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Abstract

The amount of music available digitally is overwhelmingly increasing. Vast
amounts of music are available for listeners, and require automatic organiza-
tion and filtering. In this context, user modeling, which consists in customiza-
tion and adaptation of systems to the user’s specific needs, is a challenging
fundamental problem. A number of music applications are grounded on user
modeling to provide users a personalized experience. In the present work we
focus on user modeling for music recommendation, and propose a preference
elicitation technique in conjunction with different recommendation approaches.
We develop algorithms for computational understanding and visualization of
music preferences. Our approaches employ algorithms from the fields of sig-
nal processing, information retrieval, machine learning, and are grounded in
cross-disciplinary research on user behavior and music.

Firstly, we consider a number of preference elicitation strategies, and pro-
pose a user model starting from an explicit set of music tracks provided by
this user as evidence of his/her preferences. The proposed strategy provides a
noise-free representation of music preferences. Secondly, we study approaches
to music similarity, working solely on audio content. We propose a novel seman-
tic measure which benefits from automatically inferred high-level description
of music. Moreover, we complement it with low-level timbral, temporal, and
tonal information and propose a hybrid measure. The proposed measures show
significant improvement, compared to common music similarity measures, in
objective and subjective evaluations.

Thirdly, we propose distance-based and probabilistic recommendation ap-
proaches working with explicitly given preference examples. Both content-
based and metadata-based approaches are considered. The proposed methods
employ semantic and hybrid similarity measures as well as they build semantic
probabilistic model of music preference. Further filtering by metadata is pro-
posed to improve results of purely content-based recommenders. Moreover, we
propose a lightweight approach working exclusively on editorial metadata. Hu-
man evaluations show that our approaches are well-suited for music discovery
in the long tail, and are competitive with metadata-based industrial systems.

Fourthly, to provide insights on the nature of music preferences, we cre-
ate regression models explaining music preferences of our participants and
demonstrate important predictors of their preference from both acoustical and
semantic perspectives. The obtained results correlate with existing research on
music cognition. Finally, we demonstrate a preference visualization approach
which allows to enhance user experience in recommender systems.
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Resum

La quantitat de musica disponible en format digital creix de forma aclaparadora. Hi
ha grans quantitats de musica disponibles per als oients, i per tractar-les es requereix
organitzacié i filtratge automatic. En aquest context, el modelatge d’usuari, que
consisteix en la personalitzacio i adaptacio dels sistemes a les necessitats especifiques
de I'usuari, és un problema fonamental i complex. Varies aplicacions musicals es basen
en aquest modelatge per proporcionar als usuaris una experiéncia personalitzada. En
el present treball ens centrem en el modelatge d’usuari per la tasca de recomanacid
musical, proposem una técnica d’inferéncia de preferéncies aixi com diferents métodes
de recomanaci6. A més, desenvolupem algoritmes per la comprensié automatica i
visualitzacié de preferéncies musicals. Els nostres métodes fan servir algoritmes de
processament de senyals, recuperacio d’informacio, aprenentatge automatic, i es basen
en la investigacié interdisciplinaria en comportament de l'usuari i musica.

En primer lloc, es consideren diverses técniques d’inferéncia de preferéncies i es
proposa un model d’usuari. El model és construit a partir d’un conjunt explicit de
peces musicals proporcionades per I'usuari com a evidéncia de les seves preferéncies.
Aquesta estratégia permet una representacio fiable de les preferéncies musicals.

En segon lloc, s’estudien métodes d’estimacié de similitud musical, treballant ex-
clusivament en el contingut d’audio. Per una banda, es proposa una nova métrica
semantica que es beneficia de la descripcié musical d’alt nivell (etiquetes de génere,
emocid, instrumentacié) extreta automaticament. A més, es complementa amb infor-
maci6 de baix nivell (timbrica, temporal i tonal) per proposar una métrica hibrida.
Les métriques proposades mostren una millora significativa en avaluacions objectives
i subjectives, comparades amb els métodes més comuns de similitud musical.

En tercer lloc, es proposen diversos métodes de recomanacié musical que funcionen
a partir d’exemples explicits de preferéncia. Aquests métodes estan basats en ’analisi
del contingut d’audio i metadades. Els recomenadors proposats utilitzen les métriques
de similitud proposades o models probabilistics. Per una banda, es fan servir mesures
de similitud semantica i hibrida, i alternativament es construeix un model probabilistic
semantic de preferéncia musical. Es proposa un filtratge addicional basat en metadades
per millorar els resultats dels recomanadors basats en contingut d’audio. D’altra
banda, es proposa un meétode senzill, basat exclusivament en metadades editorials.
Les avaluacions amb usuaris demostren que els nostres métodes sé6n molt adequats per
al descobriment de la musica, i sén competitius amb relacié als estandards actuals.

En quart lloc, per proporcionar informacié sobre la naturalesa de les preferéncies
musicals, es creen models de regressié que relacionen les preferéncies musicals dels
nostres participants amb els descriptors utilitzats. Per cada usuari, es presenten els
predictors de preferéncia rellevants a nivell acuastic i semantic. Els resultats obtinguts
estan molt relacionats amb els de la investigacié existent en cognicié6 musical. Fi-
nalment, es presenta un métode de visualitzacié de preferéncies que permet millorar
I’experiéncia d’usuari en sistemes de recomanacié.
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Preface

I am always fascinated by music and its power to affect us, human beings.
Being a music lover, a collector, an occasional disc-jockey, and musician, 1
always seek for new music which can impress me profoundly. Developing my
own preferences, I always wondered how music can have an impact on our
emotions, behavior, and way of life. Having this personal interest in music
discovery, I entered MTG to work on the theme of music recommendation and
user modeling. Back in 2008 this topic was only starting to gather interest
in the research community. While user models and recommender systems for
other domains were considerably developed, there was a lack of research in the
music field. Attacking a problem of music recommendation, one has to deal
with a lot of factors which are located on the intersection of different disciplines:
information theory, signal processing, data mining and information retrieval
together with cognitive sciences and sociology. Working with human factors
implies additional difficulties and a desperate need for subjective evaluations.

This thesis deals with the problems of music recommendation, music sim-
ilarity, and music preference elicitation, and challenges the goal to facilitate
music discovery for the listeners. In particular, it focuses on bridging the
current performance gap between approaches working with audio content in-
formation and the state-of-the-art approaches working with metadata. Fur-
thermore, it focuses on how music preferences of listeners can be explored by
audio analysis, and how recommender systems of the future can be enhanced
by this knowledge. The outcomes of the present research have been published
in a number of international peer-reviewed conferences and journals. The pro-
posed approaches have been proved to be competitive to the best state-of-the-
art approaches, in particular, in several international evaluation campaigns.
Moreover, part of this research has been incorporated into a commercial music
recommendation service and has been featured in the media. Till this date, a
number of music recommender systems exists, but we are still on the long way
to truly understand the underlying structure of music preferences. I hope that
the findings of this thesis will help to pave the way for further research on the
topic of music recommendation.
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Introduction

1.1 Motivation

We are living in the age of overwhelming information. The growth of digital
technologies, the multimedia industry, and the Internet over the past decade
facilitated physical access to information. We are now privileged to have more
possibilities than ever to create, share, explore, and discover content on topics

of our interest. However, the ease of access to information is burdened by the -

infinity of choices, large part of which is irrelevant for our particular needs
and desires. Narrowing the scope to music, we encounter this problem in
the present world of digital music distribution. We are already faced with
the new paradigm of music consumption: listeners now have instantaneous
access to digital music collections of an unprecedented size. The majority of
music recordings are available online, and the amount of digital music counts
tens of millions of tracks and grows extensively. Major Internet stores such
as the iTunes Store contain up to 28 million tracks,! adding thousands of
new tracks every month. Such amount of music is not surprising, as music
takes an important part of people’s everyday life, and more and more people
express and share their music creativity by owning to the modern technology. A
recent study found that British adults, when randomly probed via their mobile
phones (North, 2004), are in presence of music in 39% of the cases. Listening to
music have become the top leisure-time activity for most people (Rentfrow &
Gosling, 2003, 2006). Music enthusiasts may now have a wider access to music
than ever without any doubt. However they might be lost while searching for
the “cream of the crop” in the non-stopping flow of new music content due to
the infinity of choices.

With current technology we may expect better tools for search and discov-
ery. There are numerous possibilities to be challenged in order to facilitate the
access to music, and to bring discovery and interaction with music collections

'http://en.wikipedia.org/wiki/ITunesStore, retrieved on December 19, 2012.
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on a whole new level. These challenges agitated the rise of music recommenda-
tion systems, which are yet far from being perfect, being limited in the type of
information they are able to process and followed approaches, and in explana-
tions given for specific recommendation. In particular, a very popular standard
in music recommendation is collaborative filtering: “f a person A has the same
opinion as a person B on an issue, A is more likely to have B’s opinion on a
different issue = than to have the opinion on z of a person chosen randomly.”
While this approach can be applied to music, it poses certain technical limita-
tions in terms of maintaining a solid user base, gathering costly collaborative
data, dealing with sparsity of such data and popularity bias. More impor-
tantly, it brings a number of conceptual limitations. Firstly, the listener’s
choices might be significantly reduced to an artificial “filter bubble” defined by
social behavior patterns (Morozov, 2012; Pariser, 2012). Secondly, such a sys-
tem does not require an understanding of the music preference itself, nor the
music, but only captures the behavioral patterns of consumption for a certain
population of users, meanwhile the tracked behavior could have been generated
by different transient motives that would not reflect the inherent preferences
of the customer: buying stuff for a relative, buying because of being enrolled
in a course, etc.

Creating music recommenders which are able to provide listeners with more
profound recommendations is a challenge. A recent survey of 500 US adults on
their music habits (OMR, 2011) revealed that 54% of respondents have used
music recommendation tools. Among those, 40% felt that recommendations
are accurate only about half of the times or less. Among the respondents who
actively searched for new music, 22% found it difficult or nearly impossible to
discover new, unheard-of music that they like.

We believe that alternative approaches, which are able to generate musi-
cally informed decisions, should by explored in order to provide listeners with
more profound recommendations. We foresee intelligent recommender systems
of the future to have a deeper understanding of the underlying factors of music
preference, i.e., to understand the listener. We want such systems to solve a
number of complex problems: to understand the music itself (i.e., “to listen”
to music audio) and the associated cultural context (i.e., to mine contextual
information from the Internet), and to be able to compare music based on this
knowledge. A lot of questions are to be resolved on the way to such systems,
which requires a cross-disciplinary research on the edge of signal processing,
data mining, and information retrieval together with music theory, cognitive
sciences, and sociology. Music information retrieval (MIR) is a recently emer-
gent field of research which addresses these questions to a great extent.

*http://en.wikipedia.org/wiki/Collaborative_filtering
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1.2 Problems of music recommendation

At present, the majority of music discovery industrial systems provide means
for manual search of music (Nanopoulos et al., 2009). This type of search is
based on textual information about artist names, album or track titles, and
additional semantic® properties which are mostly limited to genres. Music
collections can be queried by tags or textual input using this information.
However such search systems do not provide enough experience for the listener
willing to explore and discover music.

From this perspective, a challenging task is to build a music recommender
system, which is able to gather preference information about the users, predict
their preference for music items (e.g., tracks, albums, or artists) with which
they have not yet interacted within the system (i.e., expectedly novel items),
and provide recommendations based on these predictions. Typically, the sys-
tem should solve two problems formulated by Celma (2008):

e Prediction. Let U = {uy,us,...,un} be the set of all users and I =
{1,172, ...,in} be the set of all possible items that can be recommended
(a target music collection). Each user u; expressed his/her interest in
a list of items I,,, C /. Compute function Pu,,%; which represents the
predicted preference of item i; for the active user ug, such as i; & I,,.

e Recommendation. Create a list of N items, I, C I,1,N1,, = <, that the
user will like the most, i.e., with high Pu,,i; values.

However, it is necessary to solve another instrumental problem before pre-
diction can be done. This problem is to obtain a user profile representing user
interest in I,,, the henceforth referred as the problem of preference elicita-
tion.* An open question is how to infer knowledge about the user and create a
proxy representation of her /his music preferences in a way which is sufficient to
provide successful recommendations. Getting a thorough and reliable user pro-
file can imply considerable amount of user effort, including up-to-date explicit
surveying and gathering user feedback. Alternatively, it is possible to address
this problem with incomplete or partially reliable information, minimizing user
effort by the cost of possible decrease in the quality of recommendations. Ex-
isting systems can obtain a user profile by monitoring user behavior, e.g., music
consumption, listening statistics, or user ratings. The simplest user profile can
be formed as a vector of ratings or playback counts for different artists, albums,
and tracks, however, other representations can be considered. Starting from

3We use the term “semantic” to refer to the concepts that music listeners use to describe
items within music collections, such as genres, moods, musical culture, instrumentation, etc.,
throughout this work following Amatriain (2005) and Aucouturier (2009).

4This procedure is commonly called as preference elicitation in literature on recommender
systems. For consistency, in the rest of this thesis we will follow this terminology instead of
other possible terms, such as “preference inference”.
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this data, different approaches can be taken to match the user profile to the
target music collection and make the prediction.

Current systems provide basic means for music recommendation, which are
not related to the audio content, i.e., using metadata® (Baltrunas & Amatriain,
2009; Celma, 2008; Firan et al., 2007; Jawaheer et al., 2010; Levy & Bosteels,
2010; Shardanand & Maes, 1995). However, it is not yet clear which type of
metadata or their combination is the most beneficial. Addressing large-scale
recommendation problems is of primary importance, and further research stud-
ies on comparison of metadata sources suitable for that will be of great interest
for both academic and industrial communities. User ratings, listening behav-
ior, manual annotations, social tags, or keywords extracted from the Internet,
have their advantages and disadvantages. Manual expert annotations might be
very accurate, but costly and even infeasible on large collections (Szymanski,
2009). In opposite, information extracted from the web is noisy. User ratings
or listening statistics are hard to gather as they require a large user base, and,
therefore, are expensive and undisclosable sources of information. This implies
a cold start problem, i.e., lacking the metadata when new items are being added
to music collection.

Many recommenders are biased towards popular items and often they leave
long-tail items out of reach as long as they work with metadata. This is
the common problem of popularity bias for the majority of metadata sources:
essentially, popular music items will gather much more user-driven metadata
(for example, user ratings) than unpopular items, which does not have enough
exposure among the users of the system, and in general among listeners, to be
able to generate that data. In practice, this implies the lack of user ratings,
playback counts, social tags, or web-pages to extract keywords from, or even
their total absence for music items in the so-called “long tail” (Celma, 2008).
As a result, recommendations are biased towards popular items often leaving
long-tail items out of scope. This might lead to another problem, specific
for collaborative filtering systems: constantly incorporating user feedback, the
system is at risk of perpetuating the situation known as “the rich gets richer”.
It may be thoroughly expected that the highlighted problems significantly limit
music discovery experience.

Surely, solving problems of popularity bias and the long tail is a hot-topic of
the research for the recommender systems community. Audio content analysis
is advocated by MIR researchers as an alternative or a complement to meta-
data (Barrington et al., 2009; Casey et al., 2008; Celma, 2008). Recommender
systems based on audio content are expected to reveal the long tail to listen-
ers and, therefore, democratize and revolutionize music search breaking the
popularity bias and enabling novel ways for querying and interacting with mu-
sic collections. This challenge has been addressed by a number of researchers

SWe pragmatically use the term “metadata” to refer to any information about or related
to the music that is not extracted from the audio signal itself.
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focused on content-based music recommendation for the last ten years. Un-
til recently, the vast majority of academic efforts within MIR have ignored
user-centric music recommendation, and instead have focused on the related
tasks of automatic semantic annotation and music similarity, which were more
easily addressable with the existing methodologies. The advances of MIR in
other fields are to be properly integrated into the context of recommendation
problem, and we expect that the existing content-based approaches have a
large room for improvement in terms of user satisfaction. Currently, research
studies evidence a detrimental performance of content-based approaches com-
pared to recommenders working with metadata (Slaney, 2011). This might
be explained by the fact that approaches typically extract low-level acoustic
features from music audio, i.e., the features which are close to the signal, but
far from the way listeners do conceptualize or think about music). In contrast,
it might be desirable to work on a higher level of automatic description and
utilize semantic concepts used by humans. It is challenging to try to bridge the
so-called semantic gap (Aucouturier, 2009; Celma et al., 2006), which arises
from the weak linking between human concepts related to musical aspects and
the low-level features.

In general, data representations in both metadata approaches (for example,
operating on very large vectors of user ratings) and content-based approaches
(operating on vectors of acoustical features) might be relatively complex and
incomprehensible for humans. However, transparency of recommendations, or
the possibility of their justification for the user, is very important (Cramer
et al., 2008; Sinha & Swearingen, 2002; Swearingen & Sinha, 2001). The em-
ployment of semantic concepts extracted from metadata or audio content can
be an effective solution to this problem.

Before closing this section, let us recapitulate the main challenges in the
design of music recommenders. Ideally, the system should be able to under-
stand listeners, being adaptive to their music preferences, help them in music
discovery by reducing popularity bias, facilitate the access to the long-tail
items in music collections, and improve serendipity of recommendations, that
is to increase the amount of novel and relevant of recommendations for a given
user (Celma, 2008). Moreover, the independence from large datasets of user-
generated data (ratings or tags), which are generally proprietary, is a great
advantage to exploit in order to avoid the cold-start problem. We believe
that the exploration of the factors which determine music preferences (such
as acoustical or cultural properties) rather than the factors which are effects
of music preferences (collaborative filtering data) is fundamental. Research
related to this task will not only benefit the design of better recommender
systems, but it will also contribute to the general understanding of music cog-
nition. Currently, there is a lack of comprehensive research on these topics and
those related or involving “users” or “listeners”. Evaluation methodologies fol-
lowed by researchers are generally limited: they employ small music collections
and simulate user-based evaluations due to the absence of real participants or
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due to their limited amount. In addition, a large part of research studies focus
on evaluation of music similarity instead of music recommendation itself.

1.3 Ouwur goal

In the present thesis, we consider a number of research questions related to the
problems of music recommendation:

e How much metadata is relevant and what is the user satisfaction with
the metadata-based approaches in terms of liking and novelty of recom-
mendations?

e Can the content information, automatically retrieved from the raw audio
signal, be effectively used for recommendation?

e What is the performance gap between content-based and metadata-based
approaches in terms of user satisfaction?

e Can we bridge the gap between low-level features and human-level judg-
ments about music, and how can the audio content provide valuable
insights on the music preferences in an understandable form for humans?

To answer these questions, we aim for certain goals to address in the thesis:

1. Propose a noise-free preference elicitation strategy which is suitable to
employ audio content information as well as metadata and which can
be used as a ground for building an effective evaluation methodology.
Explore how audio content-based information can innovate and improve
approaches to modeling music listeners. In particular, we want to reduce
the semantic gap between human judgments of music preferences and the
low-level audio characteristics of music. To this end, we want to incor-
porate high-level semantic information to our content-based preference
model.

2. Improve content-based approaches to music recommendation. Specifi-
cally, propose novel approaches to music similarity, and evaluate them
in the context of music recommendation. Propose novel metadata-based
and hybrid approaches, which are more prone to the cold-start prob-
lem and less costly in terms of required data. To this end, starting
from the proposed preference elicitation strategy, we need to conduct
a comprehensive user-based subjective evaluation of content-based and
metadata-based approaches to music recommendation, focusing on liking
and novelty of recommendations, i.e., music discovery.

3. Provide computational insights on the important factors of music prefer-
ences, analyzing audio content, and correlating the conclusions with the
existing research on music cognition.
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4. Explore additional applications of the content-based user models, in par-
ticular, music preference visualization.

1.4 Outline

This thesis is structured as follows: Chapter 2 reviews the foundations of mu-
sic preferences by music cognition, psychology, and sociology, and systematizes
the existing applied research on the topic of music recommendation and mu-
sic similarity within the MIR community. Chapter 3 considers approaches to
preference elicitation and proposes an explicit noise-free strategy to build a
semantic user model by automatic inference of high-level concepts from the
audio content. In Chapter 4 we focus on the problem of content-based music
similarity. We propose and evaluate a novel semantic similarity measure to-
gether with a hybrid low-level/semantic approach. These measures allow for
better music similarity estimation, according to the conducted objective and
subjective evaluations. Chapter 5 considers different approaches to music rec-
ommendation, including content-based, metadata-based, and hybrid methods.
We employ the proposed similarity measures in the context of recommenda-
tion, and study how their simple filtering by genre metadata can improve the
performance. As our baselines, we use the state-of-the-art approaches, working
by means of collaborative filtering and social tags. In addition, we propose our
own approach working with editorial metadata. Chapter 6 studies how audio
content information can be exploited to provide quantitative insights on the
factors of music preferences from both acoustical and semantic perspectives.
In Chapter 7 we demonstrate an approach to music preference visualization
which takes advantage of the proposed semantic user model. Finally, Chap-
ter 8 discusses open issues and concludes this thesis.






Literature Review

2.1 Introduction

Recommender systems are active information filtering systems that attempt to
present to the user information items (film, television, music, books, news, web
pages) the user is interested in. In particular, they seek to predict the “rating”
or “preference” that user would give to an item they had not yet considered.
The term “preference” can be interpreted as an evaluative judgment in the
sense of liking or disliking an object (Scherer, 2005) which is the most typical
definition employed in psychology.

Music recommender systems are specifically focused on music items, and
their main task is to propose to the user interesting music to discover, includ-
ing unknown artists or particular tracks, based on the user’s musical prefer-
ences (Celma, 2008). Different research disciplines are to be followed in order
to create effective approaches to music recommendation. In particular, it is
important to develop a solid understanding of the factors that influence mu-
sic preferences. This is a complex problem, which can be be considered from
the points of view of music perception, psychology, and sociology. Practical
applications, such as music recommendation and automatic preference infer-
ence, will furthermore require knowledge from the fields of signal processing,
information retrieval and machine learning. In general, we are absolutely sure
of the necessity of an interdisciplinary approach to these problems. In this
section we will review the existing studies on the foundations of music prefer-
ences, and approaches to user modeling for music recommendation. We will
also recapitulate the existing approaches to the problem of measuring music
similarity, using metadata and audio content, as these methods can serve as
the basis for music recommendation. As well, we will highlight methodological
problems of evaluation, currently faced by the researchers in the field of music
recommendation.
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2.2 Foundations of music preferences

Music is a highly rewarding stimulus for a typical listener (Menon & Levitin,
2005). A variety of studies have been conducted during the last three decades
in attempt to develop theoretical models able to explain music preferences or
at least provide insights on their driving factors. These studies highlighted a
number of auditory, perceptual, psychological, and sociological factors influ-
encing music choices by individuals.

2.2.1 Theoretical models

Leblanc (1982) developed the first integral model of music preferences in his
“interactive theory of music preference”. The structure of his multi-level model
is presented in Figure 2.1. The lowest level includes physical properties and
complexity of music stimulus, referential meaning of the stimulus, the quality
of music performance, type of media that presents the music, social ties, and
influence of authoritative figures. These factors, responsible both for musi-
cal environment and cultural environment, are interacting between themselves
being the input information for the listener. Current context of the listener,
including physiological condition, attention focus and affective state, will con-
dition whether the listener will actually listen to the music or not. If the context
conditions are fulfilled, the musical input is then “filtered” by the characteristics
of the listener such as auditory sensitivity, musical ability and training, person-
ality, sex, ethnic group and socio-economic status, maturation, and memory.
All of these factors are processed in the listener’s brain and contribute to a
preference decision together with the fact of previous exposure (i.e., familiarity
of the listener with the music). Remarkably, this model suggests interactions
and relations between factors that can be investigated empirically, although
the interaction pattern is too complicated to isolate influence of specific fac-
tors. Furthermore, the model does not address the reasons why people listen
to music nor describes their selection process when confronted with a large
amount of music pieces. These reasons impede a practical application of the
model for music recommender systems.

Another model, presented in Figure 2.2, was proposed by Hargreaves et al.
(2005). Its focus is not exactly on music preference, but on different kinds of
responses that can be provoked in the listener due to interaction with the music
qualities, the listener’s characteristics and listening context. The responses to
music can affect variables in the listener, the influence of listening context,
and the perception of music over time. Music preference appears as a part of
the effective response. The interaction between different variables and causal
relations between them are poorly formulated in this model, which also makes
it of lower value for practical application, apart from providing a general idea
on the determinants of response to a specific musical stimulus at a given point
in time.
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Figure 2.1: Interactive theory of music preference (Leblanc, 1982).

In addition to these two proposed theoretical models, a number of research
works focus on studying particular factors of music preference. A comprehen-
sive literature overview is provided in the dissertation by Schéfer (2008). In
the following subsections we highlight the key factors suggested by existing
research, which can be divided into four groups following Schiifer’s work: the
music, the listener, the context, and the use of music. For additional infor-
mation, we refer interested reader to a number of literature reviews on the
topic (McDermott, 2012; Uitdenbogerd & van Schyndel, 2002).

2.2.2 Facets of music preference
Factors related with the music.

Specific characteristics of music, such as loudness, tempo, pitch, timbre, har-
monicity, melody, and complexity level are evidenced to be of fundamental im-
portance for listeners in a number of statistical studies (Finnés, 1989; McDer-
mott, 2012; North & Hargreaves, 2008; Teo, 2003). Higher preference generally
tends to be related with fast tempos and distinct rhythm, coherent melodies,
absence of pronounced dissonances, and a moderate degree of complexity.'

! According to the studies working with Western listeners. These preferences may vary
between different populations according to social and culturally-conditioned habits.
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Figure 2.2: The reciprocal feedback model of musical response (Hargreaves et al.,
2005).

Fast and lively tempo was found to be preferred by subjects across a wide
range of ages when listening to a range of musical styles including classical,
jazz, pop and folk (Teo, 2003). Preference of tempo has been found to interact
with other variables such as the ability to discriminate tempo, affective associ-
ation of tempo, music styles, sub-division of beats and performance medium.
In addition, music with well-defined rhythm and clear regular meter, with an
unchanging pulse easy to detect, was found to be preferred to those with un-
marked and irregular rhythm. Music with moderate rhythm complexity was
preferred to the one perceived as too simple or too complex.

Regarding pitch, the studies revealed that preference of pitch correlates
significantly with the ability to discriminate it. Intensity of pitch was found to
be an important correlating factor. Timbre characterizes particular instrument
sounds, which matter greatly to music listeners. Till now, there are no scientific
conclusion about why people prefer particular instrument sounds, but it is
likely that such a preference varies across genre and culture, and that individual
differences are substantial (McDermott, 2012). Studies revealed preference for
instrumental over vocal timbre, especially in the case of preference for the
classical music or non-western traditional music, with an exception of pop
music, for which, oppositely, listeners indicated higher preference for vocal
timbre.

In respect to musical harmony, a clear preference of consonant chords over
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dissonant ones is found, at least, for western listeners (McDermott, 2012) in-
dependently of the instrument used. An underlying perceptual explanation
is that harmonic frequencies are supposed to be preferred over inharmonic
ones due to their resemblance to single tones and a lower amount of beating
phenomena, preponderant for the dissonant chords. Subjects on average pre-
fer harmonic over inharmonic spectra and stimuli without beating over those
with beats. The observed higher preference for consonance can be explained
by long-term exposure to music of that kind, and is culture-dependent. An-
alyzing melodic redundancy (frequency at which the notes in a melody are
repeated), its low and intermediate levels together with moderate amount of
different pitches (pentatonic or diatonic) present in the stimuli are correlated
with higher preference, while high level of redundancy and high number of
pitches were correlated to lower preference of music piece (Teo, 2003).

Apart from purely auditory/perceptual factors, music can invoke referen-
tial meaning (McDermott, 2012). For example, melody, harmony, rhythm
and mode are usually associated with certain ideas and emotional content by
listener (Koelsch et al., 2004), and these associations can further affect appre-
ciation of aesthetic value of music (Finnés, 1989). It is believed that emotion
content of music is one of the main reasons why people listen to it, and that
typically listeners identify the emotion that a piece of music was intended
to convey. Moreover, there is a tendency in preference of music that induce
emotions over those that do not. Both emotional content of the music and
emotional reaction of the listener affect music preferences. Listeners report
using music for mood regulation with the goal of altering current emotional
state or, oppositely, enhancing it.

Complexity is another important factor of music preference. The idea be-
hind is that musical stimuli, that are too simple or too complex for a listener,
might not be aesthetically pleasing, while a moderate amount of complexity can
provide greater appreciation? (McDermott, 2012; North & Hargreaves, 1995).
More generally, the dependence of preference of musical stimuli from its com-
plexity follows the inverted U-shape (Berlyne, 1974). Research studies measure
complexity in terms of the number of chords, degree of syncopation, tempo-
ral correlation of melodic sequences, and human ratings. Naturally, the effect
of complexity on preferences interacts with the musical training/expertise of
a listener. Studies suggest that the people with a higher degree of musical
ability tend to prefer more complex music. A level of familiarity with music
also influences appreciation: preference of somewhat complicated music can
be increased by repeated listening. Other evidence indicates that expertise
reduces the influence of complexity on preference decisions in return for more
importance of other aesthetic factors.

Rentfrow et al. (2011) decompose music preferences into 5 latent dimensions

2More generally, it is widely discussed in experimental aesthetics that the aesthetic re-
sponse is related to complexity.
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based on listeners’ affective reactions to excerpts of music from a wide variety
of genres: (1) Mellow (smooth and relaxing styles); (2) Unpretentious (sincere
and rootsy music such as is often found in country and singer—songwriter gen-
res); (3) Sophisticated (classical, operatic, world, and jazz); (4) Intense (loud,
forceful, and energetic music); and (5) Contemporary (rhythmic and percussive
music, such as is found in rap, funk, and acid jazz). Both acoustical (dense,
distorted, electric, fast, instrumental, loud, and percussive) and psychologi-
cally oriented attributes (aggressive, complex, inspiring, intelligent, relaxing,
romantic, and sad) contribute to these dimensions.

Finally, the already mentioned familiarity, or prior exposure to music, has
a large influence on preference (Finnés, 1989; McDermott, 2012; North & Har-
greaves, 2008). Typically, a listener is inclined to like music heard before, and
to dislike unknown one. In particular, familiarity can explain cultural differ-
ences in music preferences in the sense that a listener usually prefers the music
from the culture he/she comes from. Still, particular tracks within the familiar
culture and genre can be disliked by a listener upon first listen as well, but
further appreciated with repeated listens. In general, across genres, familiar
music pieces are liked more than unfamiliar ones, but repeated listening also
increases liking of similar unfamiliar music.

Factors related to the listener

The listener’s age seems to have high impact on music preferences, as the
importance of music in life supposedly increases until adolescence and then
decreases slowly over life-span. Holbrook & Schindler (1989) provides analysis
of this correlation and shows that people tend to prefer music that they were
exposed at their critical life period, culminating at the age around 23.5. Other
studies suggest similar critical period between 20 and 25 years old. This effect
might be explained by certain experiences in the individual’s development, such
as coping with problems, social activities, identifying with artists, that were
formative for music preference. Furthermore, age is found to have a negative
effect on music consumption (Chamorro-Premuzic et al., 2010).

Numerous studies have shown the existence of correlation between listener’s
personality and music preferences, although attempts of their systematization
reveal some inconsistencies (Dunn et al., 2011). In general, standard person-
ality trait assessments were found to correlate with self-reports on preferred
music (Chamorro-Premuzic et al., 2010; Glasgow et al., 1985; Kemp, 1996;
Pearson & Dollinger, 2004; Rentfrow & Gosling, 2003; Zweigenhaft, 2008), ex-
plicitly given by listeners, and with implicitly gathered statistics of listening
behavior over time (Dunn et al., 2011). Therefore, we can think about mu-
sic preferences as a reflection of the listener’s personality, at least, in certain
aspects.

A fundamental study on this topic, including large-scale experiments, was
done by Rentfrow & Gosling (2003). Their model relates four music dimen-
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sions to personality traits. Music preferences of 3500 participants were mea-
sured by means of the proposed Short Test of Musical Preferences. In this
test participants were asked to rate their preference toward 14 genres. The
obtained ratings were mapped to a revealed 4-dimensional preference space
that included Reflective and Complex (e.g., classical), Intense and Rebellious
(e.g., rock), Upbeat and Conventional (e.g., pop), and Energetic and Rhythmic
(e.g., rap) dimensions. Thereafter, personality dimensions (such as Openness),
self-views (such as political orientation, lifestyle), and cognitive abilities (such
as verbal IQ) were matched to these music dimensions. Specifically, personal-
ity dimensions were inferred from a number of psychological tests, including
the so-called Big Five Inventory (Gosling et al., 2003). Experimental results
showed that the Reflective and Complex dimension was positively related to
Openness to New Experiences, self-perceived intelligence, verbal ability, and
political liberalism and negatively related to social dominance orientation and
athleticism. In turn, the Intense and Rebellious dimension was positively re-
lated to Openness to New Experiences, athleticism, self-perceived intelligence,
and verbal ability. The Energetic and Rhythmic dimension was positively re-
lated to Extraversion, Agreeableness, blirtatiousness, liberalism, self-perceived
attractiveness, and athleticism and negatively related to social dominance ori-
entation and conservatism.

Furthermore, lifestyle information can be associated with music preferences.
North & Hargreaves (2007a,b,c) conducted an extensive study assessing the
correlation between musical preferences and lifestyle aspects on 2532 partici-
pants. To this end, participants provided information about their interpersonal
relationships, living arrangements, moral and political beliefs, criminal behav-
ior, media preferences, leisure interests, music usage, travel, personal finances,
education, employment, health, drinking, and smoking. It is concluded that
music preferences of participants provided a meaningful way of distinguish-
ing different lifestyle choices. The authors observed a very broad dichotomy
of music, media, and literature preferences and leisure interests, broadly di-
viding stimuli into intellectually promising (which are referred as “high-art”)
and intellectually undemanding (referred as “low-art”). The fans of “high-art”
(such as classical music, opera) and “low-art” musical styles demonstrated a
preference for other “high-art” and “low-art” media and literature preferences,
and leisure interests, respectively. Concerning social conditions, “high-art”
music was found to be associated with upper-middle/upper class, while “low-
art” music was associated with lower-middle/lower class. Furthermore, liberal-
conservative dichotomy was found. Unfortunately, we believe such a dichotomy
of preferences and social extraction to be oversimplified, while more complex
approaches for the analysis of correlation between lifestyle and music prefer-
ences are necessary. For additional information, we refer interested reader to
Perkins (2008) and Schéfer (2008), who provided extensive reviews of existing
research studies on the correlation between music preferences, identity, and
lifestyle.
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Finally, it is important to stress the role of musical training, which we al-
ready mentioned in the context of music complexity. Considering how individ-
uals listen to music, Kemp (1996) highlights “objective-analytic” and “affective”
listening strategies. The former includes objective or technical reactions and
is followed by musically experienced listeners. The latter corresponds to more
emotional, and generally more musically naive, appreciation. These different
strategies correlate with preference, which can be demonstrated by the fact
that music experts and novices respond to different aspects of musical pieces,
not just the same aspects at different levels of complexity.

Factors related to the listener’s context

It is sometimes argued that music listening is a social activity, and, therefore,
music preference can be seen as a social phenomenon (Lonsdale & North, 2011;
North & Hargreaves, 2008). Existing research support the relation of social
ties to music preference and an intended use of music for social expression
of an individual (Finnés, 1989; MacDonald et al., 2002; North & Hargreaves,
1999; Rentfrow & Gosling, 2006). This research suggest that individuals might
see music preferences as important indicators of personality traits. Moreover,
individuals use music preferences as their badges of identity helping to commu-
nicate their personality to others, and to associate themselves better with the
desired social groups, especially in the case of adolescents (North & Hargreaves,
1999; Rentfrow & Gosling, 2003). In particular, in order to get an impression
on the personality of another person, adolescents tend to talk about their music
preferences more than on other topics (Rentfrow & Gosling, 2006).

Interestingly, personal choices of music are strongly influenced by opinions
of other people (McDermott, 2012). For example, in the context of online
music distribution systems, it was shown that users’ ratings on tracks are
highly dependent on the judgment of other users, even though the users are
not familiar with each other. The conformity in the development of music
preference can be explained by compliance. The reasoning behind is that
people intend to belong to certain social groups, which share similar values,
opinions, or activities. To be a member of such a group (e.g., a group of
friends), individual can adapt his/her music preferences to the ones expressed
by its members. Another possible explanation is related to “informational
influence” (or “prestige effect”) highlighted by North & Hargreaves (1999). This
effect implies that people tend to form their own preference to unfamiliar music
based upon judgments of others or contextual information about music (such
as a description of the composer).

Besides the context of social groups, at a more broad scope, music pref-
erences of the individual can be dependent from his/her cultural environ-
ment (MacDonald et al., 2002; McDermott, 2012; Schéfer, 2008). The cultural
background and ethnicity of the listener may influence the perception of aes-
thetic quality of genres, styles, or particular music pieces. Finally, apart from



2.2. FOUNDATIONS OF MUSIC PREFERENCES 17

long-term context, concrete listening situation, including factors such as ongo-
ing activities, presence or absence of people, or location, has a great impact on
music appreciation (Schéfer, 2008).

Factors related to the use of music

Humans also practice different uses of music to serve their needs, such as the
ones related to cognitive, emotional, socio-cultural, and physiological func-
tions (Schéfer, 2008; Schifer & Sedlmeier, 2009). Music functions referring to
social communication and self-reflection are found to be substantial. Music
can be used by the individual to improve or modify social ties, e.g., get in
contact with other people. Moreover, there is a strong evidence that music
can be used for the individual’s own mood altering or enhancement (Schéfer,
2008; Ter Bogt et al., 2010), or self-socialization, especially among adolescents,
when the individual searches for reflection and possible alleviation of his/her
life problems in music (Schwartz & Fouts, 2003). Rentfrow & Gosling (2003)
speculates that understanding the functions of music, the individual benefit
of listening to music, may be the key for understanding listening behavior of
the individual. However, current experimental research is still away from def-
inite conclusions on the role of the use of music, suggesting that preferences
are much more complex (Schifer & Sedlmeier, 2009), and that the short-term
context of the listener should be given a high attention.

Interestingly, a recent study by Chamorro-Premuzic et al. (2010) concluded
that in order to predict music consumption it is more relevant to focus on the
reasons why individuals use music rather than individual difference factors in
personality or demographics. The authors devised the Uses of Music Inven-
tory in order to assess three distinct motives for using music: emotional use
(mood inducing in listener), cognitive use (enjoyment from analysis of music in
an intellectual or rational manner), and background use (enjoyment of music
while being involved in other activity, such as working, studying or socializing).
Results showed significant positive effects of all music uses factors onto music
consumption. A similar study by Ter Bogt et al. (2010) suggested a Typology
of Music Listeners based on level of involvement with music and four types
of uses of music: mood enhancement, coping with problems, defining personal
identity, and marking social identity. The emotional use of music was found to
be the most popular among listeners with any degree of musical involvement.

2.2.3 Computational approaches

As we have seen, a large number of possible factors is suggested by research
on the nature of music preferences. The conclusions, however, are not un-
ambiguous, due to differences in sampled population, considered variables,
and methodology of their measurement and consequent analysis. Further sys-
tematization efforts and large-scale experiments will be necessary from the
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researchers in the fields of music perception and music psychology in order to
advance in understanding music preferences.

From the engineering point of view, natural questions may arise of how
important all these factors are and how they can be better specified, measured,
and integrated into music information systems. The design of such systems is
conditioned by a compromise between what should be done from the theoretic
point of view and what can be technically achieved. Reviewing the above-
mentioned factors, some of them appear to be more technically difficult to
exploit than others although they might be of more fundamental relevance.

The majority of factors related to the music can be addressed by compu-
tational musicology and music information retrieval disciplines. There exist
algorithms for measuring objective acoustic properties of music, including the
ones we highlighted as suggested by research on music perception (i.e., loud-
ness, tempo, pitch, timbre, harmony, melody, and complexity). These algo-
rithms allow to approximate different acoustical and musical properties, and
they might provide a music preference model under the assumption that a lis-
tener is primally driven by acoustic properties of music. Still, they are yet far
away from a fully automatic description of all melodic, rhythmic or harmonic
characteristics, comparable to a description which an experienced listener, or
a musicologist, can provide.

Factors related to semantic referential meaning evoked in a listener by
music are much more complex and harder to assess. While it is important
to address subjective referential meaning, the current state of the art solely
addresses a much more simpler problem of automatic assessment of generic
semantic concepts that can be associated with music, i.e., concepts of genres,
styles, instrumentation, emotional content, and cultural context, which have
a common sense within a certain large population of listeners. This itself
constitutes a challenge as the existing approaches are yet far from being perfect.
Researchers strive to employ both audio content analysis and web-mining for
cultural metadata associated with music to assess such a common referential
meaning (Bertin-Mahieux et al., 2010; Sordo, 2012).

Focusing on emotion, there is evidence of commonality in emotional re-
sponse to music on the basic level (arousal/valence), and the existing ap-
proaches achieved success in predicting common generic mood categories di-
rectly from audio (Laurier, 2011; Yang & Chen, 2012). However, recognition
of more detailed emotional categories is still a complicated task, specifically,
due to their intrinsic subjectivity. Furthermore, there are types of referen-
tial meaning, which may be related to the individual’s personal experiences,
including past events, situations, and communication with other persons. In
this case, applying computational approaches to measure such factors can be
very problematic, if not unfeasible.

Factors related to the listener can be obtained via the human-computer
interaction. Listener’s musical abilities and listening experience, which in par-
ticular interact with factors of music complexity and familiarity, can be tech-
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nically measured by explicit surveying or implicit monitoring of user behavior.
Demographic factors are generally suggested by research on recommender sys-
tems, and can be used for music recommenders (Celma, 2010). For example, a
common technique in marketing is to apply data mining approaches over large
datasets of demographic data and cluster customers according to their pat-
terns. In particular, listener’s age can be integrated into music recommender
systems following this principle. Personality traits are more difficult to inte-
grate, as this would require passing psychological tests by the users of a system,
which arouses privacy issues, meanwhile demographic data can be gathered,
at least partially, in a more unobtrusive way by monitoring the users’ online
identities in information services and social networks. The social context of
the listener can be retrieved in a similar way, and peer groups can be identi-
fied from the graph of relations in social networks. However, we may expect
a higher noisiness of the data when mined from online identities rather than
provided explicitly by the listener.

Addressing factors related to current listening situation and the uses of mu-
sic seems even more complicated. While it is possible to monitor unobtrusively
current location, time, and weather conditions (Baltrunas & Amatriain, 2009;
Baur & Butz, 2009; Herrera et al., 2010; Kim et al., 2008a; Lee & Lee, 2008;
Stober & Niirnberger, 2009), it is much more difficult to understand current
activity and emotional state of the listener, and his/her uses of music, which
will require explicit feedback of the user.

To conclude, it is currently problematic to measure a large part of the
above-mentioned factors, specifically, user-related. Measuring these factors
may require large user effort and is technically very complicated. In order to
minimize user effort, unobtrusive implicit monitoring strategies are required,
however they are expected to produce noisy data. Therefore, it is reason-
able to focus on the factors related to the music itself as the ones that can
be measured more easily. Developing computational approaches to automatic
preference inference and music recommendation by means of music audio con-
tent and associated referential meanings is very challenging, especially if one is
interested in using generic semantic concepts only. This problem has not yet
received enough attention among researchers, and addressing it can contribute
to both fundamental understanding of music preferences and to a technical
improvement of recommender systems.

2.3 User modeling and music recommendation

2.3.1 Approaches to music recommendation

There exist a considerable amount of works which address, directly or indi-
rectly, the problem of recommending music content, a relatively new trend
of research within MIR community. First and foremost, the existing studies
related to this problem can be divided in two categories: the ones which ad-
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dress music recommendation and the ones which address music similarity. The
former studies require understanding of the listener’s preferences and have to
operate with the measurements of user satisfaction with the provided recom-
mendations as an evaluation criteria. The goal of the latter ones is not neces-
sarily to provide quality recommendations, but to assess the aspects that can
connect or relate two musical excerpts, which may have different applications
apart from recommendation. As one may expect, the concept of music similar-
ity is often employed as a basic tool to produce recommendations (Celma, 2008)
following the idea that one might like the tracks similar in some aspects to the
tracks he/she liked before. Development of more accurate similarity measures
can presumably benefit the quality of music recommendations. However, the
terms “similarity” and “recommendation” cannot be substituted, and a good
performance of similarity measures does not necessarily equate to good recom-
mendations (McNee et al., 2006). For this reason, we believe that the advances
in measuring music similarity should be supported with proper evaluations in
the context of recommendation, which is not always the case. In this section,
we proceed by presenting research studies focused and evaluated in the context
of music recommendation. A brief summary of related studies is presented in
Figure 2.3. We also highlight approaches to music similarity working with
metadata and review audio content-based similarity measures.

Preference elicitation strategies

The majority of studies on music recommendation present approaches which
are grounded on certain former knowledge about the listener’s preferences and
predict preference for music items within a target music collection (e.g., music
tracks or artists). In the extreme case, the only knowledge about music prefer-
ences can be a single music item explicitly given by the listener (the henceforth
called as the query-by-ezample use-case) (Barrington et al., 2009; Cano et al.,
2005; Green et al., 2009; Magno & Sable, 2008; Pampalk et al., 2005b). We
can divide the existing studies with respect to explicit and implicit sources of
knowledge about the listener’s preferences (Hanani et al., 2001), that is, ex-
plicit and implicit preference elicitation strategies. Explicit information can be
obtained by directly querying the user, meanwhile implicit information can be
obtained from the usage of the system by the user, measuring the interaction
with different items. Conceptually the difference in both types of feedback is
that a numerical value of explicit feedback indicates preference, whereas the
numerical value of implicit feedback indicates confidence in that the observed
user interaction with an item can be associated with a higher preference of that
item (Hu et al., 2008). Figure 2.4 summarizes a number of possible strategies
by information sources. These strategies vary in amount of user effort and the
granularity of captured information.

Explicit sources typically include:
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Figure 2.3: Studies on music recommendation. Triangles mark the approaches which
use low-level features indirectly as a source for high-level inference. Questions mark
the publications with missing details (e.g., employing black-box approaches).
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Figure 2.4: Diagram of music preference elicitation strategies.

e artist ratings (Pazzani & Billsus, 1997; Reed & Lee, 2011; Shardanand
& Maes, 1995),

e album ratings (Su et al., 2010a,b),

e track ratings (Grimaldi & Cunningham, 2004; Hoashi et al., 2003, 2006;
Li et al., 2005, 2007; Lu & Tseng, 2009; Park et al., 2006; Yoshii, 2008;
Yoshii et al., 2006, 2008),

e examples of liked/disliked tracks (Jawaheer et al., 2010; Logan, 2004;
Moh & Buhmann, 2008; Moh et al., 2008; Song et al., 2009),

e examples of liked/disliked artists and genres (Ferrer & Eerola, 2011),

e user-specified keywords of interest (Celma et al., 2005; Celma & Serra,
2008; Maillet et al., 2009).
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In turn, consumption statistics and listening behavior (e.g., track/artist
playcounts with associated timestamps and skipping behavior gathered via a
music player plugin) are usually used as an implicit source of information about
music preferences (Baltrunas & Amatriain, 2009; Barrington et al., 2009; Bu
et al., 2010; Celma & Herrera, 2008; Celma & Serra, 2008; Firan et al., 2007;
Hu & Ogihara, 2011; Jawaheer et al., 2010; Kim et al., 2008a, 2006, 2008b; Lee
& Lee, 2008; Pampalk et al., 2005b; Tiemann & Pauws, 2007; Zheleva et al.,
2010; Gataltepe & Altinel, 2007, 2009).

From a common sense, implicit information is inherently noisy (Hu et al.,
2008). For example, listening statistics based on playcounts for artists or tracks
might not represent real preferences since they ignore the difference between
track durations or users’ activities when listening to the music (Jawaheer et al.,
2010). Furthermore, low artist /track playcounts do not necessarily mean actual
dislike of music, i.e., such information does not bring negative feedback. In
contrast, explicit feedback is expected to be more reliable. However there was
found that rating behavior can be inconsistent when rates are repeatedly asked
for after some time lapses (Amatriain et al., 2009; Celma, 2010), at least for a
group of users. Furthermore, ratings can be biased by the precision of a rating
scale and by decisions on the design of the recommender interface (Cosley et al.,
2003). D’Elia & Piccolo (2005) revealed two group of raters: thoughtful and
instinctive, with the latter being possibly biased by the current context and
therefore less consistent in their rating approach. The main problem of explicit
strategies, however, is in the scarcity of data as users are not necessarily eager
to provide ratings.

We might expect both types of feedback to be correlated to some extent.
A study by Parra & Amatriain (2011) found such a correlation between user
ratings and listening statistics. However, prediction of preference ratings from
implicit data by linear regression resulted in less than 14% of explained vari-
ance. This user-based study employed 114 participants, who had accounts on
Last.fm, comparing their listening behavior with 10122 album ratings gath-
ered in an explicit survey. Another study be Jawaheer et al. (2010) compared
explicit feedback (artist love/ban tags on Last.fm) to listening behavior and
found no difference in the performance recommendation approaches, however
the results were considered as inconclusive due to the size of the dataset. The
dataset included 527 Last.fm users with associated 2167 artists and 8242 love
tags. Baltrunas & Amatriain (2009) and Celma (2010) propose recoding lis-
tening behavior into preference ratings for music recommendation.

The choice of the strategy is often reasoned by the type of user data avail-
able to academic researchers, who often prefer working with existing datasets
rather than employing real subjects for evaluation due to economic and time
cost, not to mention methodological issues. As these data are typically limited
being difficult to gather, researchers often have no opportunity to compare
benefits of different strategies. To the best of our knowledge, the question
of how a proper elicitation strategy can increase user satisfaction with music



24 CHAPTER 2. LITERATURE REVIEW

recommenders remains unexplored being yet out of focus in academic studies.

Information sources

The choice of available information about music is crucial in the design of any
music retrieval system. We can divide research studies into three groups: ap-
proaches working with information extracted from metadata associated with
music, approaches employing audio content and, finally, their hybrid combina-
tions. Possible metadata sources include:

e manual expert annotations, e.g.,

— editorial metadata, such as artist-track-album relations (Bu et al.,
2010; Song et al., 2009) or artist relations (Celma & Serra, 2008),

— genre (Magno & Sable, 2008; Park et al., 2006; Song et al., 2009;
Tiemann & Pauws, 2007; Zheleva et al., 2010; Cataltepe & Altinel,
2007, 2009),

— tempo, mood, and instrumentation (Lu & Tseng, 2009; Magno &
Sable, 2008; Park et al., 2006; Song et al., 2009; Tiemann & Pauws,
2007);

e annotations automatically mined from the Internet, e.g.,

— social tags (Magno & Sable, 2008),

— keywords extracted from web-pages (Green et al., 2009; Pazzani &
Billsus, 1997), and RSS feeds (Celma et al., 2005);

e collaborative filtering data generated by users, e.g.,

— artist/track rating datasets (Jawaheer et al., 2010; Li et al., 2005,
2007; Shardanand & Maes, 1995; Su et al., 2010a; Yoshii, 2008;
Yoshii et al., 2006, 2008),

— listening behavior information, such as artist and track playcounts (Bal-
trunas & Amatriain, 2009; Barrington et al., 2009; Bu et al., 2010;
Celma & Herrera, 2008; Ferrer & Eerola, 2011; Firan et al., 2007;
Green et al., 2009; Jawaheer et al., 2010; Kim et al., 2008a, 2006;
Lee & Lee, 2008; Magno & Sable, 2008; Tiemann & Pauws, 2007;
Zheleva et al., 2010).

Among different types of metadata, collaborative filtering data is prob-
ably the most established as it can be successfully applied to virtually any
domain of recommendation (e.g., video, image, text, or goods apart from mu-
sic items). Similarly to recommender systems in other fields (Sarwar et al.,
2001), collaborative filtering approaches can be applied for music recommen-
dation. Shardanand & Maes (1995) proposes such an approach in their study,
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which may be considered as the earliest, to the best of our knowledge, study
on automatic music recommendation. In addition, other types of metadata
(expert annotations, social tags) are also very popular among researchers and
industry. Although they might not be as efficient as collaborative filtering data
according to some studies (Green et al., 2009), they can be used to extend or
replace it. In general, using metadata can be an effective way to build music
recommender systems when working with popular music items. However, there
might be not enough of such data when the target music collection contains
long-tail items which lack user ratings or listening behavior information, an-
notations by experts, or social tags, due to their unpopularity. Furthermore,
new items introduced to the target collection will suffer from the cold-start
problem, i.e., they will lack metadata until it is finally gathered from experts
or built by users. Approaches working with information extracted from audio
content challenge to solve this problem.

We highlight four types of content information which can be used by rec-
ommendation approaches:

e timbral information (Barrington et al., 2009; Cano et al., 2005; Celma &
Herrera, 2008; Celma et al., 2005; Hoashi et al., 2003, 2006; Kim et al.,
2008b; Li et al., 2005, 2007; Logan, 2004; Lu & Tseng, 2009; Magno &
Sable, 2008; Maillet et al., 2009; Moh & Buhmann, 2008; Moh et al., 2008;
Pampalk et al., 2005b; Reed & Lee, 2011; Su et al., 2010a,b; Tiemann &
Pauws, 2007; Yoshii, 2008; Yoshii et al., 2006, 2008; Cataltepe & Altinel,
2007, 2009);

e temporal information, characterizing temporal evolution of loudness and
timbral characteristics, dynamics, rhythmic properties, and musical struc-
ture (Cano et al., 2005; Celma & Herrera, 2008; Grimaldi & Cunningham,
2004; Li et al., 2005, 2007; Lu & Tseng, 2009; Maillet et al., 2009; Pam-
palk et al., 2005b; Reed & Lee, 2011; Song et al., 2009; Su et al., 2010a,b;
Tiemann & Pauws, 2007; Yoshii, 2008; Cataltepe & Altinel, 2007, 2009);

e tonal information (Cano et al., 2005; Celma & Herrera, 2008; Grimaldi &
Cunningham, 2004; Li et al., 2005, 2007; Lu & Tseng, 2009; Song et al.,
2009; Cataltepe & Altinel, 2007, 2009);

e inferred semantic information, e.g., automatic genre classification (Cano
et al., 2005), more extensive autotagging by genre, mood, instrumenta-
tion, and other categories using audio content (Barrington et al., 2009;
Maillet et al., 2009), and unsupervised inference of clusters of music sim-
ilar in the audio feature space (Hoashi et al., 2003, 2006; Tiemann &
Pauws, 2007).

We will refer to the first three types as being low-level when compared to
semantic information. The latter can be inferred from low-level information
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relying on annotated ground truth music collections or by means of unsu-
pervised clustering. Low-level timbral, temporal, and tonal information can
provide a solid ground for recommendation algorithms, addressing different
aspects of music, but is rarely used altogether in academic studies till recently
(see Figure 2.3), following the advances of music analysis tools. Instead, a large
number of existing studies are patently incomplete as they are focused solely
on timbre (most frequently, MFCCs, representing spectral envelope) ignoring
other acoustical and musical aspects. In turn, high-level semantic information
is very rarely employed although there is some evidence of its advantage in the
existing research in music similarity (Barrington et al., 2007b; West & Lamere,
2007), and its usage is supported by the importance of referential meaning on
music appreciation (Section 2.2.2).

For further improvement of the quality of recommendations, a number of
studies are focused on hybrid approaches, merging both audio content and
metadata, and report on advantage of such approaches over solely content-
based or metadata-based ones (Su et al., 2010a; Tiemann & Pauws, 2007;
Yoshii, 2008; Yoshii et al., 2006).

In addition to music information, a number of studies stress the impor-
tance of the listener’s context (Section 2.2.2) and propose context-aware music
recommenders (Baltrunas & Amatriain, 2009; Baur & Butz, 2009; Bu et al.,
2010; Herrera et al., 2010; Hu & Ogihara, 2011; Kim et al., 2008a, 2006; Lee
& Lee, 2008; Park et al., 2006; Song et al., 2009; Stober & Niirnberger, 2009;
Su et al., 2010b; Zheleva et al., 2010). They employ information about current
time (hour, morning/evening, day of week, weekend /working day) and weather
(atmospheric conditions, temperature, humidity, month and season), location,
physiological and emotional state of the listener (age, gender, pulse, health
conditions, mood), her/his current activity (situation, event, weekend /working
day) and social interaction (friendship relations, membership to online groups).

Computational approaches

Different computational approaches can be followed to address the problem of
prediction of the listener’s interest in music items and recommendation (see
Section 1.2) given the information about his/her music preferences. In regard
to the algorithms proposed in the literature, we can highlight:

e distance-based ranking, e.g.,

— distance from preferred tracks, or a query-by-example, to the tracks
in a target music collection (Cano et al., 2005; Celma & Herrera,
2008; Celma et al., 2005; Celma & Serra, 2008; Logan, 2004; Magno
& Sable, 2008),

— user-to-user collaborative filtering distances (Bu et al., 2010; Lu &
Tseng, 2009);
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e discriminative models, e.g.,

— classification into liked /disliked music, based on support vector ma-
chines (SVMs) (Moh & Buhmann, 2008; Moh et al., 2008) or k-
nearest neighbor algorithm (kNN) (Grimaldi & Cunningham, 2004),

— ordinal regression for user rating prediction (Reed & Lee, 2011);
e probabilistic generative models, e.g.,
— Gaussian mixture models (GMMs) (Hu & Ogihara, 2011; Li et al.,

2005, 2007; Moh et al., 2008),

Bayesian networks (Park et al., 2006; Pazzani & Billsus, 1997; Yoshii
et al., 2006, 2008),

— hidden Markov models (HMM) (Kim et al., 2008a),
latent Dirichlet allocation (LDA) (Zheleva et al., 2010);

e automated reasoning on ontologies (Song et al., 2009).

As we can see, a large amount of approaches are based on similarity estima-
tion between items in a target collection and a representation of the listener’s
music taste, which can be a set of preferred items or clusters of items. In
particular, timbral distances can be implemented with a basic idea of com-
paring spectral shapes of the tracks, which can be represented as probability
distributions of the frame-wise Mel-frequency cepstrum coefficients (MFCCs):

e a simple Euclidean distance between vectors of means and variances of
MFCCs in each distribution (Tzanetakis & Cook, 2002),

e the Earth Mover’s Distance comparing GMMs of MFCCs, trained with
k-means clustering (Logan & Salomon, 2001),

e distance based on Monte-Carlo sampling comparing GMMs, trained with
the Expectation-Maximization algorithm initialized with k-means clus-
tering (Aucouturier et al., 2005).

Magno & Sable (2008) compared these approaches together with a simple
metadata baseline, searching tracks of the same genre label, in a query-by-
example scenario of music recommendation. The approach based on Monte-
Carlo sampling was found to perform best among the three timbral distances.
Recommendations driven by these approaches hardly surpassed mean rating
of 3 (on a 1-to-5 Likert-type scale) representing only average user satisfaction
(~ 3.03 for the best approach, 13 participants). Interestingly, recommenda-
tions based on commercial metadata-based black-box recommenders (Pandora
and Last.fm) achieved only marginally better results (up to ~ 3.22), that is,
no statistically significant difference was found comparing their performance
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with the best of the content-based approaches. In turn, Logan (2004) con-
sidered distances to a user profile and, specifically, considered average, me-
dian, and minimum distance from tracks in a target music collection to the
preferred tracks. Alternatively, she proposed to compute distance to a sum-
marized MFCC distribution of all preferred tracks (a simplified and noisier
representation of user preferences).

There are studies that implement more acoustic features, other than the
standard MFCCs, expanding towards temporal and tonal dimensions of mu-
sic, and complementing it with metadata. Pampalk et al. (2005b) expanded
timbral similarity between GMMs of MFCCs (Aucouturier et al., 2005) with
temporal information, which included fluctuation patterns and derived “focus”
(distinctiveness of the fluctuations at specific frequencies) and “gravity” (the
overall perceived tempo) descriptors (Pampalk et al., 2005a). The proposed
approach generates playlists starting from a query-by-example and incorporat-
ing skipping behavior feedback during the playback by the listener. Two sets
of liked and disliked tracks are gradually formed, and a distance to them is
used as a criterion for adding new tracks (recommendations) to the playlist.

Celma & Herrera (2008) proposed such an approach based on an Euclidean
distance, which utilizes such an expanded set of features, describing dynain-
ics, tempo, meter, rhythmic patterns, tonal strength, key and mode informa-
tion (Cano et al., 2005). Artist-level recommendations are generated start-
ing from a set of favorite artists, inferred according to the listening behavior
(artist playcounts from Last.fm for 288 users). This approach is compared
to an item-based collaborative filtering distance using listening statistics from
Last.fm, and a hybrid approach combining both measures is proposed. A
large-scale evaluation on real participants was conducted in this study, and it
suggested that collaborative filtering approach scores higher than hybrid and
content-based ones in liking, however producing more familiar recommenda-
tions (28.3% vs 21.7% and 19%). Importantly, this study corroborates that
content-based approaches can be effectively incorporated in order to increase
novelty of recommendations without a devastating decrease in their quality. In
addition, the effect of familiarity with recommendations is shown to correlate
significantly with appreciation, with a more familiar music being rated higher
in liking (which corroborates familiarity factor of preference presented in Sec-
tion 2.2.2). Again average liking ratings were only satisfactory on average
(= 3.39 and =~ 2.87 for collaborative filtering and content-based approaches,
respectively, on a 1-to-5 Likert-type liking scale).

Bu et al. (2010) proposed to compute a hybrid distance from the hyper-
graph, which combines timbral similarities between tracks (the above-mentioned
Earth Mover’s Distance between GMMs of MFCCs), user similarities according
to collaborative filtering of listening behavior from Last.fm, and similarities on
the graph of Last.fm users, groups, tags, tracks, albums, and artists (all possi-
ble interactions crawled from the Last.fm web-pages). Therefore, this approach
employs social interaction between users together with editorial metadata (re-
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lations between artists, albums and tracks). The proposed approach was com-
pared with user-based collaborative filtering, a content-based timbral approach,
and their hybrid combination, on a listening behavior dataset. Again, the per-
formance of a timbral approach fell behind the ones working with metadata,
while incorporation of social information and editorial metadata showed the
best results.

Lu & Tseng (2009) proposed a recommendation approach based on hybrid
combination of three rankings:

e a weighted Manhattan distance over audio features including pitch, tempo,
rhythmic speed (number of pitches per minute), meter density (number
of distinct meters), key, key density (number of distinct keys), and chord
density (number of distinct chords);

e 3 ranking of music according to user-based collaborative filtering over a
dataset of user surveys;

e emotion-based ranking in accordance with manual emotion annotations
by an expert.

Interestingly, this combination is personalized for each particular user, ac-
cording to the initial survey, in which users need to specify preference as-
sessments (likes/dislikes) and the underlying reasons (such as preference by
tonality, rthythm, etc.) for a sample of tracks, and posteriorly by re-weighting
distance components according to user feedback. The scope of this system is
considerably limited: its audio content-based component is based on score anal-
ysis instead of real audio while the emotion-based component requires manual
expert annotations.

Instead of computing similarity between music items and a user profile,
one can train discriminative models which would allow to classify items into
liked and disliked categories, or predict values of user ratings. For example,
Grimaldi & Cunningham (2004) proposed such a classification using the tracks
rated by a user as “good” and “bad” examples. The authors employ kNN and
feature sub-space ensemble classifiers working on a set of temporal (12 tempo
features derived from beat-histograms) and tonal (32 features describing har-
mony) features. The employed classifiers and features were originally suited for
the task of genre classification, and authors found that the proposed approach
fails in the case when user preferences are not driven by certain genres, leading
to a worse classification performance. Moh et al. (2008) propose to classify
music into liked and disliked using several modifications of support vector ma-
chines (SVMs). The peculiarity of their study is in including online learning
in accordance to the user’s feedback. Boosting by an additive expert ensemble
of a number of least squares support vector machines is proposed as one of
the abovementioned SVM modifications. In addition, two generalizations for
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online learning, incremental SVMs and Online Passive-Aggressive algorithm,
are considered (Moh & Buhmann, 2008).

Additionally, ordinal regression can be applied for user rating prediction.
Reed & Lee (2011) propose such a regression to predict ratings, assigned by
the user, from audio content of the tracks, more specifically, from temporal
evolution of the MFCCs within each track. To this end, they propose acoustic
segment modeling, which consists in three stages. The initial stage segments
each training track by a maximum-likelihood procedure. Next, a universal
set of acoustic units, called acoustic segment models (ASMs), are found and
modeled with a hidden Markov model. Finally, latent semantic analysis (LSA)
converts each music track into a vector of weighted ASM counts. Minimum
classification error (MCE) algorithm is used to train the regression model.

A number of studies make use of more complex probabilistic generative
models in order to predict user preferences (i.e., ratings) for music items. For
example, preference can be seen as a distribution over a feature space comprised
of audio features. Moh et al. (2008) trains a full covariance Gaussian model in
such a space of temporal and tonal features (specified above). Alternatively,
more complex models can be built. Li et al. (2005, 2007) propose a probabilistic
model, in which music tracks are classified into groups by means of audio
content and collaborative data (user ratings), and the predictions are made for
users considering Gaussian distribution of user ratings. Authors utilize timbral
features (MFCCs, spectral centroid, spectral rolloff, spectral flux, sum of scale
factor), temporal (relative amplitude of the first and second peak in the beat
histogram, amplitude ratio of the second peak to the first peak, first peak and
second peak BPMs, beat strength), and tonal (the amplitudes and periods of
maximum peaks in the pitch histogram, pitch intervals between the two most
prominent peaks, the overall sums of the histograms) features.

Pazzani & Billsus (1997) present an approach, which uses a naive Bayesian
classifier in order to predict user preference for artists, based on related se-
mantic tags extracted from web pages. Yoshii et al. (2006, 2008) propose a
hybrid probabilistic model incorporating user ratings (collaborative filtering)
and timbral audio information. Each music track is represented as a vector of
weights of timbres (a “bag-of-timbres”), i.e., as a GMM of MFCCs, where each
Gaussian correspond to a single timbre. The Gaussian components are chosen
universally across tracks, being predefined on a certain music collection. Rat-
ings and “bags-of-timbres” are associated with latent variables, conceptually
corresponding to genres, and music preferences of a particular listener can be
represented in terms of proportions of the genres. A three-way aspect model
(a Bayesian network) is proposed for this mapping, with an idea that a user
stochastically chooses a genre according to her/his preference, and then the
genre stochastically “generates” pieces and timbres.

Zheleva et al. (2010) presents a probabilistic graphical model based on la-
tent Dirichlet allocation. The approach employs listening behavior data, seg-
menting it into sessions for each user by means of playback timestamps, and
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captures associated latent “listening moods” common across users. Therefore,
it is possible to detect groups of tracks and groups of listeners from/with sim-
ilar listening sessions. The model assumes that each user is represented as a
distribution over different moods, and for each session, there is a latent mood
which guides the choice of tracks. Park et al. (2006) and Kim et al. (2008a)
propose probabilistic models focused on predicting music preference with re-
spect to the listener’s context and metadata (manual semantic annotations or
listening behavior data). Their approaches are using fuzzy Bayesian networks
and hidden Markov models, taking into account such factors as weather, time,
location, age, gender, and cardiac pulse.

In addition, online learning, or real time adaptivity to the listener’s rele-
vance feedback, is another topic covered in several studies (Hoashi et al., 2003;
Hu & Ogihara, 2011; Lu & Tseng, 2009; Maillet et al., 2009; Moh & Buhmann,
2008; Moh et al., 2008; Pampalk et al., 2005b; Yoshii et al., 2006, 2008).

Metadata-based music similarity

There are many more approaches to music similarity which can serve for mu-
sic recommendation but that have not been yet evaluated properly in this
context to the best of our knowledge. Here we highlight a number of such
approaches working with metadata. Schedl et al. (2011a) provides a compre-
hensive overview of music similarity measures working with data mined from
the web. They include distances based on:

e co-occurrence of music items (tracks or artists) shared by users of peer-
to-peer networks (Koenigstein et al., 2010);

e co-occurrence patterns of music items in expert-built or user-built music
playlists;

e page counts and Web co-occurrences (Schedl & Knees, 2009);

e similarity between vector space models (i.e., vectors of normalized key-
word occurrences) for music artists extracted from

— song lyrics;

— web-pages associated with artists;

Authors create a large-scale music search system, which operates on an index
of term profiles formed by search and retrieval of web-pages related to music
artists (Schedl et al., 2011b). Alternatively, vector space models can be built
using information from collaborative tagging services specifically focused on
music, such as Last.fm (Levy & Sandler, 2008, 2009), where large amount, of
users tag music items. Distance measures can also be built by collaborative
filtering of user ratings (Slaney et al., 2008) or listening behavior (Celma,
2010). However, all types of collaborative data, considered in existing studies,
are costly as they require a large user base.
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Content-based music similarity

Focusing on audio content-based similarity, there exist a wide variety of ap-
proaches for providing a distance measurement between music tracks. These
approaches comprise both the selection of audio descriptors and the choice of
an appropriate distance function. A brief overview of the existing approaches
in terms of employed information is presented in Table 2.1.

Measuring similarity by comparing track spectra is probably one of the
most popular and early approaches. There exist specific timbral representa-
tions, the most prominent one being modeling the tracks as probability distri-
butions of vectors of MFCCs, calculated on a frame basis and characterizing
spectral shapes of the tracks (as we have already discussed in Section 2.3.1).
Tzanetakis & Cook (2002) compares vectors of means and variances of MFCCs
in each distribution by a simple Euclidean distance. Logan & Salomon (2001)
represent MFCC clouds as cluster models by means of k-means clustering and
compare them with the Earth Mover’s Distance. Mandel & Ellis (2005) com-
pare means and covariances of MFCCs applying the Mahalanobis distance.
Furthermore, GMMSs can be used to represent the probability distributions,
and then these models can be compared by the symmetrized Kullback-Leibler
divergence. However, in practice, approximations are required for the case
of several Gaussian components in a mixture. To this end, Aucouturier and
collaborators (2002, 2005) create GMMs with an Expectation-Maximization
algorithm initialized with k-means clustering, and then compare the models
by means of Monte Carlo sampling. In contrast, Mandel & Ellis (2005) and
Flexer et al. (2008) simplify the models to single Gaussian representations, for
which a closed form of the Kullback-Leibler divergence exists. Pampalk (2006)
gives a global overview of these approaches. As well, Jensen et al. (2009)
provide an evaluation of different GMM configurations. Besides MFCCs, more
descriptors can be used for timbral distance measurement. For example, Li
& Ogihara (2006) apply a Euclidean metric on a set of descriptors, includ-
ing MFCCs, spectral centroid, rolloff, flux, Daubechies wavelet coefficient his-
tograms (DWCH), and zero-crossing rate (ZCR).

Temporal (or rhythmic) representation of music is another important as-
pect. A number of works propose specific temporal distances in combination
with timbral ones. For example, Pampalk (2006); Pampalk et al. (2005a) ex-
ploit fluctuation patterns (FP), which describe spectral fluctuations (amplitude
modulations of loudness in individual critical bands) over time, together with
several derivative descriptors, modeling overall tempo (“gravity”) and fluctua-
tion information at specific frequencies (“focus”). They define a hybrid distance
as a linear combination of a Euclidean distance on fluctuation patterns together
with a timbral distance, based on GMMs of MFCCs. Pohle & Schnitzer (2007)
follow this idea, but propose a cosine similarity distance for fluctuation pat-
terns together with a specific distance measure related to cosine similarity for
GMMs of MFCCs. Furthermore, they propose an alternative temporal de-
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scriptor set, including a modification of fluctuation patterns (onset patterns
and onset coefficients), and additional timbral descriptors (spectral contrast
coefficients, harmonicness, and attackness) along with MFCCs for single Gaus-
sian modeling (Pohle & Schnitzer, 2009; Pohle et al., 2009). Song & Zhang
(2008) present a hybrid distance measure, combining a timbral Earth Mover’s
Distance on MFCC cluster models, a timbral Euclidean distance on spectrum
histograms, and a temporal Euclidean distance on fluctuation patterns. Sey-
erlehner et al. (2010) propose a distance working on timbral and temporal fea-
tures computed on a block level (comprised of several frames). They represent
tracks using patterns of the spectral shape, spectral contrast, and correlation
between bands, onset detection information (spectrum magnitude increments
in individual bands for consequent blocks) and modified fluctuation pattern
features. L, metric is then applied separately for different features, and the
resulting distances are combined with a distance space normalization.

There also exist some attempts to exploit tonal representation of tracks.
Ellis & Poliner (2007), Marolt (2008), and Serra et al. (2009) present specific
melodic and tonality distance measurements, not addressed to the task of music
similarity, but to version (cover) identification. In principle, their approaches
are based on matching sequences of pitch class profiles, or chroma feature vec-
tors, representing the pitch class distributions (including the melody) for dif-
ferent tracks. Garcia-Diez et al. (2011) proposes a similarity measure matching
chords progressions by means of comparing their graph representations.

Other approaches operate on a higher level by inferring a vocabulary of pat-
terns of music in an unsupervised manner and representing the tracks via this
vocabulary. For example, Charbuillet et al. (2011a) propose timbral modeling
by using the GMM-supervector approach, which allows to represent complex
statistical models by a Euclidean vector. The main idea it to build a generic
GMM with a very large number of components, called Universal Background
Model (UBM), by using a large dataset of representative music tracks. There-
fore, it is possible to model the overall data distribution, and represent specific
tracks in terms of the components of the UBM by their weight. Distance be-
tween vectors of GMM weights is then used for similarity measurement based
on MFCC and spectral flatness. Similarly, Hoffman et al. (2008) develop a
method for discovering the latent structure in MFCC feature data using the
Hierarchical Dirichlet Process. This model also represents each track as a
mixture of globally defined multivariate Gaussians and the similarity between
tracks is computed by the symmetrized Kullback-Leibler divergence. Levy &
Sandler (2009) represent tracks as the bags of audio “muswords” (i.e., as vector
space models) describing timbral characteristics of the signal. Starting from the
MFCCs, musical events are detected within each track and are consequently
mapped onto a global vocabulary of muswords built on a music collection. The
mapping to a particular musword is done by means of a trained self-organizing
map. Similarity between tracks can be computed by using cosine distance
between the vectors of weights of muswords or between the vectors of latent
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aspect probabilities estimated from the probabilistic latent semantic analysis.
Authors similarly extract rhythmic muswords using temporal autocorrelation
features (AC), which however did not improve the performance.

It is very promising to combine these types of representations. Cano et al.
(2005) demonstrate a straightforward approach using a Euclidean metric af-
ter a principal component analysis (PCA) transformation of an expanded set
of empirically selected features, describing timbre, dynamics, tempo, meter,
rhythmic patterns, tonal strength, key and mode information. As well, one
might want to adapt the measure to be a true metric, and furthermore incor-
porate semantic information into the metric learning process. Slaney et al.
(2008) propose learning a Mahalanobis metric on loudness and temporal fea-
tures. Features describing loudness dynamics over the time segments of the
tracks, overall tempo, beat regularity, tatum durations and their number per
beat, rhythmic time signature and its stability are used. In addition to the
unsupervised metric learning using whitening transformation, the authors con-
sider algorithms to integrate semantic relations between tracks (same artist,
same album, co-occurrences in music blogs) into the low-level metric space.
These algorithms include linear discriminant analysis (LDA), relevant compo-
nent analysis (RCA) (Shental et al., 2002), neighborhood components analy-
sis, and large-margin nearest neighbor classification (Weinberger & Saul, 2009).
Maillet et al. (2009) utilize information about playlist co-occurrences and incor-
porate it into the space of autocorrelation features, MFCCs, track danceability
and loudness, via neural networks. McFee et al. (2012a) recodes MFCCs to a
vocabulary of generic codewords, representing the tracks as the histograms of
words which can be than compared. Furthermore, authors apply metric learn-
ing to optimize the distance by additional collaborative information (listening
behavior from Last.fm).

Though common approaches for content-based music similarity may in-
clude a variety of perceptually relevant descriptors related to different musical
aspects, such descriptors are, in general, relatively low-level and not directly
associated with a semantic explanation (Celma et al., 2006). In contrast, re-
search on computing high-level semantic features from low-level audio descrip-
tors exists. In particular, in the context of MIR classification problems, genre
classification (Sturm, 2012; Tzanetakis & Cook, 2002), mood detection (Huq
et al., 2010; Laurier et al., 2009a,b), and artist identification (Mandel & Ellis,
2005) have gathered much research attention.

We hypothesize that the combination of classification problem outputs can
be a relevant step to overcome the so-called semantic gap (see Section 1.2)
between human judgments and low-level machine learning inferences, specifi-
cally in the case of content-based music similarity. A number of works support
this hypothesis. Berenzweig et al. (2003) propose to infer high-level seman-
tic dimensions, such as genres and “canonical” artists, from low-level timbral
descriptors, such as MFCCs, by means of neural networks. The inference is
done on a frame basis, and the resulting clouds in high-level feature space are
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compared by centroids with a Euclidean distance. Barrington et al. (2007a,
2009, 2007b) train GMMs of MFCCs for a number of semantic concepts, such
as genres, moods, instrumentation, vocals, and rhythm. Thereafter, high-level
descriptors can be obtained by computing the probabilities of each concept
on a frame basis. The resulting semantic clouds of tracks can be represented
by GMMs as well, and compared with a Kullback-Leibler divergence. McFee
& Lanckriet (2009) propose a hybrid low-dimensional feature transformation
embedding musical artists into Kuclidean space subject to a partial order,
based on a set of manually annotated artist similarity triplets, over pairwise
low-level and semantic distances. As such, the authors consider low-level tim-
bral distance, based on MFCCs, tonal distance, based on chroma descriptors,
and the above-mentioned semantic distance (Barrington et al., 2007b). The
evaluation includes the embeddings, which merge timbral and tonal distances,
and, alternatively, timbral and semantic distances. West & Lamere (2007)
apply classifiers to infer semantic features of the tracks. In their experiment,
mel-frequency spectral irregularities (MFSI) are used as an input for a genre
classifier. The output class probabilities form a new high-level feature space,
and are compared with a Euclidean distance. The authors propose to use clas-
sification and regression trees or LDA for classification. Bertin-Mahieux et al.
(2008) propose a content-based method for predicting social tags collected from
the Web. Authors implement 360 tag-specific classifiers using boosting, that
is a combination of the simplest one-feature decision trees, by the ensemble
learning algorithm FilterBoost. Authors make use of MFCCs, spectrogram co-
efficients, and temporal autocorrelation features. Cosine similarity is then used
to compare vectors of autotags. Auto-tagging brings rich semantic capabilities
to the semantic measure. However, the proposed approach blindly includes all
popular tags found on Last.fm regardless of the actual ability to predict them.
This adds significant noise to the similarity measurements.

In spite of having a variety of potential content-based approaches to music
similarity, there exist certain open issues yet. The distances, operating solely
on low-level audio descriptors, lack semantic explanation of similarity on a
level at which human judgments operate. The majority of approaches, both
low-level and high-level, focus mostly on timbral descriptors, whereas other
types of low-level descriptors, such as temporal and tonal, are potentially use-
ful as well. Furthermore, comparative evaluations are necessary, especially
those carried out comprehensively and uniformly on large music collections.
In existing research, there is a lack of such comparative evaluations, taking
into consideration different approaches. Objective evaluation criteria of music
similarity are generally reduced to co-occurrences of genre (Charbuillet et al.,
2011b; Hoffman et al., 2008; Jensen et al., 2007; Levy & Sandler, 2009; Logan
& Salomon, 2001), album (Logan & Salomon, 2001), and artist labels (Levy
& Sandler, 2009; Logan & Salomon, 2001), performance metrics in the kNN
classification tasks (Berenzweig et al., 2003; Pampalk et al., 2005a; Schedl
et al., 2011a; Schnitzer et al., 2011; Slaney et al., 2008), or correlation with
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the ground-truth similarity by collaborative filtering (Bertin-Mahieux et al.,
2008). These criteria are tested on relatively small ground truth collections. In
turn, subjective evaluations with human raters are not common (Barrington
et al., 2009; Berenzweig et al., 2003). In our study we will focus on filling these
open issues and will employ comprehensive music collections, objective criteria
for similarity, and human listeners for subjective evaluations. As the majority
of existing approaches still perform poorly (at the moment of starting our re-
search in 2008, systems’ performance was very unsatisfactory) we hypothesize
that better performance may be achieved by combining conceptually different
distance measurements, which will help to jointly exploit different aspects of
music similarity.

2.3.2 Evaluating automatic recommendation techniques

As we have seen, there is a considerable amount of research works addressing
the problem of music recommendation. Authors of these works are primarily
focused on designing suitable algorithms and features. A great part of research
employs offline evaluations in which recommendation approaches are compared
by means of objective metrics of performance without any user interaction (see
Figure 2.3). Datasets of user ratings or listening behavior are typically used as
they are generally easier to obtain and utilize than to conduct very costly hu-
man evaluations. Therefore, many researchers consider music recommendation
in the context of optimization problem for rating prediction. The choice of the
evaluation strategy is dependent on the dataset at hand, and preference elicita-
tion strategies are not in the direct focus of researchers, being simply forced to
match this data. The users and associated track/artist ratings can be obtained
from online music services (Grimaldi & Cunningham, 2004; Reed & Lee, 2011;
Su et al., 2010a; Yoshii, 2008; Yoshii et al., 2006, 2008). Alternatively, listen-
ing behavior data, including track/artist play-counts, and associated times-
tamps, (Baltrunas & Amatriain, 2009; Tiemann & Pauws, 2007; Zheleva et al.,
2010) can be used. However, this data is very difficult to obtain for aca-
demic researches and the commercial services are not always ready to provide
these data for research purposes. Researchers also create their own datasets to
work with, surveying participants in order to rate music items (Hoashi et al.,
2003, 2006; Li et al., 2005, 2007; Shardanand & Maes, 1995; Su et al., 2010b).
Classification accuracy (Grimaldi & Cunningham, 2004; Reed & Lee, 2011;
Su et al., 2010a), mean absolute error (Li et al., 2007; Reed & Lee, 2011),
or ranking-based measures, such as discounted cumulative gain (Reed & Lee,
2011) or mean average precision (McFee et al., 2012b), are among the typical
performance metrics applied in order to minimize prediction error.

Objective evaluations allow us to collect quantitative insights on the per-
formance of prediction algorithms. However, they do not provide clues on
the perceived quality of recommendations and their actual usefulness for the
listener (Shani & Gunawardana, 2009), and there is some research evidence
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that high recommender accuracy does not always correlate with user satisfac-
tion (McNee et al., 2006). Furthermore, as recommender systems are targeted
towards music discovery, it is fundamental to assess the listener’s familiarity
with the recommended items apart from their relevance. The studies employ-
ing offline objective evaluations a significantly limited because they address
the perceived relevance of recommendations only vaguely meanwhile measur-
ing serendipity, that is the amount of novel and relevant recommendations, is
almost impossible using the objective metrics available to researchers. This
motivates the necessity of subjective evaluations, which would allow to mea-
sure user satisfaction in A/B listening tests. Such a measurement can be done
using Likert-type scales, which are usually suggested as a very efficient way
of collecting self-report data in usability evaluation practice (Tullis & Albert,
2008), but which give way to additional problems such as computing statistics
and inferences from discrete or non-metrical scales.

Current research counts only a few user-centric studies, measuring liking
or satisfaction (Hu & Ogihara, 2011; Kim et al., 2008a, 2006; Lu & Tseng,
2009; Magno & Sable, 2008; Pampalk et al., 2005b; Park et al., 2006; Song
et al., 2009), and only a few include familiarity in consideration (Celma &
Herrera, 2008; Firan et al., 2007). Primarily this is due to high expense of
such studies: collecting a large set of subjects and using them to evaluate a
large enough set of algorithms via associated recommended items is a very
costly procedure in terms of required user effort. Therefore, evaluations are
typically restricted to a small set of subjects and a relatively small set of tested
approaches. Celma & Herrera (2008) provide the largest user-based study till
the present date, being conducted on 288 participants. Each subject provided
liking and familiarity ratings for ~ 19 tracks recommended by three approaches
in a blind evaluation. A large total number of evaluated tracks served as a
solid basis for statistical testing by within-subjects ANOVA. Furthermore, the
authors analyzed novelty of provided recommendations, and compared liking
for the considered approaches taking only novel or familiar recommendations.

The study by Celma & Herrera (2008) may serve as an example of a proper
subjective evaluation methodology, taken on a larger scale. However, the ma-
jority of existing research works are significantly limited: designing evaluation,
one may typically encounter a problem of recruiting a large number of partic-
ipants and has to agree on a trade-off between this number and the number of
evaluated tracks per subject. A brief summarization of user-centered studies
is presented in Table 2.2.

In general, the main problem academic practitioners are faced with in the
field of music recommendation is the lack of data, which is usually propri-
etary. Meanwhile designers of commercial music recommender systems can
implement A/B tests on large amount of their users, this becomes a critical
problem for academic researchers. Therefore, researchers often opt for small-
scale evaluations and create their own datasets, e.g., mining ratings from In-
ternet music services. Yet, there exist few datasets suited for objective offline
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Table 2.2: User-centered evaluations of music recommendation approaches conducted
in academic research. Question marks stand for missing details.

Study Subjects | Feedback type Approaches| Effort
(tracks/subject)

Pampalk et al. (2005b) | ? skipping behavior | 4 ?

Park et al. (2006) 10 satisfaction rating | 2 4

Kim et al. (2008a, 2006) | 50 satisfaction rating | 2 ~ 12

Firan et al. (2007) 18 familiarity  and | 7 70
liking ratings

Celma & Herrera (2008) | 288 familiarity  and | 3 ~ 19
liking ratings

Magno & Sable (2008) 13 satisfaction rating | 8 24

Lu & Tseng (2009) 27 like/dislike rating | 1 50

Song et al. (2009) 30 satisfaction rating | 2 ?

Hu & Ogihara (2011) 11 skipping behavior | 2 < 140

evaluations (Celma, 2008; Dror et al., 2011; McFee et al., 2012b) created in
the collaborating with the industry.>*®> Remarkable examples suited for such a
methodology, and taken on the large-scale level, are the recent KDD-Cup’2011
challenge based on the Yahoo! Music dataset (Dror et al., 2011) and the Million
Song Dataset Challenge (McFee et al., 2012b). Both initiatives finally allowed
access to large-scale datasets of music data and users, but, nevertheless, they
are limited, being decoupled from the actual audio content.®

Furthermore, it is problematic to systematize the existing approaches, as
the considered baselines, employed music collections, performance metrics, and
even rating scales, differ significantly from study to study. The majority of
reported subjective evaluations lack statistical data about their participants
(e.g., surveying for demographic data, interest in music, qualitative and quan-
titative clues on music preferences) and/or the information about employed
music collections (e.g., number of tracks and genre distribution). In addition,
some research works lack a proper statistical testing of hypothesis. Further-
more, we believe that it might be advisable to extend the amount of ratings
per track in the poll, as there is research evidence of the noisiness of single user
ratings (Amatriain et al., 2009). Using several ratings addressing different as-
pects of preference instead of a single liking or satisfaction rating would allow
to assess consistency of preference decisions and reduce such a noise.

3http://ocelma.net/MusicRecommendationDataset/index.html

*http://webscope.sandbox.yahoo.com/

*http://labrosa.ee.columbia.edu/millionsong/

5The Million Song Dataset provides metadata and a limited set of precomputed audio
features for the tracks associated with listening behavior from Last.fm, giving researchers
the opportunity to experiment with content-based and metadata-based approaches. This
dataset did not exist at the moment of conducting our research. The KDD-Cup’2011 dataset
solely provides user ratings associated with anonymized music items, making impossible any
approach different that collaborative filtering.
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2.3.3 Conclusions

The main problem of existing research on music recommendation is the lack of
user-centered studies, i.e., subjective evaluations. Those studies that employed
such evaluations revealed only average-quality listener satisfaction with both
metadata and content-based approaches (Bu et al., 2010; Celma & Herrera,
2008; Magno & Sable, 2008). Therefore, there is a large room for improve-
ment of existing approaches. In addition, very few research works addressed
music discovery and analyzed the familiarity of listeners with the provided rec-
ommendations. They have found that audio content can serve recommender
systems in order to increase the novelty of recommendations, but the existing
approaches are not accurate enough. This results in a lower user satisfaction
than that achieved with the state-of-the-art metadata-based approaches.

We conclude with the necessity of improvement of content-based approaches
and their hybrids with metadata. To accomplish that, we hypothesize that tim-
bral, temporal, and tonal audio features are to be used altogether, which would
lead to a richer music representation. Furthermore, it seems promising to intro-
duce semantic audio descriptors, bringing referential meaning in the system, in
order to reduce the semantic gap between human concepts and low-level audio
features. To the best of our knowledge, no research with subjective evaluations
has been done before in order to corroborate this hypothesis. We will focus
on filling in this open issue, and, to this end, we will employ evaluations in
the context of the problems of music similarity and music recommendation.
On the other side, current metadata-based approaches require large amounts
of collaborative filtering information or tags, which makes them expensive.
Exploring cheaper alternatives is another research challenge that we want to
pursue.

Finally, the existing studies do not include qualitative validation of user
models themselves in terms of their understandable interpretation, but only
examine the prediction power of the models or the quality of the provided
recommendations. Furthermore, no research has been done in order to link
computational user models to the state-of-the-art understanding of music pref-
erences in the field of music cognition and psychology, a challenge that we will
undertake too.



Preference elicitation
strategies

3.1 Introduction

Initial knowledge about music preferences of the listener will be required in
order to form a user profile and generate recommendations. Part of this in-
formation can be gathered by polling users at the time they start using the
system. Further user behavior within the system, and user feedback on pro-
vided recommendations can help to expand the profile. In this chapter we
present the preference elicitation strategy followed in our study. We define
user profile in terms of particular tracks preferred by the listener, and propose
its content-based representation including semantic descriptors automatically
inferred from audio.

3.2 Track-level vs artist-level recommendation

Considerable amount of approaches work on artist level, using artist prefer-
ence information and returning artist recommendations. In contrast, other
recommenders provide track-level recommendations using preference informa-
tion about particular tracks. Moreover, there can be hybrid approaches, taking
both types of artist and track information about preferences to produce track
and artist recommendations.

Conceptually, artists-level can be seen as more generic than track-level, as
the music by an artist can be described as a set of tracks by this artist. How-
ever, many artists do not play similar music over the years or even in a single
album. Assuming that “artist” is a valid unit to provide recommendations (if
you like artist “A” than you will like artist “B”) is a strong assumption that
can be debated for many artists, especially those not belonging to pop genre.
In contrast, track-level goes to the very basic micro-unit of musical taste. A
listener might like only specific songs of artist “A” and “B”. In such a case,
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when a user prefers listening to particular tracks rather than artists, we expect
track-level recommendations to have higher user satisfaction. In addition, we
run into difficulties, when applying audio content-based approaches to artist
level (e.g., it is no clear how to summarize information from different tracks).
Conceptually, if the problem of recommendation were solved on a track-level, it
would be possible to recommend artists based on tracks, i.e., effectively exploit
hybrid artist/track approaches.

In our studies we will consider both track-level and artist-level approaches.
However, there is a problem of how to compare track-level recommendations
with the artist-level recommendations. For consistency, we will always consider
track recommendations as particular tracks are easier to evaluate in a listening
test than artists. In the latter case it is not clear which track, or group of tracks,
to present to a listener for evaluation. Therefore, for the considered artist-based
approaches, we will return randomly-selected tracks by recommended artists.

3.3 Explicit preference elicitation based on
preference examples

We describe our explicit preference elicitation strategy, which we follow to
build the ground for the music recommendation approaches further considered
in Chapter 5, and in the posterior analysis of music preferences in Chapter 6.

3.3.1 Proposed approach

We propose a preference elicitation strategy which consists in gathering music
preference examples explicitly from the listener in the form of particular tracks.
As stated in Section 3.2, track examples represent musical preferences more
precisely than artist lists, allowing us to address the problem of preference
elicitation by using audio content. Our assumption is that, although the pro-
posed strategy requires more user effort, the listeners will be finally rewarded
by recommendations of a better quality.

To this end, we ask the listener to gather the minimal set of music tracks
which is sufficient to grasp and convey their musical preferences (the henceforth
called “preference set”). Ideally, the selection of representative music should
not be biased by any user expectations about a final system or interface design
issues. Therefore, for evaluation purposes, we do not inform the listener about
any further usage of the gathered data, such as giving music recommendations
or preference visualization. Furthermore, we do not specify the number of
required tracks, leaving this decision to the user.

Generally, example gathering could be performed by either asking the user
to provide the selected tracks in audio format (e.g., mp3) or by means of edito-
rial metadata sufficient to reliably identify and retrieve each track (i.e., artist,
piece title, edition, etc.). For the content-based recommendation, the music
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pieces are informative even without any additional metadata (e.g., artist names
and track titles). In contrast, metadata-based approaches require editorial in-
formation sufficient to reliably identify each track (for track-level approaches)
or, at least, artist of each track (for artist-level approaches). In our study
we will consider both content-based and metadata-based approaches. There-
fore, for our evaluation purposes only, users are obliged to provide audio files
and optionally provide metadata. We then, by means of audio fingerprinting?,
retrieve and clean metadata for all provided tracks including the ones solely
submitted in audio format. After following these procedure, we will be able to
compare content-based approaches working on track level to metadata-based
recommendation approaches working on track and artist level.

For user analysis purposes, we also ask the listeners for additional infor-
mation, including personal data (gender, age, interest in music, musical back-
ground), a description of the strategy followed to select the music pieces, and
the way they would describe their musical preferences. The exact text of the
questionnaire is presented in Appendix B.

3.3.2 User data analysis

In order to evaluate the proposed strategy, we worked with a group of 39
participants (26 male and 13 female) selected from the authors’ colleagues and
acquaintances without disclosing any detail of the targeted research. They
were aged between 19 and 46 years old (average p = 31.35 and standard
deviation o = 6.4) and showed a very high interest in music (rating around
p = 9.34, with ¢ = 0.96, where 0 means no interest in music and 10 means
passionate about music). 34 of the 39 participants play at least one musical
instrument, including violin, piano, guitar, accordion, synthesizers, ukulele,
and drums, or sing. Taking into account this information, we consider that
the population represented by our participants corresponds to that of music
enthusiasts, but not necessarily mainstream music consumers. Therefore, we
may not expect that the conclusions from our further experiments can be
generalized to a general public. Nevertheless, these conclusions can be applied
for the population of music enthusiasts, which represents 21% of general public
of the 16-45 age group according to some estimations (Celma, 2008), and which
comprises a large percentage of the users of music recommender systems.

The number of tracks selected by the participants to convey their musical
preferences was very varied, ranging from 8 to 178 music pieces (u = 56.08,
o = 41.59) with the median being 50 tracks. The time spent for this task also
differed a lot, ranging from 12 minutes to 60 hours (¢ = 6.7 hours, o = 14.61)
with the median being 2 hours.

It is interesting to analyze the provided verbal descriptions about the strat-
egy followed to select the music tracks. Some of the participants were selecting

'"We use MusicBrainz service: http://musicbrainz.org/doc/MusicBrainz_Picard.
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one track per artist, while some others did not apply this restriction. They
also covered various uses of music such as listening, playing, singing or dancing.
Other participants mentioned musical genre, mood, expressivity, and musical
qualities as driving criteria for selecting the tracks. Furthermore, some partic-
ipants implemented an iterative procedure by gathering a very large amount
of music pieces from their music collections and performing a further refine-
ment to obtain the final selection. Finally, all participants provided a set of
labels to define their musical preferences. We asked them to provide labels
related to the following facets: musical genre, mood, instrumentation, rhythm,
melody /harmony, and musical expression. We also included a free category for
additional labels on top of the proposed musical facets.

The number of labels provided by the participants ranged from 3 to 94
labels (@ = 15.68, o = 16.87). The distribution of the number of labels that
participants provided for each facet (normalized by the total number of labels
provided by each participant) is presented in Figure 3.1. We observe that
most of them where related to genre, mood, and instrumentation, some of
them to rhythm and few to melody, harmony, or musical expression. Other
suggested labels were related to lyrics, year, and duration of the piece. The
participants’ preferences covered a wide range of musical styles (e.g., classi-
cal, country, jazz, rock, pop, electronic, folk), historical periods, and musical
properties (e.g., acoustic vs. synthetic, calm vs. danceable, tonal vs. atonal).

1.0r -
0.8r

0.6f

0.4r — —

—_— 1 +

N R R

Genre Mood Instrument Rhythm MelodyHarmony Expression Others

Figure 3.1: Box plot of the proportions of provided labels per musical facet, nor-
malized by the total number of labels per participant. Categories from left to right
correspond to genre, moods, instruments, rhythm, melody and harmony, musical ex-
pression, and other labels respectively. Blue crosses stand for extreme outliers.

Finally, the music provided by the participants was very diverse. Figure 3.2
presents an overall tag cloud of music preferences of our population (mostly
genre-based). The tag cloud was generated using artist tags found on Last.fm
tagging service for all tracks provided by the participants with a normalization
by the number of tracks provided by each participant.
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Figure 3.2: Tag cloud representing overall music preferences of our participants,
based on artist tags found on Last.fm.

3.3.3 Discussion

Following the proposed strategy, we can assure the quality of information about
preferences provided explicitly by the listener. We required two conditions on
the preference set to be fulfilled by the user: compactness and sufficiency.
These requirements guarantee that we obtain a maximum possible (complete)
image of the listener’s preferences condensed in a compact form. Therefore,
we will be able to estimate the upper bound for performance of track-level mu-
sic recommendation approaches, and we can expect worse performance when
working on implicit data.

Our strategy solves the problem of user cold start from the beginning of
user interaction with a system, but naturally requires a considerable user effort
as can be seen from the obtained mean for the time spent by the participants
on building their preference sets. Informal post experimental inquiry revealed
that much of the effort was actually spent on finding audio files rather than
deciding which music to select. Indeed, for a considerable amount of users in a
real world industrial scenario, providing metadata might be easier than finding
and uploading audio. In this case, the audio, including full tracks or previews,
can be obtained from the associated digital libraries. Moreover, the explicit
selection process followed by users can be facilitated by an intelligent system.
For example, this can be achieved by analyzing implicit information (listening
behavior or files in a personal music collection) and generating suggestions for
preference examples to be validated and/or refined by the listeners.

Interestingly, we noticed that some listeners have difficulties assessing artists
as favorites, as they like only particular tracks. Oppositely, for some listeners
it is easier to provide artist names rather than concrete tracks. This further
motivates our intention to consider both track-level and artist-level recommen-
dation approaches.
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A possible disadvantage of the proposed strategy is that negative preference
examples are left out of consideration. We believe this information to be useful,
but there is a cold-start problem of gathering such a data: not all users are able
to provide tracks they dislike. In contrast, negative examples can be gradually
gathered from further user feedback on provided recommendations.

3.4 Audio feature extraction

Here we describe the procedure followed to obtain a low-level timbral, tempo-
ral, and tonal and high-level semantic representation of each music track from
the user’s preference set.

3.4.1 Low-level audio features

For each music track, we calculate a low-level feature representation using
an in-house audio analysis tool Essentia.? In total, this tool provides over 60
commonly used low-level audio feature classes, characterizing global properties
of the given tracks, related to timbral, temporal, and tonal information. The
majority of these features are extracted on a frame-by-frame basis with a 46
ms frame size, and 23 ms hop size, and then summarized by their means and
variances across these frames. In the case of multidimensional descriptors,
covariances between components are also considered (e.g., with MFCCs). We
provide a brief overview of the feature classes we use in Table 3.1. Since it is not
the objective of this thesis to review existing methods for feature extraction,
the interested reader is referred to the literature cited in this table for further
details.

3.4.2 High-level semantic descriptors

We use the described low-level features to infer semantic descriptors. To this
end, we perform a regression by suitably trained classifiers producing different
semantic dimensions such as genre, musical culture, moods, instrumentation,
rhythm, and tempo. Support vector machines (SVMs) have been shown to
be an effective tool for various classification tasks in MIR (Gomez & Herrera,
2008; Laurier et al., 2009a,b; Mandel & Ellis, 2005; Xu et al., 2003). We opt for
multi-class SVMs with a one-versus-one voting strategy (Bishop, 2006), and use
the libSVM implementation.? In addition to simple classification, this imple-
mentation extends the capabilities of SVMs making available class probability
estimation (Chang & Lin, 2011), which is based on the improved algorithm
by Platt (2000). The classifiers are trained on 20 ground truth music collec-
tions (including full tracks and excerpts) presented in Table 3.2, corresponding

*http://mtg.upf.edu/technologies/essentia
Shttp://www.csie.ntu.edu.tw/"cjlin/libsvm/
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to 20 classification tasks. For some descriptors we used existing collections in
the MIR field (Cano et al., 2006; Gomez & Herrera, 2008; Homburg et al., 2005;
Laurier et al., 2009a; Tzanetakis & Cook, 2002), while for other descriptors we
created manually labeled in-house collections.

For each given track, each classifier returns the probabilistic estimates of
classes on which it was trained. The classifiers operate on optimized low-level
feature representations of tracks. More concretely, each classifier is trained on
a reduced set of features, which is individually selected based on correlation-
based feature selection (CFS) (Hall, 2000) over all available [0, 1]-normalized
features (Section 3.4.1) according to the underlying music collection. For
example, a classifier using the G1 collection is trained on an optimized de-
scriptor space, according to the collection’s classes and the CFS process, and
returns genre probabilities for the labels “alternative”, “blues”, “electronic”,
“folk /country”, etc. Moreover, the parameters of each SVM are found by a
grid search with 5-fold cross-validation. As a rule of thumb, supported by
similar results in Laurier et al. (2009b), we generally use the C-SVC method
and a radial basis function kernel with default parameters.

Classification results form a high-level semantic descriptor space, which
contains the probability estimates for each class of each classifier. The accuracy
of classifiers varies between 60.3% and 98.2% with the median accuracy being
88.2%. Classifiers trained on G1 (alternative, blues, electronic, folk/country,
funk /soul/rnb, jazz, pop, rap/hiphop, and rock classes) and RBL (chachacha,
jive, quickstep, rumba, samba, tango, viennese waltz, and waltz classes) show
the worst performance, close to 60%,* while classifiers for CUL (western,
non-western), MAG (aggressive, non-aggressive), MRE (relaxed, non-relaxed),
MAC (acoustic, non-acoustic), OVI (voice, instrumental), and OTB (bright
timbre, dark timbre) show the best performance, greater than 93%. Table 3.3
provides complete information on the accuracies of the employed classifiers.
Some of the classifiers are based on imbalanced datasets. Their further op-
timization can be achieved by compensating the imbalance, e.g., by a linear
combination of SVMs trained on balanced amount of examples (Lin et al.,
2011).

With the described procedure we obtain 62 semantic descriptors, shown
in Table 3.2, for each track in the user’s preference set including categories of
genre, musical culture, moods, instrumentation, rhythm, and tempo.

Proposing the aforementioned inference of semantic description, we address
the problem of semantic gap between low-level audio features and human-
level music description (see Section 1.2). We will be able to consider music
similarity measures and music preference in term of such high-level description.
The proposed feature extraction brings a track-wise semantic knowledge about
music preferences, and can be used to form our user profile.

4Still, note the amount of classes in G1 and RBL classifiers is 9 and 8, respectively.



CHAPTER 3. PREFERENCE ELICITATION STRATEGIES

oourLIRA SINY [e1)vodg
9)eI 2OUAIS

(P1) o1 SUISSOID-0197,

(9) proxymed oyd “(g) yoytg
(1) sseupno| o3erory

SNOAURI[AISIN

(9) yrSuarys pue

‘oTeos ‘A9y SPIoTD ‘[13UIIS A9) pPUR ‘o[eds ‘A9Y ‘YISUSIS OTUOYRIp JUTUNY ‘OlIRI
A31au0 paradway /patedure)-uou ‘suorjerasp paraduie) [enba ‘ureido)siy spioy))
(g) ore1 03meD pI0T))

(z‘6) @oueuossI(T

(8) Aouenbaxy Sutung,

(¢'8)

q13uaIls Aoy ‘Ao ‘so[goid ssed yojid oruourrey pesodsueijun pue pasodsurif,

reuqq,

(9) sseq ssouUPNO[ s1O( ‘SSOUPNO] SyeIT
(g‘2'c) o1 gosuo ‘(preoads pue Jysem ‘NJg sqred pug pue 1sT) INdL

oty Ay

(T) oryer A310U0 DITUOWLIRY UDAS O) PPO ‘AdTUOULIRYU]

(2) snnurysiiy ‘yeod Suolys ‘spueq A310us ‘A3I10U0 [RIYDOAG

(2°T) xnp ‘sseujry ‘9sord [eI1d0dg

(2) Ayxorduron Teiydedg

(¢‘2) uequod Kouenbor-ysry

(T°L'T) ssoumoys ‘oseaInop ‘POr[ol ‘s1s03any ‘peolds ‘prorjued [eiydodg
(@7'1°¢) SDOAN

(g'1) spueq yreq

reaquuL,

SSBO odnjeaq

dnoid aimjeog

48

(002) seresag (6) (9002) zowoy (8) (¢002) woAnon (L) “(6002) e 90 zowon (9) *(200z) wissoxg (¢) (9002)
yredured (%) ‘(000g) ueSoT (g) ‘(96002) ‘e 10 1oumneT (g) ‘(F00g) s10199J (1) :$00U0I0Jol 0DIN0G ‘SOIN}RaJ [RIISNU JO MAIAIOA() :T°E d[qRL



49

3.4. AUDIO FEATURE EXTRACTION
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Table 3.3: Accuracies of the classifiers employed for semantic regression. N.C. stands
for “not computed” due to technical difficulties.

Classifier (dataset) | Classes Accuracy
Gl Alternative, blues, electronic, | 60.29%
folk /country, funk/soul/rnb, jazz, pop,
rap/hiphop, rock
G2 Classical, dance, hip-hop, jazz, pop, | 88.22%
rhythm’n’blues, rock, speech
G3 Blues, classical, country, disco, hip-hop, | 77.74%
jazz, metal, pop, reggae, rock
GEL Ambient, drum’n’bass, house, techno, | 89.33%
trance
CUL Western, non-western 93.47%
MHA Happy, non-happy 84.90%
MSA Sad, non-sad 86.96%
MAG Aggressive, non-aggressive 98.21%
MRE Relaxed, non-relaxed 91.78%
MAC Acoustic, non-acoustic 93.42%
MEL Electronic, non-electronic 86.38%
MCL 5 mood clusters 62.83%
RPS Perceptual speed: slow, medium, fast 77.64%
RBL Chachacha, jive, quickstep, rumba, | 60.03%
samba, tango, viennese waltz, waltz
ODA Danceable, non-danceable N.C.
OPA Party, non-party 89.21%
OVI Voice, instrumental 96.0%
OTN Tonal, atonal N.C.
OTB Timbre: bright, dark 93.93%
OGD Voice gender: male, female N.C.

3.4.3 Content-based user profile

After applying audio analysis to each track from the user’s preference set, we
are able to represent her /his music preferences as a set of feature vectors charac-
terizing each particular track. In the case of using solely semantic descriptors,
we can define a semantic user model as a set U:

U= {(P(CLl]Ti), o P(CoLw, |Ty), ...,P(cmlm)...,P(cn,M?z;—))}, (3.1)

where P(Cy|T;) stands for the probability of track 7; from a preference set
belonging of [-th class C}; of the k-th classifier having N}, classes.



Content-based music
similarity measures

4.1 Introduction

Music similarity measures are commonly applied in the context of the problem
of music recommendation. As we have discussed in Section 1.2, approaches

based on content-based music similarity overcome the problem of popularity -

bias, typical for metadata-based systems. In this chapter we focus on the ways
to measure such a content-based similarity between tracks. We are specifi-
cally interested in non-personalized measures. Adaptive measures would have
required user feedback, while in our study we opted for designing similarity
measures common for all users and applicable from scratch. We will start by
designing such similarity measures, to be later applied together with our pref-
erence elicitation strategy for music recommendation. We propose two simple
approaches (i.e., non-hybrid approaches as opposed to complex measures con-
sisting of different similarity measures themselves) working on audio content
and evaluate them objectively against a number of baselines. Furthermore, we
present subjective evaluations using comparative A/B listening tests, which
are often absent in the majority of the existing studies. We explore the possi-
bility of creating a hybrid approach, based on the considered simple approaches
as potential components. In the considered approaches we rely on the audio
features described in Section 3.4.

4.2 Baseline simple approaches

In our study, we consider a number of conceptually different simple approaches
to music similarity. Among them we indicate several baselines, which will be
used in objective and subjective evaluations, and moreover will be regarded as
potential components of the hybrid approach.

ol
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4.2.1 Euclidean distance based on principal component
analysis (L2-PCA)

As a starting point, we follow the ideas proposed by Cano et al. (2005), and
apply an unweighted Euclidean metric on a manually selected subset of the low-
level features outlined above.! This subset includes bark bands, pitch, spectral
centroid, spread, kurtosis, rolloff, decrease, skewness, high-frequency content,
spectral complexity, spectral crest, flatness, flux, spectral energy, energy bands,
strong peak, tristimulus, inharmonicity, odd to even harmonic energy ratio,
beats loudness, beats loudness bass, untransposed harmonic pitch class profiles,
key strength, average loudness, and zero-crossing rate.

Preliminary steps include descriptor normalization in the interval [0, 1] and
principal component analysis (PCA) (Witten & Frank, 2005) to reduce the
dimension of the descriptor space to 25 variables. The choice of the number
of target variables is conditioned by a trade-off between target descriptive-
ness and the curse of high-dimensionality (Aggarwal, 2005; Beyer et al., 1999;
Korn et al., 2001), typical for L, metrics, and is supported by research work
on dimension reduction for music similarity (Wack et al., 2006) and autotag-
ging (Sordo, 2012). Nevertheless, through our PCA dimensionality reduction,
an average of 78% of the information variance was preserved on our music
collections, reducing the number of 201 native descriptors by a factor of 8.

4.2.2 Euclidean distance based on relevant component
analysis (L2-RCA-1 and L2-RCA-2)

Along with the previous measure, we consider more possibilities of descriptor
selection. In particular, we perform relevant component analysis (RCA) (Shen-
tal et al., 2002). Similar to PCA, RCA gives a rescaling linear transformation of
a descriptor space, but is based on preliminary training on a number of groups
of similar tracks. Having such training data, the transformation reduces irrel-
evant variability in the data while amplifying relevant variability. As in the
Lo-PCA approach, the output dimensionality is chosen to be 25. We con-
sider both the descriptor subset used in Lo-PCA and the full descriptor set of
Table 3.1 (L2-RCA-1 and Ly-RCA-2, respectively).

4.2.3 Kullback-Leibler divergence based on GMM of MFCCs
(1G-MFCC)

Alternatively, we consider timbre modeling with GMM as another baseline
approach (Aucouturier et al., 2005). We implement the simplification of this
timbre model using single Gaussian with full covariance matrix (Flexer et al.,
2008; Mandel & Ellis, 2005; Pohle et al., 2006). Comparative research of timbre

!Specific details not included in the cited reference were consulted with P. Cano in per-
sonal communication.
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distance measures using GMMs indicates that such a simplification can be used
without significantly decreasing performance while being computationally less
complex (Jensen et al., 2009; Pampalk, 2006). As a distance measure between
single Gaussian models for tracks X and Y we use a closed form symmetric
approximation of the Kullback-Leibler divergence,

d(X,Y) =
Tr(S%'Sy) + Tr(Z5 ' Sx) +
Tr((Sx' + 2y (ex — ) (px — py)7) —
2Nmrec, (4.1)

where px and py are MFCC means, Xy and ¥y are MFCC covariance matri-
ces, and Nysroc is the dimensionality of the MFCCs. This dimensionality can
vary from 10 to 20 (Jensen et al., 2009; Laurier et al., 2009b; Pampalk et al.,
2003). To preserve robustness against different audio encodings, the first 13
MFCC coefficients are taken (Sigurdsson et al., 2006).

4.3 Proposed simple approaches

Concerning simple approaches to music similarity, here we propose two novel
distance measures that are conceptually different than what has been reviewed.
We regard both approaches as potential components of the hybrid approach.

4.3.1 Tempo-based distance (TEMPO)

The first approach we propose is related to the exploitation of tempo-related
musical aspects with a simple distance measure. This measure is based on two
descriptors, beats per minute (BPM) and onset rate (OR), the latter repre-
senting the number of onsets per second. These descriptors are fundamental
for the temporal description of music. Among different implementations, we
opted for BPM and OR estimation algorithms presented by Brossier (2007).

For two tracks X and Y with BPMs Xgpy and Ygpum, and ORs Xogr and
Yor, respectively, we determine a distance measure by a linear combination of
two separate distance functions,

d(X, Y) = wBPMdBPM(X; Y) + wORdOR(X, Y), (4.2)

) e

defined for BPM as

dBPM(X, Y) = min
€N

i1 | max(Xspwm, Ypwm)
AOppm -1

min(Xgpm, YpMm)

and for OR as

. Xor, Yor)
ey i—1|maz(Xor, Yor) . 4.4
or(X,Y) me <aOR min(Xor, Yor) 1) .
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where Xgpwm, YepMm, XoR, YOor > 0, agpm, aor = 1. The parameters wgpy
and wogr of Eq. 4.2 define the weights for each distance component. Eq. 4.3
is based on the assumption that tracks with the same BPMs or multiples
of the BPM, e.g. Xgpm = ¢YppwMm, are more similar than tracks with non-
multiple BPMs. For example, the tracks X and Y with Xgpy = 140 and
Yppm = 70 should have a closer distance than the tracks X and Z with Zgpy =
100. Our assumption is motivated by research on the perceptual effects of
double or half tempo (McKinney & Moelants, 2006). Eq. 4.4 is based on the
similar assumption for ORs. The strength of this assumption depends on the
parameter appym (aor). Moreover, such a distance can be helpful in relation
to the common problem of tempo duplication (or halving) in automated tempo
estimation (Gouyon et al., 2006; Smith, 2010). In the case of agpy = 1, all
multiple BPMs are treated equally, while in the case of agpy > 1, preference
inversely decreases with ¢. In practice we use i = 1,2,4,6.

Equations 4.2, 4.3, and 4.4 formulate the proposed distance in the gen-
eral case. In a parameter-tuning phase we performed a grid search with one
of the ground truth music collections (RBL) under the objective evaluation
criterion described in Section 4.4.1. Using this collection, which is focused on
rhythmic aspects and contains tracks with various rhythmic patterns, we found
wgpMm = wor = 0.5 and agpm = apr = 30 to be the most plausible parame-
ter configuration. Such values reveal the fact that in reality both components
are equally meaningful and that mainly a one-to-one relation of BPMs (ORs)
is relevant for the music collection and descriptors we used to evaluate such
rhythmic similarity. In the case our BPM (OR) estimator had increased du-
plicity errors (e.g. a BPM of 80 was estimated as 160), we should expect lower
« values as the most plausible.

4.3.2 Classifier-based distance (CLAS)

The second approach we propose derives a distance measure from diverse clas-
sification tasks. In contrast to the aforementioned methods, which directly
operate on a low-level descriptor space, we first infer high-level semantic de-
scriptors using suitably trained classifiers, as described in Section 3.4.2, and
then define a distance measure operating on this newly formed high-level se-
mantic space. We operate on a reduced subset of semantic descriptors as in our
experiments we initially had no access to a part of our ground truth collections
(Table 3.2). The subset includes the descriptors inferred using the G1, G2,
G3, CUL, MHA, MSA, MAG, MRE, MAC, MEL, RPS, RBL, OPA, and OVI
collections.

We define a distance operating on a formed high-level semantic space
(i.e., the one of the descriptor probabilities). To this end, we consider dif-
ferent measures frequently used in collaborative filtering systems. Among the
standard ones, we select the cosine distance (CLAS-Cos), Pearson correlation
distance (CLAS-Pears) (Celma, 2008; Gibbons & Chakraborti, 2003; Sarwar
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et al., 2001), and Spearman’s rho correlation distance (CLAS-Spear) (Gibbons
& Chakraborti, 2003; Herlocker et al., 2004).

Cosine similarity is a measure of similarity between two vectors by measur-
ing the cosine of the angle between them. Equation 4.5 shows the definition of
the cosine distance between two tracks:

L. S P xP;
Y.V - i, X143,
(4.5)

R — .
X|[* Y ’
|| X+ []Y]] \/Zpgx\/ngy

where {P; x} and {P;y} form vectors X and Y of computed semantic descrip-
tors for tracks X and Y, respectively.

Pearson correlation measures the extent to which there is a linear rela-
tionship between two variables. Equation 4.6 defines the Pearson correlation
distance between tracks:

d(X,Y)=1-cos(X,Y) =

C’ov(X Y) Z(PZX Px)(Py — Py)

IXY \/Z ix — Px) \/Z (Py — Py)?

d(X,Y)=1— (4.6)

where Px and Py are the averages of descriptor values for track X and Y. In
contrast, Spearman’s rho measure the extent to which two different rankings
agree independently of the actual values of the variables. It is computed in the
same manner as the Pearson correlation, except that the P; x 's and P, y’s are
transformed into ranks, and the correlations are computed on the ranks.

Moreover, we consider a number of more sophisticated measures. In partic-
ular, the adjusted cosine distance (CLAS-Cos-A, Equation 4.7) (Celma, 2008;
Sarwar et al., 2001) is computed by taking into account the average probability
for each class, i.e. compensating distinction between classifiers with different
number of classes:

>(Pix — B)(Py — P)
dX,Y)=1- : : (4.7)

@(PZ-,X - B)Q\/;(Pi,y — B2

where P; stands for average probability value for the descriptor i estimated by
the associated classifier.

Alternatively, we can prioritize the importance of the semantic descriptors
by assigning them weights and applying weighted cosine distance (CLAS-Cos-
W) (Cripps et al., 2006) or weighted Pearson correlation distance (CLAS-Pears-
W) (Abdullah, 1990). Equation 4.8 presents the weighted cosine distance:

YwiP x Py
AX,Y)=1— —— (4.8)

\/Z wiPiQ,X \/E winY
(2 (2
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where w; are descriptor weights. In turn, weighted Pearson correlation distance
can be defined with Equation 4.9:

> wi(Pix — Pxw)(Piy — Prw)
(A

dX,Y)=1- , (4.9)
\/z wi(Pyx — Pxw)? \/z wi(Py — Pro)?
1 1
- Zw'LPZ,X -
with weighted averages of descriptor values Px,, = Zziwl and Py, =
Zwipi,Y '

12# for tracks X and Y.

We study both manual weighting (Wj;) and automatic weighting based
on the classification accuracy (W 4) computed for each descriptor. For Wy,
we split the collections into 3 groups of musical dimensions, namely genre
and musical culture, moods and instruments, and rhythm and tempo. We
empirically assign weights 0.50, 0.30, and 0.20 to these groups respectively.
Our choice is supported by research on the effect of genre in terms of music
perception (Cupchik et al., 1982; Novello et al., 2006; Rentfrow & Gosling,
2003) and the fact that genre is the most common aspect of similarity used to
evaluate distance measures in the MIR community (Section 2.3.1). For W4,
we evaluate the accuracy of each classifier (Table 3.3), and assign proportional
weights which sum to 1.

With this setup, the problem of content-based music similarity can be seen
as a collaborative filtering problem of item-to-item similarity (Sarwar et al.,
2001) (see Section 2.3.1). Such a problem can generally be solved by calculating
a correlation distance between rows of a track/user rating matrix with the
underlying idea that similar items should have similar ratings by certain users.
Transferring this idea to our context, we can state that similar tracks should
have similar probabilities of certain classifier labels (i.e., semantic descriptors).
To this extent, we compute track similarity on a track/user rating matrix with
class labels (semantic descriptors) playing the role of users, and probabilities
playing the role of user ratings, so that each N-class classifier corresponds to
N users.

4.4 Experiment 1: Evaluation of simple approaches

We evaluated all considered approaches with a uniform methodological ba-
sis, including an objective evaluation on comprehensive ground truths and a
subjective evaluation based on ratings given by real listeners. As an initial
benchmark for the comparison of the considered approaches we used a ran-
dom distance (RAND), i.e., we selected a random number from the standard
uniform distribution as the distance between two tracks.
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Table 4.1: Additional ground truth music collections employed for objective evalua-
tion of the simple approaches.

Name | Category | Classes Size Source
G4 Genre & | Alternative, blues, | 140 full tracks, | Rentfrow
Culture | classical,  country, | 10 per genre & Gosling
electronica, folk, (2003)

funk, heavy metal,
hip-hop, jazz, pop,
religious, rock, soul

ART | Artist 200 different artist | 2000 track ex- | In-house

names cerpts, 10 per
artist
ALB Album 200 different album | 2000 track ex- | In-house
titles cerpts, 10 per
album

4.4.1 Objective evaluation methodology

In our evaluations we covered different musical dimensions such as genre, mood,
artist, album, culture, rhythm, or presence or absence of voice. A number of
ground truth music collections (including both full tracks and excerpts) were
employed for that purpose. To this end, we used the same subset of our ground
truth collections as we employed for our CLAS measure (i.e., G1, G2, G3, CUL,
MHA, MSA, MAG, MRE, MAC, MEL, RPS, RBL, OPA, and OVI collections).
Moreover, we included two new collections, ART and ALB, representing tracks
by particular artists or albums, and an additional genre collection G4 (see
Table 4.1). As we have noticed in Section 2.3.1, existing research studies on
music similarity usually rely on genre, artist and album ground truths in their
objective evaluations and typically take only a few datasets in consideration.
In contrast, we are able to evaluate our approaches on the extended set of 17
ground truths, covering aspects rarely considered in existing evaluations, such
as rhythm or moods.

For each collection, we considered tracks from the same class to be similar
and tracks from different classes to be dissimilar, and assessed the relevance
of the tracks’ rankings returned by each approach. To this end, we used the
mean average precision (MAP) measure (Manning et al., 2008). The MAP
is a standard information retrieval measure used in the evaluation of many
query-by-example tasks. For each approach and music collection, MAP was
computed from the corresponding full distance matrix. The average precision
(AP) (Manning et al., 2008) was computed for each matrix row (for each track
query) and the mean was calculated across queries (columns). That is, for a
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collection of the size of N tracks, the average precision was computed for each
track, defined as

Avep — bt (P(k) x rel(k))
number of relevant tracks’

(4.10)

where k is the rank in the sequence of retrieved tracks, N — 1 is the total
number of retrieved tracks (all tracks in the collection except for the query),
P(k) is the precision at cut-off k£ in the list, rel(k) is an indicator function
equaling 1 if the track at rank k is relevant to the query (i.e., from the same
class), zero otherwise. Mean average precision was then computed as

S AveP(q)
==

As three of the considered approaches (La-RCA-1, Ly-RCA-2, and CLAS)
require training, cross-validation is necessary. Moreover, the CLAS approach
needs to work on 14 training datasets simultaneously. For consistency, we ap-
plied the same procedure to each of the considered distances, whether they
required training or not: the results for RAND, Lo-PCA, Lo-RCA-1, Lo-RCA-
2, 1G-MFCC, TEMPO, and CLAS-based distances were averaged over 5 iter-
ations of 3-fold cross-validation. On each iteration, all 17 ground truth col-
lections were split into training and testing sets. For each testing set, the
CLAS-based distances were provided with 14 out of 17 training sets. The
G4, ART, and ALB collections were not included as training sets due to the
insufficient size of their class samples. In contrast, for each testing set, Lo-
RCA-1, and Lo-RCA-2 were provided with a single complementary training
set belonging to the same collection.

MAP = (4.11)

4.4.2 Objective evaluation results

The average MAP results are presented in Fig. 4.1 and Table 4.2. Addition-
ally, the approaches with statistically non-significant difference in MAP per-
formance according to the independent two-sample t-tests are presented in Ta-
ble 4.3. These t-tests were conducted to separately compare the performances
for each music collection. In the cases that are not reported in Table 4.3, we
found statistically significant differences in MAP performance (p < 0.05).

We first see that all considered distances outperform the random base-
line (RAND) for most of the music collections. When comparing baseline
approaches (Lo-PCA, Lo-RCA-1, Ly-RCA-2, 1G-MFCC), we find 1G-MFCC
to perform best on average. Still, Lo-PCA performs similarly for some col-
lections (MHA, MSA, MRE, and MEL) or slightly better for other collections
(MAC and RPS). With respect to tempo-related collections, TEMPO per-
forms similarly (RPS) or significantly better (RBL) than baseline approaches.
Indeed, it is the best performing distance for the RBL collection. Surpris-
ingly, TEMPO yielded accuracies which are comparable to some of the base-
line approaches for music collections not strictly related to rhythm or tempo
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Figure 4.1: Objective evaluation results (MAP) of the simple approaches for the
different music collections considered.

such as G2, MHA, and MEL. In contrast, no statistically significant difference
was found in comparison with the random baseline for the G3, MAG, MRE,
and ALB collections. Finally, we saw that classifier-based distances achieved
the best accuracies for the majority of the collections. Since all CLAS-based
distances (CLAS-Cos, CLAS-Pears, CLAS-Spear, CLAS-Cos-W, CLAS-Pears-
W, CLAS-Cos-A) showed comparable accuracies, we only report two exam-
ples (CLAS-Pears, CLAS-Pears-Wj;). In particular, CLAS-based distances
achieved large accuracy improvements with the G2, G4, OPA, MSA, and MAC
collections. In contrast, no improvement was achieved with the ART, ALB,
and RBL collections. The distance 1G-MFCC performed best for the ART and
ALB collections. We hypothesize that the success of 1G-MFCC for the ART
and ALB collections might be due to the well known “album effect” (Man-
del & Ellis, 2005). This effect implies that, due to production process, tracks
from the same album share much more timbral characteristics than tracks from
different albums of the same artist and, moreover, of different artists.
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Table 4.3: The approaches with statistically non-significant difference in MAP per-
formance according to the independent two-sample t-tests. The Lo-RCA-2 approach
was excluded from the analysis due to technical difficulties.

Collection | Compared approaches P-value
G3 RAND, TEMPO 0.40
MHA RAND, Ly-RCA-1 1.00
Lo-PCA, 1G-MFCC 1.00
CLAS-Pears, CLAS-Pears-W 0.37
MSA Lo-PCA, 1G-MFCC 0.37
CLAS-Pears, CLAS-Pears-W 0.50
MAG RAND, TEMPO 1.00
MRE RAND, TEMPO 0.33
Lo-PCA, 1G-MFCC 0.09
CLAS-Pears, CLAS-Pears-W 0.37
OPA CLAS-Pears, CLAS-Pears-W 0.50
MAC CLAS-Pears, CLAS-Pears-W 0.08
MEL Lo-PCA, 1G-MFCC 1.00
CLAS-Pears, CLAS-Pears-W ), 0.37
ALB RAND, TEMPO 0.33
CLAS-Pears, CLAS-Pears-W 0.33
RPS Lo-RCA-1, TEMPO 1.00

4.4.3 Subjective evaluation methodology

In the light of the results of the objective evaluation (Sec. 4.4.2), we selected 4
conceptually different approaches (Lo-PCA, 1G-MFCC, TEMPO, and CLAS-
Pears-W ) together with the random baseline (RAND) for the listeners’ sub-
jective evaluation. We designed a web-based survey where registered listeners
performed a number of iterations blindly voting for the considered distance
measures, assessing the quality of how each distance reflects perceived mu-
sic similarity. In particular, we evaluated the resulting sets of most similar
tracks produced by the selected approaches, hereafter referred as “playlists”.
Such a scenario is an effective way to assess the quality of music similarity
measures (Barrington et al., 2009; Slaney & White, 2007). It increases dis-
crimination between approaches in comparison with a pairwise track-to-track
evaluation. Moreover, it reflects the common applied context of music similar-
ity measurement, which consists of playlist generation.
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During each iteration, the listener was presented with 5 different playlists
(one for each measure) generated from the same seed track. A screenshot of the
web-based evaluation is presented in Figure 4.2. Fach playlist consisted of the
5 nearest-to-the-seed tracks. The entire process used an in-house collection of
300K music excerpts (30 sec.) by 60K artists (5 tracks/artist) covering a wide
range of musical dimensions (different genres, styles, arrangements, geographic
locations, and epochs). No playlist contained more than one track from the
same artist. Independently for each playlist, we asked the listeners to provide
two ratings (participants were informed about the meaning of the ratings):

e playlist similarity rating indicating the appropriateness of the tracks in
the playlist in respect to the seed track;

e playlist inconsistency boolean answer indicating that the playlist con-
tains inconsistent results (e.g., speech mixed with music, really different
tempos, completely opposite feelings or emotions, distant musical genres,
etc.)

For playlist similarity ratings we used a 6-point Likert-type scale (0 cor-
responding to the lowest similarity, 5 to the highest) to evaluate the appro-
priateness of the playlist with respect to the seed. Likert-type scales (Saris
& Gallhofer, 2007) are bipolar scales used as tools-of-the-trade in many dis-
ciplines to capture subjective information, such as opinions, agreements, or
disagreements with respect to a given issue or question. The two opposing
positions occupy the extreme ends of the scale (in our case, low-high similarity
of the playlist to the seed), and several ratings are allocated for intermedi-
ate positions. We explicitly avoided a “neutral” point in order to increase the
discrimination between positive and negative opinions.

We wanted to gather ratings of our participants on a number shared playlists
based on the preselected seeds covering a variety of types of music, avoiding
the variability in ratings that could be attributed to the difference between
participants’ playlists. In addition, we wanted to include the playlists based
on random seeds individual for each participant. Therefore, we divided the
test into two phases: in the first, 12 seeds and corresponding playlists were
shared between all listeners; in the second one the seeds for each listener (up
to a maximum of 21) were randomly selected. Listeners were never informed
of this distinction. Additionally, we asked each listener about his/her musical
background, which included musicianship and listening expertise information
(each measured in 3 levels). Altogether we collected playlist similarity rat-
ings, playlist inconsistency indicators, and background information from 12
listeners.?

2Due to confidential reasons, the survey was conducted on a limited closed set of partic-
ipants, and was unavailable to general public.
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Figure 4.2: A screenshot of the subjective evaluation web-based survey.

4.4.4 Subjective evaluation results

In experimental situations such as our subjective evaluation, analysis of vari-
ance (ANOVA) is the usual methodology employed to assess the effects of one
variable (like the similarity computation approach) on another one (such as
the similarity rating obtained from listeners) with possible interaction effects
(like the effect of testing phase). ANOVA provides a statistical test of whether
or not the means of several groups (in our case, the ratings obtained using a
specific similarity computation approach) are equal. In our case it should be
preferred to t-test because it provides a compact overview and decreases the
possibility of false-rejecting a null hypothesis (i.e., that the similarity compu-
tation approaches yield no difference on similarity ratings) as it includes the
possibility to assess variable interaction effects that a series of t-tests will not
address. In addition to the effect of the different similarity computation meth-
ods of similarity ratings, in our evaluation we wanted to know the possible
effect of the musicianship and listening experience of the participants. Fur-
thermore, we also wanted to know the effect produced by the two consecutive
testing phases used: the one presenting the same tracks to all the listeners and
the other using different, tracks for each of them (in fact we wanted to be sure
that there would be no effect on the results because of this two-phase setup).
Therefore a mixed-design ANOVA with two between-subjects factors (musi-
cianship and listening expertise) and two within-subjects factors (similarity
computation approach and testing phase) was used.

In order to proceed with the multivariate within-subject ANOVA tests,
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a so-called “sphericity” assumption (stating that all the variances of the dif-
ferences between the levels of the within-subjects factors are equal) was re-
quired (Huberty & Olejnik, 2006). According to the Mauchly’s sphericity test,
similarity ratings achieved such requirement whereas the inconsistency ratings
did not and a Greenhouse-Geiser correction was needed to test the effects where
inconsistency was involved.

The results from the analysis revealed that the effect of the similarity com-
putation method on the ratings was statistically significant (Wilks Lambda =
0.005, F'(4,2) = 93.943, p < 0.05). Pairwise comparisons (a Fisher’s least-
significant difference test with Bonferroni correction, which conservatively ad-
justs the observed significance level based on the fact that multiple comparisons
are made) separated the methods into 3 different groups: RANDOM and Lo-
PCA (which yielded the lowest similarity ratings) versus TEMPO versus 1G-
MFCC and CLAS-Pears-W,; (which yielded the highest similarity ratings).
The same pattern was obtained for the effects on the inconsistency ratings.
The effect of the testing phase, also found to be significant, reveals that rat-
ings yielded slightly lower values in the second phase. This could be due to
the “tuning” of the similarity ratings experienced by each subject as the ex-
periment proceeded. Fortunately, the impact of phase was uniform and did
not depend on or interact with any other factor. Hence, the similarity ratings
are only made “finer” or more “selective” as the experiment progresses, but
irrespective of the similarity computation approach. On the other hand, the
potential effects of musicianship and listening expertise revealed no impact on
the similarity ratings.

Overall, we conclude that the Lo-PCA and TEMPO distances, along with
a random baseline, revealed poor performance, tending to provide disruptive
examples of playlist inconsistency. Contrastingly, CLAS-Pears-Wj; and 1G-
MFCC revealed acceptable performance with slightly positive user satisfaction.
Average playlist similarity ratings and proportion of inconsistent playlist for
each considered approach are presented in Figure 4.3. In particular, the ob-
served mean similarity ratings for both 1G-MFCC and CLAS-Pears-W; were
equal to 3.0; the average playlist inconsistency ratings were 3.0 for 1G-MFCC
and 0.3 for CLAS-Pears-W ;.

4.5 Semantic explanation of music similarity

Here we discuss the proposed CLAS distance and its semantic application.
An interesting aspect of this proposed approach is the ability to provide a
user of the final system with a concrete motivation for the retrieved tracks
starting from a purely audio content-based analysis. To the best of the au-
thors’ knowledge, this aspect was rare among other music content-processing
systems (Maillet et al., 2009) at the moment of accomplishing our research.
However, there is evidence that retrieval or recommendation results perceived
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Figure 4.3: Average playlist similarity rating and proportion of inconsistent playlists
for the subjective evaluation of the simple approaches. Error bars indicate one stan-

dard error of the mean.
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CLAS distance

Snoop Dogg - Snoopafella
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These songs are similar because they share hip-hop, party, aggressive, not-relaxed, and not-sad dimensions:

Dimension

Retrieved probabilities
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hip-hop:
party:
aggressive:
not-relaxed:
not-sad:

0.73 «—— 0.72
0.97 «— 0.93
0.74 «— 0.74
0.99 «— 0.98
0.95 «— 0.92

(0.13)
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"These songs are similar because they both belong to the hip-hop
genre, have a rather aggressive sound, are in a party mood, and
are neither relaxed nor sad."

Figure 4.4: A real example of a semantic explanation of the similarity between two
tracks retrieved from our music collection for the classifier-based distance.

as transparent (getting an explanation of why a particular retrieval or recom-
mendation was made) are preferred by users, increasing there confidence in a
system (Aman & Liikkanen, 2010; Celma & Herrera, 2008; Cramer et al., 2008;
Lee, 2011; Sinha & Swearingen, 2002; Swearingen & Sinha, 2001; Tintarev &

Masthoff, 2007).

Remarkably, the proposed classifier-based distance gives the possibility of
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providing high-level semantic descriptions for the similarity between a pair of
tracks along with the distance value itself. In a final system, such annotations
can be presented in terms of probability values of the considered descriptors
that can be understood by a user. Alternatively, automatic text generation
can be employed to present the tracks’ qualities in a textual way. For a brief
justification of similarity, a subset of dimensions with the highest impact on
overall similarity can be selected. A simple use-case example is shown in Fig-
ure 4.4. For a pair of tracks and the CLAS-Pears-W,; distance measure, a
subset of 15 dimensions was determined iteratively by greedy distance mini-
mization. In each step the best candidate for elimination was selected from
different dimensions, and its weight was zeroed. Thereafter, the residual di-
mension probabilities that exceeded corresponding random baselines® can be
presented to a user. Notice however that, as random baselines differ for differ-
ent descriptors depending on the number of output classes of the corresponding
classifier, the significance of dimension probabilities cannot be treated equally.
For example, the 0.40 probability of a descriptor inferred by an 8-class classi-
fier is considerably more significant than the 0.125 random baseline. Though
not presented, the descriptors with probabilities below random baselines also
have an impact on the distance measurement (probabilities close to zero in
a multiclass classifier are informative because they imply that a music track
does not belong to the corresponding classes). Still, such negative statements
(in the sense of a low probability of a regressed dimension) are probably less
suitable than positive ones for justification of music similarity to a user.

4.6 Proposed hybrid approach (HYBRID)

According to the results and observations derived from our first experiment,
we advanced the possibility that a hybrid approach, combining conceptually
different methods covering timbral, rhythmic, and semantic aspects of music
similarity, can lead to the improvement of the similarity measurement. We
select these 4 conceptually different approaches relying on the results of the
objective evaluation of potential components (Section 4.4.2) and propose a hy-
brid distance measure. We define the distance as a weighted linear combination
of L2-PCA, 1G-MFCC, TEMPO, and CLAS-Pears-W; distances.

For each selected component, we apply score normalization, following ideas
presented by Fernandez et al. (2006) and Arevalillo-Herréez et al. (2008). More
concretely, each original distance variable d; is equalized to a new variable
d; = E;(d;), uniformly distributed in [0,1]. The equalizing function E; is
given by the cumulative distribution function of d;, which can be obtained
from a distance matrix on a given representative music collection. As such, we
use an aggregate collection of 16K full tracks and music excerpts, composed

3Under the assumptions of the normal distribution of each classifier’s labels for a music
collection.
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from the ground truth collections previously used for objective evaluation of
simple approaches (Tables 3.2 and 4.1). The final hybrid distance is obtained
by a weighted linear combination of component distances. As we are mostly
interested in improving subjective quality of the measure, the weights are based
on the results of previous subjective evaluation (Section 4.4.4) so that the
measures have higher weights if they were rated higher. For each component,
we have assigned an average playlist similarity rating given by listeners for this
method as its weight: 0.7 for Lo-PCA, 3.0 for 1G-MFCC, 1.2 for TEMPO, and
3.0 for CLAS-Pears-W ), distances.

4.7 Experiment 2: Evaluation of hybrid approach

4.7.1 Objective evaluation methodology

As a first step, we have proceeded with the same methodology as for simple
approaches (Section 4.4.2), evaluating the MAP of the HYBRID measure on
17 music collections. In addition, we decided to follow a different evaluation
methodology. This methodology comes from the fact that the ground truth
music collections available to our evaluation, both in-house and public, can
have different biases (due to different collection creators, music availability,
audio formats, covered musical dimensions, how the collection was formed,
etc.). Therefore, in order to minimize these effects, we carried out a large-
scale cross-collection evaluation of the hybrid approach against its component
approaches, namely Lo-PCA, 1G-MFCC, TEMPO, and CLAS-Pears-W ), to-
gether with the random baseline (RAND) on two new large music collections.
Cross-collection comparison implies that the queries and their answers belong
to different music collections (out-of-sample results), thus making evaluation
results more robust to possible biases.

Solely the genre musical dimension was covered in this experiment. Two
large in-house ground truth music collections were employed for that purpose:
(1) a collection of 299K music excerpts (30 sec.) (G-C1), and (ii) a collection of
73K full tracks (G-C2). Both collections had a genre label associated with every
track. In total, 218 genres and subgenres were covered. The size of these music
collections is considerably large, which makes evaluation conditions closer to
a real world scenario. As queries, we randomly selected tracks from the 10
most common genres from both collections G-C1 and G-C2. The distribution
of the selected genres among the collections is presented in Table 4.4. More
concretely, for each genre, 790 tracks from collection G-C1 were randomly
selected as queries. The number of queries per genre corresponds to a minimum
number of genre occurrences among the selected genres.

Each query was sent to the collection G-C2, forming a full row in a distance
matrix. As with the objective evaluation of simple approaches (Section 4.4.1),
MAP was used as an evaluation measure, but was calculated with a cutoff
(similarly to pooling techniques in text retrieval (Croft et al., 2010; Radlinski
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Table 4.4: Number of occurrences of 10 most frequent genres, common for collections

G-C1 and G-C2.

Genre G-C1 G-C2

Reggae 2991 790
New Age 4294 1034

Blues 6229 2397
Country 8388 1699
Folk 10367 1774
Pop 15796 4523
Electronic 16050 4038
Jazz 22227 5440
Classical 43761 4802
Rock 49369 11486

& Craswell, 2010; Turpin & Scholer, 2006)) equal to the 10 closest matches due
to the large dimensionality of the resulting distance matrix. The evaluation re-
sults were averaged over 5 iterations. In the same manner, a reverse experiment
was carried out, using tracks from the G-C2 collection as queries, and applied
to the collection G-C1. As the evaluation was completely out-of-sample, the
full ground truth collections were used to train the CLAS approach.

4.7.2 Objective evaluation results

The evaluation results on the 17 music collections for the HYBRID distance are
presented in Table 4.2. No statistically significant difference was found between
HYBRID and CLAS-Pears-W); for the G4, CUL, MSA, MEL, ALB, ART,
RBL collections (p > 0.05 in the independent two-sample t-tests). HYBRID
achieved an improvement in MAP for the OVTI collection, but underperformed
for the rest nine collections. Still, significantly better performance was achieved
in comparison with the baselines and the TEMPO measure for the majority
of the collections. This suggests that adding a semantic component to the
measure was a relevant step in order to improve performance, and its higher
weight might be appropriate for certain music collections. Using semantic
similarity solely was the most efficient.

Furthermore, the results of cross-collection evaluation are presented in Ta-
ble 4.5. We analyzed the obtained MAPs with a series of independent two-
sample t-tests. All the approaches were found to perform with statistically
significant difference (p < 0.001). We see that all considered distances outper-
form the random baseline (RAND). We found 1G-MFCC and CLAS-Pears-W s
to have comparable performance, being the best among the simple approaches.
As well, the TEMPO distance was found to perform similarly or slightly bet-
ter than Lo-PCA. Overall, the results for simple approaches conform with our
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Table 4.5: Objective cross-collection evaluation results (MAP with cutoff at 10)
averaged over 5 iterations.

Distance G-C1 —» G-C2 G-C2 — G-C1
RANDOM 0.07 0.08
Lo-PCA 0.09 0.11
1G-MFCC 0.23 0.22
TEMPO 0.11 0.12
CLAS-Pears-W ), 0.21 0.23
HYBRID 0.25 0.28

previous objective evaluation. Meanwhile, our proposed HYBRID distance
achieved the best accuracy in the cross-collection evaluation in both directions.

4.7.3 Subjective evaluation methodology

We repeated the listening experiment, conducted for simple approaches (Sec-
tion 4.4.3) to evaluate the hybrid approach against its component approaches.
The same music collection of 300K music excerpts (30 sec.) by 60K artists (5
tracks/artist) was used for that purpose. Each listener was presented with a
series of 24 iterations, which, according to the separation of the experiment
into two phases, included 12 iterations with seeds and corresponding playlists
shared between all listeners, and 12 iterations with randomly selected seeds,
different for each listener. In total, we collected playlist similarity ratings,
playlist inconsistency indicators, and background information about musician-
ship and listening expertise from 21 listeners.

4.7.4 Subjective evaluation results

An ANOVA with two between-subjects factors (musicianship and listening ex-
pertise) and two within-subjects factors (similarity computation approach and
testing phase) was used to test their effects on the similarity ratings and on the
inconsistency ratings given by the listeners (Figure 4.5). In the case of similar-
ity ratings, the Mauchly’s sphericity test revealed that the required sphericity
assumption was not achieved, and therefore a Greenhouse-Geiser correction
was applied to test the effects. The only clearly significant factor explaining
the observed variance in the similarity ratings was the similarity computation
approach (Wilks lambda = 0.43, F'(4,11) = 9.158, p < 0.005). The specific
pattern of significant differences between the tested computation approaches
makes the HYBRID metric to clearly stand out from the rest, while Lo-PCA
and TEMPO score low (but without statistical differences between them), and
CLAS-Pears-W; and 1G-MFCC (again without statistically significant differ-
ences between them) score between the two extremes. We did not find any
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Figure 4.5: Average playlist similarity rating and proportion of inconsistent playlists
for the subjective evaluation of the hybrid approach. Error bars indicate one standard
error of the mean.

significant effect of musicianship and listening expertise on the similarity rat-
ings.

In the case of inconsistency ratings, the Mauchly’s sphericity test confirmed
the assumption of sphericity. The same pattern and meaning, as for the simi-
larity ratings, was found for the inconsistency ratings: they were dependent on
the similarity computation approach, and most of them were generated by the
Lo-PCA and TEMPO methods, whereas the HYBRID method provided sig-
nificantly lower inconsistency ratings. No other factor or interaction between
factors was found to be statistically significant, but a marginal interaction ef-
fect of similarity computation approach and testing phase was found. This
effect means that some similarity computation methods (but not all) elicited
lower ratings as the evaluation progressed. The same pattern was obtained for
the inconsistency ratings. In conclusion, we found a similarity computation
method (HYBRID) that was clearly preferred over the rest and no effect other
than the computation method was responsible for that preference.

Again, only slightly above average user satisfaction with the similarity mea-
sures was achieved. Considering the means, the observed mean similarity rat-
ings were 2.9 for HYBRID and 2.6 for both 1G-MFCC and CLAS-Pears-W ;.
The observed mean playlist inconsistency was 0.2 for CLAS-Pears-Wj; and
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HYBRID, and 0.3 for 1G-MFCC approach. The observed rating values for
1G-MFCC and CLAS-Pears-W; are close to the ones obtained in the previ-
ous experiment (Section 4.4.4) tending to being equal.

4.8 Evaluations: Audio Music Similarity at
MIREX

In addition to the evaluations presented before, which are the standard or most
acknowledged methods, algorithms can be evaluated in the annual research
community-based initiative MIREX, coupled to the International Society for
Music Information Retrieval conference (ISMIR). MIREX provides a frame-
work for the formal evaluation of MIR systems and algorithms (Downie et al.,
2010; Downie, 2008). Among other tasks, MIREX allows for the comparison
of different algorithms for artist identification, genre classification, or music
transcription. In particular, MIREX allows for a subjective human assess-
ment of the accuracy of different approaches to music similarity by community
members, this being one of the central task within the framework (Audio Mu-
sic Similarity and Retrieval task). For that purpose, participants can submit
their algorithms as binary executables and the MIREX organizers determine
and publish the algorithms’ accuracies in predicting human-based similarity
ratings and runtimes. The underlying music collections are never published or
disclosed to the participants, neither before or after the contest. Therefore,
participants cannot tune their algorithms to the music collections used in the
evaluation process. The history of Audio Music Similarity and Retrieval task
counts six annual evaluations (in 2006, 2007, and 2009-2012) till the date of
writing this thesis. We submitted the proposed HYBRID and CLAS-Pears-
W s approaches during the 2009 and 2010 evaluation campaigns.

4.8.1 Methodology

In the MIREX’2009 edition, the evaluation of each submitted algorithm was
performed on a music collection of 7000 tracks (30 sec. excerpts), which were
chosen from IMIRSEL’s* collections (Downie et al., 2010) and pertained to 10
different genres (700 tracks from each genre). The genres included Blues, Jazz,
Country/Western, Baroque, Classical, Romantic, Electronica, Hip-Hop, Rock,
and HardRock/Metal.

For each participant’s approach, a 7000x7000 distance matrix was calcu-
lated. A query set of 100 tracks was randomly selected from the music collec-
tion, representing each of the 10 genres (10 tracks per genre). For each query
and participant approach, the 5 nearest-to-the-query tracks out of the 7000
were chosen as candidates (after filtering out the query itself and all tracks of
the same artist). All candidates were evaluated by human graders using the

*http://www.music-ir.org/evaluation/
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Evalutron 6000 grading system (Gruzd et al., 2007). For each query, a single
grader was assigned to evaluate the derived candidates from all approaches.
Thereby, the uniformity of scoring within each query was ensured. For each
query/candidate pair, a grader provided (i) a categorical broad score in the
set {0, 1, 2} (corresponding to “not similar", “somewhat similar", and “very
similar" categories), and (ii) a fine score in the range from 0 (failure) to 10
(perfection). The listening experiment was conducted by 50 graders (selected
from the authors of submitted systems and their colleagues), and each one of
them evaluated two queries. As this evaluation was completely out-of-sample,
our submitted systems were trained on the full ground truth collections re-
quired for the CLAS distance to infer semantic descriptors. The MIREX’2010
edition followed the same evaluation methodology on the same music collection
and with the same amount of graders expect for a minor change of the fine
score scale to a scale from 0 (failure) to 100 (perfection).

In addition to the subjective evaluation, a number of objective measure-
ments were conducted including neighborhood clustering by genre, number of
triangle inequality violations, hubs (tracks similar to many tracks) and orphans
(tracks that are not similar to any other tracks at N results) statistics.

4.8.2 MIREX 2009 results

We submitted both CLAS-Pears-W); and HYBRID distances. The overall
evaluation results are reproduced in Table 4.6.° Our measures are noted as
BSWHI1 for CLAS-Pears-Wj;, and BSWH2 for HYBRID. The results of the
Friedman test against the summary data of fine scores are presented in Fig-
ure 4.6a.

First, and most importantly, we found the HYBRID measure to be one
of the best performing distances in the MIREX 2009 audio music similarity
task. HYBRID was very close to PS1 (Pohle & Schnitzer, 2007), but worse
than the leading PS2 distance (Pohle & Schnitzer, 2009). However, no statis-
tically significant difference between PS2, PS1 and our HYBRID measure was
found in the Friedman test. Second, the CLAS-Pears-W; measure revealed
satisfactory average performance comparing to other distances with no sta-
tistically significant difference to the majority of the participant approaches.
In contrast to our subjective evaluation in Experiment 2 (Section 4.9.4), no
statistically significant difference between our HYBRID and CLAS-Pears-W
approaches was found. Nevertheless, CLAS-Pears-Wj; outperformed a large
group of poor performing distances with a statistically significant difference.
Despite the fact that we do not observe examples of stable excellent perfor-
mance in any of the participants’ algorithms, above-average user satisfaction

"Detailed results can be found on the official results webpage for MIREX’2009:
http://wuw.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_
Retrieval_Results
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Table 4.6: MIREX 2009 overall summary results sorted by average fine score. The
proposed approaches CLAS-Pears-W); and HYBRID are highlighted in gray.

Acronym | Authors (measure) Average Average
fine score broad score

PS2 Tim Pohle, Dominik Schnitzer (2009) 6.458 1.448
PS1 Tim Pohle, Dominik Schnitzer (2007) 5.751 1.262

BSWH2 | Dmitry Bogdanov, Joan Serra, Nicolas Wack, | 5.734 1.232
and Perfecto Herrera (HYBRID)

LR Thomas Lidy, Andreas Rauber 5.470 1.148
CL2 Chuan Cao, Ming Li 5.392 1.164
ANO Anonymous 5.391 1.126
GT George Tzanetakis (Marsyas) 5.343 1.126

BSWH1 | Dmitry Bogdanov, Joan Serra, Nicolas Wack, | 5.137 1.094
and Perfecto Herrera (CLAS-Pears-Wy)

SH1 Stephan Hiibler 5.042 1.012
SH2 Stephan Hiibler 4.932 1.040
BF2 Benjamin Fields (mfccl0) 2.587 0.410
ME2 Francois Maillet, Douglas Eck (sda) 2.585 0.418
CL1 Chuan Cao, Ming Li 2.525 0.476
BF1 Benjamin Fields (chrl2) 2.401 0.416
ME1 Francois Maillet, Douglas Eck (mlp) 2.331 0.356

Table 4.7: Metric quality of the best performing approaches submitted to
MIREX’2009: mean genre match with a query within top 5, 10, 20, and 50 retrieved
results, the percent of orphans, maximum hub size, and a percent of triangle inequality
holdings.

| Distance | CLAS [ HYBRID | PS2 |
Mean genre match accuracy (with an artist filter):
at top-5 results 0.445 0.510 0.499
at top-10 results 0.432 0.495 0.496
at top-20 results 0.416 0.476 0.498
at top-50 results 0.394 0.448 0.496
% of files never similar at 5 results 0.038 0.097 0.795
% of files never similar at 10 results 0.008 0.041 0.718
% of files never similar at 20 results 0.002 0.017 0.582
% of files never similar at 50 results < 0.001 0.004 0.251
Maximum number of times a track was similar:
at b results 20 43 314
at 10 results 34 93 327
at 20 results 61 170 355
at 50 results 155 310 437
Triangular inequality holding rate 90.69% 95.91% | 99.96%

(with the maximum being ~ 6.5 out of 10) was achieved by the majority of
the approaches, including our HYBRID and CLAS-Pears-W ), distances.
Unlike our approach, PS1 proposes a combination of a MFCC-based audio
similarity measure (Mandel & Ellis, 2005) with a Fluctuation-Pattern based
similarity measure (Pampalk, 2006). In turn, PS2 expands this measure and
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Figure 4.6: MIREX’2009 (a) and MIREX’2010 (b) Friedman’s test on the fine scores.
Figure obtained from the official results web page.
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employs additional timbral information (spectral contrast features, harmonic-
ness and percussiveness). Both measures account for symmetry, which may
be promising for further performance improvement. Similarly, LR (Lidy &
Rauber, 2009) employs rhythm histograms together with timbral information.
We may conclude that it is advisable to incorporate richer rhythmic represen-
tation for better similarity measurement. Interestingly, our CLAS approach
was found to perform comparably to the GT (Tzanetakis, 2009) based on an
Euclidean distance over spectral centroid, rolloff, flux and MFCCs together
with their temporal evolution on short audio segments of the tracks (aver-
age fine scores of 5.137 and 5.343, respectively). This result corroborates our
findings of comparable above-average subjective quality of CLAS and timbral
1GMFCC approaches (Section 4.4.4: average similarity ratings 2.6 vs 2.6 out
of 5, respectively; Section 4.7.4: average similarity ratings of 3.0 vs 3.0).

In addition, MIREX results provide insights on the quality of the proposed
similarity measures (see Table 4.7). We can see that our approaches violated
triangular inequalities more than the leading PS2 measure. Nevertheless, they
provided a lower amount of "orphans”, i.e., the tracks retrieval of which is sig-
nificantly complicated as they never occur in the top-N lists. We can also
assess the hubness effect, that is undesired frequent appearance of some tracks
in the nearest neighbor lists of many other tracks, using the k-occurrence mea-
sure (Flexer et al., 2012). This measure represents the number of times the
track occurs in the first k nearest neighbors of all the other tracks in the data
base. We evidenced lower maximum k-occurrence at top 5, 10, 20, and 50 lists.
This might suggest that the CLAS approach is effective against hubs.

4.8.3 MIREX 2010 results

In contrast to MIREX’2009, we solely submitted an updated version of HY-
BRID distance (HYBRID-2010). More exactly, we updated the classifier-based
distance component adding 4 new collections, covering genre, moods, and voice
gender, and timbre color: the GEL, MCL, OGD, and OTB (see Table 3.2). The
overall evaluation results are presented in Table 4.8.5 Some of the MIREX’2009
approaches were resubmitted by other participants: PS2 measure from previous
evaluation is now noted as PS1; GT measure is resubmitted in three versions,
TLN1, TLN2, and TLN3. In addition, some of the approaches were updated:
PSS1 stands for an updated version of PS2; our updated HYBRID-2010 mea-
sure is noted as BWL1. The results of the Friedman test against the summary
data of fine scores are shown in Figure 4.6b.

As expected, all submitted systems outperformed a random baseline (RZ1).
We found our HYBRID-2010 distance to perform adequately well comparing to
other submitted systems. Though the SSPK2, PS1, PSS1 systems outperform

SDetailed results can be found on the official results webpage for MIREX’2010:
http://wuw.music-ir.org/mirex/2010/index.php/Audio_Music_Similarity_and_
Retrieval_Results
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Table 4.8: MIREX 2010 overall summary results sorted by average fine score. The
proposed HYBRID-2010 approach is highlighted in gray.

Acronym | Authors (measure) Average Average
fine score broad score
SSPK2 Klaus Seyerlehner, Markus Schedl, Tim Pohle, | 56.642 1.248
and Peter Knees
PS1 Tim Pohle, Dominik Schnitzer (2009) 55.080 1.228
PSS1 Tim Pohle, Klaus Seyerlehner, and Dominik | 54.984 1.212
Schnitzer (2010)
BWL1 Dmitry Bogdanov, Joan Serra, Nicolas Wack, | 49.704 1.078
and Perfecto Herrera (HYBRID-2010)
TLN3 George Tzanetakis, Mathieu Lagrange, and | 46.604 0.968
Steven Ness (Marsyas)
TLN2 George Tzanetakis, Mathieu Lagrange, and | 46.544 0.970
Steven Ness (Marsyas)
TLN1 George Tzanetakis, Steven Ness, and Mathieu | 45.842 0.940
Lagrange (Marsyas)
RZ1 Rainer Zufall (random baseline) 16.668 0.240

our approach according to the average fine and broad scores, no statistically
significant difference between these approaches and our approach was found
in the Friedman test. The newly introduced SSPK2 approach (Seyerlehner
et al., 2010) utilizes patterns of the spectral shape, spectral contrast, and
correlation between bands, onset detection information (spectrum magnitude
increments in individual bands for consequent blocks) and modified fluctuation
pattern features. Again, as in the case of MIREX’2009 evaluation, none of the
submitted systems performed with the user satisfaction greater than above-
average (with the maximum average fine score being ~ 56.6 out of 100).

4.8.4 Discussion

Comparing the results of MIREX’2009 and MIREX’2010 evaluations, we can
see that lower average scores were obtained for the HYBRID-2010 approach
than for HYBRID. Nevertheless, the same applied to other participants who
have also presented their approaches to both 2009 and "2010 evaluations (e.g.,
PS1 and PSS1 in MIREX’2010 vs PS2 in MIREX’2009, TLN1, TLN2, and
TLN3 vs GT) with no changes or minor changes. In fact, no approach sub-
mitted to the latter evaluation has achieved the best performance of the "2009.
This can be explained due to the change in the ratings scales, or due to insuf-
ficient size of participants and evaluated queries in both evaluations.

In general, relying on the obtained subjective evaluation results, we may
conclude that HYBRID approach is better or comparable to CLAS-Pears-W s
and that both approaches are comparable to the state-of-the-art music simi-
larity measures. Only the winning approach proposed by Pohle & Schnitzer
(2009) and, expectedly, by Seyerlehner et al. (2010) overcome our classifier-
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based distance with statistical significance. Furthermore, our approaches are
probably less hub-prone, as they returned lower k-occurrence metric. Further
analysis of hubness of our measures following other metrics in the existing
methodology (Flexer et al., 2012) will be of interest, but has been left out of
this thesis’s scope.

On the other side, the results that no statistically significant difference was
found between many of approaches in the 2009 and 2010 evaluation might
be taken with caution. Further insights on the statistical problems of con-
ducted evaluations can be found in the study by Urbano et al. (2011), where
discriminative power and stability of the results in the context of Audio Music
Similarity and Retrieval task are discussed.

4.9 Conclusions

In this chapter we have presented, studied, and comprehensively evaluated,
both objectively and subjectively, a number of new and existing content-based
music similarity measures. We studied a number of simple approaches, each of
which apply a uniform distance measure for overall similarity. We considered 5
baseline distances, including a random one, and explored the potential of two
new conceptually different distances not strictly operating on the often exclu-
sively used musical timbre aspects. More concretely, we presented a simple
tempo-based distance which can be especially useful for expressing music sim-
ilarity in collections where rhythm aspects are predominant. Using only two
low-level temporal descriptors, BPM and OR, this distance is computationally
inexpensive, yet effective for such collections. To this respect, our subjective
evaluation experiments revealed a slight preference by listeners of tempo-based
distance over a generic euclidean distance. In addition, we investigated the
possibility of benefiting from the results of classification problems and trans-
ferring this gained semantic knowledge to the context of music similarity. To
this end, we presented a classifier-based distance (CLAS) which makes use of
high-level semantic descriptors inferred from the low-level ones. This distance
covers diverse groups of musical dimensions such as genre and musical cul-
ture, moods and instruments, and rhythm and tempo. The classifier-based
distance outperformed all the considered simple approaches in most of the
ground truth music collections used for objective evaluation. Contrastingly,
this performance improvement was not seen in the subjective evaluation when
compared with the best performing baseline distance considered. In general,
the classifier-based distance represents a semantically rich approach to music
similarity comparable to the state-of-the-art. In spite of being based solely on
audio content information, this approach can overcome the so-called “semantic
gap” in content-based music similarity and provide a semantic explanation to
justify the retrieval results to a user.

We explored the possibility of creating a hybrid approach, based on the
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studied simple approaches as potential components. We presented a new
distance measure (HYBRID), which combines a low-level Euclidean distance
based on principal component analysis (PCA), a timbral distance based on
single Gaussian MFCC modeling, our tempo-based distance, and a high-level
semantic classifier-based distance. The HYBRID distance outperformed the
CLAS in the conducted large-scale cross-collection evaluation and the objec-
tive evaluation within MIREX’2009, both of which were based on a genre
match between the queries and the results as the criteria. In contrast, the
evaluation on the 17 other ground truth collections revealed better perfor-
mance just for a single collection, comparable performance on 7 collections,
and worse performance on the rest of collections. Such different results can be
explained by the fact that we evaluate conceptually different similarity facets,
and by the possible biases in ground truth music collections. Nevertheless,
the proposed hybrid approach revealed the best performance for listeners in
a subjective evaluation. Moreover, we participated in a subjective evaluation
against a number of state-of-the-art distance measures, within the bounds of
the MIREX’2009 and MIREX’2010 audio music similarity and retrieval tasks.
The results revealed high performance of our hybrid measure, with no sta-
tistically significant difference from the best performing methods submitted.
In general, the hybrid distance represents a combinative approach, benefiting
from timbral, rhythmic, and high-level semantic aspects of music similarity.
The proposed CLAS and HYBRID approaches have several limitations,
and we outline a number of improvements to be considered in further research:

e Improvement of the classifier-based distance by addition of more semantic
musical descriptors (expanding ground truths and classifiers). Descrip-
tors characterizing specific sub-genres, instruments, and epochs of music,
will be of interest. We expect this information to be very important to be
included in our CLAS approach. Given that separate dimensions can be
straightforwardly combined with this distance, such additional improve-
ments are feasible and potentially beneficial.

e Improvement of the quality of our ground truth collections and classi-
fiers. We are aware that some of our current classifiers might not be
yet enough effective due to their considerably low accuracies. In partic-
ular, some of the datasets we use are unbalanced while it is known that
better classification strategies can be applied to deal with such datasets.
For instance, Lin et al. (2011) propose to use easyEnsemble approach
to compensate imbalance with a linear combination of SVMs trained on
balanced amount of examples.

e Inclusion of metadata information for music similarity. We did not con-
sider metadata in our study, while it is known to improve music similar-
ity measurements, as our main intention was to improve content-based
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approaches. Nevertheless, the proposed CLAS approach can be straight-
forwardly fused with collaborative filtering approaches by adding extra
dimensions in the form of user ratings or social tags.

Further improvement of the classifier-based distance by alternative com-
binations of the classifiers’ output probabilities.

Improvement of the TEMPO distance component of the HYBRID ap-
proach. In our study, we have employed only basic rhythmic information
(BPMs and onset rates) to construct this distance. Nevertheless, we
have evidenced an importance of a richer rhythmic description (Pohle &

Schnitzer, 2009) in MIREX evaluations.

Weighting optimization for the components of HYBRID approach (in the
present study it is done empirically).

Metric optimization to reduce hubness and triangle inequality violations.
In particular, mutual proximity optimization (Schnitzer et al., 2011) is
shown to improve the quality of music similarity measures.






Music recommendation based
on preference examples

5.1 Introduction

In the previous chapter we considered non-personalized approaches to mu-
sic similarity. We have seen that the state-of-the-art approaches, including
the proposed semantic and hybrid content-based approaches are moderately
effective (i.e., providing up to above-average user satisfaction) in measuring
similarity between music tracks starting from raw audio. However, solving a
problem of music similarity is only a part of a more complex problem of music
recommendation as we have noted in Section 2.3.1. In other words, existing
research studies focused on solving a problem of music similarity might not be
necessarily transferable to a problem of music recommendation. While such
studies can represent the query-by-example use-case of a recommender system,
their evaluations are focused on measuring similarity instead of the relevance
and user satisfaction by the provided recommendations. Therefore, if one wants
to build a recommender system rather than an impartial search engine, eval-
uation of similarity approaches in the context of music recommendation, i.e.,
incorporating knowledge about music preferences and assessing the relevance
of the recommended items, is of crucial importance. An interesting question
we might ask to illustrate the conceptual difference between music similarity
and distance-based music recommendation is whether user satisfaction with
recommendations will correlate with the quality of underlying similarity mea-
surements. We will address this question by comparing some of the similarity
measures considered in previous chapter in the context of music recommenda-
tion.

In this chapter, we focus on recommendation approaches starting from the
proposed preference elicitation strategy. Specifically, we are interested in the
use-case of music recommendation and discovery when generating a list of
recommendations is based on a set of preferred tracks provided by the user,
as opposed to querying by a single example, and study methods based on
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the user profiles obtained with the proposed preference elicitation strategy.
We employ both audio content and metadata information sources and mostly
consider distance-based approaches. Distance-based approaches operate on
track representations in a feature space. They employ similarity measurement
between tracks in a target music collection and track in the preference set as
a criteria for recommendation. In addition, we apply probabilistic decisions,
which rely on a probability distribution of user preferences in a feature space
and are able to estimate likelihood of a track being liked by the listener.

5.2 Formalization of a track recommendation
problem

Let us provide a formal definition of the problem of music track recommenda-
tion, in the context of which we will consider all recommendation approaches
in the present study. Given a preference set of tracks of a listener: U =
{U,...,Un} by artists Ay = {Ay,, ..., Av,, } and a set of tracks in a tar-
get music collection C = {C4,...,CL} by artists Ac = {4¢,, ..., Ac, }, such
as Uy # U,Cy # Cp if k # [, recommend N tracks R = {Ry,..., Ry}
by artists Ap = {ARr,,...,Ary} such as R; € C,R; ¢ U, Ar ¢ Ay and
Ry # R;,ARr, # Ag, when k # [. The set R should contain tracks rele-
vant to the user. In particular, we require an artist filter to be applied for each
approach for evaluation reasons. In what follows we will call the tracks in R
recommendation outcomes, and the tracks in a preference set U recommenda-
tion sources.

Distance-based approaches can vary in their underlying principles, e.g.,
employing a distance to the user centroid (as a rough approximation of user
preferences) or a distance to the user’s preference set (maintaining information
about all the tracks in the preference set). In turn, probabilistic approaches
may utilize a probability distribution function in order to model user pref-
erence, and rank tracks in music collection with respect to this function (a
Gaussian mixture model in this thesis). We highlight the difference between
such strategies in Figure 5.1.

5.3 Formalization of distance-based
recommendation approaches

Here we provide a formal recommendation algorithm which we follow in the
majority of considered distance-based approaches. It relies on the tracks in
the user’s preference set and searches for N recommendations within a target
music collection. For each track X in the user’s preference set (a recommen-
dation source), we apply a distance measure to retrieve the closest track Cx
(a recommendation outcome candidate) from the music collection and form
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Figure 5.1: Graphical representation distance-based approaches and approaches
working with probability distribution function of preference on the example of GMM
(here a feature space is reduced to two dimensions and the case of one recommended
track for illustration purpose). Solid lines outline recommendation outcomes (items
marked by stars) and the respective recommendation sources. The dashed lines in-
dicate regions of equal probability of the respective components of the GMM in the
case of the probabilistic approach.

a triplet (X, Cx,distance(X,Cx)). We sort the triplets by the obtained dis-
tances, delete the duplicates of the recommendation sources (i.e., each track
from the preference set produces only one recommendation outcome), and
apply an artist filter. We return, as recommendations, the recommendation
outcome candidates from the top NN triplets. If it is impossible to produce
N recommendations due to the small size of the preference set (less than N
tracks) or because of the applied artist filter, we increase the number of possible
recommendation outcome candidates per recommendation source (Ng).

Pseudo-code of the distance-based recommendation procedure.

set IGNORE_ARTISTS to artists in preference set
remove tracks by IGNORE_ARTISTS from music collection
set N_O to 1

set N to 15

while true:
c set POSSIBLE_RECS to an empty list
for track X in preference set:
set X_NNS to N_DO closest to X tracks in music collection
for track C_X in X_NNS:
append triplet(X,C_X,distance(X,C_X)) to POSSIBLE_RECS
sort POSSIBLE_RECS by increasing distance

set RECS to an empty list
for triple(SOURCE,OUTCOME,DISTANCE) in POSSIBLE_RECS:
if OUTCOME occurs in RECS:
next iteration
if SOURCE occurs in RECS >= N_0 times:
next iteration
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Figure 5.2: Graphical representation of distance-based approaches for N = 4, and
No =4 (a) vs No = 1 (b). The squares represent tracks from the preference set, while
the circles represent tracks in target music collection. The arrows correspond to the
minimum distances to the preference set resulting in recommendations in accordance
with No limit.

append triple (SOURCE,OUTCOME,DISTANCE) to RECS
if length of RECS list is N:
return outcomes from RECS as recommendations
set N_O to N_O + 1

Therefore, we consider the parameter No, which limits a number of pos-
sible outcomes per preference example. The larger No is, the closer the rec-
ommendation outcomes are to the recommendation sources, which leads to
more accurate (in terms of similarity) but less diverse (in terms of employed
recommendation sources) recommendations. When No=DN, any track from
the preference set can hypothetically be a recommendation source for all Ny
recommendations. Contrastingly, No=1 produces the most diverse results, re-
ducing the bias produced by track density of the target music collection in the
feature space. Figure 5.2 demonstrates this difference.

5.4 Proposed approaches

In this section we propose the content-based, metadata-based and hybrid ap-
proaches based on preference examples.

5.4.1 Semantic/hybrid content-based approaches

For our content-based approaches, we apply audio feature extraction as de-
scribed in Section 3.4. These features cover multiple facets of music, such as
timbre, rhythm, tonality, and semantic categories. We propose a number of
approaches to generate music recommendations, operating on the computed
low-level features and a subset of the retrieved semantic descriptors. Our
idea is to apply the proposed and validated semantic classifier-based similarity
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(CLAS, see Section 4.3.2). Therefore, we use the subset of descriptors, corre-
sponding to this semantic distance (i.e., the descriptors inferred using the G1,
G2, G3, CUL, MHA, MSA, MAG, MRE, MAC, MEL, RPS, RBL, OPA, and
OVI collections described in Table 3.2). The distance is defined as a weighted
Pearson correlation distance between vectors. Moreover, we consider the pro-
posed hybrid distance (HYBRID, see Section 4.6) being a linear combination
of CLAS with an Euclidean distance based on principal component analysis, a
Kullback-Leibler divergence based on single Gaussian MFCC modeling, and a
tempo-based distance. In addition, we consider a probabilistic model working
on the same subset of semantic descriptors.
The proposed approaches are:

1. Semantic distance to user centroid (SEM-MEAN). As the simplest ap-
proach, we can summarize the user model across individual tracks to a
single point in the semantic descriptor space, which can be seen as a
considerably rough representation of user preferences. As such, we com-
pute the mean point, i.e., the centroid (Salton et al., 1975), for the user’s
preference set. Therefore, we are able to rank the tracks according to
the semantic distance to the mean point and return N nearest tracks as
recommendations.

2. Semantic distance to preference set (SEM-N and SEM-1). Alternatively,
we consider all individual tracks instead of simplifying the user model
to a single point. Thus, we take into account all possible areas of pref-
erences, explicitly specified by the user, while searching for the most
similar tracks. We define a track-to-set semantic distance as a minimum
semantic distance from a track to any of the tracks in the preference
set. IV nearest tracks are returned as recommendations according to this
distance. To this end, we apply the formal procedure described in Sec-
tion 5.3. As we have seen, this procedure can be tuned by specifying No
to produce different levels of diversity in recommendations. We decided
to evaluate both No—=N and Np—1 scenarios marked as SEM-N and
SEM-1 approaches, respectively.

3. Semantic/low-level distance to preference set (HYBRID-1). This ap-
proach is a counterpart of SEM-1 with the only difference in the under-
lying hybrid distance measure (HYBRID, see Section 4.6).

4. Semantic Gaussian mizture model (SEM-GMM). Finally, we propose to
represent the user model as a probability density of preferences in the
semantic space. We employ a Gaussian mixture model (GMM) (Bishop,
2006), which estimates a probability density as a weighted sum of a
given number of simple Gaussian densities (components). The GMM
is initialized by k-mean clustering, and is trained with an expectation-
maximization algorithm (Bishop, 2006). We select the number of com-
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ponents in the range between 1 and 20, using a Bayesian information
criterion (Bishop, 2006). Once we have trained the model, we compute
the probability density for each of the tracks. We rank the tracks ac-
cording to the obtained density values' and return the N most probable
tracks as recommendations.

5.4.2 Refinement by genre metadata

We consider the inclusion of metadata in purpose to refine recommendations
yielded by SEM-1 and HYBRID-1. Our intention is to include the minimum
amount of metadata, preferably being low-cost to gather and maintain, but
however sufficiently descriptive for effective filtering. As such we decided to
focus on genre/style information. Genre is often used by the listeners as a unit
of expression of music preferences (Rentfrow & Gosling, 2003), and may be
considered as an important preference factor related to the referential meaning
of music (Section 2.2.2). A number of studies select genre to describe listeners’
music preference (Dunn et al., 2011; Hoashi et al., 2003) and as an evaluation
criterion for music similarity (Section 2.3.1). Current content-based classifi-
cation approaches are still considerably weak in recognizing some genres (see
Table 3.3 in Section 3.4.2). Furthermore, most of the existing models only
deal with broad genres (such as jazz, classic, folk), and with small amount of
categories (Sturm, 2012), meanwhile the models with the amount of categories
larger than 10 perform poorly (for example, see Schindler et al. (2012)). To
the best of our knowledge, we are not aware of research studies on classifica-
tion of particular sub-genres (styles) of music, leaving aside the attempts for
auto-tagging (Sordo, 2012). In an informal preliminary study, we considered
such a task of sub-genre classification. In our evaluation we have observed
a low accuracy (=~ 20%, with a random baseline being 2%) of an SVM clas-
sifier trained to differentiate 50 musical styles on the same features as used
in Section 3.4.2. We hypothesize that simple genre/style metadata tags can
be a reasonable source of such information, and that it would differ from the
information captured by the state-of-the-art content-based distances. While
micro-level detailed genre/style information still cannot be inferred reliably
by means of audio, this information can be obtained for the music collections
by manual expert annotations, from social tagging services, or can be already
available in the ID3? tags for audio files or in other metadata description for-
mats generated in the music production stage.

Therefore, we propose a simple filtering to refine the SEM-N and HYBRID-1
approaches (marked as SEM-GENRE-1 and HYBRID-GENRE-1, respectively).
We apply the same sorting procedure (Section 5.3), but we solely consider the
tracks of the same genre labels as possible recommendation outcomes. More-

1Under the assumption of a uniform distribution of the tracks in the universe within the
semantic space.
*http://www.id3.org/
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over, as discussed, we suppose that increasing the specificity of genre tags to
certain degree (e.g., from “rock” to “prog rock”) would increase the quality of
filtering.

To this end, we annotate the target music collection and the user’s pref-
erence set with genre tags. As a proof-of-concept, we opt for obtaining artist
tags with the Last.fm API? to simulate manual single-genre annotations of
each track. Last.fm provides tag information for both artists and tracks. We
opt for artist tags due to the fact that track tags tend to be more sparse, gen-
erally more difficult to obtain, and can be insufficient for music retrieval in the
long tail. To this end, we assign the same tags to the tracks as were assigned
to the artists. We analyze a set of possible tags suitable for the target music
collection. For each track, we select the Last.fm artist tags with the maximum
weight (100.0) and add them to the pool of possible tags for genre annotation
(“top-tags”). We then filter the pool deleting the tags with less than 100 occur-
rences (this threshold was selected in accordance with the top-tag histogram
and the collection size) and blacklisting the tags which do not correspond to
genres (“60s”, “80s”, “under 2000 listeners”, “japanese”, “spanish”, etc.) We then
revise the music collection to annotate each track with a single top-tag. For
each track, we consider the candidates among its artist tags, selecting the tags
with the maximum possible weight, which are also present in the top-tag pool.
If there are several candidates (e.g. both “rock” and “prog rock” have weight
100.0 and are present in the top-tag pool), we select the top-tag, which is the
least frequent in the pool. Thereafter, we annotate the tracks from the user’s
preference set in the same manner using the created pool. The idea behind this
procedure is to select the most salient tags (top-tags) for the music collection,
skip possible tag outliers, and annotate each track with the most specific of
these top-tags keeping the maximum possible confidence level.

Pseudo-code of the genre-annotation procedure.

set TOP_TAGS to an empty list
for track X in music collection:
retrieve a list X_TAGS of artist tags and their weights on Last.fm
for tag T and weight W in X_TAGS:
if W == 100:
append T to TOP_TAGS

compute histogram TOP_TAGS_HIST of tags in TOP_TAGS

remove tags with less than 100 occurences in TOP_TAGS_HIST from TOP_TAGS
remove tag dublicates in TOP_TAGS

remove blacklisted tags from TOP_TAGS

for track X in music collection:
retrieve a list X_TAGS of artist tags and their weights on Last.fm
remove tags not present in TOP_TAGS from X_TAGS
set X_TAGS_MAX_W to the maximum weight among tags in X_TAGS

Shttp://www.last.fm/api
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remove tags with weight < X_TAGS_MAX_W from X_TAGS
sort the list X_TAGS by the ascending number of occurences in TOP_TAGS_HIST
annotate track X by the first tag in the list X_TAGS

5.4.3 Artist similarity based on editorial metadata
(DISCOGS-1)

In addition to our previous approaches, which employed audio content infor-
mation, we also consider a purely metadata-based approach. We aim for a
lightweight method suitable for large-scale music collections, in particular con-
taining the long-tail of artists and tracks, while working with publicly available
data. We propose a novel artist-level recommendation approach which is based
exclusively on editorial metadata. To this end, we propose to use a public
database of music releases, Discogs.com,* which contains extensive user-built
information on artists, labels, and their recordings. We construct a user profile
using editorial metadata about the artists from the user’s preference set instead
of computing audio features for each track. More concretely, for each artist
we retrieve a descriptive tag cloud, containing information about particular
genres, styles, record labels, years of release activity, and countries of release
fabrication. We then employ latent semantic analysis (LSA) (Deerwester et al.,
1990; Levy & Sandler, 2008; Sordo et al., 2008) to compactly represent each
artist as a vector, and match the user’s preference set to a music collection to
produce recommendations.

The approach we proposed works exclusively on editorial metadata found
in the Discogs.com database. The dump of this database is released under
the Public Domain license,® which makes is useful for different music applica-
tions, and in particular for research purposes of the MIR community. While
there exist similar music services, such as public MusicBrainz® database, or
proprietary Last.fm or AllMusic,” we opt for Discogs as it contains the largest
catalog of music releases and artists, while being known for accurate curated
metadata, which includes comprehensive annotations of particular releases.

The database contains the extensive information about up to 3,932K re-
leases, 2,848K artists, and 468K labels.® In particular, for each artist this in-
formation includes a list of aliases, members (in the case an artist is a group),
and group memberships (in the case an artist is a single person). Moreover
it contains a list of releases featured by the artist, including albums, singles
and EPs, and a list of appearances on the releases headed by other artists or
compilations. A release corresponds to a particular edition of an album, sin-
gle, EP, etc., and the releases related to the same album, single, or EP, can be

*http://discogs.com
*http://www.discogs.com/data/
Shttp://musicbrainz.org
"http://www.allmusic.com

8As on May 21, 2013.
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grouped together into a “master release”. Each release contains genre, style,
country and year information. Genres are broad categories (such as classical,
electronic, funk/soul, jazz, rock, etc.) while styles are more specific categories
(such as neo-romantic, tech house, afrobeat, free jazz, viking metal, etc.) In
total the database counts up to 15 genre categories and 329 styles.

For each artist in the database we create a tag-cloud using genre, style,
label, country, and year information related to this artist. To this end, we
retrieve three lists of releases (MAIN, TRACK, EXTRA), where the artist
occurs, respectively, as (1) main artist, heading the release, (2) track artist,
for example being on a compilation or with a guest appearance on a release,
(3) extra artist, being mentioned in the credits of a release (usually related to
the activity such as remixing, performing, writing, arranging, producing, etc.)

For each found release related to the artist, we retrieve genre, style, label,
country, and year tags. For each of the three lists, we merge releases accord-
ingly to their master release, keeping the genres, styles, and countries, which
are present in at least one of the releases (i.e., applying a set union). Concern-
ing the release years, we attempt to approximate the authentic epoch, when the
music was firstly recorded, produced, and consumed. As a master release can
contain reissues along with original releases, we keep the earliest (the original)
year and, moreover, propagate it with descending weights as following:

Wyti = W, % 0.75" i € {1,2,3,4,5} (5.1)

where W, is the original year y, and 0.75 is a decay coefficient. For exam-
ple, if the original year “y” is 1995, the resulting year-tag weights will be
Wiggs = 1.0, Wigga = Wiggs = 0.75, Wigg3 = Wiggr ~ 0.56, Wiggas = Wiggg ~
0.42, W1991 = W1999 ~ 0.32, W1990 = W2000 ~ 0.24.

Thereafter, we summarize MAIN, TRACK, and EXTRA lists of the artist
to a single tag-cloud. We assume a greater importance of tag annotations
for the main artist role in comparison to track artists or extra artists; e.g.,
tags found on an artist’s album are more important than the ones found on a
compilation. We empirically assign the weights to these three groups of artist
roles: 1.0 for main artists and 0.5 for both track and extra artists. As well,
we assign further weights to tags according to their category: 1.0 for genres,
styles, and labels, and 0.5 for years and countries, rescaling the artist tag-cloud.
In particular, we decided to give equal importance to label information as to
genres and styles. The rational behind grounds on the hypothesis that record
label information gives a very valuable clue to a type of music, especially in
the long-tail for the case of niche labels.

Finally, we propagate artist tags using the artist relations found in the
database, such as aliases and membership relations. We suppose related artists
to share similar musical properties and, therefore, assure that artists with low
amount of releases will obtain reasonable amount of tags. To this end, for
each artist we add a set of weighted tag-clouds of all related artists to the
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associated tag-cloud. We select a propagation weight of 0.5 and apply only
1-step propagation; i.e. tags will be propagated only between artists sharing
a direct relation. Figure 5.3 presents an example of the proposed annotation
procedure.

Following the described procedure we are able to construct tag-clouds for
each artist in the Discogs database which together form a sparse tag matrix.
An example of generated tag-cloud is presented in Figure 5.4. More examples
can be found in Appendix B. To simplify the obtained matrix, for each artist we
apply additional filtering by means of erasing the tags with weight less than 1%
of the artist’s tag with the maximum weight. We then apply latent semantic
analysis (Deerwester et al., 1990) to reduce the dimensionality of the obtained
tag matrix to 300 latent dimensions. Originally being applied for natural
language processing, this technique allows for finding a set of concepts (latent
variables) by analysis of relationships between a set of documents and the terms
they contain. LSA relies on singular value decomposition of a document /term
matrix and, in principle, assumes that words that are close in meaning will
occur close together in text. Levy & Sandler (2008) and Sordo et al. (2008)
have demonstrated the application of LSA to music domain, in particular,
for tag-based music similarity. Similarly, we apply LSA on our artist tag
matrix. Afterwards, Pearson correlation distance (Celma, 2008; Gibbons &
Chakraborti, 2003) can be computed on the resulting topic space as a measure
of similarity between artists. Once we have matched the annotated artists to
the tracks in our music collection and the user’s preference set, we retrieve
recommendations applying the tag-based distance by the formal procedure
(Section 5.3).

5.4.4 Possible approaches out of consideration

In the pre-analysis we have also considered several other probabilistic mod-
els, which included kernel density estimation and Bayesian networks (Bishop,
2006), and discriminative approaches, such as one-class SVM (Chang & Lin,
2011), representation of music preferences as a convex hull in the feature space,
and density-based clustering (Ertoz et al., 2003) starting from the preference
set. These approaches were discarded from subjective evaluation due to no
evident advantage in an informal evaluation by the author and close collabo-
rators.

5.5 Baseline approaches

We consider a number of baseline approaches to music recommendation work-
ing on audio content and metadata. Specifically, we take two content-based
approaches working on the low-level timbral description (MFCCs), which are
the standard descriptors for lots of MIR tasks including music recommendation
(Section 2.3.1). Considering metadata-based approaches, one of the baselines



5.5. BASELINE APPROACHES 91

Artist
(Drexciya)

\

retrieve releases

as main artist (MAIN) as track artist (TRACK) as extra artist (EXTRA)
release 1-1 release 2-1 release 3-1 release 4-1 release 5-1 release 6-1
N%ptune's Lair Drexclya 3 Technophunk  Electro Boogie Electronic Tresor 2000
[12"] [cd] [ed] Warfare [12"]  [cd]

g:Electronic g: Electronlc g:Electronic g:Electronic g:Electronic g:Electronic
s:Techno,Electro s:Ele s:House,Techno s:Electro s:Electro s:Techno
|:Tresor I: Rephlex I:Rumour |:Studio !K7, l:Underground l:Tresor
y:1999 y: 1 Records Rough Trade Resistance y:2000
c:Germany c UK e y:1995 y:1999 . y:1996 c:Germany

c:UK c:Germany cus
release 1-2 release 2-2
Neptune's Lair Drexciya 3 release 3-2 release 4-2 release 5-2
[2x12"] [12"] Techno[_;ghunk [Dzrezgllya 3 Electronic Warfare

- X 3

g:Electronic g:Electronic M ikt (12" promoj
s:Electro s:Electro g:Electronic g:Electronic g:Electronic
I:Tresor l:Submerge s:House,Techno s:Electro S:Electro
y:2010 y:2003 I:Rumour I:Studio 'K7 j:Underground
c:Germany cus Records y:1999 Resistance

y:1999 c:Germany y:1996

c:UK cus

group by master release and propagate original year

v v

master master master master master master

release 1 release 2 release 3 release 4 release 5 release 6
Neptune's Lair Drexciya 3 Technophunk  Drexciya 3 Electronic Tresor 2000
Warfare
g:Electronic=1\ g:Electronic=1 g:Electronic=1, g:Electronic=1 ‘g:Electronic=1\ /g:Electronic=1
s:Techno=1 | s:Electro=1 | s:House=1 | s:Electro=1 | s:Electro=1 | s:Techno=1
| s:Electro=1 ) I:Rephlex=1 wenees | S:Techno=1 I:Studio 'K7=1 | .......... } l:Underground | } I:Tresor=1
I:Tresor=1 I:Submerge=1 I:Rumour I:Rough Trade=1 Resistance=1, y:2000=1
y:1999=1 y:1994=1 | Records=1{ :1999=1 ¥ 1996=1 G Germany 1f
|c:German 1 “cUK=1 | ¥:1999=1 \c:Germany=1 1 Tcus=1 -
\ : UK=1" /2 \ / \
N 7 o S’ N
/y:1994=0.56 /y:1998=0.56
\ ¥:1995=0.75 | [ y:1999=0.75 |
{ ) 'y:1996=1 ) "y:2000=1
f y:1997=0.75 ¢ y:2001=0.75 ¢
6 1v-1998=0.56 1Y:2002=0.56

Wiaim = 1 Whrgack = 0.5 Wextaa = 0.5
» -
Ll <

summarize tag weights of master releases to an artist tag-cloud
weighten tags by category (genre, style, label, year, country)

Woeountay= 0.5

Related artist 1 > :
Abstract Thought (alias) / Related artist ...
P — ' tag-cloud 4 i
' tag-cloud ‘; — }  tag-cloud )
\ p propagate tags from related artists AN

Wretareo=0.5

Related artist 2

g -
Gerald Donald (member) W:Electronic = 138.0

J s:Techno = 108.25 Wheureo=0.5
s:Electro = 73.0
l:Underground Resistance = 34.25 |

) tag-cloud ) c:US = 3%35
C f _ L s:House = 28.75
s Wransreo=0.5 S:Acid = 17.25
- c:UK = 14.625 r
c:Germany = 11.25
11992 = 7.125

Figure 5.3: An example of the proposed artist annotation based on editorial meta-
data from Discogs. Three lists of releases (MAIN, TRACK, EXTRA) are retrieved
according to an artist’s role. Particular releases are summarized into master releases,
merging all found genre, style, label, and country tags, and selecting and propagat-
ing original year. Thereafter, tags are weighted to form a tag-cloud of an artist, and
suimmed with the propagated tags of all related artists. Letters “g”, “s”, “1”, y”, “c”
stand for genre, style, label, year and country tags respectively.
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Figure 5.4: An example of tag-cloud generated for the artist Drexciya following the
described annotation process.

is constructed exclusively using information about the listener’s genre prefer-
ences. The other two are based on the information about preferred tracks and
artists (taken from the editorial metadata provided by the user for the prefer-
ence set). They partially employ collaborative filtering information, querying
commercial state-of-the-art music recommenders for similar music tracks.

5.5.1 Low-level timbral approaches

We counsider two audio content-based baseline approaches. These approaches
apply the same ideas as the proposed semantic approaches, but operate on
low-level timbral features, frequently used in the related literature.

1. Timbral distance to preference set (MFCC-N). This approach is a coun-
terpart to the proposed SEM-N approach using a common low-level tim-
bral distance (Aucouturier et al., 2005; Pampalk, 2006) instead of the
semantic one. The tracks are modeled by probability distributions of
MFCCs using single Gaussian with full covariance matrix. For such
representations a distance measure can be defined using a closed form
approximation of the Kullback-Leibler divergence. This baseline resem-
bles the state-of-the-art timbral user model, proposed by Logan (2004),
which uses the Earth-Mover’s Distance between MFCC distributions as
a distance.

2. Timbral Gaussian mizture model (MFCC-GMM). Alternatively, we con-
sider a counterpart to the proposed SEM-GMM probabilistic approach:
we use a population of mean MFCC vectors (one vector per track from
the user’s preference set) to train a timbral GMM.
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5.5.2 Random genre-based recommendation (GENRE-1)

This simple and low-cost approach provides quasi-random recommendations
relying on genre categories of the user’s preference set. We assume that all
tracks in the target music collection are manually tagged at least with a genre
label by an expert (as it was in the case of the collections we employed for
our evaluations). We randomly preselect N tracks from the preference set and
obtain their genre labels. For each of the N preselected tracks, we return a
random track of the same genre label.

Ideally, tracks from the preference set should contain manual genre anno-
tations by an expert as well. Moreover, the annotations should be consistent
with the ones in the music collection to be able to match the tracks by genre.
Nevertheless, the tracks from the preference set, since they were submitted by
the user, do not necessarily contain a genre tag, and the quality of such tags
and their consistency with the genres in the music collection cannot be assured.
Therefore, we retrieve this information from the Web. We use track pages or
artist pages from the social music tagging system Last.fm as the source of
genre information. We run queries using metadata of the preselected tracks,
and select the most popular genre tag, which is presented among genre tags of
the given music collection.

Note that oppositely to our SEM-GENRE-1 and HYBRID-GENRE-1 ap-
proaches, we now assumed that the target collection is tagged by an expert (as
it is in the case of our in-house collection) and, therefore, we did not retrieve
any genre tags for the target collection from Last.fm. When retrieving them
for the preference set, we do not aim for greater specificity and take the most
popular tags.

5.5.3 Artist similarity based on social tags
(LASTFM-TAGS-1)

We consider a purely metadata-based similarity measure working on the artist
level. This approach is based on social tags provided by the Last.fm API,
retrieved for the artists from the user’s preference set and the target music col-
lection. Using the API, we obtain a weight-normalized tag list for each artist.
The weight ranges in the [0, 100.0] interval, and we select a minimum weight
threshold of 10.0 to filter out possibly inaccurate tags. The resulting tags are
then assigned to each track in the preference set and the music collection. We
then apply latent semantic analysis (Deerwester et al., 1990; Levy & Sandler,
2008; Sordo et al., 2008) to reduce dimensionality to 300 latent dimensions,
similarly to the proposed DISCOGS-1. Pearson correlation distance can be
applied on the resulting topic space. We retrieve recommendations following
the proposed formal distance-based procedure.
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5.5.4 Collaborative filtering black-box approaches

As we highlighted in Section 2.3.2, it is often problematic to employ collabo-
rative filtering approaches in research studies, as such data is generally pro-
prietary. The existing listening behavior dataset provided by Celma (2008),
and the recent The Million Song Dataset? (McFee et al., 2012b), are not suited
to our needs due to poor intersection with the preference sets of our partici-
pants and our target collection. In contrast, we have decided to use black box
recommendations provided by iTunes Genius, which provided almost ideal in-
tersection. We also used Last.fm as another baseline for our evaluation.

1. Black-box track similarity by iTunes Genius (GENIUS-BB-1). We con-
sider commercial black-box recommendations obtained from the iTunes
Genius'® playlist generation algorithm. Given a music collection and a
query, this algorithm is capable to generate a playlist by means of the
underlying music similarity measure, which works on metadata and par-
tially employs collaborative filtering of large amounts of user data (music
sales, listening history, and track ratings) (Barrington et al., 2009). From
the preference set we randomly select N tracks annotated by artist, al-
bum, and track title information, sufficient to be recognized by Genius.
When some tracks appear to be not identified by Genius (in rare occa-
sions), they are ignored from the consideration by this approach, and
other recognizable tracks are selected instead. For each of the selected
tracks (a recommendation source), we generate a playlist, apply the artist
filter, and select the top track in the playlist as the recommendation out-
come. We increase the amount of possible outcomes per source when it
is impossible to produce N recommendations.

2. Black-boz track similarity from Last.fm (LASTFM-BB-1). Last.fm is an
established music recommender with an extensive number of users, and
a large playable music collection, providing means for both monitoring
listening statistics and social tagging (Jones & Pu, 2007). In particular, it
provides track-to-track!'' and artist-to-artist'? similarity computed by an
undisclosed algorithm, which is partially based on collaborative filtering,
but does not use any audio content.'® It is important to notice that
the underlying music collection of Last.fm used in this baseline approach
differs (being significantly larger and broader) from the collection used
by the other approaches in our evaluation. As Last.fm do not provide
concrete distance values but only ranked lists of artists or tracks, we
are not able to apply our formal distance-based procedure. Instead, we

9This dataset was not yet available at the moment of our experiment.
Onttp://www.apple.com/itunes/features/
"For example, |http://last.fm/music/Grandmaster+Flash/_/The+Message/+similar
"?For example, http://last.fm/music/Baby+Ford/+similar
13 At least, at the moment of conducting the present research.
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randomly preselect N tracks from the preference set and independently
query Last.fm for each of them to receive a recommendation. For each
track we select the most similar recommended track among the ones
with an available preview.!* If no track-based similarity information is
available (e.g., when the query track is an unpopular long-tail track with
a low number of listeners), we query for similar artists. In this case we
choose the most similar artist and select its most popular track that has
an available preview.

5.6 User-based evaluation methodology

5.6.1 Procedure

Here we describe the methodology for the subjective evaluation of our proposed
approaches to music recommendation. Ideally, subjective evaluations should
employ considerably large amount of listeners and recommended tracks. Nev-
ertheless, they are very costly because they require a huge user effort, and
therefore large-scale evaluations are hardly feasible in academic research (as
discussed in Section 2.3.2). In this situation, we decided to work with small
groups of participants (we were only able to employ a small amount of partici-
pants due to the demanding task asked to the subjects), splitting our evaluation
into a series of experiments each of which was conducted following the same
procedure. For consistency, we focus on the task of retrieving N = 20 or
N = 15 music tracks from a target music collection as recommendations for
each participant. Selecting a larger number of recommended tracks (N) was
problematic as this number should be balanced with an amount of approaches
under consideration. As the source for recommendations, we employed two
large in-house music collections, covering a wide range of genres, styles, ar-
rangements, geographic locations, and musical epochs. These collections con-
sist of 100,000 and 68,000 music excerpts, respectively.

In each experiment we evaluate a subset of the proposed approaches and
baselines. For each subject, we compute the user profiles from the provided
preference set as required by each approach under evaluation. Each of the con-
sidered approaches generates a playlist containing N music tracks. Following a
usual procedure for evaluation of music similarity measures and music recom-
mendations, we apply an artist filter (Pampalk, 2006) to assure that no playlist
contained more than one track from the same artist nor tracks by the artists
from the preference set for a particular user. These playlists are merged into
a single list, in which tracks are randomly ordered and anonymized, including
filenames and metadata. The tracks offered as recommendations are equally
likely to come from each single recommendation approach. This allows us to

" These previews are downloadable music excerpts (30 sec.), which are later used in our
subjective evaluation for the case of the LASTFM-BB-1 approach.
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avoid any response bias due to presentation order, recommendation approach,
or contextual recognition of tracks (by artist names, etc.) by the participants.
In addition, the participants are not aware of the amount of recommendation
approaches, their names and their rationales. We adopt such a blind evaluation
process in order to avoid any possible biases, including the factor of familiarity
with the music which is evidenced to affect music appreciation (Section 2.2).
We do not restrict the duration of the evaluation process. Therefore, each
subject can spend any amount of time to assess subjective appraisal for the
recommended music.

5.6.2 Subjective ratings

To gather feedback on recommendations, we provide a questionnaire for the
subjects to express their subjective impressions related to the recommended
music (see Table 5.1). For each recommended track the participants are asked
to provide four ratings:

o Familiarity ranged from 0 to 4; with 0 meaning absolute lack of famil-
iarity, 1 feeling familiar with the music, 2 knowing the artist, 3 knowing
the title, and 4 being able to identify the artist and the title.

e Liking measured the enjoyment of the presented music with 0 and 1
covering negative liking, 2 representing a neutral position, and 3 and 4
representing increasing liking for the musical excerpt.

e Listening intentions measured the readiness of the participant to listen
to the same track again in the future. This measure is more direct and
behavioral than the liking, as an intention is closer to action than just the
abstraction of liking. Again the scale contained 2 positive and 2 negative
steps plus a neutral one.

e “Give-me-more” with 1 indicating request for more music like the pre-
sented track, and 0 indicating reject of such music.

The users are also asked to provide the track title and artist name for those
tracks rated high in the familiarity scale.

We propose using three ratings related to the listener satisfaction with pro-
vided recommendations in contrast to the existing studies which utilize only
one rating, e.g., “satisfaction” (Section 2.3.2). Our choice can be motivated by
the fact that preference is multifaceted (Rentfrow et al., 2011). We consider
not only the fact of liking, but also behavioral aspects, which we believe to be
important. Three proposed ratings are not necessarily correlated: our evalu-
ations revealed that an discrepancy in subjective ratings occurred in approxi-
mately 19% of the cases. Furthermore, as we are focused on music discovery,
we also measure familiarity of the listener with provided recommendations.
This is rarely done in the existing literature as it is hard to assess objectively
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Table 5.1: Meaning of familiarity, liking, listening intentions, and “give-me-more”
ratings as given to the participants.

Rating Value Meaning

Familiarity 4 I know the song and the artist

3 I know the song but not the artist

2 I know the artist but not the song

1 It sounds familiar to me even I ignore the title
and artist (maybe I heard it in TV, in a sound-
track, long time ago...)
No idea

I like it a lot!

I like it

I would not say I like it, but it is listenable
I do not like it

It is annoying, I cannot listen to it!

Liking

= O RN W R | O

Listening I am going to play it again several times in the

intentions future

I probably will play it again in the future

2 It doesn’t annoy me listening to it, although I
am not sure about playing it again in the future

1 I am not going to play it again in the future

0 I will skip it in any occasion I find in a playlist

w

Give-me-more 1 I would like to be recommended more songs like
this one
0 I would not like to be recommended more songs
like this one

without real participants. In contrast, we employ this subjective rating in our
evaluations.

5.6.3 Recommendation outcome categories

After gathering questionnaires filled by participants, we propose to recode the
provided subjective ratings to four outcome categories: hits, trusts, fails, and
unclear recommendations. First, we manually correct familiarity ratings when
the artist /title provided by a user is incorrect compared to the actual ones. In
such situations, a familiarity rating of 3, or, more frequently, 4 or 2, is lowered
to 1 (in the case of incorrect artist and track title) or 2 (in the case of correct
artist, but incorrect track title). We expected a low number of corrections to
be done (above 5%), which is supported by our further experiments.
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The four gathered subjective ratings can be used to characterize differ-
ent aspects of the considered recommendation approaches. We expect a good
recommender system to provide high liking, listening intentions, and “give-
me-more” ratings. Moreover, if we focus on music discovery, low familiarity
ratings are desired, which will guarantee the novelty of relevant (liked) rec-
ommendations. We recode the participants’ ratings for each evaluated track
into three categories which refer to the type of the recommendation: hits, fails,
and trusts. We define a recommended track to be a hit when it received low
familiarity ratings (< 2) and high liking (> 2), listening intentions (> 2), and
“give-me-more” (= 1) ratings simultaneously. Similarly, trusts are the tracks
with high liking, listening intentions, “give-me-more”, but as well high familiar-
ity (> 1). Trusts, provided their overall amount is low, can be useful for a user
to feel that the recommender is understanding his/her preferences (Barrington
et al., 2009; Cramer et al., 2008) (i.e., a user could be satisfied by getting a
trust track from time to time, but annoyed if every other track is a trust). Fails
are the tracks which received low liking (< 3), listening intentions (< 3) and
“give-me-more” (= 0) ratings. In any other case (e.g., a track received high
liking, but low listening intentions and “give-me-more”) the outcome category
is considered to be “unclear”.

We expect a good recommender to get a large amount of hits, and consid-
erable, though not excessive, amount of trusts, in the case of music discovery.
In the case of playlist generation, more trusts are acceptable. In general, the
desired amount of trusts is dependent on the final application. Considering the
unclear category, we may not expect such tracks to be as relevant as hits and
trust categories because such recommendations consisted of the tracks with
inconsistent ratings. Still, such tracks can be useful for certain scenarios (e.g.,
playlist generation), but are probably not well suited for others (e.g., digital
music vending). In the extreme case, we can assume both fails and unclear
categories to be unwanted outcomes in contrast to trusts and hits, which are
wanted outcomes. Recoding subjective ratings into proposed categorical vari-
ables brings us qualitative advantages in the analysis of results: it is easier to
assess the amount of novel and trusted recommendations, and the character of
such recommendations as we can do further analysis inside each category.

5.6.4 Discussion

5.7 Experiment 3: Advantage of semantic content
description

5.7.1 Rationale and procedure

In our first experiment on music recommendation, we hypothesize the benefits
of the proposed semantic description of audio content over the exclusive use
of low-level timbral description. We evaluate here three proposed approaches,
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SEM-MEAN, SEM-N, and SEM-GMM, against the baselines working on tim-
bral audio features (MFCCs): MFCC-N and MFCC-GMM. In addition, we
consider two metadata-based baselines: the simplest genre-based recommender
(GENRE-1) and a commercial black-box recommender working on collabora-
tive filtering information and social tags (LASTFM-BB-1'%). Tt is important
to notice that the underlying music collection of Last.fm recommender used in
this baseline approach differs (being significantly larger and broader) from the
collection used by the other approaches in our evaluation. Therefore we will
consider the results obtained for LASTFM-BB-1 only as tentative.

We performed subjective listening tests on 12 subjects in order to evaluate
the considered approaches with N being set to 20. Our population consisted of
8 males and 4 females with the average age of 34 years (i = 33.83,0 = 5.2) and
a high interest in music (u = 9.58,0 = 0.67) being a subset of the population
described in Section 3.3.2. The mean size of the provided preference sets was
@ = 73.58, 0 = 45.66, and the median was 57 tracks. As the source for
recommendations, we employed a large in-house music collection, covering a
wide range of genres, styles, arrangements, geographic locations, and musical
epochs. This collection consists of 100,000 music excerpts (30 sec.) by 47,000
artists with approximately 2 tracks per artist.

5.7.2 Results

Following the described methodology (see Section 5.6.3), manual corrections
of familiarity rating represented only 3% of the total familiarity judgments.
Recoding subjective ratings to outcome categories, 18.3% of all the recommen-
dations were considered as “unclear”. Most of the unclear recommendations
(41.9%) consisted of low liking and intention ratings (< 3 in both cases) fol-
lowed by a positive “give-me-more” request; other frequent cases of unclear
recommendation consisted of a positive liking (> 2) that was not followed
by positive intentions and positive “give-me-more” (15.5%) or positive liking
not followed by positive intentions though positive “give-me-more”(20.0%). We
excluded the unclear recommendations from further analysis.

We report the percent of each outcome category per recommendation ap-
proach in Table 5.2 and Figure 5.5. An inspection of it reveals that the ap-
proach which yields the largest amount of hits (41.2%) and trusts (25.4%)
is LASTFM-BB-1. The trusts found with other approaches were scarce, all
below 4%. The approaches based on the proposed semantic user model (SEM-
N, SEM-MEAN and SEM-GMM) yielded more than 30% of hits, and the
remaining ones did not surpass 25%. In our experiments we need to ensure
statistically the existence of association between the recommendation approach
and the obtained recommendation outcome. To this end, we used Pearson chi-
square test, which demonstrated that the existence of an association between

15 All experiments were conducted on May 2010.
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Table 5.2: The percent of fail, trust, hit, and unclear categories per recommendation
approach. Note that the results for the LASTFM-BB-1 approach were obtained on a
different underlying music collection.

Approach fail ~ hit  trust unclear hit+trust
SEM-MEAN 49.2 312 2.5 17.1 33.7
SEM-N 425 346 3.3 19.6 37.9
SEM-GMM 48.8 30.0 2.5 18.7 32.5
MFCC-N 64.1 15.0 2.1 18.8 17.1
MFCC-GMM 69.6 11.7 1.2 17.5 12.9
LASTFM-BB-1 16.7 41.2 254 16.7 66.6
GENRE-1 53.8 25.0 1.2 20.0 26.2

Table 5.3: Mean ratings per recommendation approach. Note that the results for the
LASTFM-BB-1 approach were obtained on a different underlying music collection.

Approach liking intentions give-me-more familiarity
SEM-MEAN 2.18 2.01 0.46 0.23
SEM-N 2.34 2.14 0.53 0.34
SEM-GMM 2.30 2.13 0.45 0.25
MFCC-N 1.78 1.65 0.30 0.31
MFCC-GMM 1.59 1.45 0.24 0.17
LASTFM-BB-1  2.99 291 0.77 1.31
GENRE-1 1.98 1.84 0.43 0.15

recommendation approach and the type of outcome of the recommendation
was statistically significant (x?(18) = 351.7, p < 0.001). Additionally, we
performed three separate between-subjects ANOVA tests in order to assess
the effects of the recommendation approaches on the liking, intentions, and
“give-me-more” subjective ratings, coupled with a Tukey’s test for pairwise
comparisons. The effect was confirmed in all of them (F(6,1365) = 55.385,
p < 0.001 for the liking rating, F'(6,1365) = 48.89, p < 0.001 for the intentions
rating, and F'(6,1365) = 43.501, p < 0.001 for the “give-me-more” rating).
Pairwise comparisons using Tukey’s test revealed the same pattern of differ-
ences between the recommendation approaches, irrespective of the 3 tested
indexes. This pattern highlights the LASTFM-BB-1 approach as the one get-
ting the highest overall ratings. It also groups together the timbral MFCC-
GMM and MFCC-N approaches (those getting the lowest ratings), and the
remaining approaches (SEM-N, SEM-MEAN, SEM-GMM, and GENRE-1) are
grouped in-between. The normality assumption required for between-subject
ANOVA (normal distribution of the ratings for each approach) was considered
as trusted by visual inspection of the respective Q-Q plots. The mean values of
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the obtained liking, listening intentions, and “give-me-more” ratings per each
approach are presented in Table 5.3 and Figure 5.6. Additionally, Figure 5.7
presents histograms of these subjective ratings.

Finally, focusing on the discovery use-case of music recommender, a mea-
sure of the quality of the hits was computed by multiplying the difference
of liking and familiarity by listening intentions for each recommended track.
This quality score ranks recommendations considering that the best ones cor-
respond to the tracks which are highly-liked though completely unfamiliar, and
intended to be listened again (i.e., a very highly liked track, which was totally
unfamiliar, and intended to be listened again would yield the highest quality
score; contrastingly, a very highly liked track which was highly familiar and
intended to be listened again would yield a lower quality score, as the recom-
mender would be unnecessary in this case). Selecting only the hits, an ANOVA
on the effect of the recommendation approach on this quality measure revealed
no significant differences between any of the approaches. Therefore, consider-
ing the quality of hits, there is no recommendation approach granting better
or worst recommendations than any other. The same pattern was revealed by
solely using the liking as a measure of the quality of the hits.

5.7.3 Discussion

The evaluation results revealed the users’ preference for the proposed semantic
approaches over the low-level timbral baselines. This fact supports our hy-
pothesis on the advantage of using a semantic description for music recommen-
dation. Moreover, it complements the outcomes of our research on semantic
music similarity measures presented in Chapter 4: we have previously observed
the advantage of semantic similarity over MFCC-based similarity in objective
evaluations, although no statistically significant differences were found in sub-
jective listening tests. In the present experiment, we may conclude that the
high-level semantic description outperforms the low-level timbral description
in the task of music recommendation and that it is well-suited for music pref-
erence elicitation.

Interestingly, considering the amount of hits+trusts, SEM-N performed the
best compared to SEM-MEAN and SEM-GMM. In the case of SEM-MEAN, we
expected such results, as a centroid can be considered a rough approximation
of music preferences in comparison to the complete preference set. In the
case of SEM-GMM, such results corroborate previous research studies which
reveal that distance-based approaches are to be preferred to the probabilistic
models in the case of noisy audio features, at least in the task of automatic
content-based tag-propagation (Sordo, 2012). We conclude that it is reasonable
to maintain and exploit information about particular tracks in the listener’s
profile and apply distance-based approaches to music recommendation.

Comparing with the baselines working on metadata, we found that the pro-
posed approaches perform better than the simple genre-based recommender
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Figure 5.7: Histograms of liking, listening intentions, and “give-me-more” ratings
gathered for the (a) SEM-MEAN-N, (b) SEM-N, (¢) SEM-GMM, (d) MFCC-ALL-N,
(e) MFCC-GMM-N, (f) LASTFM-BB-1, and (g) GENRE-1 approaches. Green bars
stand for high (i.e., desired) ratings while blue bars stand for unsatisfactory ratings.
Note that the results for the LASTFM-BB-1 approach were obtained on a different
underlying music collection. (Continued on next page.)
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Figure 5.7: Continued (caption shown on previous page.)

(although no statistically significant differences were found in terms of lik-
ing, listening intentions, and “give-me-more” ratings). Interestingly, this naive
genre-based recommender still outperformed the timbre-based baselines. This
could be partially explained by the fact that genre was one of the driving
criteria for selecting the users’ preference sets according to their own reports
(see Section 3.3.2), and suggests us that manually annotated genre and sub-
genre labels entail more information and diversity than timbral information
automatically extracted from MFCCs.

On the other hand, the proposed approaches were found to be inferior
to the considered commercial recommender (LASTFM-BB-1) in terms of the
number of successful novel recommendations (hits) and trusted recommenda-
tions (trusts). Still, LASTFM-BB-1 yielded ounly 7 absolute percentage points
more hits than one of our proposed semantic methods (SEM-1). Considering
trusted recommendations, the LASTFM-BB-1 baseline provided about 22%
more recommendations already known by the participants. Interestingly, one
track out of four recommended by the LASTFM-BB-1 baseline was already
familiar to the participants, which might be an excessive amount considering
the music discovery use-case. In particular, the larger amount of both hits
and trusts provided by the LASTFM-BB-1 baseline can be partly explained
by the fact that the recommendations were generated using the Last.fm music
collection. Due to the extensive size of this collection and the large amount
of available collaborative filtering data, we can hypothesize that the obtained
performance of this approach is an upper bound in both hits and trusts and
expect a lower performance on our smaller in-house collection.
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5.8 Experiment 4: Improving content-based
approaches by genre metadata

5.8.1 Evaluation

In this experiment we consider how a minimum amount of metadata infor-
mation can improve purely content-based recommendations, and propose a
filtering approach relying on single, but sufficiently descriptive, genre tags to
refine recommendations. As we have found in Experiment 3, a genre-based
recommender was able to surpass baseline timbral recommenders. Moreover,
we did not find statistically significant differences between the proposed se-
mantic content-based approaches and genre-based recommender in terms of
subjective ratings. Therefore, we may hypothesize that genre metadata can be
very valuable for content-based music recommender as an additional source.
To this end, we propose an improvement of the HYBRID-1 approach by such a
filtering (HYBRID-GENRE-1). In addition, in this experiment we evaluate if
hybrid content-based music similarity would lead to better recommendations
by comparing the proposed SEM-1 and HYBRID-1 approaches.

We evaluate these approaches against three metadata-based baselines: sim-
ple recommendations by genre (GENRE-1), black-box track-level collaborative
filtering recommendations provided by GENIUS-BB-1,'¢ and tag-based artist-
level approach LASTFM-TAGS-1.7

We performed subjective listening tests on the 19 participants with Ny be-
ing set to 15. Again, the population was as subset of the population presented
in Section 3.3.2. It consisted of 14 males and 5 females with the average age of
33 years (u = 33.0,0 = 4.67) and a high interest in music (u = 9.24, 0 = 1.01).
The mean size of the provided preference sets was p = 67.26, 0 = 42.53, and
the median was 61 tracks. This time we employed our second in-house target
music collection'®, covering a wide range of genres, styles, arrangements, geo-
graphic locations, and musical epochs. This collection contains 68,000 music
excerpts (30 sec.) by 16,000 artists with a maximum of 5 tracks per artist.

5.8.2 Results

Again, our manual corrections of the familiarity rating represented less than
3% of the total familiarity judgments. Recoding subjective ratings into recom-
mendation outcome categories resulted in 20.4% of “unclear” recommendations.
We excluded these recommendations from further analysis.

Table 5.4 and Figure 5.5 report the percent of each outcome category per
recommendation approach. As we can see, the proposed HYBRID-GENRE-1
approach yielded the largest amount of hits (32.0%), followed by LASTFM-

16 A1l experiments were conducted using iTunes 10.1.1.4 on March, 2011.
'7All tags were obtained on March, 2011.
8We could not continue using the first collection due to technical difficulties.
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Figure 5.8: The percent of fail, trust, hits, and clear categories per recommendation
approach. Metadata-based baselines and the proposed approaches are differentiated
by color (green and pistachio, respectively).

S5 T T T T T 5 T T T T T 5r— T T T T T 5 T T T T T
at 1 & 1 af 1 &b 1
(%]
=
=] (]
L 1 =30 1 &3k 1 >3t ]
i E EE 23
£ — € . @ o
< i =
x o |4 £ £
i £ @ ©
2 { €2 ; 220 1 Lot 1
_% C)
-
1 1 1 1 1t 1
05 T = A 05 I 055 I 05 T A A A o
AT T T P T o T
0852 208352 AR 085 2
z < 5 2 n & =z < 5 2 0 & =z < 5 2 n Z zZ < 5 2 n %
b Kk S w @ w Kk 9w [ Kk S w Qo bk S W @
O = = O T O s =z 0O T O s =z 0O T O = = O T
o = 3 o £ F o F o = 3
O £ w O = w O = w O £ w
 »n O  n O  »n O  »n O
o < o < m 5 o <
> > 4 > >
I I u I
Figure 5.9: Mean ratings per recommendation approach. The “give-me-more” rat-

ing varies in the [0,1] interval. Error bars indicate one standard error of the mean.
Metadata-based baselines and the proposed approaches are differentiated by color
(green and pistachio, respectively).
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Table 5.4: The percent of fail, trust, hit, and unclear categories per recommendation
approach.

Approach fail ~ hit  trust unclear hit+trust
HYBRID-GENRE-1 41.9 32.0 5.3 20.8 37.3
LASTFM-TAGS-1 38.9 29.7 10.6 20.8 40.3
GENIUS-BB-1 33.1 282 18.3 20.4 46.5
GENRE-1 51.2 26.0 2.8 20.0 28.8
SEM-1 53.3 23.9 2.8 20.0 26.7
HYBRID-1 58.1 21.1 04 204 21.5

Table 5.5: Mean ratings per recommendation approach.

Approach liking intentions give-me-more familiarity
HYBRID-GENRE-1  2.39 2.28 0.50 0.39
LASTFM-TAGS-1 2.46 2.39 0.56 0.63
GENIUS-BB-1 2.61 2.54 0.60 1.09
GENRE-1 2.13 1.99 0.41 0.33
SEM-1 2.16 2.09 0.41 0.27
HYBRID-1 1.95 1.89 0.35 0.23

TAGS-1 (29.7%) and GENIUS-BB-1 (28.2%), and was the only (partially)
content-based approach that provided considerably large amount of successful
recommendations. We can evidence that inclusion of genre metadata improved
the amount of hits by 11% for the HYBRID-1, making its refined version
comparable to the metadata-based baselines. On the other side, the GENIUS-
BB-1 and LASTFM-TAGS-1 approaches provided the largest amount of trusts
(18.3% and 10.6% respectively), while the rest of approaches yielded only scarce
trusts (5.3% for HYBRID-GENRE-1, the rest below 3%). Finally, we can see
that all recommendation approaches provided more than 33% of fails, which
means that at least each third recommendation was possibly annoying for
the user. The Pearson chi-square test confirmed the association between the
recommendation approach and the outcome category (x2(15) = 131.5, p <
0.001).

Three separate between-subjects ANOVA tests confirmed the effects of
the recommendation approaches on the liking, intentions, and “give-me-more”
subjective ratings: F(5,1705) = 15.237, p < 0.001 for the liking rating,
F(5,1705) = 14.578, p < 0.001 for the intentions rating, and F'(5,1705) =
11.420, p < 0.001 for the “give-me-more” rating (normality assumptions re-
quired for ANOVA could be trusted according to the conducted Shapiro-Wilk’s
test). Pairwise comparisons using Tukey’s test revealed the same pattern of
differences between the approaches, irrespective of the 3 tested indexes. It
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highlights the following groups with no statistically significant difference inside
each group: 1) GENIUS-BB-1, LASTFM-TAGS-1, and HYBRID-GENRE-1
having the highest ratings, 2) SEM-1 and HYBRID-GENRE-1, and 3) SEM-
1, GENRE-1, and HYBRID-1 having the lowest. Note that the HYBRID-
GENRE-1 and SEM-1 are both belonging to two different groups. The mean
liking and listening intentions ratings are presented in Table 5.5 and Figure 5.9.
In addition, Figure 5.10 presents the histograms for the liking, listening inten-
tions, and “give-me-more” ratings.

5.8.3 Discussion

We have evidenced that simple filtering by genre significantly improves rec-
ommendations on the example of HYBRID-GENRE-1. Furthermore, such
a refined approach surpasses the considered metadata-based recommenders
LASTFM-TAGS-1 and GENIUS-BB-1 in terms of successful novel recommen-
dations (hits) and provides satisfying recommendations, comparable to these
baselines with no statistically significant difference. Considering the content-
based approaches without genre filtering, LASTFM-TAGS-1 and GENIUS-
BB-1 work significantly better than SEM-1 and HYBRID-1. In particular,
artist-level recommendations based on social tags still produce recommenda-
tions more accurate than content-based methods working on track-level.

Interestingly, we did not find any improvements over the proposed semantic
content-based recommender using instead a complex low-level /semantic dis-
tance. On the contrary, HYBRID-1 approach performed worse than semantic
SEM-1 in terms of amount of hits-+trusts (although the difference in the ob-
tained subjective ratings was not statistically significant). This suggests that
such a complex distance, previously found to overcome the semantic distance
in the task of music similarity, is not well suited for the music recommendation
use-case. A possible explanation is the fact that listeners might prefer seman-
tically similar rather than purely acoustically similar music content as recom-
mendations. That is, while low-level audio similarity (which is the prevalent
component of our HYBRID-1 approach) provide acoustically similar music, the
listener’s preferences might require a higher level of abstraction above acousti-
cal properties to judge the relevance and suitability of the recommended items.
Further optimization of the hybrid approach, increasing the importance of its
semantic component.

Similarly to Experiment 3, we have observed the fact of no statistically
significant difference between purely content-based approaches (SEM-1 and
HYBRID-1) and a simple genre-based baseline. This fact corroborates the
importance of genre metadata again. Indeed, the quality of recommendations
improves significantly after applying the proposed filtering by genre, overcom-
ing the gap between content-based approaches and commercial metadata-based
recommenders. Adding audio content-information to the simple genre infor-
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Figure 5.10: Histograms of liking, listening intentions, and “give-me-more” ratings
gathered for the (a) SEM-1, (b) HYBRID-1, (c) HYBRID-GENRE-1, (d) GENRE-1,
(e) LASTFM-TAGS-1, and (f) GENIUS-BB-1 approaches. Green bars stand for high
(i-e., desired) ratings while blue bars stand for unsatisfactory ratings. (Continued on
next page.)
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mation (HYBRID-GENRE-1) boosts the performance significantly compared
to the genre-based baseline.

Finally, we would like to discuss the effect of the No parameter responsible
for the compromise between accuracy of the employed similarity measure and
diversity of recommendations (see Section 5.3). As expected, comparing results
of Experiments 3 and 4, we can see a performance-worsening when selecting
Nop=1 rather than No=N. In particular, we can see similar performance of
our HYBRID-GENRE-1 and SEM-N (although the results are not directly
comparable due to different target music collections). That is, selecting the
No equal to 1, we evaluate a lower-bound of the considered approaches’ per-
formances. In general, relying on the obtained results, we may conclude that
the proposed approach, operating on complex content-based distance, refined
by simple genre metadata is well suited for the use-case of music discovery.

5.9 Experiment 5: Employing editorial metadata

5.9.1 Evaluation

In this experiment we consider how editorial metadata can be used to describe
artists in terms of genres, styles, recording labels, release years, and geograph-
ical locations, to provide music recommendation, and evaluate our proposed
DISCOGS-1'? approach. We consider it as a cheaper alternative to GENIUS-
BB-1?% and LASTFM-TAGS-1 approaches, which we use as the baselines. In
addition, following the conducted Experiment 4, we evaluate the proposed
content-based semantic approach refined by genre metadata (SEM-GENRE-
1). We performed subjective listening tests on the 27 participants using the
same target music collection as in Experiment 4, being additionally filtered by
previously recommended tracks. The population was a subsect of the popula-
tion presented in Section 3.3.2 with the mean size of the provided preference
sets being p = 51.41, o = 38.38, and the median being 50 tracks. It consisted of
17 males and 10 females with the average age of 31 years (u = 31.04,0 = 5.76)
and a high interest in music (u = 9.43,0 = 0.91).

5.9.2 Results

This time, manually corrections of the familiarity represented 4.5% of the total
familiarity judgments (73 corrections out of 1620 tracks). “Unclear” outcome
category amounted to 17.3% of all recommendations. Again, we excluded these
recommendations from further analysis.

We report the percent of hit fail, trust, and unclear outcomes per recom-
mendation approach in Table 5.6 and Figure 5.11. According to the results
of the Pearson chi-square test, an association between the approaches and the

9Tn our experiments, we used a Discogs monthly dump dated by January, 2011.
20All experiments were conducted using iTunes 10.3.1 on December, 2011.
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Table 5.6: The percent of fail, trust, hit, and unclear categories per recommendation
approach.

Approach fail ~ hit trust unclear hit-+trust
LASTFM-TAGS-1 328 388 74 21.0 46.2
DISCOGS-1 344 319 16.4 17.3 48.3
GENIUS-BB-1 36.2 35.7 13.2 14.9 48.9
SEM-GENRE-1 41.6 379 44 16.1 42.3

Table 5.7: Mean ratings per recommendation approach.

Approach liking intentions give-me-more familiarity
LASTFM-TAGS-1  2.52 2.45 0.63 0.49
DISCOGS-1 2.63 2.57 0.63 0.83
GENIUS-BB-1 2.60 2.50 0.59 0.80
SEM-GENRE-1 2.45 2.33 0.52 0.37

outcome categories (x2(9) = 46.879, p < 0.001) can be accepted. In general,
the proposed DISCOGS-1 approach performed well comparing to the baselines.
The DISCOGS-1 provided a considerably low (34.4%) amount of fails, being in
between of the metadata-based baselines LASTFM-TAGS-1 (with the lowest
amount of fails, 32.8%) and GENIUS-BB-1. In contrast, the SEM-GENRE-1
approach, which is partially content-based, provided the largest (over 41%)
amount of fails. Considering hits, the LASTFM-TAGS (38.8%) and SEM-
GENRE-1 (37.9%) are the leaders followed by GENIUS-BB-1, and lastly, the
DISCOGS-1. That is, our proposed approach provided the least amount of
novel relevant recommendations (31.9%). Nevertheless this fact is compen-
sated by the largest amount of trusts, gathered by the DISCOGS-11 (16.4%)
followed by the GENIUS-BB-1 (13.2%), LASTFM-TAGS-1 (7.4%), and the
SEM-GENRE-1 (4.4%). The amount of unclear recommendations ranged as
well. Considering the extreme case, when fails and unclear categories are
both unwanted outcomes, the metadata-based GENIUS-BB-1 and DISCOGS-
1 result as approaches with the least amount of unwanted recommendations
(51.1% and 51.7%, respectively), followed by the M-TAGS, and lastly by the
partially content-based SEM-GENRE-1 approach (57.7%). In contrast, consid-
ering trusts and hits as wanted outcomes, the GENIUS-BB-1 and DISCOGS-1
provide their largest amount (48.9% and 48.3%, respectively), followed by the
LASTFM-TAGS-1 and SEM-GENRE-1.

Considering subjective ratings, we conducted three separate between-subjects
ANOVAs (normality assumptions required for ANOVA could be trusted ac-
cording to the conducted Shapiro-Wilk’s test). Tested approaches were shown
to have an impact on these ratings (F'(3,1612) = 3.004, p < 0.03 for the
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color.
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Figure 5.12: Mean ratings per recommendation approach. The “give-me-more” rat-
ing varies in the [0, 1] interval. Error bars indicate one standard error of the mean.
The proposed approach based on editorial metadata is differentiated by color.

liking rating, F'(3,1612) = 3.660, p < 0.02 for the intentions rating, and
F(3,1612) = 3.363, p < 0.02 for the “give-me-more” rating). Pairwise com-
parisons using Tukey’s test revealed differences only between DISCOGS-1 vs
SEM-GENRE-1 for the case of all three ratings, and, in addition, a difference
between LASTFM-TAGS-1 vs SEM-GENRE-1 in the case of the “give-me-
more” rating. In Figure 5.13 we present the histograms for the liking, listening
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Figure 5.13: Histograms of liking, listening intentions, and “give-me-more” ratings
gathered for the (a) DISCOGS-1, (b) SEM-GENRE-1, (¢) LASTFM-TAGS-1, (d)
GENIUS-BB-1 approaches. Green bars stand for high (i.e., desired) ratings while
blue bars stand for unsatisfactory ratings. (Continued on next page.)
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intentions, and “give-me-more” ratings. Mean values of these ratings are pro-
vided in Table 5.7 and Figure 5.12. Inspecting the means, we see that all
considered approaches performed with a user satisfaction slightly above aver-
age. Almost half of the provided recommendations were favorably evaluated,
i.e., received high liking and listening intentions ratings (> 2) and a positive
“give-me-more” request. An inspection of histograms shows that the proposed
DISCOGS-1 approach receives the highest amount of maximum ratings for
liking and listening intentions (~ 21% and ~ 22.5%, respectively). In con-
trast, the amount of received negative ratings is lower. Still, returning to the
ANOVA results, the only clear difference in performance, as measured by our
3 indexes, happens between DISCOGS-1 and SEM-GENRE-1. In other words,
the proposed DISCOGS-1 approach is able to achieve similar liking, listening
intentions and willingness to get recommended music as existing (and commer-
cial) state-of-the-art systems.

5.9.3 Discussion

Subjective evaluation demonstrated that the proposed DISCOGS-1 approach,
operating solely on editorial metadata, performs comparably to the state-
of-the-art metadata systems, which require social tags (LASTFM-TAGS-1)
or/and collaborative filtering datasets (GENIUS-BB-1). In particular, our ap-
proach provided large amount of trusted and novel relevant recommendations,
which suggests that the proposed approach is well suited for music discovery
and playlist generation.

Interestingly, the evaluated content-based approach filtered by simple genre
metadata (SEM-GENRE-1) revealed performance comparable to the metadata-
based approaches as well. In terms of statistically significant differences in
the subjective ratings, SEM-GENRE-1 is surpassed only by the proposed
DISCOGS-1 approach.
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Finally, we observe the SEM-GENRE-1 approach to be better than HYBRID-
GENRE-1 similarly to the non-filtered SEM-1 and HYBRID-1 (hypothetically,
as the results are not directly comparable due to the applied collection filtering)
in terms of hits+trusts and subjective ratings.

5.10 Summary of results and general discussion

In order to summarize the results, we have grouped data from Experiments 3,
4, and 5 together, and conducted between-subject ANOVA with one additional
factor being the number of experiment. The results confirmed statistical sig-
nificance of the effect of approach on the liking rating (F'(13,4993) = 29.260,
p < 0.001). Furthermore, we can reject the effect of experiment (F'(2,4993) =
1.758, p = 0.172) and the effect of interaction between approach and experi-
ment variables (F'(1,4993) = 1.758, p = 0.504). Similar results were evidenced
in the case of listening intentions rating (F'(13,4993) = 29.984, p < 0.001
for the effect of approach; F'(2,4993) = 1.274, p = 0.280 for the experiment
number; F(1,4993) = 0.754, p = 0.385 for the interaction between approach
and experiment, respectively) and give-me-more rating (F'(13,4993) = 17.339,
p < 0.001 for the approach; F(2,4993) = 0.622, p = 0.537 for the experiment;
F(1,4993) = 2.191, p = 0.139 for the interaction between both). Therefore, we
can be assured that there is no possible effect of using different music collec-
tions in the experiments, and that the results of these experiments are directly
comparable.

Post-hoc Tukey’s test showed similar pattern of differences to the ones we
have evidenced before in Sections 5.7.1, 5.8.1 and 5.9.1. Tables 5.8 and 5.9
present subsets of approaches with no statistically significant difference found
between approaches in each group according to each of the three tested rat-
ings. The observed mean rating values are reported for each approach. In par-
ticular, content-based methods filtered by genre metadata (SEM-GENRE-1,
HYBRID-GENRE-1) and metadata-based LASTFM-TAGS-1, GENIUS-BB-
1, and DISCOGS-1, are grouped together in the best performing group apart
from LASTFM-BB-1. The latter one achieved the maximum performance,
but however can be considered as an exception due to the significantly larger
underlying music collection.

In what follows, we summarize our conclusions on the conducted Exper-
iments 3, 4, and 5. Firstly, we have proposed semantic content-based ap-
proaches for music recommendation, and observed statistically significant im-
provement over baseline timbral approaches. In addition, we have revealed the
fact that simple genre/style tags can be a reasonable source of information
to provide recommendations superior to the common low-level timbral music
similarity based on MFCCs.

Secondly, we have proposed filtering by simple genre metadata. We found
that it greatly improves the proposed semantic/hybrid content-based approaches
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Table 5.8: Subsets of approaches with no statistically significant difference found
between approaches in each group in respect to the liking (a) and listening intentions
(b) ratings. The observed mean rating values are reported for each approach. The
results for the LASTFM-BB-1 approach were obtained on a music collection different
from that of the other approaches.

(a)
Approach #cases Subset
H#1 #2 #3 H#4 #5 H6 HT H#8 #9 F#10
MFCC-GMM 240 1.59
MFCC-N 239 1.78 1.78
HYBRID-1 284 1.95 1.95
GENRE-1 525 2.06 2.06
SEM-1 285 2.16 2.16 2.16
SEM-MEAN 239 2.18 2.18 2.18 2.18
SEM-GMM 240 2.30 2.30 2.30 2.30
SEM-N 240 2.34 2.34 2.34 2.34
HYBRID-GENRE-1 284 2.39 2.39 2.39 2.39 2.39
SEM-GENRE-1 404 2.45 2.45 2.45 2.45
LASTFM-TAGS 688 2.50 2.50 2.50
GENIUS-BB-1 687 2.61 2.61
DISCOGS-1 404 2.63
LASTFM-BB-1 235 2.99
Significance 1482 .751 .219 .182 .213 .056 .438 .070 .160 1.000
(b)
Subset
Approach #+cases 41 42 #3 H4 H5 H6 HT #8
MFCC-GMM 240 1.45
MFCC-N 239 1.65 1.65
HYBRID-1 284 1.89 1.89
GENRE-1 525 1.92 1.92
SEM-MEAN 239 2.01 2.01
SEM-1 285 2.09 2.09 2.09
SEM-GMM 240 2.13 2.13 2.13
SEM-N 240 2.14 2.14 2.14 2.14
HYBRID-GENRE-1 284 2.28 2.28 2.28 2.28
SEM-GENRE-1 404 2.33 2.33 2.33
LASTFM-TAGS 688 2.43 2.43
GENIUS-BB-1 687 2.52
DISCOGS-1 404 2.57
LASTFM-BB-1 235 2.91

Significance .572 .105 .173 .098 .258 .068 .066 1.000
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Table 5.9: Subsets of approaches with no statistically significant difference found be-
tween approaches in each group in respect to the give-me-more ratings. The observed
mean rating values are reported for each approach. The results for the LASTFM-
BB-1 approach were obtained on a music collection different from that of the other
approaches.

Approach ##cases Subset

#L #2 43 #4 #D #6 #T
MFCC-GMM 240 .24
MFCC-N 239 .30 .30
HYBRID-1 284 .35 .35 .35
SEM-1 285 41 41 41
GENRE-1 525 42 .42 42
SEM-GMM 240 .45 .45
SEM-MEAN 239 46 .46 .46
HYBRID-GENRE-1 284 .50 .50 .50
SEM-GENRE-1 404 b2 .52 .52
SEM-N 240 .53 .53 .53
GENIUS-BB-1 687 .60 .60
LASTFM-TAGS 688 .60
DISCOGS-1 404 .63
LASTFM-BB-1 235 17
Significance 332 .217 .226 .234 .063 .054 1.000

up to the level of statistically non-significant differences with the state-of-the-
art metadata-based recommenders. The obtained number of hits+trusts out-
comes is fewer than for such baselines. Nevertheless, the amount of hits is
comparable, or even greater than of these baselines, which suggests that our
content-based approaches filtered by genre metadata are well-suited for the
use-case of music discovery. Omne possible problem of such filtering is that it
can theoretically lower the serendipity of the provided recommendations. We
are aware of this problem, but our counterargument is the supposition that
there is enough music, unexpected and potentially attractive for the listener,
by the preferred styles of music to be recommended. Moreover, basing on tag
ontology or simple relations between tags (Sordo, 2012), it is possible to ex-
pand a set of style tags for filtering with related tags in the case one wants
broader results.

Thirdly, we have proposed an approach working exclusively on editorial
metadata taken from publicly available music database, Discogs.com. Relying
on user-built information about music releases present in this database, we
demonstrated how this information can be applied to create descriptive tag-
based artist profiles, containing information about particular genres, styles,
record labels, years of release activity, and countries. Furthermore, to overcome
the problem of tag sparsity, such artist profiles can be compactly represented as
vectors in a latent semantic space of reduced dimension. Applying a distance
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measure between the resulting artist vectors for the tracks in the preference
set of a user and the tracks within a music collection, we are able to gener-
ate recommendations. We observed, that the performance of this approach is
also comparable to the state-of-the-art metadata-based approaches and is well-
suited especially for the case of playlist generation. The proposed approach
has a number of advantages over common metadata-based approaches. Firstly,
it is able to provide a compact profile for each artist found in Discogs database.
Matching these profiles to music collections, large-scale recommendation sys-
tems can be built. Secondly, the proposed approach is based only on open
public data, meanwhile the majority of successful recommender systems oper-
ate on commercially undisclosed metadata. As a consequence, our approach is
easy to re-create and reproduce.

As expected, in all our experiments we evidenced a high number of trusted
recommendations for the metadata-based approaches, and fewer in the case
of content-based recommendations which is in line with results reported else-
where (Celma & Herrera, 2008). In general, we may conclude that it is possible
to achieve recommendations with a (slightly) above-average user satisfaction,
which would not require large datasets of social tags or collaborative filter-
ing data, but would work on the basis of audio analysis and simpler editorial
metadata. Notably, the best performing metadata approaches we considered
are suffering from the same “above-average” ceiling in all of the experiments.
This fact highlights a lot of room for improvement of music recommender sys-
tems. Although we have considered and evaluated the proposed approaches
in the context of “passive discovery”, relying on preference sets provided by
listeners, we expect our conclusions to be applicable for the query-by-example
use-case.



Content-based analysis of
music preferences

6.1 Introduction

In this chapter, we provide a further study on how audio content information
can be exploited to provide interesting insights on the nature of music prefer-
ences from both acoustical and semantic perspectives. We conduct a regression
analysis in order to capture the relation between the listener’s preference of
particular tracks and respective low-level audio features and inferred high-
level semantic descriptors (the henceforth called “predictors”). Our main goal
is to reveal “important” (or “key”) predictors defining the music preferences of
each of our participants, i.e., those that are best candidates for explaining the
outcome (the subjective preference ratings) and helping us to build a model.
By finding important predictors for each participant we then will be able to
compare preference patterns of different participants and find similarities or
differences among them. To this end, we construct personal user models for
a set of participants according to their preference ratings and preference set.
The results of this analysis provide insights on how important are particular
audio features and semantic descriptors to describe, and distinguish, the over-
all preferences of a particular listener. We also reveal general patterns suitable
for the whole sample of our participants.

6.2 Experiment 7: Predictive audio features of
individual preferences

6.2.1 User data

We gathered preference sets (see Section 3.3) and preference feedback (see
Section 5.6.2) for 31 out of our 39 participants we previously worked with for
Experiments 3, 4, and 5 (Sections 5.7.1, 5.8.1, 5.9.1). The rest of participants

121



CHAPTER 6. CONTENT-BASED ANALYSIS OF MUSIC
122 PREFERENCES

were excluded, as we were missing their subjective preference feedback, there-
fore, having only preference sets. For each participant, we assigned maximum
liking, listening intentions, and give-me-more ratings (4, 4, and 1, respectively)
to all tracks from her /his preference set as if they were rated by the participant.
Furthermore, we used actual received ratings for the tracks previously given
to the participant for subjective evaluation. To reduce possible noise, we con-
sidered the tracks with inconsistent preference ratings as unclear, similarly to
Sections 5.7.1, 5.8.1 and 5.9.1, and excluded them from further consideration.
We then matched audio features and semantic descriptors of each track (i.e.,
the predictors) with the associated liking rating (i.e, the dependent variable).!

6.2.2 Building user models

Linear multivariate regression models can be applied to study relationships
between variables, some of them to be predicted, some of them being potential
predictors, and the respective importance of the latter. However, this common
approach is vulnerable to high collinearity of data, i.e., a large number of highly
correlated predictors. If two or more of the predictors are correlated to the
dependent variable, then the estimates of coefficients in a regression model tend
to be unstable or counterintuitive. Indeed, among the 386 predictors available
in our study, lots are highly (and even absolutely) correlated. Moreover, we
are faced to the “large p, small n problem”, which refers to the situation when
the number of predictors p is larger than the number of observations n, i.e.,
the ill-conditioned data, which is the case for our subjects.

Therefore, we need to select a regression approach with regularization (i.e.,
penalization of models based on the number of their parameters) which is not
prone to multicollinearity, preserving similar importance levels for highly corre-
lated values, and which is able to deal with the problem of ill-conditioned data.
Moreover, we want to obtain a sparse solution that contains a small amount of
predictors with non-zero weights for better model stability and less over-fitting.
Regularization introduces a second factor which weights the penalty against
more complex models with an increasing variance in the data errors. This
gives an increasing penalty as model complexity increases (Alpaydin, 2004).
In particular, penalization can be in a form of the Ly or Ls Euclidean norm of
the vector of model coefficients. We considered searching for models with L;
(LASSO) and Lo regularization (ridge regression), and their hybrid combina-
tion (elastic net):

e Ridge regression (Hoerl, 1962) is applied to deal with unstable parameter
estimates caused by multicollinearity. Ridge regression generally yields
better predictions than ordinary least squares solution, through a better

!Similar analysis can be done using listening intentions and give-me-more ratings, but
they have been omitted for simplicity.
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compromise between bias and variance. Tts main drawback is that all
predictors are kept in the model.

e LASSO (Tibshirani, 1996) is more appropriate to achieve a sparse solu-
tion due to L; penalization but it will not necessarily yield good results
in presence of high collinearity. It has been observed that if predictors
are highly correlated, the prediction performance of the LASSO is dom-
inated by ridge regression. Moreover, LASSO tends to select only one
predictor among a group of predictors with high pairwise correlations,
and ignore the others. The second problem with L; penalty is that the
LASSO solution is not uniquely determined when the number of predic-
tors is greater than the number of observations, which is not the case of
ridge regression.

e FElastic net (Zou & Hastie, 2005) is suggested to use to obtain sparse
results in the presence of multicollinearity and/or high dimensional data,
when the LASSO often fails. Elastic net overcomes these limitations
by employing both L; and Ly penalties. It encourages a grouping ef-
fect, where strongly correlated predictors tend to be in (out) the model
together. The elastic net is particularly useful when the number of pre-
dictors is much larger than the number of observations.

We opt for elastic net regularization, which conceptually suits our needs. In
the simplest case, for each participant we can directly create a regression model
with this regularization. Two parameters need to be estimated: p € [0, 1],
defining a balance between LASSO (L) and ridge (L2) regression (only LASSO
when p = 1), and A defining the amount of penalty for both L; and Lo.
Equation 6.1 provides exact formula of the objective function to be minimized
by a coordinate descent in the regression process (Friedman et al., 2010):

(1-p)
2

1 2 2

ol = Xwlz + Apfwlls + X w3, (6.1)
where X is a p x n matrix of predictor observations, p is number of predictors,
n is number of observations, y is a dependent variable, and w are regression
coefficients for the predictors.

Parameter estimation

The best p and A can be found in a grid search with a stratified 10-fold cross-
validation. Thereafter, we can additionally validate the built model if we
preliminary split the participant’s data into the training set (90%), to be used
by grid parameter search, and the holdout test set (10%). However, due to the
small number of observations per participant, this modeling scenario can lead
to unstable results as the elastic net parameters and the selected predictors
can be highly dependent on the particular train/test split. Bagging approach
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Figure 6.1: Computed MSE for 2000 models (10-fold cross-validation of 200 bagged
models) of a particular user and p = 0.9 as a function of amount of penalization .
Larger X values (on the left) lead to heavier shrinkage of predictor coefficients and, in
particular, less amount of non-zero predictors.

to modeling can be used to cope with this problem (Breiman, 1996), which
is a common practice in different research fields (Bosni¢ & Kononenko, 2008;
Biihlmann, 2002). To this end, we repeatedly run regression on 100 random
90% train/10% test splits of the participant’s data (uniform sampling with
replacement). The 100 models are fitted using their 100 train samples and
can be combined by averaging the outputs. As we are mostly interested in
finding important predictors, we introduce a predictor selection step instead
of averaging. To this end, we compute a stability score of each predictor as a
number of times this predictor was selected (i.e., received a non-zero coefficient)
by the 100 bagged regression models. A predictor is considered as stable if it
occurred in > 95% of bagged models. We intentionally exaggerate requirements
for stability to assure that the selection is not biased by the dataset splits.

For each bagged model, the grid search of p and A was conducted on
the corresponding training set? considering n, X ny X ney possible combina-
tions of parameter values and training folder number. We empirically selected
n, = 7,ny = 50,n¢cy = 10 for the grid resolution. The evaluated values for p
included an interval [0.1,0.9] with a linear step 0.1, while A\ was evaluated on
an automatically selected log-scale. The criterion for best parameters is mean
value of mean square error (MSE) over the test folds.

In general, we have found that the best fitted bagged models for all partic-
ipants were obtained for p = 0.9. This evidences that the LASSO component
of penalization was very important for effective regression, i.e., the original
set of predictors was highly redundant as we expected. We, nevertheless, did
not consider the case of p = 1 as we wanted to keep the ridge penalization

*We used scikits-learn scientific library for Python, http://scikit-learn.org


http://scikit-learn.org
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component (L2) to preserve grouping of correlated variables to some extent.
Indeed, inspecting the obtained predictor coefficients for the user models, we
found the groupings to be roughly preserved and we, therefore, did not miss
possible important but highly correlated predictors in our analysis. For ex-
ample, both “instrumental” and “voice” descriptors, associated with the OVI
classifier, are present in the model for user #11 with similar absolute values
for the coefficients but opposite signs as these two predictors are perfectly in-
versely correlated (—0.0345 and 0.0345, respectively). Figure 6.1 presents the
dependency between the MSE and A on the example of all models computed
in 10-fold cross-validation for 20 bagged models of a particular user. As A
increases (toward the left), MSE increases as well. The predictor coefficients
are reduced too much and they do not adequately fit the responses. As A de-
creases, the models are more complex (have more non-zero coefficients). The
increasing MSE suggests that the models are over-fitted. In addition, we can
see the scatter of the MSE curves, which might indicate a lack of stability of
the trained models due to small number of available observations.

Model validation

To assess quality of each particular bagged model, we computed the coefficient
of determination R? and MSE on both the training data (measuring goodness-
of-fit) and the holdout data (measuring the generalization ability of the model).
In particular, the coefficient of determination is useful because it gives the
proportion of the variance of the dependent variable that can be explained by
a predictor or a set of them. It is a measure that allows us to determine how
certain one can be in making predictions from a certain model. Having selected
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Figure 6.2: Box plots of the obtained R? (a) and MSE (b) on the training data,
used for grid search, and holdout testing data averaged across bagged models for each
participant, and the R? and MSE for final user models on the entire participant data.
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only the stable predictors, we are able to construct the final ridge regression
model for the participant and assess its goodness-of-fit. Unfortunately, due to
the limited amount of the available preference data, we decided to use all of it
for the process of selection of stable predictors and had no possibility to assess
the goodness-of-fit for the final models on additional holdout data. Figures 6.2a
and 6.2b present box plots of the computed R? and MSE measures. Their
inspection reveals a considerably high goodness-of-fit for each model (with the
median R? of ~ 0.555) and but relatively low measures on the holdout data (the
median R? of ~ 0.2409). The goodness-of-fit for the final model is expectedly
lower than for the bagged models, due to predictor selection, but it is on the
reasonable level with the median R? being ~ 0.4228. Low R? values obtained
for the holdout data indicate that, unfortunately, our models might still lack
generality, which can be expected in the case of ill-conditioned data as ours.

Quality of user models

Figure 6.3 presents bagged testing, bagged holdout, and final model’s coeffi-
cients of determination and MSEs for particular users. In addition, the number
of track observations available per user and the number of selected predic-
tors for the final model are presented. No stable predictors were found, and,
therefore, final models were not constructed for 8 “problematic” participants
(#23-31). This can be mostly explained by the lack of preference data (less
than 170 tracks), not enough to identify stable descriptors, or by the fact that
actual factors of music preferences of these participants cannot be addressed
by the predictors at our reach. An inspection of the figure reveals satisfac-
tory goodness-of-fit for a large part of user models. Among the “difficult”
participants, i.e., those with low R? (< 0.4) for final models, we may highlight
participants #3, 4, 7, 10, 12, 14, 15, 18, and 21. The most problematic is
the user #4, whose R? scores is less than 0.2. MSE of final models reveals
the same pattern of problematic users. Considering the difference between
train/holdout estimations, which characterizes generalization quality of the
constructed models, we highlight the models for participants #19, 18, 11, 12,
and 5 as the most unstable (with the difference of R? being greater than 0.4) in
order of decreasing severity. We therefore include participants #11, 19, and 5
to the list of problematic participants. In total, final models built for 38.7% of
our participants are probably unsatisfactory and, moreover, we were not able
to build stable models for %25.8 of participants.

Considering model simplicity (i.e., the number of stable predictors in the
final model which corresponds to the number of predictors selected consistently
across the bagged models among our large set of 386 predictors), we observe
that some participants have a very low number of selected predictors. We were
able to select only less than 5 predictors for participants #4, 5, 11, 15, and 19,
which amounts to 16.1% of participants. Figure 6.4a presents a box plot of the
number of predictors selected for each user model. The most complex models
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(that is, those with the greatest number of predictors, > 20) were obtained
for 12.9% of participants with the maximum being 30 stable predictors for
participant #1.

In addition, we analyzed the effect of training data size on model com-
plexity and goodness-of-fit. Figure 6.4b demonstrates a positive correlation
between the number of samples and the number of selected predictors. A lin-
ear trend (the observed Pearson correlation p ~ 0.88) suggests that the models’
complexity seems to increase with the number of samples, i.e. the available
preference examples. This might imply that a model’s specificity increases
with more additional information available, thereby, capturing more nuances
of preferences. Figure 6.5a and 6.5b shows a negative correlation (Pearson’s
p ~ —0.33) between the MSE of final models and the number of samples and
similar positive correlation for R? of final models. This suggests that model
accuracy may increase with larger amount of training data, which is also some-
how expected. According to the line of best fit, more than 150 tracks might

1 1
25 30

L5

o 5 10 15 20 25 30
Participant

Figure 6.3: Coefficient of determination and mean square error for bagged and final
models per participant, supplemented with the number of available track observations
and the number of selected predictors. Dashed lines stand for the average R? and
MSE across bagged models on training dataset (goodness-of-fit), while dotted lines
stand for the average R? and MSE estimation on holdout testing dataset. Solid lines
stand for the goodness-of-fit of final models. No final models were constructed for
participants #26-31 due to absence of stable predictors.
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Figure 6.4: Box plot of the number of predictors included in the final user models of
our participants (a). Scatter plot and the line of best fit representing the correlation
between the number of samples (i.e., training data size) and the number of selected
predictors (i.e., model complexity) (b).
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Figure 6.5: Scatter plot and the line of best fit representing the correlation between
the number of samples (i.e., training data size) and the obtained MSE (c) and R? (d)
of final models (i.e., model goodness-of-fit).

be required to build a minimally satisfactory model (R? > 0.4) and more than
400 tracks are desirable for a satisfactory model (R? > 0.5).

6.2.3 Important predictors

For each participant, we rank predictors found in the respective final user model
by their univariate R? score (henceforth called as “importance score”), which
we consider as a measure of importance. As we noted before, using directly
the predictor’s coefficients from final models as an importance indicator can be
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misleading in the case of multicollinearity. Instead, we can use coefficients of
determination obtained for the univariate linear models. If the predictor was
selected for the final model, we create a linear model with this single predictor
and assess its goodness-of-fit (R?) on the participant’s dataset. We assign zero
importance scores to all predictors not included into the final model of the
participant.

In addition, we compute the following two scores, which provide us clues on
importance of particular predictors for predicting music preferences in general
(i.e., for our entire population):

e “Generality” score: the number of times a predictor was included into
final user models. In addition, we assessed the number of times when
the predictor effect was positive or negative in respect to the sign of the
corresponding coefficient in the final model.

o Mean importance score: an average of importance scores of the predictor
across all participants.

We identified several particular predictors, presented in Table 6.1, with the
generality score greater from the rest. More informative conclusions can be
driven based on the detailed per-user lists of important predictors in Table 6.3.
In total, 143 out of 386 predictors served to build our user models.

Firstly, we have evidenced that tempo related features (first and second
peaks’ BPM, spread, and weight characterizing BPM probability distribution)
were frequent in the user models (61.3% of our participants). A common
pattern can be traced for models including these predictors: a positive effect
for the second peak BPM and both peaks’ spread, a negative effect of both
peaks’ weight. Higher spread values with lower weight might suggest more
dynamic structure of the tracks with a varying rhythm speed, i.e. with a higher
rhythm complexity, and a dislike for music with a prominent steady pulse.
Together with other descriptors (beats loudness, rhythm type and perceptual
speed), rhythmic features occurred in 21 out of 24 built user models (67.7%
of participants). We conclude that once the factors of the listener’s music
preference are related to acoustic properties of music, rhythm might be of the
primary importance among them.

Secondly, tonality was found to be another important aspect of preference.
Predictors related to HPCP (untransposed and transposed) appeared in 51.6%
of models, with particular predictors being very user-specific. Similarly, chords
histogram also appeared in models for 45.2% of listeners, not necessarily inter-
sected with HPCP predictors. Tuning equal tempered deviation was present in
models for 32.3% participants with a consistently negative effect. This predic-
tor indicates whether the track’s scale may be considered as equal-tempered
or not by computing the deviation of HPCP local maxima with respect to
equal-tempered bins. Our findings suggest a dislike of music with non-western
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Table 6.1: Predictors with the highest generality score. Associated ground truths
(see Section 3.4.2), and corresponding musical facets, are mentioned in parenthesis
in the case of semantic descriptors. Positive effect implies that higher values of a
predictor are associated with a higher preference. Oppositely, lower predictor values
are associated with a higher preference in the case of negative effect.

Predictor Musical Number of | Positive | Negative
dimension participants | effect effect

First peak spread Rhythmic 12 11 1
Tuning equal tempered deviation Tonal 10 0 10
Second peak BPM Rhythmic 10 10 0
Chords scale=minor Tonal 8 8 0
Chords scale=major Tonal 8 0 8
Second peak weight Rhythmic 8 0 8
Second peak spread Rhythmic 8 8 0
First peak weight Rhythmic 8 0 8
Chords histogram #22 Tonal 5 2 3
Chords strength mean Tonal 4 0 4
Chords histogram #2 Tonal 4 0 4
Chords histogram #18 Tonal 4 4 0
Beats loudness mean Rhythmic 4 0 4
Spectral complexity variance Timbral 4 4 0
Folk/country (G1, genre) Semantic 4 0 4
Alternative (G1, genre) Semantic 4 0 4
Male (OGD, instrumentation) Semantic 4 1 3
Female (OGD, instrumentation) Semantic 4 3 1
Quickstep (RBL, rhythm) Semantic 4 1 3
Chords key=F# Tonal 3 2 1
Chords key=A Tonal 3 1 2
Chords histogram #17 Tonal 3 3 0
First peak BPM Rhythmic 3 0 3
Beats loudness bass variance Rhythmic 3 3 0
Spectral flatness dB variance Timbral 3 3 0
Voice (OVI, instrumentation) Semantic 3 2 1
Instrumental (OVI, instrumentation) | Semantic 3 1 2
Disco (G3, genre) Semantic 3 2 1
Country (G3, genre) Semantic 3 1 2
Trance (GEL, genre) Semantic 3 0 3
House (GEL, genre) Semantic 3 3 0
Blues (G1, genre) Semantic 3 3 0
Western (CUL, musical culture) Semantic 3 0 3
Non-western (CUL, musical culture) | Semantic 3 3 0
Chachacha (RBL, rhythm) Semantic 3 3 0

scaling for a group of our participants. In addition, scale and key related pre-
dictors both independently appeared for 29% and 38.7% of participants. In
total, tonality related predictors (including HPCP, key, scale, and key strength,
chords key, scale, and strength, tuning diatonic strength) have been found in
22 out of 24 built user models, which accounts for 71% of participants.

In turn, semantic descriptors were also frequent within the models (19 mod-
els, 61.3% of participants). In particular, association with folk/country and
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Table 6.2: Top 35 commonly important predictors according to the computed mean
importance score. Associated ground truths (see Section 3.4.2) and corresponding
musical facets are mentioned in parenthesis in the case of semantic descriptors.

Predictor Musical dimension | Mean importance score
First peak spread Rhythmic 0.0485
Second peak BPM Rhythmic 0.0362
First peak weight Rhythmic 0.0331
Tuning equal tempered deviation Tonal 0.0277
Beats loudness mean Rhythmic 0.0193
Second peak spread Rhythmic 0.0175
Spectral flatness dB variance Timbral 0.0157
Country (G3, genre) Semantic 0.015
Trance (GEL, genre) Semantic 0.0144
Alternative (G1, genre) Semantic 0.0133
Chachacha (RBL, rhythm) Semantic 0.0131
Male (OGD, instrumentation) Semantic 0.0129
Female (OGD, instrumentation) Semantic 0.0129
Quickstep (RBL, rhythm) Semantic 0.0122
Spectral RMS variance Timbral 0.012
Folk/country (G1, genre) Semantic 0.0118
Chords scale=minor Tonal 0.0113
Chords scale=major Tonal 0.0113
House (GEL, genre) Semantic 0.0112
Jive (RBL, rhythm) Semantic 0.0103
Non-western (CUL, musical culture) Semantic 0.00964
Western (CUL, musical culture) Semantic 0.00964
Second peak weight Rhythmic 0.00945
Beats loudness bass variance Rhythmic 0.00903
Blues (G1, genre) Semantic 0.00899
Voice (OVI, instrumentation) Semantic 0.00855
Instrumental (OVI, instrumentation) Semantic 0.00855
Acoustic (MAC, mood) Semantic 0.00838
Non-acoustic (MAC, instrumentation) Semantic 0.00838
Bark bands variance #23 Timbral 0.00835
Spectral flux mean Timbral 0.00813
THPCP #3 Tonal 0.00759
Bark bands mean #8 Timbral 0.00731
First peak BPM Rhythmic 0.00728
Spectral flux variance Timbral 0.0072

alternative rock, voice gender, and quickstep rhythm were among the frequent
ones (12% of participants each). If we do not consider particular descriptors
(classes) but associated ground truths, the genre-related G1 and G3, and GEL,
and the the rhythm-related RBL were among the most frequent (occurred in
11,9, 6, and 7 models, respectively), followed by OGD (voice gender, 4 models),
CUL (western/non-western culture, 3 models), and OVI (voice/instrumental,
3 models). To sum up, genre was found to be an important factor for 48.4% of
our participants, followed by rhythm and instrumentation (25.8% each), and
mood (12.9%).
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Finally, predictors related to timbre were found to contribute to 19 mod-
els (61.3% of participants). Specifically, bark bands occurred in 12 models
(38.7%), but MFCCs solely in 5 models (16.1% of participants). Partially, this
might be explained by that timbral information is already integrated into high-
level descriptors related to genres and instrumentation. Building models solely
on low-level predictors (see Section 6.2.4) did not provide significant increase
in the number of models utilizing timbral predictors.

Our “importance score” reveals a similar list of top ranked predictors, in-
cluding first peak spread, second peak BPM, first and second peak spread and
weight, second peak BPM, and tuning equal tempered deviation, among the
others, providing alternative rankings. We report top rankings by the mean
importance score in Table 6.2.

Table 6.3: Signed importance scores of predictors selected for each one of the final
user models of participants. The sign of the score (positive/negative) corresponds to
the sign of the respective predictor coefficient, representing positive or negative effect
of the predictor on the liking rating. Associated ground truths (see Section 3.4.2) are

mentioned in parenthesis in the case of semantic descriptors.

Participant | Predictor Musical Signed
dimension importance
score
#1 Tuning equal tempered deviation Tonal -0.0578
Second peak spread Rhythmic 0.0496
First peak weight Rhythmic -0.0477
Onset rate Rhythmic -0.0392
Jazz (G2, genre) Semantic 0.0288
Electronic (G1, genre) Semantic -0.028
Blues (G1, genre) Semantic 0.0218
Chords strength mean Tonal -0.0218
HPCP variance #2 Tonal -0.0204
Bark bands mean #5 Timbral -0.0184
Chords key=F+# Tonal 0.0179
Reggae (G3, genre) Semantic 0.014
Chords histogram #19 Tonal 0.00894
Second peak weight Rhythmic -0.00743
Spectral complexity variance Timbral 0.00325
#2 Tuning equal tempered deviation Tonal -0.158
Alternative (G1, genre) Semantic -0.108
Spectral flux variance Timbral 0.0772
Bark bands variance #26 Timbral -0.049
Second peak BPM Rhythmic 0.0357
Chords histogram #5 Tonal 0.0289
#3 Second peak BPM Rhythmic 0.123
Chachacha (RBL, rhythm) Semantic 0.106
Alternative (G1, genre) Semantic -0.069
Second peak weight Rhythmic -0.0663
Key strength Tonal 0.0395
Chords scale=major Tonal -0.0378
Chords scale=minor Tonal 0.0378
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Mood cluster #5 (MCL, mood) Semantic -0.034
Rumba (RBL, rhythm) Semantic -0.0246
First peak spread Rhythmic 0.0171
HPCP variance #24 Tonal 0.0149
Chords histogram #3 Tonal 0.0136
Chords histogram #2 Tonal -0.0134
HPCP variance #33 Tonal 0.0114
Silence rate 60dB variance Miscellaneous 0.00801
HPCP variance #8 Tonal -0.00783
Chords histogram #17 Tonal 0.00655

#4 Beats loudness bass variance Rhythmic 0.203
Metal (G3, genre) Semantic -0.147
Bark bands variance #4 Timbral -0.119
Chords key=G# Tonal -0.0794

#5 Alternative (G1, genre) Semantic -0.111
Second peak BPM Rhythmic 0.0655
MFCC mean #3 Timbral 0.0597
Tuning equal tempered deviation Tonal -0.0523
Chords histogram #10 Tonal -0.0338

#6 Spectral RMS variance Timbral 0.151
Quickstep (RBL, rhythm) Semantic 0.0798
First peak BPM Rhythmic -0.0656
MFCC mean #11 Timbral 0.0604
HPCP variance #25 Tonal 0.0567
Chords histogram #18 Tonal 0.054
Chords histogram #22 Tonal -0.0341
Chords scale=major Tonal -0.0242
Chords scale=minor Tonal 0.0242

#7 Bright timbre (OTB, instrumentation) | Semantic -0.107
Dark timbre (OTB, instrumentation) Semantic 0.107

#8 First peak weight Rhythmic -0.167
Fast (RPS, rhythm) Semantic -0.146
Second peak BPM Rhythmic 0.111
First peak spread Rhythmic 0.0984
Pop (G3, genre) Semantic -0.092
Female (OGD, instrumentation) Semantic 0.0895
Male (OGD, instrumentation) Semantic -0.0895
Quickstep (RBL, rhythm) Semantic -0.0834
Chords changes rate Tonal -0.0732
HPCP variance #29 Tonal -0.0394
Non-western (CUL, musical culture) Semantic 0.0321
Western (CUL, musical culture) Semantic -0.0321
Key scale=major Tonal -0.0217
Key scale=minor Tonal 0.0217
Folk/country (G1, genre) Semantic -0.0214
Chords histogram #0 Tonal -0.0207
Spectral complexity variance Timbral 0.0149
Spectral strong peak variance Timbral 0.011
Chords key=F Tonal 0.0108
Bark bands variance #3 Timbral 0.00776
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Participant | Predictor Musical Signed
dimension importance
score

Chords histogram #22 Tonal -0.00719
Electronic (MEL, instrumentation) Semantic 0.00678
Non-electronic (MEL, instrumentation) | Semantic -0.00678
Chords histogram #18 Tonal 0.00579
Beats loudness bass variance Rhythmic 0.00511
Second peak weight Rhythmic -0.00191
Key key=F+# Tonal -0.00103
Bark bands variance #8 Timbral -9.28e-05
Rap/hip-hop (G1, genre) Semantic 5.78e-05
Funk/soul/rnb (G1, genre) Semantic 2.01e-05

#9 Country (G3, genre) Semantic -0.164
Non-western (CUL, musical culture) Semantic 0.138
Western (CUL, musical culture) Semantic -0.138
Bark bands variance #10 Timbral -0.101
Folk/country (G1, genre) Semantic -0.0843
Rock (G3, genre) Semantic -0.0738
First peak weight Rhythmic -0.0514
HPCP variance #34 Tonal 0.0426

#10 Bark bands variance #23 Timbral -0.192
Spectral flux variance Timbral 0.0885
Chords histogram #16 Tonal -0.0817
Chords scale=major Tonal -0.0537
Chords scale=minor Tonal 0.0537
HPCP variance #7 Tonal -0.0234

#11 Acoustic (MAC, mood) Semantic 0.193
Non-acoustic (MAC, instrumentation) Semantic -0.193
Spectral flux mean Timbral -0.137
Spectral flatness dB variance Timbral 0.115
Second peak BPM Rhythmic 0.0888
THPCP #1 Tonal -0.0798
Chords key=F# Tonal 0.0456
First peak spread Rhythmic 0.0427
HPCP variance #12 Tonal 0.0382
Instrumental (OVI, instrumentation) Semantic -0.0345
Voice (OVI, instrumentation) Semantic 0.0345
Bark bands variance #19 Timbral 0.00625
Tristimulus variance #1 Timbral -0.00235

#12 Country (G3, genre) Semantic 0.114
Mood cluster #1 (MCL, mood) Semantic -0.0919
Key key=C# Tonal -0.0764
Dance (G2, genre) Semantic -0.0511
Spectral spread variance Timbral -0.0459
THPCP #5 Tonal -0.0347
Chords histogram #22 Tonal 0.0266
First peak spread Rhythmic 0.0219
Jazz (G3, genre) Semantic 0.02
Male (OGD, instrumentation) Semantic 0.0153
Female (OGD, instrumentation) Semantic -0.0153
Chords histogram #21 Tonal -0.0142
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MFCC mean #5 Timbral 0.00213

#13 Bark bands mean #24 Timbral -0.119
Trance (GEL, genre) Semantic -0.106
First peak weight Rhythmic -0.0964
Second peak BPM Rhythmic 0.0918
First peak spread Rhythmic -0.0914
Beats loudness mean Rhythmic -0.0769
House (GEL, genre) Semantic 0.0653
Key key=G# Tonal -0.0527
Bark bands mean #0 Timbral -0.0461
Tuning equal tempered deviation Tonal -0.0454
Bark bands kurtosis variance Timbral 0.0333
Rumba (RBL, rhythm) Semantic 0.0258
Bark bands variance #13 Timbral 0.0192
Chords histogram #18 Tonal 0.0186
Alternative (G1, genre) Semantic -0.0179
HPCP variance #4 Tonal -0.0131
Chords key=G Tonal 0.0116
Bark bands variance #16 Timbral -0.0114
Chords strength mean Tonal -0.0102
Chords scale=major Tonal -0.01
Chords scale=minor Tonal 0.01
Chords key=A Tonal -0.00697
Second peak weight Rhythmic -0.00348
MFCC mean #11 Timbral 0.00228
First peak BPM Rhythmic -0.00221
Chords histogram #2 Tonal -0.00132
HPCP variance #2 Tonal 0.000823
Disco (G3, genre) Semantic 9.61e-05

#14 Trance (GEL, genre) Semantic -0.18
Blues (G1, genre) Semantic 0.161
First peak spread Rhythmic 0.119
Second peak BPM Rhythmic 0.0876
Second peak spread Rhythmic 0.071
Electronic (G1, genre) Semantic -0.0621
Tuning equal tempered deviation Tonal -0.0468
Instrumental (OVI, instrumentation) Semantic -0.0323
Voice (OVI, instrumentation) Semantic 0.0323
Chords key=A Tonal 0.0233

#15 Folk/country (G1, genre) Semantic -0.166
Pop (G1, genre) Semantic -0.146
Rock (G1, genre) Semantic -0.14
Tuning diatonic strength Tonal -0.0989
Quickstep (RBL, rhythm) Semantic -0.0871
Chachacha (RBL, rhythm) Semantic 0.0856
Jive (RBL, rhythm) Semantic -0.0761
Chords strength mean Tonal -0.0656
Spectral skewness variance Timbral 0.0582
Key key=D Tonal -0.0534
Non-western (CUL, musical culture) Semantic 0.0518
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Participant | Predictor Musical Signed
dimension importance
score

Western (CUL, musical culture) Semantic -0.0518
Trance (GEL, genre) Semantic -0.0438
Chords scale=major Tonal -0.0423
Chords scale=minor Tonal 0.0423
THPCP #6 Tonal -0.0159
Chords key=E Tonal 0.00701
Disco (G3, genre) Semantic 0.0013

#16 House (GEL, genre) Semantic 0.157
Spectral flatness dB variance Timbral 0.108
Tristimulus mean #1 Timbral -0.0692
Spectral skewness variance Timbral 0.066
Second peak BPM Rhythmic 0.0586
Spectral flux mean Timbral -0.0504
Disco (G3, genre) Semantic -0.0402
Jazz (G1, genre) Semantic 0.0384
Tuning equal tempered deviation Tonal -0.0242
Chords histogram #15 Tonal 0.0217
Male (OGD, instrumentation) Semantic -0.0205
Female (OGD, instrumentation) Semantic 0.0205
Chords histogram #1 Tonal 0.02
Funk/soul/rnb (G1, genre) Semantic 0.0171
Chords scale=major Tonal -0.0166
Chords scale=minor Tonal 0.0166
MFCC mean #5 Timbral 0.0138
Jazz (G3, genre) Semantic -0.0129
Second peak weight Rhythmic -0.00672
Chords histogram #22 Tonal 0.00645
Second peak spread Rhythmic 0.0054
Bark bands mean #14 Timbral 0.00444
Chords key=G Tonal -0.00272
Spectral complexity variance Timbral 0.00185

H#17 Beats loudness mean Rhythmic -0.209
First peak spread Rhythmic 0.204
Second peak weight Rhythmic -0.125
HPCP mean #32 Tonal -0.072
Country (G3, genre) Semantic -0.0665

#18 Tuning equal tempered deviation Tonal -0.131
Voice (OVI, instrumentation) Semantic -0.13
Instrumental (OVI, instrumentation) Semantic 0.13
First peak weight Rhythmic -0.114
Beats loudness mean Rhythmic -0.0959
Second peak BPM Rhythmic 0.0817
First peak spread Rhythmic 0.0801
THPCP #26 Tonal -0.0748
HPCP variance #25 Tonal -0.0534
Second peak spread Rhythmic 0.0501
HPCP variance #7 Tonal -0.0297
Chords key=D Tonal -0.025
Chords strength variance Tonal 0.0237
Blues (G1, genre) Semantic 0.0237
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Rhythm’n’blues (G2, genre) Semantic -0.0202
Chords histogram #17 Tonal 0.018
Chords key=F# Tonal -0.014
Key key=F Tonal -0.0109
Chords histogram #23 Tonal 0.0105
Key key=A Tonal 0.00789
Chords histogram #2 Tonal -0.00603
Tristimulus mean #0 Timbral -0.00235
Chords key=A Tonal -0.00152
Second peak weight Rhythmic -0.000693
Beats loudness bass variance Rhythmic 0.000104
Folk/country (G1, genre) Semantic -1.43e-05

#19 Chachacha (RBL, rhythm) Semantic 0.109
First peak spread Rhythmic 0.0624
Key scale=major Tonal -0.0605
Key scale=minor Tonal 0.0605
Onset rate Rhythmic -0.0489
Chords scale=major Tonal -0.0463
Chords scale=minor Tonal 0.0463
THPCP #27 Tonal -0.0448
First peak weight Rhythmic -0.0359
Tuning equal tempered deviation Tonal -0.0343
House (GEL, genre) Semantic 0.0342
THPCP #9 Tonal 0.0314
Quickstep (RBL, rhythm) Semantic -0.031
Second peak spread Rhythmic 0.0309

#20 Spectral flatness dB variance Timbral 0.139
Second peak spread Rhythmic 0.0995
Chords strength variance Tonal 0.0844
Tuning equal tempered deviation Tonal -0.0782
Chords histogram #23 Tonal 0.0669
THPCP #24 Tonal 0.0484

#21 Male (OGD, instrumentation) Semantic -0.173
Female (OGD, instrumentation) Semantic 0.173
Jive (RBL, rhythm) Semantic -0.16
Spectral RMS variance Timbral 0.125
Techno (GEL, genre) Semantic 0.0791
Beats loudness mean Rhythmic -0.0629
Rumba (RBL, rhythm) Semantic 0.058
Chords strength mean Tonal -0.0309
Chords scale=major Tonal -0.0287
Chords scale=minor Tonal 0.0287
Chords histogram #2 Tonal -0.0276
First peak weight Rhythmic -0.0261
Chords histogram #22 Tonal -0.0235
Second peak spread Rhythmic 0.0224
First peak spread Rhythmic 0.022
Mood cluster #4 (MCL, mood) Semantic -0.0189
Bark bands mean #26 Timbral 0.0145
Tuning equal tempered deviation Tonal -0.00976
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Chords histogram #19 Tonal 0.00425
Spectral complexity variance Timbral 0.00219
#22 First peak weight Rhythmic -0.223
First peak spread Rhythmic 0.174
Second peak BPM Rhythmic 0.0896
Second peak spread Rhythmic 0.0741
Bark bands mean #4 Timbral -0.0715
THPCP #10 Tonal 0.0626
Bark bands variance #11 Timbral 0.0539
Chords histogram #9 Tonal 0.0502
Chords histogram #18 Tonal 0.0456
Chords histogram #17 Tonal 0.00635
Second peak weight Rhythmic -0.0058
#23 First peak spread Rhythmic 0.182
THPCP #3 Tonal -0.175
Bark bands mean #8 Timbral -0.168
First peak BPM Rhythmic -0.0996
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6.2.4 Low-level and semantic models

Finally, we would like to provide further insights on advantages of high-level
vs low-level audio content description. We already evidenced the advantage of
high-level semantic description over common approaches working with low-level
features in the task of measuring non-personalized music similarity (Chapter 4).
In contrast, in the present experiment we create a personalized model for each
listener. In order to analyze if high-level descriptors provide similar benefits,
we have repeated the regression procedure described above with two differ-
ent predictor sets containing solely high-level semantic descriptors or low-level
timbral, temporal and tonal features. Figures 6.6a and 6.6b show goodness-of-
fit of final ridge models obtained on all predictors, semantic descriptors, and
low-level features. In addition box-plots of the number of selected predictors
are presented in Figures 6.7 and 6.7.

In contrast to our previous observations, models with semantic predictors
preformed worse than models with low-level or both types of predictors accord-
ing to the obtained median values of R? and MSE. We conducted three pairwise
T-tests in order to assess statistical significance of the observed differences in
R? values. No statistically significant differences were found between models
working on all predictors and solely on low-level predictors (¢(44) = 1.60;p ~
0.116). In contrast, statistical differences were found between high-level and
low-level models (¢(45) = 4.76;p < 0.001) and between models working on
all predictors and high-level models (¢(46) = 6.84,p < 0.001). The median
number of selected predictors also differed in respect to the predictor set. The
non-parametric Wilcoxon signed-rank test revealed the same pattern of differ-
ences (p = 0.082, p < 0.001, and p < 0.001, respectively). The median R?
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Figure 6.6: Box plots of the obtained R? (a) and MSE (b) for final user models
trained on all predictors (HL+LL), semantic descriptors (HL), and low-level features
(LL).
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Figure 6.7: Box plot of the number of predictors selected for final user models when
trained on all predictors (HL+LL), semantic descriptors (HL), and low-level features
(LL).

for the final models using all predictors was ~ 0.423, while the median R? for
low-level and high-level models was 0.384 and 0.252, respectively. On average,
simple models (6-11 predictors) were selected using all three sets of predic-
tors. More predictors were selected for the largest set (all predictors), while
high-level models contained the least amount of predictors.

The obtained results suggest better applicability of low-level audio features
in the task of preference modeling. However, such features are often difficult
to explain. While the computed semantic user models had a low coefficient
of regression (less than 0.14 decrease in the R? median value), the addition of
semantic descriptors did not decrease the performance of user models at all,
but extended them with additional semantic facets for 61.2% of our partici-
pants. Therefore, we may expect semantic descriptors to be a considerably
effective and robust way to extend, but not substitute, low-level acoustic pref-
erence models. A similar conclusion was reached in Section 4.9, concerning the
advantage of hybrid low-level/semantic music similarity measure. Even more,
there might be listeners for whom preference models based solely on low-level
features are not feasible and an inclusion of additional semantic categories is
essential.

6.2.5 Conclusions

In this chapter we addressed the task of identifying important predictors of
music preferences specific to our participants. To this end, we analyzed both
low-level audio features and semantic descriptors available from our audio anal-
ysis tool for creating user models. We proposed a new approach based on a
modeling using linear regression with elastic net regularization (to handle prob-
lem of ill-conditioned data) and bagging (to improve stability).

We were able to create user models for 81% of our participants, with an
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acceptable, though not excellent, goodness-of-fit (median R? ~ 0.4376 for final
models, that is, the models explained approximately 43.8% of variance). For
comparison, the best models proposed for the recent Netflix and Yahoo Music
competitions (large-scale collaborative filtering on movie and music recom-
mendation) explained 42.6% and 59.3% of variance, respectively (Dror et al.,
2011). These models worked on large datasets of metadata (user ratings), and
we can expect worse performance for current content-based approaches. We
believe the fact of ill-conditioned data (low number of examples, large number
of predictors) to be the main reason for lower performance. To address this
problem, we deliberately simplified the models by using elastic net regression
and by introducing a stability measure. The trade-off between goodness-of-
fit and stability naturally provoked lower R? and MSE measures. We expect
higher goodness-of-fit when more user data is available (350 tracks with asso-
ciated subjective ratings per user), which was surely problematic in the context
of our experiment. We should highlight that the main goal of the present anal-
ysis is not to create models with high prediction accuracy, suitable for music
recommendation, but to reveal important predictors of music preferences.

The models we constructed ranged in their simplicity, and the simpler
models were associated with a poorer performance. Again, this problem can
be associated with the lack of user data impeding the stability of selected pre-
dictors. Low goodness-of-fit coupled with model simplicity might also signify
that not all the real factors of preference are addressed by the predictors at
our reach.

In general, we evidenced that there are low-level and high-level audio fea-
tures which are fundamental for explaining music preferences. Low-level fea-
tures related to rhythm, tonality, and timbre, and semantic descriptors cor-
responding to instrumentation and rhythm were found to be important pre-
dictors corroborating results from studies on music perception (Section 2.2.2).
Our models included semantic descriptors which can be associated with im-
portance of generic referential meaning. In particular, we found genre to be of
high importance, but have not found mood to be as important which contra-
dicts the evidence from the psychological studies. However, we still observed
the importance of tonal information (major/minor key) which is related to the
emotional content of music.

We presented a computational study of music preferences grounded on
audio features and semantic descriptors as the predictors of preference. This
study is unique in the sense that, to the best of our knowledge, there are no
other similar research works trying to infer preference models using a large
variety of audio features. The main limitation of this study lies in the amount
of available data. Further analysis on a larger (and therefore, well-conditioned)
user dataset will be of interest. As well, we hypothesize that complex non-linear
patterns of preferences may occur, but they are out of scope of this thesis.






Visualization of music
preferences

7.1 Introduction

In previous chapters we have researched on how audio content information,
in particular, including inferred semantic categories, can be used for music
recommendation and user preference modeling. In this chapter we consider
possible applications of the proposed semantic user profile suited to enrich
interaction with music recommender systems. Specifically, we focus on the
problem of how music preferences can be visualized in a convenient way. To
this end, we study how the proposed semantic user profile can be mapped
to a visual domain. To the best of our knowledge, this task of translating
music-oriented user models into visual counterparts has not been explored
previously. This study has been done in collaboration with other authors, to
whom we are very grateful for their valuable contributions. We propose a
novel approach to depict a user’s preferences in form of a Musical Avatar, a
humanoid cartoon-like character. Although such a task is not directly related
to music recommendation, it might be a useful enhancement for recommender
systems. In particular, automatic user visualization can provide means to
increase user engagement in the system, justify recommendations (e.g., by
visualizing playlists), and facilitate social interaction among users.

We operate on the semantic description of the listener’s preference set,
inferred from low-level timbral, temporal and tonal audio features, and consider
three descriptor integration methods to represent user preferences in a compact
form suitable for mapping it to a visual domain. We evaluate this visualization
approach on 12 subjects and discuss the obtained results. More precisely, we
show that the generated visualizations are able to reflect the subjects’ core
preferences and are counsidered by the users as a closely resembling, though
not perfect, representation of their musical preferences. We would like to
acknowledge our colleagues from the Music Technology Group as this research
has benefited from several collaborators.
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7.2 Semantic representation of music preferences

We follow the proposed preference elicitation strategy (Section 3.3) and se-
mantic descriptor extraction for each track in the listener’s preference set (Sec-
tion 3.4). The retrieved semantic descriptors provide a rich representation of
user preferences, which in particular can give valuable cues for visualization.
Instead of using their full potential, in this proof-of-concept application we
map a reduced subset of descriptors for simplicity reasons. To this end, we se-
lect this subset considering the classifiers’ accuracy against ground truth values
provided by a subset of 5 participants. When selecting the subset, we also in-
tend to preserve the representativeness of the semantic space. We asked these
participants to manually annotate their own music collections with the same se-
mantic descriptors as those inferred by the classifiers. We then compared these
manual annotations with the classifiers’ outputs by Pearson correlation and se-
lected the best performing descriptors. The observed correlation values for all
semantic descriptors varied between -0.05 and 0.70 with the median being 0.40.
The subset of 17 descriptors was selected with the majority of correlations (for
14 descriptors) being greater than 0.40. The resulting descriptors, which are
used by the proposed visualization approach, are presented in Table 7.1.!

7.3 Descriptor summarization

Having refined the semantic descriptors for the computed user profile, we are
faced with a problem of their summarization. Our user profile consists of a set
of vectors of semantic descriptors, but we consider a single image, representing
general preferences of the listener, as an output of our visualization system.
Therefore, we opt to use the centroid of the user’s preference set as a rough
approximation of the overall music preferences.

!Note that in this study was done before the analysis presented in the previous Chapter 6,
and we did not take an advantage of the results of the analysis presented there.

Table 7.1: Selected descriptors, and the corresponding music collections used for
regression, per category of semantic descriptors (i.e., genre, moods & instruments,
and others) used for visualization.

Genre Moods & Instruments Others
Electronic (G1) Happy (MHA) Party (OPA)
Dance (G2) Sad (MSA) Vocal (OVI)
Rock (G2) Aggressive (MAG) Tonal (OTN)
Classical (G3) Relaxed (MRE) Bright (OTB)
Jazz (G3) Electronic (MEL) Danceable (ODA)

Metal (G3) Acoustic (MAC)
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We consider different summarization methods to obtain a compact repre-
sentation which can be mapped to the visual domain. With these summa-
rization strategies we explore the degree of descriptor resolution necessary for
optimal visual representation. These strategies can be based on continuous or
discrete values, and therefore lead to visual elements of continuous or discrete
nature (e.g., size). The idea behind this exploration is related to the possi-
bility that users might prefer simpler objects (discrete visual elements such as
presence or absence of a guitar) or more complex ones (continuous elements
such as guitars of different sizes) depicting subtle variations of preferences.

We summarize the user model across individual tracks to a single multi-
dimensional point in a semantic descriptor space as in the case of the SEM-
MEAN approach we considered for music recommendation (Section 5.4.1). We
first standardize each descriptor to remove global scaling and spread; i.e., for
each track from the user’s preference set we subtract the global mean and divide
by the global standard deviation. We estimate the reference means (1g;) and
standard deviations (og;) for each descriptor from the representative in-house
music collection of 100,000 music excerpts used for the subjective evaluation
of music recommendation approaches in Experiment 3 (Section 5.7.1). More-
over, we range-normalize the aforementioned standardized descriptor values
according to the following equation:

N, = d; — min (7.1)

max — min’

where d; is the standardized value of descriptor ¢, and since d; has zero mean
and unit variance, we set the respective min and maz values to —3 and 3,
since according to Chebyshev’s inequality at least 89 % of the data lies within
3 standard deviations from its mean value (Grimmett & Stirzaker, 2001). We
clip all resulting values smaller than O or greater than 1. The obtained scale can
be seen as a measure of preference for a given category, and is used by the vi-
sualization process (see Section 7.4). We then summarize the descriptor values
across tracks by computing the mean for every normalized descriptor (1 ;).

At this point, we consider three different methods to quantize the obtained
mean values. These quantization methods convey different degrees of data
variability, and are defined as follows:

e Binary forces the descriptors to be either 1 or 0, representing only two
levels of preference (i.e., 100% or 0%). We quantize all 1 ; values below
0.5 to zero and all values above (or equal) 0.5 to one.

e Ternary introduces a third value representing a neutral degree of prefer-
ence (i.e., 50%). We perform the quantization directly from the original
descriptor values, that is, we calculate the mean values for every descrip-
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tor (u;) and quantize them according to the following criteria:

1 if i > (pgi +the),
Ternary; = < 0.5 if (,U'R,i — thi) < < (/LRJ‘ + thi), (72)
0 if p < (prg — thi),

where th; = o /3.

e Continuous preserves all possible degrees of preference. We maintain the
computed py; values without further changes.

At the end of this process we obtain three simplified representations of the user
model, each of them consisting of the same 17 semantic descriptors.

7.4 Visualization approach

In order to generate the Musical Avatar, we convert the summarized seman-
tic descriptors to a set of visual features. According to MacDonald et al.
(2002), individual, cultural and sub-cultural musical identities emerge through
social groups concerning different types of moods, behaviors, values or atti-
tudes. Further evidence of relation between identities and music preferences,
and an important role of social ties and expression through music, was pre-
sented in Section 2.2.2. We apply the cultural approach of representing urban
tribes (Maffesoli, 1996), since in these tribes, or subcultures, music plays a
relevant role in both personal and cultural identities. Moreover, they are often
identified by specific symbolisms which can be recognized visually.

Therefore, we decided to map the semantic descriptors into a basic collec-
tion of cultural symbols. As a proof-of-concept, we opt for an iconic cartoon
style of visualization. This choice is supported by a number of reasons; firstly,
this style is a less time-consuming technique compared to other approaches
more focused on realistic features (Ahmed et al., 2005; Petajan, 2005; Sauer &
Yang, 2009). Secondly, it is a graphical medium which, by eliminating superflu-
ous features, amplifies the remaining characteristics of a personality (McCloud,
2009). Thirdly, there are examples of existing popular avatar collections of this
kind such as Meegos? or Yahoo Avatars.?

In our approach the relevant role is played by the graphical symbols, which
are filled with arbitrary colors related to them. Although colors have been suc-
cessfully associated with musical genres (Holm et al., 2009) or moods (Voong &
Beale, 2007), the disadvantage of using only colors is the difficulty to establish
a global mapping due to reported cultural differences about their meaning.

In our design, we consider the information provided by the selected descrip-
tors and the design requirements of modularity and autonomy. Starting from

*http://meegos.com
3http://avatars.yahoo.com
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a neutral character,* we divide the body into different parts (e.g., head, eyes,
mouth). For each of the parts we define a set of groups of graphic symbols
(graphic groups) to be mapped with certain descriptors. Each of these graphic
groups always refers to the same set of descriptors. For example, the graphic
group corresponding to the mouth is always defined by the descriptors from
the categories “Moods and Instruments” and “Others” but never from “Genre”
category. The relation between graphic groups and categories of the semantic
descriptors is presented in Table 7.2. For this mapping, we consider the feasi-
bility of representing the descriptors (e.g., the suit graphic group is more likely
to represent a musical genre compared to the other descriptor categories). We
also bear in mind a proportional distribution between the three main descriptor
categories vs. each of these graphic groups in order to notice them all. How-
ever, in accordance with the cartoon style some of these graphic groups refer
to all three main descriptor categories because they can highlight better the
most prominent characteristics of the user’s profile, and also they can represent
a wide range of descriptors (e.g., the head and complement graphic groups).
In addition to the listed graphic groups, we introduce a label to identify the
gender of the avatar, each providing a unique set of graphic symbols.

Besides the body elements, we also add a set of possible backgrounds to the
graphic collection in order to support some descriptors of the “Others” category
such as “party”, “tonal”’, or “danceable”. In addition, the “bright” descriptor
is mapped to a grey background color that ranges from RGB(100,100,100) to
RGB(200,200,200). We note that our decisions on the design, and in particular
on the descriptor mapping presented in Table 7.2 are arbitrary, being a matter
of choice, of visual and graphic sense, and common sense according to many
urban styles of self-imaging.

Table 7.2: Mapping of the descriptor categories to the graphic groups.

Descriptor categories

Graphic Group Genre Moods & Inst.  Others

Background °
Head ° ° °
Eyes ° °

Mouth ° °

Complement ° ° °
Suit ° °
Hair °

Hat ° °
Complement2 °
Instrument ° °

1A neutral character corresponds to an empty avatar. It should be noted that the same
representation can be achieved if all normalized descriptor values are set to 0.5 meaning no
preference for any descriptor at all.
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Table 7.3: Vector representation example: user profile vs. the instrument graphic
group (continuous summarization). A visual element with the minimum distance to
the user profile is selected (in this case, the turntable).

e o
Category Descriptor User Profile %) '/
0.0 0.0 0.0

Genre Classical (G3) 0.0 0.0
Genre Electronic (G1) 1.0 0.0 0.0 0.0 1.0
Genre Jazz (G3) 0.0 0.0 1.0 0.0 0.0
Genre Metal (G3) 0.0 00 00 00 0.0
Genre Dance (G2) 1.0 0.0 0.0 0.0 0.0
Genre Rock (G2) 0.5 1.0 0.0 0.0 0.0
Moods & Inst.  Electronic (MEL) 1.0 0.0 0.0 0.0 1.0
Moods & Inst. Relaxed (MRE) 0.0 0.0 0.0 0.0 0.0
Moods & Inst.  Acoustic (MAC) 0.8 0.0 0.0 1.0 0.0
Moods & Inst. Sad (MSA) 0.0 0.0 0.0 0.0 0.0
Moods & Inst. Aggressive (MAQG) 0.0 1.0 0.0 0.0 0.0
Moods & Inst. Happy (MHA) 1.0 0.0 0.0 0.0 0.0
Distance to user profile 2.43 2.62 2.07 1.70

We construct a vector space model and use a Euclidean distance as a mea-
sure of dissimilarity to represent the user’s musical preferences in terms of
graphic elements. For each graphic group we choose the best graphic symbol
among the set of all available candidates, i.e., the closest to the corresponding
subset of the user’s vector model (see Table 7.3 for an example of the vector
representation of these elements). This subset is defined according to the map-
ping criteria depicted in Table 7.2. As a result, a particular Musical Avatar is
generated for the user’s musical preferences. All graphics are done in vector
format for scalability and implemented using Processing® (Reas & Fry, 2007).

According to the summarization methods considered in Section 7.3, the
mapping is done from either a discrete or continuous space resulting in different
data interpretations and visual outputs. These differences imply that in some
cases the graphic symbols have to be defined differently. For instance, the
“vocal” descriptor set to 0.5 in the case of continuous method means “she likes
both instrumental and vocal music”, while this neutrality is not present in the
case of the binary method. Furthermore, in the continuous method, properties
such as size or chromatic gamma of the graphic symbols are exploited while this
is not possible within the discrete vector spaces. Figure 7.1 shows a graphical
example of our visualization strategy where, given the summarized binary user
model, the best (i.e., the closest by a Euclidean distance) graphic symbol for
each graphic group is chosen. Figure 7.2 shows a sample of Musical Avatars
generated by the three summarization methods and Figure 7.3 shows a random
sample of different Musical Avatars.

*http://processing.org
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Figure 7.1: Example of the visualization approach. It can be seen how the descriptor
values influence the selection of the different graphic elements used to construct the
avatar. The values inside the graphic element boxes represent all possible descriptor
values that can generate the presented element.

Figure 7.2: Sample Musical Avatars generated by the three summarization methods
(i-e., from left to right, binary, ternary, and continuous) for the same underlying user
model. Notice the differences in guitar and headphones sizes among the generated
avatars.
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7.5 Evaluation methodology

We carried out a subjective evaluation on our 12 subjects being a subset of the
population described in Section 3.3.2. They included 8 males and 4 females
with the average age of 34 years (u = 33.83,0 = 5.2) and a high interest in
music (u = 9.58,0 = 0.67). For each participant, we generated three Musical
Awatars corresponding to the three considered summarization methods. We
then asked the participants to answer a brief evaluation questionnaire. The
evaluation consisted in performing the following two tasks.

In the first task, we asked the participants to manually assign values for
the 17 semantic descriptors used to summarize their musical preferences (see
Table 7.1). We requested a real number between 0 and 1 to rate the degree of
preference for each descriptor (e.g., 0 meaning “I don’t like classical music at
all” up to 1 meaning “I like classical music a lot” in the case of the “classical”
descriptor). For the second task, we first showed 20 randomly generated ex-
amples of the Musical Avatars in order to introduce their visual nature. We
then presented to each participant six avatars: namely, the three images gen-
erated from her/his own preference set, two randomly generated avatars, and
one neutral avatar. We asked the participants to rank these images assigning
the image that best express their musical preferences to the first position in
the rank (i.e., rank = 1). Finally, we asked for a written feedback regarding
the images, the evaluation procedure, or any other comments.® A screenshot
of the evaluation is presented in Appendix B.

7.6 Evaluation results

From the obtained data we first analyzed the provided rankings to estimate
the accuracy of the visualization methods examined in the questionnaire. To
this end, we computed the mean rank for each method. The resulting means
and standard deviations are reported in Table 7.4. We tested the effect of
the method on the ratings obtained from the subjects using a within-subjects
ANOVA. A prerequisite for this type of experimental design is to check the
sphericity assumption (i.e., all the variances of the differences in the sam-
pled population are equal) using the Mauchly’s test, which indicated that the
assumption could be trusted (Huberty & Olejnik, 2006). The effect of the
visualization method was found to be significant (Wilks Lambda = 0.032,
F(4,7) = 52,794, p < 0.001). Pairwise comparisons (a least significant dif-
ferences t-test with Bonferroni correction, which conservatively adjusts the
observed significance level based on the fact that multiple comparisons are
made) revealed significant differences between two groups of avatars: on one
side, the random and the neutral avatars (getting ratings that cannot be con-

SMore Musical Awatars are available online: http://mtg.upf.edu/project/
musicalavatar.
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Table 7.4: Mean ranks and standard deviations for the different visualization meth-
ods obtained in the user evaluation. The random column corresponds to the average
values of the individual random results (see text for details).

Continuous Binary Ternary Random Neutral

° 1.73 2.27 291 4.28 5.18
o 0.79 1.49 1.45 1.16 0.98

sidered different from each other) and, on the other side, the binary, ternary,
and continuous avatars (which get ratings that are statistically different from
the random and the neutral ones, but without any significant difference be-
tween the three). The differences between those two groups of avatars are
clearly significant (p < 0.005) except for the differences between random and
ternary, and between binary and neutral, which are only marginally significant
(p <0.01).

We also assessed the significance of the summarized description of mu-
sical preferences by estimating how the computed representation performs
against a randomly generated baseline. Therefore, we first computed the
Fuclidean distance between the obtained descriptor vector representing the
user profile (standardized and range-normalized) and the vector containing
the participants’ self-assessments provided in the first task of the evalua-
tion. We then generated a baseline by averaging the Euclidean distances
between the self-assessments and 10 randomly generated vectors. Finally, a
t-test between the algorithm’s output (u = 0.99,0 = 0.32) and the baseline
(n = 1.59,0 = 0.25) showed a significant difference in the sample’s means
(t(11) = —5.11,p < 0.001). Additionally, Figure 7.4 shows box plots of the
obtained dissimilarities.

From the obtained results, we first observe that the generated description
based on audio content analysis shows significant differences when compared
to a random assignment. The mean distance to the user-provided values is re-
markably smaller for the generated data than for the random baseline; i.e., the
provided representations reasonably approximate the users’ self-assessments in
terms of similarity. Furthermore, Table 7.4 clearly shows a user preference for
all three proposed quantization methods over the randomly generated and the
neutral Musical Avatars. In particular, the continuous summarization method
has been found top-ranked, followed by the binary and ternary quantization
methods. This ranking, given the ANOVA results, should be taken just as
approximative. Specifically, the conducted ANOVA did not reveal a clear par-
ticular preference for any of the three considered methods; i.e., no statistically
significant difference between simple avatars with discrete visual elements and
more complex ones with continuous elements were found. On the other hand,
we can see that the neutral avatar is less preferred than the random avatars.
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Box plots for the dissimilarity measures
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Figure 7.4: Box plots of the dissimilarity estimation. The Euclidean distance be-
tween the ground truth labels and the computed descriptors shows a significantly
lower mean than the one obtained using 10 randomly generated descriptor vectors.
Red crosses stand for extreme outliers.

This suggests that the users prefer images that carry some information (even
if it does not match the users’ preferences) rather than avatars lacking of vi-
sual features. This poses the problem of visualizing users with varied musical
preferences (i.e., mean values of a majority of the descriptors close to 0.5), es-
pecially in the case of the ternary quantization. We have expected to observe
the difference between the random and neutral avatars, however it was not
statistically significant, probably due to the small number of participants in
the study.

Evaluation of the participants’ comments can be summarized as follows.
First, we can observe a general tendency towards an agreement on the rep-
resentativeness of the Musical Avatar. As expected, some subjects reported
missing categories to fully describe their musical preferences (e.g., country
music, musical instruments). This suggests that the provided semantic de-
scriptors seem to grasp the essence of the user’s musical preference, but fail to
describe subtle nuances in detail. This could be explained by the fact that we
use a reduced set of semantic descriptors in our prototype (17 descriptors out
of the 62 initially extracted for the proposed semantic user profile). Indeed,
by providing better semantic descriptions of the musical content under con-
sideration (i.e. better classifiers and descriptors), the algorithm’s accuracy in
describing these aspects would benefit to a great extent. In consequence, since
we are working with state-of-the-art algorithms, the available tools are only
able to solve the problem on a very coarse level. Finally, some participants
could not decode the meaningfulness of some visual features (e.g., glasses, head
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shape) because of the arbitrarienss of the mappings. This information will be
considered in our future work for refining the mapping strategy. According to
the obtained results, we observed participants’ preference for all three sum-
marization methods based on the proposed user model over the baselines. In
general, we conclude that the Musical Avatar provides a reliable, albeit coarse,
visual representation of the user’s musical preferences.

7.7 General discussion and possible enhancements
for recommender systems

In what follows we comment on the implications of the presented approaches
for the user’s interaction as well as future implementations of “final systems”,
which unite both recommendation and preference visualization approaches into
a single, interactive music recommender interface. The mapping of the seman-
tic dimensions to visual features, resulting in the Musical Avatar, enables an
intuitive, yet still arbitrary, depiction of musical preferences. This by itself
enriches and facilitates the user’s interaction process, an appealing feature for
any recommender system. Furthermore, allowing the user to interact and ma-
nipulate graphical representations offers a straightforward path towards user
adaptive models. One possible extension here is the filtering of music recom-
mendations according to the presence or absence of certain visual features of
the Musical Avatar. This allows users to actively control the output of the
music recommender by selecting certain visual attributes which are connected
to acoustic properties via the mapping described in Section 7.4. Also, the
iconic Musical Avatar may serve as a badge, reflecting a quick statement of
one’s musical preferences, with possible applications in online social interac-
tion. This use-case is highly consistent with finding of research on social factors
of music preferences (see Section 2.2.2). Moreover, users can share preferences
related to the generated avatars or group together according to similar musical
preferences represented by the underlying user models.

Both aforementioned applications can be easily united into a single in-
teractive recommender system. In addition to the already discussed music
recommendation and static preference visualization, the concepts introduced
in the present work can be extended to reflect time-varying preferences. For
example, an underlying user model can be computed considering different time
periods (e.g., yesterday, last week, last month). Also, tracking preferences over
time enables the generation of “preference time-lines”, where Musical Avatars
morph from one period to the next, while users can ask for recommendations
from different periods of their musical preferences.

Moreover, in the visualization application, exploiting multiple instances of
preference sets can alleviate the limitations introduced by a single preference
set. Multiple graphical instances can be used to visually describe different sub-
sets of a music collection, thus serving as high-level tools for media organization
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and browsing. Hence, recommendations can be directed by those avatars, in-
troducing one additional semantic visual layer in the recommendation process.
Using multiple representations can help to better visually depict preferences
of certain users, where a single avatar is not sufficient for describing all facets
of their musical preferences. Moreover, users may want to generate context-
dependent avatars, which can be used for both re-playing preference items or
listening to recommendations depending on the context at hand (e.g., one may
use his avatar for happy music at a party or listen to recommendations from
the “car” avatar while driving).






Conclusions and future work

8.1 Introduction

Let us shortly recapitulate the major contents of the present thesis. We fo-
cused our work on music recommendation, and addressed the related problems
of music preference elicitation and music similarity measurement. Since 2008,
when this thesis was started till the present date, there was a limited amount
of research on music recommendation and there was a lack of meta-studies
systematizing the existing approaches. In Chapter 2 we introduced the state-
of-the-art of music preferences from the perspective of music cognition, psy-
chology, and sociology. We then conducted an extensive review of literature
on music recommendation, and provided a systematization by the sources of
information used, underlying algorithms, and evaluation methodologies, which
was missing in the existing literature. We have found that the existing stud-
ies on music recommendation employed objective metrics in user simulation
tests, but very rarely conducted real user-centered A/B listening tests. The
absolute majority of them did not consider measuring actual usefulness of the
recommendations and their novelty for the listener. The existing approaches
proposed to employ audio and metadata. However, the studies proposing audio
content-based approaches to recommendation lacked proper comparison with
the state-of-the-art metadata-based approaches, and the subjective quality of
both types of recommenders was rarely assessed. Content-based approaches
worked on limited amounts of low-level audio features, while we believe it is ad-
visable to incorporate more musical knowledge that is already computable with
our state-of-the-art algorithms. Therefore, we aimed to improving content-
based recommender systems by introducing high-level semantic descriptors.
In Chapter 3 we proposed to build a semantic user model from explicitly given
preference examples by applying automatic inference of high-level concepts
from the audio content. Recommendation approaches can be based on music
similarity measurement between the user model and tracks in music collection.
Therefore, in Chapter 4 we focused on the problem of content-based music
similarity. We proposed and evaluated a novel semantic similarity measure

157



158 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

together with a hybrid low-level /semantic approach, which allowed for an im-
proved music similarity estimation, according to the conducted objective and
subjective evaluations. In Chapter 5 we focused on different content-based,
metadata-based and hybrid recommendation approaches. We designed a new
evaluation methodology, which makes possible to assess subjective usefulness
and novelty of recommendations for the listener in subjective listening tests.
We employed the proposed similarity measures in the context of recommen-
dation, and studied how their simple filtering by genre metadata can improve
the performance. We used the state-of-the-art approaches, working by means
of collaborative filtering and social tags, as our baselines, and we proposed our
own approach working with editorial metadata. In Chapter 6 we studied how
audio content information can be exploited to provide quantitative insights on
the factors of music preferences from both acoustical and semantic perspec-
tives. Finally, we demonstrated a novel application of the proposed semantic
user model for music preference visualization in Chapter 7.

8.2 Summary of contributions

e We proposed novel audio content-based measures of music similarity. In
particular, we proposed to use high-level semantic description of music
tracks inferred by SVMs from the low-level timbral, temporal, and tonal
features, and use their hybrid combination. The measures were evaluated
both objectively and subjectively in A /B listening tests, and were ranked
among the best results within the MIREX evaluations. Our approaches
performed comparably to the current state of the art, providing satisfac-
tory music similarity estimation. Furthermore, semantic categorization
used in our measures allows justification to users of the provided similar-
ity estimations, and thereby it can increase the transparency of the final
systems.

e We proposed a number of content-based distance-based approaches to
music recommendation based on these similarity measures. We demon-
strated their advantage over baseline timbral methods, and revealed the
fact, that simple genre/style tags can be a reasonable source of informa-
tion to provide recommendations superior to the common low-level tim-
bral music similarity based on MFCCs. We demonstrated how filtering
of the proposed approaches by simple genre metadata can significantly
improve performance up to the level of the state-of-the-art metadata-
based systems in terms of user satisfaction ratings. Although the overall
amount of relevant recommendations was smaller than for metadata-
based systems, the proposed approaches provided a larger amount of
novel relevant recommendations, therefore, being well-suited for music
discovery.
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e We proposed a novel lightweight approach to music recommendation
based on publicly available editorial metadata as an alternative to sys-
tems working with cumbersome and commercially withhold user ratings
and social tags. We observed, that it is also comparable to the state-of-
the-art metadata-based approaches and is well-suited especially for the
case of playlist generation.

e We have conducted a comprehensive evaluation of the proposed ap-
proaches against a number of state-of-the-art recommenders in subjective
A /B listening tests. To this end, we employed a novel evaluation method-
ology for music recommendation, which takes into account novelty fac-
tors, together with different behavioral aspects of satisfaction with the
provided recommendations. Our evaluations provide reliable insights on
the nature of the considered content-based and metadata-based methods,
including commercial recommenders.

e In general, we evidenced the advantage of adding semantic description to
the low-level audio feature representations for both music similarity and
music recommendation tasks. Our proposed content-based preference
elicitation strategy takes advantage of automatic semantic description of
the preference examples explicitly provided by the listener and is suited
for various applications, such as music recommendation and music prel-
erence visualization. The proposed semantic user model is able to shrink
the gap between low-level signal features and human-level judgments
about music, and is able to provide insights on music preferences in an
understandable form for humans.

e We provided computational insights on the important factors of music
preferences by analyzing audio content. The results correlate with the
existing research on music cognition: we have evidenced the importance
of rhythm, tonality and timbre descriptors as well as semantic categories
on the prediction of preference.

The outcomes of the research carried out in this thesis have been published
in several papers in international conferences and journals (see Appendix D).
Besides, a part of conducted research related to music similarity measures
was incorporated into an existing commercial music recommendation engine,
meanwhile the proposed preference elicitation and visualization approach was
presented online at an international conference and on a public exhibition (see
Appendix A), and was featured in public media.

8.3 Open issues and future perspectives

The experiments conducted in this thesis revealed that state-of-the-art content-
based algorithms for music recommendation are still inferior in their perfor-
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mance compared to the state-of-the-art metadata-based approaches. Neverthe-
less, this difference can be greatly diminished employing a minimum amount of
cheap genre metadata. Furthermore, we demonstrated that alternative meta-
data sources can be effectively used to achieve the same performance on the
example of our approach working exclusively on editorial metadata. Given
that, we still have evidenced that all considered approaches reached only mod-
erate (above-average) levels of user satisfaction. This means that still there is
no method, metadata-based nor content-based, which could cogently address
the problem of music recommendation.

Considering the limitations of our study, we would like to note that we em-
ployed small samples of subjects (up to 27 music enthusiasts) that might not
represent the general population. We nevertheless observed statistical signifi-
cant differences which, in this context, mean that the detected trends are strong
enough to override the individual differences or potentially large variability that
might be observed in small-size samples of listeners. We also believe that users
of music recommender systems, at least to date, are mainly music enthusiasts,
and hence we have properly and sufficiently sampled that population. More
importantly, to the best of our knowledge, the few existing research studies
on music recommendation involving evaluations with real participants are sig-
nificantly limited in the trade-off between the number of participants and the
number of evaluated tracks per method by a particular user, as we discussed
in Section 2.3.2. Furthermore, no studies on human evaluation of visualization
approaches considering musical preferences are known to the authors, and we
believe this can be a fruitful direction for further research.

The proposed content-based semantic user model and the approach to its
visualization can be used as basic tools for Human Computer Interaction to
enrich the experience with music recommender systems. A number of innova-
tive personalized interfaces for understanding, discovering, and manipulating
music recommendations can be built on top of our developed methodologies.
In what follows, we highlight a number of open issues and future perspectives
regarding the work presented in this thesis.

8.3.1 Role of user-context in music recommendation

Can the achieved above-average level of performance signify that both types of
approaches, metadata-based and content-based, are possibly reaching a glass
ceiling? We consciously left out of this thesis’ scope a question of how user-
context can be integrated into a recommender system. However, we hypothe-
size that the reason might be due to the absence of user context information
within the considered systems. In Section 2.2.2 we highlighted the evidence
of importance of the “use-of-music” factor and the listener’s context in general
for understanding music preference. We believe the ability to understand the
user’s current needs (i.e., the required use of music) to be a very important
facet of recommender systems of the future. Fortunately, this emerging topic of
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research gains importance within recommender system and music information
retrieval community (Schedl & Flexer, 2012).

8.3.2 Improvements of proposed approaches

We may also hypothesize that finding better audio features will lead to higher
performance of content-based approaches: some the high-level and mid-level
aspects of music are still missing in our research. For example, incorporat-
ing better rhythmic features is very promising, as we have evidenced great
importance of the rhythm in the description of music preferences. Fulfill-
ing musical dimensions of percussiveness, smoothness, noisiness, and rhyth-
mic complexity, suggested by ongoing research in Last.fm (Sutton, 2012), can
greatly improve preference models and performance of content-based music
recommenders. Melodic features have been shown to be complementary to
timbral features (Salamon et al., 2012) and can be used to expand timbral
descriptions. As well, with recent advances in auto-tagging, more semantic de-
scriptors can be implemented with reliability comparable to the inconsistency
between humans’ annotations themselves. Recognition of specific music styles
from audio is challenging, and we have demonstrated the advantage of genre
metadata. Improving the accuracy of semantic descriptors is another impor-
tant task. Their quality can be significantly conditioned by the underlying
ground truths and the choice of the classifier.

Furthermore, we hypothesize that designing personalized music similar-
ity measures instead of “universal” measures, identical for all users, can bring
further advantage for distance-based recommendation approaches (Stober &
Niirnberger, 2009). Better hybrid combinations of audio and metadata infor-
mation, in particular, exploiting the proposed editorial metadata, are to be
considered as well.

8.3.3 Non-obtrusive user feedback

Finally, alternative methods for gathering the preference set can be employed.
Since selecting representative music tracks may be a boring and exhausting
task for certain users, data-driven approaches can be applied. Audio content-
based methods may be used to infer preference items from the user’s personal
collection by, for instance, clustering the collection according to certain musical
facets to find central elements within each cluster (i.e., centroids). Addition-
ally, listening statistics or personal ratings of particular items can be used to
infer musical preferences without actually processing a full music collection.'
Nevertheless, such an implicit inference of a preference set can lead to noisy

'A demo of such a music recommender/visualization system working on the proposed
principles, but taking listening statistics instead of explicitly given preference set, is available
online at http://mtg.upf.edu/project/musicalavatar
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representations or to the lack of coverage of all possible facets of the user’s
musical preferences (see also Section 2.3.1).

8.3.4 Sociological and psychological issues

To the best of our knowledge, a problem of how to address sociological and psy-
chological issues related to music recommendation remains unexplored. This
problem is hard to address computationally and we believe it to be a crucial
problem for music recommender systems. In particular, determining whether
particular music pieces are preferred by a listener due to psychological and so-
ciological factors rather than acoustical ones would be of great interest. These
factors may include recall of associated social relations, life events of the past,
or pure conditioning, i.e., just because some music item has been presented
in association with some rewarding stimulus (Lamont & Webb, 2009). Nev-
ertheless, solving this problem would require explicit user feedback of such
psychological and sociological factors which could significantly complicate the
design of recommender systems.



Dmitry Bogdanov, Barcelona, June 17, 2013.
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Appendix A: Demonstrations

PHAROS: Music similarity in a search engine

We have integrated the proposed hybrid music similarity measure (Section 4.6)
within the framework of a search-engine project PHAROS.? PHAROS was
an Integrated Project funded by the Furopean Union under the Information
Society Technologies Programme (6th Framework Programme). Its strategic
objective was defined as “Search FEngines for Audiovisual Content”, and it was
aimed to advance search of audiovisual content from a point-solution search
engine paradigm to an integrated search platform paradigm. One of the main
goals of the project was to develop a scalable and open search framework that
lets users search, explore, discover, and analyze contextually relevant data.

PHAROS uses automatic content annotation to index audiovisual content.
In particular, it provides music search using the music similarity measures
proposed in this thesis. The required audio features and semantic descriptors
are computed by the C++ implementation based on an audio analysis tool
Essentia® developed at Music Technology Group.

MyMusical Avatar

Presentation

MyMusicalAvatar is a demonstration of the proposed approach to visualiza-
tion of music preferences and music recommendation. Our original proposed
approach is grounded on a set of tracks explicitly provided by the user. In
this demonstration system, we explore an alternative way to obtain the user’s
preference set taking information from her/his accounts on popular online mu-
sic services Last.fm and Soundcloud. The system analyzes audio content and
generates music recommendations, using a semantic music similarity measure,
and the user’s preference visualization, mapping semantic descriptors to visual
elements.

The user interface is designed in the form of a web page.* The user specifies
her/his account name on Last.fm and/or SoundCloud services, from which the
preferred tracks should be retrieved. SoundCloud is a platform which allows
users (mostly musicians) to collaborate, promote, and distribute their music.

?Platform for searcHing of Audiovisual Resources across Online Spaces. http://www.
pharos-audiovisual-search.eu, http://mtg.upf.edu/research/projects/pharos

®http://essentia.upf.edu

*A demo of the system is available online: http://mtg.upf.edu/project/musicalavatar
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Specifically, it allows users to upload their own tracks or mark tracks as their
favorites. This information is available via the SoundCloud API.®> Our system
is currently limited to the users of these musical services, but will be further
extended with an option to upload preferred tracks to our server.

Different types of tracks can be used to infer the user’s preference set:

e Tracks marked as favorites by the user on Last.fm.

e Tracks listened the most by the user according to their Last.fm’s statis-
tics.

e Tracks marked as favorites by the user on SoundCloud.
e Tracks uploaded by the user on SoundCloud.

The type of tracks to use and their amount can be specified by the user. The
system retrieves the URLs of the tracks to be included in the preference set
using the Last.fm and SoundCloud APIs. Using these URLs, audio fragments
(30 sec.) of the track previews are downloaded.® By means of audio analysis
we infer the semantic descriptions for each track from the user’s preference set.

To generate recommendations, we employ an in-house music collection of
50.000 music excerpts, covering a wide range of musical genres. This collection
was analyzed to retrieve the same semantic descriptions as those used for the
preference set. We follow the methodology presented in Section 5 to search for
the tracks from our in-house music collections which are similar to the user’s
preference set and use the proposed semantic distance (Section 4.3.2). The
recommendation outcomes are presented to the user, including metadata of the
tracks, audio previews, and the reason why a particular track was recommended
(i.e., recommendation sources).

We follow the proposed visualization approach (Section 7.4) to form the
Musical Avatar. Selected descriptors of each track are summarized across all
tracks in the preference set. The resulting descriptors represent degrees of
the user preference for different genres, moods, and instrumentation types.
These descriptors are then mapped to visual elements of the avatar, which are
implemented using Processing. An example of the output provided to a user
is presented in Figure 1.

Interactive demo

In addition, we have developed a simple interactive demonstration of how
avatar visualization is conditioned by different types of music for a public
exhibition for children and adolescents.” A sample of 16 tracks was employed
for this purpose. A user can select to preview them and select the preferred

Shttp://soundcloud.com/developers
5The system considers solely the tracks with available previews.
"This demonstration is available online: http://mtg.upf.edu/project/musicalavatar
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your avatar is

share with friends

how does it work? try again

done!

e0 00BN
o e

*e

according to how your favorite tracks sound, you might like the following tracks from our collection:

Artist: Keoki / Track: Caterpillar (The Crystal Method Mix)
from the album "Into the Mix IV - The Classix Remixed"

“ [ "

W )
because you liked Newcleus - Computer Age {Push the Button)

Artist: Stevie Wonder & Michael Jackson / Track: Get It (12"
Instrumental Version)
from the album "The Complete Stevie Wander”

“ » 3

because you liked Rondenion - Machine Doll

Artist: Joshua Ryan [ Track: Blueness
from the album "Blueness - Single”

“ 3 "

1
because you liked Johnson Products - Jehnson Jumpin'

Artist: Krafty Kuts & Tim Deluxe / Track: Bass Phenomenon
from the album "Bass Phenomenon - EP"

H » 3 y

because you liked Johnson Products - Jehnson Jumpin'

Figure 1: Screenshot of the system output returned to a user including the generated

avatar and music recommendations.

Musical Avatar htip//imusrec.upf.edu/musicavatar/avatar.html

Lady Ana - ola Mot

©
>

[CLASSICAL) Dr Tikov - Symphonic. [CLASSICAL) Dr

YoNo Guiero [ROCK] Groen Dragonfly - Fosta Mix .
Trabojar Valos
- Grigioscuro
(@wvs32)

Descriptors musicals
jazz: 64

dance: 64

relaxat: 61

festa: 61

electronic: 59
agressiu: 56

» o b

[FLAMENCO] Palomita do Pastora - Loslorlers | [HIPHOP] Blackowel - Wher I Al Started

[HIPHOP] M+-Tac a.ka. Chocolats- This s Our
Yoar

acustic: 51

[REAGGE SKA] Ki Sap - Blanc | Negro

Figure 2: Screenshot of the interactive demonstration.

ones. The visualization changes accordingly to the selection. A screenshot of
the interactive demonstration is presented in Figure 2.



Technical details

The back-end of the demo system is coded in C++ and python. It uses libraries
of the Music Technology Group (Essentia and Gaia) for audio analysis and mu-
sic similarity. The front-end GUI is web-based. It is made using HTML5/CSS,
javascript, jQuery, and Processingjs for interactive avatar visualization.



Appendix B: Supplementary
Material

Chapter 3: Preference elicitation strategies

We present the exact text of the instructions and the questionnaire presented
to the participants in our experiments: “Your goal is to gather the minimal
set of songs needed to graps or convey your music preferences. It’s important
to note that these are not artists, these are single musical pieces which are
informative by themselves (without any additional context). Ideally we would
like to have a folder with the selected songs in mp3 format (or any format you
may use). If you cannot get the mp3 files, please provide a list of the songs,
indicating the artist, name of the piece and if needed the edition. Please answer
the following questionnaire.
Personal data:

o Age

® Sex

e Interest for music [0-10] (e.g. 0 =no interest - 10 =passionate)
e Do you play any instrument? which one?

e How many songs did you select?

1. Please describe the strategy that you used to make the musical selection.
2. Please specify how long did it take to build it.

3. Give a set of labels that you think define your musical preferences and
then the music you selected. These are some examples or aspects you
can use:

e Genre (e.g. rock, heavy metal)
e Mood (e.g. calm, happy, party)

e Instrumentation (e.g. orchestral, big band, female singers, mellow
voice)

e Rhythm (e.g. fast, regular)
e Melody / harmony (e.g. atonal)

4. Other comments you want to make.”
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Chapter 5: Music recommendation based on
preference examples
Figure 3 presents examples of artist tag-clouds generated following the pro-

posed recommendation approach working with editorial metadata found on
Discogs (DISCOGS-ALL-1).

Chapter 6: Content-based analysis of music
preferences
Figure 4 presents a screenshot of the user evaluation conducted to assess the

quality of computed semantic user profiles and the user satisfaction with the
generated avatar.
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User Evaluation Questionnaire — Musical Avatar

Musical Avatar — User Evaluation
Name:
Thanks for taking time to answer this user evaluation!

This evaluation is designed only to test our work. There are no right or wrong answers here; we just
need your valuable feedback (in the yellow boxes).

Task 1:

Please, think on the music that best describes your musical preferences, which was represented at the
collection you provided for our study. Below you will find 17 labels used to describe different aspects
of the songs you like, including several genres, moods, etc.

Please, assign a number between 0 and 1 for each label (according to the rank explained on each
category)

Category | - Musical genres:

For every genre in the list, please grade how much you like it. Use a 0 to 1 scale with 0 meaning, “I
don't like this genre at all” up to 1 meaning “I like this genre a lot” (you can use real numbers to depict
your degree of likeliness e.g. 0.6)

LABEL VALUE
classical music
electronic music
jazz

metal

dance
rock&pop

Category Il — Mood:

For every mood in the list, grade how much you like it. Use a 0 to 1 scale with 0 meaning for example
“l don't like to listen to [aggressive] music” up to 1 meaning, “I like to listen to [aggressive] music a
lot” (you can use real numbers to depict your degree of likeliness e.g. 0.6)

LABEL VALUE
Happy music

Sad music

Aggressive music
Relaxed music
Acoustic music
Electronic mood (music
with electronic effects)

Music Technology Group, Universitat Pompeu Fabra
http://mtg.upf.edu/project/musicalavatar

Figure 4: A screenshot of the evaluation questionnaire given to the participants.
(Continued on next page.)



User Evaluation Questionnaire — Musical Avatar

Category Il — Others
scale: 0 meaning “I don't like [Party] music at all” up to 1 meaning “ I like [Party] music a lot”
(You can use real numbers to depict your degree of likeliness e.g. 0.6)

LABEL VALUE
Party
Danceable

scale: 0 meaning “I only like atonal music” up to 1 meaning “ | only like tonal music”
(you can use real numbers to depict your degree of likeliness e.g. 0.6)

[ LABEL [ VALUE |
| Atonal / Tonal | |

scale: 0 meaning “I only like dark music” up to 1 meaning “ I only like bright (shrilling) music”
(you can use real numbers to depict your degree of likeliness e.g. 0.6)

[ LABEL [ VALUE |
| Dark / Bright | |

scale: 0 meaning “I only like Instrumental music” up to 1 meaning “ | only like music containing
singing voice " (you can use real numbers to depict your degree of likeliness e.g. 0.6)

[ LABEL [ VALUE |
[ Instrumental / Voice | |

Task 2:

Please, take a few minutes to look at the avatars depicted in the next page. These images aim at
representing people with different musical tastes. Look at the different aspects of the avatars, such as,
clothes, hairstyles, facial expressions, musical instruments, image background, etc.

Once you’re done please go to the next page to answer the last two questions.

Music Technology Group, Universitat Pompeu Fabra
http://mtg.upf.edu/project/musicalavatar

Figure 4: Continued (caption shown on previous page.)
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Figure 4: Continued.



User Evaluation Questionnaire — Musical Avatar

Now that you are acquainted with the Avatars take a look at the following ones and rank them from 1
to 6, where 1 is the avatar that could better express your own musical taste and 6 corresponds with the
avatar that has less to do with your musical taste.

Ranking | | Ranking |

Ranking | | Ranking | |

0000 00N
o ee

0 OO0QPFS

Music Technology Group, Universitat Pompeu Fabra
http://mtg.upf.edu/project/musicalavatar

Figure 4: Continued.



User Evaluation Questionnaire — Musical Avatar

Please add any comment you like about the tasks, images, etc.

My comments:

Music Technology Group, Universitat Pompeu Fabra
http://mtg.upf.edu/project/musicalavatar

Figure 4: Continued.
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