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Abstract

Recent advances in thermal infrared imaging (LWIR) has allowed its use in applica-
tions beyond of military domain. Nowadays, this new sensor family is included in
diverse technical and scientific applications. They offer features that facilitate tasks,
such as detection of pedestrians, hot spots, differences in temperature, among oth-
ers, which can significantly improve the performance of a system where the persons
are expected to play the principal role. For instance, video surveillance applications,
monitoring, and pedestrian detection.

During this dissertation is stated the next question: Could a couple of sensors
measuring different bands of the electromagnetic spectrum, as the visible and thermal
infrared, provides depth information? Although is a complex question, we shows that
a system of those characteristics is possible as well as their advantages, drawbacks,
and potential opportunities.

The fusion and matching of data coming from different sensors, as the emissions
registered at visible and infrared band, represents a special challenge, because it has
been showed that theses signals are weak correlated. Indeed, they are uncorrelated.
Therefore, many traditional techniques of image processing and computer vision are
not helpful, requiring adjustments for their correct performs in every modality.

In this research is performed a experimental study that compares different cost
functions and matching approaches, in order to build a multimodal stereo system. Fur-
thermore, are identified the common problem between visible/visible and infrared/visible
stereo, special in the outdoor scenes. A contribution of this dissertation is the isola-
tion achieved, between the different stage that compose a multimodal stereo system.
Our framework summarizes the architecture of a generic stereo algorithm, at different
levels: computational, functional, and structural, which is successful because this can
be extended toward high-level fusion (semantic) and high-order (prior).

The proposed framework is intended to explore novel multimodal stereo matching
approaches, going from sparse to dense representation (both disparity and depth
maps). Moreover, context information is added in form of priors and assumptions.
Finally, this dissertation shows a promissory way toward the integration of multiple
sensors for recovering three-dimensional information.
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Resumen

Recientes avances en imdgenes térmicas (LWIR) han permitido su uso en aplica-
ciones mas alld del dmbito militar. Actualmente, esta nueva familia de sensor esta
siendo incluida en diversas aplicaciones tanto técnicas como cientificas. Este tipo
de sensores facilitan tareas tales como: deteccién de peatones, puntos calientes, de-
teccién de cambios de temperatura, entre otros. Caracteristicas que pueden mejorar
significativamente el desempeo de un sistema, especialmente cuando hay interaccion
con humanos. Por ejemplo, aplicaciones de video vigilancia, deteccién de peatones,
analisis de postura.

En esta tesis se plantea entre otras la siguiente pregunta de investigacién: Podria
un par de sensores operando en diferentes bandas del espectro electromagnético, como
el visible e infrarrojo térmico, proporciona informacion de profundidad? Si bien es
una cuestion compleja, nosotros demostramos que un sistema de estas caracteristicas
es posible. Ademas, de discutir sus posibles ventajas, desventajas y oportunidades
potenciales.

La fusién y correspondencia de los datos procedentes de diferentes sensores, como
las emisiones registradas en la banda visible e infrarroja, representa un reto atractivo,
yva que se ha demostrado que aquellas senales estdn débilmente correlacionadas. Por
lo tanto, muchas técnicas tradicionales de procesamiento de imégenes y visién por
computadora son inadecuadas, requiriendo ajustes para su correcto funcionamiento.

En esta investigacién se realizo un estudio experimental comparando diferentes
funciones de costos multimodal, y técnicas de correspondencia, a fin de construir un
sistema estéreo multimodal. También, se identificé el problema comun entre estéreo
visible/ visible y infrarrojo/visible, particularmente en ambientes al aire libre. Entre
las contribuciones de esta tesis se encuentra; el aislamiento de las diferentes etapas
que componen un sistema estéreo multimodal. Esta arquitectura es genérica a difer-
entes niveles, tanto computacional, funcional y estructural, permitiendo su extensién
a esquemas mas complejos tales como fusién de alto nivel (seméntica) y de orden
superior (supuestos).

El enfoque propuesto estd destinado a explorar nuevos métodos de correspondencia
estéreo, pasando de una solucién escasa a una densas (tanto en disparidad como en
mapas de profundidad). Ademds, se ha incluido informacién de contexto en forma
de asunciones y restricciones. Finalmente, esta disertacién muestra un promisorio
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camino hacia la integraciéon de multiples sensores.
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Chapter 1

Multimodal Imagery

This section introduces the basic concepts to understand infrared sensors, its evolu-
tion, features, and usefulness for ADAS. The discovery of new alloys, materials as
well as advances in image processing techniques have allowed the development of new
sensors, which work in different spectral bands.

1.1 Infrared sensors: history, theory and evolution

N 1800 the German astronomer Sir Frederick William Herschel experimented with
Ia new form of electromagnetic radiation, which was called infrared radiation. Dur-
ing his experiments, he built a basic monochromator!, with which it measured the
distribution of energy of a ray of sunlight. The Herschel’s experiment demonstrate
the existence of radiation beyond what we know as the visible spectrum. Further-
more, provided evidence of a relationship between temperature and color. His ex-
periment used a glass prism to break sunlight up into its constituent spectral colors
(Fig. 1.1(a)). Then, a array of thermometers with blackened bulbs were put over ev-
ery spectral color. In this way, these should measure the temperature of the different
colors. During the experiments, Herschel noticed that a thermometer near to experi-
mental setup registered a higher temperature in comparison to the used in the array
(visible spectrum). Further experiments confirms that there an invisible form of light
beyond the visible spectrum, and it can be measured. This discovery was largely ig-
nored till modern instruments were used to acquire multispectral information, giving
rise to a new research field such as is thermography.

Clearly, the equipments used by Herschel’s have been improved several times.
However, nowadays infrared cameras still are based on its operating principle (see
Fig. 1.1). Although, infrared radiation is not detectable by the human eye, an IR

lis an optical device that can produce monochromatic light.
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Figure 1.1: (a) Herschel’s experimental setup. (b) Simplified block diagram of an
IR camera.

cameras can do it. Their operation is similar to a digital camera working on VS
however infrared cameras replace the classical Charge Coupled Device (CCD) used in
digital cameras by a Focal Plane Array (FPA), which is made of materials and alloys
sensitives to IR wavelengths.

Their main components are shown in Fig. 1.1(b), which are a lens that focuses
infrared radiation onto a detector, the electronics that convert opto-electrical signals
into images, plus a optional software unit that acts as interface between the camera
and user.

In general, the FPA can be classified into two categories, according to their work-
ing principle: (i) photon detectors; and (ii) thermal detectors. The former class
corresponds to those detectors where the radiation is absorbed within the material
by interaction with electrons. The observed electrical output signal results from the
changed electronic energy distribution. These electrical property variations are mea-
sured to determine the amount of incidents optical power.

These detectors in turn could be divided into more categories depending on the
type of interaction between the FPA and the incident infrared radiation. So, they can
be grouped into four main categories: (i) intrinsic detector; (ii) extrinsic detectors;
(iii) photoemissive detectors; and (iv) quantum.

They have high performance but require cryogenic cooling. Therefore, IR systems
based on semiconductor photodetectors are heavy, expensive and inconvenient to
many applications, specially ADAS.

In a thermal detector the incident radiation is absorbed by a material semiconduc-
tor, causing a change in the temperature of the material, or other physical property,
its resultant change is used to generate an electrical output proportional to incident
radiation. In this kind of sensor is necessary that at least one inherent electrical
property change with temperature, and it could be measured. A traditional device
used for thermal detector of low-cost are bolometers, they turn an incoming photon
flux into heat, changing the electrical resistance of the detector element, whereas in
a pyroelectric detector, for example, this flux changes the internal spontaneous po-
larization. Currently, thermal detectors are available for commercial applications,
opposite to the based on photons, which are restricted to military uses.
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In contrast to photon detectors, the thermal detectors do not require cooling. In
spite of it, the photon detectors are popularly believed to be rather speed, and selective
wavelength in comparison with another type of detectors, this fact was exploited by
the military industry. But, later in the "90s, advances in micro miniaturization allowed
arrays of bolometers or thermal detectors. It compensated the moderate sensitivity
and low frame rate of thermal detectors. Large arrays let high quality imagery and
good response time, also the manufacture cost to drop quickly (an extensive review
in [72]).

Infrared by definition refers to that part of the electromagnetic spectrum between
the visible and microwave region, and their behavior is modeled for the next equations:

(1.1)

where ¢ is the speed of light, 3 x 10'2 (m/sg); v is the frequency (hz), and X its
wavelength (m). The energy is related to wavelength and frequency by the following
equation:

E=hv="— (1.2)

where, h is Planck constant, equal to 6.6 x 1073* (joules sg). Notice that, light
and electromagnetic waves of any frequency will heat surfaces that absorb them, and
the infrared detectors measure the emissivity in this band, but it could occur in
other bands, depending on physical properties of the objects (constitutive material).
Humans at normal body temperature mainly radiate at wavelengths around 10um, it
corresponds to Long-Wave InfraRed band or LWIR (see the table 1.1).

Table 1.1: General spectral bands based on atmospheric transmission and sensor
technology

Spectral Band Spectral Wavelenght (um)
Visible 0.4-0.7

Near InfraRed (NIR) 0.78 - 1.0
Short-Wave InfraRed (SWIR) 1-3

Mid-Wave InfraRed (MWIR) 3-5

Long-Wave InfraRed (LWIR) 8-12

The use of night vision devices should not be confused with thermal imaging.
While, night vision devices convert ambient light photons into electrons, which are
then amplified by a chemical and electrical process and then converted back into a
visible ray of light. The thermal sensors create images detecting radiation that emits
the objects.
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1.1.1 Night vision in ADAS

Night vision is a technology that was originated in military applications for producing
a clear image on the darkest of night. As it was explained above, they need no light
whatsoever to operate, and also have the ability to see through special conditions
such as: fog, rain, haze, or smoke. Thus, it would be interesting for ADAS since road
users can avoid potentially hazards.

Researchers have always been convinced that thermal imaging is an extremely
useful technology. Nowadays, it can be found vehicles with IR equipment. This
tendency is being followed by different car manufacturer. Then, new technical re-
quirements have been formulated. Today, there are two different technologies on the
market: One is called active, using near infrared laser and detectors, and the other
passive, which only uses thermal infrared detector [1]. The difference is notorious.
Active systems beams infrared radiation into the area in front of the vehicle, for this
purpose, usually it involves laser sources or just a light bulb in the near infrared range
(NIR). Then, infrared radiation is reflected by objects, the road, humans and other
road users. Later, the reflections are captured using a camera sensitive to a same re-
gion of the spectrum that was emitted, for example, a NIR camera. Whereas passive
systems register relatives differences in heat, or infrared radiation emitted in the far
infrared band (FIR), and it does not need a separate light source.

The selection of the best night vision system for ADAS is not easy, different
factors must be considered. Although, both systems are technically and economically
feasible, the passive systems based on FIR offer advantages. It is not dependent on
the power of the infrared beams, because those are not necessary. Then, it contains
less components so it is less susceptible to breakdowns. FIR detects people and hot
spot at a longer range. The major advantage of FIR is that it is not sensitive to the
headlight of oncoming traffic, street lights and powerfully reflecting surfaces such as
traffic signs. Since NIR systems (or passives) are based on the use of light beams
with wavelength close to visible spectrum, two facts can happen. Firstly, the driver
can be blinded for light ray reflection or dispel. Or, if an object is illuminated by two
or more infrared beams, this could appear brightly on the screen. The worse case
is when an infrared source directly illuminates a detector, situation frequent by the
glare of oncoming cars [26, 77].

The setup of IR systems, in the context of ADAS, is another interesting topic
to be mentioned. It includes camera position, display, and applications. They are
discussed in more detail in next section:

Camera position

The location of the sensor or camera is critical to obtain an acceptable image of the
road. If the sensor or camera is positioned low (e.g., in the grill), the perspective
of the road will be less than ideal, especially when driving on vertical curves. It is
acceptable to position the sensor at the driver eye height, and it is preferable to place
it above the driver’s eyes. Another aspect of camera position is that a lower position is
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more exposed to dirt. Glass interferes with the FIR wavelengths and cannot be placed
in front of the sensor. Thus, the FIR sensor cannot be placed behind the windshield.
However, early research, as the performed by BMW, concluded that the best position
is at the left of the front bumper. This result could be contradictory but a new
generation of FIR sensors is being developed, especially for ADAS. Table 1.2 presents
the key points of researches performed by five car manufacturer. Other examples are:
Renault NIR-contact analogue, which is placed at the inside rear view mirror, and the
Daimler-Chrysler camera (NIR), which is placed high above the driver’s eyes (rear
mirror).

Table 1.2: IR systems.

Manufacturer | Technology and setup | Camera specification
General Motors | FIR camera mounted be- | Raytheon IR~camera.
and Volvo hind the front grill and | Maximum sensitivity
cover by a protective win- | at 35°C. Field of view

dow. - horizontally = 11.25°

and vertically 4°. The
detection range for a

pedestrian is 300 m.

Fiat and Jaguar

NIR camera placed just
above the head of the
driver (rear mirror) and
light source is over the
bar at the front of the car.

Active system NIR. Field
of view - horizontally 45°.
The detection range for a
pedestrian is 150 m.

Autoliv

FIR camera placed at the

Active system NIR. Field

lower end of the wind-
shield.

of view - horizontally 45°.
The detection range for a
pedestrian is 150 m.

Display and applications

Initially, it is explored the feasibility that the systems of night vision use a mirror
and projector over the dashboard and lower part of the driver’s windshield, this
unit project real-time thermal images, which appears to float above the hood and
below the driver’s line of sight. Perhaps, this visualization of the system is good,
but to include these devices in the vehicles demand the development of expensive
technologies and the users will not pay by them. A more realistic system is currently
used in many vehicles; it consists of a liquid crystal display (LCD) embedded in
the middle dashboard. The driver check the thermal images and other applications
supplied by the vehicle computer.

The current commercial applications, based on infrared images, are limited to
display a stream of images, which correspond to events registered in real time by
sensors. Although, to develop a system in real time is not simple task, the only
operation of image processing is contrast enhancement. Recently, new research lines
in night vision develop software that can identify pedestrian or critical situations.
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1.2 Multimodal Stereo Head

Computational stereo refers to the problem of determining three-dimensional struc-
ture of a scene from two or more images taken from distinct viewpoints. It is a
well-known technique to obtain depth information by optical triangulation. Other
examples are: stereoscopy, active triangulation, depth from focus, and confocal mi-
Croscopy.

Stereo algorithms could be classified according to different criteria. A taxonomy
for stereo matching is presented by [77]; they propose to categorize them into two
groups, which will be explained briefly. Local methods attempt to match a pixel with
its corresponding one in the other image. These algorithms find similarities between
connected pixels through its neighborhood, surrounding pixels provide the information
to identify matches. Local methods are sensitive to noise, and ambiguities, such
as: occluded regions, regions with uniform texture, repeated patterns, changes of
view point or illumination. Global methods can be less sensitive to the mentioned
problems since high-level descriptors provide additional information for ambiguous
regions. These methods formulate the problem of matching in mathematical terms,
more than local methods, which allows to introduce restrictions that model surfaces
or maps of disparity. For instance: smoothness, continuity, among others. Nowadays,
it is a still open research topic to find the best conditions, restrictions, or primitives
to decrease the percentage of bad matching pixels. Some methods use heuristic rules,
or functional to do it. Their main advantage is that scattered maps of disparity
can be completed. This is performed by techniques such as: dynamic programming,
intrinsic curve, graph cuts, nonlinear diffusion, belief propagation, deform model, and
any other optimization or search procedure?.

The existing algorithms also are categorized into different groups, for instance,
depending on the number of input images: multiple images or single image. In the
first case, the images could be taken either by multiple sensors with different view
points or by a single moving camera (or moving the scene, and holding the sensor
fixed). Another classification could be obtained according to number of used sensors:
monocular, bifocal, trifocal, and multi-ocular. The figure 1.2 shows a generic binocular
system with nonverged geometry?>.

The fundamental basis for stereo is the fact that every point in three-dimensional
space is projected to a unique location in the images (see figure 1.2). Therefore, if
it is possible to correspond the projections of a scene point in the images (I, and
IR), then it is certain that its spatial location on a world coordinate system O will be
recovered.

Assuming that: P; and P;% are the projections of the 3D point P on the left
and right images, and Op, and Op are the optical center of cameras, on which two
reference coordinate systems are centered (see figure 1.3). If also, a pinhole model for
the cameras are supposed, and that the image plane arrays are made up of a perfect
rectangular grid aligned. Then, the line segment C,Cr is parallel to the = coordinate

2Tt refers to choosing the best element from some set of available alternatives.
3Camera principal axes are parallel.
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Figure 1.2: A stereo camera setup.

axis of both cameras. Under this particular configuration the point P is defined by the
intersecting ray from the optical centers Oy and Op through their respective images
P: Pp, and Py,
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Figure 1.3: The geometry of nonvenged stereo.

The depth Z is defined by a relationship of similarity between the triangles
AOLCLPL with AP}(OL7 and AORCRPR with APKOR
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P, K
% = OKLP By similar triangles- AO,CL Py, with APKOp, (1.3)
CrP; K /
R R _ Oi By similar triangles- AOrRCrPgr with APKOp, (1.4)
CrORr KpP
— E— K K
KP = (Cp0p x LOR/ from 1.3 and 1.4 (1.5)
CLPr, + ORPR
T
Orz = fE’ (1.6)

where d is the disparity or displacement of a projected point in one image with respect
to the other; in the nonverged geometry depicted in figure 1.3 it is the difference
between the x coordinates: d = x — 2’ (the last one is valid when the pixels 2 and
2’ are indexes of a matrix). The baseline is defined as the line segment joining the
optical centers Or and Oy,.

1.3 Multimodal stereo

Figure 1.4: multimodal stereo head.

This section presents in detail the multimodal stereo head together with the pro-
posed algorithm for computing sparse 3D maps. Figure 1.4 shows an illustration of
the multimodal platform. The different challenges of the tackled problem can be ap-
preciated in this illustration, from the image acquisition and depth map estimation
to the evaluation of the performance of the algorithm. The different stages of the
proposed multispectral stereo are presented in detail below.

1.3.1 Multimodal stereo head

In the current work, a multimodal stereo head with an LWIR camera (PathFindIR
from Flir*) and a color camera is built. The color camera, by convenience, corresponds
to the left camera of a commercial stereo vision system (Bumblebee, from Point

4www.flir.com
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Grey®). The Bumblebee stereo head is used for validating the results and consists of
two cameras Sony ICX084 with Bayer pattern CCD sensors, and 6 mm focal length
lenses. It is a pre-calibrated system that does not require in-field calibration. In
summary, two stereo systems coexist (see Fig. 1.4). The left camera coordinate
system of Bumblebee is used as a reference system for both stereo heads. In this way,
a kind of ground truth for the depth of each pair of images (infrared and color) is
obtained from the Bumblebee stereo head.

The LWIR camera, which will be referred just as LWIR, detects radiations in the
range 8 — 14 um (long-wavelength infrared), whereas the color camera, referred to as
VS, responds to wavelengths from about 390 to 750 nm (visible spectrum).

1.3.2 Calibration and rectification

The multimodal stereo head has been calibrated using Bouguet’s toolbox [8]. The
main challenge in this stage is to make visible the calibration pattern in both cameras.
In order to do this, a special metallic checkerboard has been made using a thin
aluminium metallized paper. Black squares over this surface are generated by means
of a laser printer, being able to detect them from both VS and LWIR cameras. Figure
1.5(b,d) shows a pair of calibration images (LWIR, and color). Despite of using a
metallic calibration pattern, the junctions of black and white squares are not correctly
detected due to thermal diffusion. Hence, calibration points are extracted using a
saddle point detector, instead of a classical corner detector. In our particular case
the use of saddle points results in a more stable detection; it is due to the fact that
thermal variation between black and white squares are not enough to generate step
edges, and the structure of junctions looks more like saddle points than corners [56].
Figure 1.6(a,b) shows three illustrations of junctions obtained with the saddle point
detector; note that even though the contrast of these infrared images is different the
junctions are correctly detected. Figure 1.6(c,d) depicts local structure indicated by
the red windows in Fig. 1.6(a,b); the green points are saddle points while red ones are
corners; straight lines show diagonal directions where their intersection corresponds
to the most likely position of junctions. As can be seen in these plots, the green points
are nearer to the intersections than the corresponding red ones.

Three independent calibration processes under different temperature were per-
formed to study the robustness of intrinsic parameters of LWIR camera when the
saddle point detector is used; as a result, the obtained intrinsic parameters were sta-
bles beside the changes in temperature. Notice that the LWIR images in Fig. 1.6(a,b)
correspond to one image of those calibration sequences.

Once the LWIR and VS cameras have been calibrated, their intrinsic and extrinsic
parameters are known, being possible, not only the image rectification, but also to
calculate the disparity map of the scene. The image rectification was done, using the
method proposed in [29], with an accuracy improvement due to the inclusion of the
radial and tangential distortion coefficients into their camera model. An example of

5 www.ptgrey.com
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rectified images is shown in Fig. 1.5(b,d).

m !
(©) (d)

Figure 1.5: (a) Infrared image of the checkerboard pattern. (b) Infrared rectified
image. (c) Original color image. (d) Rectified image.

1.4 Evaluation Dataset

1.4.1 Multispectral datasets

Furthermore, a well detailed multispectral dataset together with its corresponding
ground truth is proposed. All this material (i.e., multispectral stereo dataset and
ground truth images) is available through our website® for an automatic evaluation
and comparisons of multispectral stereo algorithms.

a dataset with VS and LWIR images, together with their corresponding disparity
maps and 3D models, is publicly available for evaluating different approaches. Up to
our knowledge there is not such a kind of dataset in the research community to be
used as a test bed.

A multispectral dataset has been generated for evaluating the different stages of
the proposed algorithms. It contains multispectral images, ground truth disparity
maps and ground truth depth maps. All this information was obtained as indicated
below.

The dataset consists of four kinds of images, which are classified by their context
and predominant geometry: (i) roads; (ii) facades; (iii) smooth surfaces; and (iv)
OSU Color-Thermal dataset. The first three groups were acquired with the proposed
stereo head and contain outdoor scenarios with one or multiple planes and smooth
surfaces. The latter subset contains perfectly aligned LWIR and color images (i.e.,
without disparity). It was obtained from [19] and is publicly available”. These images

Shttp://www.cvc.uab.es/adas/datasets/cvc-multimodal-stereo
"http://www.cse.ohio-state.edu/otcbvs-bench/
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(a) (b)

(d) (e)

Figure 1.6: Saddle points extracted from infrared images of the checkerboard pat-
tern at different temperatures.

()

are particularly interesting, since they are aligned the ground truth of disparity maps
can be approximated by assuming a registration accuracy of about +2 pixels. Figure
1.8 shows an illustration of the whole dataset.

The multispectral stereo images in the dataset have been enriched with ground
truth disparity maps and ground truth depth maps semi-automatically generated.
These ground truth were obtained by fitting planes to the 3D data points obtained
from the Bumblebee stereo head. It works as follows. Firstly, a color image from
the left Bumblebee camera is manually segmented into a set of planar regions (see
Fig. 1.7(a). Planar regions are easily identified since are the predominant surfaces
in the considered outdoor scenarios. Then, every region is independently fitted with
a plane using their corresponding 3D data points, by orthogonal regression using
principal components analysis. Figure 1.7(c) shows an illustration of the synthetic 3D
representation containing different planes. Additionally, during this semi-automatic
ground truth generation process, labels for occluded, valid and unavailable pixels are
obtained (see Fig. 1.7(b). These labels are needed for the evaluation methodology.

Once the 3D planes for a given image are obtained, since they are referred to
the VS camera, the corresponding data points are projected to the infrared camera.
Thus, a ground truth disparity map is obtained. The fourth column of Fig. 1.8 shows
some of these disparity maps and a sparse 3D representation.

In the case of smooth surfaces (e.g., third row in Fig. 1.8) no planes are fitted, and
depth information provided by Bumblebee is used as a reference. Bumblebee software
offers a trade off between density and accuracy of data points. Hence, in order to
have a good representation, its parameters have been tuned so that 3D models are
dense enough and contain few noisy data. Those models should not be considered
as ground truth, strictly speaking, however we use them as a baseline for qualitative
comparisons.

The multispectral stereo head consists of a pair of cameras separated by a baseline
of 12 ¢m and a non verged geometry. This configuration is obtained by adjusting the
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(c)

Figure 1.7: (a) Facade image from the proposed dataset overlapped with a mask
from the segmentation. (b) Mask of regions with occluded and no depth information.
(c) Synthetic 3D representation generated from the visible stereo pair used as ground
truth for evaluating the multispectral depth map.

pose of the cameras till their z coordinate axes are parallel, and perpendicular to
the baseline. Hence, the images provided by the multispectral stereo head are pre-
aligned, ensuring their right rectification. Thermal infrared images are obtained with
a Long-Wavelength InfraRed camera (PathFindIR from Flir®) while color ones with
a standard Sony ICX084 camera, which has a focal length of 6 mm.

Multispectral stereo camera calibration is considerably more complex than the
classical VS/VS, because the LWIR sensor measures heat variations. Therefore, a
calibration pattern ideally should have two different temperatures for generating con-
trast images. In practice, this is not feasible. Furthermore, the effect of thermal
diffusion between the calibration pattern and air causes both smooth step edges and
distorted corners in infrared images, which are not perceived at a glance. In order to
avoid these problems we calibrate the multispectral head in an outdoor scenario using
a metallic checkerboard. In this way, sun rays are reflected in white rectangles and ab-
sorbed in the black ones, this procedure enhances the contrast of image and helps the
detection of calibration points. Although the problem of blurred calibration points is
partially solved by the lighting reflection/absortion technique, a saddle point detector
is considered instead of a classical corner detector to obtain more robust results.

As mentioned above, the cameras have been aligned before starting the calibration
process. This action ensures that the needed projective transformations for their

8www.flir.com
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Figure 1.8: Illustration of the four subsets of images contained in the proposed
multispectral dataset.

rectification are smooth (the image planes’ position are approximately coplanar).
Once each camera has been calibrated, and its intrinsic parameters are known, the
next step is to estimate the geometry of multispectral stereo rig. Since the current
work is focused on the generation of dense disparity maps, it is only necessary to
estimate the epipolar geometry (fundamental matrix F). Then, with this matrix, the
next step is to rectify the multispectral images.

The image rectification is a critical issue since the proposed algorithm assumes
that all epipolar lines in the multispectral images are horizontally aligned. Despite
the accuracy with which F was estimated, it is essential to use a rectification method
that takes into account the large dissimilarity of intrinsic parameters of the cameras.
In the current work the method proposed in [66] has been used. This reduces the
loss and creation of pixels due to projective transformations during the rectification
process (resampling effect), while preserving the aspect of image content.

The disparity maps are provided by a VS/VS stereo vision system: Point Grey
Bumblebee (PGB). Note that, for the sake of simplicity, the multispectral stereo head
was presented as an independent system, however it uses one of the cameras that
belongs to PGB—the right one. In other words, the camera refereed to as VS in the
current section corresponds to the right camera of PGB. This stereo rig setup was
selected because it is efficient in terms of hardware and software.
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Chapter 2

Similarity Window-based Matching
Cost Functions

The aim of this chapter is to present a cost function that measures the similarity
between two block of data extracted from different modalities; particularly VS and
LWIR images. This function combines mutual information with a shape descriptor
based on gradient. These metrics are computed for every level of a scale-space rep-
resentation, and then, they are propagated through that representation following a
coarse-to-fine strategy. The main contributions of this chapter are: (i) a complete
description of the proposed multimodal cost function, and its relationship with in-
formation theory; (ii) a quantitative evaluation of the combined used of gradient and
mutual information, and the benefit of their propagation between consecutive levels;
and (iii) to establish the principles toward a stereo multimodal cost function.

2.1 Introduction

HE coexistence of infrared cameras with other sensors has opened new perspectives
for the development of multimodal systems. One of the challenges is to find the best
way to fuse all this information in a useful representation. In the current chapter the
problem of corresponding two blocks of data belonging to different spectral bands is
considered (multimodal matching problem). These data are provided by two cameras
that are capable of measuring emissions in visible and thermal infrared spectrum.
Since the cameras are mounted adjacent to each other, offering a global view of
objects in the scene, the occlusions are negligible.

The literature on multimodal matching can be broadly divided into entropy-based
methods and feature-based methods. Through this chapter a hybrid approach is pro-
posed. It exploits mutual information and gradient information in scale-space repre-
sentations.

15
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Mutual information is a concept derived from information theory, and measures
the amount of information that one random variable contains about another. It is
a powerful concept in situations where no prior relationships between the data are
known. The previous property makes mutual information the ideal tool to address
problems involving signals without an apparent relationship [33].

Viola et al. [94] intuitively introduces mutual information as a measure of align-
ment between images and 3D models; then, it was formalized in [65], only for images.
The importance of these early contributions were to identify the main properties of
mutual information in the field of multimodal image processing, and its usability.
Just few years later, Engal proposed in [22], a cost function for VS/VS stereo based
on mutual information. He assumed that two data blocks are corresponding if the
amount of shared information is maximum, that is to say, it is possible to find the cor-
respondence between a window (template) and set of candidate windows (searching
space) by maximizing mutual information. Although, its performance is not better in
comparison to other less complex cost functions [74, 86], recently; it has been shown
that is robust to radiometric differences [42].

Mutual information has been also largely used for medical image registration. In
this field, Pluim et al. [69] propose to combine mutual and gradient information, show-
ing an improvement with respect to classical mutual information based formulations
[65, 85]. Approaches that combine multiresolution schemes with mutual information
have also been proposed for local matching of medical imaging. An advantage of
these methods is the information suppression, which allow to analyze the structure of
the images with different level of details. Thus, the information of the current level
can be enriched by using the prior knowledge collected from previous levels in the
hierarchy [56, 70]. A strategy similar to the one mentioned above is presented in [27],
being restricted to propagation of the joint probability obtained from two patches. In
the current chapter not only mutual information (M) but also gradient information
(GI) are propagated through two different scale-space representations. The first one
is based on a scale-space stack while the second is a pyramidal representation.

In summary, this chapter presents a quantitative evaluation of performance once
MTI and GI are considered; Furthermore, a comparison of the discriminative power
of a scale-space representation based on stacks and pyramids and the advantages of
propagating mutual and gradient information (M and GI). The proposed approach
is evaluated with a large number of experiments; up to our knowledge previous works
were, on the one hand, specially devoted to the registration problem; and one the
other hand, they were validated on few samples. The rest of this chapter is organized
as follows. Section 2.3 presents the theoretical principles of proposed multimodal cost
function as well as their relationship with information theory (entropy and mutual
information). Experimental results and comparisons are given in Sect. 2.4. Finally,
conclusions and final remarks are drawn in Sect. 2.5.
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2.2 Matching Cost Volume

The matching cost volume is a three-dimensional array that stores the cost of cor-
responding two square windows, obtained from a pair of multimodal images. This
volume is obtained following a local window based approach, which consists in com-
puting a cost for each displacement of a sliding window, while a second window is
kept fixed on a point in the reference image. The cost volume is referred to as C(p, d),
where p = (z, y) is the point on reference image (I s) and d is the disparity or the
displacement of the sliding window measured in pixel. The point p corresponds to the
center of the squared window, of size wz, placed on Iy g(z,y) whereas d represents the
location of the sliding window in Iy rr. Specifically, the latter is a window with the
same size than the previous one but centered on Irwrg (z + d, y). Notice that the
sliding window location can be parametrized by coordinates of the reference window
and d since multimodal images are rectified. Finally, the searching space is defined as
an interval [d,in, dmas] that contains all possible values of d. Figure 2.1 shows how
a cost ¢(x, y,d) is indexed in C(p,d) together with the windows (i.e., reference and
sliding windows) used for its calculation.

Based on that representation of the costs, the LWIR/VS correspondence problem
could be stated as an optimization problem. In other words, let C(p,d) be a cost
volume. Then, the LWIR/VS correspondence problem is equivalent to optimize d for
a given p in a space of candidate solutions C', when a set of constraints J are applied.
The sought solution (D) is given by:

D = aurgznax(C’(p,d))7 (2.1)

subject to: J constraints.

At this point, C(p,d) could be seen as an objective function, energy function or cost
function, which is maximized or minimized, according to the problem. But even
more important, all assumptions made by the matching algorithm are translated into
an objective function. Furthermore, the correspondence problem could be solved
as a constrained optimization on a discrete or continuous domain, depending of the
properties of C. In computational stereo, this means D with sub-pixel accuracy.

An advantage of the formulation presented in Eq. (2.1) is that it integrates into a
unique representation most of the commonly used assumptions in (VS/VS) stereo [86].
Moreover, sparse and dense solutions are computed in a similar way, only handling
the cost volume. Another interesting property of this generic view of LWIR/VS
correspondence problem is the processes integration, that is, integration of different
tasks into one optimization step. For instance, feature selection and correspondence
[64].
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Figure 2.1: Multimodal Matching Cost Volume.

2.3 LWIR/VS Matching Cost Functions

The definition of a cost function able to find the good correspondences between in-
formation provided by the VS and LWIR cameras is a challenging task due to their
poor correlation [68, 78]. In spite of that, recent works on computational stereo [42]
have shown that mutual information is a nonparametric cost function able to address
nonlinear correlated signals. However, we have found undesirable behaviors when it is
used as a cost function in the multispectral stereo problem. Mainly, due to the images
are compared only through its information content, ignoring shape information.
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This section presents the key concepts involved in the definition of proposed mul-
timodal cost functions. Initially, they are presented as a still equation, those values
generating a matching cost volume. Then, their adaptation to the LWIR/VS corre-
spondence problem is individually introduced. They are: (i) mutual information that
is presented in [22]; (ii) gradient information; and (iii) their combination (i.e. mutual
and gradient information) [69]. Finally, a cost function based on mutual and gradient
information in a multi-resolution context is proposed [2].

The discriminative power of M I and GI is improved through a scale-space rep-
resentation. Note that a similar scheme is proposed in [27], but propagating joint
probabilities (p (a;, b;)). In contrast, the proposed cost function directly spread the
MI and GI between adjacent levels, allowing changes in the sizes of the bins that
represent the sources of information. This supposes a great advantage because at
each level an optimum alphabet can be used, which is unsuitable in a scheme such as
the one proposed by [27].

Algo para introducir la formula

Cp, d) = o, -, A" (Cri(p,d) - diag (Car(p, d))) (2.2)

where )\ is the confidence of current M1 or G1I.

Our approach starts by computing M and GI at all scales.

Cur(p,d) = [MI(Vy(I(p,d)), ..., MI(Vg(I(p,d)))], (2:3)
CGI(pa d) = [G‘[ (vtl (I (pvd))) yrrt GI (Vi (I (pa d)))] )

Previous works have shown that the gradient information by itself is not enough
to find right correspondence between LWIR and VS images [91, 69], since gradient
orientations in the range of [0, 7] are useful (e.g. half range). Therefore, MI helps
to GI to overcome its loss of descriptiveness. Although there are different ways to
combine them, their product is selected, because has a noise cancellation effect, thus
low costs are obtained, when LWIR textureless and VS textured regions are put in
correspondence (and vice-verse).

2.3.1 Mutual Information

Mutual information has shown to be a valid cost function in several multimodal
problems. For instance, medical imagining registration [65, 69], LWIR/VS video
registration [52], medical imaging matching [70], and LWIR/VS matching [53]. The
results obtained by these studies provide enough evidences to justify its uses in such
a kind of problems. Therefore, we formalize the multimodal correspondence problem
in context of a more general theory, that is, information theory. For this purpose,
first of all, it is necessary to define a probability space (€2, B, P). Formally speaking,
this space is defined by €) that denotes a sample space, B a space of events defined
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as o-field B of subsets of (2, and a probability measure P that assigns a real number
P(F) to every member F of the o-field B [33]. In our case, Irwrr and Iyg are
considered as random variables that map thermal infrared or visible measurements
(symbols) into finites alphabets A. Thus, Irwir: Q— ALWIR and Iys: Q— Avs.

Given that the LWIR /VS images are handled as two information sources, and these
produce a succession of symbols in a random manner, the probability space (2, B, P)
is a mathematical generalization of the interaction between: (i) symbols that could
be intensity or thermal infrared measurements; (ii) the space of all possible output
symbols, grouped per blocks; (iii) events, which are sequences of symbols that can
be drawn by sources of information; and (iv) a probability measure assigned to every
event.

By definition, mutual information (M) measures the amount of information that
one random variable contains about another [16, 33]. It is a useful concept where no
prior relationship between the data is known. This is estimated in a local way, for
two square windows centered on p and (z +d, y), and size wz X wz pixels. Thus, M T
is defined as follows:

MI(p, d) =Y plai,b;)log z(g(ai’bj)

p() plby)’ 25)

ai,bj

where a; and b; are discretized pixel values that are within windows (a; € Ayg and
b; € Arwir); pla;,bj) represents their joint probability mass function; p(a;) and
p(b;) are their respective marginal probability mass functions. The alphabets Ay g
and Apwrgr are built by normalizing each window independently (range [0, 1]) and
then quantizing them into @) levels. The joint probability mass function p(a;,b;) is a
2-dimensional matrix, whose values correspond to the probability that a pair (a;, b;)
occurs. The marginal probabilities are determined by summing along each dimension
of the previous matrix.

An additional explanation of why mutual information is a valid LWIR/VS cost
function arises when their boundary conditions are analyzed. Formally, mutual infor-
mation is bounded to range [0, min (M (p,p), MI (d,d))] [22], so that, the minimum
value occurs when a; and b; are completely independent, and it is maximum when
these symbols are either identical or they are affected by a transformation 7' such
that generate an equivalent joint probability matrix. The latter boundary condition
deserves special attention because this justifies the performance of mutual informa-
tion as a cost function. Notice that M is maximized by more than one a; and b;
combination, therefore, exist a set of T transformation that perform a one-to-one
mapping such that MI(p, T(p)) = MI(p, p) or MI(d, T'(d)) = MI(d, d). This in-
variance gives a great advantage to M I over other similarity functions, which looking
for identical pattern as is common in VS/VS stereo. This enables to M measure
similarity in more situations, particularly when the underlying probability of symbols
a; and b; is nonlinear.

In order to discuss the capability of mutual information as a LWIR/VS cost func-
tion let us consider a simple scenario, like the one the depicted in Fig. 2.2, where a
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Figure 2.2: Toy example of MI and SAD: (a) patch P; (b) searching space; (c)
mutual information S; and (d) sum of absolute differences.

patch denoted by P is searched in an image. In this toy example, a random block
of 4 x 1 pixels is discretized into 3 levels, and then is compared with other of the
same size extracted from the searching space. This patch is build from an alphabet
of 3 symbols, Ap = {ag, a1, az}, as can be seen in Fig. 2.2(a). In contrast, the
searching space S contains all possible combinations of Ap (i.e. 3* = 81) as is shown
in Fig. 2.2(b). In order to find the right match two cost functions are employed.
They are (i) mutual information (M) and (ii) Sum of Absolute Differences (SAD).
Their resulting costs are plotted in Fig. 2.2(c) and Fig. 2.2(d), respectively. Potential
right match are all those 4 x 1 blocks at searching space that optimize some of the
cost functions, in case of M1 they are argmax,(MI(P, S(d))), while in the SAD is
argming(SAD(P, S(d))).

It can be observed that SAD function (Fig. 2.2(d)) is minimized just in one
position (d = 43), actually when a patch identical to P is found in S. On the contrary,
MT is maximized several times, in total 6 times, positions d = {6, 8, 39, 43, 74, 76}.
This is due to the fact that the patches on these locations produce equivalent joint
probability distributions, and in consequence, equal M I costs. Notice that both M T
and SAD costs are normalized to range [0, 1]. This simple example illustrates, on
the one hand, the main advantage of M1 over SAD, and other similarity functions
that reward identical pattern, such as NCC', SSD, and PC which is precisely that an
identical patch or pattern not necessarily is the right one, because thermal variations
have not a direct relationship with intensity variations. So, mutual information is
able to find linear and nonlinear correlations between patches, taking into account
the whole dependence structure of the variables. On the other hand, in the context
of mutual information is clear that a balance between Q and wz is mandatory for
accurate solutions.
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(e) (h)

Figure 2.3: Gradient vectors: (a-d) VS patches; and (e-h) LWIR patches.

2.3.2 Gradient Information

The current section explains how the gradient information is incorporated to the pro-
posed LWIR/VS cost function. We adopt the formulation presented in [69], and show
that this is not only valid for three-dimensional medical image registration, as was
initially proposed, but also is effective for LWIR/VS correspondence problems. Fig-
ure 2.3 shows eight image patches and their corresponding gradient vectors. These
patches are divided into two groups according to their modalities. So, Fig. 2.3(a-d)
depict intensity changes in visible band, while Fig. 2.3(e-h) show thermal infrared vari-
ations. Every column depicts a patch from the same scene but from different spectral
band, Since these patches are registered (column wise, for example Fig. 2.3(a) and
Fig. 2.3(e)) there exist a point-to-point correspondence between pixels and gradients.
Every gradient on these figures is represented according to its norm. Thus, strong
gradients are red while softs are blue (the gradient color coding is the vertical bar in
left side of each patch). Note that in these figures the green and red gradients seem
somehow to be related. In fact, experiments conducted by Pluim et al. [69, 70] shown
a high correlation between middle and strong gradients for medical imaging. In this
way, they can assume that image locations with a strong gradient denote transitions,
and these transitions have high information content. We come to the same conclu-
sions, however it is necessary to clarify what type of transitions or edges complies
with this assumption.

In general, an edge could be classified into three categories [31]: (i) shadow-
geometry edges, (ii) highlight edges, and (iii) material edges. However, the wide
gap that exists between thermal infrared and visible bands prevents to treat them
as a simultaneous phenomena, particularly those caused by external agents, such as
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illumination. A detectable phenomena in Iy g and Ipwrr images is denominated
as simultaneous iff its band-wide to overlap the VS and LWIR bands, otherwise it
would be a typical phenomenon of a spectral band. Figure 2.3(a) and Fig. 2.3(e) show
two shadow edges, one produced by a building (facade), and another by a walking
pedestrian. The former appears in both modalities and their gradient are correlated.
Whereas, the latter only is registered by the VS camera. This type of shadow edges,
which are produced by dynamic bodies are not taken into account by the proposed
cost function. Because they are phenomenons that can be perceived only by VS
sensor. Furthermore, a moving shadow no alter the heat of a covered surface (by
blocking part of the sunlight). The temperature changes in outdoor are typically
a slow process, and our LWIR sensor have not the sensitivity for measuring these
changes.

The highlight edges are avoided, because often are perceived in different ways by
every multispectral sensor. Commonly, highlight and shading in VS spectrum are
explained through dichromatic reflection model [79], however this model is unsuitable
for the LWIR band, because ignores relevant interactions between body, environment
and waves.

Material edges as shown in Fig. 2.3 are strong correlation. For instance: object
boundaries, pedestrians, sidewalk, and lamppost.

It is important to note that thermal infrared and intensity variations are not
necessarily equals (nor in orientation neither in magnitude). However, since both
images depict the same scene, corresponding gradient vectors could appear in both
modalities and their phase difference be near to 0 or 7 (phase or counter-phase).
Therefore, these vectors could be used to unveil possible matchings. Let x and x’ be
two corresponding points that belong to Iyys and Ipw g, respectively.

Since the images are rectified, not only the search for correspondences is simplified
to one dimension, but also the objects in the scene appear with a similar aspect (see
Fig. ). This is an important fact because the contours and edges are regions with
a high LWIR/VS correlation value. Therefore, they have a high probability of being
correctly matched [68].

The gradient information is obtained as follows:

GI(p, d) = w(f(x, x)) min(|x], [x’]), (2.6)

x, x’

Orientation Norm

where: Vi(-) is the gradient vector field of I;; x is a coordinate refereed to this
vector field (same for Va(-), where x’ € I3); | - | is the norm; 0(x,x’) is the angle
between them; and w(#) is a function that penalizes gradient orientation out of phase
or counter phase: w(f) = (cos(20) + 1)/2. The gradient information is computed
similarly to M I on two windows centered on V(Iys(p)) and V(ILwir(q)), thus the
cost volume Cg(p, d) is obtained by sliding them through the searching space defined
by each p on the reference image.

where 6 is the phase difference of two gradient vectors in the location x and x’. It is
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defined as follows:

0(x, x°) — arccos (”) . (2.7)

x| x|

The Eq. (2.7) is weighted by a function w : § — [0, 1] that penalizes those
gradient vectors that are not in phase or counter-phase:

cos(20) + 1

w(f) = 5

(2.8)

2.3.3 Mutual and Gradient Information

2.3.4 Scale-Space Context

This section presents the basic notions about scale-space, which are used to build
two data structures. Firstly, a scale-space stack representation is presented. Then, a
pyramidal representation, which is faster than the previous one, is described.

Stack Representation

The scale-space representation L : RY x Rt — R for an arbitrary dimension N is
obtained by convolving an image with a Gaussian derivative kernel of order n. Note
that the zero scale is also included and corresponds to the given image. Following the
notation presented in [62]:

Ln(x5t) = gn(x;t) * I, (2.9)

where x = (1, ...,acN)T € RV, t € RY is the current scale level, I}, is a given image,
and g (x;t) is the Gaussian derivative kernel of order n. If n = 0 the Gaussian
function is obtained, otherwise its corresponding derivative kernel. In this chapter,
only gradient information is required, hence Ly and L; are computed for Iy ¢ and
Ipwir- It means a stack of Gaussian blurred images and their corresponding first
order derivative images.

Notice that in the case of a stack all the images in the stack have the same
size. Thus, MT (Vé_l (I (p,d))) and MI(V} (I (p,d))) have an interscale corre-
spondence.

Pyramidal Representation

Another way to generate a scale-space representation is by means of a pyramidal
hierarchy, which is similar to the method described above. It consists in adding a new
stage after the Gaussian filtering, which apply a downscale algorithm, sampling the
output image at a constant rate. In this work, we have explored the use of an half
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octave Gaussian pyramid of zero and first order [17]. This representation has been
chosen due to the reduction factor; hence it assure an optimal propagation of mutual
information. Figure 2.4 shows two pyramidal representations of three levels; (a) and
(b) correspond to an intensity image, while (¢) and (d) to an infrared image. Note
that in the two coarser levels the image features are still available, in spite of their
small sizes. See [62, 17, 56] for a detailed description on pyramidal representations.

(b) (d)

Figure 2.4: Three level pyramidal representations: (a) Lo(x;t) of Ivs; (b) Li(x;t)
of Ivs; (C) Lo(X; t) of Irwrr and (d) Ll(X; t) of Irwirr.

In the case of a pyramidal representation the level ¢ — 1 contains a smaller image
than the one in the current level ¢ (downsampling). Therefore, two situations must
be considered: (i) if x is not present in the previous level, only its value at the current
level is considered (M or GI) and the term A in Eq. (2.2) is set to 1; and (ii) if x
is present in the previous level, then a cubic spline interpolation is used to compute
its Iprior, since we are using rectified images only ancestors on the epipolar line are
considered (one dimensional interpolation problem); thus I is obtained from its
neighborhood at (¢t — 1).

2.4 Experiments

In order to evaluate the proposed approach, small parts of an thermal infrared or color
images are cropped and used as templates—61600 patterns in total were extracted
from OTCBVS Benchmark Dataset [19]. MI and GI are cost functions computed
between the template and all possible windows on the corresponding searching space;
they are obtained without disparity restrictions. The correct match is located at point
d where the cost function reaches the maximum value, as is indicated as follows:

D= argflnax (C(p,d)). (2.10)



26 SIMILARITY WINDOW-BASED MATCHING COST FUNCTION

(a) without propagation (b) with propagation

Figure 2.5: (a) Mutual information (MI) and mutual with gradient information
(MGI) as formulated in [69]. (b) Proposed propagation of mutualinformation M1
and mutual with gradient information MGI (M1I: dashed line; MGI: solid line).

The matching cost of a template and a candidate is obtained by computing M I
Eq. (2.5) and GI Eq. (2.4). Once the cost over the whole searching space is computed
the three largest local maximum values are extracted (only three values were selected
just for the sake of presentation simplicity). These values are used to quantify the
results, which are depicted in Table 2.1 and 2.2. Since color and infrared images in
[19] are registered, the correct matches are known before hand. Then, it is possible to
determine the correct one among the three local maximum selected above (a tolerance
range of 2 pixels for d is used). Tables 2.1 and Table 2.4 present the percentages of
correct matching that corresponds to first, second or third position. If a winner —
takes — all scheme was used, then the number of correct matches will be just the
first column of these tables. The proposed approaches, both using a scale-space stack
and a pyramidal representation, have been compared with the results obtained when
MTI and MGI are not propagated through the different levels of the stack/pyramid
(Table 2.1 and 2.1 part (a)).

Figure 2.5(b) shows the results for the same example introduced above but when
MT and GI are propagated. Note that both approaches (with/without propagation)
find the correct match but by using propagation the relative values between local
maximums are increased, making easier to identify the correct one.

Table 2.1: First three maximums by using a scale-space stack

1st. 2nd. 3rd.
MI GI MI GI MI GI
Without propagation
t=2 37.19  50.03 12.52  11.55 7.08 5.83
t=1 17.30  27.58 9.61 9.95 7.10 5.11
t=0 4.15 12.54 3.62 7.44 3.37 592
With propagation
t=2 37.19  50.03 12.51  12.52 7.08 5.83
t=1 31.69 49.61 12.57  12.57 7.71  5.96

t=20 15.24 43.97 9.19 11.99 7.00 5.74
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Table 2.2: First three maximums by using a pyramidal representation

1st. 2nd. 3rd.
MI GI MI GI MI GI
Without propagation
t=2 31.29 54.04 15.86 1386 10.82 8.11
t=1 14.14  29.28 9.66 13.38 791 8.95
t=20 4.15 12.54 3.62 7.44 3.37 5.92
With propagation
t=2 31.29  54.04 15.86 1386 10.82  8.11
t=1 17.67  39.55 15.31 15.53 7.10 8.36
t=20 9.23 27.38 6.41 9.87 5.15 6.52

Upper levels of scale-space stacks were obtained by convolving the images with
a Gaussian kernel of order n = {0, 1} and ¢ = {1, 2}, as shown the Table 2.1.
The experiments were conducted following the next setup, in both the stack and
the pyramid cases. The window size decreases with the scale. It started with a
size of 32 x 32 and finishes with 8 x 8 (level 0); the propagation also follows this
direction. The parameter A\ controls the degree of propagation between consecutive
levels. Experiments have shown that A = 0.5 maximizes the scores. The quantization
parameter @ is constant (Q = 30).

MT and GI showed a behavior proportional to the size of template (I;). If it is
increased then the estimation of M I will be better, due to large number of observa-
tions. Nevertheless, big windows are not desirable for stereo matching. Therefore, our
propagation scheme is a good choice because it improves the results whereas small
windows (8 x 8 pixels) are used. The improvement obtained with the scale-space
stack reaches about 3.5 times at the last level, while in the pyramidal representation
it is about 2.2 times due to the downsampling.

The representations only have three levels in order to compare both results. The
results of pyramid using propagation are better than without it. However, these re-
sults cannot be compared to the ones obtained with the stack, except at level 0, due
to compression of images (see Table 2.2). Notice that, each level contains less infor-
mation and the image is smaller; hence, the estimation of M is weak. The used
mutual information estimator (Eq. (2.5)) and the way to ensemble the alphabets, es-
tablish a dependency between the estimation (M value) and the number of members
in the sample (template size), which affects the performance of propagation in this
representation.

Results presented in Table Table 2.1 and Table Table 2.2 show the improvements
reached when gradient information is used with mutual information, instead of mutual
information alone. On average, M GI improves the result from M about 3 times.
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2.5 Conclusions

This chapter presents a scheme for combining mutual information with gradient infor-
mation together with an evaluation of two scale-space representations. Experimental
results show the improvements in the discriminative power as well as the viability
of the proposed approach. Future work will study a mutual information estimator
robust to downsampling.



Chapter 3

Multimodal Sparse Stereo

This chapter present an imaging system for computing sparse depth maps from mul-
tispectral images. A special stereo head consisting of an infrared and a color camera
defines the proposed multimodal acquisition system. The cameras are rigidly at-
tached so that their image planes are parallel. Details about the calibration and
image rectification procedure are provided. Sparse disparity maps are obtained by
the combined use of mutual information enriched with gradient information. The
proposed approach is evaluated using a Receiver Operating Characteristics curve.
Furthermore, a multispectral dataset, color and infrared images, together with their
corresponding ground truth disparity maps, is generated and used as a test bed. Ex-
perimental results in real outdoor scenarios are provided showing its viability and
that the proposed approach is not restricted to a specific domain.

3.1 Introduction

HE coexistence of visible (VS) and thermal infrared (LWIR) cameras has opened
Tnew perspectives for the development of multimodal systems. In general, visible
and infrared cameras are used as complementary sensors in applications such as video
surveillance (e.g. [58, 11]) and driver assistance systems (e.g. [45]). Visible cameras
provide information at diurnal scenarios while infrared cameras are used as night
vision sensors. More recently, Near-InfraRed (NIR) and visible images have been
successfully used in task, such as image registration [24], scene category recognition
[10], and removing shadows [73]. These works assumes that NIR and VS images could
be registered, and that exist a correspondence pixel-to-pixel between red, green, blue
and NIR channels, which allows to develop cooperative frameworks that overcome
state-of-the-art algorithms operating in VS spectrum.

All the approaches mentioned above involve registration and fusion steps, result-
ing in an image that even though contains several channels of information lies in the

29
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2D space. The current work goes beyond classical registration and fusion schemes by
formulating the following question: “is it possible to obtain 3D information from a
multispectral stereo mig?”. It is clear that if the objective is to obtain depth maps close
to state-of-the-art, classical binocular stereo systems (VS/VS) are more appropriated.
Therefore, the motivation of current work is to show that the generation of 3D infor-
mation from images belonging to different spectral bands is possible. The proposed
multispectral stereo rig is built with two cameras, which are rigidly mounted and
oriented in the same direction. These cameras work at different spectral bands, while
one measure radiation in the visible band the other one registers infrared radiation.
From now on, this system will be referred to as multimodal stereo head, which is able
to provide a couple of multispectral images.

The role of cameras in the proposed multimodal stereo system is not only restricted
to work in a complementary way (as it is traditionally) but also in a cooperative
fashion, being able to extract 3D information. This challenge represents a step forward
for the 3D multimodal community, and results obtained from this research by sure
can benefit applications in the driver assistance or video surveillance domains, where
the detection of an object of interest can be enriched with an estimation of its aspect
or distance from the cameras.

The performance of a stereo vision algorithm is directly related to its capacity
to find good correspondences (matching) between pairs of images, this task relies on
the similarity function used to match features. In the multimodal case, similarity
functions, such as SAD (sum of absolute differences), NCC' (normalized cross corre-
lation), SSD (sum of squared differences) or Census transform cannot be used since
a linear correlation between the data cannot be assumed [38]. In the current work
a non linear similarity function, that establish the relationship between multimodal
images is adopted. In other words, it is able to associate information content between
LWIR and VS images.

Multimodal matching has been widely studied in registration and fusion problems,
specially in medical imaging (e.g., [4, 76, 83]). However, there are few research re-
lated with the correspondence problem when thermal infrared and color images are
considered. Hence, it is not clear how to exploit visible and infrared imaging in a
cooperative framework to obtain 3D information.

Most of the stereo heads presented in the literature, and other commercially avail-
able, are built from cameras that have the same specifications (i.e., sensor and focal
length). This choice constrains the problem and facilitates the reuse of software
and published methods. However, the case tackled in the current work is far more
complex since heterogeneous sensors are used, besides the intrinsic problems due to
multimodality. So, the alignment of two views coming from cameras with different
sensors and intrinsic parameters should be taken into account, which is more difficult
than a classical VS/VS stereo heads.

The use of multimodal stereo heads (LWIR/VS) has attracted interest of re-
searchers in different computer vision fields, for examples: human detection [37],
video surveillance [54], and 3D mapping of surface temperature [97, 71]. Recently,
[53] presents a comparison of two stereo systems, one working in the visible spectrum



3.1. Introduction 31

(composed of two color cameras) and the other in the infrared spectrum (using two
LWIR cameras). Since the study was devoted to pedestrian detection, the authors
conclude that both, color and infrared based stereo, have a similar performance for
such a kind of applications. However, in order to have a more compact system they
propose a multimodal trifocal framework defined by two color cameras and a LWIR
camera. In this framework, infrared information is not used for stereoscopy but just
for mapping LWIR information over the 3D points computed from the VS/VS stereo
head. This allows to develop robust approaches for video surveillance applications

(e.g., [54)).

On the contrary to the previous approaches, a multimodal stereo head constructed
with just two cameras: an infrared and a color one is presented in [52]. This minimal
configuration is adopted in the current work since it is the most compact architecture
in terms of hardware and software. Critical issues such as camera synchronization,
control signaling, bandwidth, image processing, among other have a minimal impact
in the overall performance, and can be easily treated by an acquisition system such
as the one presented in [63]. In Krotosky et al. [52] this compact multimodal stereo
head (LWIR/VS) is used for matching regions that contain human body silhouettes.
Since their contribution is aimed at person tracking some assumptions are applied, for
example a foreground segmentation for disclosing possible human shapes, which are
corresponded by maximizing mutual information [94]. Although, these assumptions
are valid, they restrict the scope of applications.

A more general solution should be envisaged, allowing such a kind of multimodal
stereo head to be used in different applications. In other words, the matching should
not be constrained to regions containing human body silhouettes. The current chapter
has two main contributions. Firstly, a robust approach that allows to compute sparse
depth maps from a multimodal stereo head is proposed. Since it is not restricted to
a specific application it can be used in any scenario. Finally, the second contribution
is the adaptation to the multimodal case of a recently presented methodology for
comparing and evaluating stereo matching algorithms. This evaluation method has
been proposed for classical stereo heads where both cameras work in the same spectral
band [51]. It is based on Receiver Operating Characteristics (ROC) curves that
capture both error and sparsity.

Although the proposed approach is motivated for recovering 3D information, op-
tionally it could help to solve other multimodal problems. Due to the fact that most
existing multimodal systems are affected by the same problem. That is, statistical
independence between the different modalities, which makes difficult its correlation.
Our approach offers a non-heuristic based solution, which is a novel feature with re-
spect to state of the art. The current section presents an approach that reveals the
information shared by the modalities, and from these correspondences find the match
between blobs or image regions. The latter is relevant for multimodal applications
such as moving target detection, medical imaging, video fusion, among other.

The paper is organized as follows. Section 3.2 presents details about the genera-
tion of matching cost volume. Section 3.3 describes the optimization steps and con-
straints applied for computing sparse depth maps. Section 3.4 introduces the evalua-
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tion methodology. Experimental results with different scenes are presented in Sect. 3.5,
together with the technique used for setting the parameters of the algorithm. Con-
clusions and final remarks are detailed in Sect. 3.6.

3.2 Matching Cost Volume Computation

A crucial aspect of the multimodal stereo algorithms is to find good matching, despite
of the poor correlation between LWIR and VS images [78, 68]. This problem is tackled
by using of Cygr, a cost function that combines mutual and gradient information
in scale-space context. Although, this similarity function is defined for multimodal
template matching (Chapt. 2), the current chapter shows that also can be used as a
cost function in a multimodal stereo system. Additionally, its accuracy is improved
through a Parzen window estimator, as will be described below.

The join probability p,, s, from Eq. (2.5) is estimated in two steps. Firstly, it is
constructed a two dimensional histogram of discretized pixels a; and b;. Every entry
is obtained as follow:

(s by) = —5 3 Tl(aiby) = ()] (31)

Te] is a conditional function, which takes the value of 1 if the argument between
bracket is true, and 0 otherwise. It is appropriate to recall that both x and x’ repre-
sent a pair corresponding points in local window coordinates, and that wz is the size
of those windows. Once all entries are computed, the joint probability is approximated
by a Parzen estimator as is presented in [48]. It assumes a Gaussian distribution g with
standard deviation o4 on every entry of the previously obtained histogram (p(ai, bj)).
Thus:

p(aiabj) :p(aivbj)*g(aiaijag)' (32)

The other probabilities from Eq. (2.5), are determined by summing along each
dimension of the previous joint probability (see [94] for more details about the prob-
ability estimation).

Similarly to cost volume presented in Chapt. 2, a multimodal cost volume Chsa1(p,
is computed Vp € Iy g. This representation comes from Eq. (2.3) and Eq. (2.4), when
a smooth joint probability is used for computing M.

In contrast to template matching algorithm presented in Sect. 2.4, two stereo
images are not similar. Therefore, the calibration and rectification have a decisive im-
pact, because not only the search for correspondences is restricted to one dimension,
but also the contours and edges of the objects contained in the scene have a similar
aspect. This fact increases the probability of coincidence on contours and boundaries
as is shown in [68].

d)
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3.3 Disparity and Depth Computation

The process of disparity selection consists of two steps. Initially, the disparities with
higher cost values are selected as correct with a classical winner take all criterion. In
these cases, a correct match is determined by the positions d (image coordinate) where
the cost function reaches the maximum value: argmaxy (Cprar(p, d)). The disparity
map obtained after this first step contains several wrong entries due to regions with
low texture or no information. Note that the multispectral stereo matching case is
more complicated than traditional (VS/VS) ones. The latter is due to the fact that,
for instance, an object in the scene could appear textured in the visible spectrum,
while it could have the same temperature all over its surface, therefore appear as a
constant region in the infrared image, and vice versa.

As mentioned above, it is hard to select the correct d between several candidates
with similar scores. Therefore, a second step to reject mismatching candidates is
added. It consists in labelling as correct those correspondences with a cost score
higher than a given threshold 7,,5;. The selection of this threshold is based on error
rates (see Section 3.4). Next, these reliable matchings are used for bounding the
searching space in their surrounding. As it will be shown in the 3D maps, this helps
to discard wrong matchings.

The 7,s; parameter is included into our formulation for picking up only those
pixels with large Cysr values. Since the Ch;gr cost function is reliable in textured
regions, and those regions have higher Ch;gr cost, Ty, is used as a threshold that
split up the cost map into two groups: (i) reliable matches and (ii) unreliable matches.
This parameter exploits the correlation between material edges.
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Figure 3.1: Disparity interpolation.

Finally, a quadratic curve is used for a fine estimation of disparity values; this
function fits a polynomial to points {d — 1, d, d + 1} and its respective cost values
(see Fig. 3.1). After computing the disparity of every point in the images (color and
thermal infrared), their corresponding 3D positions (X,Y,Z) are obtained using a
standard function for triangulation, which is included into the calibration toolbox [8].
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3.4 Evaluation Methodology

The current section describes the quality metrics used for evaluating the performance
of the proposed multimodal stereo matching algorithm. This metric is inspired by a
technique recently presented for classical (VS/VS) semi-dense stereo matching algo-
rithms.

In general, stereo algorithms have been evaluated following the methodology pro-
posed in [74], which has become in a de facto standard in the stereo community. It
presents two quality measures: (i) RMS (root mean squared) error; and (ii) percent-
age of bad matching pixels. In both cases, resulting disparity maps are compared
to a known ground truth in a dense fashion. However, in uncontrolled scenarios, as
outdoors, trying to get ground truth data as presented in [41] or [75] is not feasi-
ble, for that reason, we must evaluate our proposed algorithm following a semi-dense
methodology.

The method presented in [51] capture both, error and sparsity in a single value,
which is suitable for our dataset. So, we extend this framework to the multispetral
case. The pairs: error and sparsity are plotted in a Receiver Operating Characteristics
(ROC) curve as a unique value, letting visualize how performance is affected as more
disparity values are taken. Remember that every disparity obtained by our method
have a cost value associated, which depends on Cj;; and Cgy. Therefore, regions
with low information (low entropy) or without texture (gradient) could be rejected
considering their cost. During the evaluation process the best 7,,o; parameter could
be easily identified (see Sect. 3.3).

In the current section, ROC curves have been used for evaluating the performance
of the proposed approach independently of parameter settings {wz, Q, o+}. The eval-
uation procedure is briefly detailed below following the original notation.

The statistics about the quality of a semi-dense stereo algorithm should capture
both: (i) how often a matching error happens and (ii) how often a matching is not
found. These two values define the Error Rate (ER) and the Sparsity Rate (SR)
respectively. In other words, the EFR represents the percentage of incorrect corre-
spondences:

incorrect_correspondences

ER = (3.3)

all_matchable_pizels

On the other hand, the SR is defined as the percentage of all missing correspon-
dences over the set of matchable pixels:

missing_correspondences

SR = (3.4)

all_matchable_pizels

Note that these values are not computed over the whole set of pixels but over those
pixels with a match in the ground truth. An illustration of ROC curves, for different
scenarios, can be seen in Fig. 3.1 (the meaning of these plots will be explained in
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Figure 3.2: Evaluation regions.

Sect. 3.5). These plot have four extrema points: the origin, which represents a dense
and perfect matching algorithm; its opposite, where no correct matches are found;
the (0,1) point corresponds to an algorithm that is dense but fully wrong; and finally,
the (1,0) point that corresponds to a disparity map completely empty.

The evaluation by ROC curves compares row by row, a horizontal profile belong-
ing to ground truth disparity map with its corresponding one obtained by the tested
algorithm. A correct matching is assumed when the difference with respect to the
correct value is smaller than or equal to 1 pixel. Note that only three sets of images
(i.e., roads, facades and OSU) are used for the evaluation to avoid the problem of oc-
clusion, which is slightly different in the VS/VS and VS/LWIR stereo rigs. Regarding
the roads dataset, in all the image pairs there is a single plane hence there are not
occluded areas; while in the facades dataset occluded areas are removed by generating
a synthetic 3D model. Let us remember that OSU dataset was not obtained with our
multispectral stereo rig; it is provided by [19] and contains perfectly aligned VS and
LWIR images. The smooth surfaces dataset is not used during the evaluation since
the differences between occluded areas in VS/VS and VS/LWIR stereo rigs could
affect the results. Hence, the smooth surfaces dataset is just used for a qualitative
validation of the proposed approach.

Figure 3.2 shows three kind of regions identified in our dataset: Occluded; Un-
available (e.g., no textured or too far / close to the multispectral stereo head); and
Valid regions. A region is valid when depth information is known or is possible to fit a
plane with its defining pixels. Therefore, let V' be the set of all pixels in ground truth
with disparity information available; O be the occluded regions; B be the regions
close to an occlusion, by definition, this boundary is 5 pixels of wide; and finally, C'
be the candidate matches obtained by the evaluated algorithm.

On beginning of this section is introduced the concepts of the two error metrics,
ER and SR. Now, they are defined as a function of the following two terms. The op-
erator 7' [e] that is defined in Eq. (3.2), and a image coordinate p that lie both on the
ground truth, and on the disparity map obtained by the proposed approach. Notice
that, ground truth and disparity map are referred to the same coordinate system.
Thus, they can be overlapped and their coordinates are equivalents.

Mismatch (M): a correspondence with a disparity value different from the ground
truth value larger than one pixel:
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M(p) =T[V(p) - C(p)|>1], (3.5)

this score considers pixels near to occlusions (B).

False Negative (FN): an unassigned correspondence where a ground truth data is
available (i.e., a hole):

FN(p)=T[peV :p¢C]. (3.6)

False Positive (FP): an assigned correspondence in occluded areas:

FP(p)=TpeC :p¢V]. (3.7)

The ROC space is defined by the above functions, and from them ER and SR are
obtained; remember that they are used as vertical and horizontal axis respectively, in
the ROC plots.

ER = ﬁ S (M(p) + FP(p)), (3.8)

where p only takes the values of valid images coordinates (see Fig. 3.2) and |V] is the
number of valid pixels. Finally:

SR = |—‘1/| > FN(p). (3.9)

In the ROC curves presented in Fig. 3.1, the sparsity rate parameter is varied as
follows: the cost values of the candidate matches in C' are sorted in descending order.
Next, from this list, and by using a decreasing 7,,; threshold, different values of the
ROC curve are obtained. For instance, the first plotted element in the ROC curve
corresponds to bottom right point, which is the maximum cost value achieved only
for a few set of pixels. Then, by decreasing the 7,,,; threshold, all the other points
that define the ROC curve are obtained. In other words, the more pixels are selected
reducing the sparsity rate, the larger the resulting error rate.

3.5 Experiments

This section presents experimental results obtained with different algorithm settings
and scenes. The setting of parameters is obtained from two optimization steps. The
first one is intended to find the best setting of: (i) window size, (ii) scale and (iii)
quantization levels, from the parameter space P = {wz x oy x Q}. The second
optimization step is devoted to find the best confident value A = {Ag, ..., \s—1} used
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for propagating Csr and Cjyy costs through consecutive levels (2.2). These two steps
have been implemented as follows.

Firstly, an efficiency measure (em) is defined to be used as a quantitative value

for comparisons between different settings. Let em = fol FERdggr be the area under
the error curve (ER) defined for all SR in the interval [0, 1], for a given setting
of parameters. The parameter space P is sampled in a limited number of values
defining a regular grid. Then, the best setting of parameters corresponds to the node
of that grid where em reaches the minimum value. Since in the proposed approach a
scale space representation is used, not only the setting with the minimum em value
is considered, but the best p; settings. Note that no prior information about the
number of levels in the scale space representation is assumed. Hence, the family of
parameter settings, with the lowest error, is obtained. This first optimization step is
performed for each subset of the whole dataset. By analyzing the results is possible
to find similarities between the best settings for the images in the evaluation dataset.
Thus, it is possible to find relationships between the elements of the parameter space,
particularly the relationship between the window size and the quantization level.

Then, the second optimization step finds the best set of A = {Ag, ..., \s—1} values
for merging the Cy;; and Cgy costs corresponding to each of the p; settings obtained
above. Although initially a large family of p; settings were considered, we experi-
mentally found that three levels were enough to propagate the Cysr and Cgy costs
through the scale space representation. Hence, this second optimization process finds
the best [Ag, A1, A2] using a similar approach.

The two optimization steps mentioned above are used to find the best combination
of parameter settings. Initially, an exhaustive search in parameter space P is per-
formed. The results are used to illustrate the behavior of ER and SR in each subset
of dataset. Figure 3.1 shows the three error curves corresponding to: road, facade,
and OSU color-thermal. These curves depict the error and sparsity rate when the
best settings are used in Cprr and Cgy costs function (Eq. (2.3) and Eq. (2.4), respec-
tively), together with the improvement achieved by merging them (Chsgr). Finally,
after finding the best settings for the whole dataset (including confidence parameters
[Ao, A1, A2]) several sparse depth maps of real outdoor scenarios are presented (see
right columns in Fig. 3.2 and Fig. 3.3).

The settings of parameters corresponding to the ROC curves presented in Fig. 3.1
were found with an exhaustive search in the following ranges: wz = {7, 19, 31},
or = {0.5,1, ... 6} and Q = {8, 16, 32, 64}. The best set of parameters and prop-
agation scheme is the following: MGIlz(p2) — MGIi(p1) = MGIy(po), where py =
{31, 1.5, 32}, p1 = {19, 1, 16} and py = {7, 0.5, 8}. In our proposal, the windows
sizes (wz parameter) decreases from 31 to 7 pixels, which looks like an inverted pyra-
mid. This is to avoid smooth disparity maps, specially on edges, contours and bound-
aries, since the smaller windows (7x7) contributes in the last stage. On the other
hand, we observed that information content decreases with scale, as previously re-
ported in [56], but in our case faster at oy = 2. So, o: greater than this value de-
creases the correct matching score. This is due to the fact that gradient is not enough
discriminative (GI in Eq. (2.6)), and the windows tend to have low entropies (M I
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Table 3.1: Results obtained at different scales and with different settings
(MGI»(31, 1.5, 32), MGI:(19, 1, 16) and M GIy(7, 0.5, 8); as well as their merging,
Cwmar, with the proposed scale space representation).

Scene MGI and Cprgr ROC curves
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in Eq. (2.5)). Therefore, the propagation of costs should be done with appropriate
parameters since a wrong setting could increase the error rate. Regarding A, the best
settings, for the above parameter space P = {ps, p1, po}, is A = {0.45, 0.30, 0.25}.
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Table 3.2: Examples of sparse depth maps from outdoor scenarios (red color in cost
map corresponds to high cost values).

VS LWIR Chrigr cost map 3D results
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At this point, we must distinguish between M I coming from the discrete version
Eq. (3.2) and its smooth version obtained from Eq. (3.2). The difference lies in how
the joint probability p(a;, b;) is estimated. When the discrete joint probability is
used, M results in a wave-like curve difficult to minimize. On the contrary, when
the smooth p(a;, b;) is considered a better behaved function is obtained, which helps
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Table 3.3: Examples of sparse depth maps from outdoor scenarios (red color in cost
map corresponds to high cost values).

VS LWIR Chrrgr cost map 3D results
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us to find stable parameters. Parzen window estimation is done using three different
Gaussian kernels (see Eq. (3.2)): g(ai, b;,3) for wz = 7; g(a;, b, 7) for wz = 19; and
g(a;, b;,9) for wz = 31.

As a conclusion from the plots presented above we can mention that the best
result is obtained when the Cj;qr is used. Improving the result at each scale, in a
coarse to fine scheme. On average a 20% of correct matches, with less than 10% of
ER, can be obtained with the proposed approach and by setting the parameters as
indicated above. Another conclusion from Fig. 3.1 is that for a given sparsity rate
always the best results (lowest error rate) is obtained after merging M GI with the
proposed scale space representation Cpsay.

Figures 3.2 and Fig. 3.2 show the results obtained with the proposed method. First
and second columns correspond to the rectified images, visible and thermal infrared,
respectively. Third column presents cost maps obtained after applying disparity se-
lection method explained in Sect. 3.3. Each pixel in this representation corresponds
to the maximum Cjsgy value for a given d that maximize arg maxy (Cpar(p, d)). Fi-
nally, the fourth column depicts the 3D sparse depth maps obtained from the correct
matches. Sparse maps show how the multimodal correspondence between LWIR and
VS can provide useful 3D information. Notice that the complexity of images used for
validating the proposed approach, is also a challenge for a VS/VS stereo algorithm.
However, the obtained results demonstrate the capability of our approach for find-
ing correspondences in a wide range of radiometric differences, such as uncontrolled
lighting conditions (sources), vignetting and shadows. Furthermore, the experimental
results correspond to outdoor scenes with non-Lambertian surfaces and weakly tex-
tured regions. The construction of such a challenging dataset is motivated to push
the limits of this novel technique, and provide insights of its application and research
trends.

The results shown in the tables must be understood beyond the sparseness of 3D
representations, or the accuracy with which the contours are recovered. For example,
notice that the vehicles in the LWIR images appear quite poor textured, whereas in the
VS images they appear textuless, however our approach can overcome this situation
and provides a depth map free of mismatches over those regions (the same for the
contrary case). This is consequence of the manner in which mutual and gradient
information are combined. Thus, the multiplication of I and G reaches its maximum
when a given correspondence is weighted as a correct one by both M1 and GI cost
functions equacion A more dense representation could be obtained by relaxing the
Tuer threshold, but it will be affected by noisy data. Actually, this is a common trade
off in stereo vision systems. It should be noticed that 3D representations presented in
Fig. 3.2 and Fig. 3.3 provides not only the (X, Y, Z) and color components (r, g, b),
as classical stereo systems, but also the thermal infrared information corresponding
to every 3D point.

The cost maps presented in Fig. 3.2 and Fig. 3.3 show that, in general, the cost
function introduced in Chapt. 2 can match a pair of window extracted from mul-
timodal stereo image with different accuracy. Our algorithm is designed to identify
regions with high information content, such as edges and contours, and from them to
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obtain a 3D representation of the scene. Also, it penalizes mismatches in textureless
areas, which are not reliable to find correspondences, for instance in image regions
such as walls and floor. As can be appreciated on Fig. 3.2 and Fig. 3.3 (third column),
higher cost values are concentrated on the edges, since in those regions a consensus
between M I and GI is reached. Furthermore, it is possible to perceive the structure
of the scene from these cost maps, which confirms the importance of discontinuities
for relieving the ill-posedness of multimodal stereo. The strategy of cost propagation
across a scale space representation enriches the Cy;gr, allowing to identify the correct
disparity of a candidate set (Sect. 3.3).

As a result, we can affirm that although the current section is focused on re-
covering 3D information, we have confirmed that the Cy;gr cost function overcomes
mutual information and gradient-based approaches in multimodal template matching
problems. This conclusion is supported by reviewing previous work [2], which uses
a similar cost function. Since both evaluations (the current and previous one) use
the same database (OSU Color-Thermal dataset [19]), we conclude that Cagr is
a valid cost function for searching correspondences in multimodal video sequences.
This conclusion could be also extended to the multimodal pedestrian tracking and
detection problem. The previous statement is motivated by the fact that the work of
Krotosky et al. (e.g., [54], [53]) is based only on the use of mutual information as a
similarity function for matching pedestrian regions.

Finally, regarding the question formulated in Sect. 3.1: “is it possible to obtain
3D information from a multispectral stereo rig ?”, we can say with safety that it is
possible and it represents a promising research topic with several open issues.

3.6 Conclusions

This chapter presents a novel multimodal stereo matching algorithm of color and in-
frared images. The different stages for obtaining sparse depth maps are described.
Furthermore, a ROC-based evaluation methodology is proposed for evaluating results
from such a kind of multimodal stereo heads. It allows to analyze the behavior over
a wide range of different parameter settings. Although the obtained results show a
sparse representation, we should have in mind the challenge of finding correspondences
in between these two separated spectral bands.

In summary, the main contributions of the current work are: (i) to present a
study in an emerging topic as Multimodal Stereo LWIR/VS and achieves a sparse
3D representation from images coming from heterogeneous information sources; (ii)
to propose a consistent criteria for making the multimodal correspondence; (iii) to
establish a baseline for future comparisons; and (iv) to propose a framework that can
be used as a test bed for evaluation purposes in this field.

Next sections will be mainly focused on two aspects: (i) improving the disparity
selection process by including Markov Random Fields, which allows to consider prior
knowledge of the scene; and (ii) reformulating Cgarr as a combination of two indi-
vidual cost functions, which convert the cost function from a consensus scheme to a
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scheme where M [ and GI contributes to a final matching score according to a set of
assignment weights.
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Chapter 4

Piecewise Planar Stereo

This chapter proposes a new framework for extracting dense disparity maps from
a multispectral stereo rig. The system is constructed with a thermal infrared and
a color camera. It is intended to explore novel multispectral stereo matching ap-
proaches that will allow further extraction of semantic information. The proposed
framework consists of three stages. Firstly, an initial sparse disparity map is gener-
ated by using a cost function based on window matching in a multiresolution context.
Then, by looking at the color image, a set of plane hypotheses is defined to describe
the surfaces on the scene. Finally, the previous stages are combined by reformulating
the disparity computation as a global minimization problem. The chapter has two
main contributions. The first contribution combines mutual information with a shape
descriptor based on gradient in a multiresolution scheme. The second contribution,
which is based on the Manhattan-world assumption, extracts a dense disparity rep-
resentation using the graph cut algorithm. Experimental results in outdoor scenarios
are provided showing the validity of the proposed framework.

4.1 Introduction

The development of multimodal systems has been an attractive research topic in the
computer vision field during the last decade; mainly because they provide a rich rep-
resentation of the scene by means of a collection of images taken by different sensors.
These systems have grown to become a significant tool for dealing with a wide range
of problems, for instance: remote sensing, navigation, surveillance, medical imaging,
among others. However, in the 3D information recovery domain the potentiality and
capability of such systems are still not clear. In the current chapter, a multimodal
stereo matching algorithm for extracting dense disparity maps from thermal infrared
and color images is presented. These images are acquired with a Long Wave Infra-Red
band camera (LWIR) and a color camera (VS) respectively.

45
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Thermal infrared/visible multimodal 3D representations can be broadly divided
into two categories according to the role performed by the LWIR camera. The first
category includes systems that combine thermal infrared cameras with well-studied
techniques for extracting 3D, such as stereo-vision systems (VS/VS) or structured
light. These systems are responsible for providing depth information, which is then
enriched with the thermal measurement (e.g., [93] and [97]). Although, a valid mul-
tispectral representation of the given scene is achieved, the thermal information is
treated as a complementary source. That is, only mapping thermal infrared infor-
mation into the resulting 3D representation. On the contrary, the second category
includes those approaches where thermal and visible information is matched for ex-
tracting a sparse 3D representation (e.g., [52] and [2]). In other words, the information
is used in a collaborative framework.

Up to our knowledge dense disparity maps only from the first category have been
reported in the literature. However, the increasing number of systems where LWIR
and visible cameras coexist leads us to state the following questions: “is it possible to
obtain dense disparity maps from a multispectral stereo head defined with a camera
working in the visible and another in the thermal infrared spectral band?”. From
an efficiency point of view we wonder whether these complementary sensors could be
used in a cooperative framework that allows to exploit thermal and visible information
for extracting a 3D representation.

The structure of the paper is the following. A review of related work on multi-
spectral stereo algorithms is presented in Sect. 4.2. Then, the steps of the proposed
algorithm are presented in Section Sect. 4.3. Technical details of multimodal stereo
head used for evaluating the proposed approach are presented in Sect. 4.4, together
with details of the generated data set and the obtained experimental results. Conclu-
sions and final remarks are given in Sect. 4.5.

4.2 Background

The extraction of 3D information from multispectral stereo heads (LWIR/VS) has
attracted the interest of researchers in different computer vision applications, for ex-
amples: human detection [37], video surveillance [54], and 3D mapping of surface
temperature [97], [71]. Recently, a comparison of two stereo systems is presented in
[53], one working in the visible spectrum (composed of two color cameras) and the
other in the infrared spectrum (using two LWIR, cameras). Since that study was
devoted to pedestrian detection, the authors conclude that both, color and infrared
based stereo, have a similar performance for such a kind of applications. However,
in order to have a more compact system they propose a multimodal trifocal frame-
work defined by two color cameras and a LWIR camera. In this framework, infrared
information is not used for stereoscopy but just for mapping LWIR information over
the 3D points computed from the VS/VS stereo head. This allows to develop robust
approaches for video surveillance applications (e.g., [54]).

On the contrary to the previous approaches, a multimodal stereo head constructed
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with just two cameras, an infrared and a color one is proposed in [53]. In this case
the challenge is to match regions that contain human body silhouettes. Since their
contribution is aimed at person tracking, some assumptions are applied, for example
a foreground segmentation for disclosing possible human shapes, which are corre-
sponded by maximizing mutual information [94]. Although, these assumptions are
valid, they restrict the scope of applications to those scenarios containing pedestrians.
Furthermore, it should be noted that this approach is able to extract 3D information
only on those pixels defining the surface of the pedestrian’s body.

A more general solution should be envisaged, allowing such a kind of multispec-
tral stereo head to be used in different applications. In other words, the matching
should not be constrained to regions containing some predefined characteristic (e.g.,
human body silhouettes). Note that formulating the solution in a general framework
is mandatory in order to extract dense disparity maps.

Up to our knowledge, none of the previous multispectral stereo algorithms for
thermal infrared and visible images are able to obtain dense representations. Although
the proposed framework is based on a Manhattan World assumption, which could be
seen as a constraint, it should be noted that piecewise planar representations are valid
in most of man-made environments [14].

In the current chapter, we are interested in generating dense disparity maps from a
minimal multispectral stereo head; a similar problem has been addressed in [55]. This
study tests two energy minimization scheme only based on mutual information, as are
presented in [39, 48]. Its main conclusion is that energy functions based on mutual
information terms are not appropriated for solving the thermal infrared and visible
correspondence problem. Thus, minimization methods, such as graph cuts [48] and
semi-global matching [39], do not converge to the optimal solution since it is difficult
to predict the value of a pixel in other spectral band when its corresponding one is
given (the well knowing thermal infrared and visible spectrum correlation problem
[68]).

Clearly, some constraints must be imposed in order to overcome the low correlation
between thermal infrared and visible bands. In the current chapter, these constraints
are collected into the so called: Manhattan world assumption [15]. These constrains
have been originally used to model urban environments with building or city land-
scapes, exploiting regularities of contours and boundaries. Although, the search of
correspondences between stereo images of these environments share classical common
problems such as: lack of textured areas, occlusions, shadows, strong lighting changes,
repetitive patterns (e.g., bricks facade), constant colored regions (e.g., painted walls).
The use of region-based algorithms that assumes Manhattan environments have shown
effectiveness in this kind of scenes (e.g., [28, 67]). Our results confirms that an algo-
rithm similar to these provide a interesting road to LWIR/VS stereo.

Region-based algorithms are not new, they have been proposed for VS/VS stereo
matching, and roughly these consist of two steps. Firstly, a pre-initialization step is
performed to compute a sparse representation. Then, a global minimization scheme is
applied to generate the sough dense solution. These algorithms exploit the structural
regularities and sharp edges, which are a common characteristics in Manhattan world
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scenes.

We found out that region-based methods based on the manhattan world assump-
tion and those that constraint the scene to a set of plane structures (i.e., [6, 49, 95])
can be adapted to the thermal infrared and visible correspondence problem. The key
aspect of this adaptation is the cost function used for measuring the similarity be-
tween the images. In the current chapter a multimodal cost function, similarly to the
one introduced in Chapt. 1, is used. It includes a significant change in its formula-
tion, which improves the accuracy in presence of multispectral edges and textureless
regions.

Once an suitable LWIR/VS cost function is established, it is possible to obtain
an initial 3D sparse representation of the scene, where the edges are the predominant
characteristic. This representation is used to unveil the structure of the scene and as
initialization of the proposed region-based algorithm.

Summarizing, The main contribution of this chapter is to propose a complete
framework for dense disparity map estimation assuming a piecewise planar model
of the scene. The proposed framework spans from an acquisition module up to the
proposed algorithm for obtaining dense disparity maps (Chapters 2 and 3 ). The con-
tributions are as follow: (i) it propose a multimodal cost function to exploit reliable
similarities between multimodal images; and (ii) it proposes a standard Markov Ran-
dom Field for obtaining dense disparity maps, which represents the scene by means
of a piecewise planar model.

4.3 Piecewise Planar Stereo
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Figure 4.1: Tllustration of the algorithm’s stages.

The proposed approach consists of three stages. Firstly, it starts by estimating a
sparse but accurate disparity map of the scene. Then, in the second stage the initial
map is represented by means of a set of planes. Finally, a dense disparity map is
obtained by a piecewise planar labeling framework. These stages are detailed next;
an illustration is provided in Fig. 4.1.
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4.3.1 Initial Disparity Map

The goal of this section is to compute an initial disparity map, which will be fitted by
a set of planes. This disparity map is obtained from a matching cost volume following
a local window based approach, in which a Winner Take All (WTA) strategy is used
for disparities selection. The main challenge of this first stage are both, to get a large
number of good correspondences and to have a high accuracy in their locations.

In order to address the matching problem, we propose to extend a cost function
based on mutual information by enriching it with gradient information in a scale
space representation [2]. A motivation of this proposal is shown in Fig. 4.2(a) and
Fig. 4.2(b), LWIR does not match at a pixel level with VS; so classical stereo strate-
gies cannot be directly applied. On the contrary, mutual information, as shown in
similar multispectral problems (e.g., [70] and [27]), can be used in this case. Further-
more, in the same figure we can see that edges seem to be a relevant feature present
in both modalities; this motivates us to include this kind of information in the pro-
posed solution. Finally, a scale space representation adds robustness and spread local
matches from coarser to finer scales increasing the number of final correspondences.
In order to tackle the second challenge mentioned above, related with the accuracy
of the locations, disparity values are obtained by local quadratic interpolations.

The initial disparity map is obtained by using a matching cost function inspired
by the one presented in Chapt. 2. Particularly, we replaced the fusion operator and
redefine the system of weights, from scales to information source. Thus, the parameter
A weighted the contribution of Cy;;r and Cgr given a scale, instead of its combined
contribution (Cpser) scale by scale. This chapter follows nomenclature introduced
previously. Thus, it is assumed that Iy s and I g are rectified, the searching space
constrained to one dimension, the image coordinate p = (z, y) corresponds to a given
pixel in Iy g, while the locations (z + d,y) represent to their candidates correspon-
dences in Iy wrgr, and d stands a disparity value. The cost of corresponding two
windows centered on points Iy g(p) and Inwrr(x + d,y) is obtained as follows:

C(p7d) = AC]\/II(p7d) + (1 - A)CYGI(pvd% (41)

where Cpsr and Cgy are the cost terms based on the mutual and gradient infor-
mation given a scale space representation, which will be detailed next; and d =

{dmi'ru L >dmaw}-

By definition in information theory, Mutual Information (M I) measures the infor-
mation content in common between two random sampled signals, considering them as
a collection of symbols that are drawn in a random manner [16]. However, from the
point of view of our problem those samples are a pair of windows centered on Iy g(p)
and I wir(z + d,y) respectively, which encode energy measurements in visible and
thermal infrared bands. Similarly, we propose to use M as a cost function that
assigns a value depending on its information content; in other words, probabilities of
symbols. Formally, M1(p,d) is defined in terms of individual entropies h(-) and joint
entropy h(-,-) as:
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MI(p,d) = h(p) + h(d) — h(p,d). (4.2)
Alternatively, the above equation can be expressed in its continuous form as in-

tegrals of the marginal probability distribution functions (PDFs) and joint PDF of
pixel values i s and i, into Iyyg and Iy respectively, then:

h(p) = — [ Plivs)log(P(iys))diys, (4.3)

P(iLWIR) log (P(iLWIR)) diys, (4.4)

P(ivS7 Z.LWIR) log (P(Z.V53 iLWIR)) diVSdiLWIBH (4‘5)
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where P(iyg,irwrr) represents the joint PDF, P(iys) and P(irw;r) two marginal
PDFs. Kim et al. [48] approximate these PDF and PDFs by a Parzen window density
estimation, which is a sum of Gaussian distributions g, with mean p and covariance 1
(a detailed explanation can be found in [94]). In the current section, a nonparametric
estimator (N P) [21] is used for computing the joint PDF, instead of using a Parzen
estimator. In this way, we avoid dependencies in the selection of parameters: p and
¥ of the Parzen estimator and the parameter needed for binning the windows (Q).
Notice that a joint PDF is a two dimensional histogram, where rows and columns
represent symbols within windows. In our scope, these symbols come from pixel
values of multispectral images; however, since thermal infrared measurements tend
to be concentrated in few bins, particularly in outdoor scenes where the temperature
remains uniform (thermal equilibrium), the contribution of the estimator used in the
current section is significant because it does not require a parameter tuning for binning
as Barrera et al. [2]. Hence, the joint PDF is obtained as:

Plivs,irwir) = NP(p,d). (4.6)

Once P(ivs,irwrr) is obtained, the joint entropy term, h(p,d) in Eq. (4.5), is
computed as follows:

h(p7d) = - Z log (P(iVSuiLWIR)) * glb(iVS7iLWIR)7 (4~7)

11,12

where gy, is a Gaussian kernel needed to approximate the continuous form in Eq. (4.5)
from to its equivalent discrete (see [48] and [40] for more details). In practice, we found
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that using a small kernel of 3 x 3 pixels is enough for achieving good approximations,
despite of the few samples in windows. Finally, marginal PDFs, corresponding to
P(iys) and P(ivs) in Eq. (4.3) and Eq. (4.4), respectively, are computed in a sim-
ilar way to the joint probability but along each dimension of P(iys,i,wrr) - Thus,
Plivs) =), s Plivs,izwir) and Pivs) = >, Plivs,irwir). Then:

h(p) = =Y log(Plivs))*gylivs), (4.8)
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(4.9)

Note that P(ivs) and P(i w,r) are one dimensional vectors, and g, also a one-
dimensional Gaussian kernel.

Mutual information finds linear and nonlinear correlations between a pair of win-
dows, taking into account the whole dependence structure of variables. However,
since local image structures provide rich information that could be also exploited, we
introduce a term based on gradient information (GI). Thus, this new term is intended
to contribute to the matching score in textured regions comparing the orientation of
gradient vectors. It is based on the observation that gradient vectors with similar
orientations unveil potential matches.

The gradient information presented in Eq. (2.6) also is employed without changes
in the current section. This remains being the product of two elements: the first one
measures the similarity in the orientation of gradient vectors; while the second one
is a factor that weights this similarity value (for more details see Sect. 2.3). Fur-
thermore, the propagation scheme of M1 and GI presented in previous chapter is
also incorporated, but they are combined at the lowest scale. In contrast with the
initial formulation, which combining them in every scale. Thus, mutual and gradient
information cost are defined as follows:

Cur(p.d) = [ag, ..., )" - [MI(V(p,d)),...,MI(Vi(p,d))], (4.10)
OGI(pvd) = [/807 SERE) Bt]T : [GI (v(l)(pad)) v""GI (Vi(pad))} ) (411)

where ¢ is an index that refers to a level in the scale-space (t € N); V{ and V are
scale-space representations given by convolution of a image with a Gaussian kernel
of standard deviation (o), which is progressively increased until obtaining an image
stack. Two Gaussian derivative kernels of order 0 and 1 are used to generate blurred
and gradient stacks. The «; and B; are weights for the linear combination of the
results from the different levels of the stack.

The cost volume refereed in Eq. (4.1) is computed from Cpsr and Cgr, Eq. (4.10)
and Eq. (4.11), respectively. Section 4.4 presents all values of the parameters above
described, and how are they set. Finally, the initial sparse disparity map (Dmapg)
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is extracted from Cjsqr using the strategy of minimization based on WTA criterion
with bounded searching space presented in Sect. 3.3. Figure 4.2(c) shows an illustra-
tion of the sparse disparity map resulting from this first stage (output) as well as the
multimodal input images Figs. 4.2(a,b).

(b) ()

Figure 4.2: Inputs and output images of first stage: (a) rectified infrared image
Irwir; (b) rectified visible image Ivg; and (c) initial sparse disparity map Dmapo.

4.3.2 Plane Based Hypotheses

In this section the given color image is segmented into a set of regions. Then, each
region is represented by a single plane, using the information from the initial sparse
disparity map. These planes are used in the final stage as labels for computing the
dense disparity map we are looking for.

Support Region Segmentation

This step involves the combination of two segmentation algorithms (i.e., [57] and [23]),
which are applied to Iy g for obtaining regions that preserve the objects boundaries
in the scene. These segmentation algorithms are used in a split-and-merge scheme,
in order to unveil potential planar regions. So, the image is decomposed into small
regions (superpixels) that later on are connected, following a perceptual criterion. It
should be noted that this combination of algorithms is motivated by the application
domain (man-made environments).

The segmentation into support regions begins by splinting the given Iy g into a
large set of small regions, referred to as superpizels [57]: S = |J, s;. Without loss of
generality, we assume that disparity values inside a superpixel s; can be accurately
fitted by a plane; this assumption is met as long as Iy g is oversegmented. Hence,
a trade-off between size of superpixels and fitting error should be found (in the cur-
rent work 500 regions were used). Large regions have a high probability of covering
more than a single planar surface, on the contrary, smaller ones provide few samples
to make a proper estimation of the geometry of the selected region. Then, in order
to extract perceptually meaningful regions, the segmentation algorithm proposed in
[23] is applied to Iyg. This results in a set of P partitions of the reference image:
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Figure 4.3: Illustration of the support region segmentation: (a) original Ivs; (b)
superpixels (S) obtained from [57]; (c) perceptual regions (P) from [23]; and (d)
support regions (R) obtained by fusing (b) and (c).

P =, pi. Finally, the results from superpixels (S) belonging to the same percep-
tual region (P) are connected giving rise to the support regions R = J, 7; we were
looking for (details on the two segmentation algorithms can be found in [57] and [23]
respectively):

ri= U s Q={ilsNpi>s;Npk, k#i} (4.12)
JE;

where €); are the indexes of those superpixels with a maximum overlaping with the
given perceptual region p;. The combined use of those segmentation algorithms (i.e.,
[567] and [23]) is considered because theoretically guarantee a stable segmentation that
preserves the region boundaries and it adapting to local structure of scene. Other algo-
rithms of segmentations or combinations also are valid. For instance, the mean shift
algorithm by Comaniciu et al. [13] commonly is employed in VS/VS region-based
stereo algorithms, such as [7, 95, 6], but it could lead to under-segmentation in the
absence of boundary cues, as is reported in [57]. Iy g is selected for segmentation be-
cause the world coordinate system is set in V.S camera and there are a large amount
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of algorithms and code available (in contrast to LWIR imaging). Finally, Fig. 4.12
shows an illustration of the results from the two segmentation algorithms, S and P,
as well as their fusion R.

Planar Hypothesis Generation

Once the sparse disparity map (Dmapy) has been computed and the color image
segmented into r; regions, a set of hypotheses of planar regions to describe the surfaces
in the scene is imposed. So, for every region r; € R a RANSAC like algorithm [25]
is employed to estimate a pair (7, X), where 7 is the normal vector and X is the
mean value coordinates of the points used for fitting this plane. Note that the planar
region estimator operates in the disparity space (z,y, d), which is different to previous
approaches that work on depth maps represented in the Euclidean space (e.g., [30]
and [82]).

A RANSAC based plane estimator is chosen since the accuracy of the sought
disparity maps depends directly on the confidence of the planar hypotheses. By
definition, these methods are capable to find local models from noisy cloud of data;
for instance, previous works have demonstrated that this kind of algorithms overcomes
least squared based techniques, since they are less sensitive to outliers [92]. It should
be mentioned that only those regions r; that contain three or more valid disparities
(Dmapg(r;)) are considered during this fitting step.

Once RANSAC algorithm has been applied to all the regions in R, a postprocessing
stage is performed to merge planar patches defined by similar parameters. This
postprocessing is performed to simplify the number of planar hypotheses. Note that
the planes have been obtained in a local way, then the number of planar hypotheses
could be as large as the number of regions in R. Hence, the goal of this postprocessing
stage is to reduce the number of planar hypotheses IT = {my, 7o, ..., T} up to a
minimum value so that the structure of the scene is still preserved. The plane linking
stage is based on a distance (distyy) computed from two planar patches, which was
initially proposed in [88]. It is defined as follow:

distn(m, 7Tj) = l(m7 7Tj) + l(’iTj7 71',‘)7 (413)

(T —T) -

l(ﬂ'i, 7Tj) = (414)

The Eq. (4.14) corresponds to the length of the segment defined by Z; and the intersec-

tion of nj, passing through Z;, with 7;. In order to make it clear, a 2D representation
of the segment lengths used for computing Eq. (4.13) is given in Fig. 4.4.

The previous planes distance Eq. (4.13) is used as a similarity function for merging
a pair of planar patches. Hence, two planar patches are fused into a single one if
(distr(my, m5) < Tornk). Once all possible combinations have been evaluated (only
connected neighbor regions are considered) a new relabelled R is obtained and the
RANSAC algorithm is called again until convergence is reached.
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Figure 4.4: 2D illustration of segment lengths used to compute distr(m;, ;).

Finally, once there are not more planes to be joined, a noisy planar hypothesis
removal is performed. It is based on detecting the predominant planar orientations,
using a PCA over all normal vectors (). This filtering stage tends to remove planes
with an orientation n; far away from the principal directions. This results in a com-
pact set of planar hypotheses I = {m, g, ..., m.}; it is expected that the number of
hypotheses has been reduced: ¢ << n. Figure 4.5(b) shows the planar hypotheses
obtained after merging planar patches with similar parameters and filtering the noisy
ones. The original set contains 179 hypotheses (see Fig. 4.5(a)), while the one pre-
sented in Fig. 4.5(b) is defined by only 14 hypotheses. They were obtained after four
iterations of the plane linking stage.
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Figure 4.5: Planar hypotheses simplification: (a) original set of planar hypotheses
from the segmentation presented in Fig. 4.3 (179 planes) and (b) planar hypotheses
resulting after four iterations of the postprocessing stage (14 planes).

4.3.3 Piecewise Planar Labeling

The set of planar hypotheses obtained above are now converted into labels for refor-
mulating the disparity computation as a global minimization problem. It allows to
take into account contextual constraints in order to achieve a dense disparity repre-
sentation from multispectral information. The global minimization problem is based
on the local correlation indicators computed in previous sections (i.e., mutual and gra-
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dient information boosted by the scale-space representation). In this section, former
indicators that were extracted at a level of pixels, are now interpreted as projections
of planar surfaces. This helps to constrain the searching space to a few candidates,
while spatial coherence of disparity values is hold. Notice that an extra planar hy-
pothesis denoted as m,, that represents all those regions out of the stereo range is
added to II (e.g., sky or distant surfaces).

The Markov Random Field theory provides a framework to relate local correlation
indicators together with contextual constraints. These two elements are used to define
a energy function. Then, this function is minimized through the classical graph cuts
[9]. Tt works by defining a regular grid (four-connected) where every node represents
a pixel in the image. Hence, a graph G = (V, £), where V represents the vertices and &
represents the edges of the graph, is obtained. Then, the graph cut algorithm searches
in G for the best set of labels (f) that minimizes the following energy function:

E(f) =" Dp(fp) + Asmootr > Via(for fa), (4.15)

pEP p,aEN

where P is the set of pixels in the image; Dy is the data term that measures how
well a planar hypothesis explains a disparity value for a given pixel p; Vpq(fp: fq) 1S
a smoothness prior computed in a neighborhood N (in the current chapter a first-or-
der Markov Random Field is considered, thus a neighborhood has four connections);
fo and fq are the current labels for pixels p and q, respectively; and Agmootn is a
weighting factor for the regularization term. The Dy function is defined as follows:

o= | QG o) ) g

the cost assigned to a pixel p represents its degree of membership to a given plane
m;. This cost is obtained from C(p,d) (see Eq. (4.1)), where d corresponds to the
hypothetical disparity obtained if p is assigned to the plane 7;; if certain hypothesis
m; produces an inconsistent d. For instance, a value outside of the searching space,
then p is penalized with a maximum cost Ciy,qz. Finally, the smoothness term Vpq is
defined as:

O lf fp = fQ7
Voa(fes fa) = V(Ivs(p)) - dmaz if fp or fq € Moo, (4.17)
d(fp, fq) otherwise,

V is the gradient of Iy g, and d (fp, fq) is the Euclidean distance between the points p
and q depending on which planes them belong to. The minimization of Eq. (4.15) as-
signs every p in the reference image one planar hypothesis m; (see Fig. 4.6(a)). Then,
from this membership the corresponding disparity value is obtained by computing
the intersection of a ray passing through p with the assigned plane ;. Figure 4.6(b)
shows the dense disparity map corresponding to the illustration used as a case study
in previous sections.
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(a) (b)

Figure 4.6: Graph cuts outcomes: (a) labelled regions from graph cuts and (b)
dense disparity map obtained with the proposed approach.

4.4 Experiments

This section starts presenting some details about evaluation dataset. Particularly,
those additional information, which is required for evaluation(ground truth data).
Then, eight case studies that provide a qualitative overview of the algorithm perfor-
mance are presented, these include both intermediate results of the proposed algo-
rithm and dense disparity maps. Finally, two quantitative experiments are conducted
over all the evaluation dataset, providing a measuring of global error.

In order to evaluate the proposed approach the dataset presented in Sect. 1.4.1
has been used. This dataset contains 116 scenes, which depicts a large variety of ur-
ban scenes, such as: buildings, sidewalk, trees, vehicles, among others (see Table 4.1).
Every scene includes their corresponding thermal infrared and color image; a syn-
thesized disparity map; and a hand-annotated map of planar regions. The images
are acquired by the proposed multimodal stereo head, and they are processed till to
obtain a rectified pair. The planar region maps have been hand-labeled taking into
account the geometry of the surfaces, thus a unique label is assigned to each region
and it identifies the pixes that belongs to the same plane.

Table 4.1 shows some of the images used for validating the proposed approach.
I wir and Iy g are rectified images; in both cases the size of resulting images is 506 X
408 pixels. Hand-labeled and disparity maps are given in their original format 640 x
480 pixels. Since the disparity maps provided by PGB are only accurate in textured
regions, we have used a hand-labeled planar regions for obtaining dense and accurate
representations, particularly in textureless and noisy regions. To address this problem,
we fit a plane to each hand-annotated region, through of image coordinates and
corresponding disparity values. The disparity maps resulting from this user supervised
labelling process are shown in Table 4.1.

Dense disparity maps were obtained by setting the different parameters as is indi-
cated below. The different values were empirically obtained and the same setting is
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Table 4.1: Examples of evaluation data set.
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used in all the scenes. The initial Dmapg is obtained by defining d,,;, = 0 and
dmaz = 64. The scale space representation contains three levels and the values
used for propagating mutual and gradient information through the different levels:
[ag, ..., au] =[0.5,0.3,0.2] and [By, ..., B:] = [0.5,0.3,0.2]; threshold 7, is set as
25% of the maximum cost value; finally, mutual and gradient information in Eq. (4.1)
are fused defining A = 0.4. The two values related with the planar hypothesis gen-
eration were set as follow: Transac = 0.2 and 7y, = 2.5. The values given by
default in the graph cut implementation provided by [30] were used for the global
minimization.

Figures 4.7 and 4.8 show the results obtained for eight different scenes. The initial
multispectral stereo images are provided in the first and second columns of Table 4.1.
The results are grouped by scenes and they show the output of each step of proposed
algorithm. So, every scene has associated four images: (top-left) corresponds to
support regions R, which split up the Iy g image into planar regions; (top-right) is
an illustration of the planar hypotheses II; (bottom-left) shows the labelled regions
obtained by graph cuts; and (bottom-right) is the final disparity map. Notice that
IT is the set of labels used during the minimization step, and the disparity map is
obtained by using the plane parameters corresponding to each label. On the other
hand, it can be appreciate how the minimization stage is able to filter out small regions
and propagates information across the neighbors (see (bottom-left) illustrations in the
different scenes and compare them with their corresponding (top-right) images in Fig.
4.7 and 4.8).

Figure 4.1 (scene 5) shows that the proposed approach can obtain dense disparity
maps even in non-planar regions. In this illustration a large cylinder is approximated
by two planar patches. The number of planar patches depends on the value used
for setting the 7;,,x parameter. Even in this challenging case the proposed algorithm
is capable of finding a set of planar hypotheses, and converges toward an optimal
solution that preserve the appearance of the scene.

The accuracy of proposed algorithm is evaluated by using two metrics. They are
frequently employed as quantitative evaluation criteria for stereo matching algorithms.
Initially, the absolute mean error (Fups) is computed in a global manner for a given
disparity map as follows:

L
N 4
J

M=

Eaps = | do () —dr () |, (4.18)

1

where d¢ is the disparity map computed by the proposed algorithm, dr is the ground
truth, and N is number of evaluated points. Since, our data set offers reliable ground
truth only in those points that lie on a planar region, the error measurement is lim-
ited to those image coordinates that have a valid ground truth data and disparity
value. Notice that the label 7., used during the minimization step corresponds to
non disparity, for this reason these image coordinates are excluded from the evalua-
tion. A drawback of using E,;s as an evaluation metric lies on the fact that it does
not distinguish between few disparity estimations with large errors and lot disparity
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Scene 3 Scene 4

Figure 4.7: Experimental results from different stages of the proposed approach; in
each scene the illustrations correspond to: (top-left) Support region R; (top-right)
Planar hypotheses II; (bottom-left) Labeled regions from graph cuts; and (bottom-
right) Final disparity map.

estimations with small errors. Furthermore, it does not take into account that a small
disparity value corresponds to a large depth value, and therefore its contribution to
the global error should be different, for instance, in comparison to a large disparity
(small distance). Hence, in order to take into account this effect, the mean relative
error (E,¢) is also used. It is computed as follows:

& del) — dr(j) |
Era =+ ; G (4.19)

Eus and E,.; are computed from the 8 scenes that are used as case studies (see
Fig. 4.7 and Fig. 4.8); their corresponding error scores are presented in Table 4.2.
The E,.; in the scenes 1 and 4 are considerable larger than the rest of scenes in the
data set. In both cases these large values result for the wrong matchings due to the
lack of texture in the predominant geometries (a vertical non-textured wall).
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S(;éne 8

Scene 7

Figure 4.8: Experimental results from different stages of the proposed approach; in
each scene the illustrations correspond to: (top-left) Support region R; (top-right)
Planar hypotheses II; (bottom-left) Labeled regions from graph cuts; and (bottom-
right) Final disparity map.

| Scene | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
E.ps 0.635 | 0.443 | 0.582 | 0.629 | 0.484 | 0.387 | 0.465 | 0.505
E,q 0.167 | 0.016 | 0.096 | 0.144 | 0.042 | 0.060 | 0.062 | 0.057

Table 4.2: Global E4ps and E,¢; of the case studies presented in Fig. 4.7 and Fig. 4.8.

Figure 4.9 shows the average accuracy of the obtained dense disparity maps, when
all the scenes in our data set are considered. For each scene an accuracy histogram
is computed by using its corresponding ground truth map. The histogram counts the
number of points for a given disparity error, spanning from 0 till 10 pixels. Then,
from all these histograms a single plot is computed showing the variability of results
(see Fig. 4.9). In this plot the central mark of each box corresponds to its median
value and the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme cases.
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Figure 4.9: Average accuracy of the results obtained with the proposed approach
computed from the whole data set.
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Figure 4.10: Average E..; of the results obtained with the proposed approach
computed from the whole data set.
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Figure 4.10 shows the average E,.; computed from the whole data set. The E,.;
measurements are restricted to discrete values from 1 to 20 for the sake of visual-
ization. This plot is similar to the previous one and presents the box plot of the
mean relative error when all the images into the evaluation data set are considered.
Note how the mean E,..; decreases to values below 10% when the disparity is higher
than 10 pixels. On the other hand, disparity values smaller or equal than 10 pixels
correspond to distant points (several meters away from the stereo rig), which are out
of the calibration range of the current work.

The results presented above answer the question that was formulated on the be-
ginning (Sec. 4.1), which motivated the current work. They show that under certain
restrictions multispectral images can be used to extract dense disparity information.
This information can be directly converted into a 3D representation describing the
geometry of the scene. This will allow for instance to extract semantic relationships
between the objects in the scene.

4.5 Conclusions

The current work presents a novel framework for extracting dense disparity maps
from multimodal stereo images, each one of its stages is described as well as the
image rectification and camera calibration. The results obtained from this research
can benefit those fields where visible and thermal infrared cameras coexist. The
main contribution of current work are as follow: (i) it introduces a cost function for
obtaining multimodal matching, exploiting mutual and gradient information in a scale
space representation; (ii) it proposes a global minimization scheme, which is based on
the Manhattan-world assumption, to extract dense disparity maps. Finally, although
not a theoretical contribution, a large data set of multimodal stereo images has been
generated and is freely available by contacting the authors.

We have shown that under certain restrictions is possible to obtain accurate dis-
parity maps, however the low correlation between thermal infrared and visible images
restricts its usefulness in complex environments, being this still an open issue. Future
work will be mainly focused on the extraction of a ground truth data, which should
includes depth information both of planar and non-planar regions. Additionally, dif-
ferent interest regions such as occlusion and discontinuities would have to be identified,
as happen in the (VS/VS) evaluation frameworks for dense stereo algorithm.
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Chapter 5

Context-Based Multimodal Stereo

This chapter presents a novel framework for extracting dense disparity maps from
a multimodal stereo head using contextual information. It is based on the use of
context information, which assume a piecewise planar scene model. This assumption
implies that the surfaces of the given scene can be fitted through a compact set of pre-
dominant planes. The multimodal stereo head is constructed with a thermal infrared
and a color camera. It is intended to explore novel stereo matching approaches that
will allow the fusion of information from different sensors. The proposed framework
consists of the following stages. Firstly, an initial sparse disparity map is extracted
by using a multimodal matching cost volume. Then, a set of plane hypotheses is de-
fined to describe the surfaces on the scene. Finally, the previous stages are combined
by reformulating the dense disparity computation as a global minimization problem.
Experimental results in outdoor scenarios are provided showing the validity of the
proposed framework and its assumptions.

5.1 Introduction

Long wavelength infrared sensors (LWIR), also referred in the literature to as thermal
sensors [72, 91], have been generally used for infrared thermography. However, nowa-
days they are becoming a common sources of information for different computer vision
applications. For instance, in video surveillance they facilitate the people detection
(hot spots) [52, 58, 37] as well as increase the system availability during night-time.
In driving assistance, similarly to the surveillance task, the thermal information helps
detecting pedestrians and to analysis occupant posture [32, 93]. Finally, early tech-
niques of thermal performance analysis. For instance, of building isolation; in indus-
trial facilities; and materials test just to mention a few [44, 87], are using VS images
as human-machine interface for locating damages. It is clear that the coexistence of
LWIR and VS sensor is increasing. In the current chapter, we propose to go a step
further by fusing the information from these two cameras (LWIR/VS) with contextual

65
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information in order to obtain dense 3D data.

Over the last few years, many computer vision problems have been investigated
from a multimodal point of view, assuming that a multimodal architecture could
produce better results than only when a single modality is used. In practice, an inap-
propriate sensor combination may cause worse results, primarily due to uncertainties
of data, since it is difficult to distinguishing the accurate information from biased data
[36]. Indeed, a multimodal stereo system as the one proposed here, working at non
overlapped spectral bands, supposes a complex task. This system should overcome
the well known stereo correspondence problem as well as image fusion issues. A star-
ing point towards such a kind of challenging scenarios was given tackled in [22, 42, 48],
but in unimodal stereo images affected by smooth radiometric differences. Although
they do not truly investigate the multimodal problem, their work indicate that an
energy minimization framework based on mutual information could provide dense
solutions and accurate results in the multimodal case.

Since energy minimization approaches have demonstrated their usefulness in ear-
lier vision problems, in the chapter, we propose to extend these formulations to mul-
timodal stereo matching. Additionally, we propose to include contextual information
as a smoothness term. Hence, our study shows a promissory path towards the inte-
gration of multiple sensors for recovering tridimensional information.

There are several work in the field of the extraction of 3D data using contex-
tual information [59, 5, 82, 60]. Particularly for VS/VS stereo systems, it has been
shown that is possible to produce an accurate 3D reconstruction, similar to the one
obtained with a laser range scanner [28], just by imposing planarity constrains [67].
This assumption may seem to be excessively restrictive. However, such scenes can
be effectively modelled by the so-called Manhattan-world assumption [15]. Similar to
previous work, the proposed approach exploits the contextual information provided
by man-made structures. Under this assumption, the surfaces in a given scene are
considered as a collection of piecewise-planar patches, where normal vectors are ori-
ented in a reduced number of directions. This condition holds true for images taken
in environments with certain regularities in its structure, particularly over the edges.

It should be noticed that although a Manhattan-world assumption is imposed, the
proposed approach does not assume that the surfaces into the scene are aligned with
a Cartesian coordinate system (X, Y, and Z) as is presented in [28, 67, 6, 61]. Indeed,
in the current work the surfaces and their orientations are recovered from an initial
sparse disparity map. These surfaces are identified and grouped in accordance with
dominant orientations on the scene, which are obtained by a spectral clustering [81].
In this way, false plane detections and noisy surfaces are removed.

The main contribution of current work is the formulation of the multimodal stereo
matching as a piecewise planar region partition and labelling. This formulation is
then solved by the graph cuts algorithm [9]. The proposed approach works as follows.
Firstly, a matching cost volume is computed, which is used for obtaining an initial
disparity map. Then, a set of regions is obtained by overlapping two different seg-
mentations of the visible image (perceptual grouping [23] and superpixels [57]). Next,
planes are extracted from those candidate regions and are used for partitioning the
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Figure 5.1: Pipeline of the proposed context based multimodal stereo algorithm.

initial disparity map. This map is then treated as a three-dimensional cloud of points;
where, the position of each point in that space is defined by its image coordinates
(row and column) and disparity value. Once every region is approximated by a plane,
the key question is how to obtain the dominant orientations in the scene. Since there
is an infinite number of possible orientations, and a plane can be uniquely defined by
one point and a normal vector, we propose to tackle this problem as a partitioning
problem. Thus, instead of an iterative algorithm that joins regions and computes the
planar parameters at each cycle [30], or a progressive approach [96], we propose to
group superpixels into clusters, according to their centroid location and normal. The
graph consists of a set of nodes that corresponds to all superpixels in the image, and a
set of edges whose weights are distances between two superpixels. Finally, that graph
is clustered into regions by normalized cuts [81]. We argue that the agglomerations
of nodes in the graph mentioned above correspond to dominant orientations in the
scene, and in turn they should be the labels used by the energy minimization frame-
work. The proposed clustering strategy has shown high noise immunity, in particular
to the noise caused by a deficient plane estimation. Finally, the multimodal energy
function is minimized via graph cuts [9]. This function compares at different scales
both gradient vectors and mutual information, following a window-based approach.
The main steps of the proposed approach are summarized in Fig. 5.1.

The paper is organized as follows. Section 5.2 introduces the state-of-the-art in
context based stereo approaches. Then, Section 5.3 details the proposed method.
Experimental results are presented in Section 5.4 using several outdoor scenarios
showing the validity of the proposed approach. Finally, conclusions are provided in
Section 5.5.

5.2 Background

Stereo matching from multimodal images (LWIR/VS) is a field still relatively unex-
plored, and yet certain questions about image correspondence have not been fully
addressed in the literature. By contrast, stereo matching of VS/VS images is an ac-
tive research area, which evolved from window-based local approaches [46] to global
methods that use regularizations for introducing additional information in the form
of contextual restrictions or assumptions [86]. The lack of work in the LWIR/VS field
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is mainly due to the low correlation between LWIR and VS images, which prevents
to compute reliable matching cost values, and at the same time it also prevents to
use state-of-the-art methods from VS/VS stereo [42, 48]. A way of avoiding incoher-
ent results and overcoming the correlation problem is by means of the use of local
approaches; they commonly reduce the search for correspondences to certain regions
of interest (ROI) in the images [43], such as human silhouettes [53], faces [84], or
contrasted objects [97] (e.g., hot or cold objects on a smooth background). Although
these ROI based approaches have shown attractive results, the main problem remains
unsolved. Hence, the search for novel multimodal cost functions is a recurrent subject
of research in the multimodal image fusion area. Stereo similarity functions such as
Normalized Cross-Correlation (NCC) or image descriptors such as Histograms of Ori-
ented Gradients (HOG) [18] have been evaluated for multimodal stereo matching, but
without success [91]. On the other hand, mutual information, Local Self-Similarity
(LSS) [80, 90], and the combination of mutual and gradient information in a multires-
olution scheme [2] have shown to be the top ranked cost functions [91].

In the current work a mutual and gradient information, in a multiresolution
scheme, is used for computing a cost volume that is minimized twice; once with a
Winner-Takes-All (WTA) strategy in order to generate a sparse disparity map and
then with a graph cut algorithm for a dense representation (disparity and 3D points).
Such a kind of method split up the disparity computation in two steps. Initially, a
coarse representation of the scene is obtained by a local method that operates at a
low level; it is fast and precise. Then, this approximation is refined in subsequent
iterations by a method that adds a reasoning layer (high level), whose functionality
depends on its complexity. A similar approach has been implemented for the match-
ing of two thermal infrared images in [20, 34, 35]. Although these approaches do
not tackle the multimodal stereo matching, they have to deal with similar problems,
which are caused by infrared imagery (e.g., low resolution, noise, and blurred edges).
They start with a quite sparse representation, which is obtained from feature match-
ing techniques (e.g., corners in [20], and phase congruency of edges in [34] and [35]).
Then, this first representation is refined in a second step by removing inconsistencies
when a sparse representation is sought [34]; or through the use of support regions such
as Delaunay triangulations [20] or watershed segmentation [35] when a dense repre-
sentation is required. In practice, these methods require a very accurate detection of
contours or segmentations since the second step cannot correct mistakes; actually the
second step can only reject them.

More general and robust solutions, with respect to the previous methods, have
been studied in the VS/VS stereo field; these solutions are usually referred to as the
region-based stereo matching methods. Early contributions on this topic have tried
to associate entities extracted from the images [12]. Entities shall be understood
as regions, region descriptors, or nodes of a tree like structure that represents a
fine to coarse hierarchical candidate segmentation. A shortcoming inherent of these
approaches is the image partitioning, since they need a precise segmentation of both
images (homogeneity), which remains as an open issue in computer vision. In contrast,
recent approaches have reduced their dependence on the segmentation quality by
fitting 3D surfaces, such as planes [6, 50, 88|, splines [7], voxels [28], or affine models
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[5], to the initial representation. Nowadays, region-based matching are the best ranked
algorithms in the VS/VS stereo field (Middlebury!).

The region based stereo approaches can be classified according to the operation
space into two groups: %) disparity map based and i:) depth map based (e.g., [82], [28],
[30] and [7]). Although, the latter has demonstrated a better performance than those
using disparity maps, these methods cannot be directly extended to the LWIR/VS
stereo matching since the initial depth maps are very sparse. Therefore, in the current
work a disparity map based representation is used. The functional structure of the
proposed method is not far from the previous reported region based stereo algorithms,
as for instance those presented in [6, 30]. The main differences are discussed below.

First of all the proposed approach is based on a split and merge segmentation
instead of on a color based algorithm [13, 47] as generally used in region based stereo
[96, 6, 50]. Also, we propose to formulate the planar hypotheses generation as a graph
clustering problem, instead of a RANSAC-like algorithm [6, 30]. Thus, the phases of
plane fitting and planar hypotheses generation are independent, allowing the relax-
ation of self-similarity assumptions [7]. In the current work, disparity discontinuities
between plane patches are measured by an interplane distance as is presented in [88].
This distance is used for grouping plane patches spatially near and with similar plane
parameters. Hence segmentation errors can be corrected.

Furthermore, we also do changes in the energy minimization step. Instead of a
regular lattice with a neighborhood system of first or second order (4 or 8 connected)
[9], a quasi-regular tessellation of sites is used. Each site corresponds to the location
of a superpixel centroid and its neighborhood system is limited to those superpixels
that share a border. On the one hand, this allows to simplify the labelling problem
since the total number of sites is smaller than if a regular lattice were used (number
of pixel in the image). On the other hand, a scheme of cost aggregation based on
superpixel is introduced, similar approaches have shown a better trade-off between
computational efficiency and accuracy in VS/VS stereo evaluations [89].

The energy function used during the minimization step has also been reformu-
lated; the data term is derived from [2] and a novel smoothness term is proposed.
This incorporates a piecewise planar prior that penalizes discontinuities between near
superpixels, again the interplane distance presented in [88] is used, but it measures
the affinity of a pair of planar hypotheses instead of an Euclidean distance as proposed
in [30], allowing the minimization over superpixel primitives.

5.3 The Algorithm

A diagram of the proposed approach is shown in Fig. 5.1. The first step corresponds
to a sparse stereo, where a cost volume is computed from the LWIR and VS images,
and then it is minimized in order to obtain an initial disparity map (hereinafter
Iy s stands for a VS image and I wr for a LWIR image). The second step is a

Ihttp://vision.middlebury.edu/stereo/



70 CONTEXT-BASED MULTIMODAL STEREO

Disparity A

dmin x+d _dpax

----- >

Sliding
window

Figure 5.2: Multimodal Matching Cost Volume.

dense stereo algorithm, which starts with the extraction of a set of planes from the
initial disparity map. Since labelling problem of plane surfaces is solved by a discrete
minimization technique (graph cut), the scene geometry must be summarized into a
limited number plane hypotheses. These hypotheses have a double meaning, they are
3D planes with their corresponding geometric parameters, and they are also labels.
Once the labelling problem is solved both a dense disparity map and a cloud of points
3D are recovered. In the next three sections, these two steps are explained in more
detail.

5.3.1 Multimodal Matching Cost Volume

The multimodal matching cost volume is a three-dimensional array that stores the
cost of correspondence between two square windows, obtained from a pair of mul-
timodal images. This volume is obtained following a local window based approach,
which consists in computing a cost for each displacement of a sliding window, while
a second window is kept fixed on a point in the reference image. The cost volume
is referred to as C(p,d), where p = (z, y) is the point on reference image (Iyg)
and d is the disparity or the displacement of the sliding window measured in pixel.
The point p corresponds to the center of the squared window, of size wz, placed on
Ivs(x,y) whereas d represents the location of the sliding window in I wrgr. Specif-
ically, the latter is a window with the same size than the previous one but centered
on Inwrr(x+d, y). Notice that the sliding window location can be parametrized
by coordinates of the reference window and d since multimodal images are rectified.
Finally, the searching space is defined as an interval [dpin, dmas| that contains all pos-
sible values of d. Figure 5.2 shows how a cost ¢ (z, y,d) is indexed in C(p, d) together
with the windows (i.e., reference and sliding windows) used for its calculation.

The volume computation may be an expensive process, specially if the searching
space or the size of the images are large. However, it should be noticed that it is
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an efficient representation for two step algorithms since it is computed only once, at
the beginning, and then optimized twice (first by a WTA and then through graph
cuts). The C(p, d) is computed using the multimodal cost function introduced in [2],
which combines two similarity measures. On the one hand, the mutual information
that takes into account pixel values within the two windows, as proposed in [22]. On
the other hand, the gradient information that compares gradient vectors within these
windows, as proposed in [69]. A multi-scale, or coarse-to-fine scheme, is also included
for analyzing the objects in the scene at different resolutions to rise up the matching
score [27]. In the current work the elements presented above (mutual information,
gradient information, and multiscale scheme) are combined to define the multimodal
matching cost volume as follows:

where C)y is the mutual information of pixel values, and Cgy is the similarity degree
of gradient vectors. The A parameter represents the confidence of M1 over GI. In
order to increase the discriminative capability of the matching cost function a scale
space representation is used. Hence, two stacks of images are generated for each pair
of multimodal images, one of them corresponds to a collection of blurred images while
the other group contains gradient images (in scale space notation Ly and Ly [62]).
These representations are obtained by convolving an image (Iys or Irwrr) with a
Gaussian kernel of order zero and one, while its standard deviation increases. Figure
5.3 presents a set of images corresponding to a scale space representation 2. Finally,
both M1 and GI should be computed at each level ¢ of this hierarchy, and then
aggregated into a unique value:

Cui(pyd) = [ao, ..., )" - [MI(VO(I(p,d)), ..., MI (Vi (p,d))], (5.2)
Cari(p,d) [Bo, ..., Be]" - [GI (Vi (I(p,d))), ..., GI(Vi(I(p,d))], (5.3)

Crmi(p,d) is the resulting cost of propagating mutual information through of the
hierarchy, from coarse to fine levels. It is expressed as a linear combination of all
values of mutual information for a given position (p,d) in the stack V (I) of blurred
images, together with a vector of weights that assigns a reliability value to every level.
As was mentioned above, the M operator provides a single value that measures the
similarity degree of a pair of windows, considering only the pixel values. The cost
from gradient information is treated in an analogous manner.

Mutual information is defined in terms of entropies as:

MI(p,d) = h(p) + h(d) — h(p,d), (5.4)

where h(p) and h(d) are entropies of reference and sliding windows centered on image
coordinate Iy g(z,y) and Inwrr(z + d,y) respectively; h(p,d) is their joint entropy.
Mutual information is now formulated as a problem of Probability Distribution Func-
tions (PDF) estimation. Note that it is only necessary to compute h(p, d), since h(p)

2Irwrr images have been contrast enhanced only for the sake of visualization.
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Figure 5.3: Illustration of a set of images defining a scale space representation.

and h(d) are obtained from h(p,d) [42]. We use a nonparametric estimator (NP)
[21] for getting the joint PDF P, 4(i1,i2). The later is a two dimensional matrix
whose cells store the probability that an intensity ¢; corresponds to thermal infrared
measuring is. Let us define the joint PDF as:

P, = NP(p,d). (5.5)

As shown in [48], the entropies in Eq. (5.4) can be estimated by a Parzen window
method [94], and expressed as a sum of Gaussian distributions g with standard devi-
ation 9 as follows:

hp) = - Z log (Pp(i1)) gy (i), (5.6)
M) = =D log (Paliz) * gu (i), (57)
h(p, d) = - Z 1Og (Pp,d(ilﬁ 22)) * gw(ilv i2)7 (5'8)

where Pp(i1) = >, Ppa(i1,i2) and Py(iz) = >, Pp a(i1,42) are the sum along each
dimension of Py 4.

The gradient information is computed from Vi (Ivs) and Vi (Irwrr), by com-
paring norm and orientation of gradient vectors. That comparison is performed by
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couples, taking the gradient vector of a pixel x and its corresponding x’; the final
value of GGI is computed as the contribution of all these single values as:

GI(p,d) = Z w (0 (x, x')) -min (x|, [x']), (5.9)

x, x/

where 0 is the phase difference between two gradient vectors; w (6) is a continuous
function that penalizes those 6 out of phase or counter phase, this is defined as
w(f) = (cos(20) + 1)/2; finally, |x| and |x’| are the norms of these gradient vectors,
see [69, 3] for further details.

Once C(p,d) has been computed, a Winner-Takes-All method is used to select
the best disparity for every point in the VS image; then, an initial sparse disparity
map (Dmapy) is obtained by filtering unreliable matches using the corresponding
matching cost value (C(p,d) > 7). This minimization step is performed following the
procedure presented in [3].

5.3.2 Plane based Hypotheses Generation

The Plane based Hypotheses Generation consists of three steps, which result in a
compact set of planar representations that will be used as labels in the final optimiza-
tion. The first step consists in segmenting Iy g into a set of meaningful regions. Since
we are working with piecewise planar scenes, ideally, each region will correspond to
a plane. Then, in the second step, a plane is fitted to each one of the regions pre-
viously obtained, using the sparse disparity map computed in Section 5.3.1. Finally,
in the third step, the large set of planes previously computed is compressed resulting
in the dominant planes of the scene. The proposed approach is not limited to Iy g
segmentation; however, segmentation algorithms for VS images are currently the best
ranked in tasks of segmentation near to human perception.

Split and Merge Segmentation

In order to overcome the limited information supplied by the initial disparity map,
which prevents a correct detection of planar regions, a strategy for partitioning the
images into approximately planar regions is adopted. The algorithm works as follows.
Initially, Iyg is split up into s; superpixels [57], which are adjusted to the local
structure of the image, while preserve edges. The whole set of superpixels in the given
image will be denoted hereinafter as S. Then, Iy g is again segmented into p; regions
that somehow capture perceptual aspects of the scene [23]. The collection of all p; is
referred to as P. Finally, the superpixels are grouped based on the perceptual regions.
The selection of [23] as a merging criterion is due to the fact that the images depict
man-made structures, which can be efficiently segmented using an algorithm inspired
on perceptual grouping. Furthermore, this algorithm puts special emphasis on edge
variabilities, which in the current work is important since it reveals the existence of
planar surfaces. The superpixel merging rule is defined as:
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Figure 5.4: Split and merge segmentation example: (a) superpixels (S); (b) per-
ceptual regions (P); and (c) resulting candidate planar regions (R).

ri=J s Q={ilsinpi>s;Npp, k#i} (5.10)
JEQ;

where €, are the indexes of those superpixels with a maximum overlaping with the
given perceptual region p;. This merging process results in a set of R regions. Figure
5.4 shows an illustration of candidate planar regions R obtained by this split and
merge segmentation strategy. This will be later on used to cast the initial disparity
map into a lattice-like structure of planar regions. This planar assumption is valid
when the number of superpixels is large. In our implementation this value is set to
500, which results in about 150 pixels per region.

RANSAC Plane Fitting

Once the initial disparity map and the candidates planar regions (R) have been ob-
tained (Sections 5.3.1 and 5.3.2), they are combined in order to partition the disparity
map into subsets of points; then they are fitted by a plane. Since Dmapy is considered
as a cloud of 3D points (z,y, d), an estimator of plane parameters based on a Random
Sample Consensus (RANSAC) [25] strategy is proposed.

Our estimator alternates between performing a plane parameters estimation step,
which computes a plane from random samples, and a plane parameters evaluation
step, which verifies the quality of it. These parameters are then used to describe
the corresponding region with a plane. These steps are repeated until a maximum
number of iteration is reached or the desired accuracy is obtained. In case that the
parameters of a planar region cannot be found, either since the error is greater than
the given threshold or the number of iterations is not enough, this region is labelled
as non-planar. A more detailed explanation of these steps is given below.

e Plane parameters estimation. The parameters (c1, ¢z, c3) of the plane equation
defined as d = ¢y + coy + c3, are obtained by randomly selecting three points
from the given region—remember that the z coordinate corresponds to the dis-
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Figure 5.5: Illustrations of superpixels assigned to a wrong region during the split
and merge step.

parity value d, while (z,y) to the corresponding column and row position in the
image.

e Plane parameters evaluation. The quality of the parameters estimated above is
evaluated by two criteria: i) by counting the number of inliers (i.e., points with
a geometric distance to the plane smaller than a given threshold: TrrroRr);
and #4) by the ratio between number of inliers to total number of points in that
region (this ratio needs to be higher than Trars0).

The estimator selects the set of plane parameters with the best evaluation (i.e.,
highest number of inliers and with a ratio greater than Tra770). Finally, the selected
parameters are refined using only the inliers of the corresponding plane. In this
refinement the parameters (¢, ca, c3) are obtained by orthogonal regression using
principal components analysis. This RANSAC based plane fitting is repeated with
all the regions, resulting in a plane 7 per region. Hereinafter, each plane is defined
by its normal vector i and the coordinates of its centroid Z.

Plane Hypotheses Generation

The previous section could result in a representation that contains as many planes as
regions. The current section aims at reducing such a large set into a compact repre-
sentation, whose members are the most representative planes. The selection of these
planes must lead to a compact but also precise set of plane hypotheses that preserve
the geometry of scene, since the quality of final results depends on the accuracy of
this representation. Although, there are several approaches for constructing such a
compact set of plane hypotheses [28, 6, 30|, two issues need to be considered here: i)
how to cluster the planes from the different regions; and i) how the clusters capture
the three-dimensional appearance of the scene.

The generation of plane hypotheses is tackled by using a multiclass spectral clus-
tering framework, which is based on graphs and employs normalized cuts [81] for
weighting the cost of disconnecting two nodes. The proposed clustering approach
operates with superpixels. Therefore, each superpixel is represented by a node in the
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graph, and inherits the plane parameters of the region r; that contains this super-
pixel. The clustering allows to solve wrong assignments generated during the split
and merge step (see Section 5.3.2). These wrong assignments are due to the fact that
the split and merge step works at pixel level without considering 3D information.
They are noticeable in the boundaries of the objects in the scene. Figure 5.5 shows
the wrong assignments of two superpixels, which belong to the floor but were merged
with the vertical panel during the perceptual grouping.

More formally, we define a graph G as a weighted undirected graph: G = (V, E, W),
where V represents the set of nodes (they correspond to the set of superpixels S); E
is the set of edges connecting all these nodes; and W is a nonnegative and symmet-
ric distance matrix whose elements corresponds to all the possible distances between
the different planes (previously computed by the RANSAC plane fitting approach in
Section 5.3.2). The values in W can also be interpreted as a measure of the similarity
between two given planes (m;, 7).

As mentioned above, the generation of plane hypotheses is formulated as a graph
partitioning problem. Therefore, it is necessary to establish an equivalence relation
valid for all pair of nodes, which allows partitioning G into disjoint subsets. Since
each subset is considered an equivalence class, all the planes that belong to it are
assumed to be similar. In this way, the problem of plane hypotheses generation is
simplified to obtain a single element (a plane) to represent each one of the classes.
The generation of plane hypotheses works as follows:

1. Given a set of planes (estimated in Section 5.3.2) constructs a weighted graph
G=(V,E,W).

2. For a given number of desired clusters computes the normalized cuts on G, as
indicated in [81].

3. From the obtained clusters computes the plane parameters (II) using their cor-
responding clusters’ centroid.

4. If the current partition is not enough for encoding the geometry of the scene
increases the number of clusters and repeats the iterations from point 2.

The distance matrix W needed to construct the weighted graph G (step (1) in the
algorithm) is computed using an inter planar distance d,, which is formally defined
below. This distance allows to establish an equivalence relationship between a pair of
connected nodes ¢ and j. W (4, j) is defined as presented in [81]:

_dZ(i,4)
2

W(Z7 .]) =€ Tdx ) (511)

where d, is the distance between two planes and o4, is its standard deviation. The
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distance d(m;, ;) is obtained, according to [88], as:

dﬂ—(ﬂ'i, 7'(']') = l(ﬂ'i, 7Tj) + l(ﬂ'j, 7Ti), (512)
@ —) -7y
l iy g = = = 1
(i, ) L (5.13)

where [ is the length of the segment defined by T; and the intersection of n;, passing
through 7;, with 7;. Figure 5.6 depicts an illustration to make easier the understand-
ing of that distance.

Figure 5.7(a) presents a graph G before the multiclass spectral clustering showing
the crowded connections, while Fig. 5.7(b) shows the final clusters obtained after
the plane hypotheses generation. It can be appreciated that the latter contains less
connections than the former and it is defined by only four predominant planes, which
are shown in Fig. 5.7(c).

The generation of plane hypotheses concludes with a set of planes IT whose number
is smaller than the initially provided by the RANSAC plane estimator (Section 5.3.2).
It is a compact representation of the scene geometry (dominant planes of the scene).
Like in the previous case, every plane (II) is defined by its centroid and normal vector.

Figure 5.6: 2D Illustration of inter planar distance.

(c)

Figure 5.7: Plane hypotheses generation: (a) initial graph G; (b) resulting partition;
and (c) corresponding predominant planes.
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5.3.3 Piecewise Superpixel Labeling

Given a compact set of plane hypotheses (Section 5.3.2), the final step consists in
performing a piecewise superpixel labeling on reference image Iy g. In the current
section the set of plane hypotheses computed above is used as labels, and assigned to
each superpixel in S. Once every superpixel has been labeled, both a dense disparity
and dense depth map are obtained. Dense disparity maps are obtained evaluating
the plane parameters associated to a label, while depth maps are obtained from the
combination of the disparity with the multimodal stereo head parameters.

The matching of planar regions that belong to different modalities (LWIR / VS) is
now formulated as an energy minimization problem in the superpixel domain. Thus,
a Markov random field is defined and solved via graph cuts framework [9]. The goal of
this section is to obtain a label f that assigns a plane hypothesis to every superpixel.
This label minimizes a global energy function E, which consists of a data term D
that compares the current label with the observed data, and a pairwise smoothness
term Vg;. This energy function is defined as:

E(f) = ZDS(fs) + Z )‘smooth‘/st(fsa ft)7 (514)

seS s, teN

where S is the set of all superpixels; Dy is the data term that measures how well a
plane hypothesis explains the disparity value for a given superpixel s; Vi(fs, ft) is
a smoothness term computed in a surrounding A of a superpixel; fs and f; are the
current labels for superpixels s and ¢ respectively; and Agno0tn IS @ constant value
used for normalization. Similarly to the work proposed in the VS/VS field [30], in
the current work the D, function is defined as follows:

— min (C‘ﬂ'(fs)v Cmax) if fs S {7?'1, Ty veny 71'“}7
Ds(fs) = { 0.9 Crax if f5 is not a plane, (5.15)
where Cr(fs) is the cost of assigning a plane hypothesis (label fs) to superpixel s.
This cost is defined as follows:

Cxl(fs) =D C(p,d), (5.16)

PEs

where d is the disparity value obtained by evaluating p in the current plane hypothesis
IT (d = c1x + coy + ¢3). This cost is equal to the aggregation of costs spanned by the
plane f, in the C(p,d) volume (Section 5.3.1). Equation (5.15) includes a constant
value that is denoted as Ci,qq, which is used for: ) truncating the C, cost; ii)
penalizing inconsistent plane hypothesis for a certain region s (e.g., plane hypothesis
that generates disparity values outside of the volume); iii) allowing that a given region
changes its label by the one of its neighbor.

The smoothness term is defined following [30], but using a superpixel-wise formu-
lation instead of a pixel-wise as initially proposed:
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Figure 5.8: Graph connecting neighbor superpixels over: (a) gradient magnitude of
VS image; (b) superpixels of VS image.

1 0 if fs = ft7
Vie(fs, f1) = < dmaz if fs or f; is not a plane, 5.17
Ve F) = G ) 151 dr (fs, f2) otherwise, 0
g

where d, is defined in Eq. (5.12); dinae 18 a constant value that penalizes dis-
continuities; ¢ is a weighting function with domain in the gradient magnitude of
VS image (|[V1(Iys)]); the function g is evaluated at the midpoint of the seg-
ment that link two superpixel’ centroid. Figure 5.8(a) depicts the graph connecting
neighbor superpixels—neighbor superpixels are those sharing a common border over
V1 (Ivs) |; the same representation is presented in Fig. 5.8(b) but over the superpix-
els of Iyyg. Finally, the energy function defined in Eq. (5.14) is minimized with the
graph cut framework presented in [9]. Figure 5.9(a) shows the disparity map of the
case study used as an illustration through the manuscript; the corresponding textured
3D map is presented in Fig. 5.9(b).

5.4 Experimental Results

Before presenting the evaluation of results obtained with the proposed approach a
brief description of the multimodal stereo system used to acquire the Ipw;r and
Iys images is presented. Additionally, details about the stereo rig geometry and
calibration are also provided.

The multimodal stereo head consists of a pair of cameras (LWIR/VS) separated
by a baseline of 12 ¢m and a non verged geometry. This configuration is obtained
by adjusting the pose of the cameras till their z coordinate axis are perpendicular to
the baseline. Thermal infrared images are obtained with a Long- Wavelength InfraRed
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(b)

Figure 5.9: Results from the proposed context based multimodal stereo algorithm:
(a) disparity map; (b) textured 3D representation.

camera (PathFindIR from Flir®) while color ones with a standard camera based on
a ICX084 Sony CCD sensor with 6 mm focal length lens. The former detects radia-
tion in the range of 8 — 14 um (LWIR band), whereas the color camera responds to
wavelengths from about 390 to 750 nm (Visible Spectrum). In order to evaluate the
accuracy of the obtained results the proposed multimodal stereo rig is assembled to-
gether with a commercial (VS/VS) stereo head, which is used to generate synthesized
ground truth values.

A 2D illustration of the evaluation set-up is shown in Fig. 5.10. This diagram
depicts the three cameras, which are linearly arranged, and a point P on the scene. As
mentioned above the VS cameras are part of a commercial stereo vision systems®* that
provides the ground truth data, whereas the multimodal stereo head is composed of
the LWIR and VS; cameras, as indicated in the figure. The origin of World Reference
Frame (WRF), in both stereo rigs (LWIR/VS; and VS;/VS2), is situated on the
optical center of VS1, therefore both stereo systems share the same coordinate system.

VS; and VS, are rigidly attached and form a compact device, whose calibration
parameters are known. In contrast, the calibration parameters of the multimodal
stereo head must be obtained, particularly those related to LWIR camera. These are
the intrinsic parameters as well as the rotation (R) and translation (T) with respect
to WRF. They are obtained using a standard camera calibration toolbox [8]. Once all
the parameters have been estimated, the images are rectified by means of a method
proposed in [66]. This method reduces the distortions caused by heterogeneous camera

3www.flir.com

4Bumblebee from Point Grey
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Figure 5.10: 2D representation ((X, Z) plane) of the evaluation set-up.

parameters (LWIR and VSy).

During the evaluation, these parameters allow to relate outputs of the proposed ap-
proach with ground truth data, pixel to pixel, in the following manner. The VS;/VSs
stereo head provides both depth and disparity maps. Therefore, z and dy g in Fig.
5.10 are known as well as their projections into Iys, and Iyg,: = and x — dy g re-
spectively. Since the geometry of the multimodal stereo head has been previously
estimated, also the projection of P into Ipw g can be computed from all these val-
ues. So, a disparity ground truth data dgr is obtained for every point x at reference

image. These values are then used during the evaluation, which is straightforward
performed at the level of disparities instead of depths.

Despite the data provided by the VS; /VSs stereo head could be used as a reference,
we propose a hand-annotated procedure that helps to improve their precision. The
procedure consists of labelling the different planar surfaces in an image. Points with
the same label are converted into a planar patch by means of a plane fitting technique
(i.e., orthogonal regression using Principal Components Analysis). These planes are
used for generating synthetic disparity maps, which are used for the evaluation pur-
pose. Since the evaluation is performed by disparity comparison, a careful labelling

leads to better disparity maps, due to noisy data are replaced by approximations and
missing disparities values are filled in by interpolations.

The proposed approach has been validated using a large data set that consists of
149 outdoor scenarios. Figure 5.11 shows some of the multimodal stereo images used
in both the qualitative and quantitative evaluations of the proposed context based
multimodal stereo algorithm. First and second column are rectified images, Iy 51 and
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I, w 1R, respectively; third column depicts their corresponding planar regions (refereed
to Iyg1); finally, the fourth column shows the synthesized disparity maps obtained
with the approach presented above.

The images shown in Fig. 5.11 are good examples that fit the Manhattan world
assumption; often the images taken in these kind of outdoor environments share
properties such as: repetitive patterns (e.g., bricks or floor tile), lack of textured
areas due to constant colored regions (e.g., painted walls), or strong lighting changes,
just to mention a few. In spite of these drawbacks, Coughlan et al. [15] demonstrated
that their edge gradient statistics provide information of the orientation of an observer
relative to the scene structure, or which objects are not aligned with this structure.
We exploit these conclusions by relying on the high-frequency components of the
multimodal images. On the one hand, because these high-frequency components (i.e.,
edges) are the most correlated elements in the images [68]. On the other hand, because
disparity values can be efficiently inferred in regions of low-frequency (i.e., non-edges),
as VS/VS stereo presented in [28, 67]. The multimodal stereo is more challenging that
VS/VS stereo due to both images LWIR/VS must exhibit a Manhattan world. It is
not enough that the scene being Manhattan.

Dense disparity and 3D maps have been obtained by setting the parameters as is
indicated above. The parameters related to multimodal cost function are obtained fol-
lowing the recommendations presented in [3]. Mutual and gradient information in Eq.
(5.1) are fused with A = 0.45. The scale space representation has three levels (¢ = 2),
the weights in Eq. (5.2) and Eq. (5.3) are set to: [ag, ..., at]T = [O.2,O.3,O.5]T
and [y, ..., Bt]T = [0.2,0.3,0.5]T7 for Cyrr and Cgyp, respectively. These values are
obtained maximizing the matching score when the multimodal dataset introduced in
[3] is considered. The searching space is limited to a range of d = {0, 64}, whereas
threshold 7 is set as 40% of the maximum cost value (see Section 5.3.1). The thresh-
olds used for generating the set of plane hypotheses were set to Terror = 0.2 and
Trarro = 0.6. Finally, the values used in the global minimization were set as follow:
Cinaz = 9, Asmooth = 1.25, dpmazr = 30, and v = 0.5. The optimal setting of param-
eters corresponding to the dense stereo step (see Fig 5.1) are computed by means a
grid search on a space of parameters, as proposed in [3].

Five case studies are presented in Figures 5.12, 5.13, 5.14, 5.15 and 5.16. They
show the experimental results obtained when the scenes shown in Fig. 5.11 are pro-
cessed. Each illustration corresponds to the outcomes of the different steps of the
proposed algorithm. They are: (a) split and merge segmentation; (b) initial disparity
map; (c) plane hypotheses generation; (d) graph cut labelling; (e) final disparity map;
and (f) different views of the resulting cloud of 3D points. A qualitative inspection
of these figures, particularly the illustrations (e) and (f), show that our assumptions
are valid to extract dense disparity maps and 3D representations from multimodal
images (LWIR/VS).

At this point we consider interesting to give some final remarks about the results
presented above. As earlier mentioned, our solution strategy is inspired by region-
based stereo matching algorithms, working in the visible spectrum (i.e., [30, 50, 6]).
However, in contrast to these methods, a LWIR/VS stereo algorithm must exhibit a
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Case I 7 Maps of planar Synthesized
VS LWIR regions disparity maps

Figure 5.11: Some examples of the evaluation data set consisting of outdoor scenar-
ios containing piecewise planar geometries; both VS and LWIR images are rectified.
Images in third and fourth column are aligned to Ivs,.
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(e)

Figure 5.12: Case study 1. (a) Candidate planar regions(R). (b) Dmapo. (c) Plane
hypotheses. (d) Regions labelled from graph cut. (e) Resulting disparity map. (f)
Different views of the resulting 3D representation.

high noise immunity, which is generated by the uncertainty in the matching costs (data
term in Eq. (5.14)). Although this is a common problem to all stereo algorithms, at
this particular case, it is a determining factor that may result in poor representations.
This drawback is addressed in the current work by assigning more weight to the
contribution of the smoothness term, on the contrary to the VS/VS stereo algorithms
mentioned above. This fact can be appreciated in the illustrations (c¢) and (d) of
Figures 5.12 to 5.16, where the right tuning of the weighting parameter allows to filter
out small noisy regions and propagate information across the connected superpixels.

The case studies presented in this section validate all the extensions and modifi-
cation applied over the Markov random field formulation. Furthermore, the disparity
maps and 3D representations computed from multimodal images allow to distinguish
the most relevant objects in the scene, even if some planes are missed or undetected.

Finally, the performance of the proposed algorithm is quantitatively measured
through two error metrics (Eqps and E¢;). These metrics show the effect of param-
eters’ setting on the obtained results with respect to a synthesized disparity map,
which is considered as the ground truth. The absolute mean error (E,ps) is defined as
follow:

Bure = 5 Y1 de() = der ()| (5.18)

where d¢ is the disparity map computed by the proposed algorithm, dgr is the syn-
thesized ground truth (obtained from VS;/VS, as indicated before, see Fig. (5.10)),
and N is the number of evaluated points. Since, the synthesized ground truth is
accurate on planar regions, all points out of these regions are excluded from the eval-
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(e)

Figure 5.13: Case study 2. (a) Candidate planar regions(R). (b) Dmapg. (c) Plane
hypotheses. (d) Regions labelled from graph cut. (e) Resulting disparity map. (f)
Different views of the resulting 3D representation.

(e)

Figure 5.14: Case study 3. (a) Candidate planar regions(R). (b) Dmapg. (c) Plane
hypotheses. (d) Regions labelled from graph cut. (e) Resulting disparity map. (f)
Different views of the resulting 3D representation.
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(e) (f)

Figure 5.15: Case study 4. (a) Candidate planar regions(R). (b) Dmapo. (c¢) Plane
hypotheses. (d) Regions labelled from graph cut. (e) Resulting disparity map. (f)
Different views of the resulting 3D representation.
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Figure 5.16: Case study 5. (a) Candidate planar regions(R). (b) Dmapo. (c) Plane
hypotheses. (d) Regions labelled from graph cut. (e) Resulting disparity map. (f)
Different views of the resulting 3D representation.



5.4. Experimental Results 87
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Figure 5.17: Average accuracy of the results obtained with the proposed approach
computed from the whole data set (149 pairs of images).

uation process. Moreover, those superpixels are labelled as not a plane (Eq. 5.15).
The second metric is the relative mean error (E,¢;), and it is computed as follows:

_ 1 3= | dely) —der()) |
Ere = N; dor (i) : (5.19)

They are used to evaluate the results from the case studies. They provide quanti-
tative measures of the errors for the different scenes. Table 5.1 presents the E,ps and
E,.¢; for every case study. On the other hand, Fig. 5.17 shows the average accuracy
computed over the whole data set for different disparity error values (in pixels). It
is computed as follows. For each image, its corresponding accuracy histogram is ob-
tained, which counts the number of points for a given disparity error. From all these
single accuracy histograms the box plot depicted in Fig. 5.17 is obtained.

’ Case study \ 1 \ 2 \ 3 \ 4 \ 5 ‘
Eups 0.490 | 0.735 | 0.572 | 0.359 | 0.872
E,q 0.027 | 0.028 | 0.020 | 0.011 | 0.010

Table 5.1: Global Eqps and E,.; of the case studies presented in Figures 5.12, 5.13,
5.14, 5.15 and 5.16.

From the quantitative evaluation presented above we can conclude that the pro-
posed approach is able to compute disparity maps with an accuracy of +1 pixel in
most of the multispectral image pairs of our data set (149 pair of images). Fur-
thermore, it should be highlighted that, on average, about the 40% of matches are
correctly detected in every image (disparity error = 0).
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5.5 Conclusions

This paper presents a novel multimodal context-based stereo algorithm, which ex-
ploits recent advances in VS/VS region-based stereo. It is based on the Manhattan
world assumption that allows to split up the given scene in a set of planar patches.
These planar patches are then used in a global optimization framework. The main
contribution of current work lies on the formulation of the multimodal stereo match-
ing as a piecewise planar region partition and labelling. The experimental results
show that the use of the context information helps to overcome the lack of correlation
between the multimodal images (LWIR/VS), whereas is a robust way to generate
dense scene representations. Furthermore, the proposed approach has shown a noise
immunity, in particular in the LWIR images where in general edges are blurred or the
image’s regions are poorly contrasted. The current work has been tested with a large
set of multimodal image pairs showing that context based VS/VS stereo matching
algorithms can be extended to tackle the multimodal LWIR/VS stereo problem.



Chapter 6

Conclusions

In the final chapter of this thesis dissertation, we briefly recapitulate the main con-
tributions of our research and discuss possible directions to future work. Finally,
publications which are directly related to this thesis are listen in last pages.

6.1 Summary and contributions of this thesis

Chapter 3

This chapter presents a novel multimodal stereo matching algorithm of color and
infrared images. The different stages for obtaining sparse depth maps are described.
Furthermore, a ROC-based evaluation methodology is proposed for evaluating results
from such a kind of multimodal stereo heads. It allows to analyze the behavior over
a wide range of different parameter settings. Although the obtained results show a
sparse representation, we should have in mind the challenge of finding correspondences
in between these two separated spectral bands.

In summary, the main contributions of the current work are: (i) to present a
study in an emerging topic as Multimodal Stereo LWIR/VS and achieves a sparse
3D representation from images coming from heterogeneous information sources; (ii)
to propose a consistent criteria for making the multimodal correspondence; (iii) to
establish a baseline for future comparisons; and (iv) to propose a framework that can
be used as a test bed for evaluation purposes in this field.

Next sections will be mainly focused on two aspects: (i) improving the disparity
selection process by including Markov Random Fields, which allows to consider prior
knowledge of the scene; and (ii) reformulating Cgarr as a combination of two indi-
vidual cost functions, which convert the cost function from a consensus scheme to a
scheme where M1 and GI contributes to a final matching score according to a set of
assignment weights.

89
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Chapter 4

This chapter presents a novel framework for extracting dense disparity maps from
multimodal stereo images, each one of its stages is described as well as the image
rectification and camera calibration. The results obtained from this research can
benefit those fields where visible and thermal infrared cameras coexist. The main
contribution of current work are as follow: (i) it introduces a cost function for ob-
taining multimodal matching, exploiting mutual and gradient information in a scale
space representation; (ii) it proposes a global minimization scheme, which is based on
the Manhattan-world assumption, to extract dense disparity maps. Finally, although
not a theoretical contribution, a large data set of multimodal stereo images has been
generated and is freely available by contacting the authors.

We have shown that under certain restrictions is possible to obtain accurate dis-
parity maps, however the low correlation between thermal infrared and visible images
restricts its usefulness in complex environments, being this still an open issue. Future
work will be mainly focused on the extraction of a ground truth data, which should
includes depth information both of planar and non-planar regions. Additionally, dif-
ferent interest regions such as occlusion and discontinuities would have to be identified,
as happen in the (VS/VS) evaluation frameworks for dense stereo algorithm.

Chapter 5

This chapter presents a novel multimodal context-based stereo algorithm, which ex-
ploits recent advances in VS/VS region-based stereo. It is based on the Manhattan
world assumption that allows to split up the given scene in a set of planar patches.
These planar patches are then used in a global optimization framework. The main
contribution of current work lies on the formulation of the multimodal stereo match-
ing as a piecewise planar region partition and labelling. The experimental results
show that the use of the context information helps to overcome the lack of correlation
between the multimodal images (LWIR/VS), whereas is a robust way to generate
dense scene representations. Furthermore, the proposed approach has shown a noise
immunity, in particular in the LWIR images where in general edges are blurred or the
images regions are poorly contrasted. The current work has been tested with a large
set of multimodal image pairs showing that context based VS/VS stereo matching
algorithms can be extended to tackle the multimodal LWIR/VS stereo problem.
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