
 
 
 
 
 
 
 
 
 

RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST 
NEIGHBOURS 

     
Joe Luis Villa Medina 

 
Dipòsit Legal: T.1521-2013 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



  

RELIABILITY OF CLASSIFICATION  

AND PREDICTION IN k-NEAREST NEIGHBOURS 

 
 
 
 
 
 

 
 
 
 

Joe Luis Villa Medina 
DOCTORAL THESIS 

 

 

 
 

 

 
 

 
 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

Joe Luis Villa Medina 

 
 
 

RELIABILITY OF CLASSIFICATION AND 
PREDICTION IN k-NEAREST NEIGHBOURS 

 
 
 

DOCTORAL THESIS 

Supervisors 
Dr. Ricard Boqué Martí 
Dr. Joan Ferré Baldrich 

 
 

 
 
 
 

Department of Analytical Chemistry and Organic 
Chemistry 

 
 
 

 
Tarragona 

2013 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

 
       

                    

 

 

 

 

Dr. RICARD BOQUÉ MARTÍ and Dr. JOAN FERRÉ BALDRICH, 

associate professors of the Department of Analytical Chemistry and 

Organic Chemistry at Rovira I Virgili University. 

 

CERTIFY: 

 

The Doctoral Thesis entitled: RELIABILITY OF CLASSIFICATION AND 

PREDICTION IN k-NEAREST NEIGHBOURS, presented by JOE LUIS 

VILLA MEDINA to receive the degree of Doctor of the Rovira I Virgili 

University, has been carried out under our supervision, in the 

Department of Analytical Chemistry and Organic Chemistry at Rovira I 

Virgili University, and all the results presented in this thesis were 

obtained in experiments conducted by the above mentioned student. 

 

 

 

Tarragona, September 2013 

 

 

 

Dr. Ricard Boqué Martí          Dr. Joan Ferré Baldrich 

  

UNIVERSITAT ROVIRA I VIRGILI 
Department of Analytical Chemistry 
and Organic Chemistry 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

  I am very grateful, in general, for all 

those who in one way or another 

have helped me with personal and 

professional development and in 

particular all those who encouraged 

me and helped me throughout my 

doctoral studies. 

 

This thesis was supervised by Dr. 

Ricard Boqué and Dr. Joan Ferre. The 

work was undertaken in the 

Chemometrics and Qualimetrics 

research group, headed by Prof. F. 

Xavier Rius, of the Analytical 

Chemistry and Organic Chemistry 

Department at the Rovira i Virgili 

University in Tarragona, Spain. And 

funded by the „Agència de Gestió 

d‟Ajusts Universitaris i Recerca‟ of the 

Catalan Government. To them my 

most sincere thanks for all the 

support and all the help they gave me 

during my thesis. 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

  Dedicado a mis padres, 

porque sin su  apoyo, 

dedicación y esfuerzo todo 

esto no hubiese sido posible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

  En memoria de mi abuelita, 

Alcira, y de mi tío, Chago, a 

quienes perdí en la distancia, 

y cuyo duelo, a la vez que me 

hacía vivir los momentos más 

difíciles de mi vida, me 

animaba a no fracasar en el 

intento………….. 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

Contents 

CONTENTS .......................................................................... 13 

1. INTRODUCTION AND OBJECTIVES ............................... 19 

1.1 INTRODUCTION ................................................................ 19 

1.2 OBJECTIVES .................................................................... 21 

1.3 NOTATION ....................................................................... 23 

1.4 ABBREVIATIONS ............................................................... 24 

1.5 STRUCTURE OF THE THESIS ................................................ 24 

1.6 REFERENCES ................................................................... 27 

2. STATE OF THE ART OF KNN AND BOOTSTRAP ............ 33 

2.1 PATTERN RECOGNITION ..................................................... 33 

2.1.1 DATA COLLECTION ............................................................ 33 

2.1.2 PREPROCESSING ............................................................... 34 

2.1.3 CALCULATION OF THE CLASSIFIER ......................................... 35 

2.1.4 VALIDATION ...................................................................... 36 

2.1.5 OPTIMIZATION ................................................................... 38 

2.1.6 CLASSIFICATION (PREDICTION) ............................................. 38 

2.2 KNN IN CLASSIFICATION .................................................... 39 

2.2.1 CHEMICAL AND RELATED APPLICATIONS ................................. 41 

2.2.2 ADVANTAGES AND DISADVANTAGES ...................................... 41 

2.2.3 VARIATIONS OF KNN .......................................................... 42 

2.2.4 PROBABILISTIC APPROACH ................................................... 45 

2.3 OTHER CLASSIFICATION METHODS ....................................... 47 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

2.3.1 BAYES’ DECISION RULE ....................................................... 47 

2.3.2 LINEAR DISCRIMINANT ANALYSIS .......................................... 48 

2.4 MULTIVARIATE CALIBRATION .............................................. 49 

2.4.1 DATA COLLECTION ............................................................. 50 

2.4.2 PREPROCESSING ............................................................... 50 

2.4.3 CALCULATION OF THE MODEL .............................................. 51 

2.4.4 OPTIMIZATION OF THE MODEL. ............................................. 51 

2.4.5 VALIDATING THE MODEL. .................................................... 52 

2.4.6 PREDICTION ..................................................................... 52 

2.4.7 PREDICTION UNCERTAINTY .................................................. 53 

2.4.8 OUTLIER DETECTION .......................................................... 54 

2.5 KNN FOR PREDICTION ....................................................... 55 

2.5.1 CHEMICAL AND RELATED APPLICATIONS ................................. 56 

2.5.2 ADVANTAGES AND DISADVANTAGES OF KNN IN PREDICTION ...... 56 

2.6 BOOTSTRAP .................................................................... 57 

2.6.1 NOTATION AND BOOTSTRAP GENERALITIES ............................. 57 

2.6.2 BOOTSTRAP APPLICATIONS .................................................. 61 

2.7 RELIABILITY .................................................................... 72 

2.7.1 RELIABILITY OF CLASSIFICATION ........................................... 73 

2.7.2 RELIABILITY OF PREDICTION ................................................ 73 

2.8 REFERENCES ................................................................... 75 

3. RELIABILITY OF K-NEAREST NEIGHBOURS IN 

CLASSIFICATION ................................................................. 92 

3.1 INTRODUCTION ................................................................ 92 

3.2 PAPER. CALCULATION OF THE PROBABILITY OF CORRECT 

CLASSIFICATION IN PROBABILISTIC BAGGED K-NEAREST NEIGHBOURS. 94 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
 

3.2.1 INTRODUCTION .................................................................. 96 

3.2.2 METHODS ........................................................................ 99 

3.2.3 EXPERIMENTAL SECTION ................................................... 104 

3.2.4 RESULTS AND DISCUSSION ................................................ 107 

3.2.5 CONCLUSIONS ................................................................ 125 

3.2.6 REFERENCES .................................................................. 126 

4. INFLUENCE OF THE MEASUREMENT ERROR ON THE 

RELIABILITY OF CLASSIFICATION WITH KNN .................. 132 

4.1 INTRODUCTION .............................................................. 132 

4.2 PAPER. BAGGED K-NEAREST NEIGHBOURS WITH UNCERTAINTY IN 

THE VARIABLES. .................................................................... 133 

4.2.1 INTRODUCTION ................................................................ 135 

4.2.2 METHODS ...................................................................... 137 

4.2.3 EXPERIMENTAL SECTION ................................................... 142 

4.2.4 RESULTS AND DISCUSSION ................................................ 145 

4.2.5 CONCLUSIONS ................................................................ 156 

4.2.6 REFERENCES .................................................................. 159 

5. MULTIVARIATE CALIBRATION WITH K-NEAREST 
NEIGHBOURS .................................................................... 164 

5.1 INTRODUCTION .............................................................. 164 

5.2 PAPER. MULTIVARIATE CALIBRATION WITH K-NEAREST 

NEIGHBOURS. ....................................................................... 167 

5.2.1 INTRODUCTION ................................................................ 169 

5.2.2 METHODS ...................................................................... 170 

5.2.3 EXPERIMENTAL SECTION .................................................. 173 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

5.2.4 RESULTS AND DISCUSSION ................................................ 175 

5.2.5 PHARMACEUTICAL DATASET ............................................... 182 

5.2.6 CONCLUSIONS ............................................................ 187 

5.2.7 REFERENCES .................................................................. 189 

6. UNCERTAINTY OF PREDICTIONS WITH K-NEAREST 

NEIGHBOURS .................................................................... 194 

6.1 INTRODUCTION .............................................................. 194 

6.2 PAPER. UNCERTAINTY OF PREDICTIONS WITH K-NEAREST 

NEIGHBOURS ........................................................................ 196 

6.2.1 INTRODUCTION ................................................................ 198 

6.2.2 METHODS ...................................................................... 200 

6.2.3 RESULTS AND DISCUSSION ................................................ 207 

6.2.4 CONCLUSIONS ................................................................ 210 

6.2.5 REFERENCES .................................................................. 211 

7. CONCLUSIONS ............................................................ 218 

7.1 INTRODUCTION .............................................................. 218 

7.2 ABOUT THE RELIABILITY OF CLASSIFICATION USING KNN ........ 219 

7.3 ABOUT THE RELIABILITY OF PREDICTION USING KNN ............. 220 

7.4 FUTURE WORK ............................................................... 221 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



  

 

 

 

 

 

 

 

 

 

 

 

  

CHAPTER 1 

 

INTRODUCTION AND 

OBJECTIVES 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 1 

 18 

  

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Introduction and objetives 

 19 

1. Introduction and objectives 
 

1.1 Introduction 
 

Data analysis using multivariate statistical methods is becoming a 

routine step in many analytical processes. Multivariate classification 

[1-9] and multivariate calibration [10-25] allow the analytical scientist 

to predict a class label or a property value of an unknown object using 

multiple instrumental responses (e.g., a near-infrared spectrum) or 

values of physical and chemical properties of that object.  

 

The result of a prediction process (a class label, as in classification, or 

a property value, as in multivariate calibration), should include its 

uncertainty or its degree of reliability [26-31]. When a class label is 

assigned to an unknown object, the probability that the assigned label 

represents the true class should be indicated. This probability will 

depend, among others, on the ability of the classification model for 

discriminating or modelling the given class, and also on the similarity 

between the measurements made on that object and the 

measurements made on training objects of that class. Noise, 

uninformative variables, systematic data variations (e.g., baseline 

variation) will also influence the uncertainty of the assigned class label. 

Similarly, a value of property predicted using a multivariate calibration 

model should be accompanied with a value indicating the range within 

which the true value of the property value lies with a given probability.   
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Despite the great variety of applications that use multivariate 

classification and multivariate calibration [8, 32], the uncertainty of the 

classification/calibration results is not always reported, and its 

calculation is often controversial [33] and never simple, because of the 

complex mathematics involved in the prediction process. Furthermore, 

uncertainty is very sensitive to certain conditions in the data (i.e. 

normality, homoscedasticity…), especially when these are not fulfilled, 

an aspect which is not always checked. Because of these difficulties, it 

is common to report average uncertainty values obtained from a 

validation set. These values, calculated as a measure of average 

performance of the model, are usually attached to any new unknown 

object that must be predicted, independently on the intrinsic 

characteristics of that object. In other words, the prediction of two 

different unknown objects, located at different positions in the 

multivariate space, are both given the same ―average‖ uncertainty. In 

order to improve the quality of this assessment, one trend in Analytical 

Chemistry is to report individual uncertainty values for each object 

being analyzed.  

 

The words ―‖uncertainty‖ and ―reliability‖ are often used in the 

literature. See P. De Bievre ―Uncertainty or Reliability‖ [34] J. D. R. 

Thomas ―Reliability versus Uncertainty for Analytical Measurement‖ 

[35]. In all cases the uncertainty is defined as a parameter, associated 

with the result of a measurement, which characterizes the dispersion 

of the values that could reasonably be attributed to the measurand 

[36].  Reliability is considered as a quantitative indication of the quality 

of a result [35, 37]. According the Comprehensive Chemometrics: 

Chemical and Biochemical Data Analysis, section 1.02 [38], the result 

of a measurement has to be accompanied by an evaluation of 
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(un)certainty or its degree of reliability. This is done by means of a 

confidence interval. For this reason, this thesis focuses in the 

development of alternatives to obtain particular reliabilities for each 

unknown object.  

 

During the development of this thesis several classification and 

prediction methods and different reliability estimation approaches were 

studied. From the different methods available, we chose the k nearest 

neighbours (kNN) method, a non parametric method and one of the 

most intuitive for classification and prediction purposes, but for which 

no reliability estimation approaches were found.  

 

1.2 Objectives 

 

The aim of this thesis is to develop new chemometric methods of 

classification and calibration, based on kNN, which can provide the 

uncertainty or the degree of reliability of the classification and 

prediction, respectively. To achieve this general objective the following 

specific objectives are proposed: 

 

1. To study and discuss in detail the kNN method for classification 

and prediction and to evaluate its advantages and 

disadvantages. 

2. To discuss the different approaches for reliability estimation in 

classification and prediction and to evaluate which of them can 

be applied to kNN. 
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3. To develop a classification method based on kNN that can 

improve the classification results of the classical kNN method 

and, at the same time, provide an estimation of the reliability of 

classification. 

4. To develop a calibration method based on kNN that provides the 

reliability of prediction.  

 

The use of kNN for classification was studied first. Two variants of 

classification with kNN, which provide the reliability of the 

classification for a specific object, were investigated. In the first 

method, the reliability of classification was computed using only the 

information of the objects, that is, the values of the multiple 

instrumental variables measured. In the second method, the 

uncertainty of the instrumental variables was also taken into account 

in the training step of the classifier and in the classification of the 

unknown objects. The methods mentioned above combined kNN with 

the resampling bootstrap method. Bootstrap has been shown to 

improve classification results [39] and has already been used to 

estimate the uncertainty of other prediction methods [35, 40] 

 

In the second part of this thesis, a variation of kNN for predicting 

continuous variables was developed. The procedure use direct 

orthogonalization (DO) to improve the prediction ability of kNN. DO is 

used to remove irrelevant variability in the independent variables and 

to improve the identification of the k neighbours that will be used for 

prediction. Finally, for this method, bootstrap confidence intervals were 

computed to obtain the object specific uncertainty of prediction. 
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1.3 Notation  

 

In this thesis the following notation has been used: 

 

I  number objects: i = 1,2,...,I 

J  number of variables: j=1,2,...,J 

X,Y  matrix, bold capital letter: X={ x1,x2,...,xI} 

x,y  vector, bold lowercase letter: x={x1,x2,...,xj} 

x, y  scalar, italic lowercase letter 

c  class, c ={1,2,...,C} 

Ic  number of objects belonging to class c 

Xc  matrix of objects of class c 

yc  vector of assigned classes for the objects of class c 

xt  unknown object or test object 

k  number of nearest neighbours used by kNN 

r number of nearest neighbours used in Hamamoto’s bootstrap 

Ical  number of objects in the calibration set 

Ival  number of objects in the validation set 

(^)  hat symbol used to indicate predicted value  

       standard deviation and variance 

    leverage  

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 1 

 24 

1.4 Abbreviations 

 

In this thesis the following abbreviations have been used: 

 

BCa  Bias Corrected and accelerated  

DO  Direct Orthogonalization 

kNN  k nearest neighbours 

LDA  Linear Discriminant Analysis 

LOOCV Leave-one-out cross-validation  

PCA  Principal Component Analysis 

PLS  Partial Least Squares 

SNV  Standard Normal Variate 

 

1.5 Structure of the thesis 

 

This thesis has been structured in 6 chapters: 

 

Chapter 1, Introduction and objectives, contains the introduction, 

objectives, notation and structure of the thesis. 

 

Chapter 2, State of the art of kNN in chemometrics, has six parts. In the 

first part, pattern recognition is briefly introduced, and the relationship 

with classification methods and the steps used to carry out a 

classification are explained. The second part explains the kNN method 

in classification along with its advantages and limitations, and the 

relationship with other classification methods. The third part describes 

multivariate calibration and the steps needed until a prediction is 
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obtained, including the calculation of confidence intervals and the 

identification of outliers. The fourth part describes the use of kNN 

method for prediction, its advantages and limitations and its chemical 

applications. In the fifth part, the bootstrap method is described, along 

with its variations and its application to obtain confidence intervals. In 

the last part, the concept of reliability, both in classification and 

prediction, is discussed.  

 

Chapter 3, Reliability of classification with kNN, describes a new 

method to compute the reliability of classification for kNN using the 

bootstrap method. This chapter corresponds to the published paper: 

Calculation of the probability of correct classification in probabilistic 

bagged k-nearest neighbours, published in Chemometrics and 

Intelligent Laboratory Systems, Vol 94 No 1 (2008) 51-59.  

 

Chapter 4, Influence of the uncertainty in the classification reliability of 

kNN, describes a new classification method based on kNN that takes 

into account the uncertainty in the X-values to classify an unknown 

object. This chapter corresponds to the published paper: Bagged k-

nearest neighbours with uncertainty in the variables, published in 

Analytica Chimica Acta. 646 (2009) 62-68 

 

Chapter 5, Multivariate calibration with k-Nearest Neighbours, 

introduces Direct Orthogonalization k-Nearest Neighbours (DOkNN), 

which uses kNN for predicting continuous properties.  

 

Chapter 6, Uncertainty of predictions with k-Nearest Neighbours, 

propose a new bootstrap-based method to compute the uncertainty of 
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predictions of the Direct Orthogonalization kNN (DOkNN) method 

presented in chapter 5.  

 

Chapter 7: Conclusions. The characteristics of the proposed methods, 

their advantages and limitations, their applicability and, also, the 

future work related to this research, are summarized and discussed.  
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2. State of the art of kNN and Bootstrap 

2.1 Pattern recognition 
 

Pattern recognition can be defined as “the act of taking in raw data and 

taking an action based on the “category” of the pattern” [1]. An example 

of supervised pattern recognition would be to classify one wine sample 

(object) of unknown origin into one of several predefined origins 

(classes) based on its physicochemical properties [2]. A large variety of 

supervised pattern recognition has been applied in Chemistry [3].   

 

In general, supervised pattern recognition involves: data collection, 

preprocessing, calculation of the classifier (or classification rule), 

optimization, validation and prediction [1, 4-6]. 

 

2.1.1 Data Collection 

 

Supervised pattern recognition starts with collecting a representative 

set of objects of known class along with the measurement of 

characteristic variables (chemical, physical, sensory,…) on those 

objects. An object is described by J variables x=[x1, xj,..., xJ], with 

j=1,...,J. For a given class c (c =1,2,...,C) of Ic objects, Xc represents the 

matrix of measurements and yc represents the column vector of class 

labels. The x-data are grouped in a matrix X (I J)=[ X1, X2,..., XC ] and 

the y-data in a column vector of the classes y (I 1) =[ y1, y2, yC ], with 

  ∑   
 
   . This data scheme is represented in Figure 2.1.  

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 2 

 34 

 
 

 

2.1.2  Preprocessing  
 

Preprocessing is a set of mathematical transformations performed on 

the data with the aim of changing the representation of the information 

contained in them [7]. It is used to scale the data appropriately and to 

remove data variability that is not related with the property (class) to 

be predicted. Examples of preprocessing methods are: mean centering, 

scaling, standard normal variate (SNV), detrending and derivatives, 

among others [8]. 

 

Preprocessing can include variable selection and variable reduction. 

The aim of selecting variables (e.g. specific wavelengths in a spectrum) 

is to keep those that are the most characteristic of the class being 

modelled, and remove those that contain unrelated variation or are 

very noisy [6]. Variable reduction is used to determine a subspace of 

lower dimensionality where the data lies. An example of a variable 

reduction method is Principal Component Analysis, PCA [9]. 

Xc =

J

Ic

x =

1

J

yc =

1

Ic

XI = yI =

J

I

1

I

a) Object

b) Class

c) Data Set

Xc1 =

Xc2 =

yc1=

yc2=

Figure 2.1 Representation of: a) object; b) objects of one 

class and c) data set with two classes 
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2.1.3  Calculation of the classifier  

 

A classifier is a mathematical model calculated from a set of training 

objects that relates a (discrete or continuous) variable space to a 

discrete set of classes. Some classifiers focus on discrimination whiles 

other focus on modelling the classes. Discriminant methods find a set 

of optimal boundaries between classes so that the object is classified 

according to its position with respect to the boundary. Some methods 

calculate explicitly the boundaries between classes (e.g. Linear 

Discriminant Analysis, LDA) while in others these boundaries are 

implicit (e.g. k-nearest neighbours, kNN). Class modelling methods (e.g. 

SIMCA) build a model for each class, and an unknown object is 

assigned either in a class, in several classes or in none of the classes, 

depending if the unknown object fits or not the class models. This 

thesis will focus on the first type of methods, concretely kNN.  

 

Classification methods can also be parametric or non-parametric. 

Parametric methods use the parameters of the statistical distribution 

of the objects in the development of the model or rule of classification. 

LDA, which is based on the multivariate normal distribution, is among 

the parametric methods. The main shortcoming of parametric methods 

is that their application is subjected to the fulfilment of statistical 

requirements. Non-parametric methods (e.g. kNN), on the other hand, 

do not use such parameters and do not need to comply with these 

requirements. Their disadvantage compared with parametric methods 

is that obtaining the probabilities of correct classification is not 

straightforward [4, 6]. 
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2.1.4  Validation 

 

Once the classifier has been calculated it is necessary to measure its 

ability to correctly classify future unknown objects. Measures of future 

classification performance [10] can be computed with the help of a 

validation set, by cross-validation or by resampling methods.  

 

If the number of objects is large, the dataset X, can be divided into a 

training set, with Ical objects, and a validation set with Ival objects. The 

training set is used to build the classifier and the validation set is used 

to validate it. The classification performance is then computed by 

comparing the predicted classes and the known class of the objects in 

the validation set. Different approaches can be used for dividing X into 

training and validation sets. Two popular methods are randomly or 

with algorithms as the Kennard and Stone’s algorithm [11], which 

selects objects that are uniformly distributed over the variable space 

[12]. m-fold cross-validation uses I-m objects in the training set and m 

in the validation set. [13]. This procedure is repeated until all training 

objects have been left-out and predicted once and the I classification 

results are used to compute the classification performance measure. 

When m=1, the procedure is called leave-one-out cross-validation 

(LOOCV).  

 

Resampling methods, such as jackknife and bootstrap, have also been 

used to compute the classification performance [13]. In jackknife a new 

dataset, known as jackknife replication, is obtained by removing one 

object of the original dataset. The jackknife replication, with I-1 

objects, is used to calculate the parameters of classification 

performance. This procedure is repeated until all objects have been 
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removed once and I measures of classification performance are 

obtained. Finally, the classification performance, for the evaluated 

dataset, is calculated as the mean of the I parameters obtained for each 

jackknife replication [14]. Bootstrap works by generating B new 

datasets from the original dataset by resampling with or without 

replacement [15], and then each new dataset is used to compute the 

bootstrap parameters of classification performance. The final 

parameters of classification performance, for the evaluated dataset are 

obtained by averaging the B bootstrap parameters obtained. Bootstrap 

is described in details in section 2.6.    

 

The results of classification are presented in a CC confusion matrix 

where C is the number of classes [10]. Table 2.1 shows an example of a 

confusion matrix for three classes. The diagonal contains the number 

of objects correctly classified in each class; the off-diagonal cells 

contain the number of objects that have been assigned to a class 

different than the true class.  

 

 

Real Class 
Assigned Class  

1 2 3  

1                     

2                     

3                     

   ̂     ̂     ̂    

    and   ̂ are the number of objects in the true and in the 

assigned class respectively. Every entry     ̂  is the number of 

objects that belong to the class c and have been assigned to class 

 ̂. The diagonal of the table contains the number of objects that 

have been correctly classified 

Table 2.1 Confusion matrix for a dataset with three classes and I 
evaluated objects. 
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The most commonly used measure of performance of a classifier is the 

Classification Error Rate (CER), which is the percentage of the wrongly 

assigned objects. It is given by [10]:                      

  

    
     ∑     ̂

 
   

  
                                                       

 

where      is the number of classified objects (it can be replaced 

by   if cross-validation is used) and     ̂  is the number of objects 

of class c that have been correctly classified. 

 

2.1.5  Optimization 

 

A preliminary calculated classifier offers insight about the data 

structure and the contributions of the different objects and variables to 

the classification process. The exploration of these preliminary results 

can point to the presence of outliers (either objects, variables or both) 

that could be removed, or suggest new preprocessing schemes that 

could be applied in order to improve the classification performance. 

This involves recalculating and validating again the classifier.     

 

2.1.6  Classification (Prediction) 

 

Once the classifier has been optimized and validated it can be used to 

classify unknown objects. The variables for new objects are measured, 

preprocessed following the same scheme as used for the training data, 

and submitted to the classification rule. A class label is then assigned 

to every unknown object. In addition to the class label, the 

classification result should also contain a measure of the reliability of 
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that assignment, in the same way as quantitative results are requested 

to be reported with a measure of its uncertainty. The reliability of 

classification will be discussed in section 2.7. 

 

2.2   kNN in classification 

 

The classical k-nearest neighbours (kNN) method is a nonparametric 

method that assigns an unknown object,   ,  into the class where the 

majority of its k nearest neighbours belong. Figure 2.2 illustrates the 

classification process in kNN. The circle encloses the three objects 

considered for k=3; the unknown object    is classified in the class 1 

because two of the three neighbours belong to class 1. 

 

The kNN algorithm works as follows: 

 

1) Compute the distance between    and all objects in X, 

where X is the IJ matrix of training objects, with Ic objects 

belonging to c  (c =1,...,C) possible classes and J variables 

have been measured.  

 

2) Sort the objects according to the distances in ascending 

order and count how many class labels of each class are 

among the first k sorted objects. 

 

3) Classify    in the class to which the majority of its k 

nearest neighbours belong. 
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 The Euclidean distance is the most usual metric [16-19]. It is 

calculated as: 

                          

     (     )  √∑ (       )
  

                                             

 

where   (     ) is the Euclidean distance between the unknown 

object,  , and the training object,   . Other metrics, such as the 

Manhattan distance, the cosine coefficient or the Lagrange distance 

have been used [1, 19].  

 

There are several approaches for finding the appropriate k [20, 21]. The 

most common is to test several values of k by cross-validation [1] and 

keep the k giving the lowest classification error rate.  

 

 

                 

   

 

1 1.5 2 2.5 
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x2 

Figure 2.2 kNN classification method with k=3. 
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2.2.1  Chemical and related applications 

 

kNN has been applied in Chemistry since the early 1970s. For 

instance, 1-NN was used to classify molecular structures using its 

nuclear magnetic resonance (NMR) spectra [22]. kNN was also used to 

classify the elements of the periodic table with respect to their 

representative oxide [7] and to classify hydrocarbons within three 

different classes using their mass spectra [23]. kNN has also been used 

to classify obsidian source samples into four classes according to their 

origin [24]; honeys according to their type [25]; sensor array data for 

two types of chemical warfare agents [26]; samples within a group of 

extraction kinetics of fat in bakery products using mid infrared spectra 

[27]; apples according to their maturity [28]; polymer materials into 

four polymer classes [29]; whiskeys into three classes of commercial 

whiskeys [30]; soil samples according to their geographic origin [31]; 

samples of green tea within four green tea grade levels [32] and for 

discrimination of the geographical origin of Codonopsis pilosula [33]. In 

short, the applications of kNN in chemistry are varied and offer, in 

general, good results of classification.  

 

2.2.2  Advantages and disadvantages  

 

The main advantage of kNN for classification is that it is non 

parametric [34], i.e. the distribution of the data does not need to be 

known. Also, it is conceptually and computationally quite simple 

because it is based on distances, it is multi class, it does not assume a 

linear separability of the data [7, 34-35], it is very stable (i.e. small 

changes in the training data do not lead to significantly different 

classification results [36]), it can learn from a small set of objects and it 
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can incrementally add new information and give competitive 

performance [37]. The limitations of kNN are that it does not perform 

well if the classes are unbalanced, i.e. if number of the objects in the 

training classes is very different from one class to another, because it 

increases the probability of finding nearest neighbours belonging to the 

class with the largest number of objects. Also, it is sensitive to the k 

value [38], which must be optimized. Although several probabilistic 

approaches are known for kNN, they are not used to provide the 

reliability of the classification for a particular object [39]. One reason is 

that probabilistic approaches only work well when the number of 

training objects is very large [40], which is not always common in 

chemical applications. Another important limitation of the kNN method 

is the course of dimensionality, which suggests the peaking 

phenomenon, i.e. for a constant number of objects, the peak of 

classification accuracy decreases when the number of variables 

increases [41-43]. This can be avoided by using a large number of 

objects or by reducing the dimensionality of the data [44-46]. 

 

2.2.3  Variations of kNN 

 

Several variations of the kNN method have been proposed with the aim 

of improving its classification performance.  

 

2.2.3.1 Changes in the metric used to find the neighbours  

 

The metric affects the results of kNN. When different metrics were 

tested (Euclidean, Manhattan, Cosine coefficient, Camberra, Lance-

Williams and Lagrange), i.e. the Lance-Williams, Manhattan and 

Camberra gave comparable classification error rates and, in some 
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cases, kNN gave better results than LDA [19]. However, Lance-Williams’ 

and Camberra’s metrics are not applicable to data with negative 

values, which are often found in chemical data (e.g. when autoscaling 

or derivatives have been applied). 

 

2.2.3.2  Variable reduction 

 

The aim of reducing the dimensionality of a data matrix is to remove 

the uninformative variables that can affect negatively the classification 

results [47]. In this sense, several methods have been applied before 

classifying with kNN [46]. For example local PCA (for each individual 

class) or global PCA (for entire training dataset) have been used before 

the classification with kNN [48, 49]. The Multi-label dimensionality 

reduction method (MDDM) has also been used. MDDM attempts to 

project the original data into a lower-dimensional feature space 

maximizing the dependence between the original feature description 

and the associated class labels [50]. 

 

2.2.3.3 Reduction of the number of objects 

 

The aim of reducing the number of objects is to condense the number 

of the objects used in the training set to reduce the storage and 

computing requirements needed by kNN and to improve the results of 

classification. Hart [51] proposed the condensed nearest neighbours 

rule (CNN). In CNN, a consistent subset is obtained from the collected 

dataset. A consistent subset is a training set which classifies correctly 

the objects in the test set [51]. Variations of this method have been 

proposed [52, 53]. Kuncheva [54] used genetic algorithms for selecting 

the objects in the dataset. Other strategies to reduce the number of 
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objects and some applications of them have been described by 

Desarathy et al [55], Sanchez et al [56] and Raicharoen et al [57].  

 

2.2.3.4 Combination with other classifiers  

 

The combination of two or more classifiers is done with the aim of 

obtaining more accurate classifiers at the expense of increasing their 

complexity [58]. kNN has been combined in three different ways. First, 

kNN has been combined with variations of itself. For example, Wilson 

[59] used kNN to reduce the number of objects in the dataset and then 

used 1NN to classify unknown objects. Second, kNN has been 

combined with other methods such as LDA [60]; support vector 

machines [61]; multi-label learning [62]; fuzzy methods [63, 64]; 

classification trees [65]; Lineal Discriminant Analysis [45] and 

Differential Evolution to optimization problems [66]. Finally, bagging 

(Bootstrap AGGregatING) has been used for generating multiple 

versions of kNN [36]. In this case, the classifiers are built on bootstrap 

replicates of the training set. A bootstrap replicate (also called 

bootstrap sample) is a new dataset generated by sampling with 

replacement from the original training set [67]. Then, for each 

bootstrap sample, a given unknown object is classified using kNN. This 

procedure is repeated B times and finally the unknown object is 

classified in the class in which it was more frequently classified [36](see 

section 2.6). Breiman [36] argued that bagged kNN does not improve 

classification results because kNN is very stable. This conclusion was 

obtained using the majority vote as the classification rule for bagging, 

i.e. an object is assigned to the class in which it was more frequently 

classified. However, Hamamoto et al. [68] developed a new method to 

obtain the bootstrap training set, in which the new objects are created, 
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not selected, from the original dataset. The new bootstrap training set 

is then used to classify the unknown objects using kNN. Although this 

method has low classification error rates, it does not provide the value 

of reliability of classification.  

 

2.2.4  Probabilistic approach 

 

Several probabilistic approaches had been proposed for classification 

using kNN.  Of them, the best known uses the posterior probability. 

The probability that a given test object belongs to class c is given by [1]: 

 

                                        (       )⁄   
  
 
                                                      

 

where    is the number of nearest neighbours of the test object in the 

training set that belong to class c, and   is the number of neighbours 

considered for classification. In this case, the unknown object is 

classified in the class where the posterior probability is the largest: 

 

                            

    (         )⁄
       

     
 (       )⁄             

 

Note that this measure of posterior probability has the inconvenience 

of being the same for any unknown object that has the same   . The 

unknonwn objects, however, can be in slightly different locations and 

be more or less close to their neighbours. Figure 2.3 shows the scatter 

plot of two variables with three training objects of class 1 (red points) 

and three training objects of class 2 (blue points). This figure also 

shows the Euclidean space for k = 3 for three unknown objects xt1, xt2 

and xt3, indicated by the continuous, dashed and dotted line 
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respectively. In these Euclidean spaces there are two objects that 

belong to class 2 and one object that belongs to class 1, and though 

the unknown objects are in different positions in the variable space, 

they are classified in the same class with the same value of posterior 

probability (2/3 = 0.66). Intuitively, the closer the unknown object is to 

their neighbours, the more reliable the classification should be. This, 

however, is not accounted for by the value     . Moreover, this 

probability measure only takes a few discrete values, e.g., for k=3, it 

only takes values of 0, 1/3, 2/3 and 1. One would expect that the 

reliability should change continuously for different positions of the 

unknown object in the variable space.  

 

Steel and Patterson [69] developed an analytical formula for the 

calculation of the ideal bootstrap estimate prediction error for kNN. 

However, this formula is complex and the authors only recommend its 

use for values of k less than five, otherwise it requires excessive 

computational effort. 
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2.3 Other classification methods 

 

Excellent books and reviews on supervised classification methods can 

be found elsewhere [1, 4, 6, 40]. In this section we only describe other 

classification methods used in this thesis. 

 

2.3.1  Bayes’ decision rule 

 

The Bayes’ decision rule is widely used in pattern recognition [1, 13]. It 

assigns an unknown object to the class with the highest posterior 

probability. The posterior probability that the real class is c given that 

the vector of features,     has been measured for object to be classified, 

is computed as: 

Fig . 2 . 3 . Classification three objects by k NN . All objects (green triangles) 
are classified in the same class (class 2 ) with the same posterior probability value 

Figure 2.3 Classification of three objetcs by kNN. All objects 
(green triangles) are classified in the same class (class 2) 

with the same posterior probability value. 
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 (          )  
 (          )  (       )

 (  )
                                 

      

where  (          ) is a value of the class conditional probability density 

function,  (       ) is the prior class probability and   (  ) is the 

evidence factor, which is used to scale the probability value between 0 

and 1 [1], which is computed as:   

 

 (  )   ∑ (          ) (       )

 

   

                               

 

It is to note that the Bayes’ decision requires the probability density 

functions of each class  (          )  to be known, which is not always 

easy. 

 

2.3.2  Linear Discriminant Analysis  

 

Linear Discriminant Analysis (LDA) finds boundaries between classes 

[4]. LDA assigns an unknown object    to the class with the smallest 

discriminant score (  ). This discriminant score is given by [70]:  

 

    (     ̅ )
 ∑ (     ̅ )

  
           (       )                       

 

where,  ̅   is the class centroid; ( )  indicates transposition;  (       ) 

is the prior probability of the class c and  ∑    
       is the inverse of the 

pooled covariance matrix. The pooled covariance matrix is used 

because in LDA the class covariance matrices are assumed equal [70]. 
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An extensive explanation of LDA and some application examples in 

chemistry and related fields can be found in references [70-72]. 

 

The Bayes’ rule and LDA are used in this thesis as reference methods. 

The Bayes’ decision rule is considered to be the optimal method of 

classification [1, 5] because it minimizes the conditional risk of 

classification, i.e. minimizes the error rate of classification. LDA, on the 

other hand, has been widely studied and has many applications [6].  

 

Both the Bayes’ rule and LDA require the fulfilment of several 

requisites for classification. i.e. in Bayes the multivariate normality 

density functions must be known [1], while LDA needs the number of 

the objects be higher than the number of variables to avoid singularity 

[70]. 

 

2.4  Multivariate calibration  

 

Multivariate calibration [73-78] is one of the cornerstones of 

chemometrics. In general terms, multivariate calibration is used for 

predicting properties of interest (y1, y2,...,yq), for example 

concentration, from a number of predictor variables (x1, x2,...,xJ), for 

example spectra [79, 80]. Both properties and predictor variables are 

related by the calibration model [81]. Linear models, i.e., a linear 

relationship between the dependent variables and the model 

coefficients are the most common in multivariate calibration. For a set 

of training data, the linear model can be represented by: 
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where   is the I1 vector of the predictand or the property to be 

estimated,   is the IJ matrix of predictor variables,   is the J1 vector 

of ―true‖ model coefficients, which must be estimated, and    is the 

error.  

 

Multivariate calibration involves the following steps [4, 10, 82], which 

we describe below in more detail: data collection, data preprocessing, 

calculation, optimization, validation of the model and prediction. 

 

2.4.1  Data collection  

 

A measurements matrix (i.e. spectra), X, of a considerable number of 

training objects should ideally be obtained from the same population 

and should include all possible sources of physical and chemical 

variability to be found in the future objects to be predicted. The 

property of interest, y, must also be measured in these objects by a 

suitable reference method. If the number of objects is rather large, X 

can be divided into a calibration or training set (with Ical objects) and 

test set (with Ival objects). 

 

2.4.2  Preprocessing 

 

Preprocessing is used to adequately scale the data and suppress the 

contribution in the measured X that is not related to the property of 

interest with the aim of simplifying the model and increasing the 

accuracy and precision of the results. Existing preprocessing methods 

include mean-centering, autoscaling, multiplicative scatter correction 

(MSC), first and second derivative, standard normal variate (SNV), 

offset correction and others [8, 12, 19] . 
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2.4.3  Calculation of the model 

 

A variety of multivariate calibration algorithms have been reported [77, 

78, 83]. PLS uses the information contained in both X and y, during 

the calibration and compresses the data in such a way that the 

maximal variances in both X and y is explained [10]. Details about PLS 

can be found elsewhere [77, 78, 84, 85] . In this thesis, PLS is used as 

a reference method because it is the most representative among the 

multivariate calibration methods [86] and probably the most popular 

[87, 88].   

 

2.4.4  Optimization of the model. 

 

Once the model is obtained it will be optimized. A critical step in PLS, 

which required to be optimized, is the selection of the number of 

factors used in the model. One of the most frequent strategies used to 

select the number of factors is cross-validation. In this case the 

calibration set is used to obtain the fitting error, it is evaluated with 

the cross validation root mean square error of prediction (CV-RMSEP) 

obtained using the first PC with Eq. 2.9 (see section 2.4.5 for details). 

Then PCs 2, 3, 4, etc. are used to obtain the CV-RMSEP. The values of 

CV-RMSEP obtained are plotted against the numbers of PCs used for 

the calculations. The number of PCs is selected as the PC which the 

valued of CV-RMSEP is minimized.  Other strategies to optimize the 

model include: variable selection, outliers elimination, preprocessing, 

etc [89, 90].  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 2 

 52 

2.4.5  Validating the model. 

 

The aim of the validation is to determine the accuracy of a multivariate 

calibration model. With this purpose, the calibration model is applied 

to a validation set, and the root mean square error of prediction, 

RMSEP, is computed as  

                  

      √(
 

    
∑ ( ̂          )

 

    

      

)                                          

 

where,      is the number of the objects in the validation set, and       

and  ̂     are the reference and the predicted value of the evaluated 

property in the object i, respectively.    

                               

Cross-validation (LOOCV and m-fold cross validation, see section 2.1.4) 

can also be used to estimate the predictive ability of the model. In this 

case, I1 and Im objects are used to build the model and the left-out 

objects are predicted. This procedure is repeated until all objects have 

been predicted. Finally the cross-validation root mean square error of 

prediction, CV-RMSEP, is computed using Eq. 2.9, by replacing   ̂      

by  ̂( ) which is the value of the property in the object i (          ) 

obtained by cross-validation. 

 

2.4.6  Prediction 

 

Once the calibration model has been validated it is used to predict the 

property of interest in unknown objects,   : 
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 ̂    
                                                                  

 

where   is the vector of regression coefficients and  ̂ is the predicted 

property. 

 

2.4.7  Prediction uncertainty 

 

Each prediction should ideally be reported together with an estimate of 

its uncertainty [91, 92]. The uncertainty is defined as a parameter, 

associated with the result of a measurement, which characterizes the 

dispersion of the values that could reasonably be attributed to the 

measurand [93]. Several approaches have been proposed to compute 

the object-specific uncertainty in multivariate calibration. The most 

often used are: the U-deviation expression [94], which was improved by 

De Vries and Ter Braak [95], the errors-in-variables (EIV) approach [96] 

and resampling methods [97].  

 

The improved U-deviation expression was implemented in the 

Unscrambler software package [94, 95, 98]. Another expression for 

object-specific uncertainty is based on the Error-In-Variables (EIV) 

model and includes the measurement of errors in both the predictor 

and predicted variables. The estimated standard deviation of prediction 

is obtained by 

 

 ̂ ̂       [     
  (         )       

 ]
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where      
  is an estimate of the precision of the reference method. 

Details on the use of this formula are described elsewhere [94, 96, 99].  

 

Another approach to compute the uncertainty in multivariate 

calibration is to use resampling methods [85, 100]. One of these 

methods is bootstrap. In bootstrap many new data sets are created by 

sampling with replacement from the original data [101]. This method 

has also been used, for example, to compute the uncertainty of 

multivariate regression coefficients [102] and the uncertainty in 

prediction of samples of bilinear [103] and three-way methods [104, 

105]. See section 2.6 for details about bootstrap and confidence 

intervals obtained with bootstrap. 

 

2.4.8  Outlier detection 

 

Outlier detection is an important aspect in the development of a 

calibration model. An outlier is any measured value or predicted value 

that is significantly different from the rest of the data [106]. Outliers 

both in calibration and in validation must be detected and removed.  

 

Outliers during the calibration stage can damage the model fitting 

[107]. In the prediction stage, the detection of outliers will increase the 

confidence in the predictions [73]. Several methods have been 

developed to detect outliers both at the training and at the prediction 

stage [73, 108-113]. The success of multivariate calibration models 

depends of its correct application and interpretation. 
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2.5 kNN for prediction 

 

kNN can be used to predict continuous properties like other inverse 

calibration methods [114]. A property of an unknown object is 

predicted in kNN by finding the k nearest neighbours for this object in 

the training data matrix X and calculating the weighted mean [115], 

  ̂  ∑    

 

   

                                                        

          with      

   
    

∑      
   

 

where    is the property value of the ith nearest neighbour (i=1,2,…,k), 

and k is the number of nearest neighbours considered in the 

prediction. In this case, the   values of the   nearest neighbours are 

weighted by the distance of the unknown object,   , to its nearest 

neighbours in  , so that a neighbour with a smaller distance is given a 

higher weight,   .  

 

The prediction can alternatively be obtained as a mean of the    values 

of these neighbours (3) [116, 117]:   

                                                     

  ̂  
∑   
 
   

 
                                                           

 

Other prediction methods using kNN have been described by Nigsch et 

al [118]. In them, besides the weighted and arithmetical mean 

described by Eq. 2.12 and Eq. 2.13 respectively, they propose a 

geometrical average (Eq. 2.14) and an average weighted by the inverse 

distance (Eq. 2.15), to compute the predicted value:  
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  ̂  ∏  
   

 

   

                                                                

         

  ̂  ∑     

 

   

                                                          

where  

      

    
 

  

 

∑
 
  

 
   

 

                     

2.5.1  Chemical and related applications 

 

kNN for prediction has been used  in structure-activity/property 

relationships (QSAR) studies to  predict the volume of distribution at 

steady state and clearance of antimicrobial agents in humans using a 

quantitative structure-pharmacokinetic parameters relationship model 

[115] and the toxicity activity and anticonvulsant activity in different 

compounds  [119], among others [116, 120, 121]. It has also been used 

to predict melting points of organic molecules and drugs [118], fat 

content in samples of chopped meat [122] and clime reconstruction 

from fossil pollen remains [117].  

 

2.5.2  Advantages and disadvantages of kNN in prediction  

 

Prediction with kNN has similar advantages than classification with 

kNN. i.e. it is conceptually and computationally quite simple and new 
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objects can be added to the training data without the need to 

recalculate a model (as it happens in PLS). Moreover, kNN can be 

considered as an approach to inverse calibration, because it is not 

necessary to know all the species present in a sample to predict the 

property of interest. It can be used as a non parametric method, since 

kNN does not require the probability distribution function of the data 

to be known. Another interesting advantage is its robustness to the 

presence of outliers in X. Most inverse calibration methods calculate a 

latent variable space that might be largely influenced by the presence 

of outliers in X. However, kNN also presents disadvantages as: 1) 

limited prediction ability compared with PLS, 2) it is quite sensitive to 

data preprocessing [19], and 3) no method to compute the prediction 

uncertainty has been developed yet.  

 

2.6 Bootstrap 

2.6.1  Notation and bootstrap generalities 

 

This section first reviews the statistical concepts that are needed to 

understand bootstrap.   

 

A population, 𝒰, is a set of objects with similar characteristics about 

which we need some information. Information about the population is 

usually obtained by examining a small subset of its objects, called a 

statistical sample. A statistical sample is a collection of I objects taken 

randomly and with equal probability from a population [123]. Notice 

that the term sample is used in a statistical way, and not in a chemical 

way, where a sample is an object which should be analyzed to 

determine a property [100]. These samples can be selected with or 

without replacement, depending whether the selected objects are 
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returned or not to the population once they have been selected. This 

means that, with replacement, an object can appear more than once in 

a sample, whereas without replacement it cannot.  

 

Statistical inference is used to describe the relationship between a 

sample and the population from which it was drawn [79, 124]. For an 

independent sample, X ={x1,...,xI}, with I objects extracted from a 

population using a given probability distribution function,  , an 

empirical distribution function exists,  ̂, which is considered a discrete 

distribution with a probability, 1/I, assigned to each object in the 

sample. The hat symbol ―∧‖, like in  ̂, is used to indicate that the value 

is an estimation obtained from the sample. A sample taken from a 

probability distribution function,  , which assigns a probability value 

to each selected object, can be represented as [123]: 

 

  (          )                                                        

 

The probability distribution function can be used to build a statistic  ̂, 

for a parameter,   [125]. A parameter,  , is a numerical quantity that 

describes a population. It can be written as     ( ), i.e. the value of   

is obtained by applying the function  ( ) to the distribution function

 

 , 

for example the true mean of

 

 ,  ( ). A statistic,  ̂, is obtained from the 

sample X the sample mean,  ̂   ( ̂)   ̅  [79, 123, 125]. When, for a 

sample, a large number of objects are available and/or when the 

probability distribution is known or it can be assumed, it is possible to 

use analytical formulas to compute the statistic and make inference 

about the population. This is a parametric approach. In a 

nonparametric approach, the probability of a distribution function is 

unknown or not assumed. In this case, it is necessary to use 
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nonparametric methods for making such inferences; one of these 

methods is bootstrap. The expression ―bootstrap‖ derives from the 

phrase to pull oneself up by one’s bootstrap (Adventures of Baron 

Munchausen, by Rudolph Erich Raspe [123]). In bootstrap, the data 

are resampled with replacement many times (B), in order to generate 

empirical estimates of the statistics and use them to make inferences 

about the population [126]. Bootstrap is used to obtain an statistic,  ̂, 

from X using B bootstrap samples X* drawn from a distribution close 

to the unknown distribution  . In our example, the bootstrap mean 

should be obtained as:  

 

 ̂    ( ̂ )   ̅  

 

Notice that the asterisk is used to indicate the bootstrap sample. It is 

important to know how the statistic  ̂ is distributed around the 

parameter,  . For this, bootstrap is used to obtain the distribution of  ̂  

around  ̂. This distribution should be due, principally, to the random 

variation or to the systematic error, which can be measured by the 

standard error and the bias, respectively [127].  

  

Several bootstrap setups have been developed [123, 125, 127-129]. Of 

these, the basic bootstrap method, proposed originally by Efron, 

consists on the following steps [67]: 

 

1. For a given sample    *       +, i.e. the original sample, 

build the sample probability distribution  ̂, by giving an 

equal probability of     to each object x1,...,xI. 
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2. From  ̂, draw a random sample of size I with replacement. 

This is the bootstrap sample   
   *  

      
 +. 

3. Compute the statistic of interest,  ̂, from this resample, 

yielding a bootstrap replication,  ̂ 
 . 

4. Repeat steps 2 and 3 a large number of times, B. 

5. Use the B different  ̂ 
  to obtain an approximation to  ̂ and 

its accuracy, which can be used to do inferences about  . 

 

Figure 2.4 shows how bootstrap works and table 2.2 illustrates Efron’s 

bootstrap for a sample x. Five bootstrap samples,   
 , were generated 

and their respective bootstrap replications (       ̂ 
   mean) were 

computed. Finally, the mean of the bootstrap replications was 

obtained, in this case  ̂ 
  9.47, which is similar to the mean estimated 

with the original sample,  ̂  9.46.  

 

  

Figure 2.4.Calculation of a statistic using bootstrap
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By bootstrapping many new bootstraps data set are obtained, by 

modifying of the variable space where the unknown sample will be 

classified. This strategy can improve the capability of prediction of the 

classifier.  

 

Table 2.2. Efron’s Bootstrap for a sample, x, obtained randomly from a 

normal distribution with   (           ).  

Objects     
    

    
    

    
  

   9.37 10.94 9.37 9.37 9.36 7.67 

   7.67 7.88 11.06 7.88 9.37 10.94 

   8.77 9.30 9.36 9.89 10.94 11.06 

   11.06 7.88 9.37 9.30 11.06 10.38 

   9.89 7.67 7.67 9.89 9.36 7.67 

   10.38 9.89 8.77 9.89 10.38 10.94 

   10.94 9.30 7.67 9.36 7.88 11.06 

   7.88 9.30 10.94 10.38 9.89 9.36 

   9.36 9.89 8.77 8.77 11.06 9.36 

    9.30 9.36 7.67 10.94 7.67 10.38 

Average  ̂  9.46  ̂ 
  9.14  ̂ 

  9.07  ̂ 
  9.57  ̂ 

  9.70  ̂ 
  9.88 

 ̂ 
  9.47 

 

2.6.2  Bootstrap applications 
 

Wehrens et al. [127] distinguish between three types of applications in 

bootstrap: point estimates (i.e. bias or standard error), interval 

estimates (i.e. confidence intervals) and hypothesis testing. Here we 

describe the methods to obtain the point estimate and confidence 

intervals used in this work. Hypothesis testing has been described 

elsewhere [128, 130]. 
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2.6.2.1 Point estimates 
 

In bootstrap, the statistic of interest is often calculated as a mean of 

the B bootstrap replications,   ̂ 
 , obtained following the procedure 

described above. When the statistic of interest is a single number it is 

called a point estimate [127]. Besides obtaining the statistic, bootstrap 

is also used to obtain a measure of its accuracy. For this, the standard 

error and the bias are the most often employed measures [123, 131]. 

 

The standard error is used to know the variation around a mean value. 

Using bootstrap, the standard error,   ̂ , is estimated by: 

 

  ̂  √
 

   
∑( ̂ 

   ̂ 
 )

 

   

                                           

 

where  ̂ 
  is the statistic estimated by bootstrap (i.e. the mean of B 

bootstrap replications,  ̂ 
 )  computed as: 

 

 ̂ 
  

 

 
∑  ̂ 

 

 

   

                                                   

 

The bias, which is the difference between the statistics of interest,  ̂,  

obtained with the original sample and the value of the parameter,   

[123], is estimated by: 

 

    ̂    ̂ 
   ̂                                                              
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If the bias is larger than the standard error, the statistic can be 

corrected as follows [127]: 

 

 ̂    ̂      ̂    ̂   ̂ 
                                                

 

where  ̂   is the statistic corrected with the bias. To carry out this 

correction it is recommended that the absolute value of the bias be 

bigger than 0.25 times the standard error [123].  

 

2.6.2.2  Jackknife and nested bootstrap  

 

Jackknife and nested bootstrap can also be used to calculate the point 

estimates. Jackknife is another resampling method and it has been 

used for estimating the bias, the standard error and confidence 

intervals [123, 132]. It was proposed by Tukey in 1958 [133] as an 

improvement of the method described by Quenouille [134, 135]. By 

jackknifing, a statistic,  ̂ (for example the mean) is obtained from I 

jackknife replications,  ̂       (Figure 2.5).    

 

X Xjack,1 Xjack,2 Xjack,3 Xjack,4 Xjack,5

  ̂  ̂    , 1  ̂    , 2  ̂    , 3  ̂    , 4  ̂    , 5  ̂    , 2 

Figure 2.5 Schematic representation of Jacknife 
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For this, each  ̂       is computed using its respective jackknife sample 

        which is the original sample   without the object i, indicated with 

the black cell in the figure 2.5. This procedure is repeated until all I 

objects have been removed of the original sample and the I jackknife 

replications have been computed. Finally, the jackknife estimate of  ̂ is 

obtained as the mean of the I jackknife replications, as:     

           

 ̂     
∑  ̂      
 
   

 
                                                       

 

The bias and the standard error of an estimate are computed by 

jackknife using: 

 

      ̂      (   )( ̂   ̂)                                            

 

and  

  ̂     √
   

 
∑( ̂     ̂ )

 

   

                                        

 

Notice that these formulas differ from the estimations with bootstrap, 

since an ―inflation factor” is used in jackknife. Those ―inflation factors” 

are  
(   )

 
 and (   ) for standard error and bias, respectively [123].  

 

They are included with the aim of building unbiased estimates of the 

parameter. These biases may occur because all jackknife replications 

are more similar to the value of the parameter obtained in the original 

data than in the bootstrap replications, the reason being that the 

jackknife samples are more similar to the original sample than the 
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bootstrap samples. For more information about jackknife see [131, 

132, 136, 137]. The main disadvantage of jackknife, compared to 

bootstrap, is that jackknife can only be used for estimating parameters 

with continuous (smooth) values. This means that jackknife must be 

used when slight changes in the data cause slight changes in the 

statistic (e.g. mean) of interest [123]. Bootstrap, however, can be used 

to compute almost any statistic [138].  

 

Nested bootstrap is based on the principle of resampling from 

bootstrap samples. For this reason it is also called double bootstrap or 

bootstrapping the bootstrap [128]. Nested bootstrap is used when 

bootstrap does not offer correct answers of point or interval estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 shows a scheme of the nested bootstrap, which is performed 

as follows: 

 

  
 

  

X1
  

X2
   ̂ 

  =
∑  ̂ 
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Fig. 2.6. Schematic representation of the nested bootstrap Figure 2.6 Schematic representation of the nested bootstrap 
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1. From X, a bootstrap sample,   
  is obtained by resampling 

with replacement. 

2.   
  is also resampled to obtain a new bootstrap sample,   

 .  

3.   
  is used to compute the statistic of interest,  ̂ 

 .  

4. Repeat steps 2 and 3 a D times. 

5. Use the D different  ̂ 
 , to obtain an approximation to  ̂ 

 . 

6.  Repeat steps 2 to 5 a large number of times, B. 

7.  Use the B different  ̂ 
 , to obtain the nested bootstrap 

statistic,  ̂ 
  , which is an approximation to  ̂. 

 

2.6.2.3 Confidence intervals 

 

Confidence intervals provide an estimation of the uncertainty of a 

statistic [139]. In this thesis bootstrap was used to obtain the 

confidence intervals of predictions with kNN. In a statistical way, the 

confidence interval of a statistic  ̂, obtained with an  -significance 

level, can be defined as the interval that will include the true value of   

with a ,(    )     -  confidence [123]. Typically, the confidence 

interval of a parameter of interest,  , with a specific degree of 

confidence, is obtained from the appropriate statistic,  ̂, and using its 

estimated standard error,   ̂. For example, if a normal distribution is 

assumed, the confidence interval of  ̂

 

is obtained by: 

 

 ̂    ( )     ̂                                                            

 

where  ( ) is the        percentile of the normal standard distribution. 
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Calculation of confidence intervals is the major application of 

nonparametric bootstrap [131] and several methods have been 

developed: basic, percentile, percentile-t, bias corrected and 

accelerated [123, 128, 140], among others [141, 142]. The aim is to 

build a confidence interval ( ̂     ̂  ) of an estimate,  ̂, of a given 

parameter   from   bootstrap replications,   
 , obtained using 

bootstrap samples   
 . In all cases the confidence values ( ̂     ̂  ) are 

obtained from the values in the bootstrap distribution found in the  -

percentiles given by (   ) -th ordered values of the bootstrap 

distribution (i.e. bootstrap replications in ascending order,  ̂ 
   ̂ 

  

   ̂ 
 )[127].  

 

Considering that the confidence interval of a given parameter   should 

be obtained from its statistic,  ̂ using its percentiles,   , the      

interval of  ̂ with both left and right errors equal to  , is limited by 

[128]:  

 

 ̂     ̂       ,   ̂    ̂                                        

 

which can also be expressed as: 

 

 ̂             ̂                                                  

 

        is considered the base of the confidence intervals obtained 

using bootstrap, since it is the reference to obtain them in the different 

bootstrap confidence intervals methods. 
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2.6.2.3.1 Bootstrap basic method 

 

This method is based on the same rules used to compute the standard 

error and the bias. For this reason in this method the distribution of 

( ̂   ) is approached using the probability of distribution of ( ̂   ̂) 

obtained with bootstrap. Likewise, the percentiles of that distribution, 

  
 , are approximates to   . They are used to compute the confidence 

intervals as [127]: 

 

 ̂   (   )(   )
     ̂   (   )( )

                                    

 

where,  (   )( )
  and  (   )(   )

  are the percentiles of the distribution of 

( ̂   ̂) for given B and   values. 

 

The percentiles of the distribution of ( ̂   ̂) can be related to the 

percentiles of the distribution of the statistic  ̂ 
  and can be expressed 

as [127]:  

 

 ̂ 
   ̂    

                                                        

 

Using        , and replacing the percentile,   
  in        , the confidence 

interval in the basic method can be obtained as, 

 

 ̂  ( ̂(   )(   )
   ̂)     ̂  ( ̂(   )( )

   ̂)                

 

or, rearranging, as: 

 

  ̂   ̂(   )(   )
      ̂   ̂(   )( )
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where,  ̂(   )( )
  and  ̂(   )(   )

  are the percentiles of the distribution of 

 ̂  for given B and   values. For example, if       and       ; 

 ̂(   )(   )
  and  ̂(   )( )

  correspond to the sorted values of  ̂  in the 

positions 50th and 950th. Notice that it is important that (   )( ) be 

integer numbers, otherwise an interpolation must be used [128]. For 

this reason, it is recommended to use odd numbers for B (e.g. 999 or 

1999) to avoid interpolations [127].  

 

2.6.2.3.2  Bootstrap percentile method 

 

This method, also called Efron’s percentile method, provides a (    ) 

nonparametric confidence interval for  . For this, the B different 

bootstrap replications,  ̂ 
 , obtained using bootstrap are sorted from 

smallest to largest. Then, the values located in the positions (   )  

and   (   )  are selected as the upper and lower limits of the 

confidence interval around   with an  -significance level. This can be 

expressed as: 

 

           ( ̂     ̂  )   ( ̂(   ) 
   ̂((   )(   )

 )                        

 

For example, for a      confidence interval of a given  ̂ with        

and     , the values of  ̂ 
  in the positions 95th and 5th would be the 

upper and lower limits of the confidence interval. 
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2.6.2.3.3  Bootstrap  t-intervals method  

 

This method, also known as Studentized method or percentile t-method 

[123, 126, 129], shares the form of the classical t-interval, but in this 

case the use of the t-table for critical values is not required and the 

bootstrap method is used to replace it [139]. The confidence interval is 

obtained as: 

 

  ( ̂     ̂  )   ( ̂   ̂(   )    ̂      ̂   ̂( )    ̂)                        

 

A requirement for this method to be applied is that an approach to the 

statistic t-distribution,  ̂  has to be obtained from the B bootstrap 

estimates  ̂ 
 . For this,  ̂ 

  has to be transformed into a standardized 

variable  ̂ 
  by: 

 

 ̂ 
  

 ̂ 
   ̂

  ̂ 
                                                                 

 

where  ̂ is the estimated parameter (statistic) of the original sample 

(also called observed estimated parameter) and   ̂ 
  is the estimated 

standard error of  ̂ 
 .   ̂ 

  should be estimated analytically, i.e. using a 

known formula, using a second level of bootstrap (i.e. nested bootstrap) 

or using jackknife [123, 126, 127].  

 

2.6.2.3.4  Bootstrap bias-corrected and accelerated method 

(BCa) 

 

Bias-corrected and accelerated confidence intervals are an 

improvement of the percentile method [123]. The difference consists in 
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the form in which the position of the values of the interval is computed. 

While in the percentile method they are obtained using the number of 

the bootstrap replication and a given alpha value (Eq 2.31), in BCa the 

confidence intervals are obtained using: 

 

   ( ̂     ̂  )   ( ̂
 (  )  ̂ (  ))                                               

 

where    and    are computed as: 

 

    ( ̂  
 ̂   ( )

   ̂( ̂   ( ))
 

    ( ̂  
 ̂   (   )

   ̂( ̂   (   ))
                                     

 

 ( ) is the standard normal cumulative distribution function,  ̂  is the 

bias-correction,  ̂ is the acceleration factor and  ( ) is the 100 th 

percentile of a normal standard distribution. The value of  ̂  is the 

proportion of bootstrap replications lower than the observed estimated 

parameter,  ̂, and can be obtained as: 

 

 ̂    
  (

 * ̂ 
   ̂+

 
)                                           

 

where  * ̂ 
   +̂ represents the number of  ̂ 

  lower than  ̂, and     is 

the inverse function of a standard cumulative distribution function. 

The acceleration,  ̂, indicates the rate of change of the standard error 

of  ̂ with respect to the true parameter value   [123, 128]. The 

acceleration can be computed using jackknife, as: 
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 ̂  
∑ ( ̂( )   ̂( ))
 
   

 

 .∑ ( ̂( )   ̂( ))
 
   

 
/
 
 ⁄
                                          

           

where,  ̂( ) is the statistic estimated by jackknife from the original 

sample and  ̂( ) is the jackknife replicate [123]. The acceleration can 

also be obtained using a nested bootstrap [128]. 

  

 

2.7   Reliability 
 

Reliability is a fundamental concept in Analytical Chemistry. For 

example, in quality accreditation laboratories, the International 

Laboratory Accreditation Cooperation (ILAC) and the United Nations 

Industrial Development Organization (UNIDO), in a working paper 

about laboratory accreditation in developing economies state that  ― 

reliable results are essential and the role of accreditation is to ensure 

that within certain acceptable (and quantifiable) limits, tests of any type 

made on a product in say the Far East can be repeated with confidence 

in any other country in the world” [143]. Also, the reliability of analytical 

data is important for companies that must meet legal requirements 

(e.g. pharmaceutical, chemical, medical, etc), for organisations 

responsible of consumer protection (e.g. FDA) and for all laboratories 

with responsibility for quality control, quality assurance and method 

development [144]. For these reason, any result obtained with an 

analytical method should be accompanied by a measure of its 

confidence, i.e. a reliability value, which is consider a quantitative 

indication of the quality of a results [145].  
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The term reliability can be used in various ways, which has led to 

confusion. In a general sense, the reliability is used to express the 

probability that a system will operate without fault, i.e. any abnormal 

incident or accident, of a given period of time, [146]. In analytical data, 

however, the reliability is used to express a degree of confidence in the 

results [147]. In classification methods the term reliability is used in 

both senses, in terms of recognition ability of a classifier [13] and to 

express the confidence we have in the classification of a particular 

object [148].  

2.7.1  Reliability of classification 
 

The reliability in classification is measured, in a general way, using the 

non-error rate of classification (see section 2.1.4) [6]. More specifically, 

it is calculated as the probability of classification for a given object [2]. 

The generic or specific reliabilities are obtained depending on the 

classifier used. Not all classifiers provide a measure of the reliability or 

if it is provided this is not the optimal; for example, the classical kNN 

classifier (section 2.2.3.5). On the contrary, in probabilistic methods, 

such as the Bayes’ rule, a value of the probability of classification is 

obtained. 

 

2.7.2  Reliability of prediction 

 

A measure of the reliability is required to assess the prediction 

capabilities of a calibration method. The reliability can be given globally 

by the RMSEP value or, specifically, by prediction intervals [149], 

which represent upper and lower confidence limits of the predicted 

values. Assuming that the prediction has a non-significant bias, the 
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size of these prediction intervals around the predicted value provides 

an indication of the precision of this predicted value (i.e. large limits 

mean less precision) [150].  

 

Several methods have been proposed to compute the confidence limits 

in multivariate calibration (section 2.4.7)  
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3. Reliability of k-Nearest Neighbours in 

classification 
 

3.1 Introduction 

 

This chapter describes the Probabilistic Bootstrap k-Nearest 

Neighbours (PBkNN) method. PBkNN combines the kNN method and 

bootstrap, to compute the posterior probability of classification for each 

classified object. This posterior probability indicates the reliability of 

classification, i.e. the confidence with which a given object is classified 

in a certain class. The PBkNN method was evaluated with a simulated 

dataset and with two benchmark datasets: the Iris dataset and the 

Wine dataset. The results show that PBkNN provides reliability values 

that are comparable to those obtained with the Bayes’ rule for the 

simulated dataset and to those obtained by the Linear Discriminant 

Analysis (LDA) method for the benchmark datasets. 

 

PBkNN uses Hamamoto’s bootstrap to obtain new bootstrap training 

samples. With Hamamoto’s bootstrap the results of classification 

improve because, instead of building bootstrap training samples using 

the same objects of the original training set, it builds the bootstrap 

training samples as linear combinations of the objects in the original 

training set.   

 

The reliability of classification is obtained as a posterior probability. 

This probability varies continuously (a continuous range of values can 

be obtained between 0 and 1) depending on the position of the test 

object in the multivariate space. This measure is more sensitive than in 

classical kNN, which yields the same probability for objects in a similar 
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position. This reliability value can also be used to derive a new 

classification rule, i.e., the object is classified in the class whose 

reliability is the highest. 
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Calculation of the probability of correct classification in 

probabilistic bagged k-nearest neighbours 

 
Joe Luis Villa, Ricard Boqué*, Joan Ferré 

Department of Analytical Chemistry and Organic Chemistry. 
Rovira i Virgili University 

C/ Marcel·lí-Domingo, s/n. 43007 Tarragona, Catalonia (Spain) 

 

ABSTRACT 

 

This paper presents a new method for computing the probability of 

correct classification for the k-Nearest Neighbours (kNN) method. The 

method uses bootstrap to provide the posterior probability which a new 

object is classified with. This is a measure of the reliability of the 

classification; it increases as the test object is closer to the training 

objects of a given class and is more sensitive to the position of the test 

object in the calibration space than the classical measure of posterior 

probability in kNN. This reliability of the classification is also used to 

derive a new rule for classification.  

 

Keywords: classification; nearest neighbours; bootstrap; probability of 

classification; reliability. 
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3.2.1 Introduction  

  

Classification with the k-Nearest Neighbours (kNN) classifier [1] is 

popular because it can be implemented easily and has a good 

performance without requiring knowledge of the probability 

distribution function of the data. Chemical applications of kNN include 

the estimation of the quality of chromatograms [2], the classification of 

pyrolysis mass spectra [3], the determination of drug toxicity from NMR 

spectra [4] and the characterization of granular products [5] among 

others [6, 7].  

 

The kNN classifier uses a training data matrix   of   variables 

measured on   objects. Each object is known to belong to a class   out 

of   possible classes. This classifier assigns a test object, with 

measured variables    ,          -, to the class to which most of the 

  nearest neighbours of this object belongs. Those neighbours are 

found according to a suitable metric, usually the Euclidean distance. 

There exist variations of the kNN method with different distances [8] 

and decision rule that are used for classification [9-14].  

 

The probabilistic interpretation of kNN [11] is that the test object is 

assigned to the class for which this object has the highest posterior 

probability  (          ) which is the probability of the ―true‖ class 

being   given the measure   . Different expressions have been 

suggested to calculate the posterior probabilities [15] and the expected 

prediction error [16]. The most common is to calculate the posterior 

probability as     , where    is the number of nearest neighbours of 

class   among the   neighbours. A variation consists on combining 

kNN and bootstrap resampling [10-14]. This procedure, called bagging 
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(Bootstrap AGGregatING), is a type of ensemble method, which uses 

bootstrap to improve the performance of the classifier [13]. With 

bootstrap, many new datasets (called bootstrap training sets) are 

generated from the original training set. Then, for each bootstrap 

training set, the test object is classified using kNN. As a result of this 

process, B classification results for each object are obtained. The test 

object is finally assigned to the class where it was classified most of the 

times (majority vote).  

 

Independently on the method that is used for assigning the class, it is 

desirable to have a measure of how certain we are that the assigned 

class is correct. A measure that is often used in classification is the 

classification error rate (CER) [11], which is the percentage of objects 

that are assigned to the wrong category. However, CER measures the 

performance of the classification rule in terms of discriminability i.e., 

how well the classification method classified test objects [17], and it is 

not an estimation of the reliability, which is a measure of the degree of 

confidence of the classification of a particular test object [8]. A useful 

measure of reliability is given by the posterior probability [17]. This 

probability, as we mentioned before, can be calculated using different 

approaches. One of them is     . This measure, however, has the 

inconvenience that will be the same for all the test objects that have 

the same   . These objects, however, can be in slightly different 

locations and be more or less close to their neighbours. Intuitively, the 

closer the test object is to their neighbours, the more reliable the 

classification is. This, however, is not translated into the value of     .  

Moreover, this measure only takes a few discrete values, i.e., for    , 

it only takes values of 0, 1/3, 2/3 and 1. We would expect that the 

reliability would change continuously for similar positions of the test 
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object in the variable space.  Another measure of reliability could 

tentatively be derived from the majority vote obtained during bootstrap 

(Bagged kNN [13, 15]), by counting how many times the object was 

assigned to a certain class with respect to total number of bootstraps. 

This measure of reliability, however, has the inconvenience that an 

object which has always been assigned to the same class in all the 

bootstrap iterations, will be assigned a value of reliability of 100%, 

independently of the number of neighbours of the other classes that 

were among the   neighbours in each iteration.  

 

Here we present a procedure to estimate the reliability of classification 

of an object for kNN that varies depending on the position of the object 

in the variable space. The method is based on a modification of bagged 

kNN [13, 15], in which the posterior probability,   (          ), is 

calculated using bootstrap. Here the bootstrap method proposed by 

Hamamoto et al. [12] is used. While the classical bootstrap uses 

random sampling with replacement [18, 19], in the Hamamoto’s 

method the bootstrap samples are created (not selected) by locally 

combining the original training samples, i.e. a new bootstrap sample of 

a given training object is created by weighing the values of that object 

and its nearest neighbours. The new bootstrap samples created from 

all the training objects are used to calculate the kNN posterior 

probability for a test object. This process is repeated B times (i.e., B 

bootstraps) and finally the mean of the posterior 

probabilities,   (          ), obtained for the test object is used as a 

measure of reliability. This reliability value also gives rise to a new 

classification rule which consists of assigning the test object to the 

class with the highest   (          ).  

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 

Reliability of k-Nearest Neigbours in classification  

 99 

This article first describes the kNN and the bootstrap method 

underlying the PBkNN method. Next we show the implementation of 

PBkNN. The results of PBkNN will be compared with the results of 

probability obtained with Bayes’ Rule [11] and Linear Discriminant 

Analysis (LDA) [11, 20-22]. The implementation of the algorithm will be 

illustrated with three datasets: a simulated dataset and two 

benchmark datasets: Iris dataset and Wine dataset [21, 22].  

 

3.2.2 Methods 

3.2.2.1 k- Nearest Neighbours   

 

In kNN, the posterior probabilities of a given test object to belong to 

class   is given by [11]:  

 

                                 (          )  
  
 
                                              

 

where    is the number of nearest neighbours of the test object in the 

training set that belong to class  , and   is the number of neighbours 

considered for classification. The decision rule for the probabilistic kNN 

is to classify a test object in the class where the posterior probability is 

the largest: 

 

            
                       

    (          )
     

 
 (          )           

3.2.2.2 Bootstrap 
 

Bootstrap is a resampling method [16-18, 23-26] that can be used to 

estimate a parameter   of the distribution of a population from a 
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statistic  ̂ obtained from a sample of the population. In classification, 

bootstrap is used to improve the accuracy of a given method [11, 13].  

 

There are several possible setups for bootstrap [12, 18, 19, 23]. The 

classical bootstrapping uses random sampling with replacement [18, 

19]. This was already used with kNN but without satisfactory results 

due to the ―stability‖ of the kNN [13]. kNN is ―stable‖ because small 

changes in the training data do not lead to significantly different 

classification results. Here we will consider Hamamoto et al. bootstrap 

II method [12]. This type of bootstrap starts with the training data 

matrix,  , in which    rows correspond to the objects of class   (  ).    

is resampled and locally transformed (i.e. the new object is a 

combination of this object and its nearest neighbours), to generate a 

new bootstrap matrix of the class  ,   
  where the superscript   

indicates the bootstrap replicate.  

 

Resampling is done as follows:  

 

(1) Select the first object of   ,   (   ) and, using the Euclidean 

distance, find its   nearest neighbours                  among those in 

  . 

(2) Compute a new bootstrap sample   
  as a weighted average of these 

neighbours, including the object   itself (    ): 

 

  
  ∑       

 

   

                                                         

 

where     is a weight defined as   
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∑   
 
   

                                                             

 

where    is a random value from a uniform distribution on ,   - and 

∑     
 
   .  

(3) Steps 1 and 2 are run for all the objects            of   , thus 

obtaining a new matrix   
  for class      ;  

(4) Steps 1 to 3 are repeated for the other classes         .  

(5) The bootstrap matrices   
  generated for all the classes are then 

adjoined to obtain the bootstrap training set    and     is used to 

classify the test object. 

(6) Steps 1 to 5 are repeated   times and the results are finally 

combined. 

 

Hamamoto’s bootstrap II was chosen among the bootstrap methods 

available in Ref. [12], because in bootstrap II all the objects in the 

original training set participate in creating the bootstrap training set 

(each new bootstrap sample is created as a combination of itself and a 

few neighbours,         . In contrast, bootstrap methods I and III create 

new samples by randomly selecting objects of the original training set 

and hence some objects may never participate in the new bootstrap 

training set while others may appear more than once. With respect to 

bootstrap II and IV, note that bootstrap IV uses constant weights in the 

creation of the bootstrap samples, while bootstrap II uses random 

weights, which favours the diversity in the training step. 
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3.2.2.3 Probabilistic bagged kNN 

 

The probabilistic bagged kNN (PBkNN) method proposed in this paper 

combines kNN and bootstrap. However, the classification criterion is 

different than for the bagged kNN cited in the Introduction. In PBkNN, 

  bootstrap training sets,     (          ) are generated with 

Hamamoto’s bootstrap II described in section 3.2.2.2. For a given test 

object   , its   nearest neighbours in each     are obtained. Of these   

neighbours,    belong to class  , so that the posterior probability for 

the test object can be calculated as:    

              

  (          )  
  
 
                                            

                                                                          

         is calculated for the   classes. This procedure is repeated   

times. Finally, the bootstrap posterior probability   (          ) that a 

test object belongs to class   is computed as: 

 

  (          )  
∑   (          )
 
   

 
                          

 

This value of bootstrap posterior probability
 
  (          ) is used as a 

new classification rule so that the test object    is finally classified in 

the class with the highest   (       
   ). This value is also taken as the 

reliability of the classification for this object [17].  

 

3.2.2.4 Bayes‟ decision rule  

 

We compared the posterior probabilities from PBkNN with those 

calculated using Bayes’ decision rule. Bayesian decision is widely used 
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in pattern classification [11, 27]. It is based on assigning a test object 

to the class with the highest posterior probability. The posterior 

probability is computed as: 

 

 (          )  
 (          )   (       )

 (  )
                          

 

where  (          ) is the posterior probability that the real class is   

given that the feature value    has been measured,  (          ) is a 

value of the class conditional probability density function,  (       ) is 

the prior probability and  (  ) is the evidence factor [11], which is 

computed as: 

 

 (  )  ∑  (          )   (       )
 
                                                             

  

It is to note that the Bayes’ decision requires the probability density 

functions of the training data,  (          )  to be known. These will be 

known for the simulated dataset used in the experimental section, so 

the results of PBkNN and those of the Bayes’ decision can be 

compared.  

 

In real applications, however, the probability distributions may not be 

known. In that case, the Bayes’ formula cannot be used to estimate the 

probabilities, but the PBkNN can still be applied, which is one of the 

advantages of the PBkNN in front of other methods. 
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3.2.3 Experimental section 

3.2.3.1 Data  

 

PBkNN was evaluated with a simulated dataset and the benchmark 

datasets Iris and Wine [22, 28-30]. The simulated dataset consists of a 

training matrix   of two classes, with twenty-five objects and two 

variables. The objects of class 1 were simulated from a bivariate normal 

distribution  (     ) with mean    ,   - and covariance matrix      

where   is a 22 identity matrix. The objects of class 2 were also 

simulated from a bivariate normal distribution  (     ) with    ,   - 

and     . As a result, both classes are slightly overlapped (Fig. 3.1). 

Additionally, one test object belonging to the class 1 and three test 

objects of class 2 were also simulated from the above distributions. 

 

The Iris dataset [28, 30] contains measurements on three classes of Iris 

flowers (Setosa, Versicolor and Virginica) with fifty objects in each class 

and four variables (petal length, sepal length, petal width and sepal 

width). The dataset was divided using the Kennard and Stone’s 

algorithm [31] into a training set of one hundred-five (thirty-five per 

class) objects, and a test of forty-five (fifteen per class) objects. The split 

was done by running Kennard and Stone’s algorithm for each 

individual class and keeping the first 70 % of the objects of each class 

for the training set.  

 

The Wine dataset [22, 29, 30] contains the results of chemical analysis 

of Italian wines of three different cultivars (Barolo, Grignolino, 

Barbera). This dataset has 27 variables, although only 13 variables are 

used here so that our results can be compared to those in the 
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references [20], [32] and [33]. These 13 variables are described for this 

dataset in UCI repository [30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3.2 Selection of the optimal parameters for kNN and PBkNN. 
 

The selection of the optimal   value is critical in both kNN and PBkNN. 

In this paper the optimal   was selected as the one that yielded the 

minimal CER calculated with leave-one-out cross-validation. For kNN, 

cross-validation was done by classifying the object   of    against the 

remaining    objects of   for a given   value. This procedure was 

repeated until all   objects were classified and, finally, the CER was 

computed. This procedure was repeated for different values of  . For 

PBkNN, in addition to the value of  , the bootstrap number and the   

value that is needed to compute the bootstrap samples (      ) must 

also be optimized. This was done by extracting an object   of   and 

using the remaining    objects of   to generate a bootstrap matrix  
 . 

 

Figure 3.1 Simulated dataset. The circles show the 

Euclidean space for k=5 for test objects 1 and 2 
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Then the object   was classified against    for given   and   values. 

This procedure was repeated B times for the object i and this object 

was finally classified into the class in which   (          ) was the 

highest. This bootstrap procedure was repeated until all   objects were 

classified and, finally, the CER was computed. This procedure was 

repeated for different   values. In order to estimate the minimum 

number of required bootstraps,  , cross-validation was run for different 

values of  ,    *                                            +.  

 

3.2.3.3 Reliability of classification  

  

The values of posterior probability obtained with PBkNN,   (          ) 

measure the reliability [27] (i.e., the confidence) of the classification of a 

particular test object. To validate the calculated values of reliability, 

two strategies were used. First, these values were compared with the 

Bayes formula for a simulated dataset, simulated from a bivariate 

normal distribution (section 3.2.2.4). The Bayes rule is considered the 

best classification rule [11], because it minimises the error rate of 

classification. The values of posterior probabilities obtained with 

PBkNN should behave similarly as the posterior probabilities obtained 

from Bayes. Second, the reliabilities from PBkNN were compared with 

the values of reliability from a recognized classification method, in this 

case Linear Discriminant Analysis (LDA). LDA has been used in many 

chemometrical applications [11, 20-22]. It is based on Bayes’ rule and 

multinormality assumptions [20]. Reliability values of LDA were 

calculated with the program class (V-Class, version 00-01-2008) of the 

PARVUS [29] software. To compare the results of reliability, we 

introduce the root mean square of residual of reliability (  ), which is: 
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   √
∑ (       )

  
   

 
                                 

 

where,     and      are the probabilities assigned for both methods 

(LDA, method 1 and PBkNN, method 2) to the true class and    

         are the objects in the test set.    ranges between 0 (same 

probabilities obtained from both methods) to 1 (opposite results 

obtained from both methods). Small values of    indicate that the 

values of probability are similar for both methods.  

 

The first strategy was applied with a simulated dataset for which we 

know the function of distribution for each class and, therefore, the 

probability values. The second strategy was applied to the Wine 

dataset. Classification accuracies of 98.9 % have been reported for this 

dataset using LDA [20], which indicates that the method models well 

the data. For this dataset, the results of PBkNN were also compared to 

reported results of other methods with respect to the classification 

accuracy [20, 32] and leave-one-out error rate [33]. 

 

3.2.4 Results and Discussion 

 

Here the simulated and the Iris datasets were used in order to show 

the functionality of PBkNN. For both datasets, the values of   for kNN 

and PBkNN and   for PBkNN were selected by leave-one-out cross-

validation. Moreover, for the Wine dataset, besides   and  , also the 

value of   (        ) was selected for PBkNN by leave-one-out cross-

validation. 
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3.2.4.1 Simulated Dataset 

3.2.4.1.1 Selection of k value and bootstraps number 
 

Classification error rate values were computed using cross-validation 

for values of   from 1 to 11, both for kNN and for PBkNN. For the even 

values of  , in case of tie, the sum of the distances of the object to the 

nearest neighbours of class 1 was calculated, as well as the sum of the 

distances of the objects to the nearest neighbours of class 2. The object 

was classified in the class for which the sum of the distances was the 

smallest. Fig. 3.2 shows that the minimal CER for kNN was obtained 

for       and      .  In this case       was selected as optimal 

because it is the lowest odd value of k. For PBkNN, the optimal value 

was    . This value was decided after running       bootstraps. In 

order to show the dependency of the optimal   with the number of 

bootstraps, the CER for different values of   for an increasing number 

of bootstraps was calculated (Fig. 3.3). It is seen that the CER is stable 

when the number of bootstraps is larger than 400, so 400 was selected 

as the sufficient bootstrap number for this dataset. Also note that, for a 

given  , the variation of the CER for different number of bootstraps is 

much smaller than the variation of CER among different   values. This 

indicates that, in this case, although the number of bootstraps 

influences the classification results, its value is not as critical as the 

correct choice of   for obtaining a low CER.  
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Figure 3.2 Classification Error Rate (CER) for different values 

of k for kNN and PBkNN (B=400) for the simulated dataset. 

CER was obtained by leave-one-out cross validation. 

 

Figure 3.3 Classification Error Rate (CER) for different 

number of bootstrap, B, and different k values for PBkNN 
for the simulated data set. 
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3.2.4.1.2 Reliability of classification  

 

Four test objects were simulated in order to illustrate the calculation of 

the classification reliability. Test object 1 is at one extreme of the 

region of class 1 and it was selected as an easy-to-classify object, since 

all the nearest neighbours belong to class 1. Test objects 2, 3 and 4 are 

located between the two classes, and hence in a complex position to be 

classified by kNN. For       (this value of   was used to compare kNN 

with PBkNN because 5 was the optimal   for PBkNN), objects 2 and 3 

have three neighbours of class 1 and two neighbours of class 2, and 

object 4 has two neighbours of class 1 and three neighbours of class 2. 

Table 1 shows the classification results and the reliability of 

classification, measured as posterior probabilities, for PBkNN (  

       ), kNN (            ), and the Bayes’ decision.  

 

The Bayes’ decision rule correctly classified object 1 in class 1 and 

objects 2 to 4 in class 2. The probability values for these objects are 

plotted in figure 3.4, which also shows the isoprobability contours from 

         for the bivariate distribution that generated the training data of 

class 1. The contour lines enclose the region of probability values from 

0.0 to 1.0 with increments of 0.1. Object 1 has probability of belonging 

to class 1 of 0.99, while objects 2 to 4 have a probability of belonging to 

class 1 of 0.26, 0.23 and 0.20 respectively, i.e., they have a higher 

probability of belonging to class 2.  
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Table 3.1  Reliability of classification with the Bayes’ decision, 

kNN and PBkNN for the simulated data set. 

Test   

object 

Bayes’ 

decision 
k-NN (k=3) k-NN (k=5) 

PBkNN 
(k=5, 

B=400) 

Class 

1 

Class 

2 

Class 

1 

Class 

2 

Class 

1 

Class 

2 

Class 

1 

Class 

2 

1 (1) 0.99* 0.01 1.00* 0.00 1.00* 0.00 1.00* 0.00 

2 (2) 0.26 0.74* 0.67* 0.33 0.60* 0.40 0.47 0.53* 

3 (2) 0.23 0.77* 0.33 0.67* 0.60* 0.40 0.41 0.59* 

4 (2) 0.20 0.80* 0.33 0.67* 0.40 0.60* 0.37 0.63* 

True classes are indicated in brackets and the classes 

assigned by the methods are indicated with an asterisk. 

 

Figure 3.4 Isoprobability contour plot obtained with the 

Bayes’ decision rule for class 1. Each probability value is in 

one region between the lines. () indicates the test objects. 
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Table 3.1 also shows the posterior probability values for kNN with 

     and     (        )  Since the five closest objects to test object 1 

belong to class 1, the assigned posterior probability is 1 both for     

and for    . The large agreement with the Bayesian probability is to 

be expected because this is an object well in the middle of class 1. This 

value of probability is also found by PBkNN, which indicates that the 

randomly generated bootstrap samples always resulted in five objects 

of class 1 around the test object 1. A more interesting behaviour, 

however, is observed for objects 2 to 4. Objects 3 and 4 have the same 

number of nearest neighbours of each class for     (one neighbour of 

class 1 and two neighbours of class 2). Hence, they are classified by 

kNN into class 2 and assigned the same posterior probability (0.67). 

This shows a limitation of the kNN method, because for     the 

posterior probability value is the same for these objects despite they 

are located in a slightly different position in the variable space. This 

behaviour is also observed for    . With    , however, objects 2 and 

3 were classified in class 1 and object 4 was classified in class 2, 

because they have three neighbours of that class (hence      = 3/5 = 

0.6). Both PBkNN and Bayes’ decision assign a different value of 

probability to these two objects, as it is to be expected from their 

different position in the variable space. These probability values 

increase when the test objects are closer to the training objects of the 

given class and decrease otherwise. It is to note that, in real cases, the 

probability distribution from which the objects are taken is seldom 

known, and hence the Bayes’ probability cannot be calculated. In that 

case, the PBkNN seems to provide a more reliable measure of the 

probability than the      formula used in kNN. Note, however, that the 

results for PBkNN, although follow the trends obtained by Bayes’ 

decision, do not yield the same results. The reason is that the PBkNN 
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values are calculated by resampling the 25 objects available, while the 

Bayes’ probability is calculated from the theoretical distribution that 

generated those objects.  Table 3.1 also shows that kNN classified 

incorrectly the test object 2 in the class 1 since it has two neighbours 

of class 1 and one of class 2 for     and three neighbours of class 1 

and two of class 2 for    . Bayes and PBkNN, however, classified this 

object in the class 2. The different   bootstrap training sets generated 

by linear transformation of the original training set increased the 

variability around object 2, and its neighbours varied in each iteration.  

 

Figure 3.5 shows this variability. The bar graph shows, for all the 

bootstrap training sets generated with PBkNN, the number of times 

that 0 to 5 neighbours (i.e.,   ) of object 2 belong either to class 1 or to 

class 2. Recall that, for the optimal value of    , the object is 

classified into that class if    is equal to or larger than 3.  That is to 

say, 164 times the object 2 had three or more neighbours of class 1 

(and hence it would be classified into class 1), while 236 times the 

object 2 had three or more neighbours of class 2 (and hence it would 

classified into class 2). Hence, object 2 was finally classified into class 

2, with a reliability of 0.53.   
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3.2.4.2 Iris Dataset 
 

Figure 3.6 shows the distribution of the training and test objects on the 

scores of Principal Component Analysis (PCA) calculated on mean-

centered data. The objects of the class Setosa are separated from the 

other classes, while classes Versicolor and Virginica overlap. Hence, it 

is to be expected that the probability of correct classification will be 

higher for objects of class Setosa than for objects of the other two 

classes.  

 

 

 

 

Figure 3.5 Bar graphs of kc values of the test object 2 
for class 2, obtaining during bootstrap in PBkNN. The 

dotted areas indicate that the object would be 

classified in that class. 
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3.2.4.2.1 Selection of the k-value and bootstrap number 
 

For kNN and PBkNN we evaluated the values of   from 1 to 25 (Fig. 

3.7). The classification error rate (CER) was obtained by leave-one-out 

cross-validation. The optimal number of nearest neighbours was      

for kNN and     for PBkNN. Furthermore, for PBkNN we selected the 

bootstrap number by generating up to 1000 bootstraps and computing 

the CER (Fig. 3.8). The CER values stabilized for more than 500 

bootstraps, so we selected         as the optimal for classification. 

 

 

 

 

 

Figure 3.6 PCA of the iris dataset based on mean-

centered data. 
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Figure 3.7 Selection of the k value for the Iris dataset 

for kNN and PBkNN. 

 

Figure 3.8 Selection of the number of bootstrap, B, 
for  PBkNN the Iris dataset. 
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3.2.4.2.2 Reliability of classification 
 

All objects in the test matrix were correctly classified by both kNN and 

PBkNN methods. Both methods also gave the same values of posterior 

probability of classification (1.0) for all test objects of the Setosa class, 

which is isolated from the other two classes. However, these methods 

gave different values of posterior probability for some objects in the 

overlap region of classes Versicolor and Virginica (Fig. 3.6). Table 3.2 

shows the classification results for three test objects from that 

overlapped region: object 37 of class Versicolor, and objects 68 and 116 

of class Virginica (the numbers correspond to the ordering of the 

objects in the original Iris dataset).  kNN classifies objects 37, 68 and 

116 with probability values of 0.77, 0.62 and 0.54 respectively. With 

PBkNN method, the posterior probabilities for these objects are 0.88, 

0.66 and 0.75 respectively. These values are higher than for kNN, and 

suggest that the classification results are actually more reliable than 

what kNN suggests. Now we need to show that those higher values are 

more accurate than the lower values obtained by kNN. Since the true 

probability density functions are not available, a demonstration can be 

derived from the bar graphs of the numbers of neighbours obtained 

during bootstrap for a given object.  

 

Figure 3.9 shows the frequency for the number of neighbours of object 

116 obtained with PBkNN with         and     (the optimal value 

obtained for PBkNN) and also for      (the optimal value obtained for 

kNN). For PBkNN (Fig. 9a), object 116 was classified in class Virginica 

with a reliability of 0.75. This value is obtained from all the 

probabilities in which    is equal to or larger than 5, because the 

optimal value of   for PBkNN is      . Of them, the most frequent 
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number of neighbours is        of class Virginica which are found 376 

times out of 500. This value is the main contribution to the calculated 

posterior probability in       . On the other hand, kNN classified this 

object in class Virginica since 5 of the 9 neighbours were of class 

Virginica. Hence, it was classified with a posterior probability of 

                .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9a shows that      occurred only 5 times in the 500 

bootstraps carried out. Hence       (and its associated probability) 

does not represent the underlying distribution of objects around the 

object Virginica 116, and that the probability value obtained by PBkNN 

is a more realistic measure. A similar conclusion is obtained if we 

compare the probabilities for       , which in this case is the optimal 

value of   for kNN. For this object, kNN found 7 neighbours of class 

Table 3.2. Reliability of  classification with  kNN and 

PBkNN for the Iris data set 

Method                Class 
Object 37  

(Versicolor) 
Object 68          
(Virginica) 

Object 116  
(Virginica) 

k-NN                     
(k=9) 

Setosa 0.00 0.00 0.00 

Versicolor   0.67* 0.44  0.44  

Virginica 0.33  0.56*   0.56* 

k-NN                 
(k=13) 

Setosa 0.00 0.00 0.00 

Versicolor   0.77* 0.38 0.46 

Virginica 0.23   0.62*   0.54* 

PBkNN                     
(B = 500, 

k=9) 

Setosa 0.00 0.00 0.00 

Versicolor   0.88* 0.34 0.25 

Virginica 0.12   0.66*   0.75* 

PBkNN                   
(B = 500, 

k=13) 

Setosa  0.00 0.00 0.00 

Versicolor   0.83* 0.37 0.33 

Virginica  0.17    0.63*   0.67* 

True classes are within brackets and the classes assigned by the 
methods are indicated with an asterisk 
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Virginica, so the assigned posterior probability is      = 7/13 = 0.54. 

However, this value of      only occurred 18 times in the 500 

bootstraps (Fig. 3.9b). The most frequent value of neighbours was 

    , which appear 232 times in the 500 bootstrap. By combining the 

values of      to 13, the object 116 would be classified with posterior 

probability value of 0.67.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar results were found for objects 37 and 68.  In both cases the 

probabilities calculated with PBkNN (0.88 with     and 0.83 with 

    ) were higher than the probabilities for kNN (0.67 with     and 

0.77 with     ). 

 

 

 

 

Figure 3.9 Bar graphs of k values of the test objects 
116 for k=9 (a) and k=13 (b) obtained for all the 

bootstrap training set generated by PBkNN. In both 

cases was classified in class virginica. 
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3.2.4.3 Wine Dataset 

3.2.4.3.1 Selection of the k-value, r-value and bootstrap 

number 

 

For kNN and PBkNN we evaluated the values of   from 1 to 15 (Fig. 

3.10). The CER was obtained by leave-one-out cross-validation. The 

optimal number of nearest neighbours was      for kNN and     for 

PBkNN. Furthermore, for PBkNN we selected the bootstrap number by 

generating up to 700 bootstraps and computing the CER.  

 

Figure 3.11 shows the CER values for PBkNN with       and       

with bootstrap number up to 700. The results for other values of   (not 

shown) are very similar to those for       and      . CER depends on 

the number of objects wrongly classified, which, for this dataset, is 

similar for all values of   in all values of  , except for      , which 

present minimal values of CER. Note that CER values stabilize for more 

than 200 bootstraps. Hence, the sufficient bootstrap number for this 

dataset was selected as 200. Since the results of CER were similar for 

different values of   and  , the selected   and   values were used to 

select the value of  . The value of   was selected by leave-one-out cross-

validation by calculating the CER for   from 1 to 9.  The optimal value 

of  , which gave the minimal CER, was found to be       (Fig. 3.12). 

 

The results of PBkNN were compared with previously reported results 

[20, 32, 33] and with results from LDA. Both Alpaydin [32] and 

Viswanath et al [33] used the Wine dataset to check the performance of 

new classification methods based on kNN. They split the dataset into a 

training of 100 objects and a test set of 78 objects. The classification 
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accuracy (percentage of the objects correctly classified) reported for 

their methods is shown in Table 3.3 for completeness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Selection of the k value for the Wine dataset 

 
Figure 3.11 Selection of the number of bootstrap, B, for 

PBkNN for the Wine dataset. 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 3 

 122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. Comparative of classification accuracy 

Reference Method Identification 
Classification 

accuracy (%) 

Proposed method Probabilistic bootstrap kNN PBkNN 95.96 

Alpaydin [32] 

1-Nearest Neighbours NN 94.87 

Condensed Nearest Neighbours CNN 93.21 

Voting over multiple CNN simple Voting Simple 93.85 

Voting over multiple CNN weighted Voting Weighted 95.00 

NN after multiple CNN NN on union 93.97 

Viswanath et al [33] 

1-Nearest Neighbours NNC 91.03 

k-Nearest Neighbours k-NNC 92.31 

Naive Bayes Classifier NBC 91.03 

NNC with Hamamoto's Bootstrap IV NNC(BS) 93.29 

Overlap-based pattern -NNC OLP-NNC 93.60 

 

 

 

Figure 3.12 Selection of the number of nearest 

neighbours, r, for PBkNN for the Wine dataset. 
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3.2.4.3.2 Comparison of PBkNN to other classification 

methods 
 

These results must be compared to the classification accuracy from 

PBkNN. Since Alpaydin [32] and Viswanath et al [33] do not indicate 

what objects were assigned to the training set and which ones to the 

test set, we repeated the random split 100 times. The mean of the 

classification accuracy of the 100 PBkNN is shown in Table 3.3. It is 

seen that PBkNN has an accuracy of 95.96 % with a standard deviation 

of 1.94. This is comparable to the results reported by Alpaydin but 

seem slightly better than those reported by Viswanath et al. Notice, 

however, that both Alpaydin and Viswanath et al. report different 

results for the same 1-NN method, which suggests that the selection of 

the training and test sets influences the results to a certain degree.  

 The results from PBkNN were also compared to those of D-CAIMAN, 

M-CAIMAN, LDA, QDA, UNEQ, kNN, CART, SIMCA and NMC (Table 

3.4) [20]. In this case, the reported result is the leave-one-out 

classification error rate. The PBkNN has an error rate of 3.4 %, which 

is lower than the values reported for kNN, CART, SIMCA and NMC. 

However, it was higher than D-CAIMAN, M-CAIMAN, LDA, QDA and 

UNEQ. Although the last methods present best error rates than 

PBkNN, these methods require the fulfilment of certain assumptions 

about the data structure. 

 

For example, in D-CAIMAN and M-CAIMAN the number of class objects 

should be significantly greater than the number of variables (an 

objects/variable ratio greater than 2 or 3 is usually suggested). 

Moreover, LDA, QDA and UNEQ are based on Bayes’ rule and/or they 

use the assumption of multinormality. PBkNN, on the other hand, does 

not require those assumptions.  
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Finally, the values of reliability obtained with PBkNN were compared 

with those obtained with LDA from PARVUS using the root mean 

square of residual of reliability (  ).    measures the closeness of the 

reliability values of the two methods. In this case    of PBkNN with 

respect to LDA was 0.14, which indicates that the probabilities are 

fairly similar in both methods. This value, however, is highly increased 

by six objects (out of the 178 objects) which were misclassified by 

PBkNN. These objects had very different probabilities in LDA and in 

PBkNN. By removing these six objects from the calculation of   , the 

value decreases to 0.09, which suggests a large agreement between the 

predicted probabilities obtained with PBkNN and those from LDA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4. Comparative of  Leave-one-out Error Rate 

 
Reference 

 
Method Identification 

Leave-one-
out Error 
Rate (%) 

Proposed 
method 

Probabilistic bootstrap kNN PBkNN 3.4 

Todeschini 
et al [20] 

Discriminant Classification 
And Influence Matrix 
Analysis 

D-CAIMAN 1.1 

Modelling Classification 
And Influence Matrix 
Analysis 

M-CAIMAN 1.1 

Linear Discriminant 

Analysis 
LDA 1.1 

Quadratic Discriminant 
Analysis 

QDA 0.6 

Modelling version of QDA UNEQ 1.7 

k-Nearest Neighbours KNN 23 

Classification and 

Regression Trees 
CART 11.2 

Soft Independent Model 

Class Analogy 
SIMCA 5.6 

Nearest Mean Classifier NMC 27.5 
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3.2.5 Conclusions 

 

We have proposed the probabilistic bagged kNN (PBkNN) method, which 

combines kNN and bootstrap. The new method provides the reliability 

of the classification for a particular object. This reliability is obtained 

as a posterior probability which is calculated by bootstrap. This 

probability varies smoothly (a continuous range of values can be 

obtained between 0 and 1) depending on the position of the test object 

in the multivariate space.  This measure is more sensitive than in kNN, 

which might yield the same probability for objects in a similar position. 

This reliability value can also be used to derive a new classification 

rule, i.e., the object is classified in the class in which the reliability is 

the highest. For simulated data, PBkNN produced results that vary like 

the Bayes’ decision results do. For the Iris dataset, PBkNN classified all 

the objects as well as kNN did, but PBkNN yielded higher reliabilities 

than kNN for objects that were located in the overlap region between 

two classes. Those higher reliabilities were shown to be a more 

accurate estimation of the actual situation, and hence, for that dataset, 

kNN tended to underestimate the reliability of such classifications.  

The reliability values obtained with PBkNN are similar that the values 

obtained with a standard method (LDA). These similarities assess the 

values of reliability obtained with PBkNN respect to LDA. 
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4. Influence of the measurement error on the 
reliability of classification with kNN 

4.1 Introduction 

 

This chapter describes the Bagged k-Nearest Neighbours (Bagged-kNN) 

method. Bagged-kNN, like PBkNN, combines kNN and bootstrap to 

obtain the reliability of classification of a given object, which is 

calculated as a posterior probability. However, Bagged-kNN takes into 

account the values of uncertainty of the x-data to carry out the 

classification. For this, a new bootstrap method was developed. This 

new method, called U-bootstrap, uses the values of the uncertainty of 

the x-data to generate a new bootstrap dataset with which a given 

object is classified. The method was evaluated using a simulated 

dataset and the Wine dataset. The results show that the values of the 

uncertainty in the x-data influence the values of the reliability of 

classification and this variation is taken into account by the method. In 

this sense, the reliability, calculated as a posterior probability, varies 

continuously between 0 and 1, depending on the position of the object 

to be classified in the multivariate space.  

 

This reliability value is also affected by the value of the uncertainty in 

the x-variables. Hence, the uncertainty in the measured variables 

should be taken into account in the classification methods.  
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Bagged k-nearest neighbours classification  
with uncertainty in the variables 

 
Joe Luis Villa, Ricard Boquéa, Joan Ferré 

Department of Analytical Chemistry and Organic Chemistry. 
Rovira i Virgili University C/ Marcel·lí Domingo, s/n. 43007 

Tarragona, Catalonia (Spain) 

 

ABSTRACT 

An analytical result should be expressed as      , where   is the 

experimental result obtained for a given variable and   is its 

uncertainty. This uncertainty is rarely taken into account in supervised 

classification. In this paper, we propose to include the information 

about the uncertainty of the experimental results to compute the 

reliability of classification. The method combines k-nearest neighbours 

(kNN) with a nested bootstrap scheme, in which a new bootstrap 

training set is generated using the classical bootstrap in the first level 

(B times) and a new bootstrap method, called U-bootstrap, in the 

second level (D times). Two bootstraps are used to reduce the effect of 

sampling in the first level and the effect of the uncertainty in the 

second one. These B  D new training bootstrap sets are used to 

compute the reliability of classification for an unknown object using 

kNN. The object is classified into the class with the highest reliability. 

In this method, unlike the classical kNN and Probabilistic Bagged k-

Nearest Neighbours (PBkNN), the reliability of classification changes 

(increases or decreases) when the uncertainty is increased. These 

changes depend on the position of the unknown object with respect to 

the training objects. For the benchmark wine dataset, we found similar 

values of classification error rate (CER) than for kNN (5.57%), but lower 

than Probabilistic Bagged k-Nearest Neighbours using Hamamoto’s 

bootstrap (7.96%) or Efron’s bootstrap (8.97%).  
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4.2.1  Introduction 

 

Multivariate classification assigns an unknown object to class   among 

the   possible classes based on the values of the   variables     

 ,          - measured for that object. The classification rule is derived 

from a training set  , where    is measured in   objects of known class.  

 

Commonly, the uncertainty of the values in    is not taken into account 

in the classification step. The uncertainty is defined as a parameter, 

associated with the result of a measurement that characterizes the 

dispersion of the values that could reasonably be attributed to the 

measurand [1]. The uncertainty is an important parameter in 

analytical science [2], so much that some authors consider that ―a 

result without reliability (uncertainty) statement cannot be published or 

communicated because it is not (yet) a result” [3]. This means that a 

result should be expressed as      , where   is the value obtained for a 

given variable and   its uncertainty. 

 

The uncertainty, particularly the expanded uncertainty  , defines an 

interval around the measured value in which the real value of the 

variable should be found. For this reason it is important to consider its 

influence in the classification and in the calculation of reliability of 

classification results.  The reliability, which measures the degree of 

confidence of the classification of an object [4], is also an important 

measure of performance of the classification method [5]. It is desirable 

that the reliability of classification changes (increase or decrease) when 

the uncertainty of the variables in the training and test dataset 

changes. This change in the reliability should also depend on the 
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relative position of the unknown object with respect to the objects in 

the training set.  

 

The objects in a given dataset have two main sources of uncertainty, 

sampling and measurement error. The first source is due to the fact 

that sampling is discrete, i.e. the objects in   do not cover the full 

space of the objects. The uncertainty in this case depends on the 

number of objects in  . The second source is the measurement error of 

the variables that characterize the objects. Its influence in the 

uncertainty depends on the size of the measurement error. With the 

aim of taking into account the effect of these sources of uncertainty 

during classification, a new method is proposed which combines k-

nearest neighbours (kNN) with a nested bootstrap scheme. Common 

bootstrap methods only use   to generate the new bootstrap samples. 

However, by only bootstrapping the objects, the measurement noise is 

fixed during the re-sampling, so it cannot contribute to the estimated 

uncertainty. The proposed method considers the uncertainty in   both 

in the classification step and in the calculation of the reliability of 

classification. By nested bootstrap we mean that the classical Efron’s 

bootstrap [6, 7] is used as a first level and an uncertainty bootstrap (U-

bootstrap) is done for each bootstrap sample obtained using Efron. 

With Efron’s bootstrap   new bootstrap data matrices are created by 

random selection with replacement of the objects in the original 

training set. Then, each bootstrap data matrix is used to create D new 

bootstrap training sets with U-bootstrap, by selecting, for each    , a 

random value in the interval ,                 - following a uniform 

distribution. These D matrices are finally used to classify the unknown 

object with kNN and to compute its reliability of classification. The 

uniform distribution is used instead of, for example, a normal 
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distribution, since we do not have a preference for the location of the 

true value inside the interval. In the usual kNN method [8, 9], 

reliability is computed as     , where    is the number of neighbours of 

the object in the class   and an object is assigned to the class with the 

highest reliability. Using the new bootstrap scheme, the reliability is 

computed after B  D bootstraps as the mean of the reliability values 

obtained in each bootstrap iteration, and the object is finally classified 

into the class with the highest combined reliability. Also, with a nested 

bootstrap scheme, both the contribution of sampling and measurement 

error to the final probability can be evaluated. The method was tested 

with a simulated dataset with two overlapped classes and with 

increasing uncertainty in the variables. Results of classification 

reliability were compared with the Bayes’ decision rule [9]. Finally, the 

new methodology was applied to the benchmark Wine dataset, in order 

to classify the different wines in three regions of origin. The 

classification results and reliabilities were compared to the classical 

kNN method [8, 9] and to Probabilistic bagged k- Nearest Neighbours 

[10]. 

 

4.2.2 Methods 

4.2.2.1 k-Nearest Neighbours  

 

The kNN classifier uses a training data matrix  , where each object is 

known to belong to a class   out of   possible classes [9-12]. This 

classifier assigns an unknown object   , to the class to which most of 

the k-nearest neighbours belong. These neighbours are found 

according to a suitable metric, usually the Euclidean distance. There 

are several variations of the kNN method, depending on the type of 

distance used [9, 11] or the decision rule that is used for classification 
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[9-12] For kNN, the posterior probability that a given unknown object 

belongs to class   is given by[9].    

                                           

 (           )  
  
 
                                          

       

where    is the number of nearest neighbours of the unknown object in 

the training set that belong to class  , and   is the number of 

neighbours considered for classification. The decision rule for 

probabilistic kNN is to classify an unknown object in the class where 

the posterior probability is the largest: 

   

                         

    (           )
      

  *     +
 (           )               

 

4.2.2.2 Bagging  

 

Bagging (Bootstrap AGGregatING) is a type of ensemble method which 

uses bootstrap to improve the performance of the classifier [7, 9-12]. 

The improvement is obtained because bootstrap combined with a 

classification method leads to a reduction of the misclassification error 

[13]. Bootstrap is a resampling method [14-16] that can be used to 

estimate a parameter   of the distribution of a population from a 

statistic  ̂ obtained from a sample of the population. For that, many (B) 

new datasets (called bootstrap samples) are created from the original 

dataset. These new datasets are used to estimate the statistic of 

interest. There are several possible setups for bootstrap: resampling 

with replacement of the objects in the original dataset [6, 7], 

Hamamoto et al. bootstrap [12] and parametric bootstrap [14] among 

others [15-19] 
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4.2.2.3 Bagged k-Nearest Neighbours  
 

Nested bootstrap is based on the principle of resampling from 

bootstrap samples [14-16]. It involves two or more levels of bootstrap.  

 

In this paper we use Efron’s bootstrap [6, 7] and a newly developed 

bootstrap method, called Uncertainty bootstrap (U-bootstrap). U-

bootstrap uses the uncertainty in the measured x-values to generate 

the new datasets. For this propose a training matrix  (    ) and an 

uncertainty matrix  (    ) are needed.   contains the uncertainty 

limits for each variable in each object. The method proceeds as follows:  

 

(1) U-bootstrap selects the value of the first variable for the first 

object of  ,     (        ) and its uncertainty value,    . 

(2) A new value of     is generated by random selection of a value in 

the interval ,                    -. This new value has a number of 

significant figures consistent with    .  

(3) The bootstrap matrix    is generated by repeating steps 1 and 2 

for all objects and variables in  . 

 

Efron’s bootstrap does resampling with replacement of  , which is 

useful to limit the effect of sampling on the classification method. Both 

Efron's bootstrap and U-bootstrap are combined with kNN to develop 

the Bagged k-Nearest Neighbours (Bagged-kNN) method, which is 

summarized in Figure 4.1 and it is performed as follows:  
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(1) Select with replacement    objects of   , where    is the 

training dataset for class    , to obtain a new matrix   
  

where   indicates the bootstrap iteration. 

(2) Step 1 is repeated for the other classes,          .  

(3) The bootstrap matrices   
  generated for all the classes are 

then adjoined to obtain the bootstrap matrix    . 

(4) For matrix   , apply U-bootstrap D times, thus obtaining D 

nested bootstrap matrices (since they are generated from the 

same   ),     (d = 1.....D). 

(5) A given test object is also submitted to U-bootstrap, and, 

together with      is used to compute the posterior 

probability,   (           ), with kNN using         

(6) Step 5 is repeated D times and the posterior probability, 

  (           ),, is computed as: 

 

  (           )  ∑  (           ) 

 

   

𝐷⁄             

 

(7) Steps (1) to (6) are repeated B times. 

(8) The posterior probability,    is computed for all classes, as: 

 

  (           )  ∑  (           ) 

 

   

 ⁄            

 

(9) Finally the test object is assigned to the class with the 

highest   (           ).
 

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Influence measurement error on the reliability classification with kNN 

 
141 

2.4 Probabilistic bagged kNN (PBkNN) 
 

The new Bagged k-Nearest Neighbours is compared here to PBkNN 

[10], which combines kNN and bootstrap, without taking into account 

the uncertainty in the  . In PBkNN, for a given unknown object   , its 

  nearest neighbours in each    are obtained. Next, the posterior 

probability for the test object is calculated with          for all   classes. 

This procedure is repeated   times. Finally, the bootstrap posterior 

probability   (           ) that a test object belongs to class   is 

computed as: 

  (           )  ∑  (           ) 

 

   

 ⁄                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Algorithm Bagged-kNN. First, B Efron’s bootstrap data 

matrices are generated from the original training   dataset X. Next, 

for each bootstrap data matrix, D new matrices are generated with 

U-bootstrap. These nested bootstrap matrices are used to calculate 
the reliability of classification of a given test object using kNN, and 

classify it. In this example k=5 
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The object    is finally classified in the class with the highest 

  (           ). This value is also taken as the reliability of the 

classification of this object. In the original PBkNN method,   bootstrap 

training sets    (          ) were generated with Hamamoto’s 

bootstrap II [12]. However, in order to make the results comparable 

with those of Bagged-kNN, the PBkNN was modified by using Efron’s 

bootstrap instead of Hamamoto’s bootstrap. 

 

4.2.3 Experimental section 

4.2.3.1 Data 

 

Bagged kNN was evaluated with a simulated dataset and the 

benchmark dataset Wine [20]. The simulated dataset consists of a 

training matrix   of two classes, with fifteen objects and two variables 

each. The objects were simulated with variable values obtained from 

the univariate normal distributions, (    ), where   and     are the 

mean and the variance for the variable. The parameters used for each 

variable in the simulated dataset are  (4.0,1.0) and  (9.0,6.25) for the 

variables 1 and 2 of the class 1 and  (7.0,1.0) and  (14.0,6.25) for 

the variables 1 and 2 of the class 2. As a result, both classes are 

slightly overlapped (see Fig. 4.2). 

 

The Wine dataset contains the results of chemical analysis of Italian 

wines of three different cultivars: Barolo, Grignolino and Barbera, with 

59, 71 and 48 objects each, respectively. This dataset has 27 variables, 

although only 13 variables are used here. These 13 variables are 

described for this dataset in the UCI repository [21].  The Wine dataset 

was randomly divided into a training set with 100 objects (33 wines of 

Barolo, 37 wines of Grignolino and 30 wines of Barbera) and a test set 
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with 78 objects (26 wines of Barolo, 34 wines of Grignolino and 18 

wines of Barbera). 

 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

4.2.3.2 Uncertainty of the variables 
 

The ISO 17025 norm [22], which is the quality standard for all testing 

and calibration laboratories, requires the estimation of the uncertainty 

of analytical results. However, although the uncertainty in the 

measured variables should have been measured, it is not reported in 

the datasets published in the different repositories. Hence, the 

literature of multivariate classification based on published datasets 

does not take into account the uncertainty of the variables. In this 

paper the uncertainty was simulated in order to show the Bagged-kNN 

algorithm. Two simulation strategies were used: for the simulated 

 

Figure 4.2 Simulated dataset with two classes and 
fifteen objects in each class. 
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dataset, a percentage of the value of each variable was used as a 

uncertainty, and for the Wine dataset, the Horwitz equation [23] was 

used: 

 

                            𝐷      
                                              

                                     

where   𝐷  is the relative reproducibility standard deviation of an 

analytical determination and   is the concentration of the analyte, 

expressed as mass fraction. Because   𝐷   is expressed as a 

percentage, the uncertainty is transformed into concentration units by 

multiplying by the concentration value and dividing by 100.   𝐷   can 

be transformed into an expanded uncertainty by multiplying by an 

appropriate coverage factor,  , normally       [1].  For the 

dimensionless variables: colour intensity, HUE and OD280/OD315 

ratio, in the wine dataset, we used a 10 % of the variable value as 

uncertainty estimate (appendix A).  

 

4.2.3.3 Selection of the optimal parameters for kNN, PBkNN and 

Bagged-kNN 

 

The selection of the optimal   value is critical in kNN, PBkNN and 

Bagged-kNN. In this paper the optimal   was selected as the one that 

yielded the minimal classification error rate (CER) [9], that is, the 

percentage of objects that are assigned to the wrong class, calculated 

with leave-one-out cross-validation (LOOCV) for the simulated dataset 

and with the randomly selected test set for the Wine dataset. For kNN, 

LOOCV was performed by classifying the object   of   against the 

remaining    objects of   for a given   value. This procedure was 

repeated until all   objects were classified and, finally, the CER was 
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computed. This procedure was repeated for different values of  . For 

PBkNN and Bagged-kNN, the optimal   was also obtained by LOOCV. 

In addition, 200 bootstrap were selected for PBkNN and 100 and 10 

bootstraps were selected for the first (Efron’s bootstrap) and second 

level (U-bootstrap), respectively in Bagged-kNN .  

 

4.2.4 Results and Discussion  

4.2.4.1 Simulated dataset  

  

The simulated dataset is used to compare the posterior probabilities 

from Bagged-kNN with those calculated using PBkNN and kNN. The 

values of   for kNN, PBkNN were selected computing the CER using 

LOOCV for                  Bagged-kNN was also evaluated using 

different levels of uncertainty: 1, 5, 10, 20 and 40 %, as a percentage of 

the variable value.  

The CER obtained for the different values of   was the same (6.67%, 

objects 18 and 26 were misclassified) in kNN, PBkNN and Bagged-kNN. 

Hence, by simplicity, the minimal  ,      , was selected for kNN, 

PBkNN and Bagged-kNN. 

Only the results for some of the objects in the overlapped region are 

commented. These objects are: object 10, which belongs to class 1, and 

objects 17, 18, 20 and 26, which belong to class 2 (Fig. 4.2).  Table 4.1 

shows the values of posterior probability for the classification in the 

true class obtained with kNN, PBkNN, Bayes and Bagged-kNN using 

increasing values of uncertainty. The Bayes’ formula was used to 

obtain the true posterior probability. The rule in Bayes was to assign 

an unknown object to the class with the highest posterior probability 

[5, 9]. Calculation of this posterior probability requires the probability 
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density function and the a priori probability of each class, which are 

known in this simulated case but rarely known in a real classification 

problem.  

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 shows that for object 20, the posterior probability decreases 

when the uncertainty in the x-variables increases. This is because 

when the uncertainty increases, the objects (both the unknown object 

and the other objects in the training set) lie in a wider region of the 

variable space. In this case, this makes the number of nearest 

neighbours of the class 1 increase, which, in turn, increases the 

probability of misclassification. This can be better seen in figure 4.3. 

This figure shows the uncertainty regions for object 20 (class 2). Note 

 

Figure 4.3 Simulated dataset with the uncertainty 
regions of object 20. The box with continuous line delimits 

the region where the uncertainty is 10% and the box with 

dotted line delimits the region where the uncertainty is 
20%. 

 

1 5 10 20 40 

10 (1) 0.960 1.000 0.958 0.904 0.923 0.881 0.850 0.768 

17 (2) 1.000 1.000 1.000 1.000 0.999 0.999 0.978 0.818 

18 (2) 0.680 0.333 * 0.220 * 0.340 * 0.390 * 0.398 * 0.428 * 0.393 * 

20 (2) 0.960 1.000 0.940 0.865 0.797 0.795 0.756 0.575 

26 (2) 0.470 * 0.000 * 0.028 * 0.035 * 0.058 * 0.107 * 0.216 * 0.320 * 

Object Bayes k NN PB k NN      
Bagged- k NN (increment of the uncertainty value) 

Table 4.1 Comparative posterior probability in the real class of the objects in the 

overlapped regions. True classes are indicated in parenthesis and incorrectly classified 
objects are indicated with an asterisk.                                                                                                                                                                                                                                                                
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that when the uncertainty is 20%, the number of nearest neighbours of 

class 1 increases with respect to the case when uncertainty is 10%. 

When U-bootstrap is applied to this object 20, the new bootstrap object 

can take any value within this region of uncertainty and, hence, the 

probability that the object 20 is closer to objects of class 1 increases.  

 

We must recall, also, that the training objects also change the position 

during the bootstrap, which, in turn increases the probability that 

objects of class 1 are closer to object 20. Hence, the posterior 

probability of classification, which is obtained as a mean of BD 

iterations, tends to diminish. Figure 4.4 shows the change in the 

posterior probability of classification due to this effect for different 

percentages of uncertainty. A similar behaviour is observed for objects 

10 and 17. 

 

Objects 18 and 26, which are in the borderline between classes, behave 

differently than objects 10, 17 and 20, which are not in the borderline 

(Fig. 4.4). For objects 18 and 26 the posterior probability of 

classification increases when the uncertainty increases. This is 

because these objects, which belong to class 2, are close to objects of 

class 1. This illustrated in figure 4.5 for object 18. Contrary to object 

20, when the uncertainty increases, the region of uncertainty includes 

more objects of class 2 (the class object 18 belongs to); hence, the 

posterior probability of classification increases.  
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The variation of posterior probability is smaller for the objects that are 

not in the region of class-overlap than for the objects in the overlap 

region. This is because the objects in the region of non-overlap are near 

objects of the same class. In this case, the variation of the variable 

 

Figure 4.4 Posterior probability of classification versus 

value of uncertainty for selected objects in the 
overlapped regions. 

 

1 5 10 20 40 

10 (1) 0.960 1.000 0.958 0.904 0.923 0.881 0.850 0.768 

17 (2) 1.000 1.000 1.000 1.000 0.999 0.999 0.978 0.818 

18 (2) 0.680 0.333 * 0.220 * 0.340 * 0.390 * 0.398 * 0.428 * 0.393 * 

20 (2) 0.960 1.000 0.940 0.865 0.797 0.795 0.756 0.575 

26 (2) 0.470 * 0.000 * 0.028 * 0.035 * 0.058 * 0.107 * 0.216 * 0.320 * 

Object Bayes k NN PB k NN      
Bagged- k NN (increment of the uncertainty value) 

Table 4.1 Comparative posterior probability in the real class of the objects in the 

overlapped regions. True classes are indicated in parenthesis and incorrectly classified 
objects are indicated with an asterisk.                                                                                                                                                                                                                                                                
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value due to its uncertainty does not change the class of the 

neighbours of that object e.g. object 17 in the figure 4.2 is surrounded 

only for objects of class 2 so the posterior probability is 1.0 when it is 

classified with Bayes, kNN, PBkNN and Bagged-kNN with uncertainty 

value of 1%. The value of the posterior probability only changes slightly 

into 0.999, 0.999 and 0.978 when the uncertainty is 5, 10 and 20 % 

respectively (see Table 4.1). Only when the uncertainty was increased 

to 40 % there is a significant decrease in the posterior probability.  

 

 

 

 

 

 

 

 

 

 

 

Moreover, with the aim of illustrating the importance of performing a 

nested bootstrap, we evaluated the effect of each type of bootstrap on 

the posterior probabilities. For this, we computed the Efron’s bootstrap 

 

Figure 4.5 Simulated dataset with uncertainty regions 

of the object 18. 
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variance (  
 ) and the U-bootstrap variance (  

 ), from the analysis of 

variance for a two-factor fully-nested design [24]. In this case, (  
 )  is 

computed using the D posterior probabilities obtained with U-bootstrap 

for each Efron’s bootstrap (  (           ))   
  is computed using the   

posterior probabilities obtained for all Efron’s bootstraps. Figure 4.6 

shows   
  (Fig. 4.6a) and   

  (Fig. 4.6b) with respect to the increase of 

the uncertainty. Figure 4.6a shows that for object 18,   
  decreases 

when the uncertainty increases, contrary to   
 , which increases when 

the uncertainty increases (see Fig. 4.6b). This is because the posterior 

probabilities for this object, for each U-bootstrap iteration, have a 

higher variability. This variability is due to the fact that, when the 

uncertainty increases, the region of uncertainty increases too; 

therefore, for this object, we find different nearest neighbours each 

time, and we can classify it with values in a continuous range of 

probabilities. However, the Efron’s bootstrap variance decreases when 

the uncertainty increases, i.e. the effect of moving the objects in the 

original training dataset to build a new training bootstrap sample is 

reduced when the uncertainty increases. This is due to the fact that, 

when the uncertainty increases, the overlap between classes increases 

too. This overlapping makes that the range of the posterior probability 

values, and the posterior probability values itself, decrease. 

 

The increase of   
  is similar for all the objects (see Fig. 4.6b). However, 

  
  changes differently depending on the original position of the object. 

For objects 17 and 26,    
  is practically constant (see Fig. 4.6a). For 

object 17, a slight increase was seen when the uncertainty was 

increased to 40 %, while for object 26,   
  changes slightly when the 

uncertainty increases to 10% and 20 %. This is because these objects 

are surrounded mainly by objects of one class (Fig. 4.2); therefore, the 
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values of posterior probability obtained for each Efron’s bootstrap 

hardly change. 

Finally, the reliabilities of classification were compared with:  

   

   √
∑ (       )

  
   

 
                                                 

 

where,     and      are the probabilities obtained for two methods. In 

this case, the Bayes’ method is always the reference method (method 1) 

and kNN, Bagged-kNN, PBkNN are method 2. N is the number of 

evaluated objects. Small values of Rr indicate that the probabilities are 

similar in both methods.   In this dataset, the values of Rr obtained by 

comparing Bayes and kNN, and Bayes and PBkNN are similar, 0.12; 

while Rr obtained between Bayes and Bagged-kNN are around 0.10 in 

the different values of uncertainty used. This means that the values of 

posterior probability obtained with the proposed method were more 

similar to Bayes than the values obtained with the other methods.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Variation of Efron’s bootstrap variance  𝑠𝐸
  (a) and 

the U-bootstrap variance 𝑠𝑈
   (b) with respect to the increment 

of the uncertainty. 
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4.2.4.2 Wine Dataset  
 

The Wine dataset was evaluated with Bagged-kNN, kNN and PBkNN. 

Figure 4.7 shows the distribution of the training and test objects on the 

scores of the Principal Component Analysis (PCA) calculated with auto-

scaled data. Although, for each class, objects are grouped, the classes 

are slightly overlapped. In the overlap regions we find Grignolino 

objects 70, 74, 79 and 96 that are in the region of the class Barolo, and 

Grignolino objects 69, 84 and 97, which are close to the objects of class 

Barbera. The object number corresponds that in the UCI repository.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 PC’s for Wine dataset with auto-scaling of 

the variables for training and test set. Training set: 
Barolo ( ), Grignolino ( ) and Barbera ( ) and Test set: 

Barolo ( ), Grignolino ( ) y Barbera ( ). 
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The values of   for kNN, PBkNN and Bagged-kNN were selected by 

computing the CER for the test set and for values of   of 1, 3, 5, 7, 9, 

11, 13, 15 and 17. Figure 4.8 shows the values of CER with Bagged-

kNN, kNN and PBkNN with Efron and Hamamoto’s bootstrap. It is seen 

that the value of CER in PBkNN with Efron’s bootstrap is the same for 

all   values evaluated. However, for Bagged-kNN, kNN and PBkNN with 

Hamamoto’s bootstrap, the minimum value of CER was obtained with 

      so       was selected for all methods evaluated in this dataset. 

 

Once selected the value of  , the test set was classified using kNN, 

PBkNN and Bagged-kNN. The CER for Bagged-kNN and kNN is 5.13 %, 

which is lower than the CER for PBkNN both using Efron’s bootstrap 

(8.97%) and Hamamoto’s bootstrap (7.69%). Hence, the proposed 

Bagged-kNN yields better classification results than PBkNN. The 

objects of classes Barolo and Barbera in the test set were classified 

correctly by all the methods. However, some of the objects of class 

Grignolino were misclassified, because they are in the overlapped 

region (Fig. 4.7). Below we will comment on the results for some 

interesting objects of class Grignolino. 

 

Table 4.2 shows the posterior probability values, in the three classes, 

for some Grignolino objects obtained with Bagged-kNN, kNN and 

PBkNN with Efron and Hamamoto. It is seen that kNN provided only 

four different values of posterior probability, 0.000, 0.333, 0.667 and 

1.00 while Bagged-kNN gave different values, between 0.123 and 

0.820. Hence, although Bagged-kNN does not perform better than kNN, 

the advantage of Bagged-kNN is that the probabilities vary smoothly 

with the position of the objects in the variable space (a continuous 

range of probabilities can be obtained between 0 and 1), while the 
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probability values in kNN only take (     ) discrete values. Hence, in 

kNN all the objects located at a certain zone of the variable space that 

have the same neighbours will be assigned the same probability. In 

Bagged-kNN, however, each object has a slightly different value of 

probability that reflects the different proximity of that object to the 

objects in the training set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4,8 Classification error rate for different k 
values for evaluated methods.  
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Table 4.2 shows that objects 69 and 70 were classified correctly by all 

the methods except PBkNN using Efron’s bootstrap, which 

misclassified object 70. With kNN we obtained the same value of 

posterior probability (0.667) for both objects, while for PBkNN and 

Bagged-kNN save different probability because of the already 

commented higher sensitivity of PBkNN and Bagged-kNN for the 

position of the objects in the variable space. The low values of 

probability obtained with Bagged-kNN (lower than 0.460) indicate that 

additional information must be collected before the objects can be 

classified reliably.  A similar conclusion can be obtained for object 79, 

which was incorrectly classified by all methods. In this case, kNN and 

PBkNN with Efron, assign high values of posterior probability (>0.840) 

to this classification which gives a false security to the result. PBkNN 

with Hamamoto’s bootstrap and Bagged-kNN, on the other hand, 

assign a low probability (<0.540) to the classification, which warns 

about the possibility of misclassification. Objects 74 and 96, which are 

close to each other in the variable space (Fig. 7), are incorrectly 

classified by all methods. However, kNN, again, assigns the same 

probability to both objects (1.000), which, in addition, is excessively 

Barolo Grignolino Barbera Barolo Grignolino Barbera Barolo Grignolino Barbera Barolo Grignolino Barbera 
69 0 . 000 0 . 667 * 0 . 333 0 . 023 0 . 520 * 0 . 457 0 . 000 0 . 800 * 0 . 200 0 . 247 0 . 460 * 0 . 293 
70 0 . 333 0 . 667 * 0 . 000 0 . 523 * 0 . 453 0 . 023 0 . 477 0 . 523 * 0 . 000 0 . 343 0 . 399 * 0 . 258 
74 1 . 000 * 0 . 000 0 . 000 0 . 947 * 0 . 050 0 . 003 1 . 000 * 0 . 000 0 . 000 0 . 710 * 0 . 147 0 . 143 
79 1 . 000 * 0 . 000 0 . 000 0 . 840 * 0 . 150 0 . 010 0 . 537 * 0 . 463 0 . 000 0 . 410 * 0 . 343 0 . 247 
84 0 . 000 0 . 667 * 0 . 333 0 . 000 0 . 450 0 . 550 * 0 . 000 0 . 180 0 . 820 * 0 . 206 0 . 241 0 . 553 * 
96 1 . 000 * 0 . 000 0 . 000 0 . 993 * 0 . 007 0 . 000 1 . 000 * 0 . 000 0 . 000 0 . 753 * 0 . 124 0 . 123 
97 0 . 000 0 . 333 0 . 667 * 0 . 077 0 . 353 0 . 570 * 0 . 467 * 0 . 170 0 . 363 0 . 285 0 . 387 * 0 . 328 

Table 4 . 2 Posterior probability of classification of wine data set . 
All objects in the table belong to class Grignolino . 
The Classes correctly assigned by the methods are indicated with an asterisk . 

Obj 
k - NN 

( k = 3 ) 
PB k NN - Efron 
( k = 3 ; B = 200 ) 

PB k NN - Hamamoto 
( k = 3 ; B = 200 ) 

Bagged - k NN 
( k = 3 ; B = 100 ; D = 10 ) 
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high. In this case both PBkNN methods also assign a high probability 

to these objects. However, when the uncertainty is taken into account 

in Bagged-kNN, the posterior probabilities are different (because they 

depend on the position of the object in the multivariate space) and 

lower. Object 84 is correctly classified with kNN but misclassified by all 

the other methods. However, the correct classification in kNN is due to 

the fact that, of the nine nearest neighbours, only the second and the 

third belong to class Grignolino, while the others belong to class 

Barbera. Hence, when the uncertainty is considered, more neighbours 

of the class Barbera are found. For object 97 the situation is the 

contrary; it is misclassified by all methods except by Bagged-kNN. The 

reason is that its two nearest neighbours belong to the class Barbera 

and the third neighbour belongs to class Grignolino. When the 

uncertainty is taken into account, new neighbours of the class 

Grignolino appear which is sufficient to obtain a correct classification, 

although with a low probability. 

 

Finally, despite being a nested bootstrap method, Bagged-kNN was not 

very time-consuming. LOOCV for the Wine dataset (k=3 , B = 100 and 

D=10) took less than five minutes in a personal computer with an Intel 

Core 2 Duo E6750 processor at 2.66 GHz and 3 GB of RAM. 

 

4.2.5 Conclusions 

 

We have proposed the Bagged k-Nearest Neighbours (Bagged-kNN) 

method, which combines k-Nearest Neighbours, bagging, and the 

uncertainties of the values of the variables of each object in the 

training data set. Bagged-kNN provides the reliability of classification 

for a particular object, which is calculated as a posterior probability. 
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This probability varies smoothly (a continuous range of values can be 

obtained between 0 and 1) depending on the position of the test objects 

in the multivariate space. This reliability value is also affected by the 

value of the uncertainty. In the simulated dataset the value of posterior 

probability changed for objects in the borderline regions when the 

uncertainty changes. These changes are due the position of the 

evaluated objects with respect to the objects in the training set. The 

reliability increases in the class where the evaluated objects have the 

most of nearest neighbours.  Hence, the uncertainty in the measured 

variables should be taken into account in the classification methods. 

This uncertainty influences the reliability of classification, which, in 

turn can affect the results of classification. 
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Appendix A 

 

Mass fraction values used in Horwitz equation (see Eq. 4.6, section 

4.4.2) for the Wine dataset.  

Variable Units Mass Fraction 

Alcohol %v 0.01 

Malic Acid g L-1 0.001 

Ash g L-1 0.001 

Alkalinity of Ash ag L-1 0.001 

Magnesium mg L-1 0.000001 

Total Phenols g L-1 0.001 

Flavanoids g L-1 0.001 

Nonflavonoid Phenol g L-1 0.001 

Proanthocyanins g L-1 0.001 

Color intensity bDimensionless 

HUE bDimensionless 

OD208 / OD315 of diluted 

wines 
bDimensionless 

Proline mg L-1 0.000001 
a In the UCI repository, Alkalinity of ash is expressed in meq L-1 of 

NaOH, but in this article these units were changed to g L-1. 
b Dimensionless variables were not estimated by Horwitz equation. 
Instead, a 10% of the  variable value was used as uncertainty value. 
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5. Multivariate calibration with k-Nearest 
Neighbours 

 

5.1 Introduction 
 

This chapter introduces Direct Orthogonalization k-Nearest Neighbours 

(DOkNN), which uses direct orthogonalization prior to kNN to improve 

the prediction results. DOkNN predicts much better than classical kNN 

and its results are comparable to those obtained by PLS. The results 

improved further when the objects to be predicted are within the 

domain of the X-variable space of the training samples. Also, compared 

to PLS, predictions in DOkNN appear less influenced by the presence of 

outliers in the training set. 

 

kNN for prediction uses a calibration set X of J variables measured on I 

objects and a vector of properties y (I × 1). The predicted value,   ̂, for a 

new unknown object,   ,  is computed as the mean or the weighted 

mean of the y values of its k nearest neighbours in X. kNN for 

prediction has some interesting properties. First, it has the advantages 

of a local method. Since prediction is done only using the nearest 

objects, it is robust to non-linearities that may exist in large regression 

domains. It is also robust to outliers in X, since only the objects that 

are closer to the object to be predicted are used for quantification. 

Second, it is non-parametric, so no assumptions have to be made 

about the probability distribution function of the data. Finally, like in 

other inverse calibration methods, it is not necessary to know all the 

constituents in the sample to predict the property of interest. 
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The closeness in the X space is measured, generally, using the 

Euclidean distance. This distance is affected by the signal from 

interferences, the noisy or irrelevant variables and by the type of data 

pre-processing, which can change the nearest neighbours of an object. 

Direct Orthogonalization (DO) is a pre-processing method used in 

multivariate calibration, which removes the information in X not 

correlated with y, thus improving the correlation between the 

remaining X and y. Therefore, nearest objects in X would be expected 

to have similar values in y, which favours the predictions with kNN. 

 

Here we propose a new methodology to use kNN for prediction using 

DO. With the aim of comparing the ability of prediction of DOkNN, PLS 

and kNN were also tested. The method was tested with two 

spectroscopy datasets: the Fearn’s dataset and a pharmaceutical 

dataset. In both cases DOkNN showed similar or even better results 

than PLS. 

 

kNN is a local method, which is based on the fact that objects near in 

the variable space of X have similar values of property, y. Therefore, if 

the object to be predicted is not into or it is far from the boundaries of 

the variable space of the calibration set (i.e. space spanned by the 

objects in X) kNN provide large prediction error values, measured as 

the difference between the reference and the predicted value. Related to 

this, we have shown that the use of the Kennard and Stone’s algorithm 

to divide the dataset into a calibration and a validation set improves 

the predictions by kNN. Also, we found that the best results of 

prediction with kNN were obtained when the percentage of variance 

captured by a PLS model in the y-block is higher than 90% in the first 

two factors. This can be due to that the information explained by the 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 5 

 
166 

variables in the first factors is the most influential in the distance 

calculus. This percentage of the variance in the y-block is increased by 

applying DO to the data before predicting with kNN. 

 

DOkNN, like other methods as PLS, is greatly influenced by errors in 

the reference y values. This is because DOkNN uses these values to 

orthogonalize the data. So, errors in the y values can affect the 

identification of the nearest neighbours. 
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Universitat Rovira i Virgili 
C/ Marcel·lí Domingo, s/n. 43007 Tarragona, Catalonia (Spain) 

 

ABSTRACT 

 

This paper introduces Direct Orthogonalization k-Nearest Neighbours 

(DOkNN) as a multivariate calibration method. The property of interest 

in an unknown sample is predicted as a weighted mean of the 

properties of the nearest neighbours. Direct orthogonalization is 

required to remove irrelevant variability in the independent variables 

and improve the identification of the k neighbours that will be used for 

prediction. DOkNN was evaluated with the Fearn’s dataset in order to 

predict the protein content from spectral data. DOkNN predicted better 

(RMSEP of 0.36%) than the classical kNN with SNV preprocessed 

spectra (RMSEP of 0.96%). After a new split of the original dataset into 

new training and test sets using the Kennard and Stone’s algorithm, 

the predictions of DOkNN were comparable to those of PLS, with 

RMSEP values of 0.28% and 0.26% respectively. When the method was 

tested with a pharmaceutical dataset to predict the amount of an active 

substance, DOkNN predicted better than PLS, with RMSEP values of 

0.20% and 0.30% respectively. The results were also better when the 

data were split into a training and a test set using the Kennard and 

Stone’s algorithm, with RMSEP values of 0.25% and 0.33% for DOkNN 

and PLS respectively. Compared to PLS, predictions with DOkNN are 

less influenced by the presence of outliers in the training set. 
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5.2.1 Introduction 

 

The k-nearest neighbours (kNN) method [1] has been used in 

Chemistry mainly for classification [2-7]. Its use as a multivariate 

calibration method has been scarcely described [8-10]. When kNN is 

used for prediction, a training data set X of J variables (e.g., spectra) 

measured on I objects and a vector of properties y (I×1) are available. 

The predicted value,   ̂, for an unknown object    is computed as a 

weighted mean of the y values of its k nearest neighbours in X [8-10]. 

 

Behind this prediction method there is the assumption that objects 

that have similar x-values have similar values of the property of 

interest y. While this assumption may not always be valid it can be 

fulfilled by certain datasets containing objects that have a very similar 

chemical matrix and where the property of interest creates the largest 

variation in the measured instrumental response. When applicable, 

predicting with kNN has some interesting properties. First, it has the 

advantages of a local method. Since prediction is done only using the 

nearest objects, it is robust to non-linearities that may exist in large 

regression domains. It is also robust to outliers in X, since there are 

usually extremes in the X-domain so they are not selected as 

neighbours for calculating the prediction. Second, it is non-parametric, 

so assumptions do not need to be made about the probability 

distribution function of the data. Confidence intervals can be 

calculated, for example, using resampling method such as bootstrap. 

Finally, like in other inverse calibration methods, it is not necessary to 

know all the constituents in the sample to predict the property of 

interest. The main limitation of kNN is the influence of the interferents’ 

signal on the calculated distance used to identify the neighbours. 
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Varying amounts of interferents in the unknown sample may shift the 

sample over the multivariate space and change the sample neighbours, 

hence changing the final prediction. This drawback is overcome in this 

work by first removing the irrelevant variability in X with direct 

orthogonalization (DO)[11]and applying kNN to the resulting data. The 

method, called direct orthogonalization k-nearest neighbours (DOkNN) 

is used for predicting continuous properties on two different spectral 

datasets: the Fearn’s dataset to predict the protein content from 

spectral data and a pharmaceutical dataset to predict the amount of an 

active substance in pharmaceutical tablets. 

 

5.2.2 Methods 

5.2.2.1 Prediction with k-Nearest Neighbours 

 

Predicting with kNN is based on the assumption that objects near to 

each other in the variable space of X have similar values in their 

property value y.  Hence, the property of an unknown object can be 

predicted by weighting the y-values of its k-nearest neighbours: 

 

 ̂  ∑  

 

   

                                                  

 

where ŷ  is the property value assigned to the unknown object, yi is the 

property value of the ith nearest neighbour (i=1,2,…,k), k is the number 

of nearest neighbours considered in the prediction, and wi is a weight 

factor. Although the arithmetical mean can be used (wi = 1/k) [8, 10], 

weighing for the inverse of the distance has the advantage of giving a 

higher weight to the property value of a closer neighbour [9]:  

 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Multivariate calibration with k-Nearest Neighbours 

 
171 

   
 

  

 

∑
 
  

 
   

                                                   

 

In Eq. 5.2,    is the distance of the unknown object to its ith 

neighbours in X. In addition to the weighted mean the geometrical 

mean or an exponential weighting scheme [12] can be used. The most 

used distance is the Euclidean distance. This distance is affected by 

the signal from interferences, the noise in the variables, the presence of 

irrelevant variables and by the type of data pre-processing, which can 

change the nearest neighbours of the object [13]. Hence, predicting 

with kNN improves when adequate pre-processing removes the 

systematic irrelevant variation in X and variable selection can keep 

only the independent variables that are the most correlated with the 

property of interest. Pre-processing with direct orthogonalization is 

described next. Variable selection is out of the scope of this paper. It 

must be noted that like in other regression methods, the predictive 

performance is the highest when the unknown objects are within the 

X-variable space of the training objects. Hence, a careful selection of 

the training and validation sets, taking into account the position of the 

objects in the variable space of X is required. The Kennard and Stone’s 

algorithm (KS)[14] was used for this purpose. 

 

5.2.2.2 Direct orthogonalization k Nearest Neighbours (DOkNN)  

 

Used as a pre-processing method, Direct Orthogonalization (DO) [11] 

removes the variability in X that is not correlated with y, thus 

improving the correlation between the corrected X and y. When DO is 

applied in PCR and PLS, the predictive performance of the model is 

achieved with fewer factors [15]. When it is used with kNN, DO 
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improves the identification of the best neighbours of an unknown 

object. DOkNN is carried out as follows: 

 

1) Apply direct orthogonalization to the column mean-centered training 

matrix X ( ̅): 

 

     ̅(    
 )                                      

 

where I is a properly dimensioned identity matrix and P is the loadings 

matrix for a factors, resulting from principal component analysis (PCA) 

of  
T

0 wyXX  , where y  is the mean-centered vector of properties y  

and  1TT )(  yyyXw  . 

 2) Apply direct orthogonalization to the unknown object’s x 

 

   
   ̅ (     )                                  

 

where x  is the mean-centred x using the mean of the training data, 

and P is the same as in Eq. 5.3. 

3) Predict the property of interest in the unknown object xDO as a 

weighed mean of the property values of the nearest neighbours in XDO 

(Eq. 5.1). 

 

The optimal number of factors for the DO step (a) and of nearest 

neighbours (k) can be decided, for example, by cross-validation. 
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5.2.3 Experimental Section 

5.2.3.1 Datasets 

 

The Fearn’s dataset [16] consists of NIR spectra of wheat samples 

collected at six wavelengths in the range of 1680-2310 nm. The 

property to be predicted is the percentage of protein. The original 

dataset contained a training set with 24 objects, and a test set with 26 

objects. This dataset has often been used in the literature to compare 

the prediction ability of regression methods [16, 17]. 

 

The pharmaceutical dataset consists of 310 NIR transmittance spectra 

in the range of 7400-10500 cm-1, and the property to be predicted is 

the amount of active substance content in the pharmaceutical tablets 

at four different dosages (5, 10, 15 and 20 mg/tablet) [18]. To generate 

the dataset the authors used 12 pilot and 12 laboratory scale batches. 

Of them, only the pilot batches were film coated. From each batch ten 

tablets were taken and analyzed by NIR and HPLC (reference method) 

and the results were expressed in the relative active substance content 

(% w/w). This dataset was originally studied with PLS. First, only the 

pilot batches were used for training and then pilot and laboratory 

batches were used together. Local models were also developed, i.e. the 

training was done with only the spectra of one of the dosages.  

 

For these two datasets, the predictive performance of DOkNN was 

compared with that of kNN after different types of pre-processing 

commonly used for spectroscopic data. For the Fearn’s dataset, the 

performance of DOkNN was compared to that of kNN and PLS 

regression using either the raw data, or after pre-processing with 

Standard Normal Variate (SNV) and de-trending [19-21]. The original 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 5 

 
174 

data split into training and test set was first considered in order to 

compare with the reported PLS results. A new split into training and 

test sets obtained by applying the KS algorithm was also tested. For 

the pharmaceutical dataset, DOkNN models were evaluated using the 

Root Mean Square Error of Cross Validation (RMSECV), to compare 

with the original work [18]: 

       √
∑ ( ̂       ) 
 
   

 
                                 

 

where icvy ,
ˆ  is the predicted yi when the object i was left out of the 

training set. Note that the objects were removed from the training set 

before any pre-processing (i.e. SNV, DO) was applied.  In this case, 10 

samples, corresponding to each batch, were left out from the training 

set. The remaining 300 samples were used to build the model and 

predict the left out samples. This procedure was repeated until all 

samples were predicted. Finally, the RMSECV was obtained using Eq. 

5.5.  

 

5.2.3.2 Model optimization and prediction ability 

 

DOkNN was run using the Euclidean distance and weighing for the 

inverse of the distance (Eq. 5.2). The optimal k value for kNN and the 

number of factors a used for DO were chosen as the values that yielded 

the minimal RMSECV. The prediction ability of the models was 

obtained using the Root Mean Square Error of Prediction (RSMEP):   

 

      √
∑ ( ̂    ) 
 
   

 
                                 

where iŷ  is the predicted yi when the object i is from the test set.  
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5.2.4 Results and discussion 

 

5.2.4.1 Fearn‟s dataset 

5.2.4.1.1 Parameter selection for DOkNN 

 

The leave-one-out cross-validation (LOOCV) error of the kNN models 

with k values from 2 to 15 was calculated. For DOkNN, k values from 2 

to 15 and a values from 1 to 6 were evaluated. The original dataset 

without pre-treatment (RAW) was also tested. 

 

 

 

Figure 5.1 shows the results for the original data split. The optimal k 

were k=2 for kNN without pre-treatment (W-OUT), k=2 for kNN after 

SNV and k=3 for kNN after de-trending. For DOkNN the optimal values 
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Figure 5.1 Selection of the k and a for Fearn’s dataset with 

original splitting. The number factors used in the Direct 

Orthogonalization (DO) step are indicated into parenthesis.  
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were k=3 and a=3. Note that not pre-processing the data yielded worse 

results (RMSECV=1.32%) than kNN after SNV (RMSECV=0.98%) and 

kNN after de-trending (RMSECV=1.29%). DOkNN with k=3 and a=3 

gave three times lower RMSECV values (RMSECV=0.37%) than the best 

results obtained with kNN. Additionally, kNN after SNV and DO was 

evaluated with different k (1 to 15) and a (1 to 6) values. In this case 

the lower RMSECV value was obtained for k=3 and a=2 

(RMSECV=0.30%). This value, although lower than the value obtained 

using only DO, requires two different pre-processing methods to be 

applied (SNV and DO). 

 

5.2.4.2 Performance of kNN, PLS and DOkNN 

 

The test set predictions for SNV-kNN (k=2) and DOkNN (k=3, a=3) were 

compared. The RMSEP of SNV-kNN (1.18%) was worse than for DOkNN 

(0.59%). Figure 5.2 shows the reference values vs predicted values in 

the test set for SNV-kNN (Fig 5.2a) and DOkNN (Fig 5.2b). For SNV-

kNN, the determination coefficient after regressing the predicted 

against the reference values was R2=0.42, lower than for DOkNN, with 

R2 = 0.86. Figure 5.2 also shows the abnormal behavior of the 

prediction outlier object 12 in both methods. After removing object 12 

the RMSEP decreased to 0.96% and 0.36% and R2 improved to 0.44 

and 0.94 for SNV-kNN and DOkNN respectively. DOkNN gave better 

predictions than SNV-kNN because the direct orthogonalization step 

removed the information of X not correlated with y, making the objects 

with similar y values be closer to each other in the orthogonalized 

variable space of X. For SNV-DOkNN RSMEP was 0.60 %. This value is 

lower than the RSMEP obtained using SNV only (1.18%) but slightly 

higher than the RSMEP after DO (0.59%). The removal of object 12 
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decreased the RSMEP from 0.60 % to 0.37%, similar to the value 

obtained with DO after the object 12 was removed (0.36%). The results 

obtained using SNV-DO-kNN are better than the results obtained by 

SNV-kNN but similar (slight higher) than the results obtained with 

DOkNN. 

 

 

 

For the Fearn’s dataset, Faber et al.[17] reported an RMSEP value of 

0.33% for a PLS model with mean-centred data and four factors. By 

removing object 1 of the validation set, identified as an outlier, the 

RMSEP decreases to 0.29%. Note that for PLS the object 1 was 

identified as a test outlier but not for DOkNN. This can be explained 

because the residual value of prediction (i.e. the difference between the 

predicted value and the reference value) for object 1 with PLS (-0.92, 

predicted value was 7.74 while reference value is 8.66) is large. This 

residual value is related to the leverage, thus objects with large 
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Figure 5.2 (a) Predictions for SNV-kNN(k=2) (b) Predictions for DOkNN 

(k=3, a=3). Removing the possible outlier (enclosed in the circle) the R2 

increase to 0.44 and 0.94 for SNV-kNN and DOkNN respectively.  
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leverage have residuals of prediction higher than the average of all test 

samples. Therefore, this large residual can affect the (global) model 

used by PLS to predict the test object. On the contrary, DOkNN uses a 

local model to predict the test objects, therefore the objects identified 

as outliers from PLS could be predicted by DOkNN without problem.  

 

 

 

Although the RMSEP is lower for PLS than for DOkNN, it must be 

taken into account that the original training-test set split is severely 

influencing the predictions with DOkNN. The scores plot on the two 

first principal components of the mean-centred data (99.63% of the 

training set variance) shows that the original test set is outside the 

range of the training data (Figure 5.3a). Since kNN requires that the 

test samples be near or within the variable space of the training set, 

the Kennard and Stone’s (KS) algorithm was used to generate a new 

split into training and test set with the same number of objects for the 
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Figure 5.3 Score plot of Fearn’s dataset. a) Scores of original data. b) 

Scores of dataset split by KS.  Training samples (circles) and test samples 

(triangles).  
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training and test sets as in the original split. Figure 5.3b shows the 

PCA scores plot of the new training set (99.43 % of explained variance). 

It can be observed that the new test set is now within the space defined 

by the training set. 

 

For this new split the k value for kNN and the k and a values for 

DOkNN were selected again. The same k and a values and the same 

data preprocessing used for the original splitting were evaluated. The 

lowest values of RMSECV were found with k=3 for SNV-kNN and with 

k=2 and a=3 for DOkNN. The new test set provided an RMSEP of 1.29% 

for SNV-kNN and 0.28% for DOkNN. Again DOkNN predicted the best. 

kNN, besides of a favourable splitting of the dataset, also needs that 

the information in X be correlated to y. This correlation, in the original 

split, is higher than in the KS split when SNV is used. The correlation 

increases when DO is applied. The new sets were evaluated using PLS 

with five factors, giving an RMSEP of 0.23%. This value is lower than 

the RMSEP of DOkNN (0.28 %), however to build the PLS model was 

necessary exclude two objects of the training set (object 7 and 11 

which correspond to the objects 17 and 25 in the original split). 

Although in this case the PLS results are lower than the results 

obtained using DOkNN, it can be considered as an alternative 

multivariate calibration method. Figure 5.4 shows the reference vs. 

predicted plot for DOkNN (5.4a) and PLS (5.4b). This figure shows that 

similar results are obtained by both methods. 
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When DO is used as a preprocessing step, the predictions with kNN 

improve. However, the presumed insensitivity of the kNN predictions to 

the presence of outliers must not be taken for granted, since outliers 

may influence the predictions through their influence in the DO step. 

To prove this, an artificial outlier was added to the dataset: the 

variables of the object 1 in the KS training set were arbitrarily 

multiplied by four.  

 

When DOkNN was used, the optimal model (with the artificial outlier) 

was obtained with k=3 and a=4, with an RMSECV = 0.52%. The test 

set gave an RMSEP of 0.26% and R2=0.96. This shows that DOkNN can 

provide good predictions even if outliers are present in the training set.  

In contrast, PLS needs to be optimized and the outlier in the training 

set needs to be excluded to build the model. However, once the model 

is optimized, PLS provides good prediction results (RMSEP = 0.23 %). 

Figure 5.4 Predicted vs reference plot. a. Results of DOkNN(k=2,

a=3) and b. results of PLS (5F).
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Figure 5.4 Predicted vs reference plot. a. Results of 
DOkNN(k=2, a=3) and b. results of PLS (5F).  
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In this case the PLS model was built excluding objects 1, 5, 7 and 15, 

which correspond to objects 2, 15, 17 and 34 in the original split. 

 

In DOkNN, like in PLS, suspicious samples in X can be studied by 

plotting the x-residuals. For DOkNN, Figure 5.5 shows the x-residuals 

as the sum of the squared differences between the original matrix and 

the matrix after direct orthogonalization. Object 1 is identified as an 

outlier because of its abnormal high x-residual with respect to the rest 

of the objects. If the object is removed from the training set, the values 

of RMSEP and R2 do not vary (RMSEP = 0.26% and R2 = 0.96), thus 

indicating that the outlier in the training set did not influence the 

prediction by DOkNN.  

 

 

 

This is assuming that the outlier is present only in the X space, i.e. the 

reference y value is correct. Therefore, once the non-correlated 

information was removed with DO, the object is introduced into the 
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Figure 5.5. X-residual of DOkNN. High residual are

indicative of suspect outliers.

Figure 5.5 X-residual of DOkNN. High residual 

indicate of suspect outliers.  
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variable space and it can be used to predict. Figure 5.6 shows the first 

two PCs of the PCA applied to the Fearn’s dataset with the artificial 

outlier without DO (Fig. 5.6a) and with DO (Fig. 5.6b). We can see that, 

without DO (Fig. 5.6a) the outlier is out of the variable space in the 

training set, and far from the variable space of the test set. However, 

when the DO is applied (figure 5.6b) object 1 is introduced into the 

variable space.  

 

 

5.2.5 Pharmaceutical dataset 

 

The pilot data were evaluated with kNN without pre-treatment and 

after SNV, de-trending and DO with different values of a. 

 

Figure 5.7 shows the RMSECV obtained for k = 2 to 15 and a = 1 to 4. 

It is seen that kNN without pre-treatment or with detrending gives 

worse results than SNV-kNN and DOkNN. SNV-kNN and DOkNN with 

a=3 provide similar results. In both cases, the RMSECV decreased 

until k was equal to or lower than 7 with only a slight variation for 
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Figure 5.6. PCA scores of Fearn dataset with artificial outlier, 

calibration (circle) and validation (triangle). a) Scores without DO. 

b) Scores  with DO

Figure 5.6 PCA scores of Fearn’s dataset with 

artificial outlier, calibration (circle) and validation 

(triangle). a) Scores without DO. b) Scores  with DO  
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values greater than 7. Hence k = 7 was selected as optimal. Both SNV-

kNN and DOkNN yielded similar results, RMSECV=0.20% and R2=0.97. 

 

 

 

This can be explained by the similar values of the correlation coefficient 

between each variable in X with respect to y, when SNV or DO was 

applied (Figure 5.8).  This figure shows that a slight difference was 

found between the correlation coefficients, mainly for wavenumbers 

higher than 9100 cm-1. These higher correlations imply that similar 

nearest neighbours can be found and, therefore, similar values of 

prediction can be obtained. As the correlation coefficient is a measure 

of the degree of association between two random variables, this means 

that if the columns of X are correlated with y then nearest objects in X 

are related to nearest objects in y, thus increasing the performance of 

the kNN method. This figure also shows the correlation coefficients 

obtained with the dataset before pre-processing. In this case, the 

correlation coefficients are lower, which is reflected in the higher 
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Figure 5.7. Selection of the k and a values for 

Pharmaceutical dataset. Pilot scale data.

Figure 5.7 Selection of the k and a values for 

Pharmaceutical dataset. Pilot scale data.  
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RMSECV values. In this figure we can see that the correlation 

coefficients increase in the region where the characteristic bands of the 

tablet are found, i.e. 8830 cm-1[18]. This is important because this 

region can be used to find differences between nearest neighbours, i.e. 

in this region we can find the principal differences that can have an 

influence in the calculated distance between nearest neighbours and, 

therefore, in the predictions. For this dataset, RMSECV=0.30 % and 

R2=0.92 were reported in reference [18], obtained with PLS with second 

derivative data and using a method of variable selection (iPLS). Note 

that DOkNN and SNV-kNN provide better predictions (RMSECV=0.20 

%) than PLS.  

 

 

 

A second dataset, including pilot, full and laboratory scale batches was 

also evaluated by kNN with the same pre-treatment and k and a 

values. In this case, Dyrby et al [18] reported an RMSECV = 0.33% for 

a PLS model (using one component) with multiplicative scatter 

corrected (MSC) and first derivative data. 

Figure 10. Correlation coefficient of each variable in X with 

respect to y. 
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Figure 5.8 Correlation coefficient of each 

variable in X with respect to y 
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Figure 5.9 shows the results obtained for kNN. The worst result was 

obtained with kNN without pre-treatment. For DOkNN, k=5 and a=2 

were selected as the optimal values. kNN using de-trending gave 

RMSECV values lower than kNN without pre-treatment, but higher 

than those obtained for DOkNN and SNV-kNN, with a minimal value of 

RMSECV=0.68% with k=2. For this dataset the best results were 

obtained with SNV-kNN(RMSECV=0.33%with k=4), which is slightly 

lower than the obtained with DOkNN, i.e. RSMECV with DOkNN is only 

0.03 % higher than the obtained with kNN with SNV. The results 

obtained with SNV-kNN are comparable to the results obtained with 

PLS (RMSECV=0.33%). The higher RMSECV obtained with DOkNN can 

be explained by the higher y-residual of certain samples with respect to 

the overall of the samples analyzed. These samples correspond to the 

batches of the dosage of 5 and 20 mg/tablets done at full scale, and 5 

and 10 mg/tablets done at laboratory scale (figure 5.10). This figure 

Figure 5.9. Selection of k and a for the

pharmaceutical dataset. All data included.
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Figure 5.9 Selection of k and a for the 
pharmaceutical dataset. All data included. 
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shows that, while most of the samples have random residuals near 

zero, the batches pointed above, i.e. encircled in the figure 5.10, have 

atypical residuals. This can be due to the fact that the RMSECV was 

obtained by predicting a batch each time, i.e. the variability of each 

specific batch to be predicted is not represented in the model used to 

predict, which can generate bad predictions.  

 

 

 

Finally the complete dataset was divided using KS into training and 

test set with 186 and 124 samples respectively. In this case, only SNV-

kNN and DOkNN were compared. The optimal values obtained were 

k=4 for SNV-kNN and k=5 and a=2 for DOkNN. In both cases, the 

values of RMSEP and R2 were 0.25% and 0.96 respectively. Equal 

values are obtained because for this dataset there exists a high 

correlation between X and y, which makes that SNV-kNN tends to 

Figure 5.10. Prediction error of pharmaceutical dataset in the global model by

DOkNN. Grid divide the samples for each batch. F, P and L indicate the batch

obtained by full, pilot or laboratory scale respectively and the number indicate

the dosage of the analyzed sampled.

Figure 5.10 Prediction error of Pharmaceutical dataset in the global 

model by DOkNN. Grid divided the samples for each batch. Letter F, 

P and L indicate the batch obtained by full, pilot or laboratory scale 
respectively and the numbers indicate the dosage of the analyzed 

sample. 
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DOkNN. These values were compared with the results obtained with 

PLS using different pre-treatments (Table 5.1). This table shows that in 

all cases PLS gives worse predictions than DOkNN and SNV-kNN. The 

highest value of RMSEP was found using detrending (RMSEP=0.40% 

and R2=0.91), while SNV and MSC showed similar results 

(RMSEP=0.33% and R2=0.94).  

 

Table 5.1. Result for pharmaceutical dataset using Kennard and 

Stone’s for defining the training and test sets 

Pretreatment Model 

parameters  
RMSEP (%) R2 

PLS-SNV a = 3 0.33 0.94 

PLS-Detrend a = 2  0.40 0.91 

PLS-MSC a = 3 0.33 0.94 

kNN-SNV k = 4  0.25 0.96 

DOkNN k = 5, a = 2 0.25 0.96 

 

 
5.2.6 CONCLUSIONS 

 

The use of DOkNN as a local prediction method has been presented. 

The method is appropriate when the objects that are close in the 

variable space of X have similar values of the property of interest y. 

The prediction error of kNN is improved by removing the variability in 

X not correlated with y using direct orthogonalization. If the object to 

be predicted is not into or it is far from the boundaries of the variable 

space of the training set (i.e. space spanned by the objects in X) 

DOkNN gives large prediction errors. For the Fearn’s dataset, the split 

of the dataset into training and a test set with the Kennard and Stone’s 

algorithm improved the predictions by DOkNN.  
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Although SNV can also improve the prediction by kNN, this is only 

possible if the correlation between each variable in X and y is 

increased once SNV is applied to the dataset. This is not always the 

case, e.g. for the Fearn’s dataset. Also, contrary to SNV-kNN, DOkNN 

allows outlier detection in X, although these outliers may not affect the 

predictions obtained with DOkNN. Finally, DOkNN can provide similar 

or better predictions than PLS.  

 

DOkNN, like other methods as PLS, is largely influenced by errors in 

the reference y values because the direct orthogonalization step uses 

these values to orthogonalize the data. So, errors in the y values can 

affect the identification of the nearest neighbours. 

 

Work being developed will show the calculation of confidence intervals 

for predictions obtained from DOkNN. 
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6. Uncertainty of predictions with k-Nearest 

Neighbours 

6.1 Introduction 

 

In the previous chapter we introduced Direct Orthogonalization k-

Nearest Neighbours (DOkNN) for predicting continuous properties with 

kNN. kNN had already been used to predict quantitative properties in 

Analytical Chemistry. However, the uncertainty of those predictions 

was not reported. Uncertainty is a fundamental parameter of an 

analytical result, and any method should include the procedure for 

estimating the uncertainty of its results. In this chapter we present the 

estimation of the uncertainty of predictions obtained with DOkNN, 

based on the bootstrap bias corrected and accelerated (BCa) method.  

 

Bootstrap confidence intervals estimation is one of the most important 

areas of study of bootstrap methods and the Bias Corrected and 

accelerated (BCa) method is considered the best bootstrap method to 

compute the confidence intervals. BCa improves the accuracy, in terms 

of coverage and length of the intervals, of other bootstrap methods 

because BCa is obtained using a bias correction step.  

 

To obtain the uncertainty of the prediction of an unknown object, first 

the object is predicted using DOkNN. For this Direct Orthogonalization 

is used to remove irrelevant variability in the independent variables 

and improve the identification of the k neighbours which are used for 

prediction using kNN. Then the uncertainty of this prediction is 

obtained using bootstrap. For this a bootstrap sample, X*, is generated 

by resampling with replacement from the original training matrix X. 
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This new bootstrap sample is used to predict the unknown object using 

DOkNN and the predicted value is stored. This procedure is repeated B 

times, and then the B predictions are used to obtain the confidence 

intervals.  

 

The method was evaluated using the Fearn’s dataset to predict the 

protein content in ground wheat samples from NIR spectra. The 

predictions and their uncertainties, were compared with the 

predictions of PLS models. PLS confidence intervals were obtained 

using BCa like in DOkNN. DOkNN required the optimization of the k 

value used in kNN, and the number of factors a of the Direct 

Orthogonalization step. The prediction uncertainties were compared 

using the mean of the interval length values and the value of coverage 

probability for the test set. The length is the difference between the 

superior and lower values of the confidence interval and the coverage 

probability should be close to the standard 100(1-)%.  The 

uncertainties obtained using DOkNN are better than those obtained by 

PLS in terms of coverage probability; however, they are slightly higher 

in terms of interval length average.  
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Joe Luis Villa, Joan Ferré, Ricard Boqué* 

Department of Analytical Chemistry and Organic Chemistry. 
Universitat Rovira i Virgili 

C/ Marcel·lí Domingo, s/n. 43007 Tarragona, Catalonia (Spain) 
 
 

ABSTRACT 

 

We recently developed a new method for predicting continuous 

properties with the k-Nearest Neighbours (kNN) method called Direct 

Orthogonalization kNN (DOkNN). In this paper we use bootstrap to 

estimate the uncertainty of predictions with DOkNN. The method was 

evaluated using the Fearn’s dataset to predict the protein content in 

ground wheat samples from NIR spectra. Predictions together with 

their uncertainties were compared to the ones provided by PLS. DOkNN 

provided similar prediction results than PLS with RSMEP values of 

0.28% and 0.23% respectively. The uncertainty values obtained by 

DOkNN were compared with those obtained by PLS. The results show 

that the uncertainties obtained for DOkNN include a larger number of 

the reference values than those obtained by PLS, with coverage values 

69.5% and 61.5% respectively. On the other hand, the average interval 

length in DOkNN is 0.74%, which is higher than the average interval 

length for PLS, which is 0.45%.  

Keywords: Prediction methods; Nearest neighbours; Bootstrap; 

Uncertainty; BCa; Reliability. 
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6.2.1 Introduction 

 

The Direct Orthogonalization k Nearest Neighbours (DOkNN) was 

recently proposed [1]. This method provides predictions of continuous 

properties calculated as a weighted average of the property values of 

the k nearest neighbours of a sample.  The method compared 

favourably with other classical approaches, including Partial Least 

Squares (PLS) regression. In this paper we show the estimation of the 

sample specific uncertainty of the DOkNN predictions.  

 

In Analytical Chemistry kNN has been used to predict pharmacokinetic 

properties of drugs [2-4], but the uncertainty of the predictions was not 

reported. In the fields of mathematics and statistics [5, 6] an estimate 

of the variance of the kNN predictions was developed. This variance can 

be used to compute the uncertainty but it has not been used in 

analytical applications. In addition, the variance estimate by Altman [6] 

requires assumptions such as normality and low clustered data to be 

fulfilled, which are not always accomplished in chemical datasets. 

 

Uncertainty is a fundamental parameter of an analytical result. It is 

considered that ―a result without reliability (uncertainty) statement 

cannot be published or communicated because it is not (yet) a result” [7]. 

According to the ISO-GUM norm [8] the uncertainty of a calculated 

value is defined as a parameter, associated with the result of a 

measurement, which characterizes the dispersion of the values that 

could reasonably be attributed to the measurand. The two main 

methods for estimating uncertainty are error propagation and 

resampling strategies, such as jack-knife or bootstrap [9]. Bootstrap is 

a resampling method that can estimate a parameter   of the 
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distribution of a population from the samples collected from it [10-15]. 

A sample is here defined in a statistical way, that is, a random 

selection of a given number of objects of the population. By bootstrap, 

the estimated parameter,  ̂, is obtained as the mean of B estimations 

done from B bootstrap samples, where each bootstrap sample is 

obtained by random sampling with replacement from the original 

dataset.  

 

Confidence interval estimation is one of the areas where bootstrap has 

achieved major success, and different procedures are available [10-15]. 

Applications of bootstrap confidence intervals in the chemical and 

pharmaceutical fields can be found elsewhere [18-19]. 

 

In this paper we use Direct Orthogonalization k-Nearest Neighbours 

(DOkNN)   to predict a property of an unknown object and then we use 

bootstrap to provide the uncertainty of that prediction.  DOkNN is a 

variation of kNN for predicting continuous properties. The use of direct 

orthogonalization (DO) prior to kNN removes irrelevant variability in the 

independent variables and improves the selection of the k neighbours 

and, consequently, the prediction ability of the method. By 

bootstrapping, many new datasets X* (called bootstrap training sets) 

are generated from the original training set X. Then, for each bootstrap 

training set, DO is applied and a given unknown object is predicted 

using kNN. This procedure is repeated B times. These B predictions, 

obtained for all the bootstrap training sets, are used to compute the 

uncertainty of prediction.   

 

Several approaches have been developed to compute bootstrap 

confidence intervals, namely: basic, percentile, percentile-t and bias 

UNIVERSITAT ROVIRA I VIRGILI 
RELIABILITY OF CLASSIFICATION AND PREDICTION IN K-NEAREST NEIGHBOURS 
Joe Luis Villa Medina 
Dipòsit Legal: T.1521-2013 
 



 
Chapter 6 

 200 

corrected and accelerated [10, 20, 21], among others [22, 23]. Of them, 

the bias corrected and accelerated (BCa) method is considered to be 

the best in terms of coverage [11]. The coverage of BCa intervals is 

closer to the nominal value, i.e. the coverage obtained with BCa 

intervals is similar to the coverage to be obtained with a parametric 

method.  

 

According to Efron, BCa is better than other bootstrap methods in 

terms of accuracy [11]. This is because BCa is obtained using bias 

correction, which improves the results by increasing the coverage and 

reducing the length of the intervals. In this article the BCa method has 

been used to estimate the uncertainty of prediction from DOkNN.  

 

The proposed method was tested against the Fearn’s dataset to predict 

the protein content in ground wheat samples. Additionally, the 

uncertainties obtained were compared to the ones obtained with PLS 

regression. To compare the results, the BCa bootstrap method was 

used to obtain the uncertainty of prediction using DOkNN and PLS.   

 

6.2.2 Methods 

6.2.2.1 Direct Orthogonalization k-Nearest Neighbours  

 

With kNN a given property of an unknown object is predicted from the 

property values of its nearest neighbours in a calibration set, X. For 

this, the distances between the unknown object and all the objects in X 

are calculated and the k first nearest neighbours are used to predict 

the property of the unknown object as a weighted mean of the property 

values of the k nearest neighbours, Eq 6.1 [24]. 
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  ̂  ∑     

 

   

                                              

where       

    
 

  

 

∑
 
  

 
   

                                               

 

  ̂  is the property value assigned to the unknown object,     is the 

property value of the ith nearest neighbour (i=1,2,…,k), k is the number 

of nearest neighbours considered in the prediction, and di is the 

distance of the unknown object to the ith nearest neighbour in X.   

 

This method applies direct orthogonalization (DO) prior to the 

prediction with kNN [1]. DO removes the variability in X that is not 

correlated with y, thus improving the correlation between the 

transformed X and the variation in y [25]. In this way, the multivariate 

distances of the neighbours to a given object are better related to the 

property being modelled. In DOkNN, the value k used by kNN and the 

number of factors used in the DO step must be optimised. 

 

6.2.2.2 Uncertainty of prediction 

 

In multivariate calibration, three approaches are mainly used to 

estimate the uncertainty of predictions: the U-deviation approach [26-

27]; the Error-in-variables (EIV) approach [13, 28-29] and bootstrap 

resampling methods [21,30-31].  

 

The U-deviation and EIV approaches are based on the regression model 

and make use of some estimates (e.g., leverage) obtained from the 

model to compute the uncertainty. These methods, however, cannot be 
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applied to DOkNN to estimate the uncertainty of predictions; given that 

in DOkNN do not use regression estimates to do the predictions. 

Instead, resampling methods have to be used. In this paper we used 

the bootstrap resampling method.  

 

Bootstrap is used to generate empirical estimates of a statistic, ̂ and 

uses them to make inferences about the population [7]. In a predictive 

model the statistic to be estimated is the predicted value [31-32]. For 

this, B bootstrap samples, X*, are created by resampling with 

replacement from the original data. Then, each bootstrap sample is 

used to compute the statistic, ̂ . Finally, the B statistics ( ̂ 
     ̂ 

 ) 

obtained are used to infer about the population from which the data 

were taken. 

 

Calculation of confidence intervals is the major application of bootstrap 

[34]. The aim is to calculate a confidence interval ( ̂     ̂  ) of an 

estimate,  ̂, of a given parameter   from   bootstrap replications,  ̂ 
 , 

obtained using bootstrap samples,   
 . In all cases the confidence 

interval ( ̂     ̂  ) is obtained from the values in the bootstrap 

distribution found in the  -percentiles given by (   ) -th ordered 

values of the bootstrap distribution (i.e. bootstrap replications in 

ascending order,  ̂ 
   ̂ 

     ̂ 
 )[14].  

 

6.2.2.3 Bootstrap bias-corrected and accelerated method (BCa) 

 

In the BCa method the confidence intervals are obtained using: 

 

   ( ̂     ̂  )   ( ̂
 (  )  ̂ (  ))                        
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where  ̂ (  ) is the bootstrap parameter,  ̂ , and    and    are the 

position of the Bth order values of the bootstrap parameter,  ̂ , 

obtained with the B bootstrap samples, and they are used to obtain the 

confidence intervals.    and    are obtained as:  

 

    ( ̂  
 ̂   ( )

   ̂( ̂   ( ))
 

    ( ̂  
 ̂   (   )

   ̂( ̂   (   ))
                                      

 

 ( ) is the standard normal cumulative distribution function,  ̂  is the 

bias-correction,  ̂ is the acceleration factor and  ( ) is the 100 th 

percentile of a normal standard distribution. The value of  ̂  is the 

proportion of bootstrap replications lower than the observed estimated 

parameter,  ̂, and can be obtained as: 

 

 ̂    
  (

 * ̂ 
   ̂+

 
)                                         

 

where  * ̂ 
   +̂ represents the number of  ̂ 

  lower than  ̂, and     is 

the inverse function of a standard cumulative distribution function. 

The acceleration,  ̂, indicates the rate of change of the standard error 

of  ̂ with respect to the true parameter value   [7, 20]. The acceleration 

is used to correct the bias of the confidence intervals and it can be 

computed, as: 

 

 ̂  
∑ ( ̂(  )   ̂(  ))
 
   

 

 .∑ ( ̂(  )   ̂(  ))
 
   

 
/
 
 ⁄
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where,  ̂(  ) is the statistic estimated by a second level of bootstrap 

from the original sample and  ̂(  ) is the second level of the bootstrap 

replicate.  

 

Within the bootstrap methods used to obtain confidence intervals, BCa 

is considered the best [5] because BCa uses the bootstrapped sampling 

distribution to estimate the constants  ̂  and  ̂ , and uses them to 

remove the bias the confidence intervals generated using the 

percentiles of the parameters estimated using bootstrap. If  ̂  and  ̂ are 

zero the BCa method becomes the bootstrap percentile method [12, 

14], where the confidence intervals are obtained as 1-(1- ) and 1-  Bth 

ordered bootstrap parameter,  ̂ . Details about calculation of the 

confidence intervals using bootstrap can be found elsewhere [11-12, 

14, 23, 35-36]. 

 

6.2.2.4 Calculation of confidence intervals for DOkNN   

 

The steps to calculate the confidence intervals of the predictions by 

DOkNN are the following: 

i. Predict the test object, i, using DOkNN and the original training 

set, X, to obtain  ̂ .  

ii. Generate a bootstrap sample, X*, by resampling with replacement 

from X. 

iii. Predict the test object, i, using DOkNN and the bootstrap sample, 

X*, to obtain  ̂ 
  

iv. Repeat step ii and iii B times. 

v. Use the B predictions of the test object,  ̂ 
 , to compute the bias-

correction   ̂  using equation 6.5.  
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vi. Use the B predictions of the test object,  ̂ 
 , and  ̂  to obtain the 

acceleration using equation 6.6.  

vii. Obtain the values of    and    using equation 6.4 

viii. Obtain the BCa confidence intervals of prediction.   ̂ 
 . For this the 

values of the B predictions of the test object,  ̂ 
 , are ordered and 

the   ̂ 
  predictions in the position     and     are selected as the 

confidence intervals.  

 

6.2.2.5 Partial Least Squares confidence intervals 
 

In PLS regression the uncertainty of prediction is usually obtained 

using an estimation of the standard deviation of the prediction error. 

The most commonly used methods are the U-deviation [37] and the 

Error-In-Variables (EIV) method [29]. Of them, the U-deviation is the 

most frequently used because it is user-friendly. However, bootstrap 

resampling methods have also been used [38].  

 

6.2.2.6 Selection of the optimal parameters for prediction with DOkNN 

 

In DOkNN two parameters have to be optimized: the optimal k value for 

kNN and the optimal number of factors, a, used in the DO step. They 

were selected by leave-one-out cross-validation (LOOCV) in the training 

set, as in reference [1], using the criterion of minimal Root Mean 

Square Error of Cross-Validation (RMSECV), computed as: 

 

        √
∑ ( ̂       )
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 ̂     is the estimate for    when the object i was predicted and I is the 

number of training objects. Values of k between 2 and 15 and values of 

a between 1 and 6 were evaluated.  

 

According to Wherens et al. [14], to compute the bootstrap confidence 

intervals, a minimum of 1000 bootstraps is required. Particularly they 

used 1999 and in this paper we used this value as the optimal.  

 

6.2.2.7 Comparison of the confidence intervals   

 

DOkNN prediction uncertainties were compared to the ones obtained 

with PLS regression [26, 28]. The prediction uncertainties were 

compared using the mean of the interval length values [12] and the 

value of coverage probability obtained for the test set in each dataset 

evaluated. For a given test object, the length is computed as:  

    

        ̂    ̂    

 

where  ̂   and  ̂    are the upper and lower levels of the confidence 

interval, respectively. The percentage of coverage probability is 

computed as the percentage of the test objects for which the ―actual‖ 

value of the property lies within the confidence interval found. Better 

results are obtained with lower values of the length average, which are 

indicative of the precision of the results, and values of coverage 

probability close to the standard 100(1-)% [13] , which are indicative 

of the accuracy of the results, i.e. the confidence intervals computed 

include the real value of the evaluated objects in the test set.  
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6.2.3 Results and Discussion 

6.2.3.1 Fearn‟s dataset 

 

In this section we compare the confidence intervals obtained with 

DOkNN with those obtained by PLS, both were calculated using BCa 

bootstrap. First, the Kennard and Stone’s algorithm was used to split 

the data into training and test sets.  

6.2.3.1.1 Selection of the optimal parameters for DOkNN and 

PLS. 
  

The k value for kNN and the number of factors, a, used in the DO step 

of DOkNN, were optimized in [1] for the Fearn’s dataset. For the KS 

split, k=2 and a=3 were selected as optimal. For PLS the optimal 

number of factor was 5 and the calibration model was optimized 

excluding the objects 7 and 11 in the training set.   

 

6.2.3.1.2  Comparison of the uncertainties of prediction   

 

Figures 6.1 and 6.2 show the predictions obtained with DOkNN and 

PLS, respectively, for the Fearn’s dataset. The reference value and the 

uncertainty of prediction obtained for each method are also indicated.   

 

The PLS model (mean-centered data and 5 factors) with the Kennard 

and Stone’s split yielded RSMEP values of 0.23 % and 0.28 % for 

DOkNN. Table 6.1 compares the average interval length and the 

coverage probability computed for both DOkNN and PLS.  
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Figure 6.2 PLS prediction (black point), Reference values 
(white point) and uncertainty measure obtained by Bootstrap 

using PLS. 
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Figure 6.1 DOkNN prediction (black point), Reference values 

(white point) and uncertainty measure obtained by 
 Bootstrap using DOkNN. 
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For PLS 61.5% of the confidence intervals computed included the 

reference value.  DOkNN had a coverage probability of 69.5 %, i.e. the 

reference values of 17 out of the 26 predicted objects were within the 

confidence intervals computed. The standard coverage probability was 

obtained as 100(1-)%. In this case, given that  =0.05, the standard 

coverage probability was 95.0%. This means that, concerning coverage 

probability, the confidence intervals obtained using DOkNN and 

bootstrap BCa were better than those of PLS, because the coverage 

probability obtained with DOkNN was closer to the standard 95.0%. 

The average interval length for PLS was 0.45%, while for DOkNN was 

0.75%. This means that the confidence intervals obtained with DOkNN 

are largest than the obtained with PLS. This difference can explain the 

difference observed in the coverage probability. The small differences in 

the RSMEP of both DOkNN and PLS models means that the predictions 

are very similar, therefore slightly higher interval lengths increase the 

probability that the reference value be contained in the interval. The 

differences in the length of the confidence intervals can be explained 

because PLS modelled the training data using all objects and, 

therefore, the small changes done in the training dataset when 

bootstrap is applied almost do not affect the model and the prediction 

results. In this sense, the predictions obtained for each object for each 

bootstrap set are very similar, thus making that the uncertainties 

Table 6.1. Coverage Error and Length Average for DOkNN and PLS 

for Fearn’s data Set with Kennard and Stone’s Split 

Method 

Fearn’s Data Kennard and Stone’s Split 

coverage probability 
Average of the Length 

Values 

PLS* (BCa) 61.5% 0.45% 

DOkNN 69.2% 0.74% 
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obtained and, therefore, the length are narrower. DOkNN, however, 

uses only the nearest objects of the unknown object to compute the 

predictions and small changes in the dataset can change significantly 

the prediction results and therefore their uncertainties. 

 

6.2.4 Conclusions 

 

DOkNN can be used for predicting continuous properties with a 

performance comparable to PLS. In this paper we have shown how to 

compute the uncertainty of the predictions of DOkNN using bootstrap. 

The uncertainties obtained are better than those obtained by PLS in 

terms of coverage probability and slightly higher in terms of average of 

length.  

DOkNN combined with BCa bootstrap is useful to build multivariate 

predictive models and to calculate the uncertainty of the predicted 

values. Finally, a disadvantage of DOkNN with BCa Bootstrap is that 

the length of the uncertainties obtained can be higher than those 

obtained using PLS.  
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7. Conclusions 

 

7.1 Introduction 

 

This chapter contains the conclusions of this thesis and some 

suggestions for future work about the reliability of classification and 

prediction using k-nearest-neighbours (kNN).  

 

Multivariate classification models and multivariate calibration models 

are commonly used in Analytical Chemistry. The output of these 

models, i.e., a predicted class label, or a predicted value of a certain 

property, must be reported together with the degree of certainty of the 

result. Due to the complexity of the mathematics involved, the 

calculation of the reliability is not a direct task and it is a current 

concern for those applying multivariate methods. 

 

This thesis has focussed on the calculation of the reliability values for 

the kNN classification method, and for a new calibration method that 

uses kNN for predicting continuous properties. Progress was made on 

the use of resampling methods (specifically bootstrap) to estimate the 

reliability of classification and prediction results. The classification and 

prediction method chosen was kNN, but some of the ideas produced in 

this thesis might be applied to other multivariate methods of 

classification and prediction. 
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7.2 About the reliability of classification using kNN 
 

In the classical kNN method, a probability of correct classification is 

calculated only from the total number of evaluated neighbours (k) and 

the number of neighbours that belong to the selected class (kc). This 

measure takes the same value for any unknown object over the 

variable space that has the same value of kc. In order to obtain a value 

of reliability of classification that depends on the particular location of 

every unknown object, the probabilistic bagged kNN (PBkNN) was 

proposed. This method uses bootstrap to provide, for each evaluated 

object, a class label and a reliability value between 0 and 1 indicating 

the certainty of the assignment. This reliability value can, at the same 

time, be used in a classification rule so that the most reliable label is 

assigned. The use of bootstrap in this procedure allows the method to 

provide a different reliability value depending on the position of the 

object in the variable space with respect to the objects of the training 

set. With this approach, PBkNN provided better classification results 

than classical kNN and results that are comparable to those of LDA. 

A second piece of work showed the influence of the uncertainty on the 

independent variables in the dataset on the reliability of classification. 

A new classification method, U-bootstrap, that combines kNN and 

bootstrap was presented. This method takes into account the 

uncertainty in the independent variables and uses it to generate a new 

dataset that is used to classify an unknown object. This procedure is 

repeated B times and the results are used to obtain the reliability of 

classification. With this method, the reliability of classification was 

seen to vary depending on the uncertainty in the dataset and 

depending on the position of the unknown object in the variable space 
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of the training set. For a given unknown object, the reliability of 

classification decreased when the uncertainty in the dataset increased.  

 

7.3 About the reliability of prediction using kNN 

 

A modification of kNN was proposed to predict continuous properties. 

Direct Orthogonalization k-Nearest Neighbours (DOkNN) uses a 

preliminary direct orthogonalization (DO) step, followed by kNN to 

predict continuous properties as a weighted mean of the property 

values of the neighbours. The prediction error in DOkNN decreases as 

the variability in X that is not correlated with y is removed. For this 

reason, a preliminary orthogonalization step was added. This local 

prediction method also performs better when the unknown object is 

inside the boundaries of the variable space of the training set (i.e. 

space spanned by the variables in X). In addition, DOkNN allows 

outlier detection in X, although the method itself is largely insensitive 

to the presence of outliers due to its local character. With the tested 

datasets, DOkNN provided similar or better predictions than PLS. 

DOkNN, like other methods as PLS, was largely influenced by errors in 

the reference y values because the DO makes use of these values. 

Hence, large errors in the y values can adversely affect the 

identification of the nearest neighbours. 

 
Finally, DOkNN combined with BCa bootstrap was able to provide the 

uncertainty of the predicted values. BCa uses B bootstrap samples 

from the training set to predict the unknown object. Then these B 

prediction values are used to obtain both the constant used to correct 

the bias and the confidence interval of the prediction. The uncertainties 

obtained were lower than those obtained by PLS in terms of coverage 
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probability and slightly higher in terms of average of the length of the 

interval. 

 

7.4 Future work  

 

Although the proposed methods were able to improve the classification 

and prediction results obtained with kNN, there is still room for 

improvement on aspects such as: 

 Probabilistic bagged kNN (PBkNN) and DOkNN work optimally 

for large training sets. Future works might focus on strategies 

for training the classifier using only a few training samples. 

Bootstrap strategies can be developed in this direction. 

 BCa Bootstrap calculated uncertainties for DOkNN are higher 

than those obtained with PLS, for this reason future work can 

focus on the development of new methods to estimate the 

variance of prediction in order to improve the uncertainty 

measures for DOkNN.  
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