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1.1 Oil influence in our society 

Population and income growth are the two most powerful driving forces behind the demand for 

energy. Since 1900 world population has more than quadrupled, real income has grown by a 

factor of 25, and primary energy consumption by a factor of 23. Over the last 20 years world 

population has increased by 1.6 thousand million people, and it is foreseen to rise by 1.4 

thousand million over the next 20 years. The world’s real income has risen by 87% over the 

past 20 years and it is likely to rise by 100% over the next 20 years. At the global level, the most 

fundamental relationship in energy economics remains robust: more people with more income 

means that the production and consumption of energy will rise (see Fig. 1.1) [1]. 

 

Fig. 1.1: World commercial energy consumption [1]. 

As globalization proceeds, the next 20 years are likely to see rapid growth of low and medium 

income economies. In 2011, all of the net energy consumption growth (+2.5%) took place in 

emerging economies, with China alone accounting for 71% of the global growth. In contrast, 

consumption in high-income economies fell 0.8%, the third decline in the past four years [2]. 

Oil remains the world’s leading fuel. However, oil continues to suffer a long run decline in 

market share, while gas steadily gains. The diversification of the fuel mix is being driven by the 

power sector, where non-fossil fuels, lead by renewables, account for more than half of the 

growth. In transport, diversification is driven by policy and enabled by technology, with biofuels 

accounting for nearly a third of energy demand growth. The rate at which renewables are 

introduced the global energy, 18% of the growth in energy to 2030, is similar to the emergence 

of nuclear power in the 1970s and 1980s. Continued policy support, high oil prices and 

technological innovations all contribute to the rapid expansion of biofuels [1], [3], [4].  
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The United States and Brazil will continue to dominate biofuel production, together they would 

account for 68% of total output in 2030 (see Fig.1.2). Smaller scale production started more 

recently in Europe from France, Germany and Spain. The exponential growth of biofuels 

production is largely due to bioethanol. Thus, bioethanol has become the most promising biofuel 

and is considered as the only feasible short to medium alternative to fossil transport fuel. 

Besides, the potential of bioethanol to create jobs is immense in farming, biorefineries, the 

chemical industry, the fuel supply sector and fuel-flexible vehicle engineering [1], [5]. 

 

Fig. 1.2: Biofuel worldwide supply [1]. 

 

1.2 Bioethanol 

Ethanol produced from renewable sources is called bioethanol. Ethanol has good properties in 

spark ignition internal combustion engines. Thus, the most straightforward way to use 

bioethanol is to blend it with gasoline. Bioethanol fuel is currently used in internal combustion 

engines as 5-26% anhydrous bioethanol blends to gasoline (< 5% in Europe and India, 10% in 

US, 22-26% mandatory blends in Brazil) or as pure fuel of hydrated bioethanol (named as 

E100) [6].  

Refiners blend bioethanol directly to gasoline; however, ethanol addition results in a significant 

increase in gasoline vapour pressure, which is an important constraint. An indirect way to 

introduce bioethanol to gasoline is by producing bioethers such as ethyl tert-butyl ether (ETBE). 

The introduction of bioethers in reformulated gasoline leads to a reduction in emissions of 
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exhaust pollutants such as volatile organic compounds and particles. Likewise, fuel asymmetric 

branched ethers have higher octane numbers, and in this way, allow refiners to substitute other 

less desirable components e.g. aromatics and olefins. Besides, blending bioethers into gasoline 

is more energy efficient than that of bioethanol, with an additional saving of 24 kg of CO2-

equivalent/GJ of bioethanol [7], [8].  

Ethanol is unable to be directly used in diesel engines. Nonetheless, to blend bioethanol with 

conventional diesel has been evaluated since 1980s. Over the last years, this topic has been a 

subject of research due to diesel fuel is foreseen to grow much faster than gasoline over the 

next 20 years. In addition, interest in maximizing the production of diesel fuel is specially high in 

Europe. European refineries do not produce enough diesel fuel, and consequently, European 

countries are importing diesel and exporting gasoline to the United States [9], [10]. However, 

the use of ethanol-diesel blends has some limitations. With respect to conventional diesel, 

ethanol-diesel blend has lower viscosity and lubricity, reduced ignitability and cetane number, 

higher volatility and lower miscibility. In order to overcome these difficulties, the use of cetane 

enhancers and solvent additives are needed to recover the potential of these blends [9], [11].  

Analogously as gasoline, a more attractive way to introduce bioethanol to the diesel pool is by 

producing suitable compounds, namely bioethanol-derived components. Quoted alternative 

diesel compositions can contain C4-C10 oligomers of dehydrated ethanol and ethyl glycerol 

ethers [12]–[14]. Nevertheless, oligomers do not have the combustion advantages of 

oxygenated compounds and ethyl glycerol ethers have been proven to be disadvantageous with 

regard to the undesired particle emissions [15]. With the aim of avoiding the above 

disadvantages, Eberhard recently patented the use of diesel fuel based on ethanol (60-90% v/v) 

that contains linear dialkyl ethers (up to 20% v/v) [15]. The interest in using linear dialkyl ethers 

in diesel fuel is caused by their high cetane number and other desirable fuel properties, such as 

lower pour and cloud point [16], [17]. Additionally, the use of an alcohol from a renewable origin 

to form such ethers is an opportunity to increase the biofuel percentage in the diesel pool. 

1.3 Ethyl octyl ether 

A bioethanol-derived component that has excellent properties as diesel fuel is ethyl octyl ether 

(EOE), IUPAC name: 1-ethoxy-octane. EOE is an asymmetrical ether of 10 carbon atoms, 

C10H22O (see Fig. 1.3). EOE has 10 w/w % oxygen content, 187ºC boiling, d4
20

 of 0.771, cetane 

number of 97 and satisfactory lubricity [18]. In addition of the good properties as diesel 

component, EOE as an alkyl ether also has a wide variety of potential industrial uses such as 

component of dyes, paints, rubbers, resins and lubricants [19]–[21]. 

Fig. 1.3: EOE structure. 
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Linear ethers can be formed by the bimolecular dehydration of primary linear alcohols over acid 

catalysts. Alcohol dehydration reaction is highly useful for obtaining symmetrical ethers from 

primary alcohols such as dimethyl ether, di-n-butyl ether, di-n-pentyl ether, di-n-hexyl ether or 

di-n-octyl ether. In the case of using secondary alcohols, the obtained selectivities to ethers are 

lower, as a result of the olefinic by-product obtained by monomolecular dehydration [22]–[25].   

So far, the dehydration of alcohols has been industrially catalyzed by sulfuric acid [15]. 

However, it is widely known that solid catalysts have the advantage of easier separation and 

they yield a reaction product free of blacken compounds. Accordingly, it is desirable to obtain 

solid acid catalysts that exhibit activities and selectivities at least comparable to their 

homogeneous counterparts in order to obtain an economic and environmental viable process. 

Besides, by using a solid catalyst it is possible to carry out the ether production on a fixed, 

fluidized or mobile bed process. Over the last years, it has found that acidic ion-exchange resins 

are able to catalyze the dehydration of primary alcohols to linear symmetrical ethers with high 

selectivity (97-99%) [22], [25]–[27]. 

 

1.4 Acidic ion-exchange resins as catalysts 

Ion-exchange consists of the interchange of ions between two phases. In particular, ion-

exchange resins are useful because of the insolubility of the resin phase. After contact with the 

ion-containing solution, the resin can be separated by filtration. They are also adaptable to 

continuous processes involving columns. Their insolubility renders them environmentally 

compatible since the cycle of loading/regeneration/reloading allows them to be used for many 

years. Ion-exchange resins have been used since 1940’s in water softening, removal of toxic 

metals from water in the environment, wastewater treatment, hydrometallurgy, sensors, 

chromatography, and biomolecular separations [28]. In Fig. 1.4 it is shown an illustrative 

example of the beads of an ion-exchange resin. 

 

 

Fig. 1.4: Ion-exchange resin beads. 
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Ion-exchange resins are also used as catalysts, both in place of homogeneous catalysts such 

as sulfuric acid and to immobilize metallic catalysts [29]. As concerns to acid catalysts, most 

commercial acidic ion-exchange resins are based on a polystyrene-divinylbenzene (PS-DVB) 

copolymer. The continuous operation of cation-exchange resins through numerous 

load/regeneration cycles depends on their physical stability, i.e., the ability of the beads to resist 

fracture and disintegration into smaller irregular particles. Fig. 1.5 shows an illustrative example 

of breaking of polymer matrix when heated. It was found that the manner in which they are 

prepared from unfunctionalized PS-DVB beads is critical to their stability. The reaction with 

concentrated sulfuric acid must be done on beads that are fully swollen in an inert solvent; 

dichloroethane, methylene chloride and trichloroethylene give good results since they are 

excellent swelling solvents. After sulfonation, the concentrated sulfuric acid in contact with the 

beads must not be diluted too rapidly with water because the swelling forces created by 

hydration of the sulfonic acid ligands will cause the beads to shatter; washing with sulfuric acid 

solutions of progressively lower acidity allows hydration to occur slowly. The resins must then 

be packed in a manner that maintains their complete hydration or they must be slowly hydrated 

prior to use [28].  

 

Fig. 1.5: Scanning electron micrograph of broken polymer matrix of a resin. 

Acidic PS-DVB ion-exchange resins are attractive catalysts because, compared to most other 

solid acids, they exhibit higher concentrations of acid sites (~5 meq H
+
/g) and the strength of the 

acid sites tends to be highly uniform. On the contrary, the strength of the acid groups are lower 

than those found on zeolitic and similar solid acids [24], [26], [30], [31]. The exchange capacity 

of acidic resins are chiefly conditionated by their molecular accessibility, namely, by their ability 

to be crossed by reactants and products moving to and from the active sites. On these grounds, 

it appears quite obvious that any application of acidic ion-exchange resins ought to be preceded 

by a careful examination of the resin morphology [32]. 
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PS-DVB copolymer carriers are divided into two groups. Historically, the first type of PS-DVB 

resins was the gel-type ones. Gel-type resins are copolymerized without porogen; hence, their 

porosity only appears in a swollen state. In the 1960s a second type of resins was developed, 

the macroreticular ones [28]. Addition of a solvent to the mixture of monomers during the 

polymerization induces creation of permanent pores, stable even in absence of swelling. 

Thanks to it, the resulting polymers contain pores at least partially stable even in absence of 

swelling (a schematic diagram of a macroreticular resin is displayed in Fig. 1.6). These so-called 

macroreticular resins have permanent macropores which can be detected in dry state. 

Nevertheless, even in the macroreticular resins new pores appear by the swelling of the 

polymer in suitable solvent [32]. 

 

Fig. 1.6: Morphology of a macroreticular resin [33]. 

 

Complete porosity of polymeric supports cannot be characterized by conventional porosimetric 

methods as mercury intrusion or nitrogen adsorption since they require completely dry samples. 

Using such data to interpret resin effects observed e.g. in reactions carried out in solvents does 

require the assumption that the morphology is not changed significantly when the resin is 

wetted with solvent. This assumption is clearly not valid using hydrophilic polymeric catalysts in 

a polar reaction environment. Therefore, in order to study the morphology of gel-type and 

macroreticular catalysts, other characterization techniques are needed. To date, the only 

procedure employed to assess the morphology of ion-exchange resins in a swollen state has 

been the Inverse Steric Exclusion Chromatography (ISEC) technique. This method is based on 

measurements of elution volumes of standard solutes with known molecular sizes, by using 

chromatographic column filled with the investigated swollen polymer [33]–[37]. 
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Attempts to obtain porosimetric data from ISEC technique have been reported in the open 

literature since 1975. Ten years later, Jerabek proposed an approach based on modelling of the 

porous structure as a set of discrete fractions, each composed of pores having simple geometry 

and uniform sizes. From that point of view, gel-phase porosity is described as zones of different 

chain density. According to this model, the pore size of the gel-phase is represented as total rod 

length per unit of volume (nm
-2
) [34], [35].  

The morphological information given by ISEC technique has been used in successful correlation 

on catalytic activity of ion-exchangers. In polar reaction systems the catalyst swelling is 

comparable to that of water, hence, it is expected that the internal catalyst morphology to be 

also similar. Recently, several studies on alcohol dehydration to ethers had make use of ISEC 

description to correlate ion-exchange morphology with catalytic results [22], [26], [38]. In these 

works, it is observed that the accessibility of the reactants to acid centres is the key factor to 

describe the catalytic results. Consequently, the ISEC technique is attracting increased interest 

from resin designers and exploiters [39]. 

Besides acidity and morphological properties, on the selection of a suitable acidic resin for a 

given reaction it is important that the catalyst retains its activity and selectivity for some time. 

With respect to acid resins, a great disadvantage of its industrial use is their low thermal 

stability. In general, thermal deactivation by sulfonic groups leaching hinders their application at 

high temperature. Most PS-DVB resins are stable up to 150ºC, but the maximum operating 

temperature of some highly used resins is even lower [40], [41]. Thermal resistance to 

desulphonation of PS-DVB resins can be enhanced by adding electron withdrawing groups to 

the sulfonated phenyl ring, such as chlorine atoms. Therefore, in some reactions that are 

catalyzed by acidic ion-exchange resins, the operating temperature can be increased to obtain 

higher reaction rates and, therefore, to have a more economically feasible reaction unit [30]. 

 

1.5 Reaction kinetic modelling 

The modelling of a reaction process is necessary for further reactor design purposes. When an 

acidic ion-exchange resin is used as catalyst, analogously as other solid catalysts, it is 

compulsory that at least one reactant in the fluid phase interact with the solid surface, and get 

fixed on it. Therefore, chemical reaction takes part in a complex process, where different 

elemental catalytic steps are involved. The reaction process consists of the following seven 

stages (see Fig. 1.7): 
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Fig. 1.7: Steps of the catalytic process in a reaction A → B.  
 

1. Diffusion of reactants from bulk liquid-phase to the external resin surface (external 

mass transfer). 

2. Diffusion of reactants through the catalyst (internal mass transfer). 

3. Adsorption of reactants on resin active sites. 

4. Chemical reaction between adsorbed species or between adsorbed species with fluid 

phase ones. 

5. Desorption of reaction products. 

6. Diffusion of products through the catalyst (internal mass transfer). 

7. Diffusion of products from external resin surface to bulk liquid phase (external mass 

transfer). 

Steps 1, 2, 6 and 7, concerning to mass transfers, are of physical nature, while steps 3, 4 and 5 

are of chemical nature. Mass transfer resistances strongly depend on the flow conditions in the 

reactor and the particle size of the catalyst. Varying these parameters it is possible to check the 

physical transfer limitations of the reaction. If physical steps are very fast, there is no resistance 

to the mass transfer from the bulk liquid to the resin surface and from the resin surface to the 

active sites. Thus, the concentration around the catalyst sites is supposed to be the same as 

that of the liquid bulk phase. Under these conditions, the mass transfer steps do not affect the 

reaction rate of the catalytic reaction. Therefore, the reaction rate is the intrinsic one and can be 

computed from the reaction mechanism assuming that the concentration at the catalyst site is 

the same as that of the liquid surrounding catalyst sites. 



1. General introduction 

 
 

18 
 

A plausible intrinsic reaction mechanism of acidic resins catalytic reactions is that the reactants 

chemisorb on the surface and react while in the adsorbed state. The process of adsorption A on 

a sulfonic group σ is represented by (single site adsorption) 

A + σ ↔ Aσ 

and the reaction between adsorbed molecules, for instance, by 

Aσ + Bσ ↔ Cσ + Dσ 

The developed kinetic expressions for explaining this process are based on 3 assumptions: a) 

the solid surface contains a fixed number of active sites b) all the active sites are identical c) the 

active sites reactivity does not depend on quantity and nature of the rest of compounds present 

on the solid surface during the reaction, it only depends on temperature. However, it is worth 

mentioning that assumptions (b) and (c) are inaccurate using ion-exchangers as catalyst [37], 

[39], [42]. 

Classical kinetic models catalyzed by solids comes from Langmuir isotherm development using 

species concentration near from active sites instead of occupied sites fraction (Langmuir and 

Hinshelwood) or surface molar concentrations (Hougen and Watson), which are difficult to 

determine experimentally. In Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism, the 

reaction is between adsorbed molecules, while in Eley-Rideal (ER) formalisms, it is considered 

that some reactants are not adsorbed so that reaction occurs directly between an adsorbed 

reactant with reactants present in the liquid-phase. In both cases, in the absence of external 

and internal mass resistances, general procedure consists of proposing a rate-limiting step 

(reactants adsorption, products desorption or surface reaction), and then to develop equations 

depending on possible different active sites involved in the catalytic process. Usually, many 

different possible kinetic models can be proposed to explain reaction data, but all of them 

possess the same general structure (eq. 1.1), so it is compulsory to check all of them to reach 

those fit better the experimental reaction rate data and provide values of thermodynamically 

parameters [43], [44]. 

[kinetic term][driving force]
reaction rate = 

[adsorption term]
 eq. 1.1 
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1.6 Scope of the thesis 

 

Ethyl octyl ether has excellent properties as a diesel compound and it can be an industrial 

option to introduce bioethanol indirectly to the diesel pool. The aim of this thesis is to study the 

catalytic reaction process for obtaining such product. This involves the selection of a suitable 

reaction pathway and catalysts, as well as, thermochemical and kinetic evaluation of the 

process, which are necessary for a reactor design purposes.  

In Chapter 2, materials, catalysts and experimental apparatus used in this work are described. 

In Chapter 3, the production of ethyl octyl ether from ethanol and 1-octanol dehydration is 

evaluated. In this study, several acidic ion-exchange resins are compared to establish a relation 

between morphological parameters and catalytic activity to the desired product. In Chapter 4, 

the synthesis of ethyl octyl ether from a mixture of diethyl carbonate over several solid catalysts 

is studied. Again, the influence of the morphological parameters of the catalysts is related to the 

activity. In Chapter 5, both ethanol and diethyl carbonate, are compared as ethylating agents of 

1-octanol to give ethyl octyl ether over some of the best catalysts found. In Chapter 6, the 

evolution of catalytic activity to form ethyl octyl ether from ethanol and 1-octanol along time is 

evaluated. Temperature and water effects are highlighted. In Chapter 7, the thermochemical 

data of the ethyl octyl ether formation from ethanol and 1-octanol is obtained. Besides, a kinetic 

model able to predict the reaction rates on the best catalyst found, Amberlyst 70, is proposed. In 

Chapter 8, the possibility of increasing the selectivity to ethyl octyl ether on acidic resins by 

using partially sulfonated resins is explored. Chapter 9 summarizes the results obtained in the 

scope of this work and it gives recommendations for future research. 
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2.1 Chemicals 

1-octanol (OcOH) (≥ 99%, Acros), ethanol (EtOH) (≥ 99.8%, Panreac), diethyl carbonate (DEC) 

(≥98%, Fluka), diethyl ether (DEE) (≥99%, Panreac), di-n-octyl ether (DNOE) (≥ 97%, Fluka), 1-

octene (≥ 97%, Fluka), 1,4-dioxane (≥ 99.8, Sigma), 1-pentanol (≥99%, Sigma), sulphuric acid 

(>95%, Lac-ner) and 1,2-dichloroethane (DCE) (99.8%, Acros) were used without further 

purification. EOE was synthesized and purified in our lab by rectification to 99%. Bidistilled 

water was also used. 

 

2.2 Catalysts 

A great part of experiments shown in this work was performed by using commercial acidic PS-

DVB resins (described in section 2.2.1). Besides, in chapter 4, it was used other types of 

commercial solid catalysts such as basic resins, acidic nafion, a zeolite and two aluminas 

(described in section 2.2.2). Eventually, in chapter 8, a series of PS-DVB resins were prepared 

by sulfonation of a polymer carrier, and subsequently, tested (described in section 8.3). 

2.2.1 Acidic PS-DVB resins 

17 acidic PS-DVB resins were used as catalysts, supplied by Purolite (CT 124, 224 and 482), 

Aldrich (Dowex 50Wx8, 50Wx4 and 50Wx2) and Rohm and Haas France (Amberlyst 15, 16, 31, 

35, 36, 39, 46, 48, 70, 121 and XE804). The main properties of tested ion-exchange resins are 

presented in Table 2.1.  
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Table 2.1: Characteristics of used ion-exchange resins. 

catalyst structure 
acid capacity sulfonation 

DVB (%)
b
 

porous information in dry state
c
 

 (meq H
+
/g) type

a
 dpore (nm) ΣVpore (cm

3
/g) SBET (m

2
/g) 

Amberlyst 15 macroreticular 4.81 CS 20 31.8 0.33 42 

Amberlyst 35 macroreticular 5.32 OS 20 23.6 0.21 29 

Amberlyst 48 macroreticular 5.62 OS high 31.0 0.25 34 

Amberlyst 46 macroreticular 0.87 SS high 19.2 0.26 57 

Amberlyst 16 macroreticular 4.80 CS 12 [45] 29.7 0.01 2 

Amberlyst 36 macroreticular 5.40 OS 12 [46] 27.0 0.14 21 

Amberlyst 39 macroreticular 5.06 CS 8 [47] 17.6 <0.01 <1 

Purolite CT482
d
 macroreticular 4.25  CS n. a. 26.8 0.06 9 

Amberlyst XE804
d
 macroreticular 3.17 CS n. a. 20.7 0.02 4 

Amberlyst 70
d
 macroreticular 2.65 CS 8 - - <1 

Dowex 50Wx8 gel-type 4.83 CS 8 - - <1 

Purolite CT 124 gel-type 5.00 CS 4 - - <1 

Purolite CT 224 gel-type 5.34 OS 4 - - 1 

Dowex 50Wx4 gel-type 4.95 CS 4 - - <1 

Amberlyst 31 gel-type 4.80 CS 4 [46] - - <1 

Dowex 50Wx2 gel-type 4.83 CS 2 - - 1 

Amberlyst 121 gel-type 4.80 CS 2 [48] - - <1 
a 
CS=conventionally sulfonated; OS=oversulfonated; SS=surface sulfonated or low sulfonated    

b
 information not warranted for the authors 

c 
obtained from gas

 
adsorption-desorption (described 

in section 2.3.3)  
d 
chlorinated resin. 

 

Macroreticular resins include polymers of high crosslinking degree (Amberlyst 15, 35, 46 and 

48), medium (Amberlyst 16 and 36) and low (Amberlyst 39 and 70); gel-type ones include resins 

containing 8% DVB (Dowex 50Wx8), 4% (Purolite CT 124 and 224; Dowex50Wx4 and 

Amberlyst 31) and 2% (Dowex 50Wx2 and Amberlyst 121). As for sulfonation degree, selected 

resins include conventionally sulfonated, oversulfonated and low sulfonated. Amberlyst 35 is an 

oversulfonated versions of Amberlyst 15; Amberlyst 36 an oversulfonated version of Amberlyst 

16; and CT 224 an oversulfonated version of CT 124. Amberlyst 46 has its sulfonic groups 

located only on the surface of the gel-phase microspheres and it can be considered a surface 

sulfonated version of Amberlyst 15. Special properties of the chlorinated resins (Amberlyst 70 

and XE804; and Purolite CT482) have to be emphasized. They have chlorine atoms in its 

structure to improve their thermal stability. 

In the dry state, macroreticular resins with high crosslinking degree have permanent porosity, 

whereas low-crosslinked resins show low surface areas and pore volumes. As for gel-type 

resins, they do not present permanent porosity so that they are collapsed in dry state. However, 

gas adsorption-desorption data are not useful to describe the morphology in swollen state 

neither that of macroreticular resins nor that of gel-type ones.  
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Accordingly, morphological properties of acidic PS-DVB resins discussed in this work are 

obtained from ISEC technique, using water as the mobile phase due to the hydrophilic character 

of the catalytic tests, described in section 1.4. 

True pores 

Macroreticular resins are synthesized in the presence of a solvent, miscible with the monomers 

but the formed polymer is insoluble in it. Thanks to it, the resulting polymers contain pores at 

least partially stable even in absence of swelling (a schematic diagram of a macroreticular resin 

is displayed in Fig. 1.6). This family of pores is usually called macropores and they are 

permanent pores. Unambiguously, as ―true‖ pores can be evaluated pores having diameter 

greater than 8 nm [38]. To characterize these pores it is possible to use the cylindrical model 

[33]. Table 2.2 summarizes the true pores information of the tested catalysts. Macroreticular 

catalysts show pore diameter between 9 and 19 nm, a total pore volume between 0.16 and 1.05 

cm
3
/g and a total surface between 46 and 214 m

2
/g. Obviously, gel-type resins did not showed 

any true pores so they are not described.  

Table 2.2: Properties of resin true pores morphology using ISEC technique. 

catalyst dpore (nm) ΣVpore (cm
3
/g) ΣS (m

2
/g) 

Amberlyst 15 12.4 ± 1.3 0.616 ± 0.004 192 ± 30 

Amberlyst 35 12.6 ± 0.3 0.720 ± 0.089 199 ± 5 

Amberlyst 48 12.3 ± 0.7 0.568 ± 0.007 186 ± 14 

Amberlyst 46 10.3 ± 4.7 0.470 ± 0.110 186 ± 31 

Amberlyst 16 15.5 ± 0.2 0.188 ± 0.002 46 ± 3 

Amberlyst 36 14.8 ± 4.6 0.259 ± 0.109 68 ± 8 

Amberlyst 39 15.0 ± 4.2 0.155 ± 0.002 56 ± 3 

Purolite CT482 18.5 ± 0.2 1.051 ± 0.259 214 ± 27 

Amberlyst XE804 8.5 ± 0.4 0.518 ± 0.037 243 ± 5 

Amberlyst 70 13.5 ± 0.4 0.220 ± 0.049 66 ± 13 

 

By comparing ISEC true pore description (Table 2.2) and the information of nitrogen adsorption 

(Table 2.1), it is clear that the morphology of the resins changes drastically swollen in water. In 

the dry state, surface areas were much lower (0<Sdry<60 m
2
/g) than those measured in swollen 

state (46<Sswollen<214 m
2
/g). This fact can be observed as well for pore volumes. Accordingly, 

mean pore diameter values were larger in dry state (17<dpore<32 nm) than in swollen state 

(9<dpore<19 nm). This is because in the swollen state it appears new pores in the mesopore 

range not detected in dry state (diameter 8-20 nm).  

In general, the high-crosslinked resins showed, both swollen in water and in dry state, higher 

pore volumes and higher surface areas than those of the low-crosslinked ones. As for low-

crosslinked macroreticular resins (Amberlyst 39 and 70), their morphology was almost collapsed 

in dry state, whereas they present a much more expanded structure in swollen state 
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(56<Sswollen<66 m
2
/g). Besides, the only pores detected in dry state for Amberlyst 39 and 70 

were the large ones (18<dpore<27 nm).  

Gel-phase 

A great advantage of ISEC technique is that it provides a description of a set of discrete gel-

phase fractions, each with its own characteristic value of the polymer chain density. As a result 

that acid centres are located in the gel-phase and reactants and products must diffuse through 

it, the morphological information of the gel-phase of acidic PS-DVB resins is highly valuable in 

interpreting their catalytic behaviour. Gel-phase fractions are currently normalized as 0.1, 0.2, 

0.4, 0.8 and 1.5 nm
-2 

[36]. The sum of computed cumulative volumes of the swollen gel fraction 

used is the specific volume of the swollen phase parameter (Vsp) (Table 2.3).  

Table 2.3: Vsp of resin gel-phase using ISEC technique. 

catalyst Vsp (cm
3
/g) 

Amberlyst 15 0.622 ± 0.006 

Amberlyst 35 0.504 ± 0.003 

Amberlyst 48 0.514 ± 0.003 

Amberlyst 46 0.190 ± 0.030 

Amberlyst 16 1.136 ± 0.065 

Amberlyst 36 1.261 ± 0.065 

Amberlyst 39 1.643 ± 0.048 

Purolite CT482 1.081 ± 0.072 

Amberlyst XE804 0.834 ± 0.101 

Amberlyst 70 1.149 ± 0.021 

Dowex 50Wx8 1.404 ± 0.067 

Purolite CT 124 2.006 ± 0.077 

Purolite CT 224 1.859 ± 0.152 

Dowex 50Wx4 1.900 ± 0.043 

Amberlyst 31 2.096 ± 0.092 

Dowex 50Wx2 2.677 ± 0.022 

Amberlyst 121 3.154 ± 0.031 

 

The pattern of volume distribution among the five discrete fractions of macroreticular resins, gel-

type ones and chlorinated macroreticular ones is displayed in Fig. 2.1, 2.2 and 2.3, respectively. 

Concerning standard macroreticular resins (see Fig. 2.1); the main volume fraction is in the 

densest zone, 1.5 nm
-2

 zone, poorly accessible. As an exemption, Amberlyst 39 presents its 

main volume fraction in the 0.8 nm
-2

 zone. This behaviour is explained by the lower DVB 

content (8%) than those of common macroreticular resins (12-20%). In addition, it is clearly 

observed a trend between Vsp and DVB content: as higher is the DVB content in the polymer 

structure, lower the ability to swell is. Accordingly, Vsp values follows this trend: high-crosslinked 

(Amberlyst 15, 35 and 48) < medium-crosslinked (Amberlyst 16 and 36) < low-crosslinked 

(Amberlyst 39).  
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The difference among resins with the same crosslinking degree is the sulfonation degree, 

Amberlyst 15, 16 and 39 are conventionally sulfonated resins, whereas Amberlyst 35, 36 and 48 

are oversulfonated ones (see Table 1). It is expected that oversulfonated resins have a stiffer 

structure. This fact is observed for the Vsp values of Amberlyst 35 and 48, lower than that of 

their homologue Amberlyst 15, as well as for the gel-type resins Purolite CT 124 (conventionally 

sulfonated) and Purolite CT 224 (oversulfonated). Nevertheless, this trend is not observed 

between the medium-crosslinked macroreticular resins (Amberlyst 16 and 36) and they show 

comparable Vsp values. 

 

Fig. 2.1: ISEC gel-phase pattern of conventional macroreticular resins. 

As for gel-type resins, Vsp values are clearly higher than those of macroreticular catalysts (see 

Fig. 2.2). By comparing the Vsp values of the gel-type resins, it is observed the same trend than 

in macroreticular ones: as lower is the DVB content higher the Vsp value is. Thus, Vsp values 

follows this trend: 8% DVB (Dowex 50Wx8) < 4% DVB (Purolite CT 124 and 224; Dowex 

50Wx4 and Amberlyst 31) < 2 % DVB (Dowex 50Wx2 and Amberlyst 121). With regard to the 

distribution of the fraction density zones, Amberlyst 121 shows the least dense structure and it 

presents its main volume fraction density between 0.2-0.4 nm
-2

. On the other extreme, Dowex 

50Wx8 shows a high dense resin with a poor accessible gel-phase. 
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Fig. 2.2: ISEC gel-phase pattern of gel-type resins. 

 

On the other hand, some macroreticular resins have chlorine atoms in its structure to improve 

their thermal stability [26], [30]. Amberlyst 70 presents a low dense gel-phase zone in the 0.4 

nm
-2

 zone (see Fig. 2.3). This high space between polymer chains is only comparable to gel-

type catalyst as Dowex 50Wx2 and none of conventional macroreticular resin exhibits similar 

characteristics. Consequently, Amberlyst 70 is a highly suitable catalyst for polar environments. 

However in dry state its structure is almost completely collapsed. On the other hand, Purolite 

CT482 and Amberlyst XE804 show a more rigid gel-phase, and hence, their dry state structures 

are not collapsed. Thus, Purolite CT482 and Amberlyst XE804 are apparently more suitable 

thermal stable resins than Amberlyst 70 in lipophilic reaction mixtures. 

 
Fig. 2.3: ISEC gel-phase pattern of chlorinated macroreticular resins. 
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2.2.2 Others 

Other catalysts tested include basic ion-exchange resins, acidic nafion, the zeolite H-BEA-25 

and aluminas. They were supplied by Rohm and Haas (Amberlyst 26 OH, Amberlyst 21), Sigma 

(Nafion® NR 50, acid γ-Al2O3, basic γ-Al2O3) and Sudchemie (H-BEA-25). The main 

properties of tested basic resins are shown in Table 2.4. Both basic resins have macroreticular 

structure. Amberlyst 21 is a weak anion-exchange resin with high basic capacity, whereas 

Amberlyst 26 is a strong one with low basic capacity. Nafion® NR50 is a gel-type copolymer of 

Teflon® and perfluoro-alkanesulfonic monomers. Fluorine atoms of polymer chains upgrade 

thermal stability of NR50 and give a higher acid strength than PS-DVB resins but lower acid 

capacity (0.89 meq H
+
/g). 

Table 2.4: Properties of tested basic resins. 

catalyst basic strength type basic capacity (meq OH
-
/g) SBET (m

2
/g) 

Amberlyst 21 weak macroreticular 4.6 [41] 35 [41] 

Amberlyst 26 OH strong macroreticular 2-2.6 [49], [50] 30 [41] 

 

Properties of the zeolite (H-BEA-25) and two aluminas (γ-Al2O3) are presented in Table 2.5. 

Both aluminas were supplied as activated form. Tested inorganic catalysts presents relevantly 

lower acid or basic capacity than the polymeric ones. In contrast, the surface areas in dry state 

are higher, with H-BEA-25 leading.  

Table 2.5: Properties of tested zeolite and aluminas. 

 
H-BEA-25 acid γ-Al2O3 basic γ-Al2O3 

SiO2/Al2O3 25 
  

Brönsted acid sites (meq H
+
/g) 1.2 0.46 

 
Brönsted basic sites (meq OH

-
/g) 

 
0.57 

SBET (m
2
/g)

a
 503 151 139 

Vpore (cm
3
/g)

a
 0.663 0.255 0.265 

dpore (nm)
a
 10.8 5.7 6.2 

dp (mm) 0.008 0.105 0.105 
a
 obtained from gas

 
adsorption-desorption (described in section 2.3.3) 
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2.3 Apparatus and analysis 

The experimental data on the synthesis of EOE were obtained from two different experimental 

devices, a batch and a fixed-bed reactor. Alternative devices used in this work are also 

presented. 

2.3.1 Batch reactor 

The first set-up consists in a 100-mL nominal stainless steel autoclave operated in batch mode. 

The temperature was controlled to within ± 0.1ºC by an electrical furnace. The pressure was set 

at 25 bar by means of N2 to maintain the liquid-phase. A reactor outlet was connected directly to 

a sampling valve, which injected 0.2 μL of liquid into a GLC apparatus. Reaction was controlled 

by a computer with a designed LabView software program. A scheme of the experimental set-

up is shown in Fig. 2.4. 

 

Fig. 2.4: Experimental set-up of the batch reactor. 

Analyses were carried out by means of a HP-GLC apparatus equipped with a TCD. A 50m × 

0.2mm × 0.5μm capillary column, methyl siloxane HP-Pona (Agilent), was used to separate and 

quantify the compounds present in the reaction mixture. The oven was temperature 

programmed to start at 50ºC with a 10ºC/min ramp up to 250ºC and held for 6 min. Helium (≥ 

99.998%, Linde) was used as the carrier gas. All chemical species were identified by using a 

second GLC apparatus equipped with mass spectrometer GC/MS 5973 (Agilent) and chemical 

database software. In each set of experiments, standard samples of 5 mL have been prepared 

with different compounds proporcions and analyzed to correlate the chromatographic area with 

the weight percentage of the reaction medium. 
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2.3.2 Fixed-bed reactor 

The second set-up consists in a 20-mL continuous fixed-bed reactor (PID Eng & Tech). The 

liquid mixture was pumped by a HPLC pump (Gilson 307). The pressure was set at 25 bar by 

means of a micrometric regulating valve to maintain the liquid-phase. The reactor bed consisted 

of resin homogeneously diluted with inert quartz (Chapter 6) or inert SiC particles (Chapter 7). 

The inert was used to keep the bed isothermal, and also to assure good contact between 

reactants and catalyst avoiding back-mixing and channelling. The temperature was controlled to 

within ± 1ºC by an electrical furnace. A scheme of the experimental set-up is shown in Fig. 2.5. 

 

Fig. 2.5: Experimental set-up of the fixed-bed reactor. 

Samples of liquid reaction medium were taken on-line from the reactor inlet and outlet. Their 

composition was determined in an HP6890A GLC (Hewlett Packard) equipped with TCD 

detector. A 50m × 0.2mm × 0.5μm capillary column HP-Pona (Agilent) was used to separate 

and quantify the compounds present in the reaction mixture. The oven was temperature 

programmed to start at 50ºC with a 25ºC/min ramp up to 250ºC and held for 6 min. Helium (≥ 

99.998%, Linde) was used as the carrier gas. All chemical species were identified by a second 

GLC apparatus equipped with mass spectrometer GC/MS 5973 (Agilent) and chemical 

database software. In each set of experiments, standard samples of 5 mL have been prepared 

with different compounds proporcions and analyzed to correlate the chromatographic area with 

the weight percentage of the reaction medium. 
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2.3.3 Auxiliary devices 

ISEC 

The morphology of ion-exchange resins in a swollen state has been assessed by means of the 

ISEC technique. The ISEC apparatus consisted of HPLC pump (Waters 510), sampling valve, 

stainless steel column (4.27 cm
3
) and a refractometric detector (Shodex RI-100). The detector 

signal was connected to a computer and the sampling data was synchronized with the mobile 

phase flow rate using a drop counter. Catalysts were crushed, sieved in swollen state 

(0.250<dp<0.125 mm) and placed overnight in the mobile phase (0.2N Na2SO4). Then, the 

swollen catalyst was packed in the column by flowing the mobile phase during around 30 

minutes (~5 mL/min). Later on, the filled column was placed in the apparatus. During the 

chromatographic measurements the standard solutes (deuterium oxide, sugars and dextranes) 

were injected independently (20 µL). Elution volumes were determined on the basis of the first 

statistical moments of the chromatographic peaks. And for each standard solutethe 

measurement was three times repeated for minimization and determination of the experimental 

error. At the end of the measurements, the catalyst was washed with distilled water, 

quantitatively extruded from the column dried overnight (T=110ºC), and finally weighted. 

Additionally, the swollen morphology of the starting polymer was also characterized by ISEC 

measurements using THF as the mobile phase and n-alkanes and polystyrenes as standard 

solutes. 

For description of the true pores was used conventional model of cylindrical pores. Morphology 

of the swollen gel was described using the Ogston model defining pores as spaces between 

randomly oriented rigid rods representing the polymer chains. Instead pore diemeter, the pore 

size is then defined as polymer chain concentration in units of length per unit of volume. Model 

of the gel part of the polymer morphology was composed of five discrete fractions with the 

polymer chain density 0.1, 0.2, 0.4, 0.8 and 1.5 nm
-2

. The ISEC data treatment was based on 

adjusting the volumes of the model fractions with the aim to minimize differences between 

experimental elution volumes of standard solutes and values computed on the base of the 

morphology model.  A complete description of the procedure can be found elsewhere [33]. 

 
Distillation column 
 
A 1 meter distillation column  packed with Pall rings was used to purify ethyl octyl ether (Fisher 

Scientific). Pressure was set at 0.1 bar. 

Karl-Fischer 

A Karl Fischer automatic titrator (Orion AF8) was used to determine the water content of resins. 
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Laser diffraction Size Analyzer 

Particle size of resins was measured in several media by means of a LS 13320 Laser Diffraction 

Particle Size Analyzer. Resins samples, previously dried at 110ºC at vacuum, were soaked for 2 

days in the solvent to assure that resins were completely swollen by the solvent.  

Scanning Electron Microscopy  

The resin morphology and the homogeneity of the catalytic bed were examined by using 

Scanning Electron Microscopy (SEM) analysis (Hitachi H-2300). The samples were dried at 

110ºC under vacuum overnight, and subsequently, sputtered with a thin gold layer before 

imaging. 

Gas adsorption-desorption  

Catalyst BET surface area (SBET), pore volue (Vpore) and pore diameter (dpore) in dry state was 

obtained by nitrogen adsorption-desorption at -196ºC (Accusorb ASAP 2020, Micrometrics). 

Kripton was used for surface areas < 1 m
2
/g. SBET was obtained by BET method. Vpore was 

obtained by the volume of gas adsorbed at relative pressure (P/P0)=0.99. dpore was computed as 

4Vpore/S. The samples were previously dried at 110ºC under vacuum overnight. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

Chapter 3 
 

Synthesis of ethyl octyl ether 

from ethanol and 1-octanol over 

acidic ion-exchange resins.  

A screening study 
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3.1 Introduction 

 
Linear symmetrical C10-C16 ethers can be synthesized by the bimolecular dehydration reaction 

of primary alcohols, such as 1-pentanol, 1-hexanol or OcOH over acid catalysts [22]. As these 

alcohols can be obtained from hydroformylation of linear olefins, this could be a way to upgrade 

C4 to C7 cuts from catalytic cracking. Moreover, some of these alcohols could be produced from 

renewable sources such as bioethanol or glucose. Corville et al. have reported EtOH 

dimerisation to butanol over MgO at 450ºC while Tsuchida et al. obtained butanol, hexanol and 

OcOH over nonstoichiometric hydroxypatite between 400-450ºC [51], [52]. Recently, promising 

works involving syntheses of such alcohols from biomass are being developed; Dekishima et al. 

engineered an Escherichia coli strain to obtain 1-hexanol from glucose, extending a previous 

work in which 1-butanol was efficiently synthesized from glucose in Escherichia coli [53].  

Thus, glucose and bioethanol are potential raw materials to produce renewable additives for 

commercial gasoil. Co-etherification of alcohol with bioethanol is another way of introducing 

renewable materials into diesel. As an example, asymmetrical C10 ethyl octyl ether (EOE) could 

be produced by reaction between EtOH and OcOH. Since the oil industry addresses efforts to 

introduce a given percentage of bioethanol to diesel market, EOE could be a way to incorporate 

bioethanol to diesel pool avoiding the problems of direct blending to diesel fuels. In this way, 

EOE and other ethers derived from EtOH can enhance the biofuel content in diesel blends 

without a reduction of the fuel quality. 

Ion-exchange resins are efficient and selective in the dehydration of 1-pentanol to di-n-pentyl 

ether, 1-hexanol to di-n-hexyl ether and OcOH to DNOE. Thus, it seems likely that ion-

exchange resins might be efficient catalysts in the co-dehydration between EtOH and OcOH. As 

a consequence, the aim of this chapter is to study the reaction in liquid-phase on a series of 

polymeric catalysts. The relationship between morphology and catalytic behaviour of tested 

resins is discussed. 

 

3.2 Experimental procedure 

Catalytic tests were performed in the batch reactor (described in section 2.3.1). Resins were 

previously dried at 110ºC for 3 h at atmospheric pressure and subsequently at 110 under 

vacuum overnight. Then, the reactor was loaded 1 g of commercial dried resin and 70 mL of 

alcohol mixture, OcOH and EtOH 1:1 molar ratio (57 g). The reaction mixture was pressurized 

to 25 bar by means of N2 heated to 150ºC and stirred at 500 rpm. The time the mixture reached 

150ºC was considered as zero time of the experiment. Heating time was about 20 min, and 

alcohol conversion at zero time was always less than 0.5 %. Liquid samples were taken out 

hourly and analyzed online to follow the reaction until the end of the experiment (6h). Working 

conditions were selected since, as quoted in literature, liquid phase reactions of dehydration of 

1-pentanol and 1-hexanol to linear ethers take place at these conditions in the same set-up free 



3. Synthesis of EOE from EtOH and OcOH over acidic ion-exchange resins. A screening study 

 

35 
 

of external and internal mass transfer influences [26], [54]. In all the experiments, mass balance 

was accomplished within an accuracy of ± 5 %. 

Alcohol conversion, selectivity to EOE, as well as molar and mass yield to EOE+DNOE relative 

to alcohol, was computed in each experiment by the following expressions,  

 EtOH+OcOH

mole of alcohol reacted
X  = 100 %,mol/mol

initial mole of alcohol
  eq. 3.1 

 EOE

EtOH+OcOH

mole of alcohol reacted to form EOE
S  = 100 %,mol/mol

mole of alcohol reacted
  eq. 3.2 

 EOE+DNOE

EtOH+OcOH

mole of alcohol reacted to form EOE and DNOE
Y  = 100 %,mol/mol

initial mole of alcohol


 

eq. 3.3 

 EOE+DNOE

EtOH+OcOH

mass of formed EOE and DNOE
Y'  = 100 %, w/w

initial mass of alcohol


 

eq. 3.4 

 

Selectivity to the main side products DEE and DNOE were computed analogously as eq. 3.2. 

Definition of eqs. 3.1 and 3.2 are not the classical ones; however, they are used in order to 

quantify the combined amount of alcohol that reacts to produce EOE. Similarly, eq. 3.3 give the 

yield of long chain ethers (EOE + DNOE) obtained from the mixture of EtOH and OcOH. In 

addition, mass yield is defined in eq. 2.4 as the mass of long chain ether produced per mass of 

reactants loaded.  

 

3.3 Results and discussion 

3.3.1 Description of the reaction between OcOH and EtOH  

Experiments showed that reaction between OcOH and EtOH yields EOE and water as products. 

In addition, DNOE and DEE were obtained as by-products from the intermolecular dehydration 

of two OcOH or two EtOH molecules, respectively (see Fig. 3.1). Intramolecular OcOH 

dehydration took place in very low extent since very small amounts (<0.05 % w/w) of C8 alkenes 

(octenes) were detected, only in some experiments. However, intramolecular dehydration of 

EtOH did not take place since ethylene was not detected in any case.  
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Fig. 3.1: Reaction scheme of EOE production from OcOH and EtOH. 

Fig. 3.2 plots the composition distribution over Amberlyst 121, as an example. The etherification 

reactions proceeded smoothly from the beginning (DEE, EOE and DNOE); being EOE and DEE 

formed in similar amounts, and DNOE in lower amounts. Therefore, EtOH was much more 

reactive than OcOH. As observed, octenes were not detected over a gel-type resin such as 

Amberlyst 121. In fact, they were only detected over high-crosslinked macroreticular ones.  

 

Fig. 3.2: Reactans (A) and products (B) profiles of OcOH and EtOH co-etherification over 

Amberlyst 121. T=150ºC, 500 rpm, W=1 g, ROcOH/EtOH=1.  

□ OcOH; ∆ EtOH; + water; ♦ EOE;▲ DEE; ■ DNOE. 

 

The reaction was carried out over several acidic ion-exchange resins. As Fig. 3.3 shows, the 

favoured reaction was the formation of the ether with lower molecular weight, less bulky and 

hindered (moles DEE > moles EOE > moles DNOE). Unlike the reaction of dehydration of linear 

n-alkanols, the synthesis of EOE (15-46%) competes with the formation of DEE (43-83%) and 

DNOE (2-11%) as by-products, what explains the low selectivity to EOE compared to the 

quoted selectivity to symmetrical ethers from pure n-alkanols (57-99%) [22].  
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From an industrial standpoint, the differences between EOE, DNOE and DEE as possible 

candidates for diesel blends are relevant. DEE has a potential interest as a diesel compound 

because it is completely produced from (bio)ethanol. In addition, the cetane number of DEE is 

really high (~90) in comparison to that of EtOH (~8) or that of commercial diesel fuel (40–55) 

[55]. However, the high volatility of DEE is a serious drawback for its addition in large quantities 

to diesel blends. On the other hand, EOE and DNOE are linear long chain ethers with excellent 

properties as diesel components [16]. At present, production of EOE may be limited by the 

OcOH availability. In any case, the combined production of EOE and DNOE is useful for diesel 

blends. 

3.3.2 Resin morphology influence on selectivity 

Table 3.1 summarizes the results of the catalyst tests and Fig. 3.3 reveals that the ether 

distribution was highly related to the resin morphology. Long chain ethers (EOE and DNOE) 

were maximized using low-DVB content macroreticular resins and gel-type ones. On the 

contrary, the formation of DEE was highly favoured over medium and high-DVB content resins. 

Selectivity greatly depends on the morphology of ion-exchangers and the Vsp was found to 

clearly influence the selectivity to long chain ethers. High and medium DVB% macroreticular 

resins have the lowest Vsp values, in the range of 0.5-1.3 cm
3
/g, whereas gel-type ones gather 

Vsp values close to 2 cm
3
/g and even higher than 3 cm

3
/g in the case of Amberlyst 121. The 

higher combined selectivity to EOE and to DNOE were found on Amberlyst 70 (macroreticular, 

low DVB%), and gel-type resins Dowex 50Wx4 and Amberlyst 121 with selectivity values 

ranging from 41-46 % for EOE and 7-11 % for DNOE. 

Table 3.1: Conversion of alcohol and selectivity to linear ethers.  

T=150ºC, 500 rpm, Wcat=1 g, t=6h, ROcOH/EtOH=1. 

catalyst EtOH+OcOHX  (%) 
EOE

EtOH+OcOHS  (%) 
DEE

EtOH+OcOHS  (%) 
DNOE

EtOH+OcOHS  (%) 

Amberlyst 15 26.0 17.1 80.5 2.4 

Amberlyst 35 26.5 15.2 82.8 2.0 

Amberlyst 16 30.2 21.9 75.7 2.5 

Amberlyst 36 29.4 20.6 77.2 2.2 

Amberlyst 39 27.7 35.1 59.7 5.2 

Amberlyst 70 20.5 42.8 49.2 8.0 

CT 224 28.7 39.3 53.4 7.3 

Amberlyst 31 28.6 36.8 56.5 6.7 

Dowex 50Wx4 26.5 40.8 52.0 7.2 

Amberlyst 121 27.1 45.7 43.1 11.2 
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The behaviour of Amberlyst 70 should be highlighted as showed selectivity to EOE of 43%. 

Such selectivity value is comparable to gel-type PS-DVB resins, and quite higher than the other 

macroreticular resins. This fact can be explained because the distribution of gel-phase zones of 

different density of Amberlyst 70 is similar to that of gel-type resins, and spaces appeared in 

swollen state are wider than in macroreticular resins. It is clearly seen when it is compared to 

Amberlyst 39 morphology: despite having similar Vsp values, gel-phase density of Amberlyst 70 

is lower. 

 

Fig. 3.3: Ether distribution of different ion-exchangers.                                                             

T=150ºC, 500 rpm, Wcat=1, t=6h, ROcOH/EtOH=1. ■ DEE; ■ EOE; □ DNOE. 

Selectivity values have been plotted in Fig. 3.4. Selectivity to long chain ethers (EOE and 

DNOE) is maximized by using resins with high Vsp values. This behaviour can be explained by 

the fact that resins with low DVB% have a more flexible structure, and highly swell by the action 

of alcohols and the formed water according to their Vsp values. The spaces between polymer 

chains of gel-type resins are wide enough to allow OcOH access more easily to acid centres 

compared to macroreticular resins, and in this way to compete efficiently with the EtOH for the 

acid sites. As Table 3.1 shows, Amberlyst 121 is the most selective to EOE, and in addition to 

DNOE, in such a way that combined selectivity to EOE and DNOE is higher than selectivity to 

DEE. On the contrary, the formation of the shortest ether, DEE, was clearly higher over high 

DVB% resins. In stiffer swollen resins such as Amberlyst 15 or 35 (macroreticular, high and 

medium DVB%), OcOH permeation is hindered whereas EtOH reach most of acid sites. As a 

result, DEE is preferably obtained in these macroreticular resins. 
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Fig. 3.4: Influence of Vsp (A) and [H
+
]/Vsp on selectivity to linear ethers. T=150ºC, 500 rpm, 

Wcat=1 g, t=6h, ROcOH/EtOH=1. ♦
EOE

EtOH+OcOHS ; ▲
DEE

EtOH+OcOHS ; ■
DNOE

EtOH+OcOHS . 

 

By comparing conventionally sulfonated and oversulfonated resins, it can be inferred from Table 

3.1 that a higher acid capacity does not enhance the selectivity to long chain ether. In this way, 

from selectivities to EOE and DNOE of Amberlyst 15 and 35 or Amberlyst 16 and 36 it is 

observed that on Amberlyst 35 and Amberlyst 36 selectivity to long chain ethers was lower than 

on their conventionally sulfonated analogues. Moreover, since oversulfonated resins have 

higher acid strength than the other resins [30], it is drawn that dehydration to linear ether is 

favoured on the resins with less acid strength. Fig. 3.4B plot selectivity to linear ether against 

the parameter [H
+
]/Vsp, sulphonic groups density per volume unit of swollen gel-phase. As seen, 

highly selective resins have low [H
+
]/Vsp values (Dowex 50Wx4; Amberlyst 31, 70 and 121), 

whereas the less selective Amberlyst 15 and 35 show high [H
+
]/Vsp values. As a result, DEE is 

formed over oversulfonated stiff resins in higher amounts than on their conventionally 

sulfonated analogues. Therefore, acid sites density per volume unit of swollen gel-phase would 

be an excellent guide to predict long chain ether formation.  

3.3.3 Resin morphology influence on yield 

Resin morphology has a decisive effect on the yield to EOE and DNOE. Amberlyst 121 gives 

the best results, followed by Amberlyst 31, CT 224 and Dowex 50Wx4. As a rule, lower yields 

were obtained over high and medium DVB% macroreticular resins (see Table 3.2). These resins 

maximized the production of DEE since their stiff structure is not able to accommodate longer 

molecules as easily as the more flexible structure of gel-type resins with 2-4 DVB% or the 

macroreticular ones with 8 DVB%. As a result, small ether molecules such as DEE are formed 

preferentially. By considering mass yields, more useful to evaluate immediately the industrial 

profit of the use of catalysts; for instance, working in batch-wise at 150ºC (500 rpm, catalyst 

loading 1.72%) on Amberlyst 121, it would be obtained 14.9 kg of a mixture of EOE and DNOE 
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at 6h per 100 kg of equimolar mixture of OcOH and EtOH. It is noted that EOE production from 

bioethanol has the drawback that a relevant quantity of EtOH is converted to DEE, which is 

much less attractive as a diesel component than EOE or DNOE. 

Table 3.2: Conversion of alcohol and selectivity to linear ethers.  

T=150ºC, 500 rpm, Wcat=1 g, t=6h, ROcOH/EtOH=1. 

catalyst 
EOE+DNOE

EtOH+OcOHY  (%, mol/mol) 
EOE+DNOE

EtOH+OcOHY'  (%, w/w) 

Amberlyst 15 5.1 4.9 

Amberlyst 35 4.6 4.4 

Amberlyst 16 7.3 6.9 

Amberlyst 36 6.7 6.3 

Amberlyst 39 11.1 10.7 

Amberlyst 70 10.4 10.2 

CT 224 13.4 13.0 

Amberlyst 31 12.5 11.9 

Dowex 50Wx4 12.7 12.3 

Amberlyst 121 15.4 14.9 

 

It is expected than the gel-type resins not only give good ether yields at 150ºC but they were 

stable enough for industrial operation since they have been tested at a temperature very close 

to the maximum operating one [40], [41]. In reactions wherein water is released, hydrolysis of -

SO3H groups by the action of water with liberation of H2SO4 and formation of sulphone bridges 

between chains is a reliable mechanism for ion-exchange deactivation [56]. However, kinetic 

runs performed on CT 224 heated at vacuum for more 80 h at 180ºC show an activity loss of 

only 2 % compared with fresh catalyst in the dehydration of 1-pentanol to di-n-pentyl ether [38]. 

So gel-type resins are quite attractive for industrial use: they offer good yields based on high 

selectivity in addition to reasonable thermal stability. It is to be noted that Amberlyst 70 has 

slightly low yields compared with Amberlyst 39. This fact is attributable to the low acid capacity 

(about 53 % of that of Amberlyst 39). However, Amberlyst 70 is highly selective and has high 

thermal stability. Based on selectivity and thermal stability it is clear that this resin is an 

attractive option for a future processes for obtaining C10-C16 linear ethers. As far as specific 

lifetime experiments and its possible regeneration among production cycles, stability studies on 

Amberlyst 70 can be found in the open literature for nonene oligomerization [57]. The activity of 

Amberlyst 70 was fully recovered after drying, indicating that loss of activity was caused 

exclusively by water inhibition and it was reversible. Thus, it is concluded that Amberlyst 70 

would be an excellent catalyst for obtaining long linear ethers in industry. The possibility of 

working at temperatures as high as 190ºC at reliable reaction rates with good selectivity and 

reasonable thermal stability is significant. 
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3.4 Conclusions 

EOE can be successfully formed from the reaction between OcOH and EtOH over acidic ion-

exchange resins. However, selectivity to the asymmetrical EOE (15-46 %) is much lower than 

those of symmetrical ethers from pure alkanols (57-99 %). This is a result that EOE synthesis 

competes with the formation of DEE (43-83 %) and DNOE (2-11 %) as by-products. 

The resin morphology is decisive to optimize the production to long chain ethers (EOE and 

DNOE). Selectivity to EOE is enhanced in gel-type and low-DVB% macroreticular resins since 

they have wide spaces in the swollen state, being Amberlyst 121 the most suitable in terms of 

yield maximization. Due to the high selectivity to ether and its high thermal stability, Amberlyst 

70 is a very attractive catalyst for synthesize EOE. 
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4.1 Introduction 

Chapter 3 proved that EOE can be successfully formed from the alcohol co-dehydration of 

OcOH and EtOH over acidic ion-exchange resins. Another promising green alkylation route to 

produce asymmetrical ethers is achieved with carbonates. Dimethyl carbonate has been 

proposed as methylating agent of several substances and reacts either as a 

methoxycarbonylating or as a methylating agent depending on the operation conditions [58]. In 

particular, the OcOH alkylation from dimethyl carbonate clearly showed to be more efficient than 

using directly methanol [59]. As dimethyl carbonate, DEC is generally accepted as an 

environmentally benign ethylating agent [60]–[64]. An advantage of using DEC with respect to 

dimethyl carbonate is that it can be obtained from EtOH (eq. 4.1). As a consequence, EOE 

would be a synthetic bio-fuel and could get the proper tax reduction, compensating partially their 

production costs higher than current commercial diesel. 

 

eq. 4.1 

An industrial drawback to use alkyl carbonates is that their decomposition generates CO2 as a 

by-product. However, the formation of carbonates from CO2 is an interesting way for recycling it 

to fuels. Several advances in this direction have been reported and cyclic carbonate synthesis is 

already been industrialized [65]–[67]. Focused on linear carbonates, CO2 reacts with alcohols in 

the presence of metal complexes (eq. 4.2). Due to the problems with the hydrolysis of the 

carbonate, 3 Ǻ molecular sieves were used as drying agents to extract out the formed water. By 

using a dehydrative agent, an interesting dimethyl carbonate yield was achieved (55% based on 

methanol) and by-products were not significantly produced [68]. 

 

eq. 4.2 

Chapter 3 revealed that EOE was synthesized successfully from EtOH and OcOH over acidic 

low-crosslinked resins at mild conditions (T=150ºC, P=25 bar). The present chapter is devoted 

to study the liquid-phase synthesis of EOE from DEC and OcOH over solid catalysts. A catalyst 

screening is carried out in order to select suitable catalysts for obtaining EOE.  
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4.2 Experimental procedure 

Amberlyst 21 was previously converted to OH
-
 form and both basic resins were first dried by 

methanol percolation [69], then in an oven at 80ºC for 3 h at atmospheric pressure and finally at 

80ºC under vacuum overnight. Acidic resins were dried at 110ºC for 3 h at atmospheric 

pressure and subsequently at 110ºC under vacuum overnight. The residual water content of 

dried resins was determined by a Karl Fisher titrator (Orion AF8). Analytical volumetric titrations 

showed <3% (w/w) of residual water in the tested resins. Otherwise, H-BEA-25 was activated at 

500ºC and both aluminas were treated at 300ºC in an atmospheric oven; subsequently dried at 

110ºC under vacuum overnight. 

Catalytic tests were performed in the batch reactor (described in section 2.3.1). The reactor was 

loaded with 70 mL of OcOH / DEC mixture, heated up to the desired temperature and stirred at 

500 rpm. A molar ratio of ROcOH/DEC = 2 was used. Pressure was set at 25 bar with N2 to maintain 

the liquid-phase. When the mixture reached the working temperature, 2 g of dried catalyst was 

injected into the reactor from an external cylinder by shifting with N2. Catalyst injection was 

taken as zero time. Temperature was set at 100ºC for basic resins (because of their low thermal 

stability), 150ºC for all the other catalysts. Resins were used with the commercial distribution of 

particles sizes, and zeolite and aluminas as a powder. Working conditions were selected since, 

as quoted in literature, liquid-phase reactions of dehydration of 1-pentanol and 1-hexanol to 

linear ethers take place at these conditions in the same set-up free of external and internal 

mass transfer influences [26], [54]. It is to be noted that molecular size of such alcohols and 

ethers is similar to that of DEC and EOE, respectively. 

In each experiment, DEC conversion (XDEC), selectivity to EOE (SDEC
EOE

) and yield to EOE with 

respect to DEC (YDEC
EOE

) were followed hourly by eqs. 4.3, 4.4 and 4.5, respectively.  

 DEC

moleof DECreacted
X = 100 % , mol mol

moleof DECinitially
  eq. 4.3 

  EOE

 DEC

moleof DECreacted to EOE
S = 100 % , mol mol

moleof DECreacted
  eq. 4.4 

  EOE EOE

  DEC DEC DEC

moleof DEC reacted to form EOE
Y = 100=X  S % , mol mol

moleof DECreacted initially
   eq. 4.5 
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Experiments performed on Amberlyst 21, Amberlyst 26 OH, H-BEA-25, Amberlyst 15, Amberlyst 

35, Amberlyst 48, Amberlyst 46, Amberlyst 70, CT 224 and Dowex 50Wx2 were replicated two 

times to assure the reproducibility of the results. Thus, data shown in this chapter has a relative 

experimental error lower than 1.2% for XDEC, 2.0% for SDEC
EOE

 and 2.6% for YDEC
EOE

 
 (95% 

confidence level) at 8h of reaction time. 

 

4.3 Results and discussion 

4.3.1 Preliminary experiments 

Blank experiments without catalyst were performed at 150ºC. The non-catalyzed reaction 

allowed only the carboxyethylation of OcOH to ethyl octyl carbonate (EOC) but in small 

amounts (XDEC = 6% at 6h) and always XDEC < 1% at the initial time. In addition, it is seen that 

decomposition of carbonates (DEC and EOC) was not significant in the absence of catalyst. On 

the other hand, decomposition of DEC to DEE was checked over Amberlyst 121. Results state 

that the acidic resin decomposes significantly DEC to DEE (XDEC = 17% at 6h). 

4.3.2 Catalyst screening 

Table 4.1 summarizes the results of the catalyst screening runs. In general, the runs carried out 

over basic resins and both aluminas showed that DEC reactivity was low; therefore the EOE 

synthesis was not relevantly achieved. In the case of basic resins, the low conversions were 

probably due to the low working temperature. Unlike basic catalysts, DEC conversion is 

improved over acidic catalysts. Specifically, the two types of catalysts that showed a relevant 

activity were acidic resins and the zeolite, although at the working temperature the higher yields 

were achieved over acidic resins. Similarly, zeolites were found to be less active catalyst to 

produce di-n-pentyl ether than acidic ion-exchange resins [70]. Nevertheless, H-BEA-25 is less 

active but more selective to EOE than CT 224 and it is to be mentioned that zeolites have been 

reported as suitable catalyst to produce linear fuel at a higher temperature range of 250-350ºC 

[71]. 
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Table 4.1: Conversion and yield over some acidic and basic catalysts at 6h.  

 ROcOH/DEC =2, Wcat=2 g, 500 rpm. 

type catalyst XDEC (%) 
EOE

DECS  (%) EOE

DECY  (%) T (ºC) 

basic 
resin 

Amberlyst 26 OH 10 - - 100 

Amberlyst 21 11 - - 100 

alumina γ-Al2O3  7 3 0.2 150 

acidic 

resin 
CT 224 92 34 31 150 

Nafion 50  60 32 19 150 

zeolite H-BEA-25 17 65 11 150 

alumina γ-Al2O3  6 4 0.2 150 

 

Fig. 4.1 shows the liquid product distribution along time over CT 224 (Fig. 4.1A) and H-BEA-25 

(Fig. 4.1B). In addition to EOE, DNOE, DEE, EtOH and EOC, other by-products were detected 

in low amount (<3% molar): water, di-n-octyl carbonate (DOC), olefins and branched ethers, not 

shown for the sake of clarity. As seen, the product distribution profiles showed quite different 

trends along time. Over H-BEA-25, all products increased its molar percentage with time and 

EOC was low along the experiment. On the contrary, on CT 224 a maximum in the 

concentration profile for EtOH and EOC was observed. As these products were consumed, the 

moles of EOE were increased steadily. It seems that on CT 224 transesterification to EOC is 

faster than its decomposition to EOE. This trend is opposite to that observed on the zeolite 

where EOC is decomposed as it is formed. As expected selectivity to EOE rise steadily through 

the experiment. 

 

Fig. 4.1: Product distribution profile in liquid-phase along time over CT 224 (A) and H-BEA-25 

(B). T=150ºC, ROcOH/DEC =2, Wcat=2 g, 500 rpm. Δ EtOH; ◊ EOC; ♦ EOE; ▲ DEE; ■ DNOE. 
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The EtOH and EOC profiles suggest the reaction scheme of Fig. 4.2, in agreement with those 

reported in open literature to synthesize ethers from dimethyl carbonate [59], [72]. EOE 

synthesis proceeds in two consecutive steps; the first (a) is the carboxylation of DEC to produce 

EOC and the second (b) the decomposition of EOC to EOE. The carboxylation step (a) would 

be kinetically favoured over acidic resins. However, reaction network is complex and the 

following side reactions take place in the reaction system: 

 

Fig. 4.2: Reaction scheme of EOE synthesis from DEC and OcOH. 

(1) DEC decomposition to DEE (c), which is undesired because of the extra consumption of 

DEC. (2) Carboxyocthylation of EOC (g) and subsequent decomposition to DNOE (h) as 

revealed by the presence of DOC as by-product. (3) Additionally to carbonate decomposition 

routes, linear ethers can be also produced from alcohols dehydration (d, e, f), because water 

was detected in the mixture as by-product. Since the formed EtOH was partially dehydrated 

either with another EtOH (d) or with OcOH (e), it could be considered as an intermediate rather 

than a final product. As a result, the initial molar ratio (OcOH / DEC) would be an important 

factor to hinder the dehydration of EtOH to DEE and, as a consequence, to increase the 

selectivity to EOE [73]. 

As the preliminary catalyst screening revealed that the highest EOE yield was achieved over 

acidic PS-DVB resins on a catalyst weight basis, 13 resins of different morphology and acid 

capacity were tested for 8h. The product distribution trends for all acidic resin runs were similar 

to that shown in Fig. 4.1A and at 8h almost all DEC was converted to ethylated products. 

However, there was still a significant amount of the intermediate products (EOC and EtOH), 

which should be able to produce more EOE.  

Table 4.2 shows DEC conversion, EOE selectivity and yield for tested acidic PS-DVB resins 

after 8h. As a general rule, gel-type resins show a better behaviour than macroreticular ones. It 

is also seen that in both gel-type and macroreticular resins EOE yield increases as the DVB% 

decreases, as a consequence of the higher DEC conversions and EOE selectivities observed. 

By comparing the macroreticular conventionally sulfonated resins Amberlyst 15, Amberlyst 16 

and Amberlyst 39 resins with Amberlyst 46 it is seen that EOE yield on the last one is far 

smaller than on the other three resins, as expected because of the very low number of acid 
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sites of Amberlyst 46. The low EOE yield is mainly due to the very low DEC conversion since 

EOE selectivity of Amberlyst 46 is only a bit lesser. Amberlyst 15 has only about a 5% of -SO3H 

groups placed at the polymer surface (≈0.25 meq H
+
/g) [74]. Since this quantity is a third of the 

acid capacity of Amberlyst 46 (sulfonated only at the polymer surface) it can be inferred that in 

macroreticular resins other than Amberlyst 46 the reaction takes place essentially in the gel-

phase. Such gel-phase becomes active by the swelling of the polymer by permeation of alcohol 

and the retention of part of water released in the reaction. 

Table 4.2: XDEC / 
EOE

DECS  / 
EOE

DECY  (%) at 8h of acidic resins related to their structure                        

type, DVB content and sulfonation degree. T=150ºC, ROcOH/DEC =2, Wcat=2 g, 500 rpm. 

 type DVB (%) conventional sulfonated oversulfonated surface sulfonated chlorinated 

macroreticular 

High 
79.3 / 27.4 / 21.8

a
 69.8 / 27.0 / 18.8

b
 24.8 / 23.1 / 5.7

d
 

 

 
83.7 / 29.03/ 24.3

c
 

  
12 85.4 / 32.5/ 27.8

e
 91.7 / 29.6/ 26.9

f
 

  
8 93.6 / 32.6 / 30.5

g
     83.6 / 38.1/ 31.8

h
 

gel-type 

8 90.9 / 33.2 / 30.2
i
 

   
4 91.7 / 32.1 / 29.5

j
 95.0 / 34.9 / 33.1

k
 

  

2 
96.6  / 34.3 / 33.2

l
 

   
95.8 / 34.6 / 33.2

m
       

a
Amberlyst 15, 

b
Amberlyst 35, 

c
Amberlyst 48, 

d
Amberlyst 46, 

e
Amberlyst 16, 

f
Amberlyst 36,  

Amberlyst 39, 
h
Amberlyst 70, 

i
Dowex 50Wx8, 

j
CT 124, 

k
CT 224, 

l
Dowex 50Wx2, 

m
Amberlyst 121 

Catalytic behaviour of Amberlyst 15, Amberlyst 16 and Amberlyst 39 can be explained looking 

at the structure of the swollen gel-phase. Gel-phase density of swollen resins decreases in the 

order Amberlyst 15 > Amberlyst 16 > Amberlyst 39. The number of accessible sites to the 

reaction in Amberlyst 39 is higher, and spaces between polymer chains allow OcOH and DEC 

to permeate and to accommodate better reaction intermediates. As a consequence, a higher 

DEC conversion and EOE selectivity is observed on Amberlyst 39. Similarly, Amberlyst 36 gives 

a better EOE yield than Amberlyst 35. 

In the case of gel-type resins the higher EOE yield obtained on Amberlyst 121 and Dowex 

50Wx2 are due to the fact that they show the higher Vsp values. In this way they are more 

swollen in the reaction medium and, in addition, with a polymer density of 0.4 nm
−2

 they give a 

better selectivity to EOE. Finally, by comparing data of Amberlyst 39 and Amberlyst 70, both 

resins conventionally sulfonated, it is seen that the latter shows a better EOE yield in spite of its 

acid capacity is about the half of that of Amberlyst 39. Although they have similar swollen gel-

phase volume, Amberlyst 70 has lower polymer density of 0.4 nm
−2

 than Amberlyst 39. Again, 

the wider spaces between polymer chains favoured the diffusion of OcOH and EOE as well as 

less steric restriction for the reaction intermediate.  
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However, the effect of the sulfonation degree is not clear because does not always upgrade the 

EOE yield (see Table 4.2). For instance, comparing among macroreticular resins with high 

percentage of DVB, whose amount of sulfonic groups decrease following Amberlyst 48 > 

Amberlyst 35 > Amberlyst 15, EOE yield did not reveal any direct effect of the sulfonation type. 

Likewise, the pairs Amberlyst 16 / Amberlyst 36 (macroreticular, 12 % DVB) and CT 124 / CT 

224 (gel-type, 4% DVB) did not throw light on it. This behaviour could be explained by the fact 

that an extra sulfonation results in a higher number of acid centers but it also increases the 

stiffness of its structure. These two parameters have a contrary effect on the synthesis of EOE.  

In order to state the influence of the resin structure on the catalytic behaviour, the effect of acid 

capacity and morphological parameters in swollen state on EOE yield was studied. Firstly, Fig. 

4.3A plots the EOE yield versus the acid capacity. As shown, acid capacities of tested resins 

were similar (except for the particular resins Amberlyst 46 and Amberlyst 70) but they showed 

quite different activities in terms of EOE yield. It is also seen that gel-type resins gave higher 

yields than macroreticular ones at the same acid capacity, highlighting the significant role of the 

resin structure. 

 

Fig. 4.3: Influence of resin acid capacity (A) and of Vsp (B) on yield to EOE with respect to DEC 

at 8h. T=150ºC, ROcOH/DEC =2, Wcat=2 g, 500 rpm. ♦Macroreticular; ♦Gel-type. 

As mentioned above, Vsp (specific volume of swollen polymer) is a parameter that allows 

knowing how much the resin swells in the reaction medium. Fig. 4.3B shows the positive effect 

of Vsp on the yield to EOE. It is seen that measured EOE yield increases with Vsp until a plateau 

is reached for Vsp values of 2 cm
3
/g. Both in macroreticular and in gel-type resins as Vsp 

increases density of polymer gel-phase decreases. As a result, gel-phase is flexible enough and 

it could accommodate better the reaction intermediates, and the higher space between the 

polymer chains allows large molecules such as OcOH to access easier to a larger number of 
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acid centers. Resins with low DVB content have lower polymer fraction density in a polar 

medium and higher Vsp. Fig. 4.4A illustrates that the yield increased on decreasing the DVB 

resin content. Accordingly, in order to obtain efficiently large molecules such as EOE, ion-

exchange resins with Vsp of 2 cm
3
/g or higher which correspond to resins with less than 8% of 

DVB are the most suitable. Between tested resins gel-type Amberlyst 121, CT-224 and Dowex 

50Wx2 fulfil such requirements. 

 

Fig. 4.4: Influence of resin DVB content (A) and of [H+]/Vsp parameter(B) on yield to EOE with 

respect to DEC at 8h. T=150ºC, ROcOH/DEC =2, Wcat=2 g, 500 rpm. ♦Macroreticular; ♦Gel-type.  

 

Finally, a parameter that estimates the concentration of acid centers per volume unit in swollen 

polymer state is the [H
+
]/Vsp ratio (meq H

+
/cm

3
). Fig. 4.4B shows the influence of [H

+
]/Vsp on the 

synthesis of EOE. It is seen that measured EOE yield decreases on increasing [H
+
]/Vsp. It is to 

be noted that neither Amberlyst 46 (with all acid sites in the polymer surface) nor Amberlyst 48 

(the resin with the highest acid capacity but also the less swollen one) follow the general trend. 

It can be concluded that the higher EOE yields are given by resins with low density of acid 

centers in the swollen polymer volume (less than 3 meq H
+
/cm

3
) and acid capacities of about 5 

meq H
+
/g or a bit higher. These requirements would be fulfilled by ion-exchange resins with high 

Vsp values and preferably conventionally sulfonated. Between tested resins, Dowex 50Wx2, 

Amberlyst 121 and CT 224 show the higher EOE yields. 

 

 



4. Synthesis of EOE from DEC and OcOH over solid catalysts  

 

52 
 

4.4. Conclusions 

The catalyst screening revealed that EOE can be successfully produced in liquid-phase from 

DEC and OcOH over acidic catalysts at 150ºC. High DEC conversion and high EOE yield were 

achieved over acidic resins. A two-step pathway for EOE synthesis is proposed. Firstly, the 

transesterification of DEC to EOC takes place. Subsequently, EOC decomposes to EOE. 

Unfortunately, direct decomposition of DEC to DEE also occurs. Besides carbonate 

decomposition route, linear ethers are also produced from alcohols dehydration reactions.  

The synthesis of EOE is highly related to morphological resins properties. The accessibility of 

large molecules to acid centers is favoured over resins with large space between polymer 

chains. Consequently, in order to synthesize large ethers such as EOE, a greatly expanded 

polymer network in swollen state is the most suitable resin property. It is also desirable that 

density of acid centers in the swollen resin would be low. These requirements can be found in 

low DVB content resins (e.g., gel-type resins as Dowex 50Wx2, Amberlyst 121 or CT 224). 
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5.1 Introduction 

EOE can be synthesized successfully either by the dehydration reaction of OcOH and EtOH 

(Chapter 3) or by the transesterification reaction between OcOH and DEC to EOC and its 

subsequent decomposition to EOE (Chapter 4). However, to the best of our knowledge, 

comparison between EtOH and DEC as ethylating agents (EA) to give linear asymmetrical 

ethers is not found in the open literature.  

EtOH and DEC are considered as environmentally friendly reactants. Still, since DEC is 

produced from EtOH [61], [62], [75], DEC use as ethylating agent would be justified only if 

higher selectivity and yield were obtained with respect to its counterpart, EtOH. Thus, the aim of 

this chapter is to compare the efficiency of EtOH and DEC as ethylating agents (EA) to produce 

EOE by the reaction with OcOH.  

In former chapters it was revealed that highly swollen acidic resins are preferred on both 

reactions to catalyze efficiently EOE synthesis. Thus, the comparison between both EA was 

carried out over the low-crosslinked acidic PS-DVB resins Amberlyst 39 (macroreticular, with 

8% crosslinking degree) and Amberlyst 121, Dowex50Wx2, CT 124, CT 224 and Dowex50Wx8 

(gel-type with DVB% ranging from 2 to 8%). The two reaction pathways are compared and the 

influence of the initial reactants ratio and temperature are evaluated. By using low-crosslinked 

resins, the polymer expansion with a good liquid swelling is required to make acid sites 

accessible. Thus, the expansion of the polymer immersed in the reactants is checked.  

 

5.2 Experimental procedure 

The particle size of acidic ion-exchange resins were measured in several media. Dried samples 

were placed 2 days in different solvents to assure that the solvent was completely sorbed in the 

resin. Then, resins mean diameter was measured by means of a LS 13320 Laser Diffraction 

Particle Size Analyzer. Five solvents (DEC, EtOH, 1-pentanol, OcOH and water) and two 

mixtures (ROcOH/DEC=2 and ROcOH/EtOH=2) were used. Resin swelling which is the relative volume 

increase in the liquid media was calculated by eq. 5.1. V is the mean particle volume in the 

solvent or mixture, whereas the mean volume of reference, V0, was obtained from 

measurements of dried resins in air. Volumes were calculated under the assumption that 

particles are spherical. 

 0

0

V-V
Swelling = 100 %

V
  eq. 5.1 
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From swelling values, the amount of solvent moles into the polymer mass was estimated 

through equation 5.2, where j and Mj are the density and molecular weight of compound j, and 

s the skeletal density of the resin [22]. This data permits estimating the number of molecules 

sorbed in each catalyst.  

j0

0 s j

ρV-V 1 mole solvent
Mole of solvent per gram of catalyst = 

V ρ Μ g catalyst

 
 
 

 eq. 5.2 

Catalytic tests were performed in the batch reactor (described in section 2.3.1). Resins were 

dried at 110ºC for 3h at atmospheric pressure and subsequently under vacuum overnight. The 

reactor was loaded with 70 mL of OcOH / DEC or OcOH / EtOH mixture, heated up to the 

desired temperature and stirred at 500 rpm. Pressure was set at 25 bar with N2 to maintain the 

liquid-phase. When the mixture reached the working temperature (130-150ºC), 2 g of dried 

acidic ion-exchange resin was injected into the reactor from an external cylinder by shifting with 

N2. Catalyst injection was taken as zero time. It is worth mentioning that the experimental 

procedure, involving catalyst injection of 2 g of catalyst mass, is unified in this chapter for 

comparison purposes. Typical runs lasted 8h but long time experiments (48h) were also 

performed. Working conditions were selected to avoid external and internal mass transfer 

influence. 

Experiments were replicated twice to ensure the reproducibility of experimental data. 

Conversion of the EA, selectivity, and yield to EOE with respect to EA was computed 

conventionally by means of eqs. 5.3, 5.4, and 5.5, respectively. Initial reaction rates of EOE 

synthesis were calculated from the experimental function of formed EOE moles versus time, by 

differentiating it at zero time (eq. 5.6). 

  

EA

moleof EA reacted 
X = 100 % , mol mol

moleof EAinitially
  eq. 5.3 

  EOE

 EA

moleof EA reacted to form EOE
S = 100 % , mol mol

moleof EA reacted
  eq. 5.4 

 
EOE

 EOE EA EA
 EA

X Smoleof EA reacted to form EOE
Y = 100= % , mol mol

moleof EAinitially 100


  eq. 5.5 

 0 EOE
 EOE

t=0cat cat

dn1 mol
r =

W dt h kg

  
  

   
 eq. 5.6 
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5.3 Results and discussion

 

5.3.1 Resin swelling 

The increase of resin volumes in DEC, water and some alcohols is shown in Table 5.1.  Resin 

swelling in each solvent was estimated by eq. 5.1. As seen, swelling in DEC is negative but that 

of Dowex 50Wx8. This fact can be explained because acidic resins are highly hygroscopic and 

quickly adsorb humidity from the air, masking in this way data measured in air. However, this 

fact also reveals that resins barely swell in DEC. On the contrary, resins greatly swell in alcohols 

and water, which agree with their high polarity.  

Table 5.1: Resin swelling in different solvents measured by a Laser Diffraction Particle Size 

Analyzer. 

  
% swelling 

resin dp
a 
(mm) DEC EtOH 1-pentanol OcOH water OcOH/DEC

b
 OcOH/EtOH

b
  

Amberlyst 39 0.540 -16 150 175 177 166 194 183 

Dowex 50Wx8 0.167 4 99 113 135 179 110 96 

Purolite CT 124 0.758 -1 152 214 247 291 245 236 

Purolite CT 224 0.342 -2 124 198 203 156 149 142 

Dowex 50Wx2 0.252 -27 235 274 360 473 350 303 

Amberlyst 121 0.441 -21 298 369 441 552 418 367 
a
 Particle diameter in air in dry state. 

b 
ROcOH/EtOH=2; ROcOH/DEC=2.  

In general, resins showed the highest swelling value in water. As for alcohols, the following 

swelling trend was observed: OcOH > 1-pentanol > EtOH, wherein measurements with 1-

pentanol, an alcohol of molecular size intermediate between OcOH and EtOH, were carried out 

for the sake of comparison. Hence, the greater swelling corresponds to the bulkier alcohol, what 

suggests that interaction of the organic moiety of the alcohol with the polymer network also 

contributes significantly to resin swelling. As Table 5.1 shows, swelling of gel-type resins in the 

three alcohols increases as the DVB% of resins decreases. Thus, Amberlyst 121 and Dowex 

50Wx2 (2% of DVB content) swell twice than CT 124 and CT 224 (4% of DVB), and between 

three and four-fold than Dowex 50Wx8 (8% of DVB) in the three alcohols. It is to be noted that 

swelling data for Amberlyst 39 is higher than those of Dowex 50Wx8 despite that both have 8% 

of DVB. It is likely due to the fact that gel-type resins develops only a porous structure by the 

swelling of the gel-phase, whereas the macroreticular resin also develops in the presence of 

solvents a non permanent pore structure in the mesopore range among the gel-type aggregates 

of the resin. 

By comparing the pair CT 124 / CT 224 (gel-type resins with 4% of DVB) it is observed that the 

former (conventionally sulfonated) was able to swell around 1.5 times more than the latter 

(oversulfonated). This fact is a consequence of CT 224 has a slightly denser gel-phase (0.8   

nm
-2

) than that of CT 124 (1.5 nm
-2

). Accordingly, from the swelling values it is also confirmed 
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that the effect of an oversulfonation treatment upgrades the polymer stiffness. As a result, 

despite the fact that oversulfonated PS-DVB resins have a higher number of acid centers, they 

have typically less accessibility to them (see chapter 3 and 4). 

 

Fig. 5.1: Mole of sorbed alcohol (A) (■ OcOH; ■ 1-pentanol; ■ EtOH) and water (B) (■ water) per 

gram of dry catalyst. 

On the other hand, the moles of solvent present in each resin in swollen state were estimated 

by eq. 5.2. Fig. 5.1 displays the solvent moles retained per gram of dried catalyst. As seen, it is 

retained much more water (Fig. 5.1B) than any alcohol (Fig. 5.1A) because of the higher polarity 

of water. Between alcohols, the number of moles retained in the resin follows this trend: EtOH > 

1-pentanol > OcOH, in agreement with the alcohols polarity (dielectric constants: EtOH, 24.3 > 

1-pentanol, 13.9 > OcOH, 10.9, respectively) [76]. On the contrary, as commented previously 

resin swelling showed the opposite trend: OcOH > 1-pentanol > EtOH. Consequently, the 

longest alcohol showed the highest swelling because of its molecular size, despite the amount 

of molecules sorbed is lower. 



5. Comparison between EtOH and DEC as EA for EOE synthesis over acidic ion-exchange resins 

58 
 

Moreover, particle size was measured in ROcOH/EtOH=2 and ROcOH/DEC=2 liquid mixtures (Table 

5.1), representative of the mixture composition at the beginning of the EOE synthesis runs. 

Resin swelling in OcOH / DEC mixture shows similar values than those in pure OcOH what 

suggests that OcOH was preferably retained from the OcOH / DEC mixture. The little DEC-resin 

affinity aforementioned would be consistent with this observation. Thus, the concentration of 

DEC inside the swollen resin would be probably low. On the contrary, resin swelling in OcOH / 

EtOH mixture showed that into the polymer network could be a similar composition to the bulk 

solution.  

5.3.2 Catalytic tests 

As a function of the used ethylating agent, EtOH or DEC, two different pathways are displayed 

in Fig. 5.2. OcOH / EtOH system (Fig. 5.2A) consists in three competitive reactions (described 

in detail in chapter 3), while OcOH / DEC system (Fig. 5.2B) consists on a complex series-

parallel one (described in detail in chapter 4). 

 

Fig. 5.2: Reaction scheme of EOE synthesis from OcOH and EtOH (A) and from OcOH and 

DEC (B). 

Despite the differences in the two reaction networks, the efficiency as ethylating agents of EtOH 

or DEC to synthesize EOE is mainly affected by the loss of ethyl groups giving place to DEE 

formation. As a consequence, the initial molar ratio OcOH / EtOH (ROcOH/EtOH) or OcOH / DEC 

(ROcOH/DEC) might be an important factor to hinder DEE production, and at the same time favour 

that of EOE.  
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Experiments were carried out by varying the initial OcOH to EA molar ratio (ROcOH/EA = 0.5-2) at 

150°C over Dowex50Wx2. Product distribution at 8h for OcOH / EtOH and OcOH / DEC 

systems is shown in Fig. 5.3A and 5.3B, respectively. It is to be noted that EtOH formed in 

OcOH / DEC runs was not plotted for the sake of clarity since it can be further dehydrated to 

DEE or else to EOE. As expected, EOE formation is highly influenced by the initial molar ratio 

OcOH / EA, and the production of the lower molecular weight ether was favoured (DEE > EOE 

> DNOE) for ROcOH/EA ≤ 1, DEE being the product formed in higher amount.  

 

Fig. 5.3: Influence of ROcOH/EtOH (A) and ROcOH/DEC (B) on product distribution. Dowex 50Wx2, 

T=150ºC, Wcat=2g, t=8h. ■ EOE; ■ EOC; □ DNOE; ■ DOC; ■ DEE 

As seen, the efficiency of EtOH or DEC as ethylating agents to synthesize EOE is mainly limited 

by the loss of ethyl groups giving place to DEE. At ROcOH/EA = 2, EOE is the main reaction 

product in the two systems, particularly in the OcOH / EtOH system. As a result, the loss of ethyl 

groups to form EOE is minimized when the limiting reactant is the ethylating agent, EtOH or 

DEC. Accordingly, further experiments were performed in OcOH initial excess (ROcOH/EA = 2). 

Table 5.2: Yield to form EOE with respect to the ethylating agent. Dowex 50Wx2, T=150ºC, 

ROcOH/EtOH= ROcOH/DEC=2, Wcat =2g, t=8h. 

catalyst Y
EOE

EtOH (%) Y
EOE

DEC (%) 

Amberlyst 39 37.4 ± 0.8 30.5 ± 1.2 

Dowex 50Wx8 33.7 ± 0.2 30.2 ± 0.8 

Purolite CT124 37.0 ± 0.5 29.5 ± 1.3 

Purolite CT224 39.6 ± 1.4 33.1 ± 0.2 

Dowex 50Wx2 43.4 ± 0.4 33.2 ± 0.9 

Amberlyst 121 42.9 ± 0.9 33.2 ± 1.2 
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The six resins were tested in OcOH molar excess at 150°C (see Table 5.2). EOE yield was 

higher in the OcOH / EtOH system because the selectivity to EOE on all catalysts was always 

clearly higher in the OcOH / EtOH system than in the OcOH / DEC one. The products 

distribution at 8h is shown in Fig. 5.4A for the OcOH / EtOH system and in Fig. 5.4B for OcOH / 

DEC one. It is to be noted that for each reacting system selectivity to EOE was similar on the 

different catalysts. In this way, in the OcOH / DEC system EOE selectivity was a bit less than 

40%, that of DNOE about 10%, and the DEE selectivity was close to 30%. EOC and DOC 

appeared in significant amounts particularly the first one. In the OcOH / EtOH system, EOE 

selectivity was about 50%, DEE selectivity was a bit higher than 25%, and that of DNOE was 

about 20%, but on Dowex 50Wx8, whose selectivity to DNOE was only about 15%, while 

selectivity to DEE rose to 35%. 

Morphological analysis of ISEC data reveals that in the swollen gel-phase of Dowex 50Wx8 has 

a predominant zone of very high dense polymer (1.5 mm
−2

). Amberlyst 39, CT 124, CT 224, 

Dowex 50Wx2, and Amberlyst 121 have zones of polymer density ≤ 0.8 mm
−2

. From swelling 

data it is seen that OcOH and EtOH are present inside the resin from the start of the reaction, 

however some diffusion restriction could be advanced for OcOH. Moreover, steric restrictions 

would be higher for the long ethers EOE and DNOE than for shorter ether DEE. In the case of 

Dowex 50Wx8, this zone of higher polymer density probably causes more significant steric 

restrictions for bulky ether DNOE than the other resins, and would explain the distinct selectivity 

of this resin in the OcOH / EtOH system, as seen in Fig. 5.4A.  

 

Fig. 5.4: Product distribution on tested catalysts from OcOH / EtOH (A) and from OcOH / DEC 

(B) feeds. Dowex 50Wx2, T=150ºC, Wcat=2g, t=8h. ■ EOE; ■ EOC; □ DNOE; ■ DOC; ■ DEE. 
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As for the OcOH / DEC system, swelling data point out that probably at short reaction times 

OcOH predominates inside the catalyst, however gel-phase morphology is flexible enough to 

allow OcOH and DEC to access more or less easily to acidic centers. As for reaction 

intermediates, EOC and DOC probable have similar steric restrictions than EOE and DNOE, 

respectively. Nevertheless, in the OcOH / DEC reaction system, morphology of the resins hardly 

influences their selectivity because, as seen in Fig. 5.4B, products distribution is very similar 

over all these catalysts although selectivity to EOE over Dowex 50Wx8 is something lower. As a 

consequence, to favour EOE production, ion-exchangers with polymer density ≤ 0.8 mm
−2

 in the 

swollen state showed to be flexible enough to synthesize EOE in the two systems. Fig. 5.4 also 

shows that selectivity of Dowex 50Wx2 to EOE is slightly higher in both of them. In addition, 

Dowex 50Wx2 gives the best EOE yield after 8h reaction time (see Table 5.2).  

Temperature influence on both reaction systems was checked in the range 130-150°C over 

Dowex 50Wx2, as it showed to be the most active catalyst. The products distribution shown in 

Fig. 5.5 suggests that selectivity to EOE in OcOH / EtOH reaction system was not significantly 

affected by the temperature (Fig. 5.5A), what indicates that the reaction rates of DEE, EOE, and 

DNOE formations have similar dependence on the temperature.  

 

Fig. 5.5: Temperature influence on product distribution from OcOH / EtOH (A) and OcOH / DEC 

(B) feeds. Dowex 50Wx2, T=150ºC, Wcat=2g, t=8h. ■ EOE; ■ EOC; □ DNOE; ■ DOC; ■ DEE  

On the contrary, in OcOH / DEC runs the products distribution changed drastically with 

temperature (Fig. 5.5B). Decomposition of carbonates (DEC, EOC, and DOC) to ethers (DEE, 

EOE, and DNOE, respectively) was more noticeable than the carboxylation of DEC to EOC on 

increasing temperature. As a result, DEC decomposition to DEE was more hindered at 130°C. 

However, a drawback to operate industrially at this relatively low temperature is that the reaction 

rate to form EOE would be around 5-fold lower than that at 150°C, as shown in Table 5.3. By 

comparing the behaviour of both ethylating agents, initial EOE reaction rates were always lower 

for OcOH / DEC system than for OcOH / EtOH one. This is probably due to the fact that 
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synthesis of EOE from DEC requires the formation and subsequently decomposition of EOC, 

whereas in the OcOH / EtOH system EOE synthesis is straightforward from the two alcohols. 

Table 5.3. Initial reaction rates to form EOE. Dowex 50Wx2, T=150ºC, ROcOH/EtOH= ROcOH/DEC=2. 

 
r

0
EOE (mol / (h · kgcat)) 

T (ºC) EtOH DEC 

130 1.91 ± 0.11 1.79 ± 0.10 

140 4.74 ± 0.30 4.08 ± 0.15 

150 9.94 ± 0.19 9.42 ± 0.61 

 

5.3.2 Long time catalytic tests 

Long time experiments were performed at ROcOH/EA = 2 to study the evolution versus time of 

DEC and EtOH conversion, EOE selectivity, and EOE yield with respect to ethylating agent of 

both reaction systems. DEC reacts faster than EtOH (Fig. 5.6A) in such a way that XDEC is about 

97% at about 8h, whereas XEtOH is nearly 84%. However, at 48h both DEC and EtOH are almost 

depleted. In the OcOH / EtOH system, SEtOH
EOE

 increased quickly to 55% at 20 h; it further rises 

to 59% but very slowly (Fig. 5.6B). As for the OcOH / DEC system, probably because the EOC 

decomposition to EOE is slow, SDEC
EOE

 values lower than SEtOH
EOE

 ones were initially observed. 

Nevertheless, when the intermediate EOC was almost entirely depleted (48h), similar selectivity 

and yield to EOE values were achieved in both reaction systems (Fig. 5.6B and 5.6C). 

Summarizing, similar potential selectivity and yields to EOE were obtained by using DEC or else 

by using EtOH in excess of OcOH at very large reaction times, but at a reaction time of a few 

hours the OcOH / EtOH system gave a higher EOE yield (Fig. 5.6C). 
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Fig. 5.6: Conversion (A), selectivity (B) and yield (C) to EOE with respect to the ethylating agent 

(○ EtOH; ● DEC). Dowex 50Wx2, T=150ºC, ROcOH/EtOH= ROcOH/DEC=2, Wcat=2g. The error bars 

indicate the confidence interval at a 95% probability level 
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5.4 Conclusions 

EOE synthesis from OcOH / EtOH and OcOH / DEC mixtures over acidic ion-exchange resins is 

compared. The main secondary reaction in the two reaction schemes (and therefore the main 

drawback in industrial practice) is the loss of ethyl groups to produce DEE. As a consequence, 

selectivity to EOE with respect to ethylating agent (DEC or EtOH) is relatively low (40-50% at 8 

h reaction time). The loss of ethyl groups by DEE formation is a serious problem since this ether 

cannot be blended straightforwardly in commercial diesel fuels. 

Similar selectivities and yields to EOE were obtained at long reaction time (48h). Nevertheless, 

initial reaction rates to form EOE are slightly higher in the OcOH / EtOH system than in the 

OcOH / DEC one. Accordingly, EtOH was shown to be a more suitable ethylating agent to 

produce synthetic ethers biofuels such as EOE over acidic resins of low cross-linking degree. 

Otherwise, the EOE synthesis from OcOH and DEC is only competitive at long reaction times 

or, in continuous units, if oversized reactors are used.  

Furthermore, the reaction between OcOH and EtOH gives water as a by-product, a nontoxic 

substance. It would be an environmentally friendly process, like the one based on the OcOH / 

DEC system (there is no net CO2 production). In summary, the current availability of EtOH and 

the production of water as by-product suggest EtOH to be a suitable ethylating agent to produce 

long chained ethers such as EOE. 
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6.1 Introduction 

A drawback of using sulfonic PS-DVB resins is their low thermal stability [40], [41]. In general, 

thermal deactivation by sulfonic groups leaching hinders their application at high temperature. 

With respect to EOE formation from EtOH and OcOH, the increase of the reactor temperature 

would not involve a loss of selectivity to EOE (chapter 5). Thus, the operating temperature of 

the reaction between EtOH and OcOH can be increased to obtain higher reaction rates, and 

therefore, a more competitive reaction unit. In contrast, when temperature is increased on the 

OcOH / DEC mixture higher amount of DEC is decomposed to DEE, involving a loss of 

selectivity (chapter 5).  

Most PS-DVB resins are stable up to 150ºC, but the maximum operating temperature of some 

resins such as Amberlyst 15 is even lower (120ºC) [41]. In contrast, fluorinated polystyrene 

sulfonic resins like Nafion
®
 can operate up to 210ºC, because fluorine atoms upgrade their 

thermal stability. In addition, they confer a higher acid strength that could contribute positively to 

the catalytic activity [26], [77]. Nevertheless, compared to PS-DVB resins, Nafion
®
 has lower 

acid capacity and is more expensive (500-800 $/m
2
), which are great disadvantages for 

industrial use [5]. New thermally stable PS-DVB resins Amberlyst 70 and Purolite CT482 have 

been recently commercialized to catalyze processes such as esterification, aromatic alkylation 

and olefin hydration at temperatures higher than 150ºC [40], [41]. In these resins, some 

hydrogen atoms have been substituted by chlorine. These additional electron withdrawing 

atoms increase the acid strength of ion exchangers and minimize the cleavage of the sulphur 

bond to aromatic carbon atoms up to 190ºC [30], [57], [79].  

Besides, it is well-known that acidic resins suffer different morphological changes, and therefore 

catalytic performance varies, depending on the nature of reaction medium. Consequently, their 

catalytic activity is highly related to the properties of the reaction mixture [80]. In the presence of 

polar substances such as alcohols and water, non-permanent pores appear and diffusion of 

reactants towards the acid centres is enhanced [22], [26], [32]. However, in some reaction 

systems interactions between water and PS-DVB resin matrix have opposite effects: on one 

hand, water competes with reactants as it adsorbs strongly on the sulfonic groups [81]–[85]; on 

the other hand, as water is a polar compound, it contributes to open the resin backbone, what 

enhances the accessibility of reactants to acid centres. In addition, depending on the water 

amount, the catalytic mechanism can change from concerted to ionic which are slower. In 

industrial reaction units, the best resin performance takes place at low water contents (0.1-3 mol 

water/L) where sulfonic groups are partially dissociated [86].   

The aim of this chapter is to evaluate the thermal stability of chlorinated resins, as well as the 

effect of water on their catalytic performance, in the temperature range 150-190ºC. Besides, 

their properties are examined and compared to those of conventional ones. The chlorinated PS-

DVB resins Amberlyst 70, Amberlyst XE804, and Purolite CT482 have been used as catalysts. 

The PS-DVB resin Dowex 50Wx2 has also been used for the sake of comparison. 
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6.2 Experimental procedure 

The experiments were performed in the fixed-bed reactor (described in section 2.3.2). Catalysts 

were dried overnight at 110ºC under vacuum (0.01 bar). Dry samples (0.1-0.7 g) were diluted in 

quartz (12-15 g). Reactor feed consisted of an OcOH-EtOH mixture (ROcOH/EtOH = 10). The large 

excess of 1-octanol was selected to promote the formation of 1-octenes, and in this way, to 

study the possible catalyst deactivation by carbon deposition. Water (1 w/w %) was added to 

the reactant mixture in some runs to stress its effect on the reaction rate without the liquid 

splitting off in two phases. The feed was preheated in a hot box at 80ºC and then fed to reactor 

at a flow rate of 0.25 mL/min. The reactor operated isothermally at 25 bars in the temperature 

range 150-190ºC to assure that the reaction took place in the liquid phase. 

An additional series of experiments was performed to test the catalyst reusability. After 48 h on-

stream, the reactor was cooled at room temperature. EtOH was fed at a flow rate of 2 mL/min 

were fed for 1 h to remove water and OcOH present in the resins. Subsequently, the catalysts 

were dried for 2 h in a 50 mL/min N2 stream to remove EtOH. Catalysts dried in this way in the 

reactor were re-used in two times. It is to be noted that water content of fresh catalysts (2-4 w/w 

%) was some higher than the residual water content after the reactivating process (< 1 w/w % 

[87]). 

Due to the small catalyst mass in the reactor bed, conversions were low (XOcOH<10%, XEtOH<25 

%). Reaction rates to form EOE, DEE and DNOE were calculated by means of the following 

equations where it is assumed that the reactor operated in the differential regime:  

 

EOE EOEOcOH OcOH EtOH EtOH
1 EOE OcOH EtOH

cat cat cat

F X F X mol
r =r = S = S

W W h kg

 
 

 
 eq. 6.1 

DEEEtOH EtOH
2 DEE EtOH

cat cat

F X1 mol
r =r = S

2 W h kg

 
 

 
 eq. 6.2 

DNOEOcOH OcOH
3 DNOE OcOH

cat cat

F X1 mol
r =r = S

2 W h kg

 
 

 
 eq. 6.3 

  k

 j

moleof j reacted to form k
S = % , mol mol

moleof j reacted
 eq. 6.4 
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In these equations, Wcat is the dry catalyst mass, Fj the molar flow rate of species j fed into the 

reactor, Xj the conversion of species j, and 
 k

 jS  the selectivity of reactant j towards product k at 

the reactor outlet. The relative error by assuming differential behaviour of the fixed-bed reactor 

in eq. 6.1 was estimated to be lower than 5%, within the limits of the experimental analysis 

error. 

Catalyst activity, ai, for reaction i was defined as the ratio of the reaction rate at time t to the 

reaction rate for fresh catalyst, 
0

ir by means of Eq. 6. 

i
i 0

 i

r
a =

r
 eq. 6.5 

6.3 Results and discussion 

The catalytic performance has been studied in the liquid-phase reaction between 1-octanol and 

ethanol. Experiments were carried out at 150°C and 190°C in the fixed bed reactor at a flow rate 

of 0.25 mL/min (WHSV = 17-120 h
-1

), representative of the industrial case. They lasted 70 h to 

evaluate possible catalytic activity variation. Besides EOE, DEE and DNOE were formed. C8 

alkenes from 1-octanol dehydration were also detected, but in very small amounts (<1 w/w % at 

190ºC; <0.25 w/w % at 150ºC). Results are gathered in Table 6.1.  

Table 6.1: Reaction rates and activity at t=0 (fresh catalyst) and after 70 h on-stream 

ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. 

T=150ºC 

catalyst t (h) 
r1 = rEOE r2 = rDEE r3 = rDNOE 

a1 a2 a3 mol/(h·kg) mol/(h·kg) mol/(h·kg) 

Purolite CT 482 
0 2.89 0.442 3.08       

70 2.55 0.328 2.88 0.89 0.74 0.94 

Amberlyst XE804 
0 2.11 0.380 2.50 

   
70 1.78 0.285 2.12 0.84 0.67 0.85 

Amberlyst 70 
0 1.88 0.228 2.89       

70 1.54 0.155 2.50 0.82 0.68 0.86 

Dowex 50Wx2 
0 2.60 0.251 6.40 

   
70 2.30 0.200 5.90 0.89 0.74 0.92 

T=190ºC 

catalyst t (h) 
r1 = rEOE r2 = rDEE r3 = rDNOE 

a1 a2 a3 mol/(h·kg) mol/(h·kg) mol/(h·kg) 

Purolite CT 482 
0 28.2 4.58 35.8       

70 23.0 3.31 33.0 0.82 0.73 0.89 

Amberlyst XE804 
0 24.8 3.60 26.1 

   
70 17.5 2.53 20.2 0.71 0.70 0.77 

Amberlyst 70 
0 18.5 2.20 32.0       

70 15.2 1.77 28.4 0.82 0.80 0.89 

Dowex 50Wx2 
0 24.0 1.83 49.1       

70 15.9 0.865 33.4 0.66 0.72 0.68 
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As Table 6.1 shows, although 1-octanol was in large excess in the reactor feed (ROcOH/EtOH=10), 

reaction rates of EOE and DNOE syntheses were of the same order of magnitude on the 

macroreticular resins at 150ºC, whereas that of DEE was much lower. On gel-type resin Dowex 

50Wx2, results are qualitatively similar, but the reaction rate of DNOE synthesis was about 3-

fold higher than that of EOE, which is about 10-fold higher than reaction rate of DEE synthesis. 

For EOE synthesis, Purolite CT482 showed the highest reaction rate, followed by Dowex 

50Wx2, Amberlyst XE804 and 70. As seen in Fig. 6.1, reaction rate of EOE synthesis 

decreased continuously with time; the same effect was observed for DNOE and DEE formation 

reactions. Activity decay for EOE synthesis was of the same order on all resins, by 12-18% with 

regard to the fresh catalyst. Decay for DNOE synthesis was of 6-15%, and for DEE synthesis it 

was of 25-35%. 

 

Fig. 6.1: Reaction rates (A) and activity (B) for EOE synthesis vs. time over tested resins at 

150ºC. ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. (▲CT482 ●Amberlyst 70 ◊ Dowex 50Wx2 □ 

XE804). 

At 190ºC, Purolite CT482 was the most active resin for both EOE and DEE formation, followed 

by Amberlyst XE804, Dowex 50Wx2 and Amberlyst 70. Dowex 50Wx2 was the most active to 

DNOE formation. Among macroreticular resins, reaction rate of DNOE synthesis decreased in 

the order CT482, Amberlyst 70 and Amberlyst XE804. Activity decay for the three reactions also 

occurs and it is more noticeable on Amberlyst XE804 and Dowex 50Wx2. It is to be noted that a 

short period of constant activity was seen before decay starts (Fig. 6.2). As shown in Table 6.1, 

activity decay of EOE synthesis ranges from 18 to 34%, from 10 to 32% in DNOE formation and 

from 20 to 30% in DEE synthesis. In general, selectivity hardly changes with time.  
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Fig. 6.2: Reaction rates (A) and activity (B) for EOE synthesis vs. time over tested resins at 

190ºC. ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. (▲CT482 ●Amberlyst 70 ◊ Dowex 50Wx2 □ 

XE804). 

Apparent activation energies can be estimated by Arrhenius relationship from reaction rates at 

the two temperatures both on fresh catalysts and after 70h on-stream (Table 6.2). Apparent 

activation energies for the three reactions of ether formation are in the range 90-100 kJ/mol, 

what shows a high sensitivity to temperature. Apparent activation energies obtained for CT482 

and Amberlyst 70 do not change with time, that of Amberlyst XE482 decreased moderately, and 

for Dowex 50Wx2 decreased by 10-15% with respect to the values found over fresh catalysts. 

Table 6.2: Apparent activation energies for the reactions of ether formation at t=0 (fresh 

catalyst) and after 70 h on-stream. ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. 

catalyst t (h) EEOE (kJ/mol) EDEE (kJ/mol) EDNOE (kJ/mol) 

Purolite CT482 
0 93  95  100  

70 90  94  99  

Amberlyst XE804 
0 100 92 96  

70 93  89  92  

Amberlyst 70 
0 93 92 98  

70 93 97  99  

Dowex 50Wx2 
0 91 81  83  

70 79  74  71  

 

Observed activity decays could be ascribed to several causes: 1) thermal instability of resins, 2) 

changes of activity caused by the interaction of the polymeric matrix with the water formed as 

byproduct, and/or 3) deposition of alkene oligomers on the resin surface.  
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6.3.1 Hydrothermal stability 

Hydrothermal stability tests were carried out by adding bidistilled water to the reactor feed for 

24h at the selected temperature. Afterwards, acid capacity was measured by titration and 

compared to that of fresh catalyst. The difference correspond to the lost of acid sites (Table 

6.3). The conventional PS-DVB resin Dowex 50Wx2 retained acid capacity fully at 150ºC, but it 

greatly decreased at 190ºC, which is far above its maximum operating temperature. Amberlyst 

70 and Purolite CT482 showed negligible desulfonation at 150°C and 190ºC, in agreement with 

the manufacturer’s tests [40], [41]. These data confirm that introduction of chlorine atoms into 

the resin backbone improves its thermal stability. Finally, Amberlyst XE804 lost sulfonic groups 

at both temperatures, what indicates that it is not as suitable as the other two chlorinated resins 

for catalyzing high temperature processes.  

Table 6.3: Acid sites loss by hydrothermal treatment at 24h. qwater=0.25 mL/min, P=25 bar. 

catalyst T (ºC) acid sites lost (%) 

Dowex 50Wx2 
150 negligible 

190 36.3 ± 8.5 

Amberlyst 70 
150 negligible 

190 negligible 

XE804 
150 4.0 ± 1.9 

190 16.2 ± 3.6 

CT482 
150 negligible 

190 negligible 

 

Since hydrothermal tests showed that resins retained the acid capacity at 150ºC, except for the 

slight desulfonation of Amberlyst XE804, the activity decay observed at this temperature cannot 

be ascribed to the loss of sulfonic groups by thermal instability. As a result, interaction with the 

reaction medium has to be considered. Activity drop at 190ºC after 70h on-stream agrees well 

with the higher leaching of acid groups found in hydrothermal experiments. Some differences in 

the activity decay of catalysts have been observed at this temperature which could be partly 

ascribed to their thermal stability. After 70h on-stream, the non-chlorinated resin Dowex 50Wx2 

showed higher activity decay at 190ºC (34%) than at 150ºC (12%) for EOE synthesis. Similar 

decays have been found in DNOE synthesis (32% at 190ºC, and 8% at 150ºC). The decay 

found at 190ºC is of the same order of sulfonic group leaching and could be explained because 

its low maximum operating temperature is 150ºC. Similarly, activity decay of Amberlyst XE804 

at 190ºC (29%) was almost twice that observed at 150ºC (16%) for EOE synthesis, whereas for 

DNOE synthesis decays are 23% at 190ºC and 15% at 150ºC. For both catalysts, activity decay 

in DEE synthesis is of the same order at both temperatures  
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Some inferences about the water influence on the leaching of sulfonic groups can be drawn by 

comparing acid capacity loss in hydrothermal experiments and activity decay. Sulfonic group 

leaching rate in PS-DVB resins is not uniform; the most active sites are lost faster [56]. As a 

result, the early loss of a small number of acid sites should cause a high drop on the catalytic 

activity. Data show that the active sites loss after 24 h in water stream was equivalent to the 

activity drop after 70 h in the alcohol stream for Dowex 50Wx2 and Amberlyst XE804. As a 

result, sulfonic group hydrolysis seems to be faster in water than in alcohols, in agreement with 

the open literature [88]. However, since activity decay is much higher than acid sites leaching 

on the two catalysts at the low temperature of explored range, other causes than desulfonation 

have to be taken into account to explain activity drop. 

Over Purolite CT482 and Amberlyst 70, catalytic activity decay at 150°C and 190°C is similar for 

the three reactions, especially on Amberlyst 70. As desulfonation was not observed in the 

hydrothermal stability experiments with these resins, activity decay cannot be accounted for 

sulfonic groups leaching. Instead, it could be attributed to carbon deposition by chemical 

species present in the reaction medium, particularly C8-alkene oligomers. C8 alkenes formation 

rose by 6-fold from 150ºC to 190ºC, but the catalytic activity decay was of the same order at 

both temperatures, what excludes such relationship. On the other hand, it can be assumed that 

the formed ethers (DEE, EOE and DNOE) do not deactivate the catalyst as their effect on the 

reaction rate was found to be negligible in ether syntheses as in that of di-n-pentyl ether from 1-

pentanol previously studied [89]. 

6.3.2 Reusability tests 

Accordingly to literature, activity decay of thermally stable resins in alcohol dehydration 

reactions can be ascribed to the preferred adsorption of the water formed in the reaction on 

active sites [57], [81], [82], [84], [86]. In order to confirm the inhibitory effect of water, Purolite 

CT482 and Amberlyst 70 were washed and dried in the reactor at room temperature after 48 h 

on-stream and reused twice. Fig. 6.3A and 6.3B display the activity evolution of Purolite CT482 

and Amberlyst 70, respectively, in EOE synthesis during the three cycles at 190ºC. Fresh (1
st
 

cycle) and reused catalyst (2
nd

 and 3
rd

 cycle) showed the same pattern. After two cycles using 

reused catalyst, both resins show a very similar behaviour to the fresh catalyst. As a result, it 

can be concluded that Purolite CT482 and Amberlyst 70 could be recovered after 48h on-

stream and reused without any noticeable activity loss. This fact confirmed that catalyst decay 

on these two resins was caused mainly by the inhibitory effect of water formed in the EOE 

formation. 
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Fig. 6.3: Evolution of activity to EOE formation along the time on CT482 (A) and on Amberlyst 

70 (B) at T=190ºC, ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. 

 (■ 1
st
 cycle; ♦ 2

nd
 cycle; ▲ 3

rd
 cycle). 

 

6.3.3 Catalytic tests with alcohol-water feed 

A set of experiments was performed on Amberlyst 70 and Purolite CT482 by adding water to 

the alcohol mixture feed. Fig. 6.4 and Fig. 6.5 show the activity of Amberlyst 70 and that of 

Purolite CT482, respectively, with ethanol-octanol and ethanol-octanol-water feeds. The 

reaction rate of fresh catalyst in ethanol-octanol mixtures was taken as the reference for 

catalysts activity. As seen, activity to EOE was lower in the presence of water. Unlike 

experiments with ethanol-octanol feed, the activity to EOE formation was almost constant along 

time on Purolite CT482 but it decreased slightly on Amberlyst 70. The water content of resins 

was determined after each experiment by titration. As Table 6.4 shows, water content within the 

resin increased with time-on-stream, which could be related to the continuous decrease of the 

catalytic activity to EOE with ethanol-octanol feed. It is also seen that higher water contents 

were found in resins when feeds contained water. Purolite CT482 retained higher water 

amounts than Amberlyst 70. However, the number of water molecules per sulfonic group is 

similar on the two resins (2.78-2.98 mol H2O/mol sulfonic group). These water contents are far 

from those of a resin saturated by water (4.2 mol H2O/mol sulfonic group) [87]. This fact can be 

due to the high affinity of alcohols, which compete with water, for the acid sites.  
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Fig. 6.4: Activity to DEE (♦), EOE (■) and DNOE (▲) formation vs. time on Amberlyst 70 at 

T=190ºC, q=0.25 mL/min, P=25 bar, ROcOH/EtOH=10. (A) pure alcohols fed and (B) 1% (w/w) 

water fed. 

 

Fig. 6.5: Activity to DEE (♦), EOE (■) and DNOE (▲) formation vs. time on CT482 at T=190ºC, 

q=0.25 mL/min, P=25 bar, ROcOH/EtOH=10. (A) pure alcohols fed and (B) 1% (w/w) water fed. 

 

As Table 6.4 shows, turnover frequency (TOF) is similar at the beginning of ethanol-octanol fed 

experiments; however TOF of Purolite CT482 is a bit lower after 70h, and with ethanol-octanol-

water feed it is lower by 20% than activity at the same time on stream with ethanol-octanol feed. 

Thus, the effect of water on the activity drop of Purolite CT482 was stronger than on Amberlyst 

70. This pattern can be attributed to the higher acid site density in the gel-phase of Purolite 

CT482. With respect to activity of Amberlyst 70, a short initial flat period is observed (4h) and 
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afterwards a continuous decay, whereas for CT482 the flat period is longer (16h) and the decay 

rate is higher, so that after 70 h the activity level of Amberlyst 70 is slightly higher than that of 

Purolite CT482. In experiments where water was fed, the activity level of Purolite CT482 is 

always clearly lower.  

Table 6.4: Water content inside resin and TOFs as a function of time on stream. T=190ºC, 

ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. 

catalyst time on-stream (h) water content (w/w,%) mol H20 per sulfonic group TOF (h
-1

) 

Amberlyst 70 

0 2.1 0.45 6.98 

24 7.2 1.62  

70 9.5 2.19 5.74 

70
a
 12.5 2.98 5.40 

Purolite CT482 

0 3.6 0.49 6.94 

24 10.6 1.55  

70 13.2 1.98 5.41 

70
a
 17.5 2.78 4.71 

a
 1% (w/w) water in the feed 

Without water in the feed, both OcOH and EtOH swell the resins and compete for adsorbing on 

acid centres and the highest reaction rate is achieved with fresh catalyst. Then, a part of formed 

water adsorbs gradually on the resin and the reaction rate starts to decrease. The phase-

equilibrium between water in the liquid phase and adsorbed on acid sites is not likely to be 

reached during the experiments without feeding water. On the contrary, when water was fed, 

the water amount in the liquid phase was enough to reach water-resin quasi-equilibrium, and 

the reaction rate to form EOE is nearly independent on time on-stream. As Table 6.4 shows, the 

amount of adsorbed water is similar in both resins. The different TOF could be explained by the 

fact that water probably acts as a solvent inside pores even at small quantities, and a transition 

takes place from concerted to ionic catalytic mechanism (slower) where the hydrated proton is 

the true catalytic agent takes place [82]. The effect of the mechanism change on the rate would 

be more noticeable on the three dimensional networks of sulfonic groups in the denser gel-

phase of Purolite CT482 as a result of their proximity [90].   

6.3.4 Catalytic activity for DEE, EOE and DNOE syntheses 

Morphological changes that take place in the resins with time-on-stream by the action of water 

can modify their catalytic behaviour. As the amount of water adsorbed on resins increases with 

time-on-stream, accessibility of OcOH and EtOH to acid sites is also modified. It is observed 

that activity drop present different pattern depending on the ether (see Fig. 6.4 and 6.5). As a 

rule, activity decay was higher as the ether is less bulky: DEE>EOE>DNOE. When water is fed 

together with the alcohol mixture, it is seen that EOE and DNOE syntheses tend to similar 

activity levels, but DEE formation continues decreasing. 
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In ethanol-octanol feed, fresh ion-exchange resins were not fully swollen and the accessibility to 

acid centres was in some extent hindered. It is expected that steric restrictions play a major role 

for larger ether formation (DNOE>EOE>DEE). Resins swelled progressively with reaction time 

and the void spaces appearing between polymer chains favoured the diffusion of OcOH and 

bulky ethers EOE and DNOE. Thus, activity drop was less pronounced as the size of the ether 

increased. The effect of water was especially stressed in ethanol-octanol-water experiments. 

The adsorption of water caused remarkable activity decay for DEE synthesis, but in the case of 

EOE and DNOE it was partially balanced by the higher accessibility to acid centres of 1-octanol. 

Accordingly, the activity after 70 h time-on-stream was reduced by 30-35% in EOE and DNOE 

syntheses, and 57% in DEE formation, in relation to activity of fresh catalysts in ethanol-octanol 

feed.  

Summarizing, water effects on the reaction between OcOH and EtOH are complex as this study 

shows. It is seen that the period of time necessary to get a steady activity in this case is 

extremely long. On Purolite CT482 and Amberlyst 70, which show very good hydrothermal 

stability at 190ºC, released water acts as a solvent and increased the accessibility of bulky 

molecules to the active centres. Consequently, catalytic activity to produce long chain ethers is 

less hindered in the presence of water than to short ones. In the particular case of Dowex 

50Wx2 and Amberlyst XE804 the presence of significant desulfonation at 190ºC makes the 

situation more complicated. 

Finally, activity decay patterns were modelled for Amberlyst 70 and Purolite CT482 in runs with 

ethanol-octanol feed. Activity drop in Dowex 50Wx2 and Amberlyst XE804 was not modelled 

since it was partly due to leaching of sulfonic groups. Literature supplies relationships between 

resin activity and the amount of water in the liquid-phase. Some are essentially empirical, but 

equations based on exponential, or Langmuir and Freundlich equilibrium approaches have been 

also used [90], [91]. Still, in our experiments the water amount in the liquid phase was always 

small and often around the threshold of chromatographic detection. So that, activity as a 

function of time was fitted to first and second order activation decays functions. Best results 

were found by assuming a first order decay with terminal activity (eq. 6.6):  

 i
d,i

da
- = k a-a

dt
  eq. 6.6 

whose integrated form is   

    i , , , 0a = a 1 a expi i d ik t t      eq. 6.7 

where a,I is the terminal activity, kd,i is the rate constant of decay, and t0 the time when decay 

starts. The parameters of eq. 6.7 for EOE, DNOE and DEE syntheses on both catalysts are 

shown in Table 6.5. As seen, terminal activities roughly agree with the values found at large 
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time-on-stream in alcohol-water experiments. Therefore, it can be assumed that activity 

stabilizes after a long period of time at lower reaction rates than fresh catalyst. Rate decay 

constants are of the same order of magnitude on both resins and increase in the order DEE, 

EOE, DNOE syntheses on Purolite CT482, and DNOE, DEE, EOE syntheses on Amberlyst 70. 

As apparent activation energies show, temperature dependence of rate decay constant is low 

except for DEE synthesis. Finally, it is to be noted that t0 appear for EOE and DNOE syntheses, 

being higher at 190ºC. On the contrary for DEE synthesis decay starts as soon as the reaction 

begins. 

Table 6.5: Parameters of first-order activity decay function for Amberlyst 70 and CT482. 

ROcOH/EtOH=10, q=0.25 mL/min, P=25 bar. 

 reaction T(ºC) kd,i (h
-1

) a t0 (h) Ed,i (kJ/mol) 

Amberlyst 70 

EOE 
150 

190 

5.17·10
-2

 

5.56·10
-2

 

0.71 

0.72 

4 

6 
3.0 

DEE 
150 

190 

3.38·10
-2

 

5.31·10
-2

 

0.50 

0.65 

0 

0 
20 

DNOE 
150 

190 

2.53·10
-2

 

2.81·10
-2

 

0.67 

0.69 

6 

12 
4.6 

Purolite CT482 

EOE 
150 

190 

1.89·10
-1

 

2.21·10
-1

 

0.87 

0.81 

2 

14 
6.4 

DEE 
150 

190 

5.22·10
-2

 

1.04·10
-1

 

0.63 

0.70 

0 

0 
28 

DNOE 
150 

190 

4.90·10
-1

 

5.95·10
-1

 

0.93 

0.91 

0 

12 
7.8 

 

 

6.4 Conclusions 

The thermal stability study of acidic PS-DVB resins shows that Dowex 50Wx2 and XE804 lose a 

relevant quantity of acid centres at 190ºC. Leaching of active sites appears to be enhanced by 

the action of the water formed in the reaction between OcOH and EtOH to form EOE  

On the contrary, desulfonation is not significant for Amberlyst 70 and Purolite CT482 at 190ºC. 

As a consequence of the adsorption of water which competes with ethanol and 1-octanol for 

sulfonic groups, reaction rate on thermally stable resins Amberlyst 70 and Purolite CT482 

decreases with time-on-stream up to a constant activity level lower than that of fresh resins.  

Both resins recover completely their activity as soon as water is removed from the reaction 

medium and therefore they could be reused. Reused resins showed a similar kinetic behaviour 

in the reaction system of EOE formation.  



6. Thermal stability and water effect on ion-exchange resins in EOE production at high temperature 

78 
 

Ion-exchange resins are not completely swollen in the absence of water. As a consequence, 

diffusion of OcOH and bulky ethers are hindered. However, with time on-stream, released water 

acts as solvent and swells partially the resin. Thus, the catalytic activity drop is less pronounced 

for the ethers with more steric restrictions (EOE and DNOE) than for the smallest one (DEE). 
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7.1 Introduction 

Former chapters revealed that a feasible way to produce EOE is by means of EtOH and OcOH 

dehydration catalyzed by acidic ion-exchange resins. The main drawback of EOE production is 

the loss of EtOH molecules to form DEE. In poorly swollen resins such as Amberlyst 15 or 35 

(macroreticular, high and medium divinylbenzene content), OcOH permeation is hindered 

whereas EtOH reach most of acid sites. As a result, DEE is preferably obtained in these 

macroreticular resins (selectivity to EOE 15-20% and to DEE 15-83%, with respect to EtOH). 

However, low-crosslinked resins such as Amberlyst 121, Amberlyst 70 or Purolite CT224 have 

wide enough spaces between polymer chains to allow OcOH access more easily to acid 

centers, and in this way to compete efficiently with EtOH for the acid sites. Therefore, low-

crossliked resins maximized the production of EOE and reduced the amount of DEE formed 

(selectivity to EOE 41-46% and to DEE 43-53%).  

As concerns to low-crosslinked resins, the chlorinated Amberlyst 70 showed a negligible 

desulfonation on EOE formation up to 190ºC (chapter 6), whereas common ion-exchange resins 

are only stable up to 120-150ºC [40], [41]. Another commercial thermally stable resin is Purolite 

CT482. Such catalyst showed a higher activity to EOE due to its higher acid capacity (4.25 

mmol H
+
/g) in comparison to Amberlyst 70 (2.65 mmol H

+
/g). However, Purolite CT482 has a 

stiffer morphology than Amberlyst 70 favouring the production of the less sterically demanding 

ether, DEE (chapter 6). Therefore, Amberlyst 70 was chosen as the best acidic ion-exchange 

catalyst to produce EOE at relatively high temperature range (up to 190ºC). 

Preferential adsorption of polar species on ion-exchangers is a key factor to evaluate the 

kinetics on alcohol dehydrations [89]. With respect to EOE formation, water preferably adsorbs 

on acid centers of exchangers excluding OcOH and EtOH, and as a result, the reaction to form 

EOE is inhibited (chapter 6). In order to obtain reaction rate models based on reaction 

mechanisms, LHHW and ER formalisms have been used successfully for the treatment of 

alcohol dehydration experimental data [54], [89], [92]–[94]. However, to the best of our 

knowledge, the liquid-phase kinetics of the synthesis of EOE from EtOH and OcOH, necessary 

for design reactor purposes, is not reported in the open literature. 

On the other hand, to the best of our knowledge, equilibrium data for EOE synthesis has not 

been reported in the open literature up-to-date. As for the main side reaction, DEE formation, 

liquid-phase equilibrium data of DEE synthesis up to 190ºC is still unknown. To cover this gap, 

in the present chapter, experimental values of the equilibrium constant of the dehydration 

reaction between EtOH and OcOH to EOE and water, and the dehydration reaction of two EtOH 

molecules to DEE and water; have been determined at the temperature range 137-190ºC by 

direct measurement of the mixture composition at equilibrium state. Besides, standard enthalpy, 

entropy and free Gibbs energy changes were computed for both EOE and DEE synthesis 

reactions 
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In this chapter, the dehydration between EtOH and OcOH to form EOE on Amberlyst 70 is 

studied from a kinetic and equilibrium standpoint. Experiments were carried out in a fixed-bed 

reactor and in a batch reactor to find the parameters of a kinetic model able to predict reaction 

rates to EOE in a wide range of alcohols, ether and water concentrations. Besides, a kinetic 

model for the main side product, DEE, is also proposed. 

 

7.2 Experimental procedure 

7.2.1 Equilibrium experiments 

Equilibrium experiments were performed in the batch reactor (described in chapter 2.3.1). 

Resins were dried at 110ºC under vacuum overnight. Then, the reactor was loaded with 70 mL 

of OcOH / EtOH / 1,4-dioxane mixture and 10 g of dry Amberlyst 70. OcOH and EtOH were 

used as reactants (30% w/w) in equimolar ratio. 1,4-dioxane was used as solvent (70% w/w) to 

avoid the immiscibility between organic and aqueous phases, and as a result of its suitable 

physical and chemical stability. Literature works showed that this solvent do not alter the 

equilibrium position [95]–[98].  

The mixture liquid-catalyst was pressurized at 25 bar, heated up to the working temperature 

(137-190ºC) and stirred at 300 rpm. This low value of stirring speed was selected to avoid 

attrition of the catalyst during the long-term equilibrium runs. Experiments were finished when 

the measured equilibrium constant had the same value along time, within the limits of the 

experimental error, typically after 24 h (at 190ºC) - 150 h (at 137ºC). Duplicate runs were carried 

out at each temperature but 150ºC. Associated error of the linear fits presented in this work 

corresponds to 0.95 level of confidence. 

7.2.2 Kinetic experiments 

Experiments were performed in a fixed-bed and in a batch reactor. 

Fixed-bed reactor 

The major set of experiments was performed in the fixed-bed reactor (described in section 

2.3.2). The reactor bed consisted of a mixture of Amberlyst 70 and inert SiC particles. As it can 

be observed in Fig. 7.1, the catalytic bed was formed by catalyst (dp=0.49 ± 0.05mm, 95% 

confidence interval) and inert particles (dp=0.48 ± 0.17mm, 95% confidence interval) of similar 

size. The reactant liquid mixture, OcOH and EtOH, was pumped by two HPLC pumps at q=4-

6.7 mL/min. Otherwise, one pump at q=5 mL/min was used when products, DEE and EOE, 

were added to the reaction mixture. Liquid samples were taken on-line from the reactor inlet and 

outlet and injected directly into the GLC apparatus. 



7. Kinetic and equilibrium study of EOE formation from EtOH and OcOH dehydration on Amberlyst 70 

82 
 

 

Fig. 7.1: SEM microphotography of the catalytic bed (Amberlyst 70 and SiC). 

Previous to its use in the reactor, the catalyst was dried in an atmospheric oven at 110ºC 

overnight. The catalyst water content (≤2.25 w/w %) was determined by means of an Orion AF8 

Karl Fisher titrator. Then, dried catalyst samples (0.1-2 g) were diluted in inert SiC (12-15 g). 

After filling and placing the reactor in the experimental set-up, the water content of the catalyst 

was reduced to 1.23 w/w % by EtOH percolation (q=5 mL/min, t=5 min), and then, the catalyst 

water content was reduced to less than 1 w/w % by the action of N2 stream (q=300 mL/min, t=5 

min) [87]. Subsequently, reactants were mixed and preheated into a hot box at 80ºC and 

introduced to the reactor. 

The reactor operated in the temperature range 150-190ºC and the pressure was kept to 25 bar 

to ensure that the reaction medium was in the liquid-phase. OcOH / EtOH molar ratio in the feed 

(ROcOH/EtOH) ranged between 0.25 and 4. 20 Experiments were performed from pure reactants 

(OcOH/EtOH mixture) and 15 additional experiments were performed by adding DEE and EOE 

to the reactant mixture (0-17 w/w % and 0-33 w/w %, respectively). 

Experiments performed in the fixed-bed reactor were conducted in differential regime, 

experimentally assured for XEtOH<14% (which corresponded to XOcOH=6% at ROcOH/EtOH=1, 

T=190ºC), discussed further. Reaction rates to form EOE and DEE were computed assuming a 

differential behaviour as follows;  

EOE EOEOcOH OcOH EtOH EtOH
EOE OcOH EtOH

 cat  cat cat

F X F X mol
r = S = S

W W h g

  
 

 
 eq. 7.1 
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DEEEtOH EtOH
DEE EtOH

 cat cat

F X1 mol
r = S

2 W h g

 
 

   

eq. 7.2 

Wcat is the dry catalyst mass, Fj the molar flow rate of species j entering the reactor, Xj the 

conversion of species j and Sj
k
 the selectivity of reactant j towards product k at the reactor outlet 

as follows, 

 

 
  k

 j

moleof j reacted to form k
S = ×100 %,mol mol

moleof j reacted
 eq. 7.3 

Batch reactor 

A series of 6 experiments was carried out in the batch reactor (described in section 2.3.1). The 

reactor operated in the temperature range 150-190ºC, OcOH / EtOH initial molar ratio 

(ROcOH/EtOH) ranged between 0.5 and 2 and the pressure was kept to 25 bar with N2 ensuring, in 

this way that the reaction medium was in the liquid-phase. Amberlyst 70 was previously dried at 

110ºC under vacuum overnight (water content ≤ 2.25 wt%). Then, the reactor was loaded with 

70 mL of OcOH / EtOH mixture, stirred at 500 rpm and heated up to the working temperature. 

When the mixture reached the desired temperature, dried catalyst (1-3 g) was injected into the 

reactor. Catalyst injection was taken as zero time. Experiments lasted 6h and the liquid 

composition was analyzed hourly. Working conditions were selected since, as quoted in 

literature, similar reactions take place at these conditions free of external and internal mass 

transfer resistances [22], [54] 

Batch reactor experiments were performed operating in an integral regime. Reaction rates to 

DEE, EOE were calculated by differentiating the experimental function of the formed moles 

versus time (eq. 7.4).

 

j 

 j

cat cat

dn1 mol
r =

W dt h g

  
   

   
 eq. 7.4 

 

7.3 Results and discussion 

The equilibrium and kinetic analysis was made as a function of activities rather than 

concentrations in order to take into account the non-ideality of the alcohol-ether mixture. Activity 

coefficients were computed by the UNIFAC-DORTMUND predictive method [99].  
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7.3.1 Equilibrium study 

Experiments were finished when both EOE and DEE synthesis reactions reached a pseudo-

equilibrium state. The assessment of the equilibrium state was done by checking the constancy 

of the calculated equilibrium constants, within the limits of the experimental error. However, the 

reaction rates to form DNOE were lower, and at the end of the run, DNOE synthesis reaction 

did not reach the equilibrium state yet [98]. 

The thermodynamic equilibrium constant, Ka, for a liquid-phase nonideal system is given by 

j j j

S S
v v v'

a j e j e j e γ x
j 1 j 1

K = (a ) = (γ ) (x ) =K K
 

   eq. 7.5 

Kγ values were computed by 

DEE DEE water
γ 2

EtOH

γ γ
K

γ


  eq. 7.6 

EOE EOE water
γ

EtOH OcOH

γ γ
K

γ γ





 eq. 7.7 

where superscripts DEE and EOE refer to EtOH dehydration to DEE and water (hereinafter 

referred to as DEE synthesis reaction); and EOE refer to OcOH and EtOH dehydration to EOE 

and water (EOE synthesis reaction). Kx was calculated by the use of molar fractions,  

DEE DEE water
x 2

EtOH

x x
K

x


  eq. 7.8 

EOE EOE water
x

EtOH OcOH

x x
K

x x





 eq. 7.9 
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Fig. 7.2: Evolution of activities with time at 137ºC. ○EtOH; □OcOH; ♦EOE;▲DEE; ▼water. 

As an example, Fig. 7.2 shows the activities evolution of the compounds involved in the DEE 

and EOE synthesis reactions at 137ºC. As it is seen, activities of all the compounds involved in 

both reactions were relatively low as a consequence of the use of 1,4-dioxane as solvent (a1,4-

Dioxane ≈ 0.74). Reactant activities (aEtOH and aOcOH) decreased and product activities (aDEE, aEOE 

and awater) increased to reach constant Ka
DEE

 and Ka
DEE

 values with time. As mentioned above, 

the intermolecular dehydration between two 1-octanol molecules to form 1-octoxyoctane and 

water had not reach the chemical equilibrium during the experiments. As a result of the advance 

of this reaction to chemical equilibrium, it was observed a fast readjustment of the mixture 

composition in such a way that awater showed a slight trend to increase, while aDEE, aEOE and 

aOcOH showed a slight trend to decrease. However, computed values of Ka
DEE

 and Ka
DEE

 were 

random and constant within the limits of the experimental error.Table 7.1: Experimental 

equilibrium constants for the dehydration of EtOH to DEE and water, and dehydration of EtOH 

and OcOH to EOE and water. 

T (ºC) Kx
DEE

 Ky
DEE

 Ka
DEE

 Kx
EOE

 Ky
EOE

 Ka
EOE

 

137 
6.5 ± 0.7 2.1 ± 0.1 13.9 ± 1.5 16.8 ± 0.6 2.7 ± 0.1 46.0 ± 1.4 

7.1 ± 0.3 2.1 ± 0.1 15.2 ± 0.7 17.4 ± 0.3 2.7 ± 0.1 47.8 ± 0.7 

150 
5.7 ± 0.9 2.3 ± 0.1 13.0 ± 2.3 13.8 ± 1.2 2.6 ± 0.1 36.2 ± 3.1 

5.8 ± 0.4 2.2 ± 0.1 13.0 ± 0.9 14.9 ± 0.4 2.6 ± 0.1 39.4 ± 0.9 

164 5.2 ± 0.6 2.2 ± 0.1 11.6 ± 1.3 12.5 ± 0.6 2.5 ± 0.1 30.8 ± 1.5 

177 
4.2 ± 0.2 2.3 ± 0.1 9.7 ± 0.4 9.9 ± 0.5 2.4 ± 0.1 23.4 ± 1.2 

4.5 ± 0.3 2.3 ± 0.1 10.6 ± 0.7 11.0 ± 0.6 2.4 ± 0.1 25.9 ± 1.3 

190 
3.6 ± 0.5 2.5 ± 0.1 8.8 ± 1.6 8.5 ± 0.4 2.3 ± 0.1 19.3 ± 0.9 

3.9 ± 0.4 2.4 ± 0.1 9.3 ± 1.1 8.8 ± 0.3 2.3 ± 0.1 19.9 ± 0.6 
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Table 7.1 presents the equilibrium constants for the DEE and EOE synthesis reaction found 

experimentally. Equilibrium constant values showed are the average of those calculated during 

each experiment. As it can be seen, both Kγ
EOE

 and Kγ
DEE

 values differed significantly from unity, 

mainly due to the presence of water, what confirm the non-ideality of the mixture.  

Table 7.2: Dependence of the mean experimental values of the equilibrium constants with the 

temperature. 

T  (ºC) Ka
DEE

 Ka
EOE

 

137 14.5 ± 0.9 46.9 ± 1.3 

150 13.0 ± 0.1 37.8 ± 2.3 

164 11.6 30.8 

177 10.2 ± 0.6 24.7 ± 1.8 

190 9.1 ± 0.4 19.6 ± 0.5 

 

Mean values of the equilibrium constant at each temperature are presented in Table 7.2. As it 

can be observed, the reproducibility of experiments was found to be reliable, with experimental 

uncertainties of less than 7% of relative error. Ka
DEE

 
and Ka

EOE
 relatively large values indicate 

that both reactions are shifted to the products at the equilibrium state, what assures high 

conversion levels in an industrial etherification process. By comparing both reactions, EOE 

synthesis reaction is more shifted to products than DEE one. In agreement with that fact, at a 

given temperature higher equilibrium constant values were found as longer was the linear ether 

formed [96]–[98]. Comparing the equilibrium values obtained in this work for EOE synthesis 

reaction with those obtained for 1,1’-oxybis-pentane [96], the symmetrical C10 linear ether; it can 

be inferred that the equilibrium to the symmetrical ether was more shifted towards products than 

for the asymmetrical EOE. 

Regarding the dependence of the equilibrium constants with the temperature, both Ka
DEE

 
and 

Ka
EOE

 values clearly decreased with the temperature. Therefore, DEE and EOE syntheses are 

exothermic reactions, as other n-alkyl ether syntheses [5], [6], [9], [12]–[14]. As it is well-known, 

the temperature dependence of the thermodynamic equilibrium constant can be related to other 

thermodynamic variables of the reaction system by 

0 0 0

r (l) r (l) r (l)

a

G H S
ln K

RT RT R

  
    eq. 7.10 

If the enthalpy change of reaction is assumed to be constant over the temperature range (137-

190ºC), the thermodynamic variables, ΔrH(l)
0
 and ΔrS(l)

0
 can be obtained by fitting eq. 7.10 to 

values of the equilibrium constant at different temperatures (see Fig. 7.3). The temperature 

dependence of Ka
DEE

 and Ka
EOE

 is given by the following expressions 
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 
 DEE

a

1691 ± 205
lnK = + -1.4 ±0.5

T
 eq. 7.11 

 
 EOE

a

3097±360
lnK = + -3.7±0.8

T
 eq. 7.12 

where T is expressed in K. 

 

Fig. 7.3: ln K versus 1/T considering ∆rH(l)
0
 constant over the temperature range. (A) EOE 

synthesis reaction; (B) DEE synthesis reaction. 

Considering that the standard enthalpy of reaction changes significantly over the temperature 

range, its dependence on temperature can be computed by the Kirchhoff and van’t Hoff 

equations,   

0 S
r (l)

j p(l),j
j=1

dΔ H
= ν C

dT
Σ   eq. 7.13 

0

a r

2

dlnK Δ H
=

dT RT
 eq. 7.14 

where Cp,(l) are the molar heat capacities in the liquid-phase of the compounds j that take part in 

the reaction. If Cp,(l) polynomial dependence on temperature is introduced into Kirchhoff and 

van’t Hoff equations, the dependence of ΔrH(l)
0
, ΔrS(l)

0
,
 
ΔrG(l)

0
 and Ka on the temperature can be 

computed by integrating the Kirchhoff and the van’t Hoff equations, thus: 
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0 2 3 4

r (l) K

b c d
Δ H =I +aT+ T + T + T

2 3 4
 eq. 7.15 

0 2 3

r (l) H

c d
Δ S =I R+a+alnT+bT+ T + T

2 3
 eq. 7.16 

0 2 3 4

r (l) K H

b c d
Δ G =I -RI T-aTlnT- T - T - T

2 6 12
 eq. 7.17 

2 3K
a H

I a b c d
ln K =I - + lnT+ T+ T + T

RT R 2R 6R 12R
 eq. 7.18 

where 

S

j j
j=1

a= ν aΣ  

S

j j
j=1

b= ν bΣ  

S

j j
j=1

c= ν cΣ  

S

j j
j=1

d= ν dΣ  

 

eq. 7.19 

and aj, bj, cj and dj are the coefficients of Cp,(l),j polynomial equations. Thermochemical data of 

the compounds involved in the DEE and EOE synthesis reactions are shown in Table 7.3. 

Gathering the second term of eq. 18 containing a, b, c and d as f(T), 

2 3a b c d
f(T)=- lnT+ T+ T + T

R 2R 6R 12R

 
 
   

 

eq. 7.20 

IK and IH were obtained from the slope and the intercept of eq. 7.18.  
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Table 7.3: Thermochemical data of EtOH, OcOH, water, DEE and EOE. 

property units EtOH OcOH water DEE EOE 

Cp,j=aj+bjT+cjT
2
+djT

3
 J/(mol·K) 

     
aj J/(mol·K) 29.01

a
 43.38

c
 106.61

e
 155.58

f
 383.09

g
 

bj J/(mol·K
2
) 0.2697

a
 -1.3132

c
 -0.2062

e
 -0.0856

f
 0.1439

g
 

cj J/(mol·K
3
) -5.658·10

4a
 -1.654·10

-3c
 3.770·10

-4e
 3.193·10

-4f
 -5.225·10

-4g
 

dj J/(mol·K
4
) 2.079·10

-6a
 -1.325·10

-6c
 -1.226·10

-7e
 4.148·10

-7f
 6.646·10

-7g
 

∆fH
0
(l) (25ºC) kJ/mol -276 ± 2

b
 -429 ± 4

b
 -285.8

b
 -271 ± 2

b
 -430.2

h
 

S
0

(l) (25ºC) J/(mol·K) 165 ± 8
b
 357.1

d
 70.0

b
 253 ± 1

b
 394.4

h
 

a
 Kitchaiya et al. [102]. 

b
 NIST average of values [103]. 

c
 Obtained from Naziev et al.

 
[104] and 

fitted to a third-order equation. 
d
 Miltenburg et al.

 
[105]. 

e
 Calculated from Shomate equation and 

fitted to a third-order equation
 
[106]. 

f
 Obtained from Gallant et al.[107] and fitted to a third-order 

equation. 
g
 Estimated by Rowlinson-Bondi method

 
[108]  and fitted to a third-order equation.        

h
 Estimated by a modified Benson method

 
[109]. 

 

Furthermore, deviation in Ka values as a result of the difference between the working pressure 

(25 bar) and the pressure at the standard state (1 bar), was evaluated by means of the Poynting 

correction factor KΓ by the following expression
 
[110] 

S

a,P=1bar a,P Γ a,P j j
j=1

P-1
K =K K =K exp ν V

RT
Σ

 
   

 
 

 

eq. 7.21 

where Vj is the molar volume of compound j. Molar volumes and KΓ for DEE and EOE synthesis 

reactions are shown in Table 7.4.  

Table 7.4: Molar volumes of EtOH, OcOH, water, DEE and EOE; and KΓ correlation factors of DEE 

and EOE synthesis reactions, calculated by Hawkinson-Brobst-Thomson (HBT) method
 
[108]. 

T (ºC) VEtOH (L/mol) VOcOH  (L/mol) Vwater (L/mol) VDEE (L/mol) VEOE (L/mol) KΓ
DEE

 KΓ
EOE

 

137 0.072 0.154 0.019 0.136 0.209 1.007 1.001 

150 0.075 0.156 0.019 0.143 0.213 1.009 1.001 

164 0.078 0.159 0.020 0.154 0.217 1.013 1.000 

177 0.081 0.162 0.020 0.174 0.222 1.021 0.999 

190 0.085 0.165 0.021 0.188 0.227 1.025 0.998 

 

Values of the standard molar enthalpy, entropy and free energy changes of DEE and EOE at 

25ºC determined for the described methods are gathered in Table 7.5. Concerning the 

experimental values obtained in this work for DEE synthesis, the best linear fits, and as a result, 

the lowest associated standard errors were obtained by taking into account both the pressure 

deviation from the standard state and the enthalpy changes over the temperature range. As for 
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EOE synthesis, the improvement of considering the pressure deviation from the standard state 

was not significant. Accordingly, the standard enthalpy, entropy and free Giggs energy changes 

proposed are presented in row 4 of Table 7.5 (∆rH
0
(l) as f(T) with P deviation).  

Table 7.5: Standard Gibbs energy, enthalpy and entropy changes of EOE and DEE synthesis 

reaction in liquid-phase at 25ºC.  

  DEE EOE 

 
∆rH

0
(l),25ºC ∆rS

0
(l),25ºC ∆rG

0
(l),25ºC ∆rH

0
(l),25ºC ∆rS

0
(l),25ºC ∆rG

0
(l),25ºC 

  kJ/mol J/(K·mol) kJ/mol kJ/mol J/(K·mol) kJ/mol 

∆rH
0
(l) constant -14.1 ± 1.7 -12.0 ± 3.9 -10.5 ± 2.9 -25.8 ± 3.0 - 30.7 ± 7.9 -16.6 ± 5.0 

∆rH
0
(l) with P deviation -13.5 ± 1.5 -10.6 ± 3.3 -10.4 ± 2.5 -25.8 ± 3.0 -30.9 ± 7.9 -16.6 ± 5.1 

∆rH
0

(l) as f(T) -12.7 ± 1.2 -8.9 ± 2.7 -10.0 ± 2.0 -18.8 ± 1.3 -13.4 ± 3.0 -14.8 ± 2.2 

∆rH
0
(l) as f(T) with P deviation -12.1 ± 0.9 -7.6 ± 2.1 -9.9 ± 1.5 -18.9 ± 1.3 -13.6 ± 3.0 -14.8 ± 2.2 

literature
29

 -12.2 ± 0.2 0.5 ± 0.5 -12.2 ± 0.3 
   

theoretical -5 ± 8 -6 ± 9 -3 ± 11  -11 ± 6  -53 ± 8 

 

Enthalpy change values proposed for EtOH dehydration to DEE and water are in completely 

agreement with those estimated by Kiviranta-Pääkkönen at lower temperature range 50-90ºC 

[45]. With respect to EOE synthesis, no thermochemical data was found in bibliography. 

Comparing the reaction enthalpy change proposed for EOE synthesis with other symmetrical 

dialkyl ethers, such as DNOE, di-n-hexyl ether, di-n-pentyl ether, di-n-butyl ether, di-n-propyl 

ether, DEE and dimethyl ether [45], [98], [100], [101], [111], the dehydration between EtOH and 

OcOH to form EOE and water showed slightly lower enthalpy change values, and as a result, 

the most exothermic reaction. 

In addition, theoretical thermochemical data were computed from enthalpy and entropy of 

formation of the compounds involved in both reactions. If possible, thermochemical data were 

obtained from NIST database (Table 7.3). As it can be observed in Table 7.5, the proposed 

enthalpy change value of DEE synthesis, ∆rH
0
(l) = (-12.1 ± 0.9) kJ·mol

-1
, was lower than that 

obtained from the enthalpy of formation of the compounds involved. From the enthalpy change 

value for DEE synthesis proposed in this work and ∆fH
0
(l) values of EtOH and water in Table 7.3, 

∆fH
0
(l) value for DEE at 298 K can be obtained: (-279 ± 5) kJ·mol

-1
. This value is in agreement 

with that estimated by the improved Benson group additive method [109], ∆f,DEEH
0
(l) = -277.2 

kJ/mol, or that obtained by Pihlaja and Heikkil [112], ∆f,DEEH
0
(l) = -(276.9 ± 1.8)  kJ/mol, but 2.5% 

lower than that obtained by Murrin and Goldhagen [113], ∆f,DEEH
0
(l) = -(271.2 ± 1.9) kJ/mol. As 

for the entropy change value for DEE synthesis, they are in agreement with that estimated by 

the molar entropy of the compounds involved. 

To the best of our knowledge, the thermochemical data of EOE formation is not quoted in the 

open literature. Again, from the thermochemical reaction data obtained in this work and that 

experimentally found in literature of the compounds involved, ∆f,EOEH
0
(l) = (-436 ± 7) kJ·mol

-1
 and 
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∆S
0
(l) (EOE)  = (434.0 ± 11) J·mol

-1
·K

-1
 values are obtained. Enthalpy of EOE formation obtained 

is only 1% lower than that predicted by the improved Benson group additive method [109], while 

molar entropy of EOE obtained is 9% higher or 8% (considering the effect of pressure [97], 

[109]). Eventually, Table 7.6 compares the thermochemical values predicted by the modified 

Benson group additivity method of EOE and its symmetrical linear ether homologue, DNPE. It is 

inferred that the Benson method is very useful in predicting the enthalpy of formation; however, 

it seems that it underestimate the standard molar entropy of C10 linear ethers. 

Table 7.6: Comparison between predicted standard formation enthalpy and standard molar 

entropy values by the modified Benson method for linear C10 ethers and the experimental ones. 

  ∆fH
0

(l) (25ºC) (kJ/mol) ∆S
0
(l) (25ºC) (kJ/mol) 

  EOE DNPE EOE DNPE 

predicted by modified Benson
a
 -430.2 -430.2 399.4 399.4 

experimental -436 ± 7
b
 430 ± 8

c
 434 ± 11

b
 474 ± 4

d
 

a
 Verevkin [109].

b 
this work. 

c
 average of Bringué et al. [96] and Murrin et al. [113] . 

d
 Bringué et 

al. [96]. 

 

7.3.2 Kinetic study 

Fixed-bed reactor experiments 

Preliminary experiments were performed at the highest temperature of the range explored 

(190ºC) in order to evaluate the influence of external mass transfer, EMT, and internal mass 

transfer, IMT, on reaction rates in the fixed-bed reactor. Additionally, preliminary experimental 

data was used to assess the effect of the inert dilution ratio and to ensure that experiments 

were carried out in differential regime. 

Firstly, a blank experiment confirmed that SiC particles did not catalyze the reactions. Thus, 

Amberlyst 70 beads were diluted in SiC inert particles to obtain an isothermal bed and good 

contact pattern between reactants and catalyst. Nonetheless, bed dilution can enhance 

bypassing of catalyst particles due to channelling, and additionally, some activity distribution 

could occur along the bed. However, it was confirmed that the used dilution ratios 

(RD=Winert/Wcat<300) did not influence on reaction rates (Fig. 7.4A). Simultaneously, it was 

observed that the liquid flow was drastically blocked if no inert particles were used, as a 

consequence of the high capacity of Amberlyst 70 to swell in polar media. On the other hand, 

the linear fit of the EtOH conversion versus the contact time confirmed that the reactor operated 

in differential regime (Fig. 7.4B). 
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Fig. 7.4: Effects of the dilution ration on reaction rates (A) and the contact time on EtOH 

conversion (B). T=190ºC, P=25 bar, q=6.7 mL/min, ROcOH/EtOH=1. 

As far as EMT is concerned, runs were performed by changing the flow rate (LHSV=20-33.5 h
-1

) 

at fixed conditions (ROcOH/EtOH=1 and 190ºC). The used catalyst particle size was 0.16-0.25 mm 

to avoid internal mass influence, as further discussed. Commercial samples were previously 

crushed and sieved as the particle diameter distribution of commercial Amberlyst 70 ranges 

between 0.40-0.80 mm. Fig. 7.5A shows that reaction rates of DEE and EOE formations 

remained constant in the whole range of flow rates explored (q=4-6.7 ml/min, which correspond 

to surface velocity vs=0.105-0.176 cm/s. Hence, it is assured that reaction rates do not depend 

on volumetric flow rate over 0.105 cm/s at 190ºC.  

 

Fig. 7.5: Effects of vs (dp=0.16-0.25 mm) (A) and of 1/dp (vs=0.176 cm/s) (B) on reaction rate of 

DEE (◊) and EOE (♦) formations. T=190ºC, P=25 bar, ROcOH/EtOH=1. The error bars indicate the 

confidence interval at a 95% probability level. 
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As for IMT, experiments were carried out to delimit the operation conditions in which catalyst 

particle size has no influence on the measured reaction rates. IMT influence was checked by 

varying catalyst particle diameter at the operation conditions where EMT has no influence 

(T=190ºC, ROcOH/EtOH=1, Q=6.7 ml/min). Catalyst batches with particle diameter 0.16-0.25 mm, 

0.25-0.40 mm, 0.40-0.63 mm and 0.63-0.80 mm were tested. In addition, commercial 

distribution of particle sizes of Amberlyst 70 (dp=0.57 ± 0.05 mm, 95 % confidence interval) and 

commercial fraction with the dp ≥ 0.63 mm particles excluded (dp=0.49 ± 0.05 mm, 95 % 

confidence interval) were also tested. 

Fig. 7.5B plots reaction rates of DEE and EOE synthesis by varying the catalyst particle size 

(1/dp). It is shown that above 1/dp=2 mm
-1

 reaction rates do not change, within the limits of the 

experimental error. Accordingly, it can be considered that the influence of IMT on the measured 

reaction rates was avoided by using Amberlyst 70 particles with dp ≤ 0.63 mm. As commercial 

particle distribution of Amberlyst 70 has a significant amount of larger particles than 0.63 mm, 

they were affected by internal diffusion restrictions. Thus, the measured reaction rates by using 

commercial Amberlyst 70 at 190ºC were 38% lower than those observed without IMT 

resistances. Accordingly, further experiments were performed over sieved but non-crushed 

commercial Amberlyst 70 (dp=0.49 ± 0.05mm, 95 % confidence interval). 

Preliminary experiments allowed setting the conditions at which measured reaction rates were 

free of mass transfer resistences (q ≥ 4 mL/min and dp ≤ 0.63 mm). Different sets of 

experiments were carried out to outline the form of the rate equations and to endorse the 

suitability of the expressions. The first set of experiments was carried out using OcOH / EtOH 

mixtures. Tested temperatures were 150, 164, 177 and 190ºC, and explored OcOH / EtOH 

molar ratios (ROcOH/EtOH) were 0.25, 0.5, 1, 2 and 4. Fig. 7.6 gathers the reaction rates obtained 

in the fixed-bed reactor from pure reactants. Reaction rates to DEE and EOE are plotted as a 

function of EtOH activity (A and B, respectively) and as a function of OcOH activity (C and D, 

respectively). It has to keep in mind that in the present case aEtOH and aOcOH are mutually 

dependents as no diluents were added to the mixture.  

As observed, the maximum reaction rates to form DEE were achieved in the runs with EtOH 

excess, where aEtOH is the highest and aOcOH the lowest. (Fig. 7.6A). As concerns to EOE 

formation, it clearly shows an reaction rate maximum in equimolar runs, aEtOH=aOcOH~0.5 (Fig. 

7.6B). The driving force of the surface reaction step of EOE formation, aEtOHaOcOH, also has the 

maximum values in equimolar conditions, while it decreases in excess of EtOH or OcOH. This 

fact is in agreement with the hypothesis that the rate-limiting step of the EOE formation is the 

surface reaction step; thereby, the adsorptive equilibrium of all the participants is maintained.  
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Fig. 7.6: Reaction rates of DEE (A) and EOE (B) formation from pure reactants as a function of 

EtOH activity and reaction rates of DEE (C) and EOE (D) formation as a function of OcOH 

activity. ◊ 190ºC; ▲177ºC; □ 164ºC; ● 150ºC. 

A second set of experiments were performed by adding DEE and EOE to the reactant mixture 

(≤17 w/w %, ≤33 w/w %, respectively) in the feed of the fixed-bed reactor to evaluate the effect 

of aDEE and aEOE on the reaction rates. From a kinetic point of view, the presence of an 

additional compound in the feed lowers the driving force of the reaction but they can also 

compete with reactants for the adsorption on the sulfonic groups. As it can be observed in Fig. 

7.7A for DEE formation and Fig. 7.7B for EOE formation, the decrease of the reaction rates can 

be successfully explained by the decrease of the driving force of the surface reaction step to 

form DEE (aEtOH
2
-aDEEaw/Keq,DEE) and to form EOE (aEtOHaOcOH-aDEEaw/Keq,EOE). Accordingly, the 

inhibiting effect of the presence of DEE and EOE in the feed on the reaction rates seems to be 

negligible. This fact is most probably due to the DEE and EOE adsorption on acid sites is low, 

and therefore, they do not compete with EtOH and OcOH, what agrees with their low polarity 

[76].  
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Fig. 7.7: Reaction rates divided per the driving force of the surface reaction of DEE (A) and EOE 

(B) formation as a function of the aethers. ◊ 190ºC; ▲177ºC; □ 164ºC; ● 150ºC. 

 
Besides the formation of DEE and EOE, the dehydration of EtOH and OcOH forms 

stoichiometric quantities of water. The effects of water on the reaction between OcOH and 

EtOH in the fixed-bed are complex, as discussed in the former chapter. Using a fixed-bed 

reactor, an excessively long period of time was necessary to get a steady activity to EOE. As for 

DEE, after 70 h of experiment reaction rates of DEE formation were still decreasing. 

Accordingly, the effect of awater on the reaction rates to form DEE and EOE was evaluated in the 

batch reactor. 

 

Batch reactor experiments 

A third set of experiments were performed to evaluated the effect of water on the reaction rates. 

Tested temperatures were 150, 164, 177 and 190ºC; examined OcOH / EtOH molar ratios 

(ROcOH/EtOH) were 0.5, 1, and 2; and explored conversions 0 < XEtOH (%) < 84 and 0 < XOcOH (%) 

< 65. Reaction rates to form DEE and EOE decreased with the presence of reaction products in 

the mixture; as a result of the equilibrium approach. Nevertheless, Fig. 7.8A for DEE formation 

and Fig. 7.8B for EOE formation shows a high sensitivity of the reaction rates towards water 

activity, and as a result, the rate-decreasing cannot be explained only by  the decrease of the 

driving force. This behaviour was not observed by the presence of ethers in the reaction mixture 

(Fig. 7.7). As expected, the inhibiting effect of water must play a relevant role on the reaction 

rates expressions.  
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Fig. 7.8: Reaction rates divided per the driving force of the surface reaction of DEE (A) and EOE 

(B) formation as a function of the aw. ◊ 190ºC; ▲177ºC; □ 164ºC; ● 150ºC. 

Modelling of kinetic data 

Based on the reaction rate dependence, and considering the LHHW or ER formalisms by 

assuming that surface reaction is the rate-limiting step [54], [89], [92]–[94], [114], [115], [116] 

the basic kinetic models are; 

DEE w

EtOH EtOH OcOH OcOH w w

2

DEE EtOH
eq,DEE

DEE n

a a
k a

K
r =

(1+K a K a K a )

 
  
 

 

 eq. 7.22 

EOE w
EtOH OcOH

EtOH EtOH OcOH OcOH w w

EOE
eq,EOE

EOE n

a a
k a a

K
r =

(1+K a K a K a )

 
  
 

 

 eq. 7.23 

Three parts can be distinguished in the kinetic expressions (eq. 7.22 and 7.23): the kinetic term, 

the driving force and the adsorption term. The kinetic terms, kDEE and kEOE, are the product of 

the surface rate constants and the adsorption equilibrium constants. The particular form how 

constants are grouped depends on the formalism (LHHW or ER) [44], [89]. The kinetic terms are 

expected to be only temperature dependent according to Arrhenius law. The driving force 

accounts for the distance to the equilibrium position. The values of the thermodynamic 

equilibrium constants, Keq,i, were found experimentally in the previous section (see eq. 7.11 and 

eq. 7.12). The adsorption term of the general expression accounts for the adsorption of each 

species on the active sites of the catalysts. Simplified models can be obtained by assuming the 

adsorption of some substances to be negligible in front of that of the others. Likewise, simplified 
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models are doubled if the fraction of unoccupied sites in the catalyst is considered significant or 

not (by taking values of 0 if it is assumed the number of unoccupied sites to be negligible, or 1 if 

this assumption is neglected). Finally, one of the parameters to be determined is the exponent 

of the adsorption term related to the number of active centers that participates in the surface 

reaction step. In this work, the exponent of the adsorption term has been varied from 1 to 3.  

Table 7.7 shows all the possible kinetic expressions for DEE and EOE formation, derived from 

eq. 7.21 and 7.22, which were fitted to the experimental data (36 models). Optimal values of the 

parameters have been obtained by minimization of the sum of squared relative errors (SSRR), 

based on Levenberg-Marquardt algorithm (eq. 7.24). Relative errors were used instead of the 

absolute ones as relative error is assumed to be similar in whole temperature range.  

2

exp calc

exp

r -r
SSRR=

r

 
  
 

  eq. 7.24 

Table 7.7: Kinetic models tested with n values ranging from 1 to 3. 

 
model 

 
rDEE rEOE 

 

1 

  
  EtOH w

2

DEE EtOH DEE w eq,DEE

n

w EtOH

k a -a a K

a + K K a

  
  EtOH w

EOE EtOH OcOH EOE w eq,EOE

n

w EtOH

k a a -a a K

a + K K a

 

 

2 

  
  OcOH w

2

DEE EtOH DEE w eq,DEE

n

w EtOH

k a -a a K

a + K K a

  
  OcOH w

EOE EtOH OcOH EOE w eq,EOE

n

w EtOH

k a a -a a K

a + K K a

 

 

3 

  
    EtOH OcOH w

2

DEE EtOH DEE w eq,DEE

n

OcOH EtOH w EtOH

k a -a a K

a + K K a + K K a

  
    EtOH OcOH w

EOE EtOH OcOH EOE w eq,EOE

n

OcOH EtOH w EtOH

k a a -a a K

a + K K a + K K a

 

 
4 

  
 EtOH w

2

DEE EtOH DEE w eq,DEE

n

EtOH w

k a -a a K

1+K a +K a

  
 EtOH w

EOE EtOH OcOH EOE w eq,EOE

n

EtOH w

k a a -a a K

1+K a +K a

 

 
5 

  
 OcOH w

2

DEE EtOH DEE w eq,DEE

n

OcOH w

k a -a a K

1+K a +K a

  
 OcOH w

EOE EtOH OcOH EOE w eq,EOE

n

OcOH w

k a a -a a K

1+K a +K a

 

 
6 

  
 EtOH OcOH w

2

DEE EtOH DEE w eq,DEE

n

EtOH OcOH w

k a -a a K

1+K a +K a +K a

  
 EtOH OcOH w

EOE EtOH OcOH EOE w eq,EOE

n

EtOH OcOH w

k a a -a a K

1+K a +K a +K a

 

 

The kinetic fit was performed at each temperature separately. It was observed that kinetic 

constants were highly temperature dependent, as expected. On the contrary, the adsorption 

equilibrium constants (models 4-6), or else, the adsorption constant ratios (models 1-3) were 

low sensitive to the temperature. As a consequence, a satisfactory description of the reaction 

rates of EOE and DEE formations were obtained by using values of the adsorption coefficients 

which are independent of the temperature. 
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Fig. 7.9: Comparison of goodness of fit in terms of SSRRmin/SSRR of DEE (A) and EOE (B) 

formations. □n=1 ■ n=2 ■ n=3. 

Fig. 7.9 gathers the goodness of the fitted for the different kinetic models. A value of 1 

corresponds to the minimum of squares, and as a result, the best fit. As observed in Fig. 7.9, 

models 5.1, 5.2 and 5.3 were rejected, as a consequence that they presented negative 

adsorption constants. A closer look at those models leads to infer that in both reactions 

a) The best models are explained by the participation of 1 sulfonic group in the surface-

reaction step.  

b) The number of unoccupied active centers in the catalyst during the reaction is not 

significant, what seems reliable in alcohol liquid-phase dehydrations.  

c) The best kinetic models of DEE and EOE formations are those where adsorption of 

both EtOH and OcOH is present. This fact is in agreement with chapter 5 that states 

that both OcOH and EtOH are present into the acidic ion-exchange resins, possibly in a 

similar composition to the bulk solution.  

Accordingly, the best models with the optimal fitted parameters appeared to be 

  
EtOH OcOH water

11 2

EtOH DEE water eq,DEE

DEE eq, DEE

2.10·10 exp -11983 RT a -a a Kmol 1691
r  = ; K =exp -1.4

h·g a +0.5a +11.7a T

   
  
  

 
eq. 7.25 

  
EtOH OcOH water

11

EtOH OcOH EOE water eq,EOE

EOE eq,EOE

7.04·10 exp -12620 RT a a -a a Kmol 3374.8
r  = ; K =exp -4.3

h·g a +0.5a +11.7a T

   
  
  

 
eq. 7.26 

where T is expressed in K. 
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In Fig. 7.10 is compared the calculated reaction rates to DEE from eq. 7.25 (A) and to EOE from 

eq. 7.26 (B) versus experimental reaction rates. Proposed models are able to predict the 

experimental data with similar deviations, independently of the reactor used, what enhances the 

reliability of both expressions. In addition, residuals of the fitted equations proved to be 

randomly distributed in the whole range of reaction rates explored (Fig. 7.11). 

 

Fig. 7.10: Calculated reaction rates by eq. 7.25 (A) and by eq. 7.26 (B) versus experimental 

rates. Open symbols represent the experimental data by using the fixed-bed reactor and closed 

symbols by using the batch reactor. 

 

Fig. 7.11: Residuals distribution for eq. 7.25 (A) and by eq. 7.26 (B). Open symbols represent 

the experimental data by using the fixed-bed reactor and closed symbols by using the batch 

reactor. 
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With respect to the parameter values, Ea values are obtained from the kinetic term of eqs. 7.25 

and 7.26. In Fig. 7.12 shows that the apparent rate constant of eqs. 4 and 5 follows an 

Arrhenius temperature dependence (7.12A and 7.12B, respectively). Similar dependence on the 

temperature was observed for EOE formation, Ea,EOE=105 ± 4 kJ/mol, than for DEE formation, 

Ea,DEE=100 ± 5 kJ/mol. It is to be noted that the obtained Ea value of EOE formation from OcOH 

and EtOH on Amberlyst 70 is slightly lower than that obtained on a preliminary study over 

Dowex 50Wx2 (117 ± 5 kJ/mol) and in the range of the dehydration reactions of 1-pentanol to 

di-n-pentyl ether and 1-hexanol to di-n-hexyl ether (115 ± 5 and 108 ± 5 kJ/mol, respectively) 

[26], [27]. 

 

Fig. 7.12: Arrhenius plot of the kinetic term of DEE (A) and of EOE (B) formations. 

As concerns to adsorption constants, Kw / KEtOH=11.7 ± 1.0 and KOcOH / KEtOH=0.5 ± 0.1 values 

were obtained. Thus, the following trend is inferred: Kwater  >> KEtOH > KOcOH, in agreement with 

reported literature [5]. The role attributed to water in the proposed expressions assumes a 

strong competitive adsorption by competing with EtOH and OcOH for acid centers, being the Kw 

12-fold than that of EtOH and 23-fold than that of OcOH. Therefore, reaction rates to DEE and 

to EOE are greatly affected by the presence of water in the liquid-phase. 

The strong inhibitor effects of water on EOE formation by using an acid resin are still much 

lower than those observed in the synthesis of bisphenol A, being Kw two orders of magnitude 

higher than those of acetone and phenol [115]. This fact is most probably a result of the also 

greater affinity of EtOH and OcOH for acid sites, which competes with water, than those of 

acetone and phenol that have less affinity for acid sites. 

 

 

 



7. Kinetic and equilibrium study of EOE formation from EtOH and OcOH dehydration on Amberlyst 70 

101 
 

7.4 Conclusions 

From the larger equilibrium values obtained from EOE synthesis reaction, it can be concluded 

that EOE synthesis is more shifted to products than DEE reaction. Such observation is in 

agreement with the literature data on linear ethers formation, where as a general rule, the 

longer the ether chain formed, the higher the experimental equilibrium values are. 

Both alcohol dehydration reactions proved to be exothermic, with a reaction enthalpy change (at 

25ºC) of -(18.9 ± 1.3) kJ/mol for EOE synthesis, and -(12.1 ± 0.9) kJ/mol for DEE synthesis, in 

the same magnitude order than other dialkyl ethers. Concerning reaction entropy changes, both 

reaction showed negative values, being -(13.6 ± 4.2) J/(K·mol) for EOE synthesis and -(7.6 ± 

2.1) J/(K·mol) for DEE synthesis. Standard formation enthalpy and molar entropy of EOE were 

computed to be  -(436 ± 7) kJ/mol and -(434 ± 11) J/(mol·K), respectively. 

A kinetic model in terms of compound activities to describe the formation of ethyl octyl ether 

from ethanol and 1-octanol is proposed. From the proposed model it is inferred that the fraction 

of free actives sites is negligible and only one acid site seems to take part in the surface 

reaction step, which is considered as the rate-limiting step of the mechanism. 

The adsorption equilibrium constants of the formed ethers are negligible compared with that of 

alcohols and water. Thus, it is considered that diethyl ether and ethyl octyl ether are released 

directly to the liquid-phase. On the contrary, reaction rates were highly sensitive to water 

content, by clearly showing strong inhibiting effects. Eventually, the apparent activation energy 

for the ethyl octyl ether reaction is about 105 ± 4 kJ/mol, a similar dependence on the 

temperature to that of the main side product diethyl ether, 100 ± 5 kJ/mol. 
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8.1 Introduction 

EOE production has to compete with the less steric demanding DEE formation, obtained from 

the ethylating agent, EtOH or DEC. Thus, the loss of bioethanol molecules by DEE formation is 

a serious industrial trouble as this ether cannot be blended straightforwardly in commercial 

diesel fuels. Steric hindrances within the catalyst play a determinant role on the selectivity to 

EOE or to DEE. A greatly expanded polymer in the reaction medium favours the diffusion of 

bulky reactants molecules, such as OcOH, inside the catalysts and EOE production is 

maximized (Chapter 3 and 4). In general, this desired flexible structure can be achieved by 

decreasing the crosslinking degree of the resin. Nevertheless, it is worth mentioning that an 

extensive catalyst swelling reduces the efficiency per unit of volume of the catalyst bed [37]. 

Another tailoring technique to reduce steric limitations could be achieved by controlling the 

location of acid centers. This concept was patented by Chevron Research Company in 1972 

and attempts to reduce the amount of by-products by using resins with less amount of acid 

groups, but more accessible ones. Such invention reduced the extent of isobutene 

polymerization process by partially neutralizing the resin capacity [117]. Instead of neutralizing 

acid groups, McMaster and Gilliland limited the sulfonation time with the aim of limiting location 

of the sulfonic groups to the pellicular layer at the surface of the polymer beads [118], [119]. 

Further step was then partial sulfonation of porous (macroreticular) polymer beads gradually 

advancing in the whole volume of the polymer beads from pore wall surface into deeper layers 

of polymer matrix. In 1995, Rohm and Haas Company patented the use of such partially 

functionalized resins for esterification process, favoring in this way the formation of esters over 

the formation of ethers [120]. Eventually, the partially sulfonated macroreticular resin Amberlyst 

46 (hereinafter termed surface sulfonated) has been commercialized [41].  

The term surface sulfonated refers to a functionalization near to the surface of the polymer gel-

phase and it is not restricted to only the surface layer. As a result, Amberlyst 46 has a 

heterogeneous distribution of the sulfonic groups, with a sulfonated shell enveloping an inner 

non-sulfonated polymer core. Thus, the polymer has great morphological differences depending 

on the polymer depth. The external layers posses an strong hydrophilic character, whereas the 

inner part has an hydrophobic one [9], [42]. Nowadays, specific acid site distribution in 

Amberlyst 46 has been used to study the influence of the acid sites location on many reaction 

processes, as well, to optimize the selectivity to the desired products [121]–[126].  

In previous chapters, a relationship between the resin crosslinking degree and the EOE yield 

was found. In the present work, the influence of the resin functionalization degree on EOE 

formation is explored.  
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8.2 Experimental procedure 

A series of partially sulfonated resins were prepared from a macroreticular PS-DVB copolymer 

(DVB content about 20 %) originally manufactured as an intermediate for production of ion 

exchanger Ostion KSPC (Spolchemie, Ústí nad Labem, Czech Republic). For to achieve low to 

intermediate sulfonation degrees, 15 g of the polymer was placed in 100 mL of concentrated 

sulphuric acid and afterwards, the mixture was stirred and heated for 6 hours at a temperature 

selected for to achieve the desired degree of sulfonation (T=30-80ºC). These conditions (long 

reaction time and control of the conversion by reaction temperature) were chosen with the aim 

of limiting differences in the sulfonation degree at the periphery and center of the polymer 

beads. Then, the mixture was cooled down slowly and slowly diluted by percolation with 

sulphuric acid solution of gradually diminishing concentration (90, 70, 50, 30 and 10 v/v %). 

Eventually, the product was washed  with deionized water till neutral pH of the eluent. 

Additionally, two samples with higher sulfonation degree were prepared by sulfonation of 

polymer pre-swollen in DCE overnight.  

The performance of a series of partially sulfonated resins was tested over two reaction 

pathways for obtaining EOE: the dehydration of OcOH and EtOH; and the transesterification 

reaction between OcOH and DEC to EOC, and its subsequent decomposition to EOE. 

Catalytic tests were performed in the batch reactor (described in section 2.3.1). Resins were 

previously dried at 110ºC under vacuum overnight. Then, the reactor was loaded with 70 mL of 

OcOH / DEC mixture (molar ratio, ROcOH/DEC=2) or OcOH / EtOH mixture (molar ratio, 

ROcOH/EtOH=1), stirred at 500 rpm and heated up to 150ºC. Pressure was set at 25 bar with N2 to 

maintain the liquid-phase. When the mixture reached the working temperature, dried catalyst 

(1g) was injected into the reactor. Catalyst injection was taken as zero time. Experiments lasted  

6h.  

Conversion (Xj) and selectivity (Sj
k
) were computed by eqs 8.1 and 8.2, respectively. 

  

 j

moleof j reacted
X = ×100 %,mol mol

moleof j initially
 eq. 8.1 

  k

 j

moleof j reacted to form k
S = ×100 %,mol mol

moleof j reacted
 

eq. 8.2 

Relative turnover frequency (TOFrel) of each catalyst with respect to the least sulfonated 

catalyst, 306, was computed by eq 8.3. Initial turnover frequency (TOF) of EtOH and OcOH 

reaction to form EOE and that of DEC and OcOH reaction to form EOC; were computed from 

the functions of formed moles vs. time, as described in former chapters. 
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 i
rel

306

TOF
TOF = -

TOF
 eq. 8.3 

8.3 Results and discussion 

8.3.1 Catalyst preparation 

A series of partially functionalized catalysts were prepared by the procedure described in the 

previous section. As Table 8.1 shows, resins prepared without adding a pre-swelling solvent 

presented acid capacity ranging from 0.81 to 3.10 mmol H
+
/g. The functionalization degree on 

those polymers was clearly controlled by the reaction temperature. Additionally, it was checked 

that the acid capacity was not increased by enlarging the reaction time from 6 to 12 h at 80ºC 

(3.10 ± 0.02 and 3.02 ± 0.13, respectively). Thus, it can be considered that after 6 h at 80ºC, the 

sulfonation reaction did not proceed. Accordingly, without the use of a swelling solvent a 

maximum of 3.10 mmol H
+
/g of acid capacity were achieved, as a result of diffusion restrictions 

of acid sulphuric within the gel-phase.  

Table 8.1: Description of the sulfonation procedure and the acid capacity of synthesized 

catalysts. Sulfonation time=6h. 

catalyst solvent T (ºC) meq H
+
/g

a
 

306 no 30 0.81 

406 no 40 0.99 

606 no 60 1.89 

806 no 80 3.10 

D806A DCE 80 4.02 

D806B DCE 80 4.37 
a
 titration against standard base 

 

On the other hand, higher acid capacities were achieved (4.02-4.37 mmol H
+
/g) at the same 

temperature by using DCE as solvent. It was used to pre-swell initially the PS-DVB sample 

(lipophilic character), and in this way, to make easier the permeation of sulphuric acid from the 

bead surface to the least accessible zones of the polymer skeleton. The resin D806B is a 

repetition sample of D806A with a slight modification of the preparation conditions. In the 

synthesis of D806B, it was diminished the DCE amount to bare minimum for the polymer 

swelling (50 mL), instead of the 100 mL of DCE used in the synthesis of D806A. 

8.3.2 Catalyst characterization 

The morphological properties of the prepared catalysts and those of the commercial ones were 

evaluated in dry and swollen state. Fig. 8.1 displays the surface areas in dry state as a function 

of the acid capacity of catalysts. It is observed that the higher the functionalization degree, the 

lower the surface area in dry state. The same pattern could be observed on the commercial 
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catalysts. These results can be explained by the fact that as higher the hydrophilic character of 

the polymer is, higher the pore collapse after the drying procedure was.  

 

Fig. 8.1: BET surface area of the resins versus the acid capacity. ●prepared ○ commercial. 

 

As seen in former chapters, resins swell in contact with liquids and their morphology is 

drastically changed. Accordingly, the surface area in dry state is only an indication of the 

polymeric structure and the measurements are not likely to be far from their working-state 

morphology. A suitable picture of such morphological modifications is provided by the resin 

swelling degree in the desired medium. As the catalytic tests were performed essentially in a 

polar environment, water was selected as representative solvent.  

The swelling results are presented in Fig. 8.2. The bead swelling increased as higher was the 

acid capacity of catalysts. The results show that the least sulfonated polymers have negligible 

swelling in water as a result of the lipophilic character of the unsulfonated polymer. As for the 

medium sulfonated catalysts, the functionalized parts are surrounded by too much of the 

unsulfonated ones that prevents their fully expansion. Then, the presence of sulfonic groups in 

the whole gel-phase changed the initial lipophilic character of the polymer to a hydrophilic one. 

Consequently, the bead expansion was greatly enhanced in the most sulfonated polymers. 
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Fig. 8.2: Volume resin swelling versus the acid capacity of the resins. ●prepared; ○ commercial. 

 

In addition to quantify the bead swelling, an extensive description of nature and characteristics 

of the polymeric pores can be obtained from ISEC technique. ISEC measurements provide 

information about the true pores and the gel-phase spaces in swollen state. The morphology of 

the starting polymer was assessed both in aqueous and in organic solvent. As Table 8.2 shows, 

the starting polymer showed in the two solvents a highly dense gel-phase structure in the 1.5 

nm
-2

 zone and large pores in the 30-60 µm range. Differences between organic and aqueous 

environment were found in the total porosity detected. Organic measurements showed twice 

volume of true pores than in water. However, the divergences were especially high in the gel-

phase. In aqueous environment, the volume detected in the gel-phase was almost negligible, 

whereas it was 12-fold higher in organic solvent. Alternative ISEC measurements confirmed the 

lipophilic character of the starting polymer. 
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Table 8.2: Volumes of different density zones (cm
3
/g) of the starting polymer provided from 

ISEC measurements. 

  dpore (nm) tetrahydrofuran water 

macropores 

60 0.52 0.08 

30 0.35 0.42 

20 
  

15 
  

12 
  

8     

  polymer fraction density (nm
-2

) tetrahydrofuran water 

gel-phase 

0.1     

0.2 
  

0.4 
  

0.8 
  

1.5 0.60 0.05 

 

With respect to the functionalized resins, ISEC experiments were performed in aqueous 

environment. The volume contribution of each true pore diameter is shown in Fig. 8.3. As 

concerns to the prepared catalysts, the least sulfonated catalyst showed very narrow true pores 

(in the 8-12 nm zone). In contrast, the true pore diameter ranged in the 30-60 nm zone in the 

most sulfonated ones. Accordingly, the diameter of true pores increased as more functionalized 

was the resin. By taking into account that the total true pore volume was not increased, results 

suggests that some true pores increased their original size and others disappeared as a result 

of the gel-phase expansion. The commercial catalysts presented a similar trend. The low 

sulfonated catalyst Amberlyst 46 only showed narrow pores (12 nm); while the fully sulfonated 

Amberlyst 15 presented a wide range of pore diameters, including large pores (12-60 nm). 
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Fig. 8.3: ISEC pattern of the true pores. 

With respect to the gel-phase morphology, Fig. 8.4 shows the volume contribution of each 

polymer chain fraction. As a general rule, the Vsp was increased as more sulfonic groups were 

attached in the polymer skeleton. In agreement with the swelling measurements, the presence 

of sulfonic groups changed the initial lipophilic character of polymer phase to a partially or fully 

hydrophilic one. As for the quality of the gel-phase of the prepared catalysts, it appeared 

residual volumes in the least dense fractions in the most sulfonated resins. Nevertheless, the 

compact and poorly swollen polymer domain predominated in the entire series of sulfonated 

resins. As for the commercial catalysts, the gel-phase was even more rigid than the prepared 

ones by only showing the densest gel-phase fraction (1.5 nm
-2

). This fact can be a consequence 

of a slightly higher crosslinking degree in the PS-DVB copolymers of Amberlyst 15 and 

Amberlyst 46 than that of the prepared catalysts. 
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Fig. 8.4: ISEC pattern of the gel-phase. 

After discussing the ISEC and swelling results, a schematic representation of the sulfonation 

process is proposed in Fig. 8.5. At the first sulfonation stage, the sulphonic groups were 

presumably located in the surface of microspheres, whereas the internal part remained 

unsulfonated. In these catalysts, interstitial volumes among gel-phase agglomerates were 

observed. Then, the progressive presence of sulfonic groups changed the lipophilic character of 

the gel-phase to hydrophilic, allowing water to swell it. In this procedure, gel-phase was 

progressively expanded and narrow true pores disappeared.  

 

Fig. 8.5: Proposed morphological scheme of the sulfonation process.  

●non sulfonated domain ●sulfonated domain; ○ true pores. 
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8.3.3 Catalytic tests  

OcOH / EtOH reaction system 

 

Table 8.3: Conversions (%) and selectivities (%) by using OcOH and EtOH as reactants. 

T=150ºC, P=25 bar, ROcOH/EtOH=1, Wcat=1g, t=6h. 

catalyst X EtOH X OcOH S EtOH
EOE

 S EtOH
DEE

 S OcOH
EOE

 S OcOH
DNOE

 

306 6.1 2.5 32.4 67.6 70.1 29.9 

Amberlyst 46 8.7 2.6 31.9 68.1 80.7 19.3 

406 7.7 2.7 32.7 67.3 79.4 20.6 

606 17.5 4.6 26.1 73.9 79.6 20.4 

806 31.1 4.8 16.3 83.7 85.3 14.7 

D806A 40.1 4.9 13.6 86.4 86.7 13.3 

D806B 41.9 5.0 13.6 86.4 83.5 16.5 

Amberlyst 15 46.9 4.7 11.0 89.0 84.3 15.7 

 

Table 8.3 summarizes the catalytic performance of the prepared sulfonated resins and the two 

commercial ones, Amberlyst 15 and 46, on the reaction of EOE formation from OcOH and 

EtOH. Conversion data show that EtOH reacts always faster (XEtOH=6.1-46.9%) than OcOH 

(XOcOH=2.5-5.0%). The difference between XEtOH and XOcOH were increased clearly with 

functionalization degree of the resin. As observed, they were especially pronounced in the more 

sulfonated catalysts. Fig. 8.6 displays the OcOH and EtOH conversions as the relative values, 

compared always to the most active catalyst, Amberlyst 15. Relative conversions of EtOH 

increased proportionally as the number of acid centers of the catalysts increased. Thus, it can 

be assumed from Fig. 8.6 that all the acid sites were accessible to EtOH molecules. Much less 

marked was the dependence of the sterically more demanding OcOH conversion on the acid 

capacity. The OcOH conversion pattern suggests that the acidic groups introduced in the latest 

stages of the sulfonation were attached to the least accessible zone of polymer skeleton, where 

OcOH accessibility was very poor. 
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Fig. 8.6: OcOH (●) and EtOH (♦) conversion as a function of acid capacity of catalysts. 

T=150ºC, P=25 bar, ROcOH/EtOH=1, W=1g, t=6h. Filled symbols represent prepared catalysts and 

open symbols represent commercial resins. 

As for the selectivities, Table 8.3 reveals that for each alcohol the production of the ether with 

lower molecular weight, less sterically demanding (SEtOH
DEE

> SEtOH
EOE

 and SOcOH
EOE

> SOcOH
DNOE

) 

was the most favoured reaction. Such behaviour was more noticeable in the more sulfonated 

catalysts, what confirms that the reaction was sterically hindered within those sulfonated resins. 

On a fully sulfonated resin (Amberlyst 15), only 11% of the reacted EtOH was converted to 

EOE, whereas it was raised to 32% by using the least sulfonated resin (306). Similar behaviour 

was observed for OcOH. Fig. 8.7 shows the number of moles of DEE, EOE and DNOE formed 

over the acidic resins in the OcOH and EtOH reaction, where catalysts are ordered as a 

function of their acid capacity. It can be observed that the production of DEE was maximized in 

the most sulfonated catalysts. In contrast, such pattern was not observed for the ethers that 

require OcOH as reactant (EOE and DNOE). The product distribution profile suggests that the 

last acid centers added to the polymer skeleton were not as efficient as the first ones to catalyze 

the EOE and DNOE formations. 
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Fig. 8.7: Moles of DEE (■), EOE (■) and DNOE (□) formed from OcOH and EtOH on the 

sulfonated catalysts. T=150ºC, P=25 bar, ROcOH/OcOH=1, Wcat=1g, t=6h. 

OcOH / DEC reaction system 

Table 8.4. Conversions (%) and selectivities (%) by using OcOH and DEC as reactants. 

T=150ºC, P=25 bar, ROcOH/DEC=2, Wcat=1g, t=6h. 

catalyst X DEC X OcOH S DEC
EOE

 S DEC
EOC

 S DEC
DEE

 S OcOH
EOE

 S OcOH
EOC

 S OcOH
DNOE

 S OcOH
DOC

 

306 13.4 11.2 10.8 83.8 5.3 9.3 71.8 14.8 4.2 

Amberlyst 46 13.3 13.3 13.4 81.4 5.2 10.0 61.1 26.2 2.6 

406 14.3 14.4 13.5 81.0 5.6 10.7 64.3 19.3 5.6 

606 19.2 19.8 20.6 72.5 6.9 15.6 55.0 24.8 4.6 

806 25.0 23.1 29.9 52.3 17.8 25.5 44.5 27.0 3.0 

D806A 31.2 26.6 30.9 37.4 31.7 28.9 35.0 22.9 2.1 

D806B 34.1 28.4 28.9 36.3 34.7 28.1 35.3 20.0 1.7 

Amberlyst 15 37.0 28.7 27.3 32.2 40.5 28.1 33.1 25.9 2.0 

 

The catalytic behaviour of the sulfonated resins in the reaction between OcOH and DEC to form 

EOE is gathered in Table 8.4. After 6h, DEC conversions ranged from 13.3 to 37.0% and OcOH 

conversions from 11.2 to 28.7%. It is observed that OcOH conversions were higher in the 

reaction with DEC than with EtOH. Such behaviour can be explained by the affinity of reactants 

with sulfonated resins. The number of moles retained in the swollen resin follows this trend: 

EtOH > OcOH >> DEC, in agreement with their polarity [76]. In the OcOH / EtOH mixture, there 

is a higher amount EtOH than OcOH inside the resin, which favours EtOH conversion. On the 

contrary, in the OcOH / DEC mixture the liquid inside the resin is predominantly OcOH, which 

expedites the OcOH conversion. 
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Fig. 8.8 shows the OcOH and DEC conversions as the relative values, compared again to the 

most active catalyst, Amberlyst 15. With respect to DEC relative conversion, it increased linearly 

as a function of the acid capacity of the catalyst. DEC conversion pattern is similar to that 

previously observed for EtOH. Thus, it can be concluded that all the acid centers were 

accessible for both ethylating agents, DEC and EtOH. With respect to OcOH conversions, they 

were highly increased over the least sulfonated polymers, acid capacity less than 2 mmol H
+
/g. 

Nevertheless, it is observed again a saturation region, in which the increase of OcOH 

conversion is low at the higher sulfonated degrees. 

 

Fig. 8.8: OcOH (●) and DEC (♦) conversion as a function of acid capacity of catalysts. T=150ºC, 

P=25 bar, ROcOH/DEC=2, W=1g, t=6h. Filled symbols are the prepared catalysts. Open symbols 

are the commercial ones. 

In terms of selectivity, the formation of ethers from carbonates proceeds in two consecutive 

steps and intermediate compounds are involved (Table 8.4). Selectivity to DEE increased as the 

acid capacity of the catalysts increased. At the same time, the selectivity to EOE reaction 

pathway (EOC+EOE) diminished. It should be mentioned that at longer reaction time all EOC 

would be consumed to form EOE, and in the same way, DOC to form DNOE (described in detail 

in chapter 4). Fig. 8.9 displays the moles of products formed in the OcOH / DEC reaction 

system. For the sake of clarity, the intermediate compounds were plotted together with their 

corresponding ether. Thus, EOC, which would decompose to EOE at longer reaction time, was 

plotted together with EOE. Likewise, DOC and DNOE were plotted together. In this way, the 

formation of DEE, EOE and DNOE were displayed as competitive reactions, analogously as the 

first reaction system studied. As it is seen, the EOE reaction pathway was more favoured than 

the DEE formation. Nonetheless, DEE formation was highly increased in the more sulfonated 

catalysts, as a result of steric hindrances of EOE formation. With respect to DNOE formation, 

the ether with the highest molecular weight, its formation was low over all the tested catalysts 
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due to the highest sterically hindrances. However, selectivity to DNOE pathway (DOC+DNOE) 

was also decreased at the highest sulfonation degrees.  

 

Fig. 8.9: Moles of DEE (■), EOE+EOC (■) and DNOE+DOC (□) formed from OcOH and DEC 

reaction on the catalysts. T=150ºC, P=25 bar, ROcOH/DEC=1, W=1g, t=6h. 

 

8.3.4 Relationship between resin morphology and catalytic activity 

The degree of active site participation in the different resins can be estimated by assuming that 

all the acid groups of the least sulfonated catalyst, 306, are accessible and participating on the 

desired reaction (eq 8.3). Fig. 8.10 plots the TOFrel of EtOH and OcOH reaction to form EOE 

and DEC and OcOH reaction to form EOC (that would decompose to EOE) as a function of the 

acid capacity. Similar trend was observed on both reactions; the number of active sites that take 

part in the reaction dramatically decrease with the acid capacity. Surprisingly, the TOFrel values 

decrease from the very beginning of the sulfonation degree of catalysts. Thus, only a half of the 

606 active sites (1.89 mmol H
+
/g) would be involved in the dehydration of EtOH with OcOH and 

the transesterification of DEC with OcOH. With respect to the most sulfonated catalysts, only a 

third of active sites would be participating in such desired reactions. TOFrel values disclose that 

in the tested catalysts there is a relevant fraction of sulfonic groups, located in very dense 

polymer zones, unavailable for the EOE formation. 
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Fig. 8.10: TOFrel of EtOH and OcOH reaction to form EOE (♦) and TOFrel of DEC and OcOH 

reaction to form EOC (●) as a function of acid capacity of catalysts. T=150ºC, P=25 bar, 

ROcOH/EtOH=1, W=1g, t=6h. Filled symbols represent prepared catalysts and open symbols 

represent commercial resins. 

Analysis of ISEC data in aqueous media gives valuable qualitative information on the resin 

morphology in the reaction medium. In previous works, a successful correlation between the 

morphology depicted from ISEC data of fully sulfonated resins and catalytic activity were 

obtained for EOE synthesis. Apparently, EOE formation proceeds predominantly inside the 

swollen polymer gel matrix. This fact is assumed as a consequence of the fact that catalytic 

activity was much higher in gel-type polymers than macroreticular ones. Besides, steric 

restrictions were minimized over the resins that presented a highly swollen gel-phase in water 

ISEC measurements (chapter 3 and 4). 

However, ISEC characterization technique was not able to predict the catalytic results in the 

present work. As quoted in the literature, the morphological description deduced from aqueous 

ISEC measurements is more complex on partially sulfonated resins [42]. This fact is a result of 

the presence of both lipophilic and hydrophilic domains. As it was revealed, the initial 

sulfonation stage influenced predominantly the more accessible, least dense, domains of the 

polymer mass. In the OcOH / EtOH and OcOH / DEC mixtures, the interaction of the organic 

moiety of OcOH with the unsulfonated polymer domains of the polymer skeleton most probably 

swelled it. By means of swelling of the unfunctionalized domains, the steric conditions were also 

improved in the sulfonated regions, as similarly observed by the presence of toluene in the 

phenol alkylation [42]. 
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Nevertheless, the sulfonated form of these potentially low dense domains (0.1-0.4 nm
-2

) cannot 

freely swell in ISEC measurements using water as solvent, due to hydrophobic surrounding 

domains that prevent its expansion. Accordingly, they were not detected by aqueous ISEC 

technique in the least sulfonated polymers (306, 406, 606) and only little expanded polymer with 

high density (1.5 nm
-2

) was observed (Fig. 8.4). The poor water swelling observed by means of 

laser technique on low sulfonated resins would be consistent with this observation (Fig. 8.2). At 

higher sulfonation degrees, the unsulfonated domain was highly reduced and cannot prevent 

the fully expansion of the least crosslinked polymer domain. As a result, the less dense gel-

phase (0.1-0.4 nm
-2

) was only detected by ISEC technique in the most sulfonated resins (806, 

D806A, D806B).  

 

8.4 Conclusions 

The PS-DVB polymer used in this work presented a heterogeneous crosslinking degree within 

the gel-phase. Thus, acid centers are placed in zones of the polymer with different density. At 

the initial sulfonation stage, acid centers are only placed in the least dense domain of the 

polymer mass. At higher functionalization degrees, acid centers are also located in the least 

accessible zones of the resin. 

Catalytic tests revealed the dependencies of the selectivity to EOE on the different polymer 

domain. The last sulfonated domain of the polymer is poorly accessible for OcOH molecules. As 

a result, the centers located in this domain are inefficient to produce EOE and DNOE. In 

contrast, the entire polymer domain is accessible for EtOH and DEC molecules. Accordingly, 

the latest acid centers added are only efficient to produce DEE. 

It can be concluded that the EOE formation occurs mainly in the initially sulfonated, least dense 

zone. In contrast, DEE is formed in the whole polymer matrix. Therefore, for production of long 

chain ethers such as EOE or DNOE; which are preferred as diesel fuels using of partially 

sulfonated in macroreticular exchanger catalysts would be advantageous. 



 

 
 

Chapter 9 
 

Summary and outlook
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9.1 Summary 

Ethyl octyl ether is a bioethanol-derived component that has excellent properties as diesel fuel. 

This work proved that ethyl octyl ether can be produced successfully in liquid-phase at the 

temperature range of 130-190ºC by using acidic ion-exchange resins, as suitable and economic 

catalysts. The use of two promising reactants that can be a renewable compound source, 

ethanol and diethyl carbonate, have been explored. Both reactants are able to ethylate 1-

octanol and form the desired product. However, an identical industrial drawback is observed on 

both reactants, the loss of ethyl groups to form diethyl ether, which is not suitable as diesel 

compound.  

In order to minimize the diethyl ether formation, and in this way, to maximize the ethyl octyl 

ether production; several commercial acidic resins were tested, or else, prepared and 

subsequently tested. The best catalysts are those allowing 1-octanol to access to most sulfonic 

groups of the catalyst. Such desired properties can be achieved by decreasing the amount of 

crosslinking agent of resins, as a result, the resin has a high capacity to swell and at the same 

time a low gel-phase density. Another tailoring technique that lets 1-octanol to access to the 

vast majority of sulfonic groups is by locating them only in the least crosslinked domains of the 

gel-phase. Both tailoring techniques involve higher selectivity to ethyl octyl ether, which can be 

extrapolated to other bulky molecules. However, the former involves a reduction of the catalytic 

activity per volume unit of the catalyst bed, and the latter, per mass unit. 

Interestingly for the resin designers and exploiters, it is proved that the Inverse Steric Exclusion 

Chromatography characterization technique allows predicting the catalyst performance in polar 

environments with high accuracy. In such a manner that polymeric catalysts having high specific 

volume of the swollen gel-phase and predominant domains with low polymer density are 

desired to enhance selectivity and yield to ethyl octyl ether formation.  

The comparison between both ethylating agents, ethanol and diethyl carbonate, revealed that 

similar selectivity and yield can be potentially obtained over acidic resins. Nevertheless, diethyl 

carbonate is less competitive at shorter reaction times in a batch reactor, or at lower catalyst 

mass in continuous units, as a result of the slow decomposition of the required intermediate, 

ethyl octyl carbonate. On the other hand, the production of CO2 via diethyl carbonate and the 

availability of ethanol nowadays suggest that use of the alcohol to form ethyl octyl ether is 

preferred.  

Reaction rates to form ethyl octyl ether from ethanol and 1-octanol showed similar, or slightly 

higher, dependency on the temperature than that to form the main side product, diethyl ether. 

Thus, an enhancement of the reactor temperature clearly increases the feasibility of an ethyl 

octyl ether production unit. Accordingly, the use of chlorinated resins, which proved to be 

thermally stable up to 190ºC in the ethyl octyl ether production, is desired. Among the 

commercial ones, Amberlyst 70 is the most suitable catalyst in terms of selectivity to ethyl octyl 
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ether due to its low polymer density in aqueous swollen state. Such polymeric expansion should 

be taken into account to not block the liquid flow when fixed-bed reactors are employed. That is 

to say, Amberlyst 70 must be loaded to the reactor in a swollen state. 

The relatively large values found of the thermodynamic equilibrium constant of ethyl octyl ether 

formation assure high conversion levels in an industrial etherification process. Interestingly, the 

equilibrium values of the formation of diethyl ether are around a half than those of ethyl octyl 

ether (150-190ºC). A comprehensive kinetic analysis enlightened that reaction rates to form 

ethyl octyl ether on Amberlyst 70 are strongly inhibited by the presence of water. Thus, reaction 

rates would be enhanced if most water is removed from bioethanol. Eventually, it was revealed 

that production of ethyl octyl ether is optimized by using a molar ratio of 1-octanol / ethanol of 

1.4, a particle diameter of Amberlyst 70 of less than 0.63 mm and a reactor temperature of 

190ºC. If it is desired to maximize the difference between the formation of ethyl octyl ether rate 

and the diethyl ether one, it is preferred to work on a higher excess of 1-octanol involving a 3.40 

1-octanol / ethanol molar ratio.  
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9.2 Outlook 

Catalyst screening data revealed that most catalytic performance can be qualitatively predicted 

by ISEC technique, as well as several quoted studies in an aqueous environment. Industrially, 

in most of the catalytic applications of ion-exchange resins, the catalysts operate in a partially or 

entirely swollen state. Some representative examples are the production of bisphenol-A, MTBE, 

ETBE or TAME. As it is well-known, the performance of comprehensive experimental catalytic 

tests is economically and timely consuming. Accordingly, in order to prepare or select an 

appropriated catalyst in these kinds of processes, ISEC measurements can provide economical 

and highly valuable information. Therefore, the development of a commercial ISEC technique 

can be really attracting from resin designers and exploiters. To the best of our knowledge, only 

two homemade ISEC experimental set-ups are worldwide available. 

As concerns the resin design, the exploration of some novel ion-exchangers can lead to 

minimize the dramatic inhibitor effect of water on the reaction rates. In this line, the use of 

acylation agent before sulfonation of the polymer carrier is claimed to reduce the high 

hydrophilic character of the catalysts. Specifically for bioethanol derived ethers production, a 

higher catalyst affinity towards lipophilic reactants would most possibly hinder the alcohol 

adsorption on acid sites, but not in the same extent. The polarity of the compounds that 

influence the production of such compounds follows this trend: long chain alcohol < ethanol < 

water. The organic moiety of the long chain alcohol can contribute significantly to increase its 

concentration inside a lipophilic resin. Thus, selectivity to diethyl ether would be highly 

minimized. In addition, the loss of alcohol-resin affinity but also water-resin affinity could also 

lead to interesting results. 

The present work explored the possibility of using bioethanol to ethylate 1-octanol, and in this 

way, to produce an excellent diesel fuel as ethyl octyl ether. Interesting conclusions have been 

drawn from a technical standpoint by using acidic ion-exchange resins as catalysts. In case, 

further research could be focused to overcome the difficulties of the scale up the process from 

lab to industrial case, by process simulations or the use of an experimental pilot reactor. 

Nonetheless, the low availability of 1-octanol nowadays implicates a too high price for ethyl octyl 

ether as a petroleum derived product. Thus, conclusions extracted in this thesis can also be 

qualitatively extrapolated to the synthesis of similar linear ethanol derived ethers. In this line, a 

comprehensive exploration of the availability of long chain alcohols, or else long chain olefins, 

available in the petroleum industry or, in the foreseeable future, in the promising biorefinery 

industry, can overcome the economical drawback. 
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Nomenclature 

ai catalytic activity on the reaction i with respect to fresh catalyst 

aj activity of component j 

a,i terminal activity of reaction i 

a, b, c, d temperature dependence coefficients 

aj, bj, cj, dj polynomial form coefficients of heat capacities expressions of compound j 

CS conventionally sulfonated 

Cp,(l) molar heat capacities in the liquid-phase of the compounds j (J/(mol·K)) 

DCE 1,2-dichloroethane 

DEC diethyl carbonate 

DEE diethyl ether 

dp catalyst particle diameter (mm) 

dpore catalyst pore diameter (nm) 

DOC di-n-octyl carbonate 

DNOE di-n-octyl ether 

DVB divinylbenzene 

EA ethylating agent, referring to ethanol or diethyl carbonate 

Ea apparent activation energy (kJ/mol) 

EMT external mass transfer 

EOC ethyl octyl carbonate 

EOE ethyl octyl ether 

ER Eley-Rideal 

ETBE ethyl tert-butyl ether 

EtOH ethanol 

Fj molar flow rate of species j (mol/h) 

[H
+
] acid capacity (meq H

+
/g) 

i reaction i 

IH van’t Hoff integration constant 

IK Kirchoff equation integration constant 

IMT internal mass transfer 

ISEC Inverse Steric Exclusion Chromatography 

j compound j 

k compound k 

kd,i rate constant of reaction i decay (h
-1

) 

ki kinetic constant of reaction i (mol/(h·g)) 

Ka
i
 or Keq,i reaction equilibrium constant of reaction i using compound activities 

Kx
i
 reaction equilibrium constant of reaction i using compound molar fractions 

Kγ
i
 reaction equilibrium constant of reaction i using compound activity coefficients 

Kj adsorption equilibrium constant of compound j 
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KΓ Poynting correction factor 

LHHW Langmuir-Hinshelwood-Hougen-Watson 

n number of active sites that take part in the surface reaction 

NIST National Institute of Standards and Technology of US 

OcOH 1-octanol 

OS oversulfonated 

P pressure (bar) 

PS-DVB polystyrene-divinylbenzene 

q volume flow rate (mL/min) 

ri reaction rate of reaction i (mol/(h·gcat)) or (mol/(h·kgcat)) 

ri
0
 initial reaction rate of reaction i (mol/(h·kgcat)) 

ROcOH/EA molar ratio of 1-octanol with respect to ethanol or diethyl carbonate 

SBET surface area in dry state obtained by BET method (m
2
/g) 

Sj
k
 selectivity of reactant j toward product k (%, mol/mol) 

S
0

(l) liquid-phase molar entropy (J/(K·mol)) 

SiC silicon carbide 

SS surface sulfonated or low sulfonated 

SSR sum of squared errors 

SSRR sum of squared relative errors 

T temperature (ºC)  

t0 initial time of the activity decay (h) 

US United States 

V mean particle volume in liquid (cm
3
) 

V0 mean particle volume of dried resin in air (cm
3
) 

Vj molar volumes of compound j (L/(mol)) 

Vpore pore volume in dry stat (cm
3
/g) 

vs superficial velocity (cm/s) 

Vsp specific volume of the swollen phase (cm
3
/g) 

Wcat catalyst mass (g) 

x molar fraction (mol/mol) 

Xj conversion of reactant j (%, mol/mol) 

Yj
k
 yield of reactant j toward product k (%, mol/mol) or (%, g/g) 

ΔrG
0
(l) standard free energy change of reaction in liquid-phase (kJ/mol) 

ΔrH
0
(l) standard molar enthalpy change of reaction in liquid-phase (kJ/mol) 

ΔfH
0
(l) liquid-phase standard molar enthalpy change of formation (kJ/mol) 

ΔrS
0
(l) standard molar entropy change of reaction in liquid-phase (J/(mol·K)) 

ΣS sum of individual surface area (m
2
/g) 

ΣVpore sum of individual pore volumes (cm
3
/g) 

ρj liquid density of compound j (g/cm
3
) 

ρs skeletal density of resins (g/cm
3
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Mj molecular weight of compound j (mol/g) 

σ active center 

νj stoichometric coefficient of compound j 

γi activity coefficient of compound j 
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Resum curt 

Des del 1900, la població mundial s’ha més que quadruplicat, els ingressos econòmics de la 

qual ha augmentat en un factor de 25 i el consum d’energia per un factor de 23. En els proper 

anys no s’espera un creixement de la demanda energètica dels països ja desenvolupats, però 

sí de les economies emergents, amb Xina liderant majoritàriament aquesta demanda. A 

conseqüència de polítiques de suport a les energies renovables, els alts preus del petroli i les 

innovacions tecnològiques, es preveu que aquestes seguiran tenint una ràpida expansió. Entre 

elles, el bioetanol es preveu que tindrà un creixement exponencial en els propers anys. 

El bioetanol té grans propietats en motors d’ignició, i actualment és mesclat amb les gasolines 

o usat directament. No obstant, utilitzar bioetanol per produir èters com l’ETBE, TAME i TAEE 

millora substancialment la qualitat de la gasolina, a més de ser energèticament més eficient. De 

la mateixa manera, la utilització de bioetanol per produir compostos diesel seria una forma 

d’incrementar la producció de diesel (deficitària a Europa), i tan o més important, de millorar-ne 

la qualitat i així reduir les emissions nocives de material particulat, òxids de nitrogen, sofre i 

compostos volàtils. Un èter derivat del bioetanol que té excel·lents propietats com a 

combustible diesel és l’etil octil èter. 

L’objectiu d’aquest treball és l’estudi de la producció d’etil octil èter en fase líquida mitjançant 

catalitzadors heterogenis. Això implica la selecció dels reactius i catalitzadors més adequats 

des d’un punt de vista de rendiment i selectivitat. A més, l’estudi termodinàmic i cinètic de la 

reacció en permeten tan el disseny com la optimització del procés. 

Els assajos catalítics s’han realitzat en un reactor de tanc agitat operant en discontinu i en un 

reactor tubular operant en continu. El reactor discontinu s’ha utilitzat per la selecció dels millors 

catalitzadors i per l’estudi termodinàmic de la reacció; i el reactor tubular  per estudiar l’evolució 

de l’activitat catalítica al llarg del temps i per realitzar-ne l’estudi cinètic. Ambdós reactors han 

treballat a 25 bars de pressió i en un rang de temperatures de 130 a 190ºC. L’anàlisi de les 

mostres s’ha realitzat en un cromatògraf equipat amb un TCD, injectades directament des del 

reactor. Els reactius utilitzats han sigut etanol, dietil carbonat i 1-octanol. La majoria de 

catalitzadors utilitzats han sigut resines poliestirèniques de bescanvi iònic. Les resines 

seleccionades tenien diferent capacitat àcida, grau d’encreuament, estructura reticular i 

estabilitat tèrmica.  

Els resultats experimentals han mostrat que el compost etil octil èter es pot formar mitjançant 

l’etilació de 1-octanol a partir de dos reactius provinents d’origen renovable, l’etanol i el dietil 

carbonat. No obstant, la mateixa problemàtica econòmica és observada en ambdós compostos, 

la pèrdua de grups etils en la formació de dietil èter; el qual, tot i provenir d’una font totalment 

renovable, no presenta tan bones propietats com a component diesel com l’etil octil èter. 

Per tal de minimitzar la formació de dietil èter, i d’aquesta forma, maximitzar la producció d’etil 

octil èter, diverses resines àcides de bescanvi iònic comercials han sigut assajades, o bé, 



 

 
 

preparades i assajades. S’ha observat que els millors catalitzadors eren els que permeten al 1-

octanol accedir a la majoria de grups sulfònics del catalitzador. Aquest tipus de resines són les 

que posseeixen un menor quantitat d’agent reticulant, concretament de divinilbenzè. Una altra 

tècnica per permetre al 1-octanol accedir a la gran majoria de centres actius és col·locant els 

grups sulfònics només en el domini menys reticulat de la fase gel. Ambdós tècniques impliquen 

una major selectivitat cap a etil octil èter, extrapolable a altres molècules voluminoses. Tot i 

això, cal tenir present que la primera tècnica implica una reducció en la eficiència per unitat de 

volum del llit catalític, i la segona, per unitat màssica. Un fet molt rellevant observat en aquest 

treball és que la caracterització de les resines mitjançant de cromatogràfica inversa d’exclusió 

de grandaria permet predir l’activitat catalítica en un medi polar amb gran exactitud. D’aquesta 

forma, les resines àcides que presenten un elevat volum específic de fase gel inflada i en les 

que predomina els dominis de baixa densitat polimèrica són les més desitjades per incrementar 

la selectivitat i el rendiment cap a etil octil èter.  

La comparació del dos agents etilants, etanol i dietil carbonat, ha revelat que es poden obtenir 

similars selectivitats i rendiments en temps de reacció elevats mitjançant resines àcides de 

bescanvi iònic. Tanmateix, l’ús de dietil carbonat és menys competitiu en temps de reacció 

curts, a conseqüència de la lenta descomposició de l’intermedi de la reacció, l’etil octil carbonat. 

A més, la formació de CO2 via dietil carbonat i la més alta disponibilitat d’etanol suggereix que 

l’ús de l’alcohol és preferit des d’un punts de vista tan industrial com ambiental. 

L’estudi termodinàmic ha revelat que els valors relativament alts de la constant termodinàmica 

d’equilibri químic en la formació de l’etil octil èter asseguren alts nivells de conversió en un 

procés industrial. A més, s’ha observat que la constant d’equilibri de la reacció competitiva de 

formació de dietil èter té valors inferiors en el rang de temperatures explorat, fet que en limitaria 

la seva formació. Finalment, un exhaustiu estudi cinètic ha revelat que la velocitat de formació 

d’etil octil èter a partir d’etanol i 1-octanol és altament inhibit per l’adsorció de l’aigua en els 

centres actius d’Amberlyst 70. Per això, l’extracció de l’aigua provinent del bioetanol afavoriria 

la producció d’etil octil èter. Finalment, s’ha observat que les velocitats de reacció són 

optimitzades utilitzant una raó molar 1-octanol / etanol de 1.4, un diàmetre de partícula menor a 

0.63 mm d’Amberlyst 70 i una temperatura de reactor de 190ºC. En el cas de voler maximitzar 

la diferència entre la formació d’etil octil èter i dietil èter, és preferible treballar amb un excés 

més elevat de 1-octanol fins a una raó molar de 1-octanol / etanol de 3.4. 

 

 

 

 



 

 
 

Resum llarg 

1. Introducció 

Des del 1900, la població mundial s’ha més que quadruplicat, els ingressos econòmics de la 

qual ha augmentat en un factor de 25 i el consum d’energia per un factor de 23. En els proper 

anys no s’espera un creixement de la demanda energètica dels països ja desenvolupats, però 

sí de les economies emergents, amb Xina liderant majoritàriament aquesta demanda. A 

conseqüència de polítiques de suport a les energies renovables, els alts preus del petroli i les 

innovacions tecnològiques, es preveu que aquestes seguiran tenint una ràpida expansió. Entre 

elles, el bioetanol es preveu que tindrà un creixement exponencial en els propers anys [1-5]. 

El bioetanol té grans propietats en motors d’ignició, i actualment és mesclat amb les gasolines 

o usat directament. No obstant, és preferible la utilització del bioetanol per tal de produir etil 

èters, com ara l’etil ter-butil èter o l’etil ter-amil èter; degut a que l’adició d’aquests components 

millora substancialment la qualitat de la gasolina, a més de ser energèticament més eficient 

[6,7]. Anàlogament, la utilització de bioetanol per produir compostos diesel seria una forma 

d’incrementar la producció de diesel (deficitària a Europa), i tan ho més important, de millorar-

ne la qualitat i així reduir les emissions nocives de material particulat, òxids de nitrogen, sofre i 

compostos volàtils [8,9]. Un èter derivat del bioetanol que té excel·lents propietats com a 

combustible diesel és l’etil octil èter (EOE) [10]. 

El EOE és un èter asimètric de 10 àtoms de carboni, C10H22O (Fig. 1), té un contingut d’oxigen 

del 10 % en pes, una temperatura d’ebullició de 187ºC, una densitat d4
20

 de 0.771, un índex de 

cetanatge de 97 i satisfactòria lubricitat. A més de les seves excel·lents propietats com a 

component diesel, també pot ser utilitzat en una gran varietat d’usos industrials com a 

component de colorants, pintures, cautxús, resines i lubricants [10-13]. 

Fig. 1: Estructura del EOE. 

Els èters lineals poden ser sintetitzats a partir de la deshidratació d’alcohol lineals primaris 

mitjançant catalitzadors àcids. La deshidratació d’alcohols s’ha demostrat com un tipus de 

reacció molt útil per obtenir èters lineals com ara el dimetil èter, di-n-butil èter, di-n-pentil èter o 

el di-n-octil èter [14,15]. Típicament, la deshidratació d’alcohols s’ha catalitzat industrialment a 

partir d’àcid sulfúric. No obstant, els catalitzadors sòlids tenen avantatges com ara una més 

fàcil separació. En aquesta línia, s’ha provat que les resines de bescanvi iònic poden catalitzar 

reaccions de deshidratació d’alcohols cap a èters simètrics lineals amb gran selectivitat (97-

99%) [15]. 



 

 
 

Les resines de bescanvi iònic són molt útils degut a que després de la seva utilització es poden 

separar fàcilment per filtració, com també es poden utilitzar en columnes. A la Fig. 2 es pot 

observar un exemple de perles de resines de bescanvi iònic. Les resines de bescanvi iònic 

poden ser utilitzades com a catalitzadors, tan com a substitut de l’àcid sulfúric com per 

immobilitzar catalitzadors metàl·lics [16]. La majoria de resines de bescanvi iònic comercials 

estan formades per un copolímer de poliestirè-divinilbenzè (PS-DVB). Les resines PS-DVB 

àcides són atractives ja que, comparades amb altres catalitzadors àcids, exhibeixen unes 

concentracions més altes de grups àcids (~5 meq H
+
/g) [15]. Pel contrari, la força àcida 

d’aquestes és més baixa que la dels típics catalitzadors inorgànics com les zeolites [17]. 

L’activitat catalítica de les resines àcides està totalment condicionada per l’accessibilitat dels 

seus centres actius [15]. Així, sembla obvi que, prèviament a l’ utilització de qualsevol resina és 

necessari el seu estudi morfològic. 

 

Fig. 2: Perles de resines de bescanvi iònic. 

Les resines PS-DVB estan dividies morfològicament en dos grups : les tipus gel i les 

macroreticulars. Les resines tipus gel estan copolimeritzades sense l’ús de porífer i la seva 

porositat només apareix en estat inflat. En canvi, en la polimerització de les resines 

macroreticular es fa ús d’un dissolvent (porífer) que crea porus permanents. Els dos tipus de 

resines veuen molt augmentada la seva superfície porosa en medi polar. Així, la morfologia de 

les resines no pot ser caracteritzada per tècniques convencionals com ara l’adsorció de 

nitrogen o la intrusió de mercuri ja que aquestes tècniques precisen de mostres completament 

seques. Fins a la data, la única tècnica que permet caracteritzar les resines en medi inflat és la 

Cromatografia Inversa d’Exclusió de mida (ISEC). Aquesta tècnica ha permès trobar 

correlacions entre la morfologia del polímer i la seva activitat catalítica [18-20]. 

A part de l’acidesa i l’accessibilitat de les resines, es tan o més important, conèixer com 

evoluciona la seva activitat amb el temps. Les resines àcides, al ser un material polimèric, 

tenen com a important desavantatge la pèrdua de centres actius a altes temperatures, 

típicament per sobre de 120-150ºC. Tot i així, algunes resines tenen estabilitat tèrmica fins a 

190ºC degut a que han estat prèviament clorades [17]. 



 

 
 

Finalment, per tal de dissenyar un reactor químic de formació de EOE mitjançant resines àcides 

de bescanvi iònic, és imprescindible modelar la reacció mitjançant expressions cinètiques. 

Quan s’usa un catalitzador sòlid és necessari que, almenys un dels reactius s’adsorbeixi a la 

superfície del catalitzador. Per tant, la reacció química està formada per un procés complex, on 

diferents etapes elementals tenen lloc (Fig. 3). 

 

Fig. 3: Etapes del procés catalític en la reacció A → B. 

1. Difusió del reactiu de la fase líquida fins a la superfície del catalitzador. 

2. Difusió del reactiu a través del catalitzador 

3. Adsorció del reactiu al centre actiu 

4. Reacció química entre espècies adsorbides o entre espècies adsorbides amb espècies 

en fase líquida. 

5. Desorció del producte de reacció. 

6. Difusió del producte a través del catalitzador. 

7. Difusió del producte des de la superfície del catalitzador fins la fase líquida. 

 

En catàlisis heterogènia, els models clàssics provenen de la isoterma de Langmuir, basats en 2 

hipòtesis: a) la superfície conté un nombre fix de centres actius b) tots els centres actius són 

idèntics c) la reactivitat dels centres actius no depèn de la quantitat o la natura dels compostos 

presents a la superfície durant la reacció. En els formalismes de Langmuir-Hinselwood-

Hougen-Watson (LHHW) la reacció és entre espècies adsorbides, mentre que en el formalisme 

Eley-Rideal alguna de les espècies no està adsorbida [21]. En ambdós casos, el procediment 



 

 
 

general es basa en proposar una etapa limitant de velocitat i desenvolupar una expressió que 

s’adapti als resultats experimentals.  

L’objectiu d’aquest treball és estudiar el procés catalític per obtenir el compost EOE. Això 

involucra la selecció de la millor forma d’obtenir aquest producte i el millor catalitzador possible. 

A més, un cop seleccionat el procés òptim, es realitzarà un estudi termodinàmic i cinètic del 

procés que pugui ser útil en per la industria. 

Concretament, es aquest treball s’avalua la producció de EOE a partir de la deshidratació 

d’etanol (EtOH) amb 1-octanol (OcOH) a partir de resines àcides PS-DVB de bescanvi iònic, 

totes elles comercials. L’activitat catalítica de moltes resines es compara i s’estableixen 

relacions entre l’estructura de les resines amb la seva activitat catalítica. A continuació, 

s’estudia la formació de EOE a partir d’una mescla de OcOH amb dietil carbonat (DEC). De 

nou, la influència de l’estructura dels catalitzadors es relaciona amb la seva activitat catalítica. 

A continuació, l’eficiència dels dos agents etilants proposats, EtOH i DEC, es compara utilitzant 

els millors catalitzadors trobats. 

Un cop seleccionat la millor via d’obtenció del producte, s’avalua l’estabilitat dels millors 

catalitzadors a alta temperatura i amb la presència d’aigua en el medi a temps de reacció llargs. 

En aquest punt, es selecciona el millor catalitzador, en relació a activitat i estabilitat, s’obtenen 

dades de l’equilibri químic de la reacció i d’un model cinètic capaç de predir les velocitats de 

reacció. Finalment, s’explora la possibilitat d’incrementar la selectivitat cap a EOE a partir de la 

preparació i utilització de catalitzadors parcialment sulfonats. 

2. Experimental 

En aquest treball es va fer ús de 17 resines àcides comercials de diferent estructura, contingut 

de DVB, grau de sulfonació i estabilitat tèrmica. També, es van utilitzar 2 resines bàsiques, una 

zeolita i dos alúmines, totes elles comercials. A part, es van preparar i assajar 6 resines àcides 

parcialment sulfonades.  

L’estudi de la formació de EOE es va realitzar mitjançant dos dispositius experimentals, un 

reactor de tanc agitat operant en discontinu i un tubular de llit fix operant en continu. El reactor 

de tanc agitat té un volum nominal de 100-mL. La temperatura va estar controlada per un forn 

elèctric. La pressió de treball va ser de 25 bar, mitjançant nitrogen. Una sortida del reactor 

estava connectada directament a una vàlvula de mostreig que injectava el líquid a un 

cromatògraf GLC. Un esquema del reactor es pot observar en la Fig. 4. 



 

 
 

 

Fig. 4: Esquema de la instal·lació del reactor de tanc agitat. 

Previ al seu ús, les resines van ser assecades a 110ºC en un forn a pressió atmosfèrica i 

posteriorment a 110ºC a 0.01 bar. El reactor va ser carregat amb 70 ml de la mescla de 

reactius, pressuritzat a 25 bar, agitat a 500 rpm i escalfat fins la temperatura desitjada (130-

190ºC). Quan la mescla arribava a la temperatura, s’injectava el catalitzador ubicat en un 

cilindre extern, a partir de canvi de pressions. En alguns experiments el catalitzador va ser 

introduït directament amb la mescla de reactius. Els experiments van tenir una durada entre 6 i 

150 hores. La composició del sistema va ser analitzada durant l’experiment. 

El segon reactor usat, de llit fix, té un volum nominal de 20-mL. La mescla líquida era 

bombejada mitjançant dos bombes. La pressió aplicada va ser de 25 bar a partir d’una vàlvula 

reguladora de líquid, ubicada a la sortida del reactor. El llit catalític va consistir en una mescla 

homogènia de catalitzador i inert (quars o SiC partícules). La temperatura va ser controlada a 

partir d’un forn elèctric. Un esquema del reactor es pot observar en la Fig. 5. 

 

 



 

 
 

 

Fig. 5: Esquema de la instal·lació del reactor de llit fix. 

Previ al seu ús, les resines van ser assecades a 110ºC en un forn a pressió atmosfèrica i 

posteriorment a 110ºC a 0.01 bar. Les resines seques eren diluïdes amb l’inert i introduïdes al 

reactor. La mescla de reactius va ser mesclada i pre-escalfada a la càmera calenta. El caudal 

volumètric va estar comprès entre 0.25 i 6.7 ml/min. Un cop el reactor estava totalment inundat 

de líquid, era pressuritzat i escalfat a la temperatura desitjada (150-190ºC). Els experiments 

van tenir una durada de 2 a 70 hores. La composició del sistema va ser analitzada a la sortida 

del reactor durant l’experiment. 

3. Resultats i discussió 

EOE va ser format amb èxit a partir de la deshidratació entre OcOH i EtOH mitjançant resines 

àcides de bescanvi iònic. Tanmateix, la selectivitat cap a l’asimètric EOE (15-46%) va ser molt 

més baixa que les obtingudes en èters simètrics a partir d’un alcohol (58-99 %) [15], com a 

resultat de que la síntesis de EOE competeix amb la formació dels corresponents èters 

simètrics, el dietil èter (DEE) (43-83 %) i de di-n-octil èter (DNOE) (43-83%). 

La morfologia de les resines es va mostrar com un factor decisiu per tal d’optimitzar la 

producció de EOE. La selectivitat cap a EOE va ser incrementada en resines de tipus gel i 

macroreticulars amb baix contingut de DVB, degut a que tenen més espai entre cadenes en 

medi polar, sent Amberlyst 121 i Dowex 50Wx2 les resines més adequades en termes de 

maximització del rendiment. Degut a l’alta selectivitat cap a EOE i la seva alta estabilitat 

tèrmica, Amberlyst 70 també és un catalitzador atractiu per sintetitzar EOE.  

 

 



 

 
 

EOE també va ser format amb èxit a partir de DEC i OcOH. Primerament té lloc la 

transesterificació de DEC amb OcOH a etil octil carbonat. Seguidament, el carbonat es 

descompon a EOE. L’assaig de catalitzadors, resines àcides i bàsiques de bescanvi iònic, una 

zeolita, i dos alúmines, va mostrar que les conversions, selectivitats i rendiments més alts van 

ser aconseguits mitjançant resines àcides de bescanvi iònic.  

Anàlogament a la formació de EOE a partir de deshidratació d’alcohols, la síntesi de EOE a 

partir de DEC també va estar lligada a l’estructura de les resines, ja que com es pot observar a 

la Fig. 6A, resines amb semblant capacitat àcida van mostrar diferents rendiments. 

L’accessibilitat de les molècules va ser afavorida en resines amb gran capacitat d’inflament 

(Vsp) com s’observa a la Fig. 6B. Així, els catalitzadors amb una fase polimèrica molt expandida 

són els més adequats per tal de produir EOE. Aquests requisits es poden trobar en resines de 

baix contingut de DVB. 

 

Fig. 6: Influència de la capacitat àcida de les resines (A) i el Vsp en el rendiment cap a EOE 

respecte a DEC a 8h. T=150ºC, ROcOH/DEC =2, Wcat=2 g, 500 rpm. ♦Macroreticular; ♦Tipus gel. 

La formació de EOE a partir de mescles OcOH / EtOH, o bé, OcOH / DEC mitjançant l’ús de 

resines àcides amb baix contingut de DVB va ser comparat. Es va observar que el major 

inconvenient en ambdós reaccions és la pèrdua de grups etils per produir DEE. Com a 

conseqüència, la selectivitat cap a EOE respecte a l’agent etilant, DEC o EtOH, va ser 

relativament baixa (40-50 % a 8 hores de reacció). 

A temps llargs (48 hores), les conversions, selectivitats i els rendiments a EOE obtinguts van 

ser similar en ambdós sistemes, com es pot observar a la Figura 7 (A, B i C, respectivament). 

No obstant, les velocitat de reacció de formació de EOE van ser lleugerament més altes en el 

sistema OcOH / EtOH. Per tant, EtOH és considerat com l’agent etilant més adequat per formar 

EOE mitjançant resines àcides a temps de reacció curts i DEC només es pot mostrar competitiu 

a temps de reacció llargs, o en unitat en continu, en reactors sobredimensionats. A més a més, 



 

 
 

l’alta disponibilitat de EtOH en el mercat i la producció d’aigua com a subproducte suggereix 

que l’ús de EtOH és més recomanat que de DEC per tal de formar EOE. 

 

Fig. 7: Conversió (A), selectivitat (B) i rendiment (C) a EOE respecte l’agent etilant. (○ EtOH; ● 

DEC). Dowex 50Wx2, T=150ºC, ROcOH/EtOH= ROcOH/DEC=2, Wcat=2g.  

 



 

 
 

Amb la finalitat d’obtenir velocitats de reacció de formació de EOE a partir de EtOH i OcOH més 

elevades, i així fer més competitiu el procés, es va explorar l’augment de temperatura de treball 

a 190ºC. Dowex 50Wx2, la millor resina a 150ºC, va perdre una quantitat rellevant de centres 

actius a 190ºC. La pèrdua de grups sulfònics va ser incrementada per la presència de l’aigua 

formada per la deshidratació de OcOH i EtOH. 

Al contrari, la dessulfonació no va ser important a 190ºC en les resines Amberlyst 70 i Purolite 

CT 482, mostrant-se així tèrmicament estables a aquesta temperatura. Les velocitats de 

reacció van decréixer amb el temps d’operació fins a aconseguir un nivell d’activitat constant, 

però inferior que l’inicial. Aquest comportament va ser atribuït a que l’adsorció de l’aigua en la 

resina que competeix amb EtOH i OcOH pels centres actius, mostrant clarament una inhibició 

de les velocitats reacció. Tot i que, tan aviat com l’aigua és eliminada de les resines, les 

activitats van ser recuperades. A la Fig. 8 es pot observar com les resines reutilitzades van 

mostrar similar comportament cinètic que les resines fresques.  

 

Fig. 8: Evolució de l’activitat catalítica de la formació de EOE amb el temps a partir de EtOH i 

OCOH sobre Purolite CT482 (A) i sobre Amberlyst 70 (B) a 190ºC. ROcOH/EtOH=10, q=0.25 

ml/min, P=25 bar (■ 1
er

 cicle; ♦ 2
nd

 cicle; ▲ 3
er
 cicle). 

En paral·lel, els resultats experimentals van indicar que les resines no estaven completament 

inflades a l’inici de l’experiment. Com a resultat, la difusió de OcOH i de molècules voluminoses 

va estar dificultat en les primeres hores d’operació. No obstant, a mesura que avança el temps 

d’operació, l’aigua alliberada va actuar com a solvent i va inflar la resina. Així, la caiguda 

d’activitat catalítica va ser menys pronunciada cap a èters amb més limitacions estèriques 

(EOE i DNOE) que cap a l’èter amb menys limitacions (DEE). 

 



 

 
 

En l’estudi d’equilibri químic es va observar que els valors obtinguts de constants d’equilibri van 

ser més alts en el cas de la formació de EOE a partir de EtOH i OcOH que de la formació de 

DEE a partir de dos molècules de EtOH. A partir de la dependència amb la temperatura de les 

constants d’equilibri (veure Fig. 9), es va provar que les dos reaccions de deshidratació 

d’alcohols eren exotèrmiques. 

 

Fig. 9: Variació de ln K amb 1/T considerant constant la ∆rH(l)
0
 en el rang de temperatures 

explorat. (A) reacció de síntesis de EOE; (B) reacció de síntesis de DEE. 

Les variacions d’entalpia de les reaccions obtinguts a 25ºC trobades va ser de -(18.9 ± 1.3) 

kJ/mol per la formació de EOE, i de -(12.1 ± 0.9) kJ/mol per la formació de DEE. Pel que fa a la 

variació d’entropia de la reacció, les dos van mostrar valors negatius, -(13.6 ± 4.2) J/(K·mol) per 

la formació de EOE, i de -(7.6 ± 2.1) J/(K·mol) per la formació de DEE. Quant a la entalpia de 

formació estàndard i la entropia molar de EOE els valors obtinguts van ser de -(436 ± 7) kJ/mol 

i de -(434 ± 11) J/(K·mol), respectivament. 

Pel que fa a l’estudi de les velocitats de reacció, un model cinètic en termes d’activitat dels 

components per tal de descriure la formació de EOE i DEE (eq. 1 i 2, respectivament) és 

proposat. 

  
EtOH OcOH water

11 2

EtOH DEE water eq,DEE

DEE eq, DEE

2.10·10 exp -100 RT a -a a Kmol 1691
r  = ; K =exp -1.4

h·g a +0.5a +11.7a T

   
  
  

 
eq. 1 

  
EtOH OcOH water

11

EtOH OcOH EOE water eq,EOE

EOE eq,EOE

7.04·10 exp -105 RT a a -a a Kmol 3374.8
r  = ; K =exp -4.3

h·g a +0.5a +11.7a T

   
  
  

 
eq. 2 

 



 

 
 

on R és expressat en kJ/(mol·K) i T en K. En la Fig. 10 es pot observar que les eq. 1 i 2 són 

capaces de predir els resultats experimentals tan per la formació de DEE (A) com per la 

formació de EOE (B). Les desviacions són semblants independentment del reactor usat, tanc 

agitat o llit fix, fet que incrementa la fiabilitat dels models. 

 

Fig. 10: Velocitats de reacció calculades mitjançant l’eq. 1 (A) i l’eq. 2 (B) versus les 

experimental. Símbols oberts representen els resultats obtinguts en el reactor de llit fix i símbols 

tancats usant el reactor de tanc agitat. 

A partir del model proposat es pot inferir que la fracció de centres actius lliures és negligible i 

que només un centre actiu participa en l’etapa de la reacció en superfície, la qual és 

considerada com en l’etapa limitant de la velocitat de reacció. Les constant d’equilibri 

d’adsorció dels èters formats són negligibles comparades amb les dels alcohols i l’aigua. Així, 

pot ser considerat que tan el DEE com el EOE són alliberats directament a la fase líquida. Pel 

contrari, les velocitats de reacció es van mostrar molt sensibles a la presència d’aigua al medi, 

manifestant clarament un efecte inhibidor. Les energies d’activació aparent obtingudes van ser 

de 105 ± 4 kJ/mol per la formació de EOE i de 100 ± 5 kJ/mol per la formació de DEE. 

Finalment, es va explorar el comportament de les resines parcialment sulfonades en la reacció 

de síntesis d’etil octil èter. A partir de la preparació i assaig de resines àcides amb diferent grau 

de sulfonació, es va observar que les resines presenten un nivell de reticulació heterogènia 

dintre de la fase gel. Per tant, els centres actius van estar localitzats en zones de diferent 

densitat, i conseqüentment, de diferent accessibilitat. En l’etapa inicial de sulfonació, els 

centres àcids es van localitzar a la zona menys densa del polímer. A mesura que avança la 

sulfonació, aquests es van localitzar a la zona menys accessible del polímer. 

Els assajos catalítics de resines parcialment sulfonades va revelar que la selectivitat cap a EOE 

depèn de la zona del polímer a on té lloc la reacció. Com es pot observar en la Fig. 11, les 

últimes zones sulfonades són molt poc accessible per les molècules de OcOH, i per tant, 

l’increment relatiu de conversió de OcOH amb la capacitat àcida és molt baix a alts nivells de 



 

 
 

sulfonació. Conseqüentment, els últims centres àcids afegits a la resina són molt poc eficients 

en produir EOE. En canvi, tot el polímer és accessible per EtOH i DEC molècules, i així, 

aquestes zones només són eficients per tal de produir el subproducte DEE. D’aquesta forma, 

per la producció de molècules voluminoses com el EOE i el DNOE, l’ús de resines poc 

sulfonades pot ser avantatjós. 

 

Fig. 11: Conversió relativa de OcOH (●) and EtOH (♦) com a funció de la capacitat àcida dels 

catalitzadors. (T=150ºC, P=25 bar, ROcOH/EtOH=1, W=1g, t=6h). Els símbols tancats representen 

les resines preparades i els símbols tancats les resines comercials. 

 

4. Conclusions 

El compost EOE pot ser format mitjançant l’etilació de OcOH a partir de dos reactius d’origen 

renovable, EtOH i DEC. Les dos reaccions poden ser catalitzades mitjançant resines àcides de 

bescanvi iònic. Entre elles, les resines amb baix nivell de reticulació o les resines amb baix 

nivell de sulfonació afavoreixen la producció del compost desitjat EOE, en detriment del 

subproducte DEE. 

Entre els dos agents etilants, EtOH i DEC, les mateixes selectivitats i rendiments poden ser 

obtingudes a temps de reacció llargs. Tanmateix, l’ús de DEC és menys competitiu en temps 

de reacció curts, com a resultat de la lenta descomposició de l’intermedi de reacció, l’etil octil 

carbonat. A més, la formació de CO2 via dietil carbonat i la més alta disponibilitat d’etanol 

suggereix que l’ús de l’alcohol és preferit des d’un punts de vista tan industrial com ambiental. 

L’estudi termodinàmic ha revelat que els valors relativament alts de la constant termodinàmica 

d’equilibri químic en la formació de l’etil octil èter asseguren alts nivells de conversió en un 

procés industrial. A més, s’ha observat que la constant d’equilibri de la reacció competitiva de 



 

 
 

formació de dietil èter té valors inferiors en el rang de temperatures explorat, fet que en limitaria 

la seva formació. 

En la formació de EOE a partir de la mescla EtOH / OcOH, la resina Amberlyst 70 s’ha mostrat 

com el catalitzador més adequat pel que fa a activitat i estabilitat tèrmica. L’estudi cinètic ha 

permès proposar una expressió mecanístic que és capaç de predir les velocitats de reacció tan 

en un reactor de tanc agitat com en un reactor de llit fix. Aquestes velocitats de reacció són 

altament inhibides per la presència d’aigua en el medi. 
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