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Chapter 1

Introduction

1.1 Introduction

Economic agents often face decisions that imply comparing costs and benefits

occurring at different points in time. Decisions made in the present usually have

consequences in the future, in the sense that they can restrict the set of available

opportunities, extend it or even modify costs and benefits associated with each

alternative. For instance, consider someone who is planning how much is he or

she going to save for retirement. The amount of money saved today affects not

only the individual’s current consumption but also his or her future consumption

possibilities. Saving more today implies less present consumption, and hence a

decline in the current utility. On the other hand, the saving decision enables the

agent to consume more in the future, increasing the future utility. These kind of

decisions with multi-time consequences are usually referred to as intertemporal

choices. From choosing whether to start a diet today or put it off until next week,

whether to borrow money in the capital market, whether to build up a pension

fund or whether to put effort in our job to improve our position in the future,

intertemporal choices are ubiquitous in everyday life.

In order to trade off costs and benefits occurring at different times, agents must

make them comparable by discounting future payments at a reference point. The

question of how people actually discount delayed payoffs has called the attention

not only of economists, but also of psychologists, sociologists and other social

science researchers over the last two centuries, and the theory of intertemporal

choice has developed dramatically. This literature is doubtless highlighted by

Samuelson (1937) who, relying on several assumptions, achieved a simple and

elegant formulation that was rapidly adopted as the natural framework for the

1



2 1. Introduction

analysis of intertemporal decisions: the Discounted Utility model.

A central assumption made by Samuelson was that the individual time pref-

erence could be characterized by a single parameter: the rate of time preference.

Apart from the simplicity of this approach, the appeal of the Discounted Util-

ity model was also that allowed researchers to analyze intertemporal choices by

means of the full range of economic and mathematical tools used in other con-

texts. However, the simplicity of a given model may have a detrimental effect

of the model’s accuracy, and Samuelson’s manifest reservations about the de-

scriptive validity of his model were justified some years after by experimental

evidence suggesting that people often behave in ways that are inconsistent with

the Discounted Utility model.

The insights derived from empirical research about intertemporal choice led

economists and other researchers to develop new models trying to capture the

anomalies reported. For instance, hyperbolic discount functions have been used

to model the greater impatience in the short term (Laibson (1997), (1998), An-

geletos et al. (2001)); habit formation models formalized the idea that the current

tastes can depend on past consumption (Duesenberry (1952), Pollack (1970), Heal

(1973)); or models considering the anticipation of future pleasures (or pains) as

a source of utility (Loewenstein (1987), Caplin and Leahy (2001)). These exam-

ples illustrate the ways in which the theory has developed over the last decades.

While some models tries to achieve greater realism by modifying the discount

function (hyperbolic discounting), others have focused on the utility function by

incorporating new arguments (habit formation models; utility of anticipation).

Despite the different theoretical models proposed, nowadays it does not ex-

ist, to the best of our knowledge, a clear alternative to the Discounted Utility

model. This may well be due to the wide range of different decisions, situations

or problems to which the terms “intertemporal choice” could refer, as well as

the variety of factors affecting people willingness to trade off present and future

satisfactions. In fact, before the formulation made by Samuelson in 1937, discus-

sions about intertemporal choice interpreted these kind of decisions as the joint

product of many psychological motives.

The heterogeneous discounting model, which is the central topic of this disser-

tation, is encompassed in the group of theoretical models that relaxes assumption

of a unique constant discount rate of time preference. First proposed in Maŕın-

Solano and Patxot (2012), this model is adequate to model situations in which,

in contrast to the hyperbolic and standard discounting, the bias to the present

does not remain constant along time. As we discuss in section 5, there are several
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problems that seem to be good candidates for this description such as human

capital formation or retirement and pension models.

Before explain the heterogeneous discount model in more detail, in Section

2 we briefly review the history of intertemporal choice theory until the formu-

lation of the Discounted Utility model. Starting by the ninetieth century, we

will try to point out the psychological foundations of the earliest conceptions of

intertemporal choice. This will serve to better understand what is encompassed

in the rate of time preference as it is used in the Discounted Utility model, the

limitations of such formulation, as well as to motivate the heterogeneous pref-

erences. After presenting the Discounted Utility model, in Section 3 we review

its corresponding assumptions and implications, paying special attention to those

relaxed by the introduction of heterogeneous discounting. Section 4 is devoted to

describe the hyperbolic discount function and its main features. Revising hyper-

bolic models will be useful in order to stress the differences between them and

the heterogeneous discounting model, which we present in Section 5. In Section

6 we explain different solution concepts which are usually considered in the non-

constant discounting literature. Finally, the structure of the dissertation as well

as our contributions are presented in Section 7.

1.2 The early perspectives of intertemporal choice

The evolution of the history of intertemporal choice highlights different stages

until the formulation of the Discounted Utility model in 1937. Beginning in the

1830’s, early discussions on the topic considered intertemporal choice as an amal-

gamation of many psychological motives, and although the incorporation of psy-

chological insights were the overall trend during the ninetieth and early twentieth

century, it is possible to discern a progressive deviation of the attention towards

a more robust mathematical formulation culminating with the Discounted Utility

model.

The Sociological Theory of Capital, published in 1834 by the economist John

Rae, is considered the starting point for the economic theory of intertemporal

choice. Trying to explain why wealth differed among nations, Rae provided the

first in-depth discussion of the psychological factors underlying intertemporal

choice. Earlier economists, such as Adam Smith, had argued that national wealth

differed among countries due to differences in the allocation of the surplus prod-

uct between production of capital and consumption. Although Rae acknowledged

such accounts, he thought they were incomplete since did not reveal on what did
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that accumulation depend. From his point of view, such differences depended on

the “effective desire of accumulation”, or the people willingness to defer gratifi-

cation. In addition, he identified four major determinants that either promoted

or limited this desire. The bequest motive and the self restraint, which is defined

as “the extend of intellectual powers, and the consequent prevalence of habits of

reflection, and prudence, in the minds of the members of society” (p.58), were the

two factors that promoted the desire of accumulation. On the other hand, the

uncertainty of human life and the excitement for immediate consumption were

the factors that limited the desire. According to Rae, the joint product of these

factors determined someones’ time preference.

Two years after the publication of Rae’s book, N.W. Senior expounded a

new theory of capital that, like Rae, emphasized the psychological side of the

intertemporal choice. Senior (1936) proposed a psychological explanation for in-

terest arguing that the reason why it should be paid on a capital sum was to

compensate the holder of the capital for deferring the gratification of immediate

consumption. “To abstain from the enjoyment which is in our power, or to seek

distant rather than immediate results, are among the most painful exertions of

the human will” (p. 60). Hence, Senior’s abstinence perspective considered that

individuals dispensed equal treatment to present and future, explaining the im-

patience, or the overweighting of the present, to the pain associated with putting

off consumption.

Jevons (1871) took a similar view of intertemporal choice to that of Senior,

in the sense that both authors considered decision makers highly influenced by

their immediate emotions. However, in Jevons view, the reason that led the

agent to defer consumption was the presently felt pleasures he obtained when

contemplating future consumption. Thus, the individual defers consumption only

if the increase in the anticipated utility more than compensates for the decrease

in the utility derived from immediate gratification.

In 1889, Bohm-Bawerk added a new motive to the list of determinants of time

preference mentioned by Rae, Senior, and Jevons. His original contribution was a

systematic tendency to underestimate future wants, .i.e., humans beings lack the

capacity of making a complete picture of their future wants, specially the more

distant ones. Although his voluminous work was mostly devoted to the study of

the psychological constituent of time preference, Bohm-Bawerk analysis is also

highlighted by being the first to consider the allocation of consumption along time

as a trade off of satisfactions at different points. In consequence, Bohm-Bawerk’s

work occupies a pivotal position in the history of intertemporal choice theory, in
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the sense that his approach paved the way for the subsequent deviation of the

focus towards a mathematical formulation of decision making problems to the

detriment of the psychological determinants.

Bohm-Bawerk “technical” view of intertemporal choice was formalized by

Fisher in 1930 (Fisher (1930)). Fisher (1930) was the first to apply indifference

curve tool to study the intertemporal decisions and to formulate Bohm-Bawerk

theory in mathematical terms. By plotting consumption in the current year on

the abscissa, and consumption in the following year on the ordinate, the indiffer-

ence diagram showed different levels of current and future consumption between

which the individual is indifferent. The slope of the tangent at points intersecting

the 45◦ line departing form the origin, which represent the agent willingness to

give up consumption today in exchange for consumption in the next period, can

be viewed as the “pure time preference”. Fisher writings also included discussions

about the psychological constituents of time preference. To the list considered

by Rae, Fisher added “foresight” or the ability to imagine future wants (the op-

posite of Bohm-Bawerk deficit), and “fashion”, which he belived to be “of vast

importance to a community, in its influence on the rate of interest and on the

distribution of wealth itself” (Fisher (1930), p. 88).

1.3 The Discounted Utility model

The Discounted Utility (DU) model was proposed by Samuelson in 1937 on a five

page article entitled “A Note on the Measurement of Utility”, and was rapidly

adopted as the standard model for analyzing problems with a temporal com-

ponent. Although his predecessors already had described the basic economic

relations in intertemporal choice, none of them had proposed a generalized model

including any number of outcomes and periods. Samuelson achieved such a for-

mulation with the DU model. However, in his simplified model the individual

time preference were characterized by a single parameter, his discount rate, that

compressed all the psychological factors discussed by earlier economists.

The first basic assumption made by Samuelson was to consider that “during a

specified period of time, the individual behaves so as to maximize the sum of all

future utilities, they being reduced to comparable magnitudes by suitable time

discounting” (p. 156). Mathematically, the aim of an individual was to maximize

J =

∫ T

0

V (x, t) dt ,
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where V (x, t) is the utility of income x at time t, and [0, T ] is the period of time

considered. The second, and perhaps more decisive assumption, was to consider

discounting as independent of consumption. Thus, V (x, t) was considered to be

composed by two different components: the utility of income U(x) capturing

variations in the utility derived from differences in level of consumption, and a

discount factor accounting for the weight assigned at every time in the planing

horizon t ∈ [0, T ]. In fact, Samuelson went further and he considered that such a

discount factor was ”known to us” (p. 156) and described by an exponential dis-

count function with a constant discount rate of time preference. In consequence,

with this second assumption, the individual considered by Samuelson sought to

maximize

J =

∫ T

0

e−δtU(x) dt ,

where δ represents the agent’s pure rate of time preference to which all disparate

psychological motives were ascribed.1

Hence, by means of a simple and general formulation the model was able to

capture the basic economic relations between payments distributed over time.

However, Samuelson was very cautious in presenting his model, and along his

exposition he tried to stress any arbitrariness of the underlaying assumptions: “It

is completely arbitrary to assume that the individual behaves so as to maximize an

integral of the form envisaged in (the DU model). This involves the assumption

that at every instant of time the individual’s satisfaction depends only upon

the consumption at that time, and that, furthermore, the individual tries to

maximize the sum of instantaneous satisfactions reduced to some comparable

base by time discount” (p. 159). Despite his manifest reservations, the DU

model eventually became the standard framework for the analysis of decisions

with a temporal component, at least until the 80’s. For this reason, we briefly

analyze the implications of the assumptions inherent to Samuelson’s model that

have special relevance to motivate the heterogeneous discounting.

• Independence between discounting and consumption

Although the DU model was intended to explain only preferences over

money income, its subsequents applications has covered a very wide range

of problems, from saving and investment behavior to labor supply or even

policy issues. In this sense, the model assumes that the discount function is

the same for all kind of goods and all categories of intertemporal decisions,

1This is why Samuelson’s model is also called exponential discounting or constant discounting
model. Along this dissertation, we will make use of these terms without distinction.
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and this is in contradiction with several empirical evidence. For example,

some studies show that people discount gains more than losses (Loewen-

stein (1987), Thaler (1981)), or that small amounts are discounted more

than large amounts (Thaler (1981)). The literature has usually dealt with

this questions by incorporating new arguments in the utility function. To

cite an instance, Loewenstein and Prelec (1992) used the so called reference-

point dependent utilities, which evaluates outcomes considering departures

from a reference point, to account for these kind of anomalies.

However, it is important to remark that the rate of time preference, just as

presented by Samuelson, condensed all the disparate factors considered in

the earliest discussions about intertemporal choice. Consequently, within

the framework of the DU model, the diversity of factors that could affect

one’s willingness to trade off between current and future satisfaction, such

as patience or impatience, imagination of future, anticipation or bequest

motive, are supposed to play the same role in any kind of decision, ruling

out any sort of heterogeneity in the degree to which people discount different

sources of utility.

• Constant discounting and time consistency

The assumption of an exponential discount function with a constant rate of

time preference implies a neutral attitude toward time delay, i.e., shifting

a given outcome in time has the same impact on the individual preferences

regardless of when it occurs. This assumption permits to summarize the in-

dividual time preference in his single discount rate. In addition, preferences

described by such a discount function are time-consistent. It means that

what is optimal from today perspective will be still optimal for tomorrow

point of view and, consequently, plans made for the future will be carried

out.

In fact, although Samuelson proposed exponential discounting as an arbi-

trary assumption, in 1956 Robert Strotz showed that the constant expo-

nential discounting is the only discount function that guarantees dynamic

consistency. Departing from the DU model with a general discount function,

Strotz (1956) sought to determine under which circumstances an individual

who is allowed to reconsider his plans continuously would confirm his pre-

vious choices. His answer was that an agent would stick with her previous

plans if, and only if, the logarithmic rate of change in the discount function

is a constant, i.e., the discount function must be of the form proposed by
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Samuelson. The intuition behind the constant logarithmic rate of change is

that the marginal rate of substitution between two future outcomes depends

only on the length of time between them, thus “the relative importance of

1957 and 1958 is the same in 1957 as in 1956. Consequently, when in 1956

one decides how to apportion consumption between 1957 and 1958, this is

the same decision one would make in 1957” (Strotz (1956), p.172).

Although these kind considerations about the independence between con-

sumption and discounting, as well as about the constant discounting and time

consistency, are at the core of the heterogeneous discounting model, there are

other assumptions inherent to Samuelson’s one. Next, we summarize other fea-

tures of the DU model as it is commonly used by economists.

• Consumption independence: Consumption independence means that con-

sumption in one period has no effect in consumption in other periods. This

means, for example, that someone’s preferences about having diner in a

Japanese restaurant today is not influenced by the fact of having had a

Japanese diner the day before. Besides analytical simplicity, consumption

independence does not seen a real assumption. As Koopmans (1960) ac-

knowledged, “one can not claim a high degree of realism for (consumption

independence assumption), because there is no clear reason why comple-

mentarity of goods could not extend over more than one time period.” (p.

292).

• Stationary utility function: The DU model assumes that the instantaneous

utility function does not change along time, i.e., that preferences do not

change with time. Although this is not a realistic assumption, it is usually

maintained for analytical convenience.

• Utility independence: Another underlying assumption of the DU model is

that given two outcome streams, its global utility is obtained by adding its

discounted values at some reference point, and hence, equal streams have

the same overall value. Consequently, this assumption rules out preferences

for specific distributions of payments along time.

• Positive time preference: Although is not explicitly assumed in the DU

model, it is usual to consider a positive rate of time preference.

To sum up, the formulation made by Samuelson relies on some arbitrary as-

sumptions that provides the model with some important properties. In this sense,
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dynamic consistency is one of its most appealing features. However, a large body

of research has casted serious doubts on whether people really behave as the model

predicts or not, and virtually every underlying assumption has been called into

question. Of particular interest to this dissertation are the independence between

consumption and discounting assumption, and the constant discounting one. In

fact, departures from constant discounting have recieved an important part of

researchers’ efforts to achieve greater descriptive realism and, in this sense, the

literature about hyperbolic discounting is vast. The key feature of this models

is their capacity to capture qualitative aspects of present biased preferences, a

phenomenon widely observed in empirical studies. Nevertheless, like the standard

model, hyperbolic discounting does not distinguish between different sources of

utility, and this is precisely the assumption relaxed by the heterogeneous discount-

ing model. As a result, as we detail in the next two sections, both approaches

give rise to time-inconsistent preferences, although there are several qualitative

aspects that set the two models apart.

1.4 Hyperbolic discounting

One of the most challenged assumptions of the DU model is that people discount

future payments at a constant rate. Thaler (1981) was the first to check the

accuracy of this conjecture. In particular, the hypothesis to be tested was that

the discount rate implicit in intertemporal choice vary with the length of time

to be waited. By asking university students the amount of money that would

be necessary to compensate a delay of a given capital, the results suggested that

participants’ discount rate did not remain constant but seemed to decline as delay

of time increased. The publication of Thaler’s work triggered a spate of empirical

studies supporting the observation of this phenomenon known as hyperbolic dis-

counting (Benzion et al. (1989), Chapman (1996), Redelmeier and Heller (1993)).

In addition, another kind of studies pointed out “preference reversals”(Millar and

Navarick (1964), Green et al. (1994b), Kirby and Herrnstein (1995)). Reversion

occurs when preferences between two future outcomes switch in favor of the more

proximate one when delay is reduced, for instance, one may prefer receive 110

Euros in one year plus one day to receive 100 Euros in one year and, at the

same time, she may prefer receive 100 Euros today than 110 Euros tomorrow. In

other words, evidence shows that people is often more impatient about choices

in the short term compared with those in the long run, and such a dynamically

inconsistent behavior is entirely consistent with hyperbolic discounting.
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In view of empirical findings, considerable literature has been devoted to the

implications of hyperbolic discounting. In fact, yet Strotz (1956) thought that

alternatives to standard discounting should be considered, arguing that there is

“no reason why an individual should have such special discount function” (p.

172) and, from his point of view, the case of declining discount rates deserved

special attention. However, he did not propose an alternative discount function.

Phelps and Pollak (1968) introduced the (β, δ) formulation in a intergenerational

altruism model

D(t) =

{
1 if t = 0

βδt if t > 0,
(1.1)

that has been also called quasi hyperbolic discounting since it captures many of

the qualitative aspects of hyperbolic discounting. The (β, δ) formulation has been

widely used in the literature. For instance, Laibson (1997) used the formulation

in (1.1) to explore the role of illiquid assets (golden eggs) as a commitment mech-

anism to correct overconsumption. In addition to (1.1), other discount functions

have been proposed, for instance the generalized hyperbola D(t) = (1 + αt)
−γ
α ,

with γ , α > 0 proposed in Loewenstein and Prelec (1992).

The main characteristic of hyperbolic discount functions is that they decline at

faster rate in the short run than in the long term, and hence all induce dynamic

inconsistency. The sort of inconsistency arising from hyperbolic discounting is

probably one of its more appealing features, since it allows to capture present-

biased preferences, whereby people pursue immediate gratification in ways that

tend to conflict with their long term well-being. Hyperbolic discount functions

have been used to study many situations: addiction and self control (Carrillo

(1999)), procrastination, since hyperbolic discounting leads an agent to post-

pone a tedious activity more than she would like from a previous perspective

(O’Donoghue and Rabin (1999a), (2000)), consumption-saving behavior (Angele-

tos et al. (2001), Laibson (1997)), or retirement planning (O’Donoghue and Rabin

(1999b)).

1.5 Heterogeneous discounting

Although hyperbolic discounting relaxes the assumption of using a constant dis-

count rate for all time periods, it does not solve all the DU model anomalies.

As discussed above (see also Frederick et al. (2002)) the standard model also

assumes that the discount rate is the same for all type of goods and all cate-

gories of intertemporal choices, and this is in contradiction with several empirical
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regularities. Maŕın-Solano and Patxot (2012) introduced a new approach giving

rise (as in the case of hyperbolic discounting) to time-inconsistent preferences:

the heterogeneous discounting. In that paper, the authors considered a problem

in which the decision maker had to maximize her intertemporal utility over a

finite period of time [0, T ] considering heterogeneity in the degree to which the

individual discounted different sources of utility.

In general, in problems with a bounded planing horizon it is usual to introduce

a final utility function accounting for the state of the problem at the final time,

i.e., the intertemporal preferences at time t ∈ [0, T ] take the form

∫ T

t

D(s− t)L(x(s), u(s), s) ds+D(T − t)F (x(T ), T ) ,

where the discount function D(τ−t) represents how the agent at time t discounts

future utilities enjoyed at some future point τ > t; the function L(x(s), u(s), s)

measures the instantaneous utility derived from choosing the control u(s) at time

s, when the state is x(s). L(x(s), u(s), s) is usually related to consumption and

hence to immediate gratification; and the function F (x(T ), T ) denotes the ter-

minal value associated with the final state x(T ). Depending on the context,

F (x(T ), T ) is called scrap function, terminal value function or bequest function.

Maŕın-Solano and Patxot (2012) relaxed the assumption of a constant discount

rate for all kind of goods by introducing different discount rates for utilities

enjoyed along the planning horizon and for the final utility or final function.

Hence, the individual sought to maximize

∫ T

t

e−δ(s−t)L(x(s), u(s), s) ds+ e−ρ(T−t)F (x(T ), T ) . (1.2)

Impatient agents over-valuing instantaneous utilities L(x(s), u(s), s) in com-

parison with the final function F (x(T ), T ) are characterized by ρ > δ. However,

when time passes, the final function increases its relative value in comparison with

instantaneous utilities in a way that can not be described using the standard or

the hyperbolic discount functions. In order to see this effect, consider the case

ρ > δ and rewrite (1.2) as

∫ T

t

e−δ(s−t)L(x(s), u(s), s) ds+ e−δ(T−t)e−(ρ−δ)(T−t)F (x(T ), T ) , (1.3)
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or simply

∫ T

t

e−δ(s−t)L(x(s), u(s), s) ds+ e−δ(T−t)F̄ (x(T ), t, T ) , (1.4)

with F̄ (x(T ), t, T ) = e−(ρ−δ)(T−t)F (x(T ), T ). It is easy to see that

∂F̄ (x(T ), t, T )

∂t
= (ρ− δ)e−(ρ−δ)(T−t)F (x(T ), T )

is positive or negative depending on the sign of (ρ − δ). Since for this il-

lustrative example we have assumed ρ > δ, the actual valuation of the final

function of the agent, F̄ (x(T ), t, T ) = e−(ρ−δ)(T−t)F (x(T ), T ), is an increasing

function in t. Hence, as long as the agent approaches to the end of the plan-

ning horizon, the current final function increases, i.e., e−(ρ−δ)(T−s2)F (x(T ), T ) >

e−(ρ−δ)(T−s1)F (x(T ), T ) for s1 < s2, si ∈ (t, T ).

There are several problems that seem to be good candidates for this descrip-

tion. For example, to motivate their model Maŕın-Solano and Patxot (2012)

focused on a situation in which the agent has to exert herself to consume a par-

ticular good, that they labeled as arduous good. In order to stress that effort

comes before enjoyment, they considered the extreme case in which the arduous

good would be only enjoyed in the final period T , being F (x(T ), T ) the cor-

responding utility function. Consequently, this effort affects the corresponding

discount rate by increasing it.

Other problems which can be represented by this model include consumption

and portfolio rules problems or retirement and pension problems. For instance,

consider a decision-maker who is planning on how much to save for her retirement.

Typically, individuals are much more concerned with life quality after retirement

when retirement age is approaching, in comparison with their concern about their

post retirement life when they look at it from a long distance, for instance, when

they are young. Alternatively, we could think in an agent solving a consumption-

portfolio rules problem where the final function represents a bequest function

for her descendants. The individual is much more concerned with life quality

of her descendants when she becomes older. Other applications of (1.2) could

be cooperative differential games with two (or more) agents, one just concerned

about immediate rewards, and the other more conservative and worried by the

final state.
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1.6 Heterogeneous vs. Hyperbolic discounting

Let us briefly compare the type of time-inconsistency for an impatient agent (say,

agent A) with hyperbolic discounting (with a non-increasing discount rate) with

the effects of impatience of and agent with heterogeneous discounting with ρ > δ

(agent B). For illustrative purposes, consider the case in which the agents have

to decide how much are they going to save for retirement. The saving effort can

be viewed as a disutility during the first periods, since the agent does not spend

the saved resources in consumption and hence in immediate gratification.

For agent A, the willingness to increase her final year’s saving effort in return

for a better retirement (and higher subsequent welfare) is higher at the beginning

of the planning horizon than at the end of the planning horizon, since she is always

more impatient in her short-run decisions than in her long-run decisions. For this

reason, this agent would like to commit herself, in the first year, to save harder in

the final year, compared to her actual willingness to make the saving effort when

the final year arrives. In particular, if this agent is naive (time-inconsistent),

when the final year arrives, she actually ends up saving less than she planned in

the first year.

Next, we look at the behavior of agent B. For a long time horizon and from the

first year perspective, it is natural to assume that the agent can hardly imagine

her post-retirement life, so she decides to save an small amount of money. As

the prospect of retirement looms, she takes things more seriously and decides in

the last year to save harder than she planned at the beginning of her planning

horizon. This is the effect that we can capture by using a different instantaneous

discount rates for instantaneous utilities and for the final function.

Summarizing, the main difference between agents A and B (or between hy-

perbolic and heterogeneous discounting) is the time evolution of the bias to the

present. An agent taking decisions with hyperbolic preferences has always the

same bias to her present, as in the case of standard (exponential) discounting.

On the contrary, for agent B (with heterogeneous discounting), there is also a

bias to the present, but this bias changes (decreases when ρ < δ) as long as she

approaches the end of the planning horizon. If ρ > δ the agent procrastinates (as

in hyperbolic discounting), in the sense of undervaluing the final function, but

this procrastination decreases along time. With a similar argument, in case that

ρ < δ, the agent will have a decreasing valuation of the final function as long

as she reaches the final time T . Recent findings on individuals behavior seems

to confirm that the bias to the present is not the same at all ages (Green et al.
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(1994a), (1996), (1999)).

1.7 Solution concepts

One of the most relevant effects of using any kind of non standard discounting

is that preferences change with time. An agent making decisions at time t has

different preferences compared with those at time t′ and, consequently, we can

consider her at different times as different agents. An agent making a decision at

time t is usually called the t-agent. In this sense, dynamic inconsistent preferences

forces the decision maker to tussle with her different selves in an interior conflict

in which earlier selves wish to force later selves, while later ones do their best to

maximize their own interest. Economists have usually modeled the situation as

an intrapersonal game among the different t-agents.

In general, a person with time-inconsistent preferences may or may not be

aware of her changing preferences. Strotz (1956) and Pollak (1968) discussed two

extreme alternatives. On the one hand, an individual could make her decisions

considering that her preferences are not going to change in the near future, or as

if the future t-agents would act in the interest of the current self. Under this naive

belief, the decision maker chooses a sequence of actions maximizing her current

preferences, and expecting that future selves will stick to this sequence. However,

as time goes on, futures selves conduct their own optimization problem obtaining,

in general, a different sequence of actions. As a result, the naive agent ends up

by solving a problem at each time and applying the optimal action only when it

is obtained. In this sense, the naive solution can be constructed by adapting the

standard optimization techniques, such as the Pontryagin’s maximum principle

or the Hamilton-Jacobi-Bellman (HJB) equation. Specifically, in order to obtain

this solution one should solve an optimal control problem for each time t on the

planing horizon, and then patch together the “optimal” solutions obtained in

each problem.

On the other hand, an individual could be completely sophisticated, and cor-

rectly predict how her preferences are going to change. In this case, earlier selves

will make decisions taking into account the preferences of the future t-agents.

Unfortunately, the sophisticated solutions can not be obtained by means of the

standard optimization techniques. In fact, the concept of optimality plays no role

here, since what is optimal for the t-agent will not be optimal (in general) for the

future t′-agents, t′ > t. Instead, one should look for the subgame Markov perfect

equilibria, which prompts the use of a dynamic programming approach by apply-
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ing the Bellman optimality principle. To this end, first we need to define what

we mean by a Markov equilibrium. A natural approach to the problem consists

in considering first the equilibrium of a sequence of planners in discrete time and

then passing to the continuous time limit. This is probably the most intuitive

and natural approach, and it is in the spirit of the construction of equilibrium

concepts in the literature of differential games (see e.g. Friedman (1974)). Fol-

lowing this approach, Karp (2007) defined a Markov perfect equilibrium as the

formal continuous time limit (provided that it exists) of a discretized version of

the corresponding dynamic game with non constant discounting in a determinis-

tic setting (see Maŕın-Solano and Navas (2009) for a description of the problem

in finite horizon, and free terminal time and Maŕın-Solano and Navas (2010) for

the stochastic case). As a result, the equilibrium rule is obtained as the solution

to a dynamic programming equation (DPE) which is a modified HJB equation.

An alternative approach, similar in spirit to the one first suggested in Barro

(1999), consists in assuming that the decision maker at time t can precommit

his/her future behavior during the period [t, t+ ε]. In Ekeland and Lazrak (2010)

this idea was reformulated by considering that the t-agent is allowed to form a

coalition with his/her immediate successors (s-agents, with s ∈ [t, t+ε]), provided

that, for s > t+ε, the corresponding s-agents choose their equilibrium rule. Then,

the equilibrium rule was calculated by taking the limit ε → 0. Maŕın-Solano

and Patxot (2012) used this approach to obtain the Markov perfect equilibrium

for the heterogeneous discounting problem in a deterministic environment. It is

remarkable that the equilibrium necessary conditions obtained in Karp (2007)

and Ekeland and Lazrak (2010) are consistent, although the two approaches are

different in nature.

1.8 Structure and contributions of the thesis

This dissertation is organized as follows.

In Chapter 2 we extend the heterogeneous discounting model introduced in

Maŕın-Solano and Patxot (2012) to a stochastic environment. Our main contri-

bution in this chapter is to derive the DPE providing time-consistent solution

for both the discrete and continuous time case. For the continuous time problem

we derive the DPE following the two different procedures described above: the

formal limiting procedure and the variational approach. However, an important

limitation of these approaches is that the DPE obtained is a functional equation

with a nonlocal term. As a consequence, it becomes very complicated to find
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solutions, not only analytically, but also numerically. For this reason, we also de-

rive a set of two coupled partial differential equations which allows us to compute

(analytically or numerically) the solutions for different economic problems. In

particular, we are interested in analyzing how time-inconsistent preferences with

heterogeneous discounting modify the classical consumption and portfolio rules

(Merton (1971)). The introduction of stochastic terminal time is also discussed.

In Chapter 3, the results of Chapter 2 are extended in several ways. First, we

consider that the decision maker is subject to a mortality risk. Within this con-

text, we derive the optimal consumption, investment and life insurance rules for

an agent whose concern about both the bequest left to her descendants and her

wealth at retirement increases with time. To this end we depart from the model

in Pliska and Ye (2007) generalizing the individual time preferences by incor-

porating heterogeneous discount functions. In addition, following Kraft (2003),

we derive the wealth process in terms of the portfolio elasticity with respect to

the traded assets. This approach allows us to introduce options in the invest-

ment opportunity set as well as to enlarge it by any number of contingent claims

while maintaining the analytical tractability of the model. Finally, we analyze

how the standard solutions are modified depending on the attitude of the agent

towards her changing preferences, showing the differences with some numerical

illustrations.

In Chapter 4 we extend the heterogeneous discount framework to the study

of differential games with heterogeneous agents, i.e., agents who exhibit different

instantaneous utility functions and different (but constant) discount rates of time

preference. In fact, although the non-standard models have usually focused on in-

dividual agents, the framework has proved to be useful in the study of cooperative

solutions for some standard discounting differential games. Our main contribu-

tion in this chapter is to provide a set of DPE in discrete and continuous time

in order to obtain time-consistent cooperative solutions for N -person differential

games with heterogeneous agents. The results are applied to the study of a cake

eating problem describing the management of a common property exhaustible

natural resource. The extension to a simple common renewable natural resource

in infinite horizon is also discussed.

Finally, in Chapter 5, we present a summary of the main results of the thesis.



Chapter 2

Heterogeneous discounting in

consumption-investment

problems. Time consistent

solutions.

2.1 Introduction

In the study of intertemporal choices it is customary in economics to consider

the so-called Discounted Utility (DU) Model, introduced in Samuelson (1937).

According to the Samuelson’s model, time preferences can be characterized by

a single parameter, the discount rate. Since the DU model assumes a constant

discount rate of time preference, it can be easily shown (due to the properties

of the exponential function) that constant discounting implies that agent’s time

preferences are time-consistent. However, empirical observations seem to show

that predictions of the DU model disagree with the actual behavior of decision

makers (we refer to Frederick et al (2002) for an analysis on the topic and a review

of the literature up to (2002)). These anomalies can be of several types.

The best documented DU anomaly is hyperbolic discounting (or non-constant

discounting, in general). Strotz (1956) studied the effects of choosing a variable

rate of time preference, illustrating how for a very simple model preferences are

time consistent if, and only if, the discount function is an exponential with a con-

stant discount rate. Effects of the so-called quasi-hyperbolic (or quasi-geometric)

discount functions introduced by Phelps and Pollak (1968) have been extensively

studied in a discrete time context, within the field of behavioral economics. The

17
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Time consistent solutions.

most relevant effect of non-constant discounting is that preferences change along

time. In this sense, an agent making a decision at time t has different time pref-

erences compared with those at the initial time t0. In a continuous time setting,

a dynamic programming equation (DPE) providing a time-consistent solution

was introduced in Karp (2007) in a deterministic framework. This DPE was ex-

tended to the case where the evolution of the state variables is governed by a set

of stochastic differential equations in Ekeland and Pirvu (2008) and Maŕın-Solano

and Navas (2010).

Although hyperbolic discounting relaxes the assumption of using a constant

discount rate for all time periods, it does not solve all the anomalies of the DU

model. As pointed out in Frederick et al (2002), the DU model assumes also that

the discount rate should be the same for all types of goods and all categories

of intertemporal decisions, and this is in contradiction with several empirical

regularities.

In this chapter we study a simple approach (giving rise, as in the case of

hyperbolic discounting, to time-inconsistent preferences) which can provide a

model for certain behaviors that can not be explained by the DU model or more

general hyperbolic preferences. More precisely, we are interested in preferences

representing a situation in which the agent discounts in a different way the utilities

enjoyed along the planning horizon and that of the bequest or final function.

Hence, the intertemporal utility function takes the form

Ut =

∫ T

t

d(s, t)u(x, c, s) ds+ d(T, t)F (x(T ), T ) .

with d(s, t) = e−ρ(s−t) for s < T , and d(T, t) = e−ρ̄(T−t), for ρ �= ρ̄, in general.

Impatient agents over-valuing the utilities u(x(s), c(s), s) in comparison with

the final function F (x(T ), T ) are characterized by ρ̄ > ρ. However, when time

passes, the final function increases its relative value in comparison with the in-

stantaneous utilities u(x(s), c(s), s) (usually due to consumption and hence to an

immediate benefit). This asymmetric valuation cannot be described by a stan-

dard discount function or in general with non-constant discounting. There are

several problems that seem to be good candidates for this description: human

capital formation, where the the final function represents the utility obtained

after a period of continuous effort; consumption and portfolio rule problems,

where the final function represents a bequest function (the individual is more

concerned with the welfare of her descendants when life is arriving to the end);

or, along the same lines, retirement and pension problems. Since preferences
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are time-inconsistent, no optimal solutions exist, and the standard techniques in

optimal control theory (the Pontryagin’s Maximum Principle or the Hamilton-

Jacobi-Bellman equation) give rise to time-inconsistent solutions. By reproducing

the literature of non-constant discounting, we can say that an agent is naive if

she does not take into account that her preferences will change in the future,

so she is time-inconsistent. In order to obtain time-consistent solutions (agents

are sophisticated, using the standard terminology in non-constant discounting),

Markov perfect equilibria must be calculated.

This problem with heterogeneous discounting was introduced in Maŕın-Solano

and Patxot (2012) in a deterministic setting. In that paper, a DPE providing a

time-consistent solution was derived by using a variational approach, and an eco-

nomic motivation was given. Such DPE is rather similar to the one first derived

by Karp (2007) for the problem with non-constant discounting. An important

limit in the approach introduced in that paper is that the DPE is a functional

equation with a nonlocal term. As a consequence, it becomes very complicated

to find solutions, not only analytically, but also numerically. In this chapter we

extend the results in the deterministic setting to a stochastic environment, by de-

riving a set of two coupled partial differential equations which are equivalent (in

the deterministic setting) to the DPE derived in Maŕın-Solano and Patxot (2012).

This approach allows us to compute (analytically or numerically) the solutions

for different economic problems. In particular, we are interested in analyzing how

time-inconsistent preferences with heterogeneous discounting modify the classical

consumption and portfolio rules (Merton (1971)). We show that, similar to the

problem with non-constant discounting, within the HARA (hyperbolic absolute

risk aversion) utility functions, if the relative risk aversion is constant (logarith-

mic and power utility functions), the equilibrium portfolio rule does not depend

on the rate of time preference. This nice property is not satisfied for more gen-

eral utility functions, such as the (constant absolute risk aversion) exponential

function. With respect to the consumption rules, for the case of heterogeneous

discounting, they are different, not only quantitatively, but mainly qualitatively,

to the equilibria derived for the case of non-constant discounting in continuous

time in Maŕın-Solano and Navas (2010). The effects on the consumption rule of

introducing heterogeneous discounting are illustrated numerically for the case of

power and exponential utility functions. As a final contribution we show that, if

the final time is a random variable, our problem with heterogeneous discounting

transforms into a problem which is equivalent to a model introduced (in a deter-

ministic setting) in Maŕın-Solano and Shevkoplyas (2011). In this case, we must
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search for a time-consistent equilibrium in a cooperative differential game with

heterogeneous agents.

The chapter is organized as follows. In Section 2 we introduce the model.

In Section 3 we first derive the DPE in a discrete time setting and then, we

find the formal continuous time limit. As a result, we recover the DPE in the

deterministic setting as a particular case. This provides a justification to the

mathematically rigorous but less intuitive procedure used in Maŕın-Solano and

Patxot (2012). Next, we define the notion of equilibrium rule as in Maŕın-Solano

and Patxot (2012) (which is based on the one in Ekeland and Pirvu (2008)), and

the DPE is obtained by using a variational approach. In Section 4, this equation

is solved for the consumption and portfolio rules problem for some particular

utility functions. Section 5 analyzes the problem for the case of random time

horizon. Finally, Section 6 contains the main conclusions of the chapter.

2.2 The Model

We introduce the problem in a discrete time and deterministic setting. For each

period s, s = 0, 1, 2, . . . , T−1, let xs = (x1
s, . . . , x

n
s ) be the vector of state variables

and cs = (c1s, . . . , c
m
s ) the vector of control (or decision) variables. If us(xs, cs, s)

is the utility function at period s and F (xT , T ) is the final (or bequest) function,

in the conventional model, the intertemporal utility function of an agent taking

decisions at period t takes the form

Ut =
T−1∑
s=t

δs−tus(xs, cs, s) + δT−tF (xT , T ) ,

where the state variables evolve according to the state equation

xs+1 = f(xs, cs, s) ,

for s = t, . . . , T − 1. In order to maximize Ut we must solve an optimal control

problem and, since the discount factor δ ∈ (0, 1] is always the same, the solution

becomes time consistent. In general, if we consider an arbitrary discount d(s, t)

representing how the agent at time t discounts future utilities enjoyed at time

s ≥ t, the intertemporal utility function at period t is given by

Ut =
T−1∑
s=t

d(s, t)us(xs, cs, s) + d(T, t)F (xT , T ) .
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In the standard case,

d(s, t) = δs−t .

If time preferences are quasi-hyperbolic,

d(s, t) = βδs−t for s > t , and d(t, t) = 1 .

In this chapter we are interested in preferences representing a situation in

which the agent discounts in a different way the utilities enjoyed along the plan-

ning horizon, and the final function. In particular, we assume that the discount

rate takes the form

d(s, t) = δs−t for s < T , and d(T, t) = δ̄T−t .

The intertemporal utility function becomes

Ut =
T−1∑
s=t

δs−tus(xs, cs, s) + δ̄T−tF (xT , T ) .

Following Maŕın-Solano and Patxot (2012), we call these time preferences het-

erogeneous discounting.

Next, we extend the model to a continuous time setting. Let x = (x1, . . . , xn) ∈
X ⊆ Rn be the vector of state variables, c = (c1, . . . , cm) ∈ U ⊆ Rm the vector of

control (or decision) variables, u(x(s), c(s), s) the instantaneous utility function

at time s, T the planning horizon (terminal time) and F (x(T ), T ) the final or

bequest function. Then the corresponding intertemporal utility function is

Ut =

∫ T

t

e−ρ(s−t)u(x, c, s) ds+ e−ρ̄(T−t)F (x(T ), T ) . (2.1)

As we present in the Introduction, impatient agents over-valuing utilities

u(x, c, s) in comparison with the final function F (x(T ), T ) are characterized by

ρ̄ > ρ (or δ > δ̄ in the discrete time setting). However, with these time prefer-

ences, when time passes, the final function increases its value in comparison with

the utilities u(x, c, s). This asymmetric valuation cannot be described by using a

standard geometric discounting or, in general, with hyperbolic preferences (with

a unique non-constant discount rate). Note that with (non)constant discounting

the bias to the present (to their present) does not change from the viewpoint of

the different t-agents (in the hyperbolic discounting literature, an agent taking

decisions at time t is called the t-agent). With heterogeneous discounting, the bias
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to the present changes along time. We refer to Maŕın-Solano and Patxot (2012)

for a discussion of this effect (in that paper heterogeneous discounting were used

as an attempt to describe, e.g., the behavior of an undergraduate student who is

planning on how hard to work in each of the years of her program).

Problems which can be represented by this model include consumption and

portfolio rule problems or retirement and pension problems. For instance, con-

sider a decision-maker who is planning on how much to save for her retirement.

Typically, individuals are much more concerned with life quality after retirement

when retirement age is approaching1, in comparison with their concern about

their post retirement life when they look at it from a long distance, for instance,

when they are young. This saving effort can be viewed as a disutility during the

first periods, since the agent does not spend the saved resources in consumption

and hence in immediate gratification. Within this setting, let us briefly com-

pare the type of time-inconsistency for an impatient agent (say, agent A) with

hyperbolic discounting (with a non-increasing discount rate) with the effects of

impatience of and agent with heterogeneous discounting with ρ̄ > ρ (agent B).

For agent A, the willingness to increase her final year’s saving effort in return

for a better retirement (and higher subsequent welfare) is higher at the beginning

of the planning horizon than at the end of the planning horizon, since she is always

more impatient in her short-run decisions than in her long-run decisions. For this

reason, this agent would like to commit herself, in the first year, to save harder in

the final year, compared to her actual willingness to make the saving effort when

the final year arrives. In particular, if this agent is naive (time-inconsistent),

when the final year arrives, she actually ends up saving less than she planned in

the first year.

Next, we look at the behavior of agent B. For a long time horizon and from the

first year perspective, it is natural to assume that the agent can hardly imagine

her post-retirement life, so she decides to save an small amount of money. As

the prospect of retirement looms, she takes things more seriously and decides in

the last year to save harder than she planned at the beginning of her planning

horizon. This is the effect that we can capture by using a different instantaneous

discount rates for instantaneous utilities and for the final function. In order to

see this effect, consider the case ρ̄ > ρ and rewrite the final function in (2.1) as

e−ρ(T−t)e−(ρ̄−ρ)(T−t)F (x(T ), T ) .

1Alternatively, we could think in an agent solving a consumption-portfolio rules problem
where the final function represents a bequest function for her descendants. The individual is
much more concerned with life quality of her descendants when she becomes older.
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In this way, the actual valuation of the final function of the agent is given by

e−(ρ̄−ρ)(T−t)F (x(T ), T ) ,

which is an increasing function in t. Hence, as long as the agent approaches to

the end of the planning horizon, the current final function increases, i.e.,

e−(ρ̄−ρ)(T−s2)F (x(T ), T ) > e−(ρ̄−ρ)(T−s1)F (x(T ), T ) .

for s1 < s2, si ∈ (t, T ).

Summarizing, the main difference between agents A and B (or between hy-

perbolic and heterogeneous discounting) is the time evolution of the bias to the

present. An agent taking decisions with hyperbolic preferences has always the

same bias to her present, as in the case of standard (exponential) discounting.

On the contrary, for agent B (with heterogeneous discounting), there is also a

bias to the present, but this bias changes (decreases when ρ < ρ̄) as long as she

approaches the end of the planning horizon. If ρ̄ > ρ the agent procrastinates (as

in hyperbolic discounting), in the sense of undervaluing the final function, but

this procrastination decreases along time. With a similar argument, in case that

ρ > ρ̄, the agent will have a decreasing valuation of the final function as long as

she reaches the final time T .

We finish this section by introducing the problem in a stochastic setting. In the

discrete time case, the difference equation is now subject to random disturbances

and the state equation becomes

Xt+1 = f(Xt, ct, t, Vt+1) , X0 = x0 , V0 = v0 .

We restrict our attention to the case when Vt+1 is a random variable taking

values in a finite set V . Each t-agent will look for maximizing in ct the expected

intertemporal utility function

E

[
T−1∑
s=t

δs−tus(Xs, cs, s|xt, vt) + δ̄T−tF (XT , T |xt, vt)

]
(2.2)

subject to

Xs+1 = f(Xs, cs, s, Vs+1) , Xs = xs , Vs = vs , s = t, . . . , T − 1 . (2.3)
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In continuous time, the problem becomes

maxE

[∫ T

t

e−ρ(s−t)u(X(s), c(s), s) + e−ρ̄(T−t)F (X(T ), T ) | xt

]
(2.4)

subject to

dX(s) = f(X(s), c(s), s)ds+ σ(X(s), c(s), s) · dW (s), X(t) = xt given . (2.5)

2.3 Dynamic programming equation

The solution provided by the use of standard optimal control techniques is time-

inconsistent if the intertemporal utility function takes the form (2.2) or (2.4). In

Maŕın-Solano and Patxot (2012) a DPE for sophisticated (time-consistent) agents

in a deterministic framework was derived by following a variational approach. In

this section we derive first a Dynamic Programming Equation (DPE) for the

stochastic problem in a discrete time setting. Next, we obtain the DPE in con-

tinuous time by discretizing first the problem and defining then the DPE as the

(formal) continuous time limit. This derivation is similar to that in Karp (2007)

and Maŕın-Solano and Navas (2010) for the case of non-constant discounting in

deterministic and stochastic environments, respectively. Finally, we provide an

alternative derivation of the DPE by using a variational approach.

2.3.1 Dynamic Programming Equation in discrete time

First, let us assume that the probability that Vt+1 = v ∈ V , Pt(v|vt), may

depend on the outcome vt at time t, as well as explicitly on time t, but it is

independent on the state and control variables xt and ct. In addition, functions

u and f are assumed to be continuous in (x, c). We search for an equilibrium

rule c∗t = φt(xt, vt), characterized by the property that no decision-maker in the

sequence of decision-makers wants to deviate from it. Let T be finite. The value

function for the t-agent is given by

W (xt, t, vt) = sup
{ct}

E

[
T−1∑
s=t

δs−tus(Xs, cs, s|xt, vt) + δ̄T−tF (XT , T |xt, vt)

]
(2.6)



2.3. Dynamic programming equation 25

where cs = φs(xs, vs), for s = t + 1, . . . , n. The computation of the expectation

in (2.6) is based on conditional probabilities of the form

p∗(vt+1, . . . , vs) = Pt(vt+1| vt) · Pt+1(vt+2| vt+1) · · ·Ps−1(vs| vs−1) .

We adapt the derivation of the DPE in the classical case δ = δ̄ (see e.g.

Seierstad (2009)) as follows. In the final period T we define

W (xT , T, vT ) = F (xT , T )

as usual. At period T − 1,

W (xT−1, T − 1, vT−1) = sup
{cT−1}

{E [uT−1(xT−1, cT−1, T − 1)+

+δ̄F (XT , T ) | xT−1, vT−1
]}

,

where the expectation is calculated over VT given vT−1. Since F (XT , T ) depends

on VT via

XT = f(xT−1, cT−1, T − 1, VT ) ,

we can write

W (xT−1, T − 1, vT−1) = uT−1(xT−1, φT−1(xT−1, vT−1), T − 1)+

+δ̄E [F (XT , T ) | xT−1, vT−1 ] = uT−1(xT−1, φT−1(xT−1, vT−1), T − 1) + δ̄LT−1
T ,

where we define

LT−1
T = E [F (XT , T ) | xT−1, vT−1] .

In general, if

Ls
τ = E[· · · [E[E[u(Xτ , φτ (Xτ , τ), τ) |Xτ−1, Vτ−1] |Xτ−2, Vτ−2] · · · ] | xs, vs ] ,

it is clear that

W (xt, t, vt) = sup
{ct}

{
ut(xt, ct, t) +

T−1∑
s=t+1

δs−tLt
s + δ̄T−tLt

T

}
. (2.7)
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In a similar way,

W (xt+1, t+ 1, vt+1) =
T−1∑
s=t+1

δs−t−1Lt+1
s + δ̄T−t−1Lt+1

T ,

and therefore

E [W (Xt+1, t+ 1, Vt+1 | xt, vt) ] =
T−1∑
s=t+1

δs−t−1Lt
s + δ̄T−t−1Lt

T . (2.8)

By solving Lt
T in (2.8) and substituting in (2.7) we obtain the Dynamic Program-

ing Equation, which proceeds backward in time:

W (xT , T, vT ) = F (xT , T ) ,

δ̄T−t−1W (xt, t, vt) = sup
{ct}

{
δ̄T−t−1ut(xt, ct, t) +

T−1∑
s=t+1

[
δs−tδ̄T−t−1 − δs−t−1δ̄T−t

]
Lt
s+

+δ̄T−tE [W (Xt+1, t+ 1, Vt+1 | xt, vt) ]
}

, (2.9)

Xs+1 = f(Xs, cs, s, Vs+1) , Xs = xs, Vs = vs .

The decision rules solving the right hand term in equation (2.9) are the Markov

Perfect Equilibria.

Remark 1 Note that, if the discount rates coincide, δ = δ̄, the term in the sum

in (2.9) vanishes and we recover the standard Bellman equation.

We can easily extend our previous results to the case when

Pt[Vt+1 = v] = Pt(v| xt, ct, vt)

depends, not only on time t and the previous outcome vt, but also on the state

and control variables xt and ct. We present the details in the Appendix.

2.3.2 The continuous time case: a formal limiting proce-

dure

Now, let us extend the DPE (2.9) to a continuous time setting, by following a

formal limiting procedure as in Karp (2007) and Maŕın-Solano and Navas (2010).

In the continuous time setting, the agent at time t (the t-agent) aims to solve
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Problem 2.4-2.5. Let us discretize the problem by following the classical Euler

(or Euler-Mayurama) method. If we divide the interval [0, T ] into N periods

of constant length ε, in such a way that we identify T = Nε, and s = jε, for

j = 0, 1, . . . , N , then Equation (2.5) becomes

X(t+ 1) = X(t) + f(X(t), c(t), t) + σ(X(t), c(t), t)(w(t+ 1)− w(t)) ,

where w(t) is a Wiener process. Denoting X(jε) = Xj and c(jε) = cj, for

j = 0, . . . , N − 1, the objective of the agent in period t = jε is to maximize

E

[
N−1∑
s=j

e−ρ(s−j)εu(Xs, cs, s) + e−ρ̄(N−j)εF (XT , T )

]
(2.10)

subject to

Xi+1 = Xi + f(Xi, ci, i) + σ(Xi, ci, i)(wi+1 − wi) , (2.11)

for i = j, . . . , T − 1, xj given. Note that Problem 2.10-2.11 is equivalent to

Problem 2.2-2.3.

Remark 2 For a given decision rule c(x, s), a condition assuring the uniform

convergence (in the mean square sense) of the solution of the discretized equation

(2.11) to the true solution to (2.5) is that functions f and σ satisfy uniform

growth and Lipschitz conditions in x, and are Hölder continuous of order 1/2 in

the second variable.

Definition 1 We define the value function V (x, t) for Problem (2.4-2.5) as the

solution to the DPE obtained by taking the formal continuous time limit when

ε → 0 of the DPE (2.9) obtained for the discrete approximation (2.10-2.11) to

the problem, assuming that such a limit exists and that the solution is of class

C2,1.

Next, let us derive the DPE for the problem with heterogeneous discounting

in the spirit of the previous definition. Let V (x, t) be the value function of the

t-agent, with initial condition x(t) = xt. Since s = jε and

X(t+ ε) = x(t) + f(x(t), c(t), t)ε+ σ(x(t), c(t), t)(w(t+ ε)− w(t)) ,

then W (xj, jε, vj) = V (xt, t) and

V (xt+ε, t+ ε) = V (xt, t)+
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+∇xtV (xt, t)f(xt, c(t), t)ε+∇xtV (xt, t)σ(x, c(t), t) · (wt+ε − wt)+

+∇tV (xt, t)ε+
1

2
tr (σ(xt, c(t), t) · σ′(xt, c(t), t) · ∇xtxtV (xt, t)) ε+ o(ε)

where limε→0
o(ε)
ε

= 0. In addition,

e−ρ̄(n−j)ε = e−ρ̄(n−j−1)ε [1− ρ̄ε+ o(ε)] ,

and

e−ρkε = e−ρ(k−1)ε [1− ρε+ o(ε)] .

By substituting in (2.9) we obtain

V (xt, t) = sup
{ct}
{u(xt, ct, t)ε+

n−1∑
k=j+1

[
e−ρ(k−j−1)ε(ρ̄− ρ)ε

]
Lj
k ε+ V (xt, t)+

+∇xtV (xt, t)f(xt, ct, t)ε+ E [∇xtV (xt, t)σ(xt, ct, t) · (wt+ε − wt)] +

∇tV (xt, t)ε+
1

2
tr (σ(xt, ct, t) · σ′(xt, ct, t) · ∇xtxtV (xt, t)) ε−

−ρεV (xt, t)− ρεE [∇xtV (xt, t)σ(xt, v, t)(wt+ε − wt)] + o(ε)} .

Therefore,

0 = sup
{ct}
{u(xt, ct, t)ε+

n−1∑
k=j+1

[
e−ρ(k−j−1)ε(ρ̄− ρ)ε

]
Lj
k ε+

+∇xtV (xt, t)f(xt, ct, t)ε+∇tV (xt, t)ε− (2.12)

−ρεV (xt, t) +
1

2
tr (σ(xt, ct, t) · σ′(xt, ct, t) · ∇xtxtV (xt, t)) ε+ o(ε)

}
.

Dividing equation (2.12) by ε and taking the limit ε→ 0 we obtain:

Proposition 1 Let V (x, t) be a function of class C2,1 in (x, t) satisfying the DPE

ρ̄V (x, t)−∇tV (x, t)−K(x, t) = (2.13)

= sup
{c}

{
u(x, c, t) +∇xV (x, t)f(x, c, t) +

1

2
tr (σ(x, c, t) · σ′(x, c, t) · ∇xxV (x, t))

}
,

with

V (x, T ) = F (x, T ) , (2.14)
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and

K(x, t) = (ρ̄− ρ)E

[∫ T

t

e−ρ(s−t)u(Xs, φ(Xs, s), s) ds

]
. (2.15)

Then V (x, t) is the value function for Problem 2.4-2.5. If, for each pair (x, t),

there exists a decision rule c∗ = φ(x, t), with corresponding state trajectory X∗(t),

such that c∗ maximizes the right hand side term of (2.13), then c∗ = φ(x, t) is

called a Markov equilibrium rule for the problem with heterogeneous discounting.

Remark 3 Again, if ρ = ρ̄, the term K(x, t) vanishes and we recover the stan-

dard Hamilton-Jacobi-Bellman equation.

In the proof of the previous proposition the pass to the limit is “formal”

and needs to be mathematically justified. With respect to the classical DPE, in

Fleming and Soner (2006) the convergence of finite difference approximations to

Hamilton-Jacobi-Bellman equations is discussed. We refer also to Kushner and

Dupuis (2001) for a study of the convergence of numerical methods to the value

function in the standard case.

Finally, note that we can write

K(x, t) = (ρ̄− ρ)E

[∫ T

t

e−ρ(s−t)u(X(s), φ(X(s), s), s) ds

]
(2.16)

and, by differentiating K in (2.16) with respect to t we obtain the “auxiliary

dynamic programming equation”

ρK(x, t)−∇tK(x, t) = (ρ̄− ρ)u(x, φ(x, t), t) +∇xK(x, t) · f(x, φ(x, t), t)+

+
1

2
tr (σ(x, φ(x, t), t) · σ′(x, φ(x, t), t) · ∇xxK(x, t)) . (2.17)

Hence we have:

Corollary 1 Let V (x, t) and K(x, t) be two functions of class C2,1 in (x, t) such

that V (x, t), K(x, t) and the strategy c∗ = φ(x, t) satisfy the set of two DPEs

(2.13) and (2.17) with boundary conditions V (x, T ) = F (x, T ), K(x, T ) = 0.

Then V (x, t) is the value function for Problem (2.4-2.5), and the strategy c∗ =

φ(x, t) maximizing the right hand side term of Equation (2.13) is a Markov equi-

librium rule for the problem with heterogeneous discounting.
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2.3.3 Dynamic programming equation in continuous time:

a variational approach

Next we provide an alternative derivation of the DPE (2.13-2.15), by using a

variational approach similar to that introduced, for the case of non-constant dis-

counting, in Ekeland and Pirvu (2008). In particular, we extend to a stochastic

setting the derivation of a DPE in the deterministic problem with heterogeneous

discounting first derived in Maŕın-Solano and Patxot (2012). To do that we as-

sume that decision rules are progressively measurable processes such that the

stochastic differential equation (2.5) admits a unique strong solution (see e.g.

Theorem 6.3 in Yong and Zhou (1999) for conditions for the existence of strong

solutions). For the problem analyzed in Section 4, described by a linear SDE, the

existence of strong unique solutions is guaranteed.

Equilibrium policies are defined as follows. If c∗(s) = φ(X(s), s) is the equi-

librium rule, for ε > 0 let us consider the variations

cε(s) =

{
v(s) if s ∈ [t, t+ ε] ,

φ(X, s) if s > t+ ε .

If the t-agent can precommit her behavior during the period [t, t + ε], the value

function for the perturbed control path cε is given by

Vε(x, t) = max
{v(s), s∈[t,t+ε]}

E

[∫ t+ε

t

e−ρ(s−t)u(X(s), v(s), s) ds+

+

∫ T

t+ε

e−ρ(s−t)u(X(s), φ(X(s), s), s) ds+ e−ρ̄(T−t)F (X(T ), T )

]
.

Definition 2 Let Vε(x, t) be differentiable in ε in a neighbourhood of ε = 0. Then

c∗(s) = φ(x(s), s) is called an equilibrium rule if

lim
ε→0+

V (x, t)− Vε(x, t)

ε
≥ 0 .

The definition above can be interpreted as follows. For ε sufficiently small,

from the continuity of Vε with respect to ε, the maximum of Vε in the limit when

ε = 0 is V (x, t).

Proposition 2 If the value function is of class C2,1, then the solution c = φ(X, t)

to the right hand term of the DPE (2.13-2.15) is an equilibrium rule, in the sense

that it satisfies Definition 2.
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Proof: See the Appendix.

Remark 4 In Maŕın-Solano and Shevkoplyas (2011) a DPE characterizing time-

consistent solutions was derived for the general problem of mazimizing

∫ T

t

d(s, t)u(x(s), c(s), s) ds+ d(T, t)F (x(T ), T )

in a deterministic setting, where d(s, t) is an arbitrary discount function. For this

problem, the following DPE for time-consistent equilibria was obtained:

∂d(T, t)

∂t
V (x, t) +

∫ T

t

[
d(T, t)

∂d(s, t)

∂t
− d(s, t)

∂d(T, t)

∂t

]
u(x(s), σ(x(s), s), s)ds−

−d(T, t)∂V (x, t)

∂t
= d(T, t)max

{c}

[
u(x, c, t) +

∂V (x, t)

∂x
· f(x, c, t)

]
.

If we extend the proof in Maŕın-Solano and Shevkoplyas (2011) to the stochastic

case, we have just to add the expectation operator in the integral term in the equa-

tion above, and the standard second order term 1
2
tr(σ(x, c, t)·σ′(x, c, t)·∇xxV (x, t))

in the right hand term.

2.4 An investment-consumption model with het-

erogeneous discounting

In this section, we apply the results in the previous section in order to analyze

which are the effects of introducing different discount rates for utilities obtained,

in an investment-consumption problem, from consumption enjoyed along time

and from bequest. We obtain the equilibrium consumption and portfolio rules

for this modified version of the classical Merton’s model (Merton (1971)).

The financial market consists of 2 securities. One of them is risk-free (a

cash account, for instance), and the price P0(t) of one unit is assumed to evolve

according to the ordinary differential equation

dP0(t)

P0(t)
= μ0 dt ,

where P0(0) = p0 > 0 and μ0 > 0 accounts for the return on the sure asset. There
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is also a risky security whose price P1(t) evolves according to

dP1(t)

P1(t)
= μ1 dt+ σ dz ,

where P1(0) = p1 > 0, μ1 is the expected percentage change in price per unit

time and z(t) is a standard Brownian motion process. The agent can invest a

proportion w(t) of her wealth at time t, W (t), in the risky asset and a proportion

(1−w(t)) in the risk free asset. In addition the agent can allocate an amount of

c(t) to consumption. The consumer’s wealth process evolves according to

dW (t) = [w(t)(μ1 − μ0)W (t) + (μ0W (t)− c(t))] dt+ w(t)σW (t)dz(t) , (2.18)

with W (0) = W0. The objective of the agent at time t is to choose the consump-

tion and investment strategies, c(s), w(s), s ∈ [t, T ], in order to maximize

E

[∫ T

t

e−ρ(s−t)u(c(s))ds+ e−ρ̄(T−t)F (W (T ))

]
(2.19)

subject to (2.18), givenW (t) = Wt. Both the utility function u(·) and the bequest

function F (·) are assumed to be strictly concave functions on their arguments2.

If the agent can commit herself to follow in the future the “optimal” solution

obtained from the viewpoint of her preferences at time t = 0, she will solve the

classical Hamilton-Jacobi-Bellman (HJB) equation

ρV 0 − ∂V 0

∂s
=

= max
{c,w}

{
u(c) + [w(μ1 − μ0)W + (μ0W − c)]

∂V 0

∂W
+

1

2
w2σ2W 2∂

2V 0

∂W 2

}
, (2.20)

where V 0(W, s) denotes the current value function. The “optimal” controls are

the solution to

u′(c(s)) =
∂V 0

∂W
, w(s) = −(μ1 − μ0)

σ2

[
∂V 0

∂W

W ∂2V 0

∂W 2

]
. (2.21)

Both the HJB equation (2.20) and the decision rules (2.21) do not depend explic-

itly on the new discount rate ρ̄. The difference with the standard problem with

a unique discount rate appears via the final condition. Note that we can write

2The extension to the problem with an arbitrary number of risky assets is straightforward.
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the bequest function as

e−ρ̄TF (W (T ), T ) = e−ρT e−(ρ̄−ρ)TF (W (T ), T ) .

Hence, in the current value formulation, the terminal condition to be imposed in

(2.20) is now

V 0(W,T ) = e−(ρ̄−ρ)TF (W ) . (2.22)

If ρ = ρ̄ we recover the classical solution, which is time consistent. Otherwise,

if the agent can not precommit her future actions, she will be time-inconsistent.

Note that, if V t(W, s), s ∈ [t, T ], denotes the current value function at time t

according to the time-preferences of the t-agent, she will look for the solution to

the classical HJB equation

ρV t − ∂V t

∂s
=

max
{c,w}

{
u(c) + [w(μ1 − μ0)W + (μ0W − c)]

∂V t

∂W
+

1

2
w2σ2W 2∂

2V t

∂W 2

}
(2.23)

with the boundary condition

V t(W,T ) = e−(ρ̄−ρ)(T−t)F (W ) . (2.24)

At different initial times t ∈ [0, T ] the agent has to solve the same HJB equation

(2.23) but she applies a different terminal condition (2.24). In general, if the agent

does not commit her decision rule at any time t, and does not take into account

that her time preferences will change in the future, she will be continuously mod-

ifying her choices. This kind of extremely time-inconsistent behavior is usually

referred to as the naive behavior or the naive solution in the non-constant dis-

counting literature. In order to obtain time consistent solutions we must solve the

DPE (2.13-2.15). We will do it for the family of CRRA (power and logarithmic)

and CARA (exponential) utility functions.

2.4.1 Power utility function

Let us study the problem for the case of power utilities

u(c) =
cγ

γ
, F (W (T )) =

W (T )γ

γ
,

with γ < 1, γ �= 0.

First we briefly derive the time-inconsistent (naive) solution. The “optimal
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solution” according to the time preferences of the t-agent can be obtained by

solving the HJB equation (2.23) with the boundary condition (2.24). It is easy

to prove that, in this case, the value function is given by

V t(W, s) = αt(s)
W (s)γ

γ
,

where

αt(s) =

[
1− γ

ς t
+

(
e

1
γ−1

(ρ̄−ρ)(T−t) − 1− γ

ς t

)
e

ςt

γ−1
(T−s)

]1−γ
with

ς t = ρ− μ0γ +
1

2

γ(μ1 − μ0)
2

σ2(γ − 1)
.

The corresponding consumption and investment rules are

ct(s) = (αt(s))
1

γ−1W , wt(s) =
−(μ1 − μ0)

σ2(γ − 1)
.

In particular, if the agent can precommit her decision rule at time t = 0, we

obtain the precommitment solution, characterized by

αP (s) =

[
1− γ

ς
+

(
e

1
γ−1

(ρ̄−ρ)T − 1− γ

ς

)
e

ς
γ−1

(T−s)
]1−γ

. (2.25)

Otherwise, if the agent is naive, since the naive t-agent follows her decision rule

just at time s = t, her actual consumption rule can be obtained by taking s = t,

so

αN(t) =

[
1− γ

ςN
+

(
e

1
γ−1

(ρ̄−ρ)(T−t) − 1− γ

ςN

)
e

ςN

γ−1
(T−t)

]1−γ
.

In order to obtain a time-consistent solution, according to Proposition 1,

Markov equilibria can be obtained by solving the DPE

ρ̄V S(W, t)−K(W, t)− V S
t (W, t) = max

{c,w}
{u(c)+

+ [w(μ1 − μ0)W + (μ0W − c)]V S
W (W, t) +

1

2
w2σ2W 2V S

WW (W, t)} , (2.26)

with K(W, t) given by

K(W, t) = E

[∫ T

t

e−ρ(s−t)(ρ̄− ρ)u(φ(W, s))ds

]
, (2.27)

where c∗ = φ(W, s) is the equilibrium consumption rule obtained by solving the
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right hand term in (2.26). In particular, if we apply Corollary 1, we obtain the

set of two coupled partial differential equations

ρ̄V S(W, t)−K(W, t)− V S
t (W, t) = max

{c,w}

{
cγ

γ
+

+ [w(μ1 − μ0)W + (μ0W − c)]V S
W (W, t) +

1

2
w2σ2W 2V S

WW (W, t)

}
, (2.28)

ρK(W, t)−Kt(W, t) = (ρ̄− ρ)
c∗γ

γ
+

+ [w(μ1 − μ0)W + (μ0W − c∗)]KW (W, t) +
1

2
w2σ2W 2KWW (W, t) . (2.29)

As a candidate to the value function and to the function K(W, t) we guess

V S(W, t) = αS(t)
W (t)γ

γ
, K(W, t) = A(t)

W (t)γ

γ
.

From the maximization problem in (2.28) we easily obtain

c∗ = (α(t)S)
1

γ−1W , w∗ =
−(μ1 − μ0)

σ2(γ − 1)
.

Then by substituting in (2.28-2.29) and collecting terms in W (t)γ, we obtain

that functions A(t) and αS(t) are the solution to the following system of ordinary

differential equations:

ρ
1

γ
A(t)− 1

γ
Ȧ(t) =

= (ρ̄− ρ)
1

γ
(αS(t))

γ
γ−1 − A(t)

1

2

(μ1 − μ0)
2

σ2(γ − 1)
+ A(t)μ0 − (αS(t))

1
γ−1A(t) , (2.30)

ρ̄
1

γ
αS(t)− 1

γ
α̇S(t)− 1

γ
A(t) =

=
1

γ
(αS(t))

γ
γ−1 − αS(t)

1

2

(μ1 − μ0)
2

σ2(γ − 1)
+ αS(t)μ0 − (αS(t))

γ
γ−1 . (2.31)

Table 1 summarizes the results obtained for the power utility for the different

behaviors of the agent: precommitment, naive or time-consistent. The results for

the particular case in the limit γ = 0 (logarithmic utility) are presented in Table

2.

It is interesting to observe that, in the case of logarithmic utility functions
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Consumption rule Portfolio rule
cP (t) = Wt

1−γ
ς

+

(
e

1
γ−1 (ρ̄−ρ)T− 1−γ

ς

)
e

ς
γ−1 (T−s)

wP = μ1−μ0

(1−γ)σ2

cN(t) = Wt

1−γ

ςN
+

(
e

1
γ−1 (ρ̄−ρ)(T−t)− 1−γ

ςN

)
e

ςN
γ−1 (T−t)

wN = μ1−μ0

(1−γ)σ2

cS(t) =
(
α(t)S

) 1
1−γ Wt, α

S(t) given by (2.30-2.31) wS = μ1−μ0

(1−γ)σ2

Table 2.1: Power utility function.

Consumption rule Portfolio rule
cP (t) = Wt

e−ρ̄T+ρt+ 1
ρ [1−e−ρ(T−t)]

wP = μ1−μ0

σ2

cN(t) = Wt

e−ρ̄(T−t)+ 1
ρ [1−e−ρ(T−t)]

wN = μ1−μ0

σ2

cS(t) = Wt

e−ρ̄(T−t)+ 1
ρ [1−e−ρ(T−t)]

wS = μ1−μ0

σ2

Table 2.2: Logarithmic utility function.

u(c) = ln(c) and F (W (T )) = ln(W (T )), the naive solution is time-consistent,

since it verifies the corresponding DPE. This result is similar to that described

in Maŕın-Solano and Navas (2010) for the case of non-constant discounting (or

hyperbolic preferences).

Next we illustrate numerically the above results. In all the figures we consider

the following values for the main parameters: T = 30, γ = −3, W0 = 1000,

μ0 = 0.03, μ1 = 0.09 and σ = 0.3.

In Figure 1 we compare the consumption rules for the precommitment, naive

and time-consistent (sophisticated) solutions. The discount rates are ρ = 0.03

(for instantaneous utilities) and ρ̄ = 0.12 (for the bequest function). Note that,

for t small, the three solutions are quite similar. However, when time t approaches

to the final time T = 30, the three solutions become different. The naive and

time-consistent solutions indicate how the time preferences evolve along time, in

comparison with the precommitment solution, which does not take into account

the changing preferences.
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Figure 2.1: Consumption rules for precommitment (Dashed large), naive (Dashed
small) and time-consistent (black)

Table 3 represents the values of consumption for several values of time t.

The precommitment and naive solutions coincide just at the initial time and,

later on, consumption increases faster in the precommitment solution than in the

other solution. Time-consistent agents consume less at the beginning and, at the

middle of the time horizon, they begin to consume more than naive agents.
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t cP (t) cN(t) cS(t)

0 52.2425 52.2425 51.9128

1 52.57 52.5523 52.2354

2 52.8996 52.8625 52.5595

3 53.2313 53.173 52.8851

... ... ... ...

10 55.6118 55.338 55.1966

11 55.9605 55.6426 55.5292

12 56.3113 55.9449 55.8614

13 56.6644 56.2442 56.1928

14 57.0196 56.54 56.5229

15 57.3771 56.8314 56.8509

16 57.7369 57.1176 57.176

17 58.0988 57.3973 57.497

18 58.4631 57.6692 57.8126

19 58.8296 57.9316 58.121

20 59.1985 58.1825 58.4199

... ... ... ...

27 61.8459 59.2191 59.8043

28 62.2336 59.1182 59.736

29 62.6238 58.8375 59.473

30 63.0165 58.2004 58.8342

Table 2.3: Comparison of solutions.

Next, in Figure 2 we analyze the sensitivity of the time-consistent solution for

different values of ρ̄. For ρ = 0.03 we take ρ̄1 = 0.03 (standard case), ρ̄2 = 0.10,

ρ̄3 = 0.15 and ρ̄4 = 0.20.
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Figure 2.2: Sensitivity of the time-consistent solution for different values of ρ̄.
Standard case (Dashing large). ρ̄2 = 0.10 (DotDashed). ρ̄3 = 0.15 (Dashing
small). ρ̄4 = 0.20 (Black).

Finally, Figure 3 illustrates the sensitivity of consumption in the time-consistent

solution for different values of the risk aversion γ.

Figure 2.3: Sensitivity of the time-consistent consumption rule for different values
of γ. γ = −1 (Dashing large). γ = −2 (DotDashed). γ = −5 (Dashing small).
γ = −8 (Black).
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2.4.2 Exponential utility function

Now, let us solve the problem for the (constant absolute risk aversion) exponential

utility function

u(c) = −1

γ
e−γc , F (W (T )) = −ae−γW ,

with γ > 0. Thus, the decision maker faces the problem

max
{c,w}

E

[∫ T

t

e−ρ(s−t)
−1
γ

e−γcds+ e−ρ̄(T−t)(−ae−γW (T ))

]

subject to (2.18) with initial condition W (t) = Wt. Once again, we first derive

the precommitment and naive solutions. A (time-inconsistent) t-agent looks for

the solution to the HJB equation (2.23) with the utility function specified above.

By guessing

V t(W, s) = −ae−γ(αt(s)+βt(s)W ) ,

the consumption and portfolio rules are given by

ct(s) = αt(s) + βt(s)W − ln(aγβt(s))

γ
, wt(s) =

(μ1 − μ0)

σ2γβt(s)W
. (2.32)

We substitute (2.32) in (2.23) to obtain that αt(s) and βt(s) must satisfy

α̇t − αtβt =
βt

γ
− ρ

γ
− 1

2

(μ1 − μ0)
2

σ2γ
− βt

γ
ln(aγβt) , (2.33)

β̇t = (βt)2 − μ0β
t , (2.34)

together with the terminal conditions

αt(T ) =
1

γ
(ρ̄− ρ)(T − t) , and βt(T ) = 1 ,

respectively. The solution to the Bernoulli differential equation (2.34) is

βt(s) =
μ0

1 + (μ0 − 1)e−μ0(T−s) .

Note that the function βt(s) does not depend on t. Hence, the value of β(s)

for both, the 0-agent under commitment and the naive t-agent, coincides for all
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s ∈ [0, T ], i.e.

β(s) = β0(s) = βN(s) .

By substituting the value of βt(s) in equation (2.33) we find that

αt(s) =
1

γ
e−

∫ T
s β(τ)dτ

[
(ρ̄− ρ)(T − t)−

∫ T

s

υe(τ)e
∫ T
τ β(z)dzdτ

]
,

where

υe(τ) = β(τ)− 1

2

(μ1 − μ0)
2

σ2
− β(τ) ln(aγβ(τ))− ρ .

Taking t = 0 and s = t we obtain the precommitment and naive solutions,

respectively,

αP (s) = α0(s) =
1

γ
e−

∫ T
s β(τ)dτ

[
(ρ̄− ρ)T −

∫ T

s

υe(τ)e
∫ T
τ β(z)dzdτ

]
,

αN(s) =
1

γ
e−

∫ T
s β(τ)dτ

[
(ρ̄− ρ)(T − s)−

∫ T

s

υe(τ)e
∫ T
τ β(z)dzdτ

]
.

Finally, let us compute the time consistent equilibrium which, according to

Proposition 1, can be obtained by solving the DPE

ρ̄V S(W, t)−K(W, t)− V S
t (W, t) =

max
{c,w}

{−1
γ

e−γc + [w(μ1 − μ0)W + (μ0W − c)]V S
W (W, t) +

1

2
w2σ2W 2V S

WW (W, t)

}
,

with K(W, t) given by

K(W, t) = E

[∫ T

t

e−ρ(s−t)(ρ̄− ρ)
−1
γ

e−γc
∗
ds

]
.

Applying Collorary 1 we obtain the set of two coupled partial differential equa-

tions

ρ̄V S(W, t)−K(W, t)− V S
t (W, t) = max

{c,w}

{−1
γ

e−γc+

+ [w(μ1 − μ0)W + (μ0W − c)]V S
W (W, t) +

1

2
w2σ2W 2V S

WW (W, t)

}
, (2.35)

ρK(W, t)−Kt(W, t) = (ρ̄− ρ)
−1
γ

e−γc
∗
+

+ [w(μ1 − μ0)W + (μ0W − c)]KW (W, t) +
1

2
w2σ2W 2KWW (W, t) , (2.36)
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where c∗ is the maximizer of the right hand term in (2.35). As a candidate to the

value function and to the function K(W, t) we guess

V S(W, t) = −ae−γ(αS(t)+βS(t)W ) , K(W, t) = A(t)e−γ(α
S(t)+βS(t)W ).

If these choices prove to be consistent the consumption and portfolio rules are

c∗ = αS(t) + βS(t)W − ln(aγβS(t))

γ
, w∗ =

(μ1 − μ0)

σ2γβS(t)W
. (2.37)

Next, it is not difficult to check that βS(t) coincides with β(t). By substituting

(2.37) in (2.35-2.36) we obtain that functions αS(t) and A(t) are the solution to

the following system of ordinary differential equations:

ρA(t)− Ȧ(t) + γA(t)α̇S(t) = −a(ρ̄− ρ)βS(t)−

−
[
(μ1 − μ0)

2

σ2γβS(t)
− αS(t) +

ln(aγβS(t))

γ

]
γA(t)βS(t) +

1

2

(μ1 − μ0)
2

σ2
A(t) ,

ρ̄a+ aγα̇S(t) + A(t) =

aβS(t)−
[
(μ1 − μ0)

2

σ2γβS(t)
− αS(t) +

ln(aγβS(t))

γ

]
γaβS(t) +

1

2

(μ1 − μ0)
2

σ2
a .

In Figure 4 and Figure 5 we analyze the sensitivity of the time-consistent

consumption and portfolio rules, respectively, for different values of ρ̄. For ρ = 0.3

we take ρ̄1 = 0.03 (standard case), ρ̄2 = 0.10, ρ̄3 = 0.15 and ρ̄4 = 0.20. The values

for the others parameters are: T = 30, γ = 0.1, W0 = 1000, μ0 = 0.03, μ1 = 0.09

and σ = 0.3.
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Figure 2.4: Sensitivity of the time-consistent consumption rule for different values
of ρ̄. Standard case (Dashing large). ρ̄2 = 0.10 (DotDashed). ρ̄3 = 0.15 (Dashing
small). ρ̄4 = 0.20 (Black).

Figure 2.5: Sensitivity of the time-consistent portfolio rule for different values of
ρ̄. Standard case (Dashing large). ρ̄2 = 0.10 (DotDashed). ρ̄3 = 0.15 (Dashing
small). ρ̄4 = 0.20 (Black).

Finally, let us briefly compare the results corresponding to the investment

strategy according to the precommitment, naive and time-consistent solutions.

In the case of power utilities, we have proved that the portfolio rule is always

the same for these three solutions (although the consumption rule differs, as

expected). For the case of exponential utilities, the investment rule is calculated
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according to the same formula

w∗ =
μ1 − μ0

σ2γβ(t)W
,

where β(t) coincides for all the solution concepts. However, since w∗ depends

on W , and W evolves in a different way for precommitment, naive and time-

consistent agents, the coincidence of portfolio rules in the power utility case is

lost in the case of (CARA) exponential utilities.

2.5 The case of stochastic terminal time

Finally, let us assume that the final time T is a random variable taking values in

[t0, T̄ ] (T̄ can be finite or infinite) with a known (maybe subjective) distribution

function G(τ) and finite expectation. For instance, in the case of uncertain life-

time presented by Yaari (1965), the distribution function Gt(s) is the conditional

probability that a consumer will die before time s, given that she is alive at time

t, for t < s. Let us assume that G(τ) has density function, G′(τ) = g(τ). The

conditional distribution function satisfies

Gt(τ) =
G(τ)−G(t)

1−G(t)
, gt(τ) =

dGt(τ)

dτ
=

g(τ)

1−G(t)
.

Under heterogeneous discounting and random duration the t-agent will look

for maximizing the expected value of (2.4), i.e.,

E

[∫ T

t

e−ρ(s−t)u(X(s), c(s), s) + e−ρ̄(T−t)F (X(T ), T ) | xt , t ; T > t

]
=

E

[∫ T̄

t

dGt(τ)

[∫ τ

t

ds e−ρ(s−t)U(X(s), c(s), s)

]
+

+

∫ T̄

t

dGt(τ)e
−ρ̄(τ−t)F (X(τ), τ) | xt

]
=

E

[∫ T̄

t

[
e−ρ(s−t)(1−Gt(s))U(X(s), c(s), s) + e−ρ̄(s−t)gt(s)F (X(s), s)

]
ds | xt

]
.

(2.38)

For the problem of maximizing (2.38) subject to (2.5), we can easily derive the
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corresponding dynamic programming equation by reproducing the steps in Sec-

tion 3. Let c∗(s) = φ(x(s), s) an equilibrium rule, and assume that functions

V1(x, t), V2(x, t) given by

V1(x, t) = E

[∫ T̄

t

e−ρ(s−t)(1−G(s))U(X(s), φ(X(s), s) ds | xt

]
,

V2(x, t) = E

[∫ T̄

t

e−ρ̄(s−t)g(s)F (X(s), s) ds | xt

]

are of class C2,1 in (x, t). Then the solution to the DPE

−
2∑

i=1

∂Vi(x, t)

∂t
+ ρV1(x, t) + ρ̄V2(x, t) = max

{c}
{(1−G(t))U(x, c, t) + g(t)F (x, t)+

+
2∑

i=1

[
∇xVi(x, t) · f(x, c, t) + 1

2
tr (σ(x, c, t) · σ′(x, c, t) · ∇xxVi(x, t))

]}
. (2.39)

is an equilibrium policy. Note that, in addition, V1 and V2 verify the following

partial differential equations system:

−∂V1(x, t)

∂t
+ ρV1(x, t) = (1−G(t))U(x, φ(x, t), t) +∇xV1(x, t) · f(x, φ(x, t), t)+

+
1

2
tr [σ(x, φ(x, t), t) · σ′(x, φ(x, t), t) · ∇xxV1(x, t)] , (2.40)

−∂V2(x, t)

∂t
+ ρ̄V2(x, t) = g(t)F (x, t) +∇xV2(x, t) · f(x, φ(x, t), t)+

+
1

2
tr [σ(x, φ(x, t), t) · σ′(x, φ(x, t), t) · ∇xxV2(x, t)] . (2.41)

Consider, for instance, the saving-consumption problem of maximizing (2.19),

where T is a random variable taking values in [0,∞), subject to (2.18), with

μ1 = σ = 0 (there is just one risk-free asset). In the log-utility case, U(c) = ln c,

F (W ) = a lnW , by maximizing the right hand term in (2.39) we obtain the

consumption rule

c∗(x, t) =
1−G(t)

∇WV1(W, t) +∇WV2(W, t)
.
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By substituting in (2.40) and (2.41) and by guessing

V1(W, t) = α(t) lnW + β(t) ,

V2(W, t) = γ(t) lnW + δ(t) ,

we obtain that α(t), β(t), γ(t) and δ(t) are the solution to the system of coupled

nonlinear differential equations

ρα(t)− α̇(t) = ln
1−G(t)

α(t) + γ(t)
,

ρβ(t)− β̇(t) = (1−G(t))ln
1−G(t)

α(t) + γ(t)
+ α(t)

(
μ0 − 1−G(t)

α(t) + γ(t)

)
,

ρ̄γ(t)− γ̇(t) = ag(t) ,

ρ̄δ(t)− δ̇(t) = γ(t)

(
μ0 − 1−G(t)

α(t) + γ(t)

)
.

2.6 Conclusions

In this chapter we analyze the problem of deriving the optimal/equilibrium rules

for an agent with heterogeneous preferences in a stochastic framework. We con-

sider both the discrete and the continuous time case deriving the SDPE whose

solutions are time consistent. In the discrete time setting, we adapt the deriva-

tion of the SDPE for the standard case optimizing backwards (Seierstad (2009)).

For the continuous time case we follow two different approaches. First, we define

the SDPE as the formal continuous time limit of the SDPE corresponding to a

discretized version of the model (see Karp(2007) and Maŕın-Solano and Navas

(2010)). Second, by using a variational approach as in Maŕın-Solano ans Patxot

(2012). The equation obtained present a more complicated functional form than

the standard one. For this reason, we derive an ”auxiliary dynamic programming

equation” that can provide additional information when solving the problem.

The SDPE derived is used to solve the classical consumption and portfolio

rules model for some utility functions (CRRA and CARA) and considering the

heterogeneous discount function, illustrating the results numerically. As in the

standard case, the portfolio rule coincide for the time inconsistent and for the time

consistent agent if the utility considered is of the CRRA family. This coincidence

is lost for the case of CARA utilities.
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Finally, we briefly analyze the problem when an uncertain final time is intro-

duced, adapting the SDPE to this case and solving a simple consumption-saving

problem with logarithmic utility functions.

2.7 Appendix

DPE in discrete time: general case. Let us assume that the probabilities

Pt[Vt+1 = v] = Pt(v| xt, ct, vt)

depend, not only on time t and the previous outcome vt, but also on the state

and control variables xt and ct. Given the policies c0(x0, v0), . . . , cT (xT , vT ), the

state Xs depends on the outcomes V1, . . . , Vs, i.e.,

Xs = Xs(V1, . . . , Vs) .

If p∗(v1, . . . , vt) denotes the probability of the joint event V1 = v1, . . . , Vt = vt,

then the expectation in (2.2) becomes

n−1∑
s=t

∑
vt,...,vs

δs−tus(Xs, cs(Xs, Vs), s)p
∗(vt, . . . , vs)+

∑
vt,...,vT

δ̄T−tF (XT , T )p
∗(vt, . . . , vT ) .

Since the probabilities p∗(vt, . . . , vs), and hence the expected value, depend on

the policies chosen, we can denote the above expectation as Ect,...,cT . We define

the value function

W (xt, t, vt) = sup
{ct}

Ect,...,cT

[
T−1∑
s=t

δs−tus(Xs, cs, s) + δ̄T−tF (XT , T ) | xt, vt

]
,

where the supremum is taken over the policy ct = ct(xt, vt), provided that future

s-agents follow the equilibrium rule c∗s = φs(xs, vs), for s = t + 1, . . . , n. In the

final period T , the value function is

W (xT , T, vT ) = F (XT , T ) .



48
2. Heterogeneous discounting in consumption-investment problems.

Time consistent solutions.

For s ≥ τ , we define

Lτ
s =

∑
vτ+1

· · ·
∑
vs

Pτ (vτ+1| xτ , c
∗
τ , vτ )Pτ+1(vτ+2| xτ+1, c

∗
τ+1, vτ+1) · · ·

· · ·Ps−1(vs| xs−1, c∗s−1, vs−1)us(Xs, φs(Xs, Vs), s) . (2.42)

For s = T − 1 we have

W (xT−1, T − 1, vT−1)

= sup
{cT−1}

{uT−1(xT−1, cT−1, T − 1) + EcT−1
δ̄F (XT , T )|xT−1, vT−1]}.

Let c∗T−1 = φ(xT−1, vT−1) be the solution to this equation. Since

EcT−1
[F (XT )|xT−1, vT−1] =

∑
vT ∈V

PT−1(vT |xT−1, c∗T−1, vT−1)F (XT , T ) ,

then

W (xT−1, T − 1, vT−1) = uT−1(xT−1, φ(xT−1, vT−1), T − 1)+

+δ̄
∑
vT ∈V

PT−1(vT |xT−1, c∗T−1, vT−1)F (XT , T ) =

= uT−1(xT−1, φ(xT−1, vT−1), T − 1) + δ̄LT−1
T .

In general

W (xt+1, t+ 1, vt+1) =
T−1∑
s=t+1

δs−t−1Lt+1
s + δ̄T−t−1Lt+1

T ,

and

W (xt, t, vt) = sup
{ct}

{
ut(xt, ct, t) +

T−1∑
s=t+1

δs−tEct

[
Lt+1
s | xt, vt

]
+

+δ̄T−tEct

[
Lt+1
n | xt, vt

]}
= sup

{ct}
{ut(xt, ct, t) +

T−1∑
s=t+1

δs−tLt
s + δ̄T−tLt

T} . (2.43)

Taking the expectation of W (xt+1, t+1, Vt+1) conditioned to xt and vt we have

Ect [W (Xt+1, t+ 1, Vt+1) | xt, vt ] =
T−1∑
s=t+1

δs−t−1Lt
s + δ̄T−t−1Lt

T . (2.44)

Finally, solving Lt
T in (2.44) and substituting in (2.43) we obtain the DPE (2.9).

�
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Proof of Proposition 2. It is a rather straightforward extension of the proof

in the deterministic case (see Maŕın-Solano and Patxot (2012)). We include a

sketch of the proof.

First note that, if x̄(s) is the state trajectory corresponding to the decision

rule cε(s), then

V (x, t)−Vε(x, t) = E

[∫ t+ε

t

e−ρ(s−t)
[
u(X(s), φ(X(s), s), s)− u(X̄(s), v(s), s)

]
ds+

+

∫ T

t+ε

e−ρ(s−t)
[
u(X(s), φ(X(s), s), s)− u(X̄(s), φ(X̄(s), s), s)

]
ds+

+e−ρ̄(T−t)(F (X(T ), T )− F (X̄(T ), T ))
]
.

Next, we can write

E

[∫ T

t+ε

e−ρ(s−t)u(X(s), φ(X(s), s), s) ds+ e−ρ(T−t)F (X(T ), T )

]
=

V (x(t+ ε), t+ ε)− E

[∫ T

t+ε

(
e−ρ(s−t−ε) − e−ρ(s−t)

)
u(X(s), φ(X(s), s), s) ds+

+
(
e−ρ̄(T−t−ε) − e−ρ̄(T−t)

)
F (X(T ), T )

]
,

and

E

[∫ T

t+ε

e−ρ(s−t)u(X̄(s), φ(X̄(s), s), s) ds+ e−ρ̄(T−t)F (X̄(T ), T )

]
=

V (x̄(t+ ε), t+ ε)− E

[∫ T

t+ε

(
e−ρ(s−t−ε) − e−ρ(s−t)

)
u(X̄(s), φ(X̄(s), s), s) ds+

(
e−ρ̄(T−t−ε) − e−ρ̄(T−t)

)
F (X̄(T ), T )

]
.

Third, note that

lim
ε→0+

V (x, t)− Vε(x, t)

ε
= A+B + C

where
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Time consistent solutions.

A = lim
ε→0+

1

ε
E

[∫ t+ε

t

e−ρ(s−t)
(
u(X(s), φ(X(s), s), s)− u(X̄(s), v(s), s)

)
ds

]
=

= u(x(t), φ(x(t), t), t)− u(x(t), v(t), t) ,

B = lim
ε→0+

1

ε
E

[∫ T

t+ε

(
e−ρ(s−t) − e−ρ(s−t−ε)

)
(u(X(s), φ(X(s), s), s)−

−u(X̄(s), φ(X̄(s), s), s)
)
ds+

(
e−ρ̄(T−t) − e−ρ̄(T−t−ε)

)
(F (x(T ), T )

−F (x̄(T ), T ))] = 0,

and

C = lim
ε→0+

V (x(t+ ε), t+ ε)− V (x(t), t)

ε
− lim

ε→0+

V (x̄(t+ ε), t+ ε)− V (x(t), t)

ε
=

=

(
∇xV (x, t)f(x, φ(x, t), t) +

1

2
tr(σ(x, φ(x, t), t)σ′(x, φ(x, t), t)∇xxV (x, t))

)
−

−
(
∇xV (x, t)f(x, v(t), t) +

1

2
tr(σ(x, v, t)σ′(x, v, t)∇xxV (x, t))

)
.

Therefore,

lim
ε→0+

V (x, t)− Vε(x, t)

ε
= [u(x, φ(x, t), t) +∇xV (x, t)f(x, φ(x, t), t)+

+
1

2
tr(σ(x, φ(x, t), t)σ′(x, φ(x, t), t)∇xxV (x, t))

]
− [u(x, v(t), t)+

+∇xV (x, t)f(x, v(t), t) +
1

2
tr(σ(x, v, t)σ′(x, v, t)∇xxV (x, t))

]
≥ 0 ,

since c∗ = φ(x, t) is the maximizer of the right hand term in (2.13).

�



Chapter 3

Consumption, investment and life

insurance strategies with

heterogeneous discounting

3.1 Introduction

The introduction of an uncertain lifetime in portfolio optimization models has

proved to be useful in the study of the demand for life insurance, which has usually

been derived from a bequest function. The starting point for modern research on

the subject dates back to Yaari (1965) who studied the problem of life insurance

in a deterministic financial environment with the stochastic time of death as

the only source of uncertainty. Later on, Richard (1975) combined the portfolio

optimization model in Merton (1969, 1971) with the model in Yaari (1965) to deal

with a life-cycle consumption/investment problem in the presence of life insurance

and random terminal time. However, the model introduced by Richard (1975)

had several unsatisfactory aspects. First, the value function was not well-defined

at the final time because the random variable used to model the lifetime was

assumed to be bounded. This is a very important point in view of the fact that the

problem was analyzed using a dynamic programming approach, which proceeds

backward in time. Second, as Leung (1994) pointed out, there is a problem with

the existence of interior solutions. In order to overcome these difficulties, Pliska

and Ye (2007) incorporated the randomness of the planning horizon by means of

the uncertain life model found in reliability theory. In contrast to Richard (1975),

in which the random lifetime took values on a bounded interval, in that paper the

authors considered an intertemporal model and allowed the random lifetime to

51
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take values on [0,∞). In addition, the authors refined the theory in the following

ways. First, the planning horizon was considered to be some fixed point in the

future T (the retirement time for the decision maker) in contrast with the model

in Richard (1975) in which the planning horizon was interpreted as the finite

upper bound on the lifetime. Second, at T a utility was introduced accounting

for the agent wealth at the final time. After setting up the HJB equation and

deriving the optimal feedback control law, Pliska and Ye (2007) obtained explicit

solutions for the family of discounted CRRA utilities. As it is customary in the

analysis of intertemporal decision problems, the decision maker considered was

characterized by a constant discount rate of time preference, i.e., she discounted

the stream of utilities of any category using an exponential discount function

with a constant discount rate of time preference according to the Discounted

Utility (DU) model introduced in Samuelson (1937). Within this framework, the

marginal rate of substitution between payments at different times depends only

on the length of the time interval contemplated, being this fact probably the main

limitation of the DU model with regard to its capacity to describe the actual time

preference patterns.

In fact, the empirical findings on individual behavior seem to challenge some

of the predictions of the standard discounting model (see Frederick et al. (2002)

for a review of the literature until then). For this reason, variable rates of time

preference have received an increasing attention in recent years, in attempts to

capture the reported anomalies. In this sense, for instance, several papers focused

on the greater impatience of decision makers about the choices in the short run

compared with those in the long term using the hyperbolic discount function

introduced by Phelps and Pollak (1968). Along the same lines, Karp (2007)

and Maŕın-Solano and Navas (2010) dealt with the problem with non-constant

discounting. Also, in a recent paper by Ekeland et al. (2012), the model of Pliska

and Ye (2007) was extended with the introduction of non-constant discount rates.

The choice of the discount function will depend, in general, on the problem

under consideration. For instance, in intertemporal problems with a bequest

motive, like those studying the demand for life insurance, it is useful to account

for the fact that the agent concern about the bequest left to her descendants is not

the same when she is young than when she is an adult. A similar effect could be

considered in retirement and pension models, in which the willingness to save for

a better retirement is likely to be greater at the end of the working life than at the

beginning. In addition, for such a long planning horizon the greater impatience in

the short run may still play a role, although this bias should evolve according to
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the different valuations over time of the bequest and the pension plan. In order

to capture this asymmetric valuation Maŕın-Solano and Patxot (2012) introduced

the heterogeneous discounting model. According to these authors, the individual

preferences at time t take the form

∫ T

t

e−δ(s−t)L(x(s), u(s), s) ds+ e−ρ(T−t)F (x(T ), T ) , (3.1)

i.e., the agent uses a constant discount rate of time preference, but this rate is

different for the instantaneous utilities L(x(s), u(s), s) and for the final function

F (x(T ), T ) which, in the previous examples, would account for the bequest or the

agent wealth at retirement. The most relevant effect of using any non-constant

discount function is that preferences change with time. Impatient agents over-

valuing instantaneous utilities in comparison with the final function are character-

ized by ρ > δ in equation (3.1). However, as we approach the end of the planning

horizon T the relative value of the final function increases compared with the

instantaneous utilities and consequently, the bias to the present decreases with

time (see Maŕın-Solano and Patxot (2012) and de-Paz et al. (2011) for a detailed

discussion of this effect).

The aim of this chapter is to derive the optimal consumption, investment and

life insurance rules for an agent whose concern about both the bequest left to her

descendants and her wealth at retirement increases with time. To this end we

depart from the model in Pliska and Ye (2007) generalizing the individual time

preferences by incorporating heterogeneous discount functions. In contrast to

the extension of Pliska and Ye’s (2007) model in Ekeland et al. (2012), where an

intergenerational problem is introduced by assigning different discount functions

to different generations, our setting of heterogeneous discounting focuses on the

time preference dynamics of the decision maker, i.e., our setting faces an intra-

generational problem. In addition, following Kraft (2003), we derive the wealth

process in terms of the portfolio elasticity with respect to the traded assets. This

approach allows us to introduce options in the investment opportunity set as

well as to enlarge it by any number of contingent claims while maintaining the

analytical tractability of the model. Finally, we analyze how the standard solu-

tions are modified depending on the attitude of the agent towards her changing

preferences, showing the differences with some numerical illustrations.

In effect, the individual facing the problem of maximizing (3.1) can act in two

different ways. On the one hand, she could solve the problem by ignoring the fact

that her preferences are going to change in the near future, and applying the clas-
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sical HJB equation. In this case, the strategies obtained will be only optimal from

the point of view of her preferences at time t and, in general, will be only obeyed

at that time; therefore they are time-inconsistent. On the other hand, she could

take into account her changing preferences and obtain the time-consistent strate-

gies by calculating Markov Perfect Equilibria (MPE). These different solutions

are usually referred to as naive (in general time-inconsistent) and sophisticated

(time-consistent) in the non-constant discounting literature. In order to obtain

the MPE, Maŕın-Solano and Patxot (2012) derived the Dynamic Programming

Equation (DPE) in a deterministic framework following a variational approach.

The extension to the stochastic case, in which the state dynamics is described by

a set of diffusion equations of the form

dx(t) = f(x(t), u(t), t) dt+ σ(x(t), u(t), t)dz(t) ,

where z(t) is a standard Wiener process, was studied in de-Paz et al. (2011).

In that paper the DPE providing time-consistent solutions was derived following

two different approaches. The first one consisted in obtaining the DPE for the

heterogeneous discounting problem in discrete time and then taking the formal

continuous time limit, following Karp (2007) for the non-constant discounting

problem in a deterministic setting (see Maŕın-Solano and Navas (2010) for the

stochastic case). The second one was the variational approach, as in Maŕın-

Solano and Patxot (2012) (which is based on Ekeland and Lazrak (2010)). It is

important to remark that, despite the fact that the two approaches are different

in nature, the equilibrium conditions coincide.

According to de-Paz et al. (2011), if V (x, t) is the value function of the

time-consistent (sophisticated) agent for the problem of maximizing (3.1) subject

to the corresponding state equation, and assuming that it is of class C2,1, then

V (x, t) satisfies the following DPE

ρV (x, t)− Vt(x, t)−K(x, t) = (3.2)

= sup
{u}

{
L(x, u, t) + Vx(x, t)f(x, u, t) +

1

2
tr (σ(x, u, t) · σ′(x, u, t) · Vxx(x, t))

}
,

where

K(x, t) = (ρ− δ)E

[∫ T

t

e−δ(s−t)L(xs, φ(xs, s), s) ds

]
(3.3)

with V (x, T ) = F (x, T ), and being φ(xs, s) the equilibrium rule . The subscripts

denote the partial derivative. If, for each pair (x, t), there exists a decision rule
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u∗ = φ(x, t), with corresponding state trajectory x∗(t), such that u∗ maximizes

the right hand side term of (3.2), then u∗ = φ(x, t) is the Markov equilibrium

rule for the problem with heterogeneous discounting.

It is worth mentioning that, unlike the standard DPE, a new term K(x, t)

appears in (3.2). Checking equation (3.3) it is obvious that K(x, t) = 0 in the

standard discounting case (δ = ρ). By differentiating (3.3) with respect to t we

obtain an “auxiliary dynamic programming equation”

δK(x, t)−Kt(x, t) = (δ − ρ)L(x, φ(x, t), t) +Kx(x, t) · f(x, φ(x, t), t)+

+
1

2
tr (σ(x, φ(x, t), t) · σ′(x, φ(x, t), t) ·Kxx(x, t)) , (3.4)

so that instead of solving (3.2) and (3.3), the solution can be characterized by

solving the system of partial differential equations (3.2) and (3.4) with the cor-

responding boundary conditions V (x, T ) = F (x, T ), and K(x, T ) = 0.

The rest of the chapter is organized as follows. In Section 2, we present

the model we want to address describing the underlying financial and insurance

market as well as the optimal control problem to be solved. In Section 3, we

consider the case of CRRA and CARA utility functions and we discuss the time-

consistency of the solutions obtained. In Section 4, we provide some numerical

illustrations of the main results, comparing our solutions with the standard ones.

Finally, Section 5 concludes.

3.2 The model

Consider a decision maker with a working life that extends from t0 to T years who

is subject to a mortality risk. Let τ ∈ [0,∞) be a random variable defined on a

given probability space (Ω,F ,P) representing the agent time of death. We assume

that τ has a known distribution function F (τ) and density function F ′(τ) =

f(τ). At each time t ∈ [t0,min{T, τ}], the agent has to decide how to allocate

her personal wealth W (t) between consumption, investment, and life insurance

purchase.

The consumption process rate is denoted by c(t). Obviously, the agent enjoys

consumption as long as she is alive, i.e., for all t ≤ min{T, τ}. The life insurance
contract can be purchased by the agent by paying premiums per euro of coverage

for age t at a rate denoted by p(t). We assume that contracts of this kind are

offered continuously in the insurance market. If Q(t) denotes the total amount of

life insurance purchased, the total premium paid at time t is p(t)Q(t). In addition
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to consumption and purchase of a life insurance policy, we assume that the agent

invests the full amount of her savings in a financial market. Let us briefly derive

the wealth process when the market comprises two securities, one risk-free and

the other risky. The risk-free asset price M(t) is assumed to evolve according to

dM(t) = M(t)rdt ,

where r > 0 and M(t0) = m > 0, while the risky asset follows a geometric

Brownian motion described by

dP (t) = P (t)μdt+ P (t)σdz(t) ,

where P (t0) = p > 0 and z(t) is a standard Brownian motion process defined

on (Ω,F ,P). Throughout the chapter we assume that (Ω,F ,P) is a filtered

probability space and that its filtration {Ft, t ∈ [t0, T ]} is the P-augmentation of

the filtration generated by z(t). Besides the return on her investment, the agent

receives her income at a rate i(t) until her retirement time or until her death

time, whichever happens first. Denoting by w the proportion of savings invested

in the risky asset, the wealth process is described by the stochastic differential

equation

dW = [(r + w(μ− r))W + i(t)− c(t)− p(t)Q(t)] dt+ wσWdz(t) , (3.5)

defined on [t0,min{T, τ}], with W (t0) = W0.

Assume now that the opportunity set for investments is not only composed by

the two securities described above but that an option C(t, P (t)) on the stock is

also available in the market. The introduction of options and other derivatives is

a natural generalization of the standard portfolio problem due to their wide use

as investment opportunities. However, the extension of the stochastic optimal

control approach leads to a much more complicated form of the HJB equation,

since the option price C(t, P (t)) is a non-linear function of the underlying stock

price. Kraft (2003) proposed a kind of two step procedure that greatly simplifies

the problem. By introducing the elasticity of the portfolio with respect to the

stock price, it is shown that this elasticity can be used as the control variable

instead of the share of wealth invested in each asset. Thus, in the first step,

investment problems with contingent claims of the form C(t, P (t)) can be solved

as if the portfolio only contained a risky security and a risk-free security (the

reduced portfolio problem). Once the optimal elasticity is obtained, the second
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step consists in calculating a portfolio tracking this elasticity.

Therefore, according to the elasticity approach, the optimal wealth process

can be determined by the optimal elasticity of the portfolio with respect to the

stock price. We first define the elasticity of the option price with respect to the

price of the underlying

εC =
dC/C

dP/P
,

where dC is obtained using Ito’s lemma

dC =

(
Ct + CPPμ+

1

2
CPPP

2σ2

)
dt+ CPPσdz(t) . (3.6)

An application of the Black-Scholes partial differential equation,

Ct + CPPr +
1

2
CPPP

2σ2 − Cr = 0

leads to the option dynamics

dC = (rC + (μ− r)CPP ) dt+ CPPσdz(t) .

Hence, we have

εC =
dC/C

dP/P
=

CPP

C

and equation (3.6) becomes

dC = C [(r + εC(μ− r))dt+ εCσdz(t)] .

Let wP and wC denote the proportion of the wealth invested in the risky asset

and in the call option, respectively. The remainder 1−wP −wC is the proportion

invested in the risk-free security. In this case, the wealth process is described by

dW = [(r + (wP + wCεC)(μ− r))W + i(t)− c(t)− p(t)Q(t)] dt+

+(wP + wCεC)σWdz(t) . (3.7)

In addition, the portfolio’s elasticity with respect to the stock price is defined

as the weighted sum of the elasticities of the portfolio components

ε = (1− wP − wC)εM + wP εP + wCεC .
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Since εP = 1 and εM = 0 respectively, we have

ε = wP + wCεC ,

and the stochastic differential equation describing the wealth process can be writ-

ten in terms of the elasticity of the investor’s portfolio provided that w = (wP , wC)

is hold constant (static elasticity), i.e.,

dW = [(r + ε(μ− r))W + i(t)− c(t)− p(t)Q(t)] dt+ εσWdz(t) , (3.8)

for t ∈ [t0,min{T, τ}], with W (t0) = W0.

Note that the only difference between equations (3.8) and (3.5) is that the

control variable w in (3.5) is replaced by the static elasticity ε in (3.8). In addition,

since ε is independent of a particular asset, the opportunity set for investment

can be enlarged by any number of contingent claims.

The problem for the wage earner is then to choose the consumption, portfolio

elasticity and life insurance rules so as to maximize

max
{c,ε,Q}

E

[∫ T∧τ

t

e−δ(s−t)U(cs)ds+ e−ρ(τ−t)B(Z(τ), τ)1Iτ≤T+

+e−ρ(T−t)L(W (T ))1Iτ>T | τ > t,Ft

]
, (3.9)

where T ∧ τ ≡ min{T, τ}; 1IA is the indicator function of event A; U(c) is the

utility derived from consumption; L(W (T )) denotes the utility derived from the

wealth available for retirement in case of being alive at T ; and B(Z(τ), τ) is the

utility from the legacy left to her descendants in case of dying before retirement,

with Z(τ) = W (τ) + Q(τ). Functions U(·), B(·) and L(·) are assumed to be

strictly concave functions on their arguments.

Note that the discount function is the same for B(Z(τ), τ) and L(W (T )),

which are the final functions depending on dying before retirement or not, and it

is different from the discount function for the utility derived form consumption,

with ρ > δ. In contrast to intergenerational models, in which different generations

can be modeled by introducing different discount functions (as in the case of

hyperbolic discounting), we are interested in modeling the individual’s increasing

concern about his/her bequest and his/her wealth available for retirement, i.e.,

from an intragenerational point of view. As discussed in de-Paz et al. (2011), this

asymmetric valuation can not be described by standard exponential discounting

or hyperbolic discount functions.
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Finally, if the mortality risk is independent of the financial risk, equation (3.9)

with random terminal time transforms into

max
{c,ε,Q}

E

[∫ T

t

(
S(s, t)e−δ(s−t)U(cs) + f(s, t)e−ρ(s−t)B(Z(s), s)

)
ds+

+S(T, t)e−ρ(T−t)L(W (T )) | Ft

]
=

= max
{c,ε,Q}

1

S(t)
E

[∫ T

t

(
S(s)e−δ(s−t)U(cs) + f(s)e−ρ(s−t)B(Z(s), s)

)
ds+

+S(T )e−ρ(T−t)L(W (T )) | Ft

]
, (3.10)

where S(t) denotes the survivor function, i.e., the probability that the decision

maker survives to some time beyond t

S(t) = P(τ ≥ t) = 1− F (t) ,

the function f(s, t) is the conditional probability density for death at time s,

given that the agent is alive at time t ≤ s

f(s, t) = P(τ = s | τ ≥ t) =
f(s)

S(t)
,

and the function S(s, t) denotes the conditional probability that the decision

maker survives to some time beyond s, given that he or she is alive at time t ≤ s

S(s, t) = P(τ ≥ s | τ ≥ t) =
S(s)

S(t)
.

3.3 The case of CRRA and CARA utility func-

tions

In this section we derive explicit solutions for the problem (3.10) and (3.8) con-

sidering first, utility functions with a constant relative risk aversion, and second,

utility functions with a constant absolute risk aversion. We then compare the

standard solutions with the time-inconsistent and with the time-consistent solu-

tions for the problem with heterogeneous discounting.

Let c∗,ε∗ and Q∗ denote the optimal consumption, portfolio elasticity and life

insurance purchase. Then the current value function at time t is
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V̄ (W, t) =
1

S(t)
E

[∫ T

t

(
S(s)e−δ(s−t)U(c∗s) + f(s)e−ρ(s−t)B(Z∗(s), s)

)
ds+

+S(T )e−ρ(T−t)L(W ∗(T )) | Ft

]
.

Throughout the chapter we will work with the value function multiplied by

the survivor probability function

V (W, t) = S(t)V̄ (W, t) .

Note that, when transforming the functional (3.9) in (3.10), the utility func-

tion B(Z(s), s) enters in the integral term and it can therefore be viewed as an

instantaneous utility. In order to have a constant discount rate for the instan-

taneous utilities different to that for the final function, we rewrite the objective

function (3.10) as follows. For each ω ∈ Ω, we define a new state variable ytω(u)

as

ytω(u) =

∫ u

t

f(s)e−ρ(s−u)B(Zω(s), s)ds .

For simplicity, in the following we will omit the subindex ω. Then, maximizing

(3.10) subject to (3.8) is equivalent to

max
{c,ε,Q}

1

S(t)
E

[∫ T

t

S(s)e−δ(s−t)U(cs)ds+ e−ρ(T−t)
[
yt(T ) + S(T )L(W (T ))

] | Ft

]
(3.11)

subject to (3.8) and to

ẏt(s) = ρyt(s) + f(s)B(Z(s), s) . (3.12)

As mentioned in the introduction, the wage earner solving problem (3.11)

subject to (3.8) and (3.12) can act in two different ways. The time-consistent

agent must solve the DPE (3.2). Otherwise, the naive agent making decisions

at time t without taking into account that her preferences change with time will

maximize (3.11) subject to (3.8) and (3.12) by solving the standard HJB equation

δV (yt,W, s)− Vs(y
t,W, s) = max

{c,ε,Q}
{S(s)U(c)+

+
[
ρyt(s) + f(s)B(Z(s), s)

]
Vyt(y

t,W, s) + [(r + ε(μ− r))W + i(t)− c(t)
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−p(t)Q(t)]VW (yt,W, s) +
1

2
ε2σ2W 2VWW (yt,W, s)

}
. (3.13)

The difference between this solution and the solution in the standard case

(ρ = δ) comes from the boundary condition used in each problem. While in the

standard case the boundary condition is

V (yt,W, T ) = yt(T ) + S(T )L(W (T )) ,

the value function at T for the time-inconsistent agent, in its current value form,

is

V (yt,W, T ) = e−(ρ−δ)(T−t)(yt(T ) + S(T )L(W (T )) .

This boundary condition changes depending on the moment t at which the

solution is calculated. In fact, an agent acting in this way constructs her solu-

tion by solving the HJB equation (3.13) together with the family of boundary

conditions

V (yt,W, T ) = e−(ρ−δ)(T−t)(yt(T ) + S(T )L(W (T ))

for t ∈ [t0, T ] and patching together the solutions obtained. In order to highlight

the moment at which the problem is solved, in the following we will denote the

value function for the time-inconsistent (naive) agent by V t(yt,W, s). In addition,

we will omit the superscript t in yt(s).1

3.3.1 Logarithmic utility function

Consider first the case of logarithmic utility functions

U(cs) = ln cs , B(Z(s), s) = a lnZ(s) , and L(W (T )) = b lnW (T ),

(3.14)

where a and b are positive real parameters. Let us briefly derive the time-

inconsistent strategy solving equation (3.13) at some particular time t ∈ [t0, T ],

i.e., with the boundary condition

V t(y,W, T ) = e−(ρ−δ)(T−t)(y(T ) + bS(T ) lnW (T )) . (3.15)

1In the optimal solution from the viewpoint of the t0-agent, t = t0 in equation (3.11) (the
so called precommitment solution in the literature of hyperbolic discounting), one should add
the initial condition yt0(t0) = 0 in (3.12). The same initial condition is considered in the time-
consistent solution. On the contrary, in the naive solution, the initial condition in the problem
for each t-agent is yt(t) = 0, for every t.
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From the maximization problem in (3.13) one easily obtains

ct(s) =
S(s)

V t
W

, εt(s) =
−(μ− r)

σ2W

V t
W

V t
WW

, Qt(s) = a
f(s)

p(s)

V t
y

V t
W

−W . (3.16)

As a candidate to the value function, we guess

V t(y,W, s) = αt(s) ln(W + βt(s)) + ϕt(s)y .

By substituting this guessing into (3.13), we obtain that the rules given by (3.16)

become

ct(s) =
S(s)

αt(s)
(W + βt(s)) , εt(s) =

(μ− r)

σ2W
(W + βt(s)) ,

and

Q(s)t = a
f(s)ϕt(s)

p(s)αt(s)
(W + βt(s))−W ,

where the functions appearing in the guessed value function are given by

αt(s) = bS(T )e−ρ(T−t)+δ(s−t) +
∫ T

s

(
e−δ(τ−s)S(τ) + e−ρ(τ−t)+δ(s−t)f(τ)

)
dτ

and

βt(s) =

∫ T

s

e−
∫ u
s (r+p(v))dvi(u)du , ϕt(s) = e−(ρ−δ)(s−t) .

From the above expressions for αt(s), βt(s), and ϕt(s), it becomes clear that

our guessing for the value function is consistent.

Therefore, either the agent is able to commit herself to following the decisions

initially taken at t0 or the rules above will be only obeyed at the time at which

they have been calculated, i.e., s = t. Thus, either

αt0(s) = bS(T )e−ρ(T−t0)+δ(s−t0) +
∫ T

s

(
e−δ(τ−s)S(τ) + e−ρ(τ−t0)+δ(s−t0)f(τ)

)
dτ

and

ϕt0(s) = e−(ρ−δ)(s−t0) ,

or

αt(t) = bS(T )e−ρ(T−t) +
∫ T

t

(
e−δ(τ−t)S(τ) + e−ρ(τ−t)f(τ)

)
dτ , ϕt(t) = 1 .
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respectively. With respect to function βt(s), since it does not depend on the

moment t, it coincides whether or not the agent can commit herself

βt(s) = βt0(s) = βs(s) .

Now we turn the attention to the time-consistent strategy.

Proposition 3 Assume that U(cs), B(Z(s), s), and L(W (T )) are given by (3.14).

Then V (y,W, t) = α(t) ln(W + β(t)) + ϕ(t)y, and the optimal controls are given

by

c∗(t) =
S(t)

α(t)
(W + β(t)) , ε∗(t) =

(μ− r)

σ2W
(W + β(t)) ,

Q∗(t) = a
f(t)

p(t)

ϕ(t)

α(t)
(W + β(t))−W , (3.17)

where

α(t) = bS(T )e−ρ(T−t) +
∫ T

t

(
e−δ(s−t)S(s) + e−ρ(s−t)f(s)

)
ds , ϕ(t) = 1 ,

β(t) =

∫ T

t

e−
∫ s
t (r+p(v))dvi(s)ds . (3.18)

Proof: According to Proposition 1 in de-Paz et al. (2011), a time-consistent

solution can be obtained by solving the DPE (3.2), which in this specific case

becomes

ρV (y,W, t)−K(W, t)− Vt(y,W, t) = max
{c,ε,Q}

{S(t) ln c(t) + [(r + ε(t)(μ− r))W+

+i(t)− c(t)− p(t)Q(t)]VW (y,W, t) + [ρy + af(t) lnZ(t)]Vy(y,W, t)+

+
1

2
ε(t)2σ2W 2VWW (y,W, t)} , (3.19)

with K(W, t) given by

K(W, t) = (ρ− δ)E

[∫ T

t

e−δ(s−t)S(s) ln c∗(s)ds
]
, (3.20)

where c∗(s) is the equilibrium consumption rule obtained by solving the right hand

side in (3.19). In particular, by applying Corollary 1 in de-Paz et al. (2011), we

obtain the system of two coupled partial differential equations

ρV (y,W, t)−K(W, t)− Vt(y,W, t) = max
{c,ε,Q}

{S(t) ln c+ [(r + ε(μ− r))W+
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+i(t)− c(t)− p(t)Q(t)]VW (y,W, t) + [ρy + af(t) lnZ(t)]Vy(y,W, t)

+
1

2
ε2σ2W 2VWW (y,W, t)} , (3.21)

and

δK(W, t)−Kt(W, t) = (ρ− δ)S(t) ln c+ [(r + ε(μ− r))W+

+i(t)− c(t)− p(t)Q(t)]KW (W, t) +
1

2
ε2σ2W 2KWW (W, t) . (3.22)

We guess a solution of the form

V (y,W, t) = α(t) ln(W + β(t)) + ϕ(t)y ,

with

V (y,W, T ) = bS(T ) ln(W (T )) + y(T ) ,

for the value function. With respect to the function K(W, t), we guess

K(W, t) = A(t) ln(W + β(t)) with K(W,T ) = 0 .

If theses choices prove to be consistent, from the maximization problem in

(3.21) we have that the guessed optimal policies are given by (3.17). Substituting

into (3.21) and (3.22), we obtain that the functions α(t), β(t), ϕ(t) must satisfy

α̇(t)− ρα(t) = A(t)− S(t)− af(t)ϕ(t) , β̇(t)− (μ+ p(t))β(t) = i(t) ,

ϕ̇(t) = 0 ,

together with the boundary conditions

α(T ) = bS(T ) , β(T ) = 0 , ϕ(T ) = 1.

Solving these equations we get (3.18). �

Finally, with respect to the function A(t), we find that must satisfy

Ȧ(t)− δA(t) = −(ρ− δ)S(t) with A(T ) = 0 .

Thus,

A(t) =

∫ T

t

e−δ(s−t)(ρ− δ)S(s)ds .

Note that this solution coincides with the a priori time-inconsistent solution.
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This feature, also arising in non-constant discounting problems (see Maŕın-Solano

and Navas (2010)), is a property of the logarithmic utilities and it is not preserved

for more general utility functions such as the power utilities, as we analyze in the

next subsection.

3.3.2 Power utility function

Next, let us study the problem for the case of power utilities

U(cs) =
cγs
γ
, B(Z(s), s) = a

Z(s)γ

γ
, and L(W (T )) = b

W (T )γ

γ
,

(3.23)

with γ < 1, γ �= 0. As in the previous subsection, we first solve equation (3.13) to

obtain the “optimal” solution from the point of view of the agent making decisions

at time t and then we distinguish between the case of acting under commitment

and acting without commitment.

We guess a value function of the form

V t(y,W, s) = αt(s)
(W + βt(s))γ

γ
+ ϕt(s)y ,

with

V t(y,W, T ) = e−(ρ−δ)(T−t)
(
bS(T )

W (T )γ

γ
+ y(T )

)
.

Then, by maximizing the right hand side of equation (3.13) we obtain that

the “optimal” control rules satisfy

ct(s) =

(
αt(s)

S(s)

) 1
γ−1

(W + βt(s)) , εt(s) =
(μ− r)

σ2W (1− γ)
(W + βt(s)) ,

Qt(s) =

(
p(s)

af(s)

αt(s)

ϕt(s)

) 1
γ−1

(W + βt(s))−W ,

where αt(s), βt(s) and ϕt(s) are obtained by substituting the guessed value func-

tion together with the corresponding guessed controls into (3.13), and hence given

by

βt(s) =

∫ T

s

e−
∫ u
s (r+p(v))dvi(u)du , ϕt(s) = e−(ρ−δ)(s−t) ,

αt(s) = υ(s)γ−1
[∫ T

s

υ(u)

(
S(u)

1
1−γ +

(
ae−(ρ−δ)(u−t)f(u)

p(u)γ

) 1
1−γ

)
du+
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+
(
e−(ρ−δ)(T−t)bS(T )

) 1
1−γ υ(T )

]1−γ
,

with

υ(s) = exp

{
− 1

1− γ

∫ s

0

(
δ − 1

2

(μ− r)2

σ2(1− γ)
γ − γr − γp(u)

)
du

}
,

so that our guessing for the value function is consistent.

Once again, the function βt(s) does not depend on t (the moment at which the

decision is made) and therefore there is no difference between the committed and

the time-inconsistent agent. However, both αt(s) and ϕt(s) show the deviation

between these two different behaviors. While the agent who is able to commit

herself will compute her decision rule according to

αt0(s) = υ(s)γ−1
[∫ T

s

υ(u)

(
S(u)

1
1−γ +

(
ae−(ρ−δ)(u−t0)f(u)

p(u)γ

) 1
1−γ

)
du+

+
(
e−(ρ−δ)(T−t0)bS(T )

) 1
1−γ υ(T )

]1−γ
and

ϕt0(s) = e−(ρ−δ)(s−t0) ,

the time-inconsistent agent will follow the decisions taken only when they are

calculated; so at s = t

αt(t) = υ(t)γ−1
[∫ T

t

υ(u)

(
S(u)

1
1−γ +

(
ae−(ρ−δ)(u−t)f(u)

p(u)γ

) 1
1−γ

)
du +

+
(
e−(ρ−δ)(T−t)bS(T )

) 1
1−γ υ(T )

]1−γ
,

and ϕ(t) = 1.

With respect to the time-consistent solution, we have:

Proposition 4 Assume that U(cs), B(Z(s), s), and L(W (T )) are given by (3.23).

Then

V (y,W, t) = α(t)
(W + β(t))γ

γ
+ ϕ(t)y , K(W, t) = A(t)

(W + β(t))γ

γ
,



3.3. The case of CRRA and CARA utility functions 67

and the optimal controls are given by

c∗(t) =
(
α(t)

S(t)

) 1
γ−1

(W + β(t)) , ε∗(t) =
(μ− r)

σ2W (1− γ)
(W + β(t)) ,

Q∗(t) =
(

p(t)

af(t)

α(t)

ϕ(t)

) 1
γ−1

(W + β(t))−W , (3.24)

where

β(t) =

∫ T

t

e−
∫ s
t (r+p(v))dvi(s)ds , ϕ(t) = 1 , (3.25)

while functions α(t) and A(t) are the solution to the following system of differ-

ential equations

ρα(t)− A(t)− α̇(t) =

α(t)
γ

γ−1

[
(1− γ)

(
S(t)

1
1−γ +

(
af(t)

p(t)γ

) 1
1−γ

)]
+ γα(t)

[
1

2

(μ− r)2

σ2(1− γ)
+ r + p(t)

]
,

(3.26)

δA(t)− Ȧ(t) = (S(t))
1

1−γ

[
(ρ− δ)α(t)

γ
γ−1 − γα(t)

1
γ−1A(t)

]
+

+γA(t)

[
1

2

(μ− r)2

σ2(1− γ)
+ r + p(t)− p(t)

(
p(t)

af(t)
α(t)

) 1
γ−1

]
, (3.27)

with α(T ) = bS(T ), and A(T ) = 0.

Proof: To obtain the time-consistent solution we must solve the DPE (3.2).

Specifically, according to Corollary 1 in de-Paz et al. (2011) we must solve the

set of DPE

ρV (y,W, t)−K(W, t)− Vt(y,W, t) =

= max
{c,ε,Q}

{
S(t)

cγ

γ
+ [(r + ε(μ− r))W + i(t)− c(t)− p(t)Q(t)]VW (y,W, t)+

+

(
ρy + af(t)

cγ

γ

)
Vy(y,W, t) +

1

2
ε2σ2W 2VWW (y,W, t)

}
, (3.28)

δK(W, t)−Kt(W, t) = (ρ− δ)S(t)
cγ

γ
+ [(r + ε(μ− r))W+

+i(t)− c(t)− p(t)Q(t)]KW (W, t) +
1

2
ε2σ2W 2KWW (W, t) . (3.29)
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We try as a candidates for the value function and to the function K(W, t)

V (y,W, t) = α(t)
(W + β(t))γ

γ
+ ϕ(t)y , and K(W, t) = A(t)

(W + β(t))γ

γ
,

respectively. Maximizing the right hand side of (3.28) we obtain (3.24). Fi-

nally, substituting the guessed functions and the corresponding optimal controls

in (3.28-3.29), together with the terminal conditions

V (y,W, T ) = y(T ) + bS(T )
W (T )γ

γ
, and K(W,T ) = 0 ,

we obtain that functions β(t) and ϕ(t) are given by (3.25), while functions α(t)

and A(t) are the solution to the system of differential equations (3.26-3.27). �

3.3.3 Exponential utility function

Finally, let us solve the problem for the case of (constant absolute risk aversion)

exponential utility functions

U(cs) =
−1
γ

e−γcs , B(Z(s), s) =
−a
γ

e−γZ(s) , and L(W (T )) = −be−γW (T ),

(3.30)

with γ > 0. Once again, we first derive the “optimal” rules for the point of view of

an agent deciding at t ∈ [t0, T ] by means of equation (3.13). Then we differentiate

between the agent who is able to commit herself and the time-inconsistent agent.

By guessing

V t(y,W, s) = −ae−γ(αt(s)+βt(s)W ) + ϕt(s)y ,

the maximization problem in (3.13) gives

ct(s) = αt(s) + βt(s)W − 1

γ
ln

(
aγβt(s)

S(s)

)
, εt(s) =

(μ− r)

σ2γβt(s)W
, (3.31)

Qt(s) = αt(s) + βt(s)W − 1

γ
ln

(
p(s)

f(s)

γβt(s)

ϕt(s)

)
−W . (3.32)

We substitute (3.31) and (3.32) in (3.13), and after several calculations, we

obtain that the functions αt(s), βt(s), and ϕt(s) satisfy
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αt(s) =
−1
γ

[(
ln

(
b

a
S(T )

)
− (ρ− δ)(T − t)

)
e−

∫ T
s (1+p(v))βt(v)dv +

+

∫ T

s

(
ϑt(u)e−

∫ u
s (1+p(v))βt(v)dv

)
du

]
,

βt(s) =
1

e−
∫ T
s (r+p(v))dv +

∫ T

s

(
(1 + p(u))e−

∫ u
s (r+p(v))dv

)
du

, (3.33)

and

ϕt(s) = e−(ρ−δ)(s−t)

where

ϑt(u) = βt(u)

[
1 + p(u) + ln

(
aγβt(u)

S(u)

)
− p(u) ln

(
p(u)

f(u)

γβt(u)

ϕt(u)

)
− i(u)γ

]
−

−δ − 1

2

(μ− r)2

σ2
.

Although the function βt(s) does not depend on t, and hence

βt(s) = βt0(s) = βs(s) ,

the “optimal” policies change depending on whether the agent reconsiders her

previous decisions or is committed with the initial ones. In the last case, the

decision maker will compute her policies according to

αt0(s) =
−1
γ

[(
ln

(
b

a
S(T )

)
− (ρ− δ)(T − t0)

)
e−

∫ T
s (1+p(v))β(v)dv +

+

∫ T

s

(
ϑt0(u)e−

∫ u
s (1+p(v))β(v)dv

)
du

]
,

and

ϕt0(s) = e−(ρ−δ)(s−t0) .

If she is not committed with the initial decisions, she will be continuously

modifying her calculated choices for the future. Consequently αt(s) and ϕt(s)

will be only obeyed at s = t, i.e.,

α(t) =
−1
γ

[(
ln

(
b

a
S(T )

)
− (ρ− δ)(T − t)

)
e−

∫ T
t (1+p(v))β(v)dv +
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+

∫ T

t

(
ϑ(u)e−

∫ u
t (1+p(v))β(v)dv

)
du

]
,

and ϕ(t) = 1.

Next, let us derive the time-consistent solution.

Proposition 5 Assume that U(cs), B(Z(s), s), and L(W (T )) are given by (3.30).

Then

V (y,W, t) = −ae−γ(α(t)+β(t)W ) + ϕ(t)y , K(W, t) = A(t)e−γ(α(t)+β(t)W ) ,

and the optimal controls are given by

c∗(t) = α(t) + β(t)W − 1

γ
ln

(
aγβ(t)

S(t)

)
, ε∗(t) =

(μ− r)

σ2γβ(t)W
,

Q∗(t) = α(t) + β(t)W − 1

γ
ln

(
p(t)

f(t)

γβ(t)

ϕ(t)

)
−W , (3.34)

where

βt(s) =
1

e−
∫ T
s (r+p(v))dv +

∫ T

s

(
(1 + p(u))e−

∫ u
s (r+p(v))dv

)
du

, ϕ(t) = 1 ,

(3.35)

while functions α(t) and A(t) are the solution to the following system of differ-

ential equations

aγα̇(t) + aρ+ A(t) = aβ(t)(1− γp(t))− a
1

2

(μ− r)2

σ2
+ (3.36)

+

[
α(t)(1 + p(t))− 1

γ

(
ln

(
aγβ(t)

S(t)

)
+ p(t) ln

(
p(t)

f(t)
γβ(t)

))
+ i(t)

]
aγβ(t) ,

Ȧ(t)− δA(t)− γA(t)α̇(t) = a(ρ− δ)β(t) +
1

2

(μ1 − r)2

σ2
A(t)− (3.37)

−
[
α(t)(1 + p(t))− 1

γ

(
ln

(
aγβ(t)

S(t)

)
+ p(t) ln

(
p(t)

f(t)
γβ(t)

))
− i(t)

]
γA(t)β(t) ,

with α(T ) =
−1
γ

ln

(
b

a
S(T )

)
, and A(T ) = 0.

Proof: According to Corollary 1 in de-Paz et al.(2011), Markov Perfect Equilibria
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can be obtained by solving the set of two coupled PDE

ρV (y,W, t)−K(W, t)− Vt(y,W, t) = (3.38)

max
{c,ε,Q}

{−1
γ

e−γcS(t) + [(r + ε(μ− r))W + i(t)− c(t)− p(t)Q(t)]VW (y,W, t)+

+

(
ρy + f(t)

−a
γ

e−γ(W+Q)

)
Vy(y,W, t) +

1

2
ε2σ2W 2VWW (y,W, t)

}
,

δK(W, t)−Kt(W, t) = (ρ− δ)
−1
γ

e−γcS(t)+ (3.39)

+ [(r + ε(μ− r))W + i(t)− c(t)− p(t)Q(t)]KW (W, t) +
1

2
ε2σ2W 2KWW (W, t) .

We guess as a candidate to the value function

V (y,W, t) = −ae−γ(α(t)+β(t)W ) + ϕ(t)y ,

and with respect to K(W, t) we try

K(W, t) = A(t)e−γ(α(t)+β(t)W ) .

If these choices proves to be consistent, then from (3.38) we get (3.34). By

substituting in (3.38-3.39) and collecting terms in W , on the one hand, and

collecting terms in x, on the other hand, we get that β(t) and ϕ(t) are given by

(3.35). With respect to the functions α(t) and A(t), we obtain that they must be

the solution to the system of differential equations (3.36-3.37). �

3.4 Numerical illustrations

In this section we provide some numerical examples to illustrate the results for

the case of power utility functions. As a baseline case, we consider a 25 years old

agent endowed with an initial wealth of 1000 euros and with an initial wage of

25000 euros which grows at 3% every year until T = 65, when the agent retires.

The agent exhibits a risk aversion parameter of γ = −3 and her heterogeneous

preferences are characterized by δ = 0.03 and ρ = 0.1. We assume that the

individual is subject to an instantaneous force of mortality or hazard rate given
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by the Gompert law of mortality

λ(t) =
1

h
e

(t−η)
h ,

with t ≥ 0. Following Milevsky (2006), we take η = 82.3 and h = 11.4. Due to

the well-known relationship between the hazard rate and the density and survivor

probability functions we have

f(t) = λ(t)e−
∫ t
0 λ(s)ds , S(t) = e−

∫ t
0 λ(s)ds .

Regarding the life insurance market, we assume that the insurance company sets

the premium in order to make a profit. In general, the insurance is said to be

actuarially fair when the expected profit rate equals 0, which in this case means

p(t) = λ(t). Consequently, in order to be profitable the insurance company must

charge a loading factor θ accounting for the percentage markup from the fair

value of insurance, i.e.,

p(t) = (1 + θ)λ(t) .

For this particular example we consider θ = 10% so that the premium per euro

of coverage at age t is

p(t) = (1 + 0.1)λ(t) .

Finally, we assume that the risk-free asset yields a return of r = 0.03 while the

risky security has an expected return of μ = 0.09 and volatility σ = 0.3.

Before comparing our solutions with the standard solutions, note that the

agent makes all her decisions according to her total available wealth (her current

wealth W (t) plus the present value of her future earnings β(t)). Although the

present value of future earnings has a positive effect in all the control variables,

Figure 1 shows that in this case the current wealth has a negative effect on the

total amount of insurance purchased, i.e., the more wealthy the agent is, the

less life insurance she purchases. However, since the wage earner has a a small

current wealth relative to her future earnings, she depends on her wages to make

her decisions. Figure 2 shows the present value of future earnings, two possible

trajectories of the total available wealth together with the corresponding time-

consistent life insurance rule, and their expected values.
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Figure 3.1: Simulated W (t) (thick), expected W (t) (thick), simulated time-
consistent life insurance rule (thin) and expected time-consistent life insurance
rule (thin).

Note that in spite of the negative current wealth, the amount of life insurance

purchased is enough to leave a positive bequest if premature death occurs.

Figure 3.2: Present value of future income (dashed) and two possible trajectories
of the total available wealth and the corresponding time-consistent life insurance
rule (the thickness reflects the correspondence). Smooth lines represents the
expected values.

For this reason the following comparisons are made for different values of

initial wage. Figures 3 to 7 show the differences between standard and hetero-

geneous behaviors. At the beginning of the planning horizon, the wage earner
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with heterogeneous discounting is more impatient than the agent with standard

discounting, since we have assumed ρ > δ. However, as time goes on the bias

to the present decreases as her concern about her bequest and her retirement in-

creases. In order to highlight how the heterogeneous preferences evolve over time,

we focus first on the differences with the standard case from the point of view

of a 25 years old agent who is able to commit herself with the decisions initially

taken. Then we look at how these differences change if the agent reconsiders her

choices at any time (time-inconsistency), and we end by analyzing the differences

from the point of view of the time-consistent agent.

On the one hand, if the wage earner does not modify the decisions made at

the age of 25, when she underestimates the bequest left to her descendants and

her wealth at retirement, one should expect her to purchase less life insurance

and to consume more than the standard agent. On the other hand, if the agent

does not commit herself, her policies should change according to her preferences

at different ages. Therefore, she should purchase more life insurance and consume

less than the committed agent. Finally, although the time-consistent agent also

overvalues the instantaneous utilities at the beginning of the planing horizon, she

knows that her preferences are going to change in the near future. In this case,

her policies should reflect the equilibrium between her preferences at different

times.

Figure 3 shows the difference of the life insurance purchased by the committed

25 years old agent and the standard discounting case. Departing from a similar

level of life insurance purchased, the difference is negative from that moment until

the ages close to the retirement date, when it becomes positive. This means that

the individual using the heterogeneous discount function postpones the purchase

of life insurance when she is 25 years old to the later adulthood. Note that the

deviation attains the maximum length around the age of 50 and decreases from

that point onwards. In addition, for a given age, an increasing initial wage leads

the agent to buy more life insurance under the standard preferences than under

the heterogeneous ones, except at ages closer to 65 years. In Figure 4, we compare

the life insurance purchased by the time-inconsistent agent and the standard

solution. In this case, the difference is positive since the agent reconsiders her

choice at each time point according to her increasing concern about the bequest.

The comparison of the time-consistent and standard behaviors is shown in Figure

5. The difference is also positive although it is larger than the difference in Figure

4, i.e., time-consistent planning leads the agent to buy more life insurance than

the time-inconsistent one. Note that, in contrast to the committed agent, the



3.4. Numerical illustrations 75

agent with heterogeneous discounting (both the time-inconsistent and the time-

consistent) reacts to an increase in her salary by buying more life insurance than

the standard agent.

Figure 3.3: Difference of optimal life insurance between the heterogeneous agent
committed with her preferences at the age of 25 and the standard agent for
different values of initial wage.

Figure 3.4: Difference of optimal life insurance between the time-inconsistent
heterogeneous agent and the standard agent for different values of initial wage.
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Figure 3.5: Difference of optimal life insurance between the time-consistent het-
erogeneous agent and the standard agent for different values of initial wage.

In figure 6 we show the life insurance paths (simulated and expected values)

for the committed, the time-inconsistent and the time-consistent agent and for

the baseline initial wage (25000 euros).

Figure 3.6: Comparison of the optimal life insurance purchase for time-consistent
(solid), time-inconsistent (large dashing) and committed 25-years old (small dash-
ing) agents.

Figure 7 highlights the deviation of consumption patterns for different initial

wages. Consumption brings immediate benefit so the heterogeneous agent, who
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is more impatient, decides to allocate larger amounts to consumption at least

in the first periods. The committed agent ends up allocating larger amounts

to consumption than the standard agent at all ages, since her path reflects the

preferences from the perspective of the 25 years old. The time-inconsistent wage

earner starts consuming more than the standard. However, as time goes on she

modifies (reduces) her previous choices according to her decreasing bias to the

present. As a result, her consumption path intersects the standard one between

the ages of 45 and 50, and ends in a lower level. Finally, the time-consistent

trajectory starts above the other three solutions and ends below them. This is

so because this agent makes her plan knowing how her preferences are going to

evolve and she decides to take advantage of the different levels of impatience at

each time point. Thus, her consumption is greater while she more impatient,

since she knows that in the future her preferences will lead her to consume less.

Observe that an increase in the initial wage shifts the curves upwards though,

unlike the life insurance purchase, it hardly modifies the differences between the

four consumption paths.
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Figure 3.7: Consumption paths for the standard case (dotted), the committed
agent (large dashing), the time-inconsistent agent (dot-dahsed) and the time-
consistent agent (solid).

To conclude this section, we analyze how the time-consistent life insurance

and consumption rules are modified when we vary the heterogeneous preferences.

Figures 8 and 9 show that the previous results are intensified if the discount rate

for the final function ρ is increased. For δ = 0.03 we plot the different paths

taking ρ = 0.06, ρ = 0.15 and ρ = 0.2. In particular, Figure 8 shows that the life

insurance purchase increases with ρ, while Figure 9 shows that the consumption

path rotates as ρ increases, i.e., the agent consumes more when she is young and

less when she is older.
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Figure 3.8: Sensitivity of the time-consistent life insurance for different values of
ρ, ρ = 0.06 (small dashing), ρ = 0.15 (large dashing), ρ = 0.2 (solid).

Figure 3.9: Sensitivity of the time-consistent consumption for different values of
ρ, ρ = 0.06 (small dashing), ρ = 0.15 (large dashing), ρ = 0.2 (solid).

3.5 Conclusions

In this chapter, we have studied the effects of introducing heterogeneous discount-

ing into a stochastic continuous time model with random lifetime in which the

wage earner decides between three different strategies: consumption, investment

and life insurance purchase. In contrast with the standard case, heterogeneous

preferences capture the different valuations that the individual gives to the be-

quest left to her descendants and to her wealth at retirement along the planning
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horizon. Consequently, the optimal policies for an agent using the heterogeneous

discount function differ from those for an agent with standard discounting. In

order to illustrate these effects, we have departed from the model in Pliska and

Ye (2007) generalizing the individual time preferences with the heterogeneous

discount function introduced by Maŕın-Solano and Patxot (2012). In addition,

we have derived the wealth dynamics in terms of the portfolio elasticity (Kraft

(2003)). This procedure allows us to generalize the investment problem by intro-

ducing contingent claims in the opportunity set while maintaining the analytical

tractability of the model. Explicit solutions have been obtained for the case

of CRRA and CARA utility functions for both the time-inconsistent and the

time-consistent agent. The implications of the use of the heterogeneous discount

function have been illustrated, showing the differences between our results and

the standard ones.



Chapter 4

Time-Consistent Equilibria in a

Cooperative Differential Game

with Heterogeneous Agents

4.1 Introduction

In the analysis of intertemporal decision problems with several agents, when

players can communicate and coordinate their strategies in order to optimize their

collective pay-off, cooperative solutions are introduced. Although the natural

framework for most economic problems is to assume that the agents compete

among each other, in some models -for instance, those related to the analysis

of international trade agreements, topics in environmental economics concerning

climate change policies, or the exploitation of common property natural resources;

see Jorgensen et al (2010) and Long (2011) for two recent surveys on dynamic

games in these topics- it is natural to look for mechanisms inducing cooperation

between economic agents (see e.g. Breton and Keoula (2011) and references

therein for a recent study of coalition formation and stability of coalitions in

resource economics).

Although it is customary to assume that all economic agents have the same

rate of time preference, there is no reason to believe that consumers, firms or

countries have identical time preferences for utility streams (see e.g. Jouini et

al (2010) and references therein). For instance, in a non-cooperative setting, for

the problem of extraction of exhaustible resources under common access, feed-

back Nash equilibria have been studied in the case of equal (Clemhout and Wan

(1985)) and different (Long et al (1999)) discount rates. With respect to the

81
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Pareto optimum in the cooperative framework, if there is a unique (constant)

discount rate for all agents, it is easily obtained by solving a standard optimal

control problem. However, in the case of different discount rates, when looking

for time-consistent cooperative solutions, standard dynamic optimization tech-

niques fail. The reason is that time preferences become time-inconsistent, as in

the case of hyperbolic preferences. In Gollier and Zeckhauser (2005) effects of ag-

gregation of heterogeneous time preferences were studied by assuming that there

is a representative agent and that agents can commit to their future consumption

plan at date t = 0 (this is the so called precommitment solution according to

the literature of non-constant discounting). Li and Löfgren (2000) characterized

long-run steady states for a renewable resource model with two agents under

similar assumptions. If we remove the commitment assumption, time-consistent

policies can be computed by solving the dynamic programming equation (DPE)

first derived in Karp (2007). This chapter aims to fill the gap in the search for

time-consistent solutions in a cooperative continuous time setting if agents are

heterogeneous, in the sense that their preferences are represented by different

utility functions (there is not a representative agent) and they also use differ-

ent discount rates. It is important to realize that when agents lack commitment

power, they act at different times t as sequences of independent coalitions (the

t-coalitions). The solution we compute assumes cooperation among players at ev-

ery time t, but is a non-cooperative equilibrium for the non-cooperative sequential

game defined by these infinitely many t-coalitions.

In recent years, papers departing from standard discounting have received

increasing attention. Strotz (1956) called attention to the problem of time in-

consistency arising when non-constant discount rates of time preference are in-

troduced. We refer to Frederick et al (2002) for a review of the literature up

to 2002. Time-inconsistency also arises in problems where the decision-maker

discounts instantaneous utilities and final gains in a different way. Equilibrium

conditions for time-consistent solutions have recently been obtained for both kind

of problems in a continuous time setting (see Karp (2007) for the case of non-

constant discounting, and Maŕın-Solano and Patxot (2011) for the problem with

heterogeneous discounting).

As we have mentioned above, despite the fact that non-standard discounting

models have focused on individual agents, this framework has proved to be useful

in the study of multi-agent problems if decision-makers cooperate among them

(although the different t-coalitions act in a non-cooperative way). If players share

the same joint instantaneous utility function (there is a representative agent) but
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have different rates of time preference, say r1 �= · · · �= rN , the cooperative problem

can be rewritten as a non-constant discounting problem and previous results in the

literature can be applied in order to obtain a time-consistent (subgame perfect)

solution (see Remark 2 in Karp (2007)) as follows. Let us consider an N -player

cooperative differential game where, as usual, the joint coalition maximizes the

weighted sum of their respective pay-offs,

J (c(·)) =
N∑

m=1

λmJ
m ,

where

Jm =

∫ T

t

e−rmsUm (x(s), c(s), s) ds

represents the individual pay-off of player m, λm ≥ 0 characterizes the weight of

player m in the coalition, and x(t) and c(t) are the vectors of state and control

variables. Thus, the joint payoff is

J (c(·)) =
N∑

m=1

λm

∫ T

t

e−rm(s−t)Um (x(s), c(s), s) ds .

If there is a representative agent we can write the (joint) utility function as

U(x, c, s), and the payoff for the group can be rewritten as

J (c(·)) =
∫ T

t

θ(s− t)U (x(s), c(s), s) ds ,

where

θ(s− t) =
N∑

m=1

λme
−rm(s−t)

is the discount function, which can be also rewritten as

θ(s− t) = e−
∫ s
t r̄(τ−t)dτ = e−

∫ s−t
0 r̄(τ)dτ

where the time preference rate r̄(τ) is a non-constant function of its argument,

r̄(τ) = −θ′(τ)
θ(τ)

=

∑N
m=1 λmrme

−rmτ∑N
m=1 λme−rmτ

.

For N = 2, this non-constant discounting model has been applied to study a

model of catastrophic climate-related damages in Karp and Tsur (2011).
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In this chapter, we tackle the more general problem that consists in maximiz-

ing

J (c(·)) =
N∑

m=1

λm

∫ T

t

e−rm(s−t)Um (x(s), c(s), s) ds (4.1)

subject to

ẋ(s) = f(x(s), c(s), s), x(t) = xt . (4.2)

Hence, we focus on the case when agents exhibit different instantaneous pay-off

functions and different (but constant) rates of time preference. This problem

cannot be transformed into a problem with non-constant discounting.

There are two sources of time-inconsistency in Problem (4.1-4.2). First, there

is the time-consistency problem related to the changing time preferences of the

different t-coalitions, as we have discussed in the previous paragraphs. In ad-

dition, if players are not committed themselves to cooperate at every instant of

time t, a problem of dynamic inconsistency or time-inconsistency (both words

are synonymous and are used indistinctly in the literature of cooperative differ-

ential games) can arise, independently of the form of the discount function: it

is possible that players initially agree on a cooperative solution that generates

incentives for them, but it is profitable for some of them to deviate from the

cooperative behavior at later periods. Haurie (1976) proved that the extension

of the Nash bargaining solution to differential games is typically not dynamically

consistent. We refer to Zaccour (2008) for a recent review on the topic. For

the case of transferable utilities, if the agents can redistribute the joint payoffs

of players in any period, Petrosyan proposed in a series of papers a payoff dis-

tribution procedure in order to solve this problem of dynamic inconsistency (see

e.g. Yeung and Petrosyan (2006) or Petrosyan and Zaccour (2003) and references

therein). If transferable utilities or payoff distributions are not allowed, Sorger

(2006) proposed, for the problem with heterogeneous agents in multiperiod (dis-

crete time) problems, the concept of recursive Nash bargaining solution, which

is a dynamically consistent equilibrium. This solution assigns different weights

λm(x) to the different players. Since weights are non constant but depend on

the state variable x, they evolve along time. We do not consider this issue of

dynamic consistency (related to the stability of the whole coalition) in this work.

Throughout the chapter we assume that the agents commit themselves to coop-

erate at every instant of time t. However, whereas the approach in Sorger (2006)

is different to ours, if utilities are transferable, payoff (imputation) distribution

procedures can be introduced, extending in a rather easy way this method to
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our problem with heterogeneous agents, as in the case of differential games with

non-constant discounting (see Maŕın-Solano and Shevkoplyas (2011)).

Our main contributions are the following. First, for a finite horizon two person

cooperative differential game, we introduce a computationally tractable approach

based in transforming the problem into a one-agent problem with heterogeneous

discounting (see Maŕın-Solano and Patxot (2011)). As a result, we must solve two

coupled DPEs. A second approach enables us to study problems with an arbitrary

number of players. In the derivation of the DPE we adopt the procedure given in

Karp (2007) for the non-constant discounting problem. And third, we apply the

approach in Maŕın-Solano and Shevkoplyas (2011) for the analysis of the problem

in an infinite horizon setting.

While our contributions are mainly methodological, we illustrate the effects

of using different discount rates by solving an exhaustible resource extraction

model with common access (see e.g. Dockner et al (2000)), and a basic common

property renewable natural resource model (see e.g. Clark (1990)). We prove

that, for these problems, if all the agents have the same parameter σ in their

utility functions

U i(ci) =
c1−σi
i − 1

1− σi

,

the extraction rates of all agents in the time-consistent solution coincide. A

similar result has recently been obtained in a discrete time setting in a fisheries

model in the limit σ = 1 for a logarithmic utility function (see Breton and Keoula

(2010)).

The chapter is organized as follows. In Section 2, we study a general co-

operative problem for the two-player case in finite horizon. We transform the

problem into a heterogeneous discounting model and derive the corresponding

DPEs. Next we discuss the issue of time (in)consistency through a nonrenew-

able resource extraction problem. In Section 3, we extend the two-player case

to the N -player case, and obtain the corresponding equilibrium conditions. We

illustrate the main result by solving an exhaustible resource extraction model.

The extension to the infinite time horizon setting is studied in Section 4, and

we extend our previous results to a common access renewable resource model.

Finally, Section 5 presents a summary of the main results of the chapter.
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4.2 The case of two heterogeneous agents

Heterogeneous discounting problems were introduced in Maŕın-Solano and Patxot

(2011) in order to study problems where the agent discounts in a different way the

utilities enjoyed along the planning horizon (typically due to consumption) and

the final function (which has normally a different nature), i.e., the decision-maker

faces the problem of maximizing

∫ T

t

e−r1(s−t)U(x(s), c(s), s) ds+ e−r2(T−t)F (x(T ), T ) (4.3)

subject to

ẋ(s) = f(x(s), c(s), s), x(t) = xt . (4.4)

We refer to Maŕın-Solano and Patxot (2011) for an economic motivation of Prob-

lem (4.3-4.4), as well as a discussion on the time-inconsistency of these time

preferences.

Next, for the two-player case, N = 2, we connect our cooperative problem

with an heterogeneous discounting problem. In order to do this, we rewrite

the functional objective for one of players in the Mayer form, in such a way

that Problem (4.1-4.2) for the t-coalition becomes equivalent to the problem of

maximizing

λ1

∫ T

t

e−r1(s−t)U1 (x(s), c1(s), c2(s), s) ds+ λ2e
−r2(T−t)y(T )

subject to:

ẋ(s) = f(x(s), c1(s), c2(s), s) , ẏ(s) = r2y(s) + U2 (x(s), c1(s), c2(s), s) .

With the addition of a new state variable y, we transform the cooperative problem

with asymmetric players into a Bolza problem for just one agent with integral

and terminal value terms, but with different time preferences rates.

Although time-consistent equilibrium conditions for problems with heteroge-

neous discounting were already derived in Maŕın-Solano and Patxot (2011) fol-

lowing a variational approach, we provide here an alternative derivation to their

main theorem in the spirit of Karp (2007) for non-constant discounting models,

by first obtaining the DPE for a discretized version of Problem (4.3-4.4), and

passing next to the continuous time limit. In addition, we propose a very sim-

ple method for transforming the functional DPE into a system of two partial
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differential equations, thereby facilitating the solution to the problem.

4.2.1 A set of dynamic programming equations

For Problem (4.3-4.4), let us assume the usual regularity conditions, i.e., functions

U , F and f i are continuously differentiable in all their arguments. In addition,

x ∈ Rn, c ∈ Rm. Next, let us divide the interval [0, T ] into n periods of constant

length ε = T/n, in such a way that we identify ds = ε, and s = jε, for j =

0, 1, . . . , n. Then equation (4.4) becomes

x(s+ ε)− x(s) = f(x(s), c(s), s)ε .

By denoting by x(jε) = xj and c(kε) = ck (j, k = 0, . . . , n − 1), the objective of

the agent in period t = jε will be to maximize

Vj =

n−j−1∑
i=0

e−r1(iε)U(x(i+j), c(i+j), (i+ j)ε)ε+ e−r2(n−j)εF (xn, nε) (4.5)

subject to

xi+1 = xi + f(xi, ci, iε)ε , i = j, . . . , n− 1 , xj given , (4.6)

provided that future j′ agents choose their best response actions. Let us state

the dynamic programming algorithm for the discrete Problem (4.5-4.6). In the

final period, we define

V ∗n = F (x(T ), T ) ,

as usual. For j = n − 1, the equilibrium value for (4.5) will be given by the

solution to the problem

V ∗(n−1)(x(n−1), (n− 1)ε) = max
{c(n−1)}

{
U(x(n−1), c(n−1), (n− 1)ε)ε+ e−r2εV ∗n (xn, nε)

}

with

xn = x(n−1) + f(x(n−1), c(n−1), (n− 1)ε)ε .

If c∗(n−1)(x(n−1), (n − 1)ε) is the maximizer of the right hand term of the above

equation, let us denote

Ū(n−1)(x(n−1), (n− 1)ε) = U(x(n−1), c∗(n−1)(x(n−1), (n− 1)ε), (n− 1)ε) .
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In general, for j = 1, . . . , n− 1, the value V ∗j (xj, jε) in (4.5) can be written as

V ∗j = max
{cj}

{
U(xj, cj, jε)ε+

n−j−1∑
k=1

e−r1kεŪ(j+k)(x(j+k), (j + k)ε)ε+

+e−r2(n−j)εV ∗n
}

(4.7)

with

x(j+1) = xj + f(xj, cj, jε)ε .

Since

V ∗(j+1)(x(j+1), (j + 1)ε) =

n−j−2∑
i=0

e−r1iεŪ(j+i+1)(x(j+i+1), (j + i+ 1)ε)ε

+e−r2(n−j−1)εV ∗n , (4.8)

then solving for V ∗n (xn, n) in (4.8) and substituting in (4.7), we obtain

V ∗j (xj, jε) = max
{cj}

{U(xj, cj, jε)ε +

+

n−j−1∑
k=1

e−r1kε
(
1− e−(r2−r1)ε

)
Ū(j+k)(x(j+k), (j + k)ε)ε+

+ e−r2εV ∗(j+1)(x(j+1), (j + 1)ε)
}
, (4.9)

with

x(j+1) = xj + f(xj, uj, jε)ε , j = 0, . . . , n− 1 ,

and

V ∗n = F (xn, nε) .

For the continuous time case, we take the following definition.

Definition 3 We define the value function for Problem (4.3-4.4) as the solution

to the DPE obtained by taking the formal continuous time limit when ε→ 0 of the

DPE (4.9) obtained for the discrete time approximation to the problem, assuming

that such a limit exists and that the solution is of class C1 in all their arguments.

In order to obtain the DPE for the problem with heterogeneous discounting,

letW (x, t) represent the value function of the t-agent, with initial condition x(t) =
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x. We assume that W (x, t) is continuously differentiable in all its arguments.

Since s = jε and

x(s+ ε)− x(s) = f(x(s), c(s), s)ε

then

W (x(t), t) = Vj(xj, jε)

and

W (x(t+ε), t+ε) = W (x(t), t)+∇xW (x(t), t)·f(x(t), c(t), t)ε+∇tW (x(t), t)ε+o(ε) ,

where

lim
ε→0

o(ε)

ε
= 0 .

Substituting in (4.9), since

e−r2ε = 1− r2ε+ o(ε) ,

we obtain

W (x(t), t) = max
{c(t)}

{U(x(t), c(t), t)ε+W (x(t), t) +∇xW (x(t), t) · f(x(t), c(t), t)ε

+∇tW (x(t), t)ε −r2εW (x(t), t)−K(x(t), t) + o(ε)} , (4.10)

where

K(x(t), t) = −
n−j−1∑
k=1

e−r1kε
(
1− e−(r2−r1)ε

)
Ū(j+k)(x(j+k), (j + k)ε)ε. (4.11)

Finally, since (
1− e−(r2−r1)ε

)
= (r2 − r1)ε+ o(ε)

by dividing (4.10) and (4.11) by ε and taking the limit ε → 0, we obtain the

following result:

Proposition 6 Let W (x, t) be a continuously differentiable function in (x, t) sat-

isfying the dynamic programming equation

r2W (x, t) +K(x, t)−∇tW (x, t) = max
{c}

{U(x, c, t) +∇xW (x, t) · f(x, c, t)} ,

(4.12)
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with W (x, T ) = F (x, T ), and

K(x, t) = (r1 − r2)

∫ T

t

e−r1(s−t)Ū(x, s)ds .

Then W (x, t) is the value function for Problem (4.3-4.4). If, for each pair (x, t),

there exists c∗ = φ(x, t), with corresponding state trajectory, such that c∗ max-

imizes the right hand side term of (4.12), then c∗ = φ(x, t) is called a Markov

equilibrium rule for the problem with heterogeneous discounting.

Next, note that

Ū(x, s) = U(x(s), φ(x(s), s), s)

where x(s) is the solution to

ẋ(s) = f(x, φ(x, s), s)

with x(t) = x. Hence,

K(x, t) = (r1 − r2)

∫ T

t

e−r1(s−t)U(x(s), φ(x(s), s), s) ds (4.13)

and, by differentiating K in (4.13) with respect to t, we obtain the “auxiliary

DPE”

r1K(x, t)−∇tK(x, t) = (r1 − r2)U(x, φ(x, t), t) +∇xK(x, t) · f(x, φ(x, t), t) .
(4.14)

Corollary 2 Let W (x, t), K(x, t) be two continuously differentiable functions in

(x, t) such that W (x, t), K(x, t) and the strategy c∗ = φ(x, t) satisfy the set of two

DPEs (4.12) and (4.14) with boundary conditions

W (x, T ) = F (x, T ) , K(x, T ) = 0 .

Then W (x, t) is the value function for Problem (4.3-4.4), and the strategy c∗ =

φ(x, t) maximizing the right hand side term of (4.12) is a Markov equilibrium

rule.
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4.2.2 An exhaustible resource model under common ac-

cess

Let us analyze a simple model of a common-property nonrenewable resource with

two agents, N = 2, with equal weights λ1 = λ2, in a finite time horizon T . Let

x(t) and cm(t), m = 1, 2, denote the stock of the resource and player m’s rate

extraction at time t, respectively, while the evolution of the system follows

ẋ(t) = −c1(t)− c2(t), x(0) = x0, x(T ) = 0. (4.15)

Each player m has an increasing and concave utility function Um(cm). Let us

assume that the utility functions are logarithmic,i.e.

Um(cm) = ln(cm) ,

and are discounted at constant time preference rates rm > 0, with r1 �= r2. If

the agents at time t = 0 decide to cooperate throughout all the planning horizon

[0, T ], the objective for the coalition is to maximize

∫ T

0

ln (c1(s)) e
−r1sds+

∫ T

0

ln (c2(s)) e
−r2sds (4.16)

subject to (4.15). If we solve problem (4.16) subject to (4.15) by means of Pon-

tryagin’s Maximum Principle we obtain

c0m(s) =
e−rms∑2

i=1
1−e−riT

ri

x0 =
e−rms∑2

i=1
e−ris−e−riT

ri

xs , (4.17)

where the superscript 0 in c0m accounts for the moment at which the decision

has been made. This is the so called (in the hyperbolic discounting literature)

precommitment solution, which is optimal from the viewpoint of the 0-coalition,

cP (s) = c0(s), and can be associated with the existence of some binding agreement

between players at the beginning of the game, in the sense that both agents will

follow the decision rule taken at time t = 0, despite having incentives to deviate

in the future from the previously calculated decision rule. However, if such an

agreement does not exist, players in the coalition can re-calculate the cooperative

solution at some instant t ∈ (0, T ]. The maximum of

∫ T

t

ln (c1(s)) e
−r1(s−t)ds+

∫ T

t

ln (c2(s)) e
−r2(s−t)ds, (4.18)
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subject to

ẋ(s) = −c1(s)− c2(s), x(t) = xt, x(T ) = 0 (4.19)

is given by

ctm(s) =
e−rm(s−t)∑2

i=1
1−e−ri(T−t)

ri

xt , s ∈ [t, T ] . (4.20)

Note that this solution differs from that calculated in (4.17). For instance,

ct1(t) = ct2(t) ,

whereas

c01(t) �= c02(t) ,

for every t > 0. Thus, the joint solution becomes time inconsistent as long as the

coalition has the possibility of re-optimizing at any instant after t = 0.

In general, if players in the coalition can continuously re-calculate the “co-

operative” solution, they will follow what we call the (time inconsistent) naive

decision rule cNm(t). Note that a coalition making a decision at time t will choose

the decision rule (4.20). However, at time t′ > t the coalition will re-compute

the decision rule. Hence, ctm(s) in (4.20) is followed only at the time s = t at

which the agents of the t-coalition have calculated the extraction rate, so that

the actual extraction rate becomes

cNm(t) = ctm(t) =
1∑2

i=1
1−e−ri(T−t)

ri

xt. (4.21)

Note that the precommitment and naive solutions do not coincide unless r1 = r2.

In fact,

cP1 (t) �= cP2 (t) ,

for every t ∈ (0, T ], whereas

cN1 (t) = cN2 (t) ,

for every t ∈ [0, T ]. If the agents can split the resource at time t = 0 in an

irreversible way so that

x0 = x1
0 + x2

0 ,

where

xm
0 =

∫ T

0

cm(s) ds ,

i = 1, 2, then the precommitment solution becomes time-consistent.
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In order to determine a time-consistent equilibrium, we first reformulate Prob-

lem (4.18-4.19) by rewriting the payoff of player 2 in the Mayer form. The objec-

tive functional becomes∫ T

t

e−r1(s−t) ln (c1(s)) ds+ e−r2(T−t)y(T )

subject to

ẋ(s) = −c1(s)− c2(s) , ẏ(s) = r2y(s) + ln (c2(s)) (4.22)

with x(T ) = 0. Although we have derived Proposition 6 and Corollary 1 for the

case of free terminal states x(T ) and y(T ), it is easy to check that the correspond-

ing DPEs are preserved if a terminal condition on x(T ) is imposed. According to

Proposition 6, we look for the solution to the DPE (4.12), i.e.,

r2W (x, y, t) +K(x, y, t)−Wt(x, y, t) =

= max
{c1,c2}

{ln c1 +Wx(x, y, t)(−c1 − c2) +Wy(x, y, t) (r2y + ln(c2))} , (4.23)

where

K(x, y, t) = (r1 − r2)

∫ T

t

e−r1(s−t) ln(c∗1, s)ds .

We guess for a value function of the form

W (x, y, t) = A(t) ln(x) + B(t)y + C(t) .

If this choice proves to be consistent, the extraction rates for both agents are

given by

c1(t) =
1

Wx

=
x

A(t)
c2(t) =

Wy

Wx

=
B(t)x

A(t)
.

In order to solve (4.23) we calculate the expression for K(x, t). To do that,

we substitute our “guessed” controls in (4.22). Hence,

x(s) = xt exp (Λt(s)) , with Λt(s) = −
∫ s

t

1 + B(τ)

A(τ)
dτ .

Therefore,

K(x, y, t) = (r1 − r2)

∫ T

t

e−r1(s−t) ln
(
xte

Λt(s)

A(s)

)
ds =
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=
r1 − r2

r1

(
1− e−r1(T−t)

)
ln(xt) + (r1 − r2)

∫ T

t

e−r1(s−t) ln
(
eΛt(s)

A(s)

)
ds .

By substituting in (4.23) and simplifying, we obtain

r2 [A(t) ln(x) + B(t)y + C(t)]− [A′(t) ln(x) + B′(t)y + C ′(t)] +

+
r1 − r2

r1

(
1− e−r1(T−t)

)
ln(x) + (r1 − r2)

∫ T

t

e−r1(s−t) ln
(
eΛt(s)

A(s)

)
ds =

= ln(x)− ln (A(t))− 1− B(t) + B(t)

(
r2y + ln(x) + ln

(
B(t)

A(t)

))
.

Since the above equation must be satisfied for every x and y, then

r2A(t)− A′(t) +
r1 − r2

r1

(
1− e−r1(T−t)

)
= 1 +B(t) , B′(t) = 0 . (4.24)

Using the terminal condition B(T ) = 1, we obtain

B(t) = 1 ,

and

c1(t) = c2(t) =
x

A(t)
,

for every t ∈ [0, T ]. With respect to A(t), note that, if

A(t) =
2∑

i=1

1− e−ri(T−t)

ri
,

which describes the solution for a naive coalition (see (4.21)), then equation (4.24)

is satisfied and, in addition, the solution to the state equation

ẋ(t) =
−2x(t)
A(t)

verifies the terminal condition

lim
t→T

x(t) = 0 .

Therefore, the solution obtained for the naive coalition is a time-consistent pol-

icy. This feature, also arising in non-constant discounting models (see Pollak

(1968) and Maŕın-Solano and Navas (2009)), is a consequence of using logarith-

mic utility functions, and it no longer holds when more general utility functions
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are considered.

Next, we solve the model for a general isoelastic utility function. Consider

the problem of maximizing

∫ T

t

[
e−r1s

c1−σ1 − 1

1− σ
+ e−r2s

c1−σ2 − 1

1− σ

]
ds (4.25)

subject to (4.15). If γi =
ri
σ
, the precommitment and naive solutions are given by

cPi (t) =
e−γit∑2

j=1
1
γj
(e−γjt − e−γjT )

x(t) ,

and

cNi (t) =
1∑2

j=1
1
γj
(1− e−γj(T−t))

x(t) ,

respectively. The precommitment and naive solutions coincide if, and only if,

r1 = r2.

For the calculation of the time-consistent solution, we transform Problem

(4.25) subject to (4.15) into the equivalent one-player problem of maximizing

∫ T

t

e−r1(s−t)
c1−σ1 − 1

1− σ
ds+ e−r2(T−t)y(T )

subject to

ẋ(s) = −c1(s)− c2(s) , ẏ(s) = r2y(s) +
c1−σ2 − 1

1− σ
.

From Corollary 1, we have to solve the set of two partial differential equations

r2W (x, y, t) +K(x, y, t)−Wt(x, y, t) = (4.26)

= max
{c1,c2}

{
c1−σ1 − 1

1− σ
+Wx(x, y, t)(−c1 − c2) +Wy(x, y, t)

(
r2y +

c1−σ2 − 1

1− σ

)}
,

r1K(x, y, t)−Kt(x, y, t) = (4.27)

= (r1− r2)
(c∗1)

1−σ − 1

1− σ
+Kx(x, y, t)(−c∗1− c∗2)+Ky(x, y, t)

(
r2y +

(c∗2)
1−σ − 1

1− σ

)
,

where c∗1, c
∗
2 in (4.27) are the maximizers to the right hand term in (4.26). Note
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that

(c∗1)
−σ = Wx , and (c∗2)

−σ =
Wx

Wy

.

Hence c∗1 = c∗2 if, and only if, Wy = 1. It is easy to prove that a solution exists

withWy = 1 (andKy = 0), so that the extraction rules for the two agents coincide

for every σ. It can be shown that, unless σ = 1 (the log-utility case), the naive

solution is time inconsistent in general. We study this model in more detail in

the following section, for a general N -player cooperative differential game.

4.3 The case of N heterogeneous agents

In this section we extend the two-player case analyzed above. Let us consider

the case of N players who decide to form a coalition seeking for a time-consistent

solution maximizing

J (c(·)) =
N∑

m=1

λm

∫ T

t

e−rm(s−t)Um (x(s), c(s), s) ds (4.28)

subject to

ẋ(s) = f(x(s), c(s), s), x(t) = xt . (4.29)

4.3.1 Dynamic programming equation

By proceeding in a similar way to that in Section 3, we discretize (4.28-4.29).

The corresponding problem in discrete time is

max
{c1,...,cn}

Vj =
N∑

m=1

V m
j =

n−j−1∑
i=0

N∑
m=1

λme
−rm(iε)Um(x(i+j), c(i+j), (i+ j)ε)ε (4.30)

subject to

xi+1 = xi + f(xi, ci, iε)ε , i = j, . . . , n− 1 , xj given . (4.31)

Let us state the dynamic programming algorithm for the discrete time Problem

(4.30-4.31). In the final period, we define

V ∗n = 0 ,
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as usual. For j = n− 1, the optimal value for (4.30) will be given by the solution

to the problem

V ∗(n−1)(x(n−1), (n− 1)ε) = max
{c(n−1)}

{
N∑

m=1

λmU
m(x(n−1), c(n−1), (n− 1)ε)ε

}
,

with

xn = x(n−1) + f(x(n−1), u(n−1), (n− 1)ε)ε .

If c∗(n−1)(x(n−1), (n − 1)ε) is the maximizer of the right hand term of the above

equation, let us denote

Ūm
(n−1)(x(n−1), (n− 1)ε) = Um(x(n−1), c∗(n−1)(x(n−1), (n− 1)ε), (n− 1)ε) .

In general, for j = 1, . . . , n− 1, the value V ∗j (xj, jε) in (4.30) can be written as

V ∗j = max
{cj}

{
N∑

m=1

λmU
m(xj, cj, jε)ε+

n−j−1∑
k=1

N∑
m=1

λme
−rmkεŪm

(j+k)(x(j+k), (j + k)ε)ε

}

(4.32)

with

x(j+1) = xj + f(xj, cj, jε)ε .

Since

V ∗(j+1)(x(j+1), (j + 1)ε) =

n−j−2∑
i=0

N∑
m=1

λme
−rmiεŪm

(j+i+1)(x(j+i+1), (j + i+ 1)ε)ε,

then we can write

V ∗(j+1)(x(j+1), (j + 1)ε)−
n−j−2∑
i=0

N∑
m=1

λme
−rmiεŪm

(j+i+1)(x(j+i+1), (j + i+ 1)ε)ε = 0 .

Adding the former expression to (4.32), we obtain

V ∗j (xj, jε) = max
{cj}

{
N∑

m=1

λmU
m(xj, cj, jε)ε + (4.33)

+

n−j−1∑
k=1

N∑
m=1

λm (1− ermε) e−rmkεŪm
(j+k)(x(j+k), (j + k)ε)ε+ V ∗(j+1)(x(j+1), (j + 1)ε)

}
,
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with

x(j+1) = xj + f(xj, cj, jε)ε , j = 0, . . . , n− 1 , and V ∗n = 0 .

Next, as in the previous section, we obtain a DPE for the problem with

heterogeneous discounting in continuous time by taking the limit ε→ 0 in (4.33).

Definition 4 We define the value function for Problem (4.28-4.29) as the solu-

tion to the DPE obtained by taking the formal continuous time limit when ε→ 0 of

the DPE (4.33) obtained from the discrete approximation to the problem, assum-

ing that the limit exists and that the solution is of class C1 in all their arguments.

Let Wm(x, t) be a continuously differentiable function representing the value

function of player m in the t-coalition, and let

W (x, t) =
N∑

m=1

Wm(x, t)

be the value function for the t-coalition, with initial condition x(t) = x. Since

s = jε and

x(s+ ε)− x(s) = f(x(s), c(s), s)ε ,

then W (x(t), t) = Vj(xj, jε) and

W (x(t+ε), t+ε) = W (x(t), t)+∇xW (x(t), t)·f(x(t), c(t), t)ε+∇tW (x(t), t)ε+o(ε) .

Substituting in (4.33) we obtain

W (x(t), t) = max
{ct}

{
N∑

m=1

λmU
m(x(t), c(t), t)ε+∇xW (x(t), t) · f(x(t), c(t), t)ε

+W (x(t), t) +∇tW (x(t), t)ε−
N∑

m=1

(1− ermε)Wm(x(t), t) + o(ε)

}
, (4.34)

where

Wm(x(t), t) = −
n−j−1∑
k=1

λme
−rmkεŪm

j+k(x(j+k), (j + k)ε)ε. (4.35)

Finally, by dividing (4.34) and (4.35) by ε and taking the limit ε → 0, we

obtain:
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Proposition 7 Let Wm(x, t), m = 1, . . . , N , be a set of continuously differen-

tiable functions in (x, t), satisfying the dynamic programming equation

N∑
m=1

rmW
m(x, t)−

N∑
m=1

∇tW
m(x, t) =

= max
{c}

{
N∑

m=1

λmU
m(x, c, t) +

N∑
m=1

∇xW
m(x, t) · f(x, c, t)

}
(4.36)

with Wm(x, T ) = 0, for every m = 1, . . . , N , and

Wm(x, t) = λm

∫ T

t

e−rm(s−t)U(x(s), φ(x(s), s), s) ds , (4.37)

where, c∗(t) = φ(x(t), t) is the maximizer of the right hand term in Equation

(4.36). Then

W (x, t) =
N∑

m=1

Wm(x, t)

is the value function of the whole coalition, the decision rule c∗ = φ(x, t) is the

(time-consistent) Markov Perfect Equilibrium, and Wm(x, t), for m = 1, . . . , N ,

is the value function of player m in the cooperative problem (4.28-4.29).

Remark 5 Note that, throughout the equilibrium rule c∗ = φ(x, t), for every

player m, Wm(x, t) in Equation (4.37) is a solution to the partial differential

equation

rmW
m(x, t)−∇tW

m(x, t) = λmU
m(x, φ(x, t), t) +∇xW

m(x, t) · f(x, φ(x, t), t) ,
(4.38)

for m = 1, . . . , N , with Wm(x, T ) = 0. Hence, we can compute the value function

by first determining the decision rule solving the right hand term in Eq. (4.36)

as a function of ∇xW
m(x, t), m = 1, . . . , N , and then substituting the decision

rule into the system of N partial differential equations (4.38).
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4.3.2 An exhaustible resource model under common ac-

cess: the case of N-asymmetric players

Let us extend the results for the nonrenewable resource model in Section 2.2 to

the general case of N asymmetric players. If λ1 = · · · = λN = 1, we must solve

max
{c1,...,cn}

N∑
m=1

∫ T

t

e−rm(s−t) (cm(s))
1−σm − 1

1− σm

ds (4.39)

subject to

ẋ(s) = −
N∑

m=1

cm(s), x(t) = xt, x(T ) = 0 . (4.40)

For m = 1, . . . , N , the precommitment and naive solutions for Problem (4.39-

4.40) are given by

cPm(t) =
e−γmt∑N

i=1
1
γi
(e−γit − e−γiT )

xt and cNm(t) =
1∑N

i=1
1
γi
(1− e−γi(T−t))

xt ,

(4.41)

respectively, where γm = rm
σm

. In the naive case the extraction rates of all agents

coincide.

In order to look for a time-consistent equilibrium, we apply the results in

Proposition 7 and Remark 5 to Problem (4.39-4.40)1. From equation (4.36) we

have to solve
N∑

m=1

rmW
m(x, t)−

N∑
m=1

∂Wm(x, t)

∂t
= (4.42)

= max
c1,...,cN

{
N∑

m=1

cm(s)
1−σm − 1

1− σm

+

(
N∑

m=1

∂Wm(x, t)

∂x

)(
−

n∑
m=1

cm(s)

)}
.

The maximizer of the right side term in (4.42) is

cSm(t) =

(
N∑
j=1

∂W j(x, t)

∂x

)− 1
σm

,

for m = 1, . . . , N . Therefore, the extraction rates of agents m and m′ coincide

(cSm = cSm′) if, and only if, σm = σm′ . Thus, if there are two players m and m′ such

that σm �= σm′ (hence cSm �= cSm′), the naive solution is always time-inconsistent.

In order to compute the actual decision rule we can solve the family of N

1As in the standard case, the same DPE in Proposition 7 is obtained if x(T ) is fixed
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coupled partial differential equations (4.38), which in our particular case becomes

rmW
m(x, t)− ∂Wm(x, t)

∂t
=

=
1

1− σm

⎡
⎣
(

N∑
j=1

∂W j(x, t)

∂x

)σm−1
σm

− 1

⎤
⎦− ∂Wm(x, t)

∂x

N∑
j=1

(
N∑
i=1

∂W i(x, t)

∂x

)− 1
σj

,

for m = 1, . . . , N . If

σ1 = · · · = σN = σ ,

the above system simplifies to

rmW
m(x, t)− ∂Wm(x, t)

∂t
=

=
1

1− σ

⎡
⎣
(

N∑
j=1

∂W j(x, t)

∂x

)1− 1
σ

− 1

⎤
⎦−N

∂Wm(x, t)

∂x

(
N∑
i=1

∂W i(x, t)

∂x

)− 1
σ

,

for m = 1, . . . , N . We guess

Wm(x, t) = Am(t)
x1−σ − 1

1− σ
+Bm(t) ,

for m = 1, . . . , N , with Am(t) > 0 for every t ∈ [0, T ). By substituting in the

above DPE, we find that the functions Am(t) are the solution to the system of

ordinary differential equations

Ȧm − rmA
m = N(1− σ)Am

(
N∑
j=1

Aj

)− 1
σ

−
(

N∑
j=1

Aj

)1− 1
σ

, m = 1, . . . , N .

(4.43)

For instance, in the limit case σ = 1 (which corresponds to a logarithmic utility

function), the above system simplifies to

Ȧm − rmA
m + 1 = 0 ,

for m = 1, . . . , N . Note that

Am(t) =
1

rm
[1− e−rm(T−t)] ,

which is the naive solution, satisfies this set of differential equations. Hence, the
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naive solution also becomes time-consistent in the case of N asymmetric players,

extending in this way the result obtained in Section 2.2. Summarizing, we have

proved:

Proposition 8 In Problem (4.39-4.40), in the time-consistent solution, the ex-

traction rates of two agents coincide if, and only if, they have the same marginal

elasticity σ. In particular, if σ1 = · · · = σN = 1, then the naive solution (4.41)

is time-consistent.

If σ �= 1 note that

cSm(t) =

(
N∑
j=1

Aj(t)

)− 1
σ

,

and the solution to the state equation is

x(t) = x0e
− ∫ t

0
N

(∑N
j=1

Aj(s))
1/σ

ds

.

In order to achieve the terminal condition x(T ) = 0, from the positivity of Am(t)

for t < T we obtain that

lim
t→T

N∑
j=1

Aj(t) = 0 ,

therefore, Am(T ) = 0, for every m = 1, . . . , N . It can be shown that the naive

solution is time-inconsistent, in general, for σ �= 1, as we illustrate numerically in

Section 3.3.

Remark 6 If Um(cm) = U(cm), i.e., all the agents have the same utility function

(in the isoelastic case, σ1 = · · · = σN = σ), along the equilibrium rule all players

extract the resource at the same rate and Problem (4.39-4.40) becomes equivalent

to the problem of a representative agent using the discount function

N∑
m=1

e−rm(s−t) .

This result is not preserved for the precommitment solution. The time-inconsistency

of the naive solution if σ �= 1 for the corresponding cake-eating problem with

nonconstant discounting was already proved in Maŕın-Solano and Navas (2009).

On the contrary, if there two agents m and m′ with different marginal utilities

(σm �= σm′), the problem cannot be simplified to a non-constant discounting prob-

lem.
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4.3.3 Numerical illustrations

Next we illustrate numerically the above results. We consider as a baseline case

the problem for three players, N = 3, exhibiting as time preference rates r1 =

0.03, r2 = 0.06 and r3 = 0.09, respectively, i.e., agent 1 being the most patient and

agent 3 the most impatient. Agents face the “optimal” exploitation of a common

property exhaustible resource with an initial stock of S0 = 100 during a time

interval that extends from t0 = 0 to T = 50 periods. Utilities from consumption

are assumed to be of the iso-elastic type with equal intertemporal elasticity of

substitution (1/σ) for all three players in the coalition.

Figures 1 and 2 show the individual extraction rate for every agent in the

coalition under the assumption of cooperation for the naive (dot dashed line)

and the sophisticated solutions (dashed line), with σ = 0.6 (Figure 1) and σ = 2

(Figure 2). In both graphs, the solid line shows the extraction rate for logarithmic

utilities.

10 20 30 40 50
t

0.5

1.0

1.5

2.0

2.5

3.0

c�t�

Figure 4.1: Extraction rates for naive and sophisticated agents (σ = 0.6) and
logarithmic case.
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Figure 4.2: Extraction rates for naive and sophisticated agents (σ = 2) and
logarithmic case.

Unless σ = 1 (logarithmic utilities), the time-consistent and naive solutions

do not coincide, as expected. For σ = 0.6, the time-consistent agents’ extraction

rate is higher at initial periods compared with naive agents, this behavior being

reversed for σ = 2. It is noteworthy to observe that the equilibrium appears to be

more sensitive to the value of σ than to the behavior (naive or time-consistent)

of the t-coalitions. In addition, higher values of σ lead agents to smooth their

extraction rate path along the time horizon.

Finally, in Figure 3 we compare the precommitment solutions (c0m(s), s ∈
[0, 50],m = 1, 2, 3) with the time-consistent solution assuming now that utilities

are of the logarithmic type:
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10 20 30 40 50
t

0.5

1.0

1.5

c�t�

Figure 4.3: Extraction rates for sophisticated agents in the coalition (solid line)
and individual extraction rates under precommitment at t = 0 (dashed, dotted
and dot dashed lines correspond to players 1, 2 and 3, respectively). Logarithmic
utility.

We observe that in the precommitment solution, each player’s extraction rate

in the coalition is different, (patient) player 1 being the agent in the coalition

with higher aggregate extraction (and hence exploitation) of the resource (patient

agents have a higher weight in the joint functional pay-off than impatient agents).

In the time-consistent solution, extraction rates are equal for all three players in

the coalition, as shown indicated by the solid line.

4.4 An extension: infinite planning horizon

In most economic models and, in particular, in the economic modeling of natural

resources, it is customary to work in an infinite horizon setting. For instance, an

important issue in the management of natural resources (such as forests, aquifers

or fish species) is the existence of positive steady state levels. In this section we

briefly extend the previous results for the nonrenewable resource model to a simple

model of management of a common-property renewable resource. If preferences

of agent m, for m = 1, . . . , N , are characterized by the utility function

Um(cm) =
c1−σm
m − 1

1− σm
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and the discount rate of time preference rm, then, at time t, we must solve

max
{c1,...,cn}

N∑
m=1

∫ ∞

t

e−rm(s−t) (cm(s))
1−σm − 1

1− σm

ds , (4.44)

subject to

ẋ(s) = g(x)−
N∑

m=1

cm(s) , x(t) = xt , (4.45)

where cm(t) is the harvest rate of agent m, for m = 1, . . . , N , and g(x) is the

natural growth function of the resource stock x. In the case of a representative

agent applying a unique utility function, this problem was already studied in

Barro (1999) for the neoclassical growth model.

In general, consider the problem of looking for the decision rule “maximizing”

J (c(·)) =
N∑

m=1

∫ ∞

t

e−rm(s−t)Um (x(s), c(s), s) ds, (4.46)

subject to (4.29). From Proposition 2, a natural candidate for a DPE is given

by (4.36-4.37) with T = ∞. However, in our derivation we assumed that T

is finite. Next we provide a mathematical justification of this DPE by using a

different procedure. Following the approach in Maŕın-Solano and Shevkoplyas

(2011) (which is based on the one by Ekeland and Lazrak (2010)), if c∗(s) =

φ(s, x(s)) is the equilibrium rule, then the value function is

W (x, t) =
N∑

m=1

∫ ∞

t

e−rm(s−t)Um(x(s), φ(x(s), s), s) ds (4.47)

where

ẋ(s) = f(x(s), φ(x(s), s), s) , x(t) = xt .

Next, for ε > 0 let us consider the variations

cε(s) =

{
v(s) if s ∈ [t, t+ ε] ,

φ(x, s) if s > t+ ε .

If the t-agent can precommit her behavior during the period [t, t + ε], the value
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function for the perturbed control path cε is given by

Wε(x, t) = max
{v(s), s∈[t,t+ε]}

{
N∑

m=1

∫ t+ε

t

e−rm(s−t)Um (x(s), v(s), s) ds

+
N∑

m=1

∫ ∞

t+ε

e−rm(s−t)Um(x(s), φ(x(s), s), s) ds

}
. (4.48)

Definition 5 Let Wε be differentiable in ε in a neighborhood of ε = 0. Then

c∗(s) = φ(s, x(s)) is called an equilibrium rule if

lim
ε→0+

W (x, t)−Wε(x, t)

ε
≥ 0 .

The above definition can be interpreted as follows: for ε sufficiently small,

the maximum of Wε in the limit when ε = 0 is precisely W (x, t). Although

this notion of equilibrium is not as natural as in the approach described in the

previous sections, it allows us to provide a mathematical justification to the DPE

(4.36-4.37) with T =∞.

Proposition 9 If the value function (4.47) is of class C1, then the solution c =

φ(x, t) to the right hand term of the DPE

N∑
m=1

rmW
m(x, t)−

N∑
m=1

∇tW
m(x, t) =

= max
{c}

{
N∑

m=1

Um(x, c, t) +
N∑

m=1

∇xW
m(x, t) · f(x, c, t)

}
(4.49)

with

Wm(x, t) =

∫ ∞

t

e−rm(s−t)U(x(s), φ(x(s), s), s) ds (4.50)

is an equilibrium rule, in the sense that it satisfies Definition 5.

Proof: In order to prove that c∗(t) = φ(x, t) solving the right hand term in (4.49)

is an equilibrium rule, we have to check Definition 5. We do it in several steps:

If x̄(s) denotes the state trajectory corresponding to the decision rule cε(s),

then

W (x, t)−Wε(x, t) =

=
N∑

m=1

∫ t+ε

t

e−rm(s−t) [Um(x(s), φ(x(s), s), s)− Um(x̄(s), v(s), s)] ds+
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+
N∑

m=1

∫ ∞

t+ε

e−rm(s−t) [Um(x(s), φ(x(s), s), s)− Um(x̄(s), φ(x̄(s), s), s)] ds .

Note that

N∑
m=1

∫ ∞

t+ε

e−rm(s−t)Um(x(s), φ(x(s), s), s) ds = W (x(t+ ε), t+ ε)−

−
N∑

m=1

∫ ∞

t+ε

[e−rm(s−t−ε) − e−rm(s−t)]Um(x(s), φ(x(s), s), s) ds .

In a similar way,

N∑
m=1

∫ ∞

t+ε

e−rm(s−t)Um(x̄(s), φ(x̄(s), s), s) ds = W (x̄(t+ ε), t+ ε)−

−
N∑

m=1

∫ ∞

t+ε

[
e−rm(s−t−ε) − e−rm(s−t)]Um(x̄(s), φ(x̄(s), s), s) ds .

Therefore,

lim
ε→0+

W (x, t)−Wε(x, t)

ε
=

lim
ε→0+

∑N
m=1

∫ t+ε

t
e−rm(s−t) [Um(x(s), φ(x(s), s), s)− Um(x̄(s), v(s), s)] ds

ε
+

+ lim
ε→0+

1

ε

N∑
m=1

[∫ ∞

t+ε

[
e−rm(s−t) − e−rm(s−t−ε)] [Um(x(s), φ(x(s), s), s)−

−Um(x̄(s), φ(x̄(s), s), s)] ds] + lim
ε→0+

W (x(t+ ε), t+ ε)−W (x̄(t+ ε), t+ ε)

ε
=

=
N∑

m=1

[Um(x(t), φ(x(t), t), t)− Um(x(t), v(t), t)] + 0+

+ lim
ε→0+

W (x(t+ ε), t+ ε)−W (x(t), t)

ε
− lim

ε→0+

W (x̄(t+ ε), t+ ε)−W (x(t), t)

ε
=

=
N∑

m=1

[Um(x(t), φ(x(t), t), t)− Um(x(t), v(t), t)] +

+

[
∂W (x, t)

∂t
+∇xW (x, t)f(x, φ(x, t), t)

]
−
[
∂W (x, t)

∂t
+∇xW (x, t)f(x, v(t), t)

]
=
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=
N∑

m=1

[Um(x, φ(x, t), t) +∇xW
m(x, t) · f(x, φ(x, t), t)]−

−
N∑

m=1

[Um(x, v(t), t) +∇xW
m(x, t) · f(x, v(t), t)] ≥ 0 ,

since c∗ = φ(x, t) is the maximizer of the right hand term in (4.49). �

Remark 7 Proposition 9 can easily be generalized to the general problem where

agents’ time preferences are represented by arbitrary discount functions dm(s, t),

m = 1, . . . , N . In this case, Wm(x, t) in (4.50) becomes

Wm(x, t) =

∫ ∞

t

d(s, t)U(x(s), φ(x(s), s), s) ds ,

and the DPE in (4.49) transforms into

N∑
m=1

∫ ∞

t

∂dm(s, t)

∂t
U(x(s), φ(x(s), s), s) ds−

N∑
m=1

∇tW
m(x, t) =

= max
{c}

{
N∑

m=1

Um(x, c, t) +
N∑

m=1

∇xW
m(x, t) · f(x, c, t)

}
.

For instance, if dm(s, t) = θm(s − t) we obtain the problem of N-hyperbolic het-

erogeneous agents using different non-constant discount rates of time preference.

Now, we analyze Problem (4.44-4.45). Since both the utility functions and

the state equation are autonomous, it seems natural to restrict our attention to

time-independent value functions Wm(x), for m = 1, . . . , N . From Proposition 9

we have to solve

N∑
m=1

rmW
m = max

c1,...,cN

{
N∑

m=1

c1−σm
m − 1

1− σm

+

(
N∑
j=1

W j
x

)(
g(x)−

N∑
m=1

cm

)}
, (4.51)

hence

c∗m = φm(x) =

(
N∑
j=1

W j
x

)− 1
σm

. (4.52)

Therefore, c∗m = c∗m′ if, and only if, σm = σm′ . In general, along the equilibrium
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rule, U ′(c∗m) = U ′(c∗m′), for all m,m′. In addition, we have the set of DPEs

rmW
m =

(φm(x))
1−σm − 1

1− σm

+Wm
x

(
g(x)−

N∑
j=1

(φj(x))
∗
)

, (4.53)

for all m = 1, . . . , N , where φm(x) are given by (4.52).

Next, let us restrict our attention to the case of linear decision rules. Since

(c∗i )
−σi = (c∗j)

−σj , for all i, j = 1, . . . , N , if

c∗m = φm(x) = αmx ,

then

(αix)
−σi = (αjx)

−σj .

Therefore, no linear decision rules exist unless σi = σj, for all i, j. For σi = σj = σ,

then αi = αj and the DPE (4.51) becomes

N∑
m=1

rmW
m =

N

1− σ

(
α1−σx1−σ − 1

)
+ α−σx−σ (g(x)−Nαx) .

This equation has a solution if g(x) = ax. In this case, we obtain

N∑
m=1

rmW
m(x) =

[
Nσ

1− σ
α1−σ + aα−σ

]
x1−σ − N

1− σ
,

together with
N∑

m=1

Wm
x (x) = α−σx−σ

and (4.53). If we try

Wm(x) = Amx1−σ − 1

1− σ
+Bm ,

by simplifying we obtain that Am, Bm and α are obtained by solving the equation

system

[rm − (1− σ)(a−Nα)]Am = α1−σ , (4.54)

rmA
m − (1− σ)rmB

m = 1 , (4.55)

N∑
m=1

Am = α−σ . (4.56)
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For instance, if σ = 1 (logarithmic utility) we have

Am =
1

rm
, and α =

1∑N
m=1

1
rm

.

If r1 = · · · = rN = r then

α =
r − (1− σ)a

Nσ
.

The following proposition summarizes the main results for this simple model.

Proposition 10 In Problem (4.44-4.45), along the equilibrium rule, the extrac-

tion rates of two agents are equal if, and only if, they have the same marginal

elasticity. If there are two players with different marginal elasticities, no linear

decision rules exist. If the natural growth function is linear and all the agents

have the same marginal elasticity σ, then the decision rules cm = αx and the

value functions

Wm(x) = Amx1−σ − 1

1− σ
+Bm ,

m = 1, . . . , N solve Problem (4.44-4.45), where the coefficients α, Am and Bm

are the solutions to (4.54-4.56).

Remark 8 It is easy to show that the qualitative properties of the problem given

in Proposition 10 (coincidence of extraction rates, existence of linear decision

rules) are preserved if time preferences of agent m, m = 1, . . . , N , are given by

dm(s, t) (see Remark 7).

4.5 Conclusions

In this chapter, we address the problem of searching time-consistent solutions

for cooperative differential games with heterogeneous agents (in the sense that

they exhibit different instantaneous pay-off functions and different discount rates

of time preference). We analyze the time-consistency problem related to the

changing preferences of the different t-coalitions. In order to avoid the possible

time-consistency problem associated to the stability of the grand coalition, we

assume that agents commit themselves to cooperate at every instant of time t

(although we don’t assume that the different t-coalitions cooperate among them).

First we restrict our attention to problems in a finite horizon setting. For this

case we introduce two alternative approaches in order to find time-consistent equi-

libria. In the first approach, we transform a two-player cooperative differential
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game into a one-agent problem with heterogeneous discounting. Whereas non-

constant discounting models are typically very difficult to solve since the DPE

is not a standard (partial) differential equation, our problem with two hetero-

geneous agents (and the problem with heterogeneous discounting) is more com-

putationally tractable. The second approach allows us to study problems with

an arbitrary number of players. A time-consistent solution can be obtained by

solving, first, an algebraic equation (for the determination of the decision rule as

a function of the value functions of all the agents) and, next, a system of coupled

dynamic programming equations. Finally, we extend our results to an infinite

horizon setting. We illustrate the results by studying a simple common access

natural resource model.



Chapter 5

Concluding Remarks

In this dissertation we depart from the heterogeneous discounting model first

proposed in Maŕın-Solano and Patxot (2012), extending and applying it to the

stochastic case and to the differential games framework. The key feature of hetero-

geneous preferences is that an agent discounts future payments using a constant

rate of time preference, but this rate is different for the instantaneous utilities

and for the final function. By means of this simple modification of the standard

theory, the approach can provide a model for certain behaviors that can not be

explained by the DU model or more general hyperbolic discounting. In particular,

heterogeneous discounting is appropriate to model situations in which exist a bias

to the present that is not constant along time, but evolve with it. Although the

model can account for decreasing and increasing levels of impatience, most of the

applications in this dissertation focus on the former case. For instance, in Chapter

2 we analyze the effects of introducing this kind of preferences in consumption-

investment models, illustrating how the evolution of people concerns about their

retirement well-being or bequest, which are supposed to increase with the agent’s

age, influence the way in which their wealth is allocated between such activities.

The heterogeneous discounting model is hence encompassed within the group

of theoretical ones that, like hyperbolic discounting, try to achieve a greater

descriptive realism by relaxing the assumption of a constant discount rate of time

preference. In the last decades, literature considering deviations from standard

theory has developed dramatically challenged by empirical evidence suggesting

that people often behaves in ways that are inconsistent with the DU model. In

fact, since the publication of Thaler’s work in 1981 (Thaler (1981)), a spate of

empirical studies has been published, and virtually every assumption of the DU

model has been called into question.

113
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However, it is well-known that the introduction of non-constant discount func-

tions give rise to time-inconsistent preferences (Strotz (1956)). Within the frame-

work of utility maximization, for instance, this implies that the application of the

standard optimization techniques, such as the Pontryagin’s Maximum Principle

or the HJB equation, fails in providing time-consistent solutions. Consequently,

in order to obtain time-consistent solutions it is necessary to derive an algorithm

for each model. In this sense, although some departures from the standard model

achieved a greater level of descriptive realism, this had come often at expense of

simplicity.

For the particular case of the heterogeneous discounting model, Maŕın-Solano

and Patxot (2012) derived a DPE providing time-consistent solution in a deter-

ministic framework. Nevertheless, some of the natural candidates to be described

with their model, such as retirement planning or demand for life insurance, are

better fitted in a stochastic environment in which one could consider, for example,

financial markets with risky assets.

One of the contributions of this dissertation is precisely the derivation of a

DPE providing time-consistent solutions for the heterogeneous discounting prob-

lem in a stochastic framework. This is done in Chapter 2, where the problem is

analyzed in both discrete and continuous time. For the discrete time case, the

derivation of the DPE is based on the principle of optimality, which enables us to

optimize backwards. For the second case, the DPE is derived following two differ-

ent procedures. The first one consists in a formal limiting procedure, departing

from a discretized version of the problem. The second is the variational approach.

However, both the formal limiting procedure and the variational approach have

an important limitation: the resultant DPE is a functional equation with a non-

local term, and consequently, it becomes very complicated to find solutions, not

only analytically, but also numerically. In order to overcome this difficulty, we

also derive in Chapter 2 a set of two coupled partial differential equations which

allows us to compute (analytically or numerically) the solutions for different eco-

nomic problems. To illustrate how the equations obtained can be used, we study

the classical consumption-investment problem (Merton (1971)), generalizing the

individual time preference with the introduction of the heterogeneous discount

function, and considering utility functions of the CRRA and CARA type. Nu-

merical illustrations of the solutions obtained in each case help us to highlight

the differences with the standard solutions. In addition, the introduction of a

stochastic terminal time is also briefly discussed, although this extension is fully

developed in the next chapter.
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In Chapter 3 the DPE obtained in Chapter 2 is used to analyze a more gen-

eral problem. Specifically, it is assumed that the decision maker may die before

achieving the retirement time, and hence two different sources of uncertainty are

incorporated in the model: financial risk and mortality risk. The introduction of

uncertain lifetime in the model enables us to study the optimal demand for life

insurance, together with the optimal consumption and investment decisions. The

amount of life insurance purchased is derived from a bequest function. Hence, by

discounting this utility at a different rate of time preference compared with the

instantaneous utilities, we are able to model not only an increasing concern about

the well-being after retirement, but also an increasing concern about the agent’s

family protection in case of premature death occurrence, and consequently his

or her life insurance strategy differs from that predicted by the standard model.

The study is done by generalizing the model proposed in Pliska and Ye (2007)

with the introduction of heterogeneous preferences. In addition, Chapter 3 also

extends Chapter 2 with regard to the financial market. In particular, we consider

that the agent can invest in options apart from riskless and risky assets. The

introduction of options and other derivatives is a natural generalization of the

standard portfolio problem due to their wide use as investment opportunities.

However, in order to maintain the analytical tractability of the problem, we de-

rive the wealth process in terms of the portfolio elasticity with respect to the risky

assets (Kraft (2003)). Numerical examples illustrate the results and differences

with the standard model for the case of CRRA and CARA utility functions.

Finally, in Chapter 4 the heterogeneous discounting framework is applied to

the study of differential games. Although most of non-standard discounting mod-

els have focused on individual decision maker problems, this framework has proved

to be useful in the study of cooperative differential games. In this chapter, the

agents forming the coalition are supposed to differ in both the utility function

and the discount rate of time preference. Consequently, one can not assume that

there is a representative agent and therefore, the problem cannot be solved by

rewriting the functional as a non-constant discounting problem. Our main con-

tribution in this chapter is to provide a way in order to obtain time-consistent

cooperative solutions for N -person differential games with asymmetric (hetero-

geneous) agents. With this goal, we propose two alternative approaches. In the

first one, we transform a two-person cooperative differential game into a one-

agent problem with heterogeneous discounting. Then, we derive the DPE for this

one-agent problem. The second approach allows us to study problems with an

arbitrary number of players. For this case, we also obtain the equilibrium for
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the cooperative time-consistent solutions. The results are illustrated by solving

a general exhaustible resource extraction model. Finally, we also study the ex-

tension to the infinite time horizon, and we extend previous results to a common

access renewable resource model.



Bibliography

[1] Angeletos, G.M., Laibson, D., Repetto, A., Tobacman, J. and Weinberg, S.

(2001). The Hyperbolic consumption model: Calibration, simulation, and

empirical evaluation. Journal of Economic Perspectives 15 (3), 47-68.

[2] Barro, R.J. (1999). Ramsey meets Laibson in the neoclassical growth model.

Quarterly Journal of Economics 114, 1125-1152.

[3] Benzion, U., Rapoport, A. and Yagil, J. (1989). Discount rates inferred

from decisions: An experimental study. Management Science 35, 270-284.
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