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Abstract

English

In high performance clusters, current parallel application communication needs, such

as tra�c pattern, communication volume, etc., change along time and are di�cult to

know in advance. Such needs often exceed or do not match available resources causing

resource use imbalance, network congestion, throughput reduction and message latency

increase, thus degrading the overall system performance. Studies on parallel applications

show repetitive behavior that can be characterized by a set of representative phases. This

work presents a Predictive and Distributed Routing Balancing (PR-DRB) technique, a

new method developed to gradually control network congestion, based on paths expansion,

tra�c distribution, applications pattern repetitiveness and speculative adaptive routing,

in order to maintain low latency values. PR-DRB monitors messages latencies on routers

and saves the found solutions to congestion, to quickly respond in future similar situations.

Tra�c congestion experiments were conducted in order to evaluate the performance of the

method, and improvements were observed.

keywords: Interconnection Networks, High Performance Computing, Predictive Rout-

ing, Application-Aware Routing
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Castellano

En los clusters de altas prestaciones, los requerimientos actuales de las comunicaciones

de las aplicaciones, como el patr�on de tr�a�co, el vol�umen de comunicaciones entre otras,

pueden cambiar a lo largo del tiempo y son dif��ciles de predecir. Estas necesidades

generalmente exceden o no se corresponden con los recursos disponibles realmente, lo cual

conlleva a una situaci�on de desbalanceo de los recursos, congesti�on en la red, reducci�on del

throughput y un incremento considerable en los valores de latencia de los mensajes. Todo

esto conlleva una degradaci�on general del rendimiento de todo el sistema computacional.

Los estudios de las aplicaciones paralelas demuestran que estas tienen un comportamiento

repetitivo. Adem�as, esta repetitividad puede detectarse y caracterizarse a trav�es de unas

fases representativas. Este trabajo propone un Algoritmo de Encaminamiento Predictivo

y Distribuido (PR-DRB). Este nuevo m�etodo propone controlar la congesti�on de la red de

manera gradual bas�andose en la expansi�on controlada de caminos, la distribuci�on del tr�a�co,

la repetitividad en las aplicaciones paralelas y el encaminamiento adaptativo especulativo;

de manera a mantener los valores de latencia controlados. PR-DRB monitorea la latencia de

los mensajes en los encaminadores y guarda las mejores soluciones adaptativas encontradas

a una situaci�on de congesti�on. Esto se realiza de manera a re aplicar estas mejores

soluciones de manera r�apida ante situaciones similares futuras. Fueron desarrollados varios

experimentos que generen congesti�on de tr�a�co a �n de evaluar el rendimiento de la

propuesta, y se han logrado mejoras importantes en el rendimiento global del sistema.

Palabras clave: Redes de interconexi�on, Computaci�on de Altas Prestaciones, Encami-

namiento Predictivo, Encaminamiento Basado en las Aplicaciones.
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Català

En els cl�usters d'altes prestacions, els requeriments actuals de les comunicacions de les

aplicacions, com el patr�o de tr�ansit, el volum de comunicacions entre altres, poden canviar

al llarg del temps i s�on dif��cils de predir. Aquestes necessitats generalment excedeixen o no

es corresponen amb els recursos disponibles realment, la qual cosa comporta a una situaci�o

de desbalanceig dels recursos, congesti�o a la xarxa, reducci�o del throughput i un increment

considerable en els valors de lat�encia dels missatges. Tot aix�o comporta una degradaci�o

general del rendiment de tot el sistema computacional. Els estudis de les aplicacions

paral · leles demostren que aquestes tenen un comportament repetitiu. A m�es, aquesta

repetitivitat pot detectar i caracteritzar a trav�es d'unes fases representatives. Aquest

treball proposa un Algorisme d'Encaminament Predictiu i Distribu•�t (PR-DRB). Aquest

nou m�etode proposa controlar la congesti�o de la xarxa de manera gradual basant-se en

l'expansi�o controlada de camins, la distribuci�o del tr�ansit, la repetitivitat en les aplicacions

paral · leles i l'encaminament adaptatiu especulatiu, de manera a mantenir els valors

de lat�encia controlats. PR-DRB controla la lat�encia dels missatges en els encaminadors

i guarda les millors solucions adaptatives trobades a una situaci�o de congesti�o. Aix�o

es realitza de manera a re aplicar aquestes millors solucions de manera r�apida davant

de situacions similars futures. Van ser desenvolupats diversos experiments que generin

congesti�o de tr�ansit per tal d'avaluar el rendiment de la proposta, i s'han aconseguit

millores importants en el rendiment global del sistema.

Paraules clau: Xarxes d'interconnexi�o, Computaci�o d'Altes Prestacions, Encaminament

Predictiu, Encaminament Basat en les Aplicacions.
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Chapter 1

Introduction

“Man is still the most extraordinary computer of all.”

John F. Kennedy

1.1 High Performance Computing

In the last years we have been witnesses of how the technology not only arrived at our

lives, but became an essential tool in our every day activities. This technology acted as

a valuable source of knowledge for the entire society. Among all these technology, the

computer systems have played a fundamental role in the whole ecosystem, by linking

people's demand against applications and services (globally) available. While societies

evolve, the relation between them and technology evolves accordingly, leading to situations

where the society demands a whole new set of computing services, but more integrated

and personalized.

The massive use of personal computers and devices have steadily demanded more

computer power. These increase in general use also meant an increase in massive computer

systems and large datacenter in order make it feasible to accomplish communications and

processing required. From this outcome, new technology emerged and lead to specialized

�eld such as the High Performance Computing (HPC). The world of the HPC is just a

small part of the bigger world of the general Computing Science as we know today, but

it is the one that take the most challenging problems, assume most resource demands

and it's the leading sector in innovation in the �eld. HPC main goal is to give answers to

the most challenging problems of the real world, including engineering and many other

disciplines as well.

A super computer could be de�ned as a computer that is at the front line of current

processing capacity, particularly speed of calculation. This feature also indicates that
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usually is the most expensive (both at initial and maintenance costs). In order to limit

the increases in power and cooling in HPC, the architecture are expected to change

dramatically in the future. The algorithms and the applications should also change in

order to remain in line with future constraints. Generally, a super computer is made by

computing nodes aggregation, linked together by an interconnection network. Besides the

processing capacity, a super computer generally has other components designed and built

to �t the particularly purpose of the equipment such as the interconnection network and

the capability of treating the system as a unique entity.

In order to successfully achieve useful Exascale computing; the applications, the

algorithms and the technology should evolve accordingly. All of these within any reasonable

budget.

Traditional areas that require a high level of (global) computation had been categorized

as \Grand Challenge Problems", and in this categorization are included the most iconic

applications in science, as the space-conquer related, weather prediction, geology, decipher

of genetic codes, simulation of nuclear experiments, ocean dynamics, and computing vision

among many others.

Current requirements of high performance applications are beyond the strict scenario

of scienti�c production. Nowadays the global penetration of the computing in our lives

has evolved in such a way that the need of complex (or more demanding) results are in

every aspect, such as internet communications, database oriented search, image processing,

medical treatments, Enterprise Resource Planning (ERPs), etc. No longer a super computer

capable of performing strictly millions of operations per second is the only conception

of \super", but a combination of many other factors than a�ect the overall perception

of \fast response" or \correctness and/or precision of the results", such as capacity of

processing input data, communications of high amount of data, real time applications and

interactions with the user.

Among these new requirements of a super computer, we can mention the need of

an interconnection network capable of move all the data between processing nodes to

accomplish the restrictions of speed, delay and overall network performance to applications

and users [62].Combination of top tier engineering for processors, networks and I/O to

ful�ll the supercomputer concept, also carries other con�gurations that must be addressed

carefully, such as the power consumption, the fault tolerance methodology, programming

and operating environments and administrative tasks must also be considered.
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1.1.1 Interconnection Networks

The supercomputer concept, as reviewed above, can be summarized as a set of independent

processing unit (or processor) linked together by some kind of interconnection network.

This kind of schema provides computation power in a distributed shape to solve a particular

problem. The problem to be solved most likely will require communication between all

the processing units working in the problem, thus the whole system must be capable

of automatic task-to-processing-units assignation/mapping, and must o�er an e�cient

communication system to perform this work.

One of the key aspects of a high performance computer, parallel or distributed, is the

interconnection between all its components. This interconnection is the one responsible

for the e�ective parallelism achieved, because all the processors available are currently

standard units working locally. The importance of an interconnection network could be

based on many items, as explained below:

• Is one of the central elements to build a supercomputer, along with the process-

ing units. Scalability is then an important matter when building this kind of

computers.

• Interconnection network features a�ects directly to the overall performance of the

whole parallel computer system. The amount of information transmitted over

a period of time is known as the bandwidth of the network. This bandwidth is

o�ered by each of the communication nodes. The performance of a network is

measured as the amount of messages e�ectively sent over a period of time, known

as throughput. Another performance concept is the latency, which represent the

time it takes to transmit a message over the network, assuming the network is not

fully connected due to monetary costs and other topological reasons. A key factor

demanded to an interconnection network is the ability to handle high values of

throughput keeping latency values as low as possible.

• The vision of the interconnection network presented to the user, because it de�nes

which model can be used based on network features. This includes practical

questions, as if network resources should be handled transparently and if internal

con�gurations available such as messages sizes, communications type (one to one,

one to many, etc) should be all hidden to �nal users.
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1.1.2 Interconnection Networks Analysis

Having a great number of communication nodes interacting to transmit a message from

the source node towards a destination can lead to tra�c imbalance, due to poor packets

transmission strategies and ine�cient mechanisms to prevent overow of network resources

capabilities.

Tra�c imbalance can introduce network situations where the mentioned goals of a

interconnection network may no be ful�lled. For example, a routing algorithm is in charge

of selecting the best routes to transmit a message over the network, but even when there

may be many possible alternative paths to transmit those messages, the routing algorithm

may not make proper decisions and thus causing situation where a lot of messages are

being sent through some particular nodes in the network, causing a congestion situation

or hotspot. On the other hand, other portions of the network have enough resources to

handle the tra�c but are being locked due to poor decisions [63].

Congestion of messages in transit is also a known issue in interconnection networks.

This situation appears when there are shared resources in the interconnection network,

such as intermediate routers and links, and saturation can be reached if the situation is

not controlled properly and in time. When tra�c is not being properly handled by the

network, then all messages start racing to obtain those resources. This race increases

messages transit time, producing high latency values in the network in general and thus

reducing the overall system performance [13] . The implication of these kind of congestion

in networks where dropping of packets is not allowed is even more critical. And parallel

computers run this kind of networks. One solution given to these congestion problem is

the over provisioning of resources in the interconnection network, avoiding the need of

race condition to access to routers resources. This over-dimensioning practice is obsolete

in part due the actual cost of network components, respect to processing nodes, and the

power consumption associated to this practice [3].

Having mentioned this issues that lead to problematic situations in interconnection

networks, we can conclude that over-provisioning is not a good solution under any perspec-

tive, and with the alternatives given by technology today, e�ciency can be obtained by

combining di�erent topological approaches, and improving other layers of network protocol

stack, such as congestion control and routing, is considered as an a�ordable technique.

1.2 Motivation

We have seen that parallel computers performs at many scenarios in current scienti�c

and industrial applications, to solve practical problems and increase human knowledge.
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Here, the interconnection network pay a fundamental role in the e�ective performance

achieved by a super computer, being part of the very essence of parallelism when acting

as an e�cient transfer agent of information between all processing nodes. Carefully

designed interconnection network routing algorithms are essential in the process of optimal

utilization of communication resources, adapting to situations presented at every stage of

processing, and improving the overall performance perception of the system.

With the idea of improving the performance of the whole system and based on the

premise that the �nal user will be the most bene�ted, newer and better algorithms to

properly manage the interconnection network (and others computational resources) are

needed. The conception of more specialized techniques to use available resources in order

to being able to solve more complicated real life problems, would make science solidly

advance one step further, and then also industry will be able to transform the ideas

conceived here, into specialized and of practical use.

Initial design of an interconnection network takes into consideration the bandwidth

required by the applications that runs in the network, but a good algorithm must also

consider the e�ect of the tra�c dynamics that can lead to unexpected situations due to

tra�c imbalance and hotspot situations, avoiding performance degradation where possible.

Di�erent areas of scienti�c real life problems are solved with parallel computer systems.

These problems produce, as a consequence of its executions, di�erent tra�c load patterns.

Parallel applications patterns in this kind of systems posses repetitive behavior throughout

execution time [64]. This feature, repetitiveness, should be used by network designers

to develop speci�c systems models accordingly, and try to use information about past

behavior to make better decisions about future tra�c conditions. This could help to

improve performance in the interconnection network, by investing less time to adapt to

imbalanced communications, avoid congestion situations among others.

All the ideas expressed here converge to one simple concept: performance. Routing

algorithms must be designed to accomplish that goal as faithful as possible; and to line up

all techniques available, such as congestion control, ow control, etc; but without letting

aside other considerations as power consumption, costs, e�ciency and security.

1.3 Objectives

The ultimate goal of this thesis is to design, implement and evaluate a predictive routing

policy capable of serving interconnection networks, speci�cally to deal with and learn

from real parallel scienti�c tra�c and applications. This work is concerned about high

speed interconnection networks, at the level of high performance computer systems. We
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have seen that interconnection networks are an essential component in a parallel computer

system, speci�cally to achieve the general goals demanded to this kind of systems. Our

work is based on scienti�c environments where processing power and communications

requirements are extreme. Also, this work concentrates on applications with repetitive

behavior. By repetitive behavior we mean the repetitive communication tra�c pattern,

known as bursty tra�c, and the repetitiveness in program execution ows. Therefore, the

main goals of this work can be summarized as follows:

• Improve overall system performance.

• Perform proper tra�c load distribution among all communication resources.

• Avoid hotspot situation in the network.

• keep global latency values low.

• Study dynamic features of interconnection networks using speci�c computing

models, aimed to identify the problems during the normal operations of the

network (under tra�c) and their major causes.

• Analyze existing approaches of path distribution.

• Study the impact of parallel applications patterns on network's behavior, and how

to establish a relationship between these applications and the routing mechanism

to improve performance.

• Analyze current routing models and propose new approaches, based on past

implementations made at the Computer Architecture and Operating System

group.

1.4 Research Method

The research in this thesis is oriented to the design, implementation and evaluation of

predictive routing policies; and is framed in the academic program of applied research of

the Universitat Autònoma de Barcelona.

1. Existing theories and observations. Pose the question in the context of

existing knowledge, theory and observations.

2. Hypothesis. Formulate a hypothesis as a tentative answer.
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3. Predictions. Deduce consequences and make predictions.

4. Test and new observations. Test the hypothesis in a speci�c experiment/the-

ory �eld.

5. Old theory confirmed within a new context or new theory proposed.

When consistency is obtained the hypothesis becomes a theory and provides

a coherent set of propositions that de�ne a new class of phenomena or a new

theoretical concept.

As a rule, the loop 2-3-4 is repeated with modi�cations of the hypothesis until the

agreement is obtained, which leads to 5. If major discrepancies are found the process must

start from the beginning. The results of stage 5 have to be published. Theory at that stage

is subject of process of natural selection among competing theories. The process can start

from the beginning, but the state 1 has changed to include the new theory/improvements

of old theory [16].

This thesis share theoretical basis with the method developed and discussed in depth

by Franco et al. [19] [21], [20], Distributed Routing Balancing (DRB); and subsequently

improved by Lugones et al. [40]. These methods, together with the theory of applications

repetitiveness and interconnection networks, constitute the �rst stage of the scienti�c

research method of this thesis. Throughout this stage, we have conducted the �st study on

interconnection networks. Books on interconnection networks by Duato et al. [17], Dally

and Towles [62], and Hsu and Lin [24] have been particularly useful. Since DRB and its

related methods have been discussed in depth in two previous theses, we focus on the design,

implementation, and evaluation of a novel and complete predictive and application-aware

mechanism. In fact, Stages 2 and 3 comprise the proposal of the predictive routing policies

based on DRB. Then, in Stages 4 and 5, we have evaluated and analyzed the e�ectiveness

of the proposed predictive routing method through simulation, using a standard discrete

event simulator. To this end, we have enhanced existing models of network components

[39] by including the proposed predictive and application-aware mechanisms and policies.

This has allowed us to develop the simulation models used in the experimentation of our

proposals.

1.5 Contributions

The work developed for the thesis has been published in the following papers.
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1. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive and

Distributed Routing Balancing (PR-DRB), In X Distributed and Par-

allel Processing Workshop (WPDP), pages 112-121, XVI Argentine

Conference on Computer Science (CACIC),. Moron, Buenos Aires,

ARGENTINA, 2010. ISBN: 978-950-9474-49-9.

URI http://sedici.unlp.edu.ar/handle/10915/18913 [5]

This work focuses on the problem caused by the imbalance of network communica-

tions. The proposed method control network congestion by means of alternative

paths, tra�c and load distribution, in order to keep latency values low.

2. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive and

Distributed Routing Balancing for High Speed Interconnection Net-

works, In Proceedings of the XXII Spanish Conference on Parallelism,

pages 397-402, Tenerife, SPAIN, 2011. [9] This work introduces the con-

gestion problem at interconnection networks and the idea of repetitive behavior

in parallel scienti�c applications. This repetitiveness could help to improve the

existing congestion control procedures. In order to accomplish this the policy

uses communication path redundancy.

3. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive and

Distributed Routing Balancing (PR-DRB), Journal of Computer Sci-

ence & Technology (JCS&T) Selected Papers, pp. 59-70, ISBN: 978-

950-34-0757-8, October 2011. Pearson. [7]

Idem [5]

4. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive and

Distributed Routing Balancing for High Speed Interconnection Net-

works, In Proceddings of the 2011 IEEE International Conference on

Cluster Computing, CLUSTER, pages 552 -556, Austin, Texas, USA,

2011. IEEE Computer Society. [6]

This paper discusses the routing algorithm and the relation to the patterns from

applications. The repetitiveness of parallel scienti�c applications is introduced.

An overview of the internal mechanism proposed is explained.

5. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive and

Distributed Routing Balancing for HPC Clusters, In Proceddings of

the 2011 IEEE International Conference on Parallel and Distributed

Systems, PDPTA, pages 875 -878, Las Vegas, Nevada, USA, 2011.
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WorldComp Congress. [8]

This work presents a Predictive and Distributed Routing Balancing technique

(PR-DRB) to control network congestion based on adaptive tra�c distribution.

PR-DRB uses speculative routing based on application repetitiveness. PR-DRB

monitors messages latencies on routers and logs solutions to congestion, to quickly

respond in future similar situations. Experimental results show that the predictive

approach could be used to improve performance.

6. C. N. Castillo, D. Lugones, D. Franco, and E. Luque. Predictive

and Distributed Routing Balancing on High-speed Cluster Networks,

In Proceedings of the 2011 23rd International Symposium on Com-

puter Architecture and High Performance Computing, SBAC-PAD

’11, pages 72–79, Washington, DC, USA, 2011. IEEE Computer Soci-

ety. [10]

This work focuses on the predictive approach for distributed routing, based on

synthetic tra�c. The predictive mechanism is based on ACK noti�cation from

destination nodes. The information carried out by ACK are collected by inter-

mediate routers traversed by each packet. The study of thresholds used by the

method is discussed and explained.

7. C. N. Castillo, G. Zarza, D. Lugones, J. Navarro, D. Franco, and

E. Luque. Cluster GUI, an Application to Launch OPNET Simu-

lations within Resource Management Environments, OPNETWORK

Conference, pages 1–7, USA, 2011. Online: www.opnet.com [45]

This work resumes the procedures to launch OPNET simulations within a dis-

tributed cluster such as Sun Grid Engine (SGE).

8. C. N. Castillo, D. Lugones, D. Franco, E. Luque and Martin Col-

lier. Predictive and distributed routing balancing, an application-

aware approach, In Proceedings of the 2013 International Conference

on Computational Science, ICCS ’13, ”To be published”, Barcelona,

SPAIN, 2013. Elsevier. [11]

This paper proposes an application-aware predictive routing. The predictive

routing approach is adapted to work with traces from real applications, along

with synthetic tra�c. The routing unit is able to dynamic identify communication

patterns that caused congestion in the network. The policy learns from past

situations and then re applies the set of multipath solution in order to tackle

congestion.
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1.6 Thesis Outline

According to the objectives and the research method described above, the outline of the

remaining chapters of the thesis is as follows.

Chapter 2: Thesis Background.

This chapter introduces some basic concepts about interconnection networks.

Then, exposes concepts about parallel applications and its characteristics and

presents the impact of interconnection networks over parallel applications

Chapter 3: Predictive and Distributed Routing Balancing.

In this chapter, we present the proposed predictive and distributed routing

mechanism PR-DRB. Here, we discuss in detail the rationale behind the predictive

approach.

Chapter 4: Evaluation.

This chapter describes the test scenarios and provides the explanation of experi-

mental results for our proposal.

Chapter 5: Conclusions.

Concludes the thesis and presents the further work and open lines for the predictive

and application-aware technique.

The list of references and one appendix complete the document of this thesis. The

Appendix A includes the algorithms used in the methodology discussed in Chapter 3 and

complementary results of the evaluation presented in Chapter 4.
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Chapter 2

Thesis Background

In this chapter, we discuss some basic concepts about interconnection networks and parallel

scienti�c applications in order to frame the thesis.

First, we introduce a general description of interconnection networks in section 2.1.

Then, in section 2.2, we present some concepts extracted from scienti�c parallel applications

and focus on speci�c aspects such as the impact of the network into the applications

(subsection 2.2.1), the communications patterns and the requirements of real scienti�c

parallel applications (subsection 2.2.2), the bursty tra�c (subsection 2.2.3) and the

repetitiveness that exists in communication patterns (subsection 2.2.5). Some �nal remarks

are given at section 2.3.

2.1 Interconnection Networks

The interconnection network can be thought as programmable physical system. This system

comprises links and switches that interact with each other to perform the communications

needed by numerous components of the computing system. [21]. Interconnection networks

can be found in computer systems and in communication systems. In the former, the

interconnection network is in charge of the task of connecting processors to memories and

input/output (I/O) devices to controllers; in communication switches, they connect input

ports to output ports [62]. Many di�erent systems are currently based on communicating

data through interconnections networks, ranging from very speci�c hardware equipment

such as very large scale systems integration (VLSI ) to wide area networks. Some

applications requiring interconnection networks are Internet switches (IP); interconnection

network for multicomputers and memory, and distributed shared-memory multiprocessors;

cluster of workstations; local area networks (LAN) and network for industrial applications.

This chapter is focused primarily in the interconnection network used for communications
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in multicomputers and distributed shared-memory multiprocessors.

Technology developed for interconnection network of multicomputers in mind, featured

with high performance and reliability, was transferred to distributed shared-memory

multiprocessors, thus improving scalability of shared-memory devices. Requirements of

high performance and reliability was greater in shared-memory multiprocessors, then

improvements in the technology were introduced pushing the development even more.

This chain of events happened again when the technology was transferred to local area

networks (LAN). In conclusion, advantages in the development of interconnection network

for multicomputers are the basis for the development of other interconnection architectures

as well.

Nowadays, interconnection networks are fundamental for systems where e�cient com-

munication technologies have a direct impact in the overall performance of the system.

These system can be categorized as computer clusters, and massively parallel processing

(MPP) systems [58] [59]. Computing cluster with the 82.2% in the TOP500 list of Novem-

ber 2012 [58] is the largest group. This represents platforms for implementing parallel

applications, even though they have been subsequently used in other application �elds

such as computation-intensive purposes, computational simulations, storage networks

and internet services. The other group comprises the MPP systems, such as the IBM

BlueGene/P supercomputer [25], and represents 17.8% of the TOP500 systems. These

systems were the �rst using high-speed interconnection networks.

Many parameters inuence in the formal de�nition of an interconnection network.

Some important de�nitions are the network topology, which is the physical interconnection

scheme used to connect all nodes in the network, ow control, which handles the mechanisms

to move information from one particular node toward the next in the network, and routing;

in charge of �nd the best path, according to certain constraints, that a packet will use in

its journey from source to destination.

We will now give an introduction to important features of interconnection networks

design related to the thesis, including topologies (subsection 2.1.1), switching techniques

(subsection 2.1.2), ow control (subsection 2.1.3) and routing (subsection 2.1.4).

2.1.1 Topology

Topological disposition of nodes in the interconnection network are known as the topology of

the network. This represent the path where messages must traverse during communication.

Topology is modeled as a graph, where vertex represent nodes and edges represent links

between a pair of vertex. Network topologies can be classi�ed in four main groups, as

de�ned by Duato et al. [17, Ch. 1] and W. Dally [62, Ch. 3]: shared-medium networks,
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direct networks, indirect networks and hybrid networks.

In shared medium, the physical medium is shared by all communicating devices, as seen

in Fig. 2.1 Other alternative would be having point to point links directly connecting each

communicating device to a small subset of other communicating devices in the network.

In this case, communication between non neighboring devices requires transmitting the

information through several intermediate devices. These network are known as direct

networks. Fig. 2.2 depicts some direct networks. It shows an example of direct orthogonal

topologies, also known as symmetric topologies network. Under this classi�cation of direct

orthogonal networks, we can �nd di�erent topologies such as mesh and k-ary n-cube, being

the later a special case of meshes called closed mesh. Meshes are currently used mostly

in supercomputers. Meshes are rectangular matrix shaped, in a 2D or 3D con�guration,

where external nodes are not interconnected. Meshes are easily expandable and messages

routing is also simple. Closed meshes are network where external nodes are interconnected

to opposite nodes in the network. These topologies are usually known as \k-ary n-cube",

where n is related to dimension and k to the number of nodes per dimension. For example,

if n=2, networks topologies are called torus, and if k=2, they are called hypercubes.

Instead of directly connecting communication devices to each other interconnection

can be done by means of one or more switches. Several switches are connected to each

other through point to point links. This concept is known as indirect networks, as shown

in Fig. 2.3. Crossbar topology of size NxM is shown in Fig. 2.3a. Crossbar network allow

communications between any pair of processors or memory unit simultaneously. Fig. 2.3b

show a multistage network topology (MIN), where input devices are connected to output

devices through series of switches organized in stages. Each switch in this con�guration

is a crossbar. The number of stages and connection patterns available determine the

overall routing capabilities of this scheme. MINs are used when hundreds of processors

are interconnected in a parallel super-computer. Fig. 2.3c shows another indirect network

topology, known as fat-tree. In [49] they explain the fat-tree concept. According to them,

the fat-tree is represented in a tree structure where links weights gets thicker as they go

toward the root node. Fat-trees have been adopted by many research as well as commercial

machines such as In�niband [26] and Myricom [43]. The connectivity degree (the arity) of

internal switches of the fat-tree increases as it goes closer to the root. Because of this, its

physical implementation is unfeasible. Some alternatives have been proposed in order to

avoid this problem. One approach, mentioned in the paper, is to trade connectivity with

simplicity. This could be accomplished by building blocks with �xed-arity. One of the

possible variation of fat-tree is the k-ary n-tree. A k-ary n-tree has kn leaf nodes and n

levels of kn−1 switches. Each switch has 2k links. An example of a 4-ary 2-tree is shown
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in 2.3d.

(a) Local Area Network (b) Bus-based Network

Figure 2.1: Examples of shared-medium network topologies.

(a) Mesh 2D (b) Torus 2D (c) Cube 3D

(d) Ring (e) Torus 3D (f) Cube 4D

Figure 2.2: Examples of direct network topologies (orthogonal).

2.1.2 Switching Layer

The switching technique is in charge of moving packets within each switch along source-

destination paths. In fact, switching is the mechanism that transfers data from an input

channel into an output channel [44]. The most widely accepted techniques in the literature

are Store-And-Forward, Virtual Cut-Through [34], and Wormhole [12].

Store-And-Forward (SAF). This technique store the whole packet at the router

node, and once it has all the bits of the corresponding message, then proceeds with the
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Switch 

Nodes 

(a) Crossbar (b) MIN Butterfly (c) Fat-tree

(d) A 4-ary 2-tree

Figure 2.3: Examples of indirect network topologies.

transference, if the output port selected is not busy, to other router in the network. One

of its main disadvantages is the high latency value of a message in transit, due to the fact

that it must wait for the whole message to be stored. This latency value is calculated

proportionally to the size of the message and the amount of routers traversed.

Virtual Cut-Through (VCT). This technique does not wait that the whole message

is stored at internal bu�ers to be transmitted. The early inspection of the header enables

immediate forwarding of message bytes as soon as the routing decisions have been made.

If output channels are full, then this technique must have enough space to handle all the

message in its internal bu�ers. In this case, its behavior is the same as the store and

forward.

Wormhole. In wormhole Instead of saving all the packets in its own internal bu�ers,

wormhole can have its packets stored temporary in others previous routers traversed before.

Because the only one that contain information about the destination node is the header,

if it is blocked in one router, then all the other packets will have to wait as well, even

if they have resources to move forward. Other negative item is the requirement of both

input and output bu�ers to handle a whole message. One of its main advantages is the low

latency value of packets traversing the network, and the minimum temporal store capacity

required. Consequently, the small bu�er requirement and packet pipelining enable the

construction of routers that are small, compact and fast [17, Ch. 2].
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2.1.3 Flow Control

Currently communication devices have input and output bu�ers to store sent and received

data, so that it can process it without any loss of data. Flow control is tightly coupled

with bu�er management techniques, in determining how to manage the use of such bu�ers.

With the availability of a ow control mechanism, noti�cation of bu�ers space can be sent

to the source node based on the remaining capacity [17, Ch. 2], [62, Ch. 13]. The most

commonly used schemes are Credit-based and On/Off.

Credit-based Flow Control. This mechanism assigns credits to each router in the

network, in order to allow message transfer to other neighbors routers. Each transmis-

sion decrements the credit count and once the router runs out of credit, then it stops

transmitting.

On/Off Flow Control. A possible bu�er overow is detected at the receiver node,

and then it proceed with the noti�cation of the situation to the source node to stop

transmitting. When the receiver has enough space to resume communication, it sends a

control message informing of this situation to the sender node.

2.1.4 Routing

Routing algorithms establish the path followed by each message or packet. The procedures

of how to determine every path is based on di�erent network parameters. To reach certain

destination, a message may traverse many \hops" or intermediate routers. To accomplish

this task, the routing unit must know the network topology and select proper path based on

it. Caution must be taken into consideration when selecting those paths, to try to balance

communication and not leaving zones in the network without tra�c load whatsoever, while

others are practically under congestion and even saturation.

Although the number of existing options is quite large, routing algorithms can be clas-

si�ed into four main groups using the taxonomy proposed by Duato et al. [17, Ch. 4]. The

resulting classi�cation is based on number of destinations, routing decisions, implementation

and adaptivity. The classi�cation is summarized in Figs. 2.4 and 2.5.

Number of destinations. Routing algorithms where packets have a single destination

are known as unicast routing algorithms, while those having multiple destinations are

called multicast routing algorithms.

16



Routing decisions. This criterion is based on determining who and where are taken

the routing decisions. Decisions can be either taken by a centralized controller (centralized

routing), or in a non-centralized manner. In the latter case, decisions can be taken at the

source node prior to packet injection (source-based routing) or in a distributed manner

while packets traverse the network (distributed routing). Multiphase routing is an hybrid

scheme where the source node selects some destination nodes and the path between them

is established based on distributed approaches.

Adaptability. This is probably the most important classi�cation criterion in the context

of this thesis. Adaptability refers to how routing algorithms select a path between the set

of possible paths for each source-destination pair. Deterministic routing algorithms always

chose the same path between a source-destination pair, even if there are multiple possible

paths. Oblivious routing algorithms choose a route without considering any information

about the network's present state (note that oblivious routing includes deterministic

routing). Finally, adaptive algorithms takes into consideration the status of the network

at any time, to choose the best routes based on congestion situations, channel allocations,

latency values, etc.

Implementation. Basically, routing algorithms can be based on routing tables storing

paths information; or also on routing functions (logic or arithmetic) determining the path

for each source-destination pair. The routing algorithm can be either deterministic or

adaptive in both cases.

Routing algorithms

Number of destinations

Unicast Multicast

Routing decisions

Centralized Not centralized

Implementation

Table-based Function-based

Adaptivity

Deterministic Adaptive

Figure 2.4: Classi�cation of routing algorithms.

2.1.5 Routing in k-ary n-tree networks

Because the k-ary n-tree (Fig. 2.3d) is one of the topology we use in this work, we will

explain some basics about its routing. Minimal adapting routing between a pair of nodes

can be accomplished by sending the packet to one of the nearest common roots or nearest
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Adaptive Routing algorithms

Network info

Isolated Local

Progressiveness

Progressive Backtracking

Minimality

Profitable Misrouting

Number of paths

Complete Partial

Figure 2.5: Classi�cation of adaptive routing algorithms.

common ancestors (NCA) of source and destination, and from there to the destination.

Each packet traverses through two phases, and ascending adaptive phase to get to one of

the NCA, followed by a descending deterministic phase [22] [49].

2.2 Parallel Applications

2.2.1 Interconnection network impact over applications

Applications that are executed in an interconnection network may su�er from hotspot

or congestion situations that considerably decrease their performance. A typical parallel

program consist of many independent task running on di�erent nodes, and make use of a

message-passing strategy to synchronize and communicate their data among all participant

nodes. Total execution time could be estimated as the time it takes to an application to

perform all the calculations on his own data, plus the communication time involved to

pass all the information among nodes. Hence, the latency su�ered by a message is critical

to estimate the overall parallel application execution time, due to the fact that some nodes

may wait to receive their next portion of data to work with. Another strategy to avoid

long waiting times during communication time, could be the overlapping of computation

and communications. In order to e�ciently overlap communications and computations,

latency values are to be known and controlled, otherwise it could lead to long waiting

times.

Other factors, which may be di�erent among applications, come into consideration

when analyzing the impact of latency over applications. In compute intensive applications

the main goal is to distribute tasks among nodes and as a consequence minimize the

overall execution time. When there is only one metric to work with, in this case the overall

execution time, it is considered a best-effort strategy.

The distribution of the Application's task is performed with the idea of processing

resources' maximization in mind. Under this distribution, most of the time is expected to
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be dedicated to perform calculations and no processor become idle for a long period of

time.

If the network is under saturation, small changes in tra�c load can produce a global

state of congestion and the communication between all nodes will be penalized and waiting

times could increase. As a result here, the optimal distribution of task to processing nodes

would be ine�cient. According to this situation, the major goal is to maintain latency

values under desirable values and avoid the slope of congestion towards an unpredictable

latency's behavior .

Execution time of any task is very di�cult to estimate, due in part to functional depen-

dencies among all task that are executing concurrently and the tra�c and communications

load, therefore making it hard to perform an optimal task distribution and allocation of

resources. We are concerned about the communication time, which is a delicate issue due

to latency and congestion situations as mentioned earlier.

2.2.2 Parallel Applications Characteristics

Programs are designed to be executed dynamically, not in a steady state. This dynamic

is not uncontrolled, but it is bounded within certain limits. During their execution,

programs tend to go through di�erent phases according to speci�c tasks performed by the

program. For example, during the beginning of a program it starts with initialization of

data structures and some other initial parameters, that remains until the end of execution.

Then other phases must be carried out as well, as communication of initial data to

other nodes, program's data distribution, computation, synchronization, and many other

depending on particular application's requirements. Each of these phases can account for

di�erent time of computation or execution, based on the kind of problem being solved.

Most programs tends to be written with a modular scheme in mind, where the program's

basic structure is based on procedures within a loop, where each procedure is also using

loops and calling other procedures. Although this is not a strict concept for all kind of

programs, it is for most compute bound programs. Applications designed and implemented

under this scheme, present some features such as strong periodic behavior and alternation

between di�erent portions of code [55]. Based on the repetitiveness exposed above, relevant

parts of applications can be extracted and then create a signature to identify them properly

during execution [64].
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Communication Requirements of Real Applications

Many of the routing algorithms in the literature base its results on synthetic tra�c analysis,

some examples could be [18] [15] [57] [19] just to mention some of them. In their work

they try to probe some speci�c new functionality or feature of the routing algorithm or

the architecture. On the other hand, and despite of the large number of works studying

new features of routing algorithms, only a few works (mostly in the last decade) started

to use real applications patterns for HPC tra�c studies.

The work presented in Kamil et al. [30] performs and in-depth study of the communica-

tion requirements across a broad spectrum of important scienti�c applications. The work

tries to characterize the parallelism and communication requirements of such a diverse

set of applications. The main goal encompasses a guide for architectural choices for the

design and implementation of interconnects for future HPC systems. In Kamil et al. [31],

they extend their last work and propose a hybrid architecture that uses circuit switches to

dynamically recon�gure lower-degree interconnect to suit the topological requirements of a

given scienti�c application. Barker et al. [2] present a two-network interconnect: An optical

circuit switching (OCS) network handling for bulk data transfers using optical switches;

and a secondary lower-bandwidth electronic packet switching (EPS) network. Here, Kamil

et al. [31] and Barker et al. [2] both propose changes to the core architectural design of

network components. Their major contribution, besides its new design proposal, is the

extensive evaluation of their work with real scienti�c applications and its communication

requirements.

Riesen [52] studies message-passing applications patterns. In his work he proposes a

novel framework in order to extract the information from running applications, instead of

getting from the source code. From the framework expects to get signi�cant knowledge

(such as message density distribution, data density, number and type of collectives and

message size distribution). Basically he collect signi�cant data from the application in

order to be used later in the design of networking hardware and software.

Oliker et al. [46], Vetter and Yoo [60], Bhatel�e et al. [4] test a set of representative

applications on candidate petascale platforms. These works are based on the premises of

studying the behavior of these applications in high-end computing environments. Although

they do not propose a speci�c method to improve performance, they do present a thorough

result set of application performance on these architectures. These result could be used to

analyze the application characteristic and could help the design of novel hardware and

software for HPC environments. Later, Kamil et al. [32] extend their work by conducting

a broader and updated study of high-end application communication requirements. Using

these characteristics, the propose a fit-tree approach for designing network infrastructure
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that is tailored to application requirements. They suggest a cost-e�ective solution by

introducing a new network architecture. While they prove that their solution is e�ective,

they basically propose a completely new architecture and infrastructure. This could be

good for new HPC systems, but impractical for existing installations.

G�omez et al. [23] propose a deterministic routing algorithm for fat-trees, comparing it

with adaptive routing in several workloads. Besides using synthetic tra�c, they propose

to validate its methodology against some I/O speci�c tra�c patterns. In Vishnu et al.

[61] they provide an MPI functionality which provides hot-spot avoidance for di�erent

communications, without a priori knowledge of the pattern. Even though they do present

one of the �rst dynamic approach, they require a new layer between the MPI protocol

layer and the In�niband Layer in order to operate. Desai et al. [14] study the behavior of

real and synthetic supercomputer workloads to understand the impact of the network's

nonblocking capability on overall performance. Kandalla et al. [33] present a methodology

to detect the topology of large Infiniband clusters and then leverage this information to

create topology-aware algorithm for collective operations. They also propose a model to

analyze the communication of collective communications on large scale supercomputing

systems. They focus only on collective communication primitives, while many parallel

scienti�c applications rely mostly on point-to-point primitives (send-receive). A framework

for application-aware routing that guarantee deadlock freedom under one or more virtual

channel is proposed in Kinsy et al. [35]. The framework uses an o�ine approach in order

to minimize a set of constraints such as latency, number of ows per link, bandwidth or

any combination thereof.

In Rodriguez et al. [53] a family of oblivious routing scheme for Fat Trees and their

slimmed version is presented. They propose a new generalized family of algorithms that

provides a better oblivious solution for the routing in this kind of networks. They extract

some information from the application, such as the connectivity matrix (source-destination

pairs) for each communication phase. Then they feed their routing algorithm with the

information extracted previously (the connectivity matrix, the topology and the mapping).

All this process is performed o�ine, and then fed into their simulator. In Rodriguez

et al. [54] a new static source routing algorithms for High Performance Computing is

proposed. They have evaluated their proposals against realistic tra�c generated by HPC

applications such as WRF (Weather Report Forecast), FEM (Finite Element Method)

and the NAS Parallel Benchmarks. This work also proposes an o�ine contention metric

for the network and the adapter, as well as a new pattern-aware routing heuristic to get

optimized routes according to the o�ine contention metrics. Johnson et al. [28] show

that for a particular application communication pattern, the performance of an In�niband

21



network is greatly a�ected by contention within the network. They propose a methodology

to optimize the network performance from an application centric point of view. They

analyze the application and extract its requirements. Then the fabric of the network is

customized accordingly. They propose this application approach instead of optimizing

particular network features such as bandwidth, latency or collectives communications.

2.2.3 Bursty Traffic

Repetitive communication patterns alternated by computation phases can be extracted by

identifying relevant stages of applications. In high performance computing (HPC), we could

�nd many tra�c load patterns according to the paradigm or model of the applications.

DRB [19] for example works well under uniform tra�c load distributions, which represent

applications where heavy communications are done at the beginning and remains mostly

the same until execution �nishes.

There are, though, other types of load distribution found in HPC, as the bursty tra�c.

Bursty tra�c is composed basically of a portion of uniform, low tra�c load and other

very distinct tra�c pattern representing a heavy tra�c load. Both low/high tra�c load

patterns performs in a cyclical way, leading to a distribution depicted in Fig. 2.6. This

kind of tra�c load represents applications where computation stage is well di�erentiated

from communications stage. Fig. 2.6 depicts two tra�c load patterns examples. The

�rst one, shown in 2.6a, represents an application with an uniform distribution for low

tra�c load, and one distribution for high tra�c load, such as the bitreversal for example.

This communication pattern is just called bursty tra�c, and represents applications

performing some calculations over a set of data for a period of time, then proceeds with

communications and start the process of computation again. This process repeats until

execution ends, and communications are always performed among the same set of nodes.

The second �gure, depicted in Fig. 2.6b, is called bursty tra�c with variable pattern

and also has some uniform low tra�c load; but within the bursty zone, the communication

pattern used changes in each step. Applications in this category perform computations over

a data set for a while before start communication process to other nodes in the network.

Afterward, a new set of computations will be executed again, until communication phase

is needed and the cycle will start over again. Applications under this scheme can be those

with task migration between a set of nodes, or where communications depends on data

results obtained from previous computation.

We can see from Fig. 2.6 that bursty tra�c is composed of many portions of uniform

and some other communication pattern load. The bursty nature of HPC tra�c is not

entirely random [54], and it is governed by application criteria such as process mapping.
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Using the strategy of application patterns' extraction within the cyclic behavior of tra�c

in HPC could lead to a powerful way to obtain better policies of routing and congestion's

control, based on historical data about application behavior and application tra�c.
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Figure 2.6: Bursty tra�c.

2.2.4 Communication Primitives

The breakdown of MPI calls is shown in table 2.1. We take into consideration only the

calls used by the applications used in this thesis. Also, we only consider communications

and synchronization calls. We can see that the applications only use a subset of the entire

communication library available. The use of the primitives depends on each particular

application and how it is coded. The applications selected mostly use non collective

communication primitives. The only applications analyzed that make heavier use of

one collective communication primitive (MPI Allreduce) are the POP with nearly 30%,

followed by the Lammps Molecular Dynamic application with 10% of the total. The rest

of applications rely on point-to-point communications. From this non collective subset, the

POP is the one which uses non-blocking primitives. The rest of applications use mostly

blocking MPI communication models for their codes.

2.2.5 Parallel Application Phases - Repetitiveness

Studies of parallel applications in HPC reveal they have repetitive behavior, based on

computing and communication phases [64]. Programs in general tend to be written

in a modular fashion, and have a very strong periodic behavior [55]. An example is

given on Fig. 2.7, where the repetitive behavior of the NAMD [50] application is shown.
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Function POP Lammps NAS LU NAS MG
S

NAS MG
A

NAS MG
B

Sweep3D

MPI ISend 34.9% 0% 0% 0% 0% 0% 0%

MPI Waitall 34.9% 0% 0% 0% 0% 0% 0%

MPI RecvS 0% 0.04% 0% 0% 0% 49.09% 0%

MPI Send 0% 43.6% 49.8% 44.42% 46.49% 0% 49.99%

MPI SendR 0% 0.04% 0% 0% 0% 0% 0%

MPI Wait 0% 43.6% 0.31% 44.42% 46.49% 49.09% 0%

MPI Irecv 0% 0% 0.314% 0% 0% 0% 0%

MPI Recv 0% 0% 49.52% 0% 0% 0% 49.99%

MPI Reduce 0% 0% 0% 0.10% 0.06% 0.17% 0%

MPI Allreduce 29.3% 10.75% 0.003% 9.6% 6.04% 1.56% 0.007%

MPI Barrier 0.3% 0.008% 0.0007% 0.65% 0.41% 0.10% 0.0007%

MPI Bcast 0.3% 1.88% 0.0035% 0.76% 0.48% 0.12% 0.0009%

Table 2.1: Breakdown of MPI Communication Calls.

Here, some communications take longer than others (green bars). This imbalance in the

communications causes that some processes become idle (red bars). These ine�ciencies

are repeated in each application phase. Fig. 2.8 shows an extract from one communication

pattern of MG. Here if communications between nodes 0-1 and 0-3 could be reduced

(green and orange arrows), then also the time for the MPI Wait state will decrease

(magenta bars). This will allow the next primitives for nodes 1 MPI Send 4 and node

3 MPI Send 12 to execute earlier. As this procedure is part of a signi�cant phase of

the MG application, a reduction in this communication will be applied every time this

patterns re-appears. This repetitive behavior represented by fundamental phases of the

entire application can lead to situations where speci�c tra�c patterns reappear. A phase

of an application includes one or more communicating patterns, represented by a set

of source/destination pairs as shown in Fig. 2.9. Representative phases from parallel

applications can be extracted by using the PAS2P performance prediction tool [64]. In

table 2.2 we can see a summary of parallel applications, their representative phases and

weights (how many times it is repeated during execution).

2.2.6 Matrix of Communications

We have also analyzed the the topological connectivity of applications. The idea here

is to show the communication pattern used by the application as well as the volume of

communication. This information would be valuable to identify the applications which

would be optimal to use with our proposal. We have also identi�ed the pattern of the

(repetitive) phases that were extracted previously (shown in the table 2.2). In the �g. 2.10a
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Figure 2.7: Repetitiveness in parallel applications.

Figure 2.8: NAS MG pattern (6 of 64 tasks shown)
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Figure 2.9: Tra�c pattern in one application phase

Parallel Application Total Phases Relevant
Phases

Weight (# of
phases’ repetitions)

Lammps Comb (64 nodes)[51] [37] 49 2 1698

Lammps Chain (256 nodes) [51] [37] 52 19 1802

NAS FT Class A [1] 6 5 9

NAS FT Class B 6 5 22

NAS MG Class S 21 12 164

NAS MG Class A 25 11 185

NAS MG Class B 27 3 424

SMG2000 Semicoarsening Multigrid
Solver [56]

10 4 1200

SWEEP3D: 3D Discrete Ordinates Neu-
tron Transport [36]

80 5 46000

Parallel Ocean Program (POP) [29] 140 120 38158

Table 2.2: Parallel applications phases
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we can see the communication matrix for the Lammps molecular dynamics application. It

is represented for the Chain problem. In the color box at the right side we can see the

volume of communication reference (in bytes). Here, the diagonal represents the largest

volume of communication. Chain communicates with its neighbors nodes and also has

communication with other nodes located further away. The average TDC (connectivity)

is 7 per node for this program. This means that each node communicate with 7 other

nodes. This TDC is independent of number of nodes. We can see this because it remains

the same for 25 or 100 execution nodes, on average. If we watch the �g. 2.10b, we can

also determine that for 256 nodes the behavior is similar. The di�erence here lays in the

volume of communication, which for the 256 example is a bit higher. Despite the TDC is

only 7 for lammps, we can see in �g. 2.10c that the matrix of communication from one

of the representative phases of the application involves communications between several

nodes. Recall from table 2.2 that Lammps Chain has 19 relevant phases. In this case,

this phase is the number 43 and the pattern in the �gure is repeated 69 times throughout

execution. We can observe that the phase has similar behavior compared to the whole

application. The routing algorithms must deal with this communication pattern every

time it appears in the network. If the routing algorithm does not have any information

about the communication pattern, or the cause and the solution given, it must perform

the same operations over and over in order to control latency values under this repetitive

patterns.

In the case of Lammps Comb, in �g. 2.11, we can see similar results with the diagram

for the entire application. Regarding the application phase shown in �g. 2.11b, we can

see that the communication is mostly performed around the diagonal band. Under this

scenario no gain can be expected in network communication, due that communication

is performed almost locally within source routers. But because this application has two

relevant phases (see table 2.2), we have to analyze both of them in order to decide if

this application would be suitable to network optimization. The phase #2 is not shown

here, because it is composed solely by collective communications (MPI Allreduce). This

collective communication would produce heavy tra�c into the network. Also, this collective

phase has a weight of more than 800 (repetitions). This implies that this communication

pattern would inject the same amount of load into the network every time. Because of

this, it should be considered to be used with our proposal.

The connectivity matrix for Sweep3D is shown in �g. 2.12. We can see that the

communications are performed around the diagonal, mostly between neighbors. The TDC

for Sweep3D is 4 on average. Although this applications has a high rate of repetitive

phases(5 phases which are repeated 46000 times; see table 2.2), none of this communications
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are relevant to the routing. This happens because most of the communications are

performed among neighbor nodes and the network can handle all the communications

without congestion. Therefore, this application is not suitable to be optimized based on

its communications characteristics.

In �g. 2.13 we see the communication matrix extracted from the POP application for

64 nodes. The communication topology of the entire application execution is shown in

�g. 2.13a. We can see the communication among close nodes represented by the diagonal

bands. Also, some scattered communications exists. They represent the communications

between remote nodes in the network. The maximum TDC here is of 11. We can see in �g.

2.13b one relevant phase of this applications. Here, the volume of communication is not as

large as the other examples. On the other hand, we can mention that this particular phase

even though having low volume of communications, has a high degree of repetitiveness

over time, 5050 out of 38158 according to the information extracted in table 2.2. Other

phases for this application behaves similarly. For this application the analysis and study

of its communications characteristics would result in bene�ts at communication level,

and in some extent to application level as well. This bene�ts could be achieved because

by reducing the communication times of repetitive communications patterns, we could

make that blocked packets (like those of MPI wait, Barrier, All reduce, etc) waiting for

noti�cations move faster.
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Figure 2.10: Lammps Chain Benchmarks' Matrix of Communications.
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Figure 2.11: Lammps Comb Benchmarks' Matrix of Communications.
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Figure 2.12: Topological Connectivity of Sweep3D
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Figure 2.13: POP 64 nodes.
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2.3 Final Considerations

After analyzing these works we can arrive at some common conclusions. The authors from

the analyzed papers conclude that the communication patterns exhibited by some real

scienti�c applications generally under-utilize the bisection bandwidth of fully-connected

networks. They also identify that applications patterns are a crucial factor when analyzing

performance and the bene�ts in overall performance cannot not be realized by hardware

alone. All the previous work basically rely on the extraction of information from appli-

cations o�ine. After getting all the information such as: the communication pattern,

the connectivity, the topology, the perfect mapping among other; then they feed that

meta-information to their simulator (in most of the cases) or real implementations (in

others). We also saw that besides the patterns, their behavior could also be extracted and

analyzed. We can say then that all the application information extracted could be used to

guide or help in the routing and/or congestion control mechanisms by means of static or

dynamic approaches. The evaluation of the applications explained here are described in

the chapter 4. Speci�cally the NAS Parallel Benchmark in section 4.8.2, Lammps Comb

in section 4.8.3 and POP in section 4.8.4.
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Chapter 3

Predictive and Distributed Routing

Balancing

In this chapter we propose a routing algorithm based on the study of communication

latency and repetitive communication patterns in HPC applications. The proposed method

is called Predictive and Distributed Routing Balancing(PR-DRB). This method is also

based on the concept of path redundancy available in many network topologies, by using

a multipath routing approach.

This chapter aims to expose the ideas that shaped the main objective of this work. It

shows the methodology carried out to present a solid predictive module proposal, PR-

DRB. Accordingly, a detailed description technique of all the components are included.

These components are oriented to avoid hotspot situations and get a proper tra�c load

distribution under controlled values of latency.

This method shares theoretical basis with two previous theses; it is based on the

method developed by Franco et al. [19] [20], [21], Distributed Routing Balancing (DRB);

subsequently improved by Lugones et al. [41], [42].

Conceptually, the proposed predictive routing method is based on state information

obtained from source and destination paths. Among the state information we can mention

the latency value of the whole path, the latency at intermediate routers and the ows

contending for a resource at every intermediate router. The proposed method follows

the three standard phases proposed for reactive congestion control techniques. The �rst

phase is in charge of the monitoring, detection and noti�cation of high latency values

that can lead to a congestion situation. Also in the �rst phase, the information about

the communication pattern involved in congestion is analyzed. The second phase decides

about the con�guration of new alternative paths according to the congestion situation

previously noti�ed. The third phase uses the con�gured alternative paths in order to
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e�ectively alleviate the congestion situation.

The rest of the chapter is organized as follows: The justi�cation of the predictive idea is

given in section 3.1. The functional aspects are explained in section 3.1.1. The predictive

approach is analyzed in section 3.2 along with the monitoring, detection and noti�cation

phases (subsection 3.2.2), the con�guration of alternative paths (subsection 3.2.3), the

thresholds and the related zones used (subsection 3.2.4), the path selection procedures

(subsection 3.2.6) and the contending ows noti�cation and management (subsections 3.2.7

& 3.2.8). The architecture of network components is exposed in section 3.3. Additionally,

some design alternatives are disclosed in section 3.4.

3.1 Justification

Based on previous examples of communication patterns repetitiveness, we can say that

High Speed Interconnection Networks (HSIN) routing performance depends mostly on the

communication pattern used and the mapping of nodes to processors. PR-DRB tries to

improve communication imbalance situations by distributing communications in a better

way. To improve communication performance, hence applications currently running in

the network, a technique capable to fully dynamically combine adaptive algorithms and

communication patterns is needed, so that routing and congestion control can perform as

fast as possible and minimize overhead.

Initial Assumptions

For this thesis, we use the term router to indicate network nodes (devices) which can

receive packets, determine their destination based on a de�ned routing algorithm, and

then forward the packet through the corresponding output port [62, Ch. 2]. Consequently,

the term node will be used to reference terminal and processing nodes.

3.1.1 Functional Aspects

In Fig. 3.1 we can see the proposed method behavior. During the �rst stage of the tra�c,

the curve for DRB and PR-DRB algorithms are practically the same. This is because

PR-DRB is learning from the hotspot situation that is causing the congestion in the

network. At the end of tra�c stage 1, latency value is stable and the best solution found

is saved at source node. Best solution is identi�ed because the latency curve has reached

its highest value and from now on it starts decreasing. This means a good balance of

tra�c have been found and all messages injected into the network are properly distributed.
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When the bursty tra�c stops, because the communication phase of the parallel application

is over and now is probably doing some computation with the data transferred, the latency

value decreases to a minimum. Under such situation the network can accept all the tra�c

currently ongoing. When the application starts its communication phase again, the latency

value starts rising accordingly to tra�c conditions, as we can see during the second stage

of the tra�c in Fig. 3.1. This scenario would be repeated as many times as the weight

(# of repetitions of one phase) assuming some degree of repetitiveness in the application

pattern.

The repetitions give the ideal situation to apply the solutions already found in previous

stages. The proposed behavior is shown in stage 2 of 3.1 where both curves rise similarly

until some speci�c point and then start deviating from each other. Both curves go similarly

practically until some points after the detection have been identi�ed and the control

mechanisms have been activated. This point is marked in the �gure by (1) and (3), and

it represents the precise moment where both algorithms perform the detection and start

controlling the situation. We can mention that the proposed method, PR-DRB, get such

a deviation from the original curve partially because good solutions have been applied

earlier and even though the global latency is still rising, PR-DRB controls the sharpness of

the rising procedures. Greater improvement can be seen when the bursty tra�c stabilizes

and remain constant. PR-DRB practically avoid the hot-spot situation that happens

while the method is still in the process of �nding the alternative paths. The main goal

of PR-DRB is to stabilize the latency value in the shortest possible time, thus leaving

resources available to new communications. The points marked by (2) and (4) shows the

�nal e�ect intended by PR-DRB. The latency value encountered in (2) is similar than the

one used in (4), practically without any hotspot prolongation due to adaptivity process of

the algorithm.

3.2 Predictive Approach

The predictive approach is based on the concept of repetitiveness of relevant stages in

parallel applications. Each stage of one application may incur in the congestion control

procedures explained here. At the monitoring phase, latency value of a message is logged

throughout its journey through intermediate routers. In addition, the information related

to the communication tra�c pattern which caused congestion is also saved.

Based on the design alternatives, noti�cation can be performed at intermediate router

(router based notification) or destination nodes (destination based notification). In either

case, the source node is noti�ed about the network status via an acknowledge or notification
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Figure 3.1: PR-DRB overview

message (ACK). This acknowledge includes the latency value registered throughout the

path and the set of contending ows which caused congestion.

The set of contending ows are extracted from the router where a latency threshold

has been surpassed. For destination based notification, only the information from one

router can be managed at one time. On the other hand, for router based notification, every

intermediate router could send a noti�cation ACK to the sources involved in congestion.

With the ACK message, the source node is then able to start the procedures to control

the congestion, if any, in the network.

At the end, the congestion situation along with the solution applied is saved for future

similar situations. The best solution saved may be further updated, if the method �nds

a better combination of paths which improves performance. Fig. 3.2 shows the general

overview described earlier. Here, the destination based scheme is shown. The router based

variation is shown in section 3.4.1.

PR-DRB basically tries to learn from the repetitive situations encountered during

bursty tra�c conditions, and overcome the limitation found in adaptive algorithms in

general under this situation. Speci�cally, we focus on the improvement of the original

DRB adaptive algorithm.
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Figure 3.2: Latency detection and noti�cation

3.2.1 PR-DRB Working Scheme

PR-DRB seeks better response time by using cached communication and alternative paths.

In Fig. 3.3 we can see the standard Packet delivery Process. The diagram is composed of

three main blocks: Source node, Package Routing and Destination node. The actions of

PR-DRB are performed in one or more of these main blocks. The source and destination

nodes performs the local operations.

The packet routing block represents the activities performed at intermediate routers

along the path from source to destination. Each block is composed by several elements

(stage boxes and decision elements) representing the ow of actions performed by routers,

source and destination nodes. When a source node wants to send some data, depicted in

the Source node block, a message is built and injected into the network.

Then, as seen in Package Routing block, a multi-header message is forwarded through

intermediate routers. Once the message reaches destination endpoint, as seen in Destination

node block, the packets are received and delivered to the end node for processing. Before

the delivery process takes place the packets are re assembled, and eventually ordered, into

a valid message.
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Figure 3.3: Standard packet delivery process

3.2.2 Monitoring, Detection and Notification

Monitoring includes the tasks of latency accumulation and contending ows identi�cation,

performed at intermediate routers. Every intermediate router executes the monitoring

task when packets traverse its internal ports.

Once inside a router, the latency of the packet is monitored. The latency is the time the

packet occupies internal bu�ers waiting to be accepted for delivery to the next intermediate

router or the destination node. Besides latency value, routers analyze which others ows

of data are at the same time in the bu�ers and look for information about them. If latency

values registered overpass a high threshold de�ned, then before a message is accepted for

delivery, the header of the packet is �lled with information about the contending ows

found in the router.

Contention latency is determined by the time a packet must wait at internal router

bu�ers before it is re injected into the network. Contention is given because other ows

are also trying to use router resources at the same time. The latency value is registered

and added up in every intermediate router, so that when reaches destination node the

whole path latency would be available to make the proper decisions afterward.

The procedure of saving the contending ows identi�ed in a congestion is a key factor

to determinate in other phases that the same pattern has occurred again, and then re apply

the best solution already used. The pseudo code of the monitoring phase also controls that
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the congestion situation is only recorded at routers which experiment a certain level of

congestion. This is explained by the reason that when the global ACK message is delivered

to the source node, then it would perform the aperture of new alternative paths and with

this the congested portion of the network will lighten resources hence diminishing latency.

The ow diagram for the destination based monitoring and noti�cation approach, is shown

in Fig. 3.4. The general algorithm is also included in the appendix, in section A.1.
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Figure 3.4: Monitoring and detection ow diagram (destination based).

As expressed before, the noti�cation process could be router based notification as well,

as detailed in section 3.4.1. Here we explain the destination based notification. Noti�cation

is initiated at destination nodes. Here, and Acknowledge (ACK) message with path

information is created and sent back to the source. The diagram of the monitoring and

noti�cation procedures explained here are shown in Fig. 3.5. As shown in the �gure, the

delay su�ered in switch bu�ers (queuing latency) is logged into the message. If queuing

latency values exceeds a threshold while still at intermediate routers, contending ows

patterns are also logged by PR-DRB. Monitoring tasks are performed while the packet

is queued. Once the message reaches destination, as seen in Destination node block,

Noti�cation takes place. The Noti�cation box depicts the task involved in this procedure.
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Here, latency as well as contending communication patterns found are sent back to the

source in an ACK. Not all contending ows are noti�ed, but only those which contributes

most to congestion. In order to identify the contribution of each ow to the congestion, we

�nd the average of occupation of every unique source currently in the ACK packet. The

noti�cation functionality is shown in Fig. 3.5
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Figure 3.5: Monitoring, Detection and Noti�cation procedures

3.2.3 Configuration of Alternative Paths

PR-DRB de�nes a metapath (MP) as a set of possible alternative paths between each

source-destination pair. Metapath Configuration de�nes how to create alternative paths in

order to expand single paths, and when to use them according to congestion level in the

network. Using the information gathered during monitoring tasks, PR-DRB executes the

dynamic metapath con�guration. The objective of con�guration is to determine, for each

source-destination pair, the size of the metapath according to message latency between

both nodes. This is achieved by the selection of intermediate nodes (IN) belonging to a

path di�erent from the original. An example of a set of intermediate nodes that can be used

in alternative path is shown in Fig. 3.6. Each alternative path is created, schematically,

using a three step path (Multi-Step Path, MSP) by selecting two intermediate nodes,

neighbors from the source (IN1) and destination (IN2) node, respectively. PR-DRB builds

the alternative paths around the original path as shown in 3.7.

The mathematical de�nition of a multistep path (MSP) is given in Eq. 3.1, where S
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corresponds to the source nodes; D represents the �nal destination node; and intermediate

routers are denoted as Ini. Furthermore, each Pj is a simple segment between any two

nodes (terminal or intermediate); and the symbol • represents concatenation.

MSP =
∏

(S, In1, In2, . . . , Ini−1, Ini, D)

= P1(S, In1) • P2(In1, In2) • . . . • Pj−1(Ini−1, Ini) • Pj(Ini, D) (3.1)

We can see from the de�nition of Eq. 3.1 that a MSP may not be minimal, although

each of their composing segments are based on minimal routing. The length of a MSP is

de�ned in Eq. 3.2 as the sum of the length of each individual segment, Length(P ). In

case of minimal static routing, Length(P ) equals the minimum number of links that must

be crossed to go from the source node to the destination node. The latency of the MSP is

determined according to the expression given in Eq. 3.3.

Length(MSP ) = Length(P1(S, In1)) + Length(P2(In1, In2)) + . . .+

Length(Pj−1(Ini−1, Ini)) + Length(Pj(Ini, D)) (3.2)

Each single path is traversed using original routing de�ned for the topology. The

intermediate nodes register the latency values at every moment, together with topological

characteristics of interconnection network. Thus, the Tra�c load is fairly distributed over

the network resources.

Latency(MSP ) = Transmission time+
∑

QueuingDelay(router) (3.3)

As de�ned above, a metapath is composed by a set of alternative paths between a

given source and destination pair. Congestion is controlled by increasing the available

e�ective bandwidth between source and destination pair. This metapath expansion is

performed adding more surrounding intermediate nodes neighbors. Intermediate nodes are

selected according to their distance to the source and destination nodes (The intermediate

nodes of 1-hop distance are considered �rst, then intermediate nodes of 2-hop distance,

etc). This metapath con�guration also depends on the predictive procedures proposed in

this work (section 3.2.6). If we still do not know anything about the pattern, it means

there is no solution saved for it. So, the metapath con�guration process is executed. After
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a while, the predictive module would have saved enough information about the pattern.

If this is the case, then the set of alternative paths is extracted from the "saved paths

database", thus avoiding the metapath con�guration process.

Intermediate Nodes
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1

1

1 1

2

2

2

2 2

2

22

Figure 3.6: Intermediate nodes

S D

Multipath Nodes

Ack

Original Path

Source/Destination PairContending Flows

ACK Intermediate Nodes

Figure 3.7: Example of a metapath (MP) composed by 3 multistep paths (MSP)

Recall from section 2.1.5, on k-ary n-trees networks minimal routing between two nodes

is de�ned in two steps. On the �rst step, a packet is sent from the source node to the

closest ancestor between the source and destination nodes. From this point, the packet is

delivered towards the destination. This is the second step. As the packet moves through
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the tree levels, more paths are available to perform adaptive routing. Each router now has

the ability to select an output port in the upward direction. Once the packet arrives the

common ancestor, then it is sent back in the backward direction towards its destination.

3.2.4 PR-DRB Thresholds

Congestion level in the network is used by the routing unit in order to perform the

load distribution. To evaluate this congestion level then the metapath latency concept is

introduced. This latency is de�ned as the inverse of the inverse aggregate latency sum

of every path conforming the metapath. These latencies are produced while a message

is traversing along one path from the metapath. The inverse of the latency is in fact

one path's capacity. Thus, the inverse of the aggregate sum is the metapath's capacity.

The metapath latency equation is shown in 3.4. The threshold is a set of prede�ned

latency values. Threshold High is the maximum limit for the latency before it enters into

a saturation zone. Threshold Low represents the point where the alternative paths starts

to decrease. The interval between Threshold High and Threshold Low de�nes the latency

value which is acceptable. This is the working zone of the network. While in the working

zone, the metapah remains unchanged.

L(MP ) = (
∑S

i=1
1

L(MSPi)
)−1 (3.4)

According to the latency value L(MP ), the source node would:

• Increase the number of MSPs if (L(MP ) > Threshold High).

• Maintain the same number of MSPs if

((Threshold High) > L(MP ) > (Threshold Low)).

• Decrease the number of MSPs if (L(MP ) < Threshold Low).

The metapath con�guration process is outlined in Fig. 3.8. The pseudocode is also

shown in the Appendix in Alg. A.2. The thresholds used, also de�ne zones which are used

to trigger the predictive behavior. This zones are explained in the next section: 3.2.5.

3.2.5 PR-DRB Zones

In order to identify the proper time when an action must be performed by PR-DRB,

thresholds are used, as shown in Fig. 3.9. The thresholds corresponds to those used to
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perform the metapath con�guration (see section 3.2.4). By using this thresholds values,

three well de�ned zones are created:

low(L),medium(M), high(H) (3.5)

The low latency area represents low congestion situations. The medium latency

area represents situations when congestion is raising, but the network can handle all

communications properly. This is the normal working zone. High latency area represents

high congestion in the network. While in low and medium latency zones, PR-DRB does

not open new paths. When latency values identi�es a transition between medium to higher

zones, PR-DRB starts opening procedures. These includes the searching of saved solutions

or new paths opening procedures if no solutions are saved so far. When congestion is

controlled, latency returns to the middle zone indicating that good paths have been found.

Here, path saving procedures are initiated. Finally, when latency values drops back to the

lower zone, path closing procedures are started.
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Figure 3.9: Thresholds and the zones de�ned

3.2.6 Predictive Procedures

Metapah procedures con�gure alternative paths to be used accordingly to latency value

and thresholds, as shown in Fig. 3.12. If transition is from M (medium) to H (high) latency

denotes congestion, then new alternative paths are needed. PR-DRB then looks for an

already analyzed congestion situation. If this is the case, the set of alternative paths is

retrieved from the database of saved solutions. If no solutions are found, then alternative

paths opening procedures are initiated. If transition is from H to M, information about

contending ows during congestion situations is updated into the saved paths database. If

transition is from M to L latency values denotes low congestion, then alternative paths

closing procedures are invoked. All these procedures feed the current paths database.

Later, when a message is ready to be injected into the network, PR-DRB performs

the Path Selection. Here, PR-DRB selects which paths are going to be used from those

available in the current paths database. Path selection and Con�guration diagram is

shown in Fig. 3.10. Paths having lower latency values are more frequently used, and

they receive proportionally a greater number of messages. Given a source node with N

alternative paths, let's be Lci(i : 1..N) the latency recorded by path Ci. The alternative

path Cx will be selected in the following injection according to the probability (PDF):

p(Cx) =
(1/LCx)∑N
i=1 1/LCi

(3.6)

Furthermore, paths are selected according to their length. If paths are long in hops,
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message transmission time could be high enough and lead to performance degradation, so

shortest paths are selected. Bandwidths are calculated as the inverse of latencies received

in source node. This information is used to build a probability density function, and a

path is selected according to the equation shown in 3.6. Finally, a multiple header packet

(containing the intermediate nodes) is injected into the network. Path selection algorithm

is resumed in Alg. A.3 in the Appendix. The path selection procedure is shown in Fig.

3.11.

As shown previously in Fig. 3.5, a packet is forwarded without any overhead when the

output port is free. Otherwise, packet is queued and latency is simultaneously accumulated

until the packet is ready to be forwarded again. PR-DRB is based on the DRB algorithm.

DRB has been already proposed as a congestion control for In�niband [40]. As IBA already

has functionalities required by PR-DRB (e.g. monitoring functions at IBA switches, the

CCA has procedures for congestion noti�cation and path opening), PR-DRB integration

into the IBA standard is feasible.

3.2.7 Contending Flows Notification

In section 3.2.2 we have mentioned that not all ows were noti�ed about a congestion

situation. Only those source-destination pair which contribute most to congestion are to

be noti�ed. Then this nodes would start the metapath con�guration process properly.

The monitoring, detection and notification phase could be destination based, as seen in
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Figure 3.11: Multistep path selection.

3.2.2 or routed based as seen in section 3.4.1. Either case, the base information about

what to send to the source is the same. Both strategies use the set of contending ows

(and the latency) information. The only di�erence is that for the destination based the

information about all the contending ows should travel into the PR-DRB header packet,

to be processed at destination. On the other hand, the routed based approach reads the

local bu�ers queues and then determine what to send via and ACK to the source. For

this case, no additional payload should arrive to the destination. In order to identify

which sources should be noti�ed, among all racing for router resources, we select those

which are causing congestion. We estimate this value by reading the average latency value

(contention latency) of every packet in one output queue. We then select those packets

(src-dest) which are the oldest and their average contention latency is constantly raising.

In Fig. 3.13 we can see an example of which source/destination pairs are going to be

noti�ed. In the example, the source/destination pair (1-5) represents 50% of the packets

causing congestion. The packets (2-7) represents 30%. Assuming the other packets do not
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Figure 3.12: Metapath Con�guration FSM

contribute to congestion, then only these two sources (1 and 2) will be noti�ed. Our policy

also checks that even if a source/destination pair appears more than once, the noti�cation

is performed only once per bu�er's access.

src-dest (1-5) = 50%
src-dest (2-7) = 30%

1-5 1-52-72-7 2-73-4 4-91-5 1-5

Figure 3.13: Example of a pair of source/destination to be noti�ed

3.2.8 Contending Flows and Solution Management

A complete path expansion example is given in Fig. 3.14. This set of alternative paths

conform the best solution found so far. In order to reuse the same known solution

afterwards, PR-DRB saves contending ows and best solutions information. Contending

ows pairs (S1-D1, S2-D2) are identi�ed, as well as the paths opened for this solution

(P1, P2, P3). The info registered is given in Fig. 3.14 \Node S1 - Saved Solution". This

diagram corresponds to what the node S1 knows about the congestion situation, and

the paths it should open once it contends again against node S2. Each source involved

�lls its own table with particular paths opened for this situation. PR-DRB is based on

contending ows comparisons during congestion. As parallel scienti�c application do

have repetitive communication patterns in time, when PR-DRB identify a similar already

analyzed situation, it looks for a set of optimal paths into its database of saved solutions.

The process of detecting already analyzed situations is based on contending ows similarity,

which is based on approximation matching. The percentage used for similarity is of 80%.

PR-DRB node level operations have not a high overhead because these operations are

performed locally, they are simple (comparisons and accumulations for latency evaluation,

logging small tra�c info), and they do not delay send/receive primitives. During multi

step path creation, deadlock freedom is ensured by having a separate escape channel for
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each segment. With two intermediate nodes (INx), one escape channel is used from S to

IN1, another from IN1 to IN2, and a third one from IN2 to D. This way, each segment

de�nes a virtual network, and the packets change virtual network at each intermediate

node. Although each virtual network relies on a di�erent escape channel, they all share

the same adaptive channel(s).

3.2.9 PR-DRB Integrated

All the phases conforming the PR-DRB policy is shown in Fig. 3.15. Up to this point,

each phase was described separately, but the PR-DRB actually performs in most cases

concurrently. When a new message is ready for injection, a new MultiStepPath is chosen

from those currently available in the metapath. Latency values are considered during this

selection phase, paths with less latency values are going to be selected more often.

Once a packet has been injected into the network, then the time it takes to pass each

of the intermediate routers in its paths is recorded. The time of a packet inside a router is

de�ned as the time it must wait in the router's bu�ers with other packets, thus sharing

resources. Each router also monitor the congestion level by comparing the recorded latency

value with a maximum pre-established threshold; if latency value goes beyond that value,

then besides the latency already recorded, intermediate routers identify contending ows

in its tables and save information about them. Information about contending ow may be

de�ned in many ways, but for PR-DRB are the source/destinations pairs that collide during
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communications in the router. This process of monitoring latency is performed in each

intermediate router, to register and add up latency values until reaching destination node.

The process of saving information about contending ows is recorded only at congested

routers, as seen in section 3.2.2. This is done this way because when new messages are

injected into the network using the PR-DRB strategy, new alternative paths will avoid

the congested situation and hence saving information of other routers would be useless.

When a packet reaches its destination, it would have all the information about the

network situation in it. Then, the destination node proceeds with the noti�cation process.

This noti�cation informs the source node about what the packet have measured during

its network trip. The noti�cation message is the ACK packet. This ACK packet reaches

the source node and the analysis process is performed. New alternative paths will be

created if a congestion situation is detected, and metapath con�guration phase will start.

If latency values are controlled, then the normal injection of new messages is guaranteed. If

congestion is detected, the PR-DRB starts looking for a suitable saved solution in its \best

solutions database". If one solution is found for the particular communication pattern

being currently analyzed, then that solution is retrieved. The new packet is then injected

into the network. With this solution, PR-DRB tries to save time by avoiding the procedure

to create new alternative paths. If no paths or solutions are available at the database,

then the procedure for new alternative paths is executed. If the congestion is controlled

by the alternative paths created in this phase, ACK packets will con�rm it by carrying

latency information that is below a threshold. The con�guration phase will then proceed

to close those paths. Here the updating process will start, where those encountered good

solutions will be inserted or upgraded into the database.

3.3 Architecture of Network Components

In this section we will describe the physical design and the implementation features required

for the proposed policy, the PR-DRB. The use of adaptive routing may lead to situations

where some abnormal situations arises, such as:

• Deadlock. Our method is based on the strategy presented in . This strategy

makes use of virtual channels in order to get rid of cycles that produce deadlock.

• Livelock. Like our predecessor [21] and their descendants [41] [38] and [66],

PR-DRB does not use paths of in�nite length. Also, messages always reach their

destination within a �nite number of steps. Considering these concepts, we can

a�rm that Livelock would not be a problem.
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Figure 3.15: PR-DRB with all its phases

• Starvation. PR-DRB would not su�er from starvation, because it does not limit

the injection of packets for inde�nite time periods. All packets in intermediate

routers have equal chances to access output links, therefore they can not be

inde�nitely blocked.

As we previously explained, PR-DRB is based on three main phases: Monitoring,

detection and noti�cation ; metapath con�guration (section 3.2.3) and the selection of

alternative paths to react to congestion situations (section 3.2.6). The following subsections

address the implementation issues of these phases, together with the packets formats used

for the PR-DRB policy.

3.3.1 Packets Formats

PR-DRB uses the information in the packets in order to carry information about the

alternative paths, as well as latency and contending ows information. PR-DRB uses two

types of packets, Data Packets and ACK packets. Data packets include a multiple header

to store information about the intermediate nodes to traverse to get to the destination.

The method uses only two intermediate nodes, to identify the Multistep Path (MSP).

Every router should read the header properly in order to determine if it should process it.
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The �eld two bits Header id identi�es which of the multiple options available for header

should be used. This is performed at each step of the MSP. Packet forwarding is performed

using the minimal static routing de�ned for the topology, at each segment of the MSP.

When a packet reaches the router identi�ed with one of the intermediate nodes in the

header, then it changes the value in Header id to point to the new intermediate node. The

forwarding process then continues, and the other routers perform similar tasks until the

packet arrives to destination. For this strategy to work, the router module needs a Header

Detection and Processing (HDP) module. This module should be capable of handling the

intermediate header of every packet. The Data Packet format is shown in Fig. 3.16. The

< Reserved > MUST be sent as 0 and ignored on reception and at intermediate routers.

F

Source DestinationIntermediate node 1 Intermediate node 2

Path Latency

P MPI_typeT

Data

Header_id MPI_sequence <Reserved>

Figure 3.16: PR-DRB data packet

Data packet �elds:

• Source: MUST be set to the id of the node originating this packet. Intermediate

nodes that retransmit the packet to MUST NOT change this �eld. Of integer-size

type.

• Intermediate node 1: The id of the �rst intermediate node (close to the source)

used to construct the MSP. Of integer-size type.

• Intermediate node 1: The id of the �rst intermediate node (close to the

destination) used to construct the MSP. Of integer-size type.

• Destination: MUST be set to the id of the node intended to receive this packet.

Intermediate nodes that retransmit the packet to MUST NOT change this �eld.

Of integer-size type.

• Path Latency: An integer-size �eld used for recording the path latency value.

• Predictive bit (P): Set to indicate that the PR-DRB router has injected a

Predictive ACK packet. Therefore, the destination node should not inject a simple

ACK.

50



• MPI final packet (F): Set to indicate that this is the last packet from a

fragmented set. This is used to indicate that no more segments are needed in

order to construct the message to pass to the upper layer.

• Type (T): Bit-sized �eld to set the type of the packet, Data or Acknowledge

(ACK).

• Header id: MUST be set to the id of the intermediate node intended to process

the header.

• MPI type: Set to the id of the type of MPI call executed. Used by the proce-

dures that guarantee the logical trace execution of packets. Of integer-size type.

Examples of these calls are: MPI Send, MPI Receive, MPI Wait, MPI Bcast,

MPI Allreduce, etc.

• MPI sequence: A unique value generated by every MPI call executed. Used

by the procedures that guarantee the logical trace execution of packets. Of

integer-size type. Also used to guarantee the arrival of messages (the order of

packets) in an orderly fashion.

• Data: The payload of the packet. To be used by the application.

PR-DRB also uses the ACK packet, or the noti�cation packet. This packet is used to

notify the source about the network status. Recall that to PR-DRB the network status

comprises the latency of the path and the information about the set source/destination

pair contending for an output port on a router. The ACK packet is similar to the Data

packet, but it is simpler. It basically contains the routing info and the network status info.

The former contains the the source node, the two intermediate nodes, the destination and

the Header id. The latter includes the information about the status: the latency and the

�elds used to properly identify the related logical call. The ACK packet is shown in Fig.

3.17.

Source DestinationIntermediate node 1 Intermediate node 2

Path Latency

P MPI_typeT Header_id MPI_sequence <Reserved>

Figure 3.17: PR-DRB ACK packet

We have mentioned in section 3.2 that the PR-DRB strategy could be router based

or destination based. Based on the approach implemented the information about the
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contending ow should be communicated to the source. For this purpose, the predictive

optional header is used. For the router based approach, this predictive header is added

to the ACK packet. For the destination based approach, the predictive header is added

to the data packet until it reaches the destination. Once there, the predictive header is

copied to the ACK packet to inform the source node about congestion. Fig. 3.18 shows

the predictive header.

Type Opt Data Len

Contending flow[1]

Router id <Reserved>

Contending flow[2]

Contending flow[...] Contending flow[n]

Figure 3.18: PR-DRB predictive packet

Predictive packet �elds:

• Type: Set to indicate a full predictive search or a tendency latency search at

source node.

• Opt Data Len: Length of the option, integer-size, excluding the Option Type

and Opt Data Len �elds. MUST be set equal to (integersize · n) + 1 where n is

the maximum contending ows number to send. This n is a system parameter.

• Router id: The id of the router that detects the congestion and starts the

noti�cation procedure. If noti�cation is destination based, this �eld must be set

to 0.

• Contending flow[1..n]: The set of source + destination contending for resources

(output port) at this router. The procedure explained in section 3.2.7 is used to

compress the information to inject via the predictive ACK in the router based

and as an additional header in the destination based approach.

3.3.2 PR-DRB Router

The architecture of the PR-DRB router is depicted in Fig. 3.19. Our router share some

design architectures with the work presented in Multipath Fault-tolerant Routing Policies

to deal with Dynamic Link Failures in High Speed Interconnection Networks (FT-DRB)

[65]. The main di�erence with our method is that FT-DRB uses its own mechanism in

the router in order to provide fault tolerance in the network. On the other hand, the

capabilities for ACK packet injection is shared between this two policies. Our method
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diverges from the previous work in that it has mechanisms to analyze contending ows.

The router includes the following modules:

• Latency Update (LU). In charge of the latency accumulation of the packets.

No synchronization is needed to measure the time a packet is waiting in a queue.

A router clock governs this task.

• Header Detection and Processing (HDP). In charge of modifying the

Header id bits of both data and ACK packets, at intermediate routers. At

destination nodes it is in charge of the intermediate headers' removal process.

This mechanism is part of the Routing and Arbitration (R+A) unit.

• Contending Flows Detection (CFD). This module has been designed to

analyze the ows currently at any particular output port. When a congestion

situation is detected, it starts the procedures to extract the source and destination

of every packet actually in the congested queue. This module has a register where a

threshold value is maintained. Once a packet reaches the output queue, its latency

is added to the global latency of the output port. This sum is then compared

against the threshold value stored in the internal register. If it surpasses the

threshold, then the procedure of identifying contendingows is started. Once the

contendingows process is �nished, and the PR-DRB approach is router based,

then the GPA module is invoked.

• Generation of Predictive ACK packets (GPA). In the situation of a con-

gested output port, this module generates the noti�cation packet and sends it

back to all the corresponding source nodes.

3.4 Design Alternatives

In section 3.2.2 we explained the standard Monitoring, detection and noti�cation procedures.

This process could be used when the router doesn`t have the capabilities to inject packets

into the network. We saw that the detection was performed at intermediate routers, but

all the information about contending ows was not processed there. Instead, all this

information was introduced into the packet and sent to the destination node. Once at

the destination, the information about contending ows was pre-processed and then sent

back to the source for the �nal metapath con�guration process. In order to speed up the

process, the intermediate routers can start the noti�cation immediately after analyzing
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Figure 3.19: PR-DRB router

the latency and contending ows information. This would bene�t the predictive procedure,

specially when detecting and reacting to already analyzed patterns.

3.4.1 Early Detection & Notification - Router Based

Basically, most of the tasks described in 3.2.2 remains unchanged. Only some speci�c

functions are now performed at the intermediate router, instead of the destination node.

Here, the router also monitors the latency and the set of contending ows. When latency

surpasses a high threshold value, instead of forwarding all the information towards the

destination, the noti�cation process is started. The new ACK message injected into the

network is shown in the Predictive Acknowledge Injection box in Fig. 3.20. This approach

requires more resources at the router, but makes it more robust under network congestion.

This approach requires that the router should be capable of packet injection in order to

send the predictive ACK packet. The ow diagram for the router based approach is shown

in Fig. 3.21. The monitoring algorithm for the router based version is also shown in the
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Appendix in A.4. Recall that the same analysis for the destination based approach was

made at section 3.2.2.
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Figure 3.20: Early monitoring procedures

3.4.2 Latency Notification - Router Based

If the detection procedure is executed earlier, then the noti�cation process must be also

modi�ed. Having the ACK noti�cation been executed in the intermediate router, then

destination noti�cation is much simpler. Here, only the latency information will be sent to

the source node. This is because the contending ows information was already been sent.

If the router has injected a new ACK, then the predictive bit from header is modi�ed in

order to include this fact. The destination now has to read the predictive bit in order to

inject the ACK message. This ACK now only has the latency information, which will be

used by the metapath con�guration process. The latency noti�cation process and general

overview of this new design alternative are shown in Fig. 3.22.
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3.5 Discussion

In this chapter we have presented the complete predictive and distributed routing approach.

The method's main goal is to dynamically learn from parallel applications' communication

patterns and then try to relate the pattern information with the adaptive solution given

by the routing algorithm.

The proposed method does not need any meta information injection prior to network

usage. All the information PR-DRB needs is extracted dynamically from the communica-

tions patterns actually traversing the internal bu�ers of routers. Some adaptive routing

algorithms, such as DRB, adapts by performing a controlled path expansion. These paths

are opened and closed based on the interpretation of the network load by the routing

algorithm. The complete adaptive procedure produces a good combination of paths to

handle all the communication requirements of the parallel application. But in order to

achieve this, the routing algorithm requires some time. One feasible approach would be to

statically analyze the application and extract the pattern information out of it. We would

also need to obtain the best routes available in the network for this particular application's

tra�c pattern. The process should be repeated for every application intended to use.

Instead of this approach, we've leverage a fully dynamic approach, capable of learning

from the communication patterns currently in the network. One of the items of our future

work proposal (Section 5.2) includes a static variation of our method.
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Figure 3.22: PR-DRB with all its phases - Early detection and noti�cation

The decision of a fully dynamic predictive approach encompasses some situations where

some overhead is introduced. For example, when the method decides to re-apply a saved

solution (set of alternative paths) based on the interpretation of a repeated communication

pattern that actually is a new one. Under this scenario, the method does not introduce

more congestion because the adaptability of PR-DRB will detect that our solution is not

good and will start the standard opening path procedures. Also, the dynamic approach

involves the need for special containers for the real-time information obtained. The method

should be capable of treat/save this information in order to properly make routing decisions.

Because all the resources needed are not far beyond today's standards (such as In�niband

[26]), all the proposed solutions are feasible.

As conclusion remarks, we could mention that our method PR-DRB allows the design

of a predictive and application-aware approach in order to solve congestion situation in

the network, for parallel applications that exhibit basic repetitive behavior.
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Chapter 4

Evaluation

In this chapter, we present the evaluation of the Predictive and Distributed Routing

Balancing methodology. The evaluation aims to corroborate that our proposal works

properly, using a set of di�erent test scenarios within a simulation environment. We use

three main components to carry out the evaluation: the simulation models to represent

the system under study, e.g. the interconnection network; the workloads to be injected as

input of the simulations models; and the metrics to asses the bene�ts of our proposal.

The purpose of the evaluation process is to con�rm the operation of PR-DRB as it was

described in previous chapters. To this extent, we have de�ned a set of metrics to observe

both functional and performance features of our proposal. These metrics have been chosen

with the aim of measuring several aspects related to the capability of interconnection

networks and their impact on the applications. The most representative metrics are the

average network latency, the contention latency at intermediate routers and application

execution time. The workloads represent a broad set of input, ranging from synthetic

tra�c to real applications traces. Our proposal have been implemented using accurate

In�niBand-based simulations models.

4.1 Simulation Models

A simulation model provides mechanisms to analyze performance of a real system or

behavior under di�erent con�gurations when the system is not really implemented yet.

Even if the system is already implemented, a simulation tool can be very useful because

allows many con�gurations to analyze speci�c components or perform di�erent execution

under distinct environmental variables, to study or stress some particular feature of the

system.

PR-DRB operations together with network components were modeled [39] using the
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standard simulation and modeling tool OPNET [47]. OPNET provides a Discrete Event

Simulator engine and o�ers a hierarchical modeling environment with an enhanced C++

language. This allows de�ning network components behavior by a Finite State Machine

approach (FSM), and it supports detailed speci�cation of protocols, resources, applications,

algorithms, and queuing policies.

OPNET o�ers a hierarchical structure for modeling purposes. It de�nes the network,

node and process levels. At network level OPNET includes the nodes, links and subnets

among them, which form the topology. At node level the network components are

represented as modules

Simulation Management Tool

In order to launch a large set of simulations for the evaluation of our proposal, we

have designed and implemented a simulation management tool [45] to perform this task

automatically. The tool acts as an interface between OPNET Modeler and non-dedicated

computer clusters. With this tool we have been able to increase the simulation capacity

by using more of the available computing systems, including an e�cient use of multicore

processing nodes.

4.1.1 Processing Nodes

In order to implement the source or processing node, several OPNET speci�c objects, such

as the processor are used, as shown in Fig. 4.1. The source has a processor node that

mimics the behavior of the application by injecting data according to a tra�c pattern.

The model also has a network interface, which receives the tra�c generated and then

insert them into the network. In Fig. 4.2 we can see the �nite state machine used for the

processing node. We can see that our models can deal with synthetic tra�c, as well as

to read the instructions to generate the logic from real applications. Several attributes

related to the injection procedures can be modi�ed, such as the injection rate, start and

stop time, packet format and length, workload characterization, etc. The destination node

FSM is shown in Fig. 4.3. Here, the packets are analyzed and then the statistics are

updated, before they are consumed by the processor. In the FSM of the Fig. 4.4 we can

see the ow that packets traverse when they arrive to the network interface. Here, the

packets are received and bu�ered until the processing unit is ready to process them.
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Figure 4.1: Processing node model implementation.

Figure 4.2: Source node FSM.
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Figure 4.3: Destination (sink) FSM.

Figure 4.4: Processing node FIFO FSM.
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4.1.2 Network Nodes

The internal structure of the implementation of the 12-ports network node is shown in

Fig. 4.5. This model provides a set of modules that allow to experiment with several

routing policies. The logical behavior of the router is given by four main modules: the

switch manager, the routing unit, the arbitration unit, and the crossbar. It also has the

switch info unit, which is basically the subnet manager, in charge of the whole network

initialization and the discovery and con�guration of the network topology, and also de�nes

the algorithmic routing or the routing tables if applicable. The routing unit is shown in

Fig. 4.6 we can see the routing unit FSM. This unit decides the output port for each

incoming packets, besides the task of handling error situations. The routing unit handles

simultaneous requests by applying a round-robin technique. If more than one packet tries

to access the output port, then they are stores in speci�c data structures and are served

sequentially. Basically, PR-DRB is implemented within this module. Once the routing

unit has found an output port for a packet, then one signal to match input and output

ports are emitted by the crossbar unit.

Figure 4.5: Router node model implementation.
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Figure 4.6: Routing FSM.

4.2 Evaluation Metrics

In order to assess the performance of the network we consider the latency of messages. The

latency is the total time elapsed since a packet is created until it reaches the destination.

Basically it is measured since the head of the �rst packet enters the network until the tail

of the last packet leaves the output port [62, Ch. 3]. The average latency for each packet

x to a destination i is then obtained, as given in Eq. 4.1, where li[x] is the latency value

of the packet x at the node i.

Li[x] =
1

x
(li[x] + (x− 1) ∗ Li[x− 1]), ∀x 6= 0 (4.1)

The global average latency is calculated by averaging the latencies of every packet, and

is measured in seconds as de�ned in Eq. 4.2, where n is the number of destination nodes.

L =
1

n

n∑
i=1

Li (4.2)

The throughput is the data rate in bits per seconds that the network accepts per unit of

time (seconds) per input port. To this end, we have taken into account the ratio between

the number of packets received at destination nodes (accepted load) and the number

of packets injected at source nodes (o�ered load). In the evaluation of our proposal,

we guarantee that the ratio between the o�ered load and the accepted load is always

maintained, ensuring that there are no tra�c lost during our simulations.

In order to show the load distribution of messages in the network, a metric to measure
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the tra�c load in every router has been de�ned. This metric is the latency surface map or

just latency map. It is de�ned by a three-dimensional graph where each point xy represent

a router in the network and the z represent the average latency of internal bu�ers for that

router. With this metric, is possible to analyze the latency reduction in the network. In

the �g. 4.7 we can see an example of a latency map.

 0

 1

 2  0
 4

 8
 12

 16
 0

 1

 2

Latency (usec)

latency-map

   2e-06
   1e-06

Router x axis

Router y axis

Latency (usec)

 0

 1

 2

Figure 4.7: Latency surface map.

4.3 Evaluation Method

The statistical validity of the results from our discrete event simulations are assured by

executing multiple instances of the simulation with a di�erent set of random seeds. In

order to provide a con�dence interval, we have run each simulation between two to thirty

times according to [27].

Therefore, in order to avoid statistical anomalies, the results obtained from each

individual simulation were averaged to estimate the typical behavior of the system. By

following this procedure, we expect to avoid erroneous and inaccurate results and obtain

greater degree of con�dence.

The experiments presented along this chapter have been conducted taking into account

the above mentioned aspects for statistical validity. More precisely, we have used the

methodology proposed in [48]. Evaluation results and test scenarios of our approach are

explained in detail in further sections.

65



4.4 Workloads

A workload must be de�ned in order to evaluate our proposal. A workload can be de�ned as

the communication tra�c traversing the network. We have used the following approaches

in order to cover a wide spectrum of communication characteristics, as listed below:

1. Speci�c pattern scheme

2. Synthetic performance benchmarks

3. Real applications logical traces

The �rst approach is obtained by de�ning a speci�c set of source and destination in the

network. The second correspond to a set of application benchmarks , while the third is

obtained from the real application itself. The Specific pattern scheme, is used to generate

known imbalance situations in order to analyze the correct behavior of our policy under

these special situations. The hot-spot speci�c pattern is shown in section 4.5. The second

approach comprises a set of application-inspired performance benchmarks, that describes

the behavior frequently found in many scienti�c applications. The set of traffic patterns

used in these benchmarks is explained in subsection 4.6. The last approach covers the

behavior of real applications patterns by executing the application and extracting the

logical trace used for each particular application, as shown in section 4.7.

4.5 Hot-Spot Specific Traffic Patterns

Under this tra�c pattern a set of paths are strategically de�ned in the network so that

they collide and produce high network congestion load. The paths that collide do not share

the source and destination nodes, but they do share some portion of their trajectories.

The shared trajectories are the ones where the congestion is produced.

4.5.1 Path Distribution Analysis

As part of the speci�c tra�c pattern, we de�ne a set of experiments to analyze and

understand the alternative path opening procedures of adaptive algorithms, speci�cally

the behavior of the DRB algorithm under congestion situation. This is a key situation

to understand tra�c behavior under di�erent situations of tra�c in the network, thus

giving a wide idea of how the algorithm can be improved. To produce the suitable

congestion situation to force aperture of new alternative path, hotspot is introduced into

the network. This is accomplished concentrating tra�c in some areas of the network, thus
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overloading this subset of intermediate routers forcing processing nodes to start procedures

of contention to avoid congested paths.

In Fig. 4.8 a situation of hotspot is depicted and a complete scheme of the solutions

given by DRB can be visualized. Fig. 4.8a shows the initial state of the network, where all

nodes start transmitting and enter a common area in their path toward their destination,

where congestion will be produced as a result of this situation. There is one ow that

is not part of the congestion zone, and its communications advances without major

inconvenient. In Fig. 4.8b, DRB has been noti�ed about the congestion situation detected

by intermediate routers, and the �gure shows one alternative path opened, complementing

the original trajectory. This new alternative path opened now collides with the trajectory

that until this point was not involved in the common congestion situation. A snapshot of

the complete picture of the network can be shown in 4.8c. There, all the processing nodes

involved in the congestion detect the situation and advance with the procedure of new

paths aperture. In this case, the red processing node now is a�ected by the decision taken

previously by DRB, and to alleviate the latency occasioned by having to share resources,

a new alternative path is also created here. Fig. 4.9 depicts another situation of hotspot.

This has the peculiarity of opening several alternative paths until reach a stable latency

value in the entire network. This behavior of the algorithm is obtained in a controlled

manner, opening one path a the time and evaluating the e�ect of that path into latency

values. If latency values are still beyond an upper threshold, then another alternative path

must be introduced into the network, otherwise the combination of paths opened so far is

good and latency values are under a controlled threshold and consider good solutions.

In Figs. 4.9c and 4.9d we can see a di�erent congestion situation in the network, where

hotspot appears at two di�erent points. One packet traversing the network in this situation

must pass though all congested areas before reaching its destination. Every intermediate

router adds up the latency value registered when this packet uses its resources, until the

packet get to destination and proceed with the noti�cation of that latency. Again, the

source node �rst open one path (P2) to try to solve the congestion situation, but after

receiving another noti�cation of latency registered in the original path and in the new

alternative path (P2), source node decides to open other path (P3) in order to control

the situation. In this scenario, opening the �rst path and then waiting for the whole

noti�cation process can be very costly, because source and destination node are far away

from each other, and they may travel through still congested areas to deliver the message.

We can conclude after this hotspot situations examination, that a valid method to improve

the DRB algorithm is to collect information about past behavior of the communications,

and then use that information to make intelligent prediction about future tra�c conditions,
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and avoid most unfavorable situations.
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C4

C5
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(a) Hotspot 1. Original state.

C1 C2 C3
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C6

P1

(b) C1 after the first alternative path.

C1 C2 C3

C4

C5

P1

C6

(c) All nodes after the first alternative path.

Figure 4.8: Path opening procedures & hot-spot situation 1

4.6 Synthetic Traffic Patterns

In order to simulate the communication patterns commonly used in computational inten-

sive scienti�c applications, a set of performance benchmarks are used. This benchmarks

describes the permutation performed in mathematical or numerical programs[Ch. 9]Du-

ato2002, [62, Ch. 3]. The destination nodes remain invariable throughout the pattern for

a particular source node. The tra�c patterns used for this work are Bit reversal, Perfect

shuffle and Matrix transpose. Their mathematical descriptions are shown in Table 4.1,
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(d) After path opening procedures.

Figure 4.9: Path opening procedures, hot-spot situation 2 & 3
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where source and destination nodes are denoted as s and d, respectively; and n is the

number of bits used to represent the nodes. For some experiments, the Uniform has also

been used. This pattern randomly selects its destination node.

Pattern Destination

Bit reversal di = sn−i−1 ∀i : 0 ≤ i ≤ n− 1

Perfect shu�e di = s(i−1) mod n ∀i : 0 ≤ i ≤ n− 1

Matrix Transpose di = s(i+ 1
2

) mod b ∀i : 0 ≤ i ≤ n− 1

Table 4.1: Mathematical description of synthetic tra�c patterns.

4.6.1 Synthetic Traffic Evaluation

Evaluation methodology for synthetic tra�c is divided in two parts. The �rst is designed

to perform a network response analysis under hot-spot tra�c using a mesh topology

and to evaluate PR-DRB dynamic behavior and tra�c load distribution. We designed

the hot-spot experiment to analyze PR-DRB under extreme conditions. This hot-spot

experiment establishes some �xed destinations to increase tra�c in a particular network

area, and produces network congestion. Remaining network nodes inject uniform load to

create "noise" tra�c. The second part uses the Systematic performance benchmarks, in

order to evaluates PR-DRB using various well known communication patterns such as:

"Perfect Shu�e", "Bit Reversal" and "Matrix Transpose", under a fat tree topology with

32 or 64 nodes.

4.6.2 Hot-spot Analysis

For these experiments, bursty tra�c were injected in a 64-node network arranged in an

8x8 mesh topology. The detail of the simulation parameters used to evaluate PR-DRB

with synthetic specific traffic is presented in Table 4.2. Communication tra�c patterns

from bursty injection appear many times throughout the simulation. DRB response to

the repetitive bursty tra�c is always the same, because it is not capable to learn from

past communications. On the other hand, PR-DRB algorithm identi�es communication

patterns already analyzed and use past solutions to control the congestion. Figs. 4.10 and

4.11 show average latency map of the mesh network after the execution of the whole bursty

simulation. The map only shows the coordinates for the nodes that experiment some level

of contention, in order to make the graph clearer. Latency surface represents the average

contention latency at bu�ers. Fig. 4.10 shows the behavior of the original DRB algorithm,
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Network Parameters Value

Network topologies Mesh 8x8,

Flow Control Virtual Cut-through

Link bandwidth 2 Gbps

Buffer size 2 MBytes

Packet Size 1024 Bytes

Packet generation rate 400 Mbps

600 Mbps

Traffic patterns Perfect Shuffle,

Uniform

Table 4.2: Simulation parameters used in the evaluation of PR-DRB under hot-spot
systematic tra�c.

where high values of latency can be seen under congested areas. Also, load distribution

at routers in coordinates (x,y) (3,1) and (3,2) are considerable high, because DRB uses

these routers in its alternative paths. We can also see from the map surface`s contour ,

the use of DRB to handle congestion. The amber contour shows a greater use of links

and bandwidth compared to the PR-DRB policy. Fig. 4.11 shows the latency map for

PR-DRB; where its highest value is lower than the original DRB. Better load distribution

is accomplished by PR-DRB compared to DRB, because PR-DRB has directly applied

best solutions already saved, and unnecessary load at routers are avoided. For this case,

global latency reduction of about 20% is accomplished. Fig. 4.12 shows average latency

values for the entire mesh network, also under a series of repetitive bursty tra�c. Here,

on average, PR-DRB outperforms DRB because it reaches better global latency values

in less time. The �gure represents a second phase of the application. PR-DRB improves

latency because it has already learned from previous communications. Throughput is not

penalized whatsoever with latency gains of PR-DRB. Fig. 4.12 also shows that DRB has

an initial latency raise due the fact that it is opening alternative paths in order to control

a particular congestion situation. Recall that PR-DRB will behave similarly to DRB only

under the execution of the �rst phase of the parallel application, because in this stage

PR-DRB is learning from the alternative paths opening procedures. In the next phases

of parallel applications, like the one shown here, PR-DRB will apply directly the best

solutions encountered previously. From time 1.5 second, latency values of both algorithms

tend to become stable and converge.
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Figure 4.12: Average latency in mesh topology

4.6.3 Analysis with Permutation Traffic

The detail of the simulation parameters used to evaluate PR-DRB with systematic

permutation tra�c is presented in Table 4.3. Fig. 4.13 and 4.14 show the network

Network Parameters Value

Network topologies Fat-tree 4-ary 3-tree

Flow Control Virtual Cut-through

Link bandwidth 2 Gbps

Buffer size 2 MBytes

Packet Size 1024 Bytes

Packet generation rate 400 Mbps

600 Mbps

Traffic patterns Bit Reversal, Perfect Shuffle,

Matrix Transpose

Table 4.3: Simulation parameters used in the evaluation of PR-DRB under systematic
tra�c.

performance under Shu�e tra�c pattern with tra�c load from 400 to 600 Mbps/node, for

32 communicating nodes, respectively. It can be observed that PR-DRB achieves lower

latencies than DRB. Latency gain achieved is 29% for low load situations and 22% for

higher loads. Here we can see that the increase in tra�c injection, from 400 to 600 Mbps,

is handled properly by PR-DRB routing mechanisms. Proper communication balancing
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procedures and packets sent to destination through optimal alternative paths from the

beginning, keep congestion under minimum values. Under 600 Mbps/node injection,

PR-DRB uses progressively the maximum number of alternative paths to deliver messages.

For repetitive tra�c pattern situations, maximum path expansion is directly done. By

avoiding intermediate path expansion, unnecessary ACK messages are not generated and

processed by source nodes and intermediate routers. With a maximum number of 4

alternative paths for these experiments, our proposal performs a remarkable lower latency

than DRB.
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Figure 4.13: Fat tree - Shu�e 32 nodes. 400 Mbps/node

Fig. 4.15 and 4.16 show the network performance under Bit Reversal tra�c pattern with

tra�c load from 400 to 600 Mbps/node, also for 32 communicating nodes respectively.

It can be observed that PR-DRB achieves lower latencies than DRB. Under this tra�c

pattern, in the absence of a mechanism to save and use the information about the path

opening procedures, the highest latency peak reaches more than 60 ns of latency. By using

PR-DRB, hence by learning from the controlled path expansion procedures of DRB, we

can achieve a latency reduction of around 23% for 400 Mbps and 18% for 600 Mbps. From

time 1.01 onward, both algorithms tend to stabilize and remain stable until the end of

the simulation. This behavior is expected, because one of the main goal of PR-DRB is to

reduce the latency during the transitory state. This state is de�ned by the fact that the

DRB policy is constantly adapting itself (dynamically) to the network status. While in
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Figure 4.14: Fat tree - Shu�e 32 nodes. 600 Mbps/node

this transitory state, DRB needs to open and close a number of paths in order to �nd the

right combination that stabilizes the network latency.

Figs. 4.17 and 4.18 show latency metric for a fat tree topology with 64 communicating

nodes. Figs. 4.17 shows a latency reduction of 31% for Matrix tra�c pattern. For the 600

Mbps con�guration tested in Fig. 4.18, higher tra�c load is injected into the network and

latency remains bounded. Latency is considerable reduced here, around 40%, compared to

DRB. PR-DRB uses less network resources for a given load, because those resources are

e�ciently handled. Additional complementary set of results; for example Matrix Transpose

with 32 nodes, Bit Reversal and Shu�e for 64 nodes; for this section are shown in the

Appendix A, subsection A.2.

4.7 Parallel Applications’ Analysis Technique

The analysis of applications communication performance suggests a well de�ned procedure

for estimating the suitability of a given network architecture/topology for a parallel

application. This procedure is based on [4] but adapted to communication performance

in mind. This method can be useful in many scenarios: (1)The end user can can choose
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Figure 4.15: Fat tree - Bit Reversal 32 nodes. 400 Mbps/node
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Figure 4.16: Fat tree - Bit Reversal 32 nodes. 600 Mbps/node
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Figure 4.17: Fat tree - Matrix Transpose 64 nodes. 400 Mbps/node
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specific runtime features based on this analysis; (2) it can help managers make the correct

budget decisions based on the type of applications and resources really needed, and (3)

application developers can analyze the performance of applications on different platforms

in a systematic manner. We now outline the steps involved in this analysis technique.

4.7.1 Obtain Information from the Application and the Archi-

tecture

We first need to identify various application characteristics which affect performance. With

network performance in mind it is useful to measure the communication requirements of

the application. The network topology and routers/switches in question also needs to be

carefully analyzed. It is important to take into account factors such as internal bandwidth

available, network speed and latency. In fig. 4.19 we can see the procedure to get all

these information about one application. A trace file is then obtained from an application

execution. Later, each node in the network will read an input trace file and will simulate

the events (for example MPI Wait , MPI Send , MPI Receive ,MPI Broadcast).

Every event has a Compute (t) event, which emulates a serial computation of duration

t.
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Figure 4.19: Application characterization framework
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4.7.2 Determine Communication Characteristics

Based on the application speci�cations or execution of a parallel application signature

on an available machine, one should be able to get a sense of whether the application

is communication-bound. One way to do this is by executing the application with the

PAS2P tool[64] to identify relevant phases of the application.Later, only those relevant

phases could be executed and analyzed. Other way would be to build a histogram of

message sizes. A large number of messages over time, or frequent collective communication

operations, may also indicate that the application will be hindered by network contention

on the target machine. Based on the message size histogram and a rough estimate of

whether contention will be a problem, we can use bandwidth and latency graphs on the

target machine.

4.7.3 Benchmark the Application on the Real Machine

If access to the machine is available, we can obtain additional and more reliable information

about the application and communications performance and do a more concrete analysis.

Again, PAS2P tool gives a set of useful information. The capability of an application to

overlap communication with computation and the tendency to create network contention

are important factors a�ecting communication performance. Although this can be deduced

through actual runs on a certain number of processors on the real machine, the tool has

the option of executing the application on a smaller cluster footprint and yet get the

desired information. The grain size of the application is another important consideration;

it can be used to estimate the e�ect of noise on application performance.

4.8 Application’s Performance with PR-DRB

In order to evaluate the Application-Aware PR-DRB (just PR-DRB from now on), a

simulation approach was chosen. This section shows the results with real parallel scienti�c

applications. In [10], we presented the evaluations with synthetic tra�c for mesh and fat

tree topologies. We use NAS Parallel Benchmarks [1], Lammps [51] and Parallel Ocean

Program (POP) [29] for our evaluation. Latency and global application execution time are

evaluated in order to assess PR-DRB. Latency is the time elapsed since a packet is created

until it reaches its destination, in seconds. Execution time is considered for each one of

the policy under evaluation. Tests were conducted for 64 nodes under fat tree topology.

79



4.8.1 Modeling Environment

We have assumed virtual Cut-through ow control [17]. Link Bandwidth was set to 2Gbps,

packet size was set to 1024 bits and the size of routers bu�ers was 2MB.

4.8.2 NAS Parallel Benchmark

For NAS Parallel Benchmarks, we focus on the LU pseudo application and MG kernel,

which uses long- and short-distance communication. We use classes S, A and B problem

size for evaluation. Although not included here, we have not seen performance degradation

for rest of the NAS Parallel Benchmarks using DRB and PR-DRB. Fig. 4.20 shows

average latency map for the fat tree network after the execution of the whole LU Class

A application. Figs. 4.20a, 4.20b and 4.20c show the results for Deterministic, DRB

and PR-DRB respectively. Latency surface represents the average contention latency

at bu�ers. We see an improvement of 57% on average at the highest peak in the map,

between the Deterministic and DRB algorithms. We can also see that DRB concentrates

all the tra�c into the routers closest to the sources (index 0 of Routers x Axis). This is

due to alternative paths opening procedures used by DRB. PR-DRB on the other hand

achieves 41% latency reduction compared to DRB and 75% compared to the Deterministic

algorithm. Here we can see that PR-DRB has re applied the best solutions directly and

avoided the contention introduced by DRB previously.

In �g. 4.21a we can see the global network latency results for the MG benchmark

classes S, A and B. For class S we do not see any improvement, since the contention in the

network is negligible. However, for classes A and B we can see a 65% and 60% in latency

reduction respectively, comparing the Deterministic and DRB algorithms. Even though

DRB and PR-DRB shows similar �nal latency values, we can see in �gs. 4.22 and 4.23

that contention latency is reduced by PR-DRB. In 4.22a, between time 1.005 and 1.0125

both DRB and PR-DRB have the same latency. This represent the phases where PR-DRB

is learning or monitoring the patterns currently in the network. From time 1.0125 until

the end of the simulation, PR-DRB has lower latency values. This is caused by the fact

that PR-DRB has applied its best known solution for one or more communication pattern.

Now the tra�c is redirected to others paths, thus the tra�c is reduced in this router. In

�g. 4.22b, between time 1.0225 and 1.03 we can see that PR-DRB has higher latency

value than DRB, but from 1.03 it keeps latency bounded below DRB's value. In this case

PR-DRB has applied a solution it considers good, but the tra�c pattern has changed and

now its solution is not longer needed. Here, PR-DRB detaches from work and lets DRB

�nd a good solution for this pattern. Figs. 4.23a and 4.23b show similar results for other
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Figure 4.20: NAS LU latency map.
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Figure 4.21: NAS MG Global latency & execution time.

82



congested routers in the network. Regarding the execution time, as shown in �g. 4.21b,

DRB and PR-DRB outperform the Deterministic in 8% for class A and 23% for class B.
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Figure 4.22: Contention latency of NAS MG routers.
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Figure 4.23: Contention latency of NAS MG routers.

4.8.3 Lammp Molecular Dynamics Application - Latency Map

Here we show the results for the application "LAMMPS Molecular Dynamics Simulator". In

the map shown in �g. 4.24 the average latency with DRB algorithm (Fig. 4.24b) is reduced

by 65% compared to the Deterministic algorithm (Fig. 4.24a). PR-DRB (Fig. 4.24c) has a

similar reduction than DRB in latency compared to the Deterministic algorithm. However,

PR-DRB has better global latency values compared to both Deterministic and DRB, as

shown in �g. 4.25a. Here, latency is reduced by PR-DRB on 5% compared to DRB and

36% compared to the Deterministic algorithm. PR-DRB achieves this improvement by

using the best known solution every time the same pattern re-appears in the network.

Fig. 4.25b shows the execution time reduction obtained by PR-DRB compared to DRB

and Deterministic algorithms. In this case, 6% and 37% respectively. The improvements
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achieved, in latency and execution time is caused by using the best solutions for each

representative pattern it �nds. The best solution comprises a combination of shorter and

longer paths towards a destination. Thus, global latency is slightly reduced by contention

latency reduction in bu�ers, as shown in �g. 4.26a. In �g. 4.26b PR-DRB found 80

di�erent contending ows patterns during the �rst stage of the application. Later, 7

patterns were identi�ed or repeated again. One of those patterns was repeated 279 times,

and the best solution encountered and saved previously was applied every time. Here we

can see that with this pattern recognition procedure, PR-DRB reaches better latency and

execution time than DRB and the Deterministic algorithms.

4.8.4 Parallel Ocean Program (POP) Application

Here we show the results for the application "Parallel Ocean Program (POP)". For this

evaluation, we have included the random routing as well as the cyclic periodic routing to

compare against these general algorithms. Also, we have included another variant of the

original DRB, called the Fast Response DRB [38] in order to assess our method. Our

proposal is designed as a modular implementation, so we intend to show that we can apply

our predictive policy to other algorithms also derived from the original DRB. We can see

in �g.4.27 the global average latency and the execution time of the POP application. For

the latency values, we can see that the Deterministic, and the Cyclic reaches 16 µseconds

of average latency while the Random algorithm reaches 14 µseconds. Compared to these

three values, PR-DRB outperforms them by 38%. If we have into consideration the Fast

Response pr-drb, then the reduction goes up to a 57% of the latency for the worst case

algorithm, which for this experiment is the Deterministic algorithm. Once again, the

capability of PR-DRB to distribute the tra�c is a key factor in order to reduce the latency

value. Latency is considerably reduced between the standard PR-DRB and its predictive

Fast Response variation. In this case, about 31%.

If we analyze the global average latency between the DRB and PR-DRB, and also

between the FR-DRB and the predictive FR-DRB, the reduction obtained in both cases for

the predictive approaches are of about 2%. In order to fully understand this last behavior,

we should look at the contention latency su�ered by router's internal bu�ers, as shown in

�g. 4.28. We can see in �g. 4.28a that the DRB algorithm has higher contention latency

values from time 1.03 onward, until the end of the simulation. The PR-DRB in this case

outperforms the DRB because the it is capable of permanently re apply its best known

solutions. For this router PR-DRB has found 143 di�erent contending ows patterns. Later

40 patterns were repeated, including all of the 64 nodes. The communication patterns re

appeared 50 times throughout the execution of the application. Regarding the graph seen

84



 0

 1

 2  0 1
 2 3

 4 5
 6 7

 8 9
 10 11 12 13 14 15

 0
 2
 4
 6
 8

10

Latency (us)

deterministic

Router x axis

Router y axis

Latency (us)

0.00

2.00

4.00

6.00

8.00

10.00

(a) Deterministic

 0

 1

 2  0 1
 2 3

 4 5
 6 7

 8 9
 10 11 12 13 14 15

 0
 2
 4
 6
 8

10

Latency (us)

drb

Router x axis

Router y axis

Latency (us)

0.00

2.00

4.00

6.00

8.00

10.00

(b) DRB

 0

 1

 2  0 1
 2 3

 4 5
 6 7

 8 9
 10 11 12 13 14 15

 0
 2
 4
 6
 8

10

Latency (us)

pr-drb

Router x axis

Router y axis

Latency (us)

0.00

2.00

4.00

6.00

8.00

10.00

(c) PR-DRB

Figure 4.24: Lammps latency map.
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Figure 4.25: Lammps global latency & execution time.
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Figure 4.26: Contention latency of lammps routers.
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in �g. 4.28c, we can mention that PR-DRB found 160 di�erent phases at this intermediate

router. Then, with this information propagated or noti�ed to di�erent sources, in total

PR-DRB found again 69 communication patterns. These 69 patterns, were repeated 87

times and the best solution found when they �rst appeared were re applied by PR-DRB.

The contention latency shown in �gs. 4.28b and 4.28d corresponds to the routers in the

�rst level of the tree (nearest to the sources nodes), so they do not have any contending

ows registered throughout the simulation. The gain obtained is because the common

ancestors (nearest to the roots) have found the contending ows and after notifying this

information to the sources, they managed the paths available using the right combination

of paths that PR-DRB found in order to keep latency bounded. Result from other routers

for this applications are shown in the appendix in section A.3.1.

Regarding the execution time as shown in �g 4.27b, the DRB family on average

outperforms the Deterministic, Cyclic and Random algorithms on 27%. Each of the

predictive approach, PR-DRB and FR-DRB predictive, outperform their non predictive

approach by 2%. The real gain here is shown in message latency, contention latency and

overall network performance explained above.

In the map shown in �g. 4.29 we can see the latency map for the Deterministic, Cyclic

Priority and Random routing algorithm. Here, the occupation latency of Deterministic

reaches the highest value of the three. Although, the Cyclic Priority algorithm uses more

resources at the top of the tree (near the roots), as we can see in �gs. �g:eval-pop-64-50-

steps-map-cyclic.

By comparing these three algorithms against the PR-DRB, our results show that

contention latency is reduced by 87% compared to the Cyclic algorithm and Deterministic,

and by 50% compared to the Random algorithm. Here we have included the Fast Response

DRB - FR-DRB in order to test the capability of our proposal against other DRB based

algorithm. Recall that the PR-DRB requires an ACK message in order to start the path

opening procedures. PR-DRB uses the router based or destination based to accomplish this

task. On the other hand, the FR-DRB has a watchdog timer which expires after a time

t with no ACK received. This is a sign that congestion is present in the network. This

expiration does not require the use of an ACK, at least to start the opening procedures.

PR-DRB is built in a modular fashion on top of DRB, and because FR-DRB is also a

DRB's descendant, then by applying or policy to FR-DRB we could improve it. As we

can see in �g. 4.30b latency map is greatly reduced by FR-DRB, compared to the original

PR-DRB, to nearly 10% less contention latency in the router. Our proposal after applied

to FR-DRB also shows an improvement of 5%. This means that better usage of the

network is obtained, and that our policy could be positively adapted to work with any
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current of future DRB implementation.
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Figure 4.27: POP global latency & execution time.

4.8.5 Discussion

We can mention that our proposal, PR-DRB, is strong because it can dynamically learn

from the tra�c pattern currently in the network and react based on that knowledge.

The contribution of this work ranges from the study of parallel applications and their

communication patterns, to the e�ect they have into the interconnection network. PR-DRB

detaches from the overhead of extra information about one speci�c communication pattern

into the routers and processing nodes. We can also infer from our evaluation results

that our proposal does not degrade performance even under extreme situations, and the

performance of the whole system is maintained even with a smaller network footprint.
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Figure 4.28: Contention latency of POP routers.
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Chapter 5

Conclusions

5.1 Final Conclusions

This thesis, as any work covering several aspects within a certain �eld of science, is intended

to be complete and entirely closed. However, this research also gives rise to a wide range

of a�ordable open lines and further work. These open lines are described below, grouped

according to the contribution from which they are originated.

Predictive and Distributed Routing Balancing - (PR-

DRB)

We have proposed the Predictive and Distributed Routing Balancing PR-DRB. This

strategy uses alternative paths under congestion situation to reduce latency and to increase

bandwidth availability, by considering time as well as tra�c dynamic behavior constraints.

Routing algorithms try to adapt parallel applications tra�c load to network topology.

These applications, that run on an HSIN, change along time and possess repetitive behavior,

and PR-DRB is capable to learn from them and save information for later use.

PR-DRB has been developed to ful�ll HSIN design objectives such as all-to-all connec-

tion, and low and uniform latency between any pair of nodes under any message tra�c

load. The proposed method is also in line with current approaches used in commercial

interconnects (as In�niBand). Our policy allows heavier communication load in the net-

work, or in cost-bounded data centers it allows using less network components, because

they are more e�ciently handled.

The evaluation performed to validate PR-DRB has revealed very good improvements

in latency. Saturation is reduced allowing the use of the network at higher loads. We have
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shown that PR-DRB is a fast and robust method with a very low overhead. Additionally,

PR-DRB is useful for permutation and bursty communication patterns, which are commonly

created by parallel applications and can produce the worst hot-spot situations.

Methodology to Extract Parallel Applications Infor-

mation

We have proposed a framework to study and analyze the behavior of parallel scienti�c

applications. The methodology has allowed us to extract the logical trace of parallel

applications. This information was the source for many subsequent analysis. With

this information, important features of applications could be analyzed, such as their

communication patterns, their degree of repetitiveness, the topological information of

communications and communications requirements of parallel applications in general. The

information extraction was non-intrusive, therefore allowing us precise data from the

parallel applications.

Original Distributed Routing Balancing (DRB) Ex-

tended

In our work we have also worked on improvements of the original DRB routing algorithm.

We have modi�ed and extended the DRB in order to include logical applications traces

into its injections capabilities. The DRB algorithm was widely tested against synthetic

tra�c, and the only application traces used previously were physical traces. By using

physical traces we could only simulate one scenario, because of the limitations of the

information extracted itself. It lacks the vital information about the logical dependencies

of communications. To tackle this situation, a combination of the information extracted

from our proposed framework and the modi�cations to the original DRB were used. By

proceeding this way, we could successfully tested the DRB with real applications traces

and analyzed its behavior.

5.2 Further Work and Open Lines

This work was intended to be as complete as possible and also entirely closed. After being

working with this for the last four years, a set of related work appears and could be treated
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as open lines and future work. The description of the open lines originated from this work

are mentioned below.

Predictive and Distributed Routing Balancing - (PR-

DRB)

One extension to PR-DRB has to do with congestion detection time. Actually PR-DRB

waits until congestion reappears, in order to start the predictive module. To speed up

this phase, latency trend could be used. With enough historic latency values and tra�c

information, PR-DRB could predict future congestion before it actually arises. This trend

analysis could greatly improve system performance.

An additional point could be the information obtained from parallel applications. PR-

DRB routers could have offline meta-information about the communication patterns and

communication requirements. This information could help leverage the predictive phases,

speci�cally the monitoring & detection phase. Recall that the methodology proposed

in this work, the PR-DRB is completely dynamic, and has the ability to learn from

communication patterns actually running in network bu�ers.

This decision could have a positive impact in communication performance as well as

for the application execution time. The rationale behind this performance gain is based on

the idea of the availability of extra information. This information would help the routing

module to decide faster, notify sooner and apply best solutions smarter.

PR-DRB Models

Up until now we were focused on network behavior simulations. Our models were speci�cally

designed and implemented with this idea in mind. By studying the network performance

and the relation with parallel applications, we found that other topics could also be

analyzed. Among the topics that could get some bene�ts we could mention:

• Provisioning: The models could be useful to start thinking about dedicating

some speci�c portions of the network to one application, based speci�cally on its

communication requirements. This could be useful to predict and accommodate

several applications into the network without disturbing each other.

• Energy-Aware routing: With the idea of the predictive module in the routing

unit, we could use the knowledge of future communications patterns to start

applying energy-aware policies.
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Appendix A

Appendix

In this appendix, we include additional information from speci�c chapters. For example,

we can �nd the algorithms that describes our methodology in chapter 3. Also, the results

of the evaluation presented in chapter 4 are included here.

A.1 Algorithms

99



1 MonitorPathLatency ( Packet P, Threshold )
2

3 /∗ At each PR−DBR Router ∗/
4 for each step o f P do
5 /∗ conten t ion l a t ency = wai t time o f the packe t
6 in bu f f e r ’ s output por t ∗/
7 read content ion l a t ency
8 i f ( content ion l a t ency > th r e sho ld ) then
9 I d e n t i f y t r a f f i c pa t t e r invo lved in conge s t i on s i t u a t i o n

10 Record the t r a f f i c pattern
11 end i f
12

13 /∗ Accumulate conten t ion la tency ,
14 to g e t the path l a t ency a f t e rwards ∗/
15 Accumulate l a t ency ( queue time )
16 Continue to next route r or to f i n a l d e s t i n a t i o n
17 end for
18

19 /∗ At the d e s t i n a t i o n node ∗/
20 Send the path la t ency and contending f l ows in fo rmat ion ACK
21 to the source
22

23 end MonitorPathLatency

Algorithm A.1: Monitoring and Noti�cation of path latency and contending ows
(destination based)
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1 MetapathConfig ( metapath Mp, Thresholds )
2 /∗ Executed at source node every time a new ACK message a r r i v e s
3 The metapath i n f o i s maintained f o r every
4 source d e s t i n a t i on pa i r
5 ∗/
6

7 Receive ACK message
8 /∗ ACK message = [ l a t ency in f o + contending f l ow s ] ∗/
9 Calcu la te Mp la t ency value accord ing to Eq . 3.4

10

11 /∗ Firs t , v e r i f y i f we a l r eady have have a s o l u t i o n ∗/
12 Execu t e p r ed i c t i v e p ro c edur e ( ) accord ing to 3.2.6
13

14 /∗ Second , i f we don ‘ t have a a saved so l u t i on ,
15 then s t a r t the metapath con f i g u r a t i on
16 procedures in order to f i nd a good s e t
17 o f a l t e r n a t i v e paths .
18 ∗/
19 i f (NOT saved s o l u t i o n for source−d e s t i n a t i o n pa i r ) then
20 i f (Mp la t ency > Threshold High ) then
21 Increment the number o f a l t e r n a t i v e MSPs
22 else i f ( Threshold Low < Mp latency > Threshold High ) then
23 Maintain the same number o f a l t e r n a t i v e paths
24 else i f (Mp la t ency < Threshold Low ) then
25 Decrease the number o f a l t e r n a t i v e MSPs
26 end i f
27 end i f
28

29 end MetapathConfig

Algorithm A.2: Metapath con�guration.

1 MultiStepPathSelection ( )
2 /∗ At the source node ( b e f o r e i n j e c t i n g an app . message ) ∗/
3 Build the p r o b a b i l i t y dens i ty func t i on (PDF) o f MSPs bandwidths
4 S e l e c t the c o r r e c t MSP us ing the PDF
5 I n j e c t the a p p l i c a t i o n message in to the network
6 end selection

Algorithm A.3: Multistep path selection.
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1 MonitorPathLatency ( Packet P, Threshold )
2

3 /∗ At each PR−DBR Router ∗/
4 for each step o f P do
5 i f ( l a t ency > th r e sho ld ) then
6 I d e n t i f y t r a f f i c pa t t e r invo lved in conge s t i on s i t u a t i o n
7 Record the t r a f f i c pattern
8 Generate a ” P r e d i c t i v e ACK packet ”
9 end i f

10

11 Accumulate l a t ency ( queue time )
12 I n j e c t the ” P r e d i c t i v e ACK packet ” toward the source node
13 end for
14

15 end MonitorPathLatency

Algorithm A.4: Monitoring and Noti�cation of path latency and contending ows
(router based)

A.2 Synthetic Traffic Evaluation

A.2.1 Analysis with Permutation Traffic

Average latency
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Figure A.3: Fat tree - Shu�e 64 nodes. 400 Mbps/node
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A.3 Application’s Performance with PR-DRB

A.3.1 Parallel Ocean Program (POP) Application
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(f) POP Router 60 contention latency

 0

100

200

300

400

500

600

700

 1  1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4  1.45  1.5

La
te

n
cy

 (
u
se

c)

Time (sec)

 fr-drb  
 drb  

 pr-drb  
 fr-drb (predictive)  
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(h) POP Router 65 contention latency

Figure A.5: Contention latency of POP routers (1/3).
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Figure A.6: Contention latency of POP routers (2/3).
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Figure A.7: Contention latency of POP routers (3/3).
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