) 

Therefore, the unbalanced increment of shear strain δγxz is determined as 

22 32

22 33 23 32

xz z
xz

D D

D D D D

  


  

(A25) 
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