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Resum

Des del naixement de la fotografia hi ha hagut sempre un gran inter�es en la possibilitat de
detectar una tercera dimensió en les imatges obtingudes per una c�amera. Aquesta tercera
dimensió permetria la diferenciació i filtrat dels diferents objectes presents a una escena, i
per tant facilitar molts del problemes actuals en la recerca de visió per computador. Per tal
d'aconseguir-la, diverses t�ecniques s'han anat utilitzant a través del temps, des de la cl�assica
estereoscopia fins a altres m�etodes més actuals com el Structure from Motion.

Durant els darrers anys l'evolució de la tecnologia ha fet possible l'aparició de disposi-
tius que permeten la captura directa d'aquesta informació 3D sense la necessitat d'una inter-
venció manual. L'ús de diferents espectres de llum com el l�aser o la llum infraroja, aix�́ com
la seva integració en els dispositius, han possibilitat aquesta important millora, acompanyada
al mateix temps d'una reducció en el preu dels components que ha fet possible el seu ús per
gran part de la comunitat de recerca.

Aquesta tesis est�a enfocada en el principals problemes derivats de l'ús de les anome-
nades c�ameres range que, a més de la imatge RGB usual, ofereixen una imatge addicional
indicant la dist�ancia als objectes de l'escena. Gr�acies a l'aplicació directa d'aquestes imatges
range, on cada p�́xel correspon a una distancia, una recreació 3D de l'escena capturada pot
ser obtinguda f�acilment. Una de les seves principals avantatges és el fet de que, si la c�amera
est�a correctament calibrada, el 3D obtingut es troba expressat en unitat f�́siques reals (per
exemple, en metres) i no pas en p�́xels.

Tot i aix�o, l'ús d'aquestes c�ameres range no és tan ideal com es podria suposar. Nor-
malment diverses captures d'una escena o objecte són necess�aries per tal d'aconseguir una
reconstrucció completa, i alguns materials poden produir problemes que interfereixen en el
correcte posicionament dels objectes.

Les particularitats de la representació 3D obtinguda fan que aquesta sigui apropiada per
fer-la servir com a suport per afegir-hi altres fonts d'informació, com ara imatges RGB
o imatges infraroges. L'estructura 3D obtinguda pot ser texturitzada amb aquestes fonts
d'informació, donant un resultat integrat que pot ser molt útil per solucionar problemes que
no serien possibles utilitzant les imatges de forma separada. Tot i aix�o, difer�encies en el
procés d'adquisició entre aquest tipus d'imatges poden produir alguns problemes quan són
fusionades.
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A més, per tal d'obtenir una reconstrucció 3D completa d'una escena, normalment és
necessari que la captura s'hagi fet des de múltiples punts de vista diferents. L'alineament de
totes aquestes estructures 3D obtingudes és conegut com registració multivista, on és nec-
essari identificar la posició i orientació de les c�ameres range en cadascuna de les presses
per tal de poder alinear-les correctament. Aquest alineament s'aconsegueix normalment fen
servir dos passos diferenciats: la registració de imatges rang parell a parell, i la posterior
minimització de l'error considerant simult�aniament totes aquestes parelles.



Abstract

Ever since the photography was born, there exists a high interest in the possibility of detecting
a third dimension in the images obtained by a camera. This third dimension feature would
allow the differentiation and easily filtering of the different objects present in the scene, and
therefore to facilitate some of the main problematics in the computer vision research. In order
to achieve this third dimension acquisition some techniques were historically applied, starting
by the classical stereoscopy or other more current methods like Structure from Motion.

During last years, the evolution of the technology has made possible the appearance of
devices which allows the direct retrieval of 3D information without the manual intervention
of the user. The use of different light spectrums like laser or infrared light and their integra-
tion inside the camera case have allowed this important improvement, accompanied at the
same time by a reduction of the components price which allows its use for the vast majority
of the research community.

This thesis focuses on the main problems obtained in the use of the so-called range cam-
eras, which, in addition to the usual RGB image, offers an additional image indicating the
distance with respect to the objects in the scene. Thanks to the direct application of these
range images, where each pixel corresponds to a distance, a 3D recreation of the observed
scene can be directly obtained. One of the main advantages is that, if the camera is correctly
calibrated, the 3D structure can be obtained with physical units of the real world (such as
meters), and not with pixels.

Nevertheless, the use of these range cameras was not as ideal as supposed. Usually some
captures of every object in the scene are needed in order to obtain a full reconstruction, and
different materials could produce problems that interferes the correct position of the object.
The presence of these inconveniences produce the necessity of using some algorithms to pro-
duce a correct final 3D structure.

The particularities of the 3D representation created from the range image become it ap-
propriate to use as a support plate for placing other sources of information, like visible images
or infrared images. The obtained 3D structure can be textured with these sources of informa-
tion, giving an integrated result which could clarify some problems that can not be solved by
using the images separately. However, differences in the acquisition process between these
types of images produce difficulties when they are fused.
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In addition, in order to obtain a full-side representation of a scene usually some 3D cap-
tures from different points of views are required. This addresses to the so-called multiview
registration problem, where it is necessary to identify the position and orientation of the range
camera for each viewpoint in order to correctly join the corresponding 3D structures. Current
technology devices like GPSs or IMUs could give this information, but usually is not accu-
rate enough, so common visual elements between different range images must be detected
in order to align them. This alignment is usually achieved by using a two-steps procedure:
the registration of pairs of range images between them, and the posterior minimization of the
global error for the whole set of images.
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Chapter 1

Introduction

During last years the range image analysis has focused a high attention in the research com-
munity and also in other sectors like videogaming, architecture, and geology. The possibility
of acquiring an additional source of information regarding the distance to the objects allows
new possibilities for the computer vision research, but also suffer from other drawbacks that
should be taken into account. The research literature about this topic is continuously grow-
ing, and it is expected to be enlarged in the following years as the corresponding technology
keeps improving the device possibilities and the technology increasingly arrives to the mass
public. Despite this attention, some work must still be done in order to achieve a level of
knowledge as high as the classical 2D image analysis.

The different possibilities for the registration of range images are the basis of this PhD
thesis. Existing algorithms are analyzed in the different sections of the document, and novel
methods are proposed in order to avoid the possible inconveniences in the treatment of this
particular images. Some of these methods can be upgraded from the traditional 2D image
methods, but it must be considered that the particularities of the range images require a special
treatment and a different point of view for their processing.

1.1 From range image to 3D point cloud

The main particularity of the range images is their direct equivalence to a 3D point cloud,
but with the advantage of being represented by a traditional 2D image and therefore with
all the advantages of processing and transmission for a typical image. A range image is, as
usually, composed by a number of pixels. What makes special a range image is that each
pixel specifies, using a colormap, the distance between the sensor and a specific point in
the scene. As can be seen in the range image shown in Figure 1.1(a), the distance to each
point of the scene is encoded with a different color so, assuming that the scanner is correctly
calibrated, the 3D point cloud corresponding to the range image can be easily obtained (using,
for example, the concept of the pinhole camera [25]). The resulting 3D point cloud obtained
can be seen in Figure 1.1(b).
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(a)

(b)

Figure 1.1: (a) Example of range image. Each color of the range image specifies the
distance of this point with respect to the 3D scanner. (b) Resulting 3D point cloud
after the conversion.

Obtaining a 3D point cloud from a range image allows two important features which
will be used along this PhD thesis. The first one is the particularity that the 3D point cloud
delivers the information in the standard metric system, that is, we can extract the information
between distances in meters instead of using image pixels and, therefore, we can avoid the
usual problems in 2D imaging with respect to the distance of the objects and the scale factor.

In addition, the obtained 3D point cloud offers an untextured structure which can be
textured with other sources of information (like visible image, infrared image or reflectance
image, among others), making possible the visualization of multiple types of information
simultaneously. These possibilities will be discussed in Chapter 2 of this thesis.

1.2 Range image acquisition techniques

Different technologies have allowed the improvement of the range imagery analysis in the
last years. From the traditional methods to the current systems, their basic purpose was to
obtain the 3D structure of the scene with the minimum intervention of the user. In addition,
some of these techniques are nowadays integrated in commercial devices and software, mak-
ing even easier the process of the acquisition. In the following subsections the most usual
techniques among the high number of possibilities are briefly introduced, explaining their ba-
sic operation and trying to group them into different categories. As it will be seen along this
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thesis, different possibilities for the processing of a range image will be available depending
on the particularities of its capture technique.

1.2.1 Multiple 2D images

The most usual technique in order to obtain the 3D structure of objects or scenes is the use of
multiple 2D images. In fact, this can be considered as a family of techniques due to the high
number of possibilities that exist in the current state of the art.

One of the most used techniques inside this category is the classical stereoscopy, where
two 2D cameras separated by a predefined distance aim to a similar position, as shown in
Figure 1.2. This method tries to emulate the vision of humans and some animals, where
two eyes observe the scene and the subject is able to guess the distance of the objects. The
geometric relationship established between these two cameras is known as epipolar geometry,
and describes all the elements needed in order to obtain the 3D coordinate for each point in
the scene as explained in [25].

(a) (b)

Figure 1.2: In (a) the same scene is captured simultaneously by 2 cameras, denoted
as Cl and Cr. Taking as example the point M , it is possible to estimate its position
by using the geometry shown in (b), known as epipolar geometry.

Using similar concepts to the stereoscopy but extending the number of views we can find
powerful techniques like the classical bundle adjustment [59], which iteratively estimates
the position of multiple 3D points in the scene as well as the parameters of the multiple
cameras used to capture them. The main drawback of this algorithm is the required processing
time, because of its condition as iterative algorithm and the high number of elements to be
estimated. Despite this, bundle adjustment is frequently used in the computer vision topic of
Structure from Motion, specially as the last refinement step.

Also inside the category of multiple 2D images we can consider the technique of defo-
cusing [42], which uses a set of 2D images acquired under varying focus settings. As the
previously explained techniques, depth from defocus also uses a set of 2D images from the
scene but in this case the images are obtained from the same viewpoint. The simplified op-
eration of this technique is depicted in Figure 1.3, where a camera model with two different
focus settings are presented: a first case where an specific point P of the scene is unfocused
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and a second case where the same point is correctly focused. Considering this second case,
displayed in Figure 1.3(b), the following equation can be applied:

1

d
+

1

di
=

1

f
(1.1)

Equation (1.1) is known as Gaussian lens law and asserts that, assuming that the internal
camera parameters of focal distance f and distance of the image plane di are known, it is
possible to estimate the distance d of the exterior point P . Using this principle, and changing
the focus parameter of the camera in order to focus different parts of the scene it is possible
to estimate the depths of different parts of an object and therefore be able to estimate its 3D
point cloud.

One of the main advantages of the depth from defocus technique is the non-necessity of
detecting correspondences between the images, since they are perfectly aligned because they
are obtained from the same viewpoint. On the other side, characteristics of the commercial
lenses available nowadays, make the depth from defocus technique appropriate only for small
distances and therefore only range images from small objects could be correctly obtained.

1.2.2 Time-of-Flight scanners

In opposition to the previously explained methods, current technologies for the 3D scene
capture are based on active systems, i.e., they emit energy in some different forms in order
to find out the distance of the objects with respect to the 3D scanner. Usual devices used
nowadays are the scanners with time-of-flight sensors [31] [24]. The basic idea behind this
technology is to estimate the distance of the objects thanks to the time delay of a signal
emitted by the scanner which bounces in the selected object and returns to the sensor. The
emitted signal can be a set of pulses, but nowadays a continuous wave signal is generally
used, as the example displayed in Figure 1.4. In case of using a wave signal the distance to
the object is estimated by using the phase difference �' between the emitted and the received
wave, using the following expression

Depth =
c

2

�'

2�f
(1.2)

, where c corresponds to the light speed (300.000 km/s).

Time-of-flight scanners can use different types of sources in order to send the signal. The
most used types are laser light or infrared light proceeding from a set of LEDs. The main
particularity for this decision is, in addition to the price, the maximum distance which can
be detected by the scanner. In order to avoid uncertainties in the distance estimation, the
maximum distance which can be detected will be in case where �' = 2�, so

Depthmax =
c

2 � f
(1.3)
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(a)

(b)

Figure 1.3: The convex lens refract all the light rays coming from a point, con-
centrating them in an specific internal point. The refraction in the lens has two main
particularities: horizontal light rays that are refracted by the lens are directed through
an internal point which are placed at a distance equal to the focal distance f , and light
rays that are passed though the center of the lens are not affected in their direction.
In (a) the concentrating point is not placed near the image plane, so the image of the
point P will be blurred. In (b), after moving the position of the lens (and therefore
changing the focal distance), the concentrating point coincides with the image plane,
so the image of the point will be correctly focused.
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Figure 1.4: Principle of time-of-flight scanners. The emitted blue wave is reflected
in the object and returns to the scanner. The sensor detects the reflected red wave
and the distance to the object is estimated thanks to the phase difference.

As can be seen the maximum distance of the device depends on the frequency of the
emitted signal, so, the higher the wavelength, the higher the distance which can be covered.
Assuming a laser 3D scanner with a pulse frequency of 200 KHz, the maximum distance
which could be covered by this time-of-flight scanner will be

Depthmax =
300:000:000m=s

2 � 200:000s�1
= 750meters (1.4)

The high accuracy achieved by the time-of-flight sensors based on laser light, in addition
to the high distances allowed (in some commercial products these maximum distances can be
higher than 5 kilometers), make them really appropriate for sectors like geology, archeology
and architecture, as pointed in [63] and [6].

1.2.3 Structured light

With the structured light technique a pre-defined pattern is projected to the scene, illuminating
all the objects in the field of view. At the same time, a sensor captures the different pattern
points or lines illuminating the scene, and thanks to the modification of the pattern it is able
to estimate the distance to all the objects. The pattern could have a high variability of shapes,
from a static set of points, a static set of lines, or also a moving pattern covering all the
scanned object. In addition, also the nature of the light can belong to different sources,
having the possibility of using visible light, infrared light or other kind of sources.

The main advantage of this technology is the low price in comparison to the time-of-
flight technology, due to the fact that it is not necessary to have an ordered matrix of laser or
infrared sources, only with one source should be enough. The accuracy of the resulting 3D
point cloud is usually not as accurate as with the time-of-flight sensors, and also the maximum
distance for the objects is lower, but it is an appropriate technology for some cases without
spending a high price. An example of scanning with structured light can be seen in Figure
1.5.

A well-known example of structured light scanner is the Microsoft Kinect device, which
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Figure 1.5: Pattern of structured light composed by a static set of lines. The shape
produced by the illumination in the objects make possible the estimation of their 3D
point cloud.

floods the scene with a pattern of infrared points as can be seen in Figure 1.6. As previously
stated, thanks to the modification of this point pattern, the Microsoft Kinect device is able to
guess the distance to the objects in the scene.

Figure 1.6: Infrared pattern projected by the Microsoft Kinect device.

1.3 Outline of this thesis

This PhD thesis covers different variants for the registration of range images, accordingly
separated with the different chapters of the document. The introduction explained so far does
not include some general aspects related to the range images, as they are more related with
some of the processes explained in the following chapters. For this reason, some state-of-the-
art approaches and classical methods are accordingly explained in their respective chapters.

The outline of this thesis document can be separated into three main parts: the first
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one includes the integration of range images with other types of information, producing a
final 3D structure which includes all the information from multiple sources at the same time.
The second part, including Chapter 3 and Chapter 4, deals with the registration of pairs of
range images, producing the displacement of one of these images in order to perfectly fit
with the other one. The multiple pairwise registrations achieved serve as basis for the so-
called multiview registration, which minimize the global error of the final registration of all
the range images at the same time. Finally, in the third part, an specific system for the 3D
modeling using range scanners is presented.



Chapter 2

Multisensorial registration

In this chapter we tackle the problem of joining information proceeding from dif-
ferent data sources, like visible imagery, infrared imagery or thermal imagery. We
start with a discussion of the nature of the camera intrinsic parameters and the need
of a calibration in order to fully categorize all the sensors involved in the process.
Once all the sensors are correctly calibrated, it is necessary to guess the relationship
between them. The relative positions of the sensors establish their contribution in the
final multisensorial registration, using the point cloud obtained from the 3D scanner
as support plate for the other sources. The use of estimation algorithms for searching
the relative position and orientation is analyzed, and the experimental results show
the good adaptation of the estimation to changing configurations.

2.1 Introduction

In this second chapter we study the methods used to achieve the so-called multisensorial
registration, i.e., the fusion of the data coming from multiple devices at the same time. With
the multisensorial registration we can achieve a 3D representation of the scene textured with
the information of another sources, achieving a more complete and realistic result. This step
is quite straightforward and simple to implement, but its results are crucial in the posterior
steps which will be explained in the following chapters. An example of final result of the
multisensorial registration, joining 3D and visible information, can be seen in Figure 2.1,
which corresponds to the same captured scene already shown in Figure 1.1.

In order to achieve the multisensorial registration two different steps are needed. The first
one consists in the estimation of the intrinsic parameters for each one of the devices involved
in the process. In the second step the so-called extrinsic parameters are also estimated. The
extrinsic parameters represent the relationship between the devices involved in the process,
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Figure 2.1: 3D point cloud textured with the information of a visible camera.

and include the relative positions and orientations between them.

The obtaining of both intrinsic and extrinsic parameters is an essential element in most of
registration processes or georeferentiation processes. Their result depends in a high degree in
the nature and the characteristics of the devices involved in the capture process. In Figure 2.2
two different cases composed of different devices can be seen, one with a platform including
a 3D scanner, a visible camera and an IR camera, and a second one with a Microsoft Kinect
device, which integrate in its fabrication design an RGB camera and an infrared camera which
is used for the 3D capture.

2.2 Intrinsic parameters

Usually all the camera manufacturers give in their specifications the information about the
camera. These specifications are in a higher part belonging to the camera optics: focal dis-
tance, CCD size, aperture of the iris, etc. However, small differences in the fabrication pro-
cess or the incorrect maintenance of the device can produce that two cameras belonging to the
same model have small differences in these values. The calibration consists in the obtaining
of these value by an empirically process, using a set of algorithms which will allow us to
adjust the camera specifications.

In order to obtain the multisensorial registration, all the cameras which are used in the
fusion process should be previously calibrated to obtain their optical specifications. The main
parameters obtained in the calibration process are stored in the calibration matrix K. This
matrix defines the parameters which specify an ideal pinhole camera, and its format is the
following:

K =


f · resx
CCDx

f · resx
CCDx

· cot(Θ) ppx

0
f · resy
CCDy

ppy
0 0 1

 (2.1)



2.2. Intrinsic parameters 11

(a) (b)

Figure 2.2: a)Platform of integration for a LADAR sensor, an RGB camera and
an infrared camera. b) Microsoft Kinect device, including an RGB camera and an
infrared camera, which is used to estimate the depth of the scene.

, where f is the focal distance, (resx; resy) are the horizontal and vertical resolution of the
camera, (CCDx; CCDy) are the horizontal and vertical size of the CCD sensor, (ppx; ppy)
are the coordinates of the principal point, and � is the angle between X and Y axes.

A parameter which does not appear in the matrix K, due to the fact that this is the
parameter which produces that the camera does not represent an ideal pinhole camera, is the
distortion. The distortion us usually produced by the imperfections of the camera optics,
specially for the cases of very small focal distances. The distortion is the reason, among
others, of some cases where straight lines appear as curved, specially in the periphery zones
of the image. An example can be seen in Figure 2.3.

There exist two different types of distortion: the tangential distortion, which is produced
in the center of the image; and the radial distortion, which is produced as we are separating
from the center of the image. Usually the tangential distortion can be discarded, because
modern camera offer a good behavior in the central zone of the image. With respect to the
radial distortion, it is usually expressed as a vector of coefficients kc, and is getting higher as
long as we are getting further from the center of the image:

distortionx = (xc � x)(k1r + k2r
2 + k3r

3 + :::)
distortiony = (yc � y)(k1r + k2r

2 + k3r
3 + :::)

(2.2)
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(a) (b)

Figure 2.3: Original image and image with distortion compensated. As can be seen
in (b), in the periphery zones of the compensated image the walls remains straight.

, where (x, y) are the coordinates of the point where we want to evaluate the distortion,

(xc, yc) is the center of the radial distortion, and r =

√
(x−xc)2+(y−yc)2

rmax
, where rmax is

equal to
√
x2
c + y2

c .

The algorithm that we will use to estimate the intrinsic parameters of the cameras will be
the one developed by Zhang in [68], where a pattern similar to a chessboard is captured from
different viewpoints and positions. The transition points between black and white parts of the
pattern are detected and, assuming that the plane defined from the pattern is assigned a value
of Z = 0, the algorithm is able to estimate the intrinsic parameters of the camera thanks to
the concept of homography between planes. Firstly only the parameters of the calibration
matrix K are estimated (assuming that we are dealing with an ideal pinhole camera) and in
a second step, once the parameters have been fixed, the distortion is estimated thanks to an
iterative algorithm based in the maximum likelihood criteria.

2.3 Extrinsic parameters

As previously explained the so-called extrinsic parameters include the position and orien-
tation of each device in the 3D space. As can be seen in Figure 2.4, the 3D scanner and
the visible camera are separated at a defined distance and have different orientations. This
implies that each device captures the scene using its own coordinate system, and therefore
the images obtained from each device will be expressed in different coordinate systems. The
difference of position between both devices is small, and it could be considered as zero if we
are capturing objects at a high distance, but the difference of orientation it is more evident
and can affect notably to the fusion process.

In terms of mathematics, the displacement and orientation differences between the 3D
scanner and the camera can be modeled as a rotation matrix R and a translation vector t.
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Figure 2.4: Coordinate system for the 3D scanner and for the visible camera.

Graphically speaking, and as can be seen in Figure 2.5, R would correspond to a 3 × 3
orthonormal matrix which specifies the rotation needed along the 3 axis in order to align the
3D scanner coordinate system and the camera coordinate system, and t would correspond
to the tridimensional vector which indicates the 3 components of displacement between the
origins of the coordinate systems.

A possible procedure in order to estimate the rotation and translation needed would be
doing it manually, measuring the distances between the origin of the sensors and their ori-
entations. Obviously, this method is not the most appropriate one and will obtain inaccurate
results. In addition, it must be taken into account that probably it will be necessary to repeat

Figure 2.5: Transformation of the 3D scanner coordinate system to the camera co-
ordinate system. A rotation and a translation are needed in order to match both
coordinate systems.
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this calibration regularly after specific time, because the physical disposition between the 3D
scanner and the cameras can change occasionally due different factors like transportation or
small vibrations. For these reasons it is necessary the availability of an automatic or semi-
automatic method, which allows the obtaining of a reliable calibration and could be repeated
regularly without big efforts. At this point appear the so-called pose estimation algorithms.
These mathematic algorithms allow the estimation of the position and orientation of an object
given a set of correspondences between pixels of an image and 3D coordinates of the scene.
In other words, if we are able to known the 3D coordinates of some pixels in an image, these
algorithms are able to find out the orientation and the position of the camera where the image
has been taken.

Expressed in a mathematical form, and taking into account the particularities of the pin-
hole camera, the pose estimation algorithms try to estimate R and t by solving an equation
system like the following:

li

24 xi
yi
1

35 = K

0@R
24 Xi

Yi
Zi

35+ t

1A (2.3)

, where i = 1; : : : ; N represents the different correspondences between the image pixels�
xi
yi

�
and the 3D coordinates

24 Xi

Yi
Zi

35. With respect to the rest of the parameters, K corre-

sponds to the intrinsic parameters (as it has been defined in Equation (2.1)) and li represents
the projection depth for each pixel. If we observe the equation system, it is possible to see
that it contains N equations with a total of N + 6 unknown variables (N variables of li, 3
variables of t and 3 variables of R), so an specific method for its solving will be needed.

Traditionally, the problem of the pose estimation was solved by using photogrammetry
techniques like the Direct Linear Transformation (DLT) [1]. The DLT method generate two
lineally independent equations for each point correspondence, giving a over-dimensioned
equation system which can be easily solved by using Singular Value Decomposition (SVD).
In the 90's decade DeMenthon developed his POSIT algorithm [12], which estimates a first
approximation of the pose considering that the image was obtained by an orthographic pro-
jection instead of a perspective projection. In a second phase the algorithm repeats iteratively
the same process, with the only difference that the image points are re-calculated considering
that the image was taken from the pose obtained in the last iteration and assuming again an
orthographic projection. A more recent approach was the one presented by Lu et al. [36],
an iterative algorithm which successively improves the estimation of the rotation matrix, and
thereafter estimates the translation vector. Each iteration tries to minimize the sum of the
mean quadratic error between the original points of the image and the reconstructed points
(points which will be observed in case that the image was really taken from the position
obtained in the last iteration).

Another interesting algorithm is the one developed by Fiore [17]. Its main strategy was
to develop some combinations of the equations obtained from (2.3), in order to cause that the
rotation matrix and the translation vector could be discarded. The Fiore algorithm needs a
minimum of 6 point correspondences between the 3D point cloud and the visible image, but
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obviously better results can be obtained if we increase this number. GivenN correspondences
between pixels of the image and 3D coordinates, the Fiore algorithm can be summarized
as [21]:

1. Express the Equation (2.3) in the following form:

K�1lipi = [Rjt]Pi i = 1; : : : ; N (2.4)

, or analogously

K�1 [l1p1; l2p2; : : : ; lNpn] = [Rjt] [P1; P2; : : : ; PN ] (2.5)

, where

pi =

24 xi
yi
1

35 and Pi =

2664
Xi

Yi
Zi
1

3775 (2.6)

2. Let's denote S = [P1; P2; :::; PN ] and r = rank(S). We make the decomposition of
S by using SVD, S = UDV T and denote V2 to the matrix formed by the last N � r
columns of V , i.e., the ones that form the null-space of S. Therefore SV2 = 03�(N�r),
so:

K�1[l1p1; l2p2; :::; lNpN ]V2 = 03�(N�r) (2.7)

3. This equation can be re-formulated as

0BBB@
26664
K�1p1 0 : : : 0

0 K�1p2 : : : 0
...

...
. . .

...
0 0 : : : K�1pN

37775
26664

l1
l2
...
lN

37775
1CCCA

(3)

V2 = 03�(N�r) (2.8)

, or expressing the matrices in a more compact form

(DL)(3)V2 = 03�(N�r) (2.9)

, where the symbol “(3)” indicates vector transposition [40].

4. Applying vector transposition to both parts of the equation we obtain:

�
(DL)(3)V2

�(3)

= 0
(3)
3�(N�r) ()

�
(V T2 
 I3�3)D

�
L = 0 (2.10)

, where symbol “
” indicates Kronecker product [40].
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5. From Equation (2.10) we can estimate the depth matrix L (which contains all the depth
values li), depending on a scale factor, by solving a null-space problem.

6. Once that all the variables placed at the left side of the Equation (2.4) are known,
we obtain a classical problem known as Absolute Orientation, which solution can be
found by different methods, like the ones presented by Horn [26] or by Arun et al. [3].

2.4 Experimental results

In order to obtain an evaluation of the multisensorial registration some tests were performed.
The estimation of the intrinsic parameters is well documented in the literature and therefore
some experiments have been already realized, as can be found in [67] and [68]. For this rea-
son, the main motivation is to analyze the behaviour of Fiore's pose estimation algorithm, and
two different experiments are realized: the study of the error in the estimation of the extrinsic
parameters of the camera with respect to the 3D scanner, and the study of the reprojection
error of the pixels.

2.4.1 Accuracy of the extrinsic parameters estimation

The aim of this experiment is to evaluate the estimation of the rotation matrix and the trans-
lation vector of the camera with respect to the 3D scanner, evaluating different errors in the
selection of the pixels in the image. For this reason an ideal scenario with perfect correspon-
dences between image pixels and 3D coordinates is established, and afterwards a gaussian
noise is applied to the image pixels in order to simulate the possible inaccuracies in their
manual selection.

Two different contexts will be analyzed, depending if we are acquiring 3D points placed
at a short distance or a high distance from the 3D scanner. In general terms, we could con-
sider that these two contexts correspond to the two situations displayed in Figure 2.2, i.e., a
LADAR sensor which can deliver 3D information until about 1 kilometer of distance and a
Microsoft Kinect camera which has a maximum range below 10 meters.

(a) Accuracy in the short range case

For the evaluation of the accuracy a Matlab script was created. In each execution the
following steps are performed:

� Assuming that the origin of the 3D scanner is placed at point [0,0,0], a 3D point
is randomly placed at a distance lower than one meter from this origin, acting
as optical center of the camera. In addition a random orientation of the camera
axes is considered, but giving some restrictions: the Z direction of the camera is
considered similar to the Z direction of the 3D scanner, so only a random value
between -10 degrees and 10 degrees is considered for both the yaw and the pitch
angles. On the other side, the roll angle value is completely unpredictable and a
random value between 0 and 360 degrees is considered.
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Figure 2.6: Accuracy of the translation and the rotation estimation in the short range
case, for different values in the number of correspondences.

� A total number ofN random 2D points are created, acting as pixels of the image.
These random values are obtained between [0,0] and [2240,1488], considering
this last pair as the resolution of our camera. Also N random values between 20
and 200 are computed, acting as depth values for each one of the pixel images.
Assuming a focal distance of 50 millimeters for our camera, this gives a set of
3D points placed between 1 and 10 meters away from the 3D scanner.

� For the simulation performance a variable gaussian noise is added, in order to
simulate the possible inaccuracy in the selection of the set of pixels. The Fiore's
algorithm is applied, and their results are compared with the original values. Two
different measures are computed: the norm between the obtained translation
vector and the original one, and the mean of the 3 angular errors corresponding
to the roll, yaw and pitch angles.

One hundred simulations are performed for each gaussian noise level, and the mean of
the obtained results are displayed in Figure 2.6. In addition, some possible values for
the number of correspondences N have been considered, starting from the minimal
number of 6 to a final value of 50 correspondences.

As can be seen in the figures, Fiore's method works perfectly if the point correspon-
dences are really accurate and noise level is near to zero. In case of noise, the errors
increase almost in a linear way. In addition, as expected, if the number of correspon-
dences is increased the result is more accurate both in the translation and in the rotation
estimation. This improvement shows a behaviour similar to an exponential decay. As
can be seen, there exists a high reduction of error when the number of correspondences
N is increased from 6 to 8, but this improvement is not proportional when the number
of correspondences is set to higher values like 10 or 12. It is necessary a high increase
in the value of N (N = 20 or N = 50) in order to obtain a significant reduction of the
error.

In addition to the global results displayed in Figure 2.6, also the results of the estimated
camera pose for 100 executions can be seen in Figure 2.7. This particular example is
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(a) (b)

Figure 2.7: Perspective view and zenith view of 100 pose estimations in a single
simulation, using 6 point correspondences and noise with standard deviation 6. Plane
z = 0 is displayed for a better scene understanding.
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Figure 2.8: Accuracy of the translation and the rotation estimation in the large range
case, for different values in the number of correspondences.

obtained by using a total number of 6 correspondences and a gaussian noise level of 6
pixels, and obtains a set of camera poses affected by their specific noise in the points
correspondences. As can be seen, the estimated camera poses are similar between
themselves, with little variations both in position and orientation of their axes.

(b) Accuracy in the large range case

In order to simulate the acquisition of 3D points in the large range case the same
procedure was applied, with the only difference in the depth values of the pixel images.
In this case, the values are comprised between 200 and 20000, which produces 3D
points placed between 10 and 1000 meters away from the 3D scanner. Applying also
100 simulations for each gaussian noise level, the obtained results are displayed in
Figure 2.8.
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Figure 2.9: Reprojection error for different values in the number of correspon-
dences.

In comparison to the results in the short range case, we can see that, as expected, there
exists a high improvement in the rotation error but on the other side the translation
error is getting worse. In addition, the estimation results in the large range case seems
to be less predictable than the short range case, as it can be observed in cases where the
accuracy of the pose estimation does not vary substantially when the gaussian noise
is increased or the number of correspondences is changed. This behaviour can be
explained by the higher diversity in the position of the 3D points (from 10 to 1000
meters) in comparison with the short range case (from 1 to 10 meters).

2.4.2 Reprojection error

We can consider that in the case of multisensorial registration we are not specially interested
on the accuracy of the rotation matrix and the translation vector, but on the error in the pro-
jection of the image pixels in the 3D point cloud. For this reason we study the so-called
reprojection error, i.e., the difference, in the image plane, between the original pixel and the
reprojected pixel according to the estimated pose of the camera.

Again, a Matlab script is executed several times and with a variable value of N . In
addition to the steps already explained in Section 2.4.1, for each execution a new image
plane is created according to the estimated rotation and translation, and the 3D points are
backprojected to this image plane. The pixel position of these points are compared to the
original ones, and the resulting values for 100 simulations are shown in Figure 2.9. In this
experiment there exist no separation between the sort range case and the large range case,
since the reprojection error between these two cases does not vary substantially.

As a representative example, also the representation of the image plane for different val-
ues of correspondences can be seen in Figure 2.10 and Figure 2.11, showing at the same time
the original pixel values, the pixel values with the added gaussian noise, and the reprojected
pixels. As expected, for a higher number of correspondences N the set of obtained results in
the reprojection error is usually more compacted.
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Figure 2.10: Image plane representation of a single simulation using 6 point corre-
spondences and noise with standard deviation 10. Red points indicate the original
position of the image points, blue points indicate the original image points added
by the gaussian noise (100 blue points) and green points indicate the reconstructed
points using the current estimated camera pose (100 green points).

Figure 2.11: Image plane representation of a single simulation using 15 point cor-
respondences and noise with standard deviation 10. Red points indicate the original
position of the image points, blue points indicate the original image points added
by the gaussian noise (100 blue points) and green points indicate the reconstructed
points using the current estimated camera pose (100 green points).
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2.5 Conclusions

Multisensorial registration consists in the joining of multiple sources of information at the
same time. In the case of the study of this PhD thesis, it is a required and crucial process,
since its results will be used afterwards in the following chapters.

Two main steps are needed in the execution of the multisensorial registration. The first
one is the estimation of the intrinsic parameters of all the devices involved in the process,
which is a typical situation in computer vision literature. The second step consists in the es-
timation of the extrinsic parameters between the cameras, which include the relative position
and orientation between them.

For the estimation of the extrinsic parameters we decided for the algorithm presented
by Fiore, which combines some equations regarding correspondences between pixels in the
image and 3D points in the point cloud. The experimental results obtained with the Fiore
algorithm achieve a good estimation of the extrinsic parameters of the camera with respect
to the 3D scanner, but it must be considered the case if we are using 3D points far away or
near to the scanner. In case we are obtaining point clouds in the near range (up to 10 meters)
we can obtain a better estimation of the position of the camera. On the other side, using 3D
points at a high distance, the estimation of the camera orientation will be more accurate. For
this reason it is advisable to use both cases in the calibration process, achieving an accurate
result in position as well in orientation.
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Chapter 3

Pairwise Registration

Registration of range data becoming from different scanner positions is a current
topic in the computer vision research. In this chapter we introduce its estimation
using different algorithms in the state-of-the-art literature. Matching between the
image descriptors allows the estimation of an initial rigid transformation between the
views, which later can be refined with the Iterative Closest Point algorithm in order
to achieve a more accurate registration. A new descriptor based on the covariance
between features is presented, and also a method taking advantage of the typical
structures of an urban scene is proposed, detecting large planes representing walls of
buildings and filtering them in order to achieve a better accuracy.

3.1 Introduction

As seen in the last chapters, range scanning has become a quite popular system for the capture
of 3D environments. The possibility of combining the 3D representation and a camera in
order to apply a texture achieves a precise representation of scenes with a minimum effort.

However, one of the main problems of the range imaging is the necessity of joining 3D
structures belonging to different captures in order to obtain the full representation of an object
or a scene. Registration of 3D structures is a current topic in modern literature. The typically
used variant is the so-called pairwise registration, where two range images taken from un-
known positions are registered to each other. In this Chapter 3 different possibilities for this
pairwise registration will be studied and evaluated. In the following Chapter 4 the registra-
tion of multiple 3D structures at the same time will be analyzed, but in order to achieve this
multiple registration the pairwise registrations between pairs of 3D views must be previously
finished.

The structure of this chapter is as follows: in Section 3.2 we introduce the typical proce-
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dure to achieve the pairwise registration, composed by a first coarse registration which is used
as approximation to the fine registration. In Section 3.3 an overview of the state-of-the-art
algorithms of keypoint descriptors is presented. A novel descriptor based on covariance is
presented in Section 3.4, and a possible pre-processing of the range data in order to improve
the registration is explained in Section 3.5. Finally, the conclusions for this chapter can be
found in Section 3.6.

3.2 Coarse registration and �ne registration

The usual method for the pairwise registration of 3D point clouds is the so-called Iterative
Closest Point (ICP) [4] algorithm, which performs an iterative process in order to minimize
the mean square distance between two 3D point clouds, one of them including absolutely
the other one. For each 3D point in the first point cloud, a point of the second point cloud
is chosen according to the lowest Euclidean distance. The algorithm find the rotation and
translation which minimizes the mean distance between all the point pairs, and this process
is iteratively repeated until a minimum value is achieved.

Since the publication of ICP some modifications of the algorithm have appeared in the
literature, achieving better results and advantages [8, 22, 48]. Some of these modifications
include the use of weights for the pairs of points, changes in the error metric, or the use of
additional attributes of the point clouds (for example, the use of color).

Also, at the same time where ICP was published, Chen and Medioni developed also its
fine registration algorithm [7], based on the distance minimization between points and planes
instead of the minimization between points. In this case, for each point belonging to the
first set its normal vector with respect to the surface is computed, and the intersection of this
normal vector with the second surface is estimated. This intersection on the second set of
points defines a tangent plane on the second surface. The distance which must be minimized
is the distance between the initial point and this tangent plane. Each iteration of this algorithm
is generally slower than the point-to-point version used in ICP, but experimental results in the
literature demonstrates that the convergence of the point-to-plane algorithm achieves a better
convergence [48].

Nonetheless, the main problem of the ICP and their derived algorithms is the need of hav-
ing a good initialization, otherwise the registration could converge to a local minimum and
not to a global minimum. For this reason usually the main topic on the 3D registration liter-
ature is focused on the obtaining of this initial approximation, known as coarse registration.
The usual method in order to obtain this initial approximation is by estimating some corre-
spondences between points of the two 3D point clouds, allowing the rigid transformation of
a limited set of 3D points in order to register with the other set of 3D points, and therefore
making also possible the registration of the two whole 3D point sets. A simple example can
be seen in Figure 3.1, where the visible image associated to each 3D view is shown.

Once these correspondences have been established, both sets of points can be registered
by solving the classical problem of Absolute Orientation, defined by the following equation:
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Figure 3.1: Point correspondences between two images representing a similar scene
from different viewpoints. In addition to these visual images, it is expected that the
corresponding range images were also available. The combination of these point
correspondences determine a rigid transformation between the 3D structures.

Ai = RBi + t i = 1, ...,N (3.1)

, where Ai and Bi specify the two sets of N points and [R, t] is the rigid transformation
needed to align all the point belonging to Bi with the points belonging to Ai.

As explained in [3], the problem of Absolute Orientation can be easily solved by using
the Singular Value Decomposition. Letting

Âi = Ai −A i = 1, ...,N

B̂i = Bi −B i = 1, ...,N
(3.2)

, where A = 1
N

∑ N
i=1Ai and B = 1

N

∑ N
i=1Bi, we can compute the 3 x 3 matrix M :

M =
N∑
i=1

ÂiB̂i
T

(3.3)

Applying SVD we obtain M = UDV T , and we can estimate the rotation matrix by

R = V

1 0 0
0 1 0
0 0 det(V UT )

UT (3.4)

Once we obtained the rotation matrix, the translation vector can be easily calculated by

t = A−RB (3.5)

The establishment of these correspondences between the 3D point clouds could be done
by multiple forms. The easiest way is by selecting them manually after the scanning process,
or it is also possible to use physical markers which are attached at the scanned object. Finally,
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the other possibility is by using computer vision algorithms in order to detect similar features
in both 3D point clouds. In the following sections the different possibilities using computer
vision algorithms are explained, and also a novel descriptor using covariance concepts is
evaluated.

3.3 Correspondences establishment

The detection, description and matching of points from complex scenes is a challenging task
for many computer vision applications such as tracking, object modeling and recognition or
scene reconstruction. Existing approaches make use of all the available cues in the usual two
channels of information: visual photometry such as color or textures, and shape and depth
information from 3D sensors. In this section some different approaches in order to establish
these matchings are presented, separated according to their basic functioning.

3.3.1 Using visual information

Thanks to its vast study in the computer vision field, the matching of features in 2D images is
a main topic in the literature. Among the different possibilities, the SIFT method [35] is prob-
ably the most usual and well-known algorithm. SIFT delivers features for specific keypoints
in an image, being invariant to changes in translation, rotation and scale; and partially invari-
ant to affine projections and changes in illumination. One of the main steps of this method is
the creation of its descriptor, which encode the gradient magnitudes and orientations for the
neighborhood of some pixels in the image. In order to achieve the invariance with respect to
the orientation, these magnitude coordinates and the orientations are rotated with respect to
the orientation of the keypoint, which was found in the keypoint detection process.

In our case of study, since we have registered the range images with their corresponding
visible images as explained in Chapter 2, we can directly search for correspondences in the
visible images. Once the correspondences have been established, we can easily convert these
2D pixel matching in 3D points matching.

3.3.2 Using 3D structure information

In opposition to the 2D visual descriptors, there also exist descriptors which use exclusively
the 3D information from the scene. Inside this category exist some popular approaches like
the point signatures [9], the 3D shape contexts [20] or, more recently, the Fast Point Feature
Histograms [49]. However, as in the case of 2D descriptors, there exist a predominant method
in the literature, which corresponds to the spin images by Johnson and Hebert [30].

The basic idea of the spin images is to represent the proximity structure for every 3D
point in a surface or object. First step for its computation is the estimation of the surface
normal n for the point p where we want to create the spin image. Combination of the 3D
point p with its normal vector n is called oriented point. The oriented point defines a plane
and also a cylindrical coordinate system. Considering a single point in the proximity called
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pi, two coordinates can then be defined: a radial coordinate α and an elevation coordinate β.
Coordinate α defines the distance of point pi with respect to the line defined by the oriented
point, and coordinate β defines the distance of point pi to the tangent plane defined by the
oriented point. The function which maps a 3D point into a 2D representation is known as
spin map, and its graphical and mathematical representations are shown in Figure 3.2 and in
Equation (3.6).

β = (pi − p) · n

α =
√

(pi − p)2 − β2

(3.6)

Figure 3.2: Computation of the spin image at point p.

Once all the points in the proximity have been expressed according to the coordinates α
and β, we obtain a 2D image with a cluster of dots. At this point the second step of the spin
image generation starts: the 2D image can be seen as an accumulator, resulting in darker areas
where the accumulation of points is higher and lighter areas where the accumulation is lower.
For this accumulation result we must previously define a bin size, defined as the geometric
width of the bins in the spin image. The final result of the spin image should be a gray-level
image normalized between 0 (white color) and 1 (black color). A correct establishment of
this bin size can be crucial for the success of the pairwise registration, as seen in Figure 3.3.
The use of this accumulation using the bin size makes possible the resolution invariance of
the spin image descriptor.

Spin images from two different scans representing the same object will be similar but not
exactly, so in order to compute the possible matching between two spin images we can use
a correlation coefficient. The higher the correlation coefficient, the more probable that both
points represent the same vertex in the object or surface.
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Figure 3.3: Dependence of bin size in the creation of the spin image

3.3.3 Using simultaneously 3D and visual information

While previously explained methods have given successful outcomes in both areas, there exist
also the possibility of fusing information from both two worlds and provide a descriptive unit
which is able to encode shape and visual information together.

A first approximation to the problem of fusing both cues of information can be found in
works like [55] and [64]. Taking into consideration the problem of the SIFT descriptor in
order to deal with high differences in the viewpoints of an scene, these works make use of
the 3D information by estimating the surface normal of the 3D coordinate and performing an
homography of the visible image as it would be seen from the front side of the keypoint. An
example of this process can be seen in Figure 3.4.

Figure 3.4: Thanks to the 3D information of the range image, we can estimate the
homography. The SIFT descriptor is computed in this second image and afterwards
backprojected to the original image.

With this homography we can, in part, avoid some of the possible drawbacks produced
by a high difference in the viewpoint. However, it is not expected to solve completely these
problems. For this reason, during last years some descriptors which encode intrinsically at
the same time information from the 3D shape and the texture have been published in the
literature. A good example is the MeshHOG descriptor [66], which performs a histogram of
gradient of the neighborhood of a 3D point by using separately the texture information and the
3D curvature. In order to include both cues in the final descriptor, both representations can be
directly concatenated. This same methodology is also used from the authors of the CSHOT
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descriptor [57], which concatenates their SHOT descriptor [58] and the color information.

In addition to the previously presented descriptors, we have developed a covariance-
based descriptor which is able to gather shape and visual information together within a radial
3D area. Thanks to its fundamentals, this descriptor is robust to noise and point-view changes,
and because of its low computational cost it can be extended to a multi-scale context for better
discrimination performance. In addition, the own descriptor offers a procedure for keypoint
extraction, so salient points in the scene can be detected at the same stage where descrip-
tors are being obtained. The detailed functioning and formulation of this novel descriptor is
presented in the following section.

3.4 Covariance descriptor for fusion of 3D shape and tex-
ture information

Covariance matrices in the computer vision context arose as a way for relating several image
feature statistics inside a region of interest. From a statistical point of view, the concept of
covariance is considered as a measure for the strength of correlation between two or more
sets of random variables, or, more informally, “how several variables change together”. This
usage of covariance magnitudes as descriptive units was first introduced by Tuzel in [61] for
the detection of objects and faces. The approach was extended to more concrete cases for
pedestrian detection [62]; or used by other authors also for detection of objects, not only
from visual cues [65], but also for 3D shape description as explained in [16].

Following the aforementioned works, a novel descriptor which is capable of encoding
shape information as well as visual cues in 3D scenes is presented.

3.4.1 3D covariance descriptor construction

A brief reminder of statistical notions says that the covariance measure between two random
variables X and Y can be computed as:

cov(X;Y ) =

NX
n=1

(xn � �x) (yn � �y)

N
(3.7)

where N is the number of samples of each variable and �x and �y are their sample mean. Co-
variance value is zero if the variables are absolutely uncorrelated, positive if both of them tend
to increase together, and negative if one of the variables increases while the other decreases.

For a set of F different variables, this formulation can be extended to a matrix notation:

Ci,j = cov(xi; xj) = h(xi � xi) (xj � xj)i;8i; j 2 f1::Fg (3.8)

Thus, the result will be a symmetric matrix C of size F � F where the diagonal entries
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will represent the variance of each one of the variables, and the non-diagonal entries will
represent their correlations.

Bringing back these notions to the descriptor definition, the set of random variables must
correspond to a set of observable features which can be extracted from points in the scene,
e.g. pixel color values, depth magnitudes, 3D coordinates, etc. Therefore, the first step for
the computation of the descriptor is the definition of a feature selection function for a given
point p and its neighborhood of radius r in the scene, Φ(p, r). For the case of color and depth
fusion, we define the feature selection function as follows:

Φ(p, r) = { Rpi Gpi Bpi αpi βpi γpi } ∀pi s.t. | p− pi | ≤r (3.9)

, where visual information is taken into account in terms of R, G and B color values; while
α, β and γ values are angular measures which encode the shape information of the points
within the neighborhood of the descriptor center. Their graphical representation can be seen
in Figure 3.5, and are obtained in the following way: assuming p as the center point of the
descriptor and pi as each one of the points within its neighborhood, α is the angle between
the normal vector in p and the segment from p to pi; β is the angle between the same segment
and the normal vector in pi; and γ is the angle between both normal vectors in p and pi.
As these selected features are relative measures in terms of shape description, their usage in
the covariance descriptor formulation guarantees a rotation and view invariance, which is a
desired behaviour in terms of descriptor performance.

Figure 3.5: Scheme of the used features for shape information encoding. For each
pi in the neighborhood of p, α, β and γ are the rotational invariant angular measures.

Then, for a given point p of the scene, and being { φ i } i=1..N the set of 6-dimensional
points obtained by the feature selection function within its neighborhood (according to the
terms defined in Equation (3.9)) the covariance descriptor can be obtained as:

Cd (Φ(p, r)) =
1

N − 1

N∑
i=1

(φ i − µ ) (φ i − µ )
T (3.10)
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where � is the mean of the points fβigi=1..N .

In addition, in order to improve the possibilities of the descriptor, it is easy to extend it
to a multi-scale framework by just adding several radius magnitudes for the neighborhoods
around the descriptor center point. Therefore, each point in the scene will have a set of
descriptors:

CM (p) = Cd (�(p; rs)) 8rs (3.11)

The idea behind using several neighborhood radios is that discrimination performance
can be improved if a point is supported by more than one descriptor, regarding a narrow to
coarse set of surrounding areas. Then, we are intentionally seeking matches of points which
are locally similar, but also related in a more global area. This can help to avoid repeatability
problems and improve detection of points in edges or borders of the objects.

An example of covariance descriptor is displayed in Figure 3.6, where the different fea-
tures representing shape and color are shown and also the different multi-scale radius can be
seen in its left image.

Figure 3.6: Example of a scene view where a multi-scale covariance descriptor is
extracted. The left image shows the original 3D scene where the overlap gradient
of colors from red to blue depicts 5 different scales used for obtaining a multi-scale
descriptor. The 6 central subfigures show the different used features, in terms of
color (upper row) and shape description (bottom row). Finally, on the right, a single
scale 6x6 covariance descriptor is graphically represented.

As a summary, a covariance descriptor can be seen as a very compact representation
which looses all the spatial notion of the region, and just encodes the joint distribution of the
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features which are observed within this region. This statistical representation of the surface is
more flexible than a histogram-based approach, which is based on a counting methodology.
The same can be considered regarding noise tolerance: in front of outliers, a histogram-based
descriptor will suffer from the uncertainty of assigning those spurious samples to the correct
bin. Covariance matrices a) capture this noise distribution as a natural part of the samples
in the represented area, b) by the mean subtraction in its formulation help to lower the noise
affection, and c) do not need to be parameterized so the chance of unintentionally affecting
its performance is avoided.

3.4.2 Matching between covariance descriptors

Covariance matrices, being symmetric positive definite matrices, do not lay on a Euclidean
space, but on a Riemannian manifold. As a quick, simple example: a covariance matrix can
be multiplied by a negative real value, and it will no longer be a symmetric positive definite
matrix, so the Euclidean assumption is broken. Indeed, covariance descriptors form the d�d
dimensional space of symmetric positive definite matrices, where d is the number of used
features. This has several implications, but the most important one is the computation of
distances on top of their manifold.

As Euclidean distance is no longer valid, a new metric for the computation of geodesic
distances on top of the manifold must be derived. In order to measure the similarity of
descriptors, the metric for computing distances between two covariance matrices C1

d and C2
d ,

was proposed by Förstner in [19] as

�(C1
d ; C

2
d) =

vuut nX
i=1

ln2�i(C1
d ; C

2
d) (3.12)

where �
�
C1
d ; C

2
d

�
are the generalized eigenvalues of C1

d and C2
d .

Again, this can be seen as a performance boost regarding other state-of-the-art descrip-
tors: the way of computing descriptor likelihoods is a geometrically-aware metric, rather than
a distance approximation as would be the case on histogram-based approaches. This supports
the consideration of covariance matrices as a powerful and robust representation.

Similarly to the introduction of the multi-scale framework in the descriptor construction,
we can extend this idea to the metric computation:

�M (C1
M ; C

2
M ) = min

j

" 
5X
i=1

�(C1
M i; C

2
M i)

!
� �(C1

M j; C
2
M j)

#
(3.13)

where C1
M i and C2

M i are the covariance descriptors belonging to each one of the i = 1:::5
scales, at each one of both scenes respectively. The formulation behind Equation (3.13) takes
into account the similarities of all scales except the less matching one, which is ignored
because it might contain a major dissimilarity at a given scale. This equation is then used
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as the function for comparison between the matching of two multi-scale descriptors, and it
satisfies all the required properties of a metric:

�M (C1
M ; C

2
M ) � 0 and �M (C1

M ; C
2
M ) = 0 iif C1

M = C2
M

�M (C1
M ; C

2
M ) = �M (C2

M ; C
1
M )

�M (C1
M ; C

2
M ) + �M (C1

M ; C
3
M ) � �M (C2

M ; C
3
M )

3.4.3 Covariance Descriptor as a keypoint detector

Covariance matrices as descriptors have still other desirable outcomes thanks to their math-
ematical underlying fundamentals. One of them is that they can be also used as keypoint
detectors in a direct way. As defined in Equation (3.8), a covariance matrix C contains the
variance of the observed features on its diagonal, and the covariance on the other entries.
Computing the determinant of a covariance matrix is equivalent to obtaining the so-called
generalized variance, which can be interpreted as a measure of the degree of homogeneity of
each point in the scene.

Once the covariance descriptors have been computed, one can observe their determinants
and consider that the ones with higher values will belong to real interest points, with inner
significant variation. It must be taken into account that these interest points combine both
visual and shape saliency. Therefore, even in the case of an homogeneously coloured object
like in Figure 3.7, keypoints are still obtained on significant parts such as eye holes or borders.
On the same theoretical basis, points with zero or near-to-zero generalized variances will
belong to constant areas and could be discarded.

It is also possible to perform a point suppression stage thanks to the analysis of the
rank of the covariance matrix descriptors: in the case where points must contain some sort
of correlation between observations, that is, when there is no significant variance between
features, the rank of the descriptor matrices will be lower than the number of used feature
dimensions.

3.4.4 Experimental results

The proposed covariance descriptor is validated on a model dataset combining 3D shape with
visual information. The dataset contains 12 scenes which have been obtained by the Autodesk
123D Catch service 1, combining own acquired objects and others available under a Creative
Commons license. These models are stored as 3D point clouds with photometric texture,
where each vertex has a unique identifier. See Figure 3.8 for a visual representation of the 12
models used, including different characteristics like high and low diversity of colors, repeated
areas, homogeneous surfaces and textures, or symmetries.

1http://www.123dapp.com/catch
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Figure 3.7: Visual example of keypoint detection by generalized variance. This
figure shows the 1500 most significant coordinates of the scene, marked by sorting
the covariance descriptor determinants in descendant order. Even if the color infor-
mation of the object is rather homogeneous, interest points have been detected on
salient areas of the scene. The computational cost of such task is only related to the
determinant calculation: no derivatives or gradient information are needed.

Experiment 1: Descriptors comparison

In order to test the descriptor performance, we compare our approach against the state-
of-the-art methods spin images [30], MeshHOG [66] and CSHOT [57]. For doing so,
we have selected 100 arbitrary points from three models in the database, and have
computed the descriptor likelihoods regarding the same 100 points on a different in-
stance of each model, under arbitrary rotations and translations. This has been done
under different levels of additive noise for color and surface coordinates: 0, 2, 6, 8 and
10 per cent of the standard deviation of data.
The evaluation method consists on observing the amount of false and true positives,
and false and true negatives, in terms of matching scene points by their descriptor
likelihood measures. According to a ratio parameter, we present two methods for
evaluation of matches:

� In the first method, called exclusive ratio, we consider a match as a positive if
and only if the best descriptor likelihood for a given point is ratio times better
than the second best match candidate likelihood. This method has the particu-
larity of being more restrictive on finding true positive matches, but also adds
the advantage of reducing the apparition of false positives. By moving the ratio
coefficient amongst a range of 1 to 5, we can obtain a set of meaningful ROC
curves depicting the behaviour of the different tested descriptors, as seen in Fig-
ure 3.9. For a numerical comparison between these curves, Tables 3.1, 3.2 and
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Figure 3.8: 3D plot of the 12 models included on our database. Full scenes are
shown without added noise.

3.3 include their area under the curve (AUC) evaluation.

� In the second method, called inclusive ratio, we consider a set of point matches
as positives if the descriptor likelihoods of those matches are within the bound-
aries of ratio times the best likelihood of this set of candidates. In this method
the rate of true positive candidates is increased, but this has the expense of
adding false positives and needing a posterior non-desired match suppression
stage. Again, by moving the ratio coefficient amongst a range of 1 to 5, we can
obtain a set of ROC curves for comparing the behaviour of the different tested
descriptors, as shown in Figure 3.10. For a numerical comparison between these
curves, Tables 3.4, 3.5 and 3.6 include their area under the curve (AUC) evalu-
ation.

The results of this experiment validate the formulation of the covariance descriptor
proposal specially in the cases of robustness to noise. The covariance formulation
implicitly uses the mean of the used features as random variables, which contributes to
smoothing the possible data deviations in a natural way, still capturing the distribution
of data. Also, as commented in Section 3, the metric definition in Equation (3.12)
is a coherent distance defined on top of a topological space, and not as a histogram
distance approximation as would be the case in other descriptors where changes in
data might imply a different representation in bin counting.

Experiment 2: Global matching evaluation

For testing the overall performance of the descriptor and its associated keypoint de-
tector, we have designed an exhaustive scene registration test where each one of the
12 models has been split in halves of different common overlap (from 10% to 70% of
the surface in common). A random rotation and translation are applied to one of the
halves. In addition, each model is tested under different levels of noise, from 0% to
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Figure 3.9: ROC curves for comparison of several 3D and visual information de-
scriptors. Each column depicts a test on a different scene of our database. Each row
shows the behaviour of the descriptor under different levels of additive noise over
data (0, 2, 6, 8 and 10 per cent of the standard deviation of color and surface coor-
dinates). In the first row, under no noise, we can see how our descriptor is similar in
performance to other state-of-the-art approaches. Despite of that, when data is mod-
ified with higher noise values, our descriptor outperforms any other current method.
This is due to the flexibility of a covariance-based formulation, which is capable to
deal with noise on data in a more robust way than any histogram based approach.
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Figure 3.10: ROC curves for comparison of several 3D and visual information de-
scriptors. Each column depicts a test on a different scene of our database. Each row
shows the behaviour of the descriptor under different levels of additive noise over
data (0, 2, 6, 8 and 10 per cent of the standard deviation of color and surface coor-
dinates). In the first row, under no noise, we can see how our descriptor is similar in
performance to other state-of-the-art approaches. Despite of that, when data is mod-
ified with higher noise values, our descriptor outperforms any other current method.
This is due to the flexibility of a covariance-based formulation, which is capable to
deal with noise on data in a more robust way than any histogram based approach.
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n002 n004 n006 n008 n010
COVDesc 0.944 0.894 0.844 0.833 0.758
CSHOT 0.884 0.692 0.525 0.505 0.500
MeshHOG 0.672 0.555 0.520 0.520 0.505
SpinImages 0.829 0.662 0.581 0.555 0.530

Table 3.1: Area Under the Curve (AUC) measures for the scene Baboon, using the

exclusive ratio evaluation.

n002 n004 n006 n008 n010
COVDesc 0.919 0.879 0.773 0.773 0.707
CSHOT 0.909 0.697 0.545 0.505 0.494
MeshHOG 0.748 0.555 0.520 0.510 0.515
SpinImages 0.631 0.535 0.515 0.505 0.494

Table 3.2: Area Under the Curve (AUC) measures for the scene Daniel, using the

exclusive ratio evaluation.

n002 n004 n006 n008 n010
COVDesc 0.829 0.864 0.788 0.748 0.717
CSHOT 0.989 0.839 0.646 0.530 0.510
MeshHOG 0.702 0.570 0.520 0.510 0.515
SpinImages 0.672 0.616 0.545 0.540 0.540

Table 3.3: Area Under the Curve (AUC) measures for the scene Hedwig, using the

exclusive ratio evaluation.
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n002 n004 n006 n008 n010
COVDesc 0.995 0.989 0.963 0.962 0.919
CSHOT 0.967 0.851 0.645 0.581 0.562
MeshHOG 0.918 0.790 0.713 0.611 0.569
SpinImages 0.934 0.822 0.722 0.694 0.649

Table 3.4: Area Under the Curve (AUC) measures for the scene Baboon, using the

inclusive ratio evaluation.

n002 n004 n006 n008 n010
COVDesc 0.997 0.977 0.968 0.954 0.925
CSHOT 0.989 0.867 0.683 0.576 0.507
MeshHOG 0.946 0.784 0.662 0.650 0.558
SpinImages 0.826 0.691 0.627 0.554 0.566

Table 3.5: Area Under the Curve (AUC) measures for the scene Daniel, using the

inclusive ratio evaluation.

n002 n004 n006 n008 n010
COVDesc 0.975 0.986 0.960 0.957 0.907
CSHOT 0.999 0.979 0.830 0.685 0.668
MeshHOG 0.914 0.750 0.668 0.612 0.560
SpinImages 0.833 0.781 0.727 0.701 0.638

Table 3.6: Area Under the Curve (AUC) measures for the scene Hedwig, using the

inclusive ratio evaluation.
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10% of the standard deviation of color and surface coordinate values. For each scene,
the experiment is conducted 5 different times, leaving to a total of 12x7x11x5 = 4620
executions.

In order to be able to evaluate the performance of the whole system, we need an addi-
tional algorithm for the detection of the possible outliers in the correspondences estab-
lishment. This algorithm should select the correspondences which are geometrically
consistent between themselves, producing a final rigid transformation which register
the two views. For this outlier detection we have selected a solution based on a game
theory approach, similar to the one presented in [2]. The use of this algorithm take into
account not only the geometric positions of the correspondences, but also the value of
the likelihood of the covariance descriptors. In addition, it does not require any input
parameters and always estimate the global minimum of the system, independently of
its initialization.

The registration error measure is evaluated by looking at the average Euclidean dis-
tance of points in the common overlap surface. In the case of executions with noise,
the system is solved on noisy data but the performance is evaluated on the equivalent
un-noised scenes in order to be coherent on performance comparison. Objects are
normalized so they fit within the boundaries of a prism of unitary volume.

An error acceptance threshold of 0.02 is chosen, which means that objects of one cubic
meter of volume should have an average error lower than 2 centimeters. By establish-
ing this threshold we can represent the execution of all registrations by a histogram
of how many of them are considered as correct, for each condition of noise and over-
lap. Such histogram is displayed in Figure 3.11, where can be seen that the method
works extremely well for cases with overlap of 20% and higher, while for an overlap
of 10% between the two views the method shows a reduction in its performance when
the noise level is increased.

In Figure 3.12 we can see the distribution of the error magnitudes only for the afore-
mentioned correct scene registrations. Again, and as expected, the most challenging
conditions are those where the system is tested with a smaller overlap and a higher
noise. Nevertheless, by watching the value distributions on these two figures, we can
conclude that the approach is more sensitive to the minimum overlap than to the noise
tolerance.

By looking individually at the experiments for each one of the models, we observe
that the best results are obtained for the models Yoda, Rooster and Merrel. On the
other side, the worst results are obtained by Cafe-rice and Daniel, specially for the
executions with low overlap. These last two cases can be easily argued: Cafe-rice
represents an scene with a low variability in color and a clear axial symmetry, while a
high part of the model Daniel is composed by a repetitive pattern (the shirt). Examples
of incorrect registrations for both cases can be seen in Figure 3.13.
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Figure 3.11: Histogram of correct registrations (for an error threshold of 0.02). As
we can see, the performance of our approach is rather homogeneous on most of the
experimental conditions, even with low overlap between scenes and high levels of
noise applied to data.

3.5 Pre-processing for urban scenarios: plane �ltering

The first step in order to achieve the pairwise registration is the detection of some keypoints in
the images, which will be used afterwards to compute the corresponding descriptors. This de-
tection is usually carried out by using the whole scene, without considering the particularities
of the specific environment. Depending on the nature of the scene, and specially in the cases
of urban environment, traditional techniques of keypoint detection will find a huge number
of keypoints in places with low interest for the registration. As an example, see the image
shown in Figure 3.14, where the keypoints detected with a DoG detector [35] are shown. As
can be seen, elements with low importance for the registration as could be the autos have
most of the detected keypoints. These elements can disappear in posterior scans in the future
and therefore it is not desirable to use them as basis for the registration process. On the other
side, the wall of the building, which should have the higher importance, does not have any
keypoints by itself and only thanks to the presence of windows some keypoints are detected.

In this section we introduce the possibility of achieving the registration assuming that
the images are captured in an urban environment, and therefore looking for specific struc-
tures typical in urban scenarios. For these reasons, we first make a filtering in order to find
planes with a minimum area, which will correspond to the walls of buildings. After this pre-
processing, existing methods can be applied achieving an improved result. As we have access
to the 3D structure of the scene thanks to the range image, we could use this information to
have a pre-processing of the data and filter only the parts of the scene that are plane or near
to plane. In this way, once the possible planes are detected, we can in a second step perform
the keypoint detection and obtain only the significant information.
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Figure 3.12: Average error distribution of those registrations considered as correct.
As one could expect, major errors occur on the cases of higher noise levels and less
overlap.

3.5.1 Proposed Method

As mentioned, basis of our method is the processing of the 3D scanner data in order to find
planes with large area. Some methods exist for this plane detection, as the one explained by
Cantzler in [5]. In our case we estimate the surface normal for every 3D point and afterwards
a grouping process of normal vectors is computed. An easy way for the normal vector estima-
tion in every 3D point is by computing the SVD for the covariance in the neighborhood of the
point and select as normal vector

�!
N the eigenvector corresponding to the smallest eigenvalue.

The collection of all the normals for every range image can be expressed in polar co-
ordinates and grouped together creating a 2D graph, where every normal is represented as
a coordinate indicating angles � and β with respect to the axes. Result can be seen in Fig-
ure 3.15. Applying a clustering method (e.g. gaussian mixtures [37]) to this result it can be
detected that exist different groups of normals with similar orientation. Assuming that the
3D scanner can capture the scene in a pivoted position, all the points in the 2D graph will be
usually formed by two groups of points sets, separated �=2 in the β angle between them. The
first group, the one with higher β value and usually with a higher number of normal vectors,
correspond to the 3D points belonging to the floor of the scene. The second group, which can
have different subgroups along the � value, corresponds to the different walls of the scene.

Once the different groups have been filtered, we should determine where are the differ-
ent walls by checking that every 3D point present after the filtering should have at least a
pre-defined number of neighbors in the proximity with a maximum distance to the plane de-
fined by its normal, and also with a similar normal orientation. The proximity size and the
maximum distance to the plane depend on the resolution of the scanning process. The idea
is to filter the 3D points that, even having a surface normal with an orientation similar to the
selected, are isolated points or belonging to little walls. In order to find the distance of the
neighbor points it can be used a concept similar to the one used in spin images.
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Figure 3.13: Examples of incorrect registration results. Left column shows the
groundtruth of the two scenes, where two halves have been overlapped. Green points
show the points of common surface. Right column show the evaluated registration,
with points ranging from green to red color according to their distance respect to
groundtruth labeled points. In the first row, depicting the Cafe-rice scene, the low
overlap and the axial symmetry do not allow a global awareness as big enough for
our system to discard mismatches. The second scene, Daniel is also selected with
a low overlap, including a high repeatability. We can see how the reconstruction,
again, has failed due to taking into consideration only those regions with repeated
areas.
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Figure 3.14: Keypoints detected in an image using DoG detector. The presence of
autos produce a high number of keypoints in the image, while the wall of the building
receive a lower number.

Figure 3.15: Accumulation of normal vectors expressed in polar coordinates

Once all the points in the proximity have been projected we obtain a 2D image with a
set of dots, as seen in Figure 3.16. At least a pre-defined number of points should have a
maximum distance to the plane defined by the current 3D point and its normal, that is, this
number of points should have a small value of β in the spin image representation.

After this filtering of 3D points we must project them to the associated visible image
in order to process them with 2D image techniques. As we have previously estimated the
multisensorial registration between the camera and the 3D scanner, it is easy to find this
projection to the 2D image. The resulting image should contain a set of nearly-equispatiated
points at the zones where a wall is detected. A postprocess based on morphology methods
is required in order to join these separated points forming areas. An example can be seen in
Figure 3.17.
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Figure 3.16: Spin map and checking of neighboring points with low distance to the
plane

Figure 3.17: Visible image with projected points and generation of the filter image

With all the planes of the scan image detected, it is now possible to apply the methods de-
scribed in the state of the art (SIFT descriptor, spin images, etc...), but now with the advantage
of the filtering of possible disturbance elements.

3.5.2 Experimental results

The experiments have been carried out with four scans captured with a laser scanner Riegl
LMS-Z420i and an attached camera Nikon D100, which was previously calibrated with the
laser scanner. The scans capture a similar portion of a scene, containing walls, vegetation and
vehicles. Dates of capture were different, so there is no correlation between the vehicles and
persons. The four scans can be seen in Figure 3.18. Also, for a better scene understanding,
their associated visible images are shown.

The proposed filtering method has been applied to the range images and the detection
of the walls for Scan1 and Scan2 is shown in Figure 3.19. The registration is achieved by
searching keypoints using the DoG detector only to places where a plane is detected, and
applying afterwards the SIFT descriptor. Finally, among all the possible matches detected a
RANSAC method [18] is applied in order to find the rigid transformation between the scans.
The registrations achieved are shown in Figure 3.20.
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(a) (b)

(c) (d)

Figure 3.18: Scans used for the experiments, called (a) Scan1, (b) Scan2, (c) Scan3
and (d) Scan4. The scans have been captured with a laser scanner Riegl LMS-Z420i,
and their associated visible images associated are also shown for a better scene un-
derstanding.



3.6. Conclusions 47

Figure 3.19: Filter images for Scan1 and Scan2 after applying the plane detection.

3.6 Conclusions

This chapter contains the developments of the so-called pairwise registration, which estimate
the rigid transformation in order two align two 3D point clouds obtained from different un-
known positions. The registration is based on the computation of specific keypoint descriptors
and the posterior matching between them.

We have introduced a novel descriptor for fusion of 3D shape and visual information
which works under changes of viewpoint and noise. The rather simple formulation of this
descriptor has several benefits: it can be extended with additional features in the future, it can
be used as keypoint detector thanks to its underlying statistical notions, and the computational
cost is low.

Our results have been presented in conjunction with a database of twelve scenes which
include variant objects in order to represent handicaps of repeated textures, homogeneous
regions and symmetric areas. We have demonstrated how the proposed descriptor has a rep-
resentative and discriminative capability which outperforms other state-of-the-art methods,
specially in the case of noise over data.

Also an algorithm for the detection of planes is presented. This algorithm can be spe-
cially useful for registrations containing buildings and walls. The detection of these typical
forms will allow a filtering of non-static elements (e.g. cars and persons) and thus a better
registration between the 3D points sets. For other kind of scenarios also different typical
forms could be studied in the future, like cylinders (for trees, streetlight or traffic lights) or
any other forms that could be representative for different objects present in typical scenarios.
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(a) (b)

(c) (d)

Figure 3.20: Results of the registrations for (a) Scan1 against Scan2, (b) Scan1
against Scan3, (c) Scan2 against Scan3 and (d) Scan3 against Scan4.



Chapter 4

Multiview registration

The registration of multiple 3D structures in order to obtain a full-side representation
of a scene is a long-time studied subject. Even if the multiple pairwise registrations
are almost correct, usually the concatenation of them along a cycle produces a non-
satisfactory result at the end of the process due to the accumulation of the small
errors. This situation can still be worse if, in addition, we have incorrect pairwise
correspondences between the views. In this chapter we embed the problem of global
multiple views registration into a Bayesian framework, by means of an Expectation-
Maximization (EM) algorithm, where pairwise correspondences are treated as miss-
ing data and, therefore, inferred through a maximum a posteriori (MAP) process.
The presented formulation simultaneously considers uncertainty on pairwise corre-
spondences and noise, allowing a final result which minimizes their negative impact.
Experimental results show a reliability analysis of the presented algorithm with re-
spect to the percentage of a priori incorrect correspondences and their consequent
effect on the global registration estimation.

4.1 Introduction

As seen in the last chapter, acquisition techniques usually have problems with occluded sur-
faces or the limited field of view, so it is usually necessary to combine different views of the
same object or scenario in order to obtain a full representation. Using this process another
problem then arises: the registration of these individual 3D views which will enable, at the
end of the process, to a whole 3D reconstruction of the desired object or scene.

First step for this objective is the pairwise registration, already studied in Chapter 3.
Depending if the two structures have overlap, pairwise registration methods will give as a
result a transformation which registers the first 3D view to the second one.
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Multiview registration is the second step of this process, and is usually a more complex
situation. Assuming that pairwise registrations are correct, their concatenation along a cycle
will probably result in a non-satisfactory multiview registration because of the accumulation
of the different pairwise errors. An example of this effect can be seen in Figure 4.1.

Figure 4.1: Left side: result after applying only the pairwise information for all the
views of an object (each color represents a different view). Right side: desired result,
where only the noise produced by the sensor can be appreciated.

In addition, there could exist another situation which produces more problems. Even
if two structures register perfectly in the pairwise registration process, their transformation
could be incorrect in a global environment. This could happen specially if we are working
with objects with symmetries, planes or repetitive patterns. In these cases, most of the current
multiview registration algorithms will fail because they are not ready to deal with this kind
of errors.

The main contribution of the method presented in this chapter, in opposition to state-
of-the-art papers, is the possibility of detecting the incorrect registrations between different
views and therefore minimize their impact in the global registration process. This feature is
achieved thanks to the use of different weights which encode the reliability we have in the
correspondences between the views.

The structure of this chapter is as follows: a review of different registration algorithms is
presented in Section 4.2, followed by an introduction to the main problematic of multiview
registration in Section 4.3. An existing method which is the basis for our approach is studied
in Section 4.4, while our proposed algorithm is explained in detail in Section 4.5. The ob-
tained experimental results are shown in Section 4.6. Finally, conclusions and possible future
improvements are explained at the end of the chapter in Section 4.7.

4.2 State of the art

Basically there exist two families of multiview registration algorithms: sequential registration
methods and simultaneous registration methods.

The first ones consist in the sequential pairwise registration of additional views to an
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aggregated view which is continuously growing. This aggregated view is also denominated
metaview in some literature, as stated in Matabosch et al. [38]. This method was initially
proposed by Chen and Medioni in [7] and afterwards improved in the works presented by
Pulli [47] and Nuchter et al. [43]. This kind of multiview registration methods have the ad-
vantage that they do not need to previously obtain all the views implicated in the registration
process, so they do not suffer problems of memory in their execution and can also be useful
for applications where the 3D structures are acquired at the same time as the registration is
produced, achieving a performance which could be considered near to real-time. However,
their main problem is the non-possibility of modifying the already registered views, produc-
ing a final result which is usually not as ideal as desired.

On the other side, simultaneous registration methods make use of all the information of
pairwise registrations at the same time. A good example of this kind of method is the work
presented by Eggert et al. [14], where the authors present an iterative algorithm which simul-
taneously updates the transformations of all the views by using the information of position
and normal of the correspondence points. In Silva et al. [54] the multiview registration is
achieved thanks to the use of genetic algorithms and a metric defined by the authors called
Surface Interpenetration Measure, which indicates the level of confidence on a registration
according to the multiple crossings of the surfaces between themselves (i.e. the interpenetra-
tion between themselves).

Inside the category of simultaneous registration methods a high number of papers base
their algorithm on the use of a registration graph which encodes the different pairwise rela-
tions between the 3D views. Each node on a registration graph represents an specific view
of the object, while each edge encodes the rigid transformation (rotation and translation)
between two views. As can be seen in the registration graph of Figure 4.2, each node is con-
nected, at least, with the previous and the following node of the sequence of views and, in
addition, with a variable number of additional nodes.

In order to obtain the multiview registration some properties of the registration graph are
usually applied, like the property that rotations and translations along a loop of the registra-
tion graph should be null. This is the basis for the work presented by Sharp et al. [52], where,
for the different basic cycles of the registration graph, the error in rotation and translation
is distributed along all the edges. Also the concept of graphs minimization is used in Shih
et al. [53] where, using concepts of Lie algebra and circuit theory, the authors develop an
algorithm which achieves good results in standard databases, also with the advantage of hav-
ing a low computational cost. Other papers do not mention explicitly the concept of graph
but use it intrinsically, using the same properties and ideas. A good example are the two pa-
pers presented by Krishnan et al. [32] [33] which are based on the notion that, concatenating
translations and rotations along a path, the same 3D view should be obtained independently
on the direction we use to arrive to it. One particularity of this method is that it directly works
with the correspondences itself and not with the rigid transformations obtained from the pair-
wise registration methods, so the algorithm uses all the data without losing any information.
This fact causes an apparent complexity of the formulation, but using some concepts of Lie
algebra and manifolds the authors achieve a compact representation of the problem. These
two papers of Krishnan et al. are used as the basis of our algorithm due to the interesting
conceptualization of the problem and the good results obtained after their implementation.
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(a)

(b)

Figure 4.2: a) Sequence of views associated to object bunny. Only the visible image
of each view is shown for a better understanding, every visible image is associated
to a range image. b) Registration graph of views associated to the object bunny.
Every node in the registration graph represents a view and every edge indicates that
a pairwise registration between these two views has been estimated. Encoded in the
edge the rigid transformation composed by a rotation matrix and a translation vector
can be found.
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Independently of the election of using a sequential registration method or a simultaneous
registration method, one of the main lacks of the aforesaid papers and the majority of other
state-of-the-art publications is that they do not take into account the possibility of having
absolutely bad registrations or bad correspondences. One of the few papers that deal with this
possibility is the work presented by Hubert and Hebert in 2003 [27], where using the joint
distribution probabilities the incorrect correspondences are eliminated and, in consequence,
the graph can be separated into different splitted sub-graphs which can afterwards be studied
individually. As developed in the following sections of the present chapter, our algorithm
will also serve for the detection of incorrect correspondences between the views, allowing to
minimize the impact of this incorrect information into the global registration process.

4.3 Problematic issues in the multiview registration process

The most usual problem related with the multiview registration process is the minimization of
the global error which is produced due to the small errors in every pairwise registration. These
errors could be produced by different factors, like a noisy acquisition process, differences in
the 3D structure of two overlapping views due to the different date of acquisition, or, in most
of the cases, by an inaccurate selection of correspondences. Having a look at the example
already shown in the left side of Figure 4.1 it can be easily seen that the result using only the
information from the pairwise registration is not enough in order to obtain a good result.

There is another possible problem in the multiview registration process which is in fact
more problematic and difficult to solve: the possibility of having not only small errors on
the registrations but also absolutely incorrect registrations. Consider the example shown in
Figure 4.3, where different views of a horn are shown. Pairwise registration between different
views can be correctly established in most of the cases, but there are some ones which could
cause problems. Imagine the pairwise registration of view number 3 or 4 against view number
15. Although the object has been rotated around its longitudinal axis (the color of the balls
inside the horn demonstrate this rotation) a pairwise registration algorithm could estimate a
registration which, after applying it with the other pairwise registrations, produce a result
similar to the one shown in Figure 4.4. Similar problems can also be produced if there exist
objects with symmetries, planes or repetitive patterns.

In order to solve these two types of problems, and especially the second one, we need
to combine both local and global information, or in other words, the information from the
pairwise registrations and from the whole multiview result. In order to achieve this objective,
a novel algorithm is proposed in Section 4.5. However, this algorithm is based in some
concepts to the works presented by Krishnan, so first a brief explanation of its procedure is
presented in the following Section 4.4
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Figure 4.3: Sequence of views associated to the object horn. Images from 1 to 11 are
obtained normally by using a swivel platform, from image 11 to 12 the object horn
is rotated along his own longitudinal axis, and finally from image 12 to 22 again the
swivel platform is used.

Figure 4.4: Possible result after applying only the pairwise information along a
cycle. The axial symmetry of the 3D object causes an incorrect representation even
though that the pairwise registrations could seem correct in a local environment.
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4.4 Krishnan method: Registration using Optimization-on-
a-Manifold

The main disadvantage of most of the multiview registration methods is the use of the results
obtained directly from the pairwise registration, that is, the rigid transformations needed in
order to register a view with another one. Using only this information we loose all the intrinsic
information belonging to the correspondences between the views but, on the other side, we
avoid to work with a huge amount of correspondences simultaneously and complicate the
algorithm in a high degree.

The Krishnan method explained in this section does indeed achieve this challenge: it
estimates the multiview registration working with all the correspondences at the same time.
For this reason it is used as basis for our algorithm due to its good results and its simplification
of the initial complex formulation, achieving a compact final equation used to estimate the
final solution.

4.4.1 Algorithm notation

Let's consider a set of n points W = fw1; :::wng in a world reference frame. These points
can be seen from N different views V1:::VN , where Vi = fv1

i ; :::; v
ni
i g. Each view Vi can

only see a limited number of the total n points, so it is supposed that each ni must be lower
or equal to n. In addition, the notation of Vij is used to describe the set of points from Vi
which can be seen also from Vj , so in consequence nij defines the number of points from Vi
which can be seen from Vj and therefore nij = nji.

Each view Vi connects with the world reference frame by means of relative rotation and
translation matrices (Ri; ti), such that:

wk = Riv
k
ij + ti

wk = Rjv
k
ji + tj

(4.1)

In a noise free context there would be an equivalence Rivkij + ti = Rjv
k
ji + tj between

both sets of points, but in a more realistic case and considering the presence of noise, the
minimization error function used to estimate the parameters (Ri; ti) and (Rj ; tj) takes the
following form:

error =

nijX
k=1

j(Rivkij + ti)� (Rjv
k
ji + tj)j2 (4.2)

If we apply this expression to all the correspondences between the views we will obtain
the global error function, called g(R; T ):

g(R; T ) =
NX
i=1

NX
j=i+1

nijX
k=1

j(Rivkij + ti)� (Rjv
k
ji + tj)j2 (4.3)
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, where R and T correspond to the two parameters which will be the main variables for the
whole process, and are defined as

R � [R1jR2j:::jRN ] 2 R3�3N

T � [T1jT2j:::jTN ] 2 R3�N

Let ei be the ith column of a N �N identity matrix, and eij = ei� ej . Also let's define:

ckij � (ei 
 I3)vkij � (ej 
 I3)vkji

where 
 indicates the Kronecker product [15].

The cost function can now be re-written as follows:

g(R; T ) =
NX
i=1

NX
j=i+1

mijX
k=1

ckij
TRTRckij + 2eTijT TRckij + eTijT TT eij (4.4)

Applying the property that u � v = tr(uvT ) we obtain

g(R; T ) = tr
�
R
h NX
i=1

NX
j=i+1

mijX
k=1

ckijc
k
ij

T
i
RT + 2T eij

h NX
i=1

NX
j=i+1

mijX
k=1

ckij
T
i
RT+

+ T
h NX
i=1

NX
j=i+1

mijX
k=1

ckij
T
i
eije

T
ijT T

�
(4.5)

If we define:

A �
h NX
i=1

NX
j=i+1

mijX
k=1

ckijc
k
ij

T
i

B � eij
h NX
i=1

NX
j=i+1

mijX
k=1

ckij
T
i

C �
h NX
i=1

NX
j=i+1

mijX
k=1

i
eije

T
ij
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then, the error function can be represented as

g(R; T ) = tr

 
[RjT ]

�
A B
BT C

��
RT
T T
�!

(4.6)

This total registration error function can be written only in terms of rotations R, since
the optimal set of translations can be computed in terms ofR as:

T (R) = �RBCy (4.7)

where Cy is the pseudo-inverse of C. In this case the Equation (4.6) transforms into:

g(R) = tr(RMRT ) (4.8)

whereM� A�BCyBT is the Schur complement of the matrix
�
A B
BT C

�
.

4.4.2 Initialization

In order to obtain an initial approximation of R and T , the Krishnan algorithm propose two
different situations: the noise free case and the noisy case. In normal situations the noisy case
will be always used but the noise free case could serve us as an introduction.

Assuming the noise free case, the Equation (4.8) should be zero, so

g(R) = tr(RMRT ) = vecT (RT )(I3 
M)vec(RT ) = 0 (4.9)

This implies that

vecT (RT )vec(MRT ) = 0) vec(MRT ) = 0)MRT = 0 (4.10)

MatrixM is symmetric, so we can apply SVD:

M = U�UT = [UaUb]

�
�a 0
0 0

� �
UTa
UTb

�
=)MUb = 0: (4.11)

We could simply determine thatR = UTb , but we also want to force that R1 = I3, so

R =
��

I3 0
�
Ub
��T

UTb (4.12)
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In case that we consider the presence of noise, obviously the Equation (4.8) should not
be equal to zero. In this case Ub should be the right singular vector associated with the three
least singular vectors ofM.

Gi =
��

I3 0
�
Ub
��T

UTb (ei 
 I3) (4.13)

These singular vectors could not form a real rotation matrix, so for each Gi a projection
to the manifold of 3D rotations SO3 could be necessary:

Ropti = arg min
Ri2SO3

kRi �Gik = arg max
Ri2SO3

tr(RTi Gi) (4.14)

Assuming that we apply an SVD decomposition on Gi, giving Gi = W�ZT , then the
optimal Ri should be

Ropti = W

�
I2 0
0 det(WZT )

�
ZT (4.15)

4.4.3 Iteration process

The objective of the iteration process is to find the minimal of the function g(R). Each
iteration is composed of two steps, called �1 and �2 by the author:

Step �1: Optimization in local parameter space

The optimization is achieved by using the Newton's method, so we need the first and
second derivative of the function. Instead of differentiating directly g(R) we will use
a parametrization ', which ensures that we are working in the tangent space of the
manifold.

g(R) = tr(RMRT ) =) g � '(!) = tr(ReΩ̃(ω)MeΩ̃(ω)TRT ) (4.16)

, where eΩ̃(ω) corresponds to the exponential map of the Lie Algebra of SO3 [23].

A point R on the product manifold SON3 is mapped to the affine tangent space that
minimizes (g �')(0). We need to estimate an optimal direction !opt and a step length
�opt which minimize the cost function. The first derivative of g � '(0) is denoted by
r(g �')(0), while the second derivative is denoted by H(f�ϕ)(0), so, according to the
Newton's method the optimal direction should be:

!opt = H�1
(f�ϕ)(0)r(g � ')(0) (4.17)

Once the optimal direction is estimated, it is necessary to find the step length which
ensures reduction in the cost function. For this purpose it is used the Backtracking
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Line Search [46]. Starting with a value of � equal to 1, the algorithm increases this
value while the following condition is maintained

g � 'R(�!opt) > g � 'R(0) + ��[rg�ϕR(0)]
T!opt (4.18)

, where � 2 (0; 0:5).

Step �2: Projection to the manifold

Once the optimal direction and step length have been estimated, we need to project the
resulting values to the manifold SO3. Although we have worked in the tangent space
of the manifold, probably the resulting values do not lie in the manifold itself, so it
must be ensured that the resulting matrices of R = [R1; R2; :::RN ] are real rotation
matrices. In order to project them to the manifold, we apply the exponential map from
the tangent space to the manifold.

bR = R(eΩ(λoptω
opt
1 ) � :::� eΩ(λoptω

opt
N )) (4.19)

4.5 Bayesian-Based Multiview Registration method

In this Section our developed method for the 3D registration of multiple views is explained,
which will be called Bayesian-Based Multiview Registration (BBMR) method in the fol-
lowing. As an introduction to the problem, we first describe the differences in the notation
used with respect to the Krishnan method and in a second subsection the proposed Bayesian
framework and its resolution using the Expectation Maximization algorithm is presented.

4.5.1 Introducing the correspondence uncertainty matrix

In order to evaluate the possible incorrect correspondences, let's assume that there is no prior
knowledge between points from two different views, and therefore, the model used from
Krishnan in Equation (4.3) should be generalized in the following way:

" =
NX
i=1

NX
j=i+1

nijX
k=1

njiX
k′=1

!kk
′

ij j(Rivkij + ti)� (Rjv
k′

ji + tj)j2 (4.20)

where !kk
′

ij is an element of the weight matrix that indicates the degree of confidence for a
correspondence of points vkij and vk

′

ji .

As a simplification of the expression, we can define a new index bk as a re-ordered version
of the double indexing k and k0. Applying this indexing change, Equation (4.20) would be
expressed as:
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" =
NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ij j(Rivk̂ij + ti)� (Rjv
k̂
ji + tj)j2 (4.21)

where mij � nij � nji = n2
ij

4.5.2 Bayesian framework

Let's represent a point correspondence between two specific views Vi and Vj as xk̂ij =

(vkij ; v
k′

ji ), and let �ij = (Ri; ti; Rj ; tj) represent the model parameters of these two views
which should be estimated. The objective is to maximize the joint likelihood distribution
P (Xij j�ij) of the observed data Xij = [x1

ij ; :::; x
mij

ij ].

The optimization of P (x1
ij ; :::; x

mij

ij j�ij) can be a difficult task if pairwise relations are
unknown. In order to solve this problem, we introduce a set of binary latent variables Zij =
[z1
ij ; :::; z

mij

ij ], which can be considered as indicator variables of the correspondence between

a pair of points xk̂ij = (vkij ; v
k′

ji ). In an ideal case, where the correspondences were “a priori”

known, zk̂ij should be 1 only for those valid xk̂ij correspondences and 0 for the rest of pairs of
points between the sets Vi and Vj . However, the variables Zij are hidden or, in other words,
cannot be directly observed. If their value was known, then fXij ; Zijg would be considered
as the complete data set, and therefore, this estimation problem could be easily solved.

Assuming conditional independence on the observations Xij = [x1
ij ; :::; x

mij

ij ] and the
latent variables Zij = [z1

ij ; :::; z
mij

ij ], the joint distribution of the complete data set factorizes
as follows:

P (Xij ; Zij j�ij) =

mijY
k̂=1

P (xk̂ij ; z
k̂
ij j�ij) (4.22)

which according to the binary nature of the latent variables Z takes the following form:

P (Xij ; Zij j�ij) =

mijY
k̂=1

P (xk̂ij j�ij)z
k̂
ij (4.23)

Applying the logarithm we obtain the joint log-likelihood of the data set as follows:

log[P (Xij ; Zij j�ij)] =

mijX
k̂=1

zk̂ij log[P (xk̂ij j�ij)] (4.24)

where, if Zij is known a priori, only the terms indicating correspondence between pairs of
points, i.e. zk̂ij = 1 would contribute to the summation of this log-likelihood function. In
addition, if we consider Equation (4.21) as the result of a negative logarithm of a Gaussian
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distribution, we can see a convergence of the probabilistic formulation in Equation (4.24) and
the previous least squares error problem:

log[P (xk̂ij = [vkij ; v
k′

ji ]j�ij)] / �j(Rivkij + ti)� (Rjv
k′

ji + tj)j2 (4.25)

and therefore:

mij∑
k̂=1

zk̂ij log
[
P (xk̂ij = [vkij , v

k′
ji ]|θij)

]
∝ −

N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ij |(Rivkij + ti)− (Rjv
k′
ji + tj)|2 (4.26)

The context of observations Xij and the simultaneous inference of latent vari-
ables Zij and estimation of model parameters �ij can be tackled by means of the
Expectation-Maximization (EM) algorithm [13] [39]. The EM algorithm is a fixed-
point fashion procedure that operates in two steps, which are repeated alternatively
until convergence:

1. Expectation
Given an intermediate iteration step l with an instance of the model parameters
�l, compute the posterior probability for latent variables zi.

2. Maximization
Given the posterior probability P (ZjX; �l), compute the expected value of the
joint log-likelihood of the complete data set fX;Zg and find the parameters
�l+1 that maximize it. As pointed out in Appendix A:

�l+1 = arg max
θ

n mijX
k̂=1

P (zk̂jxk̂; �l) log[P (xk̂j�)]
o

(4.27)

Following the equivalence in Equation (4.25) the maximization process could
be expressed as follows:

θl+1 = argmax
θ

{
−
mij∑
k̂=1

P (zk̂|vkij , vk
′
ji , θ

l)|(Rivkij + ti)− (Rjv
k′
ji + tj)|2

}
(4.28)

where �l = [Rli; R
l
j ; t

l
i; t

l
j ].
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In this sense, we can see that the estimation of the posterior probabilities and
the optimization of the model parameters according to the weights provided by these
posterior probabilities has the property of converging to a local maximum. Moreover,
Equation (4.28) shows that this formulation is equivalent to robust statistics weighted
techniques, where the posteriors P (zk̂jvkij ; vk

′
ji ; �

l) take care of the contribution of
each observation (vkij ; v

k′
ji ) with respect to the estimated model �l. In the following,

these two iterated steps are developed for the specific case of the multiview registra-
tion explained in this chapter.

Expectation step

In the Expectation step the objective is to compute the sufficient statistics for the la-
tent variables posterior distributions P (Zij jXij ; �ij), in order to infer Zij from the
observations Xij and the parameters of the model �ij . Inference occurs when com-
puting the values for zk̂ij that maximize the a posteriori probability of a given data

point xk̂ij and a specific instance for the model's parameters �ij .

In particular, when inspecting the joint distribution in Equation (4.23) and taking
into account the Bayes' theorem, we can see that the form of the posterior probability

P (zk̂ij = 1jxk̂ij ; �ij) is proportional to P (xk̂ij j�ij)
zk̂ij=1. If we consider the following

approximation:

P (zk̂ij = 1jxk̂ij ; �ij) / P (xk̂ij j�ij) (4.29)

then Equation (4.28) would penalize all those pairs of points (vkij ; v
k′
ji ) with biggest

error, while it would consider with higher priority the pairs with lower error in the
next estimation iteration of �. Given this behavior and the empirical observations
showing an exponential decay of the posterior probability (these observations will
be shown in the experimental results in Section 4.6), we can model it as a negative
exponential distribution:

P (zk̂ij = 1jvkij ; vk
′
ji ; �ij) / expf��"(vkij ; vk

′
ji j�ij)g (4.30)

where � corresponds to the suf�cient statistics of the exponential distribution. In an
ideal case without uncertainties in the correspondences and therefore without weight
values this value would be estimated as:
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� =

P
i

P
j 1P

i

P
j "(v

k
ij ; v

k′
ji j�l)

(4.31)

In our case we want to give more importance to the correspondences with higher
weight values !k̂ij , so this equation would be adapted as:

� =

P
i

P
j E
h
!k̂ij
��P (!k̂ij jvkij ; vk

′
ji ; �

l)
i

P
i

P
j E
h
!k̂ij
��P (!k̂ij jvkij ; vk

′
ji ; �

l)
i
"(vkij ; v

k′
ji j�l)

(4.32)

where E
h
!k̂ij
��P (!k̂ij jvkij ; vk

′
ji ; �

l)
i

is the posterior expectation of the unobserved !k̂ij
indicator variables, which have been inferred from the model �l and the observed
data (vkij ; v

k′
ji ):

E
[
ωk̂ij
∣∣P (ωk̂ij |vkij , vk

′
ji , θ

l)
]
=

1∑
ωk̂
ij=0

ωk̂ijP (ωk̂ij |vkij , vk
′
ji , θ

l) = P (ωk̂ij = 1|vkij , vk
′
ji , θ

l) (4.33)

Maximization step

According to the Maximization step, let's consider the cost function to be optimized:

E(�) = �
NX
i=1

NX
j=i+1

mijX
k̂=1

E
h
"(vkij ; v

k′
ji j�ij)

��P (!k̂ij = 1jvkij ; vk
′
ji ; �

l)
i

(4.34)

which corresponds to the posterior expectation of:

ε =

N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ij |(Rivkij + ti)− (Rjv
k′
ji + tj)|2 =

=

N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ij((Riv
k
ij −Rjvk

′
ji )

2 + 2(ti − tj)T (Rivkij −Rjvk
′
ji ) + |ti − tj |2) (4.35)

At this point, a similar sequence of equations than Krishnan method is used.
Although they can be reviewed in the previous sheets of this chapter, they are shown
again in order to ensure the readability of the whole process. Now we can define:
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R � [R1jR2j:::jRN ] 2 R3×3N

T � [T1jT2j:::jTN ] 2 R3×N

and let ei be the ith column of a N �N identity matrix, and eij = ei � ej .

Also let's define:

ck̂ij � (ei 
 I3)vkij � (ej 
 I3)vk
′
ji

where 
 indicates the Kronecker product [15].

The cost function after these changes of notation can be seen as:

" =

NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijfck̂ij
T
RTRck̂ij + 2eTijT TRck̂ij + eTijT TT eijg (4.36)

So, applying the property that u � v = tr(uvT ):

" = tr
�
R
h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijc
k̂
ijc

k̂
ij

T i
RT + 2T eij

h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijc
k̂
ij

T i
RT+

+ T
h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijc
k̂
ij

T i
eije

T
ijT T

�
(4.37)

Now, we can define the following elements:

A �
h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijc
k̂
ijc

k̂
ij

T i

B � eij
h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ijc
k̂
ij

T i
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C �
h NX
i=1

NX
j=i+1

mijX
k̂=1

!k̂ij

i
eije

T
ij

and represent the error function as

" = tr

 
[RjT ]

�
A B
BT C

��
RT
T T
�!

(4.38)

As can be seen, the obtained Equation (4.38) corresponds to the same error func-
tion presented by Krishnan in Equation (4.6), but in this case the components A, B
and C integrate inside them the uncertainty of the weight coefficients !k̂ij .

Finally, like in the Krishnan method the set of translations can be expressed in
terms ofR as:

T (R) = �RBC† (4.39)

where C† is the pseudo-inverse of C, and

" = tr(RMRT ) (4.40)

whereM� A�BC†BT is the Schur complement of the matrix
�
A B
BT C

�
.

According to the EM algorithm formulation, the Maximization step will be the
posterior expectation of Equation (4.40):

E(�) = �
NX
i=1

NX
j=i+1

mijX
k̂=1

E
�
"(vkij ; v

k′
ji j�)

��P (!k̂ij = 1jvkij ; vkji; �l)
�

=

= tr
�
RE
�
M
��P (!k̂ij = 1jvkij ; vk

′
ji ; �

l)
�
RT
�

(4.41)
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Note that, since the connection weights !k̂ij are not directly observable, the el-

ements of E[MjP (!k̂ij = 1jvkij ; vk
′
ji ; �

l)] matrix must be estimated in each iteration
process of the optimization algorithm, i.e.:

E[A] =
h NX
i=1

NX
j=i+1

mijX
k̂=1

P (!k̂ij jvkij ; vk
′
ji ; �

l)ck̂ijc
k̂
ij

T i
(4.42)

E[B] = eab

h NX
i=1

NX
j=i+1

mijX
k̂=1

P (!k̂ij jvkij ; vk
′
ji ; �

l)ck̂ij
T i

(4.43)

E[C] =
h NX
i=1

NX
j=i+1

mijX
k̂=1

P (!k̂ij jvkij ; vk
′
ji ; �

l)
i
eije

T
ij (4.44)

where P (!k̂ij = 1jvkij ; vk
′
ji ; �

l) / expf��"(vkij ; vk
′
ji j�l)g and � is obtained from the

Expectation step in Equation (4.32).

4.5.3 Algorithm summary

As a summary of the whole process, in order to implement the proposed method the
schema shown in Algorithm 1 should be followed
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Initialization

• Obtain an initial estimate for θ0 = [R0
1, ..., R

0
N , t

0
1, ..., t

0
N ] using the original Krishnan

method, which corresponds to an ideal case without correspondences uncertainty

• Initialize the correspondences uncertainty matrix ωk̂ij to 1 for all the correspondences

while ‖ε(vkij , vk
′
ji |θl+1)− ε(vkij , vk

′
ji |θl)‖ > ξ do

Expectation

• Find the sufficient statistics of the exponential distribution shown in Equation (4.30):

α =

∑N
i=1

∑N
j=i+1 E

[
ωk̂ij
∣∣P (ωk̂ij |vkij , vk

′
ji , θ

l)
]∑N

i=1

∑N
j=i+1 E

[
ωk̂ij
∣∣P (ωk̂ij |vkij , vk

′
ji , θ

l)
]
ε(vkij , v

k′
ji |θl)

• For each pairwise correspondence used in the registration process, infer the
new uncertainty factor

ωnew = ωold
α exp{−αε(vkij , vk

′
ji |θij)}∑N

i=1

∑N
j=i+1 αε(v

k
ij , v

k′
ji |θij)

, where, for simplicity, ωnew indicates [ωk̂ij ]
l+1 and ωold indicates [ωk̂ij ]

l

Maximization

• Calculate the matrices A, B and C:

A ≡
[ N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ijc
k̂
ijc

k̂
ij

T ]

B ≡ eij
[ N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ijc
k̂
ij

T ]

C ≡
[ N∑
i=1

N∑
j=i+1

mij∑
k̂=1

ωk̂ij

]
eije

T
ij

• Estimate θl+1 = [Rl+1
1 , ..., Rl+1

N , tl+1
1 , ..., tl+1

N ] by minimizing Equation (4.40)
with the posterior expectation

end

Algorithm 1: Summary of the proposed method

4.6 Experimental results

In this chapter we focus on two main issues: the uncertainty on pairwise correspon-
dences and the combination of global and local information in the registration process
of multiple views.

Our technique needs, as a starting point, setting up correspondences between
pairs of points belonging to two different overlapping views. These pairwise corre-
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spondences may contain some errors due to the fact that they are established by using
only the information from the corresponding pair of views, which in practice means
using only the local information.

These pairwise point correspondences are taken as input data for our global regis-
tration method. The proposed algorithm aims to overcome the uncertainty introduced
by the local set up of correspondences between pairs of views, evaluating the con-
tribution of each correspondence into the global registration result. The goal is to
find an optimal configuration, in global terms, of Euclidean transformations based on
the contribution of each pairwise correspondence. To this end, we introduce a weight
factor to each pairwise correspondence so the algorithm can determine which of them
have a higher contribution in the parameters estimation.

The experiments have been designed in order to study a) the weighted contribu-
tion of each pairwise correspondence into the global estimation process and b) their
evolution along the consecutive iterations of our probabilistic method. Both analysis
assume that there has been introduced a level of uncertainty in terms of mistaken
pairwise correspondences (due to errors in the annotation process). We aim to eval-
uate the performance of our Bayesian formulation when dealing with this type of
uncertainties.

To this end we propose three approaches:

1. First, we study in deep the “horn case” presented in Figures 4.3 and 4.4, where
certain pairwise correspondence points have been wrongly set up due to poor
local information and symmetries between pairs of views. The goal is to show
how the introduction of weighting factors minimize the contribution of those
correspondences which are not coherent with the rest according to the global
registration result. In this first experiment, we show how an initial result that
assumes equal weights for all pairwise correspondences (obtained by using
Krishnan technique) leads to a wrong configuration, but it can be afterwards
corrected by iterating our Expectation-Maximization process.

2. A second experiment is presented with the aim of evaluating the robustness of
the presented Bayesian formulation in terms of manually introducing wrong
correspondences in pairs of overlapping views. If we assume that some of the
correspondences can be incorrect (for instance, due to human factors), our goal
is to study how they can affect to the final registration. In particular, we aim to
study the relation between the percentage of incorrect correspondences and the
algorithm performance, using manually corrupted data as input parameters.

3. We create a synthetic 3D object with all the necessary a-priori known infor-
mation, in order to be employed as ground truth. Assuming that all correspon-
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dences are correct and that the only source of error is due to noise, we can
compare in terms of accuracy Krishnan method and our method by studying
how close both estimations are to the ground truth.

The first two experiments have been tested with 3D objects from the Ohio State
University (MSU/WSU) Range Image Database [11], used also in the state-of-the-art
papers [52] and [53]. The pairwise correspondences between the views have been
carried out manually, assuming little errors between the correspondences.

4.6.1 Correction of degraded correspondences - The horn case

In cases where we want to register 3D objects with symmetries, planes or repetitive
patterns it is quite probable to obtain incorrect pairwise correspondences. Due to
the limited field of view, the pairwise registration between two views should seem
correct in a local environment but, in a global environment and considering the rest
of the views, this pairwise information can be seen as clearly incorrect. We can see
an example of this situation in the case explained in Figure 4.4 (the horn case), where
a simple incorrect pairwise registration can ruin the whole 3D object.

Our method is applied to this specific horn case. In Figure 4.5 we can see the
evolution of the registration along the different iterations of the algorithm presented
in this chapter. The first iteration result shown in the figure consists in the execution of
the algorithm before applying the use of weights for the correspondences, so in fact it
corresponds to the result of the Krishnan algorithm itself. The result using Krishnan
method is not satisfactory at all, but is quite near to the desired result because of
the fact that there exist only two or three incorrect correspondences among the total
number of 196 correspondences. Using our BBMR method the different parts of the
model can be registered correctly and approximately at iteration 5 we can achieve a
good registration, and finally at iteration 6 the algorithm converges according to the
condition specified in Algorithm 1.

Also in Figure 4.5 the evolution of the error is presented, where "(vkij ; v
k
jij�l) is

evaluated for the 196 different correspondences of the model and displayed in a his-
togram. As can be seen in the figure, at iteration 1 the majority of correspondences
have their two components near each other, but there exist also some correspondences
with a higher distance. Along the different iterations of our BBMR method the weight
of these correspondences with higher distance are reduced, preventing their bad in-
fluence in the registration process. Looking at the form of the histograms displayed
in these iterations (especially in the first and the second one), we can see that the
election of a negative exponential distribution in order to model Equation (4.30) was
a good approximation.
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Figure 4.5: Evolution of iterations for the registration of the horn case. The upper
row shows the registration for the 6 iterations needed before the algorithm converges.
The lower row shows the evolution of the error for the same iterations, confirming the
good election of the negative exponential distribution in order to model the behavior
of the error.

4.6.2 Correction of degraded correspondences - Percentage evaluation

The experimental result shown in Section 4.6.1 was a specific case which helped us in
the understanding of the algorithm evolution. The objective in this second experiment
is to evaluate the robustness of the presented method in a higher range of situations,
by introducing in the system an increasing number of incorrect correspondences.
For this purpose we create a Matlab script which assigns random correspondences
according to a specific percentage. Taking into account the total amount of corre-
spondences of an object, increasing percentage from 5 percent to 50 percent of them
are corrupted, preserving the first component of the correspondence but changing the
second component to a random point of the 3D surface. This new second component
should be distanced to the original second component by, at least, a distance equal
to a fifth of the distance between the two most distanced points of the 3D surface,
otherwise another point is randomly sought. Our BBMR method is then applied 100
times per corruption percentage, and the final result is evaluated in order to check the
correct consistency of the obtained 3D surface.

The evaluation of the correctness is carried out by means of calculating the dis-
tance of all the 3D points to an already registered 3D object, which has been obtained
from a previous registration process using the Krishnan method and without any de-
graded correspondence (this previously registered 3D object will be taken as ground
truth in this experiment). If only one point has a distance value higher to a pre-defined
threshold, the whole registration process is discarded. In our experiment this thresh-
old is assigned to a twentieth of the distance between the two most distanced points
of the 3D surface.

Three different objects have been used for the experiments, called bunny, horn
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bunny horn bottle
Total number of points 171085 247947 109453

Distance between the most distanced points 67.06 146.48 198.75
Number of views 18 22 11

Number of correspondences 169 196 122

Table 4.1: Main characteristics of the three objects used in the experiment. The
values shown in “Total number of points” correspond to the sum of all the points for
all the views, independently if a same 3D point can be seen from different views.

and bottle. A preview of them and their main characteristics can be seen in Figure
4.6 and in Table 4.1.

(a) (b) (c)

Figure 4.6: Preview of the three objects used for the experiment: a) bunny, b) horn
and c) bottle.

Results obtained after the simulations can be seen in Figure 4.7, where the vertical
axis indicates the number of experiments which have been correctly registered among
the 100 simulations for each degradation percentage. Both the results of our method
and the results of Krishnan method are displayed. Krishnan method is used as a
base for our BBMR method but, as expected, is not designed to deal with incorrect
correspondences and therefore its results are not satisfactory.

The first observation after looking at Figure 4.7 is that algorithm performance can
vary depending on the complexity of the 3D object. Having a look at the character-
istics of the 3D objects in Table 4.1 it can be easily seen that the three objects have a
similar relation between the total number of points and the number of views but, on
the other side, the object bottle has a higher number of correspondences in relation to
the number of views or the total number of points. Even if a higher number of these
correspondences are degraded, the algorithm can achieve a good registration thanks
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Figure 4.7: Results for the different 3D objects of the database. Horizontal axis indi-
cates the percentage of degraded correspondences applied to the object, and vertical
axis indicates the percentage of successful registrations. The solid red, green and
blue lines show the performance for our BBMR method, while the dashed red, green
and blue lines at the bottom show the result for the Krishnan method. In addition, the
horizontal dotted black lines serve only as a reference to indicate the performance
levels of 90% and 50%.
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to the additional redundancy of the object bottle in comparison with the other two
objects (speaking in the relative term according to the complexity of the object).

Independently of the complexity of the object, looking at the reference lines dis-
played on Figure 4.7 it can be observed that our algorithm achieves a 90% of success
registrations for cases where there exist approximately 10% or 15% of incorrect cor-
respondences between the 3D views. In addition, around half of the experiments
achieve a good registration for degradation percentages between 30% and 35%, i.e.
in cases where approximately one out of three correspondences were incorrect. Fi-
nally, the algorithm performance is almost null for cases with 50% of degradation
percentage and beyond.

In addition to the results displayed in Figure 4.7, it must also be noted that, spe-
cially for the experiments with degradation errors below 40%, the incorrect regis-
trations results obtained are usually composed of a high amount of views correctly
registered with just one or two views incorrectly aligned, giving a final result which
is obviously incorrect but in any case highly better than the result using the original
Krishnan method. An example of this event can be seen on Figure 4.8.

Figure 4.8: Result of the presented algorithm after iteration 1 and iteration 15 for
the object bunny and a corruption percentage of 35%. The right result, even though
is incorrect, is clearly better than the left result (which is in fact the original Krishnan
method).

4.6.3 Improvement on the accuracy

The previous experiments were related to the robustness of the presented method
in order to deal with incorrect correspondences. This is the main property of our
method, but there exists also the possibility of improving the registration in cases
where the correspondences are just affected by small deviations produced by the
noise, inaccurate manual selection of points or other factors. The iterated processes
and the use of weight factors help to improve the final result of the multiview registra-
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tion with respect to the Krishnan method, giving more relevance to the most correct
correspondences and less relevance to the least ones.

In order to evaluate with precision the accuracy improvement a synthetic 3D
model has been created. This synthetic model is taken as ground truth for this ex-
periment. Different views of the model, its measures and the associated registration
graph of views can be seen in Figure 4.9. The model is composed by 6 faces (identi-
fied by colors R-G-B-C-M-Y) and 8 vertices. The different faces are considered the
views of the model, and every face is pairwise registered against its 4 face neighbors
by manual correspondence selection, assuming little errors.

(a) (b) (c)

Figure 4.9: Design of the object syntheticModel created for the experiment, includ-
ing a) different perspectives of the model, b) horizontal layout and vertical profile
and c) registration graph of views associated to the object.

Two different experiments are carried out with the synthetic model described: a)
vertex precision and b) normal vector precision.

(a) Vertex precision

The objective of the experiment is to evaluate the accuracy improvement with
respect to the Krishnan method in the different intersections of the synthetic
model. According to the structure of the model (see Figure 4.9), each vertex
has the intersection of three different faces (for example, vertex number 3 has,
as can be seen in Figure 4.10, the intersection of the faces R, M and C), so in
total the object syntheticModel has 24 intersections.

Our registration method is applied to the synthetic model, and the results ob-
tained are compared with the ones obtained by using the Krishnan method.
Specifically, the distances between the vertices of the 24 correspondences are
observed, and the results are shown in Figure 4.11.

Results show that our method improves the registration in 20 intersections, but
the remaining 4 intersections are getting worse. Averaging the distances we can
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Figure 4.10: Magnification of the vertex number 3 of the object syntheticModel. For
each vertex of the object there exist three distances that are evaluated, in the case of
vertex number 3 we evaluate the distance between faces R and M, between R and C,
and between M and C.
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Figure 4.11: Distance difference between Krishnan method and our method. On the
horizontal axis the 8 vertices of the object syntheticModel are displayed, and each
vertex is composed by 3 distances between the faces. Vertical axis indicates these
distances in millimeters. Krishnan method obtains a mean distance of 1,47 mm.,
while our method obtains a mean distance of 0,81 mm.
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Figure 4.12: Representation of the ideal angle values between the normal vectors of
the faces. According to the design of the object syntheticModel, the normal vector
of face R with the normal vector of face G should form an angle of 90 degrees, and
the normal vector of face R with the normal vector of face Y should form an angle
of 126,87 degrees.

see that Krishnan method obtains a mean value of 1,47 mm. and our method
obtains a mean value of 0,81 mm., so a reduction of 44.89% from the initial
distance is achieved using our BBMR method.

(b) Normal vector precision

In addition to the vertex precision explained in the previous experiments other
characteristics of the synthetic model can be studied after the registration. Ac-
cording to the design of the synthetic model in Figure 4.9, and as can be seen
with more detail in Figure 4.12, it must be accomplished that:

• The normal vector of R with respect to the normal vector of G form an
angle of 90 degrees.

• The normal vector of R with respect to the normal vector of B form an
angle of 180 degrees.

• The normal vector of R with respect to the normal vector of M form an
angle of 90 degrees.

• The normal vector of R with respect to the normal vector of C form an
angle of 126,87 degrees.

• The normal vector of R with respect to the normal vector of Y form an
angle of 126,87 degrees.

The results after the simulations are displayed in Figure 4.13, where the itera-
tion 1 and 18 are shown. Despite that the visual evaluation does not reflect a big
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Figure 4.13: Result of the registration after a) iteration 1 and b) iteration 18. In both
cases the upper part of the result display in text the angle of the normal vector of face
R with respect to the other normal vectors. The last line “Mean of angular error”
indicates the mean of the values obtained by subtracting the experiment values with
the ideal values.

difference, the exact measurement shown in the text reflects a better approxi-
mation to the ideal values at iteration 18. At iteration 1, which corresponds to
the Krishnan method, the mean of angular error value is 2,2786 degrees. At
iteration 18, last iteration before the algorithm converges, the mean of angular
error value is 0,25955. The evolution of this mean of angular error is shown in
Figure 4.14, where it can be seen that the error is decreasing continuously like
a negative exponential function.

4.7 Conclusions

This chapter presents our Bayesian-Based Multiview Registration (BBMR) method
for the registration of multiple 3D scans. The main property of our BBMR method
consists in the property of being tolerant to a certain number of incorrect correspon-
dences which could be caused by different factors like an incorrect manual selection,
symmetries on the scanned 3D object or repetitive patterns. This tolerance is achieved
thanks to the use of an additional layer placed over an existing multiview registration
method, by using weight values which are applied to the point correspondences de-
pending on their reliability. The value of these weights is estimated iteratively by
means of a Bayesian framework, and the global registration problem is solved thanks
to the Expectation Maximization method.

Results obtained show that the presented algorithm is able to register correctly
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Figure 4.14: Evolution of the mean of angular error for the different iterations of
our method, showing an exponential decay until the algorithm converges.

approximately half of the 3D scenes with an incorrect pairwise correspondence tax
between 30% and 35%. This result outperforms other existing registration meth-
ods, allowing a higher flexibility in the establishment of pairwise correspondences
either by manual or automatic selection. In addition, in cases with a low degradation
percentage, our BBMR method achieves also a better registration compared to the
Krishnan algorithm. As a drawback the algorithm takes a relative high time, as it is
basically composed of multiple iterations of this Krishnan algorithm.

Possible studies to develop in the near future include the possibility of defining a
distance metric in order to evaluate the compactivity or consistency of the registration
result after each iteration of the BBMR method. In the experimental results section
we partly solved this situation by comparing the resulting final registration against a
pre-registered object, but in a more general situation it is not expected to have access
to this reference object. Of course, this distance metric should be defined “from an
external point of view” and independent of the beforehand obtained pairwise corre-
spondences, because it could be the case that these pairwise correspondence could be
incorrect. Methods like the ones explained by Huber and Hebert in [28] regarding the
space violation with respect to the visibility or the Surface Interpenetration Measure
presented by Silva et al. in [54] could be used and combined for this purpose.



Chapter 5

Single View System for the Human 3D
Modeling

In this chapter we explore the automatic 3D modeling of a person using images
acquired from a range camera. Using only one range camera and two mirrors, the
objective is to obtain the complete 3D model. The combination of the camera and
the two mirrors give us three non-overlapping meshes, making impossible to use
common zippering algorithms based on overlapping meshes. Therefore, Dynamic
Time Warping algorithm is used to find the best matching between boundaries of the
meshes. Experimental results and error evaluations are given to show the robustness
and efficiency of our method.

5.1 Introduction

In the previous chapters of this thesis we have studied different possibilities in order
to achieve the complete 3D representation of a model or an scene. Usually this fi-
nal representation is obtained by estimating the pairwise registration between some
multiple views and afterwards minimize their global error by using a multiview reg-
istration algorithm. In this chapter a different and novel mechanism is presented,
achieving the complete 3D representation of the model by using only one single view.

The work presented in this chapter describes the development of an specific real-
time 3D modeling system. This system has been mainly designed for human body
reconstruction, due to its specific particularities. However, also objects of similar or
lower size could be applied.
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Figure 5.1: Sequence of the scanning process using a turning table example. Only 4
scans are shown, but the sequence can be composed by a large number of scans. For
each scan, the RGB image and the depth image are shown.

The presented system consists of two main phases: data acquisition and mesh
generation. In the data acquisition phase the 3D information of the whole model
is acquired trying to minimize the needed space. In the mesh generation phase we
analyze the method for creating a closed mesh based on the particularities of the data
acquisition.

5.2 Problems with current used methods

Current existing methods propose different ways to solve the problem of 3D model-
ing. In this work we study the two more relevant ones: the turntable approach and
the multiple cameras approach. Although they are conceptually equivalent, each one
of them has their own mains and drawbacks.

(a) Turntable approach

The most common method used in 3D modeling consists on placing the object
on a turning table, allowing the capture of the object from several viewpoints.
The 3D sensor can be fixed in an appropriate place and successive 3D captures
of the object are obtained during its rotation. The result of this scanning process
is a set of partial scans of the object, including both the depth and the RGB
information. An example using a model person is shown in Figure 5.1.

Once the different partial scans have been obtained, the multiple views are
registered together in order to obtain a full-side representation. For this pur-
pose usually a the classical 2-step method including pairwise registration and
multiview registration is used.

However, this kind of acquisition method is not suitable for human modeling.
Minimal movements of the subject during his rotation can produce errors in
the final registration. Also, many people are reluctant to be rotated and this can
be a problem for a possible commercial product.
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Figure 5.2: Multiple viewpoints surrounding the person in order to cover the 360
degrees. Although only three cameras are shown in the image, this number can be
increased.

(b) Multiple cameras approach

In opposition to the rotation of the subject, a similar possibility would be the
rotation of the camera around him or, equivalently, the disposition of multiple
range cameras surrounding the person as shown in Figure 5.2. The main ad-
vantage of this approach is that the person should not be rotated, avoiding then
their possible movements.

Although this alternative has a simple implementation it requires a lot of space
on the scene. In order to capture the whole height of a medium height person
every range camera must be at around 2-3 meters away from the person and
this distance must be free of any occluding object.

In addition it must be considered that, depending on the nature of the 3D scan-
ner used, the presence of multiple devices can produce interferences between
them. A possible solution would be to take snapshots of the scene for every
range camera but at different times, so some kind of synchronization between
the devices should be needed.

5.3 Proposed approach

The proposed system is composed of two main phases: the model acquisition phase
where the 3D points of the person are captured, and the mesh triangulation and zip-
pering phase, where the mesh is created from the set of 3D points. Both phases are
described in the following subsections.
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Figure 5.3: Reflection of a single point on the mirror. The original point is placed
in front of the mirror, and the incident ray indicating the view of the camera aims to
the mirror and can see the original point thanks to the reflection. However, the depth
camera only detects a distance to the point, and this distance is placed in straight line
according to the direction of the incident ray. According to the ideal reflection rules,
the angle � between the incident ray and the normal plane is equal to the angle �
produced between the reflected ray and the normal plane. In the same way, the angle
 is equivalent to the angle �, and therefore d1 and d2 have the same distance.

5.3.1 First phase: model acquisition

The acquisition of the data is carried out by the well-known Microsoft Kinect camera.
As seen in Chapter 1, this device uses the triangulation between the captured infrared
image and a known pattern emitted by the infrared projector in order to estimate the
distance to all the points in the scene. This working procedure is the basis for the
special technique used in the acquisition phase.

A standard mirror reflects the visible light, but it also reflects the IR light. If we
place a Microsoft Kinect pointing to a mirror, the IR pattern emitted by the camera
reflects in this mirror and therefore the sensor is able to capture the 3D structure of
the objects present in the reflection. This method has however a little disadvantage:
the range camera does not recognize that this is a reflected pattern, so it will place the
reflected 3D structure in straight line, i.e., at the other side of the mirror.

A simple explanation for a single point is shown in Figure 5.3. As it can be
seen in the figure, the Microsoft Kinect will place the distance to the point in straight
line and therefore the refracted point will be placed at the other side of the mirror.
According to the ideal reflection rules, this new refracted point will be placed in
perfect symmetry regarding the original point with respect to the mirror plane.

Applying this theoretical idea to our study case, we can see the frontal view and
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(a) (b) (c)

Figure 5.4: In (a), the RGB image and the depth image obtained from Kinect are
shown (objects with a depth higher than a threshold have been filtered out in the depth
image for a better scene understanding). Fusing the information of both images we
can represent the 3D model of the scene, shown in (b) and (c). Although it can not be
observed in (b), in (c) is clearly seen that the reflected parts of the person are placed
at the other side of the mirrors.

Figure 5.5: Example of the acquisition process setup. Using the reflection of the
mirrors, the rest of the body can be inferred.

the two reflected views of a person in Figure 5.4. As expected, the reflected 3D
structures are placed accordingly at the other side of the mirror.

The main advantage of this technique is that it reduces the total need of space. As
the field of view of the Kinect camera is enough for capturing the whole mirror, the
IR pattern is already extended in the reflection plane and therefore we do not need
the additional space behind the person. An schema of the final disposition of the
elements is shown in Figure 5.5, where the total space needed is significantly lower
than in Figure 5.2 and more appropriate for small spaces. For example, it can be
appropriated for a dressing room in a clothing store where, in addition, the presence
of mirrors can also be useful for their “traditional” purpose.

On the opposite side, also some drawbacks appear by using this technique. The
main one is the need of re-positioning the two posterior views of the person, which are
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placed on the other side of their respective mirrors. As seen in Figure 5.3, a symmetry
with respect to the mirror plane will be enough to align the views. Assuming that
F = ffig represent some detected points of the mirror frame, we can compute the
matrix Mms by concatenation of the three eigenvectors of the covariance matrix of
F . Note that the first too eigenvectors specify the plane containing the two directions
with maximum variance of F = ffig and the third eigenvector corresponds to the
normal vector of this plane, i.e. the mirror normal.

Matrix Mms converts points from the mirror reference frame to the 3D scanner
reference frame so, assuming that we have a point ps expressed in scanner coordinates
we can convert it into mirror coordinates by applying

pm = M−1ms(ps � f) (5.1)

, where f corresponds to the centroid of all the frame points F = ffig. Once we
obtain the point pm expressed in the mirror coordinate frame it is needed, in order to
indicate the symmetry with respect to the mirror, to change the sign of its third coor-
dinate value. Finally, the point must be expressed again in the 3D scanner coordinate
frame by using the matrix Mms.

In addition to the flip of the points with respect to the mirror plane, two other
problems arise with this technique. The first one is produced by the extra distance
that the IR pattern must travel after reflecting in the mirror, which produces that the
3D resolution of this pattern will be slightly lower when it illuminates the posterior
part of the person. In consequence the posterior views of the 3D modeled person will
have a lower resolution in comparison to the frontal view, giving us a model which is
not uniform in all its surface.

Finally, another disadvantage that must be taken into account is that using this
mirrors technique, we will always obtain three point sets without overlapping regions
between them. If a point of the scanned surface is illuminated by the direct IR pattern
and a reflected IR pattern, both patterns will interfere themselves and therefore the
range camera will not be able to decide which is the correct range. In fact, this is the
same effect as if an object is illuminated by two range cameras at the same time or
when a camera aims directly at another range camera. This problem is partly solved
in the following subsection by using a zippering algorithm.

5.3.2 Second phase: mesh reconstruction

Although existing methods for 3D triangulation produce good results, they usually
require a set of 3D points with low noise and, if possible, with a uniform resolution
along the object. Images obtained with the Microsoft Kinect sensor are noisy and in
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Figure 5.6: Frontal mesh and back-right mesh. Views are intentionally separated in
Z axis for better comprehension.

addition the use of mirrors produces an irregular resolution due to the extra distance
caused by the reflection, so the triangulation of the set of 3D points obtained from
the acquisition phase usually gives a non-satisfactory result.

However, we must consider that the image obtained from the Kinect sensor can be
fast triangulated thanks to the ordered 3D points obtained by the IR pattern. In each
single snapshot of the sensor we obtain three different point clouds at a time (the
frontal point cloud and the two posterior point clouds obtained from the mirrors), so
the triangulation can be done individually for each one of them. In Figure 5.6 we can
see two of the resulting meshes, which have been previously fast triangulated.

Once these individual triangulations are done, it is necessary a process for con-
necting the 3 generated meshes: frontal, back-left and back-right. In the literature
we can find some works related to stitching meshes [60] [56] [51], but all of them
are focused on overlapping meshes. However, as previously explained, our system
contains three meshes which cannot overlap and, in addition, they have different res-
olutions due to the higher distance traveled by the IR pattern in the reflection of the
mirrors.

In order to solve these problems an approach for mesh zippering based on Dy-
namic Time Warping is proposed. Dynamic Time Warping (called DTW in the
following) [50] [41] is an algorithm to find the optimal alignment between two se-
quences. It was designed to compare different speech patterns in automatic speech
recognition, but is also usual in fields like handwriting or signature recognition. The
objective of DTW is to compare two ordered sequences X = (x1; x2; :::; xN ) and
Y = (y1; y2; :::; yM ) of length N and M respectively. To compare two different
features x 2 X and y 2 Y a local cost measure c(x; y) needs to be defined. Evalu-
ating the local cost measure for each pair of elements of the sequences X and Y , the
cost matrix C 2 RN×M is obtained. Having this cost matrix, the optimal alignment
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between X and Y can be found by looking for the path along C with minimal cost.

Since mirrors are oriented vertically, the way that the meshes must be joined is
through the coronal plane of the person, that is, the vertical plane which divides the
human body into front and back. During the process of stitching we have to decide
which side of every mesh matches the side of the other mesh. Thus, we need to find
the points where coronal and sagittal plane intersect for every mesh.

For every possible match, DTW retrieves a warping matrix and an accumulated
distance that brings us the value of similarity between boundaries. This warping
matrix stores the correspondences between each point of the sequence. In Figure 5.7
a distance matrix is shown, where the horizontal axis corresponds to the first sequence
and the vertical axis corresponds to the second one.

Figure 5.7: Cost matrix between the contour of the frontal view (blue color) and
the contour of one posterior view (green color). As can be seen, the contour of the
posterior view has a lower number of points because of the extra distance traveled
by the IR pattern. In the cost matrix representation, the red line indicates the optimal
path which produces a minimum overall cost.

Finally, we can use the information of this warping matrix in order to triangu-
late the two meshes. In Figure 5.8 we can see the model correctly zippered by our
implementation.

5.4 Experimental results

In order to evaluate the accuracy of the system 3 different experiments are proposed,
focusing on the two major contributions of this system: the presence of mirrors for a
single view 3D modeling and the use of Dynamic Time Warping for zippering meshes
without overlap.
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Figure 5.8: Model stitching using DTW. In the right image is shown, in red color,
the zippered faces between the meshes.

5.4.1 Loss of information produced by the mirrors re�ection

Using a mirror to reflect the object helps us to reduce the global space needed in the
scene. However, a loss of information is produced by this reflection, and this loss
of information affects to the final reconstruction. This loss can be produced either
by the quality of the reflection caused by the mirror or by the extra distance done
by the IR projection which produces a loss of quality in the generated mesh. In
order to evaluate only the loss produced by the reflection the following experiment is
proposed. First, the person is placed in front of a mirror, and the 3D data produced
by the reflection is stored, annotating also the distance of the camera with respect to
the mirror an the distance between the mirror and the posterior part of the person.
In a second part of the experiment, without moving the object and discarding the
mirror, the camera is placed behind the object (in the direction of the reflection) at
the same distance than the sum of the two distances stored before. A schema of this
process can be seen in Figure 5.9, where the only difference between two captures
is the reflection of the mirror, because the total distance will be equivalent. Having
these two 3D images available, we can now compare both in order to see if it exists a
loss in range accuracy or in the resolution.

In order to avoid the possible movements of a person between the captures in
the experiment a mannequin will be used. In addition, to avoid the noisy 3D images
produced by the Microsoft Kinect a total amount of 10 range frames is captured in
both setups and the mean value for each 3D point is assigned.

In Figure 5.10 the results of this experiment are shown. In order to compare both
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(a) (b)

Figure 5.9: Diagram of the experiment. In (a) the posterior part of the person is
captured by the reflection of the IR pattern. The resulting 3D is obtained at a distance
which is equivalent to the distance of the camera to the mirror plus the distance of
the mirror to the object. In a second phase, in (b), the mirror is discarded and the
camera is placed at the same distance but in straight line, so the total distance will be
equivalent.

meshes the Hausdorff distance [10] between the meshes is used, sampling one of the
meshes and computing for each sample the Hausdorff distance to the closest point
on the other mesh. Visually comparing the 3D meshes obtained from the experiment
(subfigures 5.10(b) and 5.10(d)), it can be seen a change of the texture color in the
shirt (produced by the light reflections in the mirror) and a loss of 3D points in the
edges of the reflected mesh. A clear example can be seen in the hand, which is less
defined in the reflected 3D view in subfigure 5.10(b). This loss of resolution in the
edges is confirmed after computing the Hausdorff distance, which is close to zero
in the inner part of the meshes and tends to be higher in the edges. The maximum
distance between both meshes is 1,2897 cm. and the mean distance for all the samples
is 0,2083 cm.

In addition to the Hausdorff distance between meshes, the loss of resolution due
to the mirror reflection is analyzed. The 3D mesh obtained with reflection has a total
number of 18097 vertices and 34985 faces. On the other side, the mesh obtained with
direct capture has 22755 vertices and 44303 faces, so the percentage of loss using a
mirror is about 20%, both for vertices and faces.
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(a) (b)

(c) (d)

(e)

Figure 5.10: (a) Visible image and depth image using the mirror. With this infor-
mation, and after computing the flip of the mirror, the obtained 3D representation
is shown in (b). Discarding the mirror and placing the Kinect at the back side of
the mannequin with the same distance, the resulting images and the 3D representa-
tion are shown in (c) and (d). In (e) we can see the result after comparing both 3D
meshes using the Hausdorff distance, using the same point of view used previously
and another view looking at the back.
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5.4.2 Loss of information produced by the extra distance in the mirrors

The following experiment was based on taking snapshots of the mannequin at dif-
ferent distances in order to evaluate their possible implication in the quality of the
generated mesh. Different captures at 300, 350, 400, 450 and 500 cm. are obtained,
and the results can be seen in Figure 5.11. Results show that the distance with re-
spect to the mannequin affects to the quality of the generated mesh, where for higher
distances the quality of the mesh is greatly reduced.

(a) (b) (c) (d) (e)

Figure 5.11: At the top, captured visible image of the mannequin at 300, 350, 400,
450 and 500 cm. respectively. In the middle row the resultant 3D meshes are shown,
having a degradation of the mesh for the higher distances. At the bottom, Hausdorff
distance of the 3D meshes against the first mesh, which is considered as reference.
We can see that due to the range camera resolution, the farther is the object, the
bigger the difference.

In Figure 5.12 the mean value of the Hausdorff distances for each separation
of the mannequin are shown, starting from 300 cm. (which has a distance of 0 cm.
because is compared to itself) to the 500 cm. We can observe an exponential behavior,
where for each additional 50 cm. the Hausdorff distance is near to be doubled.

In addition to the inaccuracy produced by the distance, also the loss of vertices
and faces is evaluated. In Figure 5.13, a plot indicating the number of vertices and
faces for each capture is shown. We can see that the results fits with an exponential
decay model.
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Figure 5.12: Mean value of the Hausdorff distance for a separation of 300
cm.(Hausdorff 0 cm.), 350 cm. (Hausdorff 0.3517 cm.), 400 cm. (Hausdorff 0.9170
cm.), 450 cm. (Hausdorff 1.7277 cm.) and 500 cm. (Hausdorff 3.3804 cm.).
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Figure 5.13: Relation between complexity of the mesh and distance to the object.
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5.4.3 Evaluation of the zippering process

In this subsection we discuss results obtained with the stitching process using Dy-
namic Time Warping. The objective is to evaluate the loss of information which is
produced in the 3D model due to the zippering between the 3 meshes.

Since the noise produced by the range camera used causes random mesh genera-
tion, a reliable experiment with a captured 3D model or person cannot be done. For
this reason a synthetic human model is used, splitting it in 3 parts and later zippering
using our method. The synthetic model is splitted in two parts by the coronal plane,
and afterwards the back part is splitted again by its sagittal plane, giving us the 3
parts obtained as we would use the mirrors.

The split of the parts is done by subtracting points of the synthetic mesh. Since
the triangulation of the mesh depends on these 3D points, the faces composed by the
subtracted points will disappear, giving us an irregular split which is similar to the
split produced by the mirrors.

Using the mirrors approach proposed in this document, in addition to the split of
the model, a loss of resolution on the back of the model is produced. To emulate this
loss on the synthetic model a simplification on the two back meshes between 0% and
50% is done. To evaluate the zippering result, Hausdorff distance between the result
of the zippering and the original synthetic mesh is computed.

In Figure 5.14 the result of zippering the splitted model with a loss of 40% for
the posterior meshes can be seen. As expected, Hausdorff distance increases in the
zones where there are more difference in the resolution.

In order to evaluate the accuracy of the zippering process with respect to the res-
olution degradation on the back meshes, the mean value of the Hausdorff distance is
analyzed for degradation of 10%, 20%, 30%, 40% and 50%. The results are displayed
in Figure 5.15, where the evolution of the accuracy has a linear behavior.

5.5 Conclusions

In this chapter we have presented a novel system for the efficient modeling of a
human body using only one range camera and two mirrors. Our method presents
good characteristics in terms of efficiency, compactness and low memory usage.

The experiments show that, with a low-cost range camera like the Microsoft
Kinect and two mirrors, a fast 3D reconstruction can be done. The use of mirrors
allows a reduction of the space needed for the modeling, but on the other side pro-
duce a degradation on the created 3D model. This degradation is produced by two
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Figure 5.14: Result of the zippering for a reduction of 40% for the two back meshes.
Red color indicates a low Hausdorff distance, while blue color indicates a high Haus-
dorff distance. In the image magnification of the head it can be seen that the high
Hausdorff distance is produced by the high difference between the resolutions of
the frontal and the back mesh. In the image magnification of the arm, a disconti-
nuity of the mesh produce a high Hausdorff distance because the original mesh had
two triangles in this position, while our zippering process only triangulates with one
triangle.

factors: the reflection itself, which produces a loss of about 20% in the number of
vertices and faces, and the additional distance of the IR pattern after bouncing at the
mirror.

Due to the use of the mirrors there was no overlap between the meshes and there-
fore the traditional techniques for stitching could not be implemented. Dynamic Time
Warping has demonstrated that is a powerful algorithm not only suitable for speech
recognition, but also for many other fields.
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Chapter 6

Concluding Remarks and Future Work

In this thesis different variants for the registration of range images are presented.
From the first step of obtaining the 3D point cloud to the registration of multiple
range images proceeding from different scan positions, different possibilities have
been explained along these pages. Some conclusions can be extracted from the work
of these years, and also new lines of research can be opened after the obtained expe-
rience.

6.1 Conclusions

Basically, the thesis can be divided in 3 different parts:

� In the first part we study the multisensorial registration between range cameras
and other sources of information, obtaining as result a textured 3D represen-
tation which combines all the information at the same time. Although some
possibilities exist, we decided for a semi-automatic method which needs the
manual selection of some correspondences between the range image and the
other source of information.

1. The experiments have been divided in two different scenarios: the short
range case and the large range case. The obtained results shows a better
estimation of the camera displacement in the short range case, but on the
other side the orientation of the camera is better estimated in the large
range case.

2. Experimental results show how the multisensorial registration error be-
haves in comparison to the selection of the correspondences. The results
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reflect that the error is almost zero in case of an accurate selection of the
correspondences, and is growing linearly as long as this selection is more
inaccurate. In addition, the increase in the number of correspondences
between the images improves the accuracy of the estimations, although it
shows an exponential decay behaviour.

3. The reprojection error (the error comparing the original image and the
image composed of the backprojection of the 3D points in the estimated
camera pose) shows also a lineal behaviour when the gaussian noise is
added. In addition, the experimental results show that, from an specific
number of correspondences on, the error in the manual selection of the
points can be minimized after the reprojection.

� The second part includes Chapter 3 and Chapter 4, and integrates the core part
of this thesis. In Chapter 3 the problem of pairwise registration is presented,
explaining some existing possibilities and presenting a new descriptor based on
the covariance for both 3D shape and texture aspects. Individual range images
must be registered pair-to-pair with their neighboring range images giving, if
possible, as much registrations as possible in order to deliver a valuable redun-
dance information. This redundance is the basis for the second step, the mini-
mization of the global error for the whole set. A novel algorithm by means of a
Bayesian framework is proposed, achieving good results in cases with incorrect
correspondences. In particular, we aim to have the possibility of including a
probability weight to each correspondence between the 3D scans, making pos-
sible to detect which of these correspondences were incorrectly established.

1. Traditional methods for pairwise registration are usually based on de-
scriptors which only take into account the 3D shape of the scene. During
last years and currently, some approaches which also rely on the informa-
tion of the texture are also appearing in the literature.

2. The proposed fusion covariance descriptor achieves a good performance
in 3D point clouds with a limited noise, and it maintains this behaviour
when the noise is highly incremented, outperforming other state-of-the-
art proposals.

3. A possible implementation for the filtering of typical structures in the 3D
scene is presented. Specifically, a detection of large planes representing
walls of buildings is explained, allowing a better identification of the ele-
ments which better represent the scenario.
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4. The multiview registration methods goes a step further in the registration
process, achieving a global minimization of all the set of range images.
A new algorithm based on Bayesian framework is proposed, allowing the
detection and minimization of possible incorrect correspondences pro-
duced by an incorrect selection or by challenging situations like symme-
tries or repetitive patterns.

5. Results demonstrates that the multiview registration obtains better results
if the object has a higher number of correspondences in relation to the
number of views or the total number of points.

6. Even in cases where the algorithm fails, the obtained registration is usu-
ally incorrect only because of a single registration which is not able to
align with the set of the other ones, giving a global registration which is
obviously incorrect but near to the desired result.

7. The proposed algorithm can serve not only for situations where there ex-
ist degraded correspondences, but also for registration cases where we
want to obtain a better accuracy. This increase of the accuracy must be
pondered with the increase of time execution, due to the use of an itera-
tive algorithm.

� In the third part of this thesis an specific system using one single view is pre-
sented. The system is based on the use of a Microsoft Kinect device and two
mirrors.

1. The system allows the 3D modeling of a person (or an object of similar
dimensions) by using one single range camera. The main core of this
system is the use of two mirrors placed behind the person, allowing the
range camera to detect his posterior part. The disposition of the system
allows a high reduction in the needed space.

2. The use of the mirrors produces, however, two main problems which must
be considered: the loss of quality produced by the reflection in the mirror
and the loss of quality produced by the extra distance that the IR pattern
must travel when colliding with the mirrors. Experimental results show
that this second source of error is considerably higher than the loss due
to the reflection itself.
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3. A novel method for the stitching of non-closed surfaces is presented, by
using the Dynamic Time Warping algorithm. The experiments revealed
that this method works correctly, producing a low error if we compare to
the original surface. However, this error is getting higher in cases where
we have a discontinuity in the surface, or when we have a high difference
in resolution between the frontal and the back mesh

6.2 Future Work

The aim of this thesis was to study the different possibilities of range image and
their combination in order to obtain a global 3D structure which combines all the
information together. There are, however, some aspects which can be deeply studied
or also new possibilities which can be explored.

� One of the most interesting lines of continuation is the extension to perform
the registration of the 3D scans by using information from the other sources
of images, i.e., infrared image, gamma image, or even the reflectance image
produced by the own 3D scanner (image produced by some 3D scanners which
gives an idea about the material of the scanned objects). Some experiments
were done during this thesis, but we finally decided to use the visible image
because of its richness in definition and the high availability of methods for its
processing in the computer vision literature.

� For the current implementation of the covariance descriptor we have used the
RGB space of color and the resulting angles �, � and  between the center
point of the descriptor and its neighborhood. However, other different features
can be easily integrated in the covariance descriptor, allowing a more complete
representation. Use of other spaces of color like CIELab, or additional geomet-
ric concepts which preserve their structure in case of rotations and translations
can be researched in the future.

� Some experimental work should be still done with the covariance descriptor.
Challenging scenarios considering the reduction of the resolution for the 3D
point clouds or the addition of clutter to the scene should be considered.

� A possible improvement of the multiview registration algorithm presented could
be the possible removal of views, or the separation of the final result in two dif-
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ferent registrations. Extending this possibility it could be useful in cases like
the one shown in Figure 4.8 and similar ones.

� Finally, it is expected that range cameras with higher possibilities and lower
cost will be available during the next years. Microsoft Kinect is just the be-
ginning of a new era of consumer range cameras, which will be probably inte-
grated in laptops and smartphones in the future. Their possibilities and draw-
backs will depend on this integration, so we must be aware of their possibilities.
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Appendix A

Variational EM Algorithm

Consider the joint distribution P (X;Zj�) over the complete data set in our pursue of
maximizing P (Xj�), since:

P (Xj�) =
X
Z

P (X;Zj�) (A.1)

which is equivalent to maximize the log-likelihood:

L(Xj�) = log[P (Xj�)] = log
hX

Z

P (X;Zj�)
i

(A.2)

where a set of arbitrary distributions Q(Z) can be introduced without losing general-
ity:

L(Xj�) = log
hX

Z

Q(Z)
P (X;Zj�)
Q(Z)

i
(A.3)

By means of Jensen's inequality [29] [45], a lower bound to this log-likelihood
can be computed

L(Xj�) = log
hX

Z

Q(Z)
P (X;Zj�)
Q(Z)

i
�
X
Z

Q(Z) log
hP (X;Zj�)

Q(Z)

i
� F (Q; �)

(A.4)

This lower bound is known as free energy term [44] and it corresponds to the
sum of the Kullback-Leibler divergence [34] of the approximating Q-functions and
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the true posterior and the marginal log-likelihood:

F (Q; �) �
X
Z

Q(Z) log
hP (X;Zj�)

Q(Z)

i
=
X
Z

Q(Z) log
hP (ZjX; �)P (Xj�)

Q(Z)

i
=

=
X
Z

Q(Z) log
h
P (Xj�)

i
+
X
Z

Q(Z) log
hP (ZjX; �)

Q(Z)

i
= L(Xj�)�KL(QkP (ZjX; �))

(A.5)

The non-decreasing updating of a lower bound such asF (Q; �) of a log-likelihood
function (satisfying the condition above) implies getting closer to the maximum value
at each step. Since such a maximum value is finite, there will be a time in the proce-
dure when the free energy F (Q; �) reaches that value. Maximizing F (Q; �) has to be
performed in two steps: i) first, with respect to the approximating Q-functions, and,
ii) with respect to the model's parameters �.

In this case, the Expectation-Maximization consist of two optimization steps:
one implies finding the “nearest” (in terms of the Kullback-Leibler divergence) Q-
distribution to the a posteriori probabilities for the latent variables, and another that
involves maximizing with respect to the model's parameters:

� Expectation: Assume an intermediate stage with �l (l-th iteration). Now, the
statement “Compute the suf�cient statistics for the latent variables posterior
distributions P (ZjX; �)” can be translated into:

Q(Z) = arg max
Q′(Z)

[F (Q′(Z); �l)] (A.6)

that can be found by taking functional derivatives on F (Q; �), and whose so-
lution is:

Q(Z)l+1 = P (ZjX; �l) (A.7)

which is determined by its suf�cient statistics, i.e., the expected moments.

� Maximization: Given the new value Ql+1, the function to be maximized with
respect to the model's parameters � is F (Ql+1; �):

�l+1 = arg max
θ

[F (Ql+1; �)] (A.8)
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Thus, after substituting the computed values for Ql+1 into F (Ql+1; �), the
quantity to be maximized is:

�l+1 = arg max
θ

nX
Z

Q(Z)l+1 log
hP (X;Zj�)
Q(Z)l+1

io
(A.9)

which, in practice, means:

�l+1 = arg max
θ

nX
Z

Q(Z)l+1 log[P (X;Zj�)]
o

(A.10)

and, thus, according to Equation (A.7):

�l+1 = arg max
θ

nX
Z

P (ZjX; �l) log[P (X;Zj�)]
o

(A.11)
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� Xavier Mateo, Xavier Orriols, and Xavier Binefa. Bayesian Perspective for
the Registration of Multiple 3D Views. Accepted in Computer Vision and Im-
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http://dx.doi.org/10.1016/j.cviu.2013.09.003

Conference Contributions

� Luis Ruiz, Xavier Mateo, Ciro Gr�acia, and Xavier Binefa. Single Snapshot
System for the Fast 3D Modeling using Dynamic Time Warping. In Proceed-
ings of the International Conference on Computer Vision Theory and Appli-
cations, pp. 317–326, vol. 2, 2012.

� Xavier Mateo, and Xavier Binefa. Plane Filtering for the Registration of Urban
Range Laser Imagery. In Proceedings of the Iberian Conference on Pattern
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Images. In Proceedings of the International Conference on Computer Vision
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