

Escola d’Enginyeria

Departament d’Arquitectura de Computadors
i Sistemes Operatius

R/parallel

Parallel Computing for R in non‐dedicated environments

Thesis submitted by Gonzalo Vera Rodríguez
in partial fulfillment of the requirements for
the degree of PhD per the Universitat
Autònoma de Barcelona. This work was
advised by Dr. Remo Suppi Boldrito.

Barcelona, May 2010

R/parallel

Parallel Computing for R in non‐dedicated environments

 Thesis submitted by Gonzalo Vera Rodríguez
in partial fulfillment of the requirements for the
degree of PhD per the Universitat Autònoma de
Barcelona. This work was developed in the
Computer Architecture and Operating Systems
department of the Universitat Autònoma de
Barcelona in option A – “Computer
Architecture and Parallel Processing” of the
PhD Informatics program, being advised by
Remo Suppi Boldrito.

Barcelona, May 2010

Thesis advisor

Dr. Remo Suppi Boldrito

I

II

To the light, that shows me the way

III

IV

Abstract
Traditionally, parallel computing has been associated with special purpose
applications designed to run in complex computing clusters, specifically set up with
a software stack of dedicated libraries together with advanced administration tools to
manage complex IT infrastructures. These High Performance Computing (HPC)
solutions, although being the most efficient solutions in terms of performance and
scalability, impose technical and practical barriers for most common scientists
whom, with reduced IT knowledge, time and resources, are unable to embrace
classical HPC solutions without considerable efforts.

Moreover, two important technology advances are increasing the need for parallel
computing. For example in the bioinformatics field, and similarly in other
experimental science disciplines, new high throughput screening devices are
generating huge amounts of data within very short time which requires their analysis
in equally short time periods to avoid delaying experimental analysis. Another
important technological change involves the design of new processor chips. To
increase raw performance the current strategy is to increase the number of
processing units per chip, so to make use of the new processing capacities parallel
applications are required. In both cases we find users that may need to update their
current sequential applications and computing resources to achieve the increased
processing capacities required for their particular needs. Since parallel computing is
becoming a natural option for obtaining increased performance and it is required by
new computer systems, solutions adapted for the mainstream should be developed
for a seamless adoption.

In order to enable the adoption of parallel computing, new methods and technologies
are required to remove or mitigate the current barriers and obstacles that prevent
many users from evolving their sequential running environments. A particular
scenario that specially suffers from these problems and that is considered as a
practical case in this work consists of bioinformaticians analyzing molecular data
with methods written with the R language. In many cases, with long datasets, they
have to wait for days and weeks for their data to be processed or perform the
cumbersome task of manually splitting their data, look for available computers to
run these subsets and collect back the previously scattered results. Most of these
applications written in R are based on parallel loops. A loop is called a parallel loop
if there is no data dependency among all its iterations, and therefore any iteration
can be processed in any order or even simultaneously, so they are susceptible of
being parallelized. Parallel loops are found in a large number of scientific
applications.

V

Previous contributions deal with partial aspects of the problems suffered by this kind
of users, such as providing access to additional computing resources or enabling the
codification of parallel problems, but none takes proper care of providing complete
solutions without considering advanced users with access to traditional HPC
platforms. Our contribution consists in the design and evaluation of methods to
enable the easy parallelization of applications based in parallel loops written in R
using non-dedicated environments as a computing platform and considering users
without proper experience in parallel computing or system management skills. As a
proof of concept, and in order to evaluate the feasibility of our proposal, an
extension of R, called R/parallel, has been developed to test our ideas in real
environments with real bioinformatics problems.

The results show that even in situations with a reduced level of information about
the running environment and with a high degree of uncertainty about the quantity
and quality of the available resources it is possible to provide a software layer to
enable users without previous knowledge and skills adapt their applications with a
minimal effort and perform concurrent computations using the available computers.
Additionally of proving the feasibility of our proposal, a new self-scheduling
scheme, suitable for parallel loops in dynamics environments has been contributed,
the results of which show that it is possible to obtain improved performance levels
compared to previous contributions in best-effort environments.

The main conclusion is that, even in situations with limited information about the
environment and the involved technologies, it is possible to provide the mechanisms
that will allow users without proper knowledge and time restrictions to conveniently
make use and take advantage of parallel computing technologies, so closing the gap
between classical HPC solutions and the mainstream of users of common
applications, in our case, based in parallel loops with R.

VI

Acknowledgments
It has been several years since this long travel begins and a lot of people that have
walk at my side during this time have contributed in one or another way to the
conclusion of this journey, so there is a lot of friends to whom I have to be grateful.

From the early days I want to thank my work friends at La Vanguardia, Viasalus and
T-Systems. I still remember how the last ones helped me to stay on track every time
they were fondly teasing me with “Herr Doctor”. I also want to thank all my friends
of Santa Coloma de Gramenet that, no matter the years, they kept asking for my
thesis and were patiently listening for my explanations, even though sometimes, I
am pretty sure, they could not understand me.

I keep great memories of my stay in The Netherlands at the Groningen
Bioinformatics Centre. I want to thank Ritsert C. Jansen who opened for me the
doors of his department and introduced me to world of bioinformatics and genetical
genomics. I also want to thank to all my colleagues there: Rainer Breitling, for
sharing, not only his room, but also his valuable experience and opinions, Morris A.
Swertz, for our endless discussions about bioinformatics data modeling and bindings
with R, Rudi Alberts and his coffee machine, with whom I get my first
bioinformatics publication, Martijn Dijkstra, from whom I learned how to bring
problems to the edge, Richard Scheltema and Bruno Tesson, with their great
discussions after lunch, and Yang Li and Jingyuan Fu, an example of perseverance,
for providing me with real R user needs. Een groot dank-je-wel aan alle.

I want to thank Armand Sánchez for welcome me and allow me to keep working in
bioinformatics, providing new challenging problems where I was able to apply my
research. These thanks are extended to all the colleagues of the Research Centre in
Agrigenomics (CSIC-IRTA-UAB Consortium) with whom I have been working in
the last years. My experience with them has been of great value for this work.

The members of the department of Computer Architecture and Operating Systems,
where this thesis has been done, also deserves my gratitude. I want to thank all the
colleagues with whom I have shared worries and experiences developing our
corresponding researches and writing our papers. It would be inexcusable not to
thank the technical team (famous PT), Dani and Javi, without which many
experiments could not be performed. I owe you more than a couple of coffees. I also
want to thank Porfidio Hernández and all the professors of the department that join
me at lunch time and help me to take a break while providing good
recommendations when I needed.

VII

I want to thank my thesis director, Remo Suppi, for allowing me to begin this thesis
and giving me the freedom to choose the research lines that we considered more
interesting. I am also grateful for his maintained confidence, even when past
professional responsibilities emerged and made things a bit more difficult.

Los agradecimientos más especiales son para mi familia. Mis padres, Asunción y
Gonzalo, y mis hermanos Carolina y Abraham. Gracias por apoyarme
incondicionalmente en cualquiera de mis decisiones, y darme todos los ánimos y
soporte necesarios para alcanzar mis objetivos y poder terminar este trabajo. Gràcies
també a la meva estimada Lorena, per caminar conjuntament amb mi tots aquests
anys, en els bons moments i en els temps difícils, però sempre mirant cap endavant i
avançant junts. You are my light.

A tots vosaltres, gràcies per ajudar-me a arribar al final d’aquest camí.

VIII

Contents
Abstract ... IV

Acknowledgments .. VI

Contents .. VIII

List of Figures .. XII

List of Tables ..XIV

Chapter 1 Introduction .. 1

1.1. Introduction ... 1

1.2. Motivation ... 1

1.3. Goals ... 7

1.4. Thesis Outline ... 9

Chapter 2 Characterizing the Running Environment ... 11

2.1. Introduction ... 11

2.2. Parallel Architecture Models .. 12

2.3. Parallel Programming Paradigms and Models .. 16

2.3.1. Parallel Programming Paradigms .. 17

2.3.2. Parallel Programming Models ... 20

2.4. Scheduling Strategies .. 21

2.5. Classifying Parallel Loops .. 23

2.6. Desktop Grids as an Additional Source for Computing Resources 27

2.6.1. Taxonomy of Desktop Grid ... 28

2.7. Parallel Computing with R .. 31

2.7.1. Packages Supporting the Message Passing Model 31

2.7.2. Packages Supporting the Shared Memory Model 33

2.7.3. Packages Supporting Assisted Parallelization 34

2.7.4. Other Packages Enabling Additional Resources 35

2.8. Concluding Remarks ... 36

Chapter 3 R/parallel – A Proposal for Parallel Loops with R 39

3.1. Introduction ... 39

3.2. Extending the R Interpreter with R/parallel .. 41

IX

3.2.1. Expressing Parallelism ... 41

3.2.2. Transforming the Original Program .. 46

3.2.3. Accessing Additional Processing Units ... 47

3.3. Providing Support for Distributed Computing .. 52

3.3.1. Adding Support for Additional Remote Workers 53

3.3.2. Allocating Additional Working Nodes .. 53

3.3.3. Adapting the Scheduling Schemes .. 56

3.4. Concluding Remarks ... 57

Chapter 4 Parallel Loop Scheduling ... 59

4.1. Introduction ... 59

4.2. Nonadaptive Scheduling Schemes .. 60

4.3. Adaptive Scheduling Schemes .. 63

4.4. Extended Contributions for Parallel Loop Scheduling 64

4.4.1. Extensions of Previous Schemes ... 65

4.4.2. Extensions Applied to Distributed Environments 67

4.4.3. Other Current Loop Scheduling Schemes ... 69

4.5. Improving Parallel Loop Scheduling .. 71

4.5.1. Preliminary Considerations ... 71

4.5.2. Proposal of a New Scheduling Scheme ... 72

4.6. Concluding Remarks ... 75

Chapter 5 Evaluation of Proposals ... 77

5.1. Evaluation of R/parallel with Multiprocessor Computers 77

5.1.1. Evaluating Applicability to Real Cases ... 78

5.1.2. Evaluating Scalability and Efficiency ... 80

5.2. Evaluation of R/parallel with Distributed Systems 82

5.2.1. Evaluating Distributed Computing in Homogeneous Environments .. 83

5.2.2. Evaluating Parallel Loop Scheduling Schemes 85

5.2.3. Evaluating Distributed Computing in Heterogeneous Environments . 89

5.3. Evaluation of the New Scheduling Scheme ATLS 96

5.3.1. Evaluating ATLS in a Static and Homogeneous Environment 97

5.3.2. Evaluating ATLS in a Static and Heterogeneous Environment 98

X

5.3.3. Evaluating ATLS in a Dynamic Environment 100

5.4. Concluding Remarks ... 102

Chapter 6 Conclusions and Future Work ... 105

6.1. Conclusions ... 105

6.2. Future Work .. 107

Bibliography .. 111

XI

XII

List of Figures
FIGURE 1: A RUNNING ENVIRONMENT IS DEFINED BY ITS THREE LAYERS: USERS, APPLICATIONS AND

PROCESSING UNITS ... 3
FIGURE 2: SOURCES OF VARIABILITY AND RANGES OF CONCEPTS .. 5
FIGURE 3: DISTANCE TO HPC SOLUTIONS AMONG EXISTING RUNNING ENVIRONMENTS 5
FIGURE 4: CHARACTERIZING OUR RUNNING ENVIRONMENT .. 12
FIGURE 5: DISTRIBUTED-MEMORY ARCHITECTURE MODEL .. 13
FIGURE 6: SHARED-MEMORY ARCHITECTURE MODEL .. 14
FIGURE 7: INDIVIDUAL END SYSTEMS ... 14
FIGURE 8: CLUSTER OF COMPUTERS .. 15
FIGURE 9: INTRANET OF HETEROGENEOUS COMPUTERS BELONGING TO THE SAME ORGANIZATION 15
FIGURE 10: INTERNET CONNECTS UNRELATED COMPUTERS WIDELY DISTRIBUTED GEOGRAPHICALLY IN

VERY LARGE NUMBERS.. 16
FIGURE 11: BASIC STRUCTURE OF AN SPMD PROGRAM .. 17
FIGURE 12: A MASTER-WORKER PARADIGM ... 18
FIGURE 13: DATA PIPELINE STRUCTURE ... 18
FIGURE 14: DIVIDE AND CONQUER AS A VIRTUAL TREE ... 19
FIGURE 15: SPECULATIVE PARALLELISM ... 19
FIGURE 16: SELF-SCHEDULING USING THE MASTER-WORKER PARADIGM .. 23
FIGURE 17: DOALL LOOP WITH INDEX VARIABLE I ... 24
FIGURE 18: PR ARCHITECTURE (SOURCE [ML+07]) ... 34
FIGURE 19: INDICATING PARALLEL REGIONS ... 43
FIGURE 20: EXAMPLE R FUNCTION ENCODING A PARALLEL LOOP.. 44
FIGURE 21: PARALLEL LOOP INDICATED WITH AN IF-ELSE CONSTRUCT ... 44
FIGURE 22: DIVERTING THE FLOW OF EXECUTION ... 46
FIGURE 23: GENERAL DESIGN STRATEGY FOR PARALLELIZING A NON-THREAD-SAFE LEGACY

APPLICATION ... 49
FIGURE 24: GENERAL MASTER-WORKER MODEL IMPLEMENTED IN R/PARALLEL 50
FIGURE 25: SEVERAL DISTRIBUTED COMPUTING RESOURCES CAN BE USED TO INCREASED THE

PROCESSING CAPACITIES OF A PARALLEL SYSTEM ... 52
FIGURE 26: CODE SNIPPET TO ADD VOLUNTEER NODES ... 54
FIGURE 27: REQUEST FOR COLLABORATION (RFC) PROCEDURE TO RETRIEVE ADDITIONAL WORKING

NODES ... 54
FIGURE 28: INTERNAL COMPONENTS OF R/PARALLEL INVOLVED IN A DISTRIBUTED COMPUTATION 55
FIGURE 29: CHANGES IN THE RELATIVE CAPACITY OF HETEROGENEOUS COMPUTERS CAN BE CAUSED

BY SEVERAL FACTORS, LIKE VARIABLE LOADS AND NETWORK CONGESTION 56
FIGURE 30: A) SCHEDULE OBTAINED FROM EXISTING TECHNIQUES, B) OPTIMAL SCHEDULE (SOURCE

[KN+05]) .. 66
FIGURE 31: EXAMPLE OF CODE USED TO TEST R/PARALLEL (SOURCE [VS08]) 78
FIGURE 32: INCREASING THE AMOUNT OF WORK PERFORMED BEFORE A TIME LIMIT 79
FIGURE 33: DECREASING THE REQUIRED TIME TO PROCESS A FIXED WORKLOAD 80
FIGURE 34: DECREASE OF THE TOTAL EXECUTION TIME PARALLELIZING QTLMAP.XPROBESET() 80
FIGURE 35: SPEEDUP DECAYS WITH INTRODUCTION OF PROCESSING UNITS ... 81
FIGURE 36: EFFICIENCY FIGURES OBTAINED WITH 8 CORES ... 82
FIGURE 37: NETWORK DIAGRAM AND CONFIGURATIONS OF HOMOGENEOUS TEST BED WITH 40

PROCESSING UNITS .. 83
FIGURE 38: SCRIPT USED TO PARALLELIZED LOOPS WITH R/QTL PACKAGE FUNCTIONS 84

XIII

FIGURE 39: PERFORMANCE RESULTS USING 40 WORKERS .. 84
FIGURE 40: CODE SNIPPET OF A PARALLELIZED CLIPPING PROCEDURE OF DNA SEQUENCE READS 86
FIGURE 41: NETWORK DIAGRAM AND CONFIGURATIONS OF HETEROGENEOUS TEST BED WITH 140

PROCESSING UNITS .. 89
FIGURE 42: TOTAL EXECUTION TIMES WITH 120 WORKERS USING HOMOGENEOUS AND

HETEROGENEOUS ENVIRONMENTS .. 91
FIGURE 43: ORDERED SEQUENCE AND SIZE (I.E. NUMBER OF ITERATIONS) OF TASK ARRIVALS. SECOND

ROW ILLUSTRATES A ZOOM OF THE FIRST 500 TASKS COMPLETED ... 92
FIGURE 44: NETWORK DIAGRAM AND CONFIGURATIONS OF HETEROGENEOUS TEST BED WITH 150

PROCESSING UNITS .. 94
FIGURE 45: EXPERIMENTAL RESULTS PROCESSING 434000 SEQUENCES WITH 80 AND 20 WORKERS

USING A MIXTURE OF FAST AND SLOW NODES ... 94
FIGURE 46: EXPERIMENTAL RESULTS PROCESSING 10000 SEQUENCES VARYING THE PROPORTION OF

SLOW-FAST NODES FROM 0-10 TO 10-0 EXCHANGING 2 NODES OF EACH TYPE AT A TIME 95
FIGURE 47: EXPERIMENTAL RESULTS PROCESSING 10000 SEQUENCES WITH 20, 30, 40, 60 AND 80

HOMOGENENOUS WORKERS WITH AWF AND A FIXED NUMBER OF P=40 WORKERS CONFIGURED

FOR STATIC ... 96
FIGURE 48: TOTAL EXECUTION TIME AND SPEEDUP USING 4, 16 AND 32 WORKERS IN AN

HOMOGENEOUS ENVIRONMENT ... 97
FIGURE 49: TOTAL EXECUTION TIME USING AN HETEROGENEOUS ENVIRONMENT WITH 32 WORKERS 98
FIGURE 50: NUMBER OF ITERATIONS PER WORKER DISPATCHED BY EACH SCHEDULER........................ 99
FIGURE 51: LIMITATION TYPES PROGRAMMED: STEP-DOWN, STEP-UP, PULSE CONSTANT AND PULSE

VARIABLE .. 100
FIGURE 52: NUMBER OF ITERATIONS PER TASK AT DISPATCHING TIME IN A DYNAMIC ENVIRONMENT 101
FIGURE 53: NUMBER OF ITERATIONS PER TASK AT FINISHING TIME IN A DYNAMIC ENVIRONMENT 102
FIGURE 54: QUEUE SUBSYSTEM TO SUPPORT FAULT TOLERANCE ... 108

XIV

List of Tables

TABLE 1: CODE GRANULARITY AND PARALLELISM ... 16
TABLE 2: COMPARISON OF R/PARALLEL WITHIN THE CONTEXT OF SOME POPULAR DESKTOP GRID

SYSTEMS ... 30
TABLE 3: TOTAL EXECUTION TIME AND THROUGHPUT RESULTS OF SEVERAL PARALLEL LOOP

SCHEDULING SCHEMES USING HOMOGENEOUS ENVIRONMENTS .. 87
TABLE 4: SCALABILITY AND EFFICIENCY RESULTS OF SEVERAL PARALLEL LOOP SCHEDULING SCHEMES

USING HOMOGENEOUS ENVIRONMENTS ... 88
TABLE 5: AVERAGE µ AND PERCENTAGE OF STANDARD DEVIATION %Σ OF THE TOTAL EXECUTION

TIMES OBTAINED DURING THE EXPERIMENTS .. 100

XV

1

Chapter 1
Introduction

1.1. Introduction

In this chapter we describe first, from a general perspective, the problem that has
motivated this work. Next we consider a particular scenario where this problem is
present, and after identifying the main obstacles that currently avoid reaching a
solution, the goals for this thesis are established. Finally, an outline of the contents of
this dissertation is provided.

1.2. Motivation

Emerging trends in technology and new developments in science are increasing the
need for parallel computing, and as a consequence a growing number of users
demand new solutions that fit their specific requirements. Current developments in
chip design and new measurement and sampling devices are two of the main
examples of technological evolutions that are promoting an increased interest in High
Performance Computing (HPC) solutions adapted for the mainstream.

During the last years we are witnessing a new age characterized by massive adoption
of multiprocessor computers, even at desktop level with the popularization of
multicore computers. The change on the generalized way microprocessor
manufacturers are increasing the raw performance of their products started a debate

2

still open about the serious implications of these new micro-architectures over
applications performance [SL05].

The fact is that uniprocessor performance, as a consequence of Moore’s law [Moo65],
does not increase their performance every 18 months any more, but, as the last trends
show, every 5 years. One of the main reasons is that there are diminishing returns on
finding more instruction-level parallelism (ILP) [HP07]. It is becoming more difficult
to reveal more ILP via compilers and architecture innovation. Examples from the past
include branch prediction, out-of-order execution, speculation, and Very Long
Instruction Word systems [HP07]. The consequence, as is emphasized in [AB+06], is
that increasing clock frequency it is not currently the primary method for improving
processor performance and nowadays the main method selected by chip
manufacturers to keep delivering more powerful microprocessors to the market is
increasing parallelism at a higher level. The drawback is that in order to take
advantage of multiple processing units aggregated in a single chip or multiprocessor
(e.g. multicore processors), parallel applications, able to run concurrently in several
processing units, are required.

A second technological evolution (revolution for some) is introducing major changes
in research that are leading to the same conclusion. During the last years, with the
development of new technologies in many fields like molecular biology,
experimentation costs have drop to a fraction of previous ones, and finalization times
have fall from months to few weeks. This situation has generated a large increase in
the volume of data obtained from each experiment, as well as an increase in the rate
at which data is produced. As a consequence, not only large research groups have
now more data to analyze but also smaller groups, that in the past where unable to
undertake such experiments due to budget limitations, now can afford the required
investments and proceed likewise.

The problem appears when these new volumes of data have to be processed. In the
past, researchers were able to patiently annotate their observations just by hand, and
statistical analysis was possible using common spreadsheets and other tools running
on top of single standard desktop computers. Nowadays, many traditional tools used
by researchers are not useful anymore in terms of throughput delivery. Depending on
the size of their datasets and the complexity of the analysis required for each piece of
data they have to wait for long days and weeks in order to retrieve their results.
Impatient users with enough technical skills in some cases are able to manually
partition their data and launch their analytical methods in several additional
computers that have to reach at least twice, first to set up and run their analysis and
second, to collect back their results and rebuild the final figures.

Advanced users, with previous experience in parallel solutions or the time and skills
to acquire such knowledge, can transform their applications and adapt them, if

3

feasible, with existing HPC technologies. In all cases the amount of time required is
counterproductive and should be reduced, therefore new tools or adaptations of
previous ones are required to harness the new demands of computing power.
Moreover, if we take into consideration initiatives like the objective of obtaining a
human genome for just $1000 [Mar06] (nowadays it requires approximately 1 million
dollars), it is obvious that the problem will acquire new dimensions for the coming
years. Nevertheless, in order to process increased data volumes, increased processing
capacities, which can be provided by parallel applications running on top of parallel
systems, are required.

The obvious consequence for those users with direct relation with any of these two
technological changes is that they are forced to adopt parallel computing solutions to
deal with the problems imposed by the technological scenarios just described, either
to reduce their processing times or to increase the size of the data being processed
within the same time frame.

However, in order to adopt HPC solutions, appropriate parallel systems, properly
linked with suitable parallel applications must be used. Emphasis is done in
“appropriate” and “suitable” to remark that any combination of these, computing
resources and programs, do not necessarily provide a working HPC solution. To
define a working parallel running environment multiple types of computing resources
exist as well as types of applications that can be combined. But a running
environment, as it is naively depicted in Figure 1, also has to consider, on top of
them, their users, the diversity of which also defines the right combination of
elements which provides a working and useful parallel computing solution.

Figure 1: A running environment is defined by its three layers: Users, Applications and Processing Units

Although by users we mean indistinctly end-users and programmers, what we observe
is that all users do not have the same ability (and need) to modify the running
environment to which they belong, thus determining the viable options for building
the parallel solutions required by their needs. Some of them are users that just know
how to install their applications and use them through their particular user interfaces
while others are able to program any specific functionality and deal with detailed
system management configurations.

PROCESSING UNITS

APPLICATIONS

USERS

4

How a running environment can be adapted to provide a working parallel computing
environment will depend on the specific characteristics of the elements present at
each layer and the existing possibilities to adapt or replace these elements. We
enumerate some differences found at each layer:

 Processing Units (PROC). Different types of computing resources and
different access and utilization methods exist. We enumerate the most
common:

o Different number of processing units aggregated in different
architectures: from SMP computers to large clusters or massive clouds.

o Set up for general purpose utilization or for specific applications.
o Exclusive or shared access.
o Managed by single operating systems or large distributed platforms.
o Optimized for HPC or non-dedicated computing platforms.

 Applications (APP). Different types of applications, software components
and algorithms define different requirements and needs:

o Different workloads, from few to very large data sets.
o Different running times, from seconds to days and months.
o Different implementation languages and running environments.
o Different expertise and knowledge of target users and programmers.
o Different degrees of parallelism: Independent tasks or dependent tasks.
o Different parallel programming models: explicit or implicit.

 Users (USER). Different types of users define additional restrictions to
possible solutions:

o Users of static and specific applications or dynamic and generic fast
prototyping tools.

o Different knowledge levels of parallel programming.
o Different management skills of computing resources.
o Different available time (and will) to acquire new knowledge and

skills.
o Different available time to adapt or develop new programs.
o Different task force: from large groups to single users and

programmers.

This multiplicity of scenarios, types, design purposes, architectures, access methods
and interests present among the elements of each layer show that many of them vary
within a range the limits of which in many cases represent concepts completely
opposite. Figure 2 helps to illustrate these ranges and their opposite ends.

5

Figure 2: Sources of variability and ranges of concepts

We can observe that there are scenarios where it is more complicated than others to
apply HPC techniques. The question at this point, since there are users that need and
require the utilization of parallel computing, is if it is possible, considering any
running environment integrated by a particular combination of processing units,
applications and users, to adapt any of these combinations to provide a working HPC
solution. It is clear that in some cases we are already witnessing a HPC solution while
in others there is a significant gap to be filled. For example we can find users of
sequential applications whom, without knowledge of parallel programming are unable
to transform their programs or users who already have a parallel application but they
lack the basic skills to use additional computing resources existing at their reach. In
this work we are interested in the cases represented by these last examples. Figure 3
illustrates both ends of possible running environments related with their distance to
HPC solutions.

Figure 3: Distance to HPC solutions among existing running environments

Parallel Programming Model

Manpower

Parallel Application /Problem Class

Environment

Compiled (binaries)

Fine Grained Coarsed Grained

Interpreted (scripts)

Organization Teams

Highly skilled Non-skilled

Reduced (down to 1)

Explicit

Message Passing

Dedicated

Exclusive

Shared Memory

Implicit

Shared

Multipurpose

Resource Access / Platform
Local

Restricted Open

Remote

Walltime: < seconds < hours < days > months

Homogeneous Heterogeneous

Stable (+ low risk of faults) Unstable (+ high risk of faults)

Dependent Tasks Independent Tasks

PROCESSING
UNITS

APPLICATIONS USERS

Accessible and
ready

Parallel HPC experienced

.

.
(any other combinations of above and below rows)

.

.

Existing but not
accessible or ready

Sequential Non-skilled
Far away from
HPC solutions

Already
HPC solutions

6

In general, the running environment or scenarios of interest for our work can be
summarized by those where any of the following factors appear combined:

 There are no computing resources dedicated to HPC.

 There are no parallel versions of applications.

 There is no proper experience or skills in HPC among their users.

 And there are no time and no money to learn, implement or invest.

A definitive answer to cover any scenario cannot be provided. However considering
the particular details of each scenario, independently of other combinations, we think
that it is possible to provide positive answers.

For our work we have selected a particular scenario where it is quite common to find
the combination of factors just described, that is, within the field of molecular
biology, the analysis of experimental data by bioinformaticians. In that case, for
example, new sequencing devices [Met10] are able to produce millions of reads of
DNA sequences within few days and at a fraction of previous costs. These sequences,
like other sources of data like genotype profiles or molecular signals, must be
processed to find out, besides of the structure and composition of molecules, the
genomic information coded in different samples, so for their type of problems, given
the large amounts of data to be processed, HPC solutions are expected and very
welcome.

The relatively unforeseen sudden appearance of these computing needs has catch
many groups without proper knowledge of parallel computing development or
without suitable computing resources for performing their analysis. In
bioinformatician teams it is not usual to find people with expertise in parallel
computing. As a consequence, although they are able to produce high quality
programs to analyze their data, they lack experience in parallel programming or
system management skills to set up parallel systems. Besides, since the new
dimension of their problems is relatively new for them they also lack of dedicated
HPC computing environments. For them, with severe time and budget constrains to
conduct their experiments and virtually no time to acquire new development or
system administration skills, it is of high importance the availability of accessible
tools that fulfils their needs while requiring a minimal effort in time and investments.

Finally, the class of programs used at several steps of their processing pipelines, and
like in a large number of scientific applications, is based on parallel loops. A loop is
called a parallel loop if there is no data dependency among all its iterations, i.e. any
iteration can be processed in any order or even simultaneously. Parallel loops are a

7

class of embarrassingly parallel problems which provides excellent performance
improvements over sequential loops and therefore methods adapted to their particular
needs and running environments are of high interest.

In our case of study it is quite frequent to find programs which iteratively apply the
same function to each sample of data, and which, with new increased volumes, spend
longer processing times. Their options for reducing these waiting times are several.
Of course they could try to run their programs, if available, in faster processors what
requires additional investments, or they could recode and optimize their applications,
with the required knowledge, and use more efficient platforms. For example, the
difference in terms of processing speed between running a given algorithm using
interpreted languages or using binaries obtained from compiled languages is in some
cases several orders of magnitude faster in favor of the compiled programs. This
option, if feasible for the users, is advisable for the cases where the same program is
going to used repeatedly so the time investment is recovered after several runs.
Another option, not exclusive with previous ones, is the utilization of parallel
computing. As already discussed the problems regarding with knowledge, time and
resources apply here and solutions to ease its utilization should be provided.

As a consequence, the general objectives of this thesis are, first, identify and analyze
the obstacles that prevent users from using parallel computing technologies within the
context of our target running environment, second, propose methods and mechanisms
to avoid or mitigate the identified problems, and finally, validate our proposals by
developing a working prototype to assess the correctness of our solutions by testing
them in real scenarios. Next section describes the details of this objective and
explains how it is planned to be achieved.

1.3. Goals

To achieve our objective, the first issue to deal with is to remove any additional
complexity introduced by current systems. By reducing the complexity of
programming parallel applications and the burden of deploying and managing the
underlying resources, easy-to-use tools with better degrees of accessibility can be
produced. To achieve this, additional objectives have to be accomplished. For
example, external dependencies from the underlying infrastructures have to be
removed in order to provide a tool independent of the available resources. The same
concept applies for dependencies from third party components that can hinder the
future maintenance life cycle of applications.

Next, the same solution should provide methods to support the automatic
parallelization of existing programs, trying to avoid the recodification of already
working programs. And finally, it should also provide methods to aggregate the

8

already available but not used computing resources. By developing such system to
adapt a running environment, while all the complexity is managed under the hood,
any non skilled researcher should be able to take advantage of current parallel
computing technologies.

In general, the goals of this thesis can be enumerated as follows:

 Define new methods to transform existing sequential applications based in
parallel loops, with a minimum knowledge of parallel programming, into
parallel applications.

 Define new methods to allow users to run their classical applications in
parallel environments, with a minimum effort and a minimum knowledge of
the computing resources involved.

 Define new methods to integrate multiple processing units of different types,
mainly using non-dedicated computing resources since they exist but are not
used.

 Define new methods to improve the performance obtained when integrating
non-dedicated resources of heterogeneous types in changing environments.

In particular, this thesis will be focus on developing new methods to enable and
improve the utilization of non-dedicated computing resources to process parallel
loops found in programs written with R [IG96]. R is a scripting language which is
becoming a de facto standard between bioinformaticians developing, using and
exchanging statistical methods, and where several tools to support the development
and execution of parallel applications have been contributed [SM+09]. However,
although most of them provide powerful solutions, they have been developed with
specific running platforms in mind (e.g. MPI-based clusters) and are not designed, to
the best of our knowledge, for dealing out-of-the-box with parallel loops in
heterogeneous environments made up of disparate non-dedicated systems and
harnessed by users even with limited abilities. Our contribution is focused precisely
in this scenario.

As a proof of concept, an in order to assess the correctness of our proposals, these
methods will be implemented creating and evolving the tool R/parallel [VS08], and
evaluated with experiments performed reproducing real bioinformatics cases.

9

1.4. Thesis Outline

The content of this dissertation is organized in 5 additional chapters where we treat
the objectives defined in our goals, extending the required background concepts
selectively for the issues and problems raised in each chapter. Next, the titles of these
chapters and a summary of their content are provided:

 Chapter 2: Characterizing the Running Environment
In this chapter we review the classical models and paradigms found in
reference literature of parallel computing to understand the context where the
running environment considered in this dissertation fits. That includes
reviewing classical models regarding the development of parallel applications,
common architectures found in parallel systems and general scheduling
strategies used to map parallel applications with multiple processing units.
Next, a detailed description of parallel loops is provided, followed by a review
of major solutions of Desktop Grids, which are a feasible alternative for
supplying additional sources of computing resources with reduced
investments. Finally current contributions of parallel computing with R are
reviewed. This information provides the required background to identify the
existing options for designing a solution for the problems of our target running
environment.

 Chapter 3: R/parallel – A Proposal for Parallel Loops with R
Here, after considering the information and issues reviewed in the previous
chapter, a proposal to execute concurrently parallel loops with R is provided.
The first outcome is a prototype, called R/parallel, which implements several
mechanisms and methods that enable the parallel execution of loops without
dependencies on symmetric multiprocessing computers like for example
multicore desktop computers. Next, the prototype is extended to enable the
utilization of distributed computing resources. The details of its design and
implementation are provided, explaining how parallel loops can be
parallelized in R, from how parallelism is expressed in original sequential
programs to how remote computers are reached and independent work units
are defined and managed.

 Chapter 4: Parallel Loop Scheduling
In this chapter scheduling schemes suitable for parallel loops are reviewed. Its
main characteristics are described, discussing the benefits and drawbacks
when applying them to different running environments. Next, taking into
account the limitations identified as well as other restrictions and
considerations introduced by our target running environment, a new scheme is
proposed. This scheme, called ATLS, which stands for Adaptive Turnaround-

10

based Loop Scheduling, provides improved performance with respect to
previous well-known schemes when applied to changing environments made
up of non-dedicated computers, while still producing good results in static
environments of homogeneous and heterogeneous computers.

 Chapter 5: Evaluation of Proposals
Here, our proposals are evaluated using experiments which reproduce real
bioinformatics cases. First, the prototype is evaluated from different points of
view. Initially, several parallel loop based R programs are parallelized using
R/parallel, and its results analyzed using symmetric multiprocessing machines
like desktop multicore computers. These experiments allow us to determine
the feasibility of the proposed transformation methods. Next, the results
obtained using several well-known parallel loop schedulers with different
configurations of distributed computers are evaluated. This allows us to
understand the strengths and weaknesses of the tested schemes in different
situations. Finally ATLS is evaluated, using different scenarios and comparing
its results against the previously tested schemes. The results validate our
proposals, and allow us to identify new areas for further improvement.

 Chapter 6: Conclusions and Future Work
This chapter gathers the main conclusions of this work and reviews to which
extend we have been able to accomplish the objectives defined initially. The
contributions provided as results of this thesis are exposed, highlighting the
specific methods and mechanisms developed to achieve the proposed goals. In
the final chapter of this dissertation we also enumerate the open lines for
further research that can be undertaken to continue the work started with this
thesis. Special emphasis is done in support for fault tolerance, an important
aspect to take into account when using non-dedicated environments that is not
covered in this dissertation.

11

Chapter 2
Characterizing the Running Environment

2.1. Introduction

In previous chapter it has been introduced that this work is concerned with the
execution of parallel loop based applications using non-dedicated computing
environments with R. Before we are able to continue the research for methods that
will eventually allow us to reach the goals defined, we need to understand the internal
characteristics and the existing possibilities for the components of our running
environment. By reviewing the available parallel computing abstract models related
with our work it will possible to restrict and focus our research to those areas where
further contributions are needed.

Parallel loop based applications, like any other parallel application, can be
decomposed in independent work units or tasks that can be executed simultaneously
in several processing units [FK99]. The relation between these tasks and the
processing units where they are executed is defined by the scheduling model found in
a given running environment. A scheduling model consists of a scheduling policy, a
program model, an architecture model and a performance objective.

In our case, the performance objective is to minimize the completion time of our
users’ parallel loop based applications, so given a workload, process all the iterations
in the shortest possible time. Other performance objectives include the optimization
of system efficiency, system throughput or average response time. The program

12

model allows us to classify the parallel application being executed while the
architecture model provides a classification for the computer resources being used for
execution. Finally, the scheduling policy defines the set of rules used to schedule
independent work units or tasks to processing units. Therefore, in order to understand
our running environment, as it is depicted in Figure 4, next sections describe existing
program and architecture models followed by a generic categorization of scheduling
policies, identifying those aspects that apply to our work.

Figure 4: Characterizing our running environment

Next, after reviewing the general models and strategies followed at each layer, the
background specific for our target environment, i.e. bioinformaticians with limited
skills and resources, running parallel loop based applications programmed in R using
non-dedicated computers, is provided. First, to understand the class of applications
used by our target users, a detailed description of parallel loops, describing its main
characteristics is provided. Second, as a source of additional processing units, desktop
grid strategies are reviewed and an adoption of these ideas is proposed. Finally,
current contributions of parallel computing with R, in the context of the models
exposed in this chapter, is provided. The chapter concludes with some remarks about
the concepts described and its influence in our future proposals.

2.2. Parallel Architecture Models

Parallel machines provide multiple processing units arranged in several ways. In
general, the relation between these processing units with their memory and I/O
subsystems, and how these components are interconnected define several architecture

Processing Units

ArchitectureModels

Applications: Parallel loop Based

ProgrammingModels

SchedulingStrategies

Users

13

models [CG+97]. There are also other particular parameters that can be used to
classify these machines. For example, Flynn [Fly66] introduced the best-known
taxonomy that defines four different types of computers based on whether there are
multiple data streams and/or multiple instruction streams. A conventional
uniprocessor computer has a single instruction stream and a single data stream and is
denoted SISD. Common parallel computers have both multiple data and multiple
instruction streams and are called MIMD. The single instruction but multiple data
streams computers are denoted as SIMD. The fourth possibility, multiple-instruction
single-data stream or MISD, is not used. A taxonomy for MIMD architectures is not
clearly defined but the most accepted classification is based on whether the memory
is shared or distributed. Consequently, based on memory address space organization
the following classification is provided:

 Distributed-memory model. In this model, also known as a shared-nothing
model [DF+03], several computers connected by a network are used. Each
processor executes a separate set of instructions using its independent local
memory, for example processes running in separate computers. The memory
of the parallel system is distributed throughout the processors rather than
being placed in a central location. A network connects processors and their
local memories. Processors exchange data between their memories when a
remote variable value is required. It is considered that modern distributed-
memory parallel computers started with the work of Seitz [Sei85]. Figure 5
illustrates a simplified distributed-memory model.

Figure 5: Distributed-Memory Architecture Model

 Shared-memory model or multiprocessors. In this model all the processors
share access to a central memory. Users do not need to be concerned about the
location where the data is stored since all the processors access the same
memory space. Because access to the memory is done through load and store
operations rather than network operations used in distributed-memory
systems, access to shared memory has lower latency and higher bandwidth.

Processor Memory Processor Memory

Processor Memory

…

… Processor Memory

network

14

The problem here is that simultaneous access to data must be controlled to
ensure data integrity.

Figure 6: Shared-Memory Architecture Model

A different classification can be done from a management and organization model
perspective [FK99] we can classify computer systems in four types:

 The End System: Individual end systems are characterized by a small scale
and a high degree of homogeneity and integration (Figure 7). They represent
the simplest system organization, where the operating system has absolute
control over the resources of the computer, controlling process creation,
system signal delivery and processor scheduling. Examples of this range from
multicore desktop computers to expensive supercomputers.

Figure 7: Individual End Systems

 The Cluster. This consists of a collection of computers or end systems,
usually identical, connected by a local area network (LAN). It is managed by
a single administrative entity, in a head node, that has complete control over
each end system (Figure 8). At this level, its main functionalities concerning
resources management are job submission, job scheduling and parallel process
creation. Examples of these organizations include compute clusters managed

Processor

Main memory

Processor Processor…

CPU CPU

15

by batch queue systems like PBS [HT96] that decide where submitted jobs are
being processed.

Figure 8: Cluster of Computers

 The Intranet. It compromises a large number of computing resources that
nevertheless belong to a single organization and there is no single site for
coordination (Figure 9). It introduces the additional issues of heterogeneity
and geographical distribution. Resource management should in addition
handle resource discovery, signal distribution networks and provide high
throughput to attend the demands of multiple clients of the system. Uniform
access for computing resources can be provided in a similar way as it is solved
with clusters but attending its increased variability and remote locations with
distributed queuing systems such as Condor [LL+88].

Figure 9: Intranet of heterogeneous computers belonging to the same organization

 The Internet. These systems lack centralized control, are extremely
heterogeneous and are widely distributed geographically. They use a public
network that has variable behavior depending on several conditions and
demands, such as variable congestion and router status. Individuals and
organizations are interconnected through that network, which virtually
connects millions of computers. Resource management should add brokers,
negotiation and trading issues. Examples of internet based systems are Grid
systems like those using Globus [FK97].

16

Figure 10: Internet connects unrelated computers widely distributed geographically in very large numbers

2.3. Parallel Programming Paradigms and Models

Parallel applications encode algorithms intended to be run concurrently using several
processing units. Based on the internal control structure of the implemented
algorithms these can be classified into several parallel programming paradigms
[Han93]. Looking at the available technologies for coding a parallel application that
enable the exposure of its parallelism and helps to exploit concurrency using a
parallel system we can identify different common parallel programming models.
Therefore, different programming models, depending on their technical capabilities
allow the implementation of different parallel programming paradigms.

Levels of parallelism can be detected at several levels, and these can be based on
variable lumps of code (and grain size) that can be a potential candidate for
parallelism [Buy99]. Table 1 lists the categories of code granularity and its related
parallelism. All approaches dealing with instruction parallelism (very fine grain) have
as common goal to boost processor efficiency by hiding the latency of lengthy
operations such as memory or disk access. To conceal latency, there must be another
activity ready to run whenever a lengthy operation occurs. The idea is to execute
concurrently two or more lumps of code having multiple tasks being processed
simultaneously. The same concept can be extended to larger grains where for
example the issue with local memory access latency is exchanged with other elements
at a higher level like remote data replication of process synchronization.

Grain size Code Item Parallelism at Parallelized
by

Very Fine Instruction Multiple instruction issue Processor
Fine Loop/Instruction block Data level Compiler
Medium Standard One Page function Control level programmer
Large Program-separate heavyweight

process
Task level Programmer

Table 1: Code Granularity and Parallelism

INTERNETINTERNET

17

The choice of paradigm is determined by the type of the available parallel computing
resources and by the type of parallelism inherent in the problem. The computing
resources may restrict the level of granularity that can be efficiently supported by the
system. The type of parallelism reflects the structure of either the application or the
data and both types may exist in different parts of the same application.

2.3.1. Parallel Programming Paradigms

Several authors propose slightly different programming paradigm classifications.
Here we use a generic classification, as a superset of previous classification, proposed
by Buyya [Buy99]:

 Single Program Multiple Data (SPMD). In that model, each process
executes basically the same piece of code but on a different part of the data.
This means splitting the application data or workload among the available
processors participating in the computation. This type of computation is also
referred to as geometric parallelism, domain decomposition or data
parallelism. SPMD applications can be very efficient if the data is well
distributed among the processors and the system is homogeneous.
Additionally, when global communication is not required, it can also provide
good scalability results. If the processors support different workloads, then the
paradigm requires the incorporation of some load balancing scheme able to
adapt the data distribution layout at runtime execution. Recovering Flynn’s
taxonomy, since the single program has branches and other control-flow
constructs, SPMD is a subset of MIMD, not a subset of SIMD programs
[DF+03]. Figure 11 shows the basic structure of this paradigm.

Figure 11: Basic structure of an SPMD program

calculate
exchange
calculate

calculate
exchange
calculate

calculate
exchange
calculate

…

distribute data

collect results

18

 Master-Worker (or Task farming). This model consists of two related
entities: one master or host and multiple workers or nodes. The master
component is responsible of decomposing the problem into small tasks that
distributes among workers to let them process these tasks simultaneously, so it
also controls the workers. Each task can perform a completely different
algorithm, so submitted tasks do not necessarily share the same code among
workers. If tasks share the same code, different sections can be run based on
the workers identification. The master can optionally participate of the
computation. Once workers finalize the execution of their tasks they send the
results back to the master who collects them and produces the final results.
Scalability is limited by the single point of communication defined at the
master component. Figure 12 illustrates this paradigm.

Figure 12: A Master-Worker paradigm

 Data Pipelining. This paradigm is based in a functional decomposition of an
algorithm where a different function is encoded at each stage. Data is
processed through the different stages of a pipeline, the output of one
providing the input for the next stage. All the stages, usually implemented as
separated processes, are running simultaneously and the data flows along the
stages of the pipeline. Figure 13 illustrates this paradigm.

Figure 13: Data pipeline structure

MASTER

WORKER WORKER WORKER…

MASTER

distribute tasks

collect results

process tasks

Phase A Phase B Phase C

Process 1 Process 2 Process 3

input output

19

 Divide and Conquer. A problem is divided into two or more sub-problems.
Each of these sub-problems is solved independently and their results are
combined to produce the final results. If the sub-problems, smaller instances
of the original problem, require additional decomposition, then a recursive
division if produced. The tasks are actually computed by the processes at the
leaf nodes of a virtual tree. Three generic operations are needed for the divide
and conquer paradigm: split, compute and join. Figure 14 illustrates this
structure.

Figure 14: Divide and conquer as a virtual tree

 Speculative parallelism. In here several processes, coding different
algorithms, are processed without the certainty that they will produce valid
results. This model is used in several situations and with different objectives
when the others cannot be applied. For example, in some cases, some
restrictions of the original problem are relaxed in an optimistic assumption,
and the processing is launched, expecting that the concurrent execution will
not violate the consistency of the problem. Other situations that use this model
appear when it is not clear which algorithm will be the fastest to produce
correct results. In that case different methods are executed concurrently and
the results of the first finalizing process are kept (Figure 15).

Figure 15: Speculative parallelism

main problem

sub‐problems

split

join




selected result



 

Speculative executions

20

2.3.2. Parallel Programming Models

A parallel programming model is a set of software technologies like compilers and
frameworks that allows expressing parallel algorithms and matching applications with
the underlying parallel systems.

 Message passing. This is a widely used programming model. In that case,
programmers organize their programs as a collection of processes with private
local variables and the ability to send and receive data between processes by
passing messages. Examples of libraries that extend general purpose
languages to support these parallel programming models are PVM [Sun90]
and MPI [MPI93]. Current implementations of MPI like LAM [BD+94] and
OpenMPI [GF+04] are extensively used for scientific calculations in large
clusters of networked computers. This programming model is usually coupled,
but not necessarily, with distributed-memory systems.

 Shared memory. In this model, programmers view their programs as a
collection of processes accessing local variables and a central pool of shared
variables. Each process accesses the shared data by asynchronously reading
from or writing to shared variables. As more than one process may access the
same shared variables at the same time, mechanisms to resolve mutual
exclusion problems need to be provided, such as locks or semaphores. This
model is adequate in multiprocessor computers with uniform access to main
memory. An example of technology to support this model is multithreading,
where light versions of processes called threads run simultaneously while
having shared and private memory regions. Multithreading implementations
(e.g. POSIX threads) are currently available in most modern operating
systems.

 Parallel languages. Several languages have been designed to enforce
straightforward development of parallel applications. Examples of current
proposals are IBM's X10 [ES+04], Sun's Fortress [AC+10] and Cray's Chapel
[CC+04]. While the goal of these parallel programming languages is to
increase the programmers productivity for large-scale parallel computing
platforms, by efficiently capturing the inherent parallelism at early stages of
the software development cycle, the requirement of having to learn a new
language platform prevents many researchers from adopting these kind of
solutions. They really would prefer to use their traditional high-level
languages like C or Fortran and try to recycle their already available software.

21

For these programmers, extensions to existing languages or run-times libraries
are a preferred alternative.

 Automatic compilers. Parallelizing compilers are still limited to applications
that exhibit regular parallelism, such as concurrency in loops. Since it is quite
difficult to automatically and safely identify parallel regions, other semi-
automatic proposals where the user provides a hint of what to parallelize but
not how have been developed. Examples are HPF [Lov93] for Fortran
programs and OpenMP [DM98] initially for C and Fortran programs. In
general, they have been proved to be relatively successful for some
applications on shared-memory multiprocessors, but still they do not succeed
in the same degree when applied to distributed-memory machines. The
difficulties are due to the non uniform access time of memory in the latter
systems. The currently existing compiler technology is therefore limited in
scope and only provides adequate speedup with specific problems and running
environments.

2.4. Scheduling Strategies

Scheduling functionality can be divided into external and internal, two-level
scheduling, or generally termed mapping and scheduling [FK99]. We adopt and
describe the first terminology:

 External Scheduling. This is concerned with the assignment or mapping of
applications to compute resources, i.e. resource allocation or resource partition
assignment.

 Internal Scheduling. This is involved with the assignment of tasks belonging
to an individual computation or application to the processing units assigned to
that application, that is, with the use of the resources already allocated in a
given partition.

Regarding external scheduling, as it is stated in [FR+97], each parallel application is
executed in a partition that consists of a number of processors. The size of the
partitions depends on the computing resources available, the application and the
current load of these resources. The size of a partition may change during a
computation lifetime. Different partitions are defined:

 Fixed. The partition size is defined by the system administrator and cannot be
modified unless updating the system configuration.

22

 Variable. Size is determined at submission time, based on user request and
system capacities.

 Adaptive. Similar to variable size, but in that case, based on the same
information and including current system load, the scheduler decides the final
partition size.

 Dynamic. The partition size may change during the execution of a
computation, to reflect changing requirements and resource availability.

Once a partition has been allocated for a parallel application, internal scheduling
must be considered. Basically it can be divided in:

 Static Scheduling. It consists in assigning all application tasks to compute
resources before execution begins. Once a task has been assigned to a
machine or processing unit, it will finish its execution on that machine, unless
the machine in question fails.

 Dynamic Scheduling. In that case tasks are assigned to compute resources as
tasks are being created or as resources become available, i.e. when either a
new work unit appears or when a new processing unit joins the computation a
new scheduling decision is taken. In contrast to static scheduling where the
information required to define the assignations is known beforehand and so
the schedules are predefined at compile time, dynamic methods must react at
runtime, requiring in some cases to modify an assignment even during
computation. Since initial assignations cannot be as efficient as possible, load
balancing mechanisms, to redistribute tasks and hence balance processors, are
introduced. To achieve this, two methods are used: preemptive, able to
suspend, reassign and resume tasks, and non-preemptive, where once a tasks
is assigned must finalize or fail. An important non-preemptive dynamic
scheduling strategy is represented by self-scheduling schemes [TY86].

Self-scheduling is used to schedule a set of parallel tasks that are independent
iterations of a computational loop. The loop iterations are divided into a set of tasks,
and these tasks are placed in a single global work queue that is available to all the
processing units involved in the computation. When a processor becomes available, it
removes tasks from the work queue for processing. In distributed environments, as it
is described in [CA+01], it can be implemented using a master-worker paradigm
(Figure 16).

23

Figure 16: Self-Scheduling using the Master-Worker Paradigm

In such generic self-scheduling schemes at the ݅-th scheduling step, the master
computes the chunk size ܭ௜ and the remaining number of tasks ܴ௜:

ܴ଴ ൌ ܰ, ௜ܭ ൌ ݂ሺܴ௜ିଵ, ܲሻ, ܴ௜ ൌ ܴ௜ିଵ െ ௜ܭ

Where ݂ሺ, ሻ is a function possibly of more inputs than just ܴ௜ିଵ and ܲ. Then the
master assigns to a worker node ܭ௜ tasks. Imbalance depends on the time gaps ݐ௝ for

݆ ൌ 1, . . , ܲ between the final total execution time of each worker. This gap may be
large if the first chunk is too large or, more often, if the last chunk (called the critical
chunk) is too small. The different ways to compute ܭ௜ has given raise to different
scheduling schemes. The most notable examples are described in chapter Chapter 4.
A variant of self-scheduling schemes include the “bag-of-tasks” policy [BS95] of the
Linda system [Gel95] and eager scheduling used in Calypso [BD+95].

2.5. Classifying Parallel Loops

With the introduction of the first commercial multiprocessor computers, during the
late 70’s and 80’s, it was obvious that any program using a significant amount of
computer time usually spends most of the time executing one or more loops. At that
time the most widely used language for scientific programming was FORTRAN,
hence most of the references found in literature at that time (e.g. [Lam74, PW86])
propose new methods implemented as extensions of FORTRAN, where the main
interest was loop parallelism using multiprocessor computers.

Looking at the data dependencies between iterations, which determine to which
extent a loop can be executed in parallel, allows the classification of loops in three
major classes, following the FORTRAN terminology [Pol88]: DOSERIAL, DOALL
and DOACROSS loops.

DOSERIAL or sequential loops are found when each iteration is processed strictly
one after the other, either because there is only one available processor or because the

MASTER

WORKER
idle

WORKER
busy

WORKER
busy

…

request task

process tasks

assign task

24

data dependencies does not allow any other method to overlap the execution of the
iterations, even when several processing units are available. In contrast, two types of
parallel loops are DOALL, which describes a totally parallel loop with no dependence
between iterations, and DOACROSS, which supports parallelism in loops with
dependences between iterations by delaying the execution of subsequent iterations.

A DOALL [Lun85, PK+80, Pol88] loop has no data dependence relations between
iterations, thus the iterations of the loop can be executed in any order, including in
parallel. Scheduling iterations to execute in parallel can be done without any
consideration for correctness (since any order is correct), only considering
performance. Other algorithms show dependence relations preventing such straight
parallel execution of the loop, so other parallel constructs are needed to support these
algorithms. An example illustrating a DOALL parallel loop with a matrix
multiplication follows:

It can be observed that the calculation of the result variable do not depend of previous
calculations performed in DOALL loops, so they can be processed in any order.
Figure 17 illustrates the basic structure of a single DOALL loop with index variable i.

Figure 17: DOALL loop with index variable i

DOALL I = 1, N
 DOALL J = 1, M
 C[I,J] = 0.0
 DO K = 1 to L
 C[I,J] = C[I,J] + A[I,K]*B[K,J]
 ENDDO
 ENDDOALL
ENDDOALL

i = 1

.

.
{loop body}

.

.

i = 2

.

.
{loop body}

.

.

i = N

.

.
{loop body}

.

.

Start of DOALL parallel loop

Loop instances

Synchronizationbarrier

Endof DOALL parallel loop

25

Each of the parallel code blocks are conceptually identical copies of the statements
within the DOALL construct, i.e. they share the same loop bodies. Once an execution
begins, each block of statements will be executed concurrently in independent loop
instances, each with a different value of i and each potentially following a different,
data-dependent path through the instance. No synchronization is assumed at launch
time and the range of values assumed by the index variable is known upon entry to
the loop. It can be observed the homologous structure with the SPMD model. If more
instances exist than processing resources then some processors execute more than one
instance. Control is not passed to the next portion of the program until all instances of
the DOALL construct have been executed.

Besides of data dependency, other restrictions apply to the loop body in order to
guarantee the correctness of the loop execution [Lam74]. We summarize these
restrictions in the following list of assumptions:

A1. It contains no I/O statements, except for the case of using random access
methods to independent positions that guarantee independent I/O operations
between iterations.

A2. It contains no transfer of control to any statement outside of the loop body,
otherwise the loop instance are not identical any more.

A3. It contains no function calls, except for the case that it is confirmed they do
not violate any of the previous restrictions.

A4. Any occurrence in the loop body of a new value is not generated from values
generated in previous iterations, i.e. it does not exist cross-iteration data
dependences.

For the case of the assumption A4 an additional exception can be done for the
variables used to aggregate partial results with a given operation like sums across
iterations. These variables and operations are called respectively reduction variables
and reduction operations, since they collect the partial results to produce a final
reduced version of them. When these operations allow the recalculation of the final
values based in subsets of partial results, then a divide and conquer approach can be
applied to tolerate these cross-iteration data dependences and keep using parallel
processing of loops as described.

The DOACROSS loop was proposed when parallel execution is desired in spite of
dependence relations [Cyt86]. The model of execution for a DOACROSS loop is that
each iteration is initiated in sequence, but the initiation of iteration i is delayed from
the initiation of iteration i-1 by some amount of time. In the model, the delay is
calculated to allow the source of any (actual or potential) dependence from iteration i-
1 (or any prior iteration) to execute before the sink of that dependence executes in
iteration i. The key element of a DOACROSS is that the dependence relations will

26

always be satisfied forward in time, corresponding exactly to the sequential model of
execution. This has the benefit that every execution, sequential or parallel, is
deterministic. A trivial example to better understand the DOACROSS loop follows
[Cyt86]:

In this loop, there is a lexically backward loop-carried dependence from each
statement to the previous statement. If each statement takes one time unit to execute
and the first iteration is started at time T=1, the second iteration could safely start
execution at time T=3, and each subsequent iteration i could start execution at time
T=2i-1. Since there are only five statements (taking 5 time steps per iteration), and
the delay between iterations is 2, the maximum parallelism in this loop is 3.

Parallelizing compilers can always turn sequential loops into DOACROSS loops by
inserting the appropriate delays or synchronization points. However, as it is shown in
the previous example, the maximum parallelism obtained for a loop can severely
reduce the number of processing units simultaneously used, thus hindering the
possible speedups to be achieved. Next example shows an even worse case:

Although a DOACROSS loop always satisfies dependence relations in the same way
that sequential loops do, even introducing accumulator variables (or in the general
case, reduction variables) like the S variable, the expected performance improvement
can be jeopardized due to the parallelizing overhead and even produce worse
execution times than if run sequentially without changes.

Additionally, the DOACROSS loops require a shared memory model where modified
variables are updated in a central location so that subsequent iterations are able to
retrieve the new values. Although strategies have been proposed and successfully
implemented for non-uniform memory architectures (NUMA), including distributed
meta-computers, we do not further consider this class of loops.

DOACROSS I = 1 to N
 A[I] = B[I-1] + 37
 B[I] = A[I] + C[I-1]
 C[I] = B[I] + D[I-1]
 D[I] = C[I] + E[I-1]
 E[I] = D[I] + 77
ENDDOACROSS

DOACROSS I = 1 to N
 A[I] = B[I] + 37
 C[I] = C[I] + D[I]
 S = S + A[I]*C[I]
ENDDOACROSS

27

Since in this work we are interested in problems where very large datasets are
processed using programs required in common bioinformatics analysis, the main
body of loop types found in these programs perfectly fits with DOALL loops.
Additionally, given there is no cross-iteration data dependence, the maximum
parallelism obtained is not limited by the loop internal statements.

Finally, looking at the time spent to process each iteration of a loop, supposing
homogeneous processing units, loops can be classified in three additional types
[Pla94]. A loop is uniform if the execution time of each of its iterations is the same.
Examples of this case are matrix multiplication or, in the context of bioinformatics,
given a set of id labels, the identification of the sample donors of each DNA sequence
of fixed length from a large dataset. A loop is semi-uniform when the processing time
of the iterations depends only on the index of the loop. An example is a loop
processing a set of chromosomes where each one includes a different number of
known genes. Finally, a loop is unbalanced or non-uniform if they depend completely
on the data. Pair-wise alignment of a set of variable length DNA sequences against a
common database is a bioinformatics example for this case.

2.6. Desktop Grids as an Additional Source for Computing
Resources

Desktop Grids are emerging as a suitable option for providing additional computing
resources for parallel computing in situations where individuals do not have direct
access to dedicated computers where their parallel applications can be run.

Desktop Grid can be seen as a subclass of Grid [FK03] although important
differences exist between both. Grid is a relatively new paradigm for high
performance or high throughput computing which aims to aggregate dedicated,
heterogeneous, large-scale, multiple-institutional, and widely distributed
geographically resources, while providing transparent, secure, and coordinated access
to various computing resources (e.g. supercomputers and cluster) belonging to
multiple institutions joined in virtual organization [FK03]. On the other hand,
Desktop Grid is mainly focused in harvesting a number of idle desktop computers
owned by individuals on the edge of Internet [And04, CC+03, Sar98], being the most
popular example SETI@Home [AC+02].

Scheduling is very important to understand and develop a Grid system. Scheduling in
Grid systems is complicated by the heterogeneous and dynamics nature of the type of
computing resources involved in their environments. A Grid scheduler consists of a
meta scheduler and a local scheduler. The meta scheduler main function is to decide
the site where jobs have to be dispatched while a local scheduler is responsible for

28

dispatching jobs within a set of computers in a single site. Examples of local
schedulers are LSF [ZZ+93] and SGE [Gen01]. Scheduling in Desktop Grid is
different from Grid because of the different types of resources used, their dedication
and availability, results trust, frequency of failures, and kind of applications used.
Desktop Grid scheduling, besides of focusing in fault tolerance, volatility, and result
certification for malicious resource providers, it mainly uses pull-based scheduling,
i.e., a resource provider sends a request to a server in order to get a job or work unit
when it is idle, due to the non-dedication property of the participating volunteer
nodes. A final characteristic of scheduling in Desktop Grid is that one volunteer node,
usually a desktop computer, usually executes one task at a time, mostly independent
and without preemption. Therefore, local schedulers like the ones used in Grid
systems are not necessary at first instance in Desktop Grid.

One of the first available taxonomies for Desktop Grid systems is provided by Choi
[CK+07]. To better understand the characteristics of Desktop Grids and where our
proposal, R/parallel, can fit within this context, next we summarize the most
important elements of this taxonomy.

2.6.1. Taxonomy of Desktop Grid

Desktop Grid is mainly categorized according to characteristic of their organization,
platform, scale, and resource provider properties. Next we describe each of these
categories:

Organization. Desktop Grid is categorized into centralized and distributed systems
according to the organization of its components.

 Centralized Desktop Grid consists of client, resource provider or volunteer,
and server components. A client is able to extend its processing capacities by
submitting parallel jobs or work units to a central server. A resource provider
or volunteer donates its computing resources, usually during its idle time by
first informing the server about its availability. A server is a central
component that accepts submitted jobs, divides them into sub-jobs or tasks,
and schedules them to volunteer nodes. Once a volunteer processes the
assigned task, it returns the result to the server. Additionally the server can
check the correctness of the results and then returns the final result to the
client. Typical examples are BOINC [And04] and Entropia [CC+03].

 Distributed Desktop Grid consists also of client and volunteers. In contrast to
centralized Desktop Grid, there is no central server. Volunteers have partial
information of other volunteers, in a peer-to-peer like relation, becoming

29

clients when needed, and are responsible for constructing their computational
networks and schedule their jobs in a distributed way. An example with this
organization is Organic Grid [CB+05].

Platform. Desktop Grid can be categorized into web-based (ActiveX and Java applet
based) and middleware-based according to the platform used by the volunteer nodes.

 Web-based platforms are characterized by client side parallel applications for
example written in Java and post as an applet on the Web. Volunteers only
need to visit the web page hosting the applet with their browsers to volunteer
their resources and join the parallel computation. The web component has all
the information to contact back a central server to retrieve work units and
performe its encoded functions. An example of volunteer computing based in
Java web clients is the Bayanihan system [Sar98].

 Middleware-based platforms are characterized because volunteers need to
install and run a specific middleware, i.e. a software layer that provides the
services and functionalities to execute parallel applications, on the volunteer’s
computer. Typical examples, besides of the well-known SETI@Home
screensaver, are BOINC [And04] and Entropia [CC+03].

Scale. Desktop Grid can also be categorized into Internet-based and LAN-based ones
according to scale.

 Internet-based Desktop Grid is mainly based on anonymous resource
providers, although identified volunteers, interested on receiving public
recognition for their collaboration are also included. It should consider
firewalls, network address translation, dynamic address, poor bandwidth, and
unreliable connections. They provide potentially the largest number of
computing resources but there is also an important competence between
projects (and its parallel applications) that tries to attract to their servers the
highest number of volunteers. So, for small and not very popular projects it is
hard to aggregate and maintain large numbers of volunteers.

 LAN-based Desktop Grid is based on resource providers within a corporation,
university or institution that share a private network. It has more constant
connectivity than Internet-based alternatives and lower network latencies.
Besides, resources are usually only shared among the users of a local network,
showing less competence and shorter access time. As a consequence, LAN-
based Desktop Grid systems can reach their full capacity in shorter times than
Internet-based ones and are therefore better suited for execution of

30

applications with moderated workloads (e.g. up to several hours or few days).
Finally, an additional advantage is that, given the proximity of the involved
volunteers and its expected higher level of trust, measures for security and
result validation can be relaxed, simplifying the development of parallel
systems on these environments.

Resource Provider. This final category is based on the volunteer or enterprise
properties of the resource provider.

 Volunteer Desktop Grid is based on voluntary participants. With Internet-
based systems, it is more volatile, malicious, and prone to faults than
Enterprise Desktop Grid but it provides the cheapest option for accessing
additional resources. Typical examples are BOINC [And04] and Bayanihan
[Sar98].

 Enterprise Desktop Grid is based on non voluntary participants usually within
a corporation or university responsible for the maintenance of their own
computing resources. Since institution-wide policies can be established within
an organization it is possible to manage the provisioning of an homogeneous
software layer to create these distributed systems. It is therefore more
controllable than Volunteer Desktop Grid because its resource providers are
located and controlled within the same administrative domain. A typical
example is the Condor platform [LL+88].

Finally we provide a table (Table 2) where we compare the examples indicated
previously, including, with the same parameters, the options chosen for our proposal,
R/parallel.

System Organization Platform Scale Resource
Provider

BOINC [And04] Centralized Middleware
based

Internet Volunteer

Entropia [CC+03] Centralized Middleware
based

LAN or
Internet

Enterprise or
Volunteer

Bayanihan [Sar98] Centralized Web based or
Middleware

Internet Volunteer

Condor [LL+88] Centralized Middleware
based

LAN Enterprise

Organic Grid
[CB+05]

Distributed Middleware
based

Internet Volunteer

R/parallel [VS08] Distributed Middleware
based

LAN Volunteer

Table 2: Comparison of R/parallel within the context of some popular Desktop Grid Systems

31

The main idea, as it can be deduced from the previous table, is to provide distributed
mechanisms to interconnect a client with several volunteer nodes. Since our users are
already using the R interpreter for running their applications, by extending the R
functionalities, a middleware approach could be used. The LAN scale is the most
suitable option for our purposes given its proximity between users, its relaxed
implementation requirements, and their better correlation with single users’ size of
problems (i.e. a extremely large number of computer resources should not be
required). Finally, a best-effort environment made up of volunteered computers is
considered, taking advantage of the existing resources at a given time, no matter the
number and the variable capacity of the available resources.

2.7. Parallel Computing with R

Using R together with parallel computing is not a trivial task as the language does not
provide mechanisms to support it natively. To compensate for this lack, several tools
have been developed with different degrees of success. These tools are mainly
implemented as R packages, the mechanism used by the R system to include libraries
with additional functions to extend the language. R packages, besides of being coded
in R itself, also allow the extension of R programs linking compiled extensions
written in Fortran, C and C++ [RD08]. A review of current state of the art in parallel
computing with R can be found in [SM+09]. Next we provide a classification
describing representative examples of R packages for several classes taking into
account the supporting parallel programming models and the enabling technologies
provided.

2.7.1. Packages Supporting the Message Passing Model

Early contributions to parallel computing with R were based on available general
purpose parallel computing frameworks and libraries like MPI [MPI93] and PVM
[Sun90] that supported the message passing model (described in section 2.3.2). These
libraries provide low-level programming interfaces that enable the codification of
parallel programs without scope restrictions. However the complexity of this
programming model hinders a wider use and adoption of these libraries. Examples of
packages implementing these solutions are: rpvm [LR02], Rmpi [Yu02] and snow
[TR+09]:

 rpvm [LR02] . The rpvm package is an interface to PVM [Sun90]. It
supports low-level PVM functions from R. There are no additional R
functions with high-level operations, so the user has to provide all the

32

communication and parallel execution directives. There is no command to
launch R instances at the workers from the master. Instead, the command
.PVM.spawnR()can be used to execute an R script file at the workers.

 Rmpi [Yu02]. The package Rmpi is a wrapper to MPI, providing an R
interface to low-level MPI functions. In this way, the R user does not need to
know the details of the MPI implementations. It requires a working MPI
installation, correctly configured and linked with R, and runs under popular
MPI implementations like LAM/MPI [BD+94] and OpenMPI [GF+04]. Rmpi
runs on clusters with Linux, Windows or Mac OS X. The Rmpi package
includes scripts to launch R instances at the workers from the master
(mpi.spawn.Rslaves()). The spawned R instances run until closed

(with mpi.close.Rslaves()). The package provides several R specific
functions, in addition to wrapping the MPI API. For example, parallel
versions of the R apply() like functions are provided by, e.g.

mpi.parApply(). These functions are used to “apply” a given function to
a vector or list of values, both provided as parameters. Another example is
mpi.bcast.Robj2slave()with which R objects can efficiently be sent
to workers. Rmpi also includes some error-handling to report errors from the
workers to the manager.

 snow [TR+09]. The package snow (Simple Network of Workstations)
supports simple parallel computing with R. The R interface supports several
different low-level communication mechanisms, including: PVM (via the
rpvm package), MPI (via Rmpi), NetWorkSpaces (via nws [NWS09]), and
raw sockets (useful if PVM, MPI or NWS are not available). This means it is
possible to run the same code using snow functions at a cluster with PVM,
MPI or NWS, or on single multicore computer. The snow package includes
scripts to launch R instances on the cluster nodes (cl <-
makeCluster()). The instances run until they are closed explicitly with

the function stopCluster(cl). The package provides support for high-

level parallel functions like apply() and simple error-handling to report
errors from the nodes to the manager. It also provides basic load balancing
functionality. clusterApplyLB() is a load balancing version of

clusterApply(). If the length N of vector values is greater than the
number of cluster nodes P, then the first P jobs are placed in order on the P
nodes. When the first job completes, next job is placed on the available node;
this continues until all jobs are complete. Using clusterApplyLB() can

result in better cluster utilization than using clusterApply(). However,
increased communications can reduce the performance. Furthermore, the node

33

that receives and executes a particular job is non deterministic, which can
complicate reproducibility in simulation applications.

2.7.2. Packages Supporting the Shared Memory Model

Shared memory model is commonly tied with symmetric multiprocessing computers
where several processors are running concurrently in multiple processors which have
direct access to a shared memory space where data can quickly be exchanged
(described in section 2.3.2). Packages found in this category mainly focus on one of
the two topics related with this model: either using multiple processors available in a
single computer or providing mechanisms to share variables among several R
instance processes. Two examples of these are the packages multicore [Urb09] and
nws [NWS09] . A description of both follows:

 multicore [Urb09]. multicore is an R package that provides functions for
parallel execution of R code on machines with multiple cores or processing
units. It is implemented using a master-worker paradigm. Unlike other parallel
processing packages all jobs share the full state of the original R instance
when spawned, so no data or code needs to be initialized. Spawning uses the
fork system call or an operating system specific equivalent. Spawning
establishes a pipe between the master and child process. The pipe can be used
to send data from the child process to the master component. The package
provides high-level parallel functions like mclapply() and simple error-
handling to report errors from the workers to the manager. The package works
on Unix systems, with experimental support for Windows available.

 nws [NWS09]. The package nws provides functions to store data in a so-
called “NetWorkSpace” [BC+09], and uses the ‘sleigh’ mechanism for
parallel execution. It requires a running NetWorkSpace server. nws is
implemented in the server side using the python language and the Twisted
framework for network programming. NetWorkSpaces currently supports the
python, Matlab, and R languages, and allows limited cross-language data
exchange. There are two basic functions for executing tasks in parallel
(eachElem() and eachWorker()). The package uses the master-worker
paradigm, and automatically load balances R independent function
evaluations. To enable the manager to communicate with workers, sleigh
supports several mechanisms to launch R instances at workers to run jobs:
local, secure shell (SSH), remote shell (RSH), load sharing facilities (LSF
[ZZ+93]) and web launch.

34

2.7.3. Packages Supporting Assisted Parallelization

In that category we found R packages designed for fully automated parallelization,
semi-automated parallelization and program skeletons, which main objective is to
relieve the programmer from dealing directly with parallelization details. This feature
is very important since programmers do not need to think “in parallel” when coding
their R scripts, so that anyone without proper knowledge of parallel computing can
benefit from its advantages. Three examples of each case are described: pR [ML+07],
ROMP [Jam08] and SPRINT [HH+08].

 pR [ML+07]. This solution consists not only of a simple R package but in a
full framework. The key feature of pR is that it dynamically and transparently
analyzes a sequential R source script and accordingly parallelizes its
execution. The results of partial executions are collected to perform further
analysis at run time. The framework is built on top of the R interpreter and
does not require any modification to the native R environment. Internally, the
MPI library is used for inter-node communication. Figure 18 illustrates the
architecture. Two important design decisions must be considered. First, is the
introduction of a preprocessing stage to perform dynamic dependency analysis
before interpreting R statements and identify tasks and loops that can be
parallelized. Parallelizing an entire program at the granularity of individual
statements, however, may generate too much scheduling and data
communication overhead and hurt the overall performance. This issue is
addressed with a selective and asymmetric parallelization model. Instead of
generating a symmetric Single Process Multiple Data (SPMD) type of parallel
code using one or more “fork-join” sessions, a master-worker paradigm that
only “outsources” the expensive jobs (i.e., function calls and loops) to the
workers is adopted. All the light-weight operations, such as simple statements
and conditional statements that do not contain any loops or function calls are
executed locally by the master component.

Figure 18: pR architecture (source [ML+07])

35

 ROMP [Jam08]. ROMP provides a binding of the parallel application
programming interface OpenMP [DM98] with the R interpreter. Fortran code
is generated and compiled on the fly by the toolkit and the OpenMP directives
are inserted. The toolkit consists of a family of special apply routines together
with reduction routines like sum, mean and product which generate parallel
OpenMP code. The toolkit can be used for easy parallelization of parts of an R
program without a steep learning curve for the user. Basically it produces
compiled code run outside of the R interpreter which, combined with
vectorization techniques and multiprocessor computers (with over 100 cores),
can achieve for some special problems, as it is claimed by their authors,
impressive speedups up to 10000.

 SPRINT [HH+08]. This package implements a prototype framework that
allows the addition of parallelized functions to R to enable the easy
exploitation of High Performance Computing systems. The Simple Parallel R
INTerface (SPRINT) is a wrapper around such parallelized functions, hence it
provides skeletons of commonly used algorithm structures in the form of
reusable R functions. Internally, in a similar way than package snow, it uses
the MPI library to communicate processes.

2.7.4. Other Packages Enabling Additional Resources

Other packages have been developed to enable access to additional sources of
computing resources. These sources range from homogeneous clusters to other
sources of heterogeneous resources accessed through system management software
tools like batch queue systems. Next we describe four examples:

 sfCluster/snowfall [KP+09]. sfCluster is a small resource manager
optimized for cluster solutions with R. It is a Unix tool written in Perl for
managing and observing R instances running on clusters while snowfall is an
R package based on snow [TR+09] that benefits from sfCluster. sfCluster
automatically sets up the cluster for the user, and terminates all running R
sessions after execution has finished. On top of that snowfall provides several
wrappers for essential snow functions.

 gridR [WS+07]. In the context of grid computing the package gridR is the
first main contribution. It submits R functions in a grid environment using
Globus [FK97], Condor [LL+88], or single servers. The grid infrastructure
uses R as interface and client. The server side implementation of gridR uses
several external software components: Globus Toolkit, an installation of the R

36

environment on the grid computers, and a GRMS-Server installation from the
Gridge toolkit [PK+06].

 multiR [Gro09]. It is designed to operate in highly distributed heterogeneous
computing environments such as grids. The main focus is dedicated to
security and authentication, simultaneous use of heterogeneous resources and
interaction with grid scheduling systems. multiR is provided as a service
using a Service Oriented Architecture (SOA).

 Rsge [Bod09] and Rlsf [SW+07]. These packages provide solutions for
accessing a cluster of computers managed by a batch queuing system like
SGE [Gen01] and LSF [ZZ+93]. For the case of Rsge, the package offers
functions to get information from the queuing system and to submit R jobs to
an R cluster handled by SGE. At the manager side the data object is split as
specified by the number of jobs. Each data segment along with the function
and argument list are saved to a shared network location. Each R instance
loads the saved file, executes it, and stores the results in the shared network
location. Finally the master script merges the partial results and returns them.

2.8. Concluding Remarks

One of the easiest ways to improve performance in a computer system is simply to
replicate entire computers and add a way for separate computers to communicate data
[DF+03]. Since one of our goals is to provide additional computing resources to build
parallel systems, computers at the reach of users can be aggregated and made them
transparently available to create a metacomputer [SC92]. A metacomputer can be
defined as a dynamic environment that has some informal pool of nodes that can join
or leave the environment whenever they desire. Users within an organization should
be able to share their computers at their will through a common intranet. The cost is
in increasing complexity of the software that has to orchestrate the utilization of these
resources while keeping the user interface as easy as possible.

Using distributed-memory computers it seems a message passing paradigm should be
adopted. However they require dedicated knowledge of enabling libraries and
frameworks like MPI what directly confronts with the type of users we consider. The
same applies for shared-memory models and since R does not provide any support for
parallel computing, automatic compilers must be observed to define new methods,
adapted to the characteristics of our problem, to parallelize user applications based in
parallel loops.

Although the programming model has been simplified during the last years, the
dependency on external frameworks and dedicated resources is still a major obstacle

37

for many R users (e.g. pR [ML+07] depends on a complex installation to access a
cluster of MPI enabled servers).

Packages like multiR [Gro09] already provide integration capabilities and simplified
methods for accessing new distributed resources. Security is also an important topic
considered in some R packages, but none takes care of accurate utilization of
resources or load balancing in heterogeneous environments, particularly regarding
parallel loops.

These solutions are well suited for research groups with access to dedicated
infrastructures (e.g. computing clusters managed by skilled technicians) and/or
enough time to invest in the development of ad hoc parallel programs using available
libraries and frameworks. However, when these requirements are not met, solutions
based on self-contained tools (e.g. squid for Perl [CG+05]), capable of running in
common desktop computers, are the preferred choice.

Regarding parallel loop scheduling, we can always obtain an optimal static schedule
for uniform loops. If we have a parallel machine with P identical processors, we must
simply partition the set of iterations of the loop into C chunks of size K=P/N
iterations each, where N is the number of iterations of the loop. Next, each chunk with
K iteration is assigned to each of the processors. This scheduling strategy, together
with other scheduling schemes is discussed in Chapter 4, where parallel loops are
considered in the context of, not only homogeneous processors found in symmetric
multiprocessors but also other running environments like heterogeneous processors
found in distributed memory multicomputers. These running environments introduce
additional issues to the problem of scheduling parallel loop iterations among several
processing units where solutions related with our scope of application are reviewed.

In next chapter we present our proposal, a new R package for parallel computing with
R, called R/parallel, that tries to avoid the problems identified at this point. To use it,
the programmer does not need to change his algorithm nor install and maintain any
additional third party software since the R/parallel package is self-contained and
capable of using current multicore processor desktop computers. It easily and
effectively enables the semi-automatic parallelization of loops without data
dependencies [Bri96], thus bringing the benefits of parallel computing within the
reach of any bioinformatician using R. Its design allows its direct use with current
bioinformatics analysis tools such as for example R/qtl [BW+03], MetaNetwork
[FS+07] or affyGG [AV+08] for analysis of genome-wide gene expression data. As a
starting point, we consider uniform loops running on top of identical processing units.
However, since one of our goals is to aggregate processors from different types of
computer systems, the methods proposed next also include additional requirements to
consider non-uniform loops.

38

39

Chapter 3
R/parallel – A Proposal for Parallel Loops with R

3.1. Introduction

In recent years, R [IG96] has gained a large user community in bioinformatics thanks
to its simple but powerful data analysis language. Growing repositories like
Bioconductor [GC+04] and CRAN [RF10] assist bioinformaticians with hundreds of
free analytical methods and tools. These user-contributed methods are easily reused
and adapted to each particular experiment for analysis of biological data. Examples of
often reused and adapted methods are the packages tilingArray [HT+08] and affyGG
[AV+08]. However, while data generated in experiments previously fitted
comfortably on a CD-ROM, nowadays, using new equipments hardly fit on a single
DVD-ROM. As a consequence of the post-genomic explosion of data, the demand of
computational power, as already introduced in this dissertation, is increasing
continuously and solutions to keep the processing pace of high-throughput devices
are required. A common approach in many bioinformatics fields like genomics,
transcriptomics and metabolomics, where large sequential data sets are analyzed, is
the use of parallel computing technologies [Tre01].

However, in some situations, in order to make use of parallel computing several
obstacles and barriers must be removed or mitigated to let users to take advantage of
running their applications concurrently. In our case, running parallel loops in R, there
are several particular issues to take into account in order to pave the way for

40

newcomers and develop the methods and mechanisms that will enable parallel
computations.

In here we focus first in the utilization of single computers with symmetric
multiprocessing capabilities, e.g. computers with multicore processors, to later extend
the proposed solution to aggregate remote nodes and hence support distributed
computing.

The R language interpreter, like many other legacy applications, is a single-thread
program that is not prepared out of the box to take advantage of nowadays multicore
computers. In order to do so parallel programming techniques are required to adapt
the parallel regions of the original program to enable its concurrent execution.
Therefore, single-thread legacy applications like the R language interpreter, running
on top of current multicore processors, claim for parallel computing support.

Transforming a sequential program to make it able to run concurrently several
sections of its code it is a difficult task that can be achieved by several methods,
depending on our resources, requirements and limitations [BV+08]. Most of them
imply either using a shared memory model, suitable for multiprocessor machines, or a
message passing model, which can be used between networked machines. Shared
memory based solutions, within a single process, make use of multithreading
techniques to run several instances of a single process together with shared variables
and inter-process communications (IPC) mechanisms like mutex sections to
synchronize its parallel execution. A useful tool to automate the construction of such
programs is OpenMP [DM98]. Solutions based on the message passing paradigm also
use IPC mechanisms but in this case to communicate different processes, usually but
not necessarily, through the network. A well-known library that provides a full set of
building blocks to ease the construction of such parallel programs is MPI [MPI93].
There are more solutions that have proved their value with great success, but even in
the case these useful tools are compatible with our programming language and
running environment, more disadvantages still can appear.

An obstacle that dramatically increases the complexity to adapt sequential programs
appears when global variables are extensively used in legacy applications. In these
situations, if using multiple threads running at different instructions of the same
process, it is quite complicated to ensure the correct access to these variables and
avoid race conditions. When correct access order is not ensured, applications are said
to be non-thread-safe. This is quite common in large legacy applications that have
been growing for years while increasing its functionality. An example of this, with
more than 10 years of evolution, is the R language interpreter.

A different practical obstacle appears when observing the maintenance lifecycle of
legacy applications. After years of proven utility it is logical to expect a long life

41

span. Introducing an external dependency on a piece of software that later on may get
discontinued can cause serious problems in the future.

Another legal obstacle is found between incompatible software licenses. For example,
many open-source tools are published using the GNU General Public License GPL
[GNU07]. Although partially solved by the less restrictive version Lesser GPL
license, the former prevents the utilization of these GPL licensed tools together with
proprietary software licenses which were commonly adopted by earlier legacy
applications.

Finally, a pragmatic problem comes with the required skills to perform such
transformations or adaptations. It is common for scientists to program their own
applications. Although when implementing their algorithms, they produce high
quality applications, without specific background on software engineering and
parallel computing, this process of transformation, due to the lack of knowledge and
experience, is very cumbersome and error-prone.

In this chapter we expose the methods and technologies developed to create a solution
for parallelizing parallel loops using non-dedicated environments in the R language.
Parallelizing loops in R has a double sided meaning. It stands for how do we have to
transform the original sequential program and second how do we execute the new
parallel programs. The outcome is an add-on R package called R/parallel [VS08].

3.2. Extending the R Interpreter with R/parallel

In this section we describe our proposal for parallel computing with R. In previous
sections we have reviewed the characteristics of the class of algorithms we are
considering, i.e. parallel loops, learning the main requirements these problems
impose. After reviewing current and former proposals for parallel computing with R
and comparing them with our target running environment we identify additional
requirements that must be considered. Next, and also considering the technical
restrictions introduced by R, we describe the design decisions and implementation
details of our proposal, the R package R/parallel, initially considering single
computers with multiprocessing capabilities.

3.2.1. Expressing Parallelism

The first aspect taken into account when willing to transform a sequential program
into its parallel version is the desire to minimize user intervention since one of the
premises defined for our running environment is to consider users with severe time

42

constrains. The perfect solution should not require any further modification from the
programmer. This should be achieved with fully automatic parallelizers, which parse
the program code, check it for data dependencies and generate a set of independent
tasks that can be safely evaluated in separate processors. However, the drawback of
this approach is that the parallelizer, a priori, does not know the execution time of
each subset of statements or independent tasks. When a set of tasks are running
concurrently, additional overhead and delays are introduced due to additional
processing steps (e.g. code analysis or task coordination). Besides of complex
implementation difficulties, that include data dependency detection and statement
transformations, the additional overhead introduced by the extra preprocessing steps
does not guarantee performance improvements from running the new parallel version
of applications. It is quite likely that a sequence of small fast tasks is parallelized and,
despite parallel execution, as a result of the transformation process and additional
synchronization, the overall execution time can be increased. The conclusion is that
current fully automatic parallelization does not provide better results in all situations
and alternatives based on the same ideas should be evaluated.

To avoid the problem described with fully automatic parallelization, semi-automatic
parallelization is considered. The design decision made is to let users indicate which
sections of their programs (i.e. which loops in our case) they need to speed up. The
idea is to ask the programmer what do they want to parallelize but not how. With that
minimum information parallelizers are able to transform sequential programs and
produce parallel versions. Methods like this have been successfully used in several
frameworks, currently being OpenMP [DM98] the most representative of them.

The origins of OpenMP date back to the late 1980s when there was no parallel
language standard for shared-memory multiprocessors [DF+03]. To address it an
initial effort was undertaken by the Parallel Computer Forum to define a standard
syntax for parallel constructs. The standardization process led to the definition of PCF
Fortran [PCF91] and eventually to the ANSI abstract interface standard X3H5
[ANSI94]. In summary, PCF Fortran provided two mechanisms for loop parallelism
and task parallelism. It also includes a feature called parallel regions, which were
constructs within which tasks could be created and concurrently executed. Parallel
loops were included as a special case of parallel region.

It was not until 1997 when the PCF/X3H5 standard was replaced by OpenMP
[DM98], an informal standard parallel programming interface with bindings initially
to Fortran and C. OpenMP drew strongly on the ideas from PCF Fortran, and it
adopted its directive conventions as in HPF to specify parallelism in a program. As in
HPF, OpenMP directives in a program can be ignored as comments by a uniprocessor
compiler with no difference in results.

43

As an example of OpenMP directives, a parallel loop is bracketed by the PARALLEL
DO and END PARALLEL DO directives. The PARALLEL DO directive can have a
number of qualifying clauses that permit the specification of variables that are private
to threads executing individual loop iterations and variables that are used for
reduction. An example from [DF+03] follows:

Note that the loop induction variable I is private by default and the END PARALLEL
DO directive is optional.

The method designed for parallelizing parallel loops in R is inspired in OpenMP and
its predecessors. In OpenMP parallelism is exposed by using directives, written in the
form of code comments, to indicate parallel regions as depicted in Figure 19.

Figure 19: Indicating parallel regions

Trying to translate that to R we found the first differences. Since R is an interpreted
language, in contrast to the compiled languages supported by OpenMP, a
preprocessing phase should be introduced or transformation steps be performed at
runtime. Due to a preprocessing phase would introduce an extra step to run R scripts
this is not the preferred option. R programmers are used to run their scripts directly
once coded, in many cases interactively, and this extra phase would seem too
cumbersome for them. Therefore a mechanism to express parallelism at runtime
should be used.

Comments introduced in source code are also not feasible since the R parser discards
them when loading and creating function objects. An alternative could be the use of
macros or other similar language constructs that allows the introduction of

!$OMP PARALLEL DO
DO I = 2, N
 APRIME(I) = (A(I+1) + 2*A(I) + A(I-1))*0.25
ENDDO

44

conditional instructions, only used if some environmental conditions apply, but again
R lacks of this kind of structures.

The obvious alternative, reached that point is the utilization of an IF-ELSE structure.
The IF section can be used to check if the conditions to perform the parallelization are
meet (and eventually start the parallelization), while the ELSE section can be used to
indicate the parallel region. An example will help to illustrate our proposal. Suppose a
generic R function encoding a parallel loop as the one depicted in Figure 20:

Figure 20: Example R function encoding a parallel loop

In order to parallelize the for loop we only need to enclose the whole loop body
within the ELSE section of an IF-ELSE construct as Figure 21 illustrates:

Figure 21: Parallel loop indicated with an IF-ELSE construct

yourFunctionName <- function(argument1, argument2=NULL)
{

1. Initializing Values
internalVar1 <- 0
reduceVar <- NULL

2. Start of loop
for(index in 1:nrow(argument1))
{

#Make some calculations
internalVar1 <- someCalculations(argument1[index,])
tempResult <- moreOperations(internalVar1, argument2)
reduceVar <- reduceOperation(tempResult, reduceVar)

}

3. Finalizing the function
return(reduceVar)

}

yourFunctionName <- function(argument1, argument2=NULL)
{

1. Initializing Values
internalVar1 <- 0
reduceVar <- NULL

if(“rparallel” %in% names(getLoadedDLLs())
{

runParallel(resultVar=“reduceVar”, resultOp=“reduceOperation”)
}
else
{

2. Start of loop
for(index in 1:nrow(argument1))
{

#Make some calculations
internalVar1 <- someCalculations(argument1[index,])
tempResult <- moreOperations(internalVar1, argument2)
reduceVar <- reduceOperation(tempResult, reduceVar)

}
}

3. Finalizing the function
return(reduceVar)

}

45

Besides of the IF-ELSE structure, a single helping function is used,
runParallel(), to collect extra information required for the transformation
process. This method has the following characteristics:

 Environmental conditions can be checked in the IF section (condition
statement and body) and decide if the parallelization can take place.

 Extra information about the exposed parallel region can be collected to
indicate what to parallelize (e.g a parallel loop with a reduction variable called
reduceVar), and eventually if desired, adjust the parallelization (e.g. which
scheduling method should be used at runtime).

 This method can be used together with different parallel structures. Although
our current implementation is restricted to parallel loops coded with R, it can
be extended to other parallel structures, for example it could be used to
indicate several independent expressions that should be evaluated
simultaneously by several processors (i.e. task parallelism).

 From the runParallel() function call the parallelization process can be
undertaken.

Another aspect to consider when developing parallel programs is the difficult task of
debugging when coding errors arise. When multiple processing units are running
concurrently at different steps of a program, the identification of the conditions that
triggers a bug and the retrieval of the state of each execution thread is a cumbersome
task that should be avoided. To minimize this risk, an objective of the design of this
package, and enabled by the proposed method, is the ability to run the sequential (and
parallel) version of the R programs without changing any further line of code (besides
of the IF-ELSE added). By running a program sequentially it is possible to test the
correctness of the implemented algorithm and debug it using traditional tools. The
user can activate the parallel execution just by loading the R/parallel package before
performing a calculation (condition tested with “rparallel” %in%
names(getLoadedDLLs())). This design decision is also supported by the fact
that, as the user program is not functionally dependent on R/parallel, it can always be
shared with other bioinformaticians without requiring them to install the package or
modify a single line of code.

Finally, we must observe that using a high level of abstraction restricted to a few
control structures, e.g. parallel loops, is less flexible and probably the produced
programs are less efficient than using low-level languages and restructuring our
programs with a specific target machine. However, given our running environment
considers users with reduced knowledge and available time, the chosen option,
besides of being more portable, enables the quick transformation of programs with
minimal user contribution providing good performance improvements that otherwise
would be probably never achieved.

46

3.2.2. Transforming the Original Program

R is an interpreted language that does not include mechanisms for preprocessing their
programs or scripts. As it was exposed previously this prevents the utilization of
techniques used by other solutions available for compiled languages like OpenMP.
However it also provides other mechanisms, not present as straightforward in
non-interpreted languages, from which we can take advantage. In this section we
describe the method proposed to create a parallel version of sequential programs with
parallel loops coded in R.

The basic idea is to let the R program run as usual until we reach a function from
where we want to invoke the parallel version of a section of code, a parallel loop in
our case, that the user has indicated to be parallelized. From there we can prepare and
check any precondition to launch the parallel version and once everything is ready,
proceed with the concurrent execution. Once finished, any postcondition or
finalization task can be performed and the flow of execution is returned to the same
point from where it was diverted. Figure 22 illustrates this process.

Figure 22: Diverting the flow of execution

The main requirement before launching the parallel version is to retrieve all the
available information at the point from where the execution flow was diverted. This
includes the state of the current execution, i.e. all the accessible variables and their
values, as well as the code or statements of the loop body that must be parallelized.
Here is where R, being an interpreted language, provides different mechanisms that
we can benefit for our proposal.

Interpreters normally do not use the complete view of the program until it is needed.
They parse one statement after the other and they retrieve the variables only when
they are required to evaluate an expression. That implies that certain flexibility
retrieving variables must exist.

47

R represents any manipulable entity with an object. There exist several types of
objects which include regular variables but also functions and sets of bindings called
frames. It is of special interest the scoping rules used in R which define how objects
are located along the search path [RD08]. Taking advantage of this characteristic, it is
possible to retrieve the value of any accessible object, manipulate them and create
new objects at runtime. Working with R we have two important advantages for our
goals. First, at any time, we can retrieve all the accessible objects and take a snapshot
with the state of the ongoing computation. With this snapshot, any object can be
serialized and transferred to a different computer with a different R session, where it
can be restored and later continue with a different computation restarting from the
same point. And second, it is possible to retrieve the source code of any function,
modify it or create new ones at runtime. This characteristic will allow us to extract
the source code of the iterations, i.e. the statements that contain the body of the loop,
and create templates which can later be used as a base for the adapted scripts
generated to run the parallel regions on (remote) worker nodes.

At this point we have all the data and the code templates and next step is to define
working units that will be assigned to different processors to be executed
concurrently. Independently of the type of processing units available and the method
used to access them, we can use a master-worker model. The idea is to let the master
component to perform all the preparation steps, including the set up of working units
that will be dispatched to the workers for their execution. Once they have finalized, it
will collect back the results and it will perform any additional operation before
returning the flow of execution. Next section describes how the master-worker model
is implemented to access additional processing units.

3.2.3. Accessing Additional Processing Units

In symmetric multiprocessing systems the most commonly used technology is
multithreading. Programming with threads can be quite complex for inexperienced
programmers although since we are considering a semi-automatic parallelization
method this complexity will be hidden from the user and the technical details will be
handled by the parallelizing solution. However, the design of a solution to provide
parallel computing capabilities in single thread legacy applications like the R
language interpreter is constrained by several problems [VS10a], some of them
already introduced in this dissertation. Next we review the problems identified and
the proposed solutions.

Language interpreters are a good example of programs that have evolve considerably
over time. Their implementations can be grouped into two different approaches
observing how they handle the global variables shared between different concurrent
threads: share all or share nothing. The share all approach has the advantage that any
variable is directly accessible at any time. However, since the access has to be

48

controlled continuously with global locks, its performance falls down with an
increasing number of parallel threads. The second approach, in contrast, shares
nothing unless explicitly defined. This imposes more work for the programmer but
results in better scalability. This approach has been used by many language
interpreters like python, erlang or perl. In fact, the perl implementation of threads
switched from the share all to the share nothing approach in version 5.8.0 [Prl02] to
overcome the poor performance of its earlier implementations. With this second
implementation the scalability is dramatically increased although the sequential
access to shared variables is still a bottleneck.

The interpreter implementations, besides of choosing a share nothing approach, can
be classified into two additional groups. One group implements dedicated user level
threads to manage the shared resources, also known as green threads, while the other
delegates its control to native system calls at kernel level, known as native threads.

The first option has the advantage, on single processor computers, that since the
controlling thread has specific knowledge about their own family threads, its expected
performance should be greater than if managed by general purpose kernels, which
have no knowledge about the future requirements of the threads being scheduled.
However, the common disadvantage, since all user-level threads belong to the same
process and they share the processor quantum of scheduled time (i.e. cooperative
timeslicing scheduling) is that only one thread is scheduled at a time to a processing
unit. With a high number of running threads, the controlling thread turns into the
busiest one, blocking the others to get access not only to the shared variables but also
to their share of processor time.

This scalability problem appeared for example in early versions of the java virtual
machine or in the ruby interpreter language. Using native threads have been adopted
by other programs like the python interpreter or later versions of the java virtual
machine to solve this limitation.

Taking into account the evolution and experience of those general purpose
interpreters seems logical that when performance on multiprocessor systems matters,
and restricted to the situations depicted in the introduction, using a share nothing
approach based on internal operating system mechanisms is the recommended option.

Being the R language interpreter a considerably large non-thread-safe application it is
not advised to initiate a restructuration that will require an extensive revision of all
the global variables used all over its source code and a later validation of the changes
introduced to ensure its initial quality levels. Moreover, the R language interpreter,
like many modern languages, is evolving continuously, and every year a few updates
are released. That will require a continuous tracking of the changes introduced in new
versions that clearly discourages any direct modification.

49

At the other hand, choosing a third party tool, if available and compatible, technically
and legally, for our application, has to be carefully done if we expect this introduced
dependency to coexist safely for the coming years. Therefore, as long as
multithreading within the same working process is not directly a feasible option, a
classical alternative, multiprocessing, seems a right choice.

The requirement for that option, multiprocessing, is to find a way to create multiple
processes with selected code and manage its execution. As we exposed earlier,
libraries like MPI provide helpful functions than can assist with the task of spawning
and communicating processes but they also have two major inconvenients for our
specific needs: first, they require the installation and configuration of additional
system software, what turns to be too difficult and scary for non-technical users, and
second, the available wrappers existing for the case of R does not provide (yet) an
standard and stable programming interface over MPI versions (e.g. Rmpi [Yu02] does
not have a seamless integration of different MPI implementations like LAM [BD+94]
and OpenMPI [GF+04]).

Finally, taking all the arguments into consideration, the design chosen is depicted in
Figure 23. The basic idea is to identify, within the legacy application the sections of
code that can independently run in parallel. These sections can be replicated in
several independent processes so we are sure we will avoid race conditions when
accessing its local copy of the global variables. In order to prepare these processes
with different input data, coordinate its execution and collect back the partial results
we need a central piece of software. This additional module, as long as it is
completely new and shares nothing with the original application can be implemented
using multithreading.

Figure 23: General design strategy for parallelizing a non-thread-safe legacy application

parallel
section

sequential
section

sequential
section

parallel
section

parallel
section

parallel
section

...

INSTANCE #1

INSTANCE #2

INSTANCE #N

Independent processes
(running different instances of the parallel section)

Added
Multithreading ModuleLegacy Application

SET UP, DISTRIBUTION
and COORDINATION

COLLECTION &
REDUCTION

Re-entrant code

50

These threads will be used to manage independently the creation and communication
of the processes with the module. The result is a master-worker model, suitable for
embarrassingly parallel problems, where the central module acts as a master
coordinator and a set of working processes, running concurrently over different
processing units or cores, perform the calculations that previously were done
sequentially within the legacy application.

The master component runs within the main R instance and it is implemented using R
scripts and C++ objects, taking advantage of both programming worlds. Workers also
make use of R and C++, but they run in separate R instances in independent
processes. Combining low-level operating system calls in C++ to manage processes,
threads and inter-process communications (IPC) with the intrinsic features of R, like
the capability of retrieving or creating functions at runtime (a feature known as
“computing on the language”' [RD08]), it has been possible to build a generic
solution able to automatically transform a sequential loop and parallelize its
execution. The general mechanism is depicted in Figure 24.

Figure 24: General master-worker model implemented in R/parallel

external
node

external
node

external
node

external
node

0. Initial sequential execution

1. Save the state

2. Create the jobs

3. Submit the jobs

. . .
external

execution

4. Retrieve the results

5. Compute aggregated result

6. Final sequential execution

7. Return to invoking call

51

Once a parallel section is reached and the parallel execution of a loop is invoked from
the function runParallel(), a new object with a controlling master module is
created. There the first step performed is to retrieve the current value of all the
accessible variables of the ongoing execution, including the source code of the body
of the parallel for loop, and the state of the ongoing computation (i.e. all the
accessible variables) is stored in a file. With this information, and knowing the
parallel section of code to be run, the independent processes are set up based on script
skeletons and spawned using bootstrap files (with the generated scripts) and system
calls (i.e. fork_like functions). Using standard system calls, although less
straightforward than using already done wrapper libraries ensures the autonomy, and
therefore the long term maintainability of the application.

Next, the workers, once launched and after loading the files that contains the state of
the computation, have almost all the information and only have to contact back the
master to request their portion of work, in our case, the indexes of the iterations to be
performed. Since we do not know beforehand which data or subsets of data will be
required by each worker, all the variables are loaded by the workers. This will ensure
the minimization of interprocess communication and synchronization.

The master, accordingly to the number of available workers will define and assign a
task with a variable number of iterations. The number of iterations (also called the
chunk size) is determined by the task scheduler implemented. In the first version the
policy defined is just to dispatch chunks of size K = N/P, being N the number of
iterations and P the number of workers. Next, each worker will perform its assigned
task and once finished it will contact back to the master. The communication is
carried out and coordinated using standard IPC system calls and objects (i.e. mutex
variables and pipes). Once the workers have processed all the iterations and have
returned back their partials results, the master has to calculate the final result. To do
it, knowing the jobs assigned to each worker and the reduction operations indicated
by the programmer the master module is able to compute its aggregated results (i.e.
reduces the partial values) to obtain the single final values. Finally, from the same
runParallel()function, the R environment of the invoking function is updated
with the new values of the reduced variables, and the execution continues from the
next sequential section without further changes. With this strategy, we can effectively
run concurrently any section of R scripts by raising several instances of R
conveniently prepared to communicate with the central module.

52

3.3. Providing Support for Distributed Computing

In this section the extension of our prototype to enable the utilization of distributed
computing resources is described. In the previous section we describe our prototype
design and implementation details for multiprocessor computers, which at this point
supports the parallelization of loops without data dependencies in multicore
computers. The next logical step to increase the performance of a parallel system is to
extend its capacities by aggregating the computational power of networked computers
and adapt the software to support distributed execution of parallel loops using non-
dedicated computers volunteered by their owners or users.

There are several types of computing resources that can be used to perform
distributed computations and that may not be used because it does not exist the
convenient mechanisms to access them. Figure 25 illustrates several options that can
be considered for aggregating additional computer resources. Particularly for our
running environment we consider these additional sources of computation within the
context of Desktop Grid solutions, which general characteristics have been reviewed
in section 2.6.

Figure 25: Several distributed computing resources can be used to increased the processing capacities of a
parallel system

Given the heterogeneity of these environments, well-known scheduling schemes,
suitable for parallel loop scheduling should also be considered. This will allow us to
identify the right scheduling methods required for efficiently make use of the
additional resources and consequently increase the performance of our parallel
applications. They are reviewed in Chapter 4
Parallel Loop Scheduling.

In order to achieve such extension additional developments must be done. First me
must develop suitable methods in R/parallel to cross the boundaries of a single

Shared servers

Colleagues
workstations

SGE, PBS Clusters

Grid systems

Opportunistic
mgd. systems

Cloud systems

53

computer and operating system and reach additional processing units. Besides of
using internetworking methods, that objective implies adapting the templates and
launch scripts used to reach each different type of working node. Next, resource
allocation methods are required to find the available computers that will be used for a
calculation, at runtime.

3.3.1. Adding Support for Additional Remote Workers

The utilization of remote workers requires several additions to the original structure
of R/parallel. The idea is to enable the access to remote nodes, volunteered or enabled
by their owners and users, in such a way that they can be contacted at any time to
request their collaboration with an ongoing calculation.

Besides of requiring the utilization of a communication protocol, standard TCP/IP
sockets in our case, a listener component is required in the volunteer side to enable
such contact. Internally, since we are using C++ objects, the methods for sending
messages between components use either sockets or pipes, depending on whether the
communication is established between the remote or the local components. The
internal developed interfaces in general classes encapsulate the new functionalities,
allowing the internal software architecture of R/parallel to remain without changes.

Another change implies adapting the templates and script skeletons used to raise the
workers. Since we intend to use different types of computing resources (e.g.
standalone computers or clusters), there are several available methods to launch
processes or execute jobs for each case [VS10b, VS10c]. Besides, the local storage
cannot be used to exchange information between the master and the workers. Due to
that the templates internally used must be extended to: first, configure the right
method to launch the workers, for example, the qsub sentence with the right
parameters in a batch scheduler, and second, provide the required information for the
worker to contact back the master in order to download the state of the ongoing
calculation, the tasks including their assigned iterations and return the results obtained
after processing their assigned tasks.

3.3.2. Allocating Additional Working Nodes

The new version, besides of providing new scheduling capacities, takes care of the
coordination and synchronization of remote workers incorporating distributed nodes.
The only requirement left for the user (and a third colleague or collaborating peer) is
to perform the action of volunteering his or her computer to another user (or himself
in a different computer), and in turn, the other colleague, besides of acting in a quid

54

pro quo basis and also volunteering his or her computer, only has to add this
colleague's machine to the list of known collaborating remote nodes. Both actions are
performed from R with simple function calls provided with R/parallel. An example is
provided in Figure 26.

Figure 26: Code snippet to add volunteer nodes

Internally, the function install.volunteer() will create a cron_like process
that will monitor that an R session with a listener is running continuously. Next, the
grant.access() function modifies the internal access policy of a volunteer to

grant access to a computer. Finally, the function add.volunteer() adds a new
entry to the list of known volunteers. With this information, the next time a
computation is performed, R/parallel, before splitting the loop and creating the tasks,
will request to all the nodes included in this list to collaborate in a calculation. The
process is illustrated in Figure 27.

Figure 27: Request For Collaboration (RFC) procedure to retrieve additional working nodes

If the requirements sent by the master (e.g. additional loaded R libraries) are fulfilled
by the remote node and there is a free slot, the remote node spawns the worker
processes with ad hoc bootstrap initialization files that provide the workers with the

to install the volunteer listener and grant access to a peer
> install.volunteer()
> grant.access(node="192.168.0.4")

to add the new collaborating peer with
IP 192.168.0.5 to the list
> add.volunteer("192.168.0.5")

55

information required to join the calculation. The internal components of R/parallel
involved in this procedure and the subsequent distributed computation are illustrated
in Figure 28.

Figure 28: Internal components of R/parallel involved in a distributed computation

Once a new calculation begins, the master component tries to reach each remote node
in its list and sends a request for collaboration (RFC) to the listeners previously set up
with install.volunteer() (step-1). Within this step, information regarding the
current computation is exchanged (e.g file space required for the serialized
environment variables). If the requirements are fulfilled by the remote node, a
positive answer is returned to the master including the number of workers going to be
provided (step-2). In the next step (3), the remote node spawns as many worker
processes as indicated to the master with ad-hoc bootstrap initialization files that
provide to the workers with the information required to perform the calculation,
including the network address of the requesting client. As it can be seen in the Figure
28, the master component is also able to spawn local workers. Once the remote
workers are initialized they will connect back to the master listener to get involved in
the computation (step-4). At this time the master component will create a dedicated
thread for each worker (step-5) to handle the exchange of tasks and results between
the master and the workers (steps 6 and 7). Besides of this mechanism and the new
scheduling schemes explained next, there are no significant design differences
between the local only version of R/parallel and this extension.

56

3.3.3. Adapting the Scheduling Schemes

Since the quantification of the computing power with a positive constant is still an
open problem [DL06], performance indicators based on intrinsic characteristics of
computers, such as processor frequency, can not completely be trusted. Performance
results based in predefined metrics which are true for a given application and
computer can change if any of these elements is also changed. Moreover, when
running on non-dedicated environments, there are multiple factors that have a
negative effect over the raw computing power. These factors range from network
congestion to computer overloading. Due to that, it is quite feasible that at some
times, relatively small nodes perform faster than more capable ones. For this reason,
an given we are focused in dynamic environments like the one depicted in Figure 29,
we have chosen the task turnaround completion time as the only performance
indicator we can really trust.

Figure 29: Changes in the relative capacity of heterogeneous computers can be caused by several factors,
like variable loads and network congestion

The implementation of the scheduling schemes described in Chapter 4 follows the
original definitions provided by their authors. The introduced modifications are
limited to the utilization of information only available in the client/master side,
specifically as described, the elapsed time since each task is scheduled to a worker
with a chunk of K iterations until its partial results are returned back, i.e. the task
turnaround completion time. The utilization of the task turnaround time is therefore
included as a performance indicator within the scheduling schemes that require such
kind of information, like for example the AWF scheduler that requires a performance

57

indicator to calculate the workers relative weights. The schemes implemented, and
later on tested in the experimental section are: STATIC, PSS, FSS, WF, AWF and AF
(for details see Chapter 4 Parallel Loop Scheduling).

3.4. Concluding Remarks

R is the preferred tool for statistical analysis of many bioinformaticians due in part to
the increasing number of freely available analytical methods. Such methods can be
quickly reused and adapted to each particular experiment. However, in experiments
where large amounts of data are generated, for example using high-throughput
screening devices, the processing time required to analyze data is often quite long. A
solution to reduce the processing time is the utilization of parallel computing
technologies. Because R does not support natively parallel computations, several
tools have been developed to enable such technologies. However, these tools require
multiple modifications to the way R programs are usually written or run. Although
these tools can finally speed up the calculations, the time, skills and additional
resources required to use them are an obstacle for most bioinformaticians.

Our proposal to overtake these problems is materialized in an R add-on package
called R/parallel which can be loaded dynamically into the R language interpreter and
allows the parallel execution of for loops without data dependencies using the
strategy explained previously. The design principles have been proved correct
regarding the supporting technologies chosen. The R package has remained
completely independent and functional across several version updates of R since
R/parallel was released for the first time [VS08].

We have show that it is feasible, even for an interpreted language like R, to integrate
different sources of non-dedicated computing resources in a transparent way to the
end user. In our case we have integrated the resources from two different types of
sources: non-dedicated volunteered computers and compute nodes from a compute
cluster managed by the SGE job scheduler. However, additional types of resources
which are accessed with different types of frameworks can also be integrated within
the same platform by adapting the required templates and access methods.

R/parallel, as shown, can save time to bioinformaticians in their daily tasks of
analyzing experimental data. It effectively removes the most common obstacles
encountered by bioinformaticians approaching parallel computing in R, like complex
programming models or external dependencies on hard-to-maintain software
frameworks. R/parallel is an easy-to-use R package which allows any programmer to
parallelize their loops in a matter of minutes. The results in Chapter 5 will
demonstrate that R/parallel efficiently increases the performance of R when running

58

parallel computations in current desktop multicore processor computers as well as
using non-dedicated distributed environments. As a consequence, bioinformaticians
are able to approach reducing the processing time of a growing number of analytical
methods based in parallel loops in some cases even by N-fold, N being the number of
aggregated processing units.

59

Chapter 4
Parallel Loop Scheduling

4.1. Introduction

Loops exhibit most of the parallelism present in numerical programs. Therefore,
distributing the workload of a loop evenly among the processors is a critical factor in
the efficient execution of this kind of parallel programs. A loop scheduling strategy
assigns iterations to the processors of a machine in such a way that all of them finish
their workload at more or less the same time. A simple strategy is static scheduling,
which determines the assignment of iterations to processors at compile-time. But in
many situations, the workload of the iterations is unpredictable at compile-time. The
main source of inefficiency, specially when using heterogeneous systems like
volunteer-based ones comes from load imbalance.

Besides of the static differences among distributed nodes, e.g. different processor
clocks, other dynamic parameters vary during a computation, e.g. other programs
running in shared computers, changing the state and performance of nodes and
consequently modifying the expected results for the scheduled workload. To prevent
this and reduce the negative effects of changes dynamic scheduling schemes are used.
In this chapter we review both, static and dynamic scheduling strategies for parallel
loops. First, well-known schemes are described, next several examples of current
contributions are provided, and finally a new scheduling scheme is proposed.

60

Scheduling parallel loops have been extensively studied in the literature [BV02,
BV+03, HS+92, KW85, PK87]. The common approach is to set up tasks with subsets
of N iterations in chunks of different sizes K which are dispatched to P processing
units or nodes. The objective is to distribute conveniently the workload, i.e. all the
iterations of a given loop, among all the processors to minimize the overall execution
time. The method used to calculate the chunk size assigned to each processing unit as
well as other parameters is defined by the scheduling policies implemented in a
scheduling scheme.

In order to obtain a balanced distribution of the workload, several scheduling methods
can be selected. Parallel loop scheduling schemes found in the literature can be
classified into two classes accordingly to the time when the required information to
define the distribution is obtained and used: nonadaptive scheduling schemes and
adaptive scheduling schemes.

4.2. Nonadaptive Scheduling Schemes

Nonadaptive scheduling schemes define chunk sizes based on the available
information before running the loop, usually at compile time. These chunk sizes can
be fixed for the whole computation or updated at runtime based on predefined rules.
Next we describe the most representative scheduling schemes that define fixed chunk
sizes:

 Static scheduling (STATIC). This scheme is suitable for homogeneous
environments with fixed time iterations, i.e. uniform loops. It generates, being
ܰ and ܲ respectively the number of iterations of the loop and the number of

processing units, chunks of size ܭ ൌ ே
௉

. It has low overhead since all the

iterations are dispatched in equal single chunks to each processor. This
scheduling method belongs to the subclass of chunk scheduling schemes since
it assign subsets of consecutive iterations to each different processor, and is
the scheme most frequently implemented in static environments given its
simplicity and effective results.

 Pure self-scheduling (PSS). In this scheme chunks of just ܭ ൌ 1 are
generated. PSS, in contrast to STATIC, belongs to the subclass of cyclic
scheduling schemes since it distributes all the iterations cyclically among the
processors, one at a time. This method achieves load balancing but also a
likely high overhead depending on the communication required among
processors.

61

 Chunk self-scheduling (CSS). This variant allocates a constant set of K
iterations, but in this case the constant must be specified by the programmer.
A high value of K is likely to cause load imbalance and a small value can
eventually produce too much overhead. It can be observed that CSS can be set
with the same values to match PSS and STATIC schemes.

 Fixed size chunking [KW85] (FSC), proposed by Kruskal and Weiss is
based in the following formula:

ிௌ஼ܭ ൌ ቆ
√2݄ܰ

ඥlogܲܲߪ
ቇ

ଶ
ଷ

It provides an optimal constant value for the chunk size that minimizes the
execution time on homogeneous and equally loaded processors once all its
parameters have been defined, which includes the standard deviation ߪ of the
iteration time and the scheduling overhead h. Defining these parameters can
be complicated for some programmers.

These schemes provide fixed chunk sizes suitable for homogeneous environments but
in many cases its results are not satisfactory for heterogeneous environments. Next
schemes provide solutions for heterogeneous processing units.

 Guided self-scheduling [PK87] (GSS). This scheduling scheme and several
others based on the same idea can dynamically change the value of K by
generating decreasing size chunks. Their approach is to dispatch large chunks
at the beginning of the calculation to reduce the overhead, as it is achieve with
STATIC, and gradually reduce the chunk size to align the finalization time of
the involved processors, as happens with PSS. Its equation for calculating K,
based on the remaining iterations to be scheduled, is as follows:

ௌௌீܭ ൌ ඄
݃݊݅݊݅ܽ݉݁ݎ

ܲ
ඈ

Therefore, the first processor at the first assignment obtains the largest chunk,
the second processor, a smaller one, and so on, until there are no more
remaining iterations. For example, for ܰ ൌ 100 and ܲ ൌ 4, it will generate
the following chunk size sequence: ܭ଴ ൌ 25, ଵܭ ൌ 19, ଶܭ ൌ 14, ଷܭ ൌ 14,
ସܭ ൌ 11, ହܭ ൌ 8, ଺ܭ ൌ 6, ଻ܭ ൌ 5, ଼ܭ ൌ 3, ଽܭ ൌ 3, ଵ଴ܭ ൌ 2, ଵଵܭ ൌ 1, ଵଶܭ ൌ
1, ଵଷܭ ൌ 1, ଵସܭ ൌ 1.
It is very important to align the finalization of the processor at the end of the

62

calculation to avoid inefficient utilization of the resources due to possible
delays of the whole processing in the presence of too slow or overloaded
processors, as this scheme provides.

 Trapezoid self-scheduling [TN93] (TSS). This scheme is a variation where
chunk sizes decrease linearly, in contrast to the geometric decrease of chunk
sizes in GSS. Based on the parameters ݂ and ݈ specified by the programmer,
ܶܵܵ ሺ݂, ݈ሻ distributes all the iterations, starting with a chunk of size ݂, and
decreasing its size linearly until the last chunk of size ݈. The authors proposed
ܶܵܵሺܰ/2݌, 1ሻ as a general selection. In this case, chunk sizes are decreasing
in steps of ܰ/8݌ଶ, starting from ܰ/2݌ and finalizing in 1. The strategy of this
approach is double and defined by the values of ݂ and ݈. With the ݂ value it is
possible to modify the initial value of the chunks defined in GSS. This is
important in scenarios where heterogeneous processors are used. It is possible
to find slower nodes that just with the initial chunk assignment spend more
time than rest of the nodes processing all the other iterations. Adjusting the
value of ݂ this problem can be avoided and let the slower nodes contribute in
the right way. Regarding the parameter ݈ it is possible to adjust the size of the
last chunks. This is desirable when the overhead of processing one or a few
iterations (communication or synchronization overhead) is higher than the
time required to process a small chunk, even if that involves a reduced
misalignment of the processors at the end. Therefore, adjusting ݈ it is possible
to control the granularity of the last tasks and avoid a potential inefficiency
due to an unfavorable processor-communication ratio.

 Factoring self-scheduling [HS+92] (FSS). This scheme proceeds in phases.
During each phase, only a subset of the remaining iterations, i.e. a batch ܤ, is
divided equally among the available processors. The batch size is a fixed ratio
of the unscheduled iterations. The ratio depends on the mean and standard
deviation of the iteration execution times. When these statistics are unknown,
the ratio 0.5 has been experimentally proved to provide reasonably good
results. In this case, the batch and chunk size are calculated as follows:

ிௌௌܤ ൌ 0.5 כ ݃݊݅݊݅ܽ݉݁ݎ

ிௌௌܭ ൌ ඄
ܤ
ܲ
ඈ

Next phase starts once all the chunks in the current batch have been
scheduled.

63

 Weighted factoring [HS+96] (WF). This scheme incorporates, when
available before the execution of the loop, information about the processing
speed of the processing units or working nodes. In this method, the chunk size
assigned to each processor i is readjusted accordingly to its relative speed,
defined as a weight ݓ௜ which is used as follows:

ௐி೔ܭ ൌ ௜ݓ כ ிௌௌܭ

Using this method, faster processors obtain bigger chunks than slower ones.
This scheduling scheme is suitable for heterogeneous computers in static
environments since it adjusts the assigned portion of the workload to each
working node based on its processing capacity. However, it assumes that the
relative speeds are constant throughout the execution of the loop, what cannot
always be assured in some cases due to several factors, for example operating
systems interference.

The scheduling schemes presented, nonadaptive, expect uniform loops with fixed
iteration bounds and static processing units in order to provide correct schedules.
However, when using non-dedicated environments, like happens in other changing
environments, the conditions that led to a given schedule may change and hence the
assignments done may not be well balanced any more. Changes may be originated
within the worker nodes, e.g. parallelization overhead or unbalanced loops, and its
external environment, e.g. network congestion. In order to react against these changes
that degrade the performance obtained with nonadaptive methods, adaptive
scheduling schemes have been proposed.

4.3. Adaptive Scheduling Schemes

Adaptive scheduling schemes described in literature mainly evolve from the factoring
and the weighted factoring schemes. Next, two representative schemes are described.

 Adaptive weighted factoring [BV+03] (AWF) was originally developed to
tackle with applications where changes during loop execution not only occur
due to the processing speeds of the involved working nodes but also to the
parallel loops themselves, which present different loads between iterations.
This can be the case of semi-uniform or non-uniform parallel loops. AWF,
when determining the chunk sizes, attempted to incorporate both sources of
variability, external due to the running environment changes and internal due
to the characteristics of the workload. Initially, chunk sizes are determined as
in WF, but at the end of each time step, the processor weights ݓ௜ are adjusted

64

based on the information collected during the current and previous steps. For
the first time step, ݓ௜ ൌ 1 is defined. These timing data are used to update ݓ௜
for the next chunk calculation. This method provides very good results in
heterogeneous environments where the running conditions evolve during a
calculation. However depending on the implementation and the running
environment, for example when the number of available processors varies
during the calculation (i.e. not the quality of the processors but its quantity),
the results obtained can be improved.

 Adaptive factoring (AF) [BV02] modifies the FSS method by using an
estimation of the mean and standard deviation of the iteration execution times.
They are calculated dynamically during the execution of the loop based on the
results of already processed chunks. First values are obtained from the
execution times of chunks from an initial batch of arbitrary size. Given ܴ (do
not mistake parameter ܴ with the R language), μ௜ and ߪ௜, representing
respectively the remaining tasks, the mean and the standard deviation of
execution time in a processor ݅, the rest of the chunk sizes are calculated as
follows:

௜ܦ ൌ෍
௜ߪ
ଶ

௜ߤ
, ௜ܶ ൌ ൭෍

1
௜ߤ

௉

௜ୀଵ

൱

ିଵ௉

௜ୀଵ

஺ி೔ܭ ൌ
௜ܦ ൅ 2 ௜ܴܶ െ ටܦ௜

ଶ ൅ ௜ܦ4 ௜ܴܶ

௜ߤ2

This method provides good results for large executions, once the statistic
values of the mean and standard deviation have been stabilized. For some
irregular executions, when the statistical values take so long to properly
represent the behavior of the application, the results obtained in our
experiments show that in some cases they can even be worse than those
obtained with non-adaptive scheduling schemes.

4.4. Extended Contributions for Parallel Loop Scheduling

The scheduling schemes presented previously provide mechanisms to conveniently
distribute loop iterations under different assumptions and prerequisites of the
underlying parallel systems. Although they already provide good solutions for most
common scheduling problems, new user requirements and technological evolutions
continuously provide new goals and environments where new conditions and
parameters are introduced, generating new opportunities where further improvements
can be achieved. In this section we review some examples of other proposals that

65

extend previous well-known schemes or propose new approaches to deal with new
objectives and problems.

4.4.1. Extensions of Previous Schemes

There exist a large number of contributions that have evolved from previous well-
known schemes, either by combining different schemes or by introducing new
concepts that eventually improve previous performance results. Next we provide
some remarkable examples.

Chronopoulos et al. [CA+01] proposed and extension of previous work on
multiprocessor systems to support heterogeneous distributed systems. First, they
propose a combination of previous schemes, FSS and TSS, to combine the strengths
of both schemes, called Trapezoid Factoring Self-Scheduling (TFSS), which is
suitable for distributed systems. They use the idea of batches or stages introduced by
FSS, meaning that the iterations are scheduled in groups of ܲ equally sized chunks.
While in FSS it was proposed to schedule half of the iterations at each batch, here the
size of the next batch is the sum of the next ܲ chunks that would have been computed

by the TSS scheme, i.e. ்ܤிௌௌೕ ൌ ∑ ௌௌ೔்ܭ
௜ୀ௞ା௉
௜ୀ௞ . The batch is then equally divided

among the ܲ processors, as in the FSS scheme. Next, in order to support distributed
environments, they implement TFSS and other previous schemes using a master-
worker paradigm and include the virtual computing power of the workers to support
heterogeneous nodes, as it was done previously by the same authors in a previous
proposal called Distributed Trapezoid Self-Scheduling (DTSS). The main difference
with respect to TSS, introduced to take into account the speeds of the processors to
adapt to the actual load of the distributed system, is the exchange of the number of
processors P with the available computing power obtained using the ratio of virtual
computing power and number of processes in the run-queue of each worker. Their
implementations with MPI show its applicability in environments with dedicated and
non-dedicated nodes using mixtures of fast and slow nodes.

Díaz et al. [DR+06] provided a general formulation of the self-scheduling problem
that derived in the proposal of a new self-scheduling scheme, Quadratic Self-
Scheduling (QSS). The basis of their proposal follows. Let ܭሺݐሻ be the chunk

function giving the chunk size for the ݐ௧௛ task, with ݐ defined within the interval
ሾ0, ܶሿ. Two conditions must be fulfilled by any form of the function ܭሺݐሻ. First, the

exigency of a decreasing chunk size requires that
ௗ௄ሺ௧ሻ

ௗ௧
൏ 0, and second, given ܰ the

total number of iterations, ܰ ൌ ׬ ݐሻ݀ݐሺܭ
்
଴ . Considering ܭሺݐሻ an unspecified function

of ݐ such that ܭሺݐሻ ൌ ݂ሺݐሻ, ܭሺݐሻ can be expressed as an expansion of ݂ሺݐሻ with an
approximation of Taylor series, that in compact form can be formulated as: ܭሺݐሻ ൌ

66

ܽ ൅ ݐܾ ൅ ଶݐܿ ൅ Limiting the expansion of the last equation to the constant term .ڮ
we obtain the scheme PSS (ܽ ൌ 1) or STATIC (ܽ ൌ ܰ ܲ⁄). Retaining the linear term

we can obtain the TSS scheme, with the following formula: ܭሺݐሻ ൌ ଴ܭ ൅
ሺ௄೅ି௄బሻ

்
 ,ݐ

where ்ܭ ൌ 1 and ܭ଴ ൌ ܰ 2ܲ⁄ . A more flexible model is obtained retaining the
quadratic term, finally resulting in:

ሻݐሺܭ ൌ ܽ ൅ ݐܾ ൅ ଶݐܿ

That equation defines the QSS scheme. To apply QSS the coefficients ܽ, ܾ and ܿ must
be defined. The following equations can be used to obtain these values:

ܽ ൌ ଴ܭ

ܾ ൌ
்ܭ4 ଶ⁄ െ ்ܭ െ ଴ܭ3

ܶ

ܿ ൌ
଴ܭ2 ൅ ்ܭ2 െ ்ܭ4 ଶ⁄

ܶଶ

ܶ ൌ
6ܰ

்ܭ4 ଶ⁄ ൅ ்ܭ ൅ ଴ܭ

The chunk size for the first, middle and last task (respectively ܭ଴, ்ܭ ଶ⁄ , can be (்ܭ

defined by the user to tune the number of tasks produced and hence optimize the load
balance to overhead ratio by selecting an appropriate value of ்ܭ ଶ⁄ . Values of ்ܭ ଶ⁄

bigger than
௄బା௄ಿ

ଶ
 reduce the number of tasks and hence the overhead, while smaller

ones increases the number of tasks achieving better load balancing and allowing a
more accurate distribution of the final tasks.

Gap-aware Self-scheduling (GAS) [KN+05], based in GSS, considers the problem
of scheduling parallel tasks of an individual job on a multiprogrammed parallel
system. In particular they address the problem of minimizing the maximum
completion time of DOALL loops. Several schemes assume a fixed number of
processors. However the latter is not valid in context of multiprogramming. This can
potentially give rise to “gaps” in processor availability, i.e., a processor may not be
continuously available to the same job. For example, in Figure 30, processor P2 is not
available for ݐ א ሺ750,850ሻ.

Figure 30: a) Schedule obtained from existing techniques, b) Optimal schedule (source [KN+05])

67

The effect of varying number of processors and the presence of gaps was not
explicitly considered previously. They propose GAS to capture the effect of the
presence of gaps in processors availability on self-scheduling. At each scheduling
step, GAS computes the chunk size based on the number of remaining iterations and
gaps in processor availability. In order to capture the effects of gaps a displacement
factor, is defined for online modulation of the chunk size. The displacement factor is
computed based on the differences of finishing time of previous executions. The idea
is that at any point in time, the amount of workload assigned to each processor should
be chosen such that the remaining workload is “sufficient” to balance the workload
evenly, i.e., the difference in finishing times of the processors at the end of the
schedule is minimal. In front of the evidence that a processor will not be completely
available its iterations are saved for other processors. Using this information, an
additional correction factor called lag, used to “relax” the exponential decay of chunk
size and avoid scheduling too much iterations at early steps, and ௠ܹ௜௡, the minimum
chunk size defined by the user, they modify the equation on GSS to calculate chunk
sizes to adapt to different processors availability at runtime.

In [KN+06], Kejariwal et al. propose an execution History-aware Self-Scheduling
scheme (HSS) to handle irregular parallel loops on heterogeneous multiprocessors
systems. First, the chunk size is computed based on the variance in workload
distribution across the iteration space. At each scheduling step, HSS computes the
amount of workload to be allotted to an idle processor based in the remaining
iterations and processor speed. Next, it determines a set of iterations that best fits with
the above workload, where the number depends on the workload distribution of the
remaining iterations. The key characteristic is the dynamic adaptation of the chunk
size based on the statistical deviation of the workload estimates of the previously
executed iterations from their corresponding actual workloads. It requires to
determine the expected workload of each iteration on each processor, what is done
offline via loop profiling [Sar89]. They profile the loop with multiple training sets,
determining also the execution probability of each basic block in each iteration. The
expected execution time or workload of an iteration is the sum of the execution times
of all the basic blocks weighted with their respective execution probabilities for that
iteration. As in [KN+05], they adapt the GSS chunk size equation, using in this case
the workload estimations information and including also the lag correction factor and

௠ܹ௜௡, the minimum chunk size or workload per task.

4.4.2. Extensions Applied to Distributed Environments

The application of loop scheduling schemes to new environments like Clusters and
Grids has promoted the research for new proposals to adapt and deal with new
requirements. Here we provide some examples of recent contributions.

68

In [DR+09], Díaz et al. described two families of self-scheduling algorithms, evolved
from TSS, that can be applied in computational Grids. The first considers an explicit
form of the chunks distribution function, QSS, which has been already described in
this section. From the second, Exponential Self-Scheduling (ESS) and Root Self-
Scheduling (RSS) are proposed. ESS evolves the propositions of QSS by considering
that the slope of the chunk size distribution function ܭሺݐሻ is proportional to the chunk
size, so a parameter ݇ representing this proportion and representing the working
environment must be defined. A second approach, considering that the slope
(negative) is inversely proportional to ܭሺݐሻ, provides the second self-scheduling
method, RSS. These schemes were tested in a static environment of dedicated
computers in an Internet-based Grid. After convenient manual calibration of its
parameters its tests reveal that QSS still outperforms ESS (slightly) and RSS, which
shows a poor performance.

Adaptive Chunk Self-Scheduling (ACSS) [LJ+08] was proposed to achieve load
balancing and reduce the scheduling overhead of DOALL loops, where each iteration
is considered a simple task that can be scheduled independently on the Grid. They
propose the utilization of multiple thread mechanisms and a master-worker paradigm
to overlap communications and processing. By interleaving the transfer of input data
and results between the master and worker nodes with the computation at the
workers, the synchronization waiting times are reduced and hence the total execution
time. They also use a weighting mechanism to adapt the chunk size assigned to each
worker to its expected performance, in that case calculated based on results of
performance evaluation benchmarks, the number of processes in the running queue,
and network bandwidth. By doing so, they evolve the CSS scheme and adapt its
utilization to heterogeneous environments like Grids.

Yang el al. [YC03] proposed a scheduling scheme, ࢻ Self-Scheduling Scheme,
suitable for extremely heterogeneous PC clusters where previous schemes like FSS,
GSS and TSS could not provide satisfactory results alone. They argue that static and
dynamic schedulers could be combined to take advantage of both scheduling
methods, the reduced overhead of the first and the load balancing on heterogeneous
environments of the second. They propose to partition the problem in two stages. At
first stage, partition statically the ߙ% of the workload according to their performance
weighted by CPU clock. At second stage, partition the following ሺ100 െ ሻ% ofߙ
workload according to known self-scheduling schemes. The parameter ߙ can be
adjusted to different ratios of static-dynamic scheduling. The authors suggest that
ߙ ൌ 80 results in the best average performance. On later contributions, applying the
same idea to static environments of dedicated computers, i.e. institutional Grids, they
introduce several changes to its initial propositions. First, they replace the utilization
of CPU clock speed as a performance index by other performance benchmarks or
tools like HINT [YC+04], HPL [YS+06], Globus MDS and Ganglia [SY+07], and

69

HPCC Performance Analyzer [YC09]. Second, they introduce the parameter SWR
(Static Workload Ratio) to estimate the proportion of the workload which can be
scheduled statically and hence automating the selection of the parameter ߙ. To obtain
SWR five random iterations are chosen and its iterations time computed. SWR is
calculated as the ratio of the minimum and maximum execution times obtained of all
sampled iterations. This generalized approach lead to a new scheme called
Performance-based Loop Scheduling (PLS) [SY+07].

Finally, in [BC+09], Banicescu et al. provide a comparative analysis of three dynamic
loop scheduling (DLS) methods, FSS, WF and AWF, adapted for scheduling irregular
applications in large-scale heterogeneous distributed systems like Grids. They
propose metrics for quantifying their robustness with respect to variations of two
parameters, load and processor failures. Besides of dealing with fault tolerance, a
necessary characteristic for loop scheduling in large-scale systems, they also conclude
that hierarquical approaches, based in super-master – master architectures on top of
several standard master-worker structures, are more suitable than that of the
centralized management approach to ensure the robustness of DLS methods on large-
scale heterogeneous distributed systems.

4.4.3. Other Current Loop Scheduling Schemes

In this subsection other approaches to the problem of scheduling parallel loops,
although do not have a direct impact in our work, are described to illustrate the great
variety of research fronts related with parallel loop scheduling.

4.4.3.1. Scheduling Schemes Considering Dependencies

These scheduling schemes, since they consider dependencies, like in DOACROSS
loops, are mainly intended, although not restricted, for multiprocessor computers.
Although they are not within the goals of this thesis, we think it is important to
provide a short review of the advances produced in this area in order to evaluate a
future extension of our work in this direction.

Shirako et al [SZ+09] addressed the problem of chunking parallel loops that may
contain synchronization operations such as barrier, signal or wait statements. They
present a transformation framework that uses a combination of transformations from
past work (e.g. loop strip-mining, interchange, distribution and unswitching) to obtain
equivalent set of parallel loops that chunk together statements from multiple iterations
while preserving the semantics of the original parallel program. These
transformations result in reduced synchronization and scheduling overheads, thereby
improving performance and scalability.

70

Liu et al [LS+09] proposed a method for optimal transformation of loops to maximize
the iteration-level parallelism achieved on DOSERIAL and DOACROSS loops on
multiprocessors systems. The proposed algorithm solves it optimally by migrating the
weights of parallelism-inhibiting dependences on dependence cycles in two phases. In
the first phase, they introduce a dependence migration algorithm to find a retiming
function for a given dependence graph such that ߚ in the graph is maximized. ߚ
represents the maximum inter-iteration dependence distance, i.e. the maximum
number of iterations that can be processed in parallel for a given loop. In the second
phase, they apply a loop transformation algorithm to generate the optimal code for the
given loop based on the retiming function found. Their experimental results show that
the proposed methods produce optimal solutions and effectively improve loop
parallelism compared to previous work.

Ciorba et al [CR+08] introduced a synchronization mechanism that provides
inter-processor communication in distributed systems, thus, enabling traditional
self-scheduling algorithms to handle efficiently nested loops with dependencies. They
extend and generalize previous work by constructing a general synchronization
mechanism S, which inserts SPs (synchronization point operations) in the execution
flow so that workers perform the appropriate data exchanges. In addition, they define
a weighting mechanism W, aimed at improving the load balancing and thus, the
performance of non-adaptive self-scheduling algorithms on non-dedicated
heterogeneous systems. An extended paradigm of the standard master-worker was
required to enable direct communication between workers to handle dependencies.
Communication between workers is performed by direct exchanges, and not through
the master, which has a global view of the system’s load and decides upon allocating
the tasks to each worker. Besides of the tasks, based on accounting information, it
provides the communication sets to the involved workers that require the exchange of
data. The existence of SPs leads to a wavefront execution. They tested their proposals
extending CSS, FSS, GSS and TSS, showing how it was possible to adapt these
non-adaptive schemes for heterogeneous environments and nested loops with
dependencies.

4.4.3.2. Scheduling Schemes Considering the Underlying
Architecture

While other contributions focused on generalizing the characteristics of the involved
computing nodes, so it easier to handle heterogeneity, others, with different
performance objectives, are focused on their internal characteristics, usually
multiprocessor computers. Here we provide two interesting examples.

Kejariwal et al. [KN+09] presented a novel profile-guided compiler technique for
cache-aware scheduling of iteration spaces of parallel loops on multicore systems.
First they proposed a novel profitability analysis model for selecting loops for

71

multithreaded execution. It is important to establish how to efficiently capture the
cache behavior since the cache subsystem is often the main performance bottleneck in
multicore systems. Second, they propose a cache-aware technique for scheduling
parallel nested loops. Specifically, the proposed technique in [KN+09] captures the
effect of the variation in the number of cache misses across the iteration space.
Finally, they propose a unified approach to capture the effect of the variation in the
number of cache misses and computation – the amount of computation per iteration is
measured in terms of the number of retired instructions – across the iteration space.
They demonstrate the efficiency of their methods using 4-way multiprocessors.

The work exposed in [DC+08] focused on energy-oriented OpenMP static and
dynamic parallel loop scheduling. They argue that dynamic voltage/frequency scaling
(DVS), and effective low-power technique that explicitly trades off performance for
energy savings) cannot obtain the maximum energy savings and parallel loop
rescheduling should be combined. They propose three algorithms: first, Energy-
Saving Static Scheduling (ESSS), which using DVS scales down the processor with
less load to save energy so that the time to finish the task at that processor stays the
same that the processor with maximum load. Second, Energy-saving Optimal Static
Scheduling (EOSS), which obtains the maximum energy saving through combining
loop rescheduling to balance the workload on all the processors and later apply DVS
based on the worst execution time. And third, Shut-down Based Dynamic Scheduling
(SBDS) which shut downs the processors when are idle, usually once they have
finished their tasks and are waiting for the others.

4.5. Improving Parallel Loop Scheduling

4.5.1. Preliminary Considerations

In this section we propose a new scheduling scheme designed for the execution of
parallel loops in dynamic environments of non-dedicated distributed computers.

We have discussed that the proliferation of multicore computers in desktop
environments is introducing important changes in the way regular PCs are used to run
applications. Since increasing the number of available processing units per processor
is the current trend to increase computer performance, applications are being adapted
with parallel technologies to take advantage of the new performance improvements.
We have already provided methods for R in that direction. Additionally, since grid
and volunteer systems based on desktop computers are proving themselves as real and
powerful alternatives for parallel computing, even in office environments, the
aggregated computing power obtained can provide similar performance levels that
years ago were restricted to dedicated clusters, and that it is a tendency that over the

72

coming years will become more evident with the increase of core densities per
processor. In order to effectively take advantage of such aggregated computing power
in dynamic environments, current and new methods, better suited for these
environments, have to be adapted and developed. We have evaluated well-known
scheduling schemes suitable for parallel loops identifying their potentials and
limitations. Here we describe a new scheduling scheme that tries to overcome the
problems found in previous contributions called ATLS [VS10d], which stands for
Adaptive Turnaround-based Loop Scheduling. It has been specifically designed for
processing parallel loops in dynamic environments made up of volunteered
computers, for example desktop computers, where its number and capacities are
unknown before performing a calculation and, given the resources are not dedicated,
can change in quantity and quality at any time during the computation.

Our proposal, by tracking several performance change ratios at runtime, is able to
properly adjust the load distribution using no prior information of the loop features
nor the involved processors and their environmental running conditions. The results
obtained during the experiments performed to validate ATLS will show that it is
possible to improve former contributions of well-known parallel loop scheduling
schemes in dynamic environments. The implementation of the scheduler has been
done for the R language but, as it is exposed, independently of the R language
properties, it can easily be adapted to any other language, platform and parallel loop
based application.

4.5.2. Proposal of a New Scheduling Scheme

The reasons that have motivated each design decision are explained in this section,
together with the details of our proposal, the scheduling scheme ATLS.

We already argue previously that quantification of the computing power using
performance indicators based on intrinsic characteristics of computers, such as
processor frequency, can not completely be trusted [DL06]. Due to that the
performance ratio used in our proposal, using a black box approach, is based on the
task turnaround completion time, and is calculated as follows:

߭ ൌ
ܶ
ܭ

where ܶ represent the time elapsed since the task was scheduled to a worker until it
was successfully completed and returned back. The variable ܭ represents the number
of iterations assigned to that task, i.e. the chunk size. The average performance ratio,
߭௔௩௚, given n finalizations and the current performance ratio ߭ is updated as follows:

73

௔௩௚೙ݒ ൌ
߭ ൅ ߭௔௩௚೙షభ כ ሺ݊ െ 1ሻ

݊

Also the minimum ߭௔௩௚ is kept for each processor for further calculations in the

variable ߭௠௜௡.

Our proposal to mitigate the negative effects of unpredicted changes in the worker
node performance is the utilization of a system-wide confidence indicator, CI, based
on the changing ratios of the performance index of each participating node. The initial
value of the confidence indicator, like any of the following variables except if stated
otherwise, is ܫܥ଴ ൌ 0, since all nodes are unknown at the beginning and therefore
untrusted. As the computation evolves, its values are updated as follows:

௡ܫܥ ൌ ௡ିଵܫܥ ൅ ௜ݓ כ ሺܥ௥ െ ௡ିଵሻܫܥ

Here two new variables are introduced. The relative weight of the worker node ݅, ݓ௜,
and the current system changing ratio, ܥ௥ . The idea is to update the previous value
of ܫܥ with the difference between the previous ܫܥ and the current system changing
ratio, adjusted with the relative weight of the worker node involved in a given
scheduling step. By doing so we adjust the system variable ܫܥ only with the
proportional contribution of each worker, indicated by its relative weight. The value
of ݓ௜ and ܥ௥ is updated whenever a working node returns successfully a job (ontime)
or when its finalization deadline is reached (overdue) as follows:

௜ݓ ൌ
߭௔௩௚೔

∑ ௔௩௚ೕݒ
௉
௝ୀଵ

, ௥ܥ ൌ
∑ ௔௩௚೔ݒ כ ௜ߙ
௉
௜ୀଵ

∑ ߭௔௩௚೔
௉
௜ୀଵ

The variable ߙ௜ represents the current changing ratio for the processor i while the
variable ߙ௔௩௚೔ represents its average changing ratio and it is updated at each

finalization event, positively when a task is returned ontime or negatively when its
estimated finalization time, i.e. its estimated deadline, is reached. The calculation of
 :௡, at the nth time, is as followsߙ

௡ߙ ൌ

ە
ۖ
۔

ۖ
ۓ
௡ିଵߙ ൅ 1

2
, if a task is finished

ሺ݆ െ 1ሻ כ ௡ିଵߙ ൅
௡ିଵߙ
2

݆
, if a deadline is reached

The event when a task is done is worker driven. To estimate the finalization time for a
task, a deadline ߣ௜ is defined at the time of dispatching a task to the worker i. In an
utopic scenario, knowing the real perfomance ratio ߭௥௘௔௟, the constant overhead of the
system ݄௖௧ , the overhead per iteration ݄௜௧௘௥ and the future delay possibly introduced

74

by the environment or variable iterations, also constant Є௖௧ and per iteration Є௜௧௘௥ ,

the ideal finalization time ߣ௜
ᇱ can be calcutated as follows:

௜ߣ
ᇱ ൌ ሺυ୰ୣୟ୪ כ ሻܭ ൅ ሺ݄௜௧௘௥ ൅ ߳௜௧௘௥ሻ כ ܭ ൅ ݄௖௧ ൅ ߳௖௧

However, except for the value of the chunk size K, for the other variables, given the
variable nature of the dynamic environments, it is not possible to make any safe
estimation of their values. Our proposal to overtake this problem and calculate the
finalization time ߣ௜ is based on the following equation:

௜ߣ ൌ ൫߭௔௩௚ כ ൯ܭ ൅ ሺߦ௜ כ ሻܭ ൅ 0

Given the method we use to calculate the performance ratio, it is clear we are
introducing an error by including in this ratio a fraction that corresponds to the system
overhead, irregular iterations and other external factors originated in other elements
of the environment with no direct relation with the ongoing calculation. Nevertheless,
as discussed previously, we don’t have any other observation to support a different
performance ratio.

However, we can also observe the differences between the estimated deadlines and
the real elapsed times. Any time a task finishes, before or after its deadline, the time
difference, positive or negative, corresponds either to the system overhead or the
external factors, for the current or the previous performance ratio values, and can be
recovered and kept aside for further estimations.

The variable ߦ௜ is defined as the burden ratio. With this variable we maintain the
maximum ratio of extra time per iteration observed during the ongoing calculations.
We assume that this extra time, until a higher value appears, can be used to
accomodate the estimations of future completion times and, as a consequence, we
avoid to declare a scheduled task as lost before it is really needed. Its values are
calculated, based on the finalization time, as follows:

௡ߦ
ᇱ ൌ ቐ

௡ܶିଵ െ ௡ܶ

௡ିଵܭ
, ሻ݁݉݅ݐ݊݋௡ ሺߣ ݁ݎ݋݂ܾ݁

߭௡ െ ߭௠௜௡, ሻ݁ݑ݀ݎ݁ݒ݋௡ ሺߣ ݎ݁ݐ݂ܽ

௜ߦ ൌ ቊ
௜ߦ
ᇱ, ௜ߦ ݂݅

ᇱ ൐ ௜ߦ
, ௜ߦ ௜ߦ ݂݅

ᇱ ൑ ݅_ߦ

Before we can define the equations to obtain the batch and chunk sizes, as it is also
used in the AWF method, we still have to describe an additional concept to
understand our proposal, the relative capacity of the system at a given time ݊ or
 ௡. This variable represents the number of iterations that can simultaneously beܥܴ
performed by all the available working nodes within a time-frame so all nodes

75

finalize at the same time. The basic idea is that, assuming there are enough iterations
for all the available nodes, in order to obtain the best efficiency, all the available
resources must be used at the same time. Therefore, at least 1 iteration must be
assigned to the slowest node. During the time-frame required for the slowest node to
process its assigned iteration, the rest of the working nodes are able to perform one or
more iterations. RCn represents therefore the sum of the iterations each worker is able
to perform during the time-frame defined by the slowest node.

The batch B and chunk size K, at the nth time, can be defined as follows:

஺்௅ௌ೙ܤ ൌ ቜ
݃݊݅݊݅ܽ݉݁ݎ

௡ܥܴ
כ ௡ܫܥ כ

௔௖௧௜௩௘ݏݎ݁݇ݎ݋ݓ#
௘௫௣௘௖௧௘ௗݏݎ݁݇ݎ݋ݓ#

ቝ

௜ܭ ൌ ൞

݁݉݅ݐ ݐݏ1 ,1
݁݉݅ݐ 2݊݀ ,2

඄ܤ஺்௅ௌ೙ כ
߭௦௟௢௪௘௦௧
߭௜

ඈ , ݁ݏ݅ݓݎ݄݁ݐ݋

The last variables introduced with the fraction #ݏݎ݁݇ݎ݋ݓ௔௖௧௜௩௘ ⁄௘௫௣௘௖௧௘ௗݏݎ݁݇ݎ݋ݓ#

are used to limit the total number of scheduled iterations by the proportion of active
workers. By doing so, given that the workers after the request for collaboration arrive
at unknown times, we reserve a portion of work avoiding scheduling too much
iterations before all the workers have answered to the request for collaboration.

4.6. Concluding Remarks

In this chapter we have reviewed several well-known scheduling schemes. As the
next chapter will reveal with the experimental results, some of them, although being
quite simple provide the best results for running environments where several
parameters like the number of available processing units is known beforehand and the
relative capacity of the participating nodes do not change during the computation.
However, these conditions are not fulfilled in all cases, and dynamic environments,
with irregular execution patterns and variable characteristics of the available
computing resources must be considered. A proposal for these situations in the form
of a new scheduling scheme is provided.

We have proposed a new scheduling scheme, called ATLS, based on basic
information retrieved at runtime, so no prior information nor details about the
participating nodes is required by the scheduler to properly define the tasks
assignments that will eventually minimize the overall execution time of parallel
loops. The dynamic scheduler implemented in our prototype already provides a useful
mechanism for load balancing of loops but it could be adapted with other type of

76

problems like job schedulers dealing with bag-of-tasks problems. Besides, some of
the internal variables defined can be reused for supporting fault tolerant capabilities,
like the confidence indicator CI, which can be used to provide a hint of the stability of
the system.

77

Chapter 5
Evaluation of Proposals

5.1. Introduction

In this chapter we describe the experiments performed to validate our proposals,
implemented in the prototype R/parallel, following the chronology of developments
undertaken in our work. From the first results obtained using single desktop multicore
computers, to the final results obtained evaluating adaptive scheduling schemes in
distributed environments.

5.2. Evaluation of R/parallel with Multiprocessor Computers

In order to assess the capabilities of our proposal, i.e. to take advantage of the
available processing power of a multiprocessor computer when running our extension
of the R language interpreter, we show in this section the results obtained after
performing a set of experiments selected for this purpose.

The experiments has been performed using two different SMP computers: first, two
common desktop computer with a single-core and current quad-core processor (i.e.
with 1 and 4 processing units respectively) where we have tested if our proposal fits
with real R bioinformatics cases while providing improved results, and second, a
server with two quad-core processors (i.e. with 8 processing units), where the
scalability and efficiency of R/parallel is evaluated.

78

5.2.1. Evaluating Applicability to Real Cases

Figure 31 shows with an example how easy it is to parallelize a loop in R with
R/parallel. In this example, a long vector of gene expression data (i.e. traits) is
analyzed through a loop to find quantitative trait loci (QTL) underlying variation in
gene expression using a multiple QTL model (MQM) approach [Jan93]. Once a
programmer has finished coding and testing his function as usual, he only needs to
add the lines shown (i.e. the runParallel() function and the IF-ELSE
conditional structure) to run it faster in parallel.

Figure 31: Example of code used to test R/parallel (source [VS08])

Adding the lines explained, the execution time when processing 37685 traits from 73
individuals is reduced, using a quad-core processor, from approximately 4 hours to 1
hour.

Practical applications of parallel computing are to increase the number of finished
tasks given a fixed time or to decrease the time needed to perform a long task. To
achieve this, the initial problem is partitioned into independent tasks which are
computed simultaneously using several processing units. With R/parallel, as
previously explained, partitioning is applied to loops, and multiprocessing is used to
get access to all the available processing units (i.e. cores in current desktop
processors). The benefits of partitioning and multiprocessing are evaluated with two
more real cases. The observed speedups demonstrate that loops without data

79

dependencies can be executed more efficiently using R/parallel. Obviously, with short
calculations the speedup is minimal because of the additional overhead raised by the
parallelization.

Typical bioinformatics cases where parallel computations are more often used are
permutation tests or heuristic searches of multivariate spaces where, due to time
constraints, the best result has to be computed before a deadline. Next experiment
illustrates the increase of completed analyses (i.e permutation tests) by using all the
available processing units. The function qtlThreshold.sma()from the package
affyGG [AV+08] is used with a quad-core processor to analyze a large number of
permuted data sets using the same statistical analysis to compute (approximate)
significance thresholds. Incrementing the number of parallel processes (i.e. workers)
the utilization of more cores has been enabled and therefore the overall performance
increased. Figure 32 shows the results of this experiment.

Figure 32: Increasing the amount of work performed before a time limit

It can be observed that the speedup increases almost linearly with the number of used
cores. Setting more workers (5) than existing cores (4) does not improve the results.

The next experiment evaluates a case which objective is to reduce the elapsed time
required to process a fixed workload. The case illustrates the results obtained after
parallelizing a program. The function qtlMap.xProbe()from the package affyGG
is used with a single-core processor to compute the same statistical analysis over
large data sets. In this case, due to the way memory is managed in R, with linked lists,
and as a result of partitioning, small and faster tasks (with faster data indexing) are
created. As a consequence, in cases like this, it shows super linear speedup, even with
a single processing unit, the total execution time is reduced. Figure 33 shows how the

80

super linear speedup is more accentuated when using 4 processing units and setting
up from 2 to 5 worker processes.

Figure 33: Decreasing the required time to process a fixed workload

5.2.2. Evaluating Scalability and Efficiency

Once the applicability of our proposal has been proved successful using several real
cases, we are interested in evaluating the scalability and efficiency of R/parallel using
a multiprocessor computer, so we set up a new experiment with a larger workload and
the double of processing units used at previous experiments.

The test environment consist of one server equipped with 2 quad-core processors (i.e.
8 cores available) and 16 GB of main memory running the operating system Red Hat
Enterprise Linux Server release 5 and the R language interpreter, version 2.8.1.
Figure 34 shows the results obtained of total execution time.

Figure 34: Decrease of the total execution time parallelizing qtlMap.xProbeSet()

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0

Number of cores

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

1 2 3 4 5 6 7 8

81

The tests performed have been done using the function qtlMap.xProbeSet()
from the R add-on package affyGG [AV+08]. affyGG has been developed to perform
bioinformatics QTL analysis of samples obtained using Affymetrix microarrays. The
input data has been simulated using real data obtained from samples of 30
recombinant inbred mice from [BW+05] to obtain a total execution time of the R
function of more than 10 hours without using any parallel solution. By this way,
adding progressively more cores to the computation (the number of workers can be
set optionally), when running with R/parallel we can observe how the scalability and
efficiency of this solution evolves as we add more cores.

It can be observed that the total execution time decreases dramatically as we repeat
the experiment and we add more processing units. Since parallel loops are included
within the class of embarrassingly parallel problems, this output is expected. Figure
35 shows the corresponding speedup obtained for this experiment.

Figure 35: Speedup decays with introduction of processing units

Looking at the speedup, although initially close to the linear speedup, it is clear that,
because of the overhead introduced with the management and control of the parallel
execution, increasing the number of processing units, the performance growth rate is
affected negatively. Figure 36 shows the efficiency figures obtained.

Number of cores

Sp
ee

du
p

Real
Linear

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

82

Figure 36: Efficiency figures obtained with 8 cores

The less efficient case is observed when using 8 cores. Besides of the system
processes, we also have to take into account the master process. When reaching the
maximum number of available cores the machine is overloaded because of the
competence between all the processes trying to get their corresponding slice of
processor time. As a consequence, the overall performance is affected and the results,
although still reducing the total execution time, show a worse efficiency using 8 cores
than using other smaller configurations.

Nevertheless, the results demonstrate that even with a few available cores, our
proposal, by enabling the available computational power of nowadays multicore
processors, and with so little effort by the R user, is able to run parallel loops in R
scripts substantially faster than previously without our contribution.

5.3. Evaluation of R/parallel with Distributed Systems

In this section we describe the experiments undertaken and its corresponding results,
to assess, with a real and working system that our proposal for distributed computing
with R is feasible, evaluating the results obtained using homogeneous and
heterogeneous environments, with non-adaptive and adaptive scheduling schemes.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100%

92% 94%
91% 90%

84%
81%

74%

Number of cores
1 2 3 4 5 6 7 8

Ef
fic

ie
nc

y

83

5.3.1. Evaluating Distributed Computing in Homogeneous
Environments

Although our proposal has been designed for heterogeneous environments, before
analyzing how well it fits in these environments, first we need to evaluate its results
using a less complex running scenario, an homogeneous environment where we can
determine if our proposal is feasible for distributed computing.

For that experiment we have set up a test environment depicted in Figure 37 built
with five identical computers connected through a gigabit ethernet network and an
internal configuration of two quad-core processors and 16 GB of main memory each,
adding a total of 40 cores, and running R version 2.8.1 under the operating system
Red Hat Enterprise Linux Server release 5.

Figure 37: Network diagram and configurations of homogeneous test bed with 40 processing units

Another practical consideration when comparing these results with real scenarios is
that, since our test environment is built with dedicated computers, its overall
performance is expected to be higher than the results that eventually can be obtained
with common desktop machines. Therefore, the performance figures obtained must be
interpreted only as an upper bound to what is expected in for example office
environments.

The problem selected for our performance tests, reproduced in Figure 38, uses the R
package R/qtl [BW+03]. We iterate a 100 times over the function scantwo() that
calculates just one heavy load permutation and aggregates its results in a vector (i.e.
opermT) for later utilization.

84

Figure 38: Script used to parallelized loops with R/qtl package functions

The only basic difference between the structure shown in Figure 38 and the one used
in the previous non-distributed version of R/parallel (see Figure 21), is the
introduction of the argument useNetwork to activate the utilization of remote

workers. The argument nWorkers is used to define, if desired, the number of local
workers to be spawn. In the remote side exists an identical optional argument to
define the number of volunteered workers (by default defined with the number of
processing units present in the computer, i.e. the capacity slots). Figure 39 shows the
obtained total execution time after performing 100 iterations, starting with 1 core and
increasing up to the 40 available cores.

Figure 39: Performance results using 40 workers

library(rparallel)
library(qtl)
data(hyper)

test1 <- function(nPermutations, localWorkers)
{
 hyper <- calc.genoprob(hyper, step=2.5)
 opermT <- NULL

if("rparallel" %in% names(getLoadedDLLs()))
 {

runParallel(resultVar="opermT", resultOp="c",
nWorkers=localWorkers, useNetwork=T)

}
 else
 {

 for(i in 1:nPermutations)
 {
 permBuff <- scantwo(hyper, n.perm=1)
 opermT <- c(opermT, permBuff)
 }

}
 return(opermT)

}

1
00

00
20

00
0

30
0

00
40

00
0

50
0

00
60

0
00

Number of cores

E
xe

cu
tio

n
 T

im
e

 (
se

co
n

ds
)

40321 2 3 4 5 6 7 8 12 16 20 24

Expected elapsed time
with 100% efficiency

Total elapsed time
of test runs

85

As it can be observed, the execution time decreases so quickly with the addition of
the first 8 cores. After that, the improvement obtained per added core is in
comparison very low. This degradation of the increased performance obtained per
processing unit added, as defined by Amdahl's law [Amd67], is caused in this
experiment by the sequential section of our program, in our case, the time required to
calculate 1 iteration. Although this limitation depends on the program being
parallelized, it illustrates the fact that many applications are unable to efficiently take
advantage of large amounts of computing nodes and that the highest improvements
are obtained with the first aggregated nodes.

5.3.2. Evaluating Parallel Loop Scheduling Schemes

Before we are able to evaluate our proposal using heterogeneous environments we
need to select a parallel loop scheduling scheme. In Chapter 4 several scheduling
schemes have been reviewed. Next we evaluate the results obtained using a selection
of schemes in a controlled homogeneous environment where we modify different
parameters to observe their influence over the obtained performance results. Later on,
once we learned about the behavior of these schemes on homogeneous environments
we will evaluate their results also in heterogeneous environments.

The test environment is made up of the same dedicated and identical computers used
at the previous experiment (see Figure 37), but this time changing the R script as well
as the experimental conditions. The problem to be solved during the experiments
consists in preprocessing a set of DNA sequences obtained by pyrosequencing
[MM+05] with a Genome Sequencer FLX from Roche. Before performing any main
analysis, raw data obtained from NGS devices [Bub08] like this usually requires
some filtering and transformations steps in the retrieved files in order to adapt and
prepare the data to the specific needs of each particular analysis. In this experiment,
the input data includes DNA sequences, already converted to FASTA format files,
which have to be preprocessed to find the original sample sequence, identify the
contributing individual, and define other interesting parameters like sequence lengths
or read qualities. In our case, we use some functions from the R package Biostrings,
which belongs to Bioconductor [GC+04], a popular software project for the analysis
and comprehension of genomic data which is extensively used among the
bioinformatics community.

Since the same operations are performed for each DNA sequence, and each sequence
processing is independent from the others, a parallel loop can be set up and run with
our prototype to take advantage of parallel computing. Figure 40 shows a code
snippet of this R script, highlighting the IF-ELSE statement used to parallelize the
loop boxed in color grey. Later on, on each different experiment, the number of

86

sequences to be processed is modified in order to change the workload and observe
the behavior of each scheduler.

Figure 40: Code snippet of a parallelized clipping procedure of DNA sequence reads

Although the main objective of our implementation is to find a suitable scheduler for
highly changing environments, it is important to observe the results also in
homogeneous environments. Since system changes are not continuously happening
during computations, it is important to validate which schedulers perform reasonably
well also in invariable running conditions using identical computers. The results of
these experiments are shown in Table 3.

87

Table 3: Total Execution Time and Throughput results of several parallel loop scheduling schemes using
homogeneous environments

It can be observed that for each scheduling scheme, the same experiment has been run
several times with three different workloads: 1000, 10000 and 100000 iterations, and
with three different number of workers: 4, 16 and 32 workers. The scheduling scheme
that provides the best results is the STATIC scheme while the worst, due to the high
overhead introduced in distributed environments is the PSS scheme. Regarding the
factoring based schemes, both non-adaptive and adaptive ones, we observe that their
results are quite similar, although the non-adaptive schemes (i.e. FSS and WF), being
this an static environment without changes, provide slightly better results than the
adaptive schemes (i.e. AWF and AF). Among them, WF provides the best average
result figures while AF presents the worst results for this experiment. Next, showed in
Table 4 we also provide the scalability and efficiency observed in this set of
experiments.

TOTAL EXECUTION TIME THROUGHPUT
(seconds) (iterations/second)

workers 4 16 32 4 16 32

iterations 1000 1000

Sequential 83,64 83,64 83,64 11,96 11,96 11,96
Static 27,86 13,73 15,2 35,90 72,82 65,78
PSS 103,15 33,75 24,48 9,69 29,63 40,86
FSS 29,88 15,56 14,87 33,46 64,27 67,26
WF 30,28 15,39 15,52 33,02 65,00 64,45
AWF 30,3 15,46 14,8 33,00 64,69 67,55
AF 30,41 16,41 15,68 32,89 60,95 63,79

MAX 103,15 MAX 72,82
MIN 13,73 MIN 9,69

iterations 10000 10000

Sequential 859,03 859,03 859,03 11,64 11,64 11,64
Static 224,98 73,61 53,79 44,45 135,86 185,92
PSS 1175,75 325,67 339,02 8,51 30,71 29,50
FSS 228,06 76,12 56,92 43,85 131,37 175,69
WF 228,06 78,80 57,84 43,85 126,91 172,89
AWF 311,22 77,20 57,30 32,13 129,53 174,53
AF 250,63 77,12 61,93 39,90 129,68 161,48

MAX 1175,75 MAX 185,92
MIN 53,79 MIN 8,51

iterations 100000 100000

Sequential 9657,42 9657,42 9657,42 10,35 10,35 10,35
Static 2764,48 839,78 618,89 36,17 119,08 161,58
PSS 14681,31 6420,16 6238,22 6,81 15,58 16,03
FSS 2712,33 878,22 653,93 36,87 113,87 152,92
WF 2717,67 847,99 633,51 36,80 117,93 157,85
AWF 2715,83 846,84 646,53 36,82 118,09 154,67
AF 3230,45 869,49 683,64 30,96 115,01 146,28

MAX 14681,31 MAX 161,58
MIN 618,89 MIN 6,81

88

Table 4: Scalability and Efficiency results of several parallel loop scheduling schemes using homogeneous
environments

For the case of 1000 iterations it is clear that the problem is too small for the test
application used since the total execution time and the associated speedup practically
does not change once 16 workers are used. That situation has a negative effect in the
efficiency which shows very low values (under 20%) for the 32 workers experiments.
It can also be observed that the difference between the experiments with workloads of
10000 and 100000 iterations are quite similar. That will allow us to compare speedup
and efficiency results obtained with workloads within the same range (provided the
other experimental conditions are not changed significantly).

The conclusion of this set of experiments is that, taking into account the results
obtained, the STATIC scheduling scheme, at least in homogeneous environments,
and knowing beforehand the number of available processors is the one that provides
the best results. However, if we have to choose a scheduling scheme that does not

SEQ vs PAR SPEEDUP EFFICIENCY
(Tseq/Tpar) (%)

workers 4 16 32 4 16 32

iterations 1000 1000

Sequential 1 1 1 100,00% 100,00% 100,00%
Static 3,00 6,09 5,50 75,06% 38,07% 17,19%
PSS 0,81 2,48 3,42 20,27% 15,49% 10,68%
FSS 2,80 5,38 5,63 69,97% 33,60% 17,58%
WF 2,76 5,44 5,39 69,05% 33,98% 16,84%
AWF 2,76 5,41 5,65 69,01% 33,81% 17,66%
AF 2,75 5,10 5,34 68,77% 31,86% 16,67%

MAX 6,09 MAX 75,06%
MIN 0,81 MIN 10,68%

iterations 10000 10000

Sequential 1 1 1 100,00% 100,00% 100,00%
Static 3,82 11,67 15,97 95,46% 72,94% 49,91%
PSS 0,73 2,64 2,53 18,27% 16,49% 7,92%
FSS 3,77 11,29 15,09 94,17% 70,53% 47,16%
WF 3,77 10,90 14,85 94,17% 68,14% 46,41%
AWF 2,76 11,13 14,99 69,00% 69,54% 46,85%
AF 3,43 11,14 13,87 85,69% 69,62% 43,35%

MAX 15,97 MAX 95,46%
MIN 0,73 MIN 7,92%

iterations 100000 100000

Sequential 1 1 1 100,00% 100,00% 100,00%
Static 3,49 11,50 15,60 87,33% 71,87% 48,76%
PSS 0,66 1,50 1,55 16,45% 9,40% 4,84%
FSS 3,56 11,00 14,77 89,01% 68,73% 46,15%
WF 3,55 11,39 15,24 88,84% 71,18% 47,64%
AWF 3,56 11,40 14,94 88,90% 71,28% 46,68%
AF 2,99 11,11 14,13 74,74% 69,42% 44,15%

MAX 15,6 MAX 89,01%
MIN 0,66 MIN 4,84%

89

require the number of processors, the WF scheme seems the right choice. However,
given that in further experiments we want to evaluate the results obtained in changing
environments, the best adaptive scheme, and the selected for our next experiment, is
the AWF scheduling scheme.

5.3.3. Evaluating Distributed Computing in Heterogeneous
Environments

The problem to be solved during these experiments consists in the same problem of
preprocessing DNA sequences, but this time using a subset of 47154 reads. In order
to evaluate to which extend we can benefit from aggregating the computing power of
non-dedicated computers we have used three different types of computing resources:
1 standard PC, 2 general purpose servers and a cluster with 30 computing nodes. The
whole system adds up 140 processing units (i.e. cores). Figure 41 shows a diagram of
the computers used at these experiments including some details of their internal
configuration.

Figure 41: Network diagram and configurations of heterogeneous test bed with 140 processing units

The scheduling scheme used at this set of experiments is the AWF scheme. The
objective is to evaluate its performance using heterogeneous environments like the
one described, but also to inspect if there are significative differences when applied to
homogeneous environments. To do so we will use two subsets of processing units,

8 x CPU @ 2.66 GHz
(5323.63 bogomips)

16 GB RAM
RedHat ES 5

4 x CPU @ 2.66 GHz
(5319.91 bogomips)

4 GB RAM
Fedora 10

8 x CPU @ 2.66 GHz
(5323.71 bogomips)

24 GB RAM
CentOS 5.2

4 x CPU @ 3.00 GHz
(5985.15 bogomips)
4 GB RAM
SUSE ES 10.1

30 x

Compute nodes

2 x CPU @ 2.13 GHz
(4266.65 bogomips).
4 GB RAM
Fedora 11

Standard PC

Standard PC General Purpose
Server

Cluster
Head Node

General Purpose
Server

90

one using all the available computers, so defining an heterogeneous system, and the
other only using computers from the compute cluster.

It must be taken into consideration that the servers, as well as the compute clusters,
are usually shared with more users, but for running our experiments, in order to
obtain reproducible results, we have used them without interferences from other
users.

The processing of the 47154 DNA sequences in a standard PC like the one depicted
in Figure 41 with R v2.9.1 and no parallel improvements requires 1372 seconds. In a
hypothetic scenario where we have an additional faster PC at hand, for example a
quad-core computer, we can take advantage of their resources and run a parallel
version of the original loop. Only requiring from the client side to add the address of
the collaborating node, for example, typing:

and setting a volunteer listener on the quad-core PC, just typing on the other side:

and running again the program. Doing that we can reduce the total execution time
from 1372 to 386 seconds. In order to achieve additional performance, two more
general purpose servers, with two quad-core processors each, were added in a similar
way, reducing the elapsed time to 203 seconds. Finally, the same listener was run
from the user account in the head node of a compute cluster managed by Sun Grid
Engine, allowing the access to up to 30 additional nodes of highly tuned computers
with two dual-core processors. Adding these additional computing resources, the
elapsed time was reduced down to 197 seconds.

These initial results reveal a problem of scalability for the cases used at these
experiments. After using 20 processing units, the performance almost does not
improve, even doubling the number of faster nodes from the cluster. What have
happened is that the performance is limited by the slowest processor, that in this case
corresponds to the standard PC. In order to demonstrate this limitation, the
experiments have been repeated, but this time only using the nodes from the cluster to
be compared with previous results. Figure 42 shows a comparison of the total
execution times obtained using several heterogeneous computers, versus the elapsed
time obtained using the same number of processing units, but in this case the faster
homogeneous nodes from the cluster.

> add.volunteer("node1.subnet.com")

> install.volunteer()

> grant.access(node="colleague1.subnet.com")

91

Figure 42: Total execution times with 120 workers using homogeneous and heterogeneous environments

The pending question at this point is why the implemented dynamic scheduler (i.e.
AWF) was unable the provide a more efficient load balance which assigned more
work to the faster processors and avoid this inefficiency with the presence of
significantly faster computing nodes. The answer comes from two issues.

The first and most important reason is because the implementation is designed for
best-effort environments where resources are contributed under request but their
availability and arrival time are unknown. Since access to distributed resources is
never guaranteed, the computation must start as soon as the first nodes answer the
requests and join the computation. Although the scheduler assigns very small chunks
of work at the first stages of the computation (one and two iterations consecutively),
after a stabilization period that depends on the iterations bounds of the first iterations
used to measure the relative performance of each node, the scheduler begins to
dispatch bigger chunks among the available working nodes. It can happen that at this
time, a considerably large number of volunteer nodes still have to arrive. For the time
these delayed nodes join the computation, a major portion of the iterations have been
already assigned, and they receive, from the remaining iterations, proportionally
smaller jobs to what they should have received given their performance ratio. This
behavior of the scheduler, assigning large chunks at the beginning and smaller, down
to one iteration, as we reach the final of the computation was described as an
important characteristic of schedulers evolved from GSS and Factoring scheduling
schemes. It is intended for reducing the system overhead, distributing the major part
of the workload at the beginning, and reducing the unevenness by aligning the
finalization time of the participating nodes.

0
10

0
20

0
30

0

4
cores

12
cores

20
cores

28
cores

36
cores

52
cores

84
cores

120
cores

El
ap

se
d

tim
e

Heterogeneous Nodes

Homogeneous Nodes

92

The second issue arises as a consequence of the previous one plus the delay
introduced by the job scheduler at the SGE managed cluster responsible for
dispatching the submitted jobs, and hence raise additional workers at the faster
compute nodes. During the execution of these experiments, arbitrary delays, up to 5
seconds, were observed for jobs encoding worker launch scripts, already submitted,
idle in the SGE queues, and waiting for reaching a compute node and subsequently
start a worker to join the distributed computation. As a consequence, the fast nodes of
the cluster arrive once several big tasks have been already assigned to slower nodes.
As a result, the system has to wait for the finalization of the big tasks assigned to the
slower nodes. Figure 43 shows the sequence and size of tasks arrivals, i.e. tasks
processed and returned by the workers, for the two experiments where 36 cores have
been used.

Figure 43: Ordered sequence and size (i.e. number of iterations) of task arrivals. Second row illustrates a
zoom of the first 500 tasks completed

In the first row the complete sequence of tasks, for both cases, are shown. It can be
observed that for the case of the heterogeneous nodes, the curve is considerably
longer and four peaks appear at the right end. These peaks correspond to the four
tasks assigned to the slower nodes which correspond to the four workers running in
the quad-core desktop computer. During the waiting time, after all the iterations have

93

been assigned, empty tasks (NOP operations) are assigned to further requesting
workers.

The second row of Figure 43 shows the first finalized 500 tasks for the same
experiments in order to allow a more detailed analysis of the elapsed distribution of
iterations. In the case of the homogeneous nodes, it can be observed that the area
under the curve is larger than the one for the heterogeneous nodes, i.e. within the first
500 tasks, in the homogeneous environment more iterations have been processed.
Since for the case of the heterogeneous nodes, as we have already seen, there are 4
large tasks still being processed, there is less workload to be distributed, and
therefore, a smaller area is obtained.

Finally, independently of the not-so-efficient assignations for the heterogeneous case,
it can be observed that both experiments show the same triangle behavior that can be
deduced from the previous discussion, a large amount of work is distributed at early
stages of the computation and it is gradually reduced while we reach the end.

At this point some issues arise: first, what kind of results can be obtained using non-
adaptive schemes in an heterogeneous environment? And second, what happens if the
workload changes? Will AWF still show the same behavior? To answer these
questions we designed a new experiment, in that case to evaluate again AWF with the
STATIC scheme.

The program used in these experiments, running R version 2.10.0 and our prototype,
consists in preprocessing a different set of DNA sequences, this time ranging from
10000 to 434000 reads. The program has to find the original sample sequence,
identify the contributing individuals (the donors of pig tissue in that case), and define
as before sequence lengths and qualities. The code used is the same showed
previously in Figure 41.

Another change introduced is an additional cluster with 10 relatively old uniprocessor
computers to increase the heterogeneity of the test-bed used at the experiments.
Figure 44 shows the new experimental environment.

94

Figure 44: Network diagram and configurations of heterogeneous test bed with 150 processing units

In the first experiment we have processed 434000 sequences with 80 and 20 workers
using a mixture of fast and slow nodes. As it can be observed in Figure 45 for the
case of 80 workers the STATIC scheme, knowing beforehand the number of working
nodes (what is not always possible), provides way better results than the AWF
scheme.

Figure 45: Experimental results processing 434000 sequences with 80 and 20 workers using a mixture of
fast and slow nodes

Although AWF provides better results that STATIC for the case of 20 workers, which
have a higher degree of heterogeneity in comparison to the 80 workers case (where

0

2000

4000

6000

8000

10000

12000

80 x workers 20 x workers

STATIC AWF

95

most of the nodes come from the compute cluster), there are obviously heterogeneous
situations that can be handled more efficiently by adaptive schemes like AWF. We
can guess that maybe there is a problem related with the proportion of quickly
accessible but slow nodes (from the 10x node cluster) versus the delayed access but
very fast nodes (from the 30x node cluster). In order to try to find out an answer for
that issue, we run another experiment. This time processing 10000 sequences varying
the proportion of slow and fast nodes from 0-10 to 10-0 exchanging 2 nodes of each
type at a time. The obtained results are shown in Figure 46.

Figure 46: Experimental results processing 10000 sequences varying the proportion of slow-fast nodes from
0-10 to 10-0 exchanging 2 nodes of each type at a time

As it can be observed with the red slashed line, AWF balance the workload but not as
efficiently as possible. When using slow nodes the total execution time obtained with
AWF is penalized. That is caused by the fact that answering first the slow nodes
(more responsive), the AWF has to take a scheduling decision and assigns too much
iterations at the beginning. When the fast nodes (behind SGE queues) are finally
available there is less work to assign and the performance is affected. The horizontal
blue slashed line shows that the performance obtained by STATIC is limited by the
slowest processor, since all workers receive the same subset of the workload.

Finally, taking into account the best scheme for each experiment, indicated with red
and blue circles, we observed that in average, for this experiments and knowing the
number of processors, both schemes can provide equally good results. At this point
we ask ourselves, given that STATIC is way easier to implement, if using the
STATIC scheme and guessing the future number of available workers we can get
better results than if using the AWF scheme. The next experiment, which results are
illustrated in Figure 47 provides the answer.

96

Figure 47: Experimental results processing 10000 sequences with 20, 30, 40, 60 and 80 homogenenous
workers with AWF and a fixed number of P=40 workers configured for STATIC

In that case 10000 sequences are processed again, but this time with 20, 30, 40, 60
and 80 workers from the fast cluster and with a fixed number of 40 workers
configured for the STATIC scheduler. The results show that when using less workers
than configured, the STATIC scheme in one case can perform better than AWF up to
a 12.4%. However, even in this homogeneous environment, in case we have more
nodes than configured, the difference goes to 22.7% in favor of AWF. As a
conclusion for this section we can summarize that even for heterogeneous
environments, if a good approximation of the number of nodes is available, the
STATIC scheme can in some cases provide better results than AWF. However, this
number of nodes is not always known beforehand. With an uncertain number of
workers the results demonstrate that an adaptive scheduling scheme like AWF, in
most of the cases delivers very good results as it was expected.

These experiments have shown that running parallel loops with R it is also possible to
improve the processing times by aggregating the performance power of distributed
heterogeneous computers. However, the limited knowledge about the future
availability of resources, inherent to best-effort environments, prevents the scheduler
from defining more efficient task assignations. Nevertheless, in these kind of
scenarios, the main objective is to provide improved performance ratios taking
advantage of existing resources. The results show that our prototype implementing
adapted well-know parallel loop scheduling schemes achieves good performance
figures. However, as we have already seen, there are several aspects that can be
improved, and hence new contributions provided.

5.4. Evaluation of the New Scheduling Scheme ATLS

The objectives of the experiments described in this section are two: first, evaluate the
scheduling scheme proposed, i.e. ATLS, in several running environment involving

97

the execution of parallel loops, and second, partially included in the first objective,
evaluate the results obtained with our prototype using dynamic environments.

The experiments have been performed in a controlled scenario made up of 5 identical
computers like the one depicted in Figure 37. One computer is used as the master
component, from where the user launches his or her programs, while the other four
are used as the volunteered computers with the worker components, providing a total
of 32 worker nodes. The program run at the experiments is the same R script used in
previous experiments (see Figure 40), but in this case using a workload from 1000׽
to 100000׽ DNA sequences reads. During the experiments several parameters have
been modified to evaluate its influence on the design of the proposed scheduling
scheme. They are basically: the number of iterations or workload, the number and
type of workers and the schemes selected at the scheduler.

5.4.1. Evaluating ATLS in a Static and Homogeneous
Environment

Although ATLS has been designed for dynamic environments, first of all we must
determine that its performance is satisfactory also in static environments. The test-bed
described without modifications serves our requirements. Figure 48 shows the
obtained total execution time and its corresponding speedups for different setups.

Figure 48: Total Execution Time and Speedup using 4, 16 and 32 workers in an homogeneous environment

98

As it was expected for an environment without changes, the simple scheme STATIC
provides the best performance. In that case the schemes AF and AWF, designed for
dynamic environments, provide respectively an average result 10.36% and 8.88%
worse than STATIC while for ATLS the difference is smaller with a result 4.68%
worse. FSS and WF, best fitted for static environments, obtain results 2.93% and
3.16% worse than STATIC, performing slightly better than ATLS in that case.
Finally, it can be observed that the efficiency (speedup / number of workers) is very
similar for 10000׽ and 100000׽ iterations, decreasing down to 50%׽. Taking that
into consideration, next experiments are focused in using 32 workers and a workload
of 100000׽ iterations.

5.4.2. Evaluating ATLS in a Static and Heterogeneous
Environment

Here we evaluate the results using different performance ratios per worker to emulate
an heterogeneous environment. To achieve this the program cpulimit [Mar09] is
used to limit the maximum percentage of share of processor time a worker process
receives when running. Using this tool the processor usage has been limited for the 32
workers with the following values: 8x 90%, 8x 75%, 8x 25% and 8x 10%. To
simplify the comparison of results, PSS and FSS have been discarded given its results
does not provide additional information for our comparison. The rest of the setup is
maintained from the previous experiments. The total execution time elapsed in this
experiment is illustrated in Figure 49.

Figure 49: Total Execution Time using an heterogeneous environment with 32 workers

The scheme AWF has shown the best performance in a static environment with
heterogeneous workers (1996 seconds), closely followed by WF (0.46% worse). With

0,00

500,00

1000,00

1500,00

2000,00

2500,00

Static WF AWF AF ATLS

Total Execution Time

Total Execution
Time

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

99

a 10.23% worse than AWF, STATIC is penalized for assigning the same task size to
non-equal workers. For the case of AF the results are similar, a 10.31% worse. The
main reasons for this behavior can be found observing the bar plot with the number of
iterations processed by each worker (vertical axis), as it is illustrated in Figure 50.
Horizontal axis represents the 32 workers used at the experiments. It must be noticed
that the master component do not have any extra information about the characteristics
or identities of the workers. Just their registered task turnaround completion time. As
a consequence, at this point we cannot find out the mapping between the worker
identified by the master, to which it has dispatched the number of iterations show
below, and the process running the worker in the remote side, which has their share of
CPU limited.

Figure 50: Number of iterations per worker dispatched by each scheduler

First, almost all workers are processing 3000׽ iterations, like in the case of STATIC,
AF or WF indicated with an orange box. Besides, for AF, indicated with a red square,
an additional reason must be considered. There is one worker with almost the double
of iterations assigned. Since there are 8 workers with the highest limitation (and best
performance) and only one has received such task, we can deduce the decision of
scheduling such amount of iterations it is not performance related. In fact, it is related
with the sequence in time at which workers arrive and start its collaboration with the
master. AF is too eager to schedule most of the iterations at the beginning, before all
workers arrive, and schedules bigger tasks assuming no more workers are expected.
Since AF does not provide better results than the other schedulers, what we see is an
overloaded worker that delays the whole computation.

For the case of ATLS, it performs on average just a 2.06% worse than AWF in this
experiment. Additionally, as it can be observed in green boxes, the scheduler with
ATLS has correctly identified two classes of workers (i.e. with high and low CPU
limits), which shows a better adjustment to the heterogeneous resources. However, in
this experiment, a static environment, the scheduling decisions taken by AWF, less
sensitive and eager, ends up with better final results.

100

5.4.3. Evaluating ATLS in a Dynamic Environment

Next we evaluate the results in different experiments where the performance of
workers varies during the computation. Again we use the cpulimit tool, but this
time programming not only the share of CPU but also the instant in time at which the
restriction will start and end. By doing so we are able to, modifiying dynamically the
worker performances during the computation, emulate the external interferences that
eventually restrict their processing capacities, quite common in shared
multiprogrammed computers.

Three experiments have been set up: step-down, step-up and mixed. At the first
experiment, step-down, all workers start at the same full capacity, but after 240
seconds their performance is limited during 900 seconds with the following values:
8x 50%, 8x 25%, 8x 10% and 8x 5% (number of workers x CPU upper limit). For the
second, step-up, the opposite limitation has been programmed. All workers start with
the same restrictions, but after 240 seconds the processes run at full capacity. For the
third one a mixture of behaviors has been programmed (see Figure 51). This includes
one machine with 8 step-down type limitations, one with 8 step-up type limitations,
one with 8 pulse type limitations (i.e. concatenations of steps) with constant limits
during 120 seconds per pulse and a last one with 8 pulse type limitations with
variable CPU limits.

Figure 51: Limitation types programmed: step-down, step-up, pulse constant and pulse variable

The average total execution times obtained in this emulated dynamic environment are
shown in Table 5. Since the order and type of workers varies among repetitions of the
same experiments, the standard deviation of the obtained total execution times, i.e. σ,
is also provided in the table.

Table 5: Average µ and percentage of standard deviation %σ of the total execution times obtained during
the experiments

101

We observe that for the step-down experiment the best result is obtained by the
scheme AWF, followed by ATLS with a result 4.33% worse. As expected in a
dynamic environment, the worst result is obtained by STATIC, performing a 9.04%
slower. For the step-up case, the best scheme is ATLS followed by AWF which
performs a 4.43% slower. Finally, for the mixed environment, the best result is
obtained again by ATLS followed by AWF, but this time a 14.09% slower for this
experiment. To better understand the differences obtained in these results we can
analyze the information provided with Figure 52.

Figure 52: Number of iterations per task at dispatching time in a dynamic environment

Marked with an orange box it is indicated the first main batch of tasks. By observing
the height of the box and its vertical position we can guess how eager is each scheme.
STATIC dispatches almost all the iterations at the first round with equal sizes (there is
one task left due to rounding adjustments). AF also schedules most of the tasks too
early. At the other side, ATLS is more conservative at the beginning and schedules
considerably less iterations per task with a wider distribution of the number of tasks.
In the middle we found WF and AWF with similar distributions.

The purple arrows give us another indication. Its length shows the proportion of time
of each individual experiment where the scheduler is just waiting, since all the
iterations have already been dispatched. This is important since the sooner the
scheduler runs out of iterations the sooner it will lose its ability to react against
environmental changes. For this indication, it can be observed that ATLS is the
scheme that more delays the dispatch of the last tasks, resulting in a better ability to
adapt to unexpected changes.

Finally, the green ellipses shown in Figure 53 indicate the number of tasks finalizing
close to the end. In a perfect situation all the scheduled tasks should finalize exactly at

102

the same final time so we ensure all the available nodes are effectively used. ATLS
shows the highest density of tasks finalizing close to the end while STATIC and AF
waste a considerable amount of time waiting for the last task.

Figure 53: Number of iterations per task at finishing time in a dynamic environment

As the contents of this section have showed, the proposed scheduling scheme, ATLS,
while providing satisfactory results in environments with none or low frequency of
changes, is the better suited, compared with other schemes analyzed, for dynamic
environments with a high frequency of changes. It is also worth to mention that the
scheme AWF, although not as well suited as ATLS for highly changing
environments, it also provides very good results in dynamic environments, in some
cases even a slightly better than ATLS. Nevertheless, the experimental results show
that ATLS provides good performance figures in all the scenarios evaluated,
outperforming the others in dynamic environments like the one used at the last
experiment due to the reasons exposed in this section.

5.5. Concluding Remarks

In this chapter we have evaluated all the proposals included in this work. The
methods proposed for parallelizing existing bioinformatics applications programmed
in R and based in parallel loops have been successfully parallelized and its
completion times minimized using the available resources.

Next, well-known scheduling schemes have been evaluated. As the experimental
results have confirmed, the performance obtained using one or another scheme is
highly dependent on the characteristics of the running environment being used. In
static and homogeneous environments, classical methods like the STATIC scheme
provide the best results. In static and heterogeneous environments, factoring based
schemes have shown very good results. Finally in dynamic environments, adaptive
schemes, suitable for changing environments have been evaluated in different test
environments. As result of the strengths and weakness of these schemes evaluated in

103

several scenarios, a new scheduling scheme for parallel loops, called ATLS, has been
presented.

As the experiments show, our proposal provides in average better results than
previous well-known contributions in dynamic environments of non-dedicated
computers. The design of the scheme, since it is only based in the information
obtained monitoring the turnaround completion time of each task scheduled to each
worker, allows its implementation in virtually any running platform. However, still
better performance can be obtained. In case an external source of information from
where insights about future events was available (e.g. the queue of a job scheduling
system can provide a hint of the utilization of shared elements like the network), it
would be possible to react beforehand against incoming changes. Additionally, as it
has been observed, before a distributed computation finishes there is a fraction of time
where all the iterations have been scheduled and slower nodes must be awaited.
Although the objective is to minimize this fraction of time, due to unexpected
changes, it is almost always present, hence a rescheduling component can be added to
take advantage of the idle nodes which eventually can process the pending iterations
before the slower nodes finish. The same rescheduling component can also be used to
provide fault tolerance to the system and handle faulty nodes. These and other future
work will be discussed in the last chapter.

104

105

Chapter 6
Conclusions and Future Work

6.1. Conclusions

In this thesis we have analyzed several problems found by users without previous
experience in parallel computing and how the barriers and obstacles that prevent the
utilization of HPC solutions can be avoided or mitigated. In particular we considered
the execution of parallel loops using non-dedicated environments with R, a
programming language extensively used by the bioinformatics community.

In order to allow users without proper knowledge and skills, and with severe
limitations of time and resources, adapt their applications and enable the utilization of
accessible computing resources, several goals where defined. Along the chapters of
this dissertation we have described and evaluated our proposals, which have been
proved to be correct taking into account the results obtained within the experiments
performed. Next we summarize these contributions, indicating the publications
accepted in peer reviewed journals and conferences.

First new methods to transform existing sequential applications based in parallel
loops and programmed in R where proposed. With a minimum knowledge of parallel
programming, we have been able to transform sequential R programs into parallel
versions, ready to be run in a parallel system. We also described the mechanism used
to enable the execution of these parallel applications, again with a minimum effort
from the user, in symmetric multiprocessing computers like for example multicore

106

desktop computers. The outcome was a first prototype called R/parallel which allow
us to evaluate our proposal in real systems. The papers accepted describing the
methods and mechanisms developed are:

 G. Vera, R. Jansen, and R. Suppi, "R/parallel - speeding up bioinformatics
analysis with R," BMC Bioinformatics, vol. 9, p. 390, 2008.

 G. Vera and R. Suppi, "Towards the evolution of legacy applications to
multicore systems - experiences parallelizing R," in Proceedings of the First
International Conference on Bioinformatics (BIOINFORMATICS 2010),
Valencia, Spain, 2010, pp. 250-256.

Next, as an evolution of previous work, new methods for R to integrate multiple
processing units of different types, mainly using existing non-dedicated computing
resources not ready for their utilization were proposed. Also further extensions of
R/parallel, to support the distributed computation in R were described and evaluated.
The papers accepted describing the methods, mechanisms and results are:

 G. Vera and R. Suppi, "Integrated parallel computing for R in heterogeneous
best-effort environments," in 3rd Palestinian International Conference on
Computer and Information Technology (PICCIT 2010), Hebron, Palestina,
2010, p. In press.

 G. Vera and R. Suppi, "Integration of heterogeneous and non-dedicated
environments for R," in The 10th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2010), 2010, p. In press.

Finally, and taking advantage of the experience and knowledge obtained with
previous contributions, a new self-scheduling method called ATLS was described and
evaluated. The results showed that even integrating non-dedicated resources of
heterogeneous types in changing environments, with a minimum information about
the running environment it is possible to provide better performance results than those
obtained with previous well-known scheduling schemes suitable for execution of
parallel loops. The paper accepted describing and evaluating the results obtained by
this scheme is:

 G. Vera and R. Suppi, "ATLS – A parallel loop scheduling scheme for
dynamic environments," in International Conference on Computational
Science (ICCS 2010), Amsterdam, The Netherlands, 2010, p. In press.

107

The conclusion of this work is that even in the presence of technical limitations and
lack of knowledge or time by potential users it is possible to develop methods and
implement software mechanisms that, with a minimal information about their
environment and a high degree of uncertainty about the quantity and quality of the
available resources, and with a minimal effort from the user, are able to conceal the
complexity inherent in classical parallel computing systems.

By doing so, with our contributions we have proved that it is possible to provide
feasible solutions to adapt existing sequential applications, in particular parallel loop
based ones programmed in R, and make an efficient use of the available computing
resources, thus providing a new solution for users that previously were unable to
embrace parallel computing solutions to fulfill their needs.

6.2. Future Work

Once a research line is started it does not take too much time, as we acquire more
knowledge about the problem being explored, to discover that multiple alternative
research paths can be followed. Our case is not an exception and several aspects, at
the end of this work are open and available for further research. Next we enumerate
some of the most important lines where further research can be done:

 Extension of parallel loops execution with dependencies. Although parallel
loops are present in many scientific algorithms, it can be argued that also
loops with dependencies should be considered. There exists a considerable
amount of literature and contributions in this respect that could be reviewed to
attempt their adaptation to the running environments considered in our work.
Besides, we have left to the user the responsibility of ensuring that his or her
loop is dependence free, what, depending on the user, cannot be guaranteed.
By adding at least dependence analysis checking we could avoid a misuse of
our proposal.

 Extension to other parallel structures. There exist many other situations where
parallelism could be extracted. The easier ones to consider are task parallelism
and hierarquical loops.

 Extensions to other resources providers. In this work we have tested a few of
the many sources of additional computing resources that can be integrated
with our solution. An emerging an interesting option could be to consider
Cloud systems.

108

 Extension to fine grained data parallelism. In our current implementation the
whole state of the ongoing calculation is stored and distributed among the
workers. That implies that all the data must fit within the client and workers’
memory. To enable the handling of workloads bigger than the client memory,
mechanisms to delay the load of data and distribute it to workers could be
researched and included in R/parallel.

Finally, an important line for future work is the incorporation of support for fault
tolerance. We cannot obviate the importance of this mechanism when using non-
dedicated environments. It is possible that even though trying to assign the right
chunk size to each working node based in its current performance ratio, due to
unexpected changes on its behavior, it may take by far too much time to finalize its
assigned task. Maybe, due to failure or because the computer has been switched off,
this time can be extend ad infinitum. In such situations, when a task assignment fails
due to several reasons, the failed iterations have to be rescheduled. To handle this
problem, a queueing subsystem as it is illustrated in Figure 54 is proposed.

Figure 54: Queue subsystem to support fault tolerance

Initially the workload with all the iterations could be maintained in the Not Assigned
queue. Every time a worker node request a task, a subset of continuous iterations of
size ܭ௜ can be retrieved from this queue and a task, with the defined number of
iterations, or less if there are no more available, is dispatched to the invoking node.
To keep track of this event, the information relative to this assignation could be
maintained in the Assigned queue, and the Not Assigned queue updated. Later, if the

Not Assigned

Assigned

Failed

FinishedDiscarded

Assigned

Deadline reached

Done. On Time

Done. Delayed

Cancelled

Cancelled

Re-Assigned

Fragmented

Fragmented

Re-Assigned

Cancelled

109

worker node has successfully finalized its assignment before the estimated deadline,
the information can be moved from the Assigned to the Finished queue. The main
objective of the Finished queue is to maintain the information about all the finalized
tasks to later, in a final step, reduce the partial results returned by each worker to
build the final values, applying the same order to the reduction operations as it would
happened in a sequential execution. However, it is also possible that the deadline for a
task is reached.

In that case, the information about that task is moved from the Assigned queue to the
Failed queue. If the task is finished once it has reached the Failed queue, its
information is moved to the Finished queue. In the final stages of the computation, it
can happen that a few task assignments have not yet finished. It doesn't matter if their
records are maintained in the Assigned queue because it was expected this time or in
the Failed queue because it is being delayed. The fact is that we can end up with idle
working nodes while waiting for other tasks that maybe will never finish. The rational
option here, when there are no more pending iterations for assignment in the Not
Assigned queue, is to reschedule iterations to other working nodes. The first iterations
that should be rescheduled are the ones contained in the Failed queue since they have
already shown symptoms of irregular behavior. In this case, if the whole task size fits
the defined ܭ௜ for the invoking worker, it is re-assigned and the task information
updated and moved back from the Failed queue to the Assigned queue. But it can
happen, specially at the last steps of the computation that the task size is larger than
 ௜. This can be quite frequent since scheduling schemes are usually designed toܭ
behave in that way to reduce load imbalance. In such case, the selected task has to be
split in two. A new task of size ܭ௜ is assigned and its information annotated in
Assigned, and another task, with the remaining iterations is introduced in the Failed
queue. The original task is still maintained in Failed since it can happen that,
although more delayed than expected, the task arrives before the re-assigned ones
finishes. For the cases that there are no pending tasks in the Not Assigned or Failed
queues, tasks from the Assigned queue can be re-assigned in the same way defined for
the Failed queue. The idea in that case, more than preventing a feasible failure, in a
speculative approach, is to duplicate the work assignment and consider the results of
the faster worker node. The only inconvenient produced by re-scheduling tasks and
the generated fragmentation is that once any of these tasks finishes, the other related
tasks (full or partial duplications) must be discarded. It can even happen that a
duplicated task with a partial copy, besides of the ones in Assigned and Failed
queues, is already in the Finished queue and has to be discarded since its originating
task has been completed and it contains more iterations than the previously finished.

Working with a queueing system for tracking the tasks assignments introduces some
extra overhead. However, usually the worst cases appear at the final stages, when
several working nodes are delayed and its assigned tasks have to be re-scheduled.

110

This can produce too much fragmentation and every time an original task arrives, the
related copies have to be discarded and removed from the queues. Nevertheless, in
this kind of situations, without an equivalent subsystem like the proposed here, the
time would be otherwise spent just waiting. In that sense it can be understood that the
extra effort can be profitable and therefore should be considered for future work.

111

Bibliography

[CB+05] A.J.Chakravarti, G.Baumgartner, and M.Lauria, "The Organic Grid:
Self-Organizing Computation on a Peer-to-Peer Network," IEEE Transactions
on Systems, Man and Cybernetics, vol. 35, pp. 1-12, 2005.

[AV+08] R. Alberts, G. Vera, and R. C. Jansen, "affyGG: computational
protocols for genetical genomics with Affymetrix arrays," Bioinformatics, vol.
24, pp. 433–434, 2008.

[AC+10] E. Allen, D. Chase, and J. Hallet. The Fortress language specification.
2010. Available: http://labs.oracle.com/projects/plrg/

[Amd67] G. M. Amdahl, "Validity of the single processor approach to achieving
large scale computing capabilities," presented at the Proceedings of the April
18-20, 1967, spring joint computer conference, Atlantic City, New Jersey,
1967.

[And04] D. P. Anderson, "BOINC: A system for public-resource computing and
storage," in Proceedings of the 5th IEEE/ACM International Workshop on
Grid Computing (GRID ’04), Washington, DC, USA, 2004, pp. 4-10.

[AC+02] D. P. Anderson, J. Cobb, et al., "SETI@home: an experiment in
public-resource computing," Communications of the ACM, vol. 45, pp. 56-61,
2002.

[ANSI94] ANSI Working Commitee, "Parallel Processing Model for High Level
Programming Languages, ANSI X3H5," Document Number X3H5/94 SD2,
Apr 1994.

[AB+06] K. Asanovic, R. Bodik, et al., "The Landscape of Parallel Computing
Research: A View from Berkeley," University of California, Berkeley Report
Num: UCB/EECS-2006-183, December 18 2006.

112

[BS95] D. Bakken and R. Schilchting, "Supporting Fault-Tolerant Parallel
Programming in Linda," IEEE Transactions on Parallel and Distributed
Systems, vol. 6, pp. 287-302, March 1995.

[BC+09] I. Banicescu, F. M. Ciorba, and R. L. Cariño, "Towards the robustness
of dynamic loop scheduling on large-scale heterogeneous distributed
systems," in Eighth International Symposium on Parallel and Distributed
Computing (ISPDC'09), 2009, pp. 129-132.

[BV02] I. Banicescu and V. Velusamy, "Load balancing highly irregular
computations with the adaptive factoring," in Proceedings International
Parallel and Distributed Processing Symposium, 2002, pp. 87–98.

[BV+03] I. Banicescu, V. Velusamy, and J. Devaprasad, "On the scalability of
dynamic scheduling scientific applications with adaptive weighted factoring,"
Cluster Computing, vol. 6, pp. 215–226, 2003.

[BD+95] A. Baratloo, P. Dasgupta, and Z. Kedem, "Calypso: A Novel Software
System for Fault-Tolerant Parallel Processing on Distributed Platforms," in
Proceedings of the 4th IEEE International Symposium on High Performance
Distributed Computing, 1995.

[BC+09] R. D. Bjornson, N. J. Carriero, et al., "NetWorkSpace: A Coordination
System for High-Productivity Environments " International Journal of
Parallel Programming, vol. 37, pp. 106-125, 2009.

[Bod09] D. Bode. Rsge: Interface to the SGE Queuing System. 2009. Available:
http://cran.r-project.org/web/packages/Rsge/index.html

[BV+08] M. J. Bridges, N. Vachharajani, et al., "Revisiting the sequential
programming model for the multicore era," IEEE Micro, vol. 28, pp. 12-20,
2008.

[Bri96] P. Briggs, "Automatic parallelization," SIGPLAN Not., vol. 31, pp. 11-15,
1996.

[BW+03] K. W. Broman, H. Wu, et al., "R/qtl: QTL mapping in experimental
crosses," Bioinformatics, vol. 19, pp. 889-890, 2003.

[Bub08] A. v. Bubnoff, " Next-generation sequencing: the race is on," Cell, vol.
132, pp. 721-723, 2008.

[BD+94] G. Burns, R. Daoud, and J. Vaigl, "LAM: An open cluster environment
for MPI," in Proceedings of Supercomputing Symposium, 1994, pp. 379–386.

[Buy99] R. Buyya, High Performance Cluster Computing: Programming and
Applications, volume 2. New Jersey, USA: Prentice Hall PTR, 1999.

[BW+05] L. Bystrykh, E. Weersing, et al., "Uncovering regulatory pathways that
affect hematopoietic stem cell function using ’genetical genomics’," Nature
Genetics, vol. 37, pp. 225–232, 2005.

[CC+04] D. Callahan, B. L. Chamberlain, and H. P. Zima, "The Cascade High
Productivity Language," in 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS 2004),
2004, pp. 52-60.

[CG+05] P. C. Carvalho, R. V. Glória, et al., "Squid – a simple bioinformatics
grid," BMC Bioinformatics, vol. 6, p. 197, 2005.

[CR+08] F. M. Ciorba, I. Riakiotakis, et al., "Enhancing self-scheduling
algorithms via synchronization and weighting," Journal of Parallel and
Distributed Computing, vol. 68, pp. 246-264, 2008.

113

[CG+97] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer
Architecture: A Hardware/Software Approach: Morgan Kaufmann Publishers
Inc., 1997.

[Cyt86] R. Cytron, "Doacross: Beyond vectorization for multiprocessors," in
International Conference on Parallel Processing (ICPP'86), 1986, pp. 836-
844.

[CC+03] A. Chien, B. Calder, et al., "Entropia: architecture and performance of
an enterprise desktop grid system," Journal of Parallel and Distributed
Computing, vol. 63, pp. 597-610, 2003.

[CK+07] S. Choi, H. Kim, et al., "Characterizing and Classifying Desktop
Grid," in IEEE Cluster Computing and the Grid (CCGrid'07), 2007, pp. 743-
748

[CA+01] A. T. Chronopoulos, R. Andonie, et al., "A Class of Loop Self-
Scheduling for Heterogeneous Clusters," in Proceedings of the 3rd IEEE
International Conference on Cluster Computing (CLUSTER 2001), Newport
Beach, California, USA, 2001, pp. 282-291.

[DM98] L. Dagum and R. Menon, "OpenMP: An Industry-Standard API for
Shared-Memory Programming," IEEE Computing in Science and
Engineering, vol. 5, pp. 46 - 55, 1998.

[DR+06] J. Díaz, S. Reyes, et al., "A Quadratic Self-Scheduling Algorithm for
Heterogeneous Distributed Computing Systems," in Proceedings of the 5th
International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks (HeteroPar'06), 2006, pp. 1-8.

[DR+09] J. Díaz, S. Reyes, et al., "Derivation of self-scheduling algorithms for
heterogeneous distributed computer systems: Applications to internet-based
grids of computers," Future Generation Computer Systems, vol. 25, pp. 617-
626, 2009.

[DC+08] Y. Dong, J. Chen, et al., "Energy-Oriented OpenMP Parallel Loop
Scheduling," in International Conference on Parallel and Distributed
Processing with Applications (ISPA2008), 2008, pp. 162-169.

[DF+03] J. Dongarra, I. Foster, et al., Sourcebook of parallel computing. San
Francisco, USA: Morgan Kaufmann Publishers Inc., 2003.

[DL06]J. Dongarra and A. Lastovetsky, "An overview of heterogeneous high
performance and grid computing," in Engineering the Grid, 2006.

[ES+04] K. Ebcioglu, V. Saraswat, and V. Sarkar, "X10: Programming for
hierarchical parallelism and non-uniform data access," in International
Workshop on Language Runtimes, (OOPSLA 2004), 2004.

[FR+97] D. Feitelson, L. Rudolph, et al., "Theory and Practice in Parallel Job
Scheduling," in Proceedings of 3rd Workshop on Job Scheduling Strategies
for Parallel Processing, 1997, pp. 1-34.

[Fly66] M. Flynn, "Very high speed computing systems," in Proceedings of the
IEEE, 1966, pp. 1901-1909.

[FK97] I. Foster and C. Kesselman, "Globus: A metacomputing infrastructure
toolkit," The International Journal of Supercomputer Applications and High
Performance Computing, vol. 11, pp. 115–128, Summer 1997.

[FK99] I. Foster and C. Kesselman, The grid: blueprint for a new computing
infrastructure. San Francisco, USA: Morgan Kaufmann Publishers Inc., 1999.

114

[FK03] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure: Morgan Kaufmann Publishers Inc., 2003.

[FS+07] J. Fu, M. Swertz, et al., "MetaNetwork: a computational protocol for
the genetic study of metabolic networks," Nature Protocols, vol. 2, pp. 685-
694, 2007.

[GF+04] E. Gabriel, G. E. Fagg, et al., "OpenMPI: Goals, concept, and design
of a next generation MPI implementation," in Proceedings of 11th European
PVM/MPI Users Group Meeting, 2004, pp. 97–104.

[Gel95] D. Gelernter, "Parallel Programming in Linda," Department of
Computer Science, Yale University, Technical Report 359, January 1985.

[GC+04] R. Gentleman, V. Carey, et al., "Bioconductor: open software
development for computational biology and bioinformatics," Genome Biology,
vol. 5, p. R80, 2004.

[Gen01] W. Gentzsch, "Sun Grid Engine: Towards Creating a Compute Power
Grid," in First IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’01), 2001, pp. 35-36.

[GNU07] GNU Software Foundation. GNU general public licence. 2007.
Available: http://www.gnu.org/licenses/gpl.html

[Gro09] D. Grose. High throughput distributed computing using R : the multiR
package. 2009. Available: http://e-science.lancs.ac.uk/multiR

[Han93] P. B. Hansen, "Model Programs for Computational Science: A
Programming Methodology for Multicomputers," Concurrency: Practice and
Experience, vol. 5, pp. 407-423, 1993.

[HT96]R. Henderson and D. Tweten, "Portable Batch System: External reference
specification. ," NASA Ames Research Center, Technical Report, 1996.

[HP07] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th ed. San Francisco: Morgan Kauffman, 2007.

[HH+08] J. Hill, M. Hambley, et al., "SPRINT: A new parallel framework for
R," BMC Bioinformatics, vol. 9, p. 558, 2008.

[HT+08] W. Huber, J. Toedling, and M. Ritchie. tilingArray – Analysis of high-
density oligonucleotide tiling arrays 2008. Available:
http://bioconductor.org/packages/2.2/bioc/html/tilingArray.html]

[HS+96] S. F. Hummel, J. Schmidt, et al., "Load-sharing in heterogeneous
systems via weighted factoring," in Proceedings of the Eighth Annual ACM
Symposium on Parallel Algorithms and Architectures, Padua, Italy 1996, pp.
318 - 328.

[HS+92] S. F. Hummel, E. Schonberg, and L. E. Flynn, "Factoring: a method
for scheduling parallel loops," Communications of the ACM, vol. 35, pp. 90-
101, August 1992.

[IG96] R. Ihaka and R. Gentleman, "R: A Language for Data Analysis and Graphics,"
Journal of Computational and Graphical Statistics, vol. 5, pp. 299-314,
September 1996.

[Jam08] F. Jamitzky. ROMP: OpenMP binding for GNU R. 2008. Available:
http://code.google.com/p/romp/

[Jan93]R. C. Jansen, "Interval Mapping of Multiple Quantitative Trait Loci,"
Genetics vol. 135, pp. 205-211, 1993.

[KN+05] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos, "An Efficient
Approach for Self-Scheduling Parallel Loops on Multiprogrammed Parallel

115

Computers," in The 18th International Workshop on Languages and
Compilers for Parallel Computing (LCPC'05), 2005, pp. 441-449.

[KN+06] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos, "History-aware
Self-Scheduling," in Proceedings of the 2006 International Conference on
Parallel Processing (ICPP'06), 2006, pp. 185 - 192

[KN+09] A. Kejariwal, A. Nicolau, et al., "Efficient Scheduling of Nested
Parallel Loops on Multi-Core Systems," in International Conference on
Parallel Processing (ICPP'09), 2009, pp. 74-83.

[KP+09] J. Knaus, C. Porzelius, et al., "Easier Parallel Computing in R with
snowfall and sfCluster," The R Journal, vol. 1, pp. 54-59, May 2009.

[KW85] C. P. Kruskal and A. Weiss, "Allocating Independent Subtasks on
Parallel Processors," IEEE Transactions on Software Engineering, vol. 11, pp.
1001-1016, 1985.

[Lam74] L. Lamport, "The parallel execution of DO loops," Communications of
the ACM, vol. 17, pp. 83-93, Feb. 1974.

[LR02] N. Li and A. J. Rossini. rpvm: R interface to PVM (Parallel Virtual Machine).
2002. Available: http://cran.r-project.org/web/packages/rpvm/index.html

[LJ+08] P. Li, Q. Ji, et al., "An Adaptive Chunk Self-Scheduling Scheme on
Service Grid," in IEEE Asia-Pacific Services Computing Conference
(APSCC'08), 2008, pp. 39-44.

[LL+88] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor - a hunter of idle
workstations," in 8th International Conference on Distributed Computing
Systems, 1988, pp. 104-111.

[LS+09] D. Liu, Z. Shao, et al., "Optimal Loop Parallelization for Maximizing
Iteration-Level Parallelism," in International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES'09), 2009, pp. 67-
76.

[Lov93] D. B. Loveman, "High performance Fortran," IEEE Parallel &
Distributed Technology: Systems & Applications, vol. 1, pp. 25-42, 1993.

[Lun85] S. F. Lundstrom, "A decentralized control, highly concurrent
multiprocesssor," in 12th Annual international Symposium on Computer
Architecture Boston, Massachusetts, United States, 1985, pp. 145-151.

[ML+07] X. Ma, J. Li, and N. F. Samatova, "Automatic Parallelization of
Scripting Languages: Toward Transparent Desktop Parallel Computing," in
2007 IEEE International Parallel and Distributed Processing Symposium,
Long Beach, CA, USA, 2007, pp. 298-304.

[Mar06] E. Mardis, "Anticipating the $1,000 genome," Genome Biology, vol. 7,
p. 112, 2006.

[MM+05] M. Margulies, M. Egholm, et al., "Genome sequencing in
microfabricated high-density picolitre reactors," Nature, vol. 437, pp. 376-
380, 2005.

[Mar09] A. Marletta. Cpu Usage Limiter for Linux. 2009. Available:
http://cpulimit.sourceforge.net/

[Met10] M. L. Metzker, "Sequencing technologies - the next generation,"
Nature Reviews Genetics, vol. 11, pp. 31-46, 2010.

[Moo65] G. E. Moore, "Cramming more components onto integrated circuits,"
Electronics Magazine, vol. 38, p. 4, 1965.

116

[PK+80] D. A. Padua, D. J. Kuck, and D. H. Lawrie, "High-Speed
Multiprocessors and Compilation Techniques," IEEE Transactions on
Computers, vol. 29, pp. 763-776, 1980.

[PW86] D. A. Padua and M. J. Wolfe, "Advanced compiler optimizations for
supercomputers," Communications of the ACM, vol. 29, pp. 1184-1201,
December 1986.

[Pla94] O. Plata and F. F. Rivera, "Combining static and dynamic scheduling on
distributed-memory multiprocessors," in Proceedings of the 8th international
conference on Supercomputing (ICS'94), Manchester, England, 1994, pp. 186-
195.

[Pol88] C. D. Polychronopoulos, Parallel Programming and Compilers:
Kluwer Academic Publishers, 1988.

[PK87] C. D. Polychronopoulos and D. Kuck, "Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers," IEEE Transactions on
Computers, vol. C-36, pp. 1425-1439, December 1987.

[PK+06] J. Pukacki, M. Kosiedowski, et al., "Programming Grid Applications
with Gridge," Computational Methods in Science and Technology, vol. 12, pp.
47-68, 2006.

[RD08] R Development Core Team, R Language Definition. Vienna, Austria:
The R Foundation for Statistical Computing, 2008.

[Sar89]V. Sarkar, "Determining average program execution times and their variance,"
in Proceedings of the SIGPLAN’89 Conference on Programming Language
Design and Implementation, 1989, pp. 298–312.

[Sar98]L. F. G. Sarmenta, "Bayanihan: Web-Based Volunteer Computing Using
Java," in Proceedings of the Second International Conference on Worldwide
Computing and Its Applications, 1998, pp. 444-461.

[NWS09] Scientific Computing Associates. NetWorkSpaces for R. 2009.
Available: http://nws-r.sourceforge.net

[SM+09] M. Schmidberger, M. Morgan, and D. Eddelbuettel, "State of the Art
in Parallel Computing with R," Journal of Statistical Software, vol. 31, 2009.

[Sei85] C. L. Seitz, "The cosmic cube," Communications of the ACM, vol. 28, pp. 22-
33, 1985.

[SY+07] W.-C. Shih, C.-T. Yang, and S.-S. Tseng, "A performance-based
parallel loop scheduling on grid environments," Journal of Supercomputing,
vol. 41, pp. 247-267, 2007.

[SZ+09] J. Shirako, J. Zhao, et al., "Chunking Parallel Loops in the Presence of
Synchronization," in Proceedings of the 23rd international conference on
Supercomputing (ICS'09), Yorktown Heights, New York, USA, 2009, pp.
181-192

[SC92] L. Smarr and C. E. Catlett, "Metacomputing," Communications of the ACM,
vol. 35, pp. 44-52, 1992.

[SW+07] C. Smith, G. Warnes, et al. Rlsf: Interface to the LSF Queuing System.
2007. Available: http://cran.r-project.org/web/packages/Rlsf/index.html

[Sun90] V. S. Sunderam, "PVM: a framework for parallel distributed
computing," Concurrency: Practice and Experience, vol. 2, pp. 315-339,
1990.

[SL05] H. Sutter and J. Larus, "Software and the Concurrency Revolution," Queue,
vol. 3, pp. 54-62, 2005.

117

[TY86]P. Tang and P. Yew, "Processor self-scheduling for multiple-nested loops," in
International Conference on Parallel Processing (ICPP'86), 1986, pp. 528-
535.

[MPI93] The MPI Forum, "MPI: A Message Passing Interface," in Proceedings
of Supercomputing 93, 1993, pp. 878–883.

[PCF91] The Parallel Computing Forum, "PCF parallel Fortran extensions,"
SIGPLAN Fortran Forum, vol. 10, pp. 1-57, 1991.

[Prl02] The Perl Foundation. Perl 5.8.0 release announcement. 2002. Available:
http://dev.perl.org/perl5/news/2002/07/18/580ann/

[RF10] The R Foundation. The Comprehensive R Archive Network. 2010. Available:
http://cran.r-project.org

[TR+09] L. Tierney, A. J. Rossini, and N. Li, "Snow : A Parallel Computing
Framework for the R System " International Journal of Parallel
Programming, vol. 37, pp. 78-90, 2009.

[Tre01] O. Trelles, "On the parallelisation of bioinformatics applications,"
Briefings in Bioinformatics, vol. 2, pp. 181-194, 2001.

[TN93]T. H. Tzen and L. M. Ni, "Trapezoid self-scheduling: a practical scheduling
scheme for parallel compilers," IEEE Transactions on Parallel and
Distributed Systems, vol. 4, pp. 87–98, 1993.

[Urb09] S. Urbanek. multicore: Parallel processing of R code on machines with
multiple cores or CPUs. 2009. Available: http://cran.r-
project.org/web/packages/multicore/index.html

[VS08] G. Vera, R. Jansen, and R. Suppi, "R/parallel - speeding up bioinformatics
analysis with R," BMC Bioinformatics, vol. 9, p. 390, 2008.

[VS10d] G. Vera and R. Suppi, "ATLS – A parallel loop scheduling scheme for
dynamic environments," in International Conference on Computational
Science (ICCS 2010), Amsterdam, The Netherlands, 2010, p. In press.

[VS10b] G. Vera and R. Suppi, "Integrated parallel computing for R in
heterogeneous best-effort environments," in 3rd Palestinian International
Conference on Computer and Information Technology (PICCIT 2010),
Hebron, Palestina, 2010, p. In press.

[VS10c] G. Vera and R. Suppi, "Integration of heterogeneous and non-
dedicated environments for R," in The 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010), 2010, p.
In press.

[VS10a] G. Vera and R. Suppi, "Towards the evolution of legacy applications to
multicore systems - Experiences parallelizing R," in First International
Conference on Bioinformatics, BIOINFORMATICS 2010, Valencia, Spain,
2010, pp. 250-256.

[WS+07] D. Wegener, T. Sengstag, et al., "GridR: An R-based grid-enabled tool
for data analysis in ACGT clinico-genomics trials," in IEEE International
Conference on e-Science and Grid Computing, 2007, pp. 228–235.

[YC03] C.-T. Yang and S.-C. Chang, "A Parallel Loop Self-Scheduling on
Extremely Heterogeneous PC Clusters," in International Conference on
Computational Science (ICCS'03), 2003, pp. 1079-1088.

[YC+04] C.-T. Yang, K.-W. Cheng, and K.-C. Li, "An Efficient Parallel Loop
Self-Scheduling on Grid Environments," in IFIP International Conference on
Network and Parallel Computing (NPC 2004), 2004, pp. 92-100.

118

[YC09] C.-T. Yang and L.-H. Cheng, "A Performance-based Dynamic Loop
Partitioning on Grid Computing Environments," in 11th IEEE International
Conference on High Performance Computing and Communications
(HPCC'09), 2009, pp. 512-519.

[YS+06] C.-T. Yang, W.-C. Shih, and S.-S. Tseng, "A Dynamic Partitioning
Self-Scheduling Scheme for Parallel Loops on Heterogeneous Clusters," in
International Conference on Computational Science (ICCS'06), 2006, pp.
810-813.

[Yu02] H. Yu. Rmpi: Interface (wrapper) to MPI (Message-Passing Interface). 2002.
Available: http://cran.r-project.org/web/packages/Rmpi/index.html

[ZZ+93] S. Zhou, X. Zheng, et al., "Utopia: A load sharing facility for large,
heterogeneous distributed computer systems," Software: Practice and
Experience, vol. 23, pp. 1305-1336, 1993.

