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1 Resumen global

1.1 Introducción
Las modificaciones postraduccional constituyen uno de los mecanismos más frecuentes de
regulación de proteínas. La fosforilación es la modificación postraduccional más común en
eucariontes, y ha sido estimado que al menos el 30% de las proteínas de estos organismos
son objeto de fosforilación. La fosforilación es la adición de un grupo fosfato (proveniente de
una molécula de ATP) a residuos de serina, treonina o tirosina de una proteína diana, o sea,
el sustrato. La fosforilación es una reacción rápida y reversible, que puede modificar uno o
varios aspectos de la proteína afectada como por ejemplo su función, su localización celular
y sus interacciones con otras proteínas.
Las proteínas quinasas son las enzimas encargadas de catalizar la reacción de fosforilación,

una acción que es contrarrestada por las fosfatasas. En humano han sido reportadas 518 pro-
teínas quinasas, las cuales abarcan aproximadamente el 2% de los genes y constituyen una de
las familias de proteínas más numerosas. Las quinasas están involucradas en un gran número
de procesos y funciones celulares como por ejemplo la señalización, la transcripción, el trans-
porte, la duplicación, el crecimiento y la proliferación entre otros. Debido a la importancia de
los procesos en los cuales están involucradas, la desregulación o abolición de las funciones de
numerosas quinasas han sido relacionadas con importantes patologías en humanos como son
el cáncer y la diabetes. En consecuencia, muchas proteínas quinasas constituyen importantes
dianas terapéuticas, para las cuales han sido registradas desde el 2001 — tan sólo en los
Estados Unidos — más de 10’000 solicitudes de patentes de inhibidores.
Las proteínas quinasas poseen una gran variedad de secuencias así como de funciones

biológicas, muchas de las cuales son aportadas por la presencia de diversos dominios fun-
cionales. No obstante, la mayoría de las quinasas poseen un dominio catalítico de entre 250
y 300 residuos cuya estructura tridimensional ha sido conservada durante la evolución. Este
dominio es comúnmente conocido como ‘dominio quinasa de eucariontes’. En dicho dominio,
varios motivos de secuencia y estructurales han sido particularmente conservados, funda-
mentalmente los relacionados con la unión de ATP y con la transferencia del grupo fosfato
al sustrato. Sin embargo, existe un grupo de quinasas cuyos dominios catalíticos no poseen
homología de secuencia con el antes mencionado ‘dominio quinasa de eucariontes’. A este
otro grupo se le denomina comúnmente ‘quinasas atípicas’.
En general, las proteínas quinasas poseen una gran variedad en la especificidad mostrada

in vivo por los sustratos. Dicha especificidad tiene una relación muy limitada con la secuencia
primaria de las quinasas, no obstante, se ha observado que quinasas de una misma familia
son más propensas a compartir sustratos. Durante finales de los años ochenta y principios de
los noventa, se pensó que la especificidad por sustrato de las quinasas era determinada, fun-
damentalmente, por el segmento de secuencia del sustrato que contiene el sitio (residuo) de
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fosforilación. Varios de estos estudios identificaron secuencias consenso para varias quinasas.
Sin embargo, para la mayoría de las quinasas, las secuencias consenso no resultaban suficien-
tes para explicar la especificidad observada in vivo. Estudios posteriores han demostrado que
la selección in vivo de los sustratos es guiada, además, por otros factores como por ejemplo
la colocalización celular de la enzima y el sustrato, las interacciones entre dominios y/o sitios
de acoplamiento y la asociación de las quinasas con proteínas adaptadoras y/o plataformas
(A/P), las cuales facilitan las asociaciones entre varias proteínas mediante la formación de
complejos macromoleculares.

1.2 Objetivos

El objetivo general de esta tesis es la cuantificación de la contribución de varios elementos que
contribuyen (in vivo) a la especificidad por sustratos de las proteínas quinasas de humano.
En la práctica, hemos dividido este objetivo en dos partes:

• Cuantificación de la contribución a la especificidad del sitio de fosforilación y
sus residuos vecinos en secuencia.

• Cuantificación de la contribución a la especificidad de la asociación de las
quinasas con proteínas adaptadoras y/o plataformas.

1.3 Materiales y Métodos

Para nuestro análisis fue necesario contar con la lista de proteínas quinasas en humano, así
como con su clasificación filogenética. Dichos datos fueron descargados desde el sitio web
http://www.kinase.com/human/kinome.
Para la colección de datos de fosforilaciones en proteínas humanas, integramos información

proveniente de las tres mayores bases de datos públicas al respecto, HPRD, Phospho-ELM y
PhosphoSitePlus. En cada caso, sólo incluimos sitios de fosforilación que hayan sido deter-
minados experimentalmente y para los cuales se conoce la quinasa responsable. En adición,
a fin de evaluar posteriormente el rendimiento de las matrices de puntuación por posiciones
generadas para cada quinasa y familia de quinasas, compilamos un conjunto negativo de
fosforilaciones en humano. En dicho conjunto sólo incluimos proteínas para las cuales no han
sido reportadas fosforilaciones y que tampoco contienen ninguna de las secuencias presentes
en los 5946 sitios de fosforilación de nuestro set. Posteriormente, eliminamos la redundancia
del conjunto de proteínas usando un umbral del 100% de identidad de secuencia. De este
modo, obtuvimos un set compuesto por 8876 proteínas.
Los datos de interacciones entre proteínas humanas fueron obtenidos a partir de la base de

datos local PPI-DB. Esta base de datos integra información de numerosos recursos públicos
(e.g., Intact, MINT, DIP y HPRD) y contiene alrededor de 45’000 interacciones binarias de
alta confiabilidad, determinadas experimentalmente.
Los logotipos de secuencias fosforiladas fueron generados usando el programa WebLogo.

Como entrada al programa, proporcionamos los alineamientos de las secuencias fosforiladas

2
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por cada quinasa o familia de quinasas. Dichas secuencias fueron definidas como segmentos
de 9 residuos, donde el residuo fosforilado se encuentra en la posición central.
Para generar, evaluar el rendimiento y estimar la significación estadística de las matrices

de puntuación por posiciones (PSSM, por sus siglas en inglés) desarrollamos el programa
genpssm. Como entrada, genpssm requiere varios datos, entre ellos un alineamiento de se-
cuencias fosforiladas, la frecuencia de cada amino ácido en el proteoma humano, un valor
umbral de significación estadística (valor p) para la identificación de secuencias que concuer-
den con el modelo representado por la PSSM y el conjunto de secuencias no fosforiladas. Para
calcular la puntuación de cada residuo en cada posición de la secuencia fosforilada, genpssm
toma en consideración el cociente de probabilidades de cada residuo en dicha posición así
como la frecuencia de dicho residuo en el proteoma de referencia. Para estimar la significación
estadística de una PSSM, genpssm toma como estadísticos el contenido de información así
como la sensitividad de dicha matriz. En este caso, la sensitividad es la fracción de secuencias
semilla (i.e., aquellas presentes en el alineamiento a partir del cual se generó la PSSM) que
concuerdan con la propia PSSM a un nivel de significación estadístico deseado. La significa-
ción estadística es estimada mediante el cálculo de valores p empíricos, generados a partir
de distribuciones nulas. Para obtener el rendimiento de una PSSM, genpssm calcula la curva
Característica Operativa del Receptor (ROC, por sus siglas en inglés) correspondiente. Una
curva ROC es la representación gráfica de la sensibilidad frente a (1 – especificidad) para un
clasificador binario. Mediante una curva ROC podemos evaluar cuán bien una PSSM puede
distinguir entre sus secuencias semillas (positivos) y secuencias en el conjunto negativo de
fosforilaciones (negativos).
Por otra parte, también hemos empleado las PSSMs para identificar residuos — en las

secuencias fosforiladas — que probablemente contribuyan de forma significativa a la especi-
ficidad de las quinasas. A dichos residuos los hemos denominado ‘residuos determinantes de
especificidad’ (SDR, por sus siglas en inglés). Para clasificar un residuo como SDR, compara-
mos su puntuación en la PSSM con la puntuación del residuo fosforilado. Dada una PSSM,
si la puntuación de un residuo en una posición determinada es igual o mayor que la mitad
de la puntuación del residuo fosforilado, entonces dicho residuo es clasificado como un SDR.
Con el propósito de recopilar — de manera automática — un conjunto de proteínas hu-

manas para las cuales se ha descrito que actúan como A/P, empleamos la base de datos
UniProt. Basados en la anotación funcional en UniProt, hemos compilado un primer conjunto
de proteínas que contienen al menos uno de los términos ‘adaptor’ (adaptadora) o ‘scaffold’
(plataforma). Seguidamente, descartamos aquellas proteínas para las cuales no existen evi-
dencias de una interacción binaria con al menos una quinasa. Finalmente, comprobamos que
los términos ‘adaptor’ o ‘scaffold’ de la anotación funcional estén asociados directamente a
la función molecular de la proteína de interés.
Para la identificación de proteínas con posible función A/P de quinasas, nuestro método

se basa en la selección de aquellas proteínas que interaccionan con una cantidad estadísti-
camente significativa de los sustratos de una quinasa. En este modelo asumimos que dichas
proteínas tienen mayores posibilidades de promover interacciones entre las quinasas y sus co-
rrespondientes sustratos. La significación estadística es estimada utilizando como estadígrafo
la fracción de sustratos (de una misma quinasa) que interacciona con la proteína de interés.
Para el estadígrafo calculamos un valor p empírico a partir de distribuciones nulas, las cuales
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toman en cuenta la cardinalidad del conjunto de sustratos de cada quinasa. Para la cons-
trucción de dichas distribuciones utilizamos una subred del interactoma humano compuesta
por las quinasas, sus sustratos y los vecinos de primer grado de ambos. Finalmente, obtene-
mos 10’000 valores del estadígrafo seleccionando aleatoriamente (de la subred) un conjunto
de proteínas en representación de los sustratos y calculando la fracción de los mismos que
interacciona con un mismo vecino. Durante el cálculo de estas fracciones, las asociaciones
entre proteínas de la subred son intercambiadas de forma aleatoria.
Por otra parte, también evaluamos si quinasas que comparten proteínas A/P, son más

propensas a tener más sustratos en común. En este modelo, asumimos que las proteínas A/P
contribuyen a la especificidad de las quinasas por los sustratos que las mismas comparten.
En este modelo usamos como estadígrafo el número de sustratos compartidos por dos o más
quinasas. Para dicho estadígrafo calculamos un valor p empírico a partir de distribuciones
nulas, las cuales consideran la cardinalidad del grupo de quinasas que comparten una proteína
A/P. Las distribuciones nulas son obtenidas a partir del cómputo del estadígrafo para grupos
de quinasas con cardinalidad 2 o 3. En total, las distribuciones contienen 1000 valores del
estadígrafo.
En adición, hemos evaluado si proteínas A/P, interaccionan con una fracción estadísti-

camente significativa de los sustratos de las quinasas con las cuales se asocian. Para esto,
empleamos un conjunto curado de 51 asociaciones entre 31 quinasas y 36 proteínas A/P.
Para cada asociación, verificamos la existencia de al menos una publicación donde se haya
demostrado que la proteínas A/P desempeña dicha función sobre la quinasa.
En este análisis hemos usado como estadígrafo el número de sustratos de cada quinasa

que interacciona con una proteína A/P dada, y estimamos su significación estadística me-
diante el cálculo de un valor p empírico. En el cálculo del valor p (usando distribuciones
nulas) tomamos en consideración la cardinalidad de sustratos de las quinasas analizadas. La
subred del interactoma humano empleada para generar las distribuciones nulas fue compilada
tomando los primeros vecinos de 111 quinasas humanas (con al menos cinco sustratos in
vivo) y los de sus respectivos sustratos. Dicha subred contiene 15’046 interacciones entre
5939 proteínas. Para generar distribuciones del estadígrafo, primeramente seleccionamos de
forma aleatoria un nodo Q (quinasa hipotética) de la subred. Posteriormente, tomamos el
conjunto de primeros vecinos de Q y los dividimos de forma aleatoria en dos subgrupos,
sustratos hipotéticos (S, de cardinalidad igual al número de sustratos de Q) y A/P hipoté-
ticos (AP). Finalmente, obtenemos valores del estadígrafo calculando cuántos elementos en
S interaccionan con cada elemento en AP. Para cada valor de cardinalidad de sustratos, el
algoritmo realiza iteraciones hasta alcanzar 10’000 valores del estadígrafo. En cada iteración,
las asociaciones entre proteínas de la subred son intercambiadas de forma aleatoria.
Para analizar el enriquecimiento de dominios funcionales en grupos de proteínas, hemos

empleado la base de datos de familias de proteínas Pfam. A fin de estimar dicho enrique-
cimiento implementamos un test hipergeométrico, realizamos correcciones de test múltiples
usando los métodos de Bonferroni y Benjamini-Hochberg y definimos un umbral de signifi-
cación estadística α <0.05. Como conjunto control utilizamos el proteoma humano, en el
cual incluimos únicamente proteínas presentes en la base de datos Swiss-Prot y que hayan
sido detectadas a nivel de proteína, de ARN o que hayan sido inferidas por homología de
secuencia.
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Para detectar el enriquecimiento funcional de grupos de proteínas, hemos empleado las
anotaciones de la base de datos ‘Gene Ontology’ (GO). GO emplea un vocabulario controlado
de términos funcionales para describir las características de genes y sus productos, en base a
tres categorías: ‘proceso biológico’, ‘componente celular’ y ‘función molecular’. El análisis de
enriquecimiento lo hemos realizado empleando el programa GOstats (test hipergeométrico),
con corrección para test múltiples mediante el método de Bonferroni y definiendo un umbral
de significación estadística α <0.05. Como grupo de control empleamos el conjunto de
sustratos y vecinos de primer nivel de las quinasas humanas.

1.4 Resultados y discusión

En nuestros datos de fosforilación en humano están representadas 325 proteínas quinasas
humanas (62.7%) y 1856 sustratos. En total, hemos compilado 5946 sitios de fosforilación
distintos, de los cuales 3583 (60%) han sido determinados in vivo. Mediante la integración de
distintas bases de datos, conseguimos incrementos del 18%, 58% y 59% en las cantidades
de quinasas, sustratos y sitios de fosforilación (respectivamente) con respecto a la media
contenida en las bases de datos de referencia.
La comparación visual de varios de nuestros logotipos de secuencia con los previamente

reportados en la literatura, muestra una concordancia en cuanto a los motivos de secuencia
reconocidos por varias quinasas y familias de quinasas. Mediante estas comparaciones, hemos
comprobado que de manera general nuestros datos de fosforilación reflejan correctamente
los patrones de secuencias reconocidos por distintas clases de quinasas como son los casos
de las basofílicas, acidofílicas, las guiadas por prolina y las guiadas por glutamina.
El análisis de SDRs para quinasas guiadas por prolina, nos permitió identificar para tres

familias (CDK, MAPK y GSK) varios residuos relevantes en el reconocimiento de sustrato.
Entre las secuencias fosforiladas por las tres familias mencionadas, los SDRs de mayor rele-
vancia resultaron ser residuos de prolina (P) en las posición +1 (P+1) y -2 (P-2) con respecto
del residuo de fosforilación. Dichos SDRs están presentes, como promedio, en el 74.85% y
25.12% — respectivamente — de los eventos de fosforilación de las familias mencionadas.
En comparación, las frecuencias promedio de P+1 y P-2 entre eventos de fosforilación de
quinasas que no son guiadas por prolina son del 5.95% y 5.83% respectivamente. En el caso
particular de la familia CDK también identificamos como SDR un residuo de lisina en la
posición +3 (K+3), con una frecuencia promedio del 21.25%. Por otra parte, para la familia
GSK identificamos otros tres SDRs, serina -4 (S-4), prolina +2 (P+2) y serina +4 (S+4) con
frecuencias promedio del 38.49%, 27.70% y 48.56% — respectivamente — entre eventos
de fosforilación de quinasas GSK. Por el contrario, para la familia MAPK no encontramos
ningún SDR en adición a los ya mencionados P-2 y P+1.
En el caso de las quinasas guiadas por glutamina analizamos la familia PIKK, perteneciente

al grupo de las quinasas atípicas. Para esta familia sólo detectamos como SDR el propio
residuo de glutamina en posición +1 (Q+1). Dicho residuo está presente en el 80.83% de
los eventos de fosforilación de quinasas PIKK y, como promedio, sólo en en el 3.98% de los
eventos de fosforilación de las otras 21 familias de quinasas incluidas en nuestro análisis.
Las quinasas basofílicas muestran preferencias por sitios de fosforilación rodeados de re-
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siduos básicos (e.g., arginina y lisina). Para 5/8 de las familias basofílicas analizadas, iden-
tificamos como SDRs a residuos de arginina en las posiciones -2 y/o -3 (R-2, R-3). Dichos
SDRs (R-2, R-3) tienen frecuencias del 35.67% y 45.43% — respectivamente — entre los
eventos de fosforilación de las familias basofílicas y los mismos son identificados como SDRs
únicamente entre este tipo de quinasas. Por otra parte, las frecuencias de residuos R-2 y
R-3 entre los eventos de fosforilación de otras clases de quinasas son, como promedio, del
5.09% y 5.14% respectivamente. Cuatro de las ocho familias de quinasas basofílicas ana-
lizadas pertenecen al grupo de quinasas AGC. Para dos de estas cuatro familias (AKT y
PKC), en adición a R-2 y R-3, encontramos los SDRs triptófano +1 (W+1, en la familia
AKT) y arginina +2 y lisina +2 (R+2, K+2, en la familia PKC). La frecuencia de W+1
entre los eventos de fosforilación de la familia AKT es considerablemente baja (3.85%), y
en contraste, las frecuencias de R+2 y K+2 para la familia PKC son comparables con las
frecuencias de los SDRs que caracterizan a las quinasas basofílicas (i.e., R-2, R-3). En la
familia CAMK2, también de quinasas basofílicas, pero perteneciente al grupo CAMK (qui-
nasas reguladas por calcio/calmodulina), identificamos SDRs compuestos por residuos de
naturaleza ácida (e.g., aspártico +2 (D+2) y glutámico +2 (E+3)). Dichos SDRs ocurren
en el 23.08% y el 23.72% de los eventos de fosforilación de al familia CAMK2 y sólo en un
6.85% y 6.17% entre los eventos de fosforilación de quinasas que no tienen D+2 o E+2
como SDRs.
Otra clase de quinasas, las acidofílicas, muestran preferencia por sitios de fosforilación

enriquecidos en residuos ácidos (e.g., aspártico y glutámico). Una de las familias estudiadas
es la de caseína quinasas 1 (CK1, perteneciente al grupo homónimo), para la cual los SDRs
identificados fueron residuos de serina en las posición -3 y +3 (S-3 y S+3 respectivamente).
Resulta evidente que S-3 y S+3 no constituyen ejemplos clásicos de SDRs preferidos por
quinasas acidofílicas. Sin embargo, las secuencias reconocidas por miembros de la familia
CK1 suelen ser previamente fosforiladas por otras quinasas en la posición S-3. De este modo,
la fosforilación inicial en S-3 confiere características ácidas a la vecindad del sitio reconocido
por miembros de la familia CK1. Otra familia analizada entre las quinasas acidofílicas es
la también caseína quinasa 2 (familia CK2, perteneciente al grupo CMGC). En esta familia
identificamos un total de ocho SDRs, todos compuestos por residuos ácidos localizados
mayoritariamente las posiciones C-terminal con respecto al residuo fosforilado. Un residuo de
glutámico en posición +3 (E+3), es el SDR con mayor frecuencia promedio (45.83%) entre
los eventos de fosforilación de la familia. Además, este E+3 está presente sólo en el 6.15%
de los eventos de fosforilación de quinasas que no presentan E+3 como SDR. Otro SDR
identificado para la familia CK2 es aspártico en posición +1 (D+1), el cuál está presente en
el 27.4% de los eventos de fosforilación de la familia y sólo en un 4.6% de los eventos de
fosforilación de otras familias de quinasas.
A partir del análisis de las 325 PSSMs obtenidas para las quinasas en nuestros datos,

hemos encontrado una correlación negativa entre el número de secuencias semilla empleadas
para generar cada PSSM y la sensitividad de dicha PSSM (R = -0.59, valor p = 2,38e−31);
así como también entre el número de secuencias semillas y el contenido de información (CI)
de la PSSM (R = -0.4, valor p = 9,8e−14). Estas correlaciones sugieren que el incremento
del número de secuencias semilla provoca un degeneración de la señal contenida en la PSSM,
la cual afecta negativamente la sensitividad y el CI de las PSSMs. Al evaluar la significación
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estadística de las PSSMs usando el CI como estadígrafo, nuestros resultados sugieren que
las PSSMs estadísticamente significativas (163), fueron generadas a partir de conjuntos de
secuencias semillas 10.2 veces más numerosos que las PSSMs no significativas (162). Al
comparar ambos conjuntos de PSSM con respecto a su sensitividad, nuestros resultados
muestran que las PSSM no significativas tienen una sensitividad media 1.4 veces mayor
que la correspondiente a las PSSM significativas. Este último resultado es causado por la
degeneración provocada en la señal de la PSSM al aumentar el número de secuencias semilla.
De modo similar, ambos sets de PSSMs difieren significativamente en cuanto sus valores del
área bajo la curva ROC (AUC-ROC) y además, hemos encontrado una correlación negativa (R
= -0.63, valor p = 6,2e−37) entre el AUC-ROC y el número de secuencias semilla. Al analizar
las PSSMs correspondientes a las 93 familias en nuestros datos, encontramos resultados en
la misma dirección que los descritos anteriormente.
En esta tesis hemos creado una estrategia para la identificación automatizada de proteínas

con función conocida como adaptadoras o plataformas (cA/P) de quinasas humanas. Me-
diante esta estrategia, compilamos un conjunto de 191 proteínas cA/P asociadas a 287/518
(55.4%) quinasas, las cuales representan el 72.3% de las familias de quinasas humanas. Estos
datos sugieren que, las asociaciones con proteínas con función A/P es un evento común entre
las quinasas. El conjunto de las 191 cA/Ps está enriquecido en varios dominios funcionales,
de los cuales se conoce promueven interacciones entre proteínas (e.g., SH2, SH3 y PDZ
entre otros). El análisis de términos de la ontología de genes, sugiere que el conjunto tam-
bién está enriquecido en funciones moleculares relacionadas con interacciones entre proteínas
(e.g., ‘protein binding, bridging’; ‘SH3/SH2 adaptor activity’ y ‘protein complex scaffold’ en-
tre otros). El conjunto de 191 proteínas cA/P será empleado posteriormente, como set de
prueba, para estimar la eficacia de estrategias enfocadas en la identificación de potenciales
A/Ps de quinasas humanas. En adición, a partir del conjunto cA/P — identificado de mane-
ra automatizada — depuramos manualmente un conjunto de asociaciones quinasa-cA/P de
elevada confiabilidad (‘gold standard set’, GSS). Para cada asociación quinasa-cA/P, verifi-
camos la existencia de al menos una referencia en la literatura donde haya sido demostrada,
experimentalmente, una función adaptadora o de plataforma de la proteína en cuestión sobre
la quinasa a la cual está asociada. En total, el set está compuesto por 75 asociaciones entre
47 quinasas y 46 cA/Ps.
En este trabajo desarrollamos una estrategia para la identificación de proteínas con posi-

ble función A/P (pA/P) de quinasas humanas. Dicha estrategia consiste en la identificación
de proteínas del interactoma humano que se asocian con un número significativo de sus-
tratos de quinasas. Como prueba de concepto, demostramos que las 191 proteínas A/P de
quinasas antes descritas, son cinco veces más propensas a interaccionar con un número sig-
nificativamente mayor de los sustratos de quinasas que proteínas del interactoma humano
seleccionadas al azar (razón de probabilidades = 5.04, valor p = 1,08e−15). Con la presente
estrategia identificamos 279 proteínas pA/P asociadas a 78 (49.7%) de las quinasas evalua-
das, para un total de 706 asociaciones quinasa-pA/P. Como conjunto, las 279 proteínas están
enriquecidas en dominios funcionales (e.g., 14-3-3, SH2, SH3) y términos de ontología (e.g.,
‘SH2 domain binding’ y ‘SH3 domain binding’, ‘protein kinase binding’) relacionados con
interacciones entre proteínas. Sin embargo, no encontramos enriquecimientos en términos
de ontología directamente relacionados con funciones como adaptadoras (‘adaptor’) o pla-
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taformas (‘scaffolds’), de modo que las proteínas identificadas no han sido relacionadas, de
manera sistemática, con estas funciones. No obstante, varios términos de función molecular
enriquecidos entre las 279 pA/Ps, sugieren que las mismas están vinculadas a procesos de
señalización celular (e.g., ‘protein phosphatase binding’, ‘NF-kappaB binding’, ‘transcription
factor binding’). Posteriormente, las 706 relaciones quinasa-pA/P antes mencionadas fueron
filtradas sobre la base de evidencia de colocalización celular de la pA/P con los sustratos
de la quinasa correspondiente. Como resultado, obtuvimos un conjunto de 527 relaciones
quinasa-pA/P que involucra 41 quinasas, 156 pA/Ps y 35 compartimentos celulares dis-
tintos. En nuestra opinión, estos resultados sugieren que para la mayoría de las relaciones
quinasa-pA/P identificadas — 527/706, 74.6% — , la proteína pA/S podría desempeñar un
papel importante facilitando la colocalización de la quinasa con sus sustratos.
En adición, hemos intentado aportar más evidencia con relación al rol de las proteínas

cA/Ps en promover la colocalización celular de sustratos y quinasas. Para esto realizamos un
análisis a fin de corroborar si, empleando un subconjunto del GSS conformado por 49 pares
quinasa–cA/P de elevada confiabilidad, las proteínas cA/P son propensas a interaccionar
con un número significativo de los sustratos (in vivo) de sus quinasas asociadas. En total,
para 10/49 (10.2%) de los pares analizados encontramos resultados satisfactorios. Estos
resultados no nos permiten generalizar — al menos en este set reducido — sobre el rol de las
proteínas cA/Ps como reclutadores de sustratos para las quinasas; no obstante, consideramos
que los resultados mencionados en el párrafo anterior, aportan evidencia sobre la mencionada
función de las proteínas A/P.
En esta tesis hemos estudiado la contribución de las proteínas A/P a determinar la especi-

ficidad por sustrato de las quinasas, al promover la colocalización entre dichas quinasas y sus
sustratos. Sin embargo, cabría preguntarse si la asociación de dos quinasas distintas a una
misma proteína A/P conduciría a que ambas quinasas compartiesen (in vivo) un número de
sustratos mayor del esperado al azar. Partiendo de nuestra hipótesis sobre la contribución de
las proteínas A/P a la especificidad por sustrato de las quinasas, sería de esperar pocos casos
de quinasas compartiendo cantidades significativas de sustratos (in vivo). Para este análisis
contamos con 19 casos de una proteína cA/P que interacciona con al menos dos quinasas
distintas las cuales comparten al menos un sustrato in vivo. Nuestros resultados muestran
que en ninguno de los casos analizados las quinasas comparten una cantidad significativa de
sustratos in vivo. En nuestra opinión, estos resultados apoyan el modelo en que las proteínas
A/P contribuyen de manera efectiva a reducir el conjunto de sustratos potenciales de las
quinasas a las cuales se asocian, probablemente mediante el reclutamiento de las quinasas a
complejos moleculares o locaciones celulares específicas.
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1.5 Conclusiones

• Mediante la integración de datos provenientes de distintos recursos públicos, hemos
compilado un conjunto de relaciones quinasa–sitio de fosforilación determinados expe-
rimentalmente en humano. Nuestros datos incluyen información correspondiente a 325
(62.7%) quinasas — en representación del 71.5% de las familias de quinasas humanas
—, 1856 sustratos y 5946 sitios de fosforilación. Mediante la integración de informa-
ción logramos aumentos del 18%, 58% y 59% en las cantidades de quinasas, sustratos
y sitios de fosforilación (respectivamente), en comparación con la media contenida en
las bases de datos empleadas como fuente.

• Los patrones observados en los logotipos, mostraron la gran diversidad de motivos de
secuencia reconocidos por las quinasas. Además, dichos logotipos sirvieron como guía
para la clasificación de las quinasas y las familias de quinasas basados en la composición
(i.e., los tipos de residuos) de las secuencias que fosforilan.

• Basados en su puntuación en las PSSMs, hemos clasificado varios residuos como SDRs
para varias de las familias de quinasas. Hemos observado que la identidad, la posición
en el alineamiento, así como la frecuencia de los SDRs identificados, varía considera-
blemente entre las familias de quinasas analizadas.

• La significación estadística de las PSSMs generadas fue evaluada tomando en consi-
deración la sensitividad y el contenido de información de las PSSMs. Primeramente,
hemos encontrado correlaciones negativas ente la cantidad de sitios semilla y i) la sen-
sitividad de las PSSMs y ii) el contenido de información de las mismas. Basados en
el valor de IC de las PSSMs y en la comparación con distribuciones nulas, encontra-
mos que las PSSMs estadísticamente significativas difieren de las no estadísticamente
significativas en cuanto al IC, la sensitividad, el número de secuencias semilla y el
AUC-ROC.

• Desarrollamos una estrategia para la identificación computacional de proteínas con
función conocida como adaptadoras o plataformas de quinasas humanas (cA/P). En
total, hemos identificado un grupo de 191 proteínas cA/P, el cual está enriquecido en
dominios de proteínas y anotaciones funcionales consistentes con el papel de adaptado-
ras o plataformas. Las 191 proteínas están asociadas al 55% de las quinasas humanas,
lo cual sugiere que la asociación a proteínas A/P es un fenómeno común entre estas
enzimas.

• Nuestros análisis sugieren que, en comparación con proteínas seleccionadas al azar, las
191 proteínas con función adaptadora o plataforma son cinco veces más propensas a
interaccionar con cantidades significativas de los sustratos de las quinasas a las cuales
están asociadas.

• A partir de un conjunto de 156 quinasas humanas, para 78/156 (50%) de ellas identifi-
camos un grupo de 279 proteínas con posible función adaptadora o plataforma (pA/P).
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Este conjunto está enriquecido en dominios de proteínas y anotaciones funcionales rela-
cionadas con la función predicha y que además sugiere la implicación de estas proteínas
en procesos de señalización celular.

• Nuestros análisis de colocalización celular sugieren que, para el 74.6% de las aso-
ciaciones quinasa–pA/P encontradas, la proteína pA/P pueden desempeñar un papel
importante en la colocalización de las quinasas y sus correspondientes sustratos.

• Finalmente hemos analizado la relación entre la asociación de quinasas distintas con
proteínas A/P en común y la especificidad cruzada entre dichas quinasas (i.e., el
número de sustratos compartidos in vivo). Nuestros resultados sugieren que quinasas
con proteínas A/P en común no comparten más sustratos in vivo de lo que cabría
esperar al azar. En nuestra opinión, estos resultados sugieren que las proteínas A/P
son capaces de reducir el conjunto de sustratos potenciales de las quinasas a las cuales
se asocian, probablemente mediante el reclutamiento de dichas enzimas a complejos
moleculares o locaciones celulares específicas.
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2 General introduction

2.1 Protein phosphorylation

Phosphorylation is the most common post-translational modification (PTM) of proteins, and
is of major relevance for the regulation of most cellular processes [1,2]. In a phosphorylation
reaction, the gamma phosphate group of an ATP molecule is transferred to an acceptor
amino acid in a target protein, the substrate. The transferred phosphate group carries a
strong negative charge, that can promote electrostatic interactions in the surroundings of
the phosphorylated residue. These new electrostatic interactions can affect the substrate in
many aspects such as its conformational state, its interactions with other proteins and its
cellular localization among many others [3]. Moreover, protein phosphorylation is a reversible
and fast process that have been conserved in evolution as a mechanism for regulating proteins
function in a non transcription-dependent manner [4]. The biological relevance of this process
is evident by the fact that around 30% of all eukaryotic proteins have been suggested to be
target of phosphorylation [1].

2.2 Protein kinases

2.2.1 Kinases are responsible for protein phosphorylation

Kinases are the enzymes responsible for protein phosphorylation. Kinases are capable of
catalyzing the addition of the phosphate group from an ATP molecule to the substrate (see
Figure 2.1). For human, there is a total of 518 protein kinases described, which account for
approximately 2% of all human genes [5]. Several kinases are known to be key players in
many cellular processes such a growth, differentiation and apoptosis; and as a consequence,
their deregulation have been tightly related to major human pathologies such as cancer [4,6]
and diabetes [7, 8]. Moreover, kinases constitute a major class of therapeutic targets for
which more than 10’000 patent applications for inhibitors have been received since 2001
in the United States alone [9, 10]. Based on the type of residues that they phosphorylate,
kinases can be classified into serine/threonine, tyrosine or dual-specificity kinases. In human,
serine/threonine constitute the larger group (69.3%), followed by the tyrosine (16.9%) and
the dual-specificity kinases (4.1%). The remaining 9.7% of the 518 human kinases have been
suggested to be catalytically inactive due to their lack of canonical catalytic residues [5].
Serine, threonine and tyrosine residues are not phosphorylated with the same frequency.
In human, for example, it has been reported that serine residues account for the largest
number of known phosphorylations (86.4%), followed by threonines (11.8%) and tyrosines
(1.8%) [11].
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Figure 2.1: Protein phosphorylation reaction.
A protein kinase (green) catalyze the addition of a phosphate group (red circles) from an ATP
molecule to a substrate peptide (blue ribbons). The catalytically active kinase is represented in
dark green.

2.2.2 The kinase catalytic domain is highly conserved

Due to their functional relevance, protein kinases have been conserved along the evolution
from bacteria to metazoan [12, 13]. Moreover, most protein kinases share a common fold
of their catalytic domains. In human, most protein kinases (92.3%) share a common fold
for the catalytic domain, known as the canonical eukaryotic kinase domain (ePK) [5]. The
ePK domain ranges between 250 and 300 amino acids and have a bi-lobular structure (see
Figure 2.2). The N-terminal lobe is the smallest of the two and is mainly composed of
beta sheets, while the C-terminal lobe is mostly composed of alpha helices. Both lobes are
joined by a flexible hinge segment, which allows considerable conformational flexibility to
the domain. The ATP binding site, highly conserved among ePK domains, is formed by
a deep cleft between the lobes; while the binding site for the substrate peptide lies in a
more solvent accessible region, which contains the catalytic residues, that is also between
the lobes. Another important structural feature of the ePK domains is the activation loop,
a segment that regulates the active state of several kinases upon phosphorylation, [14], and
that can influence substrate binding and catalytic efficiency [15]. The remaining 7.7% of
human kinases have a catalytic domain that lack sequence similarity to the ePK domain [5].
Due to this characteristic, they are commonly known as atypical protein kinases (aPK) and
they have been proposed to have diverged from ePKs early in evolution [12]. Most aPKs
have been discovered mainly by biochemical methods or by clear sequence homology to other
aPKs. Despite the lack of sequence similarity, for some aPKs a significant structural similarity
to the ePK domain has been reported [16–18]. See panels A and B in Figure 2.2.

2.2.3 Phylogeny and diversity of human protein kinases

Starting from genomic sequences, Manning et al. [5] cataloged human kinases based on a
comparative analysis of the sequence of the catalytic domains, complemented by an analysis
of the sequence similarity and domain structure of non-catalytic regions. The authors re-
ported a total of nine major groups, subdivided in 130 different families and 198 subfamilies,
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Figure 2.2: Eukaryotic kinase catalytic domain.
A) Catalytic (canonical) domain of protein kinase A (PKA). In magenta, the N-terminal lobe, followed by the hinge
region (salmon) and the C-terminal lobe (green). In gray sticks, between the lobes, an ATP molecule. In yellow, the
activation loop with a phosphorylated threonine, which stabilizes the kinase in an active conformation. In green sticks
the catalytic residue (aspartic), responsible of transferring the phosphate group to the substrate. B) Catalytic domain
of the atypical kinase CHAK. In gray sticks a molecule of ANP, an analog of ATP. C) Catalytic domain of the atypical
kinase PDK4. In gray sticks a molecule of ADP.

a finding that highlighted the great sequence diversity of human kinases.
Kinases are an example of great functional diversity that have been achieved through

sequence variation and by versatile modular combination of different classes of protein do-
mains [19] (see Figure 2.3). In general, members of the same kinase family tend to retain
similar domain composition [5], which leads in some cases to shared functional properties.
In protein kinases, only a small group of residues (highly important for ATP binding and
for the transfer of the phosphate group) shows remarkable conservation across the entire
superfamily [20, 21]. The extreme sequence divergence occurred in kinases over the course
of evolution have made them able to phosphorylate a wide variety of targets, to interact with
a large range of proteins, and to respond to a myriad of different regulatory mechanisms
and cellular signals. This remarkable sequence divergence influence the functional aspects of
kinases.
Regarding the in vivo substrate specificity, significant differences have been reported be-

tween members of the same kinase family, where the sequence identity of the catalytic
domain is, on average, close to 60% and the overall domain composition tend to be simi-
lar. For example, two recent independent studies showed that, despite their high sequence
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Figure 2.3: Modular domain composition of protein kinases.
Protein kinases have achieved a broad functional diversification thanks to a versatile combination of protein domains.
From left to right, Vascular endothelial growth factor receptor 1 (VEGFR-1), a tyrosine-protein kinase that acts as a
cell-surface receptor and plays an essential role in angiogenesis, cell survival, cell migration, chemotaxis, and cancer
cell invasion [22]; Polo-like kinase 1 (PLK-1), a serine/threonine-protein kinase that performs several key functions
throughout M phase of the cell cycle, including the regulation of centrosome maturation, spindle assembly, regulation
of mitotic exit and cytokinesis [23]; Proto-oncogene tyrosine-protein kinase Src (SRC), participates in signaling pathways
that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion,
cell cycle progression, apoptosis and migration [24, 25]; RAC-alpha serine/threonine-protein kinase (AKT1), regulate
many processes including metabolism, proliferation, cell survival, growth and angiogenesis [26].

identity a, Aurora kinases A and B (two major mitotic kinases) share few in vivo substrates.
Both kinases are known to phosphorylate almost identical sequences, however, they do not
co-localize during mitosis and therefore they do not phosphorylate the same substrates. The
authors showed that, in this case, kinases that share ‘motif space’ do not share ‘localization
space’ [27, 28]. Similar results were also described for the yeast family of cAMP-dependent
protein kinases, homologs of the eukaryotic PKA kinases. Despite being very closely related
in sequence b, the three members of this family (TPK1, TPK2 and TPK3) showed distinct
substrate specificities and a very scarce number of common substrates [29]. Together, these

aSequence identities between Aurora kinases A and B. Complete sequence 51%, at the catalytic domain
74.5%.

bSequence identities from multiple sequence alignments. Complete proteins 57.4%; catalytic domains 75.7%.
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findings demonstrate that in vivo substrate specificity can have a limited relationship with
the level of sequence conservation of the kinase catalytic domain, and that the substrate
recognition process can be fine-tuned by several other factors.

2.3 Known mechanisms of protein kinases for substrate
identification

During the late 80’s and early 90’s several studies focused on the identification of substrate
specificity determinants, and most of those studies were based solely on the analysis of
consensus sequences derived from peptides phosphorylated in vitro [30–33]. Such analysis
provided important insights regarding peptide specificity of kinases and also allowed a general
classification of kinases attending the physico-chemical properties of the sequences they
tend to phosphorylate. From those, and other more recent studies [29, 34–38] it became
evident that even kinases closely related in sequence can have different (although some
times overlapping) substrate specificity, but also that consensus sequences were not able to
fully explain the substrate specificity observed in vivo.

2.3.1 Role of the kinase catalytic site

As mentioned before, the tridimensional (3D) structure of the catalytic domain of protein
kinases have been consistently conserved along evolution. However, the catalytic domains
can differ in the charge and hydrophobicity of residues at the catalytic and substrate bind-
ing sites, as well as in the length of the activation loop; features that are known to be of
most importance for substrate specificity and enzymatic regulation [39–41]. Nevertheless,
the existence of consensus phosphorylation sequences for many kinases supports the idea of
customization to certain type of target sequences. In fact, it is known that there exists a
degree of physico-chemical complementarity between residues in the catalytic site of kinases
and residues in the vicinity of the phosphorylation site [34, 40]. These complementarities
foster substrate recognition on the basis of charge, hydrogen bonding and hydrophobic inter-
actions. Indeed, many kinases can be sub-divided in three classes: i) basophilic, which favor
basic residues around the phosphorylation site, ii) acidophilic which favor acidic residues,
and iii) proline-directed which require a proline residue immediately N-terminal to the phos-
phorylation site. Despite the existence of clear consensus sequences for many kinases, these
patterns are still too lax to fully explain the complex process of substrate specificity.

2.3.2 Distal docking sites

The next level of substrate specificity is provided by the direct associations of kinases to their
substrates via docking sites interactions. These interactions contribute to the recruitment
(and to the increased affinity) of substrates by kinases and therefore, to an augmented
efficiency of the phosphorylation [42, 43]. Docking sites are often spatially separated from
the kinase catalytic cleft and from the phosphorylated residue in the substrate [44]. Moreover,
differences in the composition and/or spacing of residues in these docking sites (at either

15



2 General introduction

the kinase and/or the substrate) can modulate the overall selectivity of the interaction [45].
Distal docking sites have been reported for both serine/threonine and tyrosine kinases. In
serine/threonine kinases the sites are often part of the catalytic domain, while in tyrosine
kinases the docking sites are commonly found in additional domains, away form the catalytic
one [46]. Docking-site mediated interactions have been reported for several kinases such as
CDK2, ERK, GSK3, JNK, MEK, PDK1 and PHK [46]; a fact that suggests these interactions
as a general mechanism for enhancing substrate specificity.
For example, members of the MAPK family (ERK, JNK and p38) are cases of kinases

with broad phosphorylation site specificity. They can phosphorylate almost any substrate
with the sequence pattern Ser/Thr-Pro, a sequence present in about 90% of all proteins [47].
Therefore, the phosphorylation site specificity of these kinases is not sufficient to explain their
substrate selection in the cell. It has been found that MAPKs have a conserved docking site
outside the catalytic domain. This docking site, known as CD-domain, is formed by a
cluster of negatively charged residues [44]. Also, several activators (MAPKKs), substrates
(MAPKAPK) and inactivators (MKPs, phosphatases) of MAPKs contain a complementary
docking site, D-domain, formed by positively charged residues [44]. It has been observed that
specificity of associations between MAPKs and their partners is achieved, at least partially,
by the electrostatic interactions between the CD-domain and the D-domain (see Figure
2.4) [42,44,48].

Figure 2.4: Distal docking sites in MAPKs.
MAP kinases have a conserved docking site C-terminal to the catalytic domain (CD-domain, in
red). Several activators, substrates and inactivators of MAPKs have a docking site, D-domain
(in blue), formed by positively charged residues. The electrostatic interactions between the CD-
domain in MAPKs and the D-domain in their partners contribute greatly to MAPKs binding
specificity. Activated MAPK is represented in dark green with a phosphate group attached.

2.3.3 Regulatory and targeting domains

As commented previously, non-catalytic domains of protein kinases are central to the bio-
logical function of these enzymes. A vast majority of the non-catalytic domains are versatile
protein-protein interaction (PPI) elements that can mediate intra and inter molecular asso-
ciations with other signaling modules. These built-in domains can allosterically modulate
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the catalytic activity of the kinase, its association to other proteins and/or its cellular local-
ization. By affecting one or more of the aforementioned properties of kinases, non-catalytic
domains can largely influence the substrate specificity of these enzymes.
Among serine/threonine kinases one example of the action of such regulatory elements is

the POLO-Box domain (PBD). This domain is exclusively found in the family of Polo-like
kinases, composed of five members in human, which are key regulators of several mitotic
processes [49]. The PBD performs dual roles in determining subcellular localization and
inhibitory regulation of the kinase by intramolecular interactions [50]. By exerting this dual
function, PBDs are able to convey a significant deal of target specificity to each member of
the Polo-like kinases [50,51].
Other two canonical examples are the cases of protein kinase A (PKA) and cyclin-dependent

kinases (CDKs), although their regulatory elements are not covalently tethered to catalytic
domains. PKA is a holoenzyme with several roles in the cell [52–54], which remains inactive
while bound to a regulatory subunit (a homodimer). Besides providing allosteric regula-
tion, the regulatory homodimer targets the two bound catalytic domains to macromolecular
complexes in the plasma membrane that are involved in cellular signaling [55]. Upon intra-
cellular increased levels of cAMP, the kinase domains are released in an catalytically active
state [56, 57]. In the case of the CDKs, they constitute a family present in all known eu-
karyotes with conserved key roles in the regulation of the cell cycle [58]. Cyclins are the
proteins that allosterically regulate CDKs by forming very stable complexes, and without
these associations CDKs have very little kinase activity. In addition, cyclins have a docking
domain that helps to recruit the CDKs to their correct substrates [59–62] and also to different
subcellular compartments [63–65]. In this manner, cyclins are thought to greatly enhance
CDKs specificity.
Another case of built-in regulatory domains is found in the family of non-receptor Src

tyrosine kinases. Members of this family contain an Src homology-2 (SH2) domain and an
Src homology-3 (SH3) domain at the N-terminal position with respect to their kinase catalytic
domains. SH2 and SH3 domains are able to promote PPIs by binding — respectively — to
phosphorylated tyrosine residues and proline-rich peptides in present in partner proteins. The
enzymatic activity of Src kinases is inhibited by intramolecular interactions of the catalytic
domain with both SH2 and SH3 domains [66]. It is known that many of the best substrates of
Src kinases contain ligands for the SH3 and/or SH2 domains. Such substrates can therefore
disrupt the intramolecular interactions in the kinase and activate its catalytic state [66].
These observations suggest that substrate specificity of Src kinases may be dependent on
the specificity of its associated SH2 and SH3 domains. Moreover, such mechanism ensures
that these kinases are active only upon direct interaction with their proper substrates.
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3 Objectives

The global aim of this thesis is the quantification of the contribution of different elements
to the observed in vivo substrate specificity of human protein kinases. In order to achieve
our purposes, we defined the following objectives:

• Quantification of the contribution of the phosphorylation site and its surround-
ing residues to the substrate specificity of human kinases.

• Quantification of the contribution of adaptor and scaffold proteins to the sub-
strate specificity of human protein kinases.
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4 Sequence logos and position-specific
scoring matrices

4.1 Introduction

4.1.1 Contribution of residues neighboring the phosphorylation sites

4.1.1.1 Residues commonly phosphorylated in eukaryotes

Phosphorylation is one of the most common PTM in proteins [1] and serine (Ser), threo-
nine (Thr) and tyrosine (Tyr) are the residues most commonly phosphorylated in eukaryotic
organism [42]. These amino acids count with an hydroxyl group in their side chains that
is substituted by the terminal phosphate of an ATP molecule in a reaction catalyzed by a
protein kinase. In order for the reaction to take place, the kinase must recognize the phospho-
acceptor residue in the sequence of the substrate protein (i.e., the phosphorylation site), and
also the side chain of the phospho-acceptor residue must be correctly oriented towards the
catalytic residues of the enzyme [40]. However, the phospho-acceptor residue is not the
only element contributing to the recognition of the phosphorylation site by the kinase; other
residues in its close sequence vicinity — generally expanding three to six residues at each
side of the phospho-acceptor residue — have been found to play fundamental roles in the
interaction with the the substrate binding region in the kinase [27, 33, 67]. The interactions
between residues flanking the phospho-acceptor amino acid and residues in the catalytic cleft
of the kinase stabilize the kinase-substrate complex and forces the correct orientation of the
phospho-acceptor residue into the catalytic site [68]. Generally, the sequence region in the
substrate containing the phosphorylation site adopts an extended conformation upon binding
to the kinase binding region [67].

4.1.1.2 Positioning and orientation of the phospho-acceptor residue

As stated previously in this section, the phospho-acceptor residue is not the unique responsible
for the specificity of the kinase; as there also exist a contribution from residues in its close
vicinity. In this sense, the phosphorylation site and its close neighboring residues constitute
what is known as a short linear motif (SLiM), an important functional element known to
mediate several PPIs [69–71]. Experiments using peptide arrays as well as proteomic studies,
have shown that many kinases can be very unspecific in in vitro conditions, where they
are able to phosphorylate a wide range of different sequences [34, 72]. However, it has
also being reported that in vivo, kinases can display a high specificity towards particular
sequences and substrates [27, 28]. In this sense, it is known that some families of kinases
show preference for stretches of sequences in their substrates that are enriched in particular
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amino acids. Two examples of this are the MAP kinases and the phosphatidyl inositol 3’
kinase-related kinases (PIKK), which for optimal phosphorylation require — respectively —,
the presence of a proline (Pro) and a glutamine (Gln) at the first position after the phospho-
acceptor residue [73, 74]. There are other available examples of kinases and families of
kinases displaying a preference for certain amino acids at particular positions relative to the
phospho-acceptor residue [33, 34, 75]. However, due to the lack of experimental data or to
their apparently broad specificity patterns, there is still a very large number of human kinases
for which the preferences for residues surrounding the phosphorylation site are unknown or
ambiguously defined.

4.1.1.3 From phosphorylation sequences to phosphorylation motifs

The sequence preferences displayed by certain kinases, have allowed the identification of
consensus sequences (or sequence motifs) that are more commonly phosphorylated by that
kinases. A sequence motif is the representation of the relative frequencies of amino acids at
given positions in a set of protein sequences that have been previously aligned. The amino
acids patterns observed in sequence motifs have, or are hypothesized to have, biological
significance. For example, when generating a motif from the sequences known to be phos-
phorylated by a given kinase (a phosphorylation motif), an alignment of the corresponding
phosphorylated sequences is generated keeping the phospho-acceptor residue in the central
position of the alignment. Typically, phosphorylation motifs provide information about the
residues — in addition to the phospho-acceptor amino acid — that are required at specific
positions for the kinase to recognize the phosphorylation site. However, the phosphorylation
motifs can also be degenerated at some positions, that is, there may exist levels of uncer-
tainty about what residues are preferred at certain position of the sequence alignment. It is
generally accepted that phosphorylation motifs provide the primary specificity [46,67,75,76]
while a variety of contextual factors, including co-localization, co-expression and physical
interaction of the kinases with their targets, contribute additionally to the in vivo substrate
specificity [43,70,77].

4.1.2 Graphical representation of phosphorylation motifs

Sequence motifs have been widely used by the scientific community, and they are a valuable
tool for representing and analyzing patterns in biological sequences [69,78]. Sequence motifs
are usually represented in two ways. One common representation is in the form of a consensus
sequence, which is a string of characters where the more frequent and/or infrequent elements
of the sequence alignment are shown. The other typically used representation is in the form
of a sequence logo [79], where each position in the sequence alignment correspond to a
column in the logo. The total height of each column indicates the sequence conservation
at that position of the alignment (measured in bits), while the height of each independent
symbol indicates the relative frequency of the amino acid at that position. In a sequence logo
representation, the height of the Y axis is equal to the Shannon information content [80]
calculated for each of the 20 genetically encoded amino acids. When a residue is fully
conserved at a given position, the height of the column is log2 20 = 4.32 bits. On the
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contrary, when all residues are equally probable at a position, the height of the column is 0
bits.
In general, compared to the representation by consensus sequences, sequence logos provide

a richer and more precise description of sequence motifs; and they can rapidly reveal signif-
icant features of the alignment otherwise difficult to perceive [81]. However, they do not
provide a mathematical representation of the biological pattern encoded in the sequences
aligned. In this sense, position-specific scoring matrices are useful tools to quantitatively
encode the information contained in the sequence alignment.

4.1.3 Mathematical representation of phosphorylation motifs

4.1.3.1 Probabilistic models

A position-specific scoring matrix (PSSM) is a valuable tool for the probabilistic representa-
tion of signals in a sequence alignment, which allow the scoring of individual sequences based
on their binding strength. PSSMs have been extensively used to model approximate patterns
in DNA or protein sequences [72, 82, 83]. A PSSM is a tabular numerical representation of
sequence motifs displaying their variability as log-likelihood values for each possible residue
or nucleotide at each position in a sequence. A PSSM has one row per each symbol of the
alphabet (amino acids in our case) and one column per each position in the sequence. In a
PSSM the value in each cell of the matrix is the score for a given residue at a given position
in the sequence.
There are two methods commonly used to computing the score for each residue at a given

position in a PSSM. The first one, based on log-likelihoods, defines the score of a residue at
a given position as the natural logarithm of the frequency of that residue in that position in
the set of training sequences (i.e., the sequence alignment). The second method, based on
log-odds scores, also uses the observed frequency of residues at a given position in the set of
training sequences, and includes an additional term that accounts for the observed frequency
of that residue in a background model (e.g., a reference proteome) [84]. By using either of
the mentioned methods, the overall score of a sequence aligned on a PSSM is defined by the
summation of the score of each residue in the sequence at its given position. In the case of
phosphorylation motifs, a positive score indicates that a residue is considered to favor the
recognition of the sequence as a target for phosphorylation. As opposed, negative scores are
considered unfavorable for sequence recognition.
Once a score have been computed for a given sequence on a PSSM, there still remains the

issue of assessing the statistical significance of that score. That is, in order to evaluate if the
sequence is a statistically significant match to the PSSM, we need to estimate the probability
of the background model to achieve a score equal or higher than the one observed. This can
be achieved by defining a priori the desired level of statistical significance (a p-value) for a
match to the PSSM, which will be associated to a threshold value of the score. The efficient
identification of matches to PSSMs is a complex problem that has recently attracted the
interest of the scientific community [85, 86]. In the Materials and Methods section we will
describe in more detail the method we have used for defining the score threshold for our
PSSMs.
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Another important topic is the assessment of the statistical significance of the PSSM
itself. In this regard, it is common to use the information content (IC) of the PSSM as the
statistic for the significance test that estimates how different is a PSSM from a background
distribution [87]. The IC of a PSSM can be computed assuming equal probabilities for each
residue, or it can be computed taking into account the probability of occurrence of each
residue in a background model. In this sense, taking into account the frequencies of amino
acids in the background model can provide a more accurate weighting of their individual
contributions to the overall value of the IC.
PSSMs constitute a valuable tool that can be applied in large-scale analysis of DNA, RNA

and protein sequences. Although, the method has limitations such as the assumption of
independence between the columns of the matrix, i.e., that each position contributes inde-
pendently and additively to the functional activity of the sequence [87]. This approximation
has generated a lot of controversy about the validity of the model and alternatives to it have
been proposed, as for example by using two or more residues as the units of sequence [88,89].
Also, more complex models for motifs analysis have been developed, such as hidden Markov
models and words graphs [90, 91]. Regardless of the known limitations, PSSMs are still at
the core of several services and methods for identification of sequence motifs in DNA and
proteins [92–95].

4.1.3.2 Prediction of phosphorylation sites

During the last decade, several high-throughput experiments have made available thousands
of in vivo and in vitro phosphorylation sites for human [96–100]. At the same time, and using
the aforementioned data, several projects have aimed the prediction of in vivo phosphorylation
sites by developing methods that are able to ‘learn’ from the sequences of experimentally
determined sites. Regarding the use of PSSMs there are two main examples. The first
one is the web service ScanSite, where the authors use kinase-specific PSSMs — and
also allow for user-defined PSSMs — in order to identify phosphorylation sites in protein
databases [101]. The other case is Predikin, a web server where the authors combine PSSMs
with structural information of the phosphorylated sequences in order to predict and filter
potential phosphorylation sites [102]. There are several other applications that implement
more complex methods such as hidden Markov models (HMM), artificial neural networks
(ANN) or expert systems to integrate several sources of information (e.g., structural disorder,
sequence conservation, positional correlations of residues) in the prediction algorithm [103–
105]. In general, more sophisticated methods of phosphorylation sites identification (e.g.,
ANN, HMM) perform better in the classification of highly complex and nonlinear sequence
patterns [106]. However, in these cases it is more difficult to infer the decisions that support
the predictions, as opposed to the cases of PSSMs, where it is much easier to pinpoint the
determinants residues of a functional phosphorylation site [103].
In order to evaluate the performance of the prediction methods the sensitivity and speci-

ficity must be taken into account. Ideally, the method should be able to identify as many true
sites as possible (sensitivity), while ensuring that only true sites are predicted as such (speci-
ficity). Unfortunately, current methods suffer of low performance on these parameters [107]
and they all have varying levels of success depending on kinase or type of motif targeted
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for PTM prediction. This situation is caused mainly by the scarcity of experimental data
to train the methods, and also due to the sequence degeneracy of residues surrounding the
phosphorylation site; a characteristic that make them likely to appear at random in protein
sequences [69, 108]. To overcome this situation, many methods filter the initial predictions
by using contextual information such as the structural characteristics, sequence conservation
and solvent accessibility of the predicted region, and also by contrasting evidence of shared
sub-cellular co-localization and/or PPI between the kinase and the predicted substrate.
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4.2 Materials and methods

4.2.1 Phylogenetic classification of human protein kinases

The sequences and classification of the 518 human protein kinases were downloaded from
http://www.kinase.com/human/kinome. This is the official web resource containing the sup-
plementary data for the report of the full complement of human protein kinases by Manning
et al. [5].

4.2.2 Phosphorylation data for human protein kinases

Experimentally determined phosphorylation sites were retrieved from public databases and
integrated into a local database (SBNB_PhosphoDB). As the sources for collecting the PTMs
we used HPRD [109] (release 9, 13/04/2010), PhosphoSitePlus [110] (as of 03/11/2010)
and Phospho-ELM [111] (version 9, 09/2010). We kept only those phosphorylation sites
that could be mapped to the sequence of the corresponding substrate and for which the
responsible kinase was known. We kept track of the experimental conditions on which the
PTM was detected (in vivo and/or in vitro) as well as the corresponding publication. PTMs
with no available supporting publication were filtered out. Table 4.1 shows a summary of the
data collected. Our integrated data increases by 18%, 58% and 59% the numbers of kinases,
substrates and phosphorylation sites (respectively), with respect to the average contained in
the source databases.

Table 4.1: Phosphorylation data for human protein kinases

Database Kinases Substrates P.Sites P.Events
HPRD 291 938 3382 5896

Phospho-ELM 218 924 3125 2378
PhosphoSitePlus 318 1664 4711 4711

SBNB_PhosphoDB 325 (290) 1856 5946 (3583) 8880 (5171)
P.Sites: refers to the total (non-redundant) number of distinct residues phosphorylated in distinct sub-
strates. P.Events: refers to the total number of phosphorylation events. Two distinct kinases may phos-
phorylate the same residue in the same substrate, these constitute two different phosphorylation events.
Within parenthesis, the quantities corresponding to the subset of the data determined in in vivo conditions.

4.2.3 Set of ‘unphosphorylated’ human proteins

In order to assess the performance of the PSSMs generated, it is important to define a set of
‘negative’ phosphorylation sites. For compiling such set we first selected from the UniProt
database [112] (ver. 09/2010) the sequences of human proteins that were not annotated
to be phosphorylated. Second, using the program CD-HIT [113] we eliminated redundancy
– to a 100% of sequence identity – in the resulting set of sequences. Finally, we discarded
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all proteins containing an instance of any of the phosphorylated sequences a present in our
database (i.e., SBNB_PhosphoDB). This procedure produced a final set of 8876 human
proteins that constitute our negative test set named ‘unphosphorylated’ human proteome.

4.2.4 Generation of sequence logos

For generating sequence logos we used the standalone version of the program WebLogo [81].
In order to be able to generate the logos, the program needs a sequence alignment as
input. For this, we produced a sequence alignment for each kinase and kinase family in
SBNB_PhosphoDB using their corresponding phosphorylation sequences. In total, we have
generated sequence logos for 325 independent kinases and 93 kinase families.

4.2.5 Position-specific scoring matrices

For generating the position-specific scoring matrices (PSSMs) and assessing their statisti-
cal significance and performance, we have developed the in-house software genpssm. The
program uses as input i) an alignment of phosphorylated sequences, ii) the frequencies of
amino acids in human proteins, iii) a p-value threshold for assessing the statistical signif-
icance of matches to the PSSM and iv) a negative set of phosphorylated sequences (the
‘unphosphorylated’ human proteome).

4.2.5.1 Generating PSSMs

The algorithm of genpssm starts by constructing the PSSM from the sequence alignment.
For computing the scores for each residue at each position of the matrix the program uses
the Equation 4.1, defined by Claverie and Audic [84]. This equation is based in the log-odds
of residues at each position of the alignment and takes into account the frequency of each
residue in a background model, which in our case is the human proteome.

Sip = log(qip
fi

), p = 1 to w (4.1)

Equation 4.1: Scores representing the propensities of residues. Sip is the score of
residue i at position p of the sequence alignment, q is the frequency of residue i at
position p, f is the frequency of the residue in the background model and w is the
length of the sequence alignment.

4.2.5.2 Selection of a score threshold

Once we have constructed a PSSM, we need to define a method to identify sequences that
match to it in a statistically significant manner. For doing this, we need to set the score
threshold that will be used to classify matches to the PSSM as statistically significant or not.
However, for choosing the value of the score threshold, we first have to define the level of
statistical significance of that score, which is the probability that the background model can
a We defined as phosphorylated sequence the stretch of residues comprising 4 amino acids in both N and C
terminal directions of the phospho-acceptor residue.
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4 Sequence logos and position-specific scoring matrices

achieve a score larger than or equal to the one observed. For computing the aforementioned
p-value we used a probability (α ≤ 0.05) of finding a match to any given sequence of
nine residues in a protein of length equal to the human average. For accomplishing this we
followed the transformations shown in Equation 4.2.

p = 1− (1− p− value )(avgP len−lenPSite+1) (4.2)
p− value = 1− (avgP len−lenP Site+1)

√
1− p

p− value = 1− 592√0.95
p− value = 8.66e−05

p− value ≈ 1e−04

Equation 4.2: Computing the level of statistical significance (p-value) for the
score threshold. avgPlen: average length of a human protein (avgP len = 600),
lenPSite: length of the phosphorylated sequences from which the PSSMs are gen-
erated (lenPSite = 9).

Once we had defined the general level of statistical significance desired for matches to a
PSSM, we determined the corresponding score threshold for each PSSM, using a method by
Touzet and Varré based on discretized scores distributions [83].

4.2.5.3 Statistical significance of the PSSMs

Once a PSSM has been generated, we need to evaluate its statistical significance. For this we
used the value of the IC and the percent recall achieved by the PSSM. By percent recall we
mean the fraction of the seed phosphorylation sequences (i.e., the ones in the input sequence
alignment) that a PSSM is able to match with a statistically significant score. For assessing
the statistical evaluations of a PSSM, the algorithm in genpssm generates a background set
of 100’000 PSSMs using random sequences that follow the frequencies of the amino acids in
the human proteome. For each of the background PSSMs, the cardinality of seed sequences
is kept equal to the one of the PSSM being assessed. For each PSSM of the background,
genpssm computes the IC and the percent recall, and later uses the background distributions
of these statistics to estimate the statistical significance of the corresponding values observed
in the PSSM being evaluated. For computing the IC, genpssm uses the Kullback–Leibler
distance [78,114], where the IC is the sum of the expected self-information of each element
(see Equation 4.3).

IC = −
∑
i,p

qip × log(qip
fi

) (4.3)

Equation 4.3 Computing IC of a PSSM. Where q is the frequency of residue i at
position p of the sequence alignment and f is the frequency of the residue in the
background model.
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4.2.5.4 Performance of the PSSMs

The receiver operating characteristic (ROC) curves have been extensively used in biomedicine
to illustrate the performance of a classification and prediction model for decision support
[115]. A ROC curve is a plot that captures the trade-off of the true positive rate (TPR, or
recall) versus the false positive rate (FPR) at various threshold settings (see Equation 4.4).
The ROC curve area can vary between 0.5 and 1.0, where an area of 1.0 represents a perfect
accuracy, while an area of 0.5 represents an accuracy no better than what would be expected
by chance.

TPR = TP

TP + FN
, FPR = FP

FP + TN
(4.4)

Equation 4.4. The accuracy of a binary classifier is commonly assessed using TPR
and FPR. TP, TN, FP and FN are the counts of true positive, true negative, false
positives and false negatives (respectively) when the test is applied to a population.

In our case, we want to evaluate how well the PSSMs are able to distinguish between their
corresponding seed sequences (true positives) and sequences in the set of ‘unphosphorylated’
human proteins (false positives). For generating the ROC curve of each PSSM, we split the
whole range of scores of the PSSM into 100 thresholds and for each threshold we computed
the TPRs and FPRs. Once we have obtained the TPR and FPR, we computed the area
under the ROC curve (AUC-ROC) using the program CROC [116].

4.2.6 Quantification of the kinase specificity encoded in the PSSMs

4.2.6.1 Sequence motifs most commonly recognized by kinases

We have attempted the identification of residues in the phosphorylated sequences that are
likely to contribute significantly to the substrate recognition by the kinase. For this, we
have used the score values in the PSSMs of kinase families. Here, our aim have been to
identify those residues that achieve a score equal or higher than half the score of the phospho-
acceptor residue (see Equation 4.5). Residues complying with the aforementioned criteria are
conserved among the sequences phosphorylated by a given kinase or kinase family, and based
on this we classify them as specificity-determinant residues (SDR). The term SDR has been
previously used by Kobe et al., although in their work it was applied to substrate-binding
residues in the kinase catalytic site [67]. In order to explore more in detail the phosphorylation
motifs recognized by kinases, we have analyzed the frequencies of different SDRs among the
phosphorylated sequences corresponding to kinase families present in our data. For this,
we identified a subset of 22 kinase families for which we have at least 100 phosphorylation
events. This strategy allowed us to represent and quantify the relevance of different SDRs
for the kinase families analyzed.

ScoreSDR ≥
ScorePA

2 (4.5)

Equation 4.5. Identification of SDRs based on their relative scores. PA refers to the phospho-
acceptor residue.
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4.3 Results and discussion

4.3.1 Motifs recognized by kinases and kinases families

As commented before, sequence logos are valuable tools that have been extensively used to
identify patterns in phosphorylated sequences. Therefore, as a previous step to our analysis,
we wanted to check that the logos we have generated are in accordance with the ones
that have been previously reported in the literature. For this, we have compared by visual
inspection our logos to the ones reported by Miller et al. [70]. For the cases compared (see
Table 4.2 for examples), the patterns in our logos are consistent with the ones previously
reported in literature [34,70]. Cases of well known motifs that are characteristic of particular
kinases (e.g., CDK and ATM kinases) are distinguishable from our logos. Based on these
comparisons, we conclude that the phosphorylation data collected correctly represent the
current knowledge about kinase phosphorylation motifs.

4.3.2 Strong specificity-determinant residues from kinase families

We have attempted the quantification of the contribution of residues in the close vicinity
of the phospho-acceptor amino acid, to the recognition of the phosphorylation site by the
kinases. For this, we analyzed the frequency of the SDRs in the phosphorylation events of 22
kinase families as previously described in Materials and Methods (see section 4.2.6.1). For
19/22 of the families analyzed we have identified at least one SDR in addition to the phospho-
acceptor amino acid. For presenting our results, we have classified the kinase families based
on the type of phosphorylation sites they recognize. These classes are: proline-directed,
glutamine-directed, basophilic and acidophilic.

4.3.2.1 Proline-directed kinase families

The class of proline-directed (Pro-directed) is composed by Ser/Thr kinases of the group
CMGC (CDK/MAPK/GSK3/CLK). They are involved in a plethora of critical signaling events
in the cell [117]. For optimal recognition of their target sequences, Pro-directed kinases
require the presence of a proline residue right after the phospho-acceptor amino acid.
By using our method, we have identified six SDRs for three kinase families in the CMGC

group. In some cases, the SDRs identified correspond to residues that are known to play im-
portant roles in the recognition of the phosphorylation site by these kinases. For quantifying
the contribution of the SDRs identified, we have computed their frequencies of occurrence
among the phosphorylation events of the Pro-directed kinase families. For comparison pur-
poses, we have also computed the frequencies of occurrence of the SDRs in the phosphoryla-
tion events of other kinase families in our data set. The Pro-directed families analyzed here
are the ones of the cyclin-dependent kinases (CDKs), mitogen-activated kinases (MAPKs)
and glycogen synthase kinases (GSKs). Table 4.3 shows the SDRs identified for them.
In the Table 4.3 can be noted the prevalence of the P+1 residue among sequences phos-

phorylated by kinases of the Pro-directed class (74.85% on average). A proline residue at
position +1 occurs in much less extent (5.95% on average) among the sequences phospho-
rylated by kinases that do not belong to the current class. Together with P+1, P-2 has
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4.3 Results and discussion

Table 4.2: Sequence logos from phosphorylated sequences

Kinase/Kinase family Logos by Miller et al. Our logos

Aurora A kinase

ATM kinase

CDK1 kinase

CK2 kinase family

GSK kinase family

Syk kinase family

Sequence logos are shown for three independent kinases and three kinase families. The first
three examples show cases of basophilic, glutamine and proline -directed kinases (in that order).
The fourth and sixth examples show cases of acidophilic kinase families.

also been identified as an SDR for the same families. Although P-2 frequencies among Pro-
directed kinases (25.12% on average) are low if compared to P+1, however its frequency
among the sequences phosphorylated by other kinase families is still very low (5.83% on av-
erage). These two SDRs are well known to have an important contribution to the substrate
specificity of most Pro-directed kinases [73,118].
In addition to P-2 and P+1, for the CDK family we have also identified K+3 as an SDR,
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4 Sequence logos and position-specific scoring matrices

Table 4.3: Specificity-determinant residues from Pro-directed kinase families.

SDR
Kinase group Kinase family Pevents S-4 P-2 P+1 P+2 K+3 S+4

CMGC CDK 1313 22.77 81.72 21.25
CMGC GSK 278 38.49 21.22 53.96 27.70 48.56
CMGC MAPK 1068 31.37 88.86

Avg. SDR class 38.49 25.12 74.85 27.70 21.25 48.56
Avg. SDR global 32.39 25.12 65.14 27.70 21.25 38.74

Avg. non-SDR global 14.01 5.83 5.95 8.35 4.16 11.51

SDR: specificity-determinant residues identified. Pevents: number of phosphorylation events known for
the kinase family. Avg. SDR class: Average frequency among the phosphorylation events of current class.
Avg. SDR global: Average frequency among the phosphorylation events of all kinase families with the
SDR (not only the kinases in the current class). Avg. non-SDR global: Average frequency among the
phosphorylation events of kinase families without the SDR. With exception of the Pevents column, the
values in the table represent the percentages of phosphorylation events.

which has been previously reported to be characteristic of this family [70]. This SDR has a
frequency comparable to the one of P-2 in the same family, and also has a low occurrence
(4.16% on average) in phosphorylation events of other kinase families.
In the case of the GSK family we have identified three additional SDRs (S-4, P+2 and

S+4). There is strong evidence in the literature about the role of S+4 as a site for priming
phosphorylation, needed by members of this family previous to the phosphorylation of the
targeted Ser/Thr residue [119]. It can be noted from Table 4.3 that the frequencies of
occurrence of S-4, P+2 and S+4 in phosphorylation events of the kinases that do not have
them as SDRs are, on average, relatively low (14.01%, 8.35% and 11.51% respectively, last
row Table 4.3). Nevertheless, neither S-4 nor S+4 appear to be SDRs exclusive of the GSK
family. Our results suggest that other kinase families also use them as SDRs, although to a
lesser extent (see first to last row of Table 4.3). We have not found evidence in the consulted
literature that suggest S-4 or P+2 as major players in the substrate specificity of GSK family.
For the MAPK family only P-2 and P+1 where identified as SDRs. However, is interesting

to note that for this family both P-2 and P+1 show the highest frequencies of occurrence
among the Pro-directed families (31.37% and 88.86% respectively).
For the families CDK and GSK, we provide in Figure 4.1 the corresponding frequencies

of occurrence of their SDRs among the phosphorylation events of the 22 kinase families
included in the current analysis. It can be noted from Figure 4.1 that the kinase family
STE7 (group STE) also shows a relatively strong preference for phosphorylation sites having
a proline residue at position +1. Since kinases of the STE7 family are not strict Pro-directed
kinases, the SDRs of this family will be discussed further in this document. The bar plots of
the SDRs for the families CDK, GSK and MAPK, as well as the sequence logos for each of
these families, are provided in the Appendices A1 and A2.

4.3.2.2 Glutamine-directed kinase families

Glutamine-directed (Gln-directed) kinases are represented by the family PIKK, from the group
of Atypical kinases. The PIKK family is composed of six Ser/Thr kinases, some of which are
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Figure 4.1: Frequencies of the SDRs from two families of Pro-directed kinases.
Frequencies of occurrence of the SDRs of CDK and GSK kinase families among the phosphorylation events of other
22 kinase families. Boxes within each panel represent the SDRs. SDR are represented by the one letter code of the
amino acid and its position relative to the phospho-acceptor residue. On the x-axis, the kinase families, on the y-axis
the percentage of occurrence of each SDR.

involved in the co-ordination of the cellular response to DNA damage [120–122]. In order
to phosphorylate their substrates, most kinases of the PIKK family require a glutamine (Q)
residue in the +1 position with respect to the phosphorylation site [74,123]. As we did before
for the class of Pro-directed kinases, we have explored the presence of SDRs in the PIKK
family and we compared the results to the other 21 kinase families included in the analysis.

For the class of Gln-directed kinases only the already known Q+1 was identified by our
method as an SDR. Q+1 is present in a large fraction of the phosphorylation events of PIKK
kinases (388/480, 80.83%), and in contrast, its average frequency among the phosphorylation
events of the other 21 kinase families analyzed here is rather low (3.98%, last row of Table
4.4). Is also interesting to note that PIKK is the only family, at least of the 22 analyzed
here, that uses Q+1 as an SDR (see first to last column of Table 4.4).

From our results, it seems that members of the PIKK appear to rely mostly on the phospho-
acceptor and on the Q+1 residues to recognize the phosphorylation site on their substrates.
We have not found evidence in the reviewed literature supporting other residues in the
close vicinity of the phospho-acceptor residue as major players in the recognition of the
phosphorylation site by the PIKK kinases. This is a characteristic that contrasts with most
of other kinase families analyzed here, for which we have identified at least two SDRs. The
bar plot for the frequency of Q+1 among the 22 kinase families and the sequence logos for
the PIKK family are available in the Appendices A1 and A2
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4 Sequence logos and position-specific scoring matrices

Table 4.4: Specificity-determinant residue from a Gln-directed kinase family.

SDR
Kinase group Kinase family Pevents Q+1

Atypical PIKK 480 80.83
Avg. SDR class 80.83
Avg. SDR global 80.83

Avg. non-SDR global 3.98

SDR: specificity-determinant residues identified. Pevents: number of phosphory-
lation events known for the kinase family. Avg. SDR class: Average frequency
among the phosphorylation events of current class. Avg. SDR global: Average
frequency among the phosphorylation events of all kinase families with the SDR
(not only the kinases in the current class). Avg. non-SDR global: Average fre-
quency among the phosphorylation events of kinase families without the SDR. With
exception of the Pevents column, the values in the table represent the percentages
of phosphorylation events.

4.3.2.3 Basophilic kinase families

The term ‘basophilic’ has been used to describe kinases that preferentially phosphorylate
substrates having basic residues — mainly arginine (R) and lysine (K) — in close vicinity of
the phosphorylation site [32]. The class of basophilic kinases is mainly composed of Ser/Thr
kinases from the two large groups AGC and CAMK [37,38], but also kinases from the Other
and STE groups share this type of substrate specificity. Here we will discuss our results on
the identification of SDRs, focusing on eight families of the basophilic class.
For 5/8 and 8/8 basophilic families in our set we identified arginine at -2 and/or -3 positions

(R-2, R-3) as SDRs. These two SDRs are known to play key roles in the identification of
the phosphorylation site by the basophilic kinases [34] (see Table 4.5); and in accordance
to this, our results show that they have the highest two average frequencies among the
phosphorylation events of the basophilic kinases in our set (R-3 = 45.43% and R-2 = 35.67%,
see Table 4.5). Moreover, within our set of 22 kinase families, both R-3 and R-2 are identified
as SDRs only for the basophilic ones (Table 4.5, first to last row), and also the average
occurrence of both SDRs among the phosphorylation events of non-basophilic families are
very low (R-3 = 5.14% and R-2 = 5.09%, Table 4.5 last row and Figure 4.2). Together,
these results support R-3 and R-2 as very specific SDRs of the basophilic kinases.
In our set of basophilic kinases we count with four families of the AGC (PKA/PKC/PKG)

group. For two of them, AKT and PKC (3 and 9 members respectively), we identified other
SDRs in addition to the well known R-3 and R-2. Of all eight basophilic families in our set,
AKT is the one showing the highest frequency of the SDR R-3 among its phosphorylation
events (84.13%). For this family we have also found tryptophan at position +1 (W+1)
as an SDR. This is an interesting observation given that tryptophan occurs rarely in the
close vicinity of phosphorylation sites, most probably due to it can reduce the often required
flexibility of the stretch of sequence targeted for phosphorylation [124]. However, we have
found evidence reporting that kinases of the AKT family contribute to the regulation of tran-
scription factors of the FOXO family by phosphorylating sequences containing a conserved
W+1 [125]. Although, we have not found evidence in the literature reporting this SDRs
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as part of the phosphorylation sequence motifs recognized by PKA kinases. This could be
caused by the low occurrence of W+1 among the phosphorylation events of the AKT family
(3.85%) (also see Figure 4.2).
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Figure 4.2: Frequencies of SDRs from four families of basophilic kinases.
Frequencies of occurrence of the SDRs of CDK and GSK kinase families among the phosphorylation events of other
22 kinase families. Boxes within each panel represent the SDRs. SDR are represented by the one letter code of the
amino acid and its position relative to the phospho-acceptor residue. On the x-axis, the kinase families, on the y-axis
the percentage of occurrence of each SDR.

The other family of the AGC group for which we identified additional SDRs is PKC.
In this case, we identified R+2 and K+2 as important residues for the recognition of the
phosphorylation site by PKC kinases. Both of these residues have been previously reported to
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be part of the phosphorylation sequence motifs of members of the PKC family [8,103,126].
This requirement for positively charged amino acids at both sides of the phosphor-acceptor
residue is, to the best of our knowledge, a characteristic unique to the PKC family. In
contrast to the other basophilic families of the AGC group, all the SDRs identified for PKC
family have a relatively low frequency of occurrence among the phosphorylation events of
the family (23.75% on average) with no single SDR dominating over the others.
After analyzing SDRs on the AGC group, we have focused on CAMK2 and CMKL fami-

lies (containing 4 and 20 members respectively) of the group CAMK (calcium/calmodulin-
regulated kinases). Members of CAMK group are involved in several cellular events such as
cell cycle progression, immune and inflammatory responses, signal transduction, gene tran-
scription and synaptic development [127, 128]. Similar to other basophilic families analyzed
here, we have identified R-3 as an SDR for both CAMK2 and CMKL. In the case of CAMK2
family we have identified four SDRs in addition to R-3. These SDRs are S-4, Q-2, D+2 and
E+2 where the last three have been proposed as relevant for the substrate recognition of
CAMK2 kinases [129]. One of the interesting SDRs identified for this family is Q-2, which
is present in 22.44% of the phosphorylation events of the family, and in contrast has a low
average frequency among the phosphorylation events of the other families in our set (3.7%,
see Table 4.5 and Figure 4.2). We have also identified that other two SDRs of this family
involve negatively charged residues (aspartic and glutamic acids, D and E respectively) in
position +2. The identification of D+2 and E+2 as SDRs for the CAMK2 family contrast
with requirement of positively charged SDRs at the same position by members of the previ-
ously discussed PKC family. We have also found that D+2 and E+2 are not SDRs exclusive
of the CAMK2 family. Also the family CK2, that will be discussed later on, uses them for
substrate recognition (see first to last column of Table 4.5, and Figure 4.2).
In the case of the CAMKL, and in contrast with the rest of basophilic families in the

analysis, arginine is not the only SDR identified at position -3, but also lysine is identified as
SDR at this position, however with a lower frequency if compared to arginine (R-3 = 31.15%,
K-2 = 21.31%). Another SDRs identified for CAMKL are cysteines at -2 and +2 positions,
however their frequencies among phosphorylation events of this family are relatively low (C-2
= 6.56% and C+2 = 9.84%). Cysteine is a very infrequent amino acid in phosphorylation
sites [124], and we have not found evidence in the reviewed literature suggesting a role for
neither C-2 nor C+2 in the phosphorylation site recognition by members of the CAMKL
family. Given the aforementioned, we feel cautious about both these SDRs and we consider
that their actual contribution to the substrate recognition of CAMKL kinases should subject
to further investigation. The remaining SDR identified for CAMKL family is asparagine at
position +3 (N+3), which appears to be an SDR exclusive of CAMKL kinases, and also has
a low average frequency among phosphorylation events of the rest of families in the analysis
(3.83%). We have not found evidence in the reviewed literature supporting N+3 as part of
the phosphorylation motif identified by members of CAMKL family.
The next family of basophilic kinases analyzed was the one of Aurora kinases (AUR)

composed by the members A, B and C, which have been functionally linked to different
types of cancer [130]. For Aurora kinases we have identified the SDRs R-3, R-2 and R-1.
In contrast to most basophilic families where R-3 is the more frequent SDR, in the case of
AUR kinases R-2 is the SDR with the highest frequency among phosphorylation events of
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the family (see Table 4.5 and Figure 4.2). Moreover, in AUR kinases R-2 has the highest
value among all basophilic families in the analysis, which points to the relevance of this SDR
for the family. The SDRs here identified for the AUR family have been previously reported
as part of the phosphorylation sequence motifs identified by this family [131–133].
The last family analyzed in the class of basophilic kinases is STE20. STE20 is a family

of 30 members from the group STE (homologs of yeast Sterile 7, Sterile 11, and Sterile
20 kinases). The family contains members of the MAPK cascade which are involved in a
myriad of signaling processes in the cell [134,135]. For STE20 we have identified the typical
basophilic SDRs R-3 and R-2, and in addition K-3 and M+1 (see Table 4.5). In the case
of M+1, its frequency among the phosphorylation events of the family is not particularly
high (7.80%) and due to this we decided to take a closer look at it. We have noted that
only five kinases from two sub-families out of the 11 that compose the STE20 group are the
only ones responsible for the phosphorylation of sequences containing M+1. Moreover, these
two subfamilies (MST and PAKA) are the mostly studied ones among the STE20 family,
accounting for up to 65.5% of the phosphorylation events. Therefore, the presence of M+1
as an SDR of STE20 kinases seems to be produced by a bias of the data towards kinases of
MST and PAK sub-families. However, we have not found evidence in the reviewed literature
regarding M+1 as a key residue for neither MST not PAK kinases.
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4.3.2.4 Acidophilic kinase families

Protein kinases in the acidophilic class are able to recognize phosphorylation sites surrounded
by acidic residues (i.e., aspartic and glutamic) [34,37,38]. This class is represented by several
Ser/Thr kinases of the groups CK1, CMGC, Other and also by tyrosine kinases (TK group).
Here we analyze the SDRs identified for five kinase families (CK1, CK2, IKK, PPLK and
Syk) from the aforementioned groups.
The first family in our analysis is CK1 (casein kinase 1). Human CK1 kinases conform a

small branch of seven proteins with diverse biological roles [136,137], that belong to a group
of the same name. Initially, CK1 kinases were thought to phosphorylate only sites containing a
previously phosphorylated Ser/Thr residue at position -3 (a ‘primed’ site) [138,139]. Further
experiments showed that these kinases could also phosphorylate sites with negatively charged
residues at the N-terminal positions. CK1 kinases are usually classified as an acidophilic
family even tough negatively charged substrates remain much poorer than those containing
phosphate groups [140, 141]. For CK1 kinases we have identified S-3 and S+3 as SDRs,
but not E-3 or D-3. As stated before, S-3 is the priming residue required by CK1 kinases,
and once the targeted Ser/Thr residue is phosphorylated, it serves as the ‘priming’ position
for the next phosphorylation at S+3 [142]. From our data, S-3 and S+3 seem to be SDRs
exclusive of CK1 kinases (see Table 4.6, first to last column), although their frequencies in
phosphorylation events of other families do not seem negligible (see Table 4.6, last column
and Figure 4.3).
The next family in our analysis is CK2 from the CMGC group. CK2 is a family of only two

members (CK2a1 and CK2a2) that have been intensively studied due to their roles in cell
growth, cell death, and cell survival [143, 144]. For CK2 kinases we have identified a total
of eight SDRs, all of them aspartic or glutamic acid residues located mainly at C-terminal
position with respect to the phosphorylation site (see Table 4.6 and Figure 4.3); a sequence
pattern that have been previously reported for these kinases [34, 145]. From this sequence
motif, is interesting to note the prevalence of glutamic residues in those positions where both
aspartic or glutamic acids are identified as SDR, an observation that is particularly evident at
position +3. We have identified E+3 and D+1 as the more relevant SDRs for CK2 kinases,
a result that supports early findings by L. Pinna [146]. Half of the eight SDRs identified
for CK2 kinases are shared by another families in our set. D-1 and D+3 are shared with
the family IKK (see Table 4.6), while the other two (E+2 and D+2) are shared with the
basophilic family CAMK2 (see Table 4.6 first to last row and Figure 4.3). We find that, on
average, the occurrence of SDRs of the CK2 family among the phosphorylation events of
other families in our set remains at relatively low values (5.77%).
We have also analyzed the family of IKK kinases from the Other group. The IKK family is

composed of four members that play an important role in innate immunity as an essential part
of the NF-kappaB signaling pathway [147,148]. To the best of our knowledge, IKK kinases
have not been previously classified as acidophilic. However, based on the available data, our
results suggest that these kinases have a preference for phosphorylation sites surrounded by
acidic residues. For IKK family we have identified the SDRs D-1, D+3 and S+4, of which
D-1 is an typical acidophilic SDR present in four out of the five acidophilic families in our
analysis and D+3 is also shared by the CK2 family (see Table 4.6 and Figure 4.3). In the
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Figure 4.3: Frequencies of SDRs from four families of basophilic kinases.
Frequencies of occurrence of the SDRs of CDK and GSK kinase families among the phosphorylation events of other
22 kinase families. Boxes within each panel represent the SDRs. SDR are represented by the one letter code of the
amino acid and its position relative to the phospho-acceptor residue. On the x-axis, the kinase families, on the y-axis
the percentage of occurrence of each SDR.

case of S+4, there is evidence in the literature suggesting that some members of the IKK
family are responsible for the multiple phosphorylation of the substrate NF-kappaB1 p105
by recognizing consecutive motifs with the consensus sequence DSXX[DE]S [149,150].
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4 Sequence logos and position-specific scoring matrices

The next family analyzed was the one of Polo-like kinases (PLK). PLKs is a highly con-
served family of Ser/Thr kinases [151] that are involved in the regulation of the cell cycle
progression [27, 152]. PLKs have paramount roles in mitosis, and therefore, it is not unex-
pected that their deregulation has been associated to cancer and oncogenesis [151,153]. For
this family we have identified the SDRs E-2, D-2 and D-1. In the cases of E-2 and D-2,
we have found previous reports supporting the relevance of these SDRs as main players in
the identification of substrates by PLKs [27, 28, 34, 97, 154]. Regarding D-1, we have not
found previous reports suggesting this position as an SDR for members of the PLK family.
However, D-1 is shared by most of the acidophilic families in our analysis and we consider
that is plausible a potential contribution to the substrate specificity of PLKs, although to
a lower extent if compared to E-2 and D-2 (see Table 4.6 and Figure 4.3). Most studies
regarding the phosphorylation motifs identified by PLK kinases refer also to a preference for
hydrophobic residues in position +1 [27,28,34,97,154]. We consider that we have not been
able to identify such SDRs most likely due to the cut-off criteria used for the definition of
SDRs.
The last family analyzed among the acidophilic class is the one of Spleen tyrosine kinases

(Syk), composed of SYK and ZAP-70, which play crucial roles in the adaptive immune
response [155, 156]. Several reports suggest that tyrosine kinases display preference for
acidophilic sequences [33, 157, 158] and Syk kinases are no exception to this. For the Syk
family previous studies have reported phosphorylation sequences enriched in aspartic and/or
glutamic residues, where the position -1 plays a fundamental role [141, 159]. We have
identified D-1 as the only SDR for Syk kinases and is interesting to note that, in this case,
D-1 shows the highest frequency of occurrence among all acidophilic kinases in our analysis
(29.91%, see see Table 4.6 and Figure 4.3). Nevertheless, due to that the number of
phosphorylation events explained by D-1 is relatively low (29.91%) we consider that other
SDRs, not detected by our method, might be contributing to the substrate specificity in this
family.

4.3.3 Statistical analysis of the PSSMs

In this section we discuss the evaluation of the statistical significance and performance of
the PSSMs previously generated. In our data set, the number of phosphorylated sequences
available for a given kinase can span from only one to several hundreds. Due to this, we
need to understand how the number of seed phosphorylation sites available for a kinase could
affect the statistical significance and the performance of its PSSM. The main purpose here
have been the identification of statistically significant PSSMs and for this we conducted
statistical evaluations for both the PSSMs from independent kinases and for those from
kinase families, setting the statistical significance level at α < 0.01.

4.3.3.1 Independent kinases

We have started by analyzing the statistical significance of the PSSMs based on the percent
recall that they achieve on the set of seed phosphorylation sites (see section 4.2.5.3 of
Materials and methods). Here we have found a negative correlation between the number
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4.3 Results and discussion

of seed phosphorylation sites of a kinase and the percent recall of its PSSM (R = -0.59,
p-value = 2.38e−31. See Figure 4.4). This relationship suggests that an increasing number
of seed phosphorylation sites can degenerate the signal contained in the PSSM, which will
directly affect the ability of a PSSM to identify those sites at a given significance threshold.
However, by using the percent recall as a statistic, we have not found a relationship between
the number of seed phosphorylation sites and the statistical significance of a PSSM (Pearson
R = -0.093, p-value = 0.095. See Figure 4.4). In deed, all the PSSMs in the analysis (325)
were statistically significant.

●

●● ●●

●

●

●

●

● ●●

●

●

●●

●

●

●

●● ●

●

●

● ●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●● ●

●

●

●●

●

●

●●●

●

●

●

●● ●●● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

● ● ●●

●

●

● ●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ● ●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●● ●●

●

●

●

● ● ●● ●● ●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ● ●●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

1 2 5 10 20 50 100 200 500

20
40

60
80

10
0

Number of phosphorylation sites

P
er

ce
nt

 o
f r

ec
al

l

R = −0.59
p−value = 2.4e−31

1 2 5 10 20 50 100 200 500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Number of phosphorylation sites

p−
va

lu
e 

of
 p

er
ce

nt
 r

ec
al

l

R = −0.093
p−value = 0.095

Figure 4.4: Percent recall and statistical significance of PSSMs from independent kinases.
On the left, the relationship between number of seed phosphorylation sites and the percent recall of the PSSMs. On
the right, the relationship between the number of seed phosphorylation sites and the p-value of the PSSM, based on
the percent recall as the test statistic. The x-axes are shown in logarithmic scale.

As previously mentioned, we have also analyzed the statistical significance of the PSSMs
based on their IC. Here we have found a negative correlation, although not particularly strong,
between the number of seed phosphorylation sites and the IC of a PSSM (R = -0.4, p-value
= 9.8e−14 (see Figure 4.5). This result suggests that the sequence degeneracy caused by the
increase of the number of seed phosphorylation sites can affect not only the percent recall of
a PSSM, as previously seen, but can also decrease the information contained in the PSSM
model. As can be expected, from two previous analysis, we have found a strong correlation
between the IC of a PSSM and its percent recall (R = 0.8, p-value = 0 (see Figure 4.5).
Nevertheless, by using the IC as a statistic, we were able to identify a relationship between

the number of seed phosphorylation sites and the statistical significance of the PSSMs. In
this sense, our results show that PSSMs with a statistically significant IC were generated
from sets of phosphorylation sites significantly larger (10.2 times larger) than the PSSMs
with non statistically significant IC (see Table 4.7 and Figure 4.6). We also observe a notable
and statistically significant difference regarding the percent recall that the two sets of PSSMs
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4 Sequence logos and position-specific scoring matrices
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Figure 4.5: IC and seed phosphorylation sites of PSSMs from independent kinases.
On the left, the relationship between number of seed phosphorylation sites and the IC of the PSSMs. On the right,
the relationship between the IC and the percent recall of the PSSMs.

achieve on their sets of seed phosphorylation sites. In this case, the non statistically significant
PSSMs achieve a mean percent recall 1.4 times larger than the one of statistically significant
PSSMs. As previously discussed, this comes as a result of the difference between the number
of seed phosphorylation sites used for generating the PSSMs. The sets of PSSMs were also
compared based on two additional parameters, the IC and the percent recall on the test set
of ‘unphosphorylated’ human proteins. On both cases we also found statistically significant
differences between the two sets of PSSMs (see Table 4.7 and Figure 4.6).
We have also used the area under the curve of the receiver operating characteristic (AUC-

ROC) for comparing the performances of the two sets of PSSMs. Here we have found
statistically significant differences between the medians of the AUC-ROC for the two sets
(see Table 4.7 and Figure 4.7). Additionally, we have also found a negative correlation (R =
-0.63, p-value = 6.2e−37) between the AUC-ROC and the number of seed phosphorylation
sites of a PSSM (see Figure 4.7).
Here we have conducted a statistical and performance analysis on the set of 325 PSSM

generated for independent kinases. We have been able to assess the significance of the
PSSMs based on their IC values and we have identified that half of the PSSMs in our set
(163/325, 50.2%) are statistically significant. The sets of statistically significant and non
statistically significant PSSMs show significant differences on several parameters evaluated
here.

44



4.3 Results and discussion

Ta
bl
e
4.
7:

St
at
ist
ica

lly
an
d
no

n
st
at
ist
ica

lly
sig

ni
fic
an
t
PS

SM
s
fro

m
in
de
pe
nd

en
t
ki
na
se
s.

IC
P
sit
es

%
R
ec
al
l

%
R
ec
al
lT

S
A
U
C
-R
O
C

N
o.

P
SS

M
s

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

St
at
ist
ic
al
ly

sig
ni
fic
an
t

16
3

8.
46

8.
99

23
57
.6
3

69
.7

64
.8
2

3.
9

4.
35

0.
9

0.
85

N
on

st
at
ist
ic
al
ly

sig
ni
fic
an
t

16
2

10
.0
9

9.
77

3
5.
65

10
0

90
.9
5

3
3.
14

1
0.
97

M
an
n-
W
hi
tn
ey

U
te
st

p-
va
lu
e

6.
16

e−
04

7.
55

e−
36

1.
09

e−
18

2.
11

e−
14

2.
80

e−
20

T
he

ta
bl
e
sh
ow

s
th
e
se
ts

of
st
at
ist
ic
al
ly

an
d
no

n
st
at
ist
ic
al
ly

sig
ni
fic
an
t
PS

SM
s
an
d
th
e
fiv
e
pa
ra
m
et
er
s
on

w
hi
ch

th
ey

w
er
e
co
m
pa
re
d.

T
he

la
st

ro
w

sh
ow

s
th
e
re
su
lts

of
th
e
M
an
n-
W
hi
tn
ey

U
te
st

fo
r
es
tim

at
in
g
di
ffe

re
nc
es

be
tw
ee
n
th
e
tw
o
po

pu
la
tio

ns
of

PS
SM

s.
IC
,
in
fo
rm

at
io
n
co
nt
en
t,

P
sit
es
,

nu
m
be
r
of

se
ed

ph
os
ph

or
yl
at
io
n
sit
es
,%

R
ec
al
l,
pe
rc
en
t
re
ca
ll
ac
hi
ev
ed

on
th
e
se
t
of

se
ed

ph
os
ph

or
yl
at
io
n
sit
es
,%

R
ec
al
lT

S,
pe
rc
en
t
re
ca
ll
ac
hi
ev
ed

on
th
e
te
st

se
t
of

‘u
np

ho
sp
ho
ry
la
te
d’

pr
ot
ei
ns
,A

U
C
-R
O
C
,a

re
a
un

de
r
th
e
re
ce
iv
in
g
op

er
at
in
g
ch
ar
ac
te
ris
tic

cu
rv
e.

45
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Figure 4.6: Statistically and non statistically significant PSSMs from independent kinases.
The PSSMs sets were compared based on the four parameters, i) information content, ii) number of seed phosphorylation
sites, iii) percent recall on the seed phosphorylation sites and iv) percent recall on the set of ‘unphosphorylated’ human
proteins. The Mann-Whitney test was used to estimate the statistical significance of the differences between the median
values of the parameters. The vertical bar within each box represents the median. If the notches in the boxes do not
overlap, this is ‘strong evidence’ that the medians differ. The x-axis are shown in logarithmic scale.
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Figure 4.7: AUC-ROC for PSSMs from independent kinases.
On the left, the distributions of the AUC-ROC for both sets of PSSMs. On the right, the correlation between the
AUC-ROC and the number of seed phosphorylation sites.
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4.3.3.2 Kinase families

We have also evaluated the statistical significance and performance of the PSSMs generated
for the 93 kinase families in our set. For this, we followed the same procedures used for
the analysis of the PSSMs from independent kinases. In global terms, the relationships
observed here between the parameters under study were very similar to the ones observed
for independent kinases. This is an expected result, given that the only parameter affected
when merging kinases by families is the number of seed phosphorylation sites, and all other
parameters depending on it will vary accordingly.
Again, when analyzing the statistical significance of PSSMs based on the p-value of their

percent recall, we found a negative correlation between the number of phosphorylation sites
and the percent recall (R = -0.48, p-value = 1.2e−06). As previously explained, this negative
correlation is caused by the degeneracy of the signal in the PSSM as the number of seed
phosphorylation sites increases. Regarding the use of the percent recall as a statistic for the
classification of significant PSSMs, we have not found a significant correlation between the
number of phosphorylation sites and the p-value of the percent recall (R = -0.089, p-value
= 0.4), with all the PSSMs from the 93 families being classified as statistically significant.
Therefore, the percent recall is not a useful statistic for identifying significant PSSMs. See
plots on Figure 4.8.
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Figure 4.8: Percent recall and statistical significance of PSSMs from kinase families.
On the left, the relationship between number of seed phosphorylation sites and the percent recall of the PSSMs. On
the right, the relationship between the number of seed phosphorylation sites and the p-value of the PSSM based on
the percent recall. The x-axes are shown in logarithmic scale.

When analyzing the statistical significance of the PSSMs, this time based on their IC
value, we have found a negative correlation between the number of phosphorylation sites
and the IC (R = -0.33, p-value = 0.0013, see Figure 4.9) and, as expected, we also find a
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4.3 Results and discussion

positive correlation between the percent recall and the IC (R = 0.85, p-value = 0, see Figure
4.9). Similar to the analysis of PSSMs of independent kinases, this result shows that the
sequence degeneracy of the phosphorylation motif caused by the increment of the number
of seed phosphorylation site affects not only the percent recall, but also the IC of the PSSM.
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Figure 4.9: IC and seed phosphorylation sites of PSSMs from kinase families.
On the left, the relationship between number of seed phosphorylation sites and the IC of the PSSMs. On the right,
the relationship between the IC and the percent recall of the PSSMs.

By using the IC as a statistic for classifying PSSMs into statistically and not statistically
significant, it was again possible to distinguish two sets of PSSMs. Also, we observed differ-
ences between the sets when compared based on the percent recall of seed phosphorylation
sites, the percent recall on the test set and the AUC-ROC. In contrast to what was previously
found for the PSSMs of independent kinases, when comparing the sets based on the median
IC values, we do not observe statistically significant difference between the sets. For the
other remaining comparison criteria — percent recall and AUC-ROC — we found that the
two sets of PSSMs differ significantly (see Table 4.8 and Figures 4.10 and 4.11).
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Figure 4.10: Statistically and non statistically significant PSSMs from kinase families.
The PSSMs sets were compared based on the four parameters, i) information content, ii) number of seed phosphorylation
sites, iii) percent recall on the seed phosphorylation sites and iv) percent recall on the set of ‘unphosphorylated’ human
proteins. The Mann-Whitney test was used to estimate the statistical significance of the differences between the median
values of the parameters. The vertical bar within each box represents the median. If the notches in the boxes do not
overlap, this is ‘strong evidence’ that the medians differ. The x-axis are shown in logarithmic scale.
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Figure 4.11: AUC-ROC for PSSMs from kinase families.
On the left, the distributions of AUC-ROC for both sets of PSSMs. On the right, the correlation between the AUC-ROC
and the number of seed phosphorylation sites.
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4.3 Results and discussion

Here we have analyzed the statistical significance and performance of PSSMs derived from
phosphorylation sites of 93 kinase families. We have identified a total of 69/93 (74.2%)
PSSMs to be statistically significant in terms of their IC. We also observe that the sets of
statistically significant and non statistically significant PSSMs differ in most of the compar-
ison criteria that we have used in the analysis.
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4.4 Concluding remarks

• By integrating data from different public resources, we have collected a set of exper-
imentally determined kinase–phosphorylation sites relationships in human. The data
comprise 325 (62.7%) human kinases — accounting for 71.5% of the kinase fami-
lies —, 1856 substrates and 5946 phosphorylation sites. Our integrated data increase
by 18%, 58% and 59% the numbers of kinases, substrates and phosphorylation sites
(respectively), if compared to the averages from the source databases.

• By using sequence logos, we have graphically represented the phosphorylation motifs
recognized by kinases and kinase families in our data. The patterns in sequence logos
showed the great diversity of sequences phosphorylated by the kinases, and also guided
the classification of kinases and kinase families based on the residue composition of
the sequences that they target.

• We have used PSSMs as the probabilistic models for representing the phosphorylation
motifs targeted by kinases and kinase families in our data. Based on their scores in the
PSSMs, we classified several residues as SDRs for some of the kinase families in our set.
We have observed that the identity, the position on the sequence and the frequency of
the SDRs identified, vary considerably among the different families analyzed.

• Kinases from the MAPK and CDK families rely mostly on the SDR P+1. This is
evident in our data given the high frequencies of P+1 among phosphorylation events
of the two families (MAPKP+1 = 88.86%,CDKP+1 = 81.72%). In comparison, the
contribution of P+1 is smaller for the family GSK (GSKP+1 = 53.96%), for which the
presence of the SDRs GSKS−4 = 38.49% and GSKS+4 = 48.56% seems to be relevant.

• For the family PIKK, the high frequency of the SDR Q+1 among the phosphorylation
events of the family (PIKKQ+1 = 80.83%) suggests it as a major requirement for
the recognition of cognate phosphorylation sites. Moreover, given the low frequency
(3.98%) of this SDR among the phosphorylation events of the other kinase families in
our analysis, we consider that Q+1 is used almost exclusively by PIKK kinases.

• In the case of the basophilic kinases, we observe that the frequencies of the SDRs
identified vary greatly from one family to the other. Regarding the family AKT, we
observe a high frequency for R-3 (AKTR−3 = 84.13%) among the phosphorylation
events of the family. This suggests R-3 as a major SDR for AKT kinases. In comparison,
other basophilic families such as PKA, PKC, RSK, CAMKL and AUR appear to rely
on either R-3, K-3 or R-2 with frequencies that can range between 21.31% to 58.10%
among the phosphorylation events of each family.

• In the case of acidophilic kinases, we also observe a large variability regarding the SDRs
identified as well as on their relative frequencies. For the CK1 family we identified the
non-acidic SDRs CK1S−3 = 28.50% and CK1S+3 = 31.09%, which upon phosphoryla-
tion by upstream kinases, acquire the negative charge required for the recognition by
the CK1 kinases. For the CK2 family we identified eight different SDRs — all of them
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4.4 Concluding remarks

Asp or Glu — with a rather low average frequency of 23.8%. To our opinion, given
their low frequencies, many of these SDRs might co-exist in the same target sequence
and therefore contribute in an cooperative manner to the recognition of the target site.

• For the AKT family we identified the SDR AKTW+1 that, to the best of our knowledge,
have not been previously identified as part of the sequence motif recognized by this
family. However, we found evidences in the literature linking W+1 to the recognition
of target sequences in the family of FOXO transcription factors.

• On average, the identified SDRs have a rather low frequency of occurrence (6.01%)
among the complementary phosphorylation events. That is, the phosphorylation events
corresponding to those kinase families that do not count with the given SDR. To our
opinion, this suggests that the identified SDRs work not only as a positive selection
element for cognate target sequences, but also as negative selection factors for non-
cognate phosphorylation sites.

• Regarding the analysis of PSSMs, we have found negative correlations between the
number of seed phosphorylation sites and i) the percent recall of the PSSM (R =
-0.59, p-value = 2.4e−31) and ii) the information content of the PSSM (R = -0.4, p-
value = 9.8e−14). These results show the effect that the sequence degeneracy caused
by the increase of the seed phosphorylation sites can exert on the performance of the
PSSM and on its level of self-information.

• Based on their values of IC, and on the comparison to random backgrounds, we have
estimated the statistical significance of PSSMs from both independent kinases and
kinases families. We observe that, in most cases, statistical and non-statistically sig-
nificant PSSMs differ not only in their values of the IC but also in their percent recall,
their AUC-ROC and their numbers of seed phosphorylation sites.
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5 Contribution of adaptor and scaffold
proteins

5.1 Introduction

In the cell, several processes can take place at the same time and sometimes in overlapping
locations. In order to efficiently coordinate these processes, the cells have developed several
mechanisms that are responsible for the spatial and temporal organization of the biological
events. One of these mechanisms consists in the recruitment of the proteins required for
a given process to specific locations within the cell, or their assembly in larger functional
macromolecular complexes. This recruitment process is carried out in many cases by adaptor
and/or scaffold proteins, which are macromolecules able to bind more than one partner at
the time and promote in this way their mutual interaction and regulation [160]. Initially,
adaptors and scaffolds were regarded as passive platforms for protein recruitment or assembly
of signaling complexes [161–164]. However, recent studies have made clear that they can
play rather active regulatory functions. There is an increasing interest in understanding the
molecular mechanisms that govern these proteins given the evidence accumulated about
their roles in several processes such as signal transduction, cell-cell communication and cell
structural organization [165], and their potential implication in human pathologies [166–168].

5.1.1 Adaptors and scaffolds are multidomain spatio-temporal regulators

The boundaries for clearly distinguishing between adaptor and scaffold proteins have been
largely debated by the community. However, it is accepted that they are able to bind to
more than one protein at once and that they generally contain multiple domains and motifs
for protein-protein interaction (e.g., SH2, SH3, PH and WW) [165, 169]. In this regard,
Buday and Tompa defined adaptors as proteins that are able to link to functional members
of a catalytic pathway; and scaffolds as proteins of higher molecular mass — if compared
to adaptors — that target and regulate at the same time at least two signaling enzymes
and promote their communication by proximity [170]. This ability to bind to two or more
signaling proteins at once, provides the cell with a mechanism to regulate the fidelity of
signaling events in space and time, to propagate information by proximity, and to determine
the specificity of information flow in intracellular networks [171–173]. It has also been
shown that these proteins can exert an inhibitory effect on signal transmission. If their
concentrations exceed that of its partners, incomplete complexes will form and this could
effectively dissipate signaling [174–176]. Therefore, optimal expression levels of adaptors and
scaffolds are required to achieve maximal response of the pathways they are involved in.
Besides promoting their interaction by proximity, scaffolds and adaptors can localize sig-
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naling proteins at specific regions or compartments of the cell, such as the plasma membrane,
the cytoplasm, the nucleus, the Golgi, the endosomes and the mitochondria which might be
important for the local production of signaling intermediates [173].
Finally, it has been suggested that bona fide adaptors and scaffolds should not have

intrinsic catalytic activity [177]. However, cases such as the kinase suppressor of Ras (KSR)
and the focal adhesion kinase (FAK) have been reported to play, under certain conditions,
the roles of enzymes and scaffolds [167,178].

5.1.1.1 Adaptors and scaffolds of the MAPK/ERK cascade

Two hallmarks of scaffolding and adaptor function in multicellular organisms are the scaffold
kinase suppressor of RAS1 (KSR) and the adaptor growth factor receptor-bound protein
2 (GRB2). Both GRB2 and KSR play central roles in the MAP kinase cascade of ERK,
a pathway present in all multicellular organisms [179] and for which a similar mechanism
is also present in yeast [161, 180]. The ERK cascade is activated by extracellular factors
(e.g., VGF and VEGF), culminates in transcriptional response affecting several processes
such as cell proliferation and differentiation. The deregulation of this cascade is tightly
related to human cancers [176,181,182]. In this cascade, the activation of receptor tyrosine
kinases (RTK) by extracellular mitogens (e.g., EGF and VEGF) results in the recruitment
of the adaptor GRB2, that binds to son of sevenless homolog (SOS), which then interacts
with and activates RAS. This leads to the activation of RAF and thereby, the initiation of
the sequential phosphorylation steps of the MAPK cascade [183]. Activated ERK, the last
element of the three-tiered kinase cascade (RAF-MEK-ERK), can later phosphorylate either
cytosolic or nuclear substrates (see Figure 5.1).
In more detail, the adaptor GRB2 recruits SOS to the proximity of the activated RTKs via

an interaction of an SH3 domain of GRB2 with a proline-rich region in SOS; and later, via
its SH2 domain, GRB2 binds to a phosphorylated tyrosine in the activated RTK [184, 185].
In this way the GRB2-SOS complex gains access and activates its membrane-bound target
RAS.
Once RAS has been activated, the scaffold KSR migrates from the cytoplasm to the plasma

membrane carrying a constitutively bound MEK — a dual-specificity protein kinase — to
the encounter with RAF [162, 186]. The binding of KSR to RAF promotes conformational
changes in the alpha C helices of both proteins, which allosterically turn the kinase domains
into active conformations [183,187]. Upon binding to RAF, KSR promotes a conformational
change in MEK — by releasing its otherwise inaccessible activation segment — and that
allows RAF to activate MEK by phosphorylation [178, 188]. RAF, KSR and MEK interact
via their kinase domains in a non mutually exclusive manner [178, 189]. However, the RAF
molecule bound to KSR is sterically unable to phosphorylate MEK in cis, an action that must
be performed (in trans) by another RAF molecule [178]. Despite KSR has been considered
as a inactive pseudokinase due to the lack of canonical catalytic residues, recent in vitro
experiments suggest that KSR is a bona fide kinase whose catalytic activity is required to
cooperate with RAF for the activation of MEK [178, 190]. Regarding ERK, its binding to
KSR is induced by RAS activation and mediated by the sequence motif FXFP; a conserved
docking site present in KSR (far in sequence from the kinase domain) that specifically binds
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Figure 5.1: ERK MAP kinase cascade.
Upon stimulus from extracellular mitogens, the adaptor GRB2 binds to activated RTKs and promotes the
activation of RAS. Activated RAS contribute to the transduction of extracellular signal by activating the
three-tiered MAPK/ERK cascade. The three kinases of the MAPK/ERK cascade are held together by the
scaffold KSR. Activated ERK phosphorylates several substrates in the cytoplasm and in the nucleus.

to ERK [189,191]. Once ERK is bound to the RAF-KSR-MEK complex, MEK promotes ERK
activation by phosphorylating residues in the activation segment of ERK [192]. The activation
of ERK leads to the transmission of the cellular signal by the further phosphorylation of several
substrates in different cellular compartments [175]. However, ERK is not only responsible for
the transmission of the extracellular signal to other effectors in the cell, but it also regulates
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the MAPK cascade using a feedback loop that involves KSR and RAF. It has been recently
shown that phosphorylation of KSR and RAF by ERK promotes the dissociation of the
KSR-RAF complex and the release of KSR from the plasma membrane with the subsequent
attenuation of the pathway output [193]. This feedback phosphorylation of KSR by ERK
demonstrates a relevance of the scaffold in the dynamic regulation of the pathway, a role that
goes beyond the tethering and co-localization of the cascade elements. By the mechanisms
described here, KSR is able to assure an efficient propagation of the signal along the three-
tier group of kinases and to actively contribute to the transmission of the signal to effector
proteins in the cell.
Besides KSR, other scaffolds such as β-arrestin, HOMER, IQGAP1, MP1 and paxillin

participate in several pathways. For reviews on these and other scaffolds involved in signaling
events the reader can refer to excellent reviews by Brown and Sacks [179], Shaw and Filbert
[173] and Pan et al. [194].

5.1.1.2 The IQGAP scaffolds regulate cytoskeleton dynamics

The IQGAP proteins have been identified in a wide spectrum of organisms that range from
yeast to human. In human, there have been identified three members (IQGAP1, IQGAP2 and
IQGAP3) which have considerable sequence identity (around 43%) but they differ in aspects
such as function, tissue distribution and cellular localization [195]. IQGAP1 is the most
widely studied member of this family in human and is known to be ubiquitously expressed
and to play fundamental roles in several cellular processes such as signaling, microtubules
regulation, cell polarization, migration and motility among many others.

Figure 5.2: The human IQGAP protein family.
CH, calponin homology domain (a.k.a CHD); RPT, region of internal repeat; WW, poly-proline-binding do-
main; IQ, calmodulin-binding motif; RasGAP, GTPase-activator domain for Ras-like GTPases; RasGAP_C,
carboxy-terminal sequence found in members of the IQGAP family; magenta bars denote potential coiled
coils; green bars denote stretches of low structural complexity. The lowermost bar indicates approximate
residues numbers. Diagram adapted from the web resource SMART [196].

IQGAP1 contains several domains and motifs for protein-protein binding that allow it to
interact with a large number of partners (see Figure 5.2). Starting from its N-terminal,
IQGAP1 contain a calponin homology domain (CHD) which is responsible for IQFGAP1
binding to F-actin [197]. Following is a tandem of multiple IQGAP coiled-coil repeats (IRs)
that cause dimerization of proteins containing them [198]. Next, is a WW motif, a small
protein-protein interaction module responsible of the binding of IQGAP1 to ERK kinases.
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In this case, is interesting to note that the binding via the WW motif differs from the
FXFP motif that is usually recognized as binding site by ERK kinases [191]. Further in
sequence there are four IQ motifs, responsible of the binding to calmodulin, MEK kinases
and myosin [199]. Following the IQ motifs is the GTPase activating protein related domain
(GRD), that is involved in the binding to the Rho GTPases CDC42 and RAC1. The last
domain is a RasGAP C-terminal domain (RGCT), that is responsible for the binding to β-
catenin, E-cadherin and CLIP-170 [200]. The acronym for these proteins is derived from
the presence of the IQ motifs and the GAP related domains. Despite their family name and
the structural similarity to GTPse activating proteins (GAPs), there is no evidence of GAP
catalytic activity for IQGAP proteins [200].
IQGAP play fundamental role in cytoskeletal architecture. By binding to F-actin, the

microfilament formed out of actine polymerization, IQGAP1 promotes cross-linking of actin
filaments [197, 198] and also stimulates and regulates the assembly of branched actin fila-
ments [201, 202]. Both of these processes are part of the dynamic organization that that
orchestrate important mechanical functions, including cell motility and adhesion.
Regarding its role in cellular signaling, IQGAP1 is known to be a scaffold of the MAPK/ERK

cascade [203]. IQGAP1 binds directly to both MEK1/2 and ERK1/2 modulating their
activation and response to EGF and CD44 and localizing them to the plasma membrane
[166, 179]. It has been shown that IQGAP1 binds to B-RAF [204] and that also integrates
Ca2+/calmodulin and B-RAF signaling, uncovering a novel mechanism that links Ca2+ to
the MAPK/ERK pathway [205] and the pathway to the cytoskeletal dynamics.
Binding of IQGAP1 to Ca2+/calmodulin, an intermediate messenger protein that trans-

duces calcium signals, is regulated by Ca2+; and this interaction has been reported to produce
conformational changes in IQGAP1 that abrogate the ability of the scaffold to bind to any
other partner [198,206–208]. In this way, Ca2+/calmodulin functions as a master regulator
of IQGAP1 binding. For example, the binding of Ca2+/calmodulin to IQGAP1 positively
regulates cell-cell adhesion by inhibiting the interaction of the scaffold with β-catenin and
E-cadherin.
The Rho GTPases CDC42 and RAC1 are among the best characterized binding partners of

IQGAP1. The Rho GTPases is a family of small G proteins that regulate intracellular actin
dynamics and are involved in cellular functions such as cell morphology and cell motility
[200,209]. IQGAP1 binds to CDC42 and RAC1 only in their GTP-bound state (active state)
and stabilizes them by inhibiting their GTPase activity [210]. CDC42 and RAC1 function as
positive regulators of cell-cell adhesion processes, which use IQGAP1 as an effector of for the
regulation mechanism [211,212]. The binding of these Rho GTPases to IQGAP1 inhibit the
interaction of the scaffold with β-catenins, a process that leads to the weakening of cell-cell
attachments [197,213].
β-catenin plays a key regulatory roles in cell-cell adhesion processes by linking the cyto-

plasmic domain of E-cadherin to α-catenin, which in turn binds to the actin filaments of
the cytoskeleton [207]. When not bound to Rho GTPases or Ca2+/calmodulin, IQGAP1 is
able to interact with β-catenin and dissociate the E-cadherin—β-catening complex, thereby
weakening cell-cell attachment [214, 215] (see Figure 5.3). In this way, IQGAP1 negatively
regulates cell-cell adhesion and contributes to cell motility and invasion [208].
Links between the plus-ends of microtubules and cortical regions are essential for cell
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Figure 5.3: Role of IQGAP1 in the regulation of cell-cell adhesion.
At sites of cell-cell contact exists a dynamic equilibrium between the complexes E-cadherin—β-catenin—α-
catenin and E-cadherin—β-catenin—IQGAP1. The ratio between these complexes determine the strength
of E-cadherin-mediated cell-cell adhesion. RAC1/CDC42 and IQGAP1 can serve as positive and negative
regulators of cadherin activity, respectively. E, E-cadherin; α, α-catenin; β, β-catenin.

polarity and migration. IQGAP1 has been shown to interact with CLIP-170 [216], a protein
that binds to the plus-end of microtubules, regulates their dynamics and is required for
recruiting microtubules at cortical regions of the cell [217, 218]. It has been suggested
that IQGAP1—CLIP-170 interaction is enhanced by activated CDC42/RAC1 [216] and that
RAC1/CDC42 marks cortical spots to which the IQGAP1-CLIP-170 complex is targeted,
leading to formation of polarized microtubule arrays and to further cell polarization [213].
In this manner, IQGAP1 is involved in the regulation of the dynamics and in the capture of
growing microtubules at the leading edge of migrating cells, which results in cell polarization
and directional migration [216,218].
IQGAP1 plays crucial roles in several cellular processes such as signaling, via the MAPK/ERK

cascade, and in cell-cell adhesion, cell polarization and directional cell migration by linking
Rho-family GTPases with the actin cytoskeleton and microtubules. Many of these processes
have been related to neoplasia, tumor progression and metastasis [219, 220]. It is therefore
not surprising that recent evidence links IQGAP1 expression [221–223] and localization [224]
to neoplasia. For an excellent review on this topic the reader can refer to White et al.
2009 [166].

5.1.2 Adaptors and scaffolds contribute to kinase substrate specificity

Efficient signals transmission from the plasma membrane to specific intracellular sites is an
essential process in living organisms. Reversible phosphorylation of proteins is an impor-
tant element of internal cellular communication however, many protein kinases and protein
phosphatases have relatively broad substrate specificities and may be used in varying com-
binations to achieve distinct biological responses. Evidence collected over the past 15 years
clearly shows that specificity of signal transduction events can be modulated at the molecular
level by scaffold and/or adaptor proteins, which position signaling enzymes at proper cellu-
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lar localization [170, 225–227]. This allows their efficient catalytic activation and accurate
substrate selection. For the intracellular second-messenger, cyclic AMP-dependent protein
kinase A (PKA), the effect of cellular compartmentalization on signaling specificity has been
widely studied. In the following section we present examples of how PKA kinases achieve
substrate specificity aided by the A-kinase anchoring proteins (AKAP) family of scaffolds.

5.1.2.1 The biological roles of A-kinase anchoring proteins

Protein kinase A (PKA), also known as cAMP-dependent protein kinase, is a family of
Ser/Thr kinases of broad specificity whose activity is regulated by the cellular levels of
cyclic AMP (cAMP). PKAs are involved in several cellular functions including regulation of
metabolism [53], learning and memory [52] and exocytosis [54]. The activity of PKAs is
regulated by two regulatory (R) subunits, which form a dimer that binds two catalytic (C)
subunits, forming a tetrameric holoenzyme. There are four isoforms of the regulatory subunit
(RIα, RIβ, RIIα, RIIβ) and three types of catalytic subunits (Cα, Cβ, Cγ), each of which
display different patterns of cellular localization and tissue expression [228, 229]. Two main
PKA subtypes (I and II) are defined by the identity of their regulatory subunits, RI and RII.
Binding of cAMP to the regulatory dimers cause the dissociation and further activation of
the catalytic subunits [56,57] (see Figure 5.4).

Figure 5.4: cAMP-dependent protein kinase (PKA) activation.
PKA is a tetramer composed of two catalytic subunits and two regulatory subunits, that repress
the catalytic units when they are bound together. The binding of cAMP to the regulatory
subunits release the catalytic subunits, releasing also their inhibition.

PKAs are targeted to discrete subcellular environments by AKAPs, a diverse family of
scaffold proteins [55,230]. Recruiting a signaling enzyme to a specific subcellular location not
only ensures that the enzyme is near to its relevant targets, but also can prevent indiscriminate
phosphorylation of other proteins. AKAPs not only target PKAs to subcellular locations, but
at the same time they can also bind to other signaling molecules (e.g., protein phosphatases
(PP2B/calcineurin) [231], protein kinase C (PKC) [232] and phosphodiesterase PDE4D3
[233] to form multi-protein complexes (transduceosomes) that integrate cAMP signaling
with other pathways [227, 234]. Next, we provide examples of different AKAPs and their
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roles in PKA localization and cellular signaling integration.

5.1.2.2 mAKAP assembles a signalosome at the nuclear envelope

In striated myocytes and neurons, the muscle-selective anchoring protein (mAKAP) organizes
several proteins to control signaling events that occur close to the nuclear membrane. There,
mAKAP functions as a scaffold for assembling a signalosome that is responsive to cAMP,
Ca2+, and MAP kinase signaling. Besides interacting with PKA, mAKAP binds also to
other signaling proteins such as the Rap guanine nucleotide exchange factor (Epac1) [233],
the phosphodiesterase PDE4D3 [235], the MAP kinase ERK5 [233], the calcium release
channel ryanodine receptor (RyR) [236] and the phosphatase PP2B (calcineurin) [237] (see
Figure 5.5). An increased local concentration of cAMP activates PKA, which in turn phos-
phorylates and activates the mAKAP–associated PDE4D3, to enhance the reduction of
cAMP concentration [238]. In this complex scenario, PDE4D3 also functions as an adaptor
that recruits Epac1 to enable the cAMP-dependent downregulation of PDE4D3-associated
ERK5 [239]. When associated to mAKAP, calcineurin dephosphorylates and therefore inac-
tivates ERK5 [240], while ERK5 contributes in this context to the suppression of PDE4D3
activity [233]. As stated previously, the mAKAP signalosome also includes the channel
RyR, which is a major cardiac ion channel responsible for calcium release from intracellular
stores [236]. At the nuclear envelope, a subset of RyR is bound to mAKAP and via this
association RyR can be regulated by PKA-mediated phosphorylation [239].
The signalosome assembled by the scaffold mAKAP constitutes a a highly structured net-

work in which pathways such as the ones of cAMP, calcium and mitogens can be integrated
and regulated by bringing relevant signaling molecules into close proximity. This macro-
molecular complex is has been shown to be involved in the regulation of key processes such
as cardiac contractility [239,241].

5.1.3 Computational identification of signaling scaffold proteins

Scaffolds are extremely diverse proteins which structure and function may significantly over-
lap with those of other protein classes and they also lack common sequence signature motifs,
similar to the ones found in enzymes. Therefore, the identification of scaffolds based only on
sequence is currently not possible. However, scaffolds often contain frequently occurring PPI
domains or motifs (e.g., SH2, SH3, PD, WW) that can be easily identified from sequence
analysis. The presence of multiple PPI elements on their sequence allow the scaffolds to
interact at the same time with more than one protein, and therefore to assemble macro-
molecular complexes in a modular way [194]. In some cases, these protein complexes can be
assembled in combinatorial process, where the biological function of the resulting complex
will depend on the associated elements [242].
A common feature of signaling scaffolds is that they usually interact with at least two

signaling proteins that are involved in the transduction of information in pathways [160,165].
Based on this property, Zeke et al. proposed a general definition for the identification of
scaffold proteins in interactomes [177]. They suggested that signaling scaffolds can be
defined as proteins that: i) lack intrinsic catalytic activity relevant for signaling; ii) have at
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Figure 5.5: mAKAP assembles a signalosome at the nuclear membrane.
Increased levels of cAMP activates mAKAP-anchored PKA at submicromolar concentrations. Activated
PKA phosphorylates the phosphodiesterase PDE4D3, leading to its activation which increases cAMP degra-
dation, creating a classic negative feedback loop for PKA. Anchored PKA also phosphorylates and regulates
the activity of phosphatase PP2A, which promotes deactivation of PDE4D3 and its associated ERK5 kinase.
High concentrations of cAMP also stimulate Epac1, which exerts an inhibitory effect on the MEK5-ERK5
pathway trough the activation of the GTPase Ras-related protein 1 (Rap1). In turn, ERK5 is able to pro-
mote PDE4D3 deactivation by phosphorylation. PKA also activates the mAKAP-associated RyR2 receptor,
which enhances Ca2+ mobilization from intracellular stores. By organizing such a macromolecular complex,
mAKAP plays a prominent role in the regulation of cardiac function.

least two binding partners with catalytic activity relevant for signaling and iii) have binding
partners that interact with each other in a direct or indirect way. Based on the former
definition, Ramirez and Albrecht conducted an identification of potential human signaling
scaffolds proteins (PSPs) using an integrated dataset of human PPIs [243]. The authors
identified a total of 250 PSPs, which were enriched in Pfam domains that mediate PPIs
and also on Gene Ontology terms related to protein binding, protein localization and cellular
component organization and formation.
As commented previously on this chapter, scaffold proteins were initially thought to only

provide tethering to other signaling proteins. However, it has been systematically shown that
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some scaffolds retain catalytic activity which could be involved in the active regulation of
the pathways they are involved in [170]. Therefore, although it serves the simple purpose
of separating two basic functions in signal transduction — enzymes as main effectors and
scaffolds as temporal-spatial coordinators [172] — it is clear that the exclusion of proteins
with enzymatic activity as potential scaffolds constitutes a significant limitation.
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5.2 Materials and methods

5.2.1 Protein-protein interactions for human

For identifying reliable binding partners for human protein kinases and their substrates we
have used the in-house database PPI-DB. This database integrates the data available from
several public protein-interaction resources such as Intact [244], MINT [245], DIP [246]
and HPRD [109] among others. PPI-DB contains almost 45’000 high confidence binary
interactions experimentally determined in human.

5.2.2 Statistical enrichment of Pfam families

We have used Pfam (ver. 24.0) [247] as the resource for the annotation of proteins based
on the functional domains they contain. For computing the enrichment of proteins sets on
particular functional domains we used an hypergeometric test and we have corrected for
multiple testing using both Bonferroni’s and Benjamini-Hochberg’s methods [248]. We have
defined a statistical significance threshold α < 0.001. As the background set we have used
the human proteome, defined from canonical Swiss-Prot entries in the UniProt database (ver
2011_11) [112] with evidence of existence at either protein level, transcript level or inferred
from homology.

5.2.3 Statistical enrichment of Gene Ontology terms

We have used the Gene Ontology database [249] to functionally annotate proteins in our
analysis based their associated biological processes, cellular components and molecular func-
tions. For conducting a statistical enrichment analysis of GO terms in our proteins sets
we have used the R package GOstats (ver. 2.22.0) [250]. We have corrected for multiple
testing by using Bonferroni’s method and we have defined a statistical significance threshold
α < 0.05. As the background we defined a set of 4656 genes comprising all PPI partners
and substrates of human protein kinases.

5.2.4 Automatic collection of known adaptor/scaffold proteins

As the source for the automatic collection of known adaptor/scaffold proteins of human
protein kinases we used the Swiss-Prot database [112]. We selected human proteins con-
taining at least one of the terms adaptor and/or scaffold in the Function field of the entry.
We then filtered the resulting list of proteins keeping only those that are known to have a
binary interaction with at least one human protein kinase. We denote this set as known
adaptor/scaffold (kAS) proteins.

5.2.5 Gold standard set of kinase–adaptor/scaffold pairs

In order to compile a ‘gold standard set’ (GSS) of kinase–adaptor/scaffold associations, we
filtered the pairs collected in section 5.2.4. As the filtering criteria we used i) the experiment
type used for detecting the interaction and ii) the evidence in the literature supporting a
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biological role for the kinase–adaptor/scaffold complex. As for the first criteria, we kept only
those kinase–adaptor/scaffold pairs whose interactions have been experimentally detected
using in vivo conditions. For the second criteria, we reviewed the relevant literature and kept
only those pairs where the adaptor/scaffold have been shown to provide that function for its
associated kinase.

5.2.6 Identification of potential adaptors/scaffolds from substrates partners

The purpose of this method is the identification of proteins (Pi) in the human interactome
that interacts with a large fraction (statistically significant) of the substrates of a given
kinase (Kk). Proteins that met this criteria were classified as potential adaptors/scaffolds
(pAS) of Kk. The classification was based on a statistical test, where we used as the
statistic the number of substrates (of a given kinase) interacting with Pi. Here, we used a
strategy of PPI network randomizations to generate a series of backgrounds distributions of
the statistic. These backgrounds distributions were used later to estimate the likeliness of a
protein to interact with a large fraction of a kinase substrates. We conducted the current
analysis only for kinases for which we known at least five substrates, and we prevented for
the possibility of a kinase being classified as its own adaptor/scaffold.

5.2.6.1 Data

For this analysis we used PPI-DB as the source for human binary interactions and we used
the kinase-substrates associations in our database SBNB_PhoshpoDB.

5.2.6.2 Collection of PIN for randomization

We collected a first-level sub-network of the human interactome by using as seeds the sub-
strates of kinases having at least five substrates in SBNB_PhoshpoDB. The total number
of seeds used was 1807, corresponding to 156 kinases. The final sub-network contains 6528
proteins and 17633 unique interactions.

5.2.6.3 Generating background distributions

The probability of any Pi to be classified as a pAS for a given Kk, might largely depend on
the number of substrates known for Kk. In order to conduct fair evaluations, we generated
several sets of background distributions of the statistic according to the different number of
substrates (S) known for the kinases in our data set. For generating the background sets
we proceeded as follows. We started from the human sub-network previously mentioned and
we randomly rewired it by randomly switching edges. Then, we randomly select a node (K)
in the network having at least S partners (excluding self-interactions), and for a number S
of these partners we identified their first neighbors (Pi) in the randomized network. Finally,
for each Pi we counted with how many of the S partners it interacts. As mentioned earlier,
these counts represent the statistic used for the background distributions. We repeated this
procedure for each of the distributions (according to the different number of substrates) until
10’000 values of the statistic were stored.
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5.2.6.4 Testing the classification method

We conducted a Fisher’s exact test (right tale) for assessing whether the known adap-
tors/scaffolds are more likely to interact with a significantly large fraction of kinases sub-
strates than any random protein (Pi) in the human interactome. For the test we used two
categories, i) whether Pi is a known adaptor/scaffold protein and ii) whether Pi is known
to interact with a significantly large fraction of its kinases substrates. For the first category
we used the set of known adaptors/scaffolds collected in section 5.2.4; while for the second
category we have assessed the statistical significance by computing empirical p-values based
on the background distributions generated in section ??.

5.2.6.5 Algorithm for the identification of potential adaptors/scaffolds

Here, we included only those kinases for which we known at least five substrates (both in
vivo and in vitro). Then, for every protein (Pi) that interacts with at least one of the
substrates of kinase Kk, we estimated its probability of being a potential adaptor/scaffold
for Kk. This probability was based on the computation of an empirical p-value from the
background distributions corresponding to the number of substrates of Kk (see section ??).
If Pi is found to interact with a significantly large fraction of the substrates of Kk, then,
Pi is classified as a potential adaptor/scaffold for Kk. The statistical significance threshold
was set to α < 0.01 and we corrected for multiple testing using the Benjamini-Hochberg’s
method.

5.2.6.6 Evaluating the performance of the method

We evaluated the performance of the method based on its precision, its recall and its F1
score. The F1 score can be interpreted as a weighted average of the precision and the recall,
and is a measure of the method’s accuracy. For the computation of these parameters we
used as reference the set of known adaptor/scaffold proteins identified in section 5.2.4. The
evaluation of performance of the method was done for every kinase included in the analysis.
This is, for each kinase with at least one pAS and one kAS we counted how many of its
kASs are re-identified by our strategy (i.e., the recall) and we also computed the ratio of the
kASs re-identified over the total of proteins classified as pASs (i.e., the precision). The F1
score was computed as shown in Equation 5.1.

F1 score = 2× precision× recall
precision+ recall

(5.1)

Equation 5.1 Computing the F1 score.

5.2.6.7 Co-annotation of substrates and potential adaptors/scaffolds

Here, we first computed the enrichments in cellular compartment (CC) terms of the Gene
Ontology (GO) for the set of substrates of each kinase. Later, for each kinase, we identified
those potential adaptors/scaffolds that were annotated with the same CC terms found to be
enriched in the set of substrates of the corresponding kinase.
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We used the R package GOstats for both the functional annotation of substrates and
potential adaptors/scaffolds and for the computation of the enrichments. As the background
we used a set of 4656 genes comprising all PPIs and substrates of human protein kinases
and we used a statistical significance threshold of α < 0.05.

5.2.7 Identification of known adaptors/scaffolds interacting with
significantly large sets of substrates

Here we have focused on the identification of known adaptors/scaffolds that interact with a
significantly large fraction of the substrates of a given kinase. In this analysis, we considered
only the pairs of kinase-adaptor/scaffold present in the gold standard set, excluding those
pairs for which we have less than five in vivo substrates for the kinase. For estimating the
statistical significance, we have computed an empirical p-value using as the statistic the
number of substrates (of a given kinase) that interacts with a given adaptor/scaffold of
the same kinase. Similar to previous analysis, each empirical p-value is computed from a
background distribution that takes into account the cardinality of the set of in vivo substrates
available for the kinase.

5.2.7.1 Data

Here we have used the gold standard set of kinase-kAS associations. We have considered only
kinase-kAS pairs for which we have at least five in vivo substrates for the kinase. In total,
we count with 51 kinase-kAS pairs comprising 31 kinases and 36 known adaptor/scaffold
proteins. For compiling a kinase-related subnetwork of the human interactome, we used as
seeds all human kinases for which we have at least five in vivo substrates (111 kinases in
total), plus their corresponding substrates. Later, using the human interactome in PPI-DB,
we retrieved the PPI neighbors of these seeds up to the second level. The final subnetwork
is composed of 5939 unique proteins and contains a total of 15’046 unique PPIs.

5.2.7.2 Generating background distributions

Here we describe the algorithm followed for generating the background distributions used in
the current analysis. These distributions will be used for estimating the statistical significance
of the number of substrates of a given kinase that interact with a given adaptor/scaffold of
the same kinase. Several distributions have been generated, in accordance to the cardinality
of the sets of substrates in our data. For this procedure, we have used the previously described
kinase-related subnetwork of the human interactome.
For generating the random distribution for a set of substrates of cardinality S, the algorithm

proceeds as follows. The first step is the random selection of a (hypothetical) ‘kinase’ node
from the subnetwork having at least S+1 neighbors (excluding self-interactions). Next,
the neighbors are randomly split into the groups ‘substrates’ — of cardinality S — and
‘adaptors/scaffolds’ which contain the remaining neighbors of the ‘kinase’ node. Then, for
each ‘adaptor/scaffold’, we count with how many of the ‘substrates’ it does interact. These
counts are the statistics and therefore they are kept in the background distribution. At
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last, the subnetwork is randomized by randomly assigning edges between the nodes. The
complete procedure is repeated until 10’000 values of the statistic have been collected for
each distribution. This algorithm was implemented in R statistical environment using the
library igraph [251].

5.2.7.3 Estimating the statistical significance

We use an empirical p-value to estimate the statistical significance of the number of sub-
strates of a given kinase that interact with an adaptor/scaffold of the same kinase. The
p-value is computed based on the background distributions described in section 5.2.7.2 and
we set a statistical significance threshold α < 0.05. We conducted this test for each of the
51 kinase-kAS pairs described in section 5.2.7.1.

5.2.7.4 Statistical likeliness substrate-adaptor/scaffold interactions

We need to test the hypothesis of whether the known adaptors/scaffolds in the gold stan-
dard set are more likely to interact with a significantly large fraction of the substrates of
their corresponding kinases than any random protein (Pi) of the human interactome. For
this, we conducted a right tale Fisher’s exact test using as categories i) whether Pi is an
adaptor/scaffold in the gold standard set and ii) whether Pi interacts with a significantly
large fraction of the substrates. The statistical significance used in category ii) was based
on the empirical p-values computed in section 5.2.7.3.

5.2.8 Identification of kinases sharing significantly large sets of substrates

Here we approached the identification of kinases sharing at least one known adaptor/scaffold
and also sharing a significantly large number of substrates. The number of substrates shared
by the kinases (i.e., the overlap) was used as the statistic. For estimating the statisti-
cal significance of this overlap, we computed an empirical p-value based on background
distributions. These background distributions were generated by randomly sampling sets of
kinases of different cardinality a and later computing the overlap between their corresponding
sets of substrates. The backgrounds distributions are cardinality-specific and are composed
of 10’000 values of the statistic. Only kinases having at least five in vivo substrates were
considered in this analysis.

5.2.8.1 Data

We have considered only kinases for which we know at least five in vivo substrates (111
kinases in total). Regarding the known adaptors/scaffolds, we have used both the set of
automatically collected ones (see section 5.2.4) and the manually revised gold standard set
(see section 5.2.5).

a The cardinality of a set is a measure of the number of elements of the set. In this case, it refers to the
number of kinases.
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5.2.8.2 Generating background distributions

Here, we first determined the cardinalities of kinase sets for which the background distribu-
tions must be generated. For this, we computed the number of kinases shared by each pair of
known adaptors/scaffolds in our dataset. In our data, known adaptors/scaffolds are shared
solely by sets of either two or three kinases. Therefore, generated background distributions
corresponding to these sets cardinalities. For generating any of the background distributions,
we randomly sampled sets of two or three kinases from the set of 111 kinases with at least
five in vivo substrates. Next, we computed the overlap between their corresponding sets
of substrates and we kept this value as the statistic for the background distribution. Each
distribution contains 1000 values of the statistic.

5.2.8.3 Estimating the statistical significance

We use an empirical p-value to estimate the statistical significance of the number of sub-
strates shared by a set of kinases. The p-value is computed based on the background
distributions described before and we set a statistical significance threshold α < 0.05. As
stated previously, kinases in the set must share at least one known adaptor/scaffold protein.
We conducted separate analysis for each of the two sets of known adaptors/scaffolds (i.e.,
the automatically collected kAS and the gold standard set).
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5.3 Results and discussion

5.3.1 Set of known adaptors/scaffolds collected for human kinases

We have previously described a strategy for the automatic collection of known adaptor/scaffold
proteins of human protein kinases (see section 5.2.4). By using this strategy, we compiled a
list of 191 proteins comprising 109 adaptor and 82 scaffold proteins (see the Appendices sec-
tion A3 for the complete set of results). We refer to this set as the known adaptors/scaffolds
(kAS). The 191 kAS proteins associate with 287 (55.4%) human kinases via 1281 binary
PPIs. In total, 94 (72.3%) kinase families are represented by the aforementioned 287 human
kinases. These findings suggest that the association with adaptors/scaffolds is a probably a
widespread mechanism among human kinases, comprising a large fraction of the kinase fam-
ilies and all nine major kinase groups. As commented previously, the association of kinases
to adaptors/scaffolds can affect the function of these enzymes in aspects such as substrate
specificity, allosteric modulation and sub-cellular localization.
Following the procedure described in section 5.2.2, we have analyzed the enrichment of

Pfam domain families among the set of kAS proteins. We have found 23 domains to be sig-
nificantly enriched among proteins in the set, from which 14/23 (60.8%) are known to be di-
rectly involved in promoting PPIs (see Table 5.1). The over-representation of PPI–promoting
domains such as PDZ, SH2 and SH3 supports the idea of a role as adaptors/scaffolds for
the proteins in the set. Moreover, for the kAS set we have also computed the enrichment in
terms of the Molecular Function (MF) category of the Gene Ontology database. Our results
show that 100% of the terms found to be enriched in the set are related to protein binding,
adaptor or scaffolding functions (see Table 5.2). These results further support the biological
role as adaptors/scaffolds of kAS proteins.
In order to contrast our results, we have compared them to the ones obtained by Ramírez

and Albrecht [243], who developed a computational strategy and identified a total of 250
potential signaling scaffold proteins in the human interactome. The overlap between our set
and the one from Ramírez and Albrecht is of 67 proteins, corresponding to 35% and almost
30% of each set respectively. Regarding the enrichment in Pfam families, our set contains
a considerable fraction (9/14, 64.3%) of the domains found to be enriched among the 250
potential scaffolds by Ramírez and Albrecht. These nine common Pfam families are known to
be involved in promoting PPIs (see Table 5.1). The kAS set is also enriched in other domains
such as pleckstrin homology domain (PH), which is known to recruit proteins to regions of
the plasma membrane where signalosomes are assembled upon extracellular activation. When
comparing the two proteins sets based on their enrichments on MF annotations, we find that
terms related to protein binding and scaffolding are overrepresented in both sets. However,
for the kAS set, we identified two times more MF enriched terms; all of them related to
either adaptor, scaffolding, or protein binding functions (see Table 5.2).
We consider that, compared to ours, the larger number of scaffolds identified by Ramírez

and Albrecht can be explained by the fact that they allow for indirect interactions be-
tween the potential scaffold and signaling molecules. In contrast, have applied a more
stringent selection criteria by including in our results only those proteins with evidence of
adaptor/scaffolding function and that also interacts in a binary mode with at least one ki-
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Table 5.2: Molecular function terms enriched among kAS proteins.

GO Id GO description Enrichment
ratio

Raw
p-value

Adjusted
p-value

GO:0005078 MAP-kinase scaffold
activity 328.9 1.09e−07 4.21e−05

GO:0005168 neurotrophin TRKA
receptor binding 328.9 1.09e−07 4.21e−05

GO:0005068
transmembrane receptor
protein tyrosine kinase

adaptor activity
109.62 7.49e−07 2.89e−04

GO:0005165 neurotrophin receptor
binding 109.62 7.49e−07 2.89e−04

GO:0060090 binding, bridging 95.68 3.14e−08 1.21e−05

GO:0005158 insulin receptor binding 52.26 2.02e−14 7.79e−12

GO:0005159 insulin-like growth factor
receptor binding 45.92 4.84e−07 1.87e−04

GO:0030159 receptor signaling complex
scaffold activity 41.55 5.19e−08 2.00e−05

GO:0005070 SH3/SH2 adaptor activity 37.49 1.88e−17 7.26e−15

GO:0032947 protein complex scaffold 31.26 2.04e−06 7.87e−04

GO:0051219 phosphoprotein binding 18.65 5.39e−08 2.08e−05

GO:0005080 protein kinase C binding 16.69 7.05e−07 2.72e−04

GO:0031267 small GTPase binding 9.24 3.60e−08 1.39e−05

GO:0005515 protein binding 8.07 1.72e−13 6.63e−11

GO:0019904 protein domain specific
binding 6.01 2.80e−08 1.08e−05

GO:0019899 enzyme binding 5.82 5.07e−16 1.96e−13

In bold, the terms that were also found to be enriched among the potential human scaffolds
identified by Ramírez and Albrecht. Enrichments were computed following the procedure de-
scribed in section 5.2.3, but this time using α < 0.001 and as the background set the human
proteome as described in section 5.2.2.
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nase. Regarding the differences in the Pfam families and the MF terms enriched in each set,
we consider that the differences arise due to the protein composition of each set, as well as
due to the the background sets used for computing the enrichments.
The set of 191 kAS proteins will be used for assessing the performance of a computational

strategy, which we have developed for identifying potential adaptors/scaffolds of human
kinases.

5.3.2 Gold standard set of known adaptors/scaffolds

We have previously described a set of kinase-kAS associations automatically collected; and
we have used this set for evaluating the performance of a computational strategy for the
identification of potential adaptors/scaffolds (see 5.2.6). However, we are aware that our
automatically collected set of kinase-kAS pairs may contain several false positives. In fact,
evidence of a binary interaction between a kAS and a kinase does not necessarily implies
an adaptor/scaffolding function of the former towards the latter. Therefore, we decided to
compile a gold standard set (GSS) of manually curated kinase-kAS pairs for which in vivo
PPIs and adaptor/scaffolding functions have been explicitly reported in the literature (see
5.2.5). The GSS will serve as a reference for testing our working hypothesis, which assume
that the specificity of kinases is, at least partially, promoted by the association of the kinases
to specific adaptor/scaffold proteins.
The GSS here collected is composed of 75 kinase-kAS pairs comprising 46 kAS proteins

and 47 kinases (see Figure 5.6). Among the 47 kinases we find 28 tyrosine kinases, 16
serine/threonine kinases and 3 dual specificity kinases. Within the GSS we have identified
a subset kinase-kAS pairs for which we known at least five in vivo substrates for the cor-
responding kinase. This subset, comprising 49 kinase-kAS pairs, 31 kinases and 36 kAS
proteins, will be used in analysis that will be discussed further in this document.

JIP1TAB2

NHRF1

M3K7 MP2K7

PGFRB

NHRF2 SHB AKAP9MYD88FRS2 PDLI1SH3K1 BIRC5

PKN1FGFR1 STK35M3K4 AURKBIRAK4

IMA2FLNASRBS2MP2K5 TANK

DLG1 CTNL1GIT1RPTOR HSH2D FYBLTOR3

CSKPARBK1 FESMTOR IKKBFYNMP2K1

SGK1CHK2TRIOKPCAAKT1ABL2PLK1M3K2 M3K3 MK0 7 TBK1 IKKEMK0 8

RET ABL1DDR2 EGFRIGF1R ERBB2INSR JAK2FAK1

GRB2ABI1NCK1 LAP2IMA1SHC3AP2M1SHC1GRB101433F1433TCNKR1 SH2B2

CHK1LCK RAF1SRC MP2K4 M3K5KPCZKPCI MK1 0

SQSTM 1433B 1433G1433ZPAR6B ARRB2KHDR1ARRB1SDCB1PAR6A

Figure 5.6: Gold standard set of kinase-kAS pairs.
Kinases are represented by circles and adaptors/scaffolds are represented by diamonds. Edges repre-
sent binary PPIs. Kinases with at least five in vivo substrates are labeled in blue. All labels correspond
to UniProt Ids.
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5.3.3 Potential adaptors/scaffolds identified from substrates partners

Here we present the results of a computational strategy for the identification of potential
adaptors/scaffolds (pAS) of human protein kinases. In this strategy we ran under the assump-
tion that, in contrast to any random protein in the human interactome, an adaptor/scaffold
interacts with a significantly large fraction of the substrates of a given kinase. In this way, the
adaptor/scaffold would function as a platform to which the kinase could bind and therefore
gain spatial proximity to its relevant set of substrates. First, we tested whether our assump-
tion holds for the set of kinase-known adaptor/scaffold (PK-kAS) pairs previously collected.
For this, we conducted a Fisher’s exact test (see section 5.2.6.4) using only those PK-kAS
pairs for which we known at least five substrates for the kinase (comprising 156 kinases in
total). The result of the test suggests that kAS proteins are five times more likely to inter-
act with a large fraction of the substrates of their corresponding kinases than any random
kinase partner (p-value = 1.08e−15, odds ratio = 5.04). Given that this result supports our
classification criteria, we therefore proceeded to the identification of pAS proteins for human
protein kinases in the human interactome. Figure 5.7 shows a schematic representation of
the strategy, which is described in section 5.2.6 of Materials and methods.

Figure 5.7: Identification of PPI partners overrepresented among kinase substrates.
The strategy classifies as potential adaptors/scaffolds those human proteins that are known to interact with
a significantly large fraction of the substrates of a given kinase.

By using this strategy, we identified 706 relationships kinase–potential adaptor/scaffold
(PK–pAS). In total, we classified 279 proteins as pASs, of which 71 (25.4%) are present
in the kAS set. For 78 (50%) of the 156 analyzed kinases we identified at least one pAS.
These 78 kinases cover 44 out of 130 (33.8%) of all kinase families. The complete set of
pairs are available in Appendices (see A4). We have conducted an analysis of enrichment in
Pfam domain families for the complete set of 279 pASs. The results of this analysis show
enrichments in a total of 10 Pfam families, all of them known to mediate PPIs or to be
present in proteins involved in cellular signaling (see Table 5.3). Five out of the ten Pfam
families found to be enriched among pASs were also enriched among the set kAS set, a
finding that supports the hypothesis of common biological functions for proteins in both
sets.
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Table 5.3: Pfam families enriched among pAS proteins.

Pfam ID Pfam family
name Proteins Domain

instances
Enrichment

ratio
Raw

p-value
Adjusted
p-value

14-3-3 14-3-3 6 6 5.65 1.04e−09 7.52e−08

Furin-like
Furin-like

cysteine rich
region

6 6 5.46 2.74e−09 1.58e−07

GKAP

Guanylate-
kinase-

associated
protein
(GKAP)

4 4 5.7 6.35e−07 2.29e−05

Pkinase Protein kinase
domain 23 24 2.06 1.00e−08 4.12e−07

Pkinase_Tyr Tyrosine kinase 17 18 2.94 1.23e−10 1.18e−08

Recep_L_domain Recep_L_domain 6 12 5.37 4.21e−09 2.02e−07

SH2 SH2 domain 15 17 3.42 1.37e−11 1.97e−09

SH3_1 SH3 domain 21 26 3.29 6.59e−15 1.90e−12

SH3_2 Variant SH3
domain 8 9 2.87 1.51e−05 4.36e−04

Y_phosphatase Protein tyrosine
phosphatase 7 10 3.34 6.24e−06 2.00e−04

In bold, the Pfam families that were also found to be enriched among the set of known adap-
tors/scaffolds.

To further support the role proposed for the pAS proteins, we conducted an analysis of
the enrichment in Molecular Function (MF) terms. We found a total of 39 MF terms to
be overrepresented in the set (see Table 5.4). A considerable fraction of the terms (24/39,
61.5%) refer to ‘protein binding’ functions of signaling-related molecules such as receptors,
kinases, phosphatases and transcription factors. These results suggest that, taken as a set,
the pAS proteins could be able to mediate PPIs for different classes of signaling-related
proteins. However, in contrast with the kAS set, for the pASs we do not find enrichments
in MF terms directly related to adaptor nor scaffolding functions. These results suggest
that, as a set, the pAS proteins have not been previously associated to either adaptor or
scaffolding functions. Therefore, we consider that our classification strategy is able identify
a set of previously unknown adaptor/scaffold proteins of human kinases, whose functional
annotations are in agreement with the proposed biological roles.
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Table 5.4: Molecular function terms enriched among pAS proteins.

GO Id GO description Enrichment
ratio

Raw
p-value

Adjusted
p-value

GO:0030235 nitric-oxide synthase regulator activity inf 2.03e−09 1.37e−06

GO:0046965 retinoid X receptor binding 76.68 4.82e−10 3.26e−07

GO:0004861 cyclin-dependent protein kinase
inhibitor activity 65.48 1.57e−08 1.06e−05

GO:0004716 receptor signaling protein tyrosine
kinase activity 54.36 4.74e−07 3.21e−04

GO:0051879 Hsp90 protein binding 36.37 1.59e−07 1.08e−04

GO:0051059 NF-kappaB binding 33.82 1.95e−09 1.32e−06

GO:0042169 SH2 domain binding 26.35 1.18e−10 8.01e−08

GO:0050681 androgen receptor binding 22.62 5.15e−11 3.49e−08

GO:0001102 RNA polymerase II activating
transcription factor binding 22.53 1.74e−07 1.18e−04

GO:0030331 estrogen receptor binding 19.15 4.27e−07 2.89e−04

GO:0042826 histone deacetylase binding 16.51 2.46e−11 1.66e−08

GO:0019903 protein phosphatase binding 15.76 1.23e−09 8.32e−07

GO:0004860 protein kinase inhibitor activity 15.49 4.41e−08 2.99e−05

GO:0008013 beta-catenin binding 15.19 3.19e−10 2.16e−07

GO:0035257 nuclear hormone receptor binding 15.14 2.14e−12 1.45e−09

GO:0002039 p53 binding 13.77 1.05e−07 7.08e−05

GO:0005057 receptor signaling protein activity 10.15 1.11e−09 7.50e−07

GO:0019901 protein kinase binding 10.1 8.59e−20 5.81e−17

GO:0017124 SH3 domain binding 9.71 3.82e−11 2.59e−08

GO:0031625 ubiquitin protein ligase binding 9.49 1.88e−10 1.27e−07

GO:0047485 protein N-terminus binding 8.58 2.93e−07 1.98e−04

GO:0005515 protein binding 7.76 2.76e−18 1.87e−15

GO:0008134 transcription factor binding 7.17 1.81e−12 1.23e−09

GO:0019899 enzyme binding 6.87 2.47e−13 1.67e−10

GO:0004672 protein kinase activity 6.86 1.65e−09 1.12e−06

GO:0003690 double-stranded DNA binding 6.81 1.37e−08 9.28e−06

GO:0001067 regulatory region nucleic acid binding 6.62 1.15e−14 7.82e−12

GO:0003682 chromatin binding 6.58 6.35e−11 4.30e−08

GO:0060090 binding, bridging 6.3 2.49e−07 1.69e−04

GO:0008022 protein C-terminus binding 6.08 1.45e−07 9.83e−05

GO:0044212 transcription regulatory region DNA
binding 5.8 2.53e−07 1.71e−04

GO:0042802 identical protein binding 5.42 4.08e−09 2.76e−06

GO:0019904 protein domain specific binding 4.93 9.83e−10 6.66e−07

GO:0000989 transcription factor binding
transcription factor activity 4.63 1.46e−11 9.90e−09

GO:0016772 transferase activity, transferring
phosphorus-containing groups 4.18 2.86e−16 1.94e−13

GO:0004674 protein serine/threonine kinase activity 3.92 6.42e−08 4.35e−05

GO:0005524 ATP binding 2.56 8.31e−09 5.63e−06

GO:0030554 adenyl nucleotide binding 2.55 7.48e−09 5.07e−06

GO:0032555 purine ribonucleotide binding 2.3 5.73e−08 3.88e−05

In bold, the terms found to be enriched in the set of known adaptors/scaffolds. Enrichments were
computed as described in section 5.2.3, but this time using α < 0.001 and the as background set the
human proteome as described in section 5.2.2.
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In order to compare the similarities among the sets of adaptors/scaffolds here commented
(i.e., kAS, pAS and the set identified by Ramírez and Albrecht), we have generated a series
of Venn diagrams that show the overlaps in terms of the protein composition, as well as
the Pfam families and the molecular function terms enriched in each set (see Figure 5.8).
We have found that, in terms of their shared proteins, the average overlap between each
set is of 18.4%, which highlights the low consensus between the three strategies for the
identification of adaptor or scaffold proteins. To our opinion, the low protein overlap arise
from the different criteria applied by each identification method. In this regard, one of the
main differences between our methods and the one implemented by Ramírez and Albrecht
is that we allow enzymes to be classified as potential adaptors or scaffolds. In contrast,
Ramírez and Albrecht follow the criteria that scaffold proteins lack enzymatic activity [177].
To our opinion, this criteria is inaccurate, given that proteins with well known scaffolding
roles are also known to have enzymatic activity, such as the cases of the focal adhesion kinase
(FAK) [167] and the kinase suppressor of Ras (KSR) [178,190]. Moreover, differences in the
enriched Pfam families as well as in the molecular function terms, are likely to arise given that
different sets of proteins were considered as background when computing the enrichments.
Finally, differences in the definition of the set of PPIs used as the human interactome can
also influence the results of the identification strategies.

Figure 5.8: Comparison of three different sets of adaptor/scaffold proteins.

We have used our computational strategy for identifying a list of 279 pAS proteins from
the human interactome. As the next step, we assessed the performance of our strategy based
on the computation of its precision and recall as described in section 5.2.6.6. For a total
of 22 kinases we could compute the performance of the classification strategy. This group
pf 22 kinases is composed by those for which we i) count with at least five substrates, ii)
know at least one kAS protein and iii) have identified at least one pAS protein. The results
show low values of the evaluated parameters with averages of 0.22, 0.20 and 0.17 for the
recall, the precision and the F1 score respectively (see Table 5.5 and Figure 5.9). However,
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these results are not unexpected, given that only a small fraction (37/706, 5.24%) of the
kinase–pAS relationships identified in the strategy are also present among the reference set
of kinase–kAS pairs.
To our opinion, the performance of the current strategy can also be negatively influenced

by the incompleteness of the current human binary interactome. This situation could be
affecting the recall due to missing evidence of PPIs between kASs and substrates. In general,
missing PPIs constitute a mayor hurdle for the current strategy, given its basis on the analysis
of partners shared by the substrates of given kinase.
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Figure 5.9: Performance of the computational strategy for the identification of pAS proteins.

Considering the aforementioned parameters — particularly the F1 score — the overall
performance of the classification strategy can be considered low. However, these parameters
can not account for the chances of the pASs identified to play such a role for their respective
kinases.
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Table 5.5: Performance of the strategy for identification of pAS proteins.

Kinase pAS kAS recalled Recall Precision F1 score
AKT1 34 2/15 0.13 0.06 0.08
KPCD 23 1/8 0.12 0.04 0.06
KPCE 3 1/5 0.2 0.33 0.25
KS6A1 12 1/5 0.2 0.08 0.11
KS6A5 4 1/3 0.33 0.25 0.28
PRKDC 21 1/10 0.1 0.05 0.07
CHK1 8 2/8 0.25 0.25 0.25
MARK2 4 2/5 0.4 0.5 0.44
MAPK2 16 1/2 0.5 0.06 0.11
KC1A 17 1/6 0.17 0.06 0.09
E2AK2 6 1/3 0.33 0.17 0.22
PAK2 1 1/5 0.2 1 0.33
MP2K4 12 2/4 0.5 0.17 0.25
ABL1 33 4/28 0.14 0.12 0.13
EGFR 68 2/33 0.06 0.03 0.04
INSR 13 1/13 0.08 0.08 0.08
JAK2 13 3/9 0.33 0.23 0.27
PGFRB 70 3/18 0.17 0.04 0.06
FYN 15 2/25 0.08 0.13 0.1
HCK 12 2/10 0.2 0.17 0.18
KSYK 13 2/10 0.2 0.15 0.17
ZAP70 3 1/9 0.11 0.33 0.17

18.23 - 0.22 0.20 0.17

Kinase, kinase UniProt Id; pAS, number of potential adaptors/scaffolds identified for the corre-
sponding kinase; kAS recalled, number of known adaptors/scaffolds of the corresponding kinase
that were recalled by our strategy; Recallb, Precision and F1 score, values of the performance
parameters achieved by the strategy. Last row shows the average values for the corresponding
columns.
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5.3 Results and discussion

In an additional analysis, we have taken into account of the role that co-localization with
the substrates can play in the specificity of kinases. Here, we attempted the identification
of cellular component terms (CC) shared by the pAS proteins and the substrates of the
corresponding kinases. More in detail, we evaluated whether the pAS proteins of a given
kinase, are annotated to the same CC terms that have been found to be enriched in the set
of substrates of that kinase (see section 5.2.6.7 of Materials and methods).

For 527/706 (74.6%) of the kinase-pAS pairs, we found evidence of co-localization between
the pAS and the substrates. This set of 527 kinase-pAS pairs account for 41 kinases, 156
pASs — corresponding to 52.6% and 55.9% (respectively) of the ones in the initial 706 kinase-
pAS pairs— and 35 unique CC terms. The Figure 5.10 shows a pie chart representation of
the CC terms shared by the pAS proteins and the sets of substrates; while in the Table
5.6 we show cases of pAS proteins that are found to co-localize with substrates of their
corresponding kinases. For example, the pair formed by the β-adrenergic receptor kinase
1 (ARBK1) and the Na(+)/H(+) exchange regulatory cofactor NHE-RF (NHRF1), where
the later it has been reported to be involved in the scaffolding of β-adrenergic receptors —
substrates of ARBK1 — at the plasma membrane [277]. Another example is the case of
the checkpoint kinase-1 (CHK1) and the 14-3-3 protein zeta (1433Z), where the later it has
been reported to be required for the nuclear retention of CHK1 [278].
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Figure 5.10: Cellular component terms shared by substrates and pAS proteins.
The slices represent the number of kinase-pAS pairs where the pAS is annotated to the the given CC
term. TF and PML stand for transcription factor and nuclear bodies respectively.
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5.3 Results and discussion

In our opinion, these results suggest that the association to pAS proteins might play
an important role in the co-localization of the analyzed kinases with their cognate sets of
substrates. Nevertheless, we are aware that in many cases, the cellular component shared by
the substrates and the pAS proteins are too broad (e.g., cytosol, nucleoplasm, cytoplasm)
and can not fully justify, based on spatial constrains, the substrate specificity of the kinases.
The complete set of results on co-localization are provided in the section A5 of the Ap-

pendices.
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5.3.4 Adaptors/scaffolds binding to significantly large numbers of substrates

In this section we continued with the analysis on the contribution of adaptors/scaffolds to
the observed in vivo substrate specificity of human protein kinases. In the previous section,
we showed results suggesting that kAS proteins are five times more likely to interact with a
statistically significant number of substrates than any random protein in a sub-network of
the human interactome. To explore further on this result, we tested whether it would hold
for a reduced set of manually curated kinase–kAS associations. For this, we used a subset of
kinase–kAS pairs from the previously described ‘gold standard set’ (GSS), where we known
at least five in vivo substrates for each kinase. The section 5.2.7 contains the complete
description of the strategy, and the Figure 5.11 shows its schematic representation.

Figure 5.11: Adaptors/scaffolds interacting with a significant number of substrates.
Based on an empirical p-value we test whether a known adaptor/scaffold interacts with a significantly large number
of the substrates of an associated kinase.

Table 5.7: Adaptors/scaffolds that interact with a significant fraction of substrates.

Kinase Adaptor or
scaffold

Substrate
fraction

Raw
p-value

Adjusted
p-value

Substrates interacting with the
adaptor/scaffold

ABL1 GRB2 14/46 4.00e−04 1.00e−02
ABI1, ABL2, BCAP, BCR, BTK,
CDN1B, EGFR, JAK2, M4K1,

MUC1, PTN6, RPGF1, UFO, WASL

ABL1 NCK1 6/46 2.50e−03 1.95e−02 ABL2, EGFR, JAK2, M4K1,
RPGF1, WASL

CHK1 1433B 4/17 3.90e−03 1.95e−02 MDM4, MPIP1, MPIP2, MPIP3
CHK1 1433Z 4/17 3.90e−03 1.95e−02 MDM4, MPIP1, MPIP2, P53

EGFR GRB2 6/27 2.80e−03 1.95e−02 CBL, EPS15, ERBB2, GAB1,
MUC1, PLD2

Proteins are represented by their UniProt Ids. Substrate fraction represents the fraction of the
substrates that are known to interact with the adaptor/scaffold.

From our analysis, we could identify only 5/49 (10.2%) successful cases of kinase-kAS
pairs where the adaptor/scaffold interacts with a significantly large number of the in vivo
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5.3 Results and discussion

substrates of its associated kinase (see Table 5.7). Due to the limited number of successful
cases, we can not derive generalizations — at least based on this dataset — about a potential
role of the adaptors/scaffolds as substrate recruiters for the kinases. However, we have
previously shown results suggesting a relevant role for adaptors/scaffolds in providing cellular
co-localization for kinases and substrates.
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5.3.5 Association to adaptors/scaffolds diminish cross-specificity of kinases

Previously, we have used cellular component annotations to explore the role that the potential
adaptors/scaffolds may play in kinase specificity by promoting spatial proximity between the
kinases and their cognate sets of substrates. However, being aware of the fact that different
kinases may associate to a common adaptor/scaffold, we wanted to test whether kinases
that share an adaptor/scaffold also share a number of in vivo substrates larger than what
would be expected by chance. Stated in other words, we tested whether the association
to common adaptors/scaffolds would promote significant substrate cross-specificity between
kinases. In this analysis, under the assumption that adaptors/scaffolds are major players
in kinase substrate specificity, we would expect to find few (or none) cases of significant
substrate cross-specificity. We have applied the current analysis to both the kAS and the
GSS sets, considering only in vivo substrates (see section 5.2.8 for a description of the
strategy and Figure 5.12 for a schematic representation).
We have first analyzed the set of PK-kAS associations where the kinases have at least

five in vivo substrates and for which the kAS is known to interact with at least two kinases.
In total, we count with 195 PK-kAS pairs — involving 54 kinases and 57 kAS proteins —
, which represents 15.2% of the complete set of PK-kAS associations. In total, we have
identified 19 cases where a kAS is known to interact with at least two kinases who share at
least one in vivo substrate. These cases involve 19 different kAS proteins and 21 different
kinases. For none of the cases we found kinases sharing a statistically significant number of
in vivo substrates (see Table 5.8).

Figure 5.12: Association to adaptors/scaffolds and substrate cross-specificity of kinases.

Secondly, we analyzed the ‘gold standard set’ (GSS) of kinase-adaptor/scaffold associ-
ations, where we count with six adaptors/scaffolds associated to kinases sharing at least
one in vivo substrate. A total of nine kinases were associated to the aforementioned adap-
tors/scaffolds. Again, none of the kinase pairs were found to share a statistically significant
number of in vivo substrates (see Table 5.9).
As a result, from our strategy and available data, we have not found any case of two
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Table 5.8: Statistical significance of the number of shared substrates for PK-kAS pairs.

Adaptor/scaffold Associated kinases Shared substrates p-value
CD2AP ABL1,FYN 1 1.00
FRS3 MK01,FGFR1 1 1.00
FYB ABL1,FYN 1 1.00
TGFI1 FAK1,FAK2 1 1.00
APBB1 EGFR,ERBB2 2 1.00
DOK4 EGFR,ERBB2 2 1.00
DOK6 EGFR,ERBB2 2 1.00
JIP2 EGFR,ERBB2 2 1.00

KHDR1 HCK,LCK,SRC 2 0.11
SHC2 EGFR,ERBB2 2 1.00
SHC3 EGFR,ERBB2 2 1.00
PAR6A KPCI,KPCZ 3 1.00
PAR6B KPCI,KPCZ 3 1.00
BIRC5 AURKA,AURKB 4 1.00
SH2B1 EGFR,INSR 4 1.00
PKHO1 AKT1,CSK21 5 1.00
ELP1 GSK3B,MK08 7 0.78
DAG1 FYN,SRC 13 0.52
SCRIB MK01,MK03 73 0.10

Proteins are represented by their UniProt Ids. Shared substrates, number of in vivo
substrates shared by the kinases; p-value, statistical significance of the number of
substrates shared by the kinases.

Table 5.9: Statistical significance of the number of shared substrates in the GSS set.

Adaptor/scaffold Associated kinases Shared substrates p-value
IMA2 SGK1,CHK2 1 1.00
NCK1 ABL1,EGFR 3 1.00
PAR6B KPCI,KPCZ 3 1.00
SQSTM KPCI,KPCZ 3 1.00
SHC1 EGFR,INSR 4 1.00
KHDR1 LCK,SRC 14 0.43

Proteins are represented by their UniProt Ids. Shared substrates, number of in vivo
substrates shared by the kinases; p-value, statistical significance of the number of
substrates shared by the kinases.

(or more) kinases that, sharing a common adaptor/scaffold, have a statistically significant
large number of common in vivo substrates (i.e., a large substrate cross-specificity). To our
opinion, this results reinforce the concept of the adaptors/scaffolds as major contributors to
the in vivo substrate specificity of kinases. From these results we could hypothesize that,
even if two kinases bind to common adaptors/scaffolds, these adaptors/scaffolds are able to
mediate the recruitment of each kinase to its corresponding location in the cell.
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5.4 Concluding remarks
• We have collected a set of 191 known adaptor/scaffold proteins, that associate to a

total of 287 (55%) human kinases, which in turn represent 94 (72.3%) of all human
kinase families. These data suggest that association to adaptors and scaffolds is a
common mechanism of human kinases.

• We have found that, in comparison to random proteins in the human interactome,
known adaptors/scaffolds are five times more likely to interact with a large fraction
of the substrates of the kinases they are associated (p-value = 1.08e−15). This result
suggest a role for adaptors/scaffolds in facilitating the encounter of the kinases with
their cognate substrates.

• In an attempted to further support the aforementioned result, we tested whether it
holds for a reduced set of only 49 (manually curated) kinase–known adaptor/scaffold
pairs (a subset of the GSS). We found that, for 10/49 (10.2%) of the cases, the known
adaptor/scaffold interacts with a significantly large number of the in vivo substrates.
Although this result does not allow us to generalize — at least on this reduced set —
about the role of adaptors/scaffolds as substrate recruiters, other experiments in this
document suggested their role in promoting colocalization of kinases and substrates.

• Starting from a set of 156 kinases (representing 47% of the kinase families), we have
identified a set of 279 potential adaptors/scaffolds for 78 (50%) of the kinases, covering
44 (33.8%) of the kinase families. The set of potential adaptors/scaffolds is enriched
in functional annotations and domain families that support their association to proteins
involved in cellular signaling. To our opinion, these results support the role intended
for the potential adaptors/scaffolds and also suggest that associations to this type of
molecules is not infrequent among kinases in our set.

• For 527/706 (74.6%) of the kinase-potential adaptor/scaffold associations previously
identified, we have found evidence of colocalization between the potential adaptors and
scaffolds and the substrates of the corresponding kinase. In total we have identified
colocalizations at 35 different cellular compartments. To our opinion, these results
suggest that for most of the associations found, the adaptors/scaffolds might play a
fundamental role in the colocalization of the kinase and its substrates.

• Regarding the substrate cross-specificity of kinases, we have not found any case of two
or more kinases that, having an adaptor/scaffold in common, also share a number of in
vivo substrates larger than what would be expected by chance. To our opinion, these
results reinforce the idea that adaptors/scaffolds effectively contribute to constrain
the set of potential substrates available for a kinase, most probably by recruiting the
enzymes to particular locations or macromolecular complexes.
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In the current work, we have approached the identification and the quantification of the
contribution of different elements to the substrate specificity of human protein kinases. For
this, we have analysed: i) the residues in the close neighbourhood of the the phosphoryla-
tion site, ii) the association of kinases to adaptors or scaffold proteins and iii) the cellular
co-localization of kinases and their substrates. We have identified residues in the close
vicinity of the phosphorylation sites, that function as positive (or negative) elements for
the substrate recognition by the kinases. Our results regarding the association of kinases
to adaptor/scaffold proteins, suggest that these interactions may play important roles in
the localization of the enzymes with their set of cognate substrates and also in diminishing
substrate cross-specificity in vivo.

6.1 Analysis of phosphorylation sites and their adjacent
residues

6.1.1 Sequence logos

Initially, we have generated logos from the stretches of sequences phosphorylated by the
different kinases and kinases families in our data. The logos here generated, provided us an
initial grasp on hte sequence diversity and the main differences between the phosphoryla-
tion motifs targeted by the different kinases. Also, the logos allowed us to identify several
residues — neighboring the phosphorylation sites — that are likely to play important roles
for the specificity of the kinases. Additionally, by comparing our logos to other previously
published [70], we verified that our integrated data agree — in general terms — with the
phosphorylation motifs already known for the kinases in our set. Finally, aided by the lo-
gos, classified the kinases based on the residue composition of the stretch of sequences
surrounding the phospho-acceptor residue (i.e., acidophilic, basophilic, proline-directed and
glutamine-directed). We have observed that, kinases of the same class often belong to the
same or closely related families. However, there are exceptions such as the kinases of the
SYK family (group of tyrosine kinases) and the serine/threonine kinases from the families
CK1, CK2 and PLK — groups CK1, CMGC and Other, respectively — which are all classified
as acidophilic.

6.1.2 Specificity-determinant residues

Using the in-house program genpssm, we have constructed PSSMs for performing a quan-
titative analysis of the contribution to the kinase specificity of the residues flanking the
phosphorylation sites. For this analysis, we selected a set of 22 kinase families for which we
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count with at least 100 phosphorylation events. For 19 (86.4%) of the families studied we
identified at least one SDR. For all these 19 families, we correctly classified as SDR residues
that have been reported to play important roles in the specificity of the corresponding ki-
nases. These are the cases, for example, of MAPKP+1, PIKKQ+1, AKTR-3 and CK2E+3. The
quantification of the relevance of the SDRs — based on their frequency of occurrence among
the phosphorylation events of each family — shows a wide variation across the different fam-
ilies. For example, the four SDRs previously mentioned have relatively high frequencies that
range between 88.86% and 45.83%; however, other SDRs identified by our method show
much lower frequencies (e.g., PKCK+2 = 19.79%, CAMKLN+3 = 18.03% and CK2D+2 =
15.54%). Based on our data, we hypothesize that the combination of multiple SDRs of low
frequencies contribute in an additive way to the recognition of the phosphorylation site by the
kinase. In contrast, we consider that SDRs of high frequencies — which are highly required
for the identification of the phosphorylation site — are responsible of a larger contribution to
the kinase specificity. Moreover, we have noted that the frequency of any given SDR is low
— 6.0% on average — among the phosphorylation events of the kinase families that do not
count with that SDR. Our interpretation of this observation is that, SDRs may also function
as elements of negative selection to avoid the phosphorylation of non-cognate sequences.
By our analysis we have identified SDRs that, to the best of our knowledge, have not

been previously reported as determinants of the specificity for the corresponding kinase
families. These are the cases, for example, of CAMKLN+3 and AKTW+1 — both from
basophilic kinases —, with frequencies of 18.03% and 3.85% respectively. The SDR N+3,
is present in the sequences targeted by the microtubule affinity-regulating kinases (MARK)
— CAMKL family members — within the repeat regions of the human TAU protein, which
is implicated in Alzheimer’s disease [279]. Besides, N+3 have a low frequency (3.83%)
among the phosphorylation events of the other 21 kinase families in the analysis. Given
that the repeat regions of TAU are responsible for the binding to the microtubules [280];
we consider that the presence of N+3 in these regions is an important element for the
recognition by MARK kinases, and therefore for the regulation of the association of TAU
to the microtubules. The case of W+1 — identified as an SDR for the AKT family —
is an interesting result, given that tryptophan is rarely found in the close sequence vicinity
of phosphorylation sites — 0.66% among the phosphorylation events of non AKT kinase
families —. W+1 was identified as an SDR even when occurring at low frequency (3.85%)
among the phosphorylation events of AKT kinases, which prompted us to research further
about the biological relevance of the finding. Interestingly we found reports in the literature
showing that, by phosphorylating sequences containing a conserved W+1, some AKT kinases
are implicated in the regulation of transcription factors of the FOXO family [125]. To our
opinion, this result supports the utility of our approach for the identification of SDRs, even
for residues that occur at low frequency among the phosphorylation sites of the kinase of
interest.

6.1.3 Position-specific scoring matrices

In this work we have also evaluated the performance and the statistical significance of the
PSSMs generated for kinases and kinases families in our data. Using the recall and the
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IC values as statistics for the comparison to random backgrounds, we have estimated the
statistical significance of our PSSMs. We observe that, for most cases, statistical and
non-statistically significant PSSMs differ in their values of the IC, the percent recall, the
AUC-ROC and the numbers of seed phosphorylation sites. Regarding the performance, we
have found negative correlations between the number of seed phosphorylation sites and i) the
percent recall of the PSSM and ii) the IC of the PSSM. These results show that the combined
increase of i) the sequence diversity and ii) the number of seed phosphorylation sites from
which a PSSM is generated, can exert a negative effect in both the performance and the level
of self-information of that PSSM. From this result we hypothesize that, for some kinases
the substrate specificity might be represented best by multiple PSSMs, a concept that have
been previously applied in the analysis of DNA recognition by transcription factors [281].
Although not covered in the work here presented, we consider that in such cases, multiple
PSSMs could be useful for modeling fairly different phosphorylation motifs that are targeted
by the same kinase.

6.2 Analysis of the association of kinases to adaptors and
scaffolds

6.2.1 Identification of adaptors and scaffolds

We have compiled a set of 191 human proteins that are known to play roles of adaptors
or scaffolds of human protein kinases. We based our selection criteria on the functional
annotation of these proteins in the UniProt database and also on the evidence of binary
PPIs between them and the kinases. From the analysis of this set of 191 proteins in the
context of the human interactome we extracted two main messages, i) that the association to
adaptor/scaffold proteins is extended among human protein kinases — 55% kinases (72.3%
kinase families) bind to at least one adaptor/scaffold — and ii) that the adaptor/scaffold
associate to significantly large numbers of the substrates of human protein kinases. Many
adaptors and scaffolds count with one or multiple functional domains that confer them
the capability of interacting at the same time with two or more proteins [160]. Our findings
support the hypothesis that adaptors and scaffolds may play important roles in the specificity
of a large number of kinases, probably by contributing to the encounter of the kinases and
their substrates.
Based on the evidence of association to large numbers of the substrates of human protein

kinases and using the PPIs in the human interactome, we approached the identification of
potential adaptors/scaffolds of kinases. The enrichment in functional terms and proteins
domains, agrees with the role intended for the set of 279 proteins identified as potential
adaptors or scaffolds. Moreover, the functional enrichment suggest that the 279 are involved
in processes of cellular signalling. Only 71 (25%) of these proteins are among the set of
known adaptors and scaffolds previously described, a result that supports the ability of the
method to uncover potential functions for more than 200 proteins.
In 2010, Ramírez and Albrecht developed a computational strategy for the identification

of signaling scaffold proteins in the human interactome [243]. In their work, the authors
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suggested a total of 250 potential scaffold proteins. The comparison of this set of 250
scaffolds with the two sets identified by us, show little overlap in terms of the proteins, the
molecular function terms and the protein domains enriched. The differences found between
these sets can be justified by several factors. First, our definition of the human interactome
comprise only high confidence binary PPIs; while the interactome used by Ramírez and
Albrecht is not restricted to binary interactions and therefore contains PPIs of much lower
confidence. In this sense, our definition of the human interactome reduces the chances of false
positives, although at the expense of missing some potentially good cases. Also, following
the definition of signaling scaffolds proposed by Zecke et al. [177], the authors Ramírez and
Albrecht did not consider enzymes as potential scaffolds. However, is known that proteins
with scaffolding functions have also enzymatic activity (e.g., the focal adhesion kinase (FAK)
[167] and the kinase suppressor of Ras (KSR) [178,190]). To avoid missing cases as the two
previously mentioned, we did not impose any filtering criteria based on molecular functions. In
general, the computational identification of adaptor and scaffold proteins is still a challenging
task, given that these proteins do not share a common evolutionary origin, neither they share
sequence signature motifs.

6.2.2 Colocalization of adaptors and scaffolds with substrates

In the present work, based on their annotations to cellular component terms, we investi-
gated the evidence of colocalization between the 279 potential adaptors/scaffolds and the
sets of substrates of the associated kinases. For 527 (74.6%) of the kinase–potential adap-
tor/scaffold associations we found evidence of colocalization to at least one cellular com-
ponent term, accounting a total of 35 unique terms. For approximately 80% of the colo-
calization cases, the cellular component terms were — to our opinion — too general to
support the hypothesis of the potential adaptor/scaffold as an element promoting spatial
proximity between the kinases and their substrates (e.g., cytoplasm and cytosol). However,
among the remaining 20% of the cases, we found interesting examples that may contribute
to support the afore mentioned hypothesis. For example, for the case of the checkpoint
kinase-1 (CHK1) and the 14-3-3 protein zeta (1433Z, a known adaptor protein), it has been
reported that 1433Z retains CHK1 at the nucleus, where the kinase regulates the mitotic
progression in response to DNA damage [278]. As a second example, we also correctly pre-
dicted the Na(+)/H(+) exchange regulatory cofactor NHE-RF (NHRF1) to be a scaffold
for the β-adrenergic receptor kinase 1 (ARBK1) at the plasma membrane. Reports have
shown that indeed NHRF1 serves as a scaffold for the substrates of ARBK1 [277]. Another
example is the casein kinase α-1 (KC1A), for which we identified the catenin β-1 (CTNB1)
as a potential adaptor/scaffold. KC1A phosphorylates CTNB1 at serine 45, they are both
components of the canonical Wnt signaling pathway and they are also part of the large APC–
Axin-1–β-catenin complex [282]. Interestingly, CTNB1 contains 12 repeats of the Armadillo
(ARM) domain, which is implicated in mediating PPIs. It has been recently suggested that
proteins containing ARM repeats, constitute an attractive modular system as scaffolds for
peptide-mediated PPIs [283]. Therefore, we consider that CTNB1 may constitute a plausible
scaffold that may promote spatial proximity between KC1A and its substrates.
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6.2.3 Adaptors and scaffolds diminish kinase cross-specificity

Finally, we have investigated the relationship between the association to common adaptors
or scaffolds, and the substrate cross-specificity of kinases. In total we analyzed 23 cases of
two or more kinases that associate to a common adaptor or scaffold, and for non of the cases
the kinases shared a number of in vivo substrates larger than what would be expected due
to chance. Nevertheless, we found the case of the kinases MK01 and MK03 — ERK2 and
ERK1 MAP kinases, respectively — which share 73 in vivo substrates. Even when it was
not statistically significant, the number substrates in common was very large when compared
to other sets of kinases in out analysis, and therefore we decided to explore this particular
case in more detail. In fact, ERK1 and ERK2 are very closely related kinases, with 82% and
89% of identity in their full and catalytic domain sequences. ERK1 and ERK2 share many
if not all functions [284] and despite numerous efforts to establish differences, the detection
of such distinctive functions it has been difficult to pinpoint [285]. Therefore, we consider
that their large sequence identity, together with their almost identical functions can explain
the large substrate overlap reflected in our data. To our opinion, these results support the
hypothesis that adaptors and scaffolds are able to diminish in vivo substrate cross-specificity
by recruiting the kinases to specific macromolecular complexes or cellular locations.
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Protein kinases constitute one of the largest and more diverse superfamilies of proteins in hu-
man, where they account for nearly 2% of the genes. Many kinases play fundamental roles in
several cellular processes such as signalling, replication and growth. Due to their involvement
in key functions, many kinases have been associated to important human pathologies such
as cancer and diabetes. Despite that most of the kinases share a highly conserved catalytic
domain, the observed in vivo substrate specificity of these enzymes show little correlation
with their sequences. In this sense is known that, in vivo, the substrate specificity of these
protein kinases is a complex phenomena that is tightly regulated by several factors.
The specific objectives of the present thesis are the quantification of the contribution —

to the kinase specificity — of two elements: i) the amino acids neighboring the phospho-
acceptor residue in the sequence of the substrate and ii) the association of protein kinases
to adaptor or scaffold proteins.
For the first objective, we started by collecting a set of experimentally determined kinase–

phosphorylation sites relationships in human, which accounted for 62.7% of human kinases
— representing 71.5% of the human kinase families — related to almost 6000 different phos-
phorylation sites in more than 1800 distinct substrates. We used these data for constructing
sequence logos and PSSMs from the sets of sequences targeted in the substrates by the
different kinases and kinases families in our data.
The analysis of the sequence logos allowed us i) to obtain a general grasp on the diversity

of sequences targeted by the different kinases, ii) to confirm that the sequence patterns
recognized by kinases in our set were comparable to the ones reported in the literature and
iii) to guide the classification of kinases and kinase families based on the residue composi-
tion of the stretch of sequences surrounding the phospho-acceptor residue (e.g., acidophilic,
basophilic, proline-directed and glutamine-directed).
Regarding the PSSMs, we have used them to identify SDRs for 22 kinase families. The

analysis of the SDRs showed that the type of amino acids recognized as SDR, their posi-
tions around the phospho-acceptor residue, as well as their frequencies, vary greatly among
the different kinase families. Some kinase families display a strong preference for particular
SDRs, which occur in more than 80% of the corresponding phosphorylation events (e.g.,
MAPKP+1 = 88.86%, CDKP+1 = 81.72%, PIKKQ+1 = 80.83% and AKTR−3 = 84.13%).
Other families show mild preferences for the SDRs identified, which occur at lower frequencies
among the corresponding phosphorylation events (e.g., GSKS−4 = 38.5%, GSKP+1 = 53.96%,
CK1S−3 = 28.5%, CK1S+3 = 31.09%, CK2D−1 = 16.19% and CK2E+3 = 45.83%). How-
ever, we have observed that multiple SDRs are generally identified in families for which the
frequencies of the SDRs tend to be relatively low. We consider that in these cases, the
presence of multiple SDRs might contribute cooperatively to the recognition of the target
site in the sequence of the substrate. Moreover, we have noted that the SDRs occur at low
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frequency (6.01% on average) among the complementary phosphorylation events. That is,
the phosphorylation events corresponding to those kinase families that do not count with the
given SDR. To our opinion, this suggests that the SDRs here identified might function not
only as elements for the positive selection of cognate target sequences, but also as negative
selection factors for non-cognate phosphorylation sites.
Continuing with the analysis of the PSSMs, in this work we have also studied their per-

formance and their statistical significance using as the test statistics the recall and the IC.
Regarding the performance, we have found negative correlations between the number of seed
phosphorylation sites and i) the percent recall of the PSSM (R = -0.59, p-value = 2.4e−31)
and ii) the IC of the PSSM (R = -0.4, p-value = 9.8e−14). To our opinion, these results
show the effect that the sequence degeneracy caused by the increase of the seed phosphory-
lation sites can exert on the performance of the PSSM and on its level of self-information.
Moreover, based on the values of IC and on the comparison to random backgrounds, we have
estimated the statistical significance of PSSMs from both independent kinases and kinases
families. We observe that, in most cases, statistical and non-statistically significant PSSMs
differ not only in their values of the IC but also in their percent recall, their AUC-ROC and
their numbers of seed phosphorylation sites.
With respect to our second objective, we started by collecting from UniProt a set of 191

proteins with known adaptor or scaffolding function, and that are known to physically interact
with at least one human kinase. These 191 proteins associate to 55% of the human kinases,
which in turn account for 72.3% of all human kinase families. Besides, we have tested the
functional enrichments of the group, and we have found over-representation of functional
terms and protein domains related to ‘protein binding’ and to ‘protein scaffolding’ functions.
To our opinion, these data suggest that i) the association to adaptors or scaffolds is a common
mechanism among human kinases and ii) that the set of 191 known adaptor/scaffold proteins
is functionally coherent with the intended biological role. Moreover, if compared to random
proteins in the human interactome, the 191 proteins (as a set) are five times more likely to
interact with a large fraction of the substrates of the human kinases they are associated to
(p-value = 1.08e−15). We consider that this result suggests a role for adaptor and scaffold
proteins in facilitating the encounter of the kinases with their cognate substrates.
In the current thesis we approached the identification of potential adaptor/scaffold proteins

for human kinases. Based on our previous findings, we devised a strategy that aimed the
identification of human proteins that interact with significant fractions of the substrates of
kinases. We executed this strategy on a group of 156 kinases (accounting for 47% of the
human kinase families) for which we have at least five substrates. For 50% of the initial
kinases (covering 33.8% of all human kinase families), we identified a set of 279 potential
adaptors/scaffolds. The set of potential adaptors/scaffolds is enriched in functional terms and
in domain families that suggest a tight link to protein-protein binding functions in processes
of cellular signalling and that also, to our opinion, support the biological role intended for
this group of proteins. Moreover, we have found that for 74.6% of the kinase–potential
adaptor/scaffold associations previously identified, the adaptor/scaffold is annotated under
cellular component terms found to be enriched among the set of substrates of the associated
kinase. We consider that these results put forward a role for the potential adaptors/scaffolds
in promoting the co-localization of the kinases and their sets of substrates.
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Finally, taking into consideration the fact that adaptors and scaffold may promote co-
localization of kinases and their substrates; we analyzed whether the association of different
kinases to common adaptors/scaffolds, might have a relationship with the in vivo substrate
cross-specificity of the kinases. In this sense, we have not found any case of two or more
kinases that, having an adaptor/scaffold in common, also share a significant number of
in vivo substrates. To our opinion, this result reinforce the concept that the association
of kinases to adaptors/scaffolds plays a fundamental role in targeting the kinases to their
corresponding substrates, most probably by recruiting the enzymes to particular locations or
macromolecular complexes.
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A1 SDRs from kinase families
Descriptive legend. This section shows the frequencies of occurrence of the SDRs of nine kinase families. Boxes within
each panel represent the SDRs. SDRs are represented by the one letter code of the amino acid and its position relative
to the phospho-acceptor residue. On the x-axis, the kinase families, on the y-axis the percentage of occurrence of each
SDR across the 22 families included in the analysis.
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A2 Sequence logos from kinase families

Sequence logos from the kinase families for which we identified at least one SDR. On the x-axis, the phospho-acceptor
residue is shown in the central position. On the y-axis, in bits, the total sequence conservation at that position of the
alignment. For each family we provide de fraction of the members for which we count with at least one phosphorylation
site, and the total number of phosphorylation sites available for the family.
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A3 List of known adaptors/scaffolds

Table 1: Known adaptor or scaffold proteins of human kinases
Kinase family Kinase Known adaptor or scaffold
AGC_AKT AKT1 1433S, 1433Z, 2AAA, BCL10, GAB2, GRB10, IKKB, JIP1, P85A, PKHO1, PRKDC, RANB3, SH2B2, SH3R1, SRBS2
AGC_AKT AKT2 PKHO1, SH3R1, SRBS2
AGC_AKT AKT3 PKHO1
AGC_DMPK MRCKB MP2K5
AGC_DMPK MRCKG 1433S
AGC_DMPK ROCK1 GAB1
AGC_GRK ARBK1 ARRB1, CAV1, GIT1, PK3CG
AGC_GRK ARBK2 GIT1
AGC_GRK GRK5 CAV1, DLGP2
AGC_GRK GRK6 NHRF1
AGC_GRK RK CAV1
AGC_MAST MAST1 AP1M2, ECSIT
AGC_NDR LATS2 JUB
AGC_NDR ST38L 1433B
AGC_NDR STK38 1433B, 1433Z, ARRB1, ARRB2
AGC_PKA KAPCA 1433Z, AKAP9, AKP13, BIRC5, CAV1, CUL5, FLNA, NEB2, RANB9, RGS14
AGC_PKA KAPCB FLNA
AGC_PKB PDPK1 1433F, 1433T, GIT1, NHRF2, P85A
AGC_PKC KPCA 1433G, 1433Z, AFAP1, AKP13, CBL, FLNA, IKKB, IQGA1, NHRF1, RBP1, SHC1
AGC_PKC KPCB 1433G, AFAP1, IKKB
AGC_PKC KPCD 1433B, 1433G, 1433Z, AFAP1, IKKB, PK3CB, PRKDC, SHC1
AGC_PKC KPCE 1433Z, AFAP1, AKAP9, IQGA1, PK3CB
AGC_PKC KPCG 1433G, AFAP1, PICK1
AGC_PKC KPCI 1433F, 1433Z, FRS3, IKKB, MP2K5, PAR6A, PAR6B, PAR6G, PARD3, SQSTM
AGC_PKC KPCL AKP13, PAR6A
AGC_PKC KPCT 1433G, BCL10, IKKB
AGC_PKC KPCZ 1433B, 1433F, 1433G, 1433T, 1433Z, FADD, GRB14, IKKB, JUB, MP2K5, P85A, PAR6A, PAR6B, PARD3, PK3CG, SQSTM
AGC_PKN PKN1 AKAP9, HOME3
AGC_PKN PKN2 NCK1, NCK2
AGC_RSK KS6A1 1433B, FLNA, GRB2, RANB3, RPTOR
AGC_RSK KS6A3 RANB3
AGC_RSK KS6A5 1433Z, ITSN1, PDLI1
AGC_RSK KS6B1 TRAF4
AGC_RSK KS6B2 JIP2
AGC_SGK SGK1 IKKB, IMA2, NHRF2
AGC_YANK ST32C GRB2
Atypical_BCR BCR 1433B, 1433E, 1433F, 1433G, 1433S, 1433T, 1433Z, CBL, DLG1, GAB2, GRB10, GRB2, LAP2, NHRF3, PK3CG
Atypical_BRD BRD4 GRB2, NCK1, P85A
Atypical_PDHK BCKD TRAF4
Atypical_PDHK PDK1 1433T
Atypical_PIKK ATM AP1B1, AP3B1, AP3B2, IKKB, MDC1, PRKDC
Atypical_PIKK ATR CLSPN, DAXX, MDC1, PRKDC
Atypical_PIKK MTOR 1433T, 1433Z, RPTOR, SEPT2
Atypical_PIKK PRKDC 1433B, 1433G, 1433Z, BIRC5, ELP1, IKKB, PP6R1, PP6R2, PP6R3, PRKDC
Atypical_RIO RIOK1 1433B
Atypical_TAF1 TAF1L PPIP1
Atypical_TIF1 TIF1B 1433Z, AAKB1, BCAR3
CAMK_CAMK1 KCC1D CUL3
CAMK_CAMK1 KCC1G ARRB2

Continued on next page
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Table 1 – continued from previous page
Kinase family Kinase Known adaptor or scaffold

CAMK_CAMK2 KCC2A 1433B, 1433T, DLG1, FLNA, GIT1, SQSTM
CAMK_CAMK2 KCC2B 1433B, SQSTM
CAMK_CAMK2 KCC2D SQSTM
CAMK_CAMK2 KCC2G FLNA, SQSTM
CAMK_CAMKL AAPK1 AAKB1, AAKB2, ABI1, IMA2, RPTOR
CAMK_CAMKL AAPK2 AAKB1
CAMK_CAMKL CHK1 1433B, 1433G, 1433S, 1433Z, CLSPN, CUL1, CUL4A, PRKDC
CAMK_CAMKL HUNK 2AAA
CAMK_CAMKL MARK1 1433G, 1433S
CAMK_CAMKL MARK2 1433B, 1433F, 1433S, 1433Z, PAR6G
CAMK_CAMKL MARK3 1433B, 1433G, 1433S, 1433Z, IKKB
CAMK_CAMKL MARK4 1433F, PAR6G
CAMK_CAMKL SIK1 1433Z
CAMK_CAMKL SIK3 1433Z
CAMK_CAMKL STK11 AP2M1, PARD3
CAMK_CASK CSKP CD2AP, CSKP, DLG1, LAP2
CAMK_DAPK DAPK1 1433T, CUL3, FADD, KLH20, PDCD6
CAMK_DAPK DAPK3 DAXX, GRB14

CAMK_MAPKAPK MAPK2 1433Z, SHC1
CAMK_MAPKAPK MKNK1 PRKDC

CAMK_MLCK MYLK GRB2, NCK1, P85A
CAMK_MLCK MYLK2 ELP1
CAMK_MLCK TITIN FLNA, SQSTM
CAMK_PKD KPCD1 1433T, 1433Z, AKP13
CAMK_PKD KPCD2 1433F, CSKP, GRIP1, PDLI7
CAMK_PKD KPCD3 IMA2
CAMK_RAD53 CHK2 IMA2, MDC1
CAMK_Trbl TRIB3 GIT1
CAMK_Trio TRIO FLNA
CK1_CK1 KC1A 1433T, 1433Z, AP3B2, BCL10, FADD, IMA1
CK1_CK1 KC1D AKAP9
CK1_CK1 KC1E 1433F
CK1_CK1 KC1G2 NCK1
CK1_VRK VRK1 RAN
CK1_VRK VRK2 KSR1, RAN
CK1_VRK VRK3 RAN

CMGC_CDK CD11B 1433B, 1433E, 1433G, 1433T, AP2M1
CMGC_CDK CDK1 1433S, BIRC5, DEDD, DIAP1, DLG1, FLNA, IL16, KHDR1, ODFP2, RPTOR
CMGC_CDK CDK14 1433B, 1433E, 1433F, 1433T
CMGC_CDK CDK16 1433F, 1433G, 1433T, 1433Z
CMGC_CDK CDK17 1433G, 1433Z
CMGC_CDK CDK18 1433Z
CMGC_CDK CDK2 BIRC5, C2D1A, CNKR2, CUL1, DBNL, DLG1, DTL, JIP4, MDC1
CMGC_CDK CDK4 BIRC5, DBNL
CMGC_CDK CDK5 DAB1
CMGC_CDK CDK9 BCL10, CLSPN, CSKP, CUL1, IMA2
CMGC_CDKL CDKL5 GRB2
CMGC_CLK CLK1 1433G
CMGC_CLK CLK2 1433G
CMGC_CLK CLK3 1433G
CMGC_DYRK DYR1A 1433B, 1433E, 1433G, 1433S
CMGC_DYRK DYR1B RANB9
CMGC_DYRK DYRK4 CUL3
CMGC_DYRK HIPK1 DAXX
CMGC_DYRK HIPK2 CUL1, DAXX, RANB9
CMGC_DYRK HIPK3 ARRB2, FADD, GRB2, TGFI1

Continued on next page
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Table 1 – continued from previous page
Kinase family Kinase Known adaptor or scaffold
CMGC_DYRK PRP4B 1433G, ARRB1, ARRB2
CMGC_GSK GSK3A 1433G
CMGC_GSK GSK3B 1433Z, BEX1, ELP1, MP2K5, SLAP1
CMGC_MAPK MK01 APBB1, ARRB1, ARRB2, CAV1, FRS2, FRS3, GAB1, GAB2, GRB10, GRB2, IQGA1, KHDR1, LTOR3, NEB2, SCRIB, SH2B1, SHC1, SQSTM
CMGC_MAPK MK03 ARRB1, ARRB2, CAV1, GAB1, GAB2, GRB10, LTOR3, SCRIB, SH2B1, SQSTM
CMGC_MAPK MK04 GAB1, GAB2
CMGC_MAPK MK06 2AAA, AAKB1, ITSN1, PDLI1, RANB9, SHC1
CMGC_MAPK MK07 1433B, DLG1, MP2K5, SH22A
CMGC_MAPK MK08 1433B, 1433S, 1433Z, CBL, ELP1, FADD, JIP1, JIP3, JIP4, P85A, PRKDC
CMGC_MAPK MK09 ARRB1, ARRB2, GRB2, JIP1, JIP2, JIP3, PRKDC
CMGC_MAPK MK10 ARRB1, ARRB2, JIP3
CMGC_MAPK MK12 DLG1, DLG2, INADL, LAP2
CMGC_MAPK MK13 JIP2
CMGC_MAPK MK14 ARRB1, FLNA, JIP4, KHDR1, SHC1, SMAD7
CMGC_MAPK MK15 TGFI1
CMGC_MAPK NLK CUL1
CMGC_SRPK SRPK1 1433B, 1433G
CMGC_SRPK SRPK2 1433B
Other_AUR AURKA BIRC5, IKKB, PARD3
Other_AUR AURKB BIRC5, KLH13, KLH21, KLHL9, PARD3
Other_AUR AURKC BIRC5
Other_BUB BUB1 AP1B1, AP3B1
Other_BUB BUB1B AP1B1, AP3B1, DNMBP

Other_CAMKK KKCC1 1433F
Other_CDC7 CDC7 CLSPN
Other_CK2 CSK21 1433B, 1433S, 1433T, ARRB1, ARRB2, CAV1, CAV2, IL16, MDC1, P85A, PKHO1, SEPT2, TAF1
Other_CK2 CSK22 ARRB2, CAV1, IL16
Other_IKK IKKA ARRB1, ARRB2, BCL10, ELP1, IKKB, PRKDC, TANK
Other_IKK IKKB 1433B, ARRB1, ARRB2, BCL10, CTNL1, CUL1, CUL3, DOK1, ELP1, FLNA, IKKB, IQGA1, PRKDC, TCAM1
Other_IKK IKKE AP1S1, GRB2, IKKB, SEPT2, TANK, TBKB1, TCAM1
Other_IKK TBK1 1433E, IKKB, NCK1, TANK, TBKB1, TCAM1
Other_MOS MOS HOME3
Other_NAK AAK1 AP1M1, AP2M1
Other_NAK GAK AP1M2, AP2M1
Other_NEK NEK1 1433F, CTNL1
Other_NEK NEK2 GIT1
Other_NEK NEK6 ARRB1
Other_NEK NEK8 GRB2, NCK1
Other_NEK NEK9 RAN
Other_NKF3 SG223 1433S
Other_NKF4 STK35 PDLI1

Other_Other-Unique RN5A IQGA1
Other_PEK E2AK2 DBNL, IKKB, TIRAP
Other_PLK PLK1 BIRC5, CENPU, CLSPN, FADD, IKKB, ITSN1, RAN, TANK
Other_PLK PLK2 CSKP, DLGP4, ELP1
Other_PLK PLK4 1433S
Other_Slob PXK P85A
Other_TLK TLK1 1433E
Other_TOPK TOPK DLG1
Other_ULK ULK2 SQSTM
Other_ULK ULK4 1433T
Other_VPS15 PI3R4 1433B, 1433G
Other_WEE WEE1 1433B, 1433S, 1433T, 1433Z
Other_Wnk WNK1 1433E, 1433G, 1433Z
RGC_RGC GUC2C NHRF3

STE_STE-Unique M3K14 ARRB1, ARRB2, ELP1, GRB10, GRB14, GRB7, IKKB, TRAF1, TRAF5
Continued on next page
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Table 1 – continued from previous page
Kinase family Kinase Known adaptor or scaffold

STE_STE-Unique M3K8 KSR2
STE_STE11 M3K1 1433E, FADD, FLNA, GRB2, IKKB
STE_STE11 M3K2 1433B, 1433G, 1433S, MP2K5, SH22A
STE_STE11 M3K3 1433B, 1433E, 1433F, 1433G, 1433T, 1433Z, 2AAA, 2AAB, DLG1, FLNA, GAB1, IKKB, IQGA1, JIP4, MP2K5, PRKDC, RMP, SCRIB, TM1L1
STE_STE11 M3K4 1433Z, SH3K1, TRAF4
STE_STE11 M3K5 1433B, 1433E, 1433F, 1433S, 1433T, 1433Z, ARRB1, ARRB2, BIRC5, DAXX, JIP3, PDCD6, TRAF1, TRAF5
STE_STE11 M3K6 1433B, 1433E, 1433F, 1433G, 1433S, 1433T, 1433Z
STE_STE20 M4K1 DAPP1, DBNL, GRB2, NCK1, P85A
STE_STE20 M4K3 GRB2, ITSN2, NCK1, SH3R1
STE_STE20 M4K5 GRB2, NCK1
STE_STE20 MINK1 1433B, 1433Z, ABI1, CSKI1, NCK1
STE_STE20 PAK1 1433G, 1433Z, FLNA, GIT1, GRB2, NCK1, NCK2, SH3K1, SRBS2
STE_STE20 PAK2 GIT1, GRB2, NCK1, SH3R1, SRBS2
STE_STE20 PAK3 NCK1
STE_STE20 PAK4 1433G, 1433S, 1433Z, GRB2, RAN
STE_STE20 PAK6 1433T
STE_STE20 SLK NHRF3
STE_STE20 STK24 STRN, T3JAM
STE_STE20 STK25 1433Z, CCM2, STRN
STE_STE20 STK3 CNKR1
STE_STE20 STK4 1433G, CNKR1
STE_STE20 STRAB GRB2
STE_STE20 TNIK AKAP9, CNKR2, NCK1
STE_STE7 MP2K1 GRB10, JIP3, KSR1, KSR2, LTOR3
STE_STE7 MP2K2 DLG1, KSR1
STE_STE7 MP2K3 ARRB1, JIP2
STE_STE7 MP2K4 ARRB1, ARRB2, JIP3, JIP4
STE_STE7 MP2K5 1433Z, GRB2
STE_STE7 MP2K7 CNKR1, FADD, JIP1, JIP2, JIP3
TKL_IRAK IRAK1 FADD, IKKB, MYD88, SQSTM, TAB2, TRAF4
TKL_IRAK IRAK2 MYD88, TIRAP
TKL_IRAK IRAK3 MYD88
TKL_IRAK IRAK4 MYD88, TIRAP
TKL_LISK LIMK1 1433Z
TKL_LISK LIMK2 PARD3
TKL_MLK ILK NCK2, SHC1
TKL_MLK M3K10 1433E, CNKR1, JIP1, JIP2
TKL_MLK M3K11 IKKB, JIP1, JIP2, JIP3, TRAF5
TKL_MLK M3K12 JIP1, JIP2
TKL_MLK M3K13 IKKB, JIP1
TKL_MLK M3K7 1433E, BCL10, ELP1, FLNA, IKKB, JIP1, SMAD7, TAB2, TAB3, TRAF5
TKL_MLK M3KL4 1433B
TKL_MLK MLTK 1433G, 1433S, 1433Z, ITSN1
TKL_RAF ARAF 1433E, 1433G, 1433S, 1433Z, KLH12, P85A
TKL_RAF BRAF 1433B, 1433G, 1433S, 1433T, 1433Z
TKL_RAF RAF1 1433B, 1433E, 1433F, 1433G, 1433S, 1433T, 1433Z, ARRB2, CNKR1, CNKR2, GRB10, JIP3, KSR2
TKL_RIPK RIPK1 CRADD, FADD, IKKB, SQSTM, TAB2, TANK, TCAM1, TRAF1
TKL_RIPK RIPK2 TAB2, TCAM1, TRAF1, TRAF5
TKL_RIPK RIPK3 1433E, FADD, FLNA, IQGA1, NEB2, PRKDC
TKL_RIPK RIPK4 TRAF1, TRAF4, TRAF5
TKL_STKR ACV1B SMAD7
TKL_STKR ACVL1 CAV1
TKL_STKR ACVR1 AP2B1, IKKB, JUB, SQSTM
TKL_STKR AVR2A DAXX, LAP2, MAGI2
TKL_STKR AVR2B LAP2
TKL_STKR BMR1A SMAD7

Continued on next page

122



Table 1 – continued from previous page
Kinase family Kinase Known adaptor or scaffold
TKL_STKR BMR1B RAN, SASH3, SH3K1, SMAD7, SQSTM
TKL_STKR TGFR1 1433Z, AP2B1, CAV1, CUL5, IKKB, P85A, P85B, PAR6A, RAN, SCRIB, SMAD7, SQSTM
TKL_STKR TGFR2 AP2B1, DAXX, GRB2, P85A, P85B, SCRIB, SHC1, SMAD7, TGFI1

TK_Abl ABL1 1433S, 1433Z, ABI1, AKAP6, CAV1, CBL, CD2AP, DAAM1, DLGP1, DLGP2, DLGP3, DLGP4, DOK1, FLNA, FYB, G3BP2, GRB10, GRB2, GRIP2, NCK1,
P85A, PPIP1, PRKDC, RAN, SHB, SHC1, SHD, SRBS2

TK_Abl ABL2 ABI1, GRB2, NCK1, P85A, SRBS2
TK_Ack ACK1 GRB2, HSH2D, MAGI3, NCK1
TK_Ack TNK1 1433S
TK_Alk ALK GRB2, SHC1, SHC3
TK_Alk LTK P85A
TK_Axl MERTK GRB2
TK_Axl TYRO3 P85A, RANB9
TK_Axl UFO CBL, GRB2, NCK2, P85A, P85B, RANB9, SHC1
TK_Csk CSK ARRB1, CAV1, DAG1, DOK1, DOK3, PARD3, SHC1, TGFI1
TK_DDR DDR1 NCK2, SHC1
TK_DDR DDR2 SHC1

TK_EGFR EGFR 1433T, 1433Z, ALDOA, AP2M1, APBB1, CAV1, CAV3, CBL, DOK2, DOK4, DOK5, DOK6, GAB1, GRB10, GRB14, GRB2, GRB7, IMA1, JIP1, JIP2, NCK1,
NCK2, P85A, P85B, SH22A, SH2B1, SH3K1, SHC1, SHC2, SHC3, SLAP1, SRBS2, TM1L1

TK_EGFR ERBB2 APBB1, CAV1, CBL, CUL5, DAB1, DOK1, DOK4, DOK6, GAB2, GRB2, GRB7, JIP1, JIP2, LAP2, NCK2, P85A, P85B, SH22A, SH2B2, SHC1, SHC2, SHC3,
SLAP1, SLAP2

TK_EGFR ERBB3 DAB1, DAPP1, GRB2, GRB7, NCK1, NCK2, P85A, P85B, RASL2, SHC1, SHC3
TK_EGFR ERBB4 DLG1, DLG2, GRB2, NCK2, P85B, SHC1
TK_Eph EPHA2 BACD2, CBL, GRB2, IMA3, SHC1
TK_Eph EPHA7 SDCB1
TK_Eph EPHA8 CBL, PK3CG
TK_Eph EPHB1 CBL, GRB10, GRB2, GRB7, NCK1
TK_Eph EPHB2 ITSN1, KSR1, PICK1
TK_Eph EPHB6 CBL, GRB2
TK_FGFR FGFR1 FRS2, FRS3, GRB2, NCK2, P85A, P85B, SHB, SLAP1
TK_FGFR FGFR2 1433Z, GRB2, P85A, SHC1
TK_Fak FAK1 GIT1, GRB2, GRB7, JIP3, NCK1, NCK2, P85A, SHC1, TGFI1
TK_Fak FAK2 DLGP3, GIT1, GRB2, P85A, SHC1, SRBS2, TGFI1
TK_Fer FER ABI1
TK_Fer FES ABI1, HSH2D, P85A
TK_InsR IGF1R 1433B, 1433E, 1433G, 1433Z, ARRB2, CBL, GRB10, GRB14, P85A, P85B, SHC1
TK_InsR INSR 1433B, CAV1, CAV3, CBL, DOK1, GAB1, GRB10, GRB14, GRB7, P85A, SH2B1, SH2B2, SHC1
TK_JakA JAK1 GRB2, SH2B2
TK_JakA JAK2 2AAB, GAB2, GRB10, GRB2, NCK1, P85A, SH2B1, SH2B2, SHC1
TK_JakA JAK3 KHDR1, P85A, SH2B2
TK_JakA TYK2 CBL, KHDR2, P85A
TK_Met MET 1433Z, CBL, GAB1, GRB2, P85A, RANB9, RBP10, SHC1
TK_Met RON 1433T, 1433Z, CBL, GAB1, GRB2, SHC1

TK_PDGFR CSF1R CBL, P85A, SHC1
TK_PDGFR FLT3 GRB2, IKKB, NCK1, P85A, SHC1
TK_PDGFR KIT CBL, DOK1, GRB2, GRB7, P85A, P85B, PK3CG, SH2B2
TK_PDGFR PGFRA CAV1, CAV3, CBL, GRB2, P85A
TK_PDGFR PGFRB CAV1, CAV3, CBL, GAB1, GRB10, GRB14, GRB2, GRB7, NCK1, NCK2, NHRF1, NHRF2, P85A, P85B, SH2B2, SHB, SHC1, SLAP1
TK_Ret RET CBL, DOK1, DOK5, DOK6, FRS2, GRB10, GRB2, GRB7, P85A, PDLI7, SHC1, SHC3
TK_Ryk RYK ABI1, PRKDC
TK_Src BLK CBL
TK_Src FGR ABI1, ARRB1, CBL, DOK1, SH3K1
TK_Src FRK ABI1

TK_Src FYN ABI1, AKAP6, CAV1, CBL, CD2AP, DAG1, DLGP1, DLGP2, DLGP3, DLGP4, DOK1, DOK3, DOK4, FLNA, FYB, GRB10, KHDR1, NCK1, P85A, P85B,
SH2B2, SH3K1, SHC1, TGFI1, TM1L1

TK_Src HCK ABI1, ARRB1, CBL, CD2AP, DOK1, DOK2, KHDR1, P85A, P85B, SH3K1
TK_Src LCK ABI1, CBL, DAPP1, DLG1, DOK1, DOK3, KHDR1, P85A, PK3CG, SH22A, SH3K1, SHC1, SQSTM
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Table 1 – continued from previous page
Kinase family Kinase Known adaptor or scaffold

TK_Src LYN ABI1, CBL, DAPP1, DOK1, DOK2, DOK3, GAB2, KHDR1, PRKDC, SH2B2, SH3K1, SHC1
TK_Src PTK6 KHDR1

TK_Src SRC ABI1, AFAP1, AKAP6, AP2B1, ARRB1, ARRB2, CAV1, CAV2, CBL, DAAM1, DAB1, DAG1, DAPP1, DLGP1, DLGP2, DLGP3, DLGP4, DOK1, DOK2,
DOK4, FLNA, GAB1, GAB2, GRB10, GRB2, IKKB, JIP3, KHDR1, P85A, SDCB1, SH22A, SH3K1, SHB, SHC1, SHC3, TRAF1

TK_Src YES ABI1, CBL, DOK1, NHRF1
TK_Syk KSYK CBL, DBNL, GRB2, MYD88, NHRF1, P85A, P85B, SH2B2, SHC1, SLAP1
TK_Syk ZAP70 CBL, DBNL, GAB2, GRB2, PK3CG, SHB, SHC1, SLAP1, SLAP2
TK_Tec BMX CAV1, ELP1
TK_Tec BTK ARRB1, CAV1, CBL, DAAM1, DAPP1, GRB2, KHDR1, MYD88, SH2B2, TIRAP
TK_Tec ITK ABI1, GRB2, IMA2, KHDR1, SH22A
TK_Tec TEC DOK1, P85B
TK_Tec TXK SH22A
TK_Tie TIE2 GRB2, SHC1
TK_Trk NTRK1 CAV1, CBL, FRS2, FRS3, GRB2, P85A, RUSC1, SH2B1, SH2B2, SHC1, SHC2, SHC3, SQSTM
TK_Trk NTRK2 AP1B1, DOK5, FRS2, FRS3, NCK2, P85A, SH2B1, SHC1, SHC2, SHC3, SQSTM
TK_Trk NTRK3 DOK5, FRS2, SHC1, SHC2

TK_VEGFR VGFR1 CBL, GRB2, NCK1, P85A
TK_VEGFR VGFR2 CAV1, CBL, FRS2, GRB10, GRB2, IQGA1, NCK1, SH22A, SHB, SHC1, SHC2
TK_VEGFR VGFR3 GRB2, SHC1, SHC3
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A4 List of potential adaptors/scaffolds

Table 2: Potential adaptor or scaffold proteins of human kinases
Kinase family Kinase Number of substrates Potential adaptor or scaffold

AGC_AKT AKT1 119 1433B, 1433E, 1433G, 1433T, 1433Z, ABL1, ACTB, BCL2, CBP, CCND1, CTNB1, EP300, ESR1, FHL2, GRB2, GSK3B, NCOA1, NCOR2, NEMO, P53,
P85A, PAK2, RB, SF3A2, SIRT1, SMAD2, SMAD3, SRC, TRAF2, TRAF6, UB2D1, UBC, UBC9, ZHX1

AGC_AKT AKT2 14 CBP, UBC9
AGC_DMPK ROCK1 24 DPYL1, GRB2, IKKE, TRAF6, TSC1
AGC_DMPK ROCK2 6 DPYL4
AGC_GRK ARBK1 15 NHRF1, TSC1
AGC_PKB PDPK1 21 1433Z, CASP3, GSK3B, MAD1, PDK1, RAF1, TAU, VIME
AGC_PKC KPCB 45 1B42, EGFR, GBLP, P85A, PASK

AGC_PKC KPCD 72 1433Z, ABL1, CBL, CSK2B, DAXX, EGFR, ERBB2, ERBB3, ESR1, GRB2, IGF1R, M3K5, MDM2, NEMO, P53, P85A, PASK, PIAS1, SRC, TF65, UBC,
XRCC6, YBOX1

AGC_PKC KPCE 26 1433Z, FHL2, PASK
AGC_PKC KPCG 27 EGFR, P85A
AGC_PKC KPCT 19 NEMO, TSC1
AGC_PKC KPCZ 29 1433E, EP300, NCF1, TF65
AGC_PKG KGP1 29 PLS1, UBC, ZYX
AGC_PKN PKN1 6 1433Z, CBX5
AGC_RSK KS6A1 34 AKT1, CHD3, EP300, GRB2, NCOA1, NCOR2, P53, RXRA, SMAD3, SRC, TF65, UBC9
AGC_RSK KS6A3 24 1433G, 1433Z, CHD3, EP300, PASK, UBC
AGC_RSK KS6A5 20 1433G, 1433Z, EP300, NCOR2
AGC_RSK KS6B1 17 AKT1, KS6A1
AGC_SGK SGK1 17 1433G, 1433Z, KS6A1, MP2K1

Atypical_PDHK PDK1 6 AKT1, CASP3, CENPR, MAD1, PDPK1, TAU
Atypical_PIKK MTOR 9 TAU

Atypical_PIKK PRKDC 27 1433Z, ACTB, ANDR, APLF, CBP, CEBPB, CHD1L, CSK21, DAXX, EP300, GRB2, GSK3B, HS90A, IMA2, MDM2, NCOR2, NR4A1, PNKP, RFA1, SIRT1,
UBC

CAMK_CAMK1 KCC4 9 ESR1, HIF1A, UBC9
CAMK_CAMK2 KCC2G 14 GRB2, NCK1, P85A, PLCG1
CAMK_CAMKL AAPK1 27 1433B, 1433G, 2AAA, AKT1, CDC37, CHK2, GRB2, HNRL1, IMMT, P53, SIRT1, UBC9
CAMK_CAMKL CHK1 19 1433B, 1433E, 1433Z, CHK2, EP300, MDM2, UBC, UBC9
CAMK_CAMKL MARK2 6 1433S, 1433Z, HIF1A, UBC9
CAMK_DAPK DAPK1 6 B2CL1, P63
CAMK_DAPK DAPK3 8 SNAI1, UBB

CAMK_MAPKAPK MAPK2 23 1433B, 1433Z, BHE40, CHK1, CHK2, DAXX, EP300, GSK3B, MDM2, MDM4, P53, PIAS1, PLK1, SETB1, SRBS2, ZHX1
CAMK_PIM PIM1 13 1433B, 1433Z, P53, SMAD3, UBC
CAMK_PKD KPCD1 28 1433S, ABL1, EGFR, EP300, SMAD3, UBC9
CAMK_RAD53 CHK2 17 1433B, 1433Z, ANDR, CBP, CHK1, COM1, FHL2, HDAC1, MDM2, MDM4, RB, SIRT1, SUMO1

CK1_CK1 KC1A 32 1433E, 1433Z, ANDR, B2CL1, CBP, CHK1, CTNB1, EP300, FHL2, FLNA, M3K5, PIAS1, PIN1, PSN1, SETB1, UBC9, ZHX1
CK1_CK1 KC1D 15 ANDR, CBP, FOXO3, GSK3B, HDAC1, KAT2B, PSN1

CMGC_CDK CDK3 6 EP300, ESR1
CMGC_CDK CDK4 11 ANDR, COM1, DGKZ, E2F4, EP300, MYC
CMGC_CDK CDK5 43 1433Z, ABL1, ANDR, DYN2, EGFR, ERBB2, GSK3B, RAC1, SRC
CMGC_CDK CDK6 8 CCND1, CCND3, CDK2, HDAC1, MCM7
CMGC_CDK CDK7 17 CBP, CCND1, CCND3, CD2A1, CDN1A, CDN2C, MED1, NCOA1, NCOA3, NCOA6, NCOR1, NCOR2, NR0B2, NRIP1, PIAS1, PML, PNRC2, SP1
CMGC_CDK CDK9 7 ANDR, EP300, HDAC1, NCOA6, PIAS4, PIN1, PSD11, ZBTB3
CMGC_DYRK DYR1A 7 DYN2
CMGC_DYRK DYRK2 7 GSK3B, KITH
CMGC_DYRK HIPK2 8 CBP, EP300, PIAS1, UBC9
CMGC_GSK GSK3A 16 CHIP, LEF1, RB

CMGC_MAPK MK03 119 1433B, 1433Z, ANDR, CBP, CHIP, CSK2B, DAXX, EGFR, EP300, ESR1, GCR, GRB2, HDAC1, JUN, MDM2, MED25, MK01, MK14, NCOA1, NCOA3,
NCOA6, NCOR1, NCOR2, NR0B2, NR1H2, NR4A1, P53, P85A, PIAS1, PPARG, RB, RXRA, SMAD3, SMAD4, SP1, SRC, SUMO1, TF65, UBC9

Continued on next page
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Table 2 – continued from previous page
Kinase family Kinase Number of substrates Potential adaptor or scaffold
CMGC_MAPK MK09 27 A4, ASPP2, ATF3, B2CL1, BCL2, GSK3B, IMA2, MK08, PASK, PLK1, SIRT1, UBC, UBC9
CMGC_MAPK MK11 11 RBL2
CMGC_MAPK MK12 6 A4
Other_AUR AURKA 20 1433Z, ANXA7, DDX5, H4, KITH, LMO4, MDM2, SNAI1, TP53B
Other_AUR AURKB 21 CBX5
Other_IKK IKKA 14 ANDR, CBP, ESR1, FBW1A, FOXO1, IKBA, NCOA3, NFKB1, P53, RS3, SMAD4, TF65, UBC
Other_IKK IKKB 15 CBP, SMAD3, TF65, UBC
Other_NEK NEK6 6 TAU
Other_PEK E2AK2 6 1433Z, 2AAA, CHK2, GSK3B, IKKB, UBC
Other_PLK PLK1 45 ABL1, ANDR, GRB2, P53, VHL
Other_PLK PLK3 11 CHK1, HDAC1, IMA2, PLK1, UBC, XPO1
Other_TTK TTK 7 P53, UBC9

STE_STE-Unique M3K8 17 1B42, AAKB1, IKKE, MPIP3, TRAF6, TSC1
STE_STE20 PAK2 10 GRB2
STE_STE7 MP2K1 9 MP2K2
STE_STE7 MP2K4 6 ARRB1, ARRB2, CD2A1, DUS1, DUS10, JUN, MKNK2, NCOA3, P85A, SSU72, TF65, ZEP1
TKL_MLK ILK 7 ZHX1
TKL_MLK M3K7 7 1433S

TK_Abl ABL1 55 ANDR, ARRB1, ASPP2, CBL, CRK, EGFR, EP300, ERBB2, ERBB3, ESR1, FBW1A, FYN, GRB2, LCK, MDM2, MED28, MK06, NCK1, NR0B2, P53, P85A,
PLCG1, PLS1, PTN12, PTPRB, PTPRC, PTPRG, PTPRJ, PTPRO, SRC, TF65, UBC, UBC9

TK_Csk CSK 11 ABI1, ABL1, ABL2, ADA15, ASAP1, CBL, CDN1B, ERBB2, FAK1, KHDR1, MED28, PAK2, PTPRZ, RL10, SOS1, SPR2A

TK_EGFR EGFR 34

ABI1, ABL1, ABL2, AFF2, AIRE, AKAP2, ARHGB, ASAP1, ASAP2, DLG4, DLGP1, DLGP3, DLX4, DNJA3, DUS15, EFS, ERBB2, ERBB3, ERBB4, EXTL3,
FANCA, FCG2B, FCG2C, FLNA, FLNB, FLNC, FYN, GHR, GRB2, GSCR1, I20L2, ICAL, ID4, IKKE, INSR, JAK2, LCP2, M4K1, MEPE, MINT, MLL4, MYH9,
NTRK1, NTRK2, P85A, PAR3, PDIA2, PHAR2, PTN12, PTPRB, PTPRC, PTPRG, PTPRJ, PTPRO, RIN3, RRAS, SHAN2, SHAN3, SNX17, SNX3, SNX7,

SOS1, SOS2, SRC, STF1, SUV92, TGON2, UBC
TK_InsR INSR 18 ABI1, ASAP1, EGFR, ERBB2, ERBB3, GRB2, IGF1R, IRS1, NTRK1, P85A, PGFRB, SRC, UBC
TK_JakA JAK1 9 ERBB2
TK_JakA JAK2 19 1433Z, ERBB2, FINC, GRB10, GRB2, GSTK1, HS90B, MP2K1, MP2K2, P85A, PTPRB, PTPRC, PTPRJ

TK_PDGFR PGFRB 6

ABI1, ABL1, ABL2, ADA15, AIRE, AKAP6, APOL5, ASAP1, ASAP2, ASB16, BCAR1, CBL, CKAP5, CP4F2, DAG1, DLGP1, DLGP2, DLGP3, DLGP4,
DLX4, DOCK1, DOCK3, DPOD1, DUS15, E41L3, EGFR, ERBB2, ERBB3, EXTL3, FAK1, FANCA, FCG2B, FCG2C, FLNA, GASR, GNS, GRB2, HCN2,

HXC8, I20L2, ICAL, KI67, LCP2, M4K1, MED28, MEPE, NKX21, P85A, PAK2, PAR3, PAX3, PAX7, PDIA2, PRIC3, RIN3, RPGF1, RPP38, RRAS, RTN4,
SELN, SHAN3, SHRM2, SNX17, SNX3, SOS1, SOS2, SP1, SRC, TAU, TULP4

TK_Ret RET 10 DUS1, ERBB2, KS6B1
TK_Src FYN 50 EGFR, ERBB2, ERBB3, ERBB4, GRB2, NCK1, P85A, PSN1, PTN12, PTPRB, PTPRC, PTPRG, PTPRJ, SH21A, SRC
TK_Src HCK 13 ABI1, ABL1, ASAP1, CRKL, EGFR, ERBB2, FYN, GRB2, LCK, NCK1, P85A, SRC
TK_Src LYN 33 ABL1, CRK, EGFR, ERBB2, ERBB3, FYN, GRB2, JAK2, LCK, NCK1, P85A, PLCG1, SRC
TK_Syk KSYK 25 ABI1, EGFR, ERBB2, FLNA, FYN, GRB2, MED28, NCK1, P85A, PLCG1, SH3K1, SRC, UBC
TK_Syk ZAP70 9 EGFR, GRB2, SRC
TK_Tec BTK 9 ERBB2
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A5 Cellular compartment annotation of potential adaptors/scaffolds

Table 3: Cellular compartment annotation of potential adaptor or scaffold proteins
Kinase GO description Enrichment ratio Adjusted p-value Potential adaptor or scaffold
AAPK1 cytosol 3.89 3.93e−02 1433B, 1433G, 2AAA, AKT1, CDC37, GRB2, P53

ABL1 cytosol 3.24 3.74e−03 ARRB1, CBL, CRK, FBW1A, FYN, GRB2, LCK, MDM2, NCK1, P53, P85A, PLCG1, PLS1, PTN12, SRC, TF65,
UBC

ABL1 perikaryon 18.7 3.73e−02 ESR1
AKT1 intracellular 8.5 5.85e−03 CCND1, NEMO, SMAD2

AKT1 nucleus 3.11 2.20e−06 1433B, 1433T, ABL1, BCL2, CBP, CCND1, CTNB1, EP300, ESR1, FHL2, GRB2, GSK3B, NCOR2, NEMO, P53,
PAK2, RB, SIRT1, SMAD2, SMAD3, SRC, TRAF6, UBC9, ZHX1

AKT1 nucleoplasm 2.74 1.95e−04 1433Z, CBP, CCND1, EP300, ESR1, FHL2, NCOA1, NCOR2, P53, RB, SF3A2, SIRT1, SMAD2, SMAD3, UB2D1,
UBC

AKT1 transcription factor complex 3.86 3.66e−02 CBP, CTNB1, EP300, SMAD2, SMAD3

AKT1 cytoplasm 2.84 3.85e−03 1433B, 1433E, 1433T, 1433Z, ABL1, ACTB, BCL2, CBP, CTNB1, EP300, GRB2, GSK3B, NEMO, P53, SIRT1,
SMAD2, SMAD3, TRAF2, TRAF6, UB2D1, UBC9

AKT1 cytosol 2.6 8.80e−05 1433B, 1433E, 1433G, 1433Z, ABL1, ACTB, BCL2, CCND1, CTNB1, GRB2, GSK3B, NEMO, P53, P85A, PAK2,
SMAD2, SMAD3, SRC, TRAF2, TRAF6, UB2D1, UBC

ARBK1 apical plasma membrane 15.7 4.08e−02 NHRF1
CDK4 chromatin 16.12 3.76e−02 EP300
CDK4 nucleus inf 3.68e−02 ANDR, DGKZ, EP300, MYC, RBBP8
CDK4 nucleoplasm 12.43 9.20e−03 ANDR, E2F4, EP300, MYC
CDK4 transcription factor complex 20.92 1.67e−02 E2F4, EP300
CDK5 cytosol 4.15 9.67e−04 1433Z, ABL1, DYN2, GSK3B, RAC1, SRC
CDK5 cytoskeleton 8 4.50e−07 SRC
CDK5 basolateral plasma membrane 8.77 4.22e−04 EGFR, ERBB2
CDK5 axon 13.27 3.09e−06 ANDR

CDK7 cyclin-dependent protein kinase
holoenzyme complex 67.98 3.74e−03 CCND1, CCND3, CDN1A

CDK7 nucleus 17.82 6.33e−03 CBP, CCND1, CCND3, CD2A1, CDN1A, CDN2C, MED1, NCOA3, NCOA6, NCOR1, NCOR2, NR0B2, NRIP1,
PIAS1, PML, PNRC2, SP1

CDK7 nucleoplasm 16.44 5.40e−06 CBP, CCND1, CDN1A, MED1, NCOA1, NCOA3, NCOA6, NCOR1, NCOR2, NR0B2, PIAS1, PML
CDK7 transcription factor complex 20.79 4.41e−04 CBP, NCOA6, NCOR1
CDK9 nucleoplasm inf 7.33e−05 ANDR, EP300, HDAC1, NCOA6, PIN1, PSD11
CDK9 PML body 61.38 4.19e−03 PIAS4
CHK1 nucleus inf 2.06e−04 1433B, EP300, MDM2, UBC9
CHK1 nucleoplasm 10.16 1.30e−04 1433Z, CHK2, EP300, MDM2, UBC
CHK1 PML body 27.87 2.91e−03 CHK2, UBC9
CHK2 nucleus 17.82 6.02e−03 1433B, ANDR, CBP, CHK1, FHL2, HDAC1, MDM2, MDM4, RB, RBBP8, SIRT1, SUMO1
CHK2 nucleoplasm 9.36 7.16e−04 1433Z, ANDR, CBP, CHK1, FHL2, HDAC1, MDM2, RB, SIRT1, SUMO1
CHK2 PML body 29.86 3.25e−03 RB, SIRT1, SUMO1
CHK2 Rb-E2F complex 553.88 5.46e−03 RB
CSK plasma membrane 12.52 9.45e−03 CBL, ERBB2, PAK2, SOS1
CSK membrane raft 33.87 2.74e−03 ERBB2

DYRK2 cytosol inf 1.30e−02 GSK3B, KITH

EGFR cytoplasm inf 1.28e−03 ABL1, AIRE, ARHGB, ASAP1, DNJA3, DUS15, EFS, ERBB4, FANCA, FLNA, FLNB, FLNC, GRB2, ID4, IKKE,
JAK2, MYH9, PTN12, SHAN2, SNX17, SNX3

EGFR endosome 8.47 6.48e−04 FYN, GRB2, NTRK1

EGFR cytosol 4.78 1.90e−03 ABI1, ABL1, ABL2, ARHGB, DNJA3, ERBB4, FLNA, FLNB, FLNC, FYN, GRB2, IKKE, INSR, JAK2, LCP2,
MYH9, P85A, PTN12, SNX17, SOS1, SOS2, SRC, UBC

Continued on next page
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Table 3 – continued from previous page
Kinase GO description Enrichment ratio Adjusted p-value Potential adaptor or scaffold
FYN plasma membrane 7.48 1.25e−10 EGFR, ERBB2, ERBB3, ERBB4, GRB2, NCK1, P85A, PSN1, PTN12, PTPRC, PTPRJ, SRC
FYN cell junction 3.98 3.15e−02 PTN12
HCK cytosol 9.49 1.01e−02 ABI1, ABL1, CRKL, FYN, GRB2, LCK, NCK1, P85A, SRC
IKKA nucleus inf 5.87e−03 ANDR, CBP, ESR1, FBW1A, FOXO1, IKBA, NCOA3, NFKB1, P53, RS3, SMAD4, TF65
IKKA nucleoplasm 11.68 1.97e−03 ANDR, CBP, ESR1, FOXO1, NCOA3, NFKB1, P53, SMAD4, TF65, UBC
IKKA I-kappaB/NF-kappaB complex 806.18 3.07e−03 IKBA, NFKB1
IKKB cytosol 11.24 1.19e−03 SMAD3, TF65, UBC
INSR cytosol 12.11 5.41e−04 ABI1, GRB2, IRS1, P85A, SRC, UBC
JAK2 cytosol 5.61 3.98e−02 1433Z, GRB10, GRB2, HS90B, MP2K1, MP2K2, P85A
KC1A lateral plasma membrane 38.75 3.46e−02 CTNB1

KC1A APC-Axin-1-beta-catenin
complex 275.94 4.18e−02 CTNB1

KC1D axon 25.5 2.77e−04 ANDR, PSN1
KC1D growth cone 45.05 1.48e−03 PSN1

KC1D Axin-APC-beta-catenin-GSK3B
complex 170.42 3.30e−02 GSK3B

KCC2G vesicle membrane 19.29 7.14e−04 GRB2, NCK1
KCC4 nucleoplasm 18.65 2.78e−03 ESR1, HIF1A
KCC4 transcription factor complex 20.48 1.69e−02 HIF1A
KPCD integral to plasma membrane 3.18 4.68e−02 ERBB3, IGF1R
KS6A5 nucleus 8.9 2.51e−02 EP300, NCOR2
KS6B1 cytosol 9.74 7.05e−04 AKT1, KS6A1
KSYK plasma membrane 7.24 5.40e−04 EGFR, ERBB2, FLNA, FYN, GRB2, NCK1, P85A, PLCG1, SH3K1, SRC, UBC
LYN plasma membrane 5.21 3.18e−04 CRK, EGFR, ERBB2, ERBB3, FYN, GRB2, LCK, NCK1, P85A, PLCG1, SRC
M3K8 nucleus 16.76 1.37e−02 AAKB1, IKKE, MPIP3, TRAF6
M3K8 cytosol 8.43 6.26e−03 AAKB1, IKKE, MPIP3, TRAF6, TSC1
MAPK2 cytosol 5.52 5.79e−03 1433B, 1433Z, CHK1, DAXX, GSK3B, MDM2, P53, PLK1
MK03 nuclear chromosome 3.7 3.17e−02 JUN
MK03 nuclear chromatin 6.24 9.16e−04 ANDR, CBP, NCOA1, NCOR1, P53, RXRA
MK03 insoluble fraction 15.79 3.25e−03 MK01

MK03 nucleus 2.95 5.63e−06
1433B, ANDR, CBP, CSK2B, DAXX, EGFR, EP300, ESR1, GCR, GRB2, HDAC1, MDM2, MK01, MK14, NCOA3,
NCOA6, NCOR1, NCOR2, NR0B2, NR1H2, NR4A1, P53, PIAS1, PPARG, RB, RXRA, SMAD3, SMAD4, SP1, SRC,

SUMO1, TF65, UBC9

MK03 nucleoplasm 2.93 1.86e−05 1433Z, ANDR, CBP, EP300, ESR1, GCR, HDAC1, JUN, MDM2, MED25, MK01, MK14, NCOA1, NCOA3, NCOA6,
NCOR1, NCOR2, NR0B2, NR1H2, NR4A1, P53, PIAS1, PPARG, RB, RXRA, SMAD3, SMAD4, SUMO1, TF65

MP2K1 soluble fraction 16.06 4.68e−02 MP2K2
MP2K1 late endosome 51 7.89e−03 MP2K2
MP2K1 focal adhesion 34.16 2.92e−03 MP2K2
MP2K4 nucleoplasm 27.92 7.06e−03 DUS1, JUN, NCOA3, TF65
PAK2 cytosol 12.94 1.35e−02 GRB2
PDPK1 soluble fraction 9.11 2.71e−02 1433Z
PDPK1 mitochondrion 6.81 2.48e−02 1433Z, CASP3, MAD1, PDK1
PKN1 histone deacetylase complex 81.8 3.63e−02 CBX5
PLK1 nucleus 4.33 7.49e−04 ABL1, ANDR, GRB2, P53, VHL
PLK1 nucleoplasm 5.34 2.47e−06 ANDR, P53
PLK1 cytosol 3.44 2.83e−03 ABL1, GRB2, P53, VHL
PLK3 nucleus inf 4.60e−02 CHK1, HDAC1, IMA2, PLK1
PLK3 nucleoplasm 12.43 1.15e−02 CHK1, HDAC1, IMA2, PLK1, UBC, XPO1

PRKDC nucleus 30.56 1.84e−06 ANDR, APLF, CBP, CEBPB, CHD1L, CSK21, DAXX, EP300, GRB2, GSK3B, IMA2, MDM2, NCOR2, NR4A1,
PNKP, RFA1, SIRT1

PRKDC nucleoplasm 9.45 4.99e−07 1433Z, ANDR, CBP, EP300, IMA2, MDM2, NCOR2, NR4A1, RFA1, SIRT1, UBC
Continued on next page
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Kinase GO description Enrichment ratio Adjusted p-value Potential adaptor or scaffold
RET cytosol 11.64 2.71e−02 KS6B1
TTK nucleolus 17.51 4.41e−02 P53
TTK PML body 61.38 4.75e−03 P53, UBC9
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Protein kinases participate in a myriad of cellular processes of major biomedical interest. The in vivo substrate specificity of these
enzymes is a process determined by several factors, and despite several years of research on the topic, is still far from being totally
understood. In the present work, we have quantified the contributions to the kinase substrate specificity of the phosphorylation
sites and their surrounding residues in the sequence and of the association of kinases to adaptor or scaffold proteins. We have
used position-specific scoring matrices (PSSMs) to represent the stretches of sequences phosphorylated by different families of
kinases. From these PSSMs we have identified specificity determinant residues (SDRs) for several kinase families, and we have
also identified relationships between the number of phosphorylation sites from which a PSSM is generated and the statistical
significance and the performance of that PSSM. Additionally, we have found that proteins with known function as adaptors or
scaffolds (kAS), tend to interact with a large fraction of the substrates of the kinases. Based on this characteristic, we have used
the human interactome to identify a set of potential adaptors/scaffolds (pAS) for human kinases. Our results suggest that pAS
proteins tend to co-localize with the substrates of the kinases they are associated to, and that these associations may contribute
significantly to diminish crossed-specificity of protein kinases. In general, our results indicate the relevance of several SDRs
for both the positive and negative selection of phosphorylation sites by kinase families and also suggest that the association of
kinases to pAS proteins may be an important factor for the localization of the enzymes with their set of substrates.

1 Introduction

Phosphorylation is the most common post-translational mod-
ification of proteins, and is also an important mechanism for
the regulation of protein function.1 Protein phosphorylation
is a reversible and fast reaction that have been conserved in
evolution as a mechanism for regulating proteins in a non
transcription-dependent manner.2 The addition (or removal)
of a phosphate group, can regulate different characteristics and
properties of the affected protein such as its conformation, its
activation state, its interactions with other proteins or its cel-
lular localization.3

Protein kinases are the enzymes that catalyze the phospho-
rylation reaction. In human there have been described 518
protein kinases, which constitutes one of the largest families of
proteins and accounts for nearly 2% of our genes.4 Kinases are
key players in several cellular processes and their deregulation
have been tightly related to pathologies such as cancer2,5 and
diabetes6,7. Most protein kinases share a common fold of the
catalytic domain, but despite their similarities at the catalytic
region, kinases have achieved a remarkable sequence diversity

† Electronic Supplementary Information (ESI) available: DOI: 10.1039/xyz
a Joint IRB-BSC Program in Computational Biology, Institute for Research in
Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, Barcelona 08028, Spain.
Tel: +34 93 40 39690; E-mail: patrick.aloy@irbbarcelona.org
b Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s
Companys 23, Barcelona 08010, Spain

by combining different classes of protein domains.4,8 Indeed,
this diversity plays a major role in the substrate specificity and
functional aspects observed in vivo for these enzymes.9–11 In
general, the in vivo substrate specificity observed in kinases,
is known to be determined by several contextual factors such
as the sequence vicinity of the phosphorylation site, cellular
localization, cell-type specific coexpression and interactions
of kinases and their substrates with adaptor or scaffold pro-
teins.12,13

Advances in high-throughput phosphoproteomic method-
ologies, have provided valuable data of experimentally de-
termined phosphorylation sites for hundreds of kinases from
yeast, human and other organisms.11,14–17 Based on the afore-
mentioned data, several authors have studied the kinase speci-
ficity by analyzing different sequence motifs that are targeted
by the kinases in their substrates.9,13,18,19 These motifs — of-
ten termed phosphorylation motifs — have been generally rep-
resented in position-specific scoring matrices (PSSMs), which
allow the probabilistic modeling of signals in sequence align-
ments.20 PSSMs have been previously used for the prediction
of novel phosphorylation sites and for the assignment of ex-
perimentally determined phosphorylation sites to kinases.21,22

Other more sophisticated methods for the prediction of phos-
phorylation sites implement complex algorithms such as hid-
den Markov models, artificial neural networks or expert sys-
tems to integrate several sources of information (e.g., struc-
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tural disorder, sequence conservation, positional correlations
of residues).23 However, in those cases it is more difficult to
infer the decisions that support the predictions, as opposed to
the cases of PSSMs, where it is much easier to pinpoint the
determinant residues of a functional phosphorylation site.23

Adaptors and scaffolds are multidomain proteins involved
in the dynamic spatio-temporal organization of large signal-
ing complexes and cellular structures.24 Due to their roles in
cellular signaling, some of these proteins have be implicated in
cancer and tumorigenesis.25,26 The specificity of many signal
transduction events is modulated by adaptors and/or scaffolds,
which can recruit signaling enzymes to proper cellular loca-
tions27,28. Indeed, the associations of kinases with adaptors
and scaffolds can enhance efficient catalytic activation and ac-
curate substrate selection. This is the case of the PKA kinase,
which is targeted to discrete cellular environments by the A-
kinase anchoring protein (AKAP)29. Other two examples are
the kinase suppressor of Ras (KSR) and IQGAP, which func-
tion as platforms and regulators of the mitogen-activated pro-
tein kinase (MAPK) pathway.25,30 Adaptors and scaffolds are
extremely diverse proteins which lack common sequence sig-
nature motifs. Therefore, their identification based only on
sequence is currently not possible. Nevertheless, these pro-
teins often contain protein-protein interaction domains (e.g.,
SH2, SH3 and PD) and it has been suggested that some scaf-
folds interact with at least two signaling proteins24. Based on
these characteristics, Ramirez and Albrecht devised a com-
putational method from which they identified 250 potential
human signaling scaffolds31. However, in their analysis the
authors excluded proteins with intrinsic catalytic activity as
potential scaffolds, a criteria that may constitute a limitation
of their method32,33.

In this article we explored two elements that contribute to
the substrate specificity of human protein kinases. First, we
focused on the identification of SDRs in the sequences phos-
phorylated by several kinase families families, and we quanti-
fied their contribution to the specificity of those families. Sec-
ond, we studied how the association of kinases to adaptor and
scaffold proteins may influence the cellular colocalization of
kinases and their substrates, and also how these associations
may diminish the substrate crossed-specificity of kinases.

2 Materials and methods

2.1 Integration of human phosphorylation data

We compiled a local database of experimentally determined
phosphorylation sites by integrating data from the public re-
sources HPRD34, PhosphoSitePlus35 and Phospho-ELM36.
We kept only those phosphorylation sites for which the re-
sponsible kinase was known and we filtered out those with-
out a supporting publication. Our integrated set increases by

18%, 58% and 59% the numbers of kinases, substrates and
phosphorylation sites (respectively), with respect to the aver-
age contained in the three source databases (see section 1 of
supplementary material).

2.2 Construction of the position-specific scoring matrices

For generating the PSSMs and estimating their statistical sig-
nificance and performance, we have developed the program
genpssm. As input genpssm takes i) a multiple sequence
alignment of nine residues long peptides with the phosphory-
lation site in the central position ii) the frequencies of amino
acids in the human proteome and iii) a cut-off p-value (1e−04)
for selecting matches to the PSSM.The scores of the PSSM are
computed using the equation 1, which is based in the log-odds
of residues at each position of the alignment and also consid-
ers the frequencies of residues in the human proteome.37

Srp = log(
qrp

fr
), p = 1 to w (1)

S: score of residue r at position p; q: frequency of residue r at
position p; f : frequency of residue r in the reference proteome
and w: length of the sequence alignment.

2.3 Evaluation of the position-specific scoring matrices

We have used the information content (IC) the percent of recall
(recall) and the area under the receiver operating characteristic
curve (AUC-ROC) to evaluate the statistical significance and
the performance of the PSSMs. By percent recall we mean
the fraction of seed phosphorylation sequences that match the
cognate PSSM with a statistically significant score. The sta-
tistical significance tests were based on empirical p-values for
both the IC and the recall. For this, we used sets of 100’000
PSSMs that have been generated from random sequences, and
that also respect the cardinality of seed sequences of the PSSM
being assessed. For computing the IC we have used the Kull-
backLeibler distance38 (see equation 2), where the IC is the
sum of the expected self-information of each element.

IC =−∑
r,p

qrp × log(
qrp

fr
) (2)

IC: information content; q: frequency of residue r in position
p of the sequence alignment; f : frequency of the residue r in
the reference proteome.

2.4 Identification of specificity-determinant residues

We have selected 22 kinase families with at least 100 phos-
phorylation events. For each family, we have attempted the
identification of residues that could contribute significantly to
the specificity of the corresponding kinases (i.e., the SDRs).
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For this, based on the corresponding PSSMs, we have classi-
fied as SDRs those residues with a score equal or higher than
half the score of the phospho-acceptor residue. Finally, we
computed the frequency of each SDR across the phosphoryla-
tion events of each family in the experiment.

2.5 Identification and analysis of known adaptors and
scaffolds

We collected from UniProtKB/Swiss-Prot all human proteins
annotated with either adaptor or scaffold terms in their Func-
tion field. We filtered out the cases without evidence of binary
interaction with at least one human protein kinase. For this,
we used the high confidence human interactome from Interac-
tome3D39, a resource developed by our group. From this, we
obtained a set of 191 known adaptor or scaffold (kAS) pro-
teins, which associate to 287 human protein kinases.

Some adaptors and scaffolds associate to both the kinases
and their substrates. Based on this, we tested whether the kAS
proteins interact with a statistically significant number of the
substrates of the kinases to which they are associated. For
this we have used as the statistic the number of interactions
of proteins in a subnetwork of the interactome. For construct-
ing the backgrounds for the statistical test, we first selected
the kinases with at least five substrates (156 kinases in total)
and using those substrates as seeds we generated a first level
subnetwork of the human interactome. We generated differ-
ent backgrounds depending on the cardinality of substrates (S)
of each kinase. For generating the backgrounds we started
by randomly selecting a node (K) having at least S partners.
Later, for a number S of randomly selected K’s partners, we
identified the first neighbors (P). Finally, we counted the num-
ber of interactions between each P and all K’s partners. While
randomly rewiring the subnetwork, we repeated the process
10’000 times for each background set. For testing the initial
hypothesis, we conducted a right tale Fisher’s exact test.

2.6 Identification of kinases sharing a significant number
of substrates

We have investigated if there exist a relationship between the
association to common adaptors or scaffolds and the substrate
cross-specificity of kinases. For this, we have approached the
identification of kinases sharing at least one kAS protein and
also sharing a significant number of in vivo substrates. The
size of the overlap between the sets of substrates was used as
a test statistic. For estimating the statistical significance of the
overlaps, we computed empirical p-values for sets of kinases
with cardinality two and three. We performed the analysis
only for the 111 kinases for which we known at least five in
vivo substrates.

3 Results and discussion

3.1 Position-specific scoring matrices

Here we have analyzed the performance and statistical signif-
icance of the PSSMs corresponding to the 93 kinase families
for which we count with at least one phosphorylation site. Re-
garding their performance, we have found negative correla-
tions between the number of seed phosphorylation sites and i)
the recall (R = –0.48, p-value = 1.2e−06), ii) the IC (R = –0.33,
p-value = 0.0013) and iii) the AUC-ROC (R = –0.47, p-value =
1.6e−06). These results suggest that in our data, the increase of
the sequence diversity generated by the increase of the num-
ber of seed phosphorylation sites, can exert a negative effect
in both the performance and the level of self-information of a
PSSM (see Figure 1). We suggest that the substrate specificity
of some kinases and kinase families might be represented best
by multiple PSSMs, a concept that have been previously ap-
plied in the analysis of DNA recognition by transcription fac-
tors40. Although not covered in the work here presented, we
consider that in such cases, multiple PSSMs could be useful
for modeling fairly different phosphorylation motifs that are
targeted by the same kinase or kinase family.

The IC can be used as a statistic to estimate how different
is that PSSM from a uniform distribution. From our analy-
sis, 69/93 (74.2%) of the PSSMs were found to be statistically
significant; and the two sets of PSSMs — significant and not
significant — differ in their median values of the percent re-
call, the AUC-ROC and the number of seed phosphorylation
sites. Our results show that PSSMs with a statistically signifi-
cant IC were generated from sets of seed phosphorylation sites
larger than the ones from not statistically significant PSSMs.
In this sense, and in agreement to what was previously men-
tioned, significant PSSMs show significantly lower values of
recall and AUC-ROC (see Table 1 and Figure 2). Surpris-
ingly, we have not found significant differences between the
two sets of PSSMs based on their median IC values. However,
in an equivalent comparison using PSSMs from independent
kinases, we have found significant differences if the median IC
values between sets of significant and non significant PSSMs
(Mann-Whitney U test p-value = 6.2e−04).

Based on the results of the current analysis, we selected a
subset of significant PSSMs to conduct the identification of
specificity-determinant residues (SDRs) for the corresponding
families of kinases.

3.2 Specificity-determinant residues

From the previously identified group of significant PSSMs, we
selected 22 for which we count with at least 100 phosphory-
lation events. For 19/22 (86.4%) of the families analyzed we
identified at least one SDR. For these 19 families we have suc-
cessfully classified as SDRs residues that have been reported
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Fig. 1 Correlations of measurements with the number of seed phosphorylation sites. The IC, percent recall and AUC-ROC display negative
correlations with the number of seed phosphorylation sites. X-axes are displayed in logarithmic scale.

si
gn

ifi
ca

nt
no

t s
ig

ni
fic

an
t

4 6 8 10 12 16

Information content

si
gn

ifi
ca

nt
no

t s
ig

ni
fic

an
t

5 10 20 50 100

Percent recall

si
gn

ifi
ca

nt
no

t s
ig

ni
fic

an
t

0.4 0.5 0.6 0.7 0.8 1.0

AUC−ROC

si
gn

ifi
ca

nt
no

t s
ig

ni
fic

an
t

1 5 50 500

Number of phosphorylation sites

Fig. 2 The PSSMs were classified based on the significance of their
IC. The two groups of PSSMs were later compared based on their
IC, percent recall, AUC-ROC and number of seed phosphorylation
sites. The thick lines in the boxes represent the medians.

Table 1 Comparison of significant and not significant sets of
PSSMs.

Total PSSMs IC % recall AUC-ROC Psites
Significant 69 7.13 46.60 0.77 52.00

Not significant 24 9.49 100.00 1.00 4.50
p-value 0.177 1.89e−04 1.36e−04 8.57e−09

The table shows the median values of the parameters used for comparing the two sets
of PSSMs. The last row shows the results of the Mann-Whitney U test, which is based
on the differences of the medians (significance level α < 0.05). Psites stands for seed
phosphorylation sites.

to play important roles in the specificity of the correspond-
ing kinases (e.g., MAPKP+1, PIKKQ+1, AKTR-3 and CK2E+3
?). The quantification of the relevance of the SDRs — based
on their frequency among the phosphorylation events of each
family — shows a wide variation across the different fami-
lies. For example, the four SDRs previously mentioned have
relatively high frequencies that range between 88.86% and
45.83%; however, other SDRs show much lower frequencies
(e.g., PKCK+2 = 19.79%, CAMKLN+3 = 18.03% and CK2D+2
= 15.54%, see Table 2).

Based on our data, we hypothesize that the combination of
multiple SDRs of low frequencies contribute in an additive
way to the recognition of the phosphorylation sites by the ki-
nases. In contrast, we consider that SDRs of high frequencies
have a larger contribution to the kinase specificity. Moreover,
we have noted that the frequency of any given SDR is low —
6.0% on average — among the phosphorylation events of the
kinase families that do not count with that SDR. To our opin-
ion, this suggests that SDRs may also function as elements of
negative selection to avoid the phosphorylation of non-cognate
sequences.

? SDRs are represented by the acronym of the kinase family, followed by the
residue (one letter code) and its position relative to the phosphorylation site.
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Table 2 Specificity-determinant residues of kinase families.

Kinase family SDR % freq. % cross-freq.
CDK P+1 81.72 5.95
GSK S-4 38.49 14.01
GSK P+1 53.96 5.95
GSK S+4 48.56 11.51

MAPK P-2 31.37 5.83
MAPK P+1 88.86 5.95
PIKK Q+1 80.83 3.98
AKT R-3 84.13 5.14
AKT W+1 3.85 0.66

CAMKL R-3 31.15 5.14
CAMKL K-3 21.31 5.65
CAMKL N+3 18.03 3.83

PKC R-3 23.19 5.14
PKC R-2 24.32 5.09
PKC R+2 27.71 4.57
PKC K+2 19.79 3.88
CK1 S-3 28.5 8.08
CK1 S+3 31.09 9.85
CK2 D+2 15.54 6.17
CK2 E+3 45.83 6.15

In the table, % freq.: frequency of the SDR among the phosphorylation events of cur-
rent kinase family. % cross-freq.: frequency of the SDR among the complementary
phosphorylation events, that is, the ones from kinase families without the current SDR.

We have identified SDRs that, to the best of our knowl-
edge, have not been previously reported as determinants of
the specificity for the corresponding kinase families. These
are the cases of CAMKLN+3 and AKTW+1, with frequencies of
18.03% and 3.85% respectively. The SDR N+3, is present in
the sequences targeted by the microtubule affinity-regulating
kinases (MARK) — CAMKL family members — within the
repeat regions of the human TAU protein, which is implicated
in Alzheimer’s disease41. Besides, N+3 have a low frequency
(3.83%) among the phosphorylation events of the other 21 ki-
nase families in the analysis. Given that the repeat regions
of TAU are responsible for the binding to the microtubules42;
we consider that the presence of N+3 in these regions is an
important element for the recognition by MARK kinases, and
therefore for the regulation of the association of TAU to the
microtubules. The identification of W+1 as an SDR for the
AKT family is an interesting result, given that tryptophan is
rarely found in the close sequence vicinity of phosphoryla-
tion sites — 0.66% among the phosphorylation events of non
AKT kinase families —. W+1 was identified as an SDR even
when occurring at low frequency (3.85%) among the phos-
phorylation events of AKT kinases, which prompted us to re-
search further about the biological relevance of the finding.
Interestingly we found reports in the literature showing that,
by phosphorylating sequences containing a conserved W+1,
some AKT kinases are implicated in the regulation of tran-

scription factors of the FOXO family43. To our opinion, this
result supports the utility of our approach for the identification
of SDRs, even for residues that occur at low frequency among
the phosphorylation sites of the kinase of interest.

3.3 Association of kinases to known adaptors and scaf-
folds

As previously described, we have compiled a set (kAS) of
191 human proteins that are known to function as adaptors
or scaffolds (see section 6 in supplementary material). These
191 kAS proteins associate to 287 (55.4%) — via 1281 binary
PPIs —- protein kinases, which represent a total of 94 (72.3%)
kinase families and also comprise the nine major groups in
which human kinases are classified. To our opinion, these
findings suggest that the association to adaptors or scaffolds is
a widespread mechanism among human protein kinases. The
results from the analysis of enrichments in Pfam domain fam-
ilies44 and molecular function terms (MF) of the Gene On-
tology45 show that 14/23 (60.8%) of the enriched Pfam do-
mains are known to be directly involved in promoting PPIs
(e.g., PDZ, SH2 and SH3); and that 100% of the enriched
MF terms are related to protein binding, adaptor or scaffold-
ing functions (see sections 4 and 5 in supplementary material).
Together, these results support the biological role as adaptors
or scaffolds of the proteins in the kAS set.

Adaptors and scaffolds can recruit kinases to cellular com-
partments where the enzymes gain spatial proximity to its rel-
evant set of substrates. In this manner, adaptors and scaffolds
can function as linking elements between the kinases and their
substrates. Based on this, we searched for evidence support-
ing that kAS proteins could interact with a large number of
the substrates of the kinases to which they associate. The re-
sult of our analysis suggests that, compared to any random
kinase partner, kAS proteins are five times more likely to in-
teract with a significantly large number of the substrates of
their corresponding kinases (p-value = 1.08e−15). This result
supports our initial assumption and therefore we decided to
use this property of kAS proteins to identify potential adaptors
and scaffolds of proteins kinases in the human interactome.

3.4 Potential adaptors and scaffolds of protein kinases

We have identified a total of 706 associations kinase–potential
adaptor/scaffold (K–pAS). These include 279 pAS proteins —
25.4% of them is present in the kAS set — that are known to
interact with 78 (50%) of the 156 kinases initially considered
for the experiment. The 78 kinases cover 44 (33.8%) of all
human kinase families. Analysis of Pfam domains composi-
tion show enrichment 10 Pfam families, all of them known to
mediate PPIs or to be present in proteins involved in cellu-
lar signaling (see section 7 in supplementary material). Half
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Fig. 3 Comparison of the sets of adaptors and scaffolds.

of the ten Pfam families enriched in the set of pAS proteins
were also enriched in the kAS set, a finding that supports the
hypothesis of common biological functions. Additionally, we
have found 39 MF terms to be overrepresented in the pAS
set (see section 6 in supplementary material). A consider-
able fraction of these terms (24/39, 61.5%) refer to ‘protein
binding’ functions of signaling-related molecules such as re-
ceptors, kinases, phosphatases and transcription factors. This
suggests pAS proteins could be able to mediate PPIs for dif-
ferent classes of signaling-related proteins. In contrast with
the kAS set, for the pAS proteins we do not find enrichments
in MF terms directly related to adaptor nor scaffolding func-
tions; a result that supports the pAS proteins as a novel set of
potential adaptors and scaffolds.

We have compared the three sets of adaptors and scaffolds
commented in this work (i.e., kAS, pAS and the set identified
by Ramı́rez and Albrecht) in terms of their protein composi-
tion and enriched MF terms and Pfam domains (see 3). We
have found a relatively low average overlap of proteins be-
tween the three sets (18.4%), which highlights the lack of a
consensus criteria for the computational identification of adap-
tors and scaffolds. In contrast to our methods, Ramrez and
Albrecht considered that scaffolds lack intrinsic enzymatic ac-
tivity46. We consider this criteria to be inaccurate, given the
cases of the focal adhesion kinase (FAK)33 and the kinase
suppressor of Ras (KSR)32, which are both scaffolds with re-
ported catalytic activity. Differences in the Pfam families and
the MF terms enriched can be partially attributed to differ-
ences in sets of proteins defined as the backgrounds. Neverthe-
less, for all the three sets the Pfam domains and MF terms en-
riched support the hypothesis of adaptor or scaffolding roles.
Finally, differences in the definition of human interactome can
also influence the results of the identification strategies.

Taken together, we consider that our strategy have been able
to suggest a set of potential adaptor and scaffold of human
human protein kinases, whose functional annotations are in
agreement with the proposed biological roles.

3.5 Cellular colocalization of kinases, adaptors, scaffolds
and substrates

Adaptors and scaffolds can play a fundamental role in the in
vivo specificity of protein kinases by promoting the cellular
colocalization of these enzymes with their cognate substrates.
Here we have searched for evidence of colocalization of the
pAS proteins with the substrates of the associated kinases. For
this, we have used the 706 K–pAS relations previoulsy identi-
fied, and we have evaluated whether a given pAS is annotated
to a cellular component term (CC) — from the Gene Ontology
database — that have been previously found to be enriched in
the set of substrates of its associated kinase.

For 527/706 (74.6%) of the K–pAS pairs, we found evi-
dence of colocalization between the pAS and the substrates.
This set of 527 K–pAS pairs accounts for 41 kinases, 156
pAS proteins — corresponding to 52.6% and 55.9% (respec-
tively) of the ones in the initial 706 kinase-pAS pairs— and
35 unique CC terms. In 4 we show a pie chart representa-
tion of the CC terms shared by the pAS proteins and the sets
of substrates; while in the Table 3 we show cases of pAS
proteins that are found to colocalize with substrates of their
corresponding kinases. For example, the pair formed by the
β -adrenergic receptor kinase 1 (ARBK1) and the Na(+)/H(+)
exchange regulatory cofactor NHE-RF (NHRF1), where the
later it has been reported to be involved in the scaffolding of β -
adrenergic receptors — substrates of ARBK1 — at the plasma
membrane47. Another example is the case of the checkpoint
kinase-1 (CHK1) and the 14-3-3 protein zeta (1433Z), where
the later it has been reported to be required for the nuclear re-
tention of CHK148. A third case is casein kinase α-1 (KC1A),
for which we identified the catenin β -1 (CTNB1) as a pAS.
KC1A phosphorylates CTNB1 at serine 45, both proteins are
components of the canonical Wnt signaling pathway and they
are also part of the large APC–Axin-1–β -catenin complex49.
Interestingly, CTNB1 contains 12 repeats of the Armadillo
(ARM) domain, which is implicated in mediating PPIs. It
has been recently suggested that proteins containing ARM re-
peats, constitute an attractive modular system as scaffolds for
peptide-mediated PPIs50. Therefore, we consider that CTNB1
may constitute a plausible scaffold that may promote spatial
proximity between KC1A and its substrates.

To our opinion, these results suggest that the association to
pAS proteins might play an important role in the colocaliza-
tion of the analyzed kinases with their cognate sets of sub-
strates. Nevertheless, we are aware that in many cases, the CC
shared by the substrates and the pAS proteins are too broad
(e.g., cytosol, nucleoplasm, cytoplasm) and can not fully jus-
tify, based on spatial constrains, the substrate specificity of the
kinases.
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Table 3 Cellular component terms shared by pAS proteins and substrates.

Kinase CC description Enrichment ratio Adj. p-value pAS co-annot.
ARBK1 apical plasma membrane 15.7 4.08e−02 NHRF1
CDK4 chromatin 16.12 3.76e−02 EP300
CDK4 transcription factor complex 20.92 1.67e−02 E2F4,EP300
CDK9 PML body 61.38 4.19e−03 PIAS4
CHK1 nucleoplasm 10.16 1.30e−04 1433Z,CHK2,EP300,MDM2,UBC
CHK2 PML body 29.86 3.25e−03 RB,SIRT1,SUMO1
CSK membrane raft 33.87 2.74e−03 ERBB2

EGFR endosome 8.47 6.48e−04 FYN,GRB2,NTRK1
FYN cell junction 3.98 3.15e−02 PTN12
INSR cytosol 12.11 5.41e−04 ABI1,GRB2,IRS1,P85A,SRC,UBC
KC1A lateral plasma membrane 38.75 3.46e−02 CTNB1
KC1A APC-Axin-1-beta-catenin complex 275.94 4.18e−02 CTNB1

KCC2G vesicle membrane 19.29 7.14e−04 GRB2,NCK1
PDPK1 mitochondrion 6.81 2.48e−02 1433Z,CASP3,MAD1,PDK1
PLK1 nucleus 4.33 7.49e−04 ABL1,ANDR,GRB2,P53,VHL

CC description, description of the CC term enriched in the set of substrates of the kinase; Enrichment ratio, ratio of enrichment of the CC term; Adjusted p-value, multiple test
correction by Bonferroni’s method; pAS co-annot., pAS proteins associated to the current kinase, that are annotated to the corresponding CC term. Kinases and pAS proteins are
represented by their UniProt IDs. See full table of results in SuppMat.
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Fig. 4 Cellular component terms shared by substrates and pAS
proteins. The slices represent the number of K–pAS pairs where the
pAS protein is annotated to the the given CC term. TF and PML
stand for transcription factor and nuclear bodies respectively.

3.6 Association to adaptors and scaffolds diminish sub-
strate cross-specificity of kinases

We have analyzed the role that potential adaptors and scaffolds
may play in kinase specificity by promoting spatial proxim-
ity between the enzymes and their substrates. However, dif-
ferent kinases may associate to the same adaptors and scaf-
folds and this could lead to substrate cross-specificity. Here
we have tested whether the association to common kAS pro-
teins would promote significant substrate cross-specificity be-
tween kinases. For this, we have used the subset of K–kAS
associations where the kinases have at least five substrates and
for which the kAS in the analysis are known to interact with
at least two kinases. In total we analyzed 23 cases of two or
more kinases that associate to a common adaptor or scaffold,
and for non of the cases the kinases shared a number of in vivo
substrates larger than what would be expected due to chance
(see Table 4). Nevertheless, we found the case of the kinases
MK01 and MK03 — ERK2 and ERK1 MAP kinases, respec-
tively — which share 73 in vivo substrates. Even when it was
not statistically significant, the number substrates in common
was very large when compared to other sets of kinases in out
analysis, and therefore we decided to explore this particular
case in more detail. In fact, ERK1 and ERK2 are very closely
related kinases, with 82% and 89% of identity in their full and
catalytic domain sequences. ERK1 and ERK2 share many if
not all functions51 and despite numerous efforts to establish
differences, the detection of such distinctive functions it has
been difficult to pinpoint52. Therefore, we consider that their
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large sequence identity, together with their almost identical
functions can explain the large substrate overlap reflected in
our data. To our opinion, these results support the hypoth-
esis that adaptors and scaffolds are able to diminish in vivo
substrate cross-specificity by recruiting the kinases to specific
macromolecular complexes or cellular locations.

Table 4 Statistical significance of the number of shared substrates
for K–kAS pairs.

Adap./Scaff. Assoc. kinases Shared subst. p-value
APBB1 EGFR, ERBB2 2 1.00
BIRC5 AURKA, AURKB 4 1.00
CD2AP ABL1, FYN 1 1.00
DAG1 FYN, SRC 13 0.52
DOK4 EGFR, ERBB2 2 1.00
DOK6 EGFR, ERBB2 2 1.00
ELP1 GSK3B, MK08 7 0.78
FRS3 MK01, FGFR1 1 1.00
FYB ABL1, FYN 1 1.00
IMA2 SGK1, CHK2 1 1.00
JIP2 EGFR, ERBB2 2 1.00

KHDR1 LCK, SRC 14 0.43
NCK1 ABL1, EGFR 3 1.00
PAR6A KPCI, KPCZ 3 1.00
PAR6B KPCI, KPCZ 3 1.00
PKHO1 AKT1, CSK21 5 1.00
SCRIB MK01, MK03 73 0.10
SH2B1 EGFR, INSR 4 1.00
SHC1 EGFR, INSR 4 1.00
SHC2 EGFR, ERBB2 2 1.00
SHC3 EGFR, ERBB2 2 1.00

SQSTM KPCI, KPCZ 3 1.00
TGFI1 FAK1, FAK2 1 1.00

Proteins are represented by their UniProt Ids. Shared substrates, number of in vivo
substrates shared by the kinases; p-value, statistical significance of the number of sub-
strates shared by the kinases.

4 Conclusions

Protein kinases constitute one of the largest and more diverse
superfamilies of proteins in human and they are implicated in
several cellular processes and pathologies1,6. Despite most ki-
nases share a highly conserved catalytic domain, the observed
in vivo substrate specificity of these enzymes show little cor-
relation with their primary sequences. In this sense, is known
that the in vivo specificity of protein kinases is regulated by
several factors. In the current work we have approached the
identification and the quantification of the contribution of dif-
ferent elements to the substrate specificity of human protein
kinases. For this we have analysed the residues in the close
neighbourhood of the the phosphorylation site, the association
of kinases to adaptors and scaffolds and the cellular colocal-
ization of kinases and their substrates.

I this work we have generated PSSMs from the sequences
targeted by 93 families of kinases and we have analyzed their
statistical significance and performance. We have found neg-
ative correlations between the number of seed phosphoryla-

tion sites and a) the percent recall, b) the information con-
tent and c) the AUC-ROC of the PSSMs. Based on the IC
we have estimated the statistical significance of the PSSMs.
We have observed that statistical and non-statistically signif-
icant PSSMs show disgnificant differences in the number of
seed phosphorylation sites and on their performance parame-
ters (i.e., the percernt recall and the AUC-ROC). Our results
show the negative effect that the sequence degeneracy caused
by the increase of the seed phosphorylation sites can impose
on the performance and on the level of self-information of the
PSSMs.

Starting from 22 statistically significant PSSMs, we have
identified several SDRs that function as positive (or negative)
elements for the substrate recognition by different kinases
families. The SDRs identified among the different kinase
families show high diversity in terms of the type of residue,
the position relative to the phosphorylation site and the fre-
quency among phosphorylated sequences available. Some ki-
nase families are very specific towards particular SDRs, which
occur in more than 80% of the sequences they target (e.g.,
AKTR-3, CDKP+1, MAPKP+1 and PIKKQ+1). We have ob-
served that multiple SDRs are generally identified in families
for which the frequencies of the SDRs range approximately
between 15% and 55% of the target sequences (e.g., CK1S-3,
CK2D-1, GSKS-4, GSKP+1 and PLKE-2). Our opinion is that
in such cases cases, multiple SDRs may contribute coopera-
tively to the recognition of the phosphorylation site. We have
also noted that the SDRs occur at low frequency (6.01% on
average) among the complementary target sequences (i.e., the
phosphorylation sites corresponding to those kinase families
that do not count with the given SDR). To our opinion, this
suggests that an SDR contribute as a negative selection factors
for non-cognate phosphorylation sites.

We have compiled a set of 191 proteins with known roles as
adaptors or scaffolds and that associate to 55% of the human
kinases, which account for 72.3% of all human kinase fami-
lies. When compared to random proteins in the human interac-
tome, this set of proteins was five times more likely to interact
with a large fraction of the substrates of the human kinases
to which they associate. To our opinion, these results sug-
gest that the association to adaptors or scaffolds is a common
mechanism among human kinases and also supports the con-
cept of adaptors and scaffolds as mediators in the encounter of
kinases with their cognate substrates.

In this work we devised a strategy for the identification of
potential adaptors and scaffolds of human protein kinases. For
50% of the initial kinases in the analysis we identified a total
of 279 potential adaptors/scaffolds. This set of proteins is en-
riched in functional terms and in domain families that suggest
a tight link to protein-protein binding functions involved in
cellular signalling events. We have also found that for 74.6%
of the kinase–potential adaptor/scaffold associations identi-
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fied, the adaptor/scaffold is annotated under cellular compart-
ment terms found to be enriched among the set of substrates of
the associated kinase. We consider that these results put for-
ward a role for the potential adaptors/scaffolds in promoting
the colocalization of the kinases and their sets of substrates.

Finally, we analyzed whether the association of different
kinases to common adaptors/scaffolds, may relate with the in
vivo substrate cross-specificity of that kinases. We have not
found any case of two or more kinases that, having an adaptor
or scaffold in common, also share a number of in vivo sub-
strates larger than what would be expected by chance. To our
opinion, these results suggest that the association of kinases to
adaptors and/or scaffolds may play important roles in the lo-
calization of the enzymes with their set of cognate substrates
and also in diminishing substrate cross-specificity in vivo.
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