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Chapter 1

Introduction

The trouble with weather
forecasting is that it s right too
often for us to ignore it and wrong
too often for us to rely on it.

Patrick Young

1.1 Weather Prediction - An Ongoing De-
mand

While the rst and foremost aim of weather forecasting was to render timely
advice to farmers:- on the actual and expected weather, and its likely impact
on the various day-to-day farming operations (e.g., Frost can damage young
plants or blooming trees and lead to economic lost). However, it s very
generally known, and true, the weather has such a widespread impact on
people s personal and social lives, including their jobs, their recreation,
their safety, and their property. When the weather is bad, many activities
become more di cult to perform. Commercial transportation slows down
on the roads, on the waterways, and in the air. Businesses of all kinds
are interrupted by bad weather. Power plants and energy traders rely on
knowledge of the weather to operate their equipment and to deliver power
to consumers, government and business.

Reliable weather forecasting outcomes are crucial and very necessary
for our (almost daily) decision making processes, for example, to reduce
economical loss facing a predicted strong storm, to redirect and control
tra c in places where heavy snowing is to occur, to optimize and schedule
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the trade and distribution that depend on ights or ships, and among a
wide number of examples, the most important, those decisions depending
on weather forecasting, may even help keep us out of danger. Moreover,
the evolution of some very dangerous natural disasters like hurricanes and

oods, when predicted, could help in avoiding large damages of properties,
and save lives.

A good example to illustrate the e ects of the atmospheric changes on
our lives are a class of strong storms on ocean surfaces, Tropical Cyclones
and Hurricanes, which are dangerous meteorological phenomenon with the
potential to cause damage, serious social disruption, and loss of human life.
Every year, they cause considerable loss of life and do immense damage to
property. To have an idea, a list of some notable Tropical Cyclones in the
last ve decades is shown below (from [I]):

o Katrina - 2005 - Katrina was the most costly hurricane on record
causing an estimated $75 billion in damage in Louisiana and Missis-

sippi.

o Andrew - 1992 - Andrew was a Category 5 hurricane which hit south-
east Florida and south-east Louisiana causing $44,878 million of dam-
age.

o The most deadly tropical cyclone ever recorded hit Bangladesh in
1970 killing approximately 300,000 people as a result of the storm
surge.

o Camille - 1969 - Camille was a Category 5 hurricane with winds of 190
m.p.h. It hit Mississippi, south-east Louisiana and Virginia, causing
damage of around $14,870 .

Furthermore, accurate predicted weather variables are critically needed
for other environmental modelling systems. For instance, wind direction
and velocity variables are needed as precise as possible to predict the ex-
pansion direction and velocity of a re propagation disaster predicted by
wild re models.

Consequently, the pre-knowledge of the atmosphere future state has
been continuously demanded for thousands of years, and correspondingly,
e orts to predict weather phenomena began very early, around 650 B.C.,
when the Babylonians observed cloud patterns to predict the weather.
Later, the Greek philosopher Aristotle described weather patterns in Me-
teorologica (ca. 350 B.C.) and later, his student Theophrastus compiled
the Book of Signs on weather forecasting. In China and India, weather
prediction can be traced as far back as 300 B.C. [2].
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However, it was recently in the last decades, when modern weather fore-
casting began to be more reliable and thus, more useful. That is, weather
forecasting started to be a sophisticated process that involves a combina-
tion of computer models, observations, and knowledge of weather trends
and patterns. Using these methods, reasonably accurate forecasts can be
made up to few days in advance. Beyond that, detailed forecasts are less
useful, since atmospheric conditions such as temperature and wind direction
are very complex.

Because there is no analytical solution for the equations that describe
the atmospheric ow, therefore numerical methods are needed. Precisely, it
was in the early 1950s when the USA National Weather Service (NWS)[3]
began to utilize some of the early versions of computers to make large-scale
weather forecasts, running Numerical Weather Prediction models (NWP
models) (described in detail in Chapter 2).

Since that time, computers have become faster and more sophisticated
being able to provide the scienti ¢ community (particularly to the weather
forecasting community) with High Performance Computing (HPC) plat-
forms, which allow the execution of highly computing demanding weather
forecast simulations. The origins of computer weather prediction to up-to-
date is described in details in [4].

Nowadays, forecasts, both for the next couple of hours and for the next
couple of days, are issued daily. Apart from helping people decide when
they should invite their neighbors for a barbecue, weather forecasts pro-
vide vital information for a wide range of occupational categories such as
farmers, pilots, sailors and soldiers. However, as most scienti ¢ applica-
tions (including those numerical models for weather prediction) continue
to be more complex while research is getting more sophisticated as a result
of the natural human growth of requirements. In the context of weather
predictions, higher accuracy, larger time scales, more complex processing of
enormous data amounts and less waiting time constitute some of the new
demands that should be considered.

1.2 Weather Prediction Quality Problem

Numerical models are used for forecasting across a wide range of environ-
mental applications. The aim is to have a model that characterizes the
behavior of the system of interest as accurately as possible, whilst satisfy-
ing known physical properties. Unfortunately, a mathematical model can
never completely describe the complex physical processes underlying a real
world dynamical system.

Everyone knows that weather forecasts go wrong sometimes. Reasons
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for this vary, but the chaotic nature of the atmosphere [5] means there is
always a limit to what we can predict accurately. NWP models as well
as the atmosphere itself can be viewed as nonlinear dynamical systems in
which the evolution depends sensitively on the initial conditions. Moreover,
weather prediction is, by its very nature, a process that has to deal with
uncertainties. The initial conditions of a NWP model can be estimated only
within a certain accuracy. During a forecast, some of these initial errors
can amplify and result in signi cant forecast errors.

Advances in knowledge and computing technology mean that environ-
mental forecasting models are becoming increasingly sophisticated, and par-
ticularly, NWP models have been strongly developed in the last decades and
their performance constantly increases with the computational power [4],
but in practice these models su er from uncertainty in their initial condi-
tions and parameters. The initial conditions are not known with exacti-
tude, that is, the meteorological observational network is heterogeneously
distributed around the world. Moreover, the observations are punctual and
do not allow the monitoring of the current state of the atmosphere in the
three dimensions. Additionally, there are measurements errors. Even with
perfect initial data, inaccurate representation of model parameters will lead
to the growth of model error and therefore, a ect the ability of a model to
accurately predict the true system state.

Besides initial-condition error, weather and climate prediction models
are also sensitive to errors associated with the model itself. In particu-
lar, the uncertainty due to the parameterizations of sub-grid-scale physical
processes is known to play a crucial role in prediction quality (e.g., [6]).
Model parameters are intrinsic to environmental modelling. Parameteri-
zations (details in Chapter 2) are typically used in applications where the
underlying physics of a process are not fully known or understood, or to
model sub-grid scale e ects that cannot be captured within a particular
model resolution. Prediction errors caused by the uncertainty in physical
parameterizations is commonly referred to as model errors. Being that said,
weather predictability errors are normally subject to two kinds of errors,
initial condition errors and model errors.

By guring out the main sources of error in predictability of NWP mod-
els, many e orts had been focusing on enhancing prediction quality, mainly
on developing sophisticated and skillful next-generation NWP models (e.g.,
[7] and [8]), addressing the uncertainty of initial conditions by better esti-
mation techniques, and also on developing physical parametrization models
or schemes which are nowadays coupled with NWP models and lead to im-
proved predictive skill.

Over the past 20 years or so, stochastic or ensemble forecasting [9J]
became a practical and successful way of addressing the predictability prob-
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lem associated with the uncertainty in initial conditions. Ensemble fore-
casting is conducted by better estimations of the atmospheric initial state
(initial conditions) which is produced by data assimilation (DA)[I0] tech-
niques, and then, initial state perturbations are computed and launched in
di erent forecasts, each is initiated by a perturbed initial state. Early on
moreover, several weather prediction centers have addressed this problem
by developing operational ensemble prediction systems (EPS) (e.g., [11]).
The Ensemble spread nally, is used to indicate forecast uncertainty. How-
ever, and although it has been realized that there is a stochastic nature of
physical parameterizations in ensemble prediction (predictability is sensi-
tive to variations in physical parameters), it has not been straightforward
to develop theoretically sound, and also practical, formulations for how to
insert parameterization uncertainty into ensemble development [12] [13].

On the other hand, and in contrast to the dynamics of NWP models,
which are based on fundamental physical concepts, physical parameter-
izations, although partly are based on fundamental concepts of physics,
involve empirical functions and tunable parameters, which usually referred
to as model closure parameters. Practically, all physical parametrization
schemes contain closure parameters and typically, expert knowledge and
manual techniques are used to de ne the optimal parameter values, based
on observations, process studies, large eddy simulations, etc. Therefore,
some parameter value combinations score better than others, but it is very
demanding to manually specify the optimal combination.

1.3 Computational science and High Perfor-
mance Computing

Understanding various phenomena and processes from science, nature, and
engineering is, today, no longer merely based on theory and experiment,
but more on computations, as well.

Computational Science - sometimes referred to as Computational Sci-
ence and Engineering (CS&E) or Scientific Computing - allows us to supple-
ment experiments by simulations in order to study some technical systems
and natural phenomena, that would be too time-consuming, expensive, or
dangerous (if possible at all) to study by experiments alone. It is generally
de ned as an interdisciplinary eld situated in the intersection of three ma-
jor scienti ¢ domains: mathematics, computer science, and (natural and
social) sciences and engineering (see gure 7 to study systems of real-
world scienti c¢ or societal interest, usually through computer simulation
and modelling [T14].
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Science

Computational
Science|

Figure 1.1: Computational Science: an interdisciplinary field which is correctly
positioned in the intersection between three scientific domains: Mathematics,
Computer science, and Science and Engineering.

In other words, it could be described as a science that focuses on the
appropriate use of the computational architectures applying some mathe-
matical algorithms to solve large and complex scientific problems.

In the last 30 years or so, computational science in various areas has
emerged and revolutionized significantly enabling the scientific community
to better study, understand, and predict some complex scientific problems
and phenomena of considerable importance. By integrating knowledge and
expertise from different application fields, like chemistry, biology, astron-
omy, climatology and many other fields, and to understand related complex
problems in each domain, scientific computing puts this knowledge together
with mathematical modelling, numerical analysis, algorithm development,
software implementation, execution, and furthermore, validation and visu-
alization of results. By doing so, many of principal issues and questions in
the science are being possible to be solved computationally.

Many examples could be mentioned in this context, for instance, solving
complex chemical equations born from the mathematicians and theorists
would not be possible without tools and simulations provided by computa-
tional scientists. The same happens in areas of environmental sciences be-
tween others, by the introduction of environmental modelling, many crucial
environmental issues and complex problems are being able to be studied and
analyzed, furthermore, the evolution of different natural phenomena with
huge effect on our life are being predicted by methods of scientific com-
puting. One of these very important natural phenomena is climate change
and weather variability. Numerical weather prediction models along with
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climate models are major instruments which today, rationally talking, are
making our lives easier, more e ective, and sometimes safer.

It should be mentioned, however, that the emergence of computational
science would not have been possible without the advances in supercomput-
ing and the availability of high performance tools and architectures. These
tools and technologies made possible the execution to solve and process
massive amount of calculations and data. But beyond all advances in com-
puter architectures, it is of crucial importance to provide computational
methods and algorithms to e ciently use the available infrastructures in
order to solve large-scale applications. Thus, many tools, algorithms, and
parallel computing paradigms are being developed for the optimization of
parallel large-scale applications in order to maximize the bene ts from the
advances in computer architecture and technology, and even more, to en-
able the execution of larger scienti ¢ applications treating more scienti ¢
details.

In this thesis particularly, a scienti ¢ methodology is introduced based
on computational science concepts and the knowledge in high performance
computing tools and platforms, in order to enhance prediction quality in
weather forecasting models. That is, by the development of scienti ¢ com-
puting methods and algorithms which are optimized and parallelized to
be executed e ciently over high performance computing platforms which
allows us to get better weather predictions in shorter waiting times.

More details can be found in the following section, which gives a more
detailed description of the overall contribution of this work.

1.4 Contribution

The main goal of the presented work is to tackle the problem of accuracy
and waiting time in weather forecasting. As mentioned before, NWP mod-
els have been strongly developed in the last decades and their performance
constantly increases with the advances in computational power. However,
in practice, many serious challenges in this eld are still gaining consider-
able e orts by the scienti ¢ community in order to reduce what is widely
known as weather limited predictability . Mainly, the major two challenges
are the willingness to get more reliable weather predictions, and to do it
faster.

As in many other areas of environmental modelling, more especially
in NWP models, most simulation software works with well-founded and
widely accepted models, the need for input parameter optimization to im-
prove model output is a long- known and often-tackled problem. Partic-
ularly in such environments where correct and timely input parameters
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cannot be provided. E cient computational parameter estimation and op-

timization strategies are required to minimize the deviation between the

predicted scenario and the real phenomenon behaviour. With the continu-

ously increasing availability of computing power, evolutionary optimization

methods, especially Genetic Algorithms (GA), have become more popular

and practicable to solve the parameter problem of environmental models.
Based on the before mentioned, this thesis intends to:

1. Provide a sensitivity study of the e ect of NWP model input param-
eters on prediction quality.

2. Propose a valid framework, which allows to search for the most opti-
mal values of model input parameters which, in our hypothesis, will
provide better prediction quality.

3. Reduce the waiting time needed to get more reliable weather predic-
tions.

4. Demonstrate that, by implementing evolutionary computing tech-
niques and an e cient use of the available high performance com-
puting platforms, we can enhance weather predictions and reduce at
the same time, the waiting time needed for it, in comparison with
other operational methods of weather prediction enhancement.

To accomplish the objectives of the presented proposal, a new weather
prediction scheme is introduced. This new scheme implements an evo-
lutionary computing algorithm which focuses on the calibration of input
parameters in NWP models. In more detail the main contributions are:

1. G-Ensemble (1-point observation): which is a two-phase pre-
diction scheme, where a combination of model input parameters are
optimized within an aggregated calibration phase. The calibration
process is done using one single observation, available at the end of
calibration interval. As such, all the possible combinations of model
parameters are used in short forecasts, each of which is evaluated us-
ing the available observation, then, Genetic Algorithm operators are
applied to reproduce a next generation of parameter combinations.
This process is repeated iteratively until satisfying a prede ned con-
dition.

2. G-Ensemble (window observations): an extended version of the
G-Ensemble, where a set of observations are used in the evaluation
process during calibration phase, instead of one single point obser-
vation. This approach is designed in order to fairly guide the used
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Genetic Algorithm in deciding which are the best combinations to be
selected for the next iteration.

3. M-Level G-Ensemble: this approach is developed in a three-phase
scheme, in order to consider more than one combination of model
input parameters in the calibration process. This is accomplished
by adding the parameter selection phase, which makes this approach
capable of selecting automatically more than one level of model pa-
rameters to be calibrated, the selection process is done considering
the particularity of the domain, that is, the selected parameters for
one domain, would be totally di erent of the targeted parameters for
another domain.

4. BeGEM and G-Ensemble Set: two di erent approaches for con-
ducting a prediction process are introduced; the rst is by BeGEM
which refers to the Best Genetic Ensemble Member, considered as
a deterministic forecast, i.e., one single calibrated forecast is to be
conducted for prediction. The other approach (G-Ensemble), is an
Ensemble Prediction approach, using a calibrated set of forecasts for
prediction, rather than one single deterministic forecast.

5. Parallel G-Ensemble: all these strategies has been implemented
in a parallel scheme under the Master/Worker programing paradigm
in order to be executed on High Performance Computing platforms
aiming at reducing the total execution time of the prediction process.

1.5 Outline

The next chapter discusses the concepts of numerical weather prediction
modelling. The main principles of weather forecasting are explained, as well
as NWP model components, input and output. Furthermore, the problem
of predictability in these models is highlighted and analyzed along with the
mainly used enhancement methods in operational forecasting.

In chapter three, the question of parameter estimation in environmental
models in general, and in NWP particularly, is discussed, next, a brief study
of the most popular methods for parameter optimization in such models is
presented, with focus on Genetic Algorithms. Later, the proposed scheme

Genetic Ensemble for Numerical Weather Prediction Enhancement is pre-
sented in detail. Basically, starting from describing its objectives and com-
ponents, the framework of the proposal, and the targeted parameters for
better estimation are also discussed.

Chapter four presents an experimental part, where the proposed scheme
is evaluated by experimentations over a famous real weather prediction case;
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Hurricane Katrina. In the same chapter, the objective of the experiments
are listed along with the targeted weather variables for enhancement. Ex-
perimental results are presented nally and discussed duly.

Conclusions of the presented work is provided in chapter ve. A short
summery of the overall thesis is provided, furthermore, the chapter involves
a list of scienti c¢ publications which were realized during the progress of
the thesis. Finally, an overview of open research lines and future work is
discussed.

10



Chapter 2

Numerical Weather
Prediction

The need for local weather predictions increases. Various end-users need
reliable forecasts to assure and optimize their activities. In fact, the level of
detail in modern weather predictions allows for a wide variety of products
and forecast elds to be delivered, for use not only in general meteorology,
but also in specialized areas such as aviation and air quality. Moreover, in
severe weather situations, weather forecasts and warnings can help protect
property, and even more, the can help save lives. It is hence, certainly vital
that weather forecasts be as accurate as possible.

Instead of simply looking at current conditions of the weather, and esti-
mating based on past observances, forecasters or meteorologists, nowadays,
use numerical weather prediction (NWP) models to do the job. These
models, are complex computer programs, also known as forecast models,
which run on supercomputers and provide predictions on multiple atmo-
spheric variables such as, but not limited to, temperature, pressure, wind,
and rainfall.

This thesis presents a proposal that intends to enhance the predictabil-
ity of numerical weather prediction (NWP) models. As such, to increase
the accuracy of the estimations produced by these models. Consequently,
through this chapter, numerical weather models, their concepts, and prin-
ciples are described. Moreover, the limitations in weather predictability,
along with the sources of error in these models are highlighted. Later one,
the commonly used statistical and visualization tools to evaluate and deliver
weather predictions are discussed. Finally, existing weather prediction en-
hancement methods are introduced, including the mostly used approaches:
Data Assimilation and Ensemble Prediction Systems.

11
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2.1 Numerical Weather Prediction Mod-
elling

The application of science and technology to predict the state of the at-
mosphere for a given location is generally known as Weather Forecasting
[2]. Due to the complexity of the atmosphere as a very dynamic system,
computer models are normally needed to produce forecasts.

Schulze in [I5], described Weather Forecasting as a process that in-
volves converting observational data into forecasts via a model that is done
through three basic phases ( gure : The rst is the collection and anal-
ysis of meteorological data to de ne the initial conditions of the model as
accurately as possible using data assimilation techniques. The second phase
requires the use of deterministic numerical prediction models to project the
initial conditions of the system into future states. The third phase the pro-
cess of converting the output from numerical models into information of
practical value for users.

Being that said, the idea of numerical weather prediction (NWP) mod-
els, was rstly recorded by Vilhelm Bjerknes (Norwegian physicist and
meteorologist, “the father of modern meteorology”, 1862-1951, see [17]),
almost a century ago in his paper [I8], when he discussed that it would be
possible to forecast the weather by solving a system of nonlinear partial
di erential equations.

Later on, Lewis Fry Richardson (English mathematician, physi-
cist, and meteorologist, 1881-1953, see [19]), proposed the rst numerical
weather prediction model in 1920s, and managed to carry out an 8 hour
wind and pressure prediction by hand calculations. The results turned out
to be very inaccurate; however, his e ort marked the start of the era for
modern numerical weather predictions [4].

Since that time, much progress has been realized in developing sophisti-
cated and reliable NWP models. The technology of weather prediction has
improved dramatically during the past decades as faster computers, better
models, and much more data (mainly satellites) have become available.

Physically, the atmosphere is described as a uid. Therefore, the idea
of numerical weather prediction is to sample the state of the wuid at a
given time and use the non-linear equations of uid dynamics and thermo-
dynamics to estimate the state of the uid at some time in the future [20].
As there is no analytical solution for these complex and partial di erential
equations (PDE), the only possibility is to solve them numerically [4].

12
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Figure 2.1: Weather Forecasting Procedure, (Source: [16]).

Basing on this idea, NWP is de ned as the production of a forecast
through the time-integration of a comprehensive set of mathematical equa-
tions that describe virtually all dynamical and physical processes in the
atmosphere using numerical procedures [I5]. In other words, it is the com-
putational process of forecasting meteorological parameters such as temper-
ature, wind and pressure by mathematical resolution of non-linear equations
of these parameters diversity consequent with time and location. The be-
havior of atmosphere is convenient with physical rules which determined
with mathematical equations. These physical rules are represented by a
set of primitive equations which describe the atmospheric motions [21], by

13
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which, a NWP model comprises the changes of meteorological parameters
such as temperature, wind speed and direction, humidity and pressure by
the time.

For that, a 3D-dimensional grid has to be defined (figure and the
equations are discretized. With given initial conditions, the time integration
of the governing equations allows to predict the new state after a predefined
time step.

Figure 2.2: The principle of weather modelling: The atmosphere is fragmented
into 3-D grid boxes. Topography and land type distribution are adapted to the
model resolution (dz). Winds, heat transfer, solar radiation, relative humidity,
and surface hydrology are calculated within each grid cell, and the interactions
with neighboring cells are used to calculate atmospheric properties in the future.
Sub-grid scale processes are parametrized, (Source: [16]).
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Domain grid spacing in both directions, i.e, horizontal and vertical is
of such importance in representing an atmospherical area in the used nu-
merical model. The horizontal distance between grid points in a domain is
generally known as the spatial resolution, or simply as domain resolution.
As ner spacing between domain grid points, as more details are repre-
sented and resolved in the NWP, that is, some small-scale meteorological
phenomena cannot be represented on coarser grids. However, the compu-
tational costs are higher, as more gird points are to be calculated within
the same domain.

On the other hand, the vertical distance of atmospherical domains (ver-
tical coordinate of the 3D-dimensional grid) is normally represented by a
pressure coordinate system, in which the geopotential heights of constant-
pressure surfaces become dependent variables. Actually, modern NWP
models tend to use normalized pressure coordinates referred to as sigma
coordinates, as such, pressure (P) levels are scaled by o coordinates be-
tween the surface pressure of the domain (FPy), and the pressure in the
top of the domain (Pr) [22]. That is, many pressure levels could be used
between domain lower pressure to higher pressure layers.

In the next subsection, NWP process is discussed as well as prediction
applications depending on domain resolutions.

2.1.1 NWP Models: Scales and Types

As it has been described previously, certain areas where atmospherical
future state is to be predicted by NWP models, are represented by 3-
D uniform-gridded-rectangles referred to as domains. The input data to
these models, which describe an estimation of the actual state of the atmo-
sphere, are called initial conditions. Those initial conditions (initial values
of weather variables) are assigned to the points of the grid. Then, a NWP
model is run on a high-speed computer, by which, new values of weather
variables are produced each time step of model integration. Figure 2.1.]
illustrates the general steps for a numerical weather prediction process.

The spatial resolution of a NWP domain is used to describe the resolu-
tion of both the initial conditions and prediction results. Obviously using
a ner resolution for the model grid will more accurately re ect the actual
atmosphere, and thus, the prediction model will more accurately forecast
the weather as more small-scale atmospherical processes can be represented
and better representation of the topography is considered.
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Figure 2.3: NWP: A simplified flow of the steps involved in a weather forecasting
process.

For instance, suppose a weather forecast is to be conducted in The Isle of
Man (an island located in the middle of the northern Irish Sea which covers
an area of around 572 square kilometers. This island is 52 Kilometers long
and, at its widest point, 22 Kilometers wide. If a NWP model is to be used
to predict over this island, with a gird domain of 25 Kilometers of spatial
resolution, one or two grid points would fall inside the island as depicted
in Figure [2.4] Hence, for a more accurate forecast, a domain of higher
resolution (less than 25 Kilometers) is needed to give a general outline of
the island to the NWP model.

(b)

Figure 2.4: The Isle of Man, forecast domain resolution of 25 Kilometers:
(a) with just on grid point over the island, the numerical model will consider the
domain as in (b). Source [23].
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That is, domain spatial resolution is a crucial factor in determining the
accuracy of a certain forecast. Actually, depending on the application and
need, multiple types of NWP models are commonly used considering fore-
cast domain resolution, as a result, di erent types of forecast products are
delivered. In general, operational NWP models are commonly categorized
depending on three related factors as follows (see [24]):

1. Forecast Area, or the coverage of the domain:

o global: the whole, or approximately the whole planet.

o regional (mesoscale): a certain region of the planet like North
America or Europe, for example.

o local (mesoscale): certain smaller domains, for example, Spain
or eastern part of Spain.

2. Resolution, or the size of the grid: from few to over hundred of
Kilometers ahead.

3. Time Frame:

o short-range: from few hours up to 3 days.
o medium-range: up to approximately 2 weeks.

o seasonal: up to 12 months.

In contrast to global models, regional or mesoscale (also known as
limited-area, or LAMs) models, produce shorter scale forecasts with much
higher spatial resolution and more frequent output. Actually, this allows
regional models (LAMs) to resolve explicitly smaller-scale meteorological
phenomena that cannot be represented on the coarser grid of a global
model. Generally, weather service centers in di erent countries and re-
gions use in a daily basis mesoscale models to deliver short-range forecasts
to their citizens or clients.

Worldwide, there are a couple of dozen NWP models being used, for
instance, a relatively old, but illustrative comparison between various NWP
models was presented in [25], where the performance six operational models
where evaluated in short-range weather forecasts over the western United
States of America. More recent works realized for the same reason can be
found in [26] 27].

However, following the global, regional, and local categories described
previously, listed bellow some of the mostly used NWP models:
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Global Models :

o

GFS: The Global Forecasting System, developed by the USA
National Oceanic and Atmospheric Administration (NOAA).
The GFS is a 35 to 70 km resolution, medium-range, global
model [28§].

IFS: The Integrated Forecasting System, developed by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWEF),
normally referred to as the ECMWF model. ECMWEF model is
a 40 km resolution, medium-range, global model [29].

Regional and Local Models :

o

WRF: The Weather Research and Forecasting model, devel-
oped cooperatively by the US National Center for Atmospheric
Research (NCAR), the US National Centers for Environmental
Prediction (NCEP), and the meteorological research community.
WREF is one of the mostly used mesoscale NWP models for re-
gional and local forecasts, which also serves for both operational
forecasting and atmospheric research needs [7].

NAM: the North American Mesoscale Model, which is used in
the NCEP to serve for mesoscale short-range forecasts. Cur-
rently, the Weather Research and Forecasting Non-hydrostatic
Mesoscale Model (WRF-NMM) model is run as the NAM [30].

MMS5:  the Fifth-Generation Penn State/NCAR Mesoscale
Model, a regional mesoscale model which was developed by Penn
State university and the NCAR, however, although it is main-
tained and still operational in di erent weather centers, WRF
model is considered as the successor of MM5, including the ca-
pabilities of MM5, WRF is generally known as a next-generation
mesoscale model [§].

HIRLAM: HIgh Resolution Limited Area Model, a highly-
con gurable, high-resolution system of short-range models, de-
veloped by the international HIRLAM programme ( ve Scandi-
navian and three Baltic countries, plus Ireland, the Netherlands,
and Spain). It is operational in di erent weather centers in these
countries [31].

ALADIN: a high resolution short-range weather forecasting
model, developed and operated by several European and North
African countries [32].
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A relatively old, but illustrative comparison between various NWP mod-
els was presented in [25], where the performance of six operational models
where evaluated in short-range weather forecasts over the western United
States of America. More recent works can be found in [26} [27]. Moreover, a
complete taxonomy of operational NWP models up to 2002 could be found
in [?].

During the discussion of the work presented in this thesis, the major
focus is being oriented to enhance weather predictions for regional and
local mesoscale NWP models (LAMs), and mainly, for short-range weather
predictions, however, the presented work is also applicable for medium-
range weather forecasts.

2.1.2 NWP Model Input/Output

The major steps of a numerical weather prediction process are generally
classi ed into three phases:

o Pre-processing: which includes the process of data collection and
assimilating observed data to the model.

o Model Integration: the execution of the numerical model itself,
resolving the mathematical equations involved over computing re-
sources.

o Post-processing: the generation of model outputs and graphics,
which consecutively will be subject to human interpretation.

Subsequently, both Pre-processing and Post-processing phases are de-
scribed in detail:

Pre-processing: Model Initialization

To make the forecast for a future time, the initial state of the atmosphere
over the targeted domain must be provided, as an initial condition. These
initial conditions (generally referred to as ICs) are assigned to all domain
grid points to re ect the actual values of weather variables.

However, regional models use a global model outcomes besides the cer-
tain domain ICs, to specify conditions at the edge of their domain in order
to allow the e ects of the atmospherical motion coming from outside to be
represented in the regional model calculations, these data is called normally
the Boundary Conditions of the model (BCs) [33].

Commonly, initial conditions (ICs) are derived from both weather ob-
servations and previous model forecasts (pervious model forecasts are gen-
erally known as the first guess). These observations include many types of
data and networks, which are generally classi ed as follows (see [33] [34]):
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1- Surface Observations the most used set of observations used to initi-
ate regional forecast models are surface observations, which are pro-
vided by weather stations at ground level over land and from weather
buoys at sea (see gure (a)). To unify the instrumentation used
for getting observations in these stations, as well as the timing of
these observations, the World Meteorological Organization (WMO)
[35] works on standardizing this practice, as such, NWP models can
be initialized by these surface observations worldwide.

2- Upper-Air Observations another accurate and important data set
used to initialize NWP models is upper-air observations. These obser-
vations are normally provided by a weather balloon called radiosonde
(see gure[2.5 (b)), which measures the vertical pro le of atmospheric
variables and transmits them to a xed receiver. Radiosondes are
launched daily in large number of cities around the world, by which,
various important weather variables are measured, like pressure, al-
titude, geographical position (latitude/longitude), temperature, rela-
tive humidity, wind speed and direction.

3- Satellite and Radar Imagery meteorological satellites and radars,
especially meteorological satellites, are seen to be the dominant data
source for providing initial conditions to NWP models (see gure

().

4- Commercial Observations mainly coming from equipped and spe-
cialized aircrafts and ships in their routes (see gure 2.5(d)). For
example, some instrumented aircrafts y in and around weather sys-
tems of interest gathering observations of weather variables, mainly
wind related variables.

Besides all these gathered observations, NWP models are provided also
by terrain maps, which are available at high resolutions globally. These
maps help NWP models to better calculate atmospheric circulations de-
pending on the topography of the area of interest. It should be mentioned
furthermore, that certain weather elds (e.g., orography, surface roughness
length over land, albedo and vegetation type), are kept constant in a fore-
cast run (these elds are not changed by BCs).

By gathering observations which determine ICs of the targeted domain,
and having boundary values (BCs) which aggregate the evolution of the
atmospheric state at the lateral boundaries of the same domain to the
NWP model, the data collection step is realized.
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(d)

Figure 2.5: Weather observation sources: (a) aweather station, (b) a radiosonde,
(¢) a meteorological satellite, and (d) meteorological ship.

However, another important step is to be done in the Pre-processing
phase in order to start a correct forecast, that is, the assimilation of the
gathered observations to t in the scales of the targeted domain. Unfor-
tunately, observations generally do include many types of errors such as
instrumental and human errors, and moreover, they are irregularly spaced
and distributed. Hence, it is needed to interpolate observations to grid
points and also to insure that the various elds are consistent and physi-
cally plausible.

Because of this imperfectness in the observations, many techniques of
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Objective Analysis and Data Assimilation (described in detail in Section
are applied in order to interpolate observations in domain grid points.
These techniques basically combine the observed values of weather variables
with a first guess prediction results (normally, a forecast for the same do-
main 6 hours earlier) to produce initial conditions for a NWP model.

Once the data assimilation process has taken place and the initial con-
ditions are in their nal form, the data is then sent to the NWP model to
create a forecast. Model integration is the simulation process itself, which
involves the execution of the numerical model on computers to calculate
the evolution of the initial conditions of the area of interest.

Post-processing: Output and Visualization

Once the NWP model is run, a forecast is produced as a result. Obviously,
the results are the future values of the weather variables, calculated by the
the model.

The Post-processing takes care of the output from forecast runs, in-
cluding archiving in a suitable format. Field veri cation and veri cation
against observations of selected meteorological elds are also parts of the
Post-processing

On the other hand, managing the mass of forecast data created by the
models is fast becoming a science of its own. Output from modern NWP
models requires post-processing to make it intelligible and, most impor-
tantly, expert human interpretation in order to assess its meaning, qual-
ities, and possible aws. Since the rst beginning of the use of modern
NWP models in weather forecasting, visualization techniques and methods
were being studied and developed [36]. Actually, without visualization tech-
niques, human interpretation (which is still a fundamental step in weather
forecasting) of the large amount of data produced by NWP models would
not be possible.

Treinish, Lloyd A. discussed in [37] the importance and then, the need
to develop e ective visualization methods in order to better forecast the
weather. Nowadays, many visualization products and methods are being
used in practice, e.g., [38] [39] 40, [41] 42], as well, research continues mas-
sively towards improving this eld.

Today, the level of detail in modern models allows for a wide variety
of products and forecast elds to be delivered by di erent visualization
techniques, for use not only in general meteorology, but also in specialized
areas such as aviation and air quality. However, in general, weather and
meteorological maps are the mostly common tools for visualizing weather
forecasts, both for experts and also (simpler) for citizens and clients. An
example of two weather maps is depicted in Figure |2.6
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Today’s Forecast

Figure 2.6: Weather forecast maps: (a) wind speed and direction map, (b) a
simpler map delivered for citizens normally.

Summery: putting all together

As it has been described in the previous sections, the prediction process
is composed of three major phases, Pre-processing, Model Integration, and
Post-processing. Consequently, these three phases and their corresponding
steps are summerized in Figure

Pre-processing { Model Integration Post-processing

Observations

Output
First guess forecast NWP Model *
Global Model ~ |——————| BCs

Figure 2.7: Complete numerical weather prediction process.
It should be mentioned as well, that both Pre-processing and Post-

processing phases are as important as the NWP model processing itself,
as such, a reliable weather prediction is usually relative to our capacity to
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reduce errors in all these three phases. Good model input, precise model,
and good human interpretation, will lead to viable prediction results.

However, owing to the complexity of the weather system, and the na-
ture of some meteorological processes which happen in small scales (usually
smaller than the scales resolved by todays NWP models), more details must
be considered to represent the e ects of these small-scale processes on the
scales resolved by the NWP model. For that, a process called parameter-
ization is usually used to address this problem, in the next Section, this
process and its applications are described.

2.1.3 Parametrization

In order to complete the treatment of the primitive equations of NWP
models, it is necessary to consider the parameterization of the sub-grid scale
processes that cannot be directly modeled yet. That is, some meteorological
processes are too small-scale or too complex to be explicitly included in
numerical weather prediction models.

For example, a typical cumulus cloud has a scale of less than 1 kilometer,
and would require a grid even ner than this to be represented, while NWP
models predicts normally on domains of grid-scales higher than 1 kilometer
(see gure . Thus, parametrization is needed in such cases to represent
this process on a certain domain scale.

Physical processes that are typically parameterized in modern NWP
models are soil-vegetation processes, surface layer processes, turbulent ex-
change processes, micro-physics (cloud formation), convection and radia-
tion. All these parameterizations are important because they have a strong
in uence on the skill of a weather forecast by interacting indirectly with
each other by changing model variables.

Actually, the majority of these physical processes occur in scales less
than 1 kilometer, hence, all these processes (between others) need to be
parameterized [43], [44].

These physical processes play an important role in the atmosphere. And
even in very high resolution models, physics on unresolved scales have im-
portant impacts on the evolution of the state of the atmosphere. Param-
eterizations are generally described as formulas (empirical or derived from
physical hypothesis) which calculate the e ect of sub-grid scale physics on
the resolved scales by means of prognostic and diagnostic model variables
[45].
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Figure 2.8: Atmospheric phenomena scales (spatial and temporal): modern NWP
models of high spatial resolution are able to resolve weather phenomena which
occur in scales down to few kilometers, however, there are lots of other important
phenomena which are not resolved by NWP domain scales.

That is, either empirical formulas are applied to relate unresolved vari-
ability to explicitly simulated variables, or external information is needed
to be inserted to the mesoscale model. Hence, parametrization enables the
representation of these important meteorological processes by relating them
to variables on the scales (the points of the gridded domain) that the model
resolves, as such, the general concept of this process can be written as in

Equation (from [46]):

Output(x) = [Input(x) y] (2.1)

Where the Output(x) is a dependent variable that need to be com-
puted, this variable is obtained from the input value (x), and prescribed
constant/constants (y), through a transfer function (T), which is the pa-
rameterization. The constant (y) is obtained from limited observations,
normally embedded within approximate models of physical processes that
have been set to values that reproduce certain aspects of the certain obser-
vations.

The parametrization process itself, is an engineering module, i.e., it in-
cludes empirical equations with tunable coefficients that are derived form
available (normally limited) observations. Hence, it is important to be
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aware of that parameterizations are simpli ed and idealized representa-
tions of complex processes and may therefore not always be appropriate.
However, without parameterizations, NWP may not be useful because most
subgrid-scale processes are key factors in weather forecasts that concern our
daily life [47].

To enable modern NWP models to involve the e ects of such subgrid-
scale processes in the simulation process, many parameterization schemes
(also known as models) have been developed and thus, coupled with oper-
ational NWP models.

David J. Stensrud in his book Parameterization Schemes: Keys to
Understanding Numerical Weather Prediction Models [46] put together all
the categories of actual parameterization schemes and the entailed subgrid-
scale processes resolved by them, as follows:

o Land/water surface-atmosphere and soil/vegetation-
atmosphere parameterizations: also known as land surface
modelling (LSM), these parameterizations intend to resolve the ef-
fects of the interaction between surface and the atmosphere, i.e., the
exchange of surface water and energy uxes at the soil-atmosphere
interface, which depends highly on parameters like soil texture,
vegetation type, soil moisture, land use, etc.

o Planetary boundary layer and turbulence parameteriza-
tions(PBL): intends to resolve processes that happen in the lowest
layer of the atmosphere where the wind normally is in uenced by
friction (a force that slows motion and dampens energy). Normally,
surface friction from vegetation and topography causes turbulent ed-
dies and chaotic wind motions.

o Convection parameterizations (Cumulus): used in NWP mod-
els to predict the collective e ects of (many) convective clouds that
may exist within a single domain grid box.

o Microphysics parameterizations: to predict physical processes
that lead to the formation, growth and precipitation of clouds. This
process occurs in very small scales (the formation of water bubbles)
and are impossible to be detected even by high resolution NWP mod-
els.
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o Radiation parameterizations: these parameterizations intend to
calculate the amount of solar radiation reaching ground level, also to
calculate the surface ux of energy between the ocean and the atmo-
sphere in order to determine realistic sea surface temperatures and
type of sea ice found near the ocean s surface. That s done considering
also soil type, vegetation type, and soil moisture, which all determine
how much radiation goes into warming and how much moisture is
drawn up into the adjacent atmosphere.

o Cloud cover and cloud-sky radiation parameterizations:
which deal with calculations related to the amount of solar radiations
re ected or absorbed by clouds (depending on location, type, size,
and many other characteristics of clouds), as it is known that clouds
re ect the solar short-wave radiation and they absorb the terrestrial
long-wave radiation.

o Orographic drag parameterizations: which are used to represent
atmospheric processes associated with orography.

Actually, all parameterizations are related to each other, that is, param-
eterizing land surface processes is a ected by radiation parameterizations,
which consequently, are a ected by cloud parameterizations, and so on.
Actually, this is due to the continuity nature of the atmospheric motion. A
simpli ed scheme of direct interactions between parameterization processes
is illustrated in Figure 2.9

Nowadays, there are lots of di erent parameterization schemes to rep-
resent di erent small scale atmospheric processes in modern NWP models.
Moreover, there are di erent schemes to represent the same class of subgrid-
scale processes, as such, various parameterization schemes are developed
basing on di erent assumptions and approximations (as well as variations
in scheme constants and closure parameters) to represent the same physical
processes.

For instance, in [49, [50], di erent operational Convection schemes (dif-
ferent physical schemes to represent convection process in atmosphere) are
compared and evaluated in mesoscale weather predictions realized by NWP
models. Many works are found which do comparisons also for other param-
eterization schemes, such as in [5I] for di erent cloud-sky radiation pa-
rameterization schemes, and in [52] [53] for planetary boundary layer and
turbulence parameterization schemes, and so on for the other parameteri-
zation schemes.
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Direct Interactions of Parameterizations
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Figure 2.9: Interaction between parameterizations: SH is the surface sensible
heat ux, LH is the surface latent heat ux, SW is the short wave radiation,
LW is the long wave radiation, T is temperature, and @, is the water vapor
mixed ratio. Source ([48]).

In fact, modern NWP models like WRF, provide the ability to select
between di erent schemes for the same parameterization process. However,
the overall conclusion on deciding wether to select one scheme or the other
depends on di erent factors, as such, some perform better in certain regions
with certain topographical characteristics (e.g., [64]), some perform better
in a certain season, while others may be more stable in di erent weather
conditions. Normally, weather prediction centers do large simulations over
the same region for di erent seasonal periods, then they evaluate the quality
of predictions resulted by applying di erent schemes, in order to select one
or other scheme for their operational forecasts.

The presented work focuses mainly on Land/water surface-atmosphere
and soil/vegetation-atmosphere parameterization, and their e ects on some
weather variables. Consecutively, more description about land surface pa-
rameterization process in numerical weather predictions is provided.
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Land Surface Parametrization

Land surface parameterization in numerical weather prediction is of
paramount importance. Actually, accurate forecasts of near surface weather
variables are highly requested by the NWP users community. The quality
of such variables as the near surface air temperature and humidity, winds,
low level cloudiness and precipitation is to a large extent determined by
the physical realism of the model representation of the surface-atmosphere
interactions. For instance, a very wet soil on a sunny day gives rise to
more evaporation, while a dry soil allows more solar radiation to warm the
surface resulting in higher maximum temperatures.

Being that said, land surface is a critical component for the study of the
weather, basically through its partitioning of solar radiation into sensible
and latent heat uxes, its redistribution of precipitation into evaporation,
soil moisture, groundwater recharge, or runo , and its regulation of bio-
geochemical cycles with processes such as photosynthesis and respiration.
These water and energy exchanges between the atmosphere and the land
surface are known to signi cantly impact atmospheric motion, which has
motivated signi cant advancement in the understanding of the physical
processes that govern these exchanges [55 [56], 57, [58].

On the other hand, as it has been shown in Figure 2.9] parameterization
schemes exchange variables in all atmospheric layers, as a result of the
continuos nature of the atmospheric motion. Thus, it is also crucial to well
parameterize land surface processes in order to enhance the precision in
the calculations realized by the other parameterization schemes (radiation,
PBL, convection, cloud, etc.)

Zhang Ying in [59], stated that land surface processes are generally
described in terms of physical uxes and hydrological state of the land
(depicted in gure :

The physical processes include:
e Radiative uxes;

e Momentum ux; sensible and latent heat uxes; partitioning of latent
heat into canopy evaporation, soil evaporation and transpiration;

e Heat transfer in a multi-layer soil/lake/ocean.
The hydrological processes include:

e Snow accumulation and melt;

e Rainfall, interception, in ltration and runo ;

e Soil hydrology, including water transfer in a multi-layer soil.
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Tllustration of Surface Processes

LW/SW LW
SH LH
e Y|

1
constant temperature

%  Ground flux

substrate (constant temperature)

Figure 2.10: Summery of surface processes: SH is the surface/water sensible heat
ux, LH is the surface/water latent heat ux, SW is the short wave radiation,
and LW is the long wave radiation. Source ([48]).

Basing on physical hypothesis, many empirical formulas are derived and
applied in land surface parameterization schemes (e.g., [60]). By applying
these formulas, surface processes are simpli ed in order to represent their
e ect in NWP model scales.

These formulas depend fundamentally on surface characteristics (land
use/vegetation types and soil texture) for each domain, as such, the
heat/radiation transfer between the surface and the rst layer of the at-
mosphere (the planetary boundary layer) depends basically on vegetation
and soil related parameters. Actually, The vegetation type and the soil tex-
ture/cover are the primary variables to decide the land surface land surface

characteristic elds [61], 55].

But the land surface parameterization process is even more complex,
as NWP models normally run over domains composed of heterogeneous
surface features (di erent vegetation types and soil textures). That is, it
is crucial to consider this heterogeneity in parameterization processes. For
that, modern NWP models use standard and global maps of vegetation and
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soil types in order to de ne the category of land use (vegetation) and soil
texture for each surface grid point within the domain of interest.

For vegetation types and features, there are di erent categorization
standards, known as land use categories or vegetation types (see [62]), which
include the Global Ecosystems, the Simple Biosphere Model, and the U.S.
Geological Survey Land Use/Land Cover System (USGS). An example of
land cover categories map is depicted in Figure
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Figure 2.11: Land cover categories map, from USGS.

The surface features of each category are coe cients and parameters
used by di erent land surface parameterization schemes, depending on their
physical assumptions, by which, the heat/radiation exchanges with the at-
mosphere are calculated. These parameters (their values are relative to
each land cover category) include: albedo and coe cients of long and short
wave radiations, the vegetation height, the Noilhan parameter for the de-
pendence of canopy stomatal resistance from solar radiation, the minimum
stomatal resistance, the winter value of leaf area index, etc. (see [63, [59]).

The same happens for soil texture categorization, as such, there are
di erent global standards and datasets which categorize soil textures ac-
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cording to their contents [64]. Figure shows the major categories of
soil texture types, where each category is de ned according to its contents
of the three major soil classes: silt, clay, and sand.

Elrxnr sand

Figure 2.12: Soil texture categories, from the USDA-NCRS (1997) soil textural
database.

As for vegetation categories, there are various coe cients and param-
eters (their values are relative to each soil texture category), which char-
acterize each soil texture features, these include: the saturated moisture
potential, a reference soil moisture, soil di usivity, soil conductivity, etc.
(see [59)).

The parameters which belong to each category of land use and soil tex-
ture, are assigned to di erent values, depending on the category to which
they belong. Actually, NWP models are provided by standard tables, which
include the default values of these parameters, depending on their cate-

gory.
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Normally, prediction domains exhibit heterogeneity in their surface
characteristics. That is, the terrain of a certain domain (the rst mesh
of the 3-D grid) could include di erent vegetation types, and di erent soil
textures.

For that, a prediction process, which uses land surface parameterization
scheme, proceeds as follows: NWP models start a process of prediction over
a certain zone using the initial and boundary conditions de ned by their
location (longitude, latitude and vertical distance) for each grid point of
the domain.

Additionally, NWP models are also provided by terrain maps, which
are available at high resolutions globally. These maps de ne the surface
and topographical characteristics of the targeted domain, as such, the rst
mesh grid points of the domain are assigned with a number indicating its
landuse category (LU-index) and with another number indicating its soil
texture (SLTYP).

During the prediction process, the NWP model needs surface parameter
values for each surface grid point in order to calculate the evolution of the
other weather variables. These parameter values depend on their categories,
and for each category, the NWP model is provided by its default parameter
values which are provided in stand-alone tables like those shown in Figures
and for landuse parameters, and in Figures and for soil texture
parameters.

Then, for each surface grid point, the NWP model reads its assigned
landuse category (LU-index) and, goes to LAND USE table to obtain the
values of the surface physical parameters corresponding to that category.
The process is done for all surface grid points and the same is done with
soil texture parameters.
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Figure 2.13: Landuse parameter description, (from [65]).
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Figure 2.14: Landuse categories, used in the WRF forecasting model, (from [63]).

Figure 2.15: textitSoil parameter description, (from [65]).
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Figure 2.16: Soil categories, used in the WRF forecasting model, (from [65]).
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2.2 Weather Predictability and Sources of
Error in NWP Models

The term predictability in NWP modelling, refers to the extent to which
the future state of the atmosphere or a speci ¢ weather system may be
predicted based on current ability of NWP models [?]. As such, to be
viable, a NWP model must integrate an understanding of many di erent
phenomena and their interactions: how the wind blows; how heat is received
from the sun and transformed by the oceans, the ground, the air, and
the clouds; how water vapor condensates into clouds and how droplets of
water turn to rain, ice and snow; how friction near the ground mixes the
lower layers of air. Thus, errors in handling one type of phenomenon can
contaminate other parts of the model, or amplify errors in other model
sub-systems.

By seeking further to analyze the nature of the atmospheric motion
itself, atmospheric predictability research could be traced very early in a
paper published over a century ago by Bjerknes in 1904 [I§]. In that
paper, he considered the problem of weather prediction from the stand-
point of mechanics and physics, and proposed it as a deterministic initial
value problem based on the physical laws such as the conservation of mass,
momentum, and energy [66].

Later on, concretely in 1963, Edward Lorenz discussed his theory
about the chaotic nature of atmospheric flow [5l 67], the so-called chaos
theory in nonlinear dynamic systems. Lorenz stated that in such nonlinear
dynamic systems (the atmospheric system), slightly di ering initial states
can evolve into considerably di erent states within a limited time. That
is, the chaotic nature of the atmosphere determines that the predictability
does not depend only on the realism of the model and the accuracy of
initial conditions, but also on the system itself. Atmospheric motion, as
a nonlinear dynamic (unstable) system, is supposed to have nite limit
predictability.

In Figure the problematic nature of chaos is illustrated by showing
the motion trajectories of stable and unstable dynamic systems. As shown
in the gure, even with two very close initial states (initial conditions) for a
nonlinear dynamic system, results would have markedly di erent outcomes.

Unfortunately, besides the limited predictability of the atmospheric mo-
tion owing to its chaotic nature, atmospheric initial conditions are never
known perfectly, what is generally known as the uncertainty problem of
initial conditions.
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Figure 2.17: The evolutions of slightly di erent initial states (a) unstable trajec-
tories; (b) stable trajectories (courtesy of Lorenz [67]).

Moreover, the numerical representations of the uid dynamical equa-
tions involved in modern NWP models, depend on approximations and
mathematical assumptions, which involve huge amount of model coe -
cients and tunable parameters, resulting in producing more uncertainties
that limit the predictability of the evolution of the atmosphere. In particu-
lar, the uncertainty due to the parameterizations of sub-grid-scale physical
processes is known to play a crucial role in prediction quality (e.g., [6]).
Prediction errors caused by the uncertainty in physical parameterizations
is commonly referred to as model errors.

As it has been stated previously (cp. Section7 weather forecasting
process has three basic steps: data collection (observations) and assimila-
tion of observed data into initial conditions to be used by a numerical model,
model integration to project the initial state into future, and the applica-
tion of the forecasts to real world situations. However, the usefulness of
any model depends mainly on the accuracy and reliability of its output.

In NWP models, Intrinsic uncertainties are introduced at each of those
steps during a forecast process. In deed, numerical weather prediction is,
by its very nature, a process that has to deal with uncertainties [68]. That
is, the uncertainty is involved in all the phases of prediction process, for
example, instrumental and human error introduced during the process of
collecting data; errors introduced during data assimilation process due to
mathematical assumptions and abstractions; imperfect model physics (ap-
proximations of real world such as parameterization of sub-grid processes)
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and numeric (e.g., discontinuity or truncation); and di erences in human
(both forecasters and end-users) s interpretation and decision to a same
forecast depending on situations (who, what, when and where). All these
kind of errors are intrinsic, unavoidable and sometimes even unknown to
us in a real world operation.

Summarizing, sources of uncertainties in NWP models are classi ed as
follows ([9]):

1. Initial conditions uncertainties

(a) imprecision in specifying the boundary and initial conditions
that impact the output variable values

(b) imprecision in measuring observed output variable values.
2. Model uncertainties.

(a) uncertain model structure and parameter values.

(b) variability of observed input and output values over a region
smaller than the spatial scale of the model.

(c) variability of observed model input and output values within a
time smaller than the temporal scale of the model. (e.g., rainfall
and depths and ows within a day).

(d) errors in linking models of di erent spatial and temporal scales.

(e) uncertain model structure and parameter values.
3. Numerical errors.
(a) errors in the model solution algorithm.

Over the last two decades, signi cant progress has been made in develop-
ing methods to reduce uncertainty in initial conditions, model development,
and model diagnostics to enhance the predictability of weather systems. To
have a deeper idea about the achieved progress in prediction quality over
the last decades, gure [2.18| shows the evolution of mean forecast skill at
the European Centre for Medium-Range Weather Forecasts (ECMWF) for
the northern and southern hemispheres for the period of 19812004. Fore-
cast skill is calculated with some measures of forecast errors de ned by the
di erence between the forecast and the initial conditions estimated from
observed data [66].

In spite of the signi cant progress realized in the eld of weather predic-
tion, many crucial demands are still evolving to be resolved by the scienti ¢
community, which include the necessity to have more reliable and precise
predictions, over larger time scales, and higher resolution domains.
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Anomaly cormelation of 500hPa height forecasts
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Figure 2.18: Evolution of mean forecast skill for the extratropical northern and
southern hemispheres for the period of 19812004. Shading shows di erences be-
tween hemispheres in anomaly correlation of 3, 5, and 7-day ECMWEF 500-hPa
height forecasts (from [66]).

While the main e orts are being oriented towards reducing the un-
certainty in initial conditions and parameterizations, recent developments
in ensemble forecasting and data assimilation have proved that there are
promising ways to beat the forecast uncertainties [69]. These methods are
described through the next sections consecutively.

2.3 NWP Enhancement Methods

Weather predictability has been a long-standing problem during the last
decades. The advent of computers in the 1950s and their subsequent de-
velopment in the 1960s,1970s along with the recent advance in parallel
processing computers in the early 1990s, led to more and more numerically
accurate representations of the uid dynamical equations, which resulted
in the development of sophisticated NWP models.

On the other hand, many studies were also devoted to improve initial
conditions through advances in observing systems, the development of at-
mospheric data assimilation and ensemble forecasting techniques. On aver-
age, the accuracy of weather forecasts from such models improved steadily
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over these decades [70, [].

That is, along with the realized advances in the development of modern
and skillful NWP models in the last years, enormous e orts have been
done also in order to reduce the e ect of the other source of errors which
limits weather predictability: the uncertainty in initial conditions. For this
reason, two major strategies were developed; the rst aims at reducing the
uncertainty in initial conditions by data assimilation techniques, while the
other aims at representing these uncertainties in the forecasting system,
referred to as ensemble forecasting system. Consecutively, both strategies
are described in more detail.

2.3.1 Data Assimilation

Data assimilation in atmospheric sciences started from the fact that NWP
is an initial value problem. That is, If the initial state of the atmosphere
was known accurately at a certain time point at the recent past or at the
actual time (a complete and accurate speci cation of the three-dimensional
(3D) structure of the initial values of a considered system), a forecast could
be obtained by integrating the numerical model equations forward, from
the past/present time into the future.

In practice, however, the state of the atmosphere is never known cor-
rectly, it is normally obtained through observations that are distributed
non-uniformly in space and time, and they have di erent structures of ran-
dom error. Having this limitation in the availability and quality of real
observations, before producing a forecast, an optimization calculation must
be performed to combine these irregular observations to generate the initial
conditions that are distributed on regular model grids at the chosen time
point, that are most consistent with the observations that have been made
during the past few hours. This calculation is widely known as the data
assimilation problem [71].

In other words, data assimilation proceeds by cycles. In each cycle,
observations of the current (and possibly, past) state of the weather are
combined with the results from a NWP model (denoted rst guess, back-
ground, or prior information) to produce initial conditions (referred to as
analysis), which are considered as the best estimate of the current state of
the wether. Essentially, this step is done to balance the uncertainty in the
observed data and in the forecast of the rst guess. Then, these estimated
initial conditions (analysis), as a result of data assimilation, are injected
to the NWP to calculate the future state of the weather, the predicted fu-
ture state of the weather is also considered as a rst guess forecast or the
analysis of a future prediction cycle.

Recent advances in many aspects of data assimilation and observing
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systems provide the opportunity for making substantial improvements in
forecast skill. These advances include [72]:

e greatly increased availability of data, especially satellite and aircraft
observation;

e the advent of adaptive observational techniques;

e and the improvements in assimilation algorithms, both in terms of
their use of remotely-sensed observations and of their formulation

Being that said, the development of data assimilation methodology has
mainly experienced three stages: simple analysis, statistical or optimum
interpolation, and variational analysis dataAssimilation [I0]. Nowadays,
however, variational methods, in particular the three- and four-dimensional
variational data assimilation (3D-Var)/4D-Var)) are the most used data
assimilation techniques in the context of weather forecasting. Both ap-
proaches attempt to combine observations and background information in
an optimal way to produce the best possible estimate of the model initial
state. This technique not only has broad applications for the assimilation
of atmosphere and ocean, but also can be used for many other applications
in numerical weather prediction.

Actually, most weather prediction centers worldwide use data assimi-
lation techniques to improve forecast skill in their predictions, especially
3D-Var and 4D-Var. Examples of operational 3D-Var and 4D-Var data
assimilation techniques could be found in [73] [74, [75] 76 [77]. It should
be mentioned here, that the major di erence between the two methods is
that in the case of 4D-Var, in addition to the assimilated three spatial di-
mensions of the NWP model domain variables, a fourth time dimension
is added, as such, assimilation process is a continuous or dynamic process
rather than discrete as in 3D-Var approach.

However, it should be noted that these approaches focus mainly on en-
hancing the estimate of the initial conditions of numerical weather models.
That is, they do not deal with uncertainty problem related to the parame-
terization of subgrid-scale processes.

2.3.2 Ensemble Prediction Systems

Unfortunately, uncertainties always exist in both initial conditions and nu-
merical models. Thus, reducing forecast errors caused by theses uncertain-
ties remains a large area of research and operational implementation. In
view of the uncertain properties of the atmospheric system, a theory of
stochastic dynamic prediction was proposed by Epstein [78]. In his work,
he described that the atmospherical motion is stochastic ; its behavior is
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non-deterministic. Hence, in a stochastic context, the initial and forecast
states of the atmosphere must be represented as probability distributions.
Basing on this idea, the developments in numerical weather prediction have
led to current forecast systems that use an Ensemble Prediction System
(EPS) approach to assess the probability of occurrence of possible fore-
cast outcomes. Basically, with the following idea:- instead of using only
one model with a single set of initial conditions, a group of forecasts with
slightly di erent initial conditions (perturbed initial conditions) are made in
an ensemble forecast. That is, an EPS is a collection of individual forecasts
(forecast members) made from slightly di erent initial conditions and/or
model parameters. The spread of the forecast member outcomes, de ned
as the standard deviation of the members from the ensemble mean, gives
an estimate of EPS uncertainty.

So, estimates of the forecast uncertainty, for any forecast variable at
any geographical location, are described by the probability density function
(PDF) produced by a frequency distribution based on the various ensemble
members [9].

Additionally, the mean of all outcomes for a certain forecast variable, is
considered to be the best representative prediction.

The advances in parallel processing computers in the las decades, has
led to operational EPS in some of the relative principal scienti c¢ centers
in the eld of weather prediction. In fact, EPS today, is considered as
the most successful and merely operational enhancement approach, to deal
with the uncertainty problem in weather predictions. This approach is be-
ing used as the principal prediction scheme in global weather centers like
the European Centre for Medium-Range Weather Forecasts (ECMWF), U.
S. National Centers for Environmental Prediction (NCEP), and the Mete-
orological Service of Canada (MSC).

Ensemble forecasting is being feasible in such centers due to the avail-
ability of huge computing power. However, in large number of weather
services, EPS could be a non-adequate solution (if feasible at all) due to
limitations in the available computing power, or if available, the corre-
sponding limitations imposed to limit the number of ensemble members for
a prediction, will minimize the needed precision in prediction results.

It should be noted that, EPS mainly is designed to include perturba-
tions in the initial conditions, assuming that the error growth due to model
de ciencies is small compared to that due to unstable growth of initial er-
rors. However, in reality, uncertainties in model physical parameterizations
cannot be ignored, since it has been realized that there is also a stochastic
nature of physical parameterizations in weather prediction and the pre-
dictability is sensitive to variations in physical parameters.

Unfortunately, it has not been straightforward to develop theoretically
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sound, and also practical, formulations for how to insert parameteriza-
tion uncertainty into ensemble development [12] [13]. Actually, some recent
works were presented in order to deal with the uncertainty problem associ-
ated to model physics or physical parameterizations, e.g., [79,[80], however,
EPS still need more e orts towards developing operational methods to deal
with the uncertainties associated to NWP model closure parameters.

On the other hand, the gained forecast skill by EPS depends on one
hand, on the way how perturbations are done in the initial conditions, and
wether they re ect an acceptable distribution of probabilities, and on the
other hand consequently, on the number of ensemble members by which a
forecast is conducted. Indeed, the second issue depends on the available
computing resources, that is, as more ensemble members are to be executed,
more computing power is needed.
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Chapter 3

Genetic Ensemble for
Weather Prediction
Enhancement

In the previous chapter, a study of numerical weather prediction modelling
and methods were presented. Additionally, it has been discussed that NWP
models su er from the uncertainty of their initial conditions and input
parameters. Actual operational enhancement methods for more reliable
weather predictions were also outlined which are mostly dealing with re-
ducing the uncertainty of model input data and parameters to assure better
prediction results.

It should be highlighted however, that in the last 20 years or so, the
major e orts to improve forecast skill in NWP models have been focusing
on reducing the uncertainty in model initial conditions, mainly, by the
advent of data assimilation techniques and ensemble forecasting methods.

On the other hand, as we discussed before (cp. Section [2.2)), param-
eterization process is known to be a crucial factor in enhancing weather
predictions. However, this process involves the processing of signi cant
amount of tunable parameters and coe cients (denoted by “model intrin-
sic or closure parameters”), where NWP output is highly sensitive to their
values. Currently, the values of these parameters are speci ed manually,
as it has not been straightforward to develop theoretically sound, and also
practical automatic approaches to nd best suitable values of these param-
eters related to a certain prediction targeted domain [81].

In this work, we discuss a new methodology in the context of numerical
weather prediction, which tackle this critical problem, in order to enhance
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quality of weather predictions as an ultimate goal.

Our hypothesis is that the NWP model forecast skill is sensitive to the
speci ed parameter values. And thus, by nding ‘optimal values of these
parameters, we aim to enhance prediction quality.

Basing on the concepts of EPS systems, in this chapter, the proposed
methodology to enhance short-range and medium-range weather predic-
tions is introduced. Basically, the proposed method which is called ”Genetic
Ensemble for Weather Prediction Enhancement” is based on developing an
automatic and e ective way to nd optimal values of NWP model intrin-
sic/closure parameters in order to reduce the error produced in real predic-
tions. The introduced methodology uses evolutionary computing methods,
particularly, Genetic Algorithms in order to nd the most timely ‘opti-
mal values of these parameters, which appear in physical parametrization
schemes that are coupled with NWP models.

On the other hand, the proposed methodology o ers two di erent alter-
natives for the prediction process, a deterministic approach, where just one
single forecast is to be conducted, and an ensemble prediction, where a set
of forecasts (an ensemble) are used for a prediction. Furthermore, the pro-
posed methodology is developed as a parallel application, which intends to
overcome the cost and feasibility problems imposed by operational enhance-
ment techniques, by reducing the overall execution time of the prediction
process.

Firstly, a discussion concerning the subject of parameter calibration ap-
proaches used to nd optimal input parameter values in environmental
models in general is provided. Moreover, the classical weather prediction
scheme is highlighted, then, the proposed weather prediction scheme is dis-
cussed, along with a detailed description of the implemented evolutionary
computing technique in the process of searching for best possible values of
model parameters.

3.1 Related Work

In the previous chapter (cp. Section , the concept of Ensemble Pre-
diction System (EPS) was outlined. Actually, EPS predictions are being,
nowadays, the most successful and merely operational enhancement meth-
ods, to deal with the uncertainty problem in weather predictions. However,
EPS still need more e orts towards developing operational methods to deal
with the uncertainties associated to NWP closure parameters.

Besides that, Ensemble forecasting normally requires huge computing
power, actually, its a practice of running multiple number of forecasts to get
their outcome means and spreads as a probabilistic prediction. However,
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in large number of weather services, EPS could be a non-adequate solution
(if feasible at all) due to limitations in the available computing power, or
if available, the corresponding limitations imposed to limit the number of
ensemble members for a prediction, will minimize the precision in prediction
results.

In this work, the proposed prediction scheme intends to enhance fore-
cast skill in short and medium range weather predictions, by reducing the
uncertainty of NWP closure parameters. As well, we intend also, to reduce
the cost of this process compared to classical EPS solution for improving
weather forecast skill. In the next subsection, parameter calibration ap-
proaches in environmental models are discussed.

3.1.1 Parameter Calibration Approaches

The problem of uncertainty in the modelling and simulation process is often
overlooked. No model is a perfect representation of reality, so it is important
to ask how imperfect a model is before it is applied for prediction. The
scienti ¢ community relies heavily on modelling and simulation tools for
forecasting, parameter studies, design, and decision making.

However, because almost all modelling systems and simulations relies
widely on abstractions, idealization, and many assumptions. There exists
a crucial need to what is generally know as parameter adjustment or cali-
bration of models and simulation systems [82].

Model calibration [83] could be de ned generally as the task of adjusting
an already existing model to a reference system or, to a certain trusted
reference model. This is usually done by adjusting the internal parameters
of the model according to input-output sets of the system. Thus, in order
to get trustworthy results from the model, input-output pairs of the model
are ne-tuned to input-output samples of the reference system.

In various modelling systems, adjusting or calibrating model parameters
is so crucial and necessary because of the di culty (if possible in some
models) to have timely accurate measures of the values of some model
parameters, which are in complex modelling systems could be found in
large amounts. As these parameters re ect some kind of abstraction and
assumption in the basics of building simulation systems, they are normally
tunable in order to enable the interested community to better-tune them
according to the input-output pairs of a certain model.

Calibration is a far-reaching term and can mean quite di erent things to
di erent people. This work however, deals only with a speci c¢ form of model
calibration which is actually a special case of inverse problem analysis, in
that the objective is to use observations of the simulator output to make
inference about simulator inputs.
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This type of calibration analysis poses several problems in practice:

1. Due to the complexity of weather modelling, there exist an elevated
number of model input parameters which belong to standard ranges
of possible values.

2. The simulation for higher-resolution models is often expensive, ren-
dering an exhaustive exploration of all model parameter spaces is
highly expensive if possible at all.

3. Various ranges and/or combinations of input parameters may yield
comparable ts to the observed data.

4. Manual steering, tuning, or adjusting the large number of combina-
tion probabilities of NWP model parameters is mostly infeasible, not
practical, and not reliable.

Considering these mentioned problems in the context of NWP model
parameters, an automatic calibration method could be considered obvious
and a strong contribution to the interested community of weather predic-
tions. Actually, automatic calibration methods (independent of manual
interference) have been recognized early and have become more and more
reliable in the last decade [84].

Fortunately, there are in practice many approaches for automatic pa-
rameter calibration. Many use standard numerical or mathematical opti-
mization techniques, e.g., Kalman lter [85] and principal di erential anal-
ysis [86]. Other approaches like Bayesian methods, including Monte Carlo
sampling [84], and heuristic and evolutionary practices like Simulated An-
nealing and Genetic Algorithms are widely used for parameter calibration
problem.

Precisely, and due to the continuos advances in computing power and
high performance computing tools and platforms, heuristic and evolution-
ary computing techniques and algorithms, especially genetic algorithms,
have become practicable and more reliable to solve parameter problem in
environmental models (e.g., [87) [88], [89] [90]).

The presented scheme which intends to enhance forecast skill in NWP
models, implements genetic algorithms to calibrate its NWP closure pa-
rameters. In the next section, evolutionary algorithms for optimization
problems and in particular, the basics of genetic algorithms are described
in more detail.
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3.2 Evolutionary Algorithms for Optimiza-
tion Problems

In practice, there exist many approaches, that have been applied for cal-
ibrating input parameters in di erent types of modelling and simulation
systems.

In particular, heuristic and evolutionary computing practices have
demonstrated over the years to posses desirable properties for parameter
calibration problem [84]. These have been considered as a successful prac-
tice to overcome irregularities contained widely in environmental models.

Evolutionary Algorithms, as a representative of this eld, have become
therefore, a standard strategy to solve complex search problems in environ-
mental modelling. Actually, this is due to the fact that they do not make
any assumptions about resulting tness landscape

That is, in searching problems, Evolutionary Algorithms, which are in-
spired by the biological evolution, consider all the individuals of a popu-
lation as candidate solutions for that underlying search problem. These
algorithms apply a tness function (also refereed to as cost function), by
which, the encountered solutions are evaluated. Then, evolution is regarded
as a repetitive process, applying genetic operators in a consecutive manner.

On the other hand, Genetic Algorithms (GA), as one of Evolutionary Al-
gorithms s practices, have been evolving as the best investigated and most
popular algorithms to solve parameter calibration problem in environmen-
tal models. Other approaches of Evolutionary Algorithms have been also
applied for such calibration problems, however, these approaches (e.g., Ge-
netic Programming and Neuroevolution) are known to be less generic, and
more suitable to be applied in di erent problem domains.

In environmental modelling, however, GA are applicable and widely
applied applied to optimize model parameters [88], 89, [0, 9T, [92].

In the following section, a description of the basic information of Genetic
Algorithms is provided. Including the most important genetic operators
and their functionalities.

3.2.1 Genetic Algorithm Basics

As outlined in Section Genetic Algorithms are considered as the most
popular approaches applied to solve parameter estimation problem in en-
vironmental models. As it has been presented in [93], GA are an e ective
tool for parameter optimization in environmental modelling due to their
remarkable properties: they are able to rapidly locate optimal solutions,
even for large searching spaces, and especially suitable for application in
problem domains that have a complex tness landscape.
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GA are generally considered as a global population-based search heuris-
tic, which mimic the process of natural evolution. That is, they repeti-
tively apply operators which include elitism, selection, tness calculation,
crossover, mutation and reinsertion over the involved solutions, referred to
as individuals. They usually evolve individuals in a targeted population of
individuals for a large number of generations, until a stopping criterion is
met. The tter individuals of a population survive and transmit their prop-
erties to o spring, thus replacing poor solutions and increasing the average

tness.

The operational sequence of the application of GA for parameter cali-
bration in environmental modes is depicted in Figure 3.1

Original Input
Parameters

parameter |
parameter 2

parameter 3 —3 |nitial Population
parameter n

_____________________________ i ¢

Selection < Fitness Calculation i« New Population
y ! %

Crossover Elitism

Mutation > Reinsertion

Figure 3.1: Operational sequence of the implementation of GA to calibrate input
parameters.

That is, a GA normally operates over a population of individuals, with a
certain size. Each individual (commonly denoted by chromosome ) in the
targeted population represents a partial parameter solution. Whereas these
individuals are made up of a set of parameter values, as such, an individual
is a combination of a set of attributes having certain values, referred to as
gens (parameter 1, parameter 2, to parameter n as shown in gure .

The gens of each chromosome are encoded as real values within a pre-
viously prede ned range. Usually, individuals are initialized randomly in
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the rst population, hence, genes are assigned with random vales that fall
within the prede ned lower and upper pounds.

GA operators, as seen in the gure, are applied to produce o spring and
create new individuals, maintaining genetic variety. Typically, the three
main operators of GA are selection, crossover, and mutation, which operate
over chromosomes in order to reproduce tter chromosomes for subsequent
generations. Following, the main operators of the GA are described in more
detail.

Selection

The selection operator of the GA is responsible for determining which indi-
viduals will be selected for reproduction, as well as the number of o spring
to be produced. Typically, individuals of a population are selected apply-
ing many techniques, which include tournament, roulette wheel, or local
selections.

The mostly used is the roulette wheel selection, where the selection
process depends on the tness of each individual. It operates over these
individuals de ned by their tness, when the wheel goes through these
individuals, the probability of an individual to be selected is relative to its

tness, as such, the tter an individual, the more probable to be selected.
It should be highlighted that in the presented work, the roulette wheel
technique is used for the selection operator in the applied GA.

Crossover

After selection, crossover is applied to generate o spring by exchanging
segments (gens) from the selected chromosomes (generally referred to as
parent chromosomes). It is supposed that the resulting individuals will

inherit the favorable parts of their parents. Nevertheless, usually some
selected chromosomes are reserved for the next generation without cross-
ing it over, this process is generally known as the elitism, which intends
to retain n (n > 1) most promising selected individuals to be reproduced
for the next generation without any further change in their gens.

On the other hand, there are many crossover types; one, two, or multi-
point crossover which could be applicable. A certain type could be chosen
according to the characteristics of the individuals in each domain problem.
These types de ne the number of segments (gens) are to be exchanged
during the cross operation.

Crossover operators are normally con gured to a certain probability, re-
ferred to as crossover probability . This probability determines how often
crossover is performed over a selected set of individuals. The implementa-
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tions however, recommend a crossover probability of 0.6 to 0.7, by which,
GA normally do have better performance.

In the presented work however, one and two-point crossover are applied
in the used GA, as well, the probability is chosen to be within the pre-
mentioned ranges.

Mutation

In order to increase the population diversity, mutation is applied in GA.
As in nature, mutation occurs very infrequently, and can often result in
a weaker individual. Occasionally, however, a better individual could be
obtained.

Actually, besides crossover, mutation process in GA is regarded the most
important operation, because the performance of GA is highly in uenced
by these two operators.

As it has been stated before, it is intended to increase the diversity of
the population by the implementation of mutation, that is done by per-
turbing some gens in some individuals after realizing the crossover process.
Typically, this operator is con gured to have very low probability. Actu-
ally, applying a mutation process can prevent that the algorithm becomes
stuck in local optima.

Following, the tness evaluation, which is a fundamental part of GA is
described.

Fitness Evaluation

The quality of each individual (each possible solution), is evaluated by the
so-called tness function. Actually, this function is a problem dependent
function, by which, the goodness of possible solutions are evaluated by their
in uence in reducing the irregularities and enhancing the performance in a
certain model system. This work uses a statistical tness function, which
is widely used in evaluating the quality of weather predictions.

On the other hand, more than one tness function are applicable in GA.
That is, a GA application can use more than tness function, where the
resulted algorithm is widely known as multi-objective genetic algorithm.

In summery, It is widely agreed that GA are successful optimization
methods for calibrating input parameters in environmental models. These
algorithms operate on a population of possible solutions iteratively, that
is, they start by selecting randomly a set of possible solutions/individuals,
then, they evaluate these individuals according to a prede ned tness func-
tion, operators like crossover and mutation are consequently applied to
reproduce an enhanced set of individuals to a next generation of solutions,
this is repeated many times until a certain prede ned criterion is met.
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Basing on the ideas of the outlined topics; both parameter estimation
approaches, especially Genetic Algorithms, together with the concept of the
Ensemble Prediction System method for weather prediction enhancement,
a new methodology was developed aiming at improving forecast skill in
weather prediction models by optimizing their input parameters. Following,
the proposed methodology is discussed in the next section.

3.3 Genetic Ensemble

In this section, the proposed prediction scheme is presented and described
in detail. The principles of the proposed scheme depends on the basics of
EPS (cp. Sections

As it has been stated before, the introduced methodology uses evolu-
tionary computing methods, particularly, Genetic Algorithms in order to

nd the most timely optimal values of model closure parameters that ap-

pear in physical parametrization schemes which are coupled with NWP
models. In order do that, a new phase is aggregated to the classical pre-
diction scheme, which we call the calibration phase, in which, GA methods
are used to nd out optimal values of NWP model closure parameters.

Firstly, the traditional way of weather prediction process is summarized
in Figure As it can be seen in the gure, the traditional prediction
scheme consists of a NWP model and a set of input data. The model is
provided by input weather initial and boundary conditions, and also by
certain values of model closure parameters (those which normally belong
to coupled physical schemes).

Considering that the actual time (now) is time ¢; (as depicted in the

gure), in order to predict weather variables for the next hours or days, i.e.,

at time t;y,, a numerical weather prediction model gets both initial and
boundary conditions as input, as well as model closure parameters given for
time ;. These values are entered into the model, which then is integrated
over computing facilities, to return the predicted values of weather variables
at time ¢;4,.
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Prediction

A

NWP INPUT at (t;)

—

Initial Conditions (t;)

t i
Boundary Conditions
Closure Parameters -} 5 BB

Figure 3.2: Classical weather prediction scheme by NWP models.

One execution of this classical prediction scheme is considered as a de-
terministic prediction, i.e., one single set of initial weather conditions and
one combination of model closure parameters are processed by the NWP
model to predict the future values of the weather. In the case of EPS, vari-
ous sets of initial conditions (a distribution of perturbed initial conditions)
are processed by the model, each of which in an independent forecast. The
same happens for an EPS which counts for model closure parameters.

Due to the uncertainties in both initial conditions and model closure
parameters ('physics’ parameters) in NWP models, it is quietly often ob-
served, that the forecasted values of weather variables tend to differ from
the real observations of the same variables to a greater or lesser extent.
As the prediction error accumulates gradually as the prediction time ad-
vances, deviations between real weather behaviour and forecasted weather
variables become ever more significant. One reason for this incidence is
that the processing of the classical prediction scheme is based upon one
single set of input parameters or initial conditions, or in EPS, a limited set
of input parameters and initial conditions, which for sure, do not represent
a reasonable distribution of possible initial states of the weather.

In the next subsections, the Genetic Ensemble prediction scheme (G-
Ensemble) for weather forecasting is introduced, which intends to calibrate
NWP closure parameters in order to overcome the limitations imposed by
EPS. Precisely, different versions of G-Ensemble scheme will be discussed,
as well, a description of the implemented evaluation approach to compare
errors of forecasts is provided. Finally, a parallel version of G-Ensemble
scheme is presented.
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3.3.1 G-Ensemble Prediction Scheme

To improve closure parameter quality and enable an automatic estimation
and calibration of model input parameters for weather predictions, a new
prediction scheme composed of two phases is developed. By doing so, an
intermediate calibration phase in the style of feedback control systems is
aggregated to the classical prediction scheme, as such, the quality of the last
prediction outcome is evaluated comparing it to the really observed values
of weather variables, before every new prediction step. Consequently, the
set of input parameters is gradually re ned. The approach is designed in a
way that any set of NWP model closure parameters can be steered.

It should be mentioned however, that some similar two-phase prediction
schemes were developed in order to calibrate input parameters in other areas
of environmental modelling and di erent simulation systems. In a previous
work in this university, Abdalhaq in [94] [05] proposed a similar scheme to
calibrate input parameters for wild re models. Other works dealing with
similar parameter problems could be found, e.g., [96l [07]. The two-phase
prediction scheme, as demonstrated in the previously mentioned works, has
a strong potential to signi cantly enhance the quality of input parameters
and hence to improve the prediction result.

The proposed scheme, which is called G-Ensemble consists of two
phases: calibration phase and prediction phase as depicted in Figure
B3

Considering that ¢; is the instant time from which the weather variables
are going to be predicted, i.e., prediction is done within the period (¢;,t;1x),
calibration phase starts at a time prior to prediction time and ends at time
00:00 (t;) of prediction period, i.e., calibration is done within the period
(to, ts).

During calibration phase, the genetic algorithm (parameter estimation
method) is applied to search a set of input parameters values that would
have reduced prediction error of a weather variable compared to real obser-
vations of the same variable at time ¢;. The subsequent prediction phase
then uses the encountered set of parameters to predict the weather variable
the next time ¢,,.
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’ Calibration Phase u Prediction Phase |

time: to

Initial Con. (t;)
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Figure 3.3: G-Ensemble: two-phase prediction scheme. NWP is a numerical
weather prediction model, ¢; is time 00:00 of prediction process, to is a time
instant prior to prediction phase, tit, is the future time to be predicted. Oy
is an observed weather variable at time ¢;, and Py is the predicted value (the
value to be predicted at time t;1r ) of the same weather variable.

Basing on EPS principles, the process of closure parameter estimation
in calibration phase proceeds as follows:

1. at the beginning of calibration phase (time tg in g. (3.3): a sample
of the targeted parameter values from ensemble proposal distribution
is generated (perturbations in closure parameter values);

2. the generated parameter values are inserted to the ensemble predic-
tion model,;

3. an ensemble of forecasts (the prediction model is di erent for each
ensemble member regarding the targeted parameter values), is con-
ducted to predict weather variables at time t;, where real observations
are available;

4. evaluation of a tness function for each ensemble member is done at
time t;;

5. genetic algorithm functions (selection, crossover and mutation) are
used to generate a new ensemble distribution from the set of combi-
nations of closure parameters which score better predicting at time
t;; and
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6. the process is repeated iteratively until an acceptable error value, or
a prede ned number of iterations is achieved.

At the last iteration in the calibration phase, the values of closure pa-
rameters, which produced the least error of prediction by the end of the
phase, i.e., the ensemble member with the best forecast skill score at time t;
as shown in Figure|3.3] is selected to be used in prediction phase. More de-
scription about the prediction phase will be described later in this chapter
(cp. Subsection [3.3.3)).

That is, the objective of the additional calibration phase is to solve an
inverse problem: Find a parameter con guration such that, given this con-

guration as input, the model output matches real variable observation.
Having detected the model input that best describes the current environ-
mental conditions, the same values, it is argued, could also be used to
describe best the immediate future assuming model stability during the
following prediction interval.

3.3.2 Error Evaluation- Fitness Function

A relevant point to be considered in the calibration phase is the error def-
inition being one of the core elements of this phase. In this work, two
di erent error functions are proposed, one referred to as Single-Variable
and the other referred to as Multi-Variable. Depending on the error func-
tion used, we have designed two G-Ensemble strategies: Single-Variable
G-Ensemble and Multi-Variable G-Ensemble, which are described below.

Single-Variable G-Ensemble

The calibration phase is conducted with the goal of enhancing predictions
for a single weather variable. The error function for the evaluation of ensem-
ble members in the used GA is the Root Mean Square Deviation RMSD
or Error RMSE, shown below in Equation [3.1] This error function is
a frequently-used measure for the evaluation of weather predictions [9§],
which measures the di erences between values predicted by a model or an
estimator and the values actually observed from the variable being esti-
mated.

In RMSE equation, s is an observed value of a variable z and xp..
is the predicted one for the same variable.

?zl(xobs,i - -rpre7i)2
n

Using RM SFE error in the calibration phase limits G-Ensemble scheme

to be oriented to enhance predictions for one weather variable at a time.

RMSE =

(3.1)
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For example, we can use it to improve predictions of Temperature or Pre-
cipitation, but not for both at the same time. This occurs because the error
used produces a value of the variable unit that cannot be compared with
other variables. In order to overcome such a drawback, we proposed an
alternative error function, which we refer as Multi-Variable G-Ensemble.

Multi-Variable G-Ensemble

The calibration is done with the goal of enhancing the prediction of multiple
weather variables at the same time. To bypass the limitation imposed by
RMSE error, the Normalized RMSE is used, see equation (3.2]).

2 i1 (@obs,i—Tpre,i)?

NRMSE = - (3.2)

Lobs(maz) — Lobs(min)

The Normalized RMSE (referred to as NRMSE) is the value of
RMSE divided by the range of the observed values of a certain variable.
NRMSF indicates the error percentage of the predicted value of a certain
variable, compared to the range of its observed values. In order to consider
more than one variable at a time, we evaluate NRMSE for all variables,
and then, we consider the addition of all of them as the Multi-Variable error
function. For example, the N RM SE of a model that predicts Temperature
(T') and Precipitation (P) is the percentage obtained by the summation of
two Percentages: NRMSE(T) and NRMSE(P), as shown in equation

B3).

Error = NRMSE(varl) + NRMSE(var2) = value% (3.3)

Therefore, the calibration phase, and particularly the GA, considers this
error function as the objective function used to sort the intermediate indi-
viduals of the ensembles.

3.3.3 Prediction Phase

As it has been described in the previous sections, the output of the calibra-
tion phase of G-Ensemble scheme is a set of combinations of NWP closure
parameters, those which were being re ned and thus, scored better forecast
skill during the GA iterations.

That is, once the calibration phase is nished, it is the turn of the
prediction phase. At this point, there are two alternatives to conduct a
weather prediction process, described as follows:

56



3.3. GENETIC ENSEMBLE

G-Ensemble Set

Using this strategy, all the combinations of NWP closure parameters which
are produced in the last iteration of the calibration phase, will form together
an ensemble forecast in prediction phase. That is, each combination is
considered to be an ensemble member and will be executed independently.
As in EPS, the nal prediction is represented by the average of all the
results achieved by all ensemble members.

It is supposed that the prediction result of the forecasts of these cali-
brated combinations of NWP parameters, will be more accurate than the
prediction result produced by the classical EPS, using non-calibrated com-
binations of NWP parameters.

Best Genetic Ensemble Member (BeGEM)

This strategy adapts a deterministic forecast, i.e., one single forecast is
to be conducted in prediction phase. Precisely, at the last iteration in
the calibration phase, the values of closure parameters, which produced
the least value of RMSE or NRMSE, i.e. the ensemble member with
the best forecast skill score at the end of calibration phase, is selected
to be used in prediction phase. This ensemble member is called: Best
Genetic Ensemble Member (BeGEM). Our hypothesis is that, for short-
range weather forecasts, if the forecast skill is improved in the calibrations
phase by a set of a calibrated closure parameters, then, the same closure
parameter values will also improve forecast skill during prediction phase.

However, the pre-described scheme (G-Ensemble), evaluates ensemble
members in the calibration phase using a tness function by considering
one observation point for a certain weather variable. In other words, the
evaluation of each ensemble member is done once at the end of calibration
phase, i.e., at time ¢; as shown in Figure [3:3] In the next Subsection,
an enhanced version of G-Ensemble is presented, by which, a window of
observations can be used to evaluate ensemble members during calibration
phase rather than one single observation point.

3.3.4 G-Ensemble - Calibration Window

It is supposed that evaluating ensemble members during calibration phase
according to one single observation for each weather variable is not that
fair. Basically, due to the stochastic nature of weather, some ensemble
members may change their performance over time. Hence, to help the used
GA to take better decisions when selecting the set of ensemble members
that will reproduce a consecutive generation of ensemble members in each
iteration, G-Ensemble scheme is extended such that, it becomes capable to
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evaluate ensemble members according to a window of observations rather
than one-point observation.

Back to Figure [3.3] ensemble members are evaluated according to real
observations available at t;. In contrast, in the extended version of G-
Ensemble as shown in Figure (3.4} ensemble members are evaluated accord-
ing to observations available in more than one point during Calibration
Phase.

l Calibration Phase I Prediction Phase |

Initial Con. (t;)
Boundary Con.

Initial Con. (t)
Boundary Con.

b 4 {ERROR T | [ERRORty | | ERRORE; T

Calculate average error and Calibrate

Parms.
;. Calibration

Feedback and iterate o a stop condition *  Method : af last iteration
s (GA) S

Figure 3.4: Extended G-Ensemble scheme: NWP is the a numerical weather
prediction model, ¢; is time 00:00 of prediction process, o is a time instant prior
to prediction phase, t;tn is the future time to be predicted, t, and t,, are time
instants within the calibration phase where real observations are available as in
ti, Oy 1is an observed weather variable and Py is the predicted value of the
same variable.

If prediction is to take place from time t; to t; +n, calibration phase is to
be conducted in the interval (¢g,t;), however, observations could be available
at times t,, t,, (any model time steps that fall within calibration phase),
as well as at time t;. Being these observations available, the GA tness
function (cp. Subsection considers the average error of the three
error values calculated at times t,, t,, and t;, for each ensemble member
according to the three observations available at the same time instants.

The main goal behind this extended version of the G-Ensemble, is to
better guide the used GA in the selection process, as such, by consider-
ing more than one single observation point, ensemble members could be
evaluated more fairly during calibration phase.
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In the next Subsection, another extension of the G-Ensemble is pre-
sented, by which, an intelligent calibration process is introduced, which
directs the calibration phase towards optimizing a certain set of model clo-
sure parameters relative to each weather domain characteristics.

3.3.5 Multi Level Genetic Ensemble (M-Level G-
Ensemble)

The ultimate goal of the proposed G-Ensemble is to improve forecast skill
in NWP models. This is done by calibrating the values of their input
closure parameters, to which NWP models are known to be highly sensitive.
These parameters belong to the di erent physical parameterization schemes
(which are coupled with NWP models), thus, calibrating their values needs
a further knowledge of their meaning and their relativity to the targeted
domain where the prediction process is taking place.

Actually, this is because there are various parameterization schemes
whose closure parameter values depend on the characteristics of the tar-
geted domain. However, an e ective method of calibration should be suit-
able for all domains on one hand, and on the other hand, it should be
automatic, as such, capable to adapt itself to the particular characteristics
of each targeted domain.

To discuss the proposed G-Ensemble which will be directed to solve
this problem, we focus our study on one example of these parameterization
schemes; the land surface models (LSM), which will serve as a prove of
concept of our method. It should be mentioned however, that the proposed
scheme can be used in all other parameterization schemes to solve the same
problem, such as the case of planetary boundary layer parameterization
schemes (cp. Subsection [2.1.3)).

Being that said, in the case of the closure parameters used by the coupled
LSM, normally prediction domains exhibit heterogeneity in their surface
characteristics (cp. Subsection . That is, the terrain of a certain
domain (the rst mesh of the 3-D grid) could include di erent vegetation
types, and di erent soil textures. As it has been shown in Figures [2.14
and for each landuse (vegetation) category, there are di erent values
of vegetation parameters, as well, for each soil type category, there are
di erent values of soil parameters. So, we are facing a problem summarized
as follows:

1. each domain normally include various categories of landuse and soil
type.

2. each category of landuse, has di erent values of closure parameters.
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As well, each soil type category has di erent values of closure param-
eters.

The question to be answered in this case, which set of parameters should
be targeted by the calibration process?

In order to solve this problem, before starting the process to enhance
prediction, the parameters to be calibrated should be selected. In other
words, it is necessary to determine exactly what class of parameters to
calibrate. For example, it does not make sense to optimize parameters
related to Grassland category in a region that has 100% of it s terrain as
water.

As it has been previously described, NWP model starts a process of
prediction over a certain zone using the initial and boundary conditions
de ned by their location (longitude, latitude and vertical distance) for each
grid point of the domain. NWP models are also provided by terrain maps,
which are available at high resolutions globally. These maps de ne the sur-
face and topographical characteristics of the targeted domain, as such, the

rst mesh grid points of the domain are assigned with a number indicating
its landuse category (LU-index) and with another number indicating its
soil type (SLTYP).

During prediction process, the NWP model needs surface parameter
values for each surface grid point in order to calculate the evolution of the
other weather variables. These parameter values depend on their categories,
and for each category, the NWP model is provided by its default parameter
values which are provided in stand-alone tables like those shown in Table
3.1] (complete tables used by WRF models are provided in gures and
2.16)).

Then, for each surface grid point, the NWP model reads its assigned
landuse category LU-index and, goes to LAND USE table to obtain the
values of the surface physical parameters corresponding to that category.
The process is done for all surface grid points and the same is done with
soil texture parameters.

As shown in Table there are 33 landuse categories, each of which
has 7 surface closure parameters, and there are also 19 soil type categories,
each of which has 10 closure parameters. Prediction enhancement must
look for optimal values of these input parameters. Therefore, the rst step
consists of selecting which category or categories correspond to the region
terrain where weather prediction process is going to take place.
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®

Land Use Parameters (7)

LU-index(33) NAME ALB SLMO SFEM
1 Urban land 15. .10 .88
2 Agriculture 17. .30 985
3 Range-grassland  18. .50 985
4 Deciduous forest 18. .25 .96
33 Industrial 10. .10 .97
B
Soil Parameters (10)
SLTYP(19) NAME BB DRYSMC Fl1
1 Sand 2.79 0.010 -4.472
2 Loamy Sand 4.26 0.028 -1.044
3 Sandy Loam 4.74 0.047 -0.569
4 Silt Loam 5.33 0.084 0.162
19 White Sand  2.79 0.010 -4.472

Table 3.1: @: A snapshot of LANDUSE.TBL (landuse parameters: 7 parameters
for 33 landuse categories). B): A snapshot of SOILPARM.TBL (soil parameters:
10 parameters for 19 soil categories). Both tables are read by WRF model when
NOAH LSM is coupled to calculate surface parameterizations. See [65] for more
description of landuse and soil parameters.

In order to do that, we propose the Multi Level Genetic Ensemble (M-
Level G-Ensemble) approach, which aims not only to select the targeted
parameters to be calibrated, but also to enable the calibration phase to
optimize more than one level of these parameters, i.e., to calibrate clo-
sure parameters which belong to more than one landuse and soil texture
categories related to a certain domain.

For that, a new phase is aggregated to to the previously presented G-
Ensemble in Subsection , this new phase is called parameter selection
phase, which is described as following.
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Parameter Selection Phase

The introduced scheme of the M-Level G-Ensemble approach is depicted in
Figure [3.5] at parameter selection phase, a small program is developed to
read the gridded data related to the domain surface grid points, then LU-
index and SLTYP are extracted for each grid point and a counter is applied
to each LU-index and SLTYP to nd how many domain grid points are of
each certain landuse category and soil texture type.

l Parameter Selection Phase ” Calibration Phase _

time: to

Initial Con. (t)
Boundary Con. Initial Con. (t;)
Terrain Data Boundary Con. & Terrain

{ Calibrated Closure  }
Parms (level 1)

I \ Calibrate
+ Closure Parms (level 1) § l H Parms (level n)

i Closure Parms (leveln) T | e

j' Calibration
Feedback and iterate to a stop condition :  Method ! at last iteration
n GA)

Figure 3.5: M-Level G-Ensemble: three-phase prediction scheme. NWP is a
numerical weather prediction model, t; is time 00:00 of prediction process, to is
a time instant prior to prediction phase, t;t, is the future time to be predicted.

Oy is an observed weather variable at time ¢;, and Py is the predicted value
(the value to be predicted at time ¢;+, ) of the same weather variable.

As a result, a table is constructed including each landuse and soil type
category, and each of which will have the number of domain grid points
indexed to that category. Table registers are ordered in a descending order:
the rst landuse category mostly repeated within the domain grid points is
referred to as the rst dominant landuse category, the second is the second
dominant, and so on. The same is done for the soil type categories. Table
shows an output of parameter selection phase.

Then, by the end of this phase, the categories of landuse and soil pa-
rameters for a certain domain are classi ed and ordered according to their
weight (how often they are repeated in the targeted domain grid points).
The rst dominant category parameters of both landuse and soil parameters
is referred to as rst level parameters.

It is supposed that nding optimal values of the rst level parameters
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will have more e ect in reducing prediction error than the parameters of
the second, third, to the end of the rest of categories.

For example, suppose that a weather prediction process is to be con-
ducted in a certain domain. The domain closure parameters of its terrain
are classi ed by the parameter selection phase according to its dominant
landuse and Soil categories as shown in Table [3.2]

Level Land-Category Coverage Soil-Category Coverage

1 15 -Mixed Forest  37% 6 -LOAM 41%
2 27 -White Sand 12% 15 -Bedrock 23%
3 16 -Water Bodies 9% 14 -Water 9%
4 7 -Grassland 5% 10 -Sandy Clay 8%
5 Rest 3% Rest 19%

Table 3.2: Parameter Category Selection: Level (1) register contains the landuse
category (15) which covers 37% of the domain and the soil type category (6)
which covers 41% of the same domain. Register (5) represents the rest of landuse
and soil type categories existing in the domain with their respective percentage
of coverage.

A calibration process considering the rst level parameters, i.e. 7 pa-
rameters of the the landuse category (Mixed Forest) and 10 parameters of
soil type category (LOAM) will consider these parameters as a single indi-
vidual in a population of individuals, each of which has di erent values of
these 17 parameters. In this case, the GA deals with 1-Level parameters
and its individual is shown in Figure [3.6] (a).

1-Level GA Individual
| 1st Landuse Cat. Parms | 1st Soll Cat. Parms

(a)

2-Level GA Individual
| 1st Landuse Cat. Parms | 1st Soll Cat. Parms |

| 2nd Landuse Cat. Parms | 2nd Soll Cat. Parms |

(b)

Figure 3.6: 1-Level GA individual in (a), and M-Level GA individual in (b).
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The process of calibration at this point seeks to nd the optimal values
of these 17 parameters. In evolutionary computing terms, the GA used to
deal with this case is usually known as single chromosome GA.

Actually, this is what two-phase G-Ensemble does (cp. Subsections
[3.3.5), where the calibration phase is oriented to optimize closure param-
eters related to only one level, i.e., the closure parameters related to the

rst dominant landuse and soil type categories.

However, to consider the parameters of the other levels of categories in
the domain, a GA individual is constructed as shown in Figure (b), by
which, a 2-Level parameters constitutes a GA individual and the process
of calibration seeks to nd the optimal values of the combination of 34
parameters (17+17) divided in two levels, and so on for more levels.

That is, by applying this applying this approach, model closure param-
eters are selected automatically, and furthermore, more than one level of
these parameters could be calibrated, by which, the heterogeneity in land
surfaces of NWP domains (see [55 [50]) is considered.

3.4 Parallel G-Ensemble

As it has been described earlier (cp. Section , the problem of the un-
certainty in NWP initial conditions produces what is called imperfectness
in prediction accuracy. The previously mentioned methods, among others
are implemented to reduce the margin of the imperfectness in prediction
accuracy. However, the trade-o between cost (execution time) and pre-
diction accuracy is a crucial factor that should be considered to select the
most suitable enhancement method.

Our proposed scheme intends to improve prediction quality in NWP
models. However, a question still remains to be answered regarding the
amount of time that must be spent to get better predictions. And how
much time should be allowed under reasonable circumstances in practice?

Fortunately, most of NWP models are parallel programs, for example,
in [99] a study of scalability of WRF NWP model over HPC platforms is
provided. Other enhancement methods, such as EPS and 3D-Var, have
parallel versions that may bene t from HPC platforms.

However, EPS may exhibit signi cant limitations when executed in en-
vironments with relatively small number of computational resources. A
hypothetical situation where a prediction is needed for the evolution of me-
teorological variables for the next 20 hours might illustrate this limitation.
If we assume that the time of the parallel execution of that prediction is 1
hour over a set of 10 available computers, then an EPS with 20 or more en-
semble members will take more than 20 hours (as each ensemble member is
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a stand alone prediction), and the overall result will be useless in practice.

In order to provide an e ective enhancement method, it should be rst of
all feasible, as such, an enhancement in prediction quality could be obtained
within a reasonable waiting time.

Being that said, and by analyzing the proposed scheme, an overhead in
execution time could be produced by the Calibration phase. That is because
there is an added work to be done before prediction phase. However, it
should be highlighted that, by using the proposed G-Ensemble scheme, a
deterministic forecast could be used in the prediction phase, i.e., one single
prediction process with a calibrated set of closure parameters. In contrast,
an EPS system is conducted by a set of independent forecasts.

Additionally, G-Ensemble prediction scheme is paralleled by implement-
ing a Mater/Worker parallel paradigm, as shown in Figure (3.7). That is,
as it has been described earlier, the calibration phase of the G-Ensemble
approach consists of GA iterative operations over a population of individu-
als, these individuals are executed independently for each iteration, which
represent very short forecasts having di erent parameter value combina-
tions.

As it can be seen in the gure, this process is paralleled, as such, the in-
dividuals of each iteration (short forecasts) are distributed over the available
computing resources for execution and evaluation of their corresponding er-
ror. Then, results of all individuals are gathered back to the Master node,
where GA operations are executed. This is repeated as many iterations as
needed during the Calibration phase.

worker 0

* forecast simulation

s ™
Master

* evaluation: Error calc.

4 Population distribution

4 Population gathering
worker N

|#*GA operations
* forecast simulation

* evaluation: Error calc.

- J

Figure 3.7: Master/Worker paradigm for Calibration phase.
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It should be mentioned as well, that each individual in the calibration
phase is a short prediction simulation, which is by itself a parallel applica-
tion.

The ultimate goal of parallelizing the proposed scheme, is to get bene t
of the parallel computing platforms, in order to reduce the overall waiting
time needed for an improved prediction results.

3.5 Summery

Through this chapter, a new prediction scheme was presented, which aims
at improving forecast skill in short and medium range weather forecasts,
over the existing enhancement methods. The proposed scheme, which is
called G-Ensemble, uses evolutionary computing techniques, particularly,
genetic algorithms to calibrate NWP model closure parameters. These
closure parameters are model input parameters which belong to physical
parameterization schemes that are coupled with modern NWP models.

Actually, these parameters are tuned manually in most operational
weather prediction centers, however, owing to the sensitivity of NWP mod-
els to the values of these parameters, it is of paramount importance to
develop an e ective and automatic approach capable to nd optimal val-
ues of these parameters.

The presented scheme is developed in di erent versions, each is designed
to deal with a certain particularity of the NWP process:

1. G-Ensemble (1-point observation): which is a two-phase predic-
tion scheme, where a combination of closure parameters are optimized
within an aggregated calibration phase. The calibration process is re-
alized using one single observation, available at the end of calibration
interval. As such, all the possible combinations of closure parame-
ters are used in short forecasts, each of which is evaluated using the
available observation, then, GA operators are applied to reproduce a
next generation of parameter combinations. This process is repeated
iteratively until satisfying a prede ned condition.

2. G-Ensemble (window observations): an extended version of the
G-Ensemble, where a set of observations are used in the evaluation
process during calibration phase, instead of one single point observa-
tion. This approach is designed in order to fairly guide the used GA
in deciding which are the best combinations to be selected for the
next iteration.

3. M-Level G-Ensemble: this approach is developed in a three-phase
scheme, in order to consider more than one combination of closure
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parameters in the calibration process. This is accomplished by adding
the parameter selection phase, which makes this approach capable of
selecting automatically more than one level of model parameters to be
calibrated, the selection process is done considering the particularity
of the domain, that is, the selected parameters for one domain, would
be totally di erent of the targeted parameters for another domain.

Besides these introduced approaches, G-Ensemble is designed to im-
prove forecast skill for a set of weather variables together, which could be
considered a signi cant contribution, that is because generally, enhance-
ment methods are applied to improve forecast skill for a certain weather
variable. However, by implementing a normalized evaluation tness func-
tion in the calibration phase, more than one weather variable could be tar-
geted by the proposed scheme, this approach is called the Multi-Variable
G-Ensemble.

Additionally, the whole scheme is paralleled using a Master/Worker pro-
gramming paradigm, this is done in order to enable the proposed scheme to
get bene t of nowadays parallel computing environments, with the ultimate
goal of reducing its execution time.

Finally, the output of the calibration phase of G-Ensemble scheme is
a set of combinations of NWP closure parameters, those which were be-
ing re ned and thus, scored better forecast skill during the GA iterations.
Having this set of the calibrated combinations, two alternatives are feasible
for conducting the prediction phase, the rst is by running all these cali-
brated combinations in an EPS, which we call the G-Ensemble Set, and
the second is to run a single deterministic forecast which is the ensemble
member with the best forecast skill score at the end of calibration phase.
This alternative is called the Best Genetic Ensemble Member or BeGEM.
In the next chapter, the proposed prediction scheme with all of its ap-
proaches/versions are tested and evaluated over a real weather prediction
case.
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Chapter 4

Experimental Evaluation

During the presentation of this work, weather prediction concept has been
clari ed, as well as the problem of predictability in numerical weather pre-
diction models. Furthermore, a study of ensemble prediction system (EPS),
as one of the most successful method for enhancing weather prediction pre-
dictability in the last two decades, was presented. Omn the other hand,
powerful parameter calibration approaches which deal with the problem
of uncertainty in simulation input parameters were discussed, especially,
evolutionary computing techniques and Genetic Algorithms (GA).

Additionally, G-Ensemble scheme, the proposed methodology to im-
prove forecast skill in short and medium range weather predictions has been
presented and discussed precisely. Thus, through the subsequent sections
of this chapter, an evaluation of the overall performance of G-Ensemble in
predictions of a real wether case will be presented and discussed in detail.

The objectives of the following experimentations are to show the en-
hancement in weather predictability gained by using the presented Genetic
Ensemble scheme (G-Ensemble). As well, to demonstrate that the gained
accuracy in the predictability is not time consuming and does not implicit
added computational overhead.

Additionally, to evaluate the bene ts achieved by applying G-Ensemble
scheme of weather prediction enhancement in scenarios of limited comput-
ing resources, where other enhancement methods, such as EPS, could not
be feasible in scenarios of limited computing resources.
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In order to achieve the pre-mentioned objectives, G-Ensemble scheme
by its various versions (cp. Section is used to predict weather variables
o the following real weather case: Hurricane Katrina, which occurred in
2005 in the Gulf of Mexico, and known as the strongest, deadliest and most
destructive storm to impact the coast of the United States during the last
100 years. Hurricane Katrina historical data are well known to the scienti ¢
community, and widely used for experimentation and research [I00].

In the provided experimentations, the results of G-Ensemble predictions
are compared to the traditional ensemble prediction system (EPS), which
is referred to as classical EPS | as such, these classical EPS forecasts are
initiated with the same initial ensembles used by G-Ensemble, i.e., with a
non-calibrated set of NWP closure parameters.

Additionally, the parallel version of G-Ensemble is evaluated over a par-
allel computing architecture, on the other hand, the scalability of the pre-
sented scheme over a HPC environment is presented and discussed. Finally,
many con gurations of the proposed G-Ensemble scheme are tested, these
con gurations are related to the settings of the used Genetic Algorithm in
its calibration phase.

In the next section, a description of the con guration of G-Ensemble is
provided, along with the computing platform speci cations.

4.1 System Configuration

The proposed G-Ensemble scheme implements Genetic Algorithms in its
calibration phase. During the conduction of these experiments, speci ¢
settings of the Genetic Algorithm were xed, if not, it will be indicated
otherwise in the individual case. These settings are listed following:

e An elitism rate of 5% for all GA executions, maintaining by this rate
the 50% of the individuals (most promising ones) to be regenerated
in the consecutive iteration of the applied GA.

e Roulette wheel selection and two-point crossover were applied. The
crossover probability was set to 0.7 in all executions, however, both
crossover probability and types are tested in di erent cases and will
be indicated by occurrence. The probability rates of the applied
crossover fall within the recommended rates of this operator where
GA generally tends to have a maximized performance.

e Due to the relatively small size of the initial populations of individu-
als which are adapted in our experiments, mutation probability was
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set to 0.2. By applying this probability value, it is intended to over-
come the limitation imposed by the relatively small size of GA initial
populations.

e During GA executions, initial populations are initialized randomly,
respecting the given upper and lower bounds of each parameter (gen).
The same populations are used to initiate both the G-Ensemble and
the classical EPS.

The targeted weather variables to be enhanced by the proposed scheme
are selected for both importance and their relation with the calibrated
model parameters. These six variables are:

e Accumulated Precipitation (mm),

e 2-meter Temperature (K),

e Sea Surface Temperature (K),

e 10-meter Wind Velocity components U10 and V10 (m/s), and
e Latent Heat Flux LHF (w/m2).

On the other hand, the used NWP model in all experiments to predict
these variables is the Weather Research and Forecasting model (WRF).

Additionally, all the demonstrated results represent the average of a set
of executions, more than three execution in the majority of the experiments.
This is done to assure that the obtained results are reliable by avoiding the
randomity which could be produced in GA operations in some cases.

Finally, all experiments were executed on a cluster of 32 computing
nodes (128 CORES) (Intel(R) Xeon(R) CPU 5150 @2.66GHz 4MB L2, 8
GB Fully Bu ered DIMM 667 MHz.

4.2 Hurricane Katrina Test Case

Hurricane Katrina - pictures shown in Figure - occurred on August
28, 2005 in the Gulf of Mexico. It is considered as one of the strongest
storms to impact the coast of the United States during the last 100 years.
Unfortunately, Katrina caused the death of more than 1,800 persons along
with a total property damage that was estimated at $81 billion (2005 USD)
[100].
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Figure 4.1: Hurricane Katrina: (a) Satellite picture of Katrina on Aug. 29, 2005
at 12:15 P.M, and (b) Flood caused by Katrina in New Orleans (USA).

The objective of the experiments is to predict the evolution of weather
variables from time: 12:00 h. of the day 28/08/2005 to time 00:00 h. of
30/8/2005 (a period of 36 hours in which the major e ects of the hurricane
were produced). The evolution of these weather variables is produced every
3 hours and the spatial resolution of Katrina domain was 12km.

To get predict weather variables at 12:00 h. of 28/08/2005, WRF is pro-
vided by initial conditions of the atmospheric state in the zone three hours
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before, i.e., NWP model started prediction from time 09:00 of 28/08/2005
in advance. For the proposed G-Ensemble scheme, the calibration phase is
conducted from time 00:00 of 28/08/2005 to time 09:00 of the same day.

Again, the targeted weather values for prediction, as described before
in Section are: Latent Heat Flux, Sea Surface Temperature, 2-meter
Temperature, 10-meter Wind Velocity components U10 and V10, and the
Accumulated Precipitation.

In the following subsections, the experimentations for Katrina test case
are described and analyzed.

Classical EPS predictability

Firstly, Figure [£:2] shows some experimental results for a classical EPS pre-
diction of 40 ensemble members, to predict (every 3 hours) the evolution
of: a) Accumulated Precipitation, b) Latent Heat Fluz, c) Sea Surface Tem-
perature, and d) 10 m. Wind Velocity Component.

The evolution of the values of these weather variables using EPS was
under-estimated in this case. Concretely, in many cases, EPS gives a pre-
diction error of more than 30% compared to observed values in a certain
hour.

For example, a prediction of the accumulated precipitation variable, as
shown in Figure [£.2](a), at hour 39. The observed value was (35 mm),
however, the predicted value using EPS was (24 mm), so, EPS in this
case produced about 32% of prediction error compared to the real observed
value. Consequently, it can be easily concluded, that there is a signi cant
margin of enhancement in prediction which could be achieved.

In order to enhance prediction for weather variables during the hurri-
cane, G-Ensemble was applied and compared to classical EPS prediction
results. Both G-Ensemble and classical EPS were ititialized by the same
set of NWP closure parameters.

Referring to the two tness functions in G-Ensemble (cp. Section
, the proposed scheme could be oriented to enhance predictions for
one weather variable applying Single-Variable G-Ensemble, or for a set of
weather variables together, applying the Multi-Variable G-Ensemble. In
the next subsection, Single-Variable G-Ensemble results are compared with
predictions of classical EPS for the same variables.
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Figure 4.2: Classical EPS prediction results compared to observed values: (a)
EPS vs. Observed Precip, (b) EPS vs. Observed Latent Heat Flux, (c) EPS vs.
Observed Sea Surface Temp, and (d) EPS vs. 10 m. Wind Velocity Component
(U10).

4.2.1 G-Ensemble: Single-Variable

Single-Variable G-Ensemble is applied on two different cases: to predict
Accumulated Precipitation weather variable as demonstrated in Figure
(a), and to predict V10 Wind Velocity Component as shown in Fig-
urd4.3l (b).

BeGEM and G-Ensemble set (cp. Section are compared with
a classical EPS conducted by the same initial ensemble members of G-
Ensemble scheme. The number of ensemble members in the experiment
was 40, and the Genetic Algorithm of the calibration phase was configured
to iterate 20 times.
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Figure 4.3: Classical EPS prediction results compared with Single-Variable G-
Ensemble for the prediction of (a) Accumulated Precipitation, and (b) Wind
Velocity Component (V10).

In both cases, with the same initial ensemble members, we obtained a
significant improvement in prediction quality for the targeted weather vari-
ables. It can be observed, that both the deterministic forecast (BeGEM)
and the ensemble forecast (G-Ensemble Set) produced by G-Ensemble
scheme, have reduced significantly prediction error for both variables com-
pared with the same results obtained by the classical EPS.

That is, a calibrated set of NWP closure parameters by the proposed
scheme, increases forecast still of the final prediction over a classical EPS
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which is initialized by the same initial ensemble members before calibration.
Moreover, the BeGEM, as a single deterministic forecast, produced even
more enhanced prediction results.

In the following subsection however, Multi-Variable G-Ensemble and G-
Ensemble (window) are also applied to enhance prediction results for a set
of weather variables.

It should be highlighted that, through the rest of this chapter, the com-
parison will be made between the BeGEM (a calibrated single deterministic
forecast) with the classical EPS approach.

4.2.2 G-Ensemble: Multi-Variable and Calibration
Window

As it has been described in Section [3.3:4] G-Ensemble scheme has been
extended such that, it becomes capable to evaluate ensemble members ac-
cording to a window of observations rather than omne-point observation.
That is, to help the used GA to take better decisions when selecting the
set of ensemble members that will reproduce a consecutive generation of
ensemble members in each iteration of the calibration phase.

In the subsequent experiments, prediction errors (RMSE and
NRMSE) produced during prediction phase of three ways of prediction
are compared;

1. G-Ensemble approach, where calibration phase considers ‘one-point
observation, at time 09:00 of 28/08/2005
(BeGEM (1 — point))

2. G-Ensemble extended approach, where calibration phase considers a
window of observations, at time 7:00, 8:00 and 09:00 of 28/08/2005
(BeGEM (window)).

3. EPS (referred to the classical EPS), which is used to refer to the av-
erage error of an ensemble forecast conducted by the initial ensemble
members used in the rst iteration of calibration phase (an ensemble
forecast such that the prediction model is di erent for each ensemble
member regarding the targeted parameter values, these parameters
are not calibrated).

Firstly, we show experimental results for two di erent cases: to predict
Accumulated Precipitation (results shown in Figure[d.14] (a), and to predict
Latent Heat Flux (results shown in Figure [£.14}(b)).

The Genetic Algorithm of the calibration phase was con gured to iterate
15 times over an initial population size of 40 individuals (initial ensemble
size).
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Figure 4.4: Single-Variable G-Ensemble: (a) RMSE error in prediction of vari-
able Acc. Precipitation and, (b) variable LHF. Results are of classical EPS,
BeGEM(1-point) and BeGEM(window) for both variables.

In both cases, with the same initial ensemble members used in the clas-
sical EPS case, a significant improvement in prediction quality is obtained
by G-Ensemble approach over the classical EPS. Additionally, it could be
also observed that better enhancements in predictions were obtained by
the extended G-Ensemble which considers a window of observations in its
calibration phase.
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Furthermore, Figure [£.5]illustrates the results of the same experiment,
but applying the Multi-Variable G-Ensemble strategy, in order to enhance
prediction results for a set of three variables together: Latent Heat Flux
LHF, 2-meter Temperature, and the Accumulated Precipitation.

21 30 39

0.5

NRMSE ERROR

0

12 48

Predicted Hour (Prediction Phase)

B EPS E BeGEM (I-point) Wl BeGEM (window)

Figure 4.5: Multi-Variable G-Ensemble; NRM SFE in prediction of variables: La-
tent Heat Flux LHF, 2-meter Temperature, and the Accumulated Precipitation.

Again, significant reduction of the NRM SFE was obtained in the pre-
diction of a set of weather variables together and, the extended version of
G-Ensemble, which considers a window of observations, produces a better
forecast skill.

Additionally, it is observed that the reduction in the NRMSE of the
three variables together by using the Multi-Variable G-Ensemble approach,
also provides an enhancement in the prediction of each weather variable
alone.
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In other words, all variables were better predicted when G-Ensemble
oriented to reduce the NRMSE of those variables together. To illustrate
these results, Figure shows how the corresponding prediction error of
each variable was reduced when the extended G-Ensemble was oriented to
reduce the NRM SFE of the three variables together.

22 -

€ o~
E E
-7 =
b 2
~ E
ﬂ-_ I E
b w
< 5
- ¢ w
=
=
-4 0 ™
12 21 30 39 48
Predicted Hour Predicted Hour
<~ EPS O BeGEM(I-point) <+ BeGEM(window) <= EPS O BeGEM(l-point) =+ BeGEM(window)

(a) (b)

RMSE T2 C°

?

=)

Iy

21 30 39 48

Predicted Hour

<~ EPS O BeGEM(l-point) <+ BeGEM(window)
(c)

Figure 4.6: RMSE prediction error of: (a) Accumulated Precipitation, (b) La-
tent Heat Flux LHF, and (c) 2-meter Temperature. Prediction using BeGEM
(1-point) and BeGEM (window) produced after 15 iterations of the calibration
phase of the Multi-Variable G-Ensemble.

The results obtained in these experiments approve our hypophysis that,
G-Ensemble leads to better estimation of closure parameter values when it
considers a window of observations rather than one single point observation
for the evaluation of its ensemble members (GA individuals) during cali-
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bration phase. Actually, we believe that the reason behind this is that, the
used GA in the calibration phase is better guided by more fairly error value
when this error re ects an interval of time rather than one single point, to
evaluate the performance of each ensemble member which determines its
probability to be selected for subsequent iterations of the GA.

4.2.3 Multi-Level G-Ensemble

M-Level G-Ensemble, as it has been described before (cp. Subsection[3.3.5),
is presented as a three-phase prediction scheme, which intends to enhance
weather predictions by calibrating more than one level of parameters, using
the Multi-Objective Genetic Algorithm. Concretely, the targeted parame-
ters to be calibrated, belong to the coupled Land Surface physical schemes.
These are relative to the category of each grid point of the surface mesh of
NWP domain.

In the case of Hurricane Katrina, major part of its surface is water,
however, some other parts of its surface are not. Figures and show
the dominant land use and soil type categories of Katrina domain.

The objective of the subsequent experiments, is to demonstrate that by
calibrating more than one level of these surface parameters, i.e., parameters
which belong to the second, third, etc. dominant categories, prediction
results are even better enhanced and forecast skill can be improved as more
levels of parameters are calibrated.
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Figure 4.7: Hurricane Katrina land use dominant categories.

In order to calibrate more than one level of these parameters, parameter
selection phase was executed over the domain, and its land use and soil type
parameters dominant categories were classi ed upon there occurrence as
shown in Figure [£.9]

Then, by having the categories classi ed by their occurrence in the
domain, M-Level G-Ensemble was applied rstly by the Single-Variable
strategy to predict: Acc. Precipitation (results shown in Figure [1.10}(a)),
and to predict Latent Heat Flux (results shown in Figure [£.10}(b)).

In both cases, with the same initial ensemble members used in the clas-
sical EPS case, a signi cant improvement in prediction quality is achieved.
Moreover, It can be observed as well, that more improvement in predictions
were obtained as more levels of parameters were calibrated.

The Genetic Algorithm of the calibration phase was con gured to iterate
20 times over an initial population size of 40 individuals (initial ensemble
size).
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Figure 4.8: Hurricane Katrina Soil dominant categories.

The M-Level G-Ensemble approach is also tested to enhance predictions
of a set of weather variables at the same time, by applying the Multi-
Variable G-Ensemble strategy, using the the normalized error NRM SFE in
calibration phase as the tness function of the GA. In this case, as it can
be seen in Figure [f.11] signi cant improvement in the prediction of a set of
weather variables together, was obtained.

Additionally, it can be observed that a reduction in the NRMSE of
a set of variables also provides an enhancement in the prediction of each
weather variable alone. In other words, all variables were better predicted
when M-Level G-Ensemble oriented to reduce the NRMSE of those vari-
ables together. To illustrate these results, we show in Figure [£.12] how the
corresponding prediction error of each variable was reduced when M-Level
G-Ensemble was oriented to reduce the NRM SE of six variables together.

It can be concluded form the obtained results, that M-Level G-Ensemble
achieves notable enhancement in prediction results as more levels of param-
eters are calibrated.
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Katrina Land Use Dominant Cats. Katrina Soil Dominant Cats.
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Figure 4.9: Katrina Landuse and Soil.

In the next Subsection, the parallel version of the proposed G-Ensemble
scheme is evaluated.
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Figure 4.10: Single-Variable M-Level G-Ensemble: (a) RMSE error in prediction
of Acc. Precipitation variable, and (b) Latent Heat Flux (LHF) variable. Results
are of classical EPS and the BeGEM(z) for both variables, where x refers to the
number of calibrated parameter levels.
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Figure 4.11: Multi-Variable M-Level G-Ensemble; N RM SE in prediction of vari-
ables: Latent Heat Flux (LHF), Sea Surface Temperature, 2-meter Temperature,
10-meter Wind Velocity components U10 and V10, and the Accumulated Precip-
itation. Results are of classical EPS and the BeGEM(z) for both variables, where
x refers to the number of calibrated parameter levels.
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Figure 4.12: RMSE prediction error of: (a) 10-meter Wind Velocity component
V10, (b) 10-meter Wind Velocity component U10 (m/s), (c) Surface Skin Tem-
perature TSK, (d) Accumulated Precipitation RAINC, (e) 2-meter Temperature,
and (f) Latent Heat Flux LHF. Prediction using BeGEM (1, 2, 3, and 4) pro-
duced after 15 iterations of the Calibration Phase of the Multi- Variable M-Level
G-Ensemble. 86
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4.2.4 Parallel G-Ensemble and Cost

To evaluate the parallel M-Level G-Ensemble scheme according to execution
time and prediction enhancement, we show in Table various scenarios
of parallel M-Level G-Ensemble predictions with their respective execution
times compared to a classical EPS prediction conducted with 40 initial
ensemble members.

Multi-Variable M-Level G-Ensemble was used in the calibration phase
to enhance prediction of 6 weather variables together, applying BeGEM(z),
where x refers to the number of the calibrated levels of closure parameters,
this process is tested over 5 di erent scenarios, which correspond to di er-
ent GA settings (number of iterations in calibration phase and the initial
ensemble size).

Predictions were executed on a cluster of 30 computing nodes (Intel(R)
Xeon(R) CPU 5150 @2.66GHz 4MB 12, 8 GB Fully Bu ered DIMM 667
MHz). Figure m shows the respective prediction error of each scenario of
those in Table .11

Number Scenario Init. Size # of Iterations Ex.Time

1 EPS 40 - 468 m.
2 BeGEM(4) 40 5 109 m.
3 BeGEM(}) 40 10 168 m.
4 BeGEM(}) 40 15 223 m.
5 BeGEM(}) 40 20 279 m.
6 BeGEM(4) 20 20 189 m.

Table 4.1: Execution time Vs Scenario

In all scenarios of M-Level G-Ensemble, a signi cant reduction in ex-
ecution time along with a corresponding reduction of prediction error are
observed. Additionally, as shown in Figure M(b), the parallel version of
M-Level G-Ensemble achieved better execution times than EPS when both
were executed on computing platforms with a relatively small number of
processors (less than 50). As more computing nodes are available, EPS
performance improves. And it achieved similar or slightly better execution
times than M-Level G-Ensemble when more than 70 machines were used.
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Actually, this is due to the combination between the number of resources
available and the type of executions. In scenarios with limited number of
computing resources, the parallel M-Level G-Ensemble is better because
it constitutes a set of short executions, repeated each iteration in the cal-
ibration phase. In other words, Calibration executes each generation of
individuals, which represent short forecasts.

Therefore, the waiting time between each iteration is short. In contrast,
in the case of EPS running on a limited number of resources, each ensemble
member is a long forecast that will use the resources for a relatively long
time. While the number of resources increases, this problem of waiting time
in EPS is alleviated. This is why EPS shows the same performance or even
better when the system size is increased.

In summary, parallel M-Level G-Ensemble method provides the possi-
bility to select between various scenarios considering a balance between pre-
diction quality and prediction cost, maintaining always a signi cant margin
of enhancement in prediction quality. Moreover, in scenarios with limited
number of computing resources, in which EPS could not be used due to its
time constraints, parallel M-Level G-Ensemble stands to be a good alter-
native choice.

In the following Subsection, G-Ensemble is tested over the same predic-
tion case, but with di erent con gurations in the calibration phase regard-
ing the operators of the used GA and the size of the used initial ensemble
members.
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Figure 4.13: (a): Multi-Variable BeGEM(4); NRMSE of prediction of vari-
ables: Latent Heat Fluz , Surface Skin Temperature , 2-meter Temperature, 10-
meter Wind Velocity components U10 and V10, and the Accumulated Precipita-
tion. (b): Scalability of EPS of 40 ensemble members over 100 computing nodes,
BeGEM(4):(initial ens:40, iterations:15)
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4.2.5 Tuning G-Ensemble

G-Ensemble scheme is tested with di erent GA con gurations regarding
its Crossover type and ratio, and by variating its initial population size in
order to get better predictions.

The goal behind these tests is to provide a more completed insight of the
scenarios and possibilities of how to con gure an operational G-Ensemble
according to the time allowed for prediction process, and to the number of
computing resources available. In the subsequent experiments, prediction
errors RM SFE produced during prediction phase for Latent Heat Flux LHF
variable, applying two ways of prediction, are compared:

1. Single Variable G-Ensemble approach, with di erent initial ensemble
sizes, Crossover type and ratio, and di erent number of iterations in
calibration phase.

2. The EPS approach, which is used to refer to the average error of an
ensemble forecast conducted by the initial ensemble members used in
the rst iteration of Calibration Phase (an ensemble forecast such that
the prediction model is di erent for each ensemble member regarding
the targeted parameter values, these variables are not calibrated).

In Figure (a), prediction error is shown by using the G-Ensemble
approach with di erent initial ensemble sizes to predict LHF variable com-
pared to the classical EPS of the same ensemble sizes. The prediction error
of the G-Ensemble approach is also depicted alone for the sake of clarity in
Figurdd.14}(b).

The Genetic Algorithm was con gured to iterate 20 times over di erent
initial ensemble sizes. Its three main operators were con gured as follows:
Selection: (elitism: best one of two), Crossover: (probability=0.7, type:
two points Crossover), and Mutation: (probability= 0.2). As shown in
Figure [£.14] in all cases with di erent initial ensemble sizes, G-Ensemble
provides less error values in prediction compared to EPS predictions with
the same initial ensemble members. A signi cant improvement in prediction
quality is always gained.

Additionally, it can be observed that increasing the size of an EPS does
not produce better results. Actually this happens because EPS results rep-
resent an average of the predictions of all ensemble members and, knowing
that these members are variated regarding their closure parameters in a
random way, using more members does not assure less average error. In
contrast, increasing initial ensemble size, which will be calibrated iteratively
by the G-Ensemble, provides better prediction results as observed in the
same gure. That is, by increasing the initial ensemble size in G-Ensemble,
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Figure 4.14: RMSE of LHF pediction. (a): Single-Variable G-Ensemble predic-
tion error Vs. Classical EPS prediction error. Results are of classical EPS(z) and
the BeGEM(z), where z refers to the initial ensemble size. (b): A snapshot of
(a) to demonstrate RMSE of the different BeGEM(z).

the probability for finding better solutions through GA iterations, also in-
creases.

On the other hand, Figure [£.15] shows the GA convergence in the cal-
ibration phase of G-Ensemble approach. As such, the error of the best
ensemble member through GA iterations is depicted in the figure, using
different initial ensemble sizes. As it could be observed, the BeGEM pro-
duced after 10 iterations when G-Ensemble was conducted using an initial
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ensemble size of 80 members, was equal or slightly better than the same
BeGEM, produced after 20 iterations when G-Ensemble was conducted by
20 initial ensemble members.

Figure 4.15: Calibration phase: BeGEM performance through the Calibration
phase iterations for di erent initial ensemble sizes.

Then, according to the availability of computing resources, their num-
ber and the interval of availability, a certain scenario of the combinations
between initial ensemble size and number of iterations, could be selected,
referring to execution times provided previously (cp. Subsection .

Moreover, G-Ensemble scheme is tested to predict the same weather
variable (LHF) by changing the type of the GA Crossover during calibration
phase, results are depicted in Figure (a), and by changing the GA
Crossover probability as shown in Figure (b)

The obtained results show that when G-Ensemble used 2-points
Crossover in its GA during Calibration phase, prediction results were
slightly better, and the same happened when Crossover probability was
higher.

That is, when con guring the GA implemented in the G-Ensemble
scheme on a relatively small size of initial ensemble members, better predic-
tion quality could be obtained by 2-points Crossover and higher Crossover
probability. Actually, this is due to the size of the initial ensemble size
(initial population size): by using 2-point Crossover and a higher probabil-
ity of Crossover operations, more variations in ensemble members could be
obtained during each iteration of the calibration phase. This enhances the
ability of the GA to look for better solutions over small initial populations,
which is normally the case of NWP executions, where ensemble sizes are
normally up to 50 ensemble members.
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Figure 4.16: BeGEM RMSE in prediction of LHF produced in (a): using 1-
point and 2-point GA Crossover in the Calibration phase, and (b): using 2-point
GA Crossover but with different Crossover probability ratios.

4.2.6 Discussion of Results and Summery

In the previous experiments, all the approaches of the proposed G-Ensemble
scheme were tested on the case of Hurricane Katrina, and consequently,
their results we compared with predictions obtained by the classical EPS.

The results obtained in the provided experiments confirm our hypoph-
ysis that, better estimation of model closure parameter values enhances
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weather prediction quality. However, further detected remarks by observ-
ing the obtained results are summerized as follows:

The proposed G-Ensemble scheme, showed in all cases, a signi cant
improvement in forecast skill for the targeted weather variables, over the
classical EPS. As well, all the di erent approaches/versions of G-Ensemble
were tested; G-Ensemble, G-Ensemble (window observations), Multi and
Single-Variable G-Ensemble and the Multi-Level G-Ensemble. In all these
approaches, weather variables were predicted better than the classical EPS
used for the same reason.

By using the Multi-Level G-Ensemble, it has been observed that as more
parameter levels are calibrated, as more improvements in the prediction
outcomes are obtained. Obviously, this is due to the fact that, when cali-
brating more levels of parameters, more proportion of the targeted domain
parameters are optimized, because each level of these parameters represents
a set of domain grid points.

Moreover, results of G-Ensemble (window observations) were compared
with the formal G-Ensemble (1-point observation). It was observed G-
Ensemble leads to better estimation of closure parameter values when it
considers a window of observations rather than one single point observa-
tion for the evaluation of its ensemble members (GA individuals) during
calibration phase. Actually, it is believed that the reason behind this is
that, the used GA in the calibration phase is better guided by more fairly
error value when this error re ects an interval of time rather than one
single point, to evaluate the performance of each ensemble member which
determines its probability to be selected for subsequent iterations of the
GA.

The EPS approach, which is used to refer to the average error of an
ensemble forecast conducted by the initial ensemble members used in the

rst iteration of Calibration Phase (an ensemble forecast such that the pre-
diction model is di erent for each ensemble member regarding the targeted
parameter values, these variables are not calibrated).

Additionally, the whole scheme was paralleled using Master/Worker
paradigm and was tested executing it over a HPC platforms. Again, the ob-
tained results showed signi cant improvements in prediction quality and,
less execution times over classical EPS, certainly, in scenarios of limited
number of computing resources, where classical EPS shows to be infeasi-
ble due to the imposed time constraints. Additionally, results showed that
G-Ensemble approach provides the possibility to select between various sce-
narios considering a balance between prediction quality and prediction cost,
maintaining always a signi cant margin of enhancement in prediction qual-
ity. Moreover, in scenarios with limited number of computing resources,
in which EPS could not be used due to its time constraints, parallel G-
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Ensemble stands to be a good alternative choice.

The last experiments showed prediction results obtained by tuning the
G-Ensemble, as such, by changing some con gurations regarding the used
GA in the calibration phase, and the size of the initial population of en-
sembles. The most remarkable observation was that by increasing the size
of an EPS, better prediction results are not assured. Actually this happens
because EPS results represent an average of the predictions of all ensemble
members and, knowing that these members are variated regarding their clo-
sure parameters in a random way, using more members does not assure less
average error. In contrast, increasing initial ensemble size, which will be
calibrated iteratively by the G-Ensemble, provides better prediction results
as observed in the same gure. That is, by increasing the initial ensemble
size in G-Ensemble, the probability for nding better solutions through GA
iterations, also increases.

In the next Chapter, the overall conclusions, as well as the open lines
for future research are provided.
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Chapter 5

Conclusions and Open
Lines

Accurate numerical weather forecasting is of great importance. Indeed, the
need for reliable predictions in environmental modelling is long known. Par-
ticularly, the predicted weather information about the future atmospheric
state is crucial and necessary for almost all other areas of environmental
modelling. Additionally, right decisions to prevent damages and save lives
could be taken depending on a reliable weather prediction process.

Due to inadequate observations, our limited understanding of the phys-
ical processes of the atmosphere, and the chaotic nature of atmospheric
motion, uncertainties always exist in modern numerical weather prediction
(NWP). In recent years, much progress has been made in building more
precise and sophisticated NWP models, However, weather prediction as by
its nature, is mainly, is an initial value problem. That is, lack and uncer-
tainty of input data and parameters constitute the main source of errors
for NWP.

But beyond that fundamental problem of the uncertainty in input data
and parameters, NWP models are considered as soft-real time applications.
The importance of having a a certain degree of accuracy in the prediction
in reasonable time period is a real challenge. Thus, ongoing research
concentrate on methods to enhance the process of prediction and to get
results of this process faster.

In recent years, evolutionary optimization methods have become pop-
ular to solve the input parameter problem of environmental models. Ac-
tually, its is well-known, that parameter calibration methods can improve
prediction quality. It has therefore been the primary objective of this thesis
to propose a valid framework for an automatic calibration of input param-
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eters in NWP models, by which, forecast skill could be improved so far. As
well, it is aimed that, the proposed solution is to be feasible considering the
waiting time needed for better weather predictions.

5.1 Conclusions

During the course of this thesis, numerical weather prediction (NWP) mod-
els and their functionality were described. The accuracy problem in NWP
models was also highlighted as well as, the importance of having a certain
level of accuracy within a reasonable time to have prediction outcomes.

A new weather predictions scheme; Genetic Ensemble (G-Ensemble) was
proposed as an automatic calibration framework for NWP models, to deal
with the problem of uncertainty in model closure parameters, with the main
objective of improving predictability of short and medium range weather
predictions. This scheme uses an evolutionary optimization method, con-
cretely, a Genetic Algorithm, by which, NWP model closure parameters
are calibrated and optimized.

Additionally, G-Ensemble scheme was paralleled using a Master/Worker
programming paradigm in order to get bene t from parallel and distributed
computing architectures, and thus, reducing the waiting time for enhance
weather predictions.

Then, the proposed scheme was evaluated by experimentation over a
real weather cases, Hurricane Katrina, which occurred in the Gulf of Mexico
in 2005. The results obtained in the experiments approve our hypothesis
that, better estimation of NWP model closure parameter values enhances
weather prediction quality.

Summarizing, the proposed G-Ensemble could be considered as a suc-
cessful approach that estimates optimal NWP model closure parameter
values in order to improve forecast skill in NWP models, due to the sensi-
tivity of these models to variations in the value of these parameters.

Furthermore, G-Ensemble was extended, in order to consider more than
observation point in the evaluation of forecasts during calibration phase.
This addition enables the Genetic Algorithm, which is used during cali-
bration phase, to make better decisions when selecting between forecasts
through its iterations. By introducing this capability to the proposed
scheme, it was shown by experiments, that forecast skill is improved while
no computational cost is added.

Additionally, the proposed approach is an automatic calibration
method, which not only calibrates a certain pre-de ned set of parame-
ters, but rather, it provides improvement in forecast skill independently of
domain particular features, like the habitual heterogeneity of surface char-
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acteristics exhibited in weather domains. G-Ensemble approach can nd
the relative parameters to be calibrated, it classi es them according to their
weights in the certain domain, and furthermore, it provides the ability to
calibrate more than one level of these parameters.

The paralleled G-Ensemble scheme showed a signi cant improvement
in prediction quality. Moreover, in scenarios of limited number of comput-
ing resources, it constitutes a good solution that guarantees a signi cant
enhancement in meteorological prediction and, an overall reduction of exe-
cution time.

FlInally, a list of publications have been realized corresponding to the
progress during this research. At the beginning, a study had been con-
ducted discussing the necessity of improving prediction quality in numerical
weather predictions, as well as the sensitivity of weather prediction model
to its intrinsic parameters. The results of these studies were published as
follow:

o H. Ihshaish, A. Sairouni, A. Cortes, and M. A. Senar, La necesidad
de Mejoras en Prediccion para el Modelo MM5 , in Proceedings of
the XX Jornadas de Paralelismo, La Coruna, Spain, September 2009.

o H. Thshaish, A. Sairouni, A. Cortes, and M. A. Senar, MMS5: Com-
putational and Prediction Improvements , in Proceedings of 3d Pales-
tinian International Conference on Computer and Information Tech-
nology, Hebron, Palestine, March 2010.

Later, a sensitivity study discussing the e ect of model closure param-
eters on prediction results of NWP models, along with the rst proposal of
G-Ensemble scheme were presented and evaluated in:

o H. Thshaish, A. Cortes, and M. A. Senar, Genetic Ensemble (G- En-
semble) for Meteorological Prediction Enhancement , in Proceedings
of The 2011 Internacional Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA2011), Las Vegas (US).,
Ed., H. R. Arabnia, vol. 1, pp. 404-4010, July 2011.
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Then, the parallel version of the proposed scheme, as well as the imple-
mentation of the Multi-Level G-Ensemble approach were published in:

o H. Thshaish, A. Cortes, and M. A. Senar, Parallel Multi-Level Ge-
netic Ensemble for Numerical Weather Prediction Enhancement ,
Procedia Computer Science, ELSEVIER, vol. 9, pp. 276-285, 2012
(Proceedings of the International Conference on Computational Sci-
ence (ICCS 2012), Omaha, Nebraska, US., June 2012).

Additionally, the following work was published discussing the G-
Ensemble approach, in which the calibration phase was extended to con-
sider a window of observations, rather than one-point observation in its
evaluation process during calibration:

o H. Thshaish, A. Cortes, and M. A. Senar, Towards Improving Numer-
ical Weather Predictions by Evolutionary Computing Techniques ,
Procedia Computer Science, ELSEVIER, vol. 9, pp. 276-285, 2012
(Proceedings of the International Conference on Computational Sci-
ence (ICCS 2012), Omaha, Nebraska, US., June 2012).

Finally, tuning G-Ensemble, discussing its prediction results according
to di erent GA con gurations was accepted for publication in:

o H. Thshaish, A. Cortes, and M. A. Senar, Tuning G-Ensemble to
Improve Forecast Skill in Numerical Weather Prediction Models , in
Proceedings of The 2012 Internacional Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA2012),
Las Vegas (US), July, 2012.

5.2 Open Lines

One of the remarkable conclusions obtained by the realization of this work
is that, it was strongly approved that an automatic calibration method,
which intends to estimate optimal values of NWP physical parameters is
crucial to achieve more improvements in todays NWP models. Especially,
due to the fact that today s skillful NWP models contain large amounts
of tunable parameters, which makes it almost impossible to optimize their
values manually.
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Being that said, many important issues are opened for further research,
these may include:

An implementation of another evaluation method ( tness function) aim-
ing at providing enhancement in prediction quality related to a temporal
precision. As such, to be able to reduce prediction errors considering the
precision of each forecast, not only quantitatively, but also temporally. Ob-
viously, a forecast which detects exactly the time of a coming storm might
be more valuable than another forecast which was precise in predicting wind
velocity, but not at the exact time, i.e., 6 hours later for example.

Another valuable research would be to provide statistical measures, bas-
ing on large amount of experiments, to asses to what extent the forecast skill
would be improved for a certain weather prediction within di erent condi-
tions and basing on di erent con gurations, like the number of the available
computing resources, the number of the parameters to be calibrated, the
number of GA iterations, and the size of the selected population (number
of initial ensemble members).

It would be also of great value to enhance G-Ensemble, by coupling it
with operational ensemble prediction systems, that are dealing with initial
conditions rather than physical parameters. In doing so, the resulted work
would be an important contribution.

Finally, an important work would be to develop scheduling strategies or
policies in order to better distribute the parallel workload of the proposed
parallel application over the available computing environment.
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