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This thesis consists of three essays on empirical asset pricing around three themes:

evaluating linear factor asset pricing models by comparing their misspecified measures,

understanding the long-run risk on consumption-leisure to investigate their pricing per-

formances on cross-sectional returns, and evaluating conditional asset pricing models by

using the methodology of dynamic cross-sectional regressions.

The first chapter is “Comparing Asset Pricing Models: What does the Hansen–Jagannathan

Distance Tell Us?”. It compares the relative performance of some important linear asset

pricing models based on the Hansen–Jagannathan (HJ) distance using data over a long

sample period from 1952–2011 based on U.S. market. The main results are as follows:

first, among return-based linear models, the Fama–French (1993) [1] five-factor model

performs best in terms of the normalized pricing errors, compared with the other can-

didates. On the other hand, the macro-factor model of Chen, Roll, and Ross (1986)

[2] five-factor is not able to explain industry portfolios: its performance is even worse

than that of the classical CAPM. Second, the Yogo (2006) [3] non-durable and durable

consumption model is the least misspecified, among consumption-based asset pricing

models, in capturing the spread in industry and size portfolios. Third, the Lettau and

Ludvigson (2002) [4] scaled consumption-based CAPM (C-CAPM) model obtains the

smallest normalized pricing errors pricing gross and excess returns on size portfolios,

respectively, while Santos and Veronesi (2006) [5] scaled C-CAPM model does better in

explain the return spread on portfolios of U.S. government bonds.

The second chapter (“Leisure, Consumption and Long Run Risk: An Empirical Eval-

uation”) uses a long-run risk model with non-separable leisure and consumption, and

studies its ability to price equity returns on a variety of portfolios of U.S. stocks using

data from 1948–2011. It builds on early work by Eichenbaum et al. (1988) [6] that

explores the empirical properties of intertemporal asset pricing models where the rep-

resentative agent has utility over consumption and leisure. Here we use the framework

in Uhlig (2007) [7], that allows for a stochastic discount factor with news about long-

run growth in consumption and leisure. To evaluate our long-run model, we assess its

performance relative to standard asset pricing models in explaining the cross-section

of returns across size, industry and value-growth portfolios. We find that the long-run

consumption-leisure model cannot be rejected by the J–statistic and it does better than

the standard consumption-based CAPM, the Yogo durable consumption and Fama–

French three-factor models. We also rank the normalized pricing errors using the HJ

distance: our model has a smaller HJ distance than other candidate models. Our paper

is the first, as far as we are aware, to use leisure data with adjusted working hours as

a measure of leisure i.e., defined as the difference between a fixed time endowment and

the observable hours spent on working, home production, schooling, communication,

and personal care (Yang (2010) [8]).
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The third essay: “Empirical Evaluation of Conditional Asset Pricing Models: An Eco-

nomic Perspective” uses dynamic Fama–MacBeth cross-sectional regressions and tests

the performance of several important conditional asset pricing models when allowing

for time-varying price of risk. It compares the performance of conditional asset pricing

models, in terms of their ability to explain the cross-section of returns across momentum,

industry, value-growth and government bond portfolios. We use the new methodology

introduced by Adrian et al. (2012) [9]. Our main results are as follows: first we find

that the Lettau and Ludvigson (2001) conditional model does better than other mod-

els in explaining the cross-section of momentum and value–growth portfolios. Second

we find that the Piazessi et al. (2007) consumption model does better than others in

pricing the cross-section of industry portfolios. Finally, we find that in the case of the

cross-section of risk premia on U.S. government bond portfolios the conditional model in

Santos and Veronesi (2006) outperforms other candidate models. Overall, however, the

Lettau and Ludvigson (2001) model does better than other candidate models. Our main

contributions here is using a recently developed method of dynamic Fama–MacBeth re-

gressions to evaluate the performance of leading conditional CAPM (C-CAPM) models

in a common set of test assets over the time period from 1951–2012.
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Chapter 1

Comparing Asset Pricing Models:

What does the

Hansen–Jagannathan Distance

Tell Us?

1.1 Introduction and Motivation

The purpose of this paper is to compare the relative performance of some important

linear asset pricing models based on the Hansen–Jagannathan (HJ) distance using data

over a long sample period from 1952–2011 based on U.S. market.

Such comparisons, in the prior literature (for example, Lettau and Ludvigson (2001)[10],

Lustig and Van Nieuwerburgh (2005)[11], and Parker and Julliard (2005)[12]) rely on

tests of pricing errors for individual models using purely statistical criteria such as Fama–

MacBeth cross-sectional regression or the Hansen–Singleton J–statistics (1982). We see

that most asset pricing models are rejected by these statistical tests: this is not surprising

given that most of them are misspecified. Thus, such comparisons of individual models,

even using the same test assets and data, does not help us to understand why the

models fail. In contrast, the HJ measure is a test of the degree of misspecification from

the “true” model that correctly prices the data. In this paper, we use this measure,

based on new econometric methods proposed by Hansen and Jagannathan (1997) [13],

which allow us to compare across models and to choose the one that prices the chosen

assets with the “best”.

1
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We compare the performance of the following linear factor models. As a benchmark we

use Fama–French three-factor model [14] which is based on firm characteristics. Next we

use a set of important consumption-based based models with linearized discount factors.

Finally, we also compare models by incoporating conditioning information; this allows

us to further compare the performance of conditional versus unconditional models. We

use a common set of test assets used in the literature; the 25 Fama–French size/book-

to-market, 30 industry, 10 deciles portfolios and a set of US government bonds.

Our main results are as follows.

First, among return-based linear models, the Fama–French (1993) [1] five-factor model

performs best in terms of the normalized pricing errors, compared with the other can-

didates. On the other hand, the macro-factor model, the Chen, Roll, and Ross (1986)

[2] five-factor, is not able to explain industry portfolios: its performance is even worse

than CAPM. Given the test portfolios, the Fama–French factor residuals of the size-

value portfolios is tiny, because it is likely to produce betas that line up with expected

returns.

Second, the Yogo (2006) [3] non-durable and durable consumption model is the least

misspecified, among consumption-based asset pricing models, to capture industry and

size effects. Small stocks deliver relatively low returns during recessions, when durable

consumption falls sharply, which explain the cross-sectional variation in the equity pre-

mium. Furthermore, the non-durable and durable consumptions display a pronounced

lead-lag structure, which can price industry portfolios well (Kroenche et al. (2013) [15]).

Third, pricing performances on conditional models are unstable but better than un-

conditional models; Lettau and Ludvigson (2002) [4] scaled consumption-based CAPM

(C-CAPM) model obtains the smallest normalized pricing errors pricing gross and ex-

cess returns on size portfolios, respectively, while Santos and Veronesi (2006) [5] scaled

C-CAPM model is better to explain gross yields on U.S. government bonds.

Forth, through a multiple comparison test, our results show that above models are

tested as the relatively less misspecified ones. This is achieved by incorporating the

appropriate null hypotheses leading to simpler model comparison tests. In the existing

literature, the null hypothesis states that whether or not the HJ distance is equal to zero.

When two models’ misspecified measures are both not rejected by the null hypothesis,

however, we cannot tell which one is relatively better. With the practice of imposing

the null hypotheses in constructing the test statistics based on asymptotic arguments,

our simpler comparison method has obtained the same result as Gospodinov, Kan and

Robotti (2012)[16], which presents a general statistical framework for estimation, testing

and comparison of asset pricing models using the unconstrained HJ distance measure.
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Our work is related to and builds upon Hodrick and Zhang (2001) [17] who also evaluate

the specification errors of several empirical asset pricing models. In their paper, they

use the traditional HJ distances, J–statistics and supLM test as the statistical criteria in

order to test the model specifications. However, their results do not allow for inference

about which model is the relatively less misspecified. In other work, Wang (2005)

[18] compares asset pricing models among eight proposed factors and eight proposed

conditioning variables for explaining the cross section of stock returns. Actually scaled

factor models have smaller HJ distances than non-scaled factor models, since by doubling

the number of parameters, a scaled factor model uses additional degrees of freedom in

the minimization problem and is better able to fit the data.

The rest of the paper consists of Section 1.2 which introduces the HJ distance and

the multiple comparison tests. Section 1.3 describes the candidate models. Section 1.4

presents data and the empirical analysis. The final section summarizes the findings.

1.2 Test Methodology

In the paper, we assume that the risk-free rate Rft is observed and mt+1 presents the

admissible stochastic discount factor (SDF). Any tradable asset with payoff xt+1 must

satisfy the pricing formula

pt = Et[mt+1xt+1], (1.1)

where Et denotes the expectation conditional on the information known at time t.

1.2.1 Hansen–Jagannathan Distance

How to examine the pricing error on the portfolios that are most mispriced by a given

model? Hansen and Jagannathan (1997) [13] develop a measure of degree of misspecifi-

cation of an asset pricing models. This measure is defined as

minm∈ℵ ‖m− y‖ ,

the least squares distance between the family of stochastic discount factors that price

all the assets correctly m and the stochastic discount factor associated with an asset

pricing model y. Figure 1.1 shows a direct image that the HJ distance is the least

squared distance between any point along the admissible SDF line and the cross point

between these two orthogonal lines (the payoffs line).



Chapter 1. Comparing Asset Pricing Models: What does the Hansen–Jagannathan
Distance Tell Us? 4

Now we assume that the proposed SDF yt+1 can be approximated as a linear function

of factors

yt+1 = θ
′
ft+1. (1.2)

Following the pricing equation, we define Rt = [R1,t, R2,t, ..., RN,t]
′

being the gross re-

turns on N assets, and let

αt(θ) = Rtyt(θ)− IN = Rtθf
′
t − IN , (1.3)

where αt(θ) is the vector of pricing errors. Hence, the maximum pricing error per unit

norm of any portfolio of N assets (HJ distance) is given by

δ2 = E[(αt(θ))
′
][E(RtR

′
t)]
−1E[αt(θ)]. (1.4)

The HJ distance measure is equivalent to a GMM estimator with the moment condition

E[αt(θ)] = 0 and the weighting matrix [E(RtR
′
t)]
−1, which is different from the optimal

matrix (see Appendix on sample estimates and tests on Hansen–Jagannathan distance).

1.2.2 Modified Hansen–Jagannathan Distance

If excess returns are used to measure model misspecification, one cannot specify a pro-

posed SDF in a way such that it can be zero for some values of θ; when excess returns

using the moment restriction does not separately the parameters θ in equation (1.3),

since the GMM errors for the parameter pair (θ0, θ), where θ0 stands for the constant

term, are proportional to the GMM errors for the parameter pair (kθ0, kθ), for any

scalar k. Kan and Robotti (2008) [19] suggest defining the SDF as a linear function of

the demeaned factors in order to avoid the affine transformation problem. Hence, the

modified HJ distance is defined as

δ2
mod = minθE[αT (θ)

′
]V −1

22TE[αT (θ)], (1.5)

where V −1
22T is the covariance matrix of the test portfolios.

1.2.3 Constrained Hansen–Jagannathan Distance

It is possible for an SDF to price all the test assets correctly and yet to take on negative

values with positive probability. This case happens when these exist arbitrage opportu-

nities among test portfolios (e.g. derivatives on test assets) and it could be problematic
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to set the SDF to price payoffs. Therefore, it is necessary to constrict the admissible

SDFs being non-negative.

Following Gospodinov, Kan and Robotti (2010) [20] mechanism, the vector of gross

returns on N assets at t is denoted by Rt, and the corresponding costs of these N assets

at t − 1 are qt−1, where E[qt−1] 6= 0. Empirically, we can solve the constrained HJ

distance as

δ2
+ = minmt,t=1,...,T

1

T

T∑
t=1

(yt −mt)
2, (1.6)

subject to

1

T

T∑
t=1

mtRt = q̄,

mt ≥ 0, t = 1, ..., T,

where yt denotes the candidate SDF and mt stands for admissible SDF in the set ℵ+.

1.2.4 Testing for Multiple Comparisons

The traditional HJ distance test provides no method for comparing HJ distances statis-

tically, i.e., HJ1 may be less than HJ2; are they statistically different from one another

once we account for sampling error?

Let δ2
j,T denote the squared HJ distance for model j. Taking a benchmark model, e.g.,

the model with smallest squared HJ distance among j = 1, ...,K competing models, and

denoting

δ2
1,T = min(d2

j,T )Kj=1. (1.7)

The null hypothesis states

H0 : d2
1,T − d2

2,T ≤ 0,

where d2
2,T is the competing model with the next smallest squared distance. Now we

define the test statistic as TW = max2,...,5

√
T (d2

1,T − d2
j,T ), based on White (2003) [21].

The distribution of TW is computed via block bootstrap (Chen and Ludvigson (2009)

[22]). Need to mention, the justification for the bootstrap rests on the existence of a

multivariate, joint, continues, limiting distribution for the set (d2
j,T )Kj=1 under the null.
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By repeated sampling, the bootstrap estimates of the p-value is

pW =
1

B

B∑
b=1

I(TW,b>TW ), (1.8)

where B is the number of bootstrap samples and TW,b stands for White’s original boot-

strap test statistic. If the null is true, the historical value of TW should not be unusually

large, given sampling error. Given the distribution of TW , reject the null if its historical

value, TW , is greater than the 95th percentile of the distributions for TW . At a 5 % level

of significance, we reject the null if pW is less than 0.05, but do not reject otherwise.

Furthermore, we robust check these multiple comparison results using Chi-squared test

(Gospodinov et al. (2012) [16]).

1.3 Description of the Candidate Models

We focus on linear asset pricing models given their popularity in the literature. How-

ever, how to select the set of candidate models seems to be beyond the scope of any

econometric methods.

1.3.1 Return-Based Linear Factor Asset Pricing Models

CAPM: Sharpe (1964) and Lintner (1965) develop the Capital Asset Pricing Model

(CAPM), in which the expected excess return on an asset equals the market risk θ of

the asset times the expected excess return on market portfolio,

yCAPMt+1 = θ0 + θReMt+1, (1.9)

where ReMt+1 denotes excess returns on the market portfolios.

FF3: Fama and French (1992) [14] document the role of size and book/market ratio

characteristics in the cross-section of expected stock returns,

yFF3
t+1 = θ0 + θ1R

eM
t+1 + θ2SMBt+1 + θ3HMLt+1, (1.10)

where SMB denotes the size effect and HML is the book-to-market ratio effect.
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FF5: Fama and French (1993) [1] state that the five-factor model can explain stocks

and bonds better than the three-factor model,

yFF5
t+1 = θ0 + θ1R

eM
t+1 + θ2SMBt+1 + θ3HMLt+1 + θ4TERMt+1 + θ5DEFt+1, (1.11)

where TERM and DEF stand for the maturity risk and the default risk factors.

CCR5: Chen et al. (1986) [2] develop a macroeconomic factor model based on the

Arbitrage Pricing Theory (APT) [23],

yCRR5
t+1 = θ0 + θ1MPt+1 + θ2UIt+1 + θ3DEIt+1 + θ4UTSt+1 + θ5UPRt+1, (1.12)

where MP is the growth rate of industrial production, UI is the unexpected inflation,

DEI is defined as the change in expected inflation, the term premium UTS, and UPR

the default premium.

1.3.2 Consumption-Based Linear Factor Asset Pricing Models

C-CAPM: the consumption-based CAPM (Lucas (1978) and Breeden (1979)) states as

yCCAPMt+1 = θ0 + θ1c
ndur
t+1 , (1.13)

where cndurt+1 is the growth rate of non-durable consumption.

Yogo: the durable consumption CAPM of Yogo (2006) [3] is

yY OGOt+1 = θ0 + θ1R
eM
t+1 + θ2c

ndur
t+1 + θ3c

dur
t+1, (1.14)

where ReMt+1 is the excess returns on market portfolios and cdurt+1 denotes the consumption

growth rate of durable goods.

PST: the consumption-housing CAPM of Piazzesi et al. (2007) [24] states as

yPSTt+1 = θ0 + θ1c
nh
t+1 + θ2st+1, (1.15)

where cnht+1 is the growth rate of non-housing consumption and st+1 denotes the log

non-housing consumption expenditure share.
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1.3.3 Linear Scaled Factor Asset Pricing Models

LL: the conditional consumption CAPM of Lettau and Ludvigson (2002) [4] shows that

the consumption-wealth ratio can capture the time-varying risk premiums,

yLLt+1 = θ0 + θ1c
ndur
t+1 + θ2cayt + θ3c

ndur
t+1 cayt, (1.16)

where cndurt+1 is the growth rate of non-durable consumption and cayt−1 is the consumption-

wealth ratio.

SPST: the scaled consumption-housing CAPM of Piazzesi et al. (2007) [24] finds that

while the non-housing expenditure ratio changes, the composition risk which relates

changes in asset prices also changes,

ySPSTt = θ0 + θ1c
ndur
t+1 + θ2st + θ3c

ndur
t+1 st, (1.17)

where st is the non-housing consumption expenditure share.

LVN: the scaled collateral-consumption CAPM of Lustig and Van Nieuwerburgh (2005)

[11] shows the ratio of housing wealth to human wealth changes the conditional distribu-

tion of consumption growth across households in a model with collateralized borrowing

and lending,

yLV Nt+1 = θ0 + θ1c
ndur
t+1 + θ2myt + θ3c

ndur
t+1 myt, (1.18)

where myt is the housing collateral ratio.

SV: the scaled C-CAPM with the labor income of Santos and Veronesi (2006) [5] intro-

duce the labor income to consumption ratio to be the conditional variable,

ySVt+1 = θ0 + θ1R
m
t+1 + θ2(Rmt+1 · swt ) + θ3R

W
t+1 + θ4(RWt+1 · swt ), (1.19)

where Rmt+1 is the return on non-human, or financial wealth which is proxy by a market

portfolio returns, RWt+1, is proxy by labor income growth, swt denotes the ratio of labor

income to consumption.
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1.4 Preliminary Analysis of Data

1.4.1 Data Descriptions

For the financial data, Fama–French three factors and test portfolios, such as Fama–

French 25 portfolios sorted by size and book-to-market ratio, 30 industry portfolios, and

10 deciles portfolios, are available on the Professor French’s webpage. Seven different

maturities U.S. government bonds are from “The CRSP U.S. Treasury Database”.

For consumption-based asset pricing models, quarterly consumption data are from the

National Income and Product Accounts (NIPA). The non-durable consumption in C-

CAPM defines as the sum of real personal consumption expenditures on non-durable

goods and services, including food, clothing and shoes, housing, utilities, transportation,

and medical care. Yogo’s (2006) durable-consumption consists of items such as motor

vehicles, furniture and appliances, and jewelry and watches. Non-housing consumption,

the consumption-housing CAPM of Piazzesi et al. (PST 2007), is measured by the non-

durables consumption but excludes services such as shoes, clothing and housing. All

consumption stocks are divided by population.

The factors in conditional models include: (i) the aggregate consumption-to-wealth ratio

cayt in Lettau and Ludvigsons (LL 2001) conditional C-CAPM (available on Ludvigson’s

website); (ii) the housing collateral ratio mymot in Lustig and Van Nieuwerburgh’s (LVN

2004) conditional C-CAPM; mymot is computed by the ratio of collateralizable housing

wealth to non-collateralizable human wealth, which are from the Historical Statistics

for the US (Bureau of the Census) and the Flow of Funds data (Federal Board of

Governors); (iii) the labor income-to-consumption ratio swt in Santos and Veronesi’s

(SV 2004) conditional CAPM; labor income comes from the same database in Lettau

and Ludvigson (2001), and (v) the non-housing consumption expenditure share st in

Piazzesi et al. (SPST 2007) conditional C-CAPM; the expenditure share relies on per-

period dollar expenditures on the item in NIPA.

1.4.2 Empirical Results on Return-Based Models

It is well documented in the literature that the CAPM fails to explain small growth port-

folios1. Meanwhile, Lewellen, Nagel and Shanken (2010) [25] state that the Fama–French

factor model is able to explain equity portfolios because it captures the characteristics

on firms.

1see Merton (1973), Roll (1977), Banz (1981), Basu (1983), Reinganum (1981), Chan, Chen and
Hsieh (1985), Bhandari (1988), Gibbons (1982), Shanken (1985), Fama and French (1992, 1993, 1995,
1996), and Jagannathan and McGrattan (1995).
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From Table 1.1 to Table 1.3, we have ranked candidates in terms of the HJ, the modified,

the unconstrained, and the constrained HJ distance measures. In every test portfolios

section, the first row shows that model which obtains the largest normalized pricing

errors; the second row gives the least misspecified (the one that gets the smallest nor-

malized pricing errors). All distance measures are first tested by the null hypothesis

that the HJ distance is equal to zero, and then are tested by the null hypothesis the

least misspecified candidate has the smallest normalized pricing errors via block boot-

strapping.

For gross returns of all test portfolios, the Fama–French five-factor model obtains smaller

HJ, modified HJ, unconstrained, and constrained distance measures than the other three

models: its normalized pricing errors are the smallest and are robust among different

estimating methods compared with the CAPM, the Fama–French three-factor, and the

Chen, Roll, and Ross five-factor. On the other hand, the CAPM has the largest normal-

ized pricing errors among the three sample test portfolios. Here, through the multiple

comparison test, we cannot statistically reject the null hypothesis that the Fama–French

five-factor has the smallest distance measure.

While explaining excess returns on assets, the Fama–French five-factor performs better

than others again, but the Chen, Roll, and Ross five-factor macro model is not able to

capture the industry effect (it is even worse than the traditional CAPM). Interestingly,

the traditional HJ distance test is misleading in this case. For instance, the least and the

most misspecified ones both have p-values larger than 5% for the test. This means that

we cannot statistically reject the null hypothesis that both of their HJ distance measures

are zero. However, after implementing multiple comparison tests, all bootstrapping p-

values for the rankings are greater than 0.05: we cannot statistically reject the null

hypothesis that the least misspecified model outperforms the others because of their

relatively smaller normalized pricing errors.

Overall, the Fama–French five-factor model performs best in terms of the normalized

pricing errors, compared with the other candidates. The result maintains among the four

HJ distance measures. On the other hand, the traditional CAPM cannot successfully

prices payoffs on cross-section assets; the macro-factor model, the Chen, Roll, and Ross

five-factor, is not able to explain industry portfolios: its performance is even worse than

CAPM.

1.4.3 Empirical Results on Consumption-Based Models

The consumption-based CAPM has been criticized by the literature for the low corre-

lation between the consumption growth and equity returns. In this part, we treat the
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consumption-based CAPM as the benchmark model. The Chen, Roll, and Ross five-

factor macro model is also included in order to compare a pure macro-factor model with

macro-derived models (the Yogo non-durable and durable consumption and the Piazzesi,

Schneider, and Tuzel housing consumption model).

According to tables from 1.4 to 1.6, the Chen, Roll, and Ross macro-factor model sta-

tistically dominates the others, getting the smallest normalized pricing errors when ex-

plaining payoffs on the 25 Fama–French size–value and the yields on U.S. government

bonds; the consumption-based CAPM is able to explain these two portfolios better than

the CAPM.

The Yogo non-durable and durable model outperforms the others in capturing the in-

dustry and size effects, except for the case when the Chen, Roll, and Ross five-factor

model performs well in pricing the gross returns on 30 industry portfolios in terms of

the traditional HJ distance. On the other hand, the consumption-based CAPM is not

able to capture these effects, and even the CAPM performs relatively better. Again,

rather than testing whether the HJ distance is equal to zero, we show that all p-values

on multiple comparisons tests are statistically larger than 5%, therefore we cannot reject

the null hypothesis that the Chen, Roll, and Ross five-factor, and the Yogo models have

the smallest pricing errors, compared to the others when explaining excess and gross

returns on specific assets.

Overall, the Chen, Roll and Ross macro-factor model outperforms others to explain

returns on 25 Fama–French size-value stocks and yields on U.S. government bonds; the

consumption-based CAPM outperforms the CAPM. Moreover, the Yogo non-durable

and durable consumption model is the least misspecified model to capture industry and

size effects.

1.4.4 Empirical Results on Scaled Consumption-Based Models

Here, the consumption-based CAPM and Chen, Roll and Ross macro-factor model are

chosen as the benchmark.

From Table 1.7 to 1.9, all conditional C-CAPMs outperform the C-CAPM in explaining

cross sectional payoffs, except for the Santos and Veronesi scaled C-CAPM with labor

income in pricing payoffs to size portfolios. In particular, in explaining payoffs on 25

Fama–French size–value portfolios, the Chen, Roll and Ross macro-factor model has

smaller normalized pricing errors than the others in terms of the unconstrained and the

constrained HJ distance measures; the Santos and Veronesi conditional C-CAPM can

perform well in pricing gross returns on 25 Fama–French size–value portfolios in terms
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of the HJ distance, and the scaled housing consumption-based model is able to explain

excess returns well in terms of the modified HJ distance.

While capturing the industry effect, the Lettau and Ludvigson conditional CAPM ob-

tains the smallest normalized pricing errors; the labor income scaled C-CAPM outper-

forms others in pricing its excess returns. On the other hand, the labor income scaled

C-CAPM fails to explain the size effect, while the Lettau and Ludvigson conditional C-

CAPM dominates others in getting the smallest pricing errors. A special case happens

when the Chen, Roll, and Ross five-factor model is used to price gross returns on size

portfolios: it performs best.

In U.S. government bond portfolios, the labor income scaled C-CAPM outperforms the

others in explaining gross yields, while the scaled housing consumption and the macro-

factor models are outstanding in explaining net yields in terms of the modified and the

unconstrained HJ distance measures, respectively.

Overall, the pricing performances on conditional models is unstable, meanwhile the

Chen, Roll and Ross macro-factor model outperforms to explain size–value stocks, gross

returns on size portfolios and net yields on U.S. government bond portfolios. Through

the multiple comparison test, the chosen models are the least misspecified ones to explain

specific test portfolios.

1.4.5 Economic Interpretations

When all models are misspecified, the HJ distance measure gives the statistic criteria on

the normalized pricing errors to explain asset returns. In this section, we have analyzed

the economic reasons that why those models outperform others to explain specific test

portfolios.

For most return-based models, factors are obtained directly from the financial market.

For instance, size and book-to-market ratio factors are well-known to explain Fama–

French size-value portfolios, hence, Fama and French three- and five- factors explain more

than 90% of the time-series variation in portfolios’ returns and more than 75% of the

cross-sectional variation in their average returns. Given those features, it is reasonable

for the Fama–French factor model to obtain a relative low value of HJ distance, because

it is likely to produce betas that line up with expected returns; given the test portfolios,

the Fama–French factor residuals of the size-value portfolios is tiny.

For consumption-based asset pricing models, the intuition on a ‘successful’ consumption

factor is different from using financial factors to explain equity returns. Small stocks

and value stocks deliver relatively low returns during recessions, which explain their high
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average returns relative to big stocks and growth stocks. When utility is nonseparable

in non-durable and durable consumption (or housing consumption) and the elasticity

of substitution between the two consumption goods is sufficiently high, marginal utility

rises when durable consumption (or housing consumption) falls. Therefore stock returns

are unexpectedly low at business cycle troughs, when durable consumption (or housing

consumption) falls sharply, which explain the cross-sectional variation and the coun-

tercyclical variation in the equity premium. There is a little data difference between

durable consumption in Yogo (2006) and housing consumption in Piazzesi et al. (2007):

NIPA provides a direct measure of service flow for real estate, whereas it only reports

expenditure on other durables.

For the conditional consumption-based models, the fact that scaled factor models have

smaller HJ distances than non-scaled factor models comes from two sources. Mainly, the

conditioning information reduces the pricing errors by allowing the prices of risks to vary

with the business cycle. Then, by doubling the number of parameters, a scaled factor

model uses additional degrees of freedom in the minimization problem and is better

able to fit the data. This better fit may be spurious, though, as small sample biases

may worsen. Another important issue is the stability of the model’s parameters. If the

conditional version is correctly specified and captures the dynamics in risk premiums,

it will outperform the unconditional model. However, if the implied time-varying risk

premiums are inherently misspecified because we choose the wrong conditioning variable,

this false model may still appear to work well in small samples since it uses additional

degrees of freedom. Ghysels (1998) finds that conditional models are fragile and may

have bigger pricing errors than unconditional models. How to compare the conditional

asset pricing models is worthy to investigating in future research.

1.5 Conclusions

Multi-factor linear asset pricing models play an important role in evaluating portfolio

performances and cost-of-capital applications for practitioners. In this paper, we apply

various HJ distance measures to understand which linear factor model outperforms to

explain cross-sectional financial assets, and to seek an economic interpretation of the

specifications that appears most promising.

We find that the Fama–French five-factor is ranked top in terms of misspecified mea-

sures in explaining the Fama–French size-value and these equities combined with seven

government bond portfolios. When pricing returns on industrial-sorted assets, the Yogo

durable consumption model performs better than other consumption-based models. For
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the conditional consumption-based models, the Lettau and Ludvigson (2001) outper-

forms others in explaining the gross returns on size portfolios, and Santos and Veronesi

conditional CAPM with labor income behaves better to explain the excess returns.

Through a multiple comparison test, we show all rankings maintain among gross and

excess returns in terms of several distance measures. At last, we explain the economic

reason why some models are least misspecified. Moreover, the SDFs of those least mis-

specified candidates are quite volatile and have clear financial market cycle patterns:

some of them capture the periods of financial market crashes.

The paper also empirically investigates conditional asset pricing models while scaling risk

factors as ‘conditioning down’ the dynamic pricing equation as (1.1). As Cochrane (2001)

[26] emphasizes, the conditioning information of economic agents may not be observable,

and one cannot omit it in making inferences about the behavior of conditional moments.

There are two solutions. One is to identify the conditional Euler equation, but the

identification of the conditional mean in the Euler equation requires knowing the joint

distribution of mt+1 and the set of test asset returns Rt+1.

Scaling factors is one way to incorporate conditioning information into the pricing kernel.

Lettau and Ludvigson (2001) [10] therefore used the terms “scaling” and “conditioning”

interchangeably when referring to models with scaled factors even though the models

were estimated and tested on unconditional Euler equation moments. An unfortunate

consequence may have been to create the case that scaled factor models for the con-

ditional asset pricing models may have been mis-impression, since the conditional beta

is always derived from conditional Euler equation moments (scaling returns), whether

or not the pricing kernel includes scaled factors. We will work on this topic in future

research.
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Table 1.1: Return-based Models via HJ and Modified HJ Distance

Notes: The table reports the Hansen–Jagannathan (HJ) distance, modified HJ distance
measures and their tests. In Panel A, HJ distance measures and the traditional HJ test are
shown. In every test portfolios section, the third row shows that model which obtains the
largest normalized pricing errors; the sixth row gives the least misspecified (the one that
gets the smallest normalized pricing errors). All distance measures are tested by the null
hypothesis that the HJ distance is equal to zero, the p-values are reported below the distance
measure, respectively. In Panel B, multiple comparison for all models are reported. The null
hypothesis that the least misspecified one has the smallest distance measure is tested via
block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

HJ Modif. HJ HJ Modif. HJ

CAPM CAPM CAPM CRR5
0.6591 0.6714 0.4086 0.4786

(0) (0) (0) (0)
FF5 FF5 FF5 FF5

0.5329 0.5452 0.3755 0.437
(0) (0) (0) (0)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

HJ Modif. HJ HJ Modif. HJ

CAPM CAPM CAPM CAPM
0.1406 0.1523 0.6949 0.7133

(0) (0) (0.29) (0.43)
FF5 FF5 FF5 FF5

0.1372 0.1417 0.6034 0.615
(0) (0) (0) (0)

Panel B: Multiple Comparison

H0 : HJ (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.608
H0 : MHJ (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.5608
H0 : HJ (Ind-30) FF5 < FF3 < CRR5 < CAPM pvalue: 0.5704
H0 : MHJ (Ind-30) FF5 < FF3 < CAPM < CRR5 pvalue: 0.7194
H0 : HJ (Dec-10) FF5 < CRR5 < FF3 < CAPM pvalue: 0.5782
H0 : MHJ (Dec-10) FF5 < FF3 < CRR5 < CAPM pvalue: 0.6312
H0 : HJ (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.5782
H0 : MHJ (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.6312
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Table 1.2: Return-based Models via Unconstrained HJ Distance

Notes: The table reports the unconstrained Hansen–Jagannathan (HJ) distance measure and
its test for both gross and excess returns. In Panel A, HJ distance measures and the traditional
HJ test are shown. In every test portfolios section, the third row shows that model which
obtains the largest normalized pricing errors; the sixth row gives the least misspecified (the
one that gets the smallest normalized pricing errors). All distance measures are tested by
the null hypothesis that the HJ distance is equal to zero, the p-values are reported below the
distance measure, respectively. In Panel B, multiple comparison for all models are reported.
The null hypothesis that the least misspecified one has the smallest distance measure is tested
via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CAPM CAPM CAPM CRR5
0.6591 0.5574 0.4086 0.4317

(0) (0) (0.511) (0.28)
FF5 FF5 FF5 FF5

0.5329 0.4787 0.3755 0.4004
(0.2) (0.247) (0.51) (0.44)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

CAPM CAPM CAPM CAPM
0.1406 0.1505 0.6949 0.5807
(0.88) (0.92) (0.01) (0)
FF5 FF5 FF5 FF5

0.1372 0.1403 0.6034 0.5239
(0.58) (0.69) (0.08) (0.12)

Panel B: Multiple Comparison

H0 : GR (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.478
H0 : ER (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.4698
H0 : GR (Ind-30) FF5 < FF3 < CRR5 < CAPM pvalue: 0.4766
H0 : ER (Ind-30) FF5 < FF3 < CAPM < CRR5 pvalue: 0.4802
H0 : GR (Dec-10) FF5 < CRR5 < FF3 < CAPM pvalue: 0.5148
H0 : ER (Dec-10) FF5 < FF3 < CRR5 < CAPM pvalue: 0.5218
H0 : GR (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.449
H0 : ER (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.4562
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Table 1.3: Return-based Models via Constrained HJ Distance

Notes: The table reports the constrained Hansen–Jagannathan (HJ) distance measure and its
test for both gross and excess returns. In Panel A, HJ distance measures and the traditional
HJ test are shown. In every test portfolios section, the third row shows that model which
obtains the largest normalized pricing errors; the sixth row gives the least misspecified (the
one that gets the smallest normalized pricing errors). All distance measures are tested by
the null hypothesis that the HJ distance is equal to zero, the p-values are reported below the
distance measure, respectively. In Panel B, multiple comparison for all models are reported.
The null hypothesis that the least misspecified one has the smallest distance measure is tested
via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CAPM CAPM CAPM CAPM
0.674 0.607 0.4109 0.447

(0.0324) (0) (0.5207) (0.476)
FF5 FF5 FF5 FF5
0.577 0.506 0.3769 0.3896

(0.1261) (0.134) (0.5593) (0.467)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

CAPM CAPM CAPM CAPM
0.1448 0.1505 0.726 0.698

(0.6036) (0.567) (0.0658) (0)
FF5 FF5 FF5 FF5

0.1372 0.1407 0.6504 0.61
(0.5757) (0.4) (0.105) (0.2)

Panel B: Multiple Comparison

H0 : GR (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.36
H0 : ER (FF-25) FF5 < CRR5 < FF3 < CAPM pvalue: 0.4698
H0 : GR (Ind-30) FF5 < FF3 < CRR5 < CAPM pvalue: 0.625
H0 : ER (Ind-30) FF5 < FF3 < CRR5 < CAPM pvalue: 0.4802
H0 : GR (Dec-10) FF5 < FF3 < CAPM < CRR5 pvalue: 0.63
H0 : ER (Dec-10) FF5 < FF3 < CAPM < CRR5 pvalue: 0.5218
H0 : GR (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.6
H0 : ER (Gov-Bond) FF5 < CRR5 < FF3 < CAPM pvalue: 0.4562
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Table 1.4: Consumption-based Models via HJ and Mod. HJ Distance

Notes: The table reports the Hansen–Jagannathan (HJ) distance, modified HJ distance
measures and their tests on consumption-based asset pricing models. In Panel A, HJ distance
measures and the traditional HJ test are shown. In every test portfolios section, the third
row shows that model which obtains the largest normalized pricing errors; the sixth row gives
the least misspecified (the one that gets the smallest normalized pricing errors). All distance
measures are tested by the null hypothesis that the HJ distance is equal to zero, the p-values
are reported below the distance measure, respectively. In Panel B, multiple comparison for
all models are reported. The null hypothesis that the least misspecified one has the smallest
distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

HJ Modif. HJ HJ Modif. HJ

CAPM CAPM CCAPM CCAPM
0.6591 0.6714 0.4095 0.5085

(0) (0) (0) (0.4)
CRR5 CRR5 CRR5 Yogo
0.6314 0.6453 0.3766 0.4364

(0) (0) (0) (0)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

HJ Modif. HJ HJ Modif. HJ

CCAPM CCAPM CAPM CAPM
0.1617 0.1646 0.6949 0.7133
(0.55) (0.62) (0.29) (0.43)
Yogo Yogo CRR5 CRR5
0.1263 0.1385 0.6706 0.6887

(0) (0) (0) (0)

Panel B: Multiple Comparison

H0 : HJ (FF-25) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.9156
H0 : MHJ (FF-25) CRR5 < Piza < Yogo < CCAPM < CAPM pvalue: 0.9148
H0 : HJ (Ind-30) CRR5 < Yogo < Piza < CAPM < CCAPM pvalue: 0.8514
H0 : MHJ (Ind-30) Yogo < CRR5 < CAPM < Piza < CCAPM pvalue: 0.9368
H0 : HJ (Dec-10) Yogo < CRR5 < CAPM < Piza < CCAPM pvalue: 0.8082
H0 : MHJ (Dec-10) Yogo < CRR5 < CAPM < Piza < CCAPM pvalue: 0.8376
H0 : HJ (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.9024
H0 : MHJ (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.9052
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Table 1.5: Consumption-based Models via Unconstrained HJ Distance

Notes: The table reports the unconstrained Hansen–Jagannathan (HJ) distance measure and
its test for both gross and excess returns for consumption-based asset pricing models. In Panel
A, HJ distance measures and the traditional HJ test are shown. In every test portfolios section,
the third row shows that model which obtains the largest normalized pricing errors; the sixth
row gives the least misspecified (the one that gets the smallest normalized pricing errors). All
distance measures are tested by the null hypothesis that the HJ distance is equal to zero, the
p-values are reported below the distance measure, respectively. In Panel B, multiple comparison
for all models are reported. The null hypothesis that the least misspecified one has the smallest
distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CAPM CAPM CCAPM CCAPM
0.6591 0.5574 0.4095 0.4533

(0) (0) (0.522) (0.23)
CRR5 CRR5 Yogo Yogo
0.5554 0.4944 0.3957 0.3999
(0.29) (0.32) (0.606) (0.66)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

CCAPM CCAPM CAPM CAPM
0.1617 0.1624 0.6949 0.5807
(0.81) (0.94) (0.01) (0)
Yogo Yogo CRR5 CRR5
0.1263 0.1372 0.6294 0.5416
(0.79) (0.88) (0.07) (0.1)

Panel B: Multiple Comparison

H0 : GR (FF-25) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.4412
H0 : ER (FF-25) CRR5 < Piza < Yogo < CCAPM < CAPM pvalue: 0.299
H0 : GR (Ind-30) Yogo < CRR5 < Piza < CAPM < CCAPM pvalue: 0.6554
H0 : ER (Ind-30) Yogo < CAPM < CRR5 < Piza < CCAPM pvalue: 0.7358
H0 : GR (Dec-10) Yogo < CRR5 < CAPM < Piza < CCAPM pvalue: 0.7486
H0 : ER (Dec-10) Yogo < CRR5 < CAPM < Piza < CCAPM pvalue: 0.749
H0 : GR (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.5018
H0 : ER (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.3706
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Table 1.6: Consumption-based Models via Constrained HJ Distance

Notes: The table reports the constrained Hansen–Jagannathan (HJ) distance measure and its
test for both gross and excess returns for consumption-based asset pricing models. In Panel A,
HJ distance measures and the traditional HJ test are shown. In every test portfolios section,
the third row shows that model which obtains the largest normalized pricing errors; the sixth
row gives the least misspecified (the one that gets the smallest normalized pricing errors). All
distance measures are tested by the null hypothesis that the HJ distance is equal to zero, the
p-values are reported below the distance measure, respectively. In Panel B, multiple comparison
for all models are reported. The null hypothesis that the least misspecified one has the smallest
distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CAPM CAPM CCAPM CCAPM
0.674 0.56 0.4116 0.467

(0.0324) (0.04) (0.5126) (0.678)
CRR5 CRR5 Yogo Yogo
0.6192 0.54 0.3984 0.405

(0.0937) (0.0708) (0.5853) (0.593)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

CCAPM CAPM CAPM CCAPM
0.169 0.56 0.726 0.467

(0.7473) (0.045) (0.0658) (0.04)
Yogo Yogo CRR5 CRR5
0.128 0.1376 0.684 0.62
(0.8) (0.3) (0.0687) (0.051)

Panel B: Multiple Comparison

H0 : GR (FF-25) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.545
H0 : ER (FF-25) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.299
H0 : GR (Ind-30) Yogo < CRR5 < Piza < CAPM < CCAPM pvalue: 0.64
H0 : ER (Ind-30) Yogo < CRR5 < Piza < CAPM < CCAPM pvalue: 0.7358
H0 : GR (Dec-10) Yogo < CAPM < CRR5 < Piza < CCAPM pvalue: 0.75
H0 : ER (Dec-10) Yogo < CAPM < CRR5 < Piza < CCAPM pvalue: 0.749
H0 : GR (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.5
H0 : ER (Gov-Bond) CRR5 < Yogo < Piza < CCAPM < CAPM pvalue: 0.3706
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Table 1.7: Cond. Consumption-based Models via HJ and Mod. HJ Dist.

Notes: The table reports the Hansen–Jagannathan (HJ) distance, modified HJ distance
measures and their tests on conditional consumption-based asset pricing models. In Panel A,
HJ distance measures and the traditional HJ test are shown. In every test portfolios section,
the third row shows that model which obtains the largest normalized pricing errors; the sixth
row gives the least misspecified (the one that gets the smallest normalized pricing errors). All
distance measures are tested by the null hypothesis that the HJ distance is equal to zero, the
p-values are reported below the distance measure, respectively. In Panel B, multiple comparison
for all models are reported. The null hypothesis that the least misspecified one has the smallest
distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

HJ Modif. HJ HJ Modif. HJ

CCAPM CCAPM CCAPM CCAPM
0.6502 0.6623 0.4095 0.5058

(0) (0) (0) (0.4)
SV SPiza LL SV

0.577 0.5983 0.346 0.3936
(0.177) (0) (0) (0)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

HJ Modif. HJ HJ Modif. HJ

SV SV CCAPM CCAPM
0.1622 0.1969 0.6858 0.7075
(0.681) (0.948) (0.383) (0.721)

LL LL SV SPiza
0.1345 0.1402 0.6212 0.6473
(0.134) (0.02) (0.99) (0)

Panel B: Multiple Comparison

H0 : HJ (FF-25) SV < SPiza < LVN < CRR5 < LL < CCAPM pvalue: 0.4368
H0 : MHJ (FF-25) SPiza < SV < LVN < CRR5 < LL < CCAPM pvalue: 0.2394
H0 : HJ (Ind-30) LL < SV < CRR5 < LVN < SPiza < CCAPM pvalue: 0.379
H0 : MHJ (Ind-30) SV < LL < CRR5 < LVN < SPiza < CCAPM pvalue: 0.6688
H0 : HJ (Dec-10) LL < CRR5 < LVN < SPiza < CCAPM < SV pvalue: 0.2738
H0 : MHJ (Dec-10) LL < LVN < CRR5 < SPiza < CCAPM < SV pvalue: 0.3564
H0 : HJ (Gov-Bond) SV < SPiza < LVN < CRR5 < LL < CCAPM pvalue: 0.4946
H0 : MHJ (Gov-Bond) SPiza < SV < LVN < CRR5 < LL < CCAPM pvalue: 0.2738
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Table 1.8: Cond. Consumption-based Models via Unconst. HJ Dist.

Notes: The table reports the unconstrained Hansen–Jagannathan (HJ) distance measure and its
test for both gross and excess returns for conditional consumption-based asset pricing models.
In Panel A, HJ distance measures and the traditional HJ test are shown. In every test portfolios
section, the third row shows that model which obtains the largest normalized pricing errors;
the sixth row gives the least misspecified (the one that gets the smallest normalized pricing
errors). All distance measures are tested by the null hypothesis that the HJ distance is equal to
zero, the p-values are reported below the distance measure, respectively. In Panel B, multiple
comparison for all models are reported. The null hypothesis that the least misspecified one has
the smallest distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CCAPM CCAPM CCAPM CCAPM
0.6502 0.5522 0.4095 0.4533
(0.014) (0) (0.522) (0.23)
CRR5 CRR5 LL SV
0.5554 0.4944 0.346 0.3663

(0.2926) (0.315) (0.851) (0.856)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

SV SV CCAPM CCAPM
0.1622 0.1932 0.6858 0.5776
(0.483) (0.7) (0.02) (0.01)

LL LL SV CRR5
0.1345 0.1388 0.6212 0.5416
(0.87) (0.94) (0.05) (0.1)

Panel B: Multiple Comparison

H0 : GR (FF-25) CRR5 < SV < SPiza < LVN < LL < CCAPM pvalue: 0.5434
H0 : ER (FF-25) CRR5 < SPiza < SV < LVN < LL < CCAPM pvalue: 0.5516
H0 : GR (Ind-30) LL < SV < CRR5 < LVN < SPiza < CCAPM pvalue: 0.3982
H0 : ER (Ind-30) SV < LL < CRR5 < LVN < SPiza < CCAPM pvalue: 0.8678
H0 : GR (Dec-10) LL < CRR5 < LVN < SPiza < CCAPM < SV pvalue: 0.4624
H0 : ER (Dec-10) LL < LVN < CRR5 < SPiza < CCAPM < SV pvalue: 0.6484
H0 : GR (Gov-Bond) SV < SPiza < CRR5 < LVN < LL < CCAPM pvalue: 0.7398
H0 : ER (Gov-Bond) CRR5 < SPiza < SV < LVN < LL < CCAPM pvalue: 0.5596
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Table 1.9: Cond. Consumption-based models via Constrained HJ Dist.

Notes: The table reports the constrained Hansen–Jagannathan (HJ) distance measure and its
test for both gross and excess returns for conditional consumption-based asset pricing models.
In Panel A, HJ distance measures and the traditional HJ test are shown. In every test portfolios
section, the third row shows that model which obtains the largest normalized pricing errors;
the sixth row gives the least misspecified (the one that gets the smallest normalized pricing
errors). All distance measures are tested by the null hypothesis that the HJ distance is equal to
zero, the p-values are reported below the distance measure, respectively. In Panel B, multiple
comparison for all models are reported. The null hypothesis that the least misspecified one has
the smallest distance measure is tested via block-bootstrapping 5000 times.

Panel A: Traditional HJ Test

Fama–French 25 Portfolios 30 Industrial-sorted Portfolios

Gross Excess Gross Excess

CCAPM CCAPM CCAPM CCAPM
0.6688 0.5788 0.4116 0.4616

(0.0443) (0.05) (0.5126) (0.6)
CRR5 CRR5 LL SV
0.6192 0.5523 0.3648 0.3863

(0.0937) (0) (0.7223) (0.70)

10 Deciles Portfolios Fama–French 25 plus 7 Gov. Bonds

Gross Excess Gross Excess

CCAPM CCAPM CCAPM CCAPM
0.169 0.1979 0.721 0.6163

(0.7473) (0.6745) (0.0677) (0.586)
CRR5 CRR5 SV CRR5
0.1448 0.1499 0.6688 0.628

(0.6036) (0.70) (0.0394) (0.034)

Panel B: Multiple Comparison

H0 : GR (FF-25) CRR5 < SV < SPiza < LL < LVN < CCAPM pvalue: 0.445
H0 : ER (FF-25) CRR5 < SV < SPiza < LL < LVN < CCAPM pvalue: 0.5516
H0 : GR (Ind-30) LL < SV < CRR5 < LVN < SPiza < CCAPM pvalue: 0.315
H0 : ER (Ind-30) LL < SV < CRR5 < LVN < SPiza < CCAPM pvalue: 0.8678
H0 : GR (Dec-10) CRR5 < SPiza < LL < SV < LVN < CCAPM pvalue: 0.595
H0 : ER (Dec-10) CRR5 < SPiza < LL < SV < LVN < CCAPM pvalue: 0.6484
H0 : GR (Gov-Bond) SV < SPiza < CRR5 < LL < LVN < CCAPM pvalue: 0.7
H0 : ER (Gov-Bond) SV < SPiza < CRR5 < LL < LVN < CCAPM pvalue: 0.5596
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Figure 1.1: Hansen–Jagannathan Distance

Notes: Figure shows that the Hasen–Jagannathan (HJ) distance is the least squared distance between
any point along the admissible SDF line and the cross point between these two orthogonal lines (the
payoffs line).
Here it assumes that there are only two states on nature, then the payoffs line is a combination of the
payoff on each state. The circle point is the proposed stochastic discount factor (SDF), the purple line
denotes the HJ (unconstrained) distance and the blue dash line shows the constrained HJ distance.



Chapter 2

Leisure, Consumption and Long

Run Risk: An Empirical

Evaluation

2.1 Introduction

This paper investigates the ability of a long-run risks asset pricing model, with non-

separable leisure and consumption, to explain the cross-section of asset returns. Using

two long-run factors estimated via a VAR, news about future consumption growth and

news about leisure, we find that the model does well, relative to other consumption-

based models, in explaining the risk-return profile of size, industry and value-growth

portfolios.

We build on a rich prior literature starting with Eichenbaum et al. (1988) [6] that

explores the empirical properties of intertemporal asset pricing models where the rep-

resentative agent has utility over consumption and leisure. In this paper we use the

framework in Uhlig (2007) [7], which allows for a stochastic discount factor with news

about long-run growth in consumption and leisure. An important class of models, in-

troduced by Bansal and Yaron (BY (2005) [27]) rely on long-run consumption growth

factors to explain aggregate stock market behavior. The BY model requires a highly

persistent consumption process. However, the persistence of such a predictable compo-

nent in consumption growth is hard to measure in the data. In contrast, leisure data

shows more persistence and is correlated with equity returns. As a result introducing

non-separable leisure and consumption into the long run model leads to nontrivial in-

teraction between consumption and leisure choice and heightens the volatility of the

stochastic discount factor (SDF).

25
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Our paper is related to recent work in Yang (2010) [8]. He defines leisure as the difference

between a fixed time endowment and the observable hours spent on working, home pro-

duction, schooling, communication, and personal care. Our work uses instead adjusted

working hours as a measure of leisure. This allows us to avoid misleading results when

applying a VAR1. In other work, Dittmar and Palomino (2010) [29] also investigate the

role of labor income risk in the non-separable consumption-leisure model. This paper

directly studies the leisure effect in the pricing kernel instead of the long-run relations

between real wage, labor and consumption.

To evaluate our long-run model, we assess the performance with two measures competing

against standard asset pricing models to explain size, industry and value-growth portfo-

lios. Through cross-sectional regressions, we find that the long-run consumption-leisure

model cannot be rejected by the J–statistics: it obtains zero pricing errors. Mean-

while the consumption-based CAPM, the Yogo durable consumption and Fama–French

three-factor models do not achieve. We also rank the normalized pricing errors by

Hansen–Jagannathan (HJ) distance misspecified measures: our model statistically ob-

tains smaller HJ distance than other candidates.

Furthermore, we find that the equity premium arises, if assets are highly exposed to

long-run consumption risk and long-run leisure risk. Intuitively, while the consump-

tion growth falls, the leisure increases and decreases the price of long-run risks. Hence,

compositing high long-run consumption and high long-run leisure with a negative sign,

stocks will be asked for more compensation. To empirically test our model, we con-

duct time-series regressions, and evidence that more risky stocks obtain higher long-run

consumption betas and higher negative long-run leisure betas.

In the rest of the present paper, we first evidence some stylized facts from the data in

Section 2.2. Section 2.3 introduces the basic model and derives the SDF. Section 2.4

specifies the estimation method and describes the data. In Section 2.5, we show the

empirical results. Section 2.6 concludes.

2.2 Stylized Facts

2.2.1 Leisure and Consumption

Figure 2.2 shows the average weekly leisure, which takes into account demographic and

sectoral movements2. On average, the amount of leisure is about 44 hours per week

1Francis and Ramey (2009)[28] point that the demographic effect in working hours gives conflicting
results on the effects of technology shocks on working hours via the VAR estimation

2The activities with the highest enjoyment scores (sex, playing sports, etc.) are those that one would
generally classify as leisure (Figure 2.1 shows a survey reported in Robinson and Godbey (1999)).
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and strongly counter-cyclical. Non-durable consumption and services is shown in Figure

2.3. Leisure growth exhibits large oscillations during the pre-WWII period, but stays

relatively tranquil during the post-war period in Figure 2.4. The leisure growth stays

low most of time, but it becomes large occasionally, especially after the financial crisis

period of 2007. The volatility of leisure growth is about 27.96% (35.22% and 27.04% for

demographic, productivity and Tornqvist adjusted measures).

Panel A in Table 2.1 reports the significant first order autocorrelations of leisure as 0.38.

As in Bansal and Yaron (2005) [27], the variance ratio test is performed on both its log

and realized volatility of innovations. Panel B reports the variance ratio test for leisure.

If it is an i.i.d., then the ratio should be equal to 1, but the ratio for leisure is higher

than unity implies that a positive autocorrelation dominates. Panel C investigates the

time-varying volatility of leisure, since it shows that the adjusted variance ratios are all

below unity, which, together with the decreasing variance ratios, provides evidence of

a negative serial correlation in the realized volatility. Panel D explores the predictive

relations between the realized growth and the price–dividend ratio. The results indicate

that realized leisure growth in the future is predicted by the log price–dividend ratio,

∆l,t+j = aj + bj(pt − dt) + ηt+j , (2.1)

with negative slopes. Conversely, log price–dividend ratios in the future are also pre-

dicted by the realized leisure growth,

(pt+j − dt+j) = aj + bj∆l,t + ηt+j , (2.2)

also with negative slopes. Both sets of results are statistically strong.

Table 2.2 presents the empirical properties for quarterly per capita nondurable consump-

tion and services. Panel A reports a significant first order autocorrelation of 0.28, which

is close to that reported in Bansal and Yaron (2005) [27]. Notably, the autocorrelations

for leisure and consumption exhibit patterns that are very similar both qualitatively and

quantitatively. Panel B and Panel C show that the short run consumption is close to a

random walk, but the volatility is time-varying when the time horizon increases. Panel

D provides further evidence for the positive predictive relations between the realized

consumption growth and the price–dividend ratio. These results are similar to those

reported in Bansal et al. (2005) [30] for nondurable consumption growth.
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2.2.2 Leisure, Consumption and Asset Returns

We firstly conduct a Granger causality test to examine the lead-lag relation between

leisure or consumption and asset returns

rt = c1 + α1rt−1 + α2rt−2 + β1gi,t−1 + β2gi,t−2 + ur,t,

where rt is the quarterly market excess return and gi,t is the quarterly leisure or consump-

tion growth rate at date t. We then conduct an F test of the following null hypothesis:

H0 : β1 = β2 = 0. Similarly, we estimate,

gi,t = c2 + γ1gi,t−1 + γ2gi,t−2 + η1rt−1 + η2rt−2 + ui,t,

and then conduct an F test of the null hypothesis H0 : η1 = η2 = 0. The p−value of

the Granger causality test of consumption (leisure) Granger-causing returns is 0.2 (0.5),

asset returns predict future consumption and leisure growths.

We then calculate the correlation between leisure and asset returns over different horizons

in Figure 2.9, while the analysis of consumption is reported in Figure 2.8. For instance,

the correlation between cumulative consumption growth and cumulative excess market

returns,

corr(
k∑
j=1

gl,t+j ,
k∑
j=1

rt+j)

increases from -0.1 for k = 1 to -0.78 for k = 20 quarters. To further confirm the

stronger correlation over the long run, we perform a band-pass filtering analysis (e.g.,

Baxter and King (1999) [31]). The band-pass filter is used to extract the low-frequency

and high-frequency components of leisure (consumption) and asset returns. For leisure

data, lower frequencies have the higher correlation with asset returns, the correlation is

0.42 for lower frequencies and 0.17 for higher frequencies (with cycles between 2 and 12

quarters) for quarterly data.

Because we focus on the long run (low frequency) relation between consumption, leisure

and returns, the most convenient way to proceed is to use bivariate spectral analysis in

the right part of Figure 2.8 and Figure 2.9. To be more specific, the coherence of the

leisure or consumption growth rate and stock market returns at frequency λ measures

the correlation between leisure or consumption and returns at frequency λ. When the

frequency is λ, the corresponding length of the cycle is 1/λ quarters. To identify the sign

of the correlation, the cospectrum needs to be examined. The cospectrum at frequency

λ can be interpreted as the portion of the covariance between consumption or leisure

growth and asset returns that is attributable to cycles with frequency λ. The slope of
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the phase spectrum at any frequency λ is the group delay at frequency λ and precisely

measures the number of leads or lags between leisure or consumption and asset returns.

When this slope is positive, leisure or consumption leads the market returns. The left

panel in the right part of Figure 2.9 plots the results for the quarterly data, while the

right panel for the annual data. The coherence between the quarterly leisure growth

rate and quarterly excess market returns is much higher at low frequencies than at high

frequencies. Therefore the comovement between leisure growth and asset market returns

is much stronger at low frequencies.

2.3 The Model

2.3.1 Epstein–Zin Preferences with Leisure

The representative household has preference such as the Epstein-Zin (E–Z) utility func-

tion

Vt = U(Ct,ΦtLt) + β
[
Et[(Vt+1)1−υ]

]1/(1−υ)
, (2.3)

where Ct presents the aggregate consumption, Lt denotes the aggregate leisure and Φt is

the long run trend at time t. β is the subjective discount rate, υ denotes the curvature

of the E–Z utility, υ ∈ <, υ 6= 13.

To specify the utility, the intra-temporal utility Ut is given by

Ut =
(Cαt · (ΦtLt)

1−α)1−η

1− η
, (2.4)

where α is the expenditure share of consumption, for instance, a 1% drop in consumption

results in an α% drop in the consumption-leisure composite. η denotes the risk aversion

on the temporal utility.

Hence, the preference function becomes

Vt =
(Cαt · (ΦtLt)

1−α)1−η

1− η
+ β

[
Et[(Vt+1)1−υ]

]1/(1−υ)
. (2.5)

The expected V (.) function is twisted by the coefficient 1−υ. When υ = 0, the preference

given by the above reduces to special case of expected utility. The main advantage of

3Note that, traditionally, E–Z preferences over consumption and leisure streams have been written
as

Vt = [U(Ct, Lt)
1−ρ + β(EtV

1−υ̃
t+1 )

1−ρ
1−υ̃ ]

1
1−ρ

but by setting Ṽ = V 1−ρ and 1− υ = 1−υ̃
1−ρ .
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the recursive preference is that it allows for greater flexibility in modeling risk aversion

and the intertemporal elasticity of substitution. In the recursive preference above, the

intertemporal elasticity of substitution over deterministic consumption paths is exactly

the same as in the expected utility, but the household’s risk aversion with respect to

gambles can be amplified (or attenuated) by the additional parameter υ. Importantly,

the intra-temporal Cobb–Douglas (C–D) form can be treated as a normalization of

the preference function; shifting the intercept of the felicity function, i.e., U(.), will

not affect economic choices4. Furthermore, the C–D form ensures the felicity function

U(C,ΦL) does not depend on Φ for (C,L) locally around (C,L,Φ) up to a second-order

approximation5.

Two cases are distinguished: treating consumption and leisure as a single composite

good, or not. The household’s risk aversion to gambles can be amplified (or attenuated)

by the additional parameter υ as η + υ(1− η) (consumption and leisure as a composite

good). If non-separable consumption and leisure (not a single composite commodity),

the consumption-only coefficient of relative risk aversion (RRA) and intertemporal elas-

ticity of substitution (IES) will depend on α as ηα + υ(1 − η)α and the inverse of

1− α(1− η) 6.

To proceed towards asset pricing, the budget constraint states

Ct + St = RtSt−1 +WtNt, (2.6)

where St is the wealth invested in some asset with a gross return (measured in consump-

tion units) of Rt from period t − 1 to t, Wt is the real wage and Nt presents the labor

supply. The standard pricing formula or the stochastic discount factor (SDF) can be

computed by the Euler equation with respect to consumption,

Λt = βEt[Λt+1Rt+1], (2.7)

where Λt is the Lagrange multiplier on the budget constraint.

This paper assumes log consumption is trend-stationary, e.g., the log consumption is

equal to a linear trend K · t and an AR(1) process εt+1 + ρεt, where |ρ| < 1. It is more

4see Uhlig (2007) [7] Assumption 3.
5Based on C–D form and [7] Proposition 2, χ = η/(1− η)Ū .
6Swanson (2012) [32] has proofed that the risk aversion of the recursive preference is given by

RS(S; θ) =
−V11(S; θ)

V1(S; θ)
+ υ

V1(S; θ)

V (S; θ)
,

where S denotes the household’s beginning-of-period assets in her budget constraint, θ is exogenous to
the household and V stands for the value function.
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convenient to restate the investment problem in terms of the detrended variables

Γt =
Φt

Φt−1
, (2.8)

Ṽt =
Vt
Φt
, (2.9)

C̃t =
Ct
Φt
, (2.10)

S̃t =
St
Φt
. (2.11)

The maximization of the problem can be rewritten as

maxV0, (2.12)

subject to

Ṽt = U(C̃t, Lt) + β̃
[
Et[(Γt+1/Γ̄)1−υ(Ṽt+1)1−υ]

]1/(1−υ)
,

C̃t + S̃t =
Rt
Γt
S̃t−1 +WtNt,

where β̃ stands for βΓ̄1−η, Ω̃t denotes the Lagrange multiplier for the detrended V (.)

function constraint, and Λ̃t is the Lagrange multiplier for the detrended budget con-

straint. The first-order conditions are

∂

∂Ṽt
: Ω̃t = Ω̃t−1

Et−1[(Γt
Γ̄

)1−υ(Ṽ 1−υ
t )]

1
1−υ

Ṽt

υ (Γt
Γ̄

)1−υ
, (2.13)

∂

∂C̃t
: Λ̃t = (1− β̃)Ω̃tU1(C̃t, Lt), (2.14)

∂

∂S̃t
: Λ̃t = β̃Et

[
Λ̃t+1

Γt+1
Rt+1

]
. (2.15)

2.3.2 Log-linearizing the First Order Conditions

We demonstrate the mechanisms working in the model via approximate analytical so-

lutions. Small letters are used to denote the log-linear deviation of a variable from its

steady state, where c = log(C̃) − log(
¯̃
C), l = log(L) − log(L̄), ζ = log(Γ) − log(Γ̄) and

u = log(U(C̃, L))− log(
¯̃
U).
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The second order Taylor expansion of the felicity function U(.) yields

u ≈ c+ κ · l − 1

2
ηcc · c2 + (ηcl,l − κ) · c · l − 1

2
· κ · (ηll + 1− κ) · l2. (2.16)

To provide some further intuition on κ, consider a stochastic neoclassical growth model

such as C–D production function, where wages times labor equals the share of labor

times output7. The usual first order condition with respect to leisure then shows κ to

be the ratio of the expenditure shares for consumption to leisure.

The V (.) function will be log-linearized to

vt = ct + κlt + β̃Et

[
υ − η
ψ

ζt+1 + vt+1

]
, (2.17)

where ψ = υ−η
1−η

V̄
V̄+χ

measuring the degree of curvature in departing from the benchmark

expected discounted utility framework, and χ = η
1−η Ū . Note that ψ = υ − η in the

steady state path. The equation shows that vt can be related back to the observables,

i.e., to ct, lt, as well as ζt.

Equations (2.13), (2.14) and (2.15) log-linearize to

$t −$t−1 = −ψ(vt − Et−1[vt]) + (1− υ)(ζt − Et−1[ζt]) + (1− η)Et−1[ζt], (2.18)

λt −$t = 1− ηccct + (ηcl,l − κ)lt, (2.19)

0 = Et[λt+1 − λt + rt+1 − ζt+1], (2.20)

where $ denotes the log Lagrange multiplier for the detrended V (.) function constraint,

and λ stands for the log Lagrange multiplier for the detrended budget constraint.

2.3.3 The Stochastic Discount Factor (SDF)

The corresponding SDF can be written as

mt,t+1 = λt+1 − λt − ζt+1, (2.21)

7 Introduce

ηcc = −UCC(C̄, L̄)C̄

UC(C̄, L̄)
, ηll = −ULL(C̄, L̄)L̄

UL(C̄, L̄)
,

ηcl,c =
UCL(C̄, L̄)C̄

UL(C̄, L̄)
, ηcl,l =

UCL(C̄, L̄)L̄

UC(C̄, L̄)
.

κ =
ULL̄

UCC̄
=
ηcl,l
ηcl,c

.

.
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for the log-deviation of the SDF

Mt,t+1 = β̃
Λ̃t+1

Λ̃tΓt+1

. (2.22)

Combining equations from (2.16) to (2.20) derives the SDF8. The log SDF relates the

pricing kernel to macroeconomics variables as following:

mt,t+1 = −ηcc · (ct+1 − ct) + (ηcl,l − κ) · (lt+1 − lt)

− υ · (ζt+1 − (1 +
η

υ
) · Et[ζt+1])

− ψ · [
∞∑
i

(Et+1 − Et)β̃ict+i]

− ψ · [
∞∑
i

(Et+1 − Et)β̃iκlt+i]

− (υ − η) · [
∞∑
i

(Et+1 − Et)β̃iζt+i].

(2.23)

The SDF depends on the framework of temporal utility, i.e., ηcc the risk aversion with

respect to consumption9, ηcl,l the preference parameter denoting the non-separable char-

acteristics in consumption and leisure, κ the ratio of the expenditure shares for consump-

tion and leisure, η the risk aversion of the temporal utility, and the curvature of the E–Z

recursive utility function υ. Note that, when coming to the expected utility (ψ = 0 and

υ = η), the SDF will be deduced from the function of second moments of the utility

function and the shock scaled by the risk aversion as

mt,t+1 = ηcc · (ct+1 − ct) + (ηcl,l − κ) · (lt+1 − lt)− η · (ζt+1 − ζt), (2.24)

here we assume that ζ can be predictable.

If consumption and leisure are not non-separable, i.e., ηcl,l = 0 and κ = 0, then the SDF

can be rewritten as

mt,t+1 = ηcc · (ct+1 − ct)− η · (ζt+1 − ζt), (2.25)

where the expected trend ζt+1 − ζt is scaled by η in Abel (1990) [33]10. Thus, given

the parameters of the recursive utility function, the SDF can be explained by six macro

8The details on algebra are shown in the Appendix.
9Due to the E–Z formulation, the role for ηcc will be the characterization of intertemporal substitution,

rather than risk aversion.
10Provided logΦ is cointegrated with the log of total factor productivity.
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variables: news on consumption, leisure, the trend, and their corresponding short-term

growth rates.

2.3.4 The Return–Risk in the Model

Let rt be the log gross return of any asset rt = log(1 + Rt) and rft be the log risk-free

rate at time t. We assume that conditionally on information at date t, mt,t+1 and rt+1

are jointly log-normally distributed, conditional on information up to and including t.

The asset pricing formula (2.7) can be rewritten as

0 = log(M̄R̄) + Et[mt,t+1] + Et[rt+1] +
1

2
(σ2
m,t + σ2

r,t + 2ρm,r,tσm,tσr,t). (2.26)

For the risk-free rate, i.e., for an asset with σ2
r = 0,

rft = −log(M̄)− Et[mt,t+1]− 1

2
σ2
m,t. (2.27)

To specify the SDF as factors

rft = −log(M̄) + ηcc ·Et[ct+1 − ct]− (ηcl,l − κ) ·Et[lt+1 − lt] + ηEt[ζt+1]− 1

2
σ2
m,t. (2.28)

Furthermore, the risk premium on any asset is stated as

Et[rt+1]− rft+1 +
σ2
t

2
− rft

2
= ηcc · Covt(rt+1,∆ct+1)

− (ηcl,l − κ) · Covt(rt+1,∆lt+1)

+ η · Covt(rt+1,∆ζt+1)

+ ψ · Covt(rt+1,

∞∑
j=0

β̃jct+1+j)

+ ψ · κ · Covt(rt+1,

∞∑
j=0

β̃jlt+1+j)

+ (υ − η) · Covt(rt+1,
∞∑
j=0

β̃jζt+1+j).

(2.29)
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To explain (2.29), we rewrite the equation into risk and risk-price representation (beta-

representation)11.

Et[rt+1 − rft+1] +
σ2
t

2
− rft

2
= ηcc · σ2

c · βc

− (ηcl,l − κ) · σ2
l · βl

+ η · σ2
ζ · βζ

+ ψ · σ2
εc · βεc

+ ψ · κ · σ2
εl
· βεl

+ (υ − η) · σ2
εζ
· βεζ .

(2.30)

Long-run risks on consumption and leisure arise because investors care about future

leisure and future consumption growth. The expected future variable will affect the

investors’ current behavior through inter-temporal consumption smoothing. That’s why

the inter-temporal elasticity of substitution (κ and η) enters the price of risk of the

risk factors. Moreover, the preference parameters (ηcc, ηcl,l and κ) denoting the non-

separability between consumption and leisure also goes into the risk price for current

and long-run leisure terms.

2.4 Test Methodology

2.4.1 State of the Economy

The log-linearized equilibrium of the economy can be expressed in a state space form as

follows:

Xt = GXt−1 +Hut, (2.31)

where Xt is a n× 1 vector of a constant state variable and time varying state variables,

and ut is an m× 1 vector of innovations to economic shocks and measurement errors.

Yt = UXt + V ut, (2.32)

where Yt is a k×1 vector of observable variables and εt is a vector of measurement errors.

This vector typically includes growth rates of non-cointegrated I(1) observable variables,

11Define

βa =
Cov(at+1, rt+1)

σ2
a

as the risk loadings for factors therefore the risk price will be parameters · σ2
a, and

σ2
t
2
− r

f
t
2

is a term
adjusting for the ‘Jensen effect’.
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error correction variables from cointegrating relationships, and I(0) observable variables.

The matrix G has eigenvalues less than one in absolute values except for a single unit

eigenvalue associated with a constant state variable. Let Et[.] = E[.| {Xt−s, Yt−s}∞s=0]

be the conditional expectation operator for the agents in the economy, and EY,t[.] =

E[.| {Yt−s}∞s=0] be the conditional expectation operator for the econometrician who only

observes the present and past realizations of the observables. I assume that ut and εt

satisfy Et−1ut, Et−1utu
′
t = I, Et−1ut+iu

′
t+i = 0 for i 6= j.

The news on observables at time t+ s to the shocks at time t can be calculated by the

equation as follows:

Et[Yt+s]− Et−1[Yt+s] =

{
V ut for s = 0,

UGs−1Hut for s ≥ 1.
(2.33)

Suppose that consumption growth, ∆ct = log(Ct) − log(Ct−1), is g-th variable in Y .

Then, the news on consumption growth is

Et[∆ct+s]− Et−1[∆ct+s] =

{
e
′
gV ut for s = 0,

e
′
gUG

s−1Hut for s ≥ 1,
(2.34)

where eg is the k × 1 selection vector with one in the g-th place and zeros elsewhere.

Here Xt contains in particular the log of the ratio of consumption to long run trend

growth (ct/Φt), the log leisure lt, the log of the de-meaned growth of the long-run trend

ζt = log(Φt)− log(Φt−1), and the excess returns rt−rft as the first, the second, the third,

and the forth variables. We allow for heteroskedasticity in the innovations but not in

the VAR coefficients. The news about consumption, leisure and the long-run trend are

now given by (for s ≥ 1)

Et[∆ct+s]− Et−1[∆ct+s] = e
′
1UG

sHut, (2.35)

Et[lt+s]− Et−1[lt+s] = e
′
2UG

sHut, (2.36)

Et[ζt+s]− Et−1[ζt+s] = e
′
3UG

sHut, (2.37)

2.4.2 News Shock Identification

The result from the equation (2.30) shows that expected log excess returns of an asset

depend on the asset’s betas with economic shocks. We assume that the state space

forms (2.31) and (2.32) are invertible. When a state space form is invertible, the state

variables can be expressed as a weighted sum of the current and past realizations of
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observables, and an economic shock can be expressed as a linear combination of the

VAR innovations of the observables. The identification of these shock components and

the resulting asset-pricing implications critically depends on two features in the model,

the multivariate structure of predictability in all state variables and the recursive utility

form.

Hence, the set of information variables need to have predictive power beyond that of

lagged growth on consumption, leisure and the trend in the VAR system12. These

three predictor variables can be motivated as follows. First, the per capita consumption

tracks the business cycle, and there are a number of reasons why expected returns on the

stock market could co-vary with the business cycle. Second, leisure can be motivated

by the dynamic model itself and its data characteristics. Third, in order to investigate

the role of the long-run trend in the data, we proceed somewhat artificially as follows.

Constructing ζt as the transformation of the growth rate on past aggregate consumption

ζt = ρζζt−1 + (1− ρζ)(logCt − logCt−1) (2.38)

with ζ1 = (logC1 − logC0). Find ρζ such that

∆ct = logCt − logCt−1 − ζt (2.39)

has zero autocorrelation: ρζ = 0.71. We also try alternatives for this trend, per ρζ = 0.9

and ρζ = 0.5. Here ζt can be interpreted as a medium frequency filter to consumption;

consumers care about the lagged value of aggregate consumption which differs from

habit formation in that it is independent of an individual consumer’s own consumption.

We also put excess returns as elements in VAR (Hansen et al. (2008) [35] and Malloy

et al. (2009) [36]). We choose Fama–French 25 size- and book-to-market- portfolios

as test assets, then the VAR differs across test assets to avoid spurious correlation

between a given test asset and innovations. Because our VARs differ across test assets,

therefore the conditional expectations for consumption, leisure and the trend are different

depending on the excess return of interest so that we do not obtain a consistent model

for dynamics across the test assets. There is no obvious bias in this procedure, but the

varying variable dynamics across test assets are somewhat unappealing. To address the

impact of estimating a separate VAR for each test asset, we repeat the approach above

and estimate a ‘mean’ VAR in order to see the effects on estimating risks and prices of

risks.

12Barsky and Sims (2011) [34] propose the identification methodology of two technology shocks in a
structural VAR analysis. They put the first variable as the measure of technology.
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Now the SDF can be rewritten as the representation of the infinite order VAR innovations

of Yt spanning the space of economic shocks

mt,t+1 = ~a
′
ut+1 −~b

′
U(I −G)−1Hut+1, (2.40)

where the vectors ~a,~b and, additionally, the vector ~e4, are defined by

~a =



−ηcc
ηcl,l − κ
−η
0

.

.

.

0


,~b =



ψ(1− β)

ψ(1− β)κ

υ − η
0

.

.

.

0


, ~e4 =



0

0

0

1

0

.

.

.

0



. (2.41)

Equation (2.40) is similar as the equation (3) in Hansen et al. (2008) [35]. In their

paper, the SDF is written as

mt,t+1 = µm + UmXt +~b
′
(I − βG)−1ut+1, (2.42)

where the vectors ~b is defined as

~b =



ψ(1− β)

ψ(1− β)κ

υ − η
0

.

.

.

0


. (2.43)

Here we can rewrite ~b
′
(I − βG)−1 as λ(β). The vector λ(β) is the discounted impulse

response of consumption to each of the respective components of the standardized shock

vector ut+1. As emphasized by Bansal and Yaron (2005) [27], the contribution of the

discounted response to the stochastic discount factor makes consumption predictability

a potentially potent way to enlarge risk prices, even over short horizons. Further the
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term γλ(β) captures the “bad beta” of Campbell and Vuolteenaho (2004) [37] except

that they measure shocks using the market return instead of aggregate consumption.

In this paper, λ(β) reflects the discounted impulse response of consumption, leisure and

the trend to the standardized shocks. Since the consumption and leisure reacts oppo-

sitely to the shock, therefore both of them decreases risk prices if the long run leisure

risk is predominated. Otherwise, the discounted response to the stochastic discount

factor enlarges risk prices if the long run consumption risk is predominated. Hence, this

flexible feature helps to explain the cross-sectional equity premiums. Need to mention,

this feature also creates an important measurement challenge in implementation. Un-

der the alternative interpretation suggested by Anderson et al. (2003) [38], ~b
′
λ(β) is

the contribution to the induced prices because investors cannot identify potential model

misspecification that is disguised by shocks. In considering how big the concern is about

model misspecification, we ask that it could be ruled out with historical carefully ac-

counted leisure data and a misspecificied measure test (Hansen–Jagannathan distance).

2.4.3 Data Description

The quarterly sample of 1948–2011 is used after intersecting the data on leisure, non-

durable consumption, and asset markets.

2.4.3.1 Asset Returns

We use three test assets, Fama–French 25 size- and book-to-market sorted portfolios, 25

size- and momentum portfolios, and 30 industry portfolios on the left-hand side of the

unconditional first order condition, the equation (2.30). We use the three-month T-bill

rate from FRED over the period January 1948 to December 2011 as the riskless rate of

interest.

2.4.3.2 Consumption

The real level series for nondurables and services is obtained by accumulating the log

growth rates, and taking the exponent of the resulting series with the first value of

the series normalized to one. The series is then rescaled in the base year (2005). To

generate the per capita series, we use a filtered version of the quarterly population series.

To deal with the seasonality issue, the population series we use is the exponent of the

Hodrick–Prescott trend of the logarithm of the original population series.
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2.4.3.3 Leisure

To calculate leisure data, we collect working, schooling and home production, commu-

nication and personal care hours, respectively.

Time spent working includes paid hours in the private sector, as well as hours worked

for the government (either voluntarily or involuntarily) and unpaid family labor13.

For school hours, we base the calculation on information from the Digest of Education

Statistics (DES) and Historical Statistics for college enrollment data from 1940 on. Hours

per day attended for secondary school are based on time-use studies and AHTUS and

2003 BLS ATUS. The hours spent by college students are taken from the time-diary

studies from Babcock and Marks (2010) [39].

Home production data comes from AHTUS 1965, 1975, 1985 and BLS 2003–2010. Com-

muting time is also considered: in the absence of firm evidence, we assume that commute

times were 10 percent of total hours worked, equal to the average during the last 40 years

of the sample. The time-use studies of high school and college students from the late

1920s to the present all suggest school commute times approximately equal to 10 percent

of total time spent on school and homework. Thus we use a constant 10 percent com-

mute time for this activity as well. For personal care time, we subtract 77 hours from

the time endowment. This number is very similar to the estimates for all individuals

ages 15 and up in the time-use surveys of the 2000s.

2.5 Basic Results

2.5.1 Data Analysis

Innovations are extracted via Vector Autocorrelation (VAR) representation for filtered

per capita consumption, leisure and the transformed past aggregate consumption trend.

The figures 2.10 and 2.11 show different news for four variables in the bootstrapping

impulse response functions. In particular, a bad shock increases leisure growth and

decreases consumption growth, which is consistent with theory.

13The inclusion of government workers and unpaid family labor is consistent with the post-World War
II US Department of Labor, Bureau of Labor Statistics (BLS) labor series, as well as the fact that gross
domestic product includes the output of these workers.
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2.5.1.1 A Linear-factor Asset Pricing Model

In this part, results are reported under unconditional covariance among variables; a

linear-factor asset pricing model, the equation (2.30), explains cross-sectional returns on

assets.

To avoid models that researchers would never consider in practice, we narrow down the

focus to our new long-run factor, the consumption-based CAPM, and the Fama–French

three-factor modelsto price Fama–French 25 size- and book-to-market ratio portfolios.

Since the Fama–French three-factor model obtains a ‘factor-structure’ pattern, it is

chosen as the benchmark14.

Our new factor model is stated as:

1. The model with long-run consumption–leisure trend three factors:

yN3
t+1 = θ0 + θ1lrct+1 + θ2lrlt+1 + θ3lrgt+1, (2.44)

where growths on per capita consumption, leisure and the consumption trend are rep-

resented by factors lrct+1, lrlt+1 and lrgt+1 denoting long-run growth among these

variables15.

2. Consumption-based CAPM (C-CAPM):

yCCAPMt+1 = θ0 + θ1c
ndur
t+1 , (2.45)

where cndurt+1 is the growth rate of non-durable consumption.

3. Fama and French (1993) [1] (FF3) document the role of size and book/market in the

cross-section of expected stock returns, and show that CAPM are not supported by the

data

yFF3
t+1 = θ0 + θ1R

eM
t+1 + θ2SMBt+1 + θ3HMLt+1, (2.46)

where ReMt+1, SMBt+1 andHMLt+1 stand for the market return, size and book-to-market

ratio factors, respectively.

We turn to the main findings of the paper now. This subsection first looks at how

portfolios load on these factors, and then we examine whether the factor loadings are

significantly priced. For the purpose of comparison, the factor exposures in benchmark

models are reported. Table 2.3 and Table 2.4 explain the portfolios’ exposures to C-

CAPM and Fama–French three-factor models via multivariate and univariate time-series

14Lewellen, Nagel and Shanken (2009) advocate this solution to the problem.
15To identify preference parameters in equation (31), I also estimate a six-factor model: yN6

t+1 =
θ0 + θ1∆ct+1 + θ2∆lt+1 + θ3gt+1 + θ4lrct+1 + θ5lrlt+1 + θ6lrgt+1.
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regressions. Each row in the tables from left to right represents the size portfolios from

small to big in a given book-to-market category. Each column from top to bottom

corresponds to lowest to highest book-market quintiles for a given size category. There

is a weak correlation between average returns and the exposures to the market factor.

The SMB factor captures the size effect and the HML factor lines up with returns on

the book-and-market dimension. Almost all factor loadings are statistically significant at

block bootstrapping 5% level. Likewise, Table 2.5 and Table 2.6 show the performance

on our linear-factor model.

The long-run leisure factor explains the size effect, while it does negatively line up well

with returns on the book-to-market effect; the estimated long-run consumption betas be-

have oppositely to the long-run leisure. The consumption trend lines up with returns on

the size- and book-to-market effects like the long-run consumption betas. With univari-

ate regression, the trend captures size and book-to-market effects, simultaneously. The

long-run consumption factor obtains these characteristic, so does the long-run leisure.

To sum up, the factor loadings are significant for our new factor model: the long-run

factors can capture the book-and-market and size spreads.

In order to further examine whether the risks measured by these factor loadings are

significantly priced, we can look at the results of cross-sectional regressions. We consider

two alternative formulations (with and without the constant term) to assess the models’

ability to capture the cross-section of average returns. The constant term should be zero

according to theory; a non-zero large constant term indicates that a model cannot price

the assets on average. A non-zero λ0 can also be interpreted as a zero-beta rate different

from the risk free rate that is imposed16. In some specifications, the sign and magnitude

of the estimated risk premia are found to depend on the inclusion of the constant.

Table 2.7 gives us the prices of risk, R2, and pricing error tests without the constant term

for all candidates. The first row (‘mean’) shows the λs (prices of risk) for factors after

average innovations are taken from the VAR. The second row (‘vector’) gives the results

when 25 ‘cells’ innovations are used to price the risks on Fama–French 25 portfolios,

since we put each test portfolio as the fourth element in the VAR estimation. From

the third to the eighth rows, various standard errors (i.i.d., Shanken, and GMM) and

bootstrapping (5000 times) upper–lower bands are shown. If the estimated standard

errors stay between the upper and the lower band, it means the estimates are not

statistically significant. The long-run factors statistically can price risks on assets well,

comparing the same performances on market return and book-to-market loadings in the

Fama–French three-factor model. Besides, the trend factor is able to explain the risk,

16Burnside (2011) [40] shows that the constant can be interpreted as the model’s pricing error for the
risk free rate.
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though its factor loadings are small via time-series regressions. It should be mentioned

that the upper–lower bands here are computed using ‘mean’ innovations: the ‘vector’

upper–lower bands are not reported. However, the risk prices are still significant for

all long-run factors. Similar results are shown in Table 2.8. Then the R2s (Adjusted

R2s) are 79.4% (76.6%) and 89.8% (88.5%) for our long-run three-factor models and

Fama–French three-factor, respectively. Without the constant term, the Fama–French

three-factor model still has higher explanatory powers than our model: the difference is

about 10%, while C-CAPM obtains the lowest. In the last three columns of the table,

we test the pricing errors with Alpha tests: the null hypothesis states that the pricing

errors are zero. Our model cannot be rejected by the hypothesis, while pricing errors

are significantly not equal to zero for the other candidates.

Tables 2.9 and 2.10 give us the direct image from the cross-sectional regression with a

constant term, in which the λ0s for the two models are quite small for the zero-beta

portfolio and are also insignificant. Like the results without a constant term, the long-

run factor loadings significantly price risks of assets. R2s (Adjusted R2s) on our factor

models obtain less explanatory power for the benchmark. According to the Alpha tests,

the null hypothesis, which states that the pricing errors are zero, cannot be rejected for

our model, but the C-CAPM and Fama–French three-factor model obtains significant

pricing errors.

To avoid the ‘generated regressors’ problem, the cross-sectional regression by GMM is

reported in Table 2.11. The long-run factors statistically significantly price risks. The J–

statistics in the last two columns cannot be rejected, in which the null hypothesis states

that the model is ‘valid’. In the literature, those linear factor models are usually rejected

by this statistical test17. From Table 2.11, we can conclude that our factor model is valid:

we cannot statistically reject the null hypothesis. This method statistically proves such

results from Table 2.5 to Table 210.

Using equation (2.30), we can identify the preference parameters under the unconditional

covariance matrix, such as κ, υ and η. A six-factor model yN6
t+1 = θ0 + θ1∆ct+1 +

θ2∆lt+1 + θ3gt+1 + θ4lrct+1 + θ5lrlt+1 + θ6lrgt+1 is estimated via time-series and cross-

sectional regressions18. However, the last four significant estimates empirics are of help in

identifying the preference parameters κ (the consumption-leisure ratio), ψ (the curvature

in E–Z), υ and η (both characterize RRA and IES) in equation (2.30). Therefore the

estimated RRA and IES are equal to 5.7832 and 1.4807 for ‘vector’ innovations (26.9072

and 0.4061 for ‘mean’ innovations) after running a cross-sectional regression without

the constant term; while with the constant term, the applied RRA and IES are 2.0235

17If there are over-identifying restrictions, the test statistics are known to over-reject the null hypoth-
esis.

18To save space, the tables are not reported in this paper.
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and 1.13102 for ‘vector’ innovation (11.6050 and 0.5032 for ‘mean’ innovations). In this

case we empirically prove that IES is not the inverse of RRA like the expected utility

function does.

2.5.1.2 Hansen–Jagannathan Distance and Multiple Comparison Test

Because of drawbacks to the R2, we apply various Hansen–Jagannathan (HJ) distances

to evaluate the pricing performances and to test the rankings. The basic motivation of

the HJ distance is to supply a method to find the least misspecified one among some

candidates19.

The basic HJ, the modified HJ (Kan and Robotti (2008) [19]), the unconstrained HJ, and

the constrained HJ (Gospodinov et al. (2010) [20]) are used to rank the misspecification

of the candidates. The long-run three-factor model outperforms the other two across

these four distance measures. In addition, the statistical test will be that the distance

measure is equal to zero as the null hypothesis. As a result, we cannot reject the

null hypothesis for all HJ distance measures. Besides, we apply the block-bootstrapping

multiple comparison test in the last four rows to test whether the rank stays statistically

true. The null hypothesis states that the winner obtains the minimum HJ distance

among others. The last four rows of Table 2.12 show that the statistical p values are

0.2488, 0.3636, 0.2456 and 0.533, respectively, for our consumption-leisure-trend three-

factor model cannot be used to reject the null hypothesis across four distance measures.

In other words, the model statistically gets the least misspecified measures compared to

the other pricing models.

2.5.2 Additional Robustness Checks

In this section, we extend the candidate models and test portfolios, i.e., the Fama–French

25 size and momentum, and 30 Industry-sorted portfolios.

For the candidate models, the following will be considered:

The Yogo non-durable and durable consumption model

yY ogot+1 = θ0 + θ1c
ndur
t+1 + θ2c

dur
t+1, (2.47)

where cndurt+1 denotes durable consumption growth.

19Hansen and Jagannathan (1997) [13] develop a measure of the degree of misspecification of an asset
pricing model. This measure is defined as minm∈ℵ ‖m− y‖, the least squares distance between the
family of stochastic discount factors that price all the assets correctly and the stochastic discount factor
associated with and an asset pricing model.
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The Fama–French 25 size and momentum, which are constructed monthly, are the inter-

sections of five portfolios formed on size (market equity, ME) and five portfolios formed

on prior (2–12) returns. The 30 industry portfolios are NYSE, AMEX, and NASDAQ

industry portfolios based on its four-digit SIC code at that time, whose returns are from

July of t to June of t+ 1.

To save space, we only report the important results, i.e., the Alpha tests, J tests, R2s,

and HJ misspecified distance measures.

Table 2.13 shows that four models explain the Fama–French 25 size- and momentum-

portfolios. The second and the third columns present R2s, consumption-leisure four-

factor model obtains higher values on both R2 and adjusted R2. The results with a

constant term are reported in the brackets below; the Fama–French three-factor gets

more explanatory power than the others. The fourth to the tenth columns show the

results of the Alpha and Chi-square tests for pricing errors. Higher p values indicate that

we cannot reject the null hypothesis, that the pricing errors are zero. Like the result in

pricing the Fama–French 25 size and book-to-market ratio portfolios, the Fama–French

three-factor model statistically has non-zero pricing errors, though our long-run three-

factor does not. The last four columns represent misspecification measures; our long-run

models statistically obtain the smallest measures among the candidates, in other words,

the model stays the least misspecified.

The 30 industry portfolios are priced by candidate models in Table 2.14. Different from

the above portfolios, the Fama–French three-factor obtains the highest R2s whether

there is a constant term or not. All the factor models statistically get zero pricing

errors to explain industry-sorted assets via the Alpha and Chi square tests. The results

on the misspecification measures show that the Fama–French three-factor statistically

outperforms the others.

2.6 Concluding Remarks

In his discussion of the empirical evidence on market efficiency, Fama (1991) writes:

‘. . . and relates the behavior of expected returns to the real economy in a rather detailed

way.’ In this paper, we have exhibited a model that meets Fama’s objectives and,

empirically, helps to explain the cross-sectional equity premiums.

The non-separable consumption and leisure with Epstein–Zin preference allows the

leisure dynamics to interact with the consumption to generate interesting asset pric-

ing implications. Comparing with a model with consumption only, incorporating leisure
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reduces the price of long-run risk and leisure acts as a ‘hedge’. Hence, stocks with pre-

dominated long run leisure risk will be relatively less risky and bear smaller average

returns. Empirical results show that growth (big) stocks obtain lower negative long run

leisure betas but smaller long run consumption betas, and vice visa for value (small)

stocks.

In concluding the paper, we point out some limitations and thus possible extensions of

this study. The neoclassical framework in the model can be extended to link asset prices

with other types of intangible capital, e.g., human capital and organizational capital.

Empirically, the correlation between human capital, organizational capital, and physical

capital and their relations with the cross-section of equity returns is worth investigating

further.
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Table 2.1: An Initial Leisure Analysis

Notes: The table reports the autocorrelation of leisure growth in Panel A. Panel B shows the variance
ratio test. If the growth is i.i.d., then the ratio should be equal to 1. A higher (lower) than unity
ratio implies positive (negative) autocorrelation dominates. Panel C investigates time-varying volatility.
Without time-varying volatility, the adjusted variance ratios would be flat with respect to the horizon,
and stay close to 1. Panel D runs regressions: ∆l,t+j = aj + bj(pt − dt) + ηt+j and (pt+j − dt+j) =
aj + bj∆l,t + ηt+j to see the predictive power with leisure growth and real price-dividend ratio.
∗∗ denote statistical significance at 5% level.

Panel A. Autocorrelation

Leisure Growth
Variable 0.3835**

0.0581
Contant 0.00157**

-0.00037

Panel B. Variance Ratio of Log Leisure

Horizon VR AdVR Bootstrap Percentiles (90%, 95%, 99%)
2 1.3912 1.5986 1.0186 1.0218 1.0285
5 2.1893 2.8203 0.6956 0.7229 0.7741

10 2.8579 2.0407 0.3712 0.3925 0.4407

Panel C. Variance Ratio of Vol. of Leisure

Horizon VR AdVR Bootstrap Percentiles (90%, 95%, 99%)
2 0.5604 0.5486 1.0133 1.0145 1.0169
5 0.5220 0.5203 0.7021 0.7287 0.7770

10 0.5002 0.5000 0.3790 0.3993 0.4497

Panel D. Predictability Regressions

Horizon Leisure Growth predicted by p-d p-d predicted by Leisure Growth
b R2 b R2

1 -1.1511** 0.0970 -0.0171** 0.0970
3 -1.1657** 0.0202 -.01735** 0.0202
5 -1.1901** 0.0208 -.01751** 0.0208
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Table 2.2: An Initial Consumption Analysis

Notes: The table reports the autocorrelation of average non-durable consumption growth in Panel A.
Panel B shows the variance ratio test. If the growth is i.i.d., then the ratio should be equal to 1. A higher
(lower) than unity ratio implies positive (negative) autocorrelation dominates. Panel C investigates
time-varying volatility. Without time-varying volatility, the adjusted variance ratios would be flat with
respect to the horizon, and stay close to 1. Panel D runs regressions: ∆c,t+j = aj + bj(pt − dt) + ηt+j
and (pt+j −dt+j) = aj + bj∆c,t+ηt+j to see the predictive power with average consumption growth and
real price-dividend ratio.
∗∗ denote statistical significance at 5% level.

Panel A. Autocorrelation

Ave. Non-durable Growth
Variable 0.2875**

0.0604
Contant 0.1111**

0.0335

Panel B. Variance Ratio of Log Consumption

Horizon VR AdVR Bootstrap Percentiles (90%, 95%, 99%)
2 1.1732 1.0986 1.0134 1.0147 1.0170
5 1.8449 1.0203 0.6986 0.7227 0.7703

10 2.1823 2.0407 0.3777 0.3974 0.4432

Panel C. Variance Ratio of Vol. of Consumption

Horizon VR AdVR Bootstrap Percentiles (90%, 95%, 99%)
2 1.0361 1.03 1.0134 1.0147 1.0175
5 1.5517 1.5123 0.6998 0.7251 0.7775

10 1.5750 1.5623 0.3742 0.3954 0.4448

Panel D. Predictability Regressions

Horizon Non-dur Growth predicted by p-d p-d predicted by Non-dur Growth
b R2 b R2

1 2.2189** 0.0723 0.0326** 0.0723
3 2.2189** 0.0723 0.0326** 0.0723
5 2.2347** 0.0725 .03243** 0.0725
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Table 2.3: Exposure to Benchmark Candidates (Multivariate)

Notes: The table shows the exposures to consumption-based CAPM and Fama–French three-factor
models when explain Fama–French 25 size and book/market ratio portfolios. To estimate the model,
we extract innovations from VAR firstly, then estimate βs through time series regressions. It should
be noted that the multi-step procedure causes ‘generated regressors’ problem in the estimation. The
standard errors are obtained by bootstrapping the VAR errors and returns and repeating the 3-step
estimations for 5000 times, then report the upper and the lower band for estimated standard variances.
Here the model is estimated with multivariate betas.
∗∗ denote block bootstrapping statistical significance at 5% level.

Growth 2 3 4 Value

Average Excess Returns %
Small -0.42 1.36 1.66 2.27 2.60

2 0.24 1.33 1.96 2.13 2.42
3 0.62 1.52 1.62 1.98 2.22
4 0.92 1.14 1.86 1.83 1.97

Big 0.89 1.01 1.37 1.30 1.37

Panel A : Fama–French Three-factor Model

βM
Small 0.5601** 0.4353** 0.3034** 0.2802** 0.3885**

2 0.5642** 0.4141** 0.3545** 0.3528** 0.4464**
3 0.5347** 0.4097** 0.3489** 0.3937** 0.372**
4 0.5194** 0.4382** 0.4325** 0.4149** 0.5078**

Big 0.4764** 0.3982** 0.3471** 0.3948** 0.469**
βSMB

Small 1.4302** 1.2243** 1.0849** 1.0146** 1.0798**
2 1.0454** 0.9104** 0.7409** 0.6751** 0.7535**
3 0.7391** 0.5929** 0.5019** 0.4055** 0.5859**
4 0.4145** 0.3291** 0.2271** 0.2465** 0.3469**

Big -0.198** -0.1526** -0.1903** -0.1784** -0.1296**
βHML

Small -0.3683** -0.0562** 0.0884** 0.1927** 0.4392**
2 -0.4304** -0.0706 0.0883** 0.3018** 0.5251**
3 -0.5056** -0.0638** 0.1374** 0.3418** 0.4734**
4 -0.5097** -0.0374** 0.1831** 0.2897** 0.5031**

Big -0.3825** -0.0692** 0.1339** 0.3458** 0.4681**

Panel B : Consumption-based CAPM

βNonc
Small 0.0104 0.0154 0.0022 0.0038 0.0097

2 -0.0025 -0.0029 -0.0023 0.0001 0.0052
3 -0.0026 -0.0051 -0.0069 -0.004 -0.0033
4 -0.0084 -0.0096 -0.0063 -0.0041 0.0067

Big -0.0094 -0.0153 -0.0146 -0.0087 -0.0013
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Table 2.4: Exposure to Benchmark Candidates (Univariate)

Notes: The table shows the exposures to consumption-based CAPM and Fama–French three-factor
models when explain Fama–French 25 size and book/market ratio portfolios. To estimate the model,
we extract innovations from VAR firstly, then estimate βs through time series regressions. It should
be noted that the multi-step procedure causes ‘generated regressors’ problem in the estimation. The
standard errors are obtained by bootstrapping the VAR errors and returns and repeating the 3-step
estimations for 5000 times, then report the upper and the lower band for estimated standard variances.
Here the model is estimated with univariate betas.
∗∗ denote block bootstrapping statistical significance at 5% level.

Growth 2 3 4 Value

Average Excess Returns %
Small -0.42 1.36 1.66 2.27 2.60

2 0.24 1.33 1.96 2.13 2.42
3 0.62 1.52 1.62 1.98 2.22
4 0.92 1.14 1.86 1.83 1.97

Big 0.89 1.01 1.37 1.30 1.37

Panel A : Fama–French Three-factor Model

βM
Small 1.001** 0.7843** 0.5975** 0.5431** 0.6426**

2 0.9042** 0.6768** 0.5523** 0.5087** 0.5998**
3 0.7972** 0.5828** 0.4744** 0.4697** 0.4841**
4 0.6915** 0.5345** 0.476** 0.4521** 0.5497**

Big 0.4629** 0.3631** 0.2791** 0.3069** 0.3813**
βSMB

Small 1.8063** 1.5158** 1.2876** 1.2015** 1.3383**
2 1.4244** 1.1878** 0.9778** 0.9103** 1.0505**
3 1.0987** 0.8673** 0.735** 0.6678** 0.8333**
4 0.7639** 0.6225** 0.516** 0.5232** 0.6851**

Big 0.1221** 0.1141** 0.0416** 0.0847** 0.1827**
βHML

Small -0.4905 -0.1515 0.0214 0.1307 0.3542
2 -0.5525 -0.1606 0.0114 0.2254 0.4287
3 -0.6206 -0.1521 0.0623 0.2575 0.3931
4 -0.6207 -0.1309 0.091 0.2013 0.3948

Big -0.4827 -0.153 0.061 0.2628 0.3692

Panel B : Consumption-based CAPM

βNonc
Small 0.0104 0.0154 0.0022 0.0038 0.0097

2 -0.0025 -0.0029 -0.0023 0.0001 0.0052
3 -0.0026 -0.0051 -0.0069 -0.004 -0.0033
4 -0.0084 -0.0096 -0.0063 -0.0041 0.0067

Big -0.0094 -0.0153 -0.0146 -0.0087 -0.0013
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Table 2.5: Exposure to Long-run Three Factors (Multivariate)

Notes: The table shows the exposures to consumption-leisure-trend three-factor model when explain
Fama–French 25 size and book/market ratio portfolios. To estimate the model, we extract innovations
from VAR firstly, then estimate βs through time series regressions. It should be noted that the multi-step
procedure causes ‘generated regressors’ problem in the estimation. The standard errors are obtained
by bootstrapping the VAR errors and returns and repeating the 3-step estimations for 5000 times, then
report the upper and the lower band for estimated standard variances. Here the model is estimated with
multivariate betas.
∗∗ denote block bootstrapping statistical significance at 5% level, ∗ denote block bootstrapping statistical
significance at 1% level

Growth 2 3 4 Value

Average Excess Returns %
Small -0.42 1.36 1.66 2.27 2.60

2 0.24 1.33 1.96 2.13 2.42
3 0.62 1.52 1.62 1.98 2.22
4 0.92 1.14 1.86 1.83 1.97

Big 0.89 1.01 1.37 1.30 1.37
βLrC

Small 13.247** 10.391** 10.732** 16.669** 18.946**
2 11.865** 8.349** 6.914** 11.801** 12.897**
3 6.84** 7.664** 5.935** 7.434** 8.07**
4 4.00** 5.41** 7.866** 6.743** 11.77**

Big -4.498** 3.559** 4.967** 6.676** 13.228**
βLrL

Small -9.451** -7.538** -8.18** -5.22** -7.06**
2 -5.941** -5.643** -5.525** -5.36** -4.575**
3 -8.689** -5.927** -4.76** -3.89** -7.29**
4 -3.364** -3.87** -3.35** -3.738** -3.163**

Big -9.856** -5.44** -3.552** -5.024** -5.77**
βLrT

Small -0.1505** -0.0739** -0.0707** -0.074** -0.0459**
2 -0.1244** -0.0949** -0.0372** -0.0668** -0.0705**
3 -0.1507** -0.1217** -0.1108** -0.0803** -0.0653**
4 -0.106** -0.0878** -0.1219** -0.0982** -0.0476**

Big -0.0938** -0.0571** -0.0402** -0.0952** -0.0503**
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Table 2.6: Exposure to Long-run Three Factors (Univariate)

Notes: The table shows the exposures to consumption-leisure-trend three-factor model when explain
Fama–French 25 size and book/market ratio portfolios. To estimate the model, we extract innovations
from VAR firstly, then estimate βs through time series regressions. It should be noted that the multi-step
procedure causes ‘generated regressors’ problem in the estimation. The standard errors are obtained
by bootstrapping the VAR errors and returns and repeating the 3-step estimations for 5000 times, then
report the upper and the lower band for estimated standard variances. Here the model is estimated with
univariate betas.
∗∗ denote block bootstrapping statistical significance at 5% level, ∗ denote block bootstrapping statistical
significance at 1% level

Growth 2 3 4 Value

Average Excess Returns %
Small -0.42 1.36 1.66 2.27 2.60

2 0.24 1.33 1.96 2.13 2.42
3 0.62 1.52 1.62 1.98 2.22
4 0.92 1.14 1.86 1.83 1.97

Big 0.89 1.01 1.37 1.30 1.37
βLrC

Small 0.260** 0.673** 0.026** 1.232** 0.675**
2 -0.901** -0.017** 0.51** 1.017** 0.417**
3 -1.825** -0.436** 0.045** 0.483** -0.298**
4 -1.870** -0.296** -0.106** -0.097** -0.012**

Big -1.128** -0.838** -0.647** -0.593** -0.522**
βLrL

Small -0.389** -0.56** -0.494** -0.633** -0.474**
2 -0.323** -0.525** -0.582** -0.578** -0.332**
3 -0.037** -0.297** -0.238** -0.258** -0.13**
4 0.059** -0.219** -0.139** -0.29** -0.087**

Big -0.471** -0.37** -0.236** -0.271** -0.293**
βLrT

Small -0.0129** 0.0004** 0.0071** 0.0096** 0.0107**
2 -0.0001** 0.0046** 0.012** 0.0141** 0.0148**
3 -0.0057** 0.0052** 0.0122** 0.0085** 0.0079**
4 -0.0017** 0.0071** 0.0074** 0.0075** -0.0016**

Big -0.0056** 0.0016** 0.007** 0.0097** -0.004**
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Figure 2.1: Enjoyment of Various Activities in 1985

Figure 2.2: Average Weekly Hours of Leisure

Notes: Figure shows the average weekly leisure which takes accounts demographic and sector movements:
adjusted leisure hours takes the demographic between different age cohorts into account; efficiency leisure
hours consider about the productivity (real wage) among age cohorts; Tornqvist leisure hours use time-
varying weights.
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Figure 2.3: Non-durable Consumption and Services

Notes: Figure shows non-durable consumption and services.

Figure 2.4: The Growth on Hours of Leisure

Notes: Figure shows the growth rate on average weekly leisure hours, which take the first order difference
between log leisure hours.

Figure 2.5: The Growth on Non-durable Consumption and Services

Notes: Figure shows the growth rate on non-durable consumption and services, which take the first
order difference between log consumption and services.
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Figure 2.6: Leisure Growth and Equity Returns

Figure 2.7: Per Capita Consumption Growth and Equity Returns
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Figure 2.8: Correlation Analysis for Consumption

Notes: Figure shows the correlation analysis for quarterly and annual consumption with asset returns.
The left part calculates the correlation between cumulative consumption growth and cumulative excess
market returns, corr(

∑k
j=1 gc,t+j ,

∑k
j=1 rt+j). The right part shows the bivariate spectral analysis for

the quarterly data in the first column and the annual data in the second column. The coherence
measures the correlation between consumption and returns at frequency λ. When the frequency is λ,
the corresponding length of the cycle is 1/λ quarters. The cospectrum at frequency λ can be interpreted
as the portion of the covariance between consumption growth and asset returns that is attributable to
cycles with frequency λ. The slope of the phase spectrum at any frequency λ precisely measures the
number of leads or lags between consumption and asset returns. When this slope is positive, consumption
leads the market returns.
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Figure 2.9: Correlation Analysis for Leisure

Notes: Figure shows the correlation analysis for quarterly and annual leisure with asset returns. The left
part calculates the correlation between cumulative leisure growth and cumulative excess market returns,
corr(

∑k
j=1 gl,t+j ,

∑k
j=1 rt+j). The right part shows the bivariate spectral analysis for the quarterly data

in the first column and the annual data in the second column. The coherence measures the correlation
between leisure and returns at frequency λ. When the frequency is λ, the corresponding length of the
cycle is 1/λ quarters. The cospectrum at frequency λ can be interpreted as the portion of the covariance
between leisure growth and asset returns that is attributable to cycles with frequency λ. The slope of
the phase spectrum at any frequency λ precisely measures the number of leads or lags between leisure
and asset returns. When this slope is positive, leisure leads the market returns.

 

Figure 2.10: Impulse Responses Functions (Growth)

Notes: Figure shows the impulse responses functions for all growth variables in VAR to a shock. The
green line stands for point estimates and the dash line denotes the 20% and 80% bands.
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Figure 2.11: Impulse Responses Functions (Log Level)

Notes: Figure shows the impulse responses functions for all log variables in VAR to a shock. The green
line stands for point estimates and the dash line denotes the 20% and 80% bands.



Chapter 3

Empirical Evaluation of

Conditional Asset Pricing

Models: An Economic

Perspective

3.1 Introduction

A large recent literature attempts to explain various cross sectional anomalies with

conditional models that have economically motivated conditioning variables (Ludvigson

(2011) [41]). These conditional variables represent a measure of the state in the economy,

and reflect the changing information sets of agents, while the prices on financial assets

vary.

In general, asset pricing models with nonlinear stochastic discount factors (SDF) can be

written as approximate linear multifactor models by multiplying out the conditioning

variables and the fundamental factors (Cochrane (2001) [26] and Ludvigson (2011) [41]).

For example, the conditional non-linear pricing kernel, like consumption-based CAPM

(C-CAPM) with power utility, can be approximated as the function of consumption

growth with time-varying weights1. We refer to these as linear scaled consumption-

based models because the pricing kernel is the function of consumption growth and

scaling factors.

1Brandt and Chapman (2011) [42] argues that the nonlinear time-varying risk premium matters for
testing conditional models, but the nonlinear evidence is empirically weak.
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These scaled consumption-based models offer a convenient way to represent state-dependency

in the pricing kernel. In this case we can model the dependence of parameters in the

SDF on the current information set. This dependence can be specified by scaling factors

with instruments that summarize the state of the economy according to some models

(Jagannathan and Wang (1996) [43], Lettau and Ludvigson (2001) [10], Lustig and Van

Nieuwerburgh (2005) [11], Santos and Veronesi (2006) [5], and Piazessi et al. (2007)

[24]).

However, most of these papers have applied the static Fama–MacBeth cross-sectional

regression to estimate and test parameters. This paper makes two key contributions to

the literature on investigating conditional asset pricing models. First, we use a recently

developed method of dynamic Fama–MacBeth regressions to evaluate the performance

of leading conditional CAPM (C-CAPM) models in a common set of test assets over

the time period from 1951–2012. Second, we show that scaling factors that obtain

persistence and slow-moving characteristics are of great help to explain the cross section

of returns on value-growth and momentum.

To empirically apply the dynamic cross-sectional regression, we firstly estimated eco-

nomic shocks to the state variables via a vector autoregression (VAR). At the second

stage asset returns are regressed in the time series on lagged state variables and their

contemporaneous innovations, generating predictive slopes and risk betas for each test

asset. At the third stage prices of risk are obtained by running a static cross sectional

(Fama–MacBeth) regression of the stacked predictive slopes onto the stacked betas.

There are several advantages to use the dynamic cross-sectional regression introduced

by Adrian et al. (2012) [9]. Mainly, it focuses more on estimating and testing time-

varying risk premiums, given state variables (according to their economic environment).

Lewellen and Nagel (2006) [44] provide a simple test from short-window regressions in

which each quarter’s conditional alpha and beta are directly estimated. However, the

high frequency of macro variables is hard to obtain. Finally, Ghysels and Goldberger

(2012) [45] use MIDAS instruments (high frequency returns data and low frequency

consumption data) to proxy the information set; we instead replicate and extend data

used in several published papers.

Our main results are as follows. First, we find that the Lettau and Ludvigson (2001)

conditional C-CAPM model does better than the Piazessi et al. (2007), Santos and

Veronesi (2006) and Lustig and Van Nieuwerburgh (2005) models in explaining the cross-

section of momentum and value-growth portfolios. Second, we find that the Piazessi et

al. (2007) consumption model does better than others in pricing the cross-section of

industry portfolios. Finally, we find that in the case of the cross-section of risk premia

on U.S. government bond portfolios the conditional model in Santos and Veronesi (2006)
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outperforms other candidate models. Overall, however, the Lettau and Ludvigson (2001)

model does better than other candidate models. Intuitively, the consumption-wealth

ratio cay (Lettau and Ludvigson (2001)) is slow-moving and persistent across the time

(Figure 1). In contrast, the collateral housing ratio (Lustig and Van Nieuwerburgh

(2005)) and the labor income ratio (Santos and Veronesi (2006)) have the clear decreasing

and increasing trend patterns, respectively.

The rest of this paper is organized as follows. Section 3.2 introduces the conditional asset

pricing model and their SDF. Section 3.3 describes the test methodology. Section 3.4

presents data and Section 3.5 gives the empirical analysis. The final section summarizes

the findings.

3.2 The Model

The basic conditional asset pricing formula describes the prices in terms of conditional

moments which come from the first order Euler equation of investors.

pi,t = Et(mt+1xi,t+1), (3.1)

where pi,t denotes the price of the ith portfolio at time t, xi,t+1 presents the payoff on

the ith portfolio at time t+ 1, mt+1 is the log stochastic discount factor (SDF), and Et

denotes the expectation conditional on the information known at time t.

We assume that there are a class of economies with complete financial markets and no

arbitrage opportunities. The general form of the pricing kernel or the SDF states as

following:

mt+1 = log(Mt+1) = −rft +
1

2
Λ
′
tΛt − Λ

′
tεt+1, (3.2)

where rft denotes the one-period risk-free rate at time t, Λt presents a K-vector of

pricing kernel functions at time t, and εt+1 is the vector of normalized common factor

innovations with zero means and unit variances. We refer to Λt as risk premium functions

and elements of Λt are nonlinear function of information available to the market at time

t. We rewrite the pricing kernel as

mt+1 = −rft +
1

2
Λ2
t − Λtw

−1υt+1, (3.3)

where υt+1 = δ
′
εt denotes the shock at time t, δ is a vector of constants and w =

(δ
′
Σδ)1/2. Here, Σ is the identity matrix.
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Equation (3.2) and Equation (3.3) show that the SDF depends on the risk-free rate,

the square risk premiums and innovations on an economy. First, the risk-free rate is

negative to the SDF,

Et[Mt+1Ri,t+1] = 1, (3.4)

Et[Mt+1] =
1

Rft+1

, (3.5)

where Mt+1 stands for the exponential SDF, Ri,t+1 is the gross return on the ith asset

and Rft+1 denotes the risk-free rate at date t+ 1.

Second, the square risk premiums can be defined the maximum Sharpe Ratio (SR)

process, denoting St

St =
σt(mt+1)

Et(mt+1)
=
√

Λ2
t . (3.6)

The third component is the weighted innovations of an economy. For instance, a condi-

tional CAPM (C-CAPM) sets up the state space as the market return (the consumption

growth), the risk-free rate, and the conditional variable. Here, we assume a single risk

premium on a single composite shock, and it is easy to extend to the case that the stan-

dard linear conditioning approximation carries over into a multifactor setting. Here, the

market portfolio (the consumption growth) plays a specific role in the pricing kernel,

but it is not true of all prominent pricing models2. Besides, the fact that the shock, υ,

is normally distributed which implies that mt is conditionally lognormal.

We also assume that asset returns and pricing kernel have a joint lognormal distribution,

conditional on the current realizations of the market and the factors. We can apply the

specific SDF to Equation (3.1). Hence,

Et(ri,t+1)+Et(mt+1)+
1

2
[vart(ri,t+1) + vart(mt+1) + 2covt(ri,t+1,mt+1)] = 0, ∀i = 1, ..., N,

(3.7)

where ri,t+1 denotes the log gross return to asset i at time t + 1. The adjusted return

premium to asset i is

Et(ri,t+1)− rft +
1

2
vart(ri,t+1) = Λtcovt(ri,t+1, w

−1υt+1),∀i = 1, ..., N. (3.8)

For the β-representation,

Et(ri,t+1)− rft +
1

2
vart(ri,t+1) = Λtβi,t, (3.9)

2Bansal and Yaron (2005) [27] show that innovations plays significant role in the pricing kernel.
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where

βi,t =
covt(ri,t+1, υt+1)

w2
. (3.10)

The above equation states that given the w, the conditional covariance matrix between

innovations of the state space and future returns determine the risk of the asset i at

date t. If the future macro news highly co-moves to the future returns on asset i, then

the asset obtains high betas.

Here, the risk premium function is a nonlinear function on state variables. Brandt

and Chapman (2011) [42] argue that the nonlinear time-varying risk premium matters

for testing conditional models. However, they found that there is weak evidence the

linear approximation will be largely affected according to the pricing error. Moreover,

Jagannathan and Wang (1996) [43] study the linear form of Equation (3.9) in terms of

the conditional CAPM

E[ri,t+1|It] = λ0,t + λ1,tβi,t, (3.11)

where βi,t is the conditional beta of asset i defined as βi,t =
cov(ri,t,rm,t|It)
var(rm,t|It) , and rm,t

denotes the log returns on market portfolios. Moreover, they proxy for the conditional

market risk premium λ1,t as variables that help to predict the business cycle, the yield

spread between BAA− and AAA− rated bonds3.

In this paper, we implement the general form of the SDF (Equation (3.3)) to explain

several test portfolios. The time-varying risk premiums are estimated and tested by the

dynamic cross-sectional regression stated below.

3.3 Test Methodology

We estimate and test prices of risk via an extended static cross-sectional asset pric-

ing estimators (Fama–MacBeth setting) where prices of risk vary with observed state

variables.

We assume that the dynamics of a K × 1 vector of state variables Xt evolves according

to the following vector autoregressive process:

Xt+1 = ζ + ΦXt + υt+1, t = 1, ..., T, (3.12)

3Stock and Watson (1989) and Bernanke (1990) find that the best single variable in predicting business
cycles is the spread between the six-month commercial paper rate and six-month Treasury bill rate.
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where initial condition X0. For now I only assume that

B[υt+1|Ft] = 0,V[υt+1|Ft] = Συ,t, (3.13)

where Ft denotes the information set at time t.

According to Equation (3.3), the log SDF can be defined as

mt+1 = −rft +
1

2
λ
′
tλt − λ

′
tΣ
−1/2
υ,t υt+1, (3.14)

where rft denotes the risk-free rate at time t, λt is a K×1 vector assumed to be an affine

function of the state variables Xt

λt = Σ
−1/2
υ,t (λ0 + Λ1Xt). (3.15)

Need to mention, if Λ1 = 0, then the prices of risk are constant. According to Equation

(3.15), risk premiums are time-varying and depend on the state Xt of an economy at

date t (Ferson and Harvey (1991) [46] and Ferson and Harvey (1999) [47]). Furthermore,

factors follow a first order VAR.

Now we start to define holding period returns in excess of the risk free rate rft of asset i

by rei,t+1. According to Equation (3.9), the beta representation of expected returns can

be rewritten as

Et[r
e
i,t+1] = β

′
i,t(λ0 + Λ1Xt), (3.16)

where βi,t is a time-varying exposure vector. Then excess returns can be decomposed as

an expected and an unexpected component

rei,t+1 = β
′
i,t(λ0 + Λ1Xt) + (rei,t+1 − Et[rei,t+1]). (3.17)

The unexpected excess return rei,t+1 − Et[r
e
i,t+1] can be further decomposed into the

innovations of the states, and a return pricing error ei,t+1 that is conditionally orthogonal

to the state innovations

rei,t+1 − Et[rei,t+1] = γ
′
i,t(Xt+1 − Et[Xt]) + ei,t+1, (3.18)

where γi,t = βi,t. Therefore the excess returns of ith at time t+ 1 can be written as

rei,t+1 = β
′
i,t(λ0 + Λ1Xt) + β

′
i,t+1υt+1 + ei,t+1, t = 1, ...., T, (3.19)
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where ei,t+1 is a return pricing error that is conditionally orthogonal to the state inno-

vations. The above equation states that the excess return on ith asset depends on the

expected return, β
′
i,t(λ0 + Λ1Xt), the component that is conditionally correlated with

innovations of the states, β
′
i,t+1υt+1, and the pricing error ei,t+1.

Equation (3.19) shows that the expected excess return on ith asset is determined by the

time-varying exposure vector and risk premiums (β
′
i,t(λ0 + Λ1Xt)), and the innovations

of an economy (β
′
i,t+1υt+1). This form is different from the traditional β-representation

which states that the expected excess returns depend on β
′
i,tλt.

To estimate parameters, we rewrite equations into the matrix version

re = B
′
ΛZ− +B

′
V + E, (3.20)

X = ΨZ− + V, (3.21)

where Ψ = [ζ, ψ], Λ = [λ0,Λ1], X = [X1, ..., XT ], X− = [X0, ..., XT−1], Z− = [υT , X
′
−]
′
,

E and V are matrices formed by ei,t and υt.

In order to economically test performances among models, we assume that prices of risk

are affine functions of lagged state variables. The estimator can be described as follows.

In the first stage, economic shocks to the state variables are obtained from a vector

autoregression (VAR).

Ψ̂ = XZ
′
−(Z−Z

′
−)−1. (3.22)

Then, asset returns are regressed in the time series on lagged state variables and their

contemporaneous innovations, generating predictive slopes and risk betas for each test

asset.

B̂ = (V̂ V̂
′
)−1V̂ r

′
e, (3.23)

where V̂ is the estimated innovations from the VAR.

In the third stage, prices of risk are obtained by running a cross sectional regression of

the stacked predictive slopes onto the stacked betas.

Λ̂ = (B̂B̂
′
)−1B̂reZ

′
−(Z−Z

′
−)−1. (3.24)

This cross sectional regression is based on OLS regressions, but it is more efficient when

the variances of test assets are equal and on GLS generalization. Moreover, to avoid

the error-in-variable problem because of estimated V and B in the second and the third

stage, we re-estimate the B using ˆΛZ−+V̂ instead of using V̂ in Equation (3.12). Adrian
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et al. (2012) [9] find that the re-estimation step sharpens the estimation and inference

about the risk premia B
′
ΛZ− and the conditional pricing errors B

′
V + E.

Given the asymptotic distributions of the estimators, we use the Wald test for the null

hypothesis that a given row of Λ is equal to zero. The Wald statistic is

WΛ′ = Λ̂i
′

Σ̂−1
Λi

Λ̂i
a→ χ2(k), (3.25)

where Λi denotes the ith row of Λ and k is the degree of freedom in a chi-square distri-

bution.

Importantly, the true state space is unobservable and can be different to specific mod-

els. Therefore we firstly assume that the state space form (Equation (3.12)) is invertible.

Then state variables can be expressed as a weighted sum of the current and past real-

izations of observables, and an economic shock can be expressed as a linear combination

of the VAR innovations of observables. The identification of these shock components

and the resulting asset pricing implications critically depends on the multivariate struc-

ture of predictability in all state variables; the set of information variables need to have

predictive power beyond that of lagged state variables in the VAR system4.

3.4 Data and Conditional Variables

The quarterly sample of 1952–2012 is used after intersecting the data on conditional

variables used by several published papers and asset markets.

We use four test assets, for instance, Fama–French 25 size and book-to-market sorted

portfolios, 25 size and momentum portfolios, 30 industry portfolios and U.S. government

bond portfolios with different maturities on the left-hand side of the pricing formula. All

the equity returns can be downloaded from Professor French’s website, and government

bonds yields data are from “The CRSP US Treasury Database”. We use the three-

month T-bill rate from FRED over the period January 1952 to December 2012 as the

risk-free rate.

Lettau and Ludvigson (2001) [10] (LL) introduce cay (the consumption-wealth ratio)

as the residual in which aggregate consumption, asset holdings, and labor income share

a common long-term trend. They show that the log consumption-wealth ratio predicts

asset return because it is a function of expected future returns on the market portfolio.

4Barsky and Sims (2011) [34] propose the identification methodology of two technology shocks in a
structural VAR analysis. They put the first variable as the measure of technology.
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Lustig and Van Nieuwerburgh (2005) [11] (LVN) choose mymo (the housing collateral

ratio) as the conditional variable. They find that the ratio of housing wealth to human

wealth changes the conditional distribution of consumption growth across households

in a model with collateralized borrowing and lending. Intuitively, when the housing

collateral ratio is low, households demand larger risk compensation, because the housing

collateral ratio predicts aggregate stock returns.

Piazzesi et al. (2007) [24] (PST) find the conditional variable α (the non-housing ex-

penditure ratio), since the composition risk which relates changes in asset prices also to

changes in expenditure shares. During recession, investors expect higher future consump-

tion; hence, they try to sell stocks today to increase current consumption. Therefore

stock prices go down in bad times.

Santos and Veronesi (2006) [5] (SV) introduce s the labor income to consumption ra-

tio as the conditional variable. They extend the standard consumption asset pricing

model where consumption is funded by labor income, and that allows for tractable and

interpretable formulas for prices and returns. The model shows that fluctuations in the

fraction of consumption funded by labor income results in stock return predictability

both in the time series and the cross-section.

3.5 Basic Empirical Results

3.5.1 The Main Result

Since we allow for time varying prices of risk by applying the estimator suggested above,

therefore we test Λ1 is statistically significant and pricing errors are reduced in econom-

ically meaningful or not.

Consistent with LL, we assume that there is no time variation in conditional second

moment, for instance, βt = β and V [RMt+1|Ft] = ΣM , ∀t or V [∆ct+1|Ft] = Σ∆c,∀t.
Furthermore, we assume that risk-free rate is time-varying.

In the LL model, the vector of state variables becomes

Xt = (RMt , R
f
t , R

f
t · cayt)

′
, (3.26)

where cayt stands for the consumption-wealth ratio at date t.

Since the state space depends on the market portfolios return, risk-free rate and the

consumption-wealth ratio scaled by the risk-free rate, therefore it is more general and
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we allow time variation in risk premia which comes from all elements of the state space

instead of cay alone. Table 1 reports the estimated risk premiums for factors via the

four-stage OLS and GLS estimators to explain return-spreads on test portfolios, i.e., the

Fama-French 25 size and book-to-market ratio, 30 industry, 25 size and momentum and

government bonds portfolios.

We obtain the similar result while pricing return-spreads on size/book-to-market ratio

sorted and size/momentum sorted portfolios. The last column shows that cay leads to

the time-varying market risk premium among size, book-to-market ratio, industry, and

momentum sorted portfolios, except for bonds portfolios. The impact of Rf · cay on the

price of market risk is weak when explaining the industry effect and government bonds.

For the time-varying risk-free rate, its impact on the price of market risk is the same as

the consumption-wealth ratio.

In sum, equity premia are time-varying in size, book-to-market ratio and momentum

sorted portfolios because of time-varying price of market risk (the ‘market’ portfolio).

This market risk premium can be explained by the time-varying market portfolio return,

the risk-free rate and the consumption-wealth ratio. To be more specific, the time-

varying expected return can be accounted for by a time-varying risk-free rate or monetary

policy shocks (Cochrane and Piazzesi (2005) [48]). Moreover, LL shows that the log

consumption-wealth ratio has predictive power for equity premia.

Table 1 also compares the two different estimators - the four stage OLS and GLS. We

find that the point estimates for the prices of risk are different from these two estimators.

The reason is due to the weighting in the efficient estimation approach.

Consumption-based asset pricing models suggest that risk premiums could vary along-

side changes in economic conditions. Investors decide at any time how much to save,

how much to consume, and prefer to have a steady consumption stream. Therefore, in-

vestors view assets as hedging products which may help them smooth their consumption

stream, and then rationally require a higher risk premium on assets that are correlated

positively with business conditions. For the conditional C-CAPM, we specify the funda-

mental factor as the consumption growth. The time-varying price of consumption risk

comes from observable economic information such as the risk-free rate and the housing

collateral ratio. Hence, the time-varying risk premium is related to the covariance of

the risky asset return with the consumption growth and the state variables themselves

related to the growth rate of wealth. For instance, LVN shows that household demand

a larger compensation while the housing collateral ratio is low, because the housing col-

lateral ratio predicts aggregate stock returns. Given the risk exposure, the expected risk

premium changes across time, because the borrowing and lending constraints are time
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varying. In this case we define the vector of state variables as

Xt = (∆ct, R
f
t , R

f
t ·mymot)

′
, (3.27)

where mymot denotes the housing collateral ratio at date t. The last column in Table 2

reports that the price of risk is time-varying when pricing all the test portfolios via the

GLS estimator. When looking at individual λ0 and Λ1, all parameters are not signifi-

cant; there is no difference to use conditional or unconditional for explaining expected

returns. But while combining these three variables together, the time-varying price of

risks explains return-spreads on test portfolios.

Unlike the risk premium comes from the housing collateral lending constraint, PST

show that the risk premium is time-varying because of changes in expenditure shares

between non-housing and housing consumption. First, the housing share forecasts excess

returns on stocks. Second, if investors can substitute between non-housing and housing

consumption, it will increase the downward pressure on stock prices in severe recessions

while the share of housing consumption becomes low. According to the PST economy,

the vector of state variables is

Xt = (∆ct, R
f
t , R

f
t · αt)

′
, (3.28)

where αt is the non-housing expenditure ratio at date t.

Table 3 shows that the elements on Λ1 are significantly different from zeros; time vari-

ation in prices of risk is due to time varying risk-free rates and time variation in the

non-housing expenditure ratio scaled by the risk-free rate. When looking at individual

elements, the time variation in prices of risk comes from the time-varying risk-free rate

and the expenditure shares to explain the industry effect. Need to mention, in the PST

model, the substitution between non-housing and housing consumption leads to changes

in their expenditure shares without the solvency constraints. To be more specific, the

SDF in the LVN model is

mt+1 = ma
t+1g

γ
t+1, (3.29)

where ma
t+1 denotes the IMRS of a representative agent who consumes non-durable

consumption and housing services, and gγt+1 is the liquidity factor contributed by the

solvency constraints.

The Λt in the LVN model is different from that in the PST model which states αt scaled

by gγt . After comparing the individual elements in Λ1 for both the LVN and the PST
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models, the solvency constraints may not be of help to explain the time variation in

prices of risk in the industry portfolios.

At last, the labor income conditional CAPM model is investigated. SV show that since

the consumption is funded by labor income, fluctuations in the fraction of consumption

funded by labor income results in stock return predictability both in the time series and

the cross-section. The vector of the state variables becomes

Xt = (∆ct, R
f
t , R

f
t · st)

′
, (3.30)

where st denotes the labor income to consumption ratio at date t.

The last column in Table 4 shows that time variation in prices of risk is due to the labor

income scaled by the risk free rate for its element on Λ1 is significantly different from

zero while pricing return spreads on 30 industry portfolios and government bonds. For

individual elements in Λ1, the time-varying labor income is better to capture the time

variation in prices of risk for bond portfolios, but not equity portfolios. While looking

at the individual elements, the time varying labor income leads to the time varying risk

premiums to explain government bonds only.

In sum, the conditional housing consumption model (Piazzesi et al. (2007)) without the

solvency constraints is able to explain the time variation in prices of risk when pricing

return spreads on the 30 industry portfolios. Moreover, the conditional labor income

CAPM model (Santos and Veronesi (2006)) outperforms other conditional models, i.e.,

Lettau and Ludvigson (2001), Lustig and Van Nieuwerburgh (2005), and Piazzesi et

al. (2007), to explain time-varying prices of risk while pricing return premiums on U.S.

government bonds portfolios.

3.5.2 Robustness Check

3.5.2.1 Other Conditional Variables

In this part, we investigate the conditional CAPM and C-CAPM with the same state

variables. Firstly we put deft the default rate, which is defined as the yield spread

between BAA− and AAA− rated bonds and helps to predict the business cycle (Jagan-

nathan and Wang (1996) [43]) as one element of the state variables.

In Table 5 and Table 6, we report the results based on conditional CAPM and C-CAPM

models. The last columns in both tables show that the market portfolios return and the
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consumption growth scaled by the default rate that predicts the business cycle help to

explain the time variation in prices of risk.

When looking at the individual elements in Λ1, the time variation of prices of risk is due

to the time varying market portfolio return and the risk-free rate but not the default

rate while pricing return spreads on size, book-to-market ratio and momentum sorted

stocks. On the other hand, this conditional CAPM with the default rate is not able to

capture the industry effect and risk spreads on government bonds. For the conditional

C-CAPM with the default rate, the time variation in prices of risk is due to the time

varying risk-free rate and the default rate when pricing return spreads on size, book-to-

market ratio and momentum sorted portfolios. Different from the conditional CAPM,

the prices of risk associated with the default rate feature time variation while pricing

the risk spreads on government bonds; the time variation in prices of risk is due to the

time-varying the risk-free rate and the default rate, or the monetary policy.

Moreover, we also choose the dividend yield diyt, the ratio between dividends and equity

prices, into the state space, because an impressive list of academic papers documents a

statistical relationship between the dividend yield and risk premiums.

Results for the conditional CAPM and C-CAPM with the dividend yields are shown in

Table 7 and Table 8, in which elements Λ1 are jointly significantly different from zeros

via the GLS estimator. While pricing return spreads on size, book-to-market ratio sorted

stocks and government bonds, the dividend yield in the conditional CAPM features the

time variation in prices of risk, but it is not able to achieve the same result in the

conditional C-CAPM. Moreover, adding the dividend yield into conditional models are

better to explain the time variation in prices of risk while explaining the industry effect

on stocks, but the conditional models with the default rate feature time variation in

prices of risk when pricing return spreads on size, book-to-market ratio sorted equities

and government bond portfolios. Furthermore, comparing the conditional CAPM with

C-CAPM, there exist big differences on the pricing performance with the dividend yield,

but not much with the default rate.

3.5.2.2 Conditional Variables and the Business Cycle

In this part, we show that the ‘successful’ conditional variables are slow-moving and

exhibit cyclical patterns related to the business cycle. Especially, their behavior seems

consistent with the economic intuition derived from inter-temporal asset pricing models:

economic recessions should trigger higher risk premiums. Here, the recession period data

comes from the NBER.
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From the main result part, we find that both the consumption-wealth ratio cay and the

non-housing and housing expenditure ratio α help the CAPM and the CCAPM to ex-

plain equity premiums and yields on government bonds. Figure 1 shows that these two

variables are slow-moving and persistent across the time, except that there is an increas-

ing trend on the expenditure ratio from 1952 to 1958. Moreover, the collateral housing

ratio and the labor income ratio have the clear decreasing and increasing trend patterns,

respectively. For the default rate and the dividend yield, there are huge volatiles during

the subprime financial crisis period.

3.6 Conclusion

In this paper, we investigate several conditional asset pricing models via the dynamic

cross-sectional regression in which considering time-varying prices of risks. Given the

constant risk exposure, the paper finds that conditional models usually have time-varying

prices of risks via the GLS estimator. To be more specific, the conditional CAPM out-

performs the conditional C-CAPM to explain the time-varying risk premiums on equity

returns, because the time-varying price of the market risk is found to be significantly

different from zero, while the time-varying price of the consumption risk is not. Among

the conditional C-CAPM, the labor income leading to the time-varying price of con-

sumption risk makes the conditional CCAPM explain yields on government bonds, and

the time-varying price of the expenditure ratio risk between non-housing and housing

consumption helps to capture the industry effect.

Moreover, the paper finds that the conditional variables which have the macroeconomic

background are better than the conditional variables directly coming from the financial

market, like the dividend yield. Second, the conditional C-CAPM can compete again

with the conditional CAPM to explain the industry effect if the conditional variables

are slow-moving and persistent across the time.
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Table 3.1: Lettau–Ludvigson - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CAPM
with the state variables as RM , Rf , and Rf · cay. Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 ΛRM ΛRf ΛRf ·cay χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
RM 0.2908 -0.5342** -49.3765 48.8409 63.6877***
Rf -0.0628** -0.0099 3.5560 -3.3076 52.643***

Rf · cay -0.0673** -0.0110 3.8612 -3.5953 51.2602***
4S-GLS

RM 0.1045 -0.4651** -45.7816** 45.5024** 108.742***
Rf -0.0156** -0.0244** -1.6653 1.6826 141.26***

Rf · cay -0.0176** -0.0260** -1.5958 1.6211 142.5***

Panel B. 30 Industry

4S-OLS
RM 0.3251 -0.3383 -47.7998 46.3921 70.8743***
Rf -0.0285 -0.0037 5.8899 -5.8303** 28.5278

Rf · cay -0.0324 -0.0049 6.2435** -6.1709** 28.8159
4S-GLS

RM 0.2554** -0.2678 -57.1052** 54.9663** 99.874***
Rf -0.0206** -0.0082 2.3979 -2.4075 99.26***

Rf · cay -0.023** -0.0093 2.5844 -2.5863 101.94***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
RM 0.2908 -0.5342** -49.3765 48.8409 63.6877***
Rf -0.0628** -0.0099 3.5560 -3.3076 52.643***

Rf · cay -0.0673** -0.0110 3.8612 -3.5953 51.2602***
4S-GLS

RM 0.1045 -0.4651** -45.7816** 45.5024** 108.7418***
Rf -0.0156** -0.0244** -1.6653 1.6826 141.2614***

Rf · cay -0.0176** -0.026** -1.5958 1.6211 142.518***

Panel D. Government Bonds

4S-OLS
RM 0.0754 -0.5816 -19.5286 16.0253 18.9408***
Rf 0.0008 -0.0072 1.9758 -1.9561** 9.3555

Rf · cay 0.0006 -0.0050 2.2721** -2.2396** 8.3124
4S-GLS

RM 0.0735** -0.5621 1.7803 -3.5781 29.7681***
Rf 0.0009 -0.0047 1.3610 -1.3884 12.6542

Rf · cay 0.0008 -0.0033 1.5218 -1.5506 13.1034
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Table 3.2: Lustig–Van Nieuwerburgh - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CCAPM
with the state variables as ∆c, Rf , and Rf · mymo. Two different estimators, 4-step OLS and GLS,
are shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal
to zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 Λ∆c ΛRf ΛRf ·mymo χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
∆c 0.1222** 0.3385 -0.1291 0.1599 34.4358
Rf -0.0435** 0.1621 0.1941 -0.1620 17.5260

Rf ·mymo -0.033** 0.1674 0.1303 -0.0844 14.8941
4S-GLS

∆c 0.082** 0.1521 0.2040 -0.1776 107.989***
Rf -0.028** 0.0812 0.1154 -0.1138 47.333***

Rf ·mymo -0.0178** 0.0678 0.1153 -0.1178 51.371***

Panel B. 30 Industry

4S-OLS
∆c 0.0434 -0.4173 -0.4029 0.2855 30.3999
Rf -0.0563** 0.1557 -0.2530 0.1680 19.5395

Rf ·mymo -0.0517** 0.0680 -0.1594 0.1320 20.9877
4S-GLS

∆c 0.0282** -0.1396 -0.3861 0.4179 65.663***
Rf -0.0256** 0.0224 -0.0875 0.0154 58.362***

Rf ·mymo -0.022** 0.0053 -0.0638 0.0226 88.494***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
∆c 0.1222** 0.3385 -0.1291 0.1599 34.4358
Rf -0.0435** 0.1621 0.1941 -0.1620 17.5260

Rf ·mymo -0.033** 0.1674 0.1303 -0.0844 14.8941
4S-GLS

∆c 0.082** 0.1521 0.2040 -0.1776 107.989***
Rf -0.028** 0.0812 0.1154 -0.1138 47.333***

Rf ·mymo -0.0178** 0.0678 0.1153 -0.1178 51.371***

Panel D. Government Bonds

4S-OLS
∆c -0.0004 -0.3052 0.0500 -0.0194 4.796
Rf -0.0003 0.0555 -0.1139 0.1237 38.6563***

Rf ·mymo 0.0003 0.0091 -0.0780 0.0301 20.0299***
4S-GLS

∆c -0.0074 -0.1300 -0.0219 1.2731 10.4983
Rf -0.0001 0.0615 -0.0993 0.0566 96.514***

Rf ·mymo 0.0003 0.0327 -0.0932 0.0370 17.9014**
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Table 3.3: Piazzesi–Schneider–Tuzel - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional
CCAPM with the state variables as ∆c, Rf , and Rf ·α. Two different estimators, 4-step OLS and GLS,
are shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal
to zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 Λ∆c ΛRf ΛRf ·α χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
∆c 0.0771 0.0327 -4.7065 5.8912 35.5018
Rf -0.0805** 0.3058 -4.6698 6.1353 13.0211

Rf · α -0.0617** 0.2380 -3.5321 4.6439 13.1349
4S-GLS

∆c 0.0685** 0.0554 4.8790 -6.2055 126.706***
Rf -0.0235** 0.0963 2.0777 -2.6017 29.7112

Rf · α -0.0184** 0.0751 1.5752 -1.9713 30.1657

Panel B. 30 Industry

4S-OLS
∆c 0.1409** -0.1279 4.4280 -6.1001 20.6477
Rf -0.0715** 0.1508 -4.3220 5.4254 46.2027**

Rf · α -0.0556** 0.1177 -3.3772 4.2385 46.7921**
4S-GLS

∆c 0.0352** -0.0514 1.1942 -1.7031 91.5112***
Rf -0.0299** 0.0341 -5.618** 7.1097** 54.0947***

Rf · α -0.0233** 0.0262 -4.358** 5.5146** 54.9517***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
∆c 0.0771 0.0327 -4.7065 5.8912 35.5018
Rf -0.0805** 0.3058 -4.6698 6.1353 13.0211

Rf · α -0.0617** 0.2380 -3.5321 4.6439 13.1349
4S-GLS

∆c 0.0685** 0.0554 4.8790 -6.2055 126.706***
Rf -0.0235** 0.0963 2.0777 -2.6017 29.7112

Rf · α -0.0184** 0.0751 1.5752 -1.9713 30.1657

Panel D. Government Bonds

4S-OLS
∆c 0.0021 -0.5934 23.4092 -30.1410 2.9332
Rf -0.0007 0.0957 -4.5025 5.7871 19.0809***

Rf · α -0.0006 0.0736 -3.2881 4.2240 22.1662***
4S-GLS

∆c -0.0073 -0.1292 1.2683 -0.6780 10.4435
Rf 0.0002 0.0592 -3.0213 3.7638 14.2071**

Rf · α 0.0002 0.0470 -2.2312 2.7787 17.3288**
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Table 3.4: Santos–Veronesi - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CCAPM
with the state variables as ∆c, Rf , and Rf · labor. Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 Λ∆c ΛRf ΛRf ·labor χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
∆c 0.1140 -0.3076 4.2447 -4.5577 26.3951
Rf -0.0747** -0.0373 5.2559 -5.3560 8.7605

Rf · labor -0.073** -0.0338 5.2860 -5.3854 8.8095
4S-GLS

∆c 0.077** -0.0494 32.5992 -33.2021 110.578***
Rf -0.0255** 0.0340 11.0193 -11.2051 31.7282

Rf · labor -0.025** 0.0338 10.7943 -10.9763 31.7982

Panel B. 30 Industry

4S-OLS
∆c 0.1398** -0.0925 -19.3746 19.3546 22.7256
Rf -0.076** 0.1378 -17.2344 17.4668 17.7678

Rf · labor -0.074** 0.1363 -17.0168 17.2459 17.7868
4S-GLS

∆c 0.0364** -0.0179 -20.0873 20.3038 89.1027***
Rf -0.0298** 0.0225 -7.4298 7.4975 44.5743**

Rf · labor -0.0291** 0.0224 -7.3140 7.3802 44.307**

Panel C. Fama-French 25 Size and Momentum

4S-OLS
∆c 0.114 -0.3076 4.2447 -4.5577 26.3951
Rf -0.0747** -0.0373 5.2559 -5.3560 8.7605

Rf · labor -0.073** -0.0338 5.2860 -5.3854 8.8095
4S-GLS

∆c 0.0771** -0.0494 32.5992 -33.2021 110.578***
Rf -0.0255** 0.0340 11.0193 -11.2051 31.7282

Rf · labor -0.0251** 0.0338 10.7943 -10.9763 31.7982

Panel D. Government Bonds

4S-OLS
∆c 0.0021 -0.4675 36.2953 -37.1102 2.2019
Rf -0.0008 0.0703 3.6970 -3.7708 12.7437

Rf · labor -0.0008 0.0685 3.3144 -3.3821 13.6856**
4S-GLS

∆c -0.0132 -0.1441 90.5931 -91.2787 9.9359
Rf 0.00007 0.0756** -3.4390 3.4385 9.9709

Rf · labor 0.00002 0.0731** -3.4188 3.4197 10.2357
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Table 3.5: The Default Rate in CAPM - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CAPM
with the state variables as RM , Rf , and Rf · def . Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 ΛRM ΛRf ΛRf ·def χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
RM 0.7619** -0.5187** 0.3655 0.6313 52.8147***
Rf -0.079** -0.0465** 0.0201 -4.3452 16.0094

Rf · def 0.0080 0.0011 -0.0153 0.5042 16.3525
4S-GLS

RM 0.1682** -0.4507** 1.1260 -5.8654 129.4754***
Rf -0.0161** -0.0272** 0.0567 -1.6456 119.2444***

Rf · def 0.0018** 0.0002 -0.0043 0.1902 123.3678***

Panel B. 30 Industry

4S-OLS
RM 1.2571** 0.0549 -1.6813 56.2197 53.1442**
Rf -0.0395 -0.0078 -0.1519 0.5858 33.9809

Rf · def 0.0113** 0.0050 -0.0254 0.8636 19.6458
4S-GLS

RM 0.3975** -0.1356 -0.8557 32.0535 127.9018***
Rf -0.018** -0.0092 -0.0970 0.2323 114.9072***

Rf · def 0.0023** 0.0014 -0.0111** 0.3025 94.6947***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
RM 0.7619** -0.5187** 0.3655 0.6313 52.8147***
Rf -0.079** -0.0465** 0.0201 -4.3452 16.0094

Rf · def 0.0080 0.0011 -0.0153 0.5042 16.3525
4S-GLS

RM 0.1682** -0.4507** 1.1260 -5.8654 129.4754***
Rf -0.0161** -0.0272** 0.0567 -1.6456 119.2444***

Rf · def 0.0018** 0.0002 -0.0043 0.1902 123.3678***

Panel D. Government Bonds

4S-OLS
RM 0.0547 -0.4832 -0.9673 19.0502 33.2754***
Rf 0.0011 -0.0118 -0.0522 -0.3606 888.8275***

Rf · def -0.0002 0.0019 0.0073 0.0333 52.0599***
4S-GLS

RM 0.0596 -0.4510 -1.5519 52.6596 31.9123***
Rf 0.0007 -0.0036 -0.0805** 0.4054 1169.3691***

Rf · def 0.00004 -0.0002 0.0048 -0.2049 69.5571***
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Table 3.6: The Default Rate in CCAPM- Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CCAPM
with the state variables as ∆c, Rf , and Rf · def . Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 Λ∆c ΛRf ΛRf ·def χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
∆c 0.148** 0.0526 -0.0444 10.7087 22.5840
Rf -0.0761** 0.0618 -0.0136 -1.2940 21.4755

Rf · def -0.0019 -0.0287** -0.0151 0.1522 27.0656
4S-GLS

∆c 0.0817** 0.0803 0.1085 7.5892** 100.24***
Rf -0.0271** 0.0596 0.0065 -1.6943 78.3705***

Rf · def -0.0001 -0.0100 -0.0103** 0.0910 62.3771***

Panel B. 30 Industry

4S-OLS
∆c 0.1972** -0.1611 -0.2950 11.4202 17.6129
Rf -0.0654** 0.1548 -0.1284 -0.5279 30.5069

Rf · def -0.0023 -0.0011 -0.0084 0.1392 58.1819**
4S-GLS

∆c 0.0324** -0.1052 -0.0734 6.8577 77.3256***
Rf -0.0284 0.0200 -0.0833 -0.4771 168.0809***

Rf · def 0.0008 -0.0018 -0.0058 0.0635 74.9255***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
∆c 0.148** 0.0526 -0.0444 10.7087 22.5840
Rf -0.0761** 0.0618 -0.0136 -1.2940 21.4755

Rf · def -0.0019 -0.0287** -0.0151 0.1522 27.0656
4S-GLS

∆c 0.0817** 0.0803 0.1085 7.5892** 100.24***
Rf -0.0271** 0.0596 0.0065 -1.6943 78.3705***

Rf · def -0.0001 -0.0100 -0.0103** 0.0910 62.3771***

Panel D. Government Bonds

4S-OLS
∆c -0.0017 -0.2905 0.1912 -10.4710 12.3685***
Rf -0.0002 0.0582 -0.0498 -0.3470 967.2988***

Rf · def -0.0001 0.0040 0.0092 -0.0998 66.4262***
4S-GLS

∆c -0.0087 -0.1406 0.8969 -19.1171 11.1954***
Rf -0.0001 0.0646** -0.0613** -0.3449 1058.0613***

Rf · def -0.0001 0.0067 0.0056 -0.2885 68.4467***
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Table 3.7: The Dividend Yields in CAPM - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CAPM
with the state variables as RM , Rf , and Rf · diy. Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 ΛRM ΛRf ΛRf ·diy χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
RM 0.3543 -0.4350 2.5981 -2.9047 63.4735**
Rf -0.1824 -0.0508 0.4193 -0.5394 4.3935

Rf · diy -0.0454 -0.0061 0.2176 -0.3861 7.4874
4S-GLS

RM 0.1514** -0.3675** 1.9310 -1.1976 148.86***
Rf -0.0124** -0.0227 0.1352 -0.0810 137.9062***

Rf · diy -0.0021 -0.0036 0.0943 -0.1596 85.6888***

Panel B. 30 Industry

4S-OLS
RM -0.1371 -0.5039 4.5781 -10.5677 55.8174***
Rf -0.1909** -0.0659 0.3429 -0.5721 72.1136***

Rf · diy -0.0714** -0.0246 0.1179 -0.1808 64.5528***
4S-GLS

RM 0.2968** -0.2661 0.5164 -2.1983 133.9929***
Rf -0.0251** -0.0236** 0.0522 -0.2687 107.9627***

Rf · diy -0.0076** -0.0093** 0.0000 -0.0595*** 77.7709

Panel C. Fama-French 25 Size and Momentum

4S-OLS
RM 0.3543 -0.4350 2.5981 -2.9047 63.4735***
Rf -0.1824 -0.0508 0.4193 -0.5394 4.3935

Rf · diy -0.0454 -0.0061 0.2176 -0.3861 7.4874
4S-GLS

RM 0.1514** -0.3675** 1.9310 -1.1976 148.86***
Rf -0.0124** -0.0227 0.1352 -0.0810 137.9062***

Rf · diy -0.0021 -0.0036 0.0943 -0.1596 85.6888***

Panel D. Government Bonds

4S-OLS
RM 0.1429** -1.2915** 1.0351 -10.8598 25.1649***
Rf 0.0018 -0.0166 0.0606 -0.3621 148.522***

Rf · diy 0.0006 -0.0067 0.0044 -0.0267 11.1948***
4S-GLS

RM 0.087** -0.5979 0.3583 -7.8625 29.7583***
Rf 0.0012 -0.0058 0.0231 -0.3243** 237.0354***

Rf · diy 0.0009 -0.0077 0.0183 -0.1103 13.4406***
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Table 3.8: The Dividend Yields in CCAPM - Price of Risk Estimates

Notes: This table reports estimates for the price of risk parameters λ0 and Λ1 in the conditional CCAPM
with the state variables as ∆c, Rf , and Rf · diy. Two different estimators, 4-step OLS and GLS, are
shown. The last column reports Wald statistics for the null of a respective row of Λ1 being equal to
zero. The sample period is 1952Q1-2012Q3. ** and *** denote statistical significance at 5% and 1%
level, respectively.

λ0 Λ∆c ΛRf ΛRf ·diy χ2 test

Panel A. Fama-French 25 Size and B/M

4S-OLS
∆c 0.144** -0.1392 -0.2673 0.3144 29.9614
Rf -0.053** 0.2384 0.2300 -0.3998 30.6444

Rf · diy -0.0233 0.1457 0.1774 -0.3744 14.8429
4S-GLS

∆c 0.0767** 0.0214 -0.2555 0.8022 113.6867***
Rf -0.0263** 0.0933 0.0959 -0.1686 51.5121**

Rf · diy -0.0094** 0.0505 0.0876 -0.2045 34.2185

Panel B. 30 Industry

4S-OLS
∆c 0.1455** -0.1321 -0.4257 0.0825 20.7774
Rf -0.0742** 0.0869 -0.0399 -0.2480 49.2292**

Rf · diy -0.0288** 0.0018 -0.0385 -0.0110 45.6**
4S-GLS

∆c 0.0389** -0.0615 -0.1222 -0.0704 93.8483***
Rf -0.0292** 0.0056 0.0095 -0.2557 101.4132***

Rf · diy -0.0089** -0.0185 -0.0205 -0.0371*** 74.6352***

Panel C. Fama-French 25 Size and Momentum

4S-OLS
∆c 0.144** -0.1392 -0.2673 0.3144 29.9614
Rf -0.053** 0.2384 0.2300 -0.3998 30.6444

Rf · diy -0.0233 0.1457 0.1774 -0.3744 14.8429
4S-GLS

∆c 0.0767** 0.0214 -0.2555 0.8022 113.6867***
Rf -0.0263** 0.0933 0.0959 -0.1686 51.5121***

Rf · diy -0.0094** 0.0505 0.0876 -0.2045 34.2185

Panel D. Government Bonds

4S-OLS
∆c 0.0065 -0.4770 0.7143 -3.0279 3.0114
Rf -0.0004 0.0671 0.0420 -0.2051 204.7159***

Rf · diy -0.0005 0.0424 -0.0020 0.0617 16.7791**
4S-GLS

∆c -0.0109 -0.2744 0.6418 1.0646 10.6713
Rf 0.0001 0.0733** 0.0348 -0.2915** 219.729***

Rf · diy 0.0001 0.0432 0.0041 -0.1007 12.6088
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Figure 3.1: Conditional Variables

Notes: Figure shows that the time series on conditional variables, such as the consumption-wealth rato,
cay, the non-housing and housing expenditure ratio, α, the collaterial ratio, mymo, the labor income
share, s, the default rate, def and the dividend yields diy. Here, the recession period data comes from
the NBER. The sample period is 1952Q1-2012Q3.
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Appendix A

Appendix on Chapter 1

A.1 Sample Estimates on Hansen–Jagannathan (HJ) Dis-

tance

In sample estimation, if the test portfolios are in gross returns, we define

DT =
1

T

T∑
t=1

∂αt(θ)

∂θ
=

1

T
R
′
f, (A.1)

gT (θ) =
1

T

T∑
t=1

αt(θ) = DT θ − IN , (A.2)

GT =
1

T

T∑
t=1

RtR
′
t =

1

T
R
′
R, (A.3)

where

R = [R1, R2, ..., RT ]
′
,

f = [f1, f2, ..., fT ].

The sample analog of the HJ distance is thus

δT =
√
minθgT (θ))′G−1

T gT (θ). (A.4)

Taking the derivative of the above equation

D
′
TG
−1
T gT (θ) = 0, (A.5)
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which gives an analytic expression for the sample minimizer

θ̂ = (D
′
TG
−1
T DT )−1D

′
TG
−1
T IN . (A.6)

From Hansen(1982) [49] the asymptotic variance of θ̂ is given by

var(θ̂) =
1

T
(D
′
TG
−1
T DT )−1D

′
TG
−1
T ΩTG

−1
T DT (D

′
TG
−1
T DT )−1, (A.7)

where if the data is serially uncorrelated, the estimate of the variance matrix of pricing

errors is give by

ΩT =
1

T

T∑
t=1

αt(θ̂)αt(θ̂)
′
. (A.8)

The estimator θ̂ is equivalent to a GMM estimator defined by Hansen(1982) with the

moment condition E[g(θ)] = 0 and the weighting matrix G−1.

If the test portfolios are in excess returns, we define

yt+1(θ) = 1− θ′ft+1, (A.9)

Et[yt+1(θ)Rt+1] = 0N , (A.10)

the estimates of risk premiums will change into

θ̂ = −(D
′
tG
−1
t Dt)

−1D
′
tG
−1
t R̄t, (A.11)

where R̄t is the average excess return across N .

A.2 Testing Hansen–Jagannathan Distance

If the weighting matrix is optimal in the sense of Hansen (1982) [49], then Tδ2
T is

asymptotically a random variable of χ2 distribution with N −K freedom, where is the

dimension of θ.

However, if G is generally not optimal, Tδ2
T is not asymptotically a random variable of

χ2. Instead, under the hypothesis that the SDF prices the returns correctly, the sample

HJ distance follows:

T [δ̂2]
d→
N−K∑
j=1

ajχ
2(1), (A.12)
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where χ2(1) are independent chi-squared random variables with one degree of freedom,

and aj are N −K nonzero eigenvalues of the matrix A given by

A = Ω
1
2G

−1
2 [IN − (G

−1
2 )
′
D(D

′
G−1D)−1D

′
G
−1
2 ](G

1
2 )
′
(Ω

1
2 )
′
. (A.13)

Here Ω = E[αtα
′
t] denotes the variance of pricing errors, and D = E(R

′
tft). The 1

2

means the upper-triangle matrices from the Cholesky decomposition. As long as we have

a consistent estimate ΩT of the matrix Ω, we can estimate the matrix A by replacing

Ω and G by ΩT and GT , respectively. Under the hypothesis that the SDF prices the

returns correctly, The Ω can be estimated consistently by ΩT = T−1
∑T

t=1[αtα
′
t].

Following Jagannathan and Wang (1996) [43], to adjust for the small sample bias, we

use Monte Carlo method to calculate the empirical distribution of HJ distance (under

the null hypothesis). First, draw M ⊗ (N − K) independent random variables from

χ2(1) distribution. Then, we calculate uj =
∑N−K

i=1 aiχ
2(1). Here M is the number of

simulation. Then the empirical p-value of the HJ distance is

ˆpHJ =
1

M

M∑
j=1

I(uj≥T [HJT (θT )]2), (A.14)

where I(.) is an indicator function which equals one if the expression in the brackets is

true and zero otherwise.

A.2.1 Testing Constrained Hansen–Jagannathan Distance

To test the constrained HJ distance, we follow Gospodinov, Kan and Robotti (2010)1.

They state an asset pricing model is correctly specified if there exists a θ ∈ Γ such

that yt(θ) ∈ ℵ+, which implies that ι = 0N and δ+ = 0; the model is misspecified if

yt(θ) /∈ ℵ+ for all θ ∈ Γ, which implies that δ+ > 0.

They show that

(a) if δ+ = 0, the pricing model is correctly specified,

T δ̂2
+

A→
N−K∑
t=1

ςiυi, (A.15)

1Gospodinov, Kan and Robotti (2010) [20], On the Hansen–Jagannathan distance with a no-arbitrage
constraint, Proposition 3.
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where the υi are independent chi-squared random variables with one degree of freedom

and the ςi are the eigenvalues of

A = P
′
U−

1
2SU−

1
2P, (A.16)

with S =
∑∞

j=−∞E[(xtyt(θ
∗) − qt−1)(xt+jyt+j(θ

∗) − qt+j−1)
′
], D = E[xt

∂yt(θ∗)

∂θ′
], U =

E[xtx
′
t], and P being an N×(N−K) orthonormal matrix whose columns are orthogonal

to U−
1
2D. This is the same as traditional HJ distance test.

(b)if δ+ > 0, the pricing model is misspecified,

√
T (δ̂2

+ − δ2
+)

A→ N(0, υ), (A.17)

where υ =
∑∞

j=−∞E[(ϕt(λ
∗)− δ2

+)(ϕt+j(λ
∗)− δ2

+)
′
] and δ = [θ

′
, ι
′
].

To conduct inference, the variance matrix should be replaced by consistent estimator.

In sample, we can replace A with Â, and Û = 1
T

∑T
t=1 xtx

′
t, we also can obtain Ŝ using

a nonparametric heteroskedasticity and autocorrelation consistent estimator.

A.3 Entropy and the Filtered Pricing Kernel

In the absence of arbitrage opportunities, there exists a pricing kernel, yt+1, or the

stochastic discount factor (SDF), such that the equilibrium price, pit, of any asset i

delivering a future payoff Rit+1, is given by the Lucas pricing equation

Eµ[yt(Z, θ)R
e
t ] ≡

∫
yt(Z, θ)R

e
tdµ = 0, (A.18)

where Ret ∈ RN is a vector of excess returns on different tradable assets, E is the

unconditional rational expectation operator, µ is the unconditional physical probability

measure, and Z stands for the factor variables.

We define the candidate SDFs, factorized as

yt = ybt(Z, θ)× ϕt, (A.19)

where ybt(Z, θ) is a known benchmark non-negative model specific function of data

observable (Z) at time t and the parameter vector θ ∈ Rk, and ϕt is a potentially
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unobservable component. Then this implies that for any set of tradable assets, the

following vector of Euler equations must hold in equilibrium

Eµ[ybt(Z, θ)ϕtR
e
t ] ≡

∫
ybt(Z, θ)ϕtR

e
tdµ = 0, (A.20)

where Ret ∈ RN is the vector of excess returns on different tradable assets.

The paper assumes that

Ψ and µ are both sigma-finite;

Ψ is absolutely continuous with respect with µ;

ϕt is a measurable function taking values in [0,∞).

Under weak regularity conditions, the above pricing restrictions for a SDF can be rewrit-

ten as

0 =

∫
ybt(Z, θ)ϕtR

e
tdµ

=

∫
ybt(Z, θ)R

e
tdΨ = EΨ[ybt(Z, θ)R

e
t ],

(A.21)

where ϕt = dΨ
dµ is the Radon–Nikodym derivative of Ψ with respect with µ.

Ψ̂ = argminΨD(Ψ||µ)

= argminΨ

∫
log(

dΨ

dµ
)dΨ,

(A.22)

subject to

EΨ[ybt(Z, θ)R
e
t ] = 0.

Note also that D(Ψ||µ) is always non-negative and has a minimum at zero that is reached

when Ψ is identical to µ (a.e.). The above is a relative entropy minimization under the

asset pricing restrictions coming from the Euler equations, D(Ψ||µ) is the Kullback–

Leibler information criterion (KLIC) distance from µ to Ψ. That is, we can estimate the

unknown measure Ψ as the one that adds the minimum amount of additional information

needed for the pricing kernel to price assets.

Furthermore, we need D(Ψ||µ) to be a continuous function, which means that a mere

relabeling of states should not change the value of D. Suppose µ̂ were uniformly dis-

tributed on a subset of m outcomes (zeros elsewhere), while Ψ̂ is also uniform, but on
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only n of those outcomes, where n ≤ m. Then D should be increasing in m and should

be decreasing in n.

A.3.1 The Least Misspecified SDF and Economic Cycles

We present the difference between the least and the most misspecified candidates via

entropy across the business cycle and financial market bull–bear periods.

We define the candidate SDFs, factorized as

yt = ybt(Z, θ)× ϕt, (A.23)

where ybt(Z, θ) is a known benchmark non-negative model specific function of data

observable (Z) at time t and the parameter vector θ ∈ Rk, and ϕt is a potentially

unobservable component. Then this implies that for any set of tradable assets, the

following vector of Euler equations must hold in equilibrium

Eµ[ybt(Z, θ)ϕtR
e
t ] ≡

∫
ybt(Z, θ)ϕtR

e
tdµ = 0, (A.24)

where Ret ∈ RN is the vector of excess returns on different tradable assets2.

The recession period data comes from the NBER and the financial market crashes and

bull periods data come from Mishkin and White (2002) [50]. Here, financial market

crashes means a 20% drop in the market; speed is another feature. Therefore, we look

at declines over windows of three months and one year.

At three months, the Dow additionally identifies several more months in the 1930–1932

slide, November and December 1987, October, November, and December 1937, and June

1962. Similarly, the S&P500 finds crashes in 1930–1933, 1937, 1962, 1974, and 1987,

with June 1940 narrowly missing at 19.2%. For the NASDAQ, there are crashes in a

three-month window in 1974, 1987, 1990, 2000, 2001, and 2008.

For the Dow Jones, declines in the 12 month window in excess of 20% picks out 1930–

1933, 1937, 1938, 1970, 1974, and 1988. Using the S&P500 and a 12 month window

there are crashes ending in 1930–1933, 1937, 1938, 1941, 1947, 1970, 1974, and 1975.

Looking at the NASDAQ for one year crashes, we pick out the same years as using a

three month window, plus 1973, 1975, 1982, 1983, and 1984.

2For estimating ϕ, see details on Entropy in Appendix.
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Figure A.1 illustrates the time series of the filtered SDF on the Fama–French five-factor

model and the CAPM while explaining payoffs on the Fama–French 25 size and book-

to-market ratio sorted portfolios. The green dashed line plots the component of the

SDF that is a parametric function of CAPM, yb(θ, t) = Rmt+1. The blue line plots the

filtered SDF on the Fama–French five-factor, which is the product of the unobservable

component of the SDF, ϕt. The grey shaded areas represent NBER-dated recessions,

the red line stands for the financial market crashes, and the aquamarine line marks

the financial market bull periods. The figure reveals two main points. The filtered

SDF is much volatile than the benchmark. For instance, the filtered Fama–French five-

factor obtains much larger variance (1.25/0.02) than the CAPM. Second, the peaks, the

periods which are 2.5 points above, are correlated with the financial market crash and

bull periods, i.e., the correlation between the peak of the filtered SDF and the financial

bear–bull periods is 83.34%. Figure A.2 shows that the Fama–French five-factor model

varies sharply comparing with the CAPM when explaining bond portfolios. Moreover,

the correlation between the filtered SDF and the financial bear–bull periods stays at

88.89%. In order to reconcile higher risk premiums of equities, individuals must have

implausibly time-varying pricing kernels. Therefore individuals have a high discount

rate during the financial crashes and a lower value for the bull periods.

Figure A.3 shows movements of the filtered SDF when pricing the 10 Deciles portfolios.

The green dashed line plots the benchmark consumption-based CAPM. The least mis-

specified Yogo durable consumption model is plotted in blue. The grey shaded areas

represent the NBER-dated recessions, the red line stands for the financial market crashes

and the aquamarine line for the financial market bull periods. While obtaining the same

time-varying volatile for the filtered Yogo durable consumption SDF, its correlation with

the financial market crashes and bull periods is nearly 92.31%.

Figures A.4 and A.5 show that the difference between the least and the most misspecified

SDFs in the 30 industry portfolios. The Lettau and Ludvigson conditional model (the

blue line) varies sharply comparing with the consumption-based CAPM (C-CAPM).

Moreover, the Lettau and Ludvigson model captures the financial crashes in 1962, in

1974, in 1987, and its correlation with financial market crashes is 76.2%. The Santos

and Veronesi labor income conditional model is plotted by the blue line in Figure A.5.

The correlation between its filtered SDF and the financial bear and bull periods is

81.25%. Here the Santos and Veronesi SDF is filtered by using mimicking portfolios,

i.e., the excess returns on market portfolios (the growth rate of consumption), then

leading it to the nested model with CAPM (C-CAPM). To avoid the information loss

when transferring macro variables to financial data, we check the bound on SDFs of the

least and the most misspecified models.
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A.4 A Nonparametric Method for Canonical Valuation

This canonical valuation method proceeds in three parts. First, time series of past

underlying consumptions, and other macroeconomic variables are used to compute the

empirical probability distribution ϕ̂. Second, we will describe and justify use of the

maximum entropy principle of information theory and its numerous successful applica-

tions, to transform the estimated probability distribution ϕ̂ into an estimate ϕ̂∗ of the

unknown measure ϕ∗.

Note first that, normalizing the sequence [ϕt]
T
t=1 to lie in the unit simplex ∆T , which is

like ϕ̃t = [ ϕt∑T
t=1 ϕt

]

∆ = (ϕ̃1, ϕ̃2, ..., ϕ̃T ) : ϕ̃t ≥ 0,

T∑
t=1

ϕ̃t = 1. (A.25)

The solution of the estimation problem also solves the following optimization

[ˆ̃ϕt]
T
t=1 = argmax

1

T

T∑
t=1

Inϕ̃t, (A.26)

subject to

[ˆ̃ϕt]
T
t=1,

T∑
t=1

ybt(x, α)Ret
ˆ̃ϕt = 0.

But the objective function above is simply the non-parametric likelihood of Owen (1988,

1991, 2001) maximized under the asset pricing restrictions for a vector of asset returns.

First, given an integer N >> 0, distribute to the various points in time t = 1, ..., T , at

random and with equal probabilities, the value 1/N in N independent draws. That is,

draw a series of values (probability weights) [ϕ̃]Tt=1 given by

ϕ̃t :=
nt
N
, (A.27)

when nt measures the number of times that the value 1/N has been assigned to time t.

Second, check whether the drawn series [ϕ̃]Tt=1 satisfies the pricing restriction

(1/T )

T∑
t=1

ybt(x, θ)R
e
t ϕ̃t = 0

. If it does, use this series as the estimator of [ϕ̃t]
T
t=1, and it does not, draw another

series. A more efficient way of finding an estimate for ϕ̃t would be to choose the most
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likely [ϕ̃t]
T
t=1 of the above procedure. This can be done by noticing that the distribution

of the ϕ̃t is, by construction, the multinomial distribution with support given by the

data sample. Therefore, the likelihood of any particular sequence [ϕ̃t]
T
t=1 is

L([ϕ̃t]
T
t=1) =

N !

n1!n2!...nT !
× T−N =

N !

Nϕ̃1!Nϕ̃2!...Nϕ̃T !
× T−N . (A.28)

This implies that the most likely value for [ϕ̃t]
T
t=1 would be the maximizer fo the log

likelihood

InL([ϕ̃t]
T
t=1) ∝ 1

N
(InN !−

T∑
t=1

In(Nϕ̃t!)). (A.29)

Since the above procedure of assigning probability weights will become more and more

accurate as N grows bigger, we would ideally like to have N →∞. In this case one can

show that

limN→∞InL([ϕ̃t]
T
t=1) = −

T∑
t=1

ϕ̃tInϕ̃t. (A.30)

Therefore, taking into account the constraint for the pricing kernel, the maximum like-

lihood estimate of the time series of ϕ̃t would solve (Hobson, 1997)

[ˆ̃ϕt]
T
t=1 = argmax−

T∑
t=1

ϕ̃tInϕ̃t, (A.31)

subject to

[ˆ̃ϕt]
T
t=1 ∈ ∆T ,

T∑
t=1

ybt(x, θ)R
e
t ϕ̃t = 0.

However, the solution of the above MLE problem is also the solution of the relative

entropy minimization problem (see e.g. Csiszar(1975)). That is, the KLIC minimization

problem we propose is equivalent to maximizing the likelihood in an unbiased procedure

for finding the ϕ̃t component of the pricing kernel.



Appendix 1. Appendix on Chapter 1 99

Figure A.1: Fama–French Five-factor in Fama–French 25 Portfolios

Notes: The Figure shows the different characteristics of the most and the least misspecified candidates
in explaining return spreads on Fama–French 25 size and book-to-market ratio portfolios. The green
dashed line plots the component of the SDF that is a parametric function of CAPM, yb(θ, t) = Rmt+1. The
blue line plots the filtered SDF on the Fama–French five-factor, which is the product of the unobservable
component of the SDF, ϕt. The grey shaded areas represent NBER-dated recessions, the red line denotes
the financial market crashes, and the aquamarine line marks the financial market bull periods.

Figure A.2: Fama–French Five-factor in FF 25 plus Gov. Bonds

Notes: The Figure shows the different characteristics of the most and the least misspecified candidates
in explaining risk spreads on government bonds portfolios. The green dashed line plots the component
of the SDF that is a parametric function of CAPM, yb(θ, t) = Rmt+1. The blue line plots the filtered
SDF on the Fama–French five-factor, which is the product of the unobservable component of the SDF,
ϕt. The grey shaded areas represent NBER-dated recessions, the red line denotes the financial market
crashes, and the aquamarine line marks the financial market bull periods.
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Figure A.3: Yogo in 10 Deciles Portfolios

Notes: The Figure shows the different characteristics of the most and the least misspecified candidates
in explaining return spreads on the 10 deciles portfolios. The green dashed line plots the component
of the SDF that is a parametric function of CCAPM, yb(θ, t) = ∆ct+1. The blue line plots the filtered
SDF on the Yogo non-durable- and durable-consumption growth factors, which is the product of the
unobservable component of the SDF, ϕt. The grey shaded areas represent NBER-dated recessions, the
red line denotes the financial market crashes, and the aquamarine line marks the financial market bull
periods.

Figure A.4: Lettau and Ludvigson in 30 Industry Portfolios

Notes: The Figure shows the different characteristics of the most and the least misspecified candidates
in explaining return spreads on the 30 industry portfolios. The green dashed line plots the component
of the SDF that is a parametric function of CCAPM, yb(θ, t) = ∆ct+1. The blue line plots the filtered
SDF on the Lettau and Ludvigson conditional consumption-based factors, which is the product of the
unobservable component of the SDF, ϕt. The grey shaded areas represent NBER-dated recessions, the
red line denotes the financial market crashes, and the aquamarine line marks the financial market bull
periods.
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Figure A.5: Santos and Veronesi in 30 Industry Portfolios

Notes: The Figure shows the different characteristics of the most and the least misspecified candidates
in explaining return spreads on the 30 industry portfolios. The green dashed line plots the component of
the SDF that is a parametric function of CCAPM, yb(θ, t) = ∆ct+1. The blue line plots the filtered SDF
on the Santos and Veronesi conditional labor income factors, which is the product of the unobservable
component of the SDF, ϕt. The grey shaded areas represent NBER-dated recessions, the red line denotes
the financial market crashes, and the aquamarine line marks the financial market bull periods.
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Appendix on Chapter 2

B.1 Unemployment

In this section, we investigate the relationship between leisure and unemployment rate.

The basic intuition is that when the bad state comes (i.e. a negative technology shock),

leisure absorbs the most of foregone working hours. While the unemployment rate

increases, the rate at a vacancy is filled decreases, because job creation flows hampers

for the marginal costs of hiring fails to decline fast in recessions. As the marginal costs

of hiring fail to decline to shrink profits, the cash flows become even smaller while

productivity falls. Furthermore, since wages are inelastic, reducing on profits becomes

even further, the incentives of hiring are suppressed and job creation flows stifled.

Here we choose seasonally adjusted U–3 unemployment rate as the data which has been

tracked by the Bureau of Labor Statistics since 1948. Seasonal adjustment is a statis-

tical technique which eliminates the influences of weather, holidays, the opening and

closing of schools, and other recurring seasonal events from economic time series. This

permits easier observation and analysis of cyclical, trend, and other nonseasonal move-

ments in the data. By eliminating seasonal fluctuations, the series becomes smoother.

Furthermore, the U–3 unemployment rate takes a fairly narrow view of who qualifies as

“unemployed” and excludes people who are considered “discouraged” and have given up

looking for work (which are included in the U-6 unemployment rate).

Figure B.1 shows that there is a high correlation between leisure time and the unemploy-

ment rate. Evidences have been found by Aguiar et al. (2012) [51] in which between the

pre-recessionary period (2006–2008) and the recession (2009–2010), 61 percent of the

decline in total market work hours is accounted for by the increase in the proportion of

unemployed in the population, 13 percent by the decrease in labor force participation,

102
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and 26 percent by the decline in market work hours per employed person. Besides, they

show that roughly two-thirds of the increase in leisure time is associated with the decline

in market work at the business cycle frequency are concentrated in television watching

and sleeping.

Specifically, at the individual level a one-hour decline in market work is offset by a 25.8

percent increase in non-market work and a 59.7 percent increase in leisure. Conditional

on being employed, a one-hour decline in market work is offset by a 27.3 percent increase

in non-market work and by a 60.7 percent increase in leisure. Conditional on not being

unemployed, a one-hour decline in market work is offset by a 25.8 percent increase

in non-market work and by a 60.2 percent increase in leisure. Conditional on being

unemployed, a one-hour decline in market work is offset by a 25.9 percent increase in

non-market work and by a 51.1 percent increase in leisure.

B.2 Home production

In theory, a model in which home production provides a substitute to market consump-

tion is equivalent to a model without home production but in which consumption and

leisure are substitutable. Shifts in relative prices cause households to substitute goods

and time not only intertemporally between periods but also intratemporally between

the market and the home sector. Intratemporal substitution introduces a powerful am-

plification channel to hours worked in response to changes in market productivity which

is absent from the standard real business cycle model. The first central issue of models

with home production is that they typically assume a high degree of substitution of

time between the market and the home sector over the business cycle. However, there

has been little systematic evidence that the substitution of time across sectors in these

models is consistent with the actual behavior of the households during recessions.

Here we show the correlations not only between asset returns and home production, but

also between leisure and returns.

a. Correlations

Figure B.2 shows the rolling correlations for home production hours and leisure time.

Like studying the rolling window correlation between consumption, leisure and asset re-

turns, we implement the methodology to home production hours. The red line denotes

leisure-equity relationship and the blue line is the home production-equity correlation.

In the short run, leisure obtains lower correlation with equity returns. After 15 quarters
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(around 4 years), home production decreases the correlation with equity returns while

leisure time keeps 40%, while aggregate consumption obtains 30%.

b. Movements during the recession periods

Figure B.3 shows that how do working, production and leisure hours change during the

recession periods. The recession periods definition comes from NBER, trough periods

include 1945 September, 1949 September, 1954 April, 1958 March, 1961 January, 1970

October, 1975 February, 1980 June, 1982 October, 1991 February, 2001 October, 2009

May. Home production hours stay the same during the recession, though before that

time home production negatively correlates to working hours; when there is shock, home

production will change sharply, but go back to the trend quickly. Leisure time absorbs

much working hours and most of time they are substitutable for each other.



Appendix 2. Appendix on Chapter 2 105

Figure B.1: The Correlation between Leisure and the Unemployment

Notes: Figure shows the rolling window correlation between the leisure and the unemployment rate.
Seasonally adjusted U–3 unemployment rate has been chosen as the data which is tracked by the Bureau
of Labor Statistics since 1948. Seasonal adjustment is a statistical technique which eliminates the
influences of weather, holidays, the opening and closing of schools, and other recurring seasonal events
from economic time series.
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Figure B.2: Home Production, Leisure and Equity Returns

Notes: Figure shows the rolling window correlation between leisure–returns and home production–
returns. The red line denotes leisure-equity relationship and the blue line is the home production-equity
correlation.
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Figure B.3: Working, Home Production and Leisure

Notes: Figure shows that how do working, production and leisure hours growth change during the
recession periods. The recession periods definition comes from NBER, trough periods include 1945
September, 1949 September, 1954 April, 1958 March, 1961 January, 1970 October, 1975 February, 1980
June, 1982 October, 1991 February, 2001 October, 2009 May.

Quarter Work Hours Home Production Leisure Growth Work Growth Home Growth Leisure 

1949 22 24 41 -1.3461 1.2776 0.1018 
1949.25 21 24 42 -0.8422 0.0000 0.4807 

1949.5 21 24 42 -1.6652 0.0000 0.9321 

1949.75 21 24 42 -1.1370 0.0000 0.6227 

1950 21 24 42 0.1848 0.3172 -0.2030 

1950.25 21 24 42 1.9051 0.0000 -1.0538 

       
1953.75 23 24 40 -1.3013 0.0000 0.8386 

1954 23 25 39 -0.9000 1.1717 -0.3319 

1954.25 22 25 40 -1.3243 0.0000 0.8305 

1954.5 22 25 40 -0.4078 0.0000 0.2522 

1954.75 23 25 40 0.9164 0.0000 -0.5691 

1955 23 25 39 1.4727 -0.3278 -0.8853 

1955.25 23 25 39 0.7399 0.0000 -0.4768 

       
1957.75 23 25 39 -2.1842 0.0000 1.4273 

1958 22 25 39 -2.5485 0.8951 0.8039 

1958.25 22 25 40 -0.7154 0.0000 0.4414 

1958.5 22 25 39 0.5335 0.0000 -0.3287 

1958.75 22 25 39 1.1875 0.0000 -0.7419 

1959 23 25 39 0.9477 0.0188 -0.8572 

1959.25 23 25 38 1.8496 0.0000 -1.2063 

       
1960.5 23 25 39 -0.1339 0.0000 0.0873 

1960.75 23 25 39 -1.2325 0.0000 0.7943 

1961 22 25 39 -0.5908 0.4355 -0.3458 

1961.25 22 25 39 -1.3723 0.0000 0.8636 

1961.5 22 25 39 0.4614 0.0000 -0.2882 

1961.75 22 25 39 1.1532 0.0000 -0.7299 

1962 23 25 38 1.1308 -0.0469 -1.0594 

1962.25 23 25 38 0.9188 0.0000 -0.6046 

       

1970 23 23 39 -1.2205 -1.4175 1.4797 

1970.25 23 23 40 -1.5192 0.0000 0.9621 

1970.5 22 23 40 -1.6670 0.0000 1.0287 

1970.75 22 23 41 -1.3017 0.0000 0.7843 

1971 22 23 41 -0.5395 -1.4204 0.962 

1971.25 22 23 41 -0.4817 0.0000 0.2819 

       

1974.75 21 21 44 -1.5484 0.0000 0.8149 

1975 20 21 44 -2.9256 -1.1166 1.8757 

1975.25 20 21 45 -1.1427 0.0000 0.5617 

1975.5 20 21 45 -0.0821 0.0000 0.04 

1975.75 20 21 44 0.6742 0.0000 -0.3298 

1976 20 21 45 0.6124 -0.4699 0.1287 

1976.25 20 21 45 -0.4157 0.0000 0.2048 

       

1980 21 21 44 -0.8227 0.3045 0.4574 

1980.25 20 21 45 -1.8255 0.0000 0.9177 

1980.5 20 21 45 -0.8825 0.0000 0.4347 

1980.75 20 21 45 0.6164 0.0000 -0.3031 

1981 20 21 45 -0.1548 0.2205 0.1662 

1981.25 20 21 45 -0.9515 0.0000 0.4651 

       

1982.25 20 21 46 0.4365 0.0000 -0.2048 

1982.5 19 21 46 -1.0222 0.0000 0.4775 

1982.75 19 21 46 -0.9171 0.0000 0.4223 

1983 19 21 46 0.4088 0.2099 -0.1443 

1983.25 19 21 46 0.5380 0.0000 -0.2484 

       

1990.75 21 21 44 -0.3623 0.0000 0.1935 

1991 21 22 44 -0.7815 1.0004 -0.1328 

1991.25 21 22 44 -0.5153 0.0000 0.2717 

1991.5 21 22 44 0.0189 0.0000 -0.01 

1991.75 21 22 44 -0.1877 0.0000 0.0985 

1992 21 22 44 -0.2962 0.6263 -0.1723 

1992.25 21 22 44 0.4315 0.0000 -0.2265 

       

2001.25 23 22 41 -0.8624 0.0000 0.5263 

2001.5 22 22 41 -0.8147 0.0000 0.4905 

2001.75 22 22 41 -0.8182 0.0000 0.4863 

2002 22 23 41 -0.8094 0.7940 -0.0133 

2002.25 22 23 41 0.2030 0.0000 -0.1191 

       

2009 20 22 44 -2.0022 0.0900 0.9055 

2009.25 19 22 44 -1.8840 0.0000 0.9084 

2009.5 19 22 45 -1.0437 0.0000 0.4924 

2009.75 19 22 45 -0.3071 0.0000 0.1435 

2010 19 22 45 0.1604 -0.2252 -0.3432 
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