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Oscil-lacions neuronals: de ’activitat d’unitats individu-
als a dinamica emergent i viceversa

Resum: L’objectiu principal d’aquesta tesi és avancar en la comprensié
del processament d’informacié en xarxes neuronals en preséncia d’oscil-lacions
subumbrals. La majoria de neurones propaguen la seva activitat eléctrica a
través de sinapsis quimiques que séon activades, exclusivament, quan el cor-
rent eléctric que les travessa supera un cert llindar. Es per aquest motiu que
les descarregues rapides i intenses produides al soma neuronal, els anomenats
potencials d’accié, soén considerades la unitat basica d’informacié neuronal,
és a dir, el senyal minim i necessari per a iniciar la comunicacié entre dues
neurones. El codi neuronal és entés, doncs, com un llenguatge binari que ex-
pressa qualsevol missatge (estimul sensorial, memories, etc.) en un tren de
potencials d’acci6. Tanmateix, cap funcié cognitiva rau en la dinamica d’una
tnica neurona. Circuits de milers de neurones connectades entre si donen
lloc a determinats ritmes, palesos en registres d’activitat colectiva com els
electroencefalogrames (EEG) o els potencials de camp local (LFP). Si els po-
tencials d’accié de cada cél-lula, desencadenats per fluctuacions estocastiques
de les corrents sinaptiques, no assolissin un cert grau de sincronia, no apareix-
eria aquesta periodicitat a nivell de xarxa.

Per tal de poder entendre si aquests ritmes intervenen en el codi neuronal
hem estudiat tres situacions. Primer, en el Capitol 2, hem mostrat com una
cadena oberta de neurones amb un potencial de membrana intrinsecament
oscil-latori filtra un senyal periodic arribant per un dels extrems. La resposta
de cada neurona (pulsar o no pulsar) depén de la seva fase, de forma que cada
una d’elles rep un missatge filtrat per la precedent. A més, cada potencial
d’acci6 presinaptic provoca un canvi de fase en la neurona postsinaptica que
depén de la seva posicioé en 'espai de fases. Els periodes d’entrada capacos
de sincronitzar les oscil-lacions subumbrals sén aquells que mantenen la fase
d’arribada dels potencials d’acci6 fixa al llarg de la cadena. Per tal de queé el
missatge arribi intacte a la darrera neurona cal, a més a més, que aquesta fase
permeti la descarrega del voltatge transmembrana.

En segon cas, hem estudiat una xarxa neuronal amb connexions tant a veins
propers com de llarg abast, on les oscil-lacions subumbrals emergeixen de
lactivitat col-lectiva reflectida en els corrents sinaptics (o equivalentment en
el LFP). Les neurones inhibidores aporten un ritme a 'excitabilitat de la
xarxa, és a dir, que els episodis en qué la inhibici6 és baixa, la probabili-
tat d’'una descarrega global de la poblacié neuronal és alta. En el Capitol 3
mostrem com aquest ritme implica 'aparicié6 d’una bretxa en la freqiiéncia



de descarrega de les neurones: o bé polsen espaiadament en el temps o bé
en rafegues d’elevada intensitat. La fase del LFP determina l'estat de la
xarxa neuronal codificant I'activitat de la poblacio: els minims indiquen la
descarrega simultania de moltes neurones que, ocasionalment, han superat el
llindar d’excitabilitat degut a un decreixement global de la inhibici6, mentre
que els maxims indiquen la coexisténcia de rafegues en diferents punts de la
xarxa degut a decreixements locals de la inhibici6 en estats globals d’excitaci6.
Aquesta dinamica és possible gracies al domini de la inhibicié sobre I'excitacio.
En el Capitol 4 considerem acoblament entre dues xarxes neuronals per tal
d’estudiar la interaccié entre ritmes diferents. Les oscil-lacions indiquen re-
curréncia en la sincronitzacié de I'activitat col-lectiva, de manera que durant
aquestes finestres temporals una poblacié optimitza el seu impacte en una
xarxa diana. Quan el ritme de la poblaci6 receptora i el de ’emissora difer-
eixen significativament, I'eficiéncia en la comunicacié decreix, ja que les fases
de maxima resposta de cada senyal LFP no mantenen una diferéncia constant
entre elles.

Finalment, en el Capitol 5 hem estudiat com les oscil-lacions col-lectives
propies de l'estat de son donen lloc al fenomen de coheréncia estocastica.
Per a una intensitat optima del soroll, modulat per I'excitabilitat de la xarxa,
el LFP assoleix una regularitat maxima donant lloc a un periode refractari de
la poblacié neuronal.

En resum, aquesta Tesi mostra escenaris d’interacci6 entre els potencials
d’accio, caracteristics de la dinamica de neurones individuals, i les oscil-lacions
subumbrals, fruit de ’acoblament entre les cél-lules i ubiqiies en la dinamica
de poblacions neuronals. Els resultats obtinguts aporten funcionalitat a aque-
sts ritmes emergents, agents sincronitzadors i moduladors de les descarregues
neuronals i reguladors de la comunicaci6 entre xarxes neuronals.
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1.1 The human brain

The nervous system contains two main moduli: the central nervous system
(CNS) formed by the brain and spinal cord, and the peripheral nervous sys-
tem (PNS) which consists of all the nerves outside the CNS connecting it
to other parts of the body. The brain itself is divided into three anatomic
parts: cerebrum, cerebellum and brain stem (see left picture in Figure 1.1).
The cerebrum contains the two cerebral hemispheres, i.e. the neocortex or
cerebral cortex of ~3 mm thick, joined by a large white matter of myelinated
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axons, the corpus callosum; and two deeper structures, the thalamus and the
hypothalamus, which are also halved (see right picture in Figure 1.1). The
brain stem can be also decomposed in subareas: midbrain, pons and medulla.

thalamus . neocortex

. corpus callosum

hypothalamus

midbrain

cerebellum pons

medulla

Figure 1.1: Left: MRI brain sagittal section. The subdivisions of the three main brain areas:
the cerebrum (red), the cerebellum (blue) and the brain stem (green). Right: Section of
the human cerebrum. The cortex is the outer layer in darker tone. From [Jones 2010].

The basic functional units of the brain are the nerve cells or neurons (Fig-
ure 1.2) which number up to 100 billion. The cortex is the region containing
more such cells. We have approximately 25 billions of cortical neurons and
the number of connections between them can reach 300 trillion. Neurons are
excitable cells surrounded by a membrane crossed along its branched morphol-
ogy by ionic currents —commonly of Na®™, K, Ca?* and Cl~ ions—. Electrical
pulses arriving at the contact sites between nerve cells, go up the dendrites
to the soma, where neurons are able to summate inputs nonlinearly, and are
conducted away from the soma through the axon. The cortex possess an enor-
mous computational power due to the vast amount of neurons nested within
it.

1.2 The cerebral cortex

The human brain holds a massive grey matter, named the cerebral cortez,
composed of neuronal bodies and capable of higher functions than the rest
of mammals. The cortex is split into the two interconnected hemispheres
surrounding the earlier brain. In each hemisphere four lobes are identified:
frontal, parietal, occipital and temporal (see left picture of Figure 1.3). The
cortical tissue has a special structure arranged horizontally in six layers (see
right picture of Figure 1.3) and vertically in columns in which neurons are
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dendrite

Figure 1.2: Neuronal morphology. Scale bar: 50 um. Adapted from [Hao 2007].

interconnected along the cortical depth and share common external connec-
tivity [Rakic 2008|. Each layer contains specific types of neurons, and those
neurons that form a column have very similar receptive fields.

5

Figure 1.3: Left: The four lobes of the hemispheres. Right: Layered organization of the
human temporal cortex. From [Yague 2006].

Neurons can make contacts with neighboring neurons, i.e. neurons in the
next column or in a lower or upper layer, as well as with those neurons be-
longing to other cortical areas or to the opposite hemisphere. Connectivity,
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which is usually weak and sparse, shapes both local and distant circuits. Local
circuits help coactivate the responses of interconnected neurons and synchro-
nize them, so that their joint output may perturb a common target area more
efficiently.

The connectivity between neurons is not fixed. Several activity-dependent
mechanisms can reinforce or weaken the strength of such connections and the
local circuitry is shaped accordingly.

The human cortex is divided into several areas of continuous networks
of cortical columns, whose boundaries are not clear-cut. The connectivity
between and within those regions is complex and partially known. Usually,
cortical areas are defined according to their function. Despite the fact that
spontaneous activity is recorded through the whole brain, specific cognitive
tasks or stimulus features enhance the activity of neuronal circuits in partic-
ular regions.

1.3 Neurons

1.3.1 Basic description of neurons

Neurons are a specialized type of cell mainly found in the CNS. They are
complex electrical devices specialized in intercellular communication. They
are well-equipped by a variety of elements to accomplish this function: they
contain molecules that are released and target neighboring neurons, numer-
ous receptor sites cover their membrane in order to capture those chemical
compounds, they are extensively branched and make multiple contacts with
other neurons, and they possess a long conductive path named axon. This
machinery is turned on at every action potential or spike, which is a fast and
transient change (around 100 mV in 1 ms) in the voltage drop across the cell
membrane (Figure 1.4).

Figure 1.4: Action potential recorded by A. L. Hodgkin and A. F. Huxley from the squid
giant axon, taking the electrode placed outside the axon as the voltage reference (0 mV).
From [Hodgkin 1945].
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This voltage difference is due to distinct concentrations of ions across the
membrane, basically Nat and K ions and negatively charged amino acids
and proteins. Since the neuronal membrane is a lipid bilayer impermeable
to ions, particles need ion channels to cross the membrane. At rest, when
the neuron is not conducting impulses, the inside of the neuron carries a
less positive charge than the outside and its voltage, called resting membrane
potential, can range from —40 mV to —90 mV (taking the potential outside
the membrane arbitrarily equal to zero). Electrically, the membrane is thus a
capacitor separating the charges between the inner and outer surfaces.

This difference in ionic concentration can be maintained because the neu-
ronal membrane is selectively permeable to only a few ions: it is most perme-
able to potassium, less to chlorine and much less to sodium. This is reflected
in the different conductances of the ion channels. The neuron stays in a steady
state by means of a membrane protein that pumps three Na™ ions out of the
cell and two K ions inside for every ATP hydrolyzation. The Nat-K* pump
keeps the inner Nat concentration about 10 times lower than outside the cell,
and the inner K™ concentration about 20 times higher. This pump prevents
Na™ from accumulating within the cell and intracellular K* from dissipating
outside the cell (something that occurs however during action potentials).

Due to this concentration gradient the Na't ions tend to diffuse inside
the neuron, and the K% ions tend to escape from it. However, due to the
higher permeability to K, many more K* ions leave the cell than Na™ ions
enter and the neuron is negatively charged which attracts the positive ions
back to the neuron. In order to maintain a resting potential, the neuron
is constantly consuming energy via the Nat-K™ pump. Besides, each ion
channel is characterized by its equilibrium or reversal potential, at which no net
transmembrane flux of the specific ion crosses the channel because a balance
between the concentration gradient and the electric potential is reached. The
Nernst equation provides the relation between this electrostatic potential, Vi,
and the concentration of an ion C' in two regions:

RT Co
Vgon = Z_Fln (a) (11)

where R is the universal gas constant (8.314 J/Kmol), T'is the temperature in
Kelvin, zis the number of elementary charges of the ion and F'is the Faraday
constant (96.845 C/mol). C, is the extracellular concentration and Cj the
intracellular concentration of a particular ion.

The Nernst equation does not take into account the permeability of the
membrane and the presence of several ionic species crossing it. Consider-
ing such situation, the resting membrane potential can be calculated via the
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Goldman equation, which is written as follows -taking into account the most
relevant ions-:

B RTln (PK[K+]O+PNa[NG+]o+PCI[Cl_]o) (1.2)

AV = 2L
F PK[K+]1—|—PNa[Na+]i+P01[Cl*]i

where z = 1 for those ions and P is the permeability of each ion in m/s.'

The relative permeability of the neuronal membrane to Na™ and K ions
depends on the transmembrane voltage. These ion channels are known as
voltage-gated channels because the membrane potential of the cell determines
whether the channels are open or close. As mentioned above, at rest, the per-
meability to Kt is the highest. However when the membrane is depolarized,
the permeability to Na™ increases and thus the membrane potential becomes
more positive as more Na*t ions enter the cell down the concentration gra-
dient. Eventually the Nat-K* pump restores the membrane potential to its
resting level, actively maintaining the concentration gradient. Thus, neurons
are excitable systems capable of modifying their membrane potential.

Neurons responding to external stimuli such as light, sound, or heat (sen-
sory neurons) produce action potentials when exposed to them, while other
neurons react upon the reception of action potentials coming from other neu-
rons. Both input sources produce a flow of ions across the neuronal membrane.
All neurons elicit a spike when the input is strong enough to bring them above
a certain threshold and transiently makes the transmembrane potential posi-
tive. Otherwise the neuron only undergoes a depolarization of its membrane
potential that increases with the strength of the input (see left plot in Fig-
ure 1.5). Interestingly, once the neuron fires, the amplitude of the action
potential is independent of the input, like an all-or-none response. However
the number of spikes fired per unit time, its firing rate, depends on the strength
and duration of the input.

Other ionic channels are not responsible for the action potential genera-
tion. Instead, they are active at weak levels of input, and they cause rhyth-
mic subthreshold fluctuations of the membrane potential (see right plot in
Figure 1.5).

There are hundreds of different neuronal types in the brain (see left picture
of Figure 1.6) that subserve different functions and exhibit a wide variety of
electrical behaviors (see right picture of Figure 1.6). There are, however, some
similarities regarding the biophysics of their membrane, the representation

TFick’s first law relates the diffusive flux per unit area per unit time J [mM/m?-s| to
the ionic concentration in the steady state as J = P|C, — Cj|, where the concentration has
dimensions of [mM/m3|. The units of permeability P are then [m/s|. Standard permeability
constants of neurons in the cat motor cortex are Px = 10~7 cm/s, Py, = 108 cm/s and
Pcp = 1078 em/s [Smith 2009).
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Figure 1.5: Left: Graded depolarization of parallel fibers in a pyramidal cell. From
[Berman 1998]. Right: Intracellular recordings from neurons of the inferior olive nucleus.
Lower bath temperature decreases the frequency of the spontaneous oscillations. From
[Lampl 1997].

of information by means of spikes or their input-output relation or transfer
function.

Figure 1.6: Left: Morphological classes of neurons according to their location in the neo-
cortical layers. Right: Different electrical responses of neocortical neurons to injection of
a constant current. From the presentation by Henry Markram, EPFL/BlueBrain: The
Emergence of Intelligence in the Neocortical Microcircuit.

1.3.2 Neuron models
1.3.2.1 Hodgkin-Huxley model

A full mathematical description of single neurons including their particular
variety of ion channels (usually more then ten types), axonal and dendritic
tree is not possible due to the lack of a complete biochemical and morpho-
logical cell portrait. Some models omit the action potential generation or the
axons and dendrites and keep only the soma. The first successful attempt
to obtain biophysical equations for the neuronal membrane potential was at-
tained by Hodgkin and Huxley at Cambridge in 1952, [Hodgkin 1952|. They



8 Chapter 1. Introduction

performed a series of experiments on the squid giant axon (1000 times thicker
than a typical mammalian axon) that helped them obtain the time and volt-
age dependence of the sodium and potassium conductances. Their empirical
differential equations reproduce quantitatively the generation of action poten-
tials with great accuracy.

Hodgkin and Huxley considered an electrical circuit equivalent to the neu-
ronal membrane (Figure 1.8) in which the total current traversing the mem-
brane is the sum of ionic currents and the capacitive current accounting for
the storage of charges in the inner and outer surfaces of the membrane:

Fel£) = T (1) + Con (1.3)
t
where (Y, is the membrane capacitance (see Table 1.7 for experimental data
on cortical neurons), V;, is the voltage difference between the outside and the
inside of the neuron and I, is an external applied current. Hence, voltage
changes reflect the storage and release of ionic charges on the two surfaces of
the neuronal membrane.

Table 1.7: Values (mean + standard error) of the whole-cell capacitance, C,, of four cell
classes measured in nucleated patches’ of 7-14-day-old Wistar rats. From [Gentet 2000].

Equation (1.3) is a non-linear differential equation describing the mem-
brane voltage. [oni. represents the sum of sodium and potassium conductance
currents plus a leak current with a constant resistance primarily carried by
chloride ions. Each of these currents, In., Ix and I, shown in Figure 1.8,
represents a large population of microscopic ion currents of the same type and
is modeled following Ohm’s law: I; = G;(Vi, — E;), where i is the ionic species
and Fj; is the equilibrium potential, given by Vi, in Equation (1.1), at which
there is no net flow of ions i.

The ionic conductances G; vary due to the opening and closing of the
ion channels regulated by gates. Each gate can be in one of two possible

tPatch-clamp recording in which a piece of membrane is pulled out of the cell together
with the nucleus. The external face of the membrane remains in contact with the extracel-
lular medium and surrounds the nucleus, forming a blob [Migliore 2002].
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Figure 1.8: Electrical circuit diagram representing the modeled Hodgkin-Huxley neuron.
The capacitor represents the dielectric properties of the membrane and the other branches
containing the resistors represent the conductive properties of the cell. The arrows designate
variable conductances due to the opening and closing of ionic channels. The batteries
represent the electrochemical forces caused by the different ionic concentrations inside and
outside the cell body. From [Nelson 1995].

states: permissive or non-permissive with a probability that depends on the
membrane potential. Considering the large fraction of ion channels of a ionic
species 4, we can introduce a probability p; for the fraction of gates of that
population that are in the permissive state, and 1—p; as the fraction of gates in
the non-permissive state. When all the gates of species 7 are in the permissive
state, p; = 1 and the channel of 7 is open. The transition between these two
states is governed by an ordinary first-order linear differential equation:

dp;
dt

= o;(V)(1 = pi) = Bi(V)pi (1.4)

where «; and [; are voltage-dependent rate constants for the non-
permissive-to-permissive and permissive-to-non-permissive transitions, re-
spectively. Hodgkin and Huxley considered three different kinds of gates,
m, n and h:

Gra = NaPoPh=0nam’h
4

Gk = GrPr=Txn

in which the powers are obtained by adjusting the functions to the experi-
mental data (Figure 1.9).



10 Chapter 1. Introduction

The set of four equations of the Hodgkin-Huxley model then reads:

Culom = L= G b (Vi — B) — T (Vi — i) —
N ~7% (Vo — BL) (1.7)
o = (V)AL —m) =G (V)m (1.8)
% = ap(V)(1=h)—=pr(V)h (1.9)
C;—Ttl = a,(V)(1 =n)—=6.(V)n (1.10)

and should be solved numerically due to the non-linear relationship between
the conductances and the voltage. The voltage-dependent functions appearing
in Equations (1.8)-(1.10) were valid at a temperature of 6.3 °C. At other
. T-6.3 . . . .
temperatures a correcting factor, 31 | multiplies the right hand side of the
gating-variable equations. Other models use this formalism to describe a
larger variety of ionic conductances, and are all referred to as conductance-
based models.

Figure 1.9: Rise of sodium (left) and potassium (right) conductances at different depolar-
izations. The circles are experimental results and the smooth curves are the theoretical
curves. From [Hodgkin 1952].

1.3.2.2 FitzHugh-Nagumo model

The phase space of the Hodgkin-Huxley model is four dimensional (V},, m,
n, h) which makes intuitively hard to understand its dynamics. Other math-
ematical models, such as the FitzZHugh-Nagumo, are simplifications of the
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Hodgkin-Huxley model showing the basic mechanism of excitation without
the electrochemical description of the ion channels:

86;—:: = uwu—N1—u)—v+1=f(u,v) (1.11)
% = u—7v=g(u,v) (1.12)

where 0 < A < 1 and ¢ < 1. The latter condition makes the dynamics of v
slower than w. In order to make a biophysical interpretation of this model, u is
usually called a voltage-like variable, v the recovery variable and I represents
the applied current.

The FitzHugh-Nagumo model can be analyzed geometrically in a two-
dimensional space (u, v), called the phase plane. The stationary solution
(also named fized or equilibrium point), defined by ‘fl—? = 0 and ‘fl—;’ = 0, corre-
sponds to the value (or values) of u and v at which these two curves, named
nullclines, intersect. The nullclines are the curves where the change of sign of
the derivatives takes place, i.e. the functions v(¢) and u(t) go from increasing
to decreasing or vice versa. The first curve is a polynomial of third degree,
v = u(u — A)(1 — u) + I while the second one is a straight line v = u/7y.
Depending on the values of the parameters, the model shows monostability,
bistability, excitability, or oscillatory behavior.

In the monostability case there is only one stationary solution, i.e. one
intersection point between the nullclines as shown in Figure 1.10(a, top left)
describing a neuron completely at rest. In the bistability case the v-nullcline
crosses the w-nullcline at three sites, Figure 1.10(a, bottom left). These in-
tersection points are located in different branches of the u-nullcline and, thus,
their stability differs. Figure 1.10(a, bottom left) shows two stable points at
the solid segments of the wu-nullcline and one unstable point at the dashed
segment of the w-nullcline. The sign and magnitude of the functions f(u,v)
and g(u, v) are represented by arrows in the phase plane, Figure 1.10(b), indi-
cating the direction of the vector field that any trajectory will follow. Notice
that in Figure 1.10(b) all vectors around the unstable solution, represented
by a white circle, point away from it.

The excitable system, Figure 1.10(a, top right), also shows a monostable
solution but a finite perturbation leads to a large excursion (thick line) through
the phase plane that ends in the stable fix point again. The difference in time
scale of the dynamics of u and v due to e forces the system to follow the
u-nullcline. In the oscillatory system, Figure 1.10(a, bottom right), only one
solution appears but in this case it is an unstable equilibrium surrounded by
a stable limit cycle that constrains the trajectory of the system.

Another mathematical advantage of the FitzHugh-Nagumo model with
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monostable excitable ek e

attraction domain

0z 04 [T} 08
membrane vollage, U

Figure 1.10: (a) Four solutions of the FitzHugh-Nagumo model represented by the inter-
section points between the nullclines f(u,v) = 0 and g(u,v) = 0, [Imbihl 2008]. (b) Phase
plane of the FitzHugh-Nagumo model showing coexistence of two stable equilibria (black
circles). The white circle is an unstable equilibrium. Adapted from [Izhikevich 2007].

respect to the Hodgkin-Huxley model is its reduced number of parameters,
which allows to easily apply the bifurcation theory, which studies how so-
lutions of a set of differential equations depend on the parameters. From
Equations (1.11)-(1.12), we can directly draw a simple geometrical conclu-
sion: keeping A, € and ~y constant, varying [ makes the w-nullcline move along
the v-axis, whereas fixing A, ¢ and [ and varying v changes the slope of the
v-nullcline [Figure 1.11(a)-(c)]. Both modifications imply a change in the lo-
cation of the equilibrium points and, thus, in their stability.
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Figure 1.11: Phase portrait of a dynamical system, similar to the FitzZHugh-Nagumo model,
with a cubic w-nullcline (dotted line) and a straight v-nullcline (dashed line). An increase
in the slope of the v-nullcline, from (a) to (c) goes through the oscillatory regime (b).
The inset shows the time course of v (dotted curve) and u (solid curve). Adapted from
[Takinoue 2009].
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1.4 Synapses

1.4.1 Basic description of synapses

From the nerve cell body, the soma, numerous dendrites extend through the
neuronal tissue making contacts with other neuron’s dendrites. Besides, an-
other protrusion, the azon, grows usually longer than the dendrites and also
branches innervating a wide fraction of the brain (Figure 1.2). Dendrites usu-
ally receive signals while axons usually transmit them. However, there are also
some examples of transmission between dendrites or from dendrite to axon.
The number of contacts to each neuron determines the number of inputs that
it can receive simultaneously, which can reach tens of thousands. The contact
site is a small gap called the synaptic cleft of around 0.02 pm wide between the
axolemma of one neuron, the presynaptic neuron, from where neurotransmit-
ters diffuse, and the membrane of the postsynaptic neuron. The postsynaptic
cell can also be a muscle fiber (a myocyte) or an organ-specific cell.

When an action potential is triggered it travels down the axon to all its
ramification terminals where a local depolarization takes place, causing the
opening of voltage-dependent calcium (Ca?') channels. Due to the influx of
calcium ions, the storage vesicles containing neurotransmitters fuse with the
membrane and release their content into the synaptic cleft in a submillisec-
ond time scale. The neurotransmitters bind to postsynaptic proteins called
receptors, which are embedded in the cell membrane. When the receptor cap-
tures one of those ligands it activates signal transduction, through which other
messengers (like Ca?" ions or cAMP and IP3; molecules) propagate the signal
into the cell eliciting a physiological response. Hence, electrical changes of the
membrane serve as a signaling mechanism.

A synaptic input to a dendrite can be excitatory or inhibitory, meaning that
the triggered electrical signal is a transient increase (excitatory postsynaptic
potential, EPSP) or decrease (inhibitory postsynaptic potential, IPSP) of the
membrane potential of the postsynaptic dendrite. All the synapses made by a
neuron onto others are of the same type, either excitatory or inhibitory, so it
is straightforward to divide neurons into those that are excitatory and those
that are inhibitory. Most of the contacts on the dendritic tree are excitatory,
the inhibitory contacts tend to be around the soma. The neuron sums the
excitatory and inhibitory inputs arriving from different sites of the dendritic
arbor at the axon hillock (a region between the soma and the axon rich in Na™
channels, Figure 1.12) where they have propagated. In the axon hillock an
action potential can be generated if the integration of all the inputs brings the
membrane potential above threshold. In that case the Na™ channels open and
allow the entry of Na™ ions, causing a depolarization of the membrane poten-
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Figure 1.12: Fluorescent image (montage) of a layer 5 pyramidal neuron filled with the
NaT-sensitive dye SBFI (1 mM), with examples of the change in SBFI fluorescence at
the indicated locations (colored traces) during action potentials (bottom, left) evoked by
somatic current injection. The major changes in fluorescence occur at 25 ym from the soma,

in the middle of the axon hillock. From [Kole 2008].

tial up to 40 mV. At this moment the Na* channels close and the K* channels
open, letting the K* flow out of the cell to the extracellular medium, following
the electrochemical gradient and repolarizing the membrane potential. Finally
the summed inputs are transmitted down the axon due to the passive spread
of current to the adjacent segments. This current is prevented from going
backwards due to a refractory state posterior to the action potential elicited
in the preceding axonal segment. As mentioned in the previous section, the
Na®™-K* pump removes the excess of Nat ions from the interior of the cell
and infuses K™ ions inside the cell, restoring the resting concentrations.

Neurons that use y-aminobutyric acid (GABA) and glutamate as neuro-
transmitters constitute the most important inhibition and excitation sources
respectively. Receptors for these neurotransmitters are divided in two groups:
ionotropic and metabotropic receptors. The first ones directly open sodium
and potassium channels (excitatory) or chloride (inhibitory) occurring in the
millisecond range, while the second ones activate a second messenger cascade,
which eventually leads to ion channel opening, producing longer responses
of seconds or even minutes. The main ionotropic receptors are AMPA (Fig-
ure 1.13, left) and NMDA for glutamate, and GABA 4 for GABA. On the other
hand, common metabotropic receptors are mGlu for glutamate and GABAg
for GABA. Most AMPA receptor channels are permeable to K™ and Nat and
have a linear current-voltage relationship, but other subtypes are permeable
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to Ca?* and have a nonlinear current-voltage relationship (Figure 1.13, right).
AMPA receptors activate rapidly and have decay time constants of roughly
3 ms. NMDA receptors are slow and have a nonlinear voltage dependence due
to extracellular Mg?* ions that block the channels at low depolarizing levels
(in such case the EPSP is only triggered by AMPA activation). Hence, to
open NMDA receptors, a certain level of depolarization of the postsynaptic
membrane caused by simultaneous arrival of excitatory currents is needed in
order to expel the Mg?* ions.

0.2
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Figure 1.13: Left: Scheme of an AMPA receptor showing the assemble of tetrameric struc-
tures comprised of four subunits (GluR1, GluR2, GluR3 and GluR4). Right: Current-
voltage (I-V) relationships for GluR2-lacking and GluR2-containing AMPA receptors are
rectifying and linear, respectively. GluR2 renders the channel impermeable to calcium.
From [Fleming 2010].

1.4.2 Modeled synapses

The activation of ionotropic receptors produces a ionic current that can be
described using Ohm'’s law in a conductance-based formalism:

Lign(t) = gsyn()(V (1) — Egyn) (1.13)

where gsn(t) is the synaptic conductance and Ejgy, is the reversal potential
of the synapse, at which a given neurotransmitter causes no net current flow
of ions through that corresponding ion channel. For positive values of Egy,
the synapse is depolarizing or excitatory (Egn, = 0 mV for glutamate re-
ceptors), otherwise it is hyperpolarizing or inhibitory (Eg, = -70 mV for
GABA-receptors).

Deterministic models of synaptic dynamics neglect the stochasticity of bi-
ological processes and give a description of the average behavior. For instance,
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the average state of the receptors can be described by a rate equation:

do(t)
dt

= aT(t)(1 — o(t)) — Bo(t) (1.14)

where o(t) is the number of open receptors relative to the total number of
receptors, T'(t) is the time-varying neurotransmitter concentration, « is the
rate of opening and [ the rate of closing. The synaptic conductance can be
expressed as gsyn(t)=0max0 (t), where gmax is the peak conductance. If T'(t) is
considered to be a Dirac delta function d(t —1t;) occurring at every presynaptic
spike time ¢;, a solution for o(t) is obtained [Destexhe 2004]:

o(t) = a Zu — o(t;)]e Pt (1.15)

where the rise of o(t) is instantaneous and its amplitude depends on the
concentration of closing receptors at that time, 1 — o(¢;) [see Figure 1.14(a)].
This solution implements a saturation, because the rise of o at t; due to the
delta-pulse release of neurotransmitters depends on the state of o at that time,
then decaying at t > ;.

Another more realistic option is to consider that 7 occurs as a pulse
[Destexhe 1994| such that [T'] = Tyax for to < t < t;. Solving Equation (1.14)
we obtain:

o(t —to) = oo + (0(tg) — 0ne)elm V™) for g <t <t (1.16)
where
oo = Oﬂi'fﬁ (1.17)
and
. —aTmalx — (1.18)

for a general initial condition o(to). After the pulse ¢ > ¢;, when [T] = 0:

ot —tg) = o(ty)e P41 fort > t; (1.19)

An older model [Rall 1967] uses an alpha function to describe the evolution
of the synaptic conductance due to an action potential [see Figure 1.14(b)].
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In this case:

ot) =) 7Y ep (—M> (1.20)

tpeak tpeak

which reaches its maximum at ¢ — t; = ¢,ca. This equation has a single time
constant ¢,eax, therefore the rise and decay time are correlated and cannot be
set independently. Instead we can use a sum of two exponentials, one for the
rising and the other for the decay phase [see Figure 1.14(c)]:

ity =ty
=Y () a2
J

Here o peaks at tpeak = t; + —wcx™ise [p(ldecav) - g the normalization factor

Tdecay —Trise Trise

that ensures that o ranges between 0 and 1:

1
f= (1.22)
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Figure 1.14: Waveforms for synaptic conductances: (a) exponential decay, Equation (1.15),
(b) alpha function, Equation (1.20), and (c) dual exponential, Equation (1.21). From
[Sterratt 2011].

One consequence of adopting Ohm’s law to describe the relation between
the synaptic current and the elicited postsynaptic potential (PSP), is the de-
crease in the membrane input resistance and membrane time constant (i.e.
the time scale of the neuron’s responsiveness to input changes) upon strong
stimulation, which reduces and shortens the PSPs [Kumar 2008|. Postsy-
naptic potentials produced at individual excitatory synapses may be only a
fraction of millivolts, which is far below the spiking threshold. Whether or
not the summation of several postsynaptic potentials results in an action po-
tential depends on the balance of excitation and inhibition. The strength of a
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synapse depends on the amount and duration of the neurotransmitters release.

The activation of a synapse is delayed a certain time after the presynaptic
spike is fired. Moreover, depending on the nature of the synaptic coupling
(excitatory to inhibitory, excitatory to excitatory, inhibitory to inhibitory or
inhibitory to excitatory) and the location of the synapses (soma or dendrites),
the conductance gp.x varies. GABAergic terminals exceed non-GABAergic
terminals at the soma, while at the dendrites non-GABAergic terminals out-
number GABAergic terminals [Benson 1996|. Synapses located at the den-
drites trigger an inward current that travels through the dendrite to the soma.
Therefore, the postsynaptic potential elicited locally at the dendrite spreads
passively into the soma reducing its amplitude. Single inhibitory postsynap-
tic potentials are, thus, stronger than single excitatory potentials. This dis-
tribution of synapses avoids the buildup of excitation boosted by the more
numerous excitatory neurons.

In addition to the chemical synapses explained above, electrical synapses or
gap junctions have to be considered as well, although they have been only di-
rectly seen between inhibitory neurons in the neocortex |Gibson 1999|. These
synapses have a low-resistance to the direct movement of ions between neu-
rons and are very fast transmission channels leading to synchronization of
membrane voltages both above and beneath threshold. Electrical junctions
are permanently active and do not need an activation threshold but they are
constrained to neighboring neurons (Figure 1.15).

Figure 1.15: Electron micrographs of synaptic endings that establish both chemical (large
arrow) and electrical gap junction contacts (small arrows). Insets in (a) illustrate chemical
(top left) and gap junction (bottom right) contact zones. Nomenclature: d, dendrite; s,
soma. Scale bars: (a) 0.25 pum (inset, 0.05 pm) and (b) 0.5um. From [Graf 2003].
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1.5 Neuronal Code

1.5.1 Encoding by individual neurons

Each neuron summates all the inputs coming from the bulk of synapses located
in its dendritic tree. If the integration of EPSPs and IPSPs gives a net increase
of the membrane potential above threshold, an action potential is emitted
and transmitted through the axon. The series of spikes fired by a cortical
neuron are highly irregular. The mean firing frequency of the in vivo neuronal
response is reproducible under presentation of the same stimulus, however, the
precise timing of the action potentials is not, as shown in Figure 1.16(left). On
the other hand, neurons in vitro fire regularly in response to constant current
injection (Figure 1.16, right).

|40 mV

[ | [1nA

200 ms

Figure 1.16: Left: (A) Raster plot and peristimulus time histogram for a neuron in the
middle temporal visual area (MT or V5) for 210 presentations of the same 2 s-sequence of
random moving dots with rapid fluctuations of luminance. Vertical lines delineate a period
of fairly constant firing rate across trials. The shaded region is zoomed in (B) and contains
50 trials between 360 ms and 460 ms. (C) ISI frequency histogram from the 50 trials
fitted by and exponential (solid curve) as expected from a Poisson distribution of events
(spikes). (D) Plot of the coeflicient of variation of the ISI distribution across 500 randomly
chosen epochs from (A) lasting from 100 to 500 ms including from 50 to 200 adjacent trials.
The best fitting power law (solid curve) is not predicted from a Poisson process (dashed
line). From [Shadlen 1998|. Right: Response of a neuron in the basolateral amygdala to
intracellular injection of a constant current. From [Kano 2005].

An interesting debate, opened in the early 90s, discusses whether this
irregular timing of spikes carries relevant information (temporal-coding or co-
incidence detection hypothesis) or it is just noise and, thus, the information
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is conveyed in the spiking rate (rate-coding or temporal integration hypothe-
sis) [deCharms 2000]. The difference between these two concepts lies within
the relationship between the integration time over which neurons effectively
summate synaptic potentials and the mean interspike interval. Temporal in-
tegration does not take into account the precise pattern of the spikes imping-
ing the neuron and only temporal changes in the structure of the train of
spikes can result in changes in the firing rate of the perturbed neuron [Fig-
ure 1.17(a)|. Coincidence detection requires a short integration time compared
to the mean interspike interval, and only simultaneous postsynaptic potentials
in a millisecond range are summated together as shown in Figure 1.17(b).

Figure 1.17: (a) Temporal integration of a train of EPSPs simulated by an alpha function
with a time constant of 15 ms. In this case the majority of PSPs contribute to the gener-
ation of an action potential either when they are are synchronous in time (1) or not (2).
Furthermore synchronous PSPs do not always trigger action potentials (3,4). (b) Coinci-
dence detection of a train of EPSPs simulated by an alpha function with a time constant
of 3 ms and a PSP size increased by a factor of two. Most PSPs do not contribute to
spike triggering (6,7), only synchronous ones (5) are capable of triggering spikes. From
[Konig 1996].

Other relevant differences between the two integration modes refer to the
speed of cortical processing and the coefficient of variation of the interspike
interval. As shown in Figure 1.17(a) the processing time of a temporal in-
tegrator is of the same order of magnitude as the interspike interval of its
output. For the coincidence detector [Figure 1.17(b)| the processing time is
only a fraction of the interspike interval of its output.
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The irregularity of in vivo action potentials discharges is characterized by
the interspike interval distribution. Neocortical neurons have a high degree of
variability with a coefficient of variation CVT between 0.5 and 1 [Softky 1993].
Models of neurons performing temporal integration do not reproduce the high
values of CV. The integrate-and-fire (IF) model summates successive EPSPs
until the voltage reaches the firing threshold and then resets to zero:

av

C’m% = I(t) (1.23)
where I(t) is the input current. In this model, arbitrarily small input constant
currents eventually lead to a spike because the membrane voltage increases
linearly with time, V(t) = C—Imt (in this case the resting membrane potential
has been arbitrarily taken equal to zero). Moreover the output spike train
corresponding to a constant current is perfectly periodic. If I(¢) is a sequence
of postsynaptic currents the IF-neuron will summate the inputs one after an-
other irrespective of their temporal separation. If Vi is the spiking threshold
and we consider a random train of pulses of size I, and average firing rate
fo, for every group of n spikes, with n being the smallest integer larger than
le—z/th, the IF-neuron will fire an action potential and its average firing rate
will be fo/n. As shown by |Tuckwell 1988], if the incoming pulses are Pois-
son distributed, the output train of pulses from an IF-neuron will be gamma
distributed, Figure 1.18.

Figure 1.18: A Poisson train of spikes (bottom trace) with an IST exponential distribution
is injected to a IF-neuron (middle trace) producing a more regular output (top trace) with
gamma distributed ISI. In this example, n = 5 (middle trace). From [Gabbiani 1998].

A leak channel represented by a resistance R is added to the model in

TThe coefficient of variation CV =

=l

of a sample of data {z;}y is defined as the

corrected sample standard deviation, o = \/ ﬁ Zivzl (z; — ,u)2, normalized by the mean
1 N
1= i Ti-
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order to account for a relaxation behavior of the membrane voltage after the
integration of an input. This model, known as the leaky integrate-and-fire
(LIF) model:

Ol = I(t) — — (1.24)

exponentially decays to a steady-state voltage after switching off the injection
t
of a constant current, V(t) = IR(1 — e %m).

The time constant 7,, = RC,, of the LIF-neuron affects the coefficient of
variation of the ISI of the output train of spikes. If more than one presynaptic
spike is needed to elicit an action potential, n > 1, only synchronous presy-
naptic spikes will efficiently increase the membrane voltage towards the firing
threshold because between presynaptic spikes the LIF-neuron relaxes accord-
ing to 7,. Large values of 7,, will make the output more regular because the
neuron will convert randomly arriving presynaptic spikes into a single action
potential. On the other hand, short 7, increase the sensitivity to coincident
spikes and turns the neuron into a coincident detector with greater CV.

For high input firing rates f > % the LIF-neuron is similar to the IF-
neuron and acts much like a temporal integrator because the capacitor is not
discharged significantly before it reaches the threshold. On the other hand,
for low firing rates f < %, the LIF-neuron can only integrate synchronous
presynaptic spikes like a coincident detector and its output approximates a
Poisson process in which CV = 1. In order to reproduce high values of CV
seen in vivo cortical recordings for high rates of synaptic input, we need either
very small values of 7, around a fraction of a millisecond (Figure 1.19, thin
line labeled 7 = 0.2 ms), or high amplitude EPSPs such that the threshold
is reached after only 1 or 2 presynaptic spikes (Figure 1.19, thin line labeled
Ny, = 4 or squares labeled Ny, = 1).

Biologically plausible values in a motor neuron are, for instance, such that
an EPSP is only 0.2-0.4 mV in amplitude, far below the spiking threshold
that requires depolarizations of 10 mV or more from the resting potential
[Kandel 2000]. The results obtained by the LIF-neuron with realistic param-
eters (lower curve in Figure 1.20) do not reproduce the experimental results
for the variability in the interspike intervals of cortical neurons.

Softky et al. [Softky 1993] computed CV values for more detailed bio-
physical models and showed that experimental CV values can be reproduced
if neurons are provided with fast mechanisms for repolarizing the membrane
potential while they integrate the incoming presynaptic spikes. This case cor-
responds to the coincident detection mode that translates the variability of the
spike trains impinging on the soma into the variability of the output ISI. They
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Figure 1.19: CV dependence on the mean period At —inverse of the mean firing rate—
of the synaptic input for the integrate-and-fire model (squares) and the leaky integrate-
and-fire model (thin lines) for a refractory period of 1 ms and for different values of the
membrane time constant 7, -7 in the figure- (relevant for the LIF-neuron) and different
EPSP amplitudes given by n -Nj, in the figure-. From [Softky 1993].

Figure 1.20: CV dependence on the mean period of the synaptic input At for simulated data
from the leaky integrate-and-fire model (thin lines) for a refractory period of 1 ms and for
experimental data from macaque cortical neurons (crosses). The lower curve corresponds
to parameters in a plausible biological range. The middle curve corresponds to parameters
out of the plausible biological range but reproducing the observed variability in high CVs.
The upper curve corresponds to the extreme case of n = 1. In this figure 7,, and n are 7
and Ny, respectively. From [Softky 1993].
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argued that sodium action potentials generated in distal dendrites (> 100 um
from the soma) demand indeed coincident presynaptic events [experimentally
shown as the green traces in Figure 1.21(A)] and that those dendritic spikes,
in turn, must arrive within a millisecond time window at the soma in order to
trigger an action potential (red traces in Figure 1.21(A) and green circles of
Figure 1.21(B), in comparison with the red circles). This effectively reduces
the number of presynaptic spikes required to elicit a somatic action potential
and brings the neuron closer to the coincident detector regime.
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Figure 1.21: Current injections Ii,; separated in time by 0 to 45 ms generate pairs of
artificial EPSPs (aEPSPs) at distal dendritic sites of neocortical pyramidal neurons. (A)
Summation of aEPSPs at 620 um distance from soma (green) and response at the soma
(red). Dendritic spikes are only generated when the aEPSPs are coincident in time (around
5 ms of separation). (B) Dendritic spikes forward-propagate to the soma where they elicit an
action potential if they arrive near synchronous (green circles, B). Direct somatic excitation
allows for a broader time distribution of aEPSPs for action potential generation (red circles,
B). From [Williams 2002].

Many real neurons, however, have a CV greater than 1 because the number
of spikes that a neuron receives is not constant in time. There are many other
sources of variability not considered by the Poisson character of the input
train of spikes, such as stochasticity in synaptic transmission” [Maass 1999]
or network effects due to correlations among the inputs [Salinas 2000].

1.5.2 Balanced inhibition

The noisiness of the interspike intervals of neurons that are part of a network
can emerge as a network effect when the mean membrane potential stays
just below threshold, i.e. in the subthreshold regime. Shadlen [Shadlen 1994]
pointed out the role of inhibition in increasing the ISI variability. Models that

tA spike arriving at a synapse triggers the release of neurotransmitters with a certain
probability less than one.
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take into account both excitation and inhibition producing an average zero
net current are also known as random walk models or diffusion processes be-
cause fluctuations on the excitation-inhibition balance at the millisecond time
scale cause a depolarization (or hyperpolarization) step on the postsynaptic
neuron, following a random trajectory, provided there is a momentary drop in
inhibition in combination with a simultaneous excess of excitation (or in the
other direction) [Koch 1999|.

Shadlen et al. [Shadlen 1994| argue that due to the intense bombardment
of presynaptic spikes, a neuron behaving as coincident detector (as it is pro-
posed in [Softky 1993]) will need unrealistic short membrane time constants.
Therefore, neurons are more likely to act as temporal integrators, the spik-
ing times not containing any information from the input. At the same time,
fluctuations in the balance between excitation and inhibition will make the
neurons fire randomly.

Without the inhibitory offset, excitatory spikes arriving from neighboring
neurons at random times will cause an average constant depolarization in
the postsynaptic neuron, leading to a tonic firing that is not observed in in
vivo conditions. This paradox is partially solved by considering the balance
of inhibition, which as mentioned, helps increase the CV of cortical spiking.
Correlated fluctuations of the input coming from different presynaptic active
neurons will increase the variance of the net synaptic current.

Figure 1.22: (a) GABAergic interneuron (green) and pyramidal neuron (red) of hippocam-
pal slices. (b) Zoomed area showing synaptic contacts between inhibitory boutons and
excitatory dendrites. From [Wierenga 2008].

In [Shadlen 1994| several experimental results are cited, supporting the
hypothesis that inhibition can balance excitation despite the fact that exci-
tatory neurons are more abundant than inhibitory neurons. They point out
that whereas excitatory synapses can fail in the release of neurotransmitters,
inhibitory synapses are more reliable and have a larger impact in the mem-
brane voltage. Moreover, unlike excitatory neurons, inhibitory neurons make
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multiple contacts on the postsynaptic targets (Figure 1.22) and spike more
synchronously due to electrical coupling |Galarreta 2001] and tend to have a
higher firing rates (Figure 1.23). Hence, the biophysics of inhibitory neurons
help to compensate their relative small number in order to balance excitation.

Figure 1.23: Frequency-current plots for three different regular-spiking neurons (left) and
fast-spiking neurons (right). Regular-spiking neurons were identified as spiny pyramidal
neurons (excitatory neurons) and fast-spiking were found to use GABA as their neuro-
transmitter (inhibitory neurons). From [McCormick 1985].

In a balanced network, neuronal irregular spiking is a network emergent
property |[van Vreeswijk 1996] and spurious correlations between the random
synaptic inputs can cause a spike. The time response of neurons is fastened
because the effective membrane resistance is reduced due to the opening of ion
channels produced by the high synaptic bombardment -a state known as high-
conductance-, leaving the question of the neuronal code somewhat unresolved
because the requirement of a small individual time constant is then met.

Experimentally, Stevens and Zador [Stevens 1998a| have shown that the
variability in the output of cortical neurons stimulated in wvitro by a syn-
thesized synaptic current composed of a mixture of excitatory and strong
inhibitory currents is much less than the observed in vivo. In order to repro-
duce in wivo variability of cortical firing they had to introduce correlations
among synaptic inputs such that at some intervals there was synchrony in
the incoming spikes. This observations were later confirmed by the experi-
ments of Harsch and Robinson [Harsch 2000] making more relevant the role
of fluctuating inputs, in addition to the process of postsynaptic integration
traditionally discussed, in the irregular nature of cortical spikes.

Correlation of excitation and inhibition shows significant effects in the fir-
ing rate of neurons because they affect fluctuations of the average input. For
a given average firing rate of the excitatory and inhibitory inputs, the firing
output of a postsynaptic balanced neuron can be more effectively tuned by in-
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put correlations than an unbalanced neuron. This is shown in Figure 1.24 for
different correlation patterns of spike trains impinging on a leaky integrate-
and-fire neuron model [Salinas 2001|. The Figure shows a balanced (red trace)
and an unbalanced (green trace) input consisting of 160 excitatory and 40 in-
hibitory spike trains. The rate of inhibitory inputs was always 1.7 times the
excitatory rate. In the upper row all spike trains are independent, in the sec-
ond and third row two correlated activities are considered, namely synchrony
and oscillations, respectively. In the lower row the correlations between pairs
of excitatory inputs, pairs of inhibitory inputs and between excitatory and
inhibitory pairs are equal. The balanced neuron is more sensitive to correla-
tions than the unbalanced one, as shown by the relative difference with the
independent case (broken lines).

In summary, probably both coding strategies, temporal integration (slow-
time integration) and coincidence detection (fast-time integration), coex-
ist in our brains in different areas in order to subserve specific functions
[Kumar 2010]. Moreover the nature of the input seems to affect the chosen
coding strategy. We have seen that, theoretically, neurons within a balanced
network are more sensitive to the temporal pattern of the presynaptic spike
trains of correlated inputs. In an experimental work, Mainen and Sejnowski
[Mainen 1995 had isolated rat cortical neurons in a slice preparation block-
ing glutamate and GABA receptors. Two types of injected current, a pure
constant DC current |Figure 1.25(A)] and a low-pass filtered Gaussian white
noise added to the DC current [Figure 1.25(B)] evoked an unreliable and a
high reliable spiking response, respectively. Hence, the timing of the outgoing
neuronal spike train appears to be input-dependent even outside the network.

Concerning the neuronal code, information should be regarded as popula-
tion activity averages and not only by temporal averages of single units.

1.5.3 Encoding by neuronal populations

As described in the previous section, stimuli appear to be encoded both by the
spike count and the millisecond precision of the timing of individual spiking
neurons. However information is typically encoded in the nervous system by
populations of neurons. Is the population coding a sum of independent spike
codes by single units or is there additional information in the correlation of
the spike patterns? A sum of individual spikes will give a population rate
measure but, is there any other information carried by the spike train besides
the firing rate? A high population firing rate computed over a short time
interval indicates either a high degree of synchrony between neurons or a high
individual firing rate. Riehle and colleagues |[Riehle 1997], had disentangled
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Figure 1.24: Input-output rate plots. Red and green traces correspond to responses of
balanced and unbalanced neurons, respectively. Upper row: All input spike trains were
independent. Second row: Excitatory inputs were synchronous, with 10% shared inputs.
Third row: Inhibitory inputs oscillated with an amplitude equal to 50% of the mean rate.
Lower row: All inputs were synchronous, with 10% shared inputs. For comparison, broken
lines are the curves obtained with independent inputs (upper row). From [Salinas 2001].

these two causes in order to clarify the role of synchrony in behavior. In a
motor task monkeys had to touch a target appearing in a screen after a delay
of variable duration, following a preparatory signal that instructed the monkey
to get ready. This delay was varied randomly from trial to trial and could
take up to 600, 900, 1200 or 1500 ms. They found synchronization (within
a 5 ms window) between pairs of neurons either when the target stimulus
was presented or when it was expected. However, only in the former case,
synchrony was accompanied by an increase in the discharge frequency of the
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Figure 1.25: The upper row shows superimposed somatic voltage traces from 25 trials. The
lower row shows the spiking times of a neuron over 25 trials. (A) DC constant current of
150 pA during 900 ms. (B) Gaussian white noise (¢ = 150 pA and o = 100 pA) low-pass
filtered with a time constant 7 = 3 ms. From [Mainen 1995]. Note the difference with in
vivo Figure 1.16 in which synaptic transmission was not blocked.

neurons. This observation suggests that correlations are modulated by the
animal internal state.

The importance of correlations in neuronal coding is highlighted by
the binding problem, which looks for an explanation of how the brain
can functionally link neuronal distributed activity.  [Milner 1974] and
[Von Der Malsburg 1981] proposed a mechanism for the common integration
of features belonging to an object while separating the representation of an-
other one which consisted in the selective synchronization of cell assemblies
encoding the same stimulus. Such combination of distributed activities should
be dynamically modulated by the stimulus and by the state of the subject,
such as attentive state or decision making preceding a motor command.

Interesting studies [Fries 2001, Canolty 2010| have added new perspectives
to the traditional view of the neuronal code. Even if there is total agreement
that the spikes are the basic unit of neuronal information, slower relevant brain
dynamics should also influence the way in which spikes are processed. Pascal
Fries and collaborators have examined the role of oscillations coming out from
the synchronized activity of cortical neurons in communication between brain
areas. Specifically, in [Fries 2007] they study the effect of these oscillations
in shaping the temporal pattern of activity. They conclude that, "within
the gamma cycle’ | the excitatory input to a pyramidal cell is converted into

"Rhythmic synchronization of a population of neurons within the 30 - 90 Hz frequency
range.
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a temporal code whereby the amplitude of excitation is recoded in the time
of occurrence of output spikes relative to the gamma cycle, stronger inputs
leading to earlier responses. Thus, amplitude values are converted into phase
values that indicate by how much a discharge precedes the peak of a gamma
cycle”. Thus, the temporal code seems more plausible if the spiking times are
related to the phase values of an ongoing oscillatory excitatory input, which
might provide an internal clock.

1.6 Neuronal oscillations

One of the most well established observations in brain dynamics is the presence
of sensory-evoked cortical oscillations [Gray 1989, Liu 2006, Buzsaki 2006].
Recordings obtained from microelectrodes introduced in the cortex show co-
herent oscillatory electrical signals named local field potentials (LFPs). The
LFP is the low frequency component of the combined dendritic activity -
subthreshold dynamics- of multiple neurons. It is a collective property of a
neuronal ensemble and not a property of the individual neurons, providing a
measure of the input to and local processing within an area. Therefore, the
LFP reflects the activity of both the recurrent loops between excitatory and
inhibitory neurons and the afferent pathways from other areas [Goense 2008].
Large amplitudes of the LFP are due to synchronous activity of the neurons
within an area of radius ~100 pum surrounding the recording electrode. How-
ever, usually there is no equivalent apparent rhythmicity in the spike trains
-suprathreshold dynamics- of individual cells, which becomes only visible af-
ter data processing of spike trains of multiple single cells. The spike trains of
the constituent neurons of a cortical region are typically irregular and sparse
[Olshausen 2004, Brunel 2003b, Wolfe 2010].

The multi-unit activity (MUA), which is the high frequency component
of the electrical signal recorded from an electrode placed extracellularly, only
captures fast events such as action potentials (which are smaller than recorded
intracellularly) emitted by the surrounding neurons. In particular, just spikes
elicited by the neurons with larger somas (i.e. large pyramidal cells) are mea-
sured [Goense 2008|. Both the LFP and MUA signals reveal the synchronized
activity of local neurons, i.e. those found in the vicinity of the electrode’s tip.

The frequency spectrum of the recorded local field potentials is related to
the state of the brain (sleep/wake states, perceptual attention, disease states,
etc. and sensory input-dependent states) and to particular anatomical areas.
For instance, oscillations in the beta and gamma range -at frequencies between
15 to 30 Hz and 30 to 90 Hz respectively- are found in humans when they are
in a state of focused attention or in response to acoustic or visual stimula-
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tion [Singer 1993|. During sleep and many behavioral states electrical signals
recorded from the human cortex show frequency peaks in their power spec-
tra, which otherwise decrease with frequency following approximately a 1/ f2
power law [Buzséki 2006]. However, the mechanisms underlying the appear-
ance of rhythmic coherent activity of ensembles of neurons are not perfectly
known and might be different in distinct areas. For instance, collective os-
cillations in the cortex can be driven by periodic input from the thalamus
[Steriade 1984] or be independent of it [Silva 1991]. Self-sustained oscillations
can rely on periodic firing neurons that synchronize through their synapses
[Whittington 1995| or can arise as a network property despite the fact that
the individual cells do not oscillate [Fries 2001].

Regardless of the source of generation of collective oscillations, a common
feature is the presence of rhythmic synchronized depolarization of neuronal
membrane potentials and of a recurrent loop of synaptic excitatory and in-
hibitory flow. These dynamics represent two sides of the same coin: an excited
neuronal tissue is depolarized and neurons can eventually fire simultaneously,
causing an avalanche of inhibition that terminates the firing until another exci-
tatory synaptic flow activates. Such excitatory events bring the neurons closer
to threshold, increasing the probability of firing due to small fluctuations in the
input. Therefore, inhibition besides limiting excitation, controls the timing of
action potentials by regulating the excitability of neurons [Klimesch 2007].

1.7 Neuronal circuits

Neurons are interconnected forming neuronal circuits, which are the mean-
ingful units of information processing. The electrical activity of an isolated
neuron cannot be related to a brain function. It is the collective activity of the
single elements of a neuronal circuit that travels to other regions of the brain
and directly contributes to a cortical task. Neurons wired together coordinate
the spiking activity spatio-temporally.

Connected neurons can be close to each other (<1 mm) or far apart from
one another (>1 mm). Some neurons within a neuronal circuit, the principal
or projection neurons, send their axons to distant neurons whereas others, the
interneurons, project only locally. In this way, different parts of the brain
involved in different functions are also communicating. Principal neurons
are excitatory and interneurons tend mostly to inhibit their neighbors (few
interneurons are excitatory).

There is yet no exact anatomical map of the human brain, nor even of
specific sensory areas or cortical columns. Connectivity between neurons is
established by tracing the axons, dendrites, and synapses through complicated
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arbors [Figure 1.26(a,b)]. The human brain contains around 10! neurons and
10*® connections between them, which are technically impossible to distin-
guish separately. However, as brain functions mainly rely on the coactivity of
large populations of neurons not necessarily close in space, it is probably not
required to know the precise wiring between individual neurons. Brain areas
or neuronal populations, contrary to single neurons, have no clear anatomical
boundaries.

Inhibitory-target

A Characterized pyramidal neuron = Dendritic fragment
—+ Synapse ® Cell body in EM volume

Figure 1.26: (a) Cell bodies, axons and dendrites of 14 neurons in the functionally calcium-
imaged plane (colored according to their orientation preference) of the cat visual cortex.
Dendrites and cell bodies of these neuron’s excitatory (magenta) and inhibitory (cyan)
postsynaptic targets within the volume (600 x 600 x 250 pm) are also shown. Obtained
with electron microscopy (EM). Scale bar: 100 pm. (b) Directed network diagram of the
functionally characterized cells and their targets. From [Bock 2011].

Another level of description, the functional connectivity (Figure 1.27, mid-
dle) links brain areas according to statistical dependencies between measured
electrical signals -such as LFPs or fMRI-. Such correlations fluctuate over a
wide range of time scales, while the anatomical connections (Figure 1.27, left)
are stable over longer periods (from hours to days).

Analysis of correlations and coherence of experimental data shows that the
functional connectivity approaches a small-world network [Stam 2004|. Small-
world networks were first described by Watts and Strogatz [Watts 1998|, as
being highly clustered, i.e. with a high degree of short-range connections but
with some long-range connections that shorten the path length (average dis-
tance between two nodes in the network). Intuitively this type of connectivity
seems very suited for neuronal networks, because it shortens the time delay
between topologically distant nodes and, at the same time, favors integration
of information of nearest neighbors. The probability that two neighbors of
the same node are connected between them is greater than for two nodes ran-
domly selected. It is however not known if the structural connectivity is also
a small-world network. Besides, the anatomical connections can be described
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at three scales: microscopic, mesoscopic and macroscopic. Each scale refers
to the organization of individual neurons, neuronal populations, and brain
regions respectively.

Figure 1.27: Scheme of the structural —axonal pathways connecting brain regions—, func-
tional —statistical relations among brain regions— and effective —directed influences among
brain regions— connectivity. The boxes denote specialized cortical regions: V1 (primary vi-
sual cortex), 7a (visual cortex in the parietal lobe), IT (visual cortex in the inferior temporal
lobe) and 46 (an area of prefrontal cortex). From [Sporns 2010].

In analogy with the World-Wide Web network, scale-free functional neu-
ronal networks have also been introduced [Eguiluz 2005|. In a scale-free net-
work [Barabasi 2004] the number of connections made by each node, its degree,
is distributed heterogeneously with a few nodes, the hubs, connected to a high
number of other nodes. The probability distribution P(k) of the degree decays
much slowly than a Poisson and follows a power law |Figure 1.28(B, bottom)].
This architecture is appealing when considering biological networks for two
main reasons: on one hand Barbéasi and colleagues [Barabési 1999| found that
large scale-free networks emerge when adding new nodes that attach prefer-
entially to those existing nodes with a higher degree; on the other hand they
have argued [Albert 2000] that this type of connectivity is more resistant to
random injuries due to the existence of hubs present on the majority of links.
These properties can be applied to a growing population such as neurons,
which need to be robust to attacks in order to maintain their functionality,
although it is little evidence that this is the case for real brains.

In addition to the structural and functional connectivity, there is a third
level of connectivity, the effective connectivity (Figure 1.27, right) which un-
ravels the direction of the flow of information between areas by means of
causality measures. Unlike functional connectivity, in this case one can dis-
tinguish correlated activity between two electrodes’s measurements due to
direct interactions between the two brain areas from a similar effect caused
by stimulus-locked transients in two disconnected areas.

Despite the lack of an anatomical map at the level of single neurons (the
connectome), at the mesoscopic scale some magnetic resonance imaging (MRI)
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Figure 1.28: Graph of a random network (A, top) and a scale-free network (B, top) and
their connectivity distribution function P(k) (Ab, Bb) where k is the node degree -the
number of connected nodes-. The random network, similar to the small-world network
from [Watts 1998], follows a Poisson distribution of the connectivity (A, bottom), while the
scale-free network has a power-law degree distribution (B, bottom). From [Barabési 2004].

experimental work points up its small-world features [He 2007, Schmitt 2008|.
Hence, in Chapters 2, 3 and 4, we have considered populations of small-world
connected neurons in which each cell has the same number of neighbors in
average and the clustering is greater than in a random network (while the
average path length is shorter) |[Figure 1.28(A)]. The same structural con-
nectivity was applied when connecting two neuronal networks. Therefore,
nodes are here single-neurons and edges their axons (not modeled explicitly
but time delays are being considered). Probably most functional relations be-
tween brain areas arise from their structural links, specially when considering
time scales at which the anatomical connectivity remains constant. How-
ever, some dynamical properties appearing from a single network might not
be structure-dependent and connectivity would not need to be imposed be-
forehand. For instance, the frequency content of an electrical signal coming
out from the synaptic activity of neighboring neurons as measured by the
LFP is very similar between a random network (Figure 1.29, black) and a
quasi-regular network (Figure 1.29, gray).
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Figure 1.29: LFP power spectrum of a simulated LFP from a random (black) and quasi
regular (gray) network of 2000 neurons averaged over 20 trials. Details of the model from
which these simulations were obtained can be found in Appendix A.2.

We started our research with the aim of understanding the role of neuronal
oscillations in communication between brain areas. We had an image in mind:
the motion of undulating waves with spikes traveling through it; and many
questions: how do these oscillations emerge, and how are they influenced by
the neuronal discharges? The action potentials of a population of excitatory
and inhibitory neurons generate an electrical oscillatory signal. Are these
oscillations a mere representation of the collective dynamics or do they con-
vey extra information? It turns out that this continuous oscillatory activity
is expressing the level of excitability of a cell assembly. Each neuron spikes
with higher probability at certain time windows. Both its firing rate and time
of spiking depend on the phase of the neuronal oscillations. Although sub-
threshold neuronal oscillations are not synaptically transmitted, they shape
local suprathreshold activity, and they also determine the synaptic effect of
incoming inputs. We have studied the interactions between action potentials
and both membrane voltage oscillations (Chapter 2) and neuronal oscillations
of the synaptic current (Chapter 3). Excitatory events impinging on a cell
assembly are also filtered by the ongoing local fluctuations. Intrinsic elec-
trophysiological features and the input dynamics contribute to the frequency
content of the neuronal oscillations.

How do the emergent neuronal oscillations regulate the coupling between
distinct populations? The frequency and amplitude of the neuronal oscilla-
tions also reveal the strength of the population firing rate. A bidirectional
coupling between cell assemblies, anatomically symmetric, can be effectively
asymmetric, due to a frequency difference. How similar two neuronal pools
need to be in order to achieve communication? Depending on the frequency
detuning between two subthreshold oscillatory signals, a zero-lag synchroniza-
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tion or a leader-laggard configuration is obtained (Chapter 4). A consistent
phase lag is achieved across different realizations of the same coupling scenario.
This phase coherence is mediated by the interactions of the two populations
and is subserved by the frequency detuning. If a particular perturbation
drives a subset of neurons of the emitter network towards into spike-to-spike
synchrony, the rhythmicity of the neuronal oscillations is enhanced and trans-
mitted to the receiver network. The success in communication can be observed
in the transient amplification of the neuronal oscillations of the second net-
work, entrained to the emitter rhythm. Close enough to the frequency locking
regime, the recurrent excitability windows of both populations are suitably
locked and match the time delay. Thus, information transmission between
neuronal networks also relies on the neuronal oscillations evoked by the spon-
taneous spiking activity.

Moreover, the sensitivity of neuronal oscillations to noise amplitude gives
rise to non-linear phenomena such as coherence resonance (Chapter 5). The
regularity of the slow-oscillations characteristic of deep sleep is tuned accord-
ing to the firing activity level. These results show, once more, that the in-
terplay between spiking activity and neuronal oscillations gives rise to new
network properties.

In summary, the work presented in this Thesis intends to shed light on
the role of neuronal oscillations in providing coding strategies of local spiking
activity, in translating features of the external input into dynamic features of
the neuronal network, and in assisting effective interactions of distinct brain
areas.
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2.1 Membrane subthreshold oscillations

Subthreshold oscillations are electrical signals recorded by an electrode in con-
tact with a neural tissue, whose power spectrum is far from flat and whose
mean value is below the firing threshold of the constituting cells. These signals
are ubiquitous in the brain and usually come from the coordinated activity of
many neurons, as mentioned in Section 1.6, but a precise relation with the in-
dividual neuronal membrane potentials or synaptic currents is still unknown.
A simple mechanism for the generation of these rhythms would be the exis-
tence of a central pattern generator oscillating autonomously and entraining
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the rest of the population. However there is no experimental evidence of this
kind of structure in the neocortex (this type of circuit is found, nevertheless,
in the spinal cord and is related to motor behavior [Yuste 2005]).

Voltage oscillations have also been reported in the membrane of single
neurons in the mammalian central nervous system [Alonso 1989, Lampl 1993]
contributing to the emergence of brain rhythms. In this Chapter we will focus
on these individual oscillations (Figure 2.1) whose origin is clearer than that
of network oscillations. The main feature of these type of neurons is their
resonant behavior, arising from the dynamics of various ionic channels, which
makes the neuron’s membrane voltage to oscillate above a certain injection
current or when interacting with the rest of the network. This type of neuron
help strengthen the oscillatory patterns of the neuronal population in which
they are embedded.

Figure 2.1: Left: Four intracellular recordings from four different slices of the inferior olivary
nucleus. Right: Corresponding power spectra. From [Lampl 1997].

Resonances appear when the neuron combines low-pass and high-pass filter
mechanisms. The result is a band-pass filter that attenuates frequencies out-
side a certain range [Hutcheon 2000]. Such neurons respond to a continuously-
varying sine wave current (ZAP), with membrane oscillations that have largest
amplitudes when the input frequency is within a certain band (determined by
the low-pass and high-pass filter features). The passive properties of the neu-
rons, i.e. those which are independent of the membrane voltage, such as its
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capacitance and leak conductance, are responsible for the low-pass filer. The
high-pass filter is obtained by slowly activating ionic channels whose reversal
potential is close to the minimum voltage required for their activation |Fig-
ure 2.2(a)| which therefore always tend to oppose membrane voltage changes
with time scales longer than the membrane time constant. Other ionic chan-
nels amplify the resonance by having their reversal potential at high values of
their activation curve [Figure 2.2(b)]. In this last case, the activated channels
tend to rapidly enhance membrane voltage changes.
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Figure 2.2: Schematic activation curves of different channels involved in the resonant behav-
ior of neurons. The reversal potential is labeled with an arrowhead. The reversal potential
is located at the beginning (a) or ending (b) of their activation curve by depolarization
(left) or by hyperpolarization (right). From [Hutcheon 2000].

Neurons having these types of ionic channels are provided with frequency-
specific responses even when the neurons do not display spontaneous sub-
threshold oscillations. Thus, inputs with a strong frequency component at
the resonant frequency of the cell will trigger larger responses. For instance,
firing-rate resonances have been found in the presence of an oscillating applied
current |Richardson 2003, Brunel 2003a|. This oscillatory driving causes a
periodic modulation of the firing rate, whose amplitude is maximal (for high
enough background noise) when the driving frequency matches that of the
subthreshold oscillation.

The excitability of these neurons is intrinsically modulated because the os-
cillations of the membrane potential lead to periodic changes of the distance
to the spiking threshold. Therefore, the synaptic afferent currents are more
effective at the peaks of the oscillation, where the distance to threshold is
minimal. This rhythmic activity of the membrane potential allows to control
the precise timing of action potentials. Subthreshold oscillations have been



40 Chapter 2. Membrane subthreshold oscillations

shown to shape spike-train patterns in cortical neurons by leading to spike
clusters, thus influencing qualitatively the distribution of interspike intervals
[Verechtchaguina 2004, Verechtchaguina 2007|, and inducing correlations be-
tween them [Engel 2008]. The interaction between these oscillations and the
synaptic input helps to synchronize the firing of a population of neurons by
perturbing their phase nonlinearly.

Spikes in the membrane potential of neurons are considered to be the
basic carriers of information in the nervous system [Rabinovich 2006]. In
contrast, subthreshold activity, takes the form of fairly coherent oscillations
that do not elicit neurotransmitter release, which are therefore not transmitted
synaptically to neighboring neurons. In order to assign a functional role to
subthreshold oscillations, their effect on the spike firing patterns have to be
established. In this Chapter we will examine this question, in particular how a
neuronal chain of neurons displaying membrane potential oscillations interacts
with a propagating train of spikes.

2.2 Modeling single-neuron subthreshold os-
cillations: a modified FitzHugh-Nagumo
model

We have used here a modified FitzZHugh-Nagumo model reported by
[Makarov 2001] displaying subthreshold oscillations of the membrane poten-
tial for particular values of the parameters (see Appendix A.1.1). The model
is as follows:

ai—? = ulu—a)(l—u)—wv (2.1)
= - 2:2)

where ¢ is the ratio between the characteristic times of u and v. We consider
that this parameter is much smaller than 1, so that the system relaxes rapidly
to the w-nullcline. The function g is defined as:

glu—b) = ki(u — b)? + ks (l—exp {—“l{;bD (2.3)

In comparison with Equation (1.12), g does not depend on the slow variable
v. The duration of the spikes can be tuned by the parameters k; and ko,
because k; and ko control the value of % and, consequently, the time spent
by the trajectory % = 0. The spikes in this model can be faster than in the
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standard model (see Section 1.3.2.2) and they do not interfere with the period
of the membrane subthreshold oscillations. Note that the v-nullcline is just
the straight line u = b, so that the equilibrium point is given by u, = b and
vo =b(b—a)(1—0).

2.2.1 Stability analysis of the modified FitzHugh-
Nagumo model

In order to determine the stability of the fixed point as a function of the
parameters we perform a local linear analysis of the system of Equations (2.1)-

(2.2):
o ) e

where F' = u(u —a)(l —u) —vand G=g(u—"b). . =u—1u, and v = v — v,
are the deviations from the equilibrium point. The matrix of the first-order
partial derivatives is the Jacobian matrix of the system. The eigenvalues and
the eigenvectors of this matrix, J,
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help us to write a general solution for the linear system in the form
St ) )
( u) ) = c1eMi) + e (2.6)

where \; and )y are the eigenvalues of the eigenvectors w; and w5 and can be
rewritten as:

Aig = (2.7)

where 7 and A are the trace and the determinant of the Jacobian matrix,
respectively. ¢; and ¢y are integration constants.

The sign of the eigenvalues depends on the values of 7 and A, and de-
termine the way the trajectories behave around the fixed point according to
Equation (2.6). If both eigenvalues have negative real part the trajectory in
the phase plane responds to a brief perturbation from the fixed stable point
approaching it asymptotically and spiraling into it (if the two eigenvalues are
complex) or sinking into it (if the eigenvalues are pure real). If the strength
of the perturbation is larger than a certain threshold, both u and v undergo a
large increase before returning to the fixed point. This trajectory represents
an action potential and makes the system excitable. If at least one eigenvalue
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has positive real part, small perturbations are amplified and the system es-
capes the fixed point (unstable). Thus the necessary and sufficient condition
for stability is A > 0 and 7 < 0. This allows us to classify the equilibrium
points besides their stability: if the eigenvalues are of the same sign we talk
about nodes, if they have opposite signs they are called saddles, and if they
are complex they are foci.

For the system of Equations (2.1)-(2.2), the determinant and the trace of
the Jacobian matrix at the fixed point are:

A=1/e, (2.8)
= é(—bi” + (1 — a) b* — ab) (2.9)

The choice of the parameters €, a and b depends on the desired dynamical
regime. We set € = 0.005 and a = 0.9, as in [Makarov 2001]|, and vary b. No-
tice that Equation (2.2) does not depend on v (i.e. G /Jv = 0), therefore the
trace 7 of the Jacobian matrix in Equation (2.4) is just 225{, ..y = 22|, u0)-
If the parameter b is chosen to be equal to the value of u at the absolute min-
imum of the u-nullcline (remember that the u coordinate of the equilibrium
point is u, = b), then 7 = %’(b,vo(b)) = 0, which means that the eigenvalues
have no real part. When the resting state undergoes a transition from stable
(eigenvalues with negative real parts) to unstable (eigenvalues with positive
real parts) focus giving rise to a small-amplitude limit cycle attractor, we talk
about a supercritical Andronov-Hopf bifurcation. We then lose stability of the
fixed point but gain stable oscillations. Near the supercritical Andronov-Hopf
bifurcation the model generates —via a canard explosion’ (see Figure 2.3)-
low amplitude quasi-harmonic oscillations remaining excitable. In this case
we have b = 1te=vl—atad® W = 0.315, and by setting b = 0.316 we get 7 > 0.
Now the real part of the eigenvalues is positive and a low amplitude stable
limit cycle (a subthreshold oscillation) appears.

2.2.2 Time scale of subthreshold oscillations

The function g(u — b) in Equation (2.2) controls the duration of spikes. In
order to choose values for k; and ks we derive an approximate expression for
the excitation, Tey, and refractory, T,ef, intervals, looking at the slow motion
equation of the u-nullcline v = u(u—a)(1—u). We define the excitation interval

tFast transition, due to a small parameter change, from a small amplitude limit cycle
to a relaxation oscillation [Brgns 1991].
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Figure 2.3: Bifurcation diagram of the fast variable u with respect to the parameter b,
obtained with XPPAUT. The plot shows the appearance of a stable limit cycle with in-
creasing b. The inset is a zoom of the small region around the bifurcation point, b = 0.315,
showing the canard transition from the relaxation oscillator to the stable oscillator of small
amplitude (subthreshold oscillations).

as the time spent going from point A to point B represented in Figure 2.4:

UB Texc dv
dv = —dt =vp — 2.10
/v A v /0 i VA — UB (2.10)

where vy and vg are the ordinate values of the absolute minimum and max-
imum of the wnullcline (for dzc’l—(u“) = 0), respectively. This equation can be
solved by integrating Equation (2.2) between vy and vg, using as a first ap-

proximation u(t) ~ 1 [Makarov 2001]:

Texc d,U Texc
/ —dt = / glu—0)dt =~ g(1 —b) - Texe (2.11)
o dt 0
Solving dz(;) = —3u® + 2(1 + a)u — a = 0 to obtain the abscissas of the

absolute minimum and maximum of the w-nullcline (i.e. wus and ug) and
substituting again in the v(u) equation, we obtain:

vA = v(% [(1+a)—(1—a+a2)1/2]), (2.12)

v = v(% [(1+a)+(1—a+a2)1/2}> (2.13)
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Since va — v = g(1 — b) - Texe:

4(1—a+a?)*?
Texe = , 2.14
© 27g (1 — ) (2.14)
4(1—a+a?)*?
T = — 2.1
ref 279 (—b) ( 5)

For the calculation of the refractory interval shown above, we have followed
the same steps between point C and point D using u(t) &~ 0. The duration of
a spike will be Teye+Trer, which depends on the parameters k; and ks.
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Figure 2.4: u-nullcline with a simplified phase plane trajectory representing a spike.

An expression for the period of the subthreshold oscillations can also be
obtained solving the linear system [Equation (2.4)] at the Andronov-Hopf
bifurcation (i.e. b = 0.315 for a = 0.9 and € = 0.005, 7 = 0 and A = 1/¢):

-G e

The eigenvalues of the Jacobian matrix are A\j o = ii\/z, and therefore
the solution of the system, @(t) and v(¢), is an harmonic oscillator with w =
VA =1/y/¢ and period Ty, ~ 2m\/E ~ 0.44.

In what follows we choose k; = 7.0 and ky = 0.08 as in [Makarov 2001].
The excitation and refractory period are then Tey. & T.of &~ 0.044, what makes
the duration of a spike shorter than the period of subthreshold oscillations,
Tsin (see right plot of Figure 2.5).
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Figure 2.5: Left: Phase portrait for a FitzHugh-Nagumo neuron of Equations 2.1-2.2. Right:
Membrane potential time course.

2.3 Spiking response in the presence of sub-
threshold oscillations

For the parameters given in the previous Sections, the neuron operates in
an excitable regime whose basal state is a limit cycle, corresponding to the
subthreshold oscillations (see left plot of Figure 2.5). Its excitable char-
acter implies that a large enough perturbation of the limit cycle leads to
a pulsed response, which corresponds to an action potential. In contrast
with neurons with a steady rest state, the response to perturbations of
neurons with subthreshold oscillations is not equal at all times, but de-
pends on the phase of the oscillation at which the perturbation is received
[Volgushev 1998, Desmaisons 1999).

We have studied the response of the FitzHugh-Nagumo neuron described in
Section 2.2 to incoming spikes that activate a synapse, allowing the flow of an
inward current [Sancristobal 2010a]. The synaptic current entering the neuron
is given by Equations (1.13)-(1.14). The synaptic conductance gsy, determines
the strength of the synapse; here we take gsn = 0.1. The amplitude is chosen
such that the neuron fires in response to the current pulses only for a specific
range of phases of its subthreshold period. The synapse potential Ey,, defines
the type of synapse; here we consider Egy, = 0.7, which makes the connection
excitatory. a = 44 and § = 22 are set in order to keep the rise and decay times
of o(t) (i..e the fraction of open membrane receptors) smaller than the period
of the subthreshold oscillations. The concentration of neurotransmitters 7'(t)
released into the synaptic cleft is considered to behave as a pulse as described
in Equations (1.16)-(1.19). Therefore, during a time 74, = 0.006 after the
arrival of a pre-synaptic spike at time t,, T(t) remains constant and equal to
Tax = 1. Hence T'(t) = Tinax0(to + Tsyn — 1)0(t — ).

Figure 2.6 shows the effect of two synaptic pulses arriving at two different
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time instants. Two distinct responses arise, depending on the phase of the
subthreshold oscillation at the arrival of the perturbation.

The figure shows that depending on the phase of the subthreshold oscilla-
tions at the time the perturbation arrives, a spike is triggered (blue solid line
in the figure) or not (red dashed line). We can understand this dual behavior
as follows. As the fraction of active receptors o(t) increases upon the arrival
of the synaptic pulse, the u-nullcline [defined by @ = 0, thin black line with cu-
bic shape in Figure 2.6(b)| moves upwards and towards increasing u in such a
way that it now intersects the v-nullcline [defined by © = 0, thin vertical black
line in Figure 2.6(b)] at the stable branch of the u-nullcline, and the unstable
fixed point stabilizes temporarily. If this happens when the system lies along
the part of the limit cycle represented by a thick empty line in Figure 2.6(c),
the perturbation will quickly relax back to the oscillatory attractor. On the
other hand, if at the time at which the perturbation arrives the neuron is in
the part of the limit cycle represented by a thick solid line in Figure 2.6(c),
the trajectory finds itself temporarily beyond the excitation threshold, and a
spike is triggered before the u-nullcline returns to its original location.

If the subthreshold oscillation is intrinsic to the neuron, rather than en-
trained by a periodic forcing, its phase will be affected by the incoming spikes,
thus conditioning the future response of the neuron to subsequent perturba-
tions. This can be observed in Figure 2.6(a) in the different time voltage
courses after perturbing the neuron at distinct phases. In order to quan-
tify this phase-dependent behavior, we define the phase of the subthreshold
oscillations by rescaling the state variables as follows:

U — Umin

u=2—" 1 2.17

N Umax — Umin ( )

§=o 0 Umin g (2.18)
VUmax — Umin

where the subindices ‘max’ and ‘min’ stand for the maximum and minimum
values of the voltage and recovery variables within a period of the subthreshold
oscillations. In the (@, ) plane, an isolated neuron describes a circle of radius 1
centered at the origin. We will represent this trajectory by means of a single
phase variable, ¢ = arctan(v/@). The origin of the phase variable occurs
when v = 0, corresponding to half the amplitude of the v-interval covered
by the limit cycle according to Equation (2.18) [see horizontal dashed line in
Figure 2.6(c)|. Note that this definition of phase can only be applied when the
neuron has had enough time to relax to the limit cycle after a perturbation.
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Figure 2.6: Response of a neuron with subthreshold oscillations to input synaptic spikes.
(a) Time series of the voltage variable of the response neuron for input spikes arriving from
the driving neuron at two different times. (b) Phase portrait of the two trajectories shown
in plot (a). The black lines depict the nullclines of Equations (2.1)-(2.2). (c) Zoomed area
around the limit cycle shown in plot (b), indicating the phase origin chosen (horizontal
dashed line crossing the limit cycle) and the region where a spike is elicited (thick solid line
on the limit cycle) or not (thick empty line on the limit cycle).
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We can plot now the amplitude of the voltage response, i.e. the post-
synaptic potential (PSP), resulting from the perturbation [see Figure 2.6(a)]
as a function of the phase of the subthreshold oscillation at the instant at
which the perturbation starts to act upon the neuron. The result is shown in
Figure 2.7(a), and reveals a range of input phases (termed non-spike-triggering
phases in what follows, white region in the horizontal bar above the plot) for
which the perturbation is not able to produce a spike (red dashed line in
Figure 2.6), while spikes are generated (blue solid line in Figure 2.6) for other
phases (called spike-triggering phases below, grey region in the horizontal bar
above the plot). Note that the transition between these two regions is sharp.
For slower synapses |dashed and dot-dashed lines in Figure 2.7(a,b)]| the range
of spike-triggering phases increases because the trajectory leaves the stable
limit cycle for a longer time. The neuron then has more time to reach the
excitation threshold before relaxing to the limit cycle again.
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Figure 2.7: (a) Phase dependence of the neuronal response. Amplitude of the post-synaptic
potential resulting from the input spike arriving at different phases ¢;, of the subthreshold
oscillation. (b) Synaptic time course upon activation at time zero. The solid thick line
corresponds to the baseline parameter values used given in this Section (« = 44 and § = 22).
The dashed and solid thin lines represent situations in which the synapse is slower (one
parameter change in each case, @« = 2 and 8 = 1, respectively). The rest of synapse
parameters are tuned such that the peak of the synaptic pulse, gsynomax, is kept constant
either due to a larger value of gsyn = 1.833 (dashed line) or of 74y = 0.011 (thin solid line).
The horizontal bar above plot (a) represents, for the baseline parameters (solid black line)
regions of spike-triggering phases (see text) in dark grey, while non-spike-triggering phases
are represented in white; this notation is the one used in the upcoming figures. Note that
the transition between the spike-triggering and non-spike-triggering phases depends on the
dynamics of the synapse, o(t). Slower synapses are less phase-specific.
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The above-described selective response to a single presynaptic spike with
respect to its arrival phase suggests that the neuron should also respond se-
lectively with respect to the period of an input spike train. Do subthreshold
oscillations allow a neuron to select which incoming trains of spikes it reacts
to on the basis of their firing rate? In order to address this question we have
measured the response of the FitzHugh-Nagumo model neuron to a periodic
synaptic pulse train considering different frequencies [Sancristobal 2010a|. We
have computed the percentage of those perturbations that elicit a spike in the
neuron, which we term success rate. Figure 2.8 shows the dependence of the
success rate on the period of the input spike train, and reveals a non-monotonic
dependence of the spiking efficiency of the neuron on the timing at which it
receives the stimulus.
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Figure 2.8: Success rate versus period of the input spike train. The success rate is measured
as the percentage of successful spike transmission events calculated over 1000 external
pulses, removing an initial transient time of ~ 1400 units of time. An average success
rate is calculated over 10 different realizations, changing the initial conditions of u and v
randomly in a region bounded by the limit cycle.

A success rate smaller than 100% corresponds to an average interspike
interval of the output that is greater than the input period, and shows that
the neuron acts as a filter to some external periods. This filtering behavior is
reminiscent of the one exhibited by the membrane potential of these neurons
with respect to the frequency of a sinusoidal modulation of the applied cur-
rent, [Puil 1994, Gutfreund 1995, Hutcheon 1996, Pike 2000, Hutcheon 2000].
Here, however, we are examining the spiking response of the neuron instead
of the modulation of the membrane potential, and the driving signal is a spike
train, instead of a harmonic modulation of the applied current.

The response profile shown in Figure 2.8 indicates that for most periods
of the spike train there is at least a partial response of the neuron, in spite of
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the broad range of non-spike-triggering phases exhibited by the system in the
case of an isolated perturbation.

2.3.1 Phase transition curve (PTC)

Given the mutual influence between spikes and subthreshold oscillations de-
scribed above, success in the response of a neuron to a periodic spike train
requires that (i) each pulse in the train elicits a spike, and (ii) this spike re-
sets the phase of the oscillation in such a way that the following pulse will
encounter the neuron at the 'right’ phase again. In order to understand this
phase resetting, we quantify the phase response of the neuron in terms of a
phase transition curve (PTC) |Glass 1988, Winfree 2001| in which the phase
a time 7" after the perturbation (7" being the period of the input spike train),
®out,T, is plotted versus the phase at the perturbation time instant, ¢,. PTCs
allows us to establish an iterative map describing the evolution of the phase
in response to successive pulses in the train. From the analysis of the steady-
state behavior of this map we can establish the response of the neuron to the
input spike train: for certain ranges of periods the phase quickly reaches a
steady state in which perturbations always lead to spikes; for others the phase
reaches values (stationary or part of a dynamical attractor) in which spikes
are not triggered. In that way, the phase-response map provides a frame-
work that helps us understand the resonance profile arising from subthreshold
oscillations.

Phase-response curves have been previously used to study the response
of both oscillatory [Hansel 1995, Galan 2005, Gutkin 2005| and excitable
[Rabinovitch 1994] neurons to time-varying stimuli. Here we show that in
neurons with subthreshold oscillations, due to the distinct response depend-
ing on the value of the phase at the time of the perturbation, the corresponding
phase-response curve has a non-standard discontinuity that leads to complex
phase dynamics. A similar discontinuity has been studied in neurons without
subthreshold oscillations [Coombes 2000]. In our case, the different dynam-
ical regimes of the phase response can be associated with different types of
response of the neuron to the input spike train, constituting a dynamical
scaffold that underlies the resonant behavior of the system.

The PTC of this FitzZHugh-Nagumo neuron is constructed as follows: start-
ing from the neuron operating in the stable limit cycle, we run simulations for
each value of ¢y, until 7" units of time after the perturbation. Varying the
instant of the perturbation over a subthreshold period, we cover a full cycle of
input phases ¢;,. From these simulations we obtain the maximum membrane
voltage (PSP amplitude of Figure 2.7), and also the values of v and v a time T
after activating the synapse. Provided T is large enough to allow the neuron
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to relax to the limit cycle between consecutive spikes, we can compute @ous, T
from Equations (2.17)-(2.18), and interpret it as a phase on the limit cycle.
This leads to the PTC shown in Figure 2.9(a).
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Figure 2.9: (a) Phase transition curve (PTC) showing the response phase @oyui,r & time
T after the spike is received, versus the phase ¢;, of the subthreshold oscillation at that
instant. The vertical lines mark the boundary between the spike-triggering (shaded area)
and non-spike-triggering regions. The dashed diagonal line corresponds to the situation
®in = Qout- In this case T' = 45. The right column shows the time evolution of the voltage
variable for two input phases for the cases of phase insensitivity —just above 57/3— (b) and
phase resetting —just above 47/3- (c).

The results of Figure 2.7 allow us to identify the ranges of input phase
values for which the perturbation elicits an action potential (spike-triggering
input phases, see solid blue line in Figure 2.6) and those for which the pertur-
bation quickly relaxes back to the limit cycle without triggering a pulse (non-
spike-triggering input phases, see red dashed line in Figure 2.6). These phase
intervals are represented by gray and white horizonal bars, respectively, above
Figure 2.9(a). This figure shows that the response phase depends strongly on
whether or not the perturbation triggers a spike. In particular, the PTC ex-
hibits a discontinuity where this behavioral change occurs. We note that the
range of spike-triggering phases (and thus the shape of the PTC) depends
on the intensity of the perturbation, which is given by the strength of the
chemical synapse, gsyn. For large enough gsm (not the case considered here)
the firing is no longer modulated by the subthreshold oscillations.

The slope of the PTC shown in Figure 2.9(a) indicates the level of phase
sensitivity to variations in the input phase. In particular, the non-spike-
triggering region exhibits areas of hypersensitivity (for ¢y, slightly larger than
zero and around 7) for which a small variation in the input phase leads to a
large change in the output phase. In the spike-triggering region, on the other
hand, we can distinguish a horizontal segment around 57 /3 corresponding to a
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situation of phase insensitivity, in which the output phase practically does not
change in response of variations in the input phase. This situation is depicted
in Figure 2.9(b), which shows the time evolution of the voltage variable in
response to two input spikes slightly separated in time: at any instant after
reaching the stationary limit cycle, the phase difference of this two traces is
similar to the input phase difference. Around 47 /3 the PTC is nearly parallel
to the diagonal, corresponding to phase resetting: at any instant after reaching
the stationary limit cycle, the phases of these two traces are equal regardless of
the input phase difference [see Figure 2.9(c)|. Phase resetting is also observed
in the non-spike-triggering region, in the area around 7/3 < ¢y, < 27/3.

2.3.2 Iterative maps and phase response to a spike train

Once we have obtained the phase transition curve for a given time 7', we can
easily determine the phase dynamics in response to a spike train of period
T, by constructing the associated iterated map according to ¢! , = ¢! at
every iteration ¢ The rationale behind this procedure is that iterations of
the map would lead to the values of the subsequent phases that the response
neuron exhibits at each time a new spike arrives. In that way, if the iterated
map has a stable fixed point (given by an intersection point between the
PTC and the diagonal at which the absolute value of the derivative of the
PTC is smaller than one) that is globally attracting, this means that the
neuron eventually reaches a constant value of the phase at every time a spike
arrives, irrespective of the initial phase. An instance of this situation is shown
in Figure 2.10(a), which depicts two trajectories starting from two different
initial phases (squares) and ending in the same fixed phase (circle). In this
particular case, the final phase is located at the spike-triggering region, and
thus for the period T of that particular PTC, the neuron will exhibit a perfect
1:1 response to the input spike train. This leads to 100% success rate if the
transients are ignored, as can be seen in Figure 2.10(e) for 7' = 45.37, which is
the value used in plot (a). In this situation, the transitory starting spikes seem
to prepare the phase of the neuron to the reach its stationary value. Since
stable fixed points require the derivative of the PTC to be smaller than 1 in
absolute value, they tend to occur around the flat areas of the PTC within
the spike-triggering region described in Section 2.3.1, which correspond to
situations of phase insensitivity. Therefore, phase insensitivity accounts for
the successful propagation of the pulse train driving the response neuron.
This result is in agreement with the experimental observation in [Lampl 1993]
where subthreshold oscillations subserve the precise timing of information
processing. When T varies, the PTC shifts vertically (with a slight distortion
due to the nonlinear character of the subthreshold oscillation). Different 77s



2.3. Spiking response 53

27

5m/3

Am/3

ut, T

2 /3|

/3

..............

ok S S ok N S
0O x/3 2x/3 T 4m/3 bm/3 2w 0  #/3 2x/3 T 4m/3 5m/3 2w
Pin Pin
100 T T T 2m A1 9 |
sof 1 1 . b/ A It 1 o 1|
P anss ) ML 121 V— i
£ L ] i
Eﬂr’; I LT T upupsupy L I p———— R © T . o l
@ [N IR | N 2 /3 N !
| 1
L B /3 |- i
K1 H ]
. . | 08 =t ---H-Hb---opo-
15 45.1 452 453 454 455 45 451 452 453 454 455

0
0 x/3 2r/3 ™ 4x/3 5m/3 2w

Pin

period,T period, T

Figure 2.10: Iterated map and resonance response of the neuron. Plots (a-d) depict the
phase transition curve (PTC) for four different values of T, for which the phase dynamics are
qualitatively different. (a) T = 45.37 (single stable fixed point within the spike-triggering
region). (b) T = 45.20 (single stable fixed point within the non-spike-triggering region). (c)
T = 45.08 (period-2 limit cycle). (d) T = 45.07 (chaotic regime). (e) Success rate versus the
period T of the spike train (from Figure 2.8). The horizontal dashed lines denote different
n : m responses. (f) Bifurcation diagram showing the phase attractors of the iterated map
as a function of T. The dots (black online) are obtained when increasing 7', and the circles
(red online) when decreasing T. The dashed line separates the spike-triggering from the
non-spike-triggering region as in Figure 2.9.

lead to different intersection points between the PTC and the diagonal, with
distinct stability properties. Figure 2.10(b) shows the case of T = 45.20,
for which the system has again a single stable fixed point, this time within
the non-spike-triggering region. Therefore, for this particular value of T" the
iterated map predicts that the neuron will not respond (after a transient)
to any of the input spikes, leading to a 0% success rate, as can be seen in
Figure 2.10(e).

The iterative map thus predicts a filtering behavior of the spiking period
of the neuron with respect to the period of the input pulse train, with values
of T' for which the neuron responds to all spikes in the train and other values
of T for which it responds to none of the input spikes. But these are not
the only possible behaviors of the system. When the map has no stable fixed
points, it can exhibit a periodic behavior, such shown in Figure 2.10(c). In
that case, the system oscillates between two phases, one in the spike-triggering
region and the other in the non-spike-triggering one, leading to 1:2 response
and subsequently to a 50% success rate [see Figure 2.10(e) for T' = 45.08,
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which is the value used in plot (c)].

For other values of T" the map exhibits higher periods, and even chaotic
behavior, as shown in Figure 2.10(d) for T = 45.07. In that case the response
of the neuron is not periodic (although it could be, depending on how the
chaotic attractor is partitioned between the spike-triggering and non-spike-
triggering regions). In those situations the success rate does not correspond
to a n : m response.

The behavior of the iterated map for varying 7" can be summarized in
the bifurcation diagram plotted in Figure 2.10(f), which shows the phases
of the subthreshold oscillations at the times at which a spike is received,
for different periods of the spike train. The diagram shows regions of fixed-
point, periodic, and chaotic behavior, which exhibit an exact correspondence
with the success rate given in Figure 2.10(e), measured from simulations of
the full model. As mentioned before, the extreme cases of 100% and 0%
success rate correspond to stable fixed points. When all the fixed points
are unstable we can observe either a periodic orbit or a chaotic orbit on the
PTC map. The former case may entail 1:2 locking behavior (leading to 50%
success rate), 1:3 locking (leading to 33% success rate), and even 2:3 locking
(leading to 66% success rate). These well-defined locking regions are depicted
in Figure 2.10(e) by horizontal dashed lines. Chaotic orbits show different
success rates values without a defined spiking period. Similar phase-locking
response patterns have been previously observed experimentally in excitable
cardiac cells [Chialvo 1987], and studied theoretically in an excitable neuron
model [Coombes 2000]. In some cases we obtain two distinct sets of stationary
¢ values for the same value of T' [black dots and red circles in Figure 2.10(f)],
depending on the direction of which 7' is being scanned. This fact reveals
the existence of different coexistent attractors that are reached from different
initial phases.

The response dynamics of a neuron with subthreshold oscillations to a
train of input spikes is seen to be very rich, and the iterated map described
above is able to characterize all dynamical regimes exhibited by the system.
Our phase response approach shows that, at least for the model and param-
eters considered here, the range of input spike-train periods for which the
neuron does not respond at all is very small. This lack of responsiveness
arises when the stationary phase dynamics falls within the range of input
phases for which spikes are not triggered, something that happens rarely, only
when a single stable fixed point appears in the non-spike-triggering region
[T" = 45.2 in Figure 2.10(e,f)]. Most frequently the neuron exhibits a dynam-
ical phase attractor that goes in and out of the spike-triggering zone, which
leads to an increase (a multiple, if the phase attractor is periodic) of the spike
train period. Perfect 1:1 response is obtained when the period 71" is such that
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the iterated map has a single stable fixed point in the spike-triggering region
[Figure 2.10(a)]. The range of periods covered in the resonance plot shown
in Figure 2.10(e) is approximately equal to the period of the subthreshold
oscillations (T, = 0.44 for the neuronal parameters considered here). The
resonance profile shown in the plot will be repeated with that period, provided
T is large enough for the neuron to have enough time to relax to the limit
cycle between spikes, as mentioned above. The minimum period for which
this happens is T &~ 45, which is the value considered here. For shorter peri-
ods the neuron never reaches the limit cycle after each perturbation and it is
not possible to define a phase variable from the rescaled variables defined in
Equations (2.17)-(2.18), as described above. In that case, the phase response
approach presented above is no longer valid, and one must rely on pure numer-
ical simulations to establish the phase response, which still exhibits a resonant
behavior. These results are reported in [Sancristobal 2010a].

2.4 Propagation of spikes through a neuronal
chain

In a simple coupling scheme, we have studied how the single-neuron resonant
behavior to a train of action potentials with a defined period affects propaga-
tion of this input, by using a chain of identical FitzHugh-Nagumo neurons with
subthreshold oscillations. Such a situation might be expected to arise in the
transmission of sensory or motor signals through cascades of neuronal popula-
tions (each of which is represented here by a single FitzHugh-Nagumo model
[Ghosh 2008|) along the corresponding neuronal pathways. The existence of
subthreshold oscillations in neurons involved in sensory processing and mo-
tor response, such as those found in the inferior olivary nuclei [Llinas 1986,
olfactory bulb [Desmaisons 1999], and dorsal root ganglia [Amir 1999] makes
this scenario plausible.

We have considered a chain of 20 neurons preceded by a first neuron per-
turbed by an external periodic train of spikes as described in Section 2.3.
Neurons are coupled by unidirectional chemical synapses activated by the fir-
ing activity of this first presynaptic neuron. This initial neuron always fires an
action potential in response of the perturbation, whereas the response of the
rest of neurons is sensitive to their phase (see Figure 2.7). A picture describing
this situation is shown in Figure 2.11.

Figure 2.12 shows the success rate as a function of the period 7' of the
input pulse train, for neurons located increasingly further down the chain.
The resonant behavior is maintained, in fact becoming sharper, as the train
propagates. This effect can be understood as follows. For the cases when
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Figure 2.11: Schematic representation of the modeled neuronal chain. Circles represent
neurons, vertical ticks mark the spikes elicited by each cell and the unidirectional arrows
represent the chemical directed synapses between two consecutive neurons. The red neuron
is the first presynaptic neuron in the chain and always spikes in response to an external
train of pulses of period T.

the success rate of the first response neuron (neuron 1, solid thin line in
Figure 2.12) is smaller than 100%, the instantaneous spike period increases.
Since the response period of the next neuron can only be at most equal to (and
in fact frequently it is smaller than) its input, the success rate with respect to
the original spike train must be reduced (or at most remain constant) upon
propagation. As the 1:1 region located around 7" = 45.2 is relatively small,
eventually all the periods for which the success rate is not 100% for the first
neuron will decay to zero far enough down the chain.
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Figure 2.12: Success rate profile for neurons ¢ = 0 (solid thin line), ¢ = 5 (dashed line), and
i = 20 (solid thick line). The trace for i = 1 is equivalent to Figure 2.8.
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2.5 Conclusions

We have introduced a method to characterize the response of a neuron with
subthreshold oscillations to a periodic train of synaptic pulses, based on an-
alyzing the phase response of the neuron to the input pulses. To that end,
we have obtained iterated maps that govern the behavior of the phase of the
subthreshold oscillation at the times when the subsequent spikes are received.
The iterated maps, which arise from the phase transition curve of the neuron,
may exhibit stable, period and chaotic behavior, depending on the period of
the spike train. These behaviors are able to explain the response of the neuron
for varying input periods, which exhibits a resonant behavior.

Our results show that subthreshold oscillations provide an efficient mecha-
nism to control propagation of spike trains. In that way, a neuronal chain with
sufficient length is able to convert an heterogenous neural response to a presy-
naptic train of spikes into a quasi all-or-none response, which enables a way of
classifying a wide variety of inputs: spiking with the same external period, no
spiking at all, or transformation of the signal period. This type of classification
might provide a useful framework that could underlie information processing
capabilities of neuronal systems, such as firing-frequency-based selective com-
munication [Izhikevich 2003, Balenzuela 2007], and communication through
coherence [Fries 2005, Womelsdorf 2007].

The mechanism proposed here requires that there is a feedback between
the input spikes and the subthreshold oscillations: subthreshold oscillations
must dictate whether an input synaptic pulse can elicit a pulse or not, and
in turn successful spikes must reset the subthreshold oscillations adequate to
prepare the phase to receive and respond adequately to the next spike. When
this feedback is broken, for instance in the presence of electrical coupling
between the neurons, which is very efficient in synchronizing the phases of the
subthreshold oscillations throughout the chain, thus increasing its inertia in
front of spikes, the resonant behavior is quickly lost [Sancristobal 2010b].

In summary, subthreshold oscillations allow for the precise timing of ac-
tion potentials and filter out those periodic signals that do not lead to spike
synchronization. Therefore, subthreshold oscillations provide a mechanism of
rate coding |[Konig 1996] due to their slow time-scale, that can discern input
periods accurately. In this study, some assumptions are oversimplifications of
a real neural assembly and we cannot generalize this information processing
mechanism. For instance, the unidirectional chain connectivity (Figure 2.11)
and the fact that a single presynaptic spike can elicit an action potential at
appropriate phases [Figure 2.6(a)| are relatively far from realistic physiolog-
ical conditions. However, our results shed light into the functional role of
subthreshold oscillations and their interplay with the spikes, which are the in-
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formation bins of the neural code. Moreover, synaptically induced membrane
potential oscillations are ubiquitous in the brain and are a common finger-
print of the peak frequencies observed in EEG and LFP power spectrum. In
the following chapters we will examine these oscillations in a more realistic
scenario.
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3.1 Firing activity of an isolated single neuron

We have mentioned in Section 2.1 that particular ion channels can cause sub-
threshold membrane potential oscillations either in isolated neurons or trig-
gered by presynaptic activity within a network. Other channels provide the
mechanisms to elicit suprathreshold responses, i.e. action potentials. Basi-
cally, the generation of action potentials requires an influx of sodium ions,
Na™, followed by a potassium efflux as described in Section 1.3.1. These
events are mediated by voltage-gated ion channels, whose permeability de-
pends on the membrane potential difference between the inside and the out-
side of the cell, according to the ionic concentration gradients. The dynamics
of such channels is very rich, and their opening and closing time constants
are heterogeneous. Thus, the type and distribution of ionic channels across
the membrane of a neuron determine its excitability behavior in response to
a stimulus. This behavior can be experimentally tested by injecting a pulsed,
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Figure 3.1: Variety of discharge patterns obtained from the Izhikevich model with different
parameters. The horizontal bars denote 20 ms time interval. From [Izhikevich 2004].

constant, or ramp current, as shown in Figure 3.1. In the latter case (Fig-
ure 3.1G-H) one observes how the membrane potential changes as the input
amplitude increases, eventually switching from a resting excitable state to an
oscillating (tonic firing) state. Mathematically, this transition is described as
a bifurcation of the membrane potential from a stable fixed point to a periodic
orbit exhibiting distinct discharge patterns.

Depending on how the firing frequency within the oscillatory regime be-
haves near the bifurcation, neuronal excitability can be classified into type [
or type II [Rinzel 1989]. In Figure 3.2 we show the cell’s firing rate behavior
in the two cases (and for an excitatory and an inhibitory neuron as discussed
below) under constant injection current, for increasing values of the current.
In type I excitability, the frequency increases continuously from zero as the
bifurcation is crossed |Figure 3.2(a)]. Type II neurons [Figure 3.2(b)| on the
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other hand, exhibit a discontinuous jump in frequency as the tonic regime is
entered, and their range of firing frequencies is quite narrow compared to type
I neurons, which can achieve arbitrarily low frequencies |Izhikevich 2007].
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Figure 3.2: Characteristic f-I curves of type I (a) and type II (b) conductance-based
excitatory (black) and inhibitory (red) neurons in isolation, obtained with the XPPAUT
software [Ermentrout 2002]. Details of the type I model are given in Appendix A.2.1.

These different behaviors are associated with distinct bifurcations. In type
I excitability, the periodic orbit emerges due to the collision of a stable fixed
point (the resting state) and an unstable equilibrium point, occurring on top of
an invariant circle (SNIC bifurcation) [see Figure 3.3(a)|. Type II excitability,
on the other hand, can arise in three different ways: via a subcritical or a
supercritical Hopf bifurcation [see Figure 3.3(b)|, or through a saddle-node
bifurcation outside the invariant circle [Rué 2011]|. The integrate-and-fire and
conductance-based models used in the literature to describe cortical networks
are usually of type I [Wang 1996, El Boustani 2007].

The phase response can also be used as a criterion to distinguish between
excitability classes: when operating in a tonic regime, type I neurons always
advance their phase (defined with respect to their spiking period) when per-
turbed by a brief depolarizing pulse [see Figure 3.4(a)|, while type II neurons
can either advance or delay their phase depending on the instant of pertur-
bation relative to the period of oscillation [Hansel 1995| [see Figure 3.4(b)].

Within a network, the input pulses come from other neurons, and there-
fore synchronized presynaptic spikes impinging on one periodic firing neu-
ron might slow down or speed up its rhythm depending on the type of neu-
ronal excitability. However, regular periodic firing patterns happen rarely
in vivo; we have seen in Section 1.5.1 that the coefficient of variation of
interspike intervals (ISIs) in the cortical neurons is typically larger than 1
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Figure 3.3: Bifurcation diagram of type I (a) and type II (b) conductance-based excitatory
neurons in isolation, obtained with the XPPAUT software [Ermentrout 2002] and using
Maurizio De Pitta’s code plotautobd.m version 1.0 [de Pitta 2009]. Lines represent the
equilibrium continuation curves (solid black means stable, dashed red means unstable).
Orbits are plotted as black circles (filled circle means stable, empty circle unstable).
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Figure 3.4: Phase response curves for (a) a type I excitatory (inhibitory) neuron and (b) a
type II excitatory (inhibitory) neuron, representing the phase change in the spiking response
of the neuron to a depolarizing pulse, as a function of the phase of the input (normalized to
the spiking period T, of the neuron). In (a), the excitatory (inhibitory) neuron is spiking
tonically at an unperturbed period of 8.09 ms (6.00 ms), and receives the injection of a
constant current of 1.0 nA. In (b), the excitatory (inhibitory) neuron fires every 2.36 ms
(1.88 ms) and is subject to a constant current of 5 nA. The PRCs, obtained with the
XPPAUT software [Ermentrout 2002], are defined as 1 —T(7)/T,, where T'(7) is the period
after perturbing at time 7.



3.2. Firing activity of a neuron embedded in a network 63

[Shinomoto 1999, Shinomoto 2005], corresponding to a nearly exponential dis-
tribution of ISIs. Usually, rhythmic electrical activity emerges from the re-
current synaptic activity in the network, rather than from spike-to-spike syn-
chrony.

It has been experimentally observed [Softky 1993] that the high synaptic
bombardment acting upon cortical neurons is far from being constant, leading
to stochastic fluctuations that affect these neurons in vivo. When embedded
in a population, neurons are subject to synaptic input that fluctuates in time.
Even when the firing of the presynaptic neurons projecting to a given postsy-
naptic cell is uncorrelated between them, the total input current is Gaussian
distributed [Roxin 2011]. Thus, neither the single-neuron frequency-current
curve (f-I curve) nor the phase response can perfectly describe the firing be-
havior of single neurons when they are embedded in a network, which is not
periodic but rather sparse and random.

From a single-neuron perspective, both the f-I and phase response curves
have been widely studied and related to the kind of bifurcation that takes
the cells from rest to tonic firing, as mentioned above. The f-I curves of
the excitatory and inhibitory neurons helps to determine how the synaptic
connection strength has to be tuned in order to balance excitation with in-
hibition, in agreement with the firing rates of each population. Moreover, as
we will see in the next Section, type I neurons tend to fire faster within the
network than in isolation.

3.2 Firing activity of a neuron embedded in a
network

3.2.1 Input fluctuations and network gamma oscillations

Due to the high number of cells (nodes) and synapses (edges) involved in bi-
ological neuronal networks, computational neuroscience always deals with a
small representation of the brain tissue, such as cortical columns, subareas of
the cortical layers or a subset of neurons that represents a small piece of the
brain. In all cases, a relative small number of neurons and their connections
can be modeled, and the input coming from outside this network, arising from
the activity of a far higher number of cells, is described as stochastic process.
According to [Destexhe 2001], the high-conductance state is well reproduced
by modeling the synaptic background activity as time varying synaptic con-
ductances that follow an Ornstein-Uhlenbeck stochastic process.

Usually, an assumption about the dynamics of the external input (not
arising from the modeled neurons) has to be made. Commonly, the incoming
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neuronal spike trains are considered to follow a Poisson distribution, which
corresponds to the spiking times being independent of the previous history of
events within each train |[Zacksenhouse 2008|. The input to each neuron is the
sum of many of these point processes, whose firing rate is jointly varying in
time, also following a stochastic process. The cross-correlation of a given num-
ber of these inhomogeneous Poisson processes, also known as doubly stochastic
Poisson processes, is equal to the cross-correlation of the instantaneous un-
derlying rates, see [Brette 2009] for a complete demonstration. Therefore, in
order to account for correlations between synaptic inputs, spike trains can be
generated as inhomogeneous Poisson process with the same time varying rate.
The average population activity, A(t), of a high number of these neurons will
correspond to an Ornstein-Uhlenbeck process for an autocorrelation function
with an exponential decay [Mazzoni 2008|:

dA 2

— ==\t - t 3.1

— <>+a( T)»s(), (31)
where o is the standard deviation of the noisy process, leading to a 1,/f power
spectrum for the A time series that is flat up to a cut-off frequency f = # Hz.

£(t) is a Gaussian white noise and A(t) is a measure of the input intensity
to the network. Despite the fact that the time course of the instantaneous
rate is generated by an unique Ornstein-Uhlenbeck process, the specific spike
train impinging on each neuron is a different Poisson process, according to
the rejection sampling (or spike thinning) technique to generate observations
from a single distribution [Kuhn 2003].

From the modeled network other sources of synaptic input arise, i.e. the
recurrent excitation and inhibition. When the induced spiking activity is
large enough to percolate the network, the internal synaptic currents exhibit
a fast cyclic behavior, alternating epochs of high excitation followed by high
inhibition, due to the rhythmic synchronization of GABAergic cells (see Sec-
tion 1.4.1) via their recurrent connections. Cortical oscillations thus arise as
a collective phenomenon, which does not require individual-neuron firings to
be oscillatory themselves. These global oscillations are discernible in averaged
population activities such as the local field potential (LFP), whose troughs
(or peaks, depending on the relative position of the recording electrode and
the generating current dipoles) correspond to the minima of the synaptic in-
hibitory flow. In these temporal windows neurons are more likely to spike,
producing an increase in the excitatory synaptic current, followed by a new
burst of inhibition. These oscillations, at frequencies in the beta (12-30 Hz)
and gamma (30-90 Hz) ranges, are experimentally seen in the cortex upon sen-
sory stimulation [Buzsaki 2004]. Specifically, gamma-band synchronization
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has received special consideration, as it is hypothesized to be a mechanism for
the dynamic generation of functional cell assemblies and for the flexible com-
munication between brain areas (for a review, see [Singer 1999, Fries 2009).

The net oscillatory synaptic current leads to a rhythmic behavior in aver-
aged population measures such as the LFP (see Section 1.6 for a definition)
and the time-resolved firing rate of the population (defined as the total number
of spikes per unit time in the population divided by the number of neurons).
This rhythmic activity is shown in Figure 3.5(a) and 3.5(d), respectively. The
LFP power spectrum (see Appendix B.2) is depicted by solid lines in Fig-
ure 3.5(b), revealing a frequency peak whose precise position is determined
by the GABAergic synaptic time constants and the synaptic strengths, as well
as by the characteristics of the input [Henrie 2005|.

For a range of biologically plausible parameters, a frequency peak in the
LFP power spectrum appears in the gamma range (30-90 Hz). In partic-
ular, for the parameters given in Tables A.1 and A.2, the frequency peak
of the LFP spectrum is located around 45 Hz for an external stimulation
of time-averaged rate (A(t)); = 8500 spikes/s. When the effective coupling
between neurons is low, because either the induced spiking activity or the
synaptic conductances are weak, the collective rhythm disappears from the
LFP power spectrum, as shown by the dashed line in Figure 3.5(b). The low-
frequency components are caused by the correlations in the synaptic input
[Destexhe 2001, Szymon 2013].

Similarly to the local field potential, the global firing rate exhibits a marked
peak at ~ 45 Hz in its spectrum [Figure 3.5(e)]. This rhythmicity reflects
epochs of synchronization between subsets of neurons. Despite the collective
rhythmic dynamics [Figure 3.5(d)]|, single neurons display strongly irregular
individual spiking [Figure 3.5(c)], firing mostly in a sparse and single-spike
mode occasionally accompanied by a high-frequency tonic firing, which nev-
ertheless can be compatible with population rhythmic activity at gamma fre-
quencies.

The recurrent connections between the excitatory and inhibitory popu-
lation lead to rhythmicity in the synaptic current impinging on a neuron,
composed by a succession of floods of excitation and of inhibition. These os-
cillations are a collective phenomenon arising from the interactions among neu-
rons, and their frequency can be slowed down with increasing GABA synaptic
duration. In that way, gamma oscillations in the firing rate activity and LFP
signal arise naturally from the recurrent connections between excitatory and
inhibitory neurons, when the synaptic conductances are adjusted to balance
excitation with inhibition.
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Figure 3.5: Collective oscillations in a type-I-neuron network. (a) LFP time trace in a
250 ms interval for an external mean rate of 8500 spikes/s. (b) Averaged LFP power
spectrum for an external mean rate of 8500 spikes/s (solid line) and 5000 spikes/s (dashed
line). The black bar delimits the gamma band (30 Hz-90 Hz). (c) Raster plot of 200 neurons
for the same 250-ms interval. (d) Time-resolved firing rate of the whole population, and (e)
the corresponding power spectrum for the excitatory (black) and inhibitory (red) neurons.

3.2.2 Distribution of individual firing rates within the
network

The input arriving on a cortical area in vivo is the sum of the synaptic cur-
rents coming from all possible sources, which include recurrent excitation and
inhibition (generated by the nearby network) as discussed above, and affer-
ent pathways terminating onto this neuronal population (generated by distant
cells with long-range axons). Each cortical neuron receives presynaptic po-
tentials through 10 000 synapses on average. Therefore, despite the sparse ac-
tivity of cortical neurons [Wolfe 2010], synchronized activity enables barrages
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of action potentials at high firing rates. This high spontaneous background
activity is continuously activating the synapses, thus reducing the neuronal
membrane resistance (5-40 M) and shifting the membrane potential closer
to the spiking threshold. Fluctuations of the synaptic current impinging on a
neuron randomly bring the neuron above threshold, leading to a highly vari-
able individual firing rate. In contrast to the in witro recordings in which
the synaptic bombardment is much lower, in vivo activity is often called the
high-conductance state [Destexhe 2003|.

In Section 1.5 we discussed the possible information codes concealed in the
in vwo irregular train of spikes. It has been experimentally shown, both in
isolated cortical neurons in vitro [Bryant 1976, Mainen 1995| and in vivo in the
visual system of the fly [de Ruyter van Steveninck 1997], that the spikes fired
by a single neuron are more reliable in time across trials when the injected
(or presented) input is dynamic (see Figure 1.25)" . Therefore, the precise
time at which a spike is elicited is highly dependent on the temporal pattern
of events composing the stimulus. In order to understand this sensitivity
to input transients we modeled a type I cortical network and analyzed the
input-output relationships.

At first, the natural variability of the synaptic current driving neurons em-
bedded in a network gives rise to an effective f-I curve (Figure 3.6, circles).
Given the above-mentioned fluctuating character of the synaptic current re-
ceived by the neurons within the network, the f-I response is quantified here
as a function of the mean synaptic current received by the neuron between two
consecutive spikes (interspike interval, or ISI). The inverse of this quantity is
plotted in Figure 3.6 (circles), comparing its behavior with the corresponding
f-I curves of the isolated neurons (solid lines). Note however the limitations
of this comparison, as the mean synaptic current over an ISI differs from the
actual fluctuating input received by a cell, specially for long periods. It is
precisely in the range of low frequencies where both curves differ most. For
instance, the firing rate in the resting state region departs from zero close to
the bifurcation, due to the appearance of noise-induced spikes throughout the
network. Differences between the firing rate of a network-embedded neuron
and its characteristic f-I curve in isolation also exist in the tonic regime above
0.8 nA, as can be seen in Figure 3.6. We can understand this from the fact that,
due to the synaptic bombardment, neurons within a network are persistently
perturbed, and consequently their firing rates are altered. The characteristic
phase response curve (PRC) of type I neurons [see Figure 3.4(a)| reveals a
phase advance for any perturbation time within a period. Thus, when a type

"In contrast, variability shown in Figure 1.16 measured in the middle temporal visual
area (MT) of behaving monkeys [Shadlen 1998]|, could be enhanced by the monkeys attentive
state, which modulates neuronal firing rate across trials [Barberini 2001].
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I neuron has just spiked and is excited again by a presynaptic potential its
period is reduced (and thus its firing rate is increased). This explains why
the firing rate of type I neurons embedded in a network, and thus continually
perturbed by presynaptic activation, is above the f-I curve of an isolated
neuron with tonic firing.
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Figure 3.6: Equivalent f-I curve for neurons embedded in the network (circles) representing
the instantaneous firing rate versus the net synaptic current averaged over the corresponding
inter-spike interval, for an excitatory (black) and inhibitory (red) neuron. The single-neuron
f-T curves are also shown in solid lines for comparison. (A(t)); = 8500 spikes/s.

It is worth noting that the firing rate discontinuity shown in Figure 3.6
(circles) is an emergent network property. Within a network, type I neu-
rons display two clearly defined groups of inter-spike intervals, in a sort of
population-level bimodality that does not exist for individual neurons in iso-
lation. Thus, there is a striking difference in the spiking activity exhibited
by the type I cells once embedded in a network compared to their intrinsic
f-I curve. To better resolve the firing mode differences and their origin, we
first characterize the distribution of instantaneous firing rates, and then we
describe the relation of firing behavior to the input and LFP dynamics.

To characterize the distribution of instantaneous firing rates of individual
neurons within the network, we compute their histogram for the parameter
values given in Section A.2, which lead to synchronous irregular firing [see Fig-
ures 3.5(c,d)| with global oscillations in the gamma range [Figures 3.5(b,e)].
The distribution of instantaneous firing rates is bimodal [Figure 3.7(a)], indi-
cating the prevalence of two firing modes, with high-firing-rate events (short
[SIs) reflecting bursts of spiking activity, interspersed with short-firing-rate
events (long ISIs). This effect arises from the network dynamics and cannot be
predicted from the characteristic f-I curves of type I isolated neurons, which
are continuous and hence do not forbid any particular range of firing rates
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(Figure 3.6; note the gap in the circles, which occurs in network-embedded
neurons). This bimodal response was also observed in a network of LIF neu-
rons [Roxin 2011], when the inhibitory population firing rate exceeded the
excitatory population rate. We will address the origin of this bimodal behav-
ior at the end of this section.

The high-firing-rate peak in Figure 3.7(a) arises from the spikes of the
network-induced bursts (see upper cloud in Figure 3.6). The low-firing-rate
events are more frequent than the high-firing-rate ones (64% of the interspike
intervals of the excitatory population across 20 trials lie below ~58.31 spikes/s
[see arrows in Figure 3.7(a)]). In other words, more neurons are simultaneously
found in a silent state or low-firing mode.
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Figure 3.7: Modeled network with a GABAergic decay time constant 7¢,p, = 5 ms [see
Equation (1.21)]. (a) Histogram of instantaneous firing rates of both excitatory (black) and
inhibitory (red) neurons. The arrows point at the minimum of the distribution separating
the fast and slow firing mode. (b) Time trace of the external excitatory current (brown lines)
and the net synaptic current (green lines) acting upon the excitatory neurons. The thick
lines are averages over the entire excitatory population, whereas the thin lines correspond
to the current impinging on a single neuron. The asterisks label the spiking times of this
neuron. The horizontal dashed line marks the spiking threshold, i.e. the value of I at the
bifurcation of Figure 3.6.

In order to understand the genesis of this bimodal firing behavior, we
now examine the time evolution of the synaptic currents acting upon the
excitatory population (which by definition determines the dynamics of the
LFP, see Appendix A.4). Figure 3.7(b) shows the time traces of the external
excitatory input (brown lines) and the net synaptic current (green lines). This
latter current accounts for both the excitatory component (arising from the
external and the recurrent excitatory spikes) and the inhibitory component
(arising from the recurrent inhibitory spikes). The thick lines are population
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averages over the excitatory neurons, whereas the thin lines represent the
current values impinging locally on a given neuron. As shown in this figure,
the average external synaptic input (thick brown line) lies well above the
spiking threshold (horizontal dashed line), whereas the average net synaptic
current (thick green line) is below the spiking threshold, due to the inhibitory
flow that counteracts the strong external excitation. Therefore, the current
impinging on a neuron [thin green line, corresponding to the Isyn term of
Equation (A.4), which is the sum of all synaptic contributions of the form
Equation (1.13)] is typically below threshold. Thus neurons spike rarely, only
when the excitation-inhibition balance is lost during a certain time window,
in which the external input brings the neuron above threshold [see asterisks in
Figure 3.7(b)|. From the definition of the brown and green thin lines it follows
that, in those intervals in which both traces are quasi-superimposed, inhibition
is zero because the excitatory current nearly equals the total synaptic input,
Isyn. From time to time these intervals are long enough for several spikes to
occur in quick succession, giving rise to periods of high-firing rate (for instance
around ~1325 ms). On the other hand, if the excitation-inhibition balance
is briefly lost, an isolated spike is elicited only if inhibition is low enough (as
we will see in detail in Section 3.3.2), giving rise to low-firing-rate events (for
instance at ~1230 ms). Therefore the combined dynamics of excitation and
inhibition is the basis of the bimodal distribution of instantaneous firing rates.

According to the previous discussion, the ratio of fast to slow firing events
is determined by the characteristic timescale of the periods in which the
excitation-inhibition balance is lost. In order to verify this reasoning, we
now analyze the behavior of the network for a longer value of the decay time
constant 7¢ 5, of the GABAergic synapses, see Equation (1.21). Increasing
7& g to 30 ms leads to a disappearance of the gamma rhythm [compare the
thick green lines in Figures 3.7(b) and 3.8(b)| |Fisahn 1998, Heistek 2010).
Since the inhibitory currents are slower, in this case the periods in which the
excitation-inhibition balance is lost are longer, giving rise to an increase in the
number of fast spiking events [see asterisks in Figure 3.8(b)|. This is quantified
in Figure 3.8(a), which shows that high firing rates are much more frequent
than low firing ones. Thus the inhibition decay time, 7,54, determines the
principal individual firing rate mode (mostly single-spike for fast inhibition
and bursty for slow inhibition).

As long as inhibitory neurons fire more intensely than the excitatory ones
to compensate for their relative small number, the network settles in a non-
periodic firing state with a significant gamma band component. At frequencies
closer or below the gamma LFP peak the external drive is balanced by inhi-
bition, which leads to a low-firing mode that arises separated from the more
“natural” fast-firing mode (given by the single-neuron f-I curve) by a gap of
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Figure 3.8: Modeled network with 7¢, 5, = 30 ms. (a) Histogram of instantaneous firing-
rates of both excitatory (black) and inhibitory (red) neurons. (b) Time trace of the external
excitatory current (brown lines) and the net synaptic current (green lines) acting upon the
excitatory neurons. See caption of Figure 3.7 for a description of the plots.

quasi-forbidden instantaneous firing rates. This leads to a discontinuity in the
firing rates of the neurons, similar to what happens in single type II neurons
but that does not occur in type I neurons in isolation. Thus, this firing-rate
discontinuity constitutes an emerging dynamical property of the network.

Bimodal distributions of instantaneous firing rates are found experi-
mentally in both the auditory cortex [Shih 2011] and the visual cortex
[DeBusk 1997, Snider 1998|. Other modeling works have also shown a bi-
modal distribution of ISIs [Wang 1998| using intrinsically bursting neurons,
in contrast with our case in which the bimodality appears naturally from the
balanced network as in [Roxin 2011]. Moreover, in [Bereshpolova 2011]| the
recorded single unit activity through different awake brain states, shows that
during alert periods some particular neuronal types reduce their bursting with
respect to the non alert periods. In agreement with our results, the alert state
corresponds to higher power in the gamma range.

3.3 Coding strategies behind a bimodal firing
pattern

The type I network oscillating in the gamma range |Figure 3.7(a)| clearly
has a sparse activity, in agreement with the sparse coding of sensory inputs
[Olshausen 2004, Wolfe 2010] (see Table 3.9). We now ask how the bimodality
between slow and fast spiking regimes, with a band of forbidden firing rates,
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Table 3.9: Compendium of spiking activity in sensory cortex.
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affects the coding capabilities of the neuronal network. To address this ques-
tion, we establish how the individual firing rate depends on the external input
to the population [brown lines in Figure 3.7(b)|, rather than on the internal
synaptic current (as shown in Figure 3.6). As mentioned above, the external
input is modeled by a set of Poissonian spike trains perturbing each neuron,
mimicking either an external sensory input representing a stimulus or neu-
ronal activity arriving from other areas. The time course of the external firing
rate is an Ornstein-Uhlenbeck process, see Equation (3.1). Upon arrival of an
external spike an AMPA synapse (see Section 1.4.1) is activated, numerically
meaning that the I, term changes according to the function o(t) [Equa-
tion (1.21)], and the neuron integrates the input giving rise to a postsynatic
potential (PSP). If the rate of the external input is high, many spikes come in
rapid succession and the sum of all the triggered PSPs can lead to an action
potential, provided that inhibition is weak enough.

3.3.1 Rate coding for high single-neuron firing rates

Figures 3.10(al-cl) show the firing rate of the excitatory neurons as a func-
tion of the mean external firing rate, averaged over the corresponding ISI,
(A(t))1s1, for which the instantaneous firing rate is calculated for three differ-
ent GABAergic synaptic durations, all of them generating LFP oscillations
in the gamma range. All three plots clearly reveal the bimodal character of
the firing rate distribution described above. Two clouds of data points are
clearly discernible, corresponding to distinct ISIs. The lower cloud is asso-
ciated with longer firing periods. Naturally, the instantaneous external rate
of that low-firing-rate state converges to the time-averaged value of the ex-
ternal rate ((\(t));, marked by a vertical dashed line in the three plots), due
to the large periods over which that mean is calculated. On the other hand,
the cloud at the top exhibits a clear correlation with the external rate, which
provides for a standard mechanism of rate coding: the higher the external rate
is, the faster the resulting firing rate of the neurons in the network. Accord-
ingly, for external rates clearly above the mean external rate the network only
responds with high-frequency firing, following the f-I curve of the individual
neurons (i.e. operating in a rate coding mode). For moderate external rates,
on the other hand, the distribution of firing rates is bimodal, with low-firing
and high-firing events coexisting for the same value of the external rate.

The scatter plots shown in Figure 3.10 also allow us to further investigate
the origin of the firing-rate gap evident in those plots (and in Figure 3.6 above).
The origin of this gap is in the recovery time of the network following an
increase of inhibition, due to the fact that firing rates that match the duration
of network depression are forbidden. To verify that expectation, we compare
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Figure 3.10: (1) Instantaneous firing rates of the excitatory neurons across 20 trials as a
function of the external firing rate averaged over each corresponding ISI, (A(¢))1s1 ~ (A(%))s.
The mean rate of the external spike train is (A(t)); = 8500 spikes/s and is marked with
a vertical dashed line. (2) Temporal evolution of the inhibitory conductance ggyn(t). (3)
LFP power spectrum. The thick dashed horizontal line is placed at the frequency-gamma
peak of the LFP power spectrum (a3-c3), thus likening Hz to spikes/s. We consider three
GABAergic decay time constant, 7& g (nezt page):
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the behavior of the network for different values of the decay time constant
7&,pa of the GABAergic synapses, while keeping the IPSP amplitude and
AMPA synapses constant. Our results show that longer inhibition (growing
from panel (a) to panel (c) in Figure 3.10) increases the range of forbidden
firing periods, because the probability of spiking after an inhibitory barrage
is lower during a longer time interval.

Figures 3.10(a2-c2) show the temporal evolution of the inhibitory conduc-
tance geyn(t) (see Section 1.4.2) for each of the 7&,p, values, highlighting in
dark the time trace for the precise 7d g, used in the corresponding scatter
plot. As 78,5, increases, gsn(t) is significant during a longer time interval.
Accordingly, the low-firing mode reduces its area because the slower inhibitory
synapses forbid the shortest ISIs within this mode that match the duration of
the inhibitory barrage, which also causes slower gamma rhythms, as can be
seen in Figures 3.10(a3-¢3) and thick dashed horizontal line in Figures 3.10(al-
cl). However if inhibition is not too strong, due to weak excitatory drive —for
instance at low (A(t));s; values—, shorter ISIs are allowed. Therefore, the
low-firing state is the result of a competition between the external slow fluc-
tuations and the recurrent inhibition, whose oscillating frequency decreases
with increasing GABA synaptic decay time [see Figure 3.10(a2,3-¢2,3)|. This
leads to the counterintuitive discontinuity in the firing rate of type I neurons
described above.

Figures 3.10(al-c1) show a redundancy of instantaneous firing rates of sin-
gle neurons in response to intermediate input strengths, (A(¢))si ~ (A(£))t,
which suggest that the two spiking rates encode different information char-
acteristics at these input amplitudes. Moreover, we have seen that neurons
behave like all-or-none detectors of rapid stimulus fluctuations (because they
are measured over short ISIs), with instantaneous firing rates faster than the
LFP gamma peak [above the thick dashed horizontal line in Figures 3.10(al-
cl)| encoding for the fast dynamics of the incoming synaptic activity.

3.3.2 Phase coding at intermediate input strengths

We have seen that, even though the firing rate of the individual neurons is far
from being tonic, the probability of firing across the network varies rhythmi-

Figure 3.10 (previous page): (a) t&apa = 2.5 ms, (b) 7& 54 = 5.0 ms (used in the rest
of the simulations presented, unless stated otherwise) and (c) 7& 5, = 10 ms. The local
density of firing events within each cloud is represented by a normalized color scale (with
red corresponding to high values and dark blue to low values) in order to emphasize that
the slow firing mode predominates.
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cally in time with a frequency around 45 Hz |Figure 3.5(e)]. As mentioned in
Section 3.2.1 above, this rhythm is generated by recurrent excitatory and in-
hibitory connections, and is revealed in the LFP |Figure 3.5(a)| and firing-rate
dynamics |Figure 3.5(d)|]. Both the synaptic flow (apparent in the LFP) and
the spiking activity are mutually interacting, given that a decrease in synap-
tic inhibition triggers an increase in the mean firing activity of the network.
This causal relationship implies that the peaks of the population firing activ-
ity and the troughs of the LFP are displaced in time within the millisecond
range, controlled by the synaptic delay.

To further characterize the effect of the global rhythm on the firing activ-
ity, we have computed spike triggered averages (STA) across trials of both the
LFP and the inhibitory synaptic current, Igapa, acting upon each neuron (see
Appendix B.1). The LFP carries information about the global synaptic activ-
ity affecting the excitatory neurons of the population [see Equation (A.14)],
and is therefore a measure of the global activity of the network. In contrast,
Igaga only accounts for the inhibitory synaptic current impinging on an neu-
ron from the firing activity of its presynaptic inhibitory neurons, and is thus a
local measure. We have considered the STA in a time window of 70 ms around
a spike (50 ms pre-spike and 20 ms post-spike). Furthermore, to avoid having
a previous spike from the same neuron fall within the time window being con-
sidered, we have only taken into account spikes at least 50 ms apart. When
computing the STA we have classified the spikes, according to the bimodal
distribution of instantaneous firing rates shown in Figure 3.7(a), as slow or
fast firing events, the latter corresponding to network-induced bursts. Within
the fast firing mode we selected the first spike of each burst, since we are
interested in the events leading to burst initiation. We now discuss separately
the mechanisms underlying the generation of the slow and fast firing modes
and their relationship with the phase of the global oscillations.

Fast firing mode. As shown by the thick lines in Figures 3.11(al,bl), the
high-frequency regime appears when the inhibitory synaptic current Igapa
impinging on a neuron (i.e. its local inhibition) is close to zero for a relatively
large time interval right after £ = 0. In other words, the presynaptic inhibitory
neurons must be silent for a long enough period of time after the neuron fires,
in order for a burst to be initiated. In those conditions, it is more probable that
the excitatory external input brings the neuron above the spiking threshold
for a sustained amount of time, giving rise to a fast spiking period.

For the excitatory neurons this occurs preferentially at a high level of
global inhibition, i.e. at the maxima of the LFP [thick line in Figure 3.11(a2)].
These two events, a maximum of the global inhibition (i.e. of the LFP) and a
minimum of the local inhibition (i.e. of |[Igapa|), occur simultaneously, since it
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Figure 3.11: Spike-triggered averages (STA) of the synaptic inhibitory current impinging
each individual cell (al,bl) and of the LFP (a2,b2). Spikes from ISIs larger than 50 ms
are considered. The thin lines correspond to those spikes prior to a long ISI (slow firing
mode), while the thick lines correspond to the short ISIs (fast firing mode). These plots
are obtained from a single trial, and the frontier between long and short ISIs is set at
17.14 ms (58.31 spikes/s) for the excitatory neurons and at 11.49 ms (87.01 spikes/s) for
the inhibitory neurons, according to Figure 3.7(a). The vertical dashed line is the reference
time at which a spike is elicited.

is when global inhibition is strong that some neurons can be locally surrounded
by strongly inactivated inhibitory neurons. During this time interval, those
neurons fire in bursts due to the external excitation, before all the inhibitory
neurons become excited and prevent the firing of the rest of the population. A
scheme of the interplay between local inhibition and global activation leading
to the fast firing mode is shown in Figure 3.12(b). In contrast with the
excitatory neurons, in inhibitory neurons the initiation of the fast firing mode
does not depend so strongly on the level of global inhibition [thick line in
Figure 3.11(b2)]. We hypothesize that these neurons, which have a smaller
membrane time constant than the excitatory ones (see Appendix A.2.1), react
rapidly to the external excitatory fluctuations and spike regardless of the level
of global inhibition, provided their presynaptic inhibitory current is zero [thick
line in Figure 3.11(b1)].

Slow firing mode. The low-frequency regime, on the other hand, takes
place when the local inhibitory current, /gapa, impinging on the neuron is
momentarily zero, as shown by the thin line in Figure 3.11(al,b1). The rapid
increase of inhibition following a spike (at ¢ = 0, dashed line) prevents the
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Figure 3.12: Scheme of the network spiking activity underlying slow (a) and fast (b) firing
modes of a given neuron in the network (represented by the gray circle). Vertical thick
ticks inside the circles represent spikes. The black and red circles represent excitatory
and inhibitory neurons, respectively. For simplicity, only contacts to the grey neuron are
represented (black arrows). In the top panel of A (slow firing mode), the reference neuron
(in grey) is surrounded by presynaptic inhibitory neurons that are starting to fire (i.e. the
level of Igapa, represented by a horizontal red bar, is moderate). The global activity of
the network (bottom panel, represented by a white horizontal bar) is low and the earliest
inhibitory spikes prevent the cells from bursting. In the top panel of B (fast firing mode)
the neuron is surrounded by inactive inhibitory neurons (i.e. the level of Igapa is low),
whose silence is driven by the high activity of the rest of the inhibitory population (reflected
in a high level of the LFP).
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neuron from spiking again. This happens at low levels of global inhibition, i.e.
close to the minima of the LFP [thin line in Figures 3.11(b1,b2)|. Immedi-
ately after a spike the firing activity of the population increases, and thus the
local inhibition grows as well, increasing the distance of individual neurons to
threshold [see the scheme of Figure 3.12(a)].

The STA analysis discussed above shows that the simultaneous occurrence
of slow instantaneous rates at both the excitatory and inhibitory populations
is only possible near the minima of the LEP [thin lines in Figures 3.11(b1,b2)],
whereas fast instantaneous rates can only be simultaneously present in both
populations at the maxima of the LFP [thick lines in Figures 3.11(b1,b2)].

Given the described interaction between the individual firing modes and
the rhythmic network dynamics, one can ask whether a partial representation
of the input is coded in the spiking timing of cells relative to the phase of the
population oscillation.We now address this question by proceeding to filter
the LFP signal around the gamma frequency peak (47+5 Hz) and assign an
instantaneous phase to the LFP time series via the analytical signal approach
(Hilbert phase) [Le Van Quyen 2001|. Thus, the LEP phase corresponds here
to the angle of the complex Hilbert transform of the LFP signal. A histogram
of the LFP phase values at which the neurons spike is shown in Figure 3.13,
with 7 corresponding to the LFP troughs (vertical dashed line in the figure).

1000 T

—— excitatory
—— inhibitory

500 - q

Number of spikes

0 | : |
0 /2 T 3m/2 2m
phase (rad)

Figure 3.13: Distribution of LFP phase values at which neurons spike. The plot dis-
tinguishes between spikes flanking ISIs with fast (thick lines) and slow (thin lines) firing
modes, for both excitatory (black) and inhibitory (red) neurons. Measures were performed
over the same data used in Figure 3.11. The dashed line marks the 7 phase that corresponds
to the LFP minimum.

Spike firings are widely distributed over the 27 cycle of the LFP phase
because, as seen from the raster plot of Figure 3.5(c), the firing activity is noisy
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and the correlation between neurons is weak, due to their low coupling and the
absence of a common drive. We have performed the spike-LFP phase locking
analysis for both high-firing (thick lines) and low-firing (think lines) events,
taking only into account the first spikes of short and long ISIs, respectively.
Figure 3.13 shows that the slow firing regime of the inhibitory neurons (red
thin line) is more sensitive to the LFP phase than the fast firing regime (red
thick line), resulting in a more pronounced locking to the troughs of the LFP,
with a delay > 2 ms due to the mean synaptic delay. The high-firing mode of
the excitatory neurons (black thick line), on the other hand, is phase-locked
with no delay to the LFP peaks around 0 (note that no synaptic delay is
considered in the external train of spikes, which as mentioned above controls
the high-firing regime).

3.4 Conclusions

In Section 3.3.1 we have shown that the fast fluctuations of the excitatory
external rate induce high instantaneous firing rates, and thus this mode en-
codes the fast dynamics of the input. In Section 3.3.2 we have additionally
shown that the occurrence of spikes relative to the LFP phase depends on
the firing mode. In particular, the high-frequency mode appears with higher
probability when inhibition is maximal (the LFP phase is 0) and the low-
frequency mode appears when inhibition is minimal (at the rising LFP phases
near 7). This constitutes a mechanism of phase coding that complements the
rate-coding mechanism depicted in Figure 3.10, according to which fast ex-
ternal fluctuations were unambiguously encoded by a high-frequency bursting
activity of the neurons. Therefore, the redundancy in the internal represen-
tation of external rates at (A(t))s ~ (A(t))s, by the single-neuron firing rates
(i.e. 1/ISI), is resolved by the implementation of a phase code, in which the
spiking times reveal the LFP phase. This allows the network to encode for
the phase of the global oscillations, since in each one of the two modes the
locking of the individual spikes to the gamma rhythm is different, as described
in Section 3.3.2.

In conclusion, the balance of an excitatory synaptic current by a strong
inhibitory current yields a discontinuity in the firing rate of individual neurons
forming a neuronal network. The highest instantanecous rates encode fast
fluctuations of the external stimulus, while the spiking times of the network
occurring at moderate fluctuations of the input with respect to the mean
encode the phase of the LFP. Therefore neuronal networks can efficiently
implement two coding strategies: (i) a rate code for the fast bursting mode,
sensitive to rapid changes in the processing of stimuli, and (ii) a phase code
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for the slower input fluctuations, according to which isolated spikes occur at
the troughs of the LFP, whereas bursts of frequency higher than the gamma
peak of the global oscillations arise at the peaks of the LFP. This second
feature might contribute to an internal cortical representation of the input. In
summary, these results show that cortical population activity depends non-
trivially on the dynamical properties of the underlying neurons, and that
global population measures shape the firing dynamics of the constituent cells,
allowing for multiple encoding mechanisms to be implemented in networks
with balanced excitation and inhibition [Sancristobal 2013b].
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4.1 Coordinated rhythmicity in the cortex

The extracellular potential recorded from the cortex, either directly from
the tissue or from the scalp, displays a variety of coexisting rhythms
that are activated by distinct brain states [Buzsaki 2004]. By way of
example, slow rhythms (less than 1 Hz) predominate under anesthesia
and sleep [Steriade 1993a, Steriade 1993b|, whereas fast rhythms (within
the so-called gamma range, 30 Hz-90 Hz) appear during cognitive behav-
ior |Tallon-Baudry 1997, Pulvermiiller 1997, Gruber 1999] and perception
[Gray 989b|. The mechanisms underlying the origin of these oscillatory sig-
nals and their functional role are both still a matter of debate, but published
research provides evidence that electrical signals recorded from the brain are
not an epiphenomenon.

In order to understand the functional significance of macroscopic cortical
oscillations (arising from the activity of thousands of neurons), electroen-
cephalography (EEG) or magnetoencephalography (MEG) recordings show-
ing the enhancement of certain rhythms following stimulation is not sufficient.
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The appearance of certain task-related EEG rhythms points out which corti-
cal areas are involved in the performance of an action (see Figure 4.1), but
does not tell us whether or not oscillations are secondary effects of neuronal

activity.
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Figure 4.1: Spectral power change (Z-score) of EEG recordings in the high gamma range
during an arm reaching task. From [Ball 2008].

The most prominent advantage of oscillatory signals is that they allow for a
clock-like signal of the brain activity. At each frequency, a period T is defined
and the time of occurrence of the action potentials can be internally inter-
preted as phases, 27r%. In Section 3.3.2 we have seen that, within a neuronal
network, bursts of spikes of high frequencies are elicited at local field poten-
tial (LFP) phases that are different from the phases at which single spikes are
fired. Therefore, if two cell assemblies are structurally connected the signal
traveling from one of them to the other (i.e. the presynaptic action poten-
tials) carries the information about the presynaptic LFP phase. Moreover,
because the postsynaptic LFP can also be defined in terms of a phase, we can
understand modulations of the relative phases of two neuronal populations
as regulation mechanisms of the effective communication between them. As
introduced in Section 1.6, the LFP registers the synaptic activity surrounding
the vicinity of the tip of the electrode resting on the tissue. Thus, fluctuations
of the LFP reveal fluctuations in the synaptic currents which ultimately excite
or inhibit the neurons. In our model [see Equation (A.14)], the troughs of the
LFP (or equivalently the m-LFP phase) represent minima of the GABAergic
inhibitory current, when most of the single spikes are triggered synchronously
and when most neurons are closer to the spiking threshold. A population
receiving this suprathreshold activity, whose rhythm is not influenced by the
sending population and whose phases vary independently, will not respond
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with a corresponding firing activity if it does not receive the excitatory input
consistently at its peaks of excitability (i.e. at the m-LFP phase).

Actually, it has been hypothesized that these recurrent periods of tempo-
rary spike synchronization provide a method of enhancing the effective con-
nectivity across neuronal ensembles [Harris 2003]. Within that scenario, in-
teractions among neuronal populations could be modulated in time, with this
modulation representing information to be transmitted, and the routing of
that information could be coordinated across different brain areas, in order to
subserve coherent brain functions. This mechanism is referred to as communi-
cation through coherence (CTC) |Fries 2005|. Provided that it is verified that
the brain benefits from CTC, neuronal oscillations will certainly accomplish
an important function in coordinating brain-processed information, which is
key to perception.

The CTC hypothesis relies on the fact that, as mentioned above, the collec-
tive oscillations affecting a neuronal population lead to a periodic modulation
of the excitability of the participating neurons, whose firing is most likely to
occur only within specific (and periodically repeating) time windows gated by
the global cycle. When two oscillating populations of neurons have a well-
defined phase relationship between their collective oscillations, conditions can
be reached for which spikes sent by one population will reach the other pop-
ulation at the appropriate time window, and will do so systematically, thus
leading to an effective transmission of information between the two groups of
neurons. The two oscillators must thus operate in a coordinated manner for
CTC to occur.

The coherent dynamics of coupled oscillators is a long-standing scientific
question, starting with Christian Huygens’ observation in 1665 of two pendu-
lum clocks swinging in synchrony. Since then an extensive body of work has
shown that coupled rhythms are ubiquitous in nature, from the macroscopic
beating of pacemaker cells in the heart [Verheijck 1998] to the mammalian
circadian clock [Yamaguchi 2003]. The mechanisms generating the oscilla-
tory dynamics and the nature of the coupling take many forms. In the case
of Huygens’s clocks, the two oscillators are basically indistinguishable and
they influence each other continuously and identically, i.e. they interact via
a symmetric bidirectional coupling. On the other hand, the most common
way through which neurons connect to each other, namely chemical synap-
tic coupling, is unidirectional and pulsed: the synapse is only active when
the membrane voltage of the presynaptic neuron exceeds a certain thresh-
old, triggering the release of neurotransmitters that will travel to and affect
the postsynaptic neuron. An additional source of complexity in the study
of synchronization between neuronal rhythms stems from the fact that the
oscillations in neuronal assemblies emerge collectively from the activity of
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a large number of coupled non-oscillatory neurons. For these reasons, the
standard approach to study the synchronization and coherent dynamics of
coupled oscillators [Pikovsky 2001] cannot be applied to the CTC scenario in
a straightforward way.

In this Chapter we will address the plausibility of the CTC hypothesis in
a network model of connectivity. We consider two networks of 2000 neurons
each, described by a conductance-based model [Sancristobal 2013b]. Model-
ing assumptions similar to those of Chapter 3 are done: (1) the population
is divided into 80% excitatory and 20% inhibitory neurons; (2) only AMPA
and GABAergic chemical synapses are considered and (3) all neurons are
driven above threshold by an external Poisson spike train, representing the
thalamocortical input coming from non-simulated neurons [see Appendix A.2].
The high firing activity triggered in the inhibitory population elicits a strong
recurrent inhibition capable of balancing excitation, and therefore neurons
fire sparsely and irregularly, mostly fluctuating below threshold. This pro-
cess, in which the inhibitory current follows the excitatory current leading
in turn to another surge in inhibitory current, results in an oscillating LF'P
[Brunel 2003b]. All synaptic couplings in the model are considered to be sub-
ject to delay, which are shorter within a network and larger between networks.
Furthermore, only excitatory neurons project onto neurons from another pop-
ulation. Unlike the network architecture used in Chapter 3 in which the neu-
rons were randomly coupled, the networks considered in this Chapter show a
certain degree of clustering (see Appendix A.2.2).

4.2 Modulation of neuronal oscillations in an
isolated neuronal population

Experimental studies have revealed the importance of inhibitory neurons in
generating gamma rhythms [Whittington 1995, Fisahn 1998|. These oscil-
lations arise at the level of neuronal populations despite irregular single-
unit discharges [Softky 1993, Stevens 1998b|. Computational models have
shown that collective oscillations and highly irregular firing by single neu-
rons are indeed compatible in noisy networks with strong recurrent inhibition
[Brunel 2003b, Geisler 2005, Sancristobal 2013b|. In this case, the oscillations
emerge from the transient synchronized activity of neuronal assemblies, and
thus can only be detected by population measures such as the local field po-
tential (LFP) and multi-unit activity (MUA).

We first describe the LFP and multi-unit activity from the excita-
tory/inhibitory population (eMUA /iMUA) of a single network of 2000 neurons
[see Appendix A.2.1 for a full description of the model| in order to discuss the
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characteristics of the power spectra of the neuronal populations in isolation.
Figures 4.2(a) and (c) show the power spectrum of the LEP and MUA signals
for increasing values of the GABAergic synaptic decay time, 7&,p,. Larger
values of 78,5, give rise to slower oscillations [Whittington 1995], as revealed
by a shift of the gamma frequency peak towards the left. Changing of 7&,54
from 5 to 11 ms covers a frequency shift of ~ 20 Hz from 43 to 27 Hz, and
thus allowing to scan the peak frequency from middle gamma to high beta. A
similar effect has been experimentally observed in the visual cortex when the
contrast of the stimulus decreases [Ray 2010]. We also notice that the peaks
of the iMUA spectra shows a good correlation with those of the LFP. eMUA,
however, only follows the peaks of the iMUA for 7¢ 5, = 5, 6, and 7 ms.

In order to filter out the low-frequency contribution of the signals, we
normalize the power spectra of Figures 4.2(a,c) with respect to the case
of a vanishingly small gamma rhythm (7,5, = 11 ms), Figures 4.2(b,d).
This measure, known as power spectrum modulation, was previously seen
to increase in the gamma range (for the case of the LFP) for increasing
stimulus contrast [Henrie 2005]. This behavior is attributed to the raise
of the average firing rate of the lateral geniculate nucleus (LGN) with in-
creasing contrast [Kaplan 1987|. Accordingly, most computational studies
[Brunel 2003b, Mazzoni 2008| have modeled a variance in contrast by means
of a change in the rate of the external spike train, (\(t)), exciting the popula-
tion [see Equation (A.5)]. As shown in Figure 4.2(a) below, activity measures
such as the LFP, registered during the awake state, have a complex power
spectrum characterized by 1/f*-like profiles, where f denotes the frequency.
Therefore, slower rhythms greatly contribute to the collective dynamics and
modulate the amplitude of faster ones [Buzsaki 2012].

However, varying the external firing rate produces changes in the average
LFP, thereby mixing the effect of the external signal with that of the intrinsic
dynamics of the population. To avoid this, we have used 7&,p, instead of
the external firing rate to tune the network oscillation frequency. Both strong
external input to an area and low intrinsic (or stimulus-driven) 7¢&,5, are
consistent with an intense firing activity of the neuronal population, and in
principle also with changes on the mean LFP. Therefore, both parameters
have a similar effect on the network properties, despite the fact that one of
them (the external firing rate) acts upon the excitatory synaptic current and
the other one (1&,p4) affects the inhibitory current. In the present Chapter
we have varied the inhibitory synaptic conductances together with 78,54,
in order to maintain the amplitude of the inhibitory postsynaptic potential
constant. Thus, different values of 7,5, produce different gamma frequency
peaks without substantially varying the mean LFP [see Figures 4.3(a) and
(b)]. In contrast, similar frequency increments caused by the external rate
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Figure 4.2: (a) LFP power spectrum and (¢) MUA power spectrum (for the excitatory
population in the top panel and the inhibitory population in the bottom panel) of the
neuronal network for different values of the GABAergic synaptic decay time, Té ABa- (D)
and (d) show the corresponding power spectrum modulation with respect to the results at
T(d; Apa—11 ms.

lead to substantial changes in the mean LFP [see Figures 4.3(c) and (d)].

Our use of 7&,ps as the control parameter determining the frequency
of one population does not presume, however, the existence of a patched
distribution of IPSCs throughout the cortex. Neither do we assume that
neuronal assemblies separated a few micrometers have widely distinct in-
hibitory dynamics. Nevertheless, previous works have revealed a wide
heterogeneity among inhibitory neurons [Buhl 1994, Kang 1994, Puia 1994,
Kawaguchi 1997, Houston 2009], suggesting that modulation of the dynamics
of those cell types could provide a mechanism to control the gamma rhythm.
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Figure 4.3: LFP power spectrum of the neuronal network for different values of (a) the
GABAergic synaptic decay time 7&,5, and (c) the mean external rate (A(t))r. Plot (a)
corresponds to Figure 4.2(a). The corresponding LFP time traces over 1 s are plotted in
panels (b) and (d) respectively.

Finally, the control of the oscillation frequency allows us to study the inter-
action of different cortical rhythms.

4.3 Coupled neuronal networks

As mentioned above, we consider two neuronal populations coupled bidirec-
tionally only by excitatory synapses. We surmise that 60% of the excitatory
neurons of each network project to 10% of neurons from the other pool. The
connectivity between networks exhibits the same degree of clustering as the
connectivity within a network (see Appendix A.2.2). Therefore, exciting a
subpopulation of adjacent excitatory neurons from an area triggers a response
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in a well-defined subpopulation of neighboring neurons in the receiving area.

The LFP [see Equation (A.14)] mainly accounts for the summation of
synaptic currents impinging on the neurons close to the vicinity of the tip of
the electrode, thus defining a recording volume of tissue from an area with
a radius of at least 250-500 pm [Berens 2010]. These currents arise from the
spiking activity of neurons close to this integrated area, hence from short-
range connections, and from neurons at farther distances making long-range
connections (mainly excitatory neurons). Phase locking between two signals is
achieved by means of the synaptic connections across areas. Since the output
from an area arises from the action potentials generated within its excita-
tory neurons, the synaptic current received by the second area is close to the
presynaptic excitatory multi-unit activity (eMUA). Thus, at peak frequencies
of the presynaptic eMUA power spectrum [see Figure 4.2(c) top panel|, the
postsynaptic neurons receive a barrage of spikes that can eventually trigger
synchronization between the firing of the two populations.

As predicted by the CTC hypothesis, particular phase relations between
neuronal oscillations enhance the response of a brain area (e.g. a cortical
column) to presynaptic inputs coming from another area. If this situation
is sustained in time and across multiple presentations of the same stimulus,
two neuronal populations can share information about different features of the
same perceptual object, and disregard information related to other stimuli. An
important constraint for this to happen is the matching of the phase difference
(A¢), synaptic time delay (7syn) and frequency (f) of the oscillations, which
should fulfill the condition A¢ = 27 f7y, [see Figure 4.4(a)]. When this
relationship holds, spikes fired in the emitting population at a specific phase
of the signal (for instance at the troughs of the LFP, which correspond to the
maxima of excitability) arrive at the receiving area at the same phase (and
thus at the same excitability maximum), triggering a maximal response in the
receiving area. On the contrary, if A¢ does not fulfill the relationship given
above (or if it randomly varies), effective communication will not be achieved.

We consider here two mutually coupled neuronal networks at different
gamma frequencies (Figure 4.5), studying how phase coherence depends on
this frequency detuning. In all simulations the decay time in one of the two
populations (referred to as fast population in what follows) is always held
constant at 7&,pa; — 5 ms (blue LFP traces in Figure 4.5). In the other
population (slow population) the decay time 7d 5 As 18 varied from 5 ms to
11 ms (two cases are shown as turquoise and gray traces in Figure 4.5).

We characterize the rhythm in each population as the frequency in the
gamma range at which the power spectrum amplitude is maximal (y-frequency
peak from now on) and we plotted it in Figure 4.6 as circles. Empty circles



4.3. Coupled neuronal networks 91

(a)

(b)
AF
\
Z.
i e
i
e /
o Af
’ ’
rd
’ll Pid
—:o’

Figure 4.4: (a) The two networks are represented by circles and the synaptic bidirectional
coupling by thin arrows. The LFP signal filtered at a frequency f is plotted in red. At
the bottom of the LFP troughs (peaks of excitability in our case), the vertical ticks stand
for the elicited spikes. Each bundle of spikes reaches the other population after a synaptic
delay, 7syn. If the difference in phase settled by the synaptic coupling, A¢, satisfies the
relationship A¢ = 27 f7yy,, an effective communication (like the one represented in this
figure) is achieved. Scheme based on [Fries 2005]. (b) Frequency detuning before, Af, and
after, AF the coupling of two oscillators. For the dashed curve, only at relatively small
Af values, a frequency locking region is revealed by the coupling (for more information
see [Pikovsky 2001]). In contrast, the solid curve does not show frequency locking, even at
small Af.

(filled circles) correspond to the fast (slow) population. The frequency de-
tuning in the absence of coupling (which corresponds to the vertical distance
between the blue circles in Figure 4.6 and to the A f magnitude in Figure 4.4)
is only equal to zero for two identical networks, i.e. 7&\pa ¢ = Tdapa s and
corresponds to the Af magnitude in Figure 4.4(b). The excitatory interareal
connectivity enhances the spiking activity of each population, and thereby
speeds up the LFP and MUA oscillations. As a consequence of the longer
duration of the GABAergic synapses, the slow population has weaker spiking
activity (note the decrease in the MUA power spectrum amplitude of Fig-
ure 4.2(c) as 7¢,pa,, increases), and the excitatory input from the slow to
the fast population is reduced. Since the fast population fires more spikes
per unit time, its effect on to the slow population is stronger than in the re-
verse direction. Therefore, the frequency shift towards faster gamma rhythms
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Figure 4.5: Left: The two neuronal networks are represented by circles and the synaptic
coupling by arrows. The vertical ticks next to each circle stand for the external Poisson
train of spikes, whose mean firing rate is qualitatively plotted with a line at the right of the
input label, i.e. (A(t)). Top-right: Raster plot and LFP for the fast population (7'(%ABA7f =
5 ms). Bottom: Raster plot and LFP for two different behaviors of the slow population at
e As = 8 ms (left) and e As = 11 ms (right) showing distinct gamma-rhythms and
firing intensities. LFPs are averaged over 200 trials.

caused in the slow population is larger than the one produced in the fast pop-
ulation (compare gap between filled circles and empty circles). As a result,
the excitatory interaction between areas promotes a decrease in the frequency
detuning |vertical distance, in Hz, between the red circles of Figure 4.6, which
corresponds to the AF magnitude in Figure 4.4(b)].

As shown in Figure 4.6, no frequency-locking region appears due to the
coupling between the two networks. The gamma peak of the fast popula-
tion (empty red circles in Figure 4.6) remains at frequencies larger than the
one of the slow population (filled red circles in Figure 4.6) for all values of
Téapas Given the lack of frequency locking, one might expect that two
neuronal populations would not exhibit phase coherence (unless their intrin-
sic frequencies were identical). This expectation does indeed hold for the
case of coupled self-sustained oscillators with a well-defined period, whose
phase difference outside the frequency synchronization region varies in time
[Pikovsky 2001]. The complex spectrum of our neuronal oscillations, how-
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Figure 4.6: The frequency at the maximum peak in the gamma region (30 Hz - 90 Hz)
of the LFP power spectrum is plotted against 7&,p A for the two networks before (blue
circles) and after (red circles) coupling averaged across 200 trials. Filled and empty circles
correspond to the slow and fast population, respectively.

ever, allows for partial phase coherence to arise in specific frequency regions,
in particular around the gamma band. Coherence measures are independent
of the amplitude of the power spectrum and quantify, between 0 and 1, how
consistent the phase difference A¢ is between pairs of oscillations. This is
shown in Figure 4.7, which display in a colormap the phase coherence be-
tween the LEPs (a) and eMUAs (b) of the two populations for increasing
frequency detuning between them (horizontally) and at different frequencies
(vertically). We use here the eMUA signal, a measure of the spiking activity
of the excitatory neurons, because the synapses between neurons belonging
to different networks are always excitatory. In agreement with experiments
[Schoffelen 2005, Womelsdorf 2007, Ray 2010, Bosman 2012|, phase coherence
is highest in the gamma range, and even in that region is only partial [per-
fect coherence would correspond to a value of 1 given our definition of phase
coherence, see Equation (B.2)].

The connectivity between areas is, by construction, bidirectional, in the
sense that interareal synaptic strengths are equal and the number of neurons
from the receiving area being affected by a neuron in the sending area is the
same, irrespective of the directionality of the coupling. However, the effect
on one area on the other is asymmetric unless the firing activity of the two
areas is the same (i.e. unless 7¢, g5 ¢ = T4 apa ) [Sancristobal2013b]. We have
increased the gamma frequency peak of one of the areas by slowing down
the inhibitory postsynaptic currents (IPSCs), i.e. by increasing the GABAer-
gic synaptic decay time, 7&,p,. This parameter change produces a decrease
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in the firing activity, since longer IPSCs make the neurons unresponsive for
longer periods of time. The phase coherence between the LFPs and eMUAs
(defined in Appendix B.3) of the two networks for varying 7&,5. (and thus
for varying frequency detuning) shown in Figure 4.7, was computed under the
same structural connectivity through all Af values.
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Figure 4.7: Phase coherence, in color code, as a function of frequency (y-axis) and of the
intrinsic frequency detuning Af (bottom x-axis), which is controlled by varying Tg ABA s
(top x-axis), between the LFPs (a) and eMUAs (b) of the two populations. The intrinsic
frequency detuning is the difference between the empty and filled blue circles of Figure 4.6.
The red circles correspond to Figure 4.6.

A comparison between Figures 4.7(a) and 4.7(b) reveals a difference be-
tween the phase coherence of the LFP and eMUA signals. While the eMUA-
eMUA phase coherence decreases continuously with increasing frequency de-
tuning, the LFP-LFP phase coherence first decreases and then increases again
for large detunings. Coherence measures, such as partial coherence, between
individual pairs of spike trains have been used |Brillinger 1992, Brillinger 1994]
to unravel direct interaction between neurons caused by common input. Here,
we do not go in depth into the statistical dependencies between spike trains
and we have instead studied the phase relationship between neuronal popula-
tions according to histograms of the fired action potentials.

In the frequency region where phase coherence exists, we have also quanti-
fied the phase lag between the oscillations which also reveals this contrasting
behavior (see Figure 4.8, which shows the histogram of phase differences, A,
between the two pairs of signals across three groups of 200 trials). In each
case, the histogram is plotted for the frequency at which the phase coher-
ence is optimal. The figure shows that while there is a relatively well defined
phase difference between the LFP signals for increasing 7&,p As (top Tow in
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Figure 4.8), the distribution becomes broader for large 7¢,p5, , (and hence
large detuning) in the case of the eMUA signals. An arrow is superimposed
to the histograms, whose direction indicates the mean A¢ and whose length
is inversely proportional to the standard deviation of the angle distribution
and thus, is a measure of phase coherence at this frequency (i.e. the larger
the arrow the greater the phase coherence).

Figure 4.8: Angle histogram of the phase difference between the LFPs (a) and eMUAs (b) of
the fast (74 g ¢ — 5 ms) and slow oscillations [r& g, o = 5 ms (left), 8 ms (middle), 11 ms

(right)]. For each T(d; ABA s the phase differences are computed at the frequency at which
the LFP-LFP (a) and eMUA-eMUA (b) phase coherence are maximal across three groups
of independent 200 trials. The thick arrows represent the mean values of the histogram
(multiplied by a factor 5), which length is inversely proportional to the standard deviation,
and thus, to the phase coherence at this frequency.

In order to grasp the origin of the different behavior of the phase coherence
for the LFP and eMUA signals, we computed the effective time delay 7. (see
Appendix B.3) between the two pairs of signals as 7. = A¢/27 frax, where A¢
is again the phase difference at the frequency fi.x of maximum phase coher-
ence. The results are shown in Figure 4.9 for increasing frequency detuning
Af, and reveal that the two local maxima of phase coherence occurring at
small and large detuning |Figure 4.7(a)| correspond to two different values of
T.. Specifically, at small frequency detuning the LFP gamma rhythms of the
two populations oscillate in phase (7, ~ 0), while at large frequency detuning
there is a phase shift that matches the average synaptic delay time between
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the populations (7. ~ 2 ms), (see Appendix A.2.2). Thus Figure 4.9(a) reveals
two scenarios: simultaneous (or zero-lag) synchronization between the LFPs
for small frequency detuning, and a leader-laggard regime for large detunings,
with the slow oscillation (laggard) following the fast one (leader) with a lag
equal to the time it takes the neuronal signals to travel from the emitter to the
receiver population (the synaptic delay). In the latter case, despite the fact
that the structural connectivity is bidirectional, the functional connectivity is
closer to a unidirectional coupling since the slow excitatory population fires
at a lower firing rate than the fast excitatory population, as explained before.
The effective time delay 7. is then given by the synaptic delay, because the
fast population drives the slow one, which adjusts passively its LFP phase to
the leader.
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Figure 4.9: The effective time delay, 7., computed at the frequency of maximum phase
coherence of Figures 4.7(a) and (b), is shown as a function of the intrinsic frequency detuning
(bottom x-axis), which is controlled by varying 7& g A (top x-axis), between the LFPs (a)
and eMUAs (b) of the two populations. The mean and sample standard deviation are
computed across three groups of independent 200 trials.

In the presence of strong frequency detuning AF after coupling, the fre-
quency at the maximum of the LFP-LFP phase coherence, ~43 Hz, is close
to the v-frequency peak of the LFP power spectrum of the leader population
[see red empty circles in Figure 4.7(a)]. However, in this situation the slow
rhythm still dominates the oscillatory dynamics of the laggard population (see
red filled circles of Figure 4.6), even though the LFP phases of the populations
are partially synchronized at the maximum frequency of the leader population.
Importantly, the eMUA activity of each population is locked in almost anti-
phase to its own LFP signal at the gamma frequency peak (i.e. the spikes of
each excitatory population fire preferentially closer to the troughs of its LFP).
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Figure 4.10(a) shows an histogram of the phase difference between the LFP
and eMUA of the slow population computed at the frequency of maximum
LFP-eMUA phase coherence. At this frequency, and for any given value of
Téapa s the eMUA is shifted ~3m /4 with respect to the LFP. In Figure 4.10(b)
the filtered LFP and eMUA signals (blue and red traces respectively) around
the frequency of maximum LFP-eMUA phase coherence for two values of
e As—9 ms are shown. Despite the fluctuations in the phase shift between
the blue and red traces [LFP-eMUA phase coherence is below 1 and decreases
with increasing 78,5 As as shown by the broadness of the phase histogram in
(a)], we can observe the almost anti-phase synchronization between these two
signals.
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Figure 4.10: (a) Angle histogram of the phase difference between the LFP and eMUA at
different Té ABA s values of the slow population at the frequency of maximum LFP-eMUA
phase coherence. (b) Two filtered LFP and eMUA signals (blue and red traces respectively)
around the frequency of maximum LFP-eMUA phase coherence for 7& , As=D ms (top) and

Téapas—11 ms (bottom).

The lack of gamma frequency locking in the leader-laggard regime prevents
the LFP synchronization from triggering eMUA synchronization. Accordingly,
the eMUA-eMUA phase coherence |Figure 4.7(b)] shows the loss of synchro-
nization between the excitatory spikes of the two populations as the frequency
detuning increases. On the other hand, at low frequency detunings both the
LFP-LFP and eMUA-eMUA show synchronization with significant phase co-
herence at zero-lag, as shown by the blue and green circles in Figure 4.9. In
summary, low frequency detuning entails zero-lag LFP synchronization, while
higher frequency detuning leads to a non-zero phase lag. In the latter case
the population with the smallest 78,54, and thus with the highest firing rate
and fastest dynamics, becomes the leader. Besides, as the difference in 7¢ 54
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increases, the AMPA synapses from the leader to the laggard area are less
effective and the eMUA-eMUA phase coherence drops to zero.

4.4 Communication between two neuronal pop-
ulations

In the previous Section 4.3, we have numerically studied the emergence of
phase coherence between two neuronal networks exhibiting oscillations at
varying frequency peaks in the gamma band (with different 7&,5,). Ex-
perimental results [Ray 2010] show that neuronal assemblies in V1 cortex are
entrained to different gamma rhythms for stimuli of varying contrast. It is
well known that general interacting oscillators with well defined frequencies are
able to synchronize their rhythms, thus leading to phase coherence, provided
that their intrinsic frequencies are similar enough [Pikovsky 2001]. Conversely,
given a strength of interaction there is a maximum frequency detuning above
which coupling-induced frequency locking is forbidden (see Figure 4.4(b)).
However, we have seen in the previous Section that in the case of neuronal
oscillatory signals phase coherence appears despite a mismatch in the peak
frequencies, due to their broad-band power spectrum [see Figure 4.7(a)].

In order to establish the conditions that lead to an efficient communication
and its relation to the phase coherence maps, we have carried out the follow-
ing test. First we increase, during a 100 ms window, the rate of the external
Poissonian spike train impinging on around 160 long-range excitatory neurons
from the emitter population [see sketch from Figure 4.5|. In those conditions,
neurons belonging to that subpopulation fire synchronously, locked to the cor-
responding LFP (note that the troughs of the LFP coincide with the activity
peaks of the raster plot in Figure 4.11). We average the response of the receiver
population across 200 trials, taking as time reference the first local peak of the
fast oscillations after the onset of the perturbation [see maximum LFP value
at 0 ms in the blue trace of Figure 4.11(right)|. The LFP can be considered as
the carrier of the information conveyed by the action potentials measured by
the MUA. Since we are only taking into account chemical synapses, spikes are
the only electrical activity that is shared between the two modeled networks.
The phase relationship achieved by the two LFP signals is meant to regulate
the effectiveness of communication [Fries 2005]. In particular, an unreliable
phase difference will always lead to a failure in communication, in what can
be called non-communication through non-coherence |Bosman 2012|. More-
over, depending on the phase difference A¢ between two coherent LFPs the
response of the unperturbed network will replicate to a certain extent the
response of the other network to a perturbation.
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Figure 4.11: Left: The two neuronal networks are represented by circles and the synaptic
coupling by arrows. The vertical ticks next to each circle stand for the external Poisson
train of spikes, whose mean firing rate is qualitatively plotted with a line at the right of the
input label, i.e. (A(¢)). Top-right: Raster plot and LFP for the fast population (7'&1;ABA7f =
5 ms). Bottom: Raster plot and LFP for two different behaviors of the slow population at
Téapas = 8 ms (left) and 78,5, , = 11 ms (right) showing distinct gamma-rhythms and
levels of spike-to-spike synchrony. LFPs are averaged over 200 trials.

Above a certain level of phase coherence, provided the phase difference
between the peaks of the signals from the two neuronal pools matches the
synaptic delay, we expect that the firing activity of the receiver population
(slow population) will thus copy the dynamics of the emitter population (fast
population). In order for this to happen reciprocally between the two pop-
ulations, phase coherence should occur at zero lag. Therefore, reciprocal in-
formation transmission between two populations will only be successful if an
appropriate causal relationship between them exists in the two directions of
communication. Figure 4.12(a) shows the averaged LFP time traces of the
fast population (upper panel) and the slow population (decreasing values of
Té AR A correspond to downward narrow panels) averaged across 200 trials and
taking as time reference the first local peak of the fast oscillations after the on-
set of the perturbation. The time lag between the first maxima of the fast LF'P
and the slow LFP reveals, again, a transition from zero lag synchronization
(blue trace in the narrow (lower) panel compared with upper blue traces) to
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a leader-laggard configuration (gray trace in the narrow panel compared with
upper blue traces). When the fast population is perturbed, hence becoming
the emitter population, its amplitude of oscillation increases [upper blue traces
in Figure 4.12(b)| due to an increase in spike-to-spike synchrony (blue raster
plot in Figure 4.5, right). The same applies to the receiver population [narrow
panels in Figure 4.12(b)], which is entrained to the gamma frequency of the
emitter in agreement with [Roberts 2013|. In particular, for high frequency
detunings (gray —7é,p As = 11 ms— and yellow —1ésp As = 10 ms— traces for
instance), the increase in the oscillatory behavior, i.e, the signal-to-noise ratio,
of the LFP [compare Figure 4.12(a) and (b)] is clearly manifested. Naturally,
at intermediate frequency detunings (turquoise trace —7¢,p,, = 8 ms-) that
led to small LEP-LFP phase coherence |Figure 4.7(a)]|, this effect diminishes.

The same comparison can be done between the eMUA signals before [Fig-
ure 4.13(a)| and after [Figure 4.13(b)] perturbing the emitter population. Note
that both the LFP and eMUA signal amplitudes from the fast population are
highest at 0 ms in Figures 4.12-4.13, as the time traces have been aligned to the
first LFP (MUA) peak within the perturbation interval. For 7¢,p, , > 7 ms,
the eMUA-eMUA phase coherence drops |Figure 4.7(b)|. Thus, the eMUA
traces from the receiver population at large frequency detunings (narrow pan-
els from turquoise to gray) show a transient increase in their amplitude |Fig-
ure 4.13(b)| but, in high contrast with the corresponding signals at lower
frequency detunings (narrow panels from blue to red), the faster rhythm of
the emitter population is not sustained.

Comparing the blue upper traces [top panels of Figures 4.12(b)-4.13(b)]
with the blue trace in the narrow (lower) bottom panels, corresponding to the
simulation with 78,5, s = 7&apas = D ms, we observe an increase in oscil-
lation amplitude for both the LFP and eMUA of the perturbed population
(upper blue traces). Therefore, the fast network better modulates its output
to the external train of action potentials by highly synchronizing its spiking
times to the troughs of the LEP (see raster plot in Figure 4.5, top right). Due
to the increasing frequency detuning at large 7¢,p As (Figure 4.6), and to the
fact that the highest LFP-LFP phase coherence in that case occurs at the
frequency of the fast network as a consequence of the leader-laggard regime
[Figure 4.7(a)], the raw signals are not convenient for analyzing modulation
at this frequency band. Since phase coherence is bounded, causality should
be better tested as a function of the frequency. Figure 4.14(a,b) shows the
time traces corresponding to the lower (narrow) panels in Figure 4.12(b) and
Figure 4.13(b) respectively, band-pass filtered in the gamma range (20 Hz —
70 Hz). Similarly to Figure 4.7(a), the minimum modulation also occurs at the
minimum of LFP-LFP phase coherence, around 7¢ 5 As = 8 ms [see turquoise
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Figure 4.12: LFP traces before (a) and after (b) the perturbation applied to the fast
population according to Figure 4.11. The blue LFP traces on the top panel correspond to
the fast population at each 7¢ 5 A.s- No major statistical changes are observed because this
population is hold at constant 7,5 A = 5 ms. The narrow (lower) panels correspond to

the LFP traces of the slow population at decreasing 1 ms-step Tg ABA s from top (11 ms)
to bottom (5 ms). Therefore, frequency detuning also decreases from top to bottom. LFP
are averaged across 200 trials. Colors as in Figure 4.10(a).

LFP trace in Figure 4.14(a)]. Moreover, the decrease in eMUA-eMUA phase
coherence with increasing 7¢,p,, (i€, increasing detuning) shown in Fig-
ure 4.7(b), is also revealed by the modulation drop of the MUA signal [see
dark grey MUA trace in Figure 4.14(b)].

Note that here we only study the modulatory effect of the fast population
on the slow one, but similar results can be expected in the opposite direction.
To prove a causal relationship between the activity of neuronal assemblies,
we have compared the response of an area to an increase in the external in-
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Figure 4.13: eMUA traces before (a) and after (b) the perturbation applied to the fast
population according to Figure 4.11. The blue eMUA traces on the top panel correspond to
the fast population at each 7¢ 5 As- No major statistical changes are observed because this
population is hold at constant 7&,p A = 5 ms. The narrow (lower) panels correspond to
the MUA traces of the slow population at decreasing 1 ms-step TgABA,S from top (11 ms) to
bottom (5 ms). Therefore, frequency detuning also decreases from top to bottom. eMUA
are averaged across 200 trials. Colors as in Figure 4.10(a).

put of the other area at the frequency of maximum phase coherence. Our
results reveal an important requirement for the CTC hypothesis, namely that
only in-phase synchronization of the LFP provides a scenario for communica-
tion across areas, otherwise phase coherence contributes to modulate the time
course of the two LFPs without enabling an effective routing of information.
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Figure 4.14: LFP (a) and eMUA (b) time traces for the receiver population, band-pass
filtered in the range 20 Hz — 70 Hz, during the first 70 ms of the perturbation time interval.
Note that the high-pass filter centers the signal around zero, thus leading to meaningless
negative numbers of spikes in (b). Colors as in Figure 4.10(a).

4.5 Conclusions

An important aspect of cortical interactions is that a change in one parameter
triggers multiple effects, making it difficult to isolate a single perturbation.
For instance, a change in the gamma frequency rhythm of a neuronal popu-
lation can be triggered, among other variables, by a change in the external
synaptic input or in the synaptic time constants. In turn, this involves a vari-
ation in the firing activity of the population. In particular, in this chapter,
we have seen that larger durations of the inhibitory synapses entail two re-
lated effects: a decrease in the firing activity of the neuronal population and a
slowing down of the gamma rhythm of the LFP and MUA. Therefore, the ef-
fective connectivity across cell assemblies, which can be roughly quantified as
the number of presynaptic spikes per unit of time arriving from another net-
work, differs from the structural implemented connectivity as 78,5, increases.
Specifically, the synapses going from a slower to a faster population become
less active than in the opposite direction as 7&,p, increases. As a matter of
fact, the two extreme scenarios considered here, (i) ¢ pa ¢ = Té&apas and (ii)
T&aBAs > TéaBA,s» can be viewed respectively as (i) two hierarchically similar
cortical networks with equivalent lateral connections, and (ii) two hierarchi-
cally different networks in which the feedforward and feedback connections
are asymmetric. These functional pathways are usually referred to as bottom-
up and top-down. It has been experimentally observed that the bottom-up
stream triggers activity in upward areas. while the top-down stream primar-



104 Chapter 4. Coupled collective neuronal oscillations

ily modulates downward signals |[Desimone 1995| (for a complete review see
[Knudsen 2007, Bastos 2012]).

The mechanisms behind the combination of sensory information process-
ing with attention, memory and other cognitive tasks requires coordinated
communication between different cortical areas. Our model shows a graded
effective connectivity across networks that is endogenous to the system. We
do not claim that our one-parameter control (i.e. 7&,54) of the mutual influ-
ence between populations explains plastic cortical interactions, but consider
it instead as a simple procedure to study the communication through coher-
ence hypothesis [Fries 2005]. We observe that CTC naturally appears between
networks with close gamma frequency rhythms with a zero-lag phase synchro-
nization of both the LFP and eMUA signals, despite a non-zero synaptic delay.
In this case, an input coming from other brain areas impinging on a neuronal
population triggers an equivalent spiking response in the neighboring popula-
tion. On the other hand, networks showing a significant frequency detuning
between their gamma rhythms only succeed in synchronizing their LFPs with
a phase-lag that matches the synaptic delay. The slower oscillation is then
enslaved to the faster oscillation following a leader-laggard configuration. In
those conditions, the maximum firing activity of the laggard neuronal popu-
lation, locked to the troughs of its LFP, arrive at low levels of excitation of
the leader network unable to drive these neurons above the spiking threshold,
thus preventing backward communication. The eMUA from both populations
is weakly coherent and action potentials fail to propagate.

In a neuronal context, communication (regarded as the successful trans-
mission of information) requires that the spiking response is triggered through
all the pathway in a communication cascade. Otherwise, in the absence of
suprathreshold activity, only a modulatory effect is achieved by the elicited
post-synaptic potentials between two directly connected networks. In sum-
mary, we observe that the CTC hypothesis holds between two mutually cou-
pled similar neuronal networks undergoing LFP-LFP and eMUA-eMUA zero-
lag synchronization. On the other hand, for different gamma rhythms of
the two populations, phase coherence is only achieved between the LFP sig-
nals at non-zero phase-lag, in such a way that the leader population applies
a phase modulatory effect on the laggard population without generating a
suprathreshold response, which prevents successful communication.

We are currently studying another regime in which the neuronal firing rate
does not decrease so dramatically with increasing 7gapa (compare raster plots
in Figure 4.5). An intriguing question is whether the drop in eMUA-eMUA
phase coherence |Figure 4.7(b)] is mainly due to this reduction of the spiking
activity of single neurons or to the frequency detuning. Clearly, a low number
of excitatory spikes per gamma cycle entails a decrease in eMUA amplitude,
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contributing to poorly defined oscillations and, therefore, to a decrease in
coherence. New results [Sancristobal 2013a| point out that frequency detuning
is also modulating the level of phase coherence between coupled neuronal
populations, since the spikes from the slow population cycle skip the LFP
rhythm of the faster population. Moreover, a leader-laggard configuration
also appears at large detunings.
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5.1 The slow rhythm of the sleep state

During sleep, cortical networks display slow oscillations (<1 Hz)
[Steriade 1993b| that predominate over the gamma oscillatory pattern (30 Hz
- 90 Hz), typical of the attentive state. Previously, we have mainly referred
to the gamma rhythm as the major fingerprint of the local cortical activity
displayed by recurrent populations of excitatory and inhibitory neurons. In
particular, we have shown in this Thesis that the gamma frequency band is
involved in the coding of information processed by a neuronal population (see
Chapter 3) and in establishing effective communication between interacting
populations (see Chapter 4). Thus, the rich variety of tasks performed during
the awake state (which are undoubtedly related to the concept of conscious-
ness) makes the gamma rhythm functionally relevant for its implication in the
internal cortical coordination of stimulus-driven activity.

In contrast with the fast activity usually observed in the awake state,
in vitro and in vivo cortical recordings, both during anesthetized-states and
sleep, reveal slow dynamics of the local field potential (LFP). Contrary to
the multi-unit activity (MUA) recorded in the awake state [see Figure 3.5(c)|,
the sleep state is characterized by highly synchronized depolarization states
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of elevated firing activity, interspersed by periods of quiescence on the order
of seconds. The membrane potential of individual neurons also shows slow
oscillations frequency-locked to the global LFP activity. Unlike the features
described in the precedent chapters, during sleep, neuronal cells coordinate in
time both their suprathreshold |Figure 5.1(a,top)| and subthreshold activity
[Figure 5.1(a,bottom)-(b)|, alternating between the so-called UP and DOWN
states. The former are characterized by a depolarization of the membrane
voltage towards the spiking threshold (around ~10 mV) and a sustained firing
activity of the neurons. In the DOWN states, neurons are basically silent and
exhibit a highly hyperpolarized membrane voltage.
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Figure 5.1: (a) In vitro extracellular (top) and intracellular (bottom) recordings from layer
V of ferret prefrontal cortical slices. The extracellular recordings capture the fast dynamics
of the action potentials fired by a group of neurons close to the tip of the electrode. From
[Shu 2003]. (b) In wvivo intracellular recordings of a cortical regular-spiking neuron of an
anesthetized cat in (1) the resting state (~0.3-0.4 Hz) and (2) upon injection of an hyper-
polarizing current of -1 nA. The depolarized events marked with an asterisk are expanded
in the right panels. From [Steriade 1993b].

The fact that UP and DOWN states exist also wn wvitro, suggests that
these dynamics are self-sustained, appearing locally without requiring large-
scale cortical interactions nor external stimulation: the recurrent connectivity
between neurons is sufficient for the emergence of this bistable behavior. The
initiation of the UP state can be triggered by the spontaneously synchronous
firing of a few excitatory neurons, and the further propagation of an excitatory
synaptic current to all the network. The build-up of local activity increases
the population firing rate. In turn, specific ionic channels across the neuronal
membrane account for its depolarization. The termination of the UP state
can be induced by the increase of inhibitory activity during the UP state
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but extra mechanisms should explain the DOWN state duration, because
it lasts longer than the GABA-receptor-mediated inhibition [Buzsaki 2006].
For instance, it has been proposed that frequency adaptation of neurons by
activation of potassium channels that reduce the sensitiveness to synaptic
inputs [Sanchez-Vives 2000, Compte 2003| can account for the UP-DOWN
transition. It is debated whether synaptic plasticity causing fatigue of the
synapses is also involved in this process [Holecman 2006, Mejias 2010]. Another
important cause of entrance in the DOWN state is the decrease of input
resistance during the UP state (i.e. stronger currents are needed to depolarize
the membrane).

The computational model that we have used to study in vitro UP and
DOWN dynamics was proposed by [Compte 2003], which reproduces the re-
sults from [Sanchez-Vives 2000|. In that experimental work, the authors stud-
ied the origins of the slow oscillatory period in ferret visual and prefrontal
cortical slices by locally injecting successive pulses of glutamate (see Sec-
tion 1.4.1). In response to this excitatory agonist, a collective discharge was
triggered, only interacting with the intrinsic oscillatory activity as long as the
period between two glutamate injections differed sufficiently from the natural
period Figure 5.2(b). The straightforward conclusion was the existence of a
refractory period that prevented the population from being immediately ex-
cited [see bottom trace in Figure 5.2(a), where an excitatory pulse too close
to the spontaneous collective firing of the neurons is unable to trigger another
burst of activity|. At the same time, intracellular recordings revealed that
after an UP state individual neurons underwent an afterhyperpolarization
(AHP) of duration equal to the DOWN state [Figure 5.2(c)|. Neurons showed
a reduced sensitiveness to excitatory pulses of 0.1 nA injected intracellularly
during the AHP period [Figure 5.2(d)| indicating an increase in membrane
input resistance (i.e. a decrease in input conductance). The reversal potential
of the AHP was close to ~ —87 mV, which led to the hypothesis that potas-
sium conductances were being activated. Interestingly, blocking inhibitory
synapses (i.e. GABA receptors) did not prevent the generation of the slow
UP and DOWN activity. Therefore, we have chosen a model that accounts for
the intrinsic mechanisms of UP termination rather than for synaptic mecha-
nisms.

5.2 Features of the simulated UP and DOWN
dynamics

We have reproduced the UP and DOWN dynamics in a modeled network
described in [Compte 2003]. Both the excitatory and inhibitory neurons are
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Figure 5.2: (a) Injection of glutamate pulses at three distinct periods (ticks in the upper
traces of each set). The triggered action potentials (middle traces of each set) and the
extracellular signal (bottom traces of each set) are shown. Note that a spontaneous burst
of activity is indistinguishable from a glutamate-induced one (lower set). (b) The dura-
tion of a glutamate-induced UP state increases with the duration of the interval between
stimulus injection. (c) Long afterhyperpolarizations (AHP) following UP states are seen in
intracellular recordings. (d) The AHP is characterized by a lower response to depolarizing
inputs. From [Sanchez-Vives 2000].

described by a conductance-based model. The inhibitory neurons are simple
Hodgkin-Huxley-like cells in which only a leak current and the sodium and
potassium channels for action potential generation are considered (see Sec-
tion 1.3.2.1). The excitatory neurons are composed of two compartments, one
for the soma and one for an effective dendrite, with a high diversity of ionic
channels needed to reproduce the intracellular recordings shown in Figure 5.1.
The coupling between all neurons shows a certain clustering, favoring short
connections, but no synaptic delay is introduced in the transmission of action
potentials. Details are given in Appendix A.3.1.
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Some parameters of the model are distributed across neurons, making the
population heterogeneous. In the excitatory population, this causes sponta-
neous firing rates below ~1 Hz. The inhibitory population only fires due to
the excitatory recurrent input from the excitatory neurons. An external Pois-
sonian excitatory train of spikes impinges on every neuron, to account for the
activity of neurons not belonging to the simulated network. Therefore, local
measures of the electrical activity within the network correspond to only a
subpopulation of the whole cortical slice.

The UP and DOWN dynamics described in the previous Section are not
observed in an isolated cell. Without recurrent connections some neurons are
in an excitable state but do not fire unless a synaptic coupling is introduced
[see blue trace in Figure 5.3(a)|, and other neurons are in a stable limit cycle
firing quasi-periodically [see black and magenta traces in Figure 5.3(a)]. In
this case, all neuronal discharges occur asynchronously and no net collective
behavior can be registered. However, within the network, neurons engage
synchronously in a slow oscillation [see Figure 5.3(b)|, which is an emergent
property of the network.

Isolated excitatory neurons Excitatory neuron within the network
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Figure 5.3: Membrane voltage traces for (a) three excitatory isolated modeled neurons and
(b) one modeled neuron embedded in the network.

As in the previous Chapters 3 and 4, the local field potential (LFP) de-
fined by Equation (A.14), represents the collective activity of the network.
We obtain the spiking times of each neuron and the LFP time series of a sub-
area composed of 150 adjacent excitatory neurons. A clear advantage of the
single-neuron network models is that we can simultaneously obtain precise
information of the dynamics of all neurons. Experimentally, available data
of individual neurons is reduced to few cells and is obtained indirectly from
extracellular recordings (intracellular recordings are more challenging to per-
form). The extracellular signals account for the activity of multiple neurons,
and thus spike sorting algorithms must be used to separate out the activity of
single units. Figure 5.4 shows a numerically obtained raster plot and the cor-
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responding LFP time trace, whose amplitude is scaled in order to emphasize
the phase locking between increases in the firing activity and the LFP.
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Figure 5.4: Raster plot for the spiking times of a subpopulation of excitatory (black) and
inhibitory (red) neurons. A magnification of the corresponding LFP (blue trace) is plotted
on top to better reveal the phase locking between increases in the LFP and collective firing
activity.

Our results are compared with experimental studies where the MUA is
usually defined as the high-filtered raw data registered by an extracellularly
located electrode [McCormick 2003|. Since the action potentials have fast time
courses [see Section 1.3.1], they are the major contributors to the high-pass
filtered electrical signal [Sanchez-Vives 2010|. In contrast, the LFP is often
viewed as the low-pass filter of the same raw data, as it captures the slower
dynamics of the activation and deactivation of synapses (see Figure 5.5, left).
In our modeling study the synaptic terms also represent the fast discharges,
which depend on the voltage membrane [Equations (A.9) and (A.10)], as can
be seen in the fast ripples at the maxima of the LFP in Figure 5.4. Therefore
the MUA activity is shown as the high-pass filter (low frequency cutoff =
200 Hz) of the simulated LFP [Figure 5.5(a)]. Note that since the simulated
LFP is a positive-defined magnitude |[Equation (A.14)], modeled UP states
are shown as upward shifts of potential while experimental UP states appear
as downward shifts of potential since the reference electrode (0 mV) is placed
outside the neuronal membrane.

The membrane voltage time course of three simulated neurons —two exci-
tatory (black) and one inhibitory (red)— are shown in Figure 5.6(b). Despite
the heterogeneity in the dynamics of individual neurons, a collective period
can be defined as clearly revealed by the LFP trace in Figure 5.6(a).
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Figure 5.5: Left: Scheme showing excitatory pyramidal neurons (black) and inhibitory neu-
rons (blue). Intracellular recordings (top time trace) and extracellular recordings, separated
into the high-pass filtered (MUA, middle trace) and low-pass filtered (LFP, bottom trace)
components. The red arrow indicates the positive feedback effect of the LFP on the neu-
ronal activity. From [Mann 2010]. Right: (a) LFP time trace as in Figure 5.4 (real scale)
and (b) MUA trace defined as the high-pass filter of the LFP.
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Figure 5.6: (a) LFP time trace as in Figure 5.5(a) and (b) membrane voltage time series for
two excitatory neurons (black) and one inhibitory neuron (red) shifted vertically to better
identify the traces.
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5.3 Stochastic coherence of UP and DOWN
states

Stochastic process are of great importance in biological systems. Random fluc-
tuations are ubiquitous in the dynamics of neuronal variables. For instance,
the ionic channels spread through the cell membrane (see Section 1.3.1) open
and close randomly, and a large amount of them have to be taken into account
in order to model a deterministic averaged behavior (see Section 1.3.2.1).
Other stochastic processes of neuronal networks are the synaptic release of
neurotransmitters and the firing activity of single neurons.

Due to the irregularity in the spiking activity, the synaptic input to neurons
is clearly noisy. Each neuron receives from its neighbors a certain amount of
presynaptic spikes, which are randomly distributed in time. The noisiness of
this input can be measured by means of the coefficient of variation (CV) of
the interspike interval (ISI) of the neuronal activity. As shown in Figure 5.7,
the CV increases with the extracellular concentration of potassium [K*],,
which controls the firing activity of the network (the relationship between
[K*]o and the excitability of the network will be explained below). Therefore,
[K*], provides a measure of the amplitude of neuronal noise. Low levels
of excitability ([K*], < 2.5 mM), at which neurons rarely discharge, cannot
trigger UP and DOWN dynamics since, in the system, the source of noise,
[K*],, is also the trigger of the oscillatory behavior. We expect that a neuronal
network entrained to UP and DOWN cyclic dynamics by a stochastic process
exhibits stochastic coherence (also known as coherence resonance).
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Figure 5.7: Coefficient of variation, CV, of the interspike interval, ISI, of the excitatory
neurons calculated over the UP states, as a function of [KT],.

This phenomenon has been described in autonomous oscillators, whose
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dynamics show a maximal regularity at a certain noise amplitude. Stochastic
coherence was first reported in [Pikovsky 1997|, where the authors studied
a FitzHugh-Nagumo model in the excitable regime. A sufficient large input
forced the neuron to pulse, making a large trajectory in the phase space [see
Figure 1.10(a)]. In the model, the neuron fired randomly because it was driven
by a Gaussian white noise of amplitude D. For both small and large values of
D, the train of noise-induced pulses, or action potentials, was highly irregu-
lar. The maximal regularity was obtained at intermediate noise amplitudes,
which endowed the system with a particular rhythm without the need of pe-
riodic external forcing. Stochastic coherence provides a mechanism of gener-
ating quasi-regular oscillations in a system that is intrinsically non-oscillating
[Lindner 2004].

The time needed for the system to escape from the resting state (i.e. the
activation time) depends both on its distance to the firing threshold and on
the noise amplitude. Weaker noises (small D) cause longer activation times
and a Poissonian-like train of spikes. On the contrary, stronger noises (large
D) cause smaller activation times and the time between subsequent pulses
[i.e. the interspike interval (ISI)| depends on the duration of a spike because
noise moves the neuron away from the stable fixed point as soon as it reaches
it.  On the other hand, the duration of a spike in the FitzHugh-Nagumo
version used in Chapter 2, was written as a sum of Equations (2.14) and
(2.15) which depended on the intrinsic parameters of the model. Likewise,
in |[Pikovsky 1997|, the time spent by the neuron in the excited state after
being perturbed above threshold does not depend strongly on D. However,
intense noise also causes fluctuations in the excursion time, whose variance
is proportional to D? [Hilborn 2004]. Therefore, only intermediate noise am-
plitudes can make the noise-induced oscillatory period close to the constant
duration of an action potential (plus the refractory time), while bounding its
fluctuations to small values.

The Morris-Lecar (ML) neuronal model was shown to exhibit [Han 1999]
coherence resonance when Gaussian noise is added to the membrane voltage
differential equation. Moreover, two ML-neurons electrically coupled in this
regime, with uncorrelated noise and different noise amplitudes Dy # D,, were
frequency locked in the range where D; ~ Dy, which was wider for higher
coupling strengths. This behavior resembles Figure 4.4(b), which compares
the frequency detuning of two oscillators before and after coupling. In the
neuronal network introduced in the previous Section, the source of noise ap-
pears in the synaptic coupling between neurons, and thus D is fairly equal
between cells. In contrast with the previous studies, where the stochastic
coherence is a local phenomenon, in the UP and DOWN dynamics neurons
do not oscillate in the absence of coupling [see Figure 5.3(a)|, and stochastic
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coherence emerges as a collective phenomenon.

Similar to the FitzHugh-Nagumo neuron discussed above, two time scales
can be identified in our neuronal network when operating in an UP/DOWN
regime: firstly, the time needed for the initiation of the UP state (analogously
to the initiation of a single spike), which relies on the strength of the presy-
naptic activity and thus, on the noise amplitude, and secondly, the duration
of the UP and DOWN cycle (analogously to the duration of a single spike),
which is largely dependent on the dynamics of the K*-channels generating
the afterhyperpolarization.

5.3.1 Regularity of the slow oscillations in the modeled
network

We have carried out simulations of the described network (see Appendix A.3.3)
at varying values of the extracellular potassium concentration [K*],. We know
from the Nernst equation [see Equation (1.1)], that the ratio between extra
and intracellular concentrations of an ion determines the equilibrium potential
of the channels permeable to that ionic species (i.e. greater external than in-
ternal concentrations imply positive reversal potentials) (see Appendix A.3.2).
Besides, less negative potassium reversal potential Vi get the neurons closer to
the spiking threshold. Hence, we have tuned the excitability of neurons (and,
thus, the neuronal noise) by increasing the extracellular potassium concentra-
tion [K*],, from 2.5 mM (weak noise) to 7.5 mM (strong noise) (see Table 5.8
for physiological typical concentration values of mammalian neurons).

Extracellular and Intracellular lon Concentrations

Concentration (mM)

Ion Intracellular Extracellular
Squid neuron

Potassium (K*) 400 20
Sodium (Na™) 50 440
Chloride (CI") 40-150 560
Calcium (Ca?") 0.0001 10
Mammalian neuron

Potassium (K*) 140 5
Sodium (Na™) 5-15 145
Chloride (CI) 4-30 110
Calcium (Ca?") 0.0001 12

Table 5.8: Extracellular and intracellular concentration of potassium, sodium, chloride and
calcium ions for the large nerve cell of the squid axon and for a typical mammalian neuron.
From [Purves, D et al. 2004].

In an interval of 10 min, we have computed the number of spikes in ev-
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ery UP state divided by its duration and by the number of neurons, i.e. the
population averaged firing rate. Figure 5.9(a) shows the rise of this firing
activity for increasing [K*], for both the excitatory and inhibitory popula-
tion. Note that for high levels of excitability, inhibition overcomes excitation
avoiding epileptic behavior. Together with Figure 5.7, Figure 5.9(a) reveals
that the firing activity of the network is an indicator of the noise amplitude.
Differently from other studies [Han 1999, Horikawa 2001|, we consider here a
network-endogenous noise rather than a white noise added to the membrane
voltage.
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Figure 5.9: (a) Firing rate of the excitatory (black) and inhibitory (red) neurons averaged
across the population and over the UP state duration, as a function of [K™|,. (b) Normalized
histogram of the instantaneous firing rate of the excitatory neurons for different values of
(Ko

We have computed the instantaneous spiking rate (i.e. the inverse of the
interspike interval) of the excitatory neurons. A histogram of these values
normalized to its maximum is shown in Figure 5.9(b) for different [K*],. The
bimodal distribution captures the UP and DOWN dynamics. The right peak
corresponds to the mean instantaneous firing rate in the UP state, which shifts
towards higher values with increasing [K*],, indicating that the discharges
in the UP state are sped up by the extracellular potassium. The left peak
indicates the presence of long periods in which the neurons are silent, the
DOWN states.

We have mentioned that high values of extracellular potassium depolar-
ize the voltage membrane, thus promoting intense spiking. As the neuron
discharges repeatedly, more sodium ions enter the cell and the intracellular
[Na™| increases, triggering the build-up of the Nat-dependent K*-adaptive
channel Iy, [see Appendix A.3.1|, which are expressed throughout the brain
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[Bhattacharjee 2005b]. Both the intense background synaptic activity and
firing rate at high [K*], exhausts the neuron, which enters a slow afterhy-
perpolarization period. Figure 5.10(a) shows first that, at [K*],=7.5 mM,
the intracellular [Na™| increases faster, second that the neuron is more de-
polarized, and finally that its firing rate in the UP states is larger than at
[KT]o=3.5 mM. In the former case, the membrane input resistance has de-
cayed so fast that the cells cease to spike soon and the period of the UP and
DOWN cycle decreases [Figure 5.10(b)].

(@) [K*|,=3.5 mM

8
) M 6 — T T T
2
5

—— UP-DOWN

—
9]
Z.
€ ’JMM —+ DOWN
> -85 - —UP )

= 4
[w]
[K+]o=7.5 mM g
51 :
= 7[\'\/\/\,\/\/\/\ E‘ | B
Z. 90 = 2
= 2 I
=L ]
75 0l— ! ! ! ! !
= = 9 A 6 3 25 35 45 55 65 7.5
time (ms) [K"], (mM)

Figure 5.10: (a) Voltage membrane and intracellular [Nat] (in mM) time course for
[K*]o=3.5 mM and [K*],=7.5 mM. (b) Duration of the UP and DOWN cycle (i.e. in-
verse of the frequency of the slow oscillation), the UP and the DOWN states, as a function
of the extracellular potassium concentration, [K*|,. Error bars correspond to the sampled
standard deviation across groups of 100 events in 10 min simulated time.

In order to quantify the regularity of the slow oscillations we have used

the coefficient of variation (CV) (introduced in Section 1.5.1), defined as
ov="2 (5.1)

1

where o is the corrected sample standard deviation of the duration of the
UP and DOWN cycle and p is its mean. The instantaneous period of the
slow oscillation is given by the sum of durations of UP and DOWN adjacent
states. Figure 5.11 shows a minimum of the CV at [K*|, = 4.5 mM, which
corresponds to a maximum of regularity of the cycle. At low and high levels
of noise, caused by low and high [K*], respectively, fluctuations around the
mean UP-DOWN interval increase (larger CV). The CV behavior is not sym-
metric with respect to 4.5 mM, due to the change in the inhibition-excitation
balance shown in Figure 5.9(a). When the inhibitory population dominates
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the electrical activity ([K*], > 4.5 mM) the duration of the cycle is largely
controlled by inhibition, which is not affected by the Na*-dependent K* chan-
nel [see Equation (A.8)]. The membrane voltage of an inhibitory neuron at
[K*], = 7.5 mM (red trace in the top right panel of Figure 5.11) shows that
this type of neuron fires during longer time intervals than the excitatory neu-
rons. Whereas at [K*], = 3.5 mM, the firing windows of the inhibitory neuron
(red trace in the bottom right panel of Figure 5.11) are restricted to the ac-
tivity of the excitatory neurons.
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Figure 5.11: Coeflicient of variation of the UP and DOWN cycle at different values of the
extracellular potassium concentration [K*],. The time traces of two excitatory neurons
(black) and one inhibitory neuron (red) are shown on the right of the figure for [K*],
= 3.5 mM and 7.5 mM. Error bars correspond to the sampled standard deviation across
groups of 100 events in 10 min simulated time.

In summary, at low levels of extracellular potassium concentration
(JK*]o < 4.5 mM) excitation exceeds inhibition, but the depolarization of
neurons is low enough to provide moderate firing rates. In the limit of small
[K*],, the slow collective oscillations (mean period ~6 s) are irregular and
the cycle of UP-DOWN states is determined by the dynamics of the Na™-
dependent K*-adaptive channel. At high [K*],, the slow collective oscillations
(mean period ~1.3 s) are less irregular and the cycle of UP-DOWN states is
also controlled by the build up of inhibition which is not influenced by the
Na*-dependent K*-adaptive channel. Between these two situations, the slow
oscillations achieve a maximum of regularity. The simulated network clearly
exhibits stochastic coherence and we next examine whether this phenomenon
is observed in real cortical slices of interconnected neurons.
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5.3.2 Regularity of the slow oscillation in cortical slices

UP and DOWN transitions have been measured in witro in visual cortical
slices under different experimental conditions [Sanchez-Vives 2000, Shu 2003,
Cossart 2003|. In order to test our prediction, i.e. that coherence resonance
should be observed in a real neuronal network varying its population activity,
experiments were carried out in the Sanchez-Vives Lab by B. Rebollo (details
are given in Appendix B.4). Spontaneous slow oscillations were registered in
slices of ferret visual cortex (Figure 5.12, left) at an extracellular potassium
concentration of 3.5 mM. From this control condition, [K™], was decreased to
2 mM and further increased up to 7 mM in steps of 1 mM. An extracellular
unfiltered electrical signal was obtained by means of a tungsten electrode and
amplified |[Figure 5.12(b), right]. This activity corresponds to the modeled
LFP. In the absence of single-unit recordings, MUA was described as the
power change of the LFP at frequencies greater than 200 Hz [Reig 2010|. The
MUA [Figure 5.12(a), right| was used to detect the transitions between the two
UP and DOWN states and to determine their duration (see Appendix B.4),
as well as the cycle of the slow oscillation, defined by the sum of an UP and
a consecutive DOWN state, see Figure 5.13(a) similar to Figure 5.10(b).

MUA (arb. units)

LFP (V)

time (s)

Figure 5.12: Left: Coronal slices of ferret visual cortex. Right: (a) Experimental MUA
(black trace) and detection threshold for the UP states (dashed red line). (b) Registered
LFP from a ferret visual cortical slice (left). [K*|, = 3.5 mM. The measures were obtained
by B. Rebollo from the Sanchez-Vives Lab.

The existence of stochastic coherence at the population level was observed
in the in vitro experiments [Figure 5.13(b)|. Therefore, population activity ap-
pears here as a collective parameter that controls the regularity of the collec-
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tive rhythm. For an optimal value of firing, the network produces quasiregular
signals -defined by the LFP or the multi-unit activity (MUA)- interspersed by
the DOWN states, at a characteristic time scale of the network.
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Figure 5.13: (a) Duration of the UP and DOWN cycle and the UP and the DOWN states, as
a function of the extracellular potassium concentration, [K*|,, measured in two ferret visual
slices. The analysis was performed by L. Perez-Mendez from the Sanchez-Vives Lab. (b)
Coefficient of variation of the UP and DOWN cycle at different values of the extracellular
potassium concentration [K*|,. Error bars correspond to the corrected sample standard
deviation across groups of 200 events. The length of the data segments could vary depending
on the quality of the register.

5.4 Conclusions

The dynamical properties of networks with UP and DOWN dynamics, namely
the presence of excitation events (UP states) interspersed among quiescent pe-
riods (DOWN states), suggested the possibility that the coherence resonance
phenomenon would be present in a collective excitable system. According to
this scenario, an optimal noise amplitude would maximize the rhythmicity
of the UP and DOWN cycle. Since these slow oscillations are a network-
emerging property, modulation of their regularity could provide a mechanism
of control of cortical information processing. The source of noise considered
here is the firing activity of neurons, enhanced by increasing the excitability
of the network. In in wvitro experiments this could be done by adding more
potassium ions to the extracellular medium.

Both the network model and the experimental recordings confirm that slow
UP and DOWN rhythms are regulated by the amount of noise and achieve an
optimal periodicity at a certain value of noise amplitude [Sancristobal 2013d].
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The onset of the UP state was induced by the recurrent firing activity of ex-
citatory neurons, which is again controlled by the noise strength. However,
the termination of the UP states was governed by [K*|-dependent-adapting
channels that were insensitive to noise variations in the studied range of vary-
ing parameters (i.e. [KT|,). At low levels of [K™], the probability of eliciting
an UP state is low, and their occurrence fluctuated strongly on time giving
rise to a high variability of DOWN durations. On the other hand high levels
of [KT],, could evoke the UP state at a wider set of stages of the adaptive
currents (i.e. the system could be excited again closer to the UP termination).
Between both cases, the UP states were consistently evoked at the same phase
of the DOWN state, and a recurrent collective period emerged. In agreement
with the sleep-awake transitions, in more excitable states eventually the slow
oscillations are replaced by faster rhythms.
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6.1 Role of neuronal oscillations

The rich variety of functions that our brain performs are the result of neu-
ronal processes. Therefore, the best characterization of the elusive concept of
mind, from consciousness to emotions, should emerge from the firing activ-
ity of neurons. However, it is yet unknown how both internal thoughts and
stimuli from the external environment are coded in the brain. Like the binary
language of computers, neurons use at least an all-or-none code (to spike or
not to spike) to communicate between each other, and we aim to understand
how the message is built.

If we observe a simple bar displayed on a screen, some neurons in the
primary visual cortex (V1), tuned to respond to this precise orientation, will
fire [Hubel 1959]. Moreover, if this bar is colored, other neurons will also dis-
charge -the problem might not be so easy as neurons are selective to multiple
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features, for a review see [Shapley 2011]-. Therefore, two groups of discharg-
ing neurons must cooperate in such a way that we perceive a unique object,
and not a colored spot and a separate bar at different locations of the screen.
We know that these cell assemblies send their action potentials to each other
through feed-back and feed-forward projections, but we do not know how to
identify the colored bar from the registered electrical signal. Fortunately, the
brain does.

Spontaneously, our brain always tries to make sense of perceptions, al-
though we are only aware of it when something is unexpected. We will notice
the absence of a book on the bedside table as soon as we enter in the bedroom
because, only then, the every-day prediction is not confirmed in our brain. See-
ing is not only perceiving but a complex process in which memory and feelings
are also involved. Thus, higher levels of cognition also require the interplay
of different cortical areas in a coherent manner. Dispersed neuronal circuits
readily engage in communication to combine information (coming from both
the outside and the inside of the brain) concerning a single stimulus without
mixing non-related data. In the Lincoln in Dalivision painting (Figure 6.1)
Dali plays with two identities: naked Gala contemplating the sea through a
window, and Lincoln’s portrait, apparent by half-closing the eyes. As long as
they are superimposed, we cannot clearly see Gala and Lincoln simultaneously,
although the same visual input is entering the retina.

Figure 6.1: Lincoln in Dalivision litography by Salvador Dali, 1977.

Neuronal oscillations, also called brain rhythms [Buzsaki 2006], are pro-
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posed as a mechanism to coordinate subpopulations of anatomically distant
neurons. Extracellular recordings such as the local field potential (LFP) and
recordings on the scalp such as the electroencephalogram (EEG) are oscilla-
tory [Buzsaki 2004, Uhlhaas 2009|. The first evidence for a functional role of
these subthreshold oscillations was their capacity to synchronize spikes from
irregular firing neurons [Gray 1989, Henrie 2005, thus making their impact
on target neurons more efficient [MacLeod 1998]. Neurons were also found
to fire at particular phases of the oscillations, possibly providing a phase en-
coding mechanism |Jacobs 2007|. Therefore, oscillations can be interpreted
as fluctuations of the spiking probability in a local area and as carriers of
the informative spikes. Moreover, [Schoffelen 2005] showed that magnetoen-
cephalography (MEG) measures from the motor cortex and activity in a spinal
neuronal group (indirectly measured through muscle fibers) oscillated coher-
ently in the gamma range (30 Hz - 90 Hz) when a motor task was expected to
be done. Accordingly, a consistent phase difference was established between
cell assemblies involved in an action that the subject was about to perform.

Despite the lack of direct empirical evidence for a functional role of neu-
ronal oscillations, the aforementioned work has motivated interesting spec-
ulations. For instance, the communication through coherence hypothesis
[Fries 2005] proposes that dynamic changes in the relative phase of oscillations
modulates the coupling efficacy between areas. Furthermore, spike synchrony
mediated through transient neuronal oscillations is suggested to conveniently
tune interactions among neuronal groups as a solution to the binding problem
[Singer 1999].

In the previous chapters I have presented our work on communication
mediated by simulated neuronal oscillations. We have studied three scenarios:
subthreshold membrane oscillations (Chapter 2), emergent gamma oscillations
in the awake state (Chapter 3 and 4) and slow cortical oscillations in the sleep
state (Chapter 5). Next, I will summarize the main findings of our research.

6.2 Summary of results

6.2.1 Action potential propagation in the presence of in-
dividual subthreshold oscillations

We used a FitzHugh-Nagumo model [Makarov 2001] to describe the subthresh-
old oscillations in the membrane potential of single neurons. This voltage mod-
ulation made the neurons fluctuate between different depolarization levels,
and hence different excitability levels, determined by the distance to thresh-
old. When a current pulse of moderate amplitude was injected, the response of
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the neuron was graded depending on the phase at which the perturbation was
applied. The model parameters were tuned so that the cell was only responsive
(elicited an action potential) near the peaks of the oscillation (spike-triggering,
in contrast with the non-spike-triggering region), Figure 2.6(c).

We aligned several neurons in a chain, which only received synaptic input
from the preceding neuron as shown in Figure 2.11. The first neuron in the
array was forced to spike periodically at different frequencies (only this neuron
was not phase-sensitive) and we measured the number of spikes elicited by the
rest of neurons. In that way, each cell provided a read-out of the message at
different stages of the pathway, and any failure in the propagation of a spike
would be amplified. The success of information transmission was defined as
the percentage of action potentials fired by the last neuron with respect to the
initial train of spikes, i.e. success rate. This quantity varied with the period of
the original signal. Therefore, at some frequencies all spikes were propagated
along the chain and at others the last neuron fired at lower rates (even not
firing at all).

In order to understand how the subthreshold oscillations were modulating
spike propagation we numerically inferred the phase transition curves (PTCs)
of the model for the range of input periods 7' [Figure 3.4(a)|]. A presynaptic
spike arriving at a given phase ¢;, could send the membrane voltage to either
the spike-triggering or the non-spike-triggering region after 7' units of time
(Pout.T). Superposing iterative maps on the PTC we could visualize the path-
way in the phase plane ¢i, versus ¢ou 1 [Figure 2.10(a)-(d)]. Only those PTCs
with a stable fixed point in the spike-triggering region led to phase dynamics
that, after a transient, corresponded to an action potential at every T'. Thus,
the read-out of every neuron was identical. For input spike trains at peri-
ods that do not involve PTCs with stable fixed points, the read-out of every
neuron was different, increasing the mean period at each stage of the chain.
For long enough chains, the initial message (conveyed in the suprathreshold
activity) eventually vanished (solid thick line in Figure 2.12).

Although this scenario involves some assumptions that are not physio-
logically plausible, such as a single presynaptic potential triggering a spike or
the one-dimensional arrangement of neurons, it provides a simple understand-
ing of the ability of subthreshold oscillations to filter signals. From a more
realistic point of view, each neuron in the described array could represent
a population of neurons, and its membrane subthreshold oscillation could be
the electrical signal emerging from the collective activity of the neurons within
this population. Then, in a unidirectional synaptic pathway of a hierarchical
organization of areas, the first population will be passively reproducing the
input. However, all subsequent identical populations will actively select which
inputs are relevant, due to their oscillatory behavior. Interestingly, it is the
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interaction of all neurons (or populations) that modifies the final message to
account only for regular periodic signals. The results presented in Chapter 3
have been published in [Sancristobal 2010a| and were preceded by a previous
research reported in [Sancristobal 2008, Sancristobal 2010b).

Before directly addressing communication between simulated neuronal
pools (Chapter 5), we studied the properties of neurons embedded in a neu-
ronal network and the emergence of collective behavior at the level of one
population of neurons (Chapter 4).

6.2.2 Interplay between single action potentials and col-
lective gamma neuronal oscillations

We modeled a cortical population of neurons at the single-neuron level us-
ing a conductance-based formalism |[Gutfreund 1995|. The network showed
a certain degree of clustering |Litwin-Kumar 2012| but all connections had
the same synaptic delay. This sort of spatial preference for closer neurons
enhanced the number of common neighbors and favored reverberation of the
spiking activity by synchronizing presynaptic potentials. The neuronal model
was of type I, i.e. above a certain amplitude of the injected current, isolated
neurons spiked at infinitely low frequencies [Figure 3.2(a)|. However, when
embedded in a network, neurons showed a discontinuity in their firing rates
(Figure 3.6).

The external excitatory synaptic current, which mimics afferent long-range
connections coming from other regions of the brain, was balanced by the
recurrent inhibitory flow. Therefore, on average, the synaptic current was
subthreshold. Occasionally, inhibition failed to compensate excitation, either
because it dropped to zero (inhibitory presynaptic neurons are momentarily
silent) or because the recurrent excitation increased (excitatory presynaptic
neurons discharge). This dynamics drove the neurons irregularly and rarely
above threshold. However, recurrent connections merged single-unit activity
into an oscillatory synaptic activity of growth and decay of inhibition (or
equivalently, an oscillatory activity of decay and growth of spiking activity).
At the network level two measures revealed this rhythmicity: the subthreshold
LFP [Figures 3.5(a,b)| and the suprathreshold mean population firing rate
[Figures 3.5(d,e)]. The gamma-frequency peak of the power spectrum of these
signals was mainly determined by the decay time of the GABAergic synapses
TéABA-

Without inhibition neurons will be excessively active, their firing rate in-
creasing enormously. Time windows during which local inhibition (i.e. the
activity of the presynaptic inhibitory neurons of a given cell) was zero, made
the neuron fire at a high rate. Otherwise, neurons fired single spikes. Hence,
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instantaneous firing activity of individual neurons was found to be bimodal
[Figure 3.7(a)| with the bursts of spikes occurring preferentially at the peaks of
the LFP and the isolated spikes at the troughs of the LFP (Figure 3.13). For
slower inhibitory synapses, the fast spiking regime surpassed the slow spiking
regime, and the range of forbidden rates increased because the longer time
course of inhibition expanded the effective refractory period of the neurons
(Figure 3.10).

We confirmed that a phase code associated with the dynamics of neuronal
oscillations is plausible, as two different spiking modes at the single-cell level
occurred at distinct phases of the LFP. Moreover, as a consequence of these
oscillations, neurons were not allowed to fire at a certain range of firing rates
and varying the gamma rhythm of these oscillations clearly controlled this gap.
Again neuronal oscillations, naturally emerged from the recurrent connections
across neurons, dynamically participated in coordinating single-unit activity.

An important issue is whether neuronal oscillations arising from the ac-
tivity of distinct areas can influence each other through synaptic connections.
Spikes (the information synaptically transmitted) give rise to neuronal oscil-
lations in a recurrent network of excitation and inhibition provided that they
are rhythmically synchronized. Due to the difficulty of tracking the activity
of a large amount of single cells, measurements of collective behavior contain
more information than the sum of single-unit recordings. Thus, correlations
between local field potentials reflect the non-linear neuron-to-neuron inter-
action within an area and across areas. The results presented in Chapter 4
have been published in [Sancristobal 2013b]. We next summarize the results
obtained in this second paradigm of connectivity.

6.2.3 Interactions between local collective neuronal os-
cillations in the gamma range

We coupled two neuronal networks such as the one in Chapter 3 through
long-range connections. The synaptic delay between cells from different pop-
ulations were longer than within one population, but less than a quarter of the
cycle. Each network contributed to the gamma frequency peak of the power
spectrum of both its LFP and MUA. Spikes arriving from an area could trigger
a response in another area depending on the phase of the oscillation at which
they arrived (similar to the phase-sensitive response of Chapter 2). There-
fore, by means of the coupling, two networks should maintain a difference in
phase that matches the synaptic delay in order to maximize communication
(i.e. action potentials arrive at the peaks of excitability). Since a phase can
be defined for any period () = Q%H—@O, the problem of how two neuronal os-
cillations are reciprocally influenced is multiplexed in several frequencies over



6.2. Summary of results 129

the same connection. At any frequency, we calculated the phase coherence
and the corresponding phase difference between LFPs and MUAs.

Each neuronal network showed phase-locking between its MUA and LFP,
spikes being preferentially elicited near the troughs of the LFP (the maxima
of spiking probability). Thus, these two neuronal oscillations showed signif-
icant phase coherence in the gamma range, fluctuating close to anti-phase.
Two identical networks achieved zero-lag synchronization of their LF'P signals
[Figure 4.7(a) and 4.9(a) where 74,5, < 8 ms|, which was the needed condi-
tion for mutual communication. Synchronized barrages of spikes (elicited at
the troughs of the presynaptic LFP) arrived close to the troughs of the postsy-
naptic LFP, thus triggering a maximal suprathreshold response and the MUAs
also become phase-locked at zero lag [Figure 4.7(b) and 4.9(b)].

When the natural rhythms became too distinct, and the synaptic coupling
was not enough to bring them closer, the two LFPs followed a leader-laggard
configuration. The fastest LFP, which arose from the network with higher
population firing rate, enslaved the dynamics of the slower one, which fol-
lowed with a time shift equal to the synaptic delay |[Figure 4.7(a) and 4.9(a)
with 78, As > 8 ms|l. At the gamma frequency of the fast LFP, only the
spikes traveling from the fast to the slow population arrived close to the
troughs of the LFP. Interestingly, the LFP-LFP phase coherence achieved
at large frequency detunings was not translated into MUA-MUA phase coher-
ence [Figure 4.7(b)|. The inter-areal coupling was able to modulate the LFP
relative phase but without affecting suprathreshold activity expressed in the
MUA. The gamma frequency peak of the neuronal oscillations, caused by the
inhibitory-excitatory loop, determined a period for the peaks of excitability.
The LFP and MUA filtered at other frequencies did not convey this same
information. Therefore, when the two gamma rhythms are different enough,
the MUA signals are non-coherent.

In order to test whether coherence led to communication we studied a
simple paradigm in which communication was understood as the degree of
reproducibility of a message, taken in the spiking activity. The fast popula-
tion was perturbed by increasing the rate of the external presynaptic spikes
impinging on a subpopulation during a certain time window. In response,
these neurons spiked in synchrony increasing the regularity and modulation
of the LFP and MUA (larger amplitude of the signals) and enhancing their
efficiency on the target subpopulation. We analyzed the modulation of the
LFP and MUA from the slow network during this interval. We observed that
the modulation of the MUA signal decayed towards its control level (with-
out the perturbation) as the frequency detuning increased whereas the rise in
the LFP oscillatory behavior was not dependent on the frequency detuning
(similar to phase coherence). Despite the LFP-LFP phase coherence results,
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communication only appeared at zero-lag synchronization, possible at small
frequency detunings.

6.2.4 Slow UP/DOWN neuronal oscillations

In vitro experiments allow for the analysis of local networks (i.e. composed of
a reduced number of connections, all synapses coming from neurons within the
same brain area). Electrical activity recorded from cortical slices reveals that
smaller neuronal circuits also generate spontaneous activity provided a certain
level of excitability. UP and DOWN dynamics have been observed in both in
vivo [Steriade 1993b, Lampl 1999 and in vitro [Sanchez-Vives 2000, Shu 2003|
recordings, with the slow oscillations in the latter being more regular. In
Chapter 5 we tested, in a modeled cortical network [Compte 2003] and in
ferret visual cortical slices, whether the noise amplitude modulated such pe-
riodicity of the slow oscillations. The single-unit model took into account
a K* adaptive channel, which become activated with increased intracellular
sodium concentration, and contributed to adaptation of firing rate and to slow
afterhyperpolarization at intense firing rates [Bhattacharjee 2005a. Since the
UP and DOWN dynamics exhibit these two time scales: one governing the
initiation of the UP state and thus, sensitive to noise-induced excitation, and
a second one governing the duration of the DOWN state and hence, depen-
dent on the dynamics of the Na™-dependent K*-adaptive channel, a coherence
resonance phenomenon appeared (Figure 5.11 and 5.13).

The noise amplitude was determined by the firing rate activity of the
population [Figure 5.9(a)| and was controlled by the extracellular potassium
concentration (Figure 5.7). For an optimal value of the firing rate, the network
produced quasiregular LFP and MUA signals. These results shed light on the
self-regulation of cortical dynamics across different states of excitability, and
revealed a coherence resonance phenomenon for the emergence of a maximum
level of regular dynamics. The temporal scale of this state determined a well-
defined collective refractory period. Moreover, this study revealed a possible
explanation for the variable regularity detected under different experimental
conditions in vitro or under different brain states in vivo [Deco 2009).

6.3 Perspectives

The work presented in this thesis has also encouraged further research. In
particular we have currently started to explore the relationship between long
synaptic delays and the established phase shift between neuronal oscillations.
[Bush 1996] showed that two cortical oscillations were able to synchronize at
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zero-lag as long as the synaptic delay between two identical networks was
small (less than a quarter of the period). For higher delays, synchronization
was disrupted. However, in our case we have studied phase coherence as a
function of the frequency, which is specially relevant for signals with a com-
plex power spectrum and with different gamma peaks. Transitions between
in-phase and anti-phase appear in the gamma range according to the ratio
between the synaptic delay and the inverse of the frequency. We believe that
it is important to understand whether these two cases enable two routes of
information transmission. We are currently analyzing results in which a shift
in the gamma peak does not occur with a decay in the network firing rate.

Another interesting issue is how the interaction between distinct cell assem-
blies is regulated. We have found that the difference in the gamma frequency
rhythms of two neuronal oscillations determines the amplitude of phase co-
herence and, thus, the efficiency of communication. It should be explored
whether this mechanism is used by the cortex to coordinate activity in dif-
ferent areas and how it is dynamically achieved. For instance, disinhibition
of feedback connections from associative areas down to primary sensory areas
has been proposed to act behind synesthetic experiences. In this way a specific
input, such as a sound, forward propagates to convergence areas where feed-
back inhibition is depressed and cannot avoid activation of another sensory
modality, such as color, and any note is simultaneously perceived with some
color |Grossenbacher 2001]. Are these coactivated areas forced to communi-
cate because their reciprocal coupling is not inhibited? Synesthetes inevitably
perceive a feature that is not present in the external stimulus and, thus, belong
to their internal cortical activity. Could a change in the rhythmicity of one of
this areas induce a loss of communication and recover a normal perception?
Experimental collaborations should help to evaluate which is the most feasible
way of testing our theoretical predictions.

We will also extend our work on UP and DOWN dynamics in two di-
rections. On the one hand, we will investigate whether coherence resonance
is being used by the in vivo brain to have some control over its state. For
instance, in an anesthesia-awake transition, with the build up of cortical activ-
ity, we expect to find a maximum of regularity of the slow oscillations before
entering the high-conductance state. On the other hand, we will study the
gamma rhythm in the UP state and its disruption caused by perturbing the
balance between excitation and inhibition. It is proposed that Down syn-
drome is mainly due to a a decrease in neuronal connectivity |Dierssen 2006].
The model presented in Appendix A.3 [Compte 2003|, will allow us to se-
lectively modify the synaptic conductances (excitatory-excitatory, excitatory-
inhibitory, inhibitory-inhibitory and inhibitory-excitatory) in order to reveal
their effect on the generation of gamma oscillations.






APPENDIX A

Models

A.1 Membrane subthreshold oscillations

A.1.1 Description of the FitzHugh-Nagumo neuronal
model
We summarize here the model used in Chapter 2 and described through-

out Section 2.2. In dimensionless units the model reads [Makarov 2001,
Sancristobal 2008]:

du
e = w(u—a)(l —u) —v— Iyn (A.1)
L= ) (A.2)

where u represents the voltage variable and v the recovery variable. The
parameter ¢ is the ratio between the characteristic times of u and v; here we
choose ¢ = 0.005. The values of a and b are chosen such that the system
operates near the Andronov-Hopf bifurcation (a = 0.9 and b = 0.316).

The function g(u) has the form

g(u) = kyu® + ky <1 — exp {—%]) (A.3)
2
The duration of the spikes can be tuned by the parameters k; and k. We
choose k1 = 7.0 and ky = 0.08, for which the duration of the spikes is of
the same order of magnitude as the period of the subthreshold oscillations,
which is Ty, = 27/ & 0.44 near the Andronov-Hopf bifurcation point for an
isolated neuron.

A.1.2 Description of the synaptic coupling

The synaptic current entering the neuron is given by Equation (1.13). The
peak of the synaptic conductance, set to gmax = 0.1, is chosen such that the
neuron fires in response to the current pulses only for a specific range of phases
of its subthreshold period. The synapse reversal potential £, = 0.7, makes
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the connection excitatory. The fraction of open receptors o(t) follows the
Equation (1.14), where a@ = 44 and = 22 are set in order to keep the rise
and decay times of ¢ smaller than the period of the subthreshold oscillations.
The function T'(t) = Twax8(To + Tsyn — £)0(t — Tp) is the concentration of
neurotransmitters released into the synaptic cleft, which is considered to have
a constant value T, = 1 during a time 7y, = 0.006 after receiving a pre-
synaptic spike at time Tj.

A.2 Collective gamma neuronal oscillations

A.2.1 Description of the conductance-based neuronal
model

The dynamical equation for the neuronal membrane voltage used in Chapter 3
and 4 is given by a conductance-based model:

Cm(il—‘; = —gKn4 (V — VK) — gNamgh (V — VNa) — gL (V — VL) — ]SYN (A4)
where gk, gna and gp, are the maximum conductances for the potassium,
sodium and the leak current, respectively, and Isyn is the synaptic current
coming from the neighboring neurons impinging on a neuronal cell. For the
three different synaptic sources studied here (i.e. GABAergic and AMPA
synapses from the simulated inhibitory and excitatory neurons respectively,
and AMPA synapses from the simulated external Poissonian train of spikes),
Isyn is the sum of three Iy,-like terms, Equation (1.13). The dynamics of the
potassium and sodium channels is represented by the time-varying x proba-
bilities that a channel is open:

dz

- ¢ o (V)(1 —z) = Bo(V)a] ,
where z stands for n in the case of the potassium current, and for m and h
in the case of the sodium current. «(V') and (V') are voltage-dependent rate
constants, and ¢ is the temperature factor, defined by ¢ = 3(T=63)/10 where
T is measured in degrees Celsius.

The rate functions o and S for each gating variable are:

V 420
1 — e—(V+20)/10

Ba(V) = 0.125¢ (VH30)/80

a,(V) = 0.01




A.2. Collective gamma neuronal oscillations 135

for the gating variable n,

V+16
1 _ e (V+16)/10

ﬁm(v> — 467(V+41)/18

an(V) = 0.1

for the gating variable m, and

an(V) = 0.07e"(V+30)/20

1.0
Bh(v> = 14+ 6_V/10
for the gating variable h. Due to the rapid activation of m we replace it by
its steady-state value m., = amarﬁm'

The parameter values used throughout this study are those of
[Gutfreund 1995]: gk = 4.74 uS, gna = 12.5 pS and g, = 0.025 uS. The
reversal potentials of the different channels are Vx = —80 mV, Vy, = 40 mV
and Vi, = —65 mV, and the membrane capacitance is Cy, = 0.25 nF (0.125 nF)
for the excitatory (inhibitory) neurons. Values of Cy, account for the size of the
soma (a larger membrane area has more capacitance). The leak conductance
defines an effective membrane time constant for the isolated neuron according
to the expression 7, = Cy, /g1, which is taken to be 10 ms for the excitatory
neurons and 5 ms for the inhibitory neurons. For a given current, larger C'
imply slower voltage changes. The temperature factor ¢ is set to 21, which
corresponds to T = 34°C. These parameter values lead to type I excitability.

In Chapter 4 the membrane capacitance is taken to be Cy, = 0.5 nF
(0.25 nF) for the excitatory (inhibitory) neurons. The leak conductance
(g, = 0.025 wS), which is not varied with respect to the aforementioned pa-
rameters, defines an effective membrane time constant for the isolated neuron,
which is here 20 ms for the excitatory neurons and 10 ms for the inhibitory
neurons. Due to these large values, the membrane potential would, in prin-
ciple, be hardly modulated by inputs with fast fluctuations on the order of
the kHz, because a passive filter-like neuron will suppress input frequencies
f > 7w, Figure A.1. However, neurons are rarely in equilibrium and the
intense synaptic presynaptic bombardment drives the cell close to the firing
threshold, increasing its input conductance. Therefore, an effective membrane
time constant can be shorter than 1 ms [Bernander 1991]. Since the mem-
brane capacitances in the neuronal model used in Chapter 4 are twice of those
in Chapter 3, firing rates of individual neurons are decreased.
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Figure A.1: (a) An input pulse (arrow) triggers a broad response in a low-pass filter char-
acterized by a time constant 7. (b) The gain, g, of this filter shows a cut-off frequency at
feus = 1/7. From |Gerstner 2006].

A.2.2 Description of the network model

We consider a network composed of 2000 neurons, 80% of which are excita-
tory while the remaining 20% are inhibitory [Soriano 2008|. All connections
between cells are chemical synapses —no gap junctions are considered— and
each neuron connects with 200 other neurons, on average, belonging to both
populations. The connections are established following the Watts-Strogatz
small-world algorithm [Watts 1998|, with a rewiring probability of 1.0 (Chap-
ter 3) and of 0.5 (Chapter 4). After the randomization of the links, in both
cases the connectivity still shows a certain degree of clustering, but closest
neighbors are further favored in the later case. In the former case the network
is closer to a random one. In Chapter 4, the same criteria has been applied
for the coupling between networks, where 60% of the excitatory neurons have
been randomly chosen as long-range-projecting neurons making synapses to
10% of the neurons belonging to the other population.

We have also introduced a synaptic delay in the transmission of the action
potential between neighboring neurons within a network, taken from a gamma
distribution, |Vicente 2008|, of mean 2 ms and variance 4 ms®. In Chapter 4
we have used these values for the connectivity between distinct networks and
we have assume shorter delays for neurons belonging to the same population
(mean 1 ms and variance 1 ms?).

The synaptic current is described using again a conductance-based formal-
ism [see Equation (1.13)|. For a synapse reversal potential, Ey,, greater than
the resting potential, the synapse is depolarizing, i.e. excitatory, otherwise it
is hyperpolarizing, i.e. nhibitory. We consider two temporal time constants
[see Equation (1.21)], Tqecay and Tise (decay and rise synaptic time respec-
tively, see Table A.1), for the dynamics of the synaptic conductance, which is
calculated by

g/ —t—t; ,t,tj
gsyn(t> — _Jsym e Tdecay — @ Trise ,
Tdecay — Trise
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Synapse Trise Tdecay Esyn
AMPA | 0.5 ms | 2 ms 0 mV
GABA | 2ms | 5ms | =70 mV

where g/ ,,, shown in Table A.2, is tuned in order to obtain a balance between
excitation and inhibition, given the f-I relation.

Table A.1: Synaptic time constants and reversal synaptic potential values. The equilibrium
potential at Isyn, = 0 for Equation (A.4) is Viest = —65 mV.

We have chosen the maximal conductances, g, to maintain the postsy-
naptic potential (PSP) amplitudes within physiological ranges: the excitatory
PSP in the range from 0.42 mV to 0.83 mV, and the inhibitory PSP from
1.54 mV to 1.88 mV.

| Ch | 0.125 nF | 0.25 nF | 0.25 nF | 0.5 nF |
Conductance on Conductance on
Synapse inhibitory excitatory
neurons neurons
GABA 240 nS | 325 nS | 240 nS | 360 nS
Recurrent AMPA | 2.5 nS 42nS | 25nS | 4.2nS
External AMPA 3.2 nS 42nS | 3.2nS | 5.5nS

Table A.2: Synaptic conductances, géyn, for all the possible connections and both sets of
capacitance C,, parameter values.

Additionally, all neurons receive an heterogeneous Poisson train of excita-
tory presynaptic potentials with a mean event rate that varies following an
Ornstein-Uhlenbeck process. This incoming external current mimics the di-
rect input from any other area external to the network considered here. The
instantaneous rate, A(t), of the external excitatory train of spikes is generated
according to an Ornstein-Uhlenbeck process as considered in [Mazzoni 2008]:

~A(®) + () (ﬁ) )

where o(t) is the standard deviation of the noisy process and is set to
0.6 spikes/s. 7 is set to 16 ms, leading to a 1/f power spectrum for the
A time series that is flat up to a cut-off frequency f = ;- = 9.9 Hz. (t) is a
Gaussian white noise.

dn

== (A.5)

Excitatory synapses outnumber inhibitory ones, and yet the brain avoids
epileptic states because inhibition is able to balance excitation, and thus neu-
rons remain below threshold, firing only occasionally. Inhibitory neurons have
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higher firing rates than excitatory neurons for any given input current, as can
be seen in the f-I curve of Figure 3.6. Additionally, GABAergic (inhibitory)
synapses are stronger than glutamatergic AMPA (excitatory) synapses to com-
pensate their relative small number [Markram 2004].

The model has been integrated using the Heun algorithm,
[Garcia-Ojalvo 1999], with a time step of 0.05 ms. All the simulations
represent 1.5 seconds of activity and the connectivity, initial conditions, and
noise realization were varied from trial to trial.

A.3 Slow UP and DOWN neuronal oscillations

A.3.1 Description of the conductance-based neuronal
model
The dynamical equations for the neuronal membrane voltage and for the ionic

channels are as in [Compte 2003].

Excitatory neurons The somatic and dendritic voltage of the excitatory
neurons follow:

dVs
CmAsE = —As(Iu+ Ina + Ix + In + Ixs + Txkna) —
_Isyn,s — Gsd (‘/b - Vd) (A6)
dVy
OmAdE = —Aq(Ica+ Ixca + Inap + IaR) —
_Isyn,d — 0sd (VZi - ‘/;) (A7)

where Iy, ¢ is the synaptic current coming from the neighboring inhibitory
neurons and Ign 4 is the synaptic current coming from the neighboring exci-
tatory neurons. The two compartments are joined by an electrical coupling of
conductance ggq = 1.75 & 0.1 uS such that both voltages are quickly synchro-
nized. Here, the synaptic conductances and gyq are scaled by the surface of the
soma, Ay = 0.015> mm?, and the dendrites, A4 = 0.035 mm?. The membrane
capacitance is Cp, = 1 uF/cm?.

The dynamics of the potassium [Ix = gxn* (V — Vi)] and sodium channels
[Ina = gnam2 h (V — Via)| are represented by the time-varying probabilities,
x, that a channel is open:

dx
= 0lax(V)(1 = 2) = BulV)a]

where z stands for n in the case of the potassium current, and for m and A in
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the case of the sodium current. The parameter values used throughout this
study are based on [Compte 2003]: gk = 10.5 mS/cm?, gn, = 50 mS/cm? and
gr, = 0.0667 & 0.0067 mS/cm?.

The rate functions « and S for each gating variable are:

V+34
1 — e~ (V+34)/10

Bu(V) = 0.125¢"(VH44/2

a,(V) = 0.01

for the gating variable n,

V+33
1 — e—(V+33)/10

Bn(V) = dem(V¥531/12

an(V) = 0.1

for the gating variable m, and

an(V) = 0.07e"(V+0)/10
1.0
Pu(V) = 1+ e (V+20)/10

for the gating variable h. Due to the rapid activation of m we replace it by
. The leak current is a passive channel of

Am

am~+PBm

its steady-state value my, =
the form Iy, = gp (V — V1.).

The time-varying probabilities x that a channel is open can also be ex-

pressed as: ;
= = 0law(V) — al fra(V).

The rest of ionic channels are described in terms of z,,(V) and 7,.(V') and
the temperature factor ¢ is set to 1.

The fast A-type K™-channel, Iy = gam3_ h (V — Vk):

1
Moo(V) = 1 + e—(V+50)/20
1
heo(V) = 1+ e(V+80)/6
7, = 15 ms

where ga = 1 mS/cm?.



140 Appendix A. Models

The non-inactivating K*-channel, Ixs = gxsm (V — Vk):

1
1 + e—(V+34)/65
8
e—(V+55)/30 | o(V+55)/30

Moo(V) =

Tm<v) =

where gks = 0.576 mS/cm?.

The persistent sodium channel, In.p = gnapm?, (V — Vxa):

1
1 4 e—(V+55.1)/7.7

Moo(V) =

where gna.p = 0.0686 mS/cm?.

The inward rectifying K*-channel, Iagr = garhoo (V — Vk):

1

heo(V) = 1+ e(VE75)/4

where gag = 0.0257 mS/cm?.

The high-threshold Ca®T-channel, Ic, = gcam?, (V — Vca):

1

Moo(V) = 1+ e (V+20)/9

where gc, = 0.43 mS/cm?.

Two more channels are considered, which depend on ionic concentrations.
The Ca?*-dependent K*-channel and the Na*-dependent K*-channel:

Ca2+
IKCa = gKCa[ [ ]

—— (V -V d
Ca2+]+KD( K) , an

Ixna = gKNawooqNa—i_D (V —W)

respectively, where Kp = 30 mM, gkca = 0.57 mS/cm?, wy([Nat]) =
0.37/ (1 + (38.7/([Na*])**)) and gkna = 1.33 mS/cm? Morcover, the in-
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tracellular concentration of calcium follows the dynamical equation:

24 2+
d[Ca“] = ao Ao, - [Ca“T]
dt TCa

where ac,=5 mM/(mA-ms) and 7¢, = 15 ms. The intracellular sodium con-
centration obeys the equation:

d[Na™]
dt

= —ana (AsIna + Aalnap) —

[Nat]3 [Na™]3,
— (Rpump + Déou(t)) ([Naﬂ?’ 4+ 153 - [Naﬂgq + 153>

where an, = 10 £ 2 mM/(mA'-ms), Ryump = 0.08 £ 0.0018 mM/ms
and [Na™]e, = 9.5 mM. Note that the sodium dynamics considers the
Na™-K*-pump which releases three sodium ions for each potassium ion
brought inside the neuron [see Section 1.3.1]. The slow kinetics of this
pump [Wang 2003] evolve following an Ornstein-Uhlenbeck stochastic pro-
cess, ou(t), of amplitude D=0.088 mM /ms. A noisy realization is obtained
following [San Miguel 1997, Garcia-Ojalvo 1999]:

£ou(0) = /£ u(0)
(l—e*%/")

€OU(t + h) = §OU(t)e_h/T + Tu(t + h)

where u(t) is a Gaussian white noise and 7 = 300 ms.

The reversal potentials of the different channels are Vx = —100 mV, Vy, =
55 mV, Vo, = 120 mV and Vi, = —60.95 + 0.3 mV.

Inhibitory neurons Only the somatic compartment is modeled, and its
membrane voltage follows:

CmAi% = —A; (]L + Ina + ]K) — ISYN,i (AS)
where 4; = 0.02 mm?. Isyn; stands for the sum of both the excitatory and
inhibitory currents coming from the presynaptic neurons. As in the previous
Section, here the inhibitory cells are described with the minimum neuronal
model for action potential generation. The sodium, potassium and leak cur-
rent follow the same formalism as in the above excitatory neuronal model with
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the following v and ( rate functions:

V+34
a (V) = 0‘051 — o~ (V+34)/10

Ba(V) = 0.625e(VH44)/80

for the gating variable n,

V+35
an(V) = 0'51 — ¢—(V+35)/10

Bm(v) — 206—(V+60)/18
for the gating variable m, and
an(V) = 0.35¢ (V+58)/20

5.0
Au(V) = 1+ e (V+28)/10

for the gating variable h.

The temperature factor ¢ is set to 1. The maximal conductances are
gna = 35 mS/cm?, gx = 9 mS/cm? and g, = 0.1025 £ 0.0025 mS/cm?, and
reversal potentials Vx = —90 mV, Vy, = 55 mV and Vi, = —63.8 = 0.15 mV.
All parameters are kept constant for all excitatory neurons except in the cases
given as mean + SD. SD corresponds to the standard deviation of a gaussian
distributed parameter over the population.

A.3.2 Potassium reversal potential

The Nernst equation [Equation (1.1)] establishes the relation between the
reversal potential of a ionic channel Vi,, (or equilibrium potential at which
there is no net flow of ions across the channel) and the ratio between the
external and internal concentration of this particular ionic species % For the
potassium ion (z=1) we have set C; (or [K™];) to 150 mM and varied C, (or
[K*],) from 2.5 mM (Vi ~ -108 mV) to 7.5 mM (Vi ~ -79 mV).

A.3.3 Description of the network model

We consider a network composed of 1280 neurons, 80% of which are excita-
tory while the remaining 20% are inhibitory [Soriano 2008|. Neurons were
arranged in two open one-dimensional chains, one for the excitatory popula-
tion and another one for the inhibitory population, such that every 4 adjacent
excitatory neurons, one inhibitory neuron was placed. All connections be-
tween cells are chemical synapses —no gap junctions are considered—, and each
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Figure A.2: Schematic connectivity of the circuit exhibiting UP and DOWN dynamics. Ex-
citatory (inhibitory) neurons are shown as black (red) circles. The shape of the probability
of connection P(x) centered in two types of neurons is plotted as a dashed line. Only the
relative size between the length of neurons and, on the other hand, between the standard
deviation of P(x) are representative.

neuron connects with 2045 other neurons. The two chains are 5 mm long,
with neurons touching the two nearest neighbors.

Our interpretation of the microcircuit described in [Compte 2003] is shown
schematically in Figure A.2. The probability that two neurons are connected
is determined by their distance z according to a Gaussian probability distri-
bution P(x) = 67;%2. No autapses are allowed and the standard deviation
o is set to 250 um for the excitatory connection and to 125 pym for the in-
hibitory connections. In Figure A.2, the relative size between neuron’s length
and between the o values of the two populations is maintained. However,
note that this comparison cannot be made between the size of a neuron and
its corresponding o. For instance, the size of an excitatory neuron is ~5 pum
(50 times smaller than its o) and of an inhibitory neuron ~19 pm (about
13 times smaller than its o).

We have considered two types of excitatory synapses, AMPA and NMDA
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mediated, [Wang 1999|:

Invpa = ganpas(t)(V — Egn) (A.9)

1
hama = gaupas(t)(V - Esyn) (1 + [Mg2+]60.0621//3,57> (A.10)

where the reversal synaptic potential is Egy, = 0 mV and the extracellular
magnesium concentration [Mg*"] = 1.0 mM. The gampa and gnupa peak
conductances are given in Table A.4 and s(t) follows two first-order kinetics:

dx
- ¢<%zj:5(t_tj)_x/7x) (A.11)

ds

i o (asx(l—s)—s/Ts) (A.12)

where ¢=1 and the temporal time constants are shown in Table A.3.

Synapse | a, (dimensionless) T o Ts
AMPA 1.0 0.5ms | 1.0 ms™' | 2.0 ms
NMDA 1.0 20ms | 1.0 ms™! | 80 ms

Table A.3: Synaptic time constants for AMPA and NMDA synapses.

The inhibitory neurons are GABA mediated, Igapa = geapas(t)(V — Een)
where Egy, = —70 mV. The ggapa peak conductance is given in Table A.4
and s(t) follows first-order kinetics:

% = ai25(t—t]~)(1—s)—s/n (A.13)

1

where a; = 0.9 ms™" and 7; = 10 ms.

Synapse Conductance on | Conductance on
inhibitory excitatory

neurons neurons
GABA 240 nS 480 nS
Recurrent AMPA 2.25 nS 7.35 nS
Recurrent NMDA 3.0 nS 8.0 nS
External AMPA 2.25 nS 7.35 nS
External NMDA 2.0 nS 8.0 nS

Table A.4: Synaptic conductances for all the possible connections.

Additionally, all neurons receive an heterogeneous Poisson train of exci-
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tatory presynaptic potentials with a an event rate that varies following an
Ornstein-Uhlenbeck process [see Equation (A.5)] (mean = 50 spikes/s), that
mimics the synaptic input coming from the rest of the cortical slice not being
directly simulated by the set of Equations (A.6)-(A.7) and (A.8). The model
has been integrated using the Heun algorithm, [Garcia-Ojalvo 1999], with a
time step of 0.05 ms.

A.4 Model of local field potential (LFP) and
multi-unit activity (MUA)

In Chapters 3-5, we have quantified the activity of the network in different
ways. At the single-neuron level we consider the instantaneous firing rate as
a measure of the individual spiking dynamics. At the population level we use
three observables. First, the time-resolved average firing rate of the whole neu-
ronal population, defined in Chapter 3 as the total number of spikes per unit
time in the population divided by the number of neurons. Second the multi-
unit activity (MUA), defined in Chapter 4 as the total number of spikes in
5-millisecond windows shifted in steps of 1 millisecond [Buehlmann 2010], and
in Chapter 5 as the high-pass filtered local field potential (cut-off frequency
200 Hz) [McCormick 2003]. Finally, the local field potential (LFP), computed
as the sum of the absolute values of the excitatory and inhibitory synaptic
currents acting upon the excitatory neurons, averaged over this population
[Mazzoni 2008, Buzsaki 2012]:

LEFP = R (|Iampa| + |caBal) , (A.14)

Here (---) denotes an average over all excitatory neurons [Berens 2010]. In
particular, for the LFP traces shown in Chapter 5 we have considered only
150 adjacent excitatory neurons from the whole population. The term Inpa
accounts for both the external excitatory heterogeneous Poisson spike train
and the recurrent excitatory synaptic current due to network connectivity,
while Igaga corresponds to the recurrent inhibitory synaptic current. R,
represents the resistance of a typical electrode used for extracellular measure-
ments, here chosen to be 1 M(2. In Figures 3.13 and 4.14 the LFP and MUA
was filtered with a 4th order Butterworth bandpass filter using MATLAB
function filter.m.






APPENDIX B

Methods

B.1 Spike triggered average

The spike triggered average (STA) of the LFP and of the inhibitory synaptic
current impinging on the neurons represent averages of these signals within a
window starting 50 ms prior to a spike and ending 20 ms after it, across the
total number of action potentials.

B.2 Multitapered power spectra

The LFP power spectrum was estimated using the multitaper method
[Thomson 1982] commonly used to reduce the variance of the spectra of
recorded signals, which are usually very noisy. This method is based on the
idea that different multitapered data segments give uncorrelated spectral esti-
mates, and when they are averaged, the variance of the mean is reduced. This
estimator was implemented in Chronux 2.10 [Bokil 2010]. The multitapered
power spectrum, S(f), is the average of the power spectrum of the LFP signal
multiplied by K orthogonal Slepian functions (in our case K=5), and further
averaged over N trials:

S =Dl =% (% S| LEP,u(f) !2) (B.1)

Here fﬁnk( f) is the discrete Fourier transform LF P(t) signal of the n-th
trial, multiplied by the k-th Slepian function (or taper). We have considered
data segments within a 500-ms sliding time window with an overlap of 50 ms,
padded with zeros up to a length of 512 in order to obtain an increased
sampling rate in the frequency domain. The resolution bandwidth is thus
+6 Hz. The firing rate power spectra are also obtained by the multitaper
algorithm, with the same sliding time window, overlap, and padding. In this
case the average instantaneous firing rate is obtained from an histogram of
the spiking times, with a 1-ms bin. All histograms and power spectra are
averaged over 20 trials, taking into account the aforementioned division in
time segments N = 420.
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B.3 Phase coherence

The phase coherence, Figure 4.7, and phase difference plots, Figure 4.8, are
obtained with the coherencyc.m function for continuous signals implemented

in Chronux 2.10, [Bokil 2010]. The normalization convention was taken as in

[Womelsdorf 2007]:
N

i S:ry(f7 n)
N 215, (f0l|”

where z and y denote the two signals whose coherence is being calculated.
Sey(f,n) is the cross-spectrum between these two signals. For each trial we
have considered data segments within a 500-ms sliding time window with an
overlap of 50 ms, padded with zeros up to a length of 512 in order to obtain an
increased sampling rate in the frequency domain. All trials represent 1.5 sec-
onds of activity and the connectivity, initial conditions, and noise realization
were varied from trial to trial. All phase coherence results are averages over
three groups of 200 trials, taking into account the aforementioned division in
time segments N = 4200 for each group.

Each term within the summation of Equation (B.2) is a unitary complex
value, e2?(/) Each term is obtained as the product of the multitapered power
spectrum S of the signals: Su,(f,n) = Si(f,n) - Sy(f,n), where % denotes
complex conjugate. Therefore, A¢(f,n) = ¢, — ¢, is the phase lag between
signals z and y in the data segment n, at frequency f. Averaging A¢(f,n)
across all the N data segments provides a mean angle A¢(f). Note that taking
the absolute value in Equation (B.2) gives the norm of the resultant vector
¥ LSV €290 which is the phase coherence C,,(f) itself. Hence Cuy,(f)
quantlﬁes how broad is the distribution of A¢(f,n) measures within the 27-
cycle. However, the direction of the resultant vector does not correspond to
A¢(f) (the mean of two angles gives the bisector without taking into account
the length of the vectors).

In Figure 4.9, A¢(f) is converted into a time shift by dividing by the
corresponding frequency 7.(f) = Af + . In all cases z is the fast signal (held
at Taapa = 5 ms) and y the slow signal (at 7qgapa > 5 ms). Negative A¢(f)
indicate a leader-laggard configuration, 7.(f) being negative and y following
.

B.4 Experimental methods

The experiments were carried out in the laboratory of Dr. Mavi Sanchez-Vives
(IDIBAPS, Barcelona). Brains from anesthetized male young ferrets (5 to 6
months old) were extracted. Coronal slices of 0.4 mm thick were obtained



B.4. Experimental methods 149

from the prefrontal cortex. Following transfer to the recording chamber, the
slices were incubated at 34-35 °C in a solution containing (in mM) 63NaCl,
126 sacarose; 2.5KCl, 2MgSO4, 1.25Na,HPO,, 2CaCl,y, 26NaHCO3. After
15 minutes, the slice solution was modified to contain (in mM) 126NaCl,
2.5KCl, 2MgSQOy, 1.25NasHPOy, 2CaCl,, 26NaHCO3. Finally, after approx-
imately 1 hour and 30 minutes, the solution was replaced by the oscillatory
solution containing (in mM) 3.5KCl, 1MgSO,, 1CaCl, (the remaining com-
pounds were left unchanged). 15 minutes later the temperature is increased to
36 °C. These conditions allow the emergence of spontaneous UP and DOWN
states.

The recordings of the extracellular activity were obtained with 2-4 M)
tungsten electrodes (FHC, Bowdoinham, ME). The LEFP potential was defined
as the raw data without filtering and amplified (x 1000). The MUA was
considered to be well described by the power change of the LFP at high
frequencies (> 200 Hz). This assumption relies on the fact that the normalized
density of the LFP power spectrum at high frequencies is proportional to the
instantaneous firing rate close to the electrode tip [Mattia 2002, Reig 2010].
When this normalization is performed with respect to the averaged power
spectrum at the DOWN states, the MUA provides dimensionless values of
the relative firing activity in the UP state with respect to the DOWN state.
MUASs were logarithmically scaled, log(MUA) to reduce large fluctuations of
the nearest elicited spikes to smaller ranges. UP and DOWN states were
discriminated by setting a threshold in the log(MUA), Figure B.1.

Figure B.1: Relative firing rate (balck) and LFP (blue) register in visual cortex in an
anesthetized cat. The red boxes represent the detected UP and DOWN states. From
[Ruiz-Mejias 2011].
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