
Evaluating techniques for
parallelization tuning

in MPI, OmpSs and MPI/OmpSs

Author:
Vladimir Subotić

Advisors:
Prof. Jesús Labarta
Prof. Mateo Valero

Prof. Eduard Ayguadé

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor per la Universitat Politècnica de Catalunya
Departament d’Arquitectura de Computadors

Barcelona, 2013

i

Abstract

Parallel programming is used to partition a computational problem among
multiple processing units and to define how they interact (communicate
and synchronize) in order to guarantee the correct result. The performance
that is achieved when executing the parallel program on a parallel architec-
ture is usually far from the optimal: computation unbalance and excessive
interaction among processing units often cause lost cycles, reducing the
efficiency of parallel computation.

In this thesis we propose techniques oriented to better exploit parallelism
in parallel applications, with especial emphasis in techniques that increase
asynchronism. Theoretically, this type of parallelization tuning promises
multiple benefits. First, it should mitigate communication and synchro-
nization delays, thus increasing the overall performance. Furthermore,
parallelization tuning should expose additional parallelism and therefore
increase the scalability of execution. Finally, increased asynchronism would
allow more flexible communication mechanisms, providing higher toler-
ance to slower networks and external noise.

In the first part of this thesis, we study the potential for tuning MPI par-
allelism. More specifically, we explore automatic techniques to overlap
communication and computation. We propose a speculative messaging
technique that increases the overlap and requires no changes of the orig-
inal MPI application. Our technique automatically identifies the applica-
tion’s MPI activity and reinterprets that activity using optimally placed
non-blocking MPI requests. We demonstrate that this overlapping tech-
nique increases the asynchronism of MPI messages, maximizing the over-
lap, and consequently leading to execution speedup and higher tolerance
to bandwidth reduction. However, in the case of realistic scientific work-
loads, we show that the overlapping potential is significantly limited by
the pattern by which each MPI process locally operates on MPI messages.

In the second part of this thesis, we study the potential for tuning hybrid
MPI/OmpSs applications. We try to gain a better understanding of the par-
allelism of hybrid MPI/OmpSs applications in order to evaluate how these
applications would execute on future machines and to predict the execu-
tion bottlenecks that are likely to emerge. We explore how MPI/OmpSs

applications could scale on the parallel machine with hundreds of cores per
node. Furthermore, we investigate how this high parallelism within each
node would reflect on the constraints of the interconnect. We especially
focus on identifying critical code sections in MPI/OmpSs. We devised a
technique that quickly evaluates, for a given MPI/OmpSs application and
the selected target machine, which code section should be optimized in
order to gain the highest performance benefits.

Also, this thesis studies techniques to quickly explore the potential OmpSs
parallelism inherent in applications. We provide mechanisms for the pro-
grammer to easily evaluate potential parallelism of any task decomposi-
tion. Furthermore, we describe an iterative trial-and-error approach to
search for a task decomposition that will expose sufficient parallelism for
a given target machine. Finally, we explore potential of automating the it-
erative approach by capturing the programmers’ experience into an expert
system that can autonomously lead the process of finding efficient task
decompositions.

Also, throughout the work on this thesis, we designed development tools
that can be useful to other researchers in the field. The most advanced
of these tools is Tareador – a tool to help porting MPI applications to
MPI/OmpSs programming model. Tareador provides a simple interface
to propose some decomposition of a code into OmpSs tasks. Then, based
on the proposed decomposition, Tareador dynamically calculates data de-
pendencies among the annotated tasks, and automatically estimates the
potential OmpSs parallelization. Furthermore, Tareador gives additional
hints on how to complete the process of porting the application to OmpSs.
Tareador already proved itself useful, by being included in the academic
classes on parallel programming at UPC.

Acknowledgement

On January 12th 2007, I started my Ph.D. studies at the UPC. In the first two hours of
“sitting in front of computer”, I managed to format my Linux partition. Today, I’m
about to defend my doctorate in computer science. I’m not the same guy from my first
day, both personally and professionally. Many people helped me on my way. I owe
them many thanks.

I’m very thankful to Jesus, who taught me to be methodological and direct – I
would say a brutal engineer.

I’m thankful to Mateo, whose encouragement and support I knew to recognize and
appreciate fully always with a significant delay.

I must thank Edu for “adopting” me close to the end of my studies and helping me
finish my Ph.D. in a surprisingly good mood.

I’m thankful to Jose Carlos, who enormously helped me writing papers.
Also, I wish to thank my numerous colleagues from Barcelona Supercomputing

Center who shared with me their working and non-working hours and made my Ph.D.
time both more productive and enjoyable. I must pick out Saša and Srdjan, who showed
me many tricks of the trade. And, I would like to specially mention Uri Prat, a big guy
who had amazing patience with me, even in the days when I was a technical idiot.

Finally, this thesis would not be possible without my girlfriend Jelena. She has
stuck with me through thick and thin.

iv

Errata

My graduate work has been financially supported by the following projects:

• Computacion de altas prestaciones V (TIN2007-60625).

• TEXT – Towards EXaflop applicaTions. EU Commission, Informa-

tion Society Technologies, IST-2007-261580.

• BSC-IBM MareIncognito project. IBM Research.

• Intel-BSC Exascale Lab. Intel Corporation.

Also, throughout my Ph.D. studies, I was receiving a grant from Barcelona

Supercomputing Center.

v

Contents

Acknowledgement iv

Contents vi

List of Figures x

List of Tables xiv

1 Introduction 1
1.1 Goals . 2
1.2 Approach . 3
1.3 Contributions . 4
1.4 Document structure . 6

2 Background 8
2.1 Parallel machines . 9

2.1.1 Processor architecture trends 9
2.1.2 Memory Organization . 11
2.1.3 Message Passing Cost . 14

2.2 Parallel programming models . 15
2.2.1 MPI . 16
2.2.2 OpenMP . 22
2.2.3 OmpSs . 27
2.2.4 Example - MPI/OmpSs vs. MPI/OpenMP 33

2.3 Tools . 35

vi

CONTENTS

2.3.1 mpitrace . 36
2.3.2 Valgrind . 36
2.3.3 Paraver . 37
2.3.4 Dimemas . 37

3 Motivation 39
3.1 MPI programming . 39

3.1.1 Bulk-synchronous programming 40
3.1.2 Communication Computation Overlap 41

3.2 Our effort in tuning MPI parallelism 42
3.2.1 Automatic overlap . 43

3.3 MPI/OmpSs programming . 45
3.3.1 Hiding communication delays 45
3.3.2 Additional parallelism within an MPI process 47

3.4 Our effort in tuning MPI/OmpSs parallelism 48
3.4.1 Identifying parallelization bottlenecks 49
3.4.2 Searching for the optimal task decomposition 50

4 Infrastructure 51
4.1 Simulation aware tracing . 52

4.1.1 Illustration of the methodology 53
4.2 Framework to identify potential overlap 54

4.2.1 Implementation details . 56
4.3 Framework to replay MPI/OmpSs execution 59

4.3.1 Implementation details . 61
4.4 Tareador – Framework to identify potential dataflow parallelism . . . 64

4.4.1 Implementation details . 65
4.4.2 Usage of Tareador . 69

5 Overlapping communication and computation in MPI scientific applica-
tions 70
5.1 Characteristic application behaviors 71
5.2 Automatic Communication-Computation Overlap at the MPI Level . . 73

5.2.1 Automatic overlap applied on the three characteristic behaviors 75

vii

CONTENTS

5.3 Speculative Dataflow – A proposal to achieve automatic overlap . . . 77
5.3.1 Protocol of speculative dataflow 77
5.3.2 Emulation . 78
5.3.3 Hardware support . 83
5.3.4 Conclusions and future research directions 83

5.4 Quantifying the potential benefits of automatic overlap 84
5.4.1 Experimental Setup . 85
5.4.2 Patterns of production and consumption 85
5.4.3 Simulating potential overlap 91
5.4.4 Conclusions and future research directions 102

6 Task-based dataflow parallelism 104
6.1 Identifying critical code sections in dataflow parallel execution 105

6.1.1 Motivation . 106
6.1.2 Motivation example interpreted by the state-of-the-art techniques108
6.1.3 Experiments . 110
6.1.4 Conclusion and future research directions 118

6.2 Tareador: exploring parallelism inherit in applications 119
6.2.1 Motivating example . 120
6.2.2 Experiments . 121
6.2.3 Conclusion and future research directions 129

6.3 Automatic exploration of potential parallelism 130
6.3.1 The search algorithm . 131
6.3.2 Heuristic 2: When to stop refining the decomposition 135
6.3.3 Working environment . 136
6.3.4 Experiments . 138
6.3.5 Conclusion . 146

7 Related Work 147
7.1 Simulation methodologies for parallel computing 147
7.2 Overlapping communication and computation 149
7.3 Identifying parallelization bottlenecks 150
7.4 Parallelization development tools . 152

viii

CONTENTS

8 Conclusion 155
8.1 Future work . 157

8.1.1 Parallelism for everyone: my view 158

9 Publications 161

Bibliography 164

ix

List of Figures

2.1 The evolution of computing platforms. Chart originally from SPIRAL
project website [72] . 10

2.2 Example MPI code . 18
2.3 Execution of the example MPI code 19
2.4 simple OpenMP code . 24
2.5 simple OpenMP code . 24
2.6 Pointer chasing application parallelized with OpenMP 26
2.7 Porting sequential C to OmpSs . 28
2.8 OmpSs implementation of Cholesky 31
2.9 Dependency graph of Cholesky . 32
2.10 Simple MPI code to study potential lookahead 34

3.1 The case of nonoverlapped MPI . 42
3.2 The case of overlapped MPI . 42
3.3 Overlap with chunks . 43
3.4 Example of nonoverlapped MPI . 46
3.5 Example of overlapped MPI/OmpSs 46
3.6 MPI/OmpSs execution with multiple cores per MPI process 48

4.1 Simulating different implementations of broadcast 53
4.2 The framework for studying overlap integrates Valgrind, Dimemas,

and Paraver. 56
4.3 The environment integrates Mercurium code translator, MPISS tracer,

tasks extractor, Dimemas simulator and Paraver visualization tool. . . 61

x

LIST OF FIGURES

4.4 The code translation inserts functions that signal OmpSs pragma an-
notations. 62

4.5 Environment methodology . 64
4.6 The Tareador framework integrates Mercurium code translator, Val-

grind tracer, Dimemas simulator, Paraver and dependency graph visu-
alization tool . 65

4.7 Translation of the input code required by the framework. 67
4.8 Collecting trace of the original sequential and the potential OmpSs

execution. 68

5.1 Three characteristic MPI behaviors that suffer from lack of overlap . . 72
5.2 Non-overlapped execution . 74
5.3 Overlapped execution . 74
5.4 Three characteristic behaviors with chunked overlap 75
5.5 Software mock-up for the evaluation 79
5.6 Influence of the network bandwidth on execution time 80
5.7 Bandwidth usage for the link bandwidth of 2.5GB/s 81
5.8 Bandwidth usage for the link bandwidth of 250MB/s 81
5.9 Trace of a micro-imbalanced application 82
5.10 Overlapping in pipeline executions 82
5.11 Production and consumption patterns of various applications 87
5.12 Production and consumption patterns of the restructured Sweep3D . . 91
5.13 Paraver visualization for the non-overlapped and overlapped execu-

tions of NAS-CG. 93
5.14 Speedup of overlapped execution over original execution 94
5.15 Execution time for original and overlapped (real and ideal patterns)

execution . 97
5.16 Factor of bandwidth reduction for which the overlapped execution main-

tains the performance of the original execution on full bandwidth . . . 98
5.17 Benefit of only advancing sends or only postponing receives 100
5.18 Simulation of the overlapped executions on the real and ideal produc-

tion/consumption patterns. 101

6.1 Code of the motivating example. 107

xi

LIST OF FIGURES

6.2 Data-dependency graph of the motivating example. 108
6.3 The resulting speedup when accelerating different tasks. 109
6.4 Parallelism of OmpSs applications. 111
6.5 Number of cores active during execution. 112
6.6 Tasks profile . 113
6.7 Speedup when one task is speeded up by 2x (OmpSs codes). 113
6.8 HM transpose: number of active cores 114
6.9 LU factorization: number of active cores 114
6.10 Parallelism of MPI/OmpSs applications. 116
6.11 Tasks profile . 117
6.12 Speedup when one task is speeded up by 2x (MPI/OmpSs codes). . . 117
6.13 Execution of different possible taskifications for a code composed of

four parts. 120
6.14 Exploring potential decomposition of Cholesky code 123
6.15 Number of task instances and the potential parallelism for various task-

ifications of Cholesky. 124
6.16 Speedup and parallel efficiency for T6 for various number of cores. . . 125
6.17 Exploring task decompositions of HP Linpack. 126
6.18 Number of task instances and the potential parallelism of each taskifi-

cation. 127
6.19 Paraver visualization of the first 63 tasks and the dependencies among

them (taskification T4, BS=256). 128
6.20 Speedup and parallel efficiency for T9 for various number of cores. . . 129
6.21 Algorithm for exploring possible task decompositions. 131
6.22 Iterative refinement of decompositions. 132
6.23 The environment that automatically explores possible task decomposi-

tionss. 136
6.24 Code translation for automatic task decomposition. 137
6.25 Jacobi on 4 cores . 140
6.26 HM transpose on 4 cores . 141
6.27 Cholesky on 4 cores . 142
6.28 Sparse LU on 4 cores . 143
6.29 Sparse LU on 8 cores . 144

xii

LIST OF FIGURES

6.30 Sparse LU on 16 cores . 145

xiii

List of Tables

5.1 Average patterns of production and consumption 89
5.2 Number of network buses used in Dimemas for each application. . . . 101

6.1 Speedup for different number of cores. 108

xiv

1
Introduction

Technological evolution demands increasing amounts of computational power and
causes appearance of brand new large-scale parallel machines. Today, virtually all
science and engineering is based on high-accuracy numerical simulations. These sim-
ulations are extremely computation-intensive programs. In order to finish the com-
putation in limited time, these programs must execute in parallel. Therefore, parallel
processing is becoming an indispensable part of modern science.

However, it is very hard to make a parallel machine work efficiently. As the number
of processors in a system grows to hundreds and beyond, organizing inter-processor
communication becomes a very important issue. In such large systems, inefficient
communication and synchronization can introduce long execution stalls. These stalls
prevent the processors from computing useful work and seriously harm performance.

In order to eliminate processor stalls, the computer architect’s community tries
to accelerate communication and synchronization mechanisms by investing more in
interconnects. Hardware vendors constantly deliver more powerful networks. These
networks constantly advance technological parameters, providing higher bandwidth

1

and lower latency. As a result of this trend, the cost of the interconnect is becoming a
significant share in the total cost of these parallel machines [32]. Moreover, the trend
of the Top 500 list [87] forecasts that the share of the interconnect in both power and
cost of the whole system will be increasing.

Therefore, the trend of simply improving technological parameters of intercon-
nects, and paying for those improvements, becomes economically unsustainable. Many
recent studies show that, in High Performance Computing (HPC), interconnection net-
works are over-designed and yet underutilized [35]. Also, despite their increasing
cost, new high-end interconnects deliver just a slight improvement in the overall per-
formance. Thus, the community must optimize the utilization of network resources.
Rather than trying to create new, faster and lately very expensive cycles in the network,
the community must learn how to profit more from the already existing cycles.

To tackle the issue of under-utilization of parallel systems, in this thesis we explore
techniques for parallelization tuning. We especially target techniques that increase
asynchronism in parallel execution. Theoretically, this type of parallelization tuning
promises multiple benefits. First, it should mitigate communication and synchroniza-
tion delays, thus increasing the overall performance. Furthermore, parallelization tun-
ing should expose additional parallelism and therefore increase the scalability of ex-
ecution. Finally, increased asynchronism would allow more flexible communication
mechanisms, providing higher tolerance to slower networks, as well as to external
noise.

1.1 Goals

The major goal of this thesis is to explore techniques for parallelization tuning in MPI
and MPI/OmpSs. In studying MPI execution, we evaluate automatic techniques for
hiding communication delays. We explore techniques that can automatically overlap
communication and computation, without the need to refactor the original legacy MPI
code. Furthermore, we explore techniques for optimizing MPI/OmpSs execution. We
specially focus on pinpointing bottlenecks of MPI/OmpSs execution. Also, we explore
how MPI/OmpSs execution can be improved by changing the task decomposition of
the code.

Also, throughout the work on this thesis, we strove to produce a useful development

2

infrastructure that can be used by both research and industry. Nowadays, very few peo-
ple can efficiently program in parallel [38, 49]. However, as the existing hardware be-
comes increasingly parallel, parallel programming will inevitably become mainstream.
Therefore, this thesis also aims to produce new development environments that can
further increase the overall understanding of parallelism. We hope that our develop-
ment environments can facilitate the adoption of parallel programming, especially the
MPI/OmpSs programming model.

1.2 Approach

The experimental part of this thesis is based on trace-driven simulation. Initially, our
study targets parallelization tuning of MPI execution. However, simulating MPI execu-
tion is a very hard problem. The simulation must process high number of separate MPI
processes that among themselves communicate, synchronize and share resources (e.g.
interconnection network). Thus, simulators of MPI execution are very computation-
intensive and hard to parallelize. Our experience tells us that the mainstream solution
for simulating MPI execution is a trace-driven simulation at a high level of abstraction.

We customize the conventional trace-driven methodology, by migrating the feature
modeling effort from the simulation phase to the tracing phase. In the conventional
trace-driven simulation, modeling a new feature is done in the simulation phase. The
tracer instruments the application and collects the trace of the run. Then, the simulator
replays the collected trace to reconstruct the time-behavior of the studied application
on a parallel machine. When testing a new feature, the developer must extend the
simulator in order to incorporate the effects of the inspected feature into the resulting
time-behavior. On the other hand, in this thesis, we design a novel simulation method-
ology in which modeling a new feature is done in the tracing phase. In our simulation
approach, we extend the tracer in order to introduce the effects of the inspected feature
already into the collected trace. Then, the unchanged simulator can replay the col-
lected trace and propagate the effect of the modeled feature throughout the simulated
parallel execution.

Our methodology allowed us to simulate effects of low-level features in large-scale
systems. Our approach stresses the tracing part of the simulation, by moving the fea-
ture modeling effort into this phase. Since each MPI process is traced concurrently,

3

the intensive computation for feature modeling is naturally parallelized across all MPI
processes. This parallelization of feature modeling computation allowed us to build
very powerful environments. In many developed tools, we implement tracers based on
binary translation environments. These tracers instrument execution at the level of a
single instruction and model very low-level features. On the other hand, an unchanged
MPI simulator propagates the effects of the modeled feature throughout a very large-
scale parallel machine.

Based on the presented methodology, we created new useful development en-
vironments. More specifically, we designed three development environments. The
first environment automatically evaluates the potential of communication/computation
overlap in MPI applications. The second environment extends the legacy MPI re-
playing toolchain (mpitrace, Dimemas) into a new MPI/OmpSs replaying toolchain
(mpisstrace, Dimemas). Finally, the last environment is Tareador – a tool that guides
parallelization of sequential applications. Tareador showed to be especially useful for
teaching parallel programming, so it was included in the academic program of UPC.

1.3 Contributions

The first contribution of the thesis consists of exploring techniques for parallelization
tuning. The goal of these techniques is to hide communication delays and increase
parallelism in scientific parallel applications:

1. In our study of techniques for tuning parallelism in MPI execution, we focus on
exploring the potential of communication-computation overlap. We introduce
speculative dataflow – a technique that automatically overlaps communication
and computation in MPI applications, without the need to restructure the target
legacy code. We describe the protocol of speculative dataflow, prove its feasi-
bility and demonstrate its potential benefits in characteristic MPI applications.
Furthermore, we show that in real scientific applications, overlap can achieve
significant execution speedup, as well as higher tolerance to bandwidth reduc-
tion. However, we point out that the potential overlap is often seriously limited
by the applications intrinsic computation pattern. In the case of one application,
we illustrate how that computation pattern can be changed by refactoring the ap-

4

plication. However, we conclude that it is impractical to do such manual refac-
toring in each application. In a search for a dynamic technique for restructuring
computation patterns, we start our study of task-based dataflow programming
models (OmpSs and MPI/OmpSs).

2. In our study of techniques for tuning parallelism in MPI/OmpSs execution, we
first identify parallelization bottlenecks in existing unmodified MPI/OmpSs ap-
plications. The years of practice in optimizing applications points that the major
issue is focus – identifying the code section whose optimization would yield the
highest overall applications speedup. We illustrate that, due to the irregular par-
allelism of MPI/OmpSs, the programmer can hardly identify the critical code
section. Furthermore, we demonstrate that in many applications, the choice of
the critical section decisively depends on the configuration of the target machine.
For instance, in HP Linpack, optimizing a task that takes 0.49% of the total com-
putation time yields the overall speedup of less than 0.25% on one machine and
at the same time yields the overall speedup of more than 24% on a different ma-
chine. To tackle this issue, we devised an automatic approach that, for a given
target parallel machines, identifies the critical code sections of an MPI/OmpSs
application. Compared to the state-of-the-art research, our approach accounts
for more influences, and estimates the potential benefits of the optimization in
advance, before incurring into any coding efforts.

3. We further explore techniques to introduce OmpSs parallelism into existing MPI
applications. OmpSs potentially extracts very irregular parallelism, parallelism
that the programmer cannot identify himself. Thus, for a programmer without
any development support, it is very hard to anticipate whether some task decom-
position exposes parallelism or not. To that end, we provide mechanisms for
the programmer to evaluate quickly the potential parallelism of any OmpSs task
decomposition. Furthermore, we describe an iterative trial-and-error approach
to search for a task decomposition that will expose sufficient parallelism for a
given target machine. Finally, we explore the potential of automating the itera-
tive approach by capturing the programmers’ experience into an expert system
that can autonomously lead the process of finding efficient task decompositions.

5

The second contribution of the thesis consists in creating an infrastructure that
can be used for future research, as well as for educating programmers about parallel
programming. To that end, we developed two environments:

1. mpisstrace – an environment for replaying MPI/OmpSs parallel execution. Al-
ready existing BSC tools allow tracing MPI execution with mpitrace and replay-
ing that execution with Dimemas. Based on this infrastructure, we extended MPI
tracing library in order to instrument MPI/OmpSs codes and Dimemas in order
to support task-based dataflow execution. As the result, we obtained a frame-
work that is fully compatible with the legacy BSC tool-chain, but also supports
simulating MPI/OmpSs execution.

2. Tareador – a tool to assist porting MPI applications to MPI/OmpSs. Having an
MPI application, the programmer can very simply propose some decomposition
of the code into tasks. Then, Tareador dynamically identifies data-dependencies
among the annotated tasks and reconstructs potential parallel time-behavior. If
the programmer is satisfied with the obtained parallelization, Tareador can fur-
ther assist the process of porting the application by identifying input and output
parameters of each task. Tareador already proved to be so useful in exploring
parallelism, that it was included in the academic program of UPC.

1.4 Document structure

The document is organized as follows. Chapter 2 presents the state-of-the-art technol-
ogy related to the topic of this thesis. It provides a survey on the hardware architecture,
programming models and development tools related to this thesis. Chapter 3 illustrates
the performance issues in parallel computing and introduces the techniques for paral-
lelization tuning addressed in this thesis. In Chapter 4, we describe the development
environments designed during the work on this thesis. Furthermore, Chapter 5 presents
our work in the field of tuning MPI parallelism. More specifically, it describes our
work in the field of overlapping communication and computation in MPI applications.
Furthermore, Chapter 6 presents our work in the field of tuning MPI/OmpSs paral-
lelism. Namely, it describes our techniques for identifying parallelization bottlenecks

6

in MPI/OmpSs and exploring potential MPI/OmpSs parallelism inherent in applica-
tions. Chapter 7 presents the previous work related to the research covered in this
thesis while Chapter 8 draws the conclusion of this thesis and presents the direction of
the future research in this field. Finally, Chapter 9 lists the papers that we published
throughout the work on this thesis.

7

2
Background

This Chapter presents the background and state-of-the-art relevant to this thesis Sec-
tion 2.1 presents background on the architecture of parallel machines. It focuses on
the classification of parallel machines on shared-memory and distributed-memory, es-
pecially analyzing the cost of communication among separate processing units. Sec-
tion 2.2 describes the mainstream parallel programming models. It revisits the most
widely used programming models for distributed-memory parallel machines (MPI)
and shared-memory parallel machines (OpenMP). Also, we describe the OmpSs pro-
gramming model that extends OpenMP providing semantics for expressing dataflow
parallelism. Finally, in Section 2.3 we present the legacy tools that are used through-
out this thesis. These tools are the starting point of the thesis – our initial extensions
finally graduated into fully independent tools.

8

2.1 Parallel machines

The constant need for higher performance caused the appearance of machines with
parallel architecture. A conventional sequential computer consists of the processor
connected to the memory via a datapath. Intensive computation makes each of these
three parts a bottleneck. As the direct acceleration on these parts showed unfeasible,
the solution was found in multiplying resources. However, in order to take advantage
of this multiplicity, the execution must exhibit parallelism. The parallelism can be
implicit (hidden from the programmer) or explicit (directly expressed by the program-
mer). In the rest of this Section, we present architectural concepts related to parallel
processing.

2.1.1 Processor architecture trends

The initial trend in manufacturing more powerful computers was building processors
with higher clock frequency. Processor chips are the key components of computers.
The most straight-forward approach for making faster computers is making a com-
puter that operates on a higher clock frequency. For a long time, the vendors provided
computers with increased frequency, making that property the selling point for all pro-
cessor chips. Frequency scaling provides an automatic (free) speedup for any software
– due to frequency scaling, an unchanged software automatically achieves the speedup
proportional to the frequency improvement (gray region in Figure 2.1). However, in-
creased frequency dramatically increases chip’s power consumption. Therefore, com-
puting platforms have hit the so called "power wall"[68], with frequency scaling no
longer appealing over the 3 GHz.

As the trend of increasing clock frequency became unsustainable, the vendors
started investing more effort in designing architectural improvements on the chip. In
1965, Gordon Moore made an empirical observation that the number of transistors on
a processor chip doubles every 18-24 months. This observation, called Moore’s law
[77], still holds. The increased number of transistors in the chip is used for architectural
improvements, such as additional functional units, additional registers, wider paths ...
This resource abundance increases chip’s floating point peak performance (light-red
region in Figure 2.1). However, unlike frequency scaling, the resource abundance pro-

9

Figure 2.1: The evolution of computing platforms. Chart originally from SPIRAL project website [72]

vides no automatic speedup of execution. Therefore, in order to achieve execution
speedup, either hardware or software must include additional logic that leverages the
additional resources.

Increased number of transistors in the cores lead to architectural improvements
that increase the internal processors use of parallelism. This type of parallelism is
extracted in the hardware and entirely hidden from the programmer. There are two
types of internal processor’s parallelism:

1. Pipelining [47]: The hardware breaks each instruction into pipeline stages,
so different stages of different instructions can execute concurrently. Typically,
an instruction is broken into stages of fetch, decode, execute and write-back.
The hardware itself checks for data-dependencies among different pipelines, and
allows the independent pipeline stages to executed concurrently. This type of
parallelism is called instruction-level parallelism (ILP). Available degree of par-
allelism theoretically increases with the number of pipeline stages. Current pro-
cesses have between 2 and 26 pipeline stages.

10

2. Superscalar execution [47]: The hardware consists of multiple independent
functional units. The processor is multi-issue – it issues multiple instructions
at the same time in order to utilize multiple ALUs, FPUs, load/store units ...
These multiplied resources can be utilized in parallel execution of different in-
structions, as long as data-dependencies are satisfied. Depending on how are
the data-dependencies among instructions calculated, these processors can be
classified into superscalar processors and very long instruction word (VLIW)
processors. In superscalar processors, the hardware dynamically detects data-
dependencies, which significantly increases the architectural complexity of the
chip. On the other hand, in VLIW processors, the compiler resolves dependen-
cies, generating long instructions that explicitly specify which operations can
execute concurrently.

However, since the techniques of implicit parallelism showed only limited poten-
tial, new computer architectures targeted higher performance by allowing the program-
mer to explicitly expose parallelism. The presented two techniques exposed paral-
lelism without any involvement of the programmer – the user programmed a sequential
control flow but the underlying system automatically extracted parallelism. However,
the implicit parallelism showed to be insufficient. An alternative approach puts mul-
tiple independent cores in one chip and allows the programmer to have a different
control flow in each of the cores. These parallel architectures provided more flexibility
in using the computation resources, but also increased the complexity of programming.

2.1.2 Memory Organization

Parallel computers can have shared or distributed-memory organization. Here, a clear
distinction should be made between how the memory is physically organized in hard-
ware and how the memory is perceived by the programmer. In respect to the physical
organization of the memory, a parallel machine can have shared memory or distributed
memory. Moreover, the machine can also have a hybrid organization where at the
level of one node the machine has shared memory, while different nodes among them-
selves operate on distributed memory. However, all these physical systems, from the
programmers point of view can be systems with shared or distributed address space.
Further text in this Section describes the differences between shared-memory and

11

distributed-memory systems.

Ditributed-Memory Organization

Distributed-memory machines (DMM) are computers with physically distributed mem-
ory. Each node is an independent unit that consists of a processor and a local memory.
An interconnection network connects all the nodes and allows communication among
them. Each node can only access its local memory. If a node needs data that is not
in its local memory, the data needs to be transferred by sending messages through the
network.

Distributed-memory machines improve efficiency by investing in faster and more
intelligent networks. In DMMs, the nodes are usually connected by point-to-point in-
terconnection links. Each node connects to a finite number of neighboring nodes. The
network topology is regular, often a hypercube or a tree. Since each node can send the
message only to its neighboring nodes, limited connectivity significantly restricts pro-
gramming. Initially, communication between nodes that have no direct connection had
to be controlled by software of the intermediate nodes. However, new intelligent net-
work adapters enabled data transfers to or from the local memory without participation
of the host processor. This allowed that the host processor can be efficiently computing
while, in background, there is a transfer to/from it. Furthermore, the state-of-the-art
networks optimize communications by dedicating special links for executing multicast
transfers.

A distributed-memory machine consists of loosely coupled processing units, mak-
ing it easy to assemble but difficult to program. DMMs can be assembled using off-
the-shelf desktop computers. However, to achieve high performance, the nodes must
be interconnected using a fast network. On the other hand, DMMs are very difficult
to program. The programmer must explicitly specify the data decomposition of the
problem across processing units with separate address spaces. Also, the programmer
must explicitly organize inter-processor communication, making both the sender and
the receiver aware of the transfer. Moreover, the programmer must take special care
about data partitioning among the nodes, because delivering some data from one node
to another may be very expensive. Thus, the data layout must be selected carefully to
minimize the amount of the exchanged data.

12

Shared-Memory Organization

Shared-memory machines (SMM) are computers with a physically shared memory. A
SMM consists of more processors, a shared physical memory (global memory), and
the network that connects the processors and the memory. The processors communi-
cate by reading and writing shared variables. The global memory usually provides a
common address space over a set of memory modules. The programming model al-
lows coordination of processors through the accesses to the common address space.
However, concurrent accesses to the shared data must be coordinated in order to avoid
race conditions with unpredictable effects.

The users perception of shared memory facilitates programming, at the cost of
difficult implementation of the machine. Communication through shared variables
allows easy parallelization. The programmer is less concerned about data locality,
expecting from the machine to serve all his requests for data. However, providing a
fast global memory access to multiple processors makes the technical realization of
a SMM a serious effort. Increasing the number of processors in the system further
stresses performance of the global memory. Thus, a shared resource of global memory
is an impediment for high scalability of these machines. Scaling of these machines
beyond tens of cores is very hard.

The most common parallel programming model for SMMs is threaded execution.
Multiple threads have separate control flows but can access shared global memory. A
programmer expresses parallelism using parallel constructs offered by the program-
ming model. The programming model maps user threads on system kernel threads,
while the operating system maps kernel threads to processors. These mapping algo-
rithms are partly or entirely hidden from the programmer. Also, the operating system
can take advantage of hardware parallelism by starting concurrent execution of differ-
ent sequential programs on different processors.

Initial implementations of SMMs usually relied on uniform memory access (UMA)
architectures. UMA architecture provides a uniform access time from any processor to
the single shared memory. Thus, UMA platforms are often called symmetric multipro-
cessors (SMP). The interconnect is typically a central bus that connects small number
of processors to the global memory. In this architecture, the interconnect becomes a
bottleneck that limits the number of processors in the system. Besides caches, there is

13

no other memory private to the processors. Caches allow faster access time, and avoid
that all the data requests go to the interconnect.

Today many implementations of SMMs rely on NUMA (non-uniform memory ac-
cess) architecture. NUMA architectures offer to the programmer perception of a shared
address space, although the underlying architecture is based on physically distributed
memory. Thus, NUMA platforms are often called distributed shared-memory (DSM)
machines. Perception of shared address space is achieved using the cache coherence
protocol. The coherence protocol guarantees that the memory access goes to the last
version of the variable, independent of where the variable is physically stored. How-
ever, coherence causes the access time to memory to depend on the physical location
of the accessed data. An access to the data that is locally stored is faster than an access
to the data that is stored in the local memory of some other node.

2.1.3 Message Passing Cost

This thesis focuses on achieving more efficient inter-processor communication. The
efficiency of communication can significantly determine the overall performance of
the parallel system. In this subsection, we explore in more details the factors that
determine the cost of message passing among nodes. Also, we explore the possible
techniques to reduce the transfer time for messages.

The message transfer time is a sum of the time needed to prepare the message
for transmitting, and the time needed for the message to traverse the network to its
destination. The system parameters that determine the transfer time are:

• Startup time: Startup time is the processing time local to the node that is needed
before sending and after reception of the message. This time accounts for the
time needed to pack the data into the message (adding message header, tail and
error correction information). Also, this time accounts for executing routing
algorithms and interfacing of the processor with the router.

• Latency: On its way to the destination, the message has to do a finite number of
hops via links that directly connect routers. Latency time is the multiply of the
latency of the router and the length of the routing path (number of hops to reach
the destination).

14

• Bandwidth: Bandwidth determines the speed by which the data traverses the
network. Bandwidth of the network depends of the clock rate and the width of
the links as well as of the speed of the routing and buffering within the routers.

One way of improving message passing among nodes is to reduce the transfer
time. Network vendors constantly deliver more expensive networks that have more re-
sources. First, networks with faster clock rate can provide higher bandwidth and lower
latency. Latency can further be improved by the increased connectivity among nodes.
Furthermore, new network interfaces can offload message processing from the node,
thus reducing the startup time. Also, message transfer time can be significantly reduced
by the programmer. Organizing a good data layout, the programmers can reduce the
total amount of data that needs to be communicated. Moreover, the programmer can
amortize the startup overhead by communicating in bulk – accumulating more data and
communicating in larger messages.

However, this thesis focuses on different techniques that improve message pass-
ing – instead of reducing time of the transfer, our goal is to hide the transfer time by
overlapping it with useful computation. As already mentioned, state-of-the-art parallel
machines can transfer messages without direct involvement of the processors. Thus,
while the message is in transfer, the processor can be busy doing some useful computa-
tion. This approach potentially allows to execute long transfers, without consequently
stalling the involved processors.

2.2 Parallel programming models

The search for the “holy grail” of parallel computing has failed – there is no efficient
and highly applicable automatic parallelization. The biggest idea in the field of parallel
computation was to find techniques that would automatically expose parallelism in the
applications. However, despite decades of work [78], automatic parallelization showed
very limited potential. Today, the only viable solution is to rely on the programmer to
expose parallelism.

For distributed-memory machines, the mainstream programming models are mes-
sage passing (MP) and partitioned global address space (PGAS). The most popular
implementation of MP model is message passing interface (MPI) [81]. In MPI, the pro-

15

grammer must partition the workload among processes with separate address spaces.
Also, the programmer must explicitly define how the processes communicate and syn-
chronize in order to solve the problem. Conversely, PGAS model is implemented in
languages such as UPC [20], X10 [25] and Chapel [24]. PGAS model provides a
global view for expressing both data structures and the control flow. Thus, as opposed
to message passing, the programmer writes the code as if a single process is running
across many processors.

On the other hand, OpenMP [31] is a de-facto standard for programming shared-
memory machines. OpenMP extends the sequential programming model with a set of
directives to express shared-memory parallelism. These directive allow exposing fork-
join parallelism, often targeting independent loop iterations. Nevertheless, OmpSs
programming model [37] extends OpenMP offering semantics to express dataflow par-
allelism. Compared to fork-join parallelism exposed by OpenMP, the parallelism of
OmpSs can be much more irregular. Throughout this thesis, we focus mainly on
OmpSs as a programming model for shared-memory machines. We also explore the
potential of MPI/OmpSs, a hybrid programming model that integrates OmpSs and
MPI.

2.2.1 MPI

Message Passing Interface (MPI) [81] is the most widely used programming model
for programming distributed parallel machines. To facilitate writing message-passing
programs, MPI standard defines the syntax and semantics of useful library routines.
Today, MPI is the dominant programming model in high-performance computing.

In the MPI programming model, multiple MPI processes compute in parallel and
communicate by calling MPI library routines. At the initialization of the program,
a fixed set of processes is created. Typically, the optimal performance is achieved
when each MPI process is mapped on a separate core. For easier coordination among
processes, MPI interface provides functionality for communication, synchronization
and virtual topology.

The most essential functionality of MPI is point-to-point communication. The
most popular library routines are: MPI_Send to send a message to some specified
process; and MPI_Recv to receive a message from some specified process. Point-

16

to-point operations are especially useful for implementing irregular communication
patterns. A point-to-point operation can be in synchronous, asynchronous, buffered,
and ready form, providing stronger and weaker synchronization among communicat-
ing processes. The ability to probe for messages allows MPI to support asynchronous
communication. In asynchronous mode, the programmer can issue many outstanding
MPI operations.

Collective operations allow communication of all processes in a process group.
The process group may consist of the entire process pool, or it may be user defined
subset of the entire pool. A typical operation is MPI_Bcast (broadcast), in which the
specified root process sends the same message to all the processes in the specified
group. A reverse operation is MPI_Gather, in which the specified root process receives
one message from all the processes in the specified group. Other collective operations
implement more sophisticated communication patterns.

Throughout its evolution, MPI standard has introduced new features to facilitate
easier and more efficient parallel programming. The initial MPI-1 specification fo-
cused on message passing within a static runtime environment. Additionally, MPI-2
includes new features such as parallel I/O, dynamic process management, one-sided
communication, etc. Furthermore, recent research studies [50] motivated MPI com-
munity to include non-blocking collective operations [50] as a part of MPI-3 standard.

A simple program

In this Section, we present a simple program and explain the runtime properties of MPI
execution. The example shows a simple code with only two sections of useful work
(function compute) and one Section that exchanges data (function MPI_S endrecv).
Each MPI process executes function compute on local buffer bu f f 1, then sends the
calculated buffer bu f f 1 to its neighbor. At the same time, each process receives buffer
bu f f 2 from another neighbor, and again executes function compute on the received
buffer. The processes communicate in a one-sided ring pattern – each process receives
the buffer from the process with rank for 1 lower, and sends the calculated buffer to the
process with rank for 1 higher.

All the processes start independently, learning about the parallel environment by
calling MPI_Init. MPI execution starts by calling the MPI agent (mpirun−nx./binary.exe)

17

1 #include <mpi.h>
2 #include <stdio.h>
3 #include <string.h>
4
5 int main(int argc, char *argv[])
6 {
7 float buff1[BUFSIZE], buff2[BUFSIZE];
8 int numprocs;
9 int myid;

10 int tag = 1;
11
12 MPI_Status stat;
13 MPI_Init(&argc,&argv);
14
15 /* find out how big the SPMD world is */
16 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
17
18 /* and this processes' rank is */
19 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
20
21 /* At this point, all programs are running equivalently,
22 the rank distinguishes the roles of the programs in the SPMD model */
23
24 /* compute on the local data (buff1) */
25 compute(buff1);
26
27 /* exchange data (send buff1 and receive buff2)*/
28 my_dest = (myid + 1) % numprocs;
29 my_src = (myid + numprocs - 1) % numprocs;
30 MPI_Sendrecv(/* sending buffer */ buff1, BUFSIZE, MPI_FLOAT,
31 /* destination MPI process */ my_dest, tag,
32 /* receiving buffer */ buff2, BUFSIZE, MPI_FLOAT,
33 /* source MPI process */ my_src, tag,
34 MPI_COMM_WORLD, &stat);
35
36 /* compute on the received data (buff2) */
37 compute(buff2);
38
39 /* MPI programs end with MPI Finalize; this is a weak synchronization point */
40 MPI_Finalize();
41
42 return 0;
43 }
44

Figure 2.2: Example MPI code

that spawns the specified number (x) of MPI processes. In the studied case (Figure 2.3),
the MPI execution starts with 2 independent MPI processes. By calling MPI_Init, each
process learns about the MPI parallel environment. All the MPI processes are grouped
into the universal communicator (MPI_COMM_WORLD). Using the universal com-

18

Creating

communicatornumprocs = 2;

myid = 0;

numprocs = 2;

myid = 1;

compute(buff1) compute(buff1)

send buff1, recv buff2send buff1, recv buff2

waiting arrival of buff2waiting arrival of buff2

compute(buff2) compute(buff2)

MPI_Finalize

MPI process 0 MPI process 1

Figure 2.3: Execution of the example MPI code

municator, each process identifies the total number of MPI processes in the system
(MPI_comm_size) and gets the unique rank of the process (MPI_comm_rank).

Each MPI process, knowing its rank and the size of the universal communicator,
identifies its role in the execution of the parallel program. Each process identifies the
part of the total workload that is assigned to it. Also, each process identifies the ranks
of the neighboring processes with which it should communicate in order to get the job
done. In the presented example, based on myid and numprocs, each process calculates
ranks of its neighboring processes (my_dest and my_src) to generate the one-sided ring
communication pattern.

When the computation on the local data finishes, the processes communicate to
exchange the data and start the next phase of computing on the local data. Each process
calculates the buffer bu f f 1 in the function compute. Then, the process sends the
processed bu f f 1 to the neighboring process. At the same time, the process receives a
message from some other neighboring process and stores the content of that message
into local buffer bu f f 2. Then, the process locally computes on bu f f 2 in another
instantiation of function compute. Thus, MPI process 0 calculated on its local bu f f 1,

19

and then after the MPI_S endrecv call, it calculated on its local bu f f 2 (that was bu f f 1
local to MPI process 1).

When the useful work finishes, all the processes call MPI_Finalize to announce
the end of the parallel section. MPI_Finalize implicitly calls a barrier, waiting for
all the MPI processes from MPI_COMM_WORLD to come to this point. When all
the processes reach the barrier, the joint work is guaranteed to be finished, and all the
processes can exit the parallel execution independently. The parallel execution finishes.

This simple example also illustrates one of the main topics of this thesis – commu-
nication delays that are characteristic for MPI execution. When both processes finish
executing compute(bu f f 1), they initiate their transfers in the same moment. While
the messages are in transit, both processes are stalled without doing any useful work.
Chapter 3 further illustrates this problem and presents some of the possible solutions.

Different MPI implementations

MPI standard defines a high-level user interface, while low-level protocols may vary
significantly depending of the implementation. MPI provides a simple-to-use portable
interface for a basic user, setting a standard for hardware vendors of what they need to
provide. This opens space for various MPI implementations that have different features
and performances.

Depending on the implementation, MPI messaging may use different messaging
protocols. An MPI message passing protocol describes the internal methods and poli-
cies employed to accomplish message delivery. Two common protocols are

• eager – an asynchronous protocol in which a send operation can execute without
an acknowledgement from the matching receive; and

• rendezvous – a synchronous protocol in which a send operation can execute
only upon the acknowledgement from the matching receive.

Eager protocol is faster, as it requires no “handshaking” synchronization. However,
this relaxation of synchronization comes at the cost of the increased memory usage for
message buffering. Thus, a common implementation uses eager protocol only for mes-
sages that are shorter than the specified threshold value. On the other hand, messages
larger than the threshold are transferred using rendezvous protocol. Also, it is common

20

that a very long message is partitioned into chunks, with each chunk being transferred
using separate rendezvous protocol.

Also, MPI implementations provide different interpretation of independent progress
of transfers. Independent progress defines whether the network interface is responsi-
ble for assuring progress on communications, independent of making MPI library calls.
This feature is especially important for the messages that use rendezvous protocol. For
example, rank 0 sends a non-blocking transfer to rank 1 using rendezvous protocol. If
rank 0 comes to its MPI_Isend before rank 1 comes to the matching receive, rank 0
issues handshaking request and leaves the non-blocking send routine. Later, when rank
1 enters its corresponding MPI_Recv, it acknowledges the handshake, allowing rank
0 to send the message. The strict interpretation of the independent progress mandates
that rank 0 sends the actual message as soon as it receives the acknowledgement from
rank 1. Conversely, the weak interpretation mandates that rank 0 must enter some MPI
routine in order to process the acknowledgement and prepare for the actual message
transfer. Here, the weak interpretation of independent progress will be very perfor-
mance degrading if after the non-blocking send, rank 0 enters a very long computation
with no MPI routine calls. Most of the state-of-the-art networks provide the strict im-
plementation of progress by introducing interrupt-driven functionality in the network
interface.

Depending on the computation power of the network interface, an MPI imple-
mentation can provide different ability for communication/computation overlap. MPI
standard specifies semantic for asynchronous communication that offers significant
performance opportunities. However, in some machines, the processors are entirely
responsible for assuring that the message reaches its destination. On the other hand,
many state-of-the-art networks provide intelligent network adapters that take care of
delivering the message, allowing the processor to dedicate to useful computation. This
way it is possible to achieve overlap of communication and computation – a feature
that is considered of a major importance for high parallel performance.

Also, an MPI implementation can provide different interpretation for offload. Of-
fload is the feature that enables the processor to pass the overhead of MPI routines
to the network interface. Offload avoids the host processor involvement in progress-
ing on a non-blocking send on the sender side and storing the received message into
the local memory of the receiver side. An implementation that supports offload allows

21

both overlap and independent progress to be achieved without host processor overhead.
In applications with frequent calls to MPI library, offload can significantly boost the
performance [19].

2.2.2 OpenMP

OpenMP (Open Multi-Processing) [31] is the mainstream programming model for pro-
gramming shared-memory parallel systems. OpenMP is an application programming
interface (API) that supports multi-platform shared-memory programming in C, C++,
and Fortran. It uses a portable model that provides to programmers a simple and flex-
ible interface for developing parallel applications for platforms ranging from the stan-
dard desktop computer to the supercomputer. OpenMP allows integration with MPI,
providing a hybrid MPI/OpenMP model for parallel programming at large scale.

OpenMP is a programming model based on fork-join parallelism. On reaching a
parallel section, a master thread forks a specified number of slave threads. All the
threads run concurrently, with the runtime environment mapping threads to different
processors. When the parallel section finishes, the slave threads join back into the
master. Finally, the master continues through the sequential section of the program.

OpenMP provides a set of programming language extensions that the programmer
can use to expose parallelism in the program. OpenMP extends the sequential program-
ming model with a set of directives (pragmas in C/C++) to express shared-memory par-
allelism. Also, it provides a set of runtime library routines and environment variables
that allow the programmer to dynamically modify parallel execution. The OpenMP
language extensions can be classified into: 1) control structures for expressing par-
allelism; 2) data environment constructs for communicating among threads; and 3)
synchronization constructs for coordinating threads. In the following paragraphs, we
further explain these three types of extension.

Control structures alter the flow of execution. There are two kinds of constructs
for expressing parallelism. The parallel directive encapsulates a block of code and
creates a set of threads that concurrently execute that block. The multiple concurrent
threads execute different execution instances of that block of code. The second control
structure is the do directive that allows to divide the work among an existing set of
threads.

22

Data environment constructs enable communication among threads. When the
master thread reaches a parallel construct, it creates new slave threads with private ex-
ecution contexts. This enables a new thread to execute without interfering with stack
frames of other threads. Data environment constructs allow the programmer to choose
whether some variable will be shared among threads. Each variable has one of the
three sharing attributes:

• shared: A variable with shared scope clause has a single storage location in
memory during the parallel construct. Using this unique memory location, the
threads can communicate through read/write operations.

• private: A variable with private scope clause has a separate storage location
for each thread during the parallel construct. All read/write operations on this
location are protected from the accesses of other threads.

• reduction: The reduction clause is used for variables that are target of reduction
operations. This sharing attribute mixes the properties of shared and private
attribute, allowing the compiler to optimize accesses to it.

Synchronization constructs coordinate the execution of threads. OpenMP threads
communicate via read/write operations to the shared variables. However, without any
thread synchronization, concurrent accesses to shared variables may induce race con-
ditions. Two common OpenMP synchronization mechanisms are mutual exclusion
and event synchronization. Mutual exclusion guarantees that a shared variable is ac-
cessed exclusively by one thread. Exclusivity is achieved with the critical directive
that encapsulates a block of code that can be accesses by one thread at the time. Event
synchronization signals the occurrence of some event across multiple threads. The
most common event synchronization construct is the barrier directive that defines a
point where each thread waits for all the other threads to catch up. Besides critical and
barrier, OpenMP provides other directives that can model more complicated synchro-
nization patterns.

A simple OpenMP example

This Section analyzes a simple loop parallelization using OpenMP. Figure 2.4 shows
a simple OpenMP code. The code consists of one loop that calls function compute

23

in each iteration. Before the loop, the buffer is initialized (function initialize), and
after the loop, the buffer is validated (function validate). In each iteration of the loop,
function compute executes on a different element of array a, making all the iterations
of the loop independent. Thus, the appropriate OpenMP parallelization of this code
would be using the parallel construct to make all the iterations of the loop execute
concurrently. The original sequential code is parallelized by adding only one line of
code.

Figure 2.5 illustrates OpenMP parallel execution of the presented code. The pro-
gram initializes with only one thread active – the main thread. After finishing function

1 int main(int argc, char *argv[]) {
2 const int N = 100000;
3 int i, a[N];
4
5 initialize(a);
6
7 #pragma omp parallel
8 for (i = 0; i < N; i++)
9 compute(a[i]);
10
11 validate(a);
12
13 return 0;
14 }

Figure 2.4: simple OpenMP code

execution of master threadintialize(a)

omp for loop

compute(a)
master and slave threads divide iterations

of parallel do loop and execute them concurrently

master thread finds omp for loop; creates slave threads

the loop is finished; implicit barrier for all threads;

slave threads are destroyed

execution of master threadvalidate(a)

Figure 2.5: simple OpenMP code

24

initialize, the main thread reaches the parallelized loop and spawns the specified num-
ber of slave threads (3 in this case). The four threads partition among themselves the
iterations of the loop and start computing concurrently. The parallel for loop ends
with an implicit barrier that waits for each thread to finish executing iterations that are
assigned to it. When all the threads finish their portion of work, the barrier condi-
tion is fulfilled. The main thread destroys all the slave threads and proceeds with the
sequential section of the program (function validate).

It is important to note that an OpenMP programmer just specifies how to divide
the work between threads, but not how to execute that work on the underlying ma-
chine. For the programmer, the thread is a separate control flow that operates on the
same memory as the main thread. Having that abstraction, the programmer does not
care whether OpenMP thread is implemented as an OS thread or a Pthread. Also, the
programmer leaves to the compiler (or runtime) to decide how to partition the itera-
tions across the threads. However, to achieve higher data locality, OpenMP provides to
the programmer special semantics to specify how the iterations should be distributed
across threads.

In the presented simple code, the scope of each variable is determined by the default
OpenMP rules. By default, all the variables are shared if not declared differently.
Thus, array a is shared. Each iteration of the parallelized loop accessed a different
element in the array, avoiding any conflict of concurrent accesses to a shared variable.
Especially, loop index i is an exception in the default OpenMP rules. Within a parallel
construct, loop index is automatically declared as private variable. Thus, the conflicts
are avoided by making a private copy of the loop index for each thread. After the
parallel loop finishes, these private copies are destroyed, and the value of i is assumed
to be undefined.

Again, our simple example requires no explicit synchronization. Synchronization
is primarily used to coordinate accesses to shared variables. Since each iteration of
the loop computes on a different element of array a, there is no need for explicit syn-
chronization inside parallel loop. However, in order to do the validation of the array
(function validate), all the threads must finish their computation of loop iterations.
Again, explicit synchronization constructs are avoided, because parallel loop implic-
itly ends with a barrier. The barrier assures that all the concurrent threads finished their
work, so the main thread can proceed to validate.

25

p = listhead;
while (p) {
 process (p)
 p=next (p);
}

(a) sequential code.

p = listhead;
num_elements = 0;
while(p) {
 listitem[num_elements++] = p;
 p = next(p);
}
#pragma omp parallel for
for (int i=0; i<num_elements; i++)
 process(listitem[i]);

(b) OpenMP without tasks.

#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead;
 while (p) {
 #pragma omp task
 process(p);
 p = next(p);
 }
 }
}

(c) OpenMP with tasks.

Figure 2.6: Pointer chasing application parallelized with OpenMP

OpenMP tasks

Although the parallelization of the presented code appears easy and elegant, it remains
a question whether OpenMP loop parallelization could be widely applicable. OpenMP
is tailored for applications with array-based computation. These application have very
regular parallelism and regular control structures. Thus, OpenMP can identify all work
units in the compile time and statically assign them to multiple threads. However, ir-
regular parallelism is inherent in many applications such as tree data structure traversal,
adaptive mesh refinement and dense linear algebra. These applications would be very
hard to parallelize using only basic OpenMP syntax.

Let us consider possible OpenMP parallelization of the sequential code from Figure
2.6a. The program consists of a while loop that updates each element of the list. The
code cannot be parallelized just by adding a parallel loop construct, because the list
traversal would be incorrect. Thus, in order to use a parallel loop construct, the list
first has to be translated into an array (Figure 2.6b). However, this translation causes
an inadmissible overhead.

In order to tackle this issue, OpenMP introduces support for tasks. Tasks are code
segments that may be deferred to a later time. Compared to the already introduced
work units, tasks are much more independent from the execution threads. First, a
task is not bound to a specific thread – it can be dynamically scheduled on any of
the active threads. Also, a task has its own data environment, instead of inheriting
the data environment from the thread. Moreover, tasks may be synchronized among

26

themselves, rather than synchronizing only separate threads. This implementation of
OpenMP tasks allows much higher expressibility of irregular parallelism.

Figure 2.6c illustrates the possible parallelization of the studied code using OpenMP
tasks. The master thread runs and dynamically spawns a task for each instantiation of
the function process. On each instantiation, the content of pointer p is copied into the
separate data environment of the task. Since the inputs to the task are saved, the task
can execute later in time. Thus, the master thread sequentially traverses the list and dy-
namically spawns tasks. The spawned tasks are executed by the pool of worker threads.
When the main thread finishes spawning all tasks, it joins the workers pool. Therefore,
despite of irregular control structures, OpenMP tasks allow elegant parallelization.

Since tasks showed to be very powerful in exposing irregular parallelism, OpenMP
community concentrates on developing new tasking constructs that could further fa-
cilitate programming. Thus, soon to appear OpenMP API version 4.0 introduces data-
dependencies between tasks. Namely, the 4.0 standard introduces a new task clause:

depend(dependence-type : list),
where dependency-type can be in, out or inout, while list is one or more storage loca-
tions. The depend clause allows specifying additional constraints on the scheduling of
tasks. Hence, a task may be dependent on a previous sibling task (task spawned from
the same parent task), if the depend clauses of these tasks result in a RAW, WAW or
WAR dependency of some storage location specified in the list (the specified storage
locations must be either identical or disjoint). Furthermore, the OpenMP 4.0 API of-
fers taskyield clause that denotes the execution point at which the current task can be
preempted in favor of execution of some other task.

2.2.3 OmpSs

OmpSs [37] is a parallel programming model based on dataflow execution. OmpSs
is an effort to extend OpenMP with new directives to support dataflow parallelism.
Compared to fork-join parallelism exposed by OpenMP, the parallelism of OmpSs can
be much more irregular and distant. Similar to the integration of MPI and OpenMP,
OmpSs can integrate with MPI in the MPI/OmpSs hybrid parallel programming model.

OmpSs slightly extends C, C++ and Fortran, providing semantics to express task-
based dataflow parallelism. There are two essential annotations needed to port a se-

27

quential application to OmpSs (Figure 2.7):

• task decomposition – to mark with pragma statements, which functions should
be executed as task; and

• directionality of parameters – to mark inside pragmas, how are the passed ar-
guments used within the taskified function. The specified directionality can be
input, output and inout.

#pragma omp task input(A) output(B)
void compute(float *A, float *B) {
 ...
}

int main () {

...

compute(a,b);

...

}

Figure 2.7: Porting sequential C to OmpSs

Given the OmpSs annotations, the runtime can schedule all tasks out-of-order, as
long as the data dependencies are satisfied. The main thread starts, and, when it reaches
a taskified function, it instantiates that function as a task and proceeds. Based on the
parameters’ directionality, the runtime places the obtained task instance in the depen-
dency graph of all tasks. Then, considering the dependency graph, the runtime is free to
dynamically schedule the execution of tasks on multiple worker threads. Also, when-
ever the main thread reaches a blocking condition (e.g. a barrier), it helps the worker
threads by executing tasks.

To increase parallelism, the runtime automatically renames data objects to avoid
false dependencies (dependencies caused by buffer reuse). The renaming technique is
similar to the ones introduced in superscalar processors [80] or optimizing compilers
[54]. Renaming avoids false dependencies by eliminating write-after-read and write-
after-write dependencies. Other programming models avoid these dependencies by

28

forcing the programmer to explicitly require per-thread copies of the variables. Con-
versely, OmpSs resolves this problem using automatic renaming. Whenever an array
that is passed to a task has output directionality, the runtime automatically allocates
a new array and operates on it. The runtime also allows configuring the amount of
memory used for double buffering, to avoid the hazard of intensive swapping.

The information passed in pragmas allows efficient scheduling of tasks. The pro-
grammer can add the highpriority clause to some task, indicating that the task has
higher scheduling priority. These tasks are scheduled as soon as possible. On the
other hand, while scheduling tasks of regular priority, the runtime strives to exploit
data locality. The scheduler favors running a task in the thread that just generated one
of the input parameters of the task. Also, the scheduler tries to isolate threads in the
data-dependency graph of tasks, thus reducing the possibility of two different threads
accessing the same data. Furthermore, in the cases of imbalanced execution, threads
can steal work from one another. In the case of work stealing, the thread chooses a
task instance that spent most time in the waiting queue, thus increasing the probability
that the input data for that instance is already evicted from the cache of the thread it is
stealing from.

Also, OmpSs allows simple semantics to be used for programming heterogeneous
architectures. By adding only one directive to the pragma construct, OmpSs can de-
clare that instances of some task are to be executed on hardware accelerators. Reading
these annotations, the runtime schedules the execution of the specified task on the ded-
icated hardware and automatically moves all the needed data for that task. This feature
significantly facilitates the easy programming of heterogeneous architectures, as it was
proven for programming Cell B./E. [11] and Nvidia GPUs [9].

Dataflow parallelism introduced in OmpSs showed to be powerful in extracting
parallelism, and it is finding its place in the standards of the mainstream parallel pro-
gramming models. Perez at. el. [69] showed that in many applications, OmpSs signif-
icantly outperforms fork-join based programming models such as OpenMP [31] and
Cilk [42]. As already mentioned in Section 2.2.2, task-based dataflow parallelism is
introduced in the OpenMP 4.0 standard.

29

Example of irregular parallelism – Cholesky

Figure 2.8 shows OmpSs parallelization of the sequential Cholesky code. In order to
parallelize Cholesky code with OmpSs, only four code lines need to be added. All four
functions called from compute are encapsulated into tasks using #pragma omp task

directives. For each of these functions, pragma directives also specify the directionality
of function parameters. This type of coordinating tasks on the shared variables is much
easier for the programmer than determining what variables should be shared or private
among the threads. After adding the annotations, the resulting code has the same
logical structure as the original sequential code. Also, note that compiling this OmpSs
code with a non-OmpSs compiler simply ignores OmpSs pragmas and creates a binary
for the corresponding sequential execution.

In parallel execution of this code, the annotated tasks can execute out-of-order, as
long as data-dependencies are satisfied. The program initiates with only one active
thread – the master thread. When the master thread reaches a taskified function, it
instantiates that function into a task and wires in the new task instance into the tasks
dependency graph. Considering the dependency graph, the runtime schedules out-of-
order execution of tasks.

Compared to OpenMP, OmpSs potentially exposes more distant and irregular par-
allelism. For example, some of the instances of task sgemm_tile are mutually inde-
pendent, while some are data-dependent (Figure 2.9). This type of irregular concur-
rency would be very hard to express with OpenMP. However, OmpSs runtime dynami-
cally exposes the potential parallelism, keeping the programmer unaware of the actual
dependencies among tasks. Also, in parallelizing instances of sgemm_tile, OpenMP
would introduce implicit barrier at the end of the loop. On the other hand, OmpSs omits
this barrier, allowing instances of sgemm_time to execute concurrently with some in-
stances of tasks ssyrk_tile (Figure 2.9). Again, the programmer alone could hardly
identify and expose this potential concurrency.

Interoperability with MPI

OmpSs integrates with MPI in a manner similar to integration of MPI and OpenMP.
The result is a hybrid MPI/OmpSs [63] programming model, in which the work is
parallelized across separate address spaces using MPI, while the work of each MPI

30

1 #pragma omp task input(NB) inout(A)
2 void spotrf_tile(float *A,unsigned long NB);
3
4 #pragma omp task input(A, B, NB) inout(C)
5 void sgemm_tile(float *A, float *B, float *C, unsigned long NB);
6
7 #pragma omp task input(T, NB) inout(B)
8 void strsm_tile(float *T, float *B, unsigned long NB)
9

10 #pragma omp task input(A, NB) inout(C)
11 void ssyrk_tile(float *A, float *C, long NB)
12
13 void compute(long NB, long DIM, float *A[DIM][DIM]) {
14
15 for (long j = 0; j < DIM; j++) {
16
17 for (long k= 0; k< j; k++) {
18 for (long i = j+1; i < DIM; i++) {
19 sgemm_tile(A[i][k], A[j][k], A[i][j], NB);
20 }
21 }
22
23 for (long i = 0; i < j; i++) {
24 ssyrk_tile(A[j][i], A[j][j], NB);
25 }
26
27 spotrf_tile(A[j][j], NB);
28
29 for (long i = j+1; i < DIM; i++) {
30 strsm_tile(A[j][j], A[i][j], NB);
31 }
32 }
33
34 }

Figure 2.8: OmpSs implementation of Cholesky

process is parallelized using OmpSs.
MPI/OmpSs synergizes dataflow execution with message passing, providing high

and robust performance. MPI/OmpSs allows a programmer to taskify functions with
MPI transfers and thus relate the messaging events to dataflow dependencies. For ex-
ample, a task with MPI_Recv of some buffer gets that buffer from the network and
locally stores (output pragma directionality) it to the memory. This way, the arrival of
the MPI message is related to data-dependencies among tasks. Then, the runtime can
schedule OmpSs tasks in a way that overcomes strong synchronization points of pure
MPI execution. Marjanovic at. el. [63] showed that apart from better peak GFlop-

31

spotrf_tile strsm_ti le sgemm_t i le ssyrk_tile

(a) legend

smpSs_spot r f_ t i le

ID=1

smpSs_st rsm_t i le

ID=2

smpSs_st rsm_t i le

ID=3

smpSs_st rsm_t i le

ID=4

smpSs_st rsm_t i le

ID=5

smpSs_st rsm_t i le

ID=6

smpSs_st rsm_t i le

ID=7

smpSs_st rsm_t i le

ID=8

smpSs_sgemm_t i le

ID=9

smpSs_sgemm_t i le

ID=10

smpSs_sgemm_t i le

ID=11

smpSs_sgemm_t i le

ID=12

smpSs_sgemm_t i le

ID=13

smpSs_sgemm_t i le

ID=14

smpSs_ssyrk_tile

ID=15

smpSs_sgemm_t i le

ID=23

smpSs_sgemm_t i le

ID=24

smpSs_sgemm_t i le

ID=25

smpSs_sgemm_t i le

ID=26

smpSs_sgemm_t i le

ID=27

smpSs_ssyrk_tile

ID=33

smpSs_sgemm_t i le

ID=41

smpSs_sgemm_t i le

ID=42

smpSs_sgemm_t i le

ID=43

smpSs_sgemm_t i le

ID=44

smpSs_ssyrk_tile

ID=53

smpSs_sgemm_t i le

ID=61

smpSs_sgemm_t i le

ID=62

smpSs_sgemm_t i le

ID=63

smpSs_ssyrk_tile

ID=73

smpSs_sgemm_t i le

ID=81

smpSs_sgemm_t i le

ID=82

smpSs_ssyrk_tile

ID=91

smpSs_sgemm_t i le

ID=99

smpSs_ssyrk_tile

ID=105

smpSs_ssyrk_tile

ID=113

smpSs_st rsm_t i le

ID=17

smpSs_st rsm_t i le

ID=18

smpSs_st rsm_t i le

ID=19

smpSs_st rsm_t i le

ID=20

smpSs_st rsm_t i le

ID=21

smpSs_st rsm_t i le

ID=22

smpSs_spotrf_t i le

ID=16

smpSs_sgemm_t i le

ID=28

smpSs_sgemm_t i le

ID=29

smpSs_sgemm_t i le

ID=30

smpSs_sgemm_t i le

ID=31

smpSs_sgemm_t i le

ID=32

smpSs_ssyrk_tile

ID=34

smpSs_sgemm_t i le

ID=45

smpSs_sgemm_t i le

ID=46

smpSs_sgemm_t i le

ID=47

smpSs_sgemm_t i le

ID=48

smpSs_ssyrk_tile

ID=54

smpSs_sgemm_t i le

ID=64

smpSs_sgemm_t i le

ID=65

smpSs_sgemm_t i le

ID=66

smpSs_ssyrk_tile

ID=74

smpSs_sgemm_t i le

ID=83

smpSs_sgemm_t i le

ID=84

smpSs_ssyrk_tile

ID=92

smpSs_sgemm_t i le

ID=100

smpSs_ssyrk_tile

ID=106

smpSs_ssyrk_tile

ID=114

smpSs_st rsm_t i le

ID=36

smpSs_st rsm_t i le

ID=37

smpSs_st rsm_t i le

ID=38

smpSs_st rsm_t i le

ID=39

smpSs_st rsm_t i le

ID=40

smpSs_spotrf_t i le

ID=35

smpSs_sgemm_t i le

ID=49

smpSs_sgemm_t i le

ID=50

smpSs_sgemm_t i le

ID=51

smpSs_sgemm_t i le

ID=52

smpSs_ssyrk_tile

ID=55

smpSs_sgemm_t i le

ID=67

smpSs_sgemm_t i le

ID=68

smpSs_sgemm_t i le

ID=69

smpSs_ssyrk_tile

ID=75

smpSs_sgemm_t i le

ID=85

smpSs_sgemm_t i le

ID=86

smpSs_ssyrk_tile

ID=93

smpSs_sgemm_t i le

ID=101

smpSs_ssyrk_tile

ID=107

smpSs_ssyrk_tile

ID=115

smpSs_st rsm_t i le

ID=57

smpSs_st rsm_t i le

ID=58

smpSs_st rsm_t i le

ID=59

smpSs_st rsm_t i le

ID=60

smpSs_spotrf_t i le

ID=56

smpSs_sgemm_t i le

ID=70

smpSs_sgemm_t i le

ID=71

smpSs_sgemm_t i le

ID=72

smpSs_ssyrk_tile

ID=76

smpSs_sgemm_t i le

ID=87

smpSs_sgemm_t i le

ID=88

smpSs_ssyrk_tile

ID=94

smpSs_sgemm_t i le

ID=102

smpSs_ssyrk_tile

ID=108

smpSs_ssyrk_tile

ID=116

smpSs_st rsm_t i le

ID=78

smpSs_st rsm_t i le

ID=79

smpSs_st rsm_t i le

ID=80

smpSs_spotrf_t i le

ID=77

smpSs_sgemm_t i le

ID=89

smpSs_sgemm_t i le

ID=90

smpSs_ssyrk_tile

ID=95

smpSs_sgemm_t i le

ID=103

smpSs_ssyrk_tile

ID=109

smpSs_ssyrk_tile

ID=117

smpSs_st rsm_t i le

ID=97

smpSs_st rsm_t i le

ID=98

smpSs_spotrf_t i le

ID=96

smpSs_sgemm_t i le

ID=104

smpSs_ssyrk_tile

ID=110

smpSs_ssyrk_tile

ID=118

smpSs_st rsm_t i le

ID=112

smpSs_spotrf_t i le

ID=111

smpSs_ssyrk_tile

ID=119

smpSs_spotrf_t i le

ID=120

(b) dependency graph

Figure 2.9: Dependency graph of Cholesky

s/s performance, compared to MPI, MPI/OmpSs delivers better tolerance to network
limitations and external perturbations, such as OS jitters.

In MPI/OmpSs, the runtime dedicates one high-priority thread only for executing
tasks with MPI transfers. A task with MPI call may be very inefficient, because it
may spend significant time stalled – waiting on some blocking transfer. It would be
very beneficial if the runtime could preempt the stalled task, and dedicate the comput-
ing resources to some task that is ready to compute useful work. OmpSs solves this
problem by instantiating as many working threads as cores in the node, plus one ad-

32

ditional thread that dedicates only to executing tasks with MPI calls. Then, whenever
the MPI thread gets stalled waiting for the message, one working thread preempts the
MPI thread in order to do some useful work. When the blocking MPI call completes,
the MPI thread takes over the control of the core and proceeds. Practice shows that it
is very beneficial to have communication thread of higher priority than the computa-
tion ones. This allows instant preemption as soon as the blocking MPI call finishes,
providing a very efficient and flexible mechanism for assuring progress of MPI mes-
sages. An alternative implementation of MPI/OmpSs [62] offers a restart directive
that can restart a task that gets blocked on MPI calls. When a communication task
gets blocked on some MPI call, it automatically restarts and goes to the ready queue,
offering computation resources to other tasks with useful computation. However, this
implementation requires more programming effort.

2.2.4 Example - MPI/OmpSs vs. MPI/OpenMP

Compared to MPI/OpenMP, MPI/OmpSs provides higher potential for lookahead of
MPI iterations. Lookahead of depth d means that for sending the message produced in
the iteration n, the execution must complete all the computation of the iteration n − d.
Thus, lookahead of depth 0 means that sending a message of iteration n requires that
all the tasks in the iteration n are executed. Similarly, lookahead of depth 1 means
that sending a message of iteration n requires that all the tasks from the iteration n − 1
are executed. In this Section, based on a simple example, we illustrate the potential
lookahead for MPI/OpenMP and MPI/OmpSs programming models.

Figure 2.10 illustrates a simple MPI code. The code consists of sections that pro-
duce buffer a (the loop calling compute1 and independent_work1), communicate the
data (sending buffer a and receiving buffer c in MPI_S endRecv), and consuming the
received buffer c (the loop calling compute2 and independent_work2). The only data-
dependencies in this code are from all instances of compute1 to MPI_S endRecv, and
from MPI_S endRecv to all instances of compute2.

In this program, MPI/OmpSs can easily achieve lookahead and overlap. An in-
tuitive OmpSs parallelization encapsulates all the functions into OmpSs tasks. Es-
pecially, task MPI_S endRecv is marked to be a communication task. The runtime
automatically detects all the data-dependencies – from all instances of compute1 to

33

MPI_S endRecv, and from MPI_S endRecv to all instances of compute2. There are no
dependencies between task instances of independent_work1 and independent_work2.
The communication task (MPI_S endRecv) gets outstanding scheduling priority – the
priority that allows it to preempt other tasks. Since they give dependency to the com-
munication task, the instances of compute1 get a high scheduling priority. There-
fore, the instances of compute1 are scheduled first for parallel execution. As soon as
they complete, the runtime schedules MPI_S endRecv. As MPI_S endRecv blocks on
receiving array c, the runtime preempts it and schedules parallel execution of tasks
independent_work1 and independent_work2. As soon as the message arrives, task
MPI_S endRecv finishes, and all the tasks that are not executed so far are free to exe-
cute concurrently. This type of execution brings two benefits:

• overlap of computation and communication – while an MPI process waits for the
incoming message, instances of independent_work1 and independent_work2 do
some useful work

• lookahead – an MPI process can perform its communication (MPI_S endRecv)
before completing all instances of independent_work1. This allows parallel ex-
ecution of tasks from different sides of the communication request (instances of
independent_work1 can execute concurrently with instances of independent_work2).

1 int main(int argc, char *argv[]) {
2 const int N = 100000;
3 int i, a[N], b[N], c[N];
4
5 for (i = 0; i < N; i++) {
6 compute1(a[i]);
7 independent_work1(b[i]);
8 }
9

10 MPI_SendRecv (/* send buf */ a,
11 /* recv buf */ c);
12
13 for (i = 0; i < N; i++) {
14 compute2(c[i]);
15 independent_work2(b[i]);
16 }
17
18 return 0;
19 }

Figure 2.10: Simple MPI code to study potential lookahead

34

On the other hand, in this example, MPI/OpenMP cannot achieve neither lookahead
nor overlap. Using an OpenMP parallel for construct, the programmer can parallelize
the loops in the code. However, this construct has an implicit barrier at the end of
the loop, thus executing MPI_S endRecv must wait all the instances of compute1 and
independent_work1 from the first loop to finish. Also, since each iteration of the sec-
ond loop calls compute2, none of the iterations can start before the transfer is finished.
The resulting parallel execution has:

• no overlap – during MPI_S endRecv the processors are idle

• no lookahead – there is no concurrency between some work before the commu-
nication and some work after the communication.

In order to achieve lookahead using OpenMP, the programmer must use advanced
synchronization techniques or severe restructuring of the code. Since functions independent_work1
and independent_work2 are independent from other tasks, the programmer can re-
structure the code and put these tasks into separate loops. Then the programmer must
break the MPI_S endRecv call into the non-blocking send and the non-blocking re-
ceive call. Thus, the programmer must explicitly assure that the communication will
be overlapped with computation. Furthermore to achieve lookahead, the programmer
must avoid the simple parallel f or construct and therefore avoid the implicit barrier
it forces. Thus, the programmer must implement a customized synchronization that
will assure correctness of the execution. The complexity of this approach makes it
impractical for implementation in complex applications.

2.3 Tools

Our study is based on the infrastructure for trace driven simulation developed in Barcelona
Supercomputing Center. The work in this thesis also included further development of
these tools. Furthermore, we designed new Valgrind-based tools and integrated the into
the already existing environment. All development infrastructure designed throughout
this thesis is open-source. In this Section, we describe only the tools used to build
our ecosystem. We comment other research/commercial tools related to our study in
Chapter 7.

35

2.3.1 mpitrace

mpitrace [55] is a tracing library for instrumenting parallel execution. mpitrace in-
tercepts calls to certain functions and emits to the trace the events that mark these
occurrences. By default, it intercepts MPI functions, timestamps the occurrence of the
calls and emits that information to the trace. In addition, mpitrace can record infor-
mation collected from various hardware counters. The output of mpitrace is a tracefile
that can be fed to Paraver for visualization or to Dimemas for further simulation of
parallel execution.

mpitrace is implemented as a light, easy to use, dynamic library. The instrumenta-
tion is activated by dynamically preloading the tracing library, requiring no changes of
the original application’s code. The intercepting mechanism is very light, providing the
overhead of around 200ns per intercepted call, and around 6µs for reading hardware
counters [64]. Furthermore, mpitrace uses conventional optimization techniques, such
as: sampling (switching on/off instrumentation), filtering (configuring which subset
of the events should be tracked), and buffering (collecting events locally and flushing
them to the disc in bulk).

2.3.2 Valgrind

Valgrind [66] is a virtual machine that uses just-in-time (JIT) compilation techniques.
The original code of an application never runs directly on the host processor. Instead,
the code is first translated into a temporary, simpler, processor-neutral form called
Intermediate Representation (IR). Then, the developer is free to do any translation of
the IR, before Valgrind translates the IR back into machine code and lets the host
processor run it.

Valgrind is a very fertile environment for developing new tools based on binary
translation. The Valgrind framework is divided into three main areas: core and guest
maintenance (coregrind), translation and instrumentation (LibVEX), and user instru-
mentation libraries. The user can use this modular organization and build a new tool as
a plugin instrumentation library. Valgrind tools are most useful for inspecting memory-
related issues in user-space programs; they are not suitable for time-specific issues or
kernel-space instrumentation/debugging.

36

2.3.3 Paraver

Paraver [56] is a parallel program visualization and analysis tool. Paraver provides a
qualitative perception of the application’s time-behavior by visual inspection. More-
over, it provides a quantitative analysis of the run. Paraver reveals bottlenecks in
parallel execution and discovers areas of suboptimal performance. This functional-
ity is essential in the process of optimizing parallel applications. Paraver is not tied
to any programming model. It provides a flexible three-level model of parallelism
on which the parallel execution should be mapped. Currently, Paraver supports MPI,
OpenMP, OmpSs, pthreads and CUDA, as well as the hybrid programming models
such as MPI/OpenMP and MPI/OmpSs.

Paraver is a flexible data browser that provides a huge analysis power. Paraver’s
flexibility comes from the fact that the trace format is independent of the program-
ming model. Thus, the visualization requires no changes in order to support some new
programming model. In order to visualize time-behavior of some new programming
model, the programming model needs to express its performance data in the Paraver
independent trace format. On the other hand, Paraver’s expressing power comes from
the possibility to easily program different metrics. The tool provides filter and arith-
metic operations on the essential metrics in order to generate new derived and more
complex metrics. This way, from one trace, the tool can provide different views with
different performance metrics. To capture the experts’ knowledge, any view can be
saved as a Paraver configuration file. Recomputing the view on new data is as simple
as loading a file.

2.3.4 Dimemas

Dimemas [45] is an open-source tracefile-based simulator for analysis of message-
passing applications on a configurable parallel platform. The Dimemas simulator re-
constructs the time behavior of a parallel application on a machine modeled by a set
of performance parameters. Dimemas also allows to model aspects of the MPI library
and the operating system. As the input, Dimemas takes the trace produced by mpitrace
and the configuration file of the modeled parallel machines. As the output, Dimemas
generates trace files processable by two performance analysis tools: Paraver and Vam-
pir [65]. These visualization tools enable the user to qualitatively inspect the simulated

37

parallel time-behavior.
The initial Dimemas architecture model considered networks of Shared-Memory

Processors (SMP). Dimemas configuration file defines the modeled target machine,
specifying the number of SMP nodes, the number of cores per node, the relative CPU
speed, the memory bandwidth, the memory latency, etc. The simulation also allows
different task to node mappings. The communication model consists of a linear model
and nonlinear effects, such as network congestion. The configuration file parametrizes
the network specifying the bandwidth, the latency, and the number of global buses
(modeling how many messages can concurrently travel throughout the network). Also,
each processor is characterized by the number of input/output ports that determine its
injection rate to the network.

Dimemas simulates the trace by replaying computation records and re-evaluating
communication records. Dimemas trace consists basically on the two types of records:
computation records specifying the duration of the computation burst; and commu-
nication records specifying transfer parameters such as the sender, the receiver, the
message size, the tag, whether the operation was blocking or non-blocking, etc. Dur-
ing the simulation, the computation records are simply replayed – each computation
burst lasts as it is specified in the trace. Conversely, each communication record is
reevaluated – each transfer request is evaluated considering the specified configura-
tion of the target machine and the newly calculated transfer time is incorporated in the
simulated run.

38

3
Motivation

Nowadays, programmers struggle to deliver high-performance parallel software. In
order to solve some problem in parallel, the programmer must organize a coordinated
execution of multiple processing units. Parallel programming models facilitate this
process by offering various parallelization constructs. High-level parallelization con-
structs allow easy parallelization, but often result in unsatisfactory performance. On
the other hand, low-level parallelization constructs potentially provide high perfor-
mance, but demand a lot of programming effort. Consequently, the practice shows
that parallel executions often experience performance that is far from optimal. In the
following Sections we further explain the inefficiencies of parallel programming. We
also introduce some techniques for parallelization tuning.

3.1 MPI programming

MPI programming especially suffers from suboptimal performance, because the pro-
grammer must directly control various performance related details, e.g. algorithm

39

complexity, load balance, cache conflicts, noise. MPI provides a very low level mech-
anisms of explicit parallelization. The programmer must explicitly partition the work-
load among processes with separate address spaces. Also, the programmer must ex-
plicitly orchestrate communication among processes. Furthermore, in order to improve
the performance, the programmer must optimize the application by-hand. These opti-
mizations may be very complex and by rule significantly reduce programmers produc-
tivity and clarity of the code.

3.1.1 Bulk-synchronous programming

Pressured by the high overhead of MPI routines, MPI programmers tried to minimize
the number of transfers. Initially, MPI routines executed on the host processor (without
offload). In order to reduce this overhead, programmers strove to generate fewer calls
to MPI routines. This reasoning led to establishing bulk-synchronous programming
[48] as a practical standard for MPI programming. Bulk-synchronous programming
has one clear goal – maximizing the size of each MPI transfers and therefore reducing
the overhead per sent byte ratio.

However, bulk-synchronous programming causes significant communication de-
lays. Bulk-synchronous programming tries to maximize the uninterrupted computation
in order maximize the size of each MPI transfer. However, during the long computa-
tion phase, the network is idle. On the other hand, during the communication phase,
the processors are idle, waiting for the communication to finish. These communication
delays can significantly harm the overall performance, especially at large-scale.

To mitigate communication delays, the community makes an effort to accelerate
interconnection networks. Faster networks reduce message transfer time and con-
sequently shorten communication delays. However, modern networks achieve high
bandwidth and low latency more often in benchmarks than in realistic workloads. Lat-
est studies [35] show that for scientific codes, the networks are over-designed and
underutilized. Therefore, there is a need for a new approach to solve problems of com-
munication delays. The goal of a new approach should be not to create new and fast
cycles on the network, but rather to profit more from the already existing cycles.

40

3.1.2 Communication Computation Overlap

Communication-computation overlap is already recognized as a promising technique
to reduce communication delays. Overlap enables processors to be at the same time
busy computing and communicating. Thus, it allows message transfer time to be over-
lapped with useful computation. Overlap provides two potential benefits to parallel
execution: 1) execution speedup; and 2) relaxation of network constraints without
consequent performance penalty.

Overlap is usually achieved by software optimization techniques that leverage non-
blocking MPI communication. The needed code refactoring decouples each blocking
transfer into non-blocking initialization and the transfer’s wait-request. Computation
between the initialization and the wait-request is useful computation that is indepen-
dent of the ongoing transfer. This computation can overlap and hide message trans-
fer time. Therefore, the more independent computation the optimization exposes, the
higher is the probability of overlap actually occurring. In the following Section, we de-
scribe this mechanism in more details by applying the needed refactoring on a simple
code.

The mechanism of overlap

Figure 3.1 illustrates the case of bulk-synchronous programming that suffers from lack
of overlap. The source code (Figure 3.1a) consists of one loop. In each iteration of
the loop, the program locally calculates the message (function work), and then com-
municates the message using a blocking transfer (function blocking_MPI_S endrecv).
Figure 3.1b illustrates the execution of this code on two MPI processes. The sections
of computation and communication are disjunctive, providing no overlap.

Conversely, Figure 3.2 illustrates the overlapped version of the previous code. Fig-
ure 3.2a shows the required code refactoring. Function work splits into three smaller
functions (pre_independent_work, trans f er_dependent_work and post_independent_work).
Function trans f er_dependent_work is the only one that actually uses the message re-
ceived in the previous iteration of the loop and produces the message that is sent in the
current iteration of the loop. Functions pre_independent_work and post_independent_work

are independent of the transfered buffers. Also, the blocking transfer from Figure 3.1a
splits into the initialization of the transfer (nonblocking_MPI_S endrecv) and the wait-

41

for (...) {
 work();
 blocking_MPI_Sendrecv();
}

(a) code (b) execution

Figure 3.1: The case of nonoverlapped MPI

for (...) {
 pre_independent_work();
 if (!first_iteration)
 wait_for_previous_MPI_Sendrecv();
 transfer_dependent_work();
 nonblocking_MPI_Sendrecv();
 post_independent_work();
}
wait_for_last_MPI_Sendrecv();

(a) code (b) execution

Figure 3.2: The case of overlapped MPI

request (wait_ f or_last_MPI_S endrecv). Figure 3.2b shows that the sections of inde-
pendent work (the green sections) now overlap with the message transfer, thus reducing
the communication delay.

However, this code restructuring significantly reduces the clarity and maintainabil-
ity of the code. Two lines in the non-overlapped code now expand into seven lines that
expose and overlap independent work. As a result, the obtained structure of the code
significantly obscures its usage. The obtained overlapped code has serious maintain-
ability issues, causing very low programming productivity.

3.2 Our effort in tuning MPI parallelism

Our effort in tuning MPI parallelism targets eliminating communication and synchro-
nization delays. Our goal is to mitigate these stalls by introducing an automatic tech-
nique that achieves maximal potential overlap and requires no code refactoring of the
targeted application.

42

for (...) {
 wait_for_previous_MPI_Sendrecv(1/3);
 work(1/3);
 nonblocking_MPI_Sendrecv(1/3);
 wait_for_previous_MPI_Sendrecv(2/3);
 work(2/3);
 nonblocking_MPI_Sendrecv(2/3);
 wait_for_previous_MPI_Sendrecv(3/3);
 work(3/3);
 nonblocking_MPI_Sendrecv(3/3);
}

(a) code

ITERATION 0 ITERATION 1

(b) execution

Figure 3.3: Overlap with chunks

3.2.1 Automatic overlap

The state-of-the-art overlapping techniques achieve limited overlap and require signifi-
cant code restructuring. The presented by-hand optimization provides limited overlap,
because it overlaps transfer time only with transfer independent work. Moreover, the
required code intervention requires significant refactoring that seriously harms pro-
gramming productivity.

Our technique of automatic overlap

In this thesis, we design a technique that maximizes the potential overlap in an appli-
cation. The technique consists of four mechanisms:

• Message chunking: Each original MPI message is partitioned into independent
chunks consisting of one or more data elements.

• Advancing sends: Each chunk is sent as soon as it is produced.

• Double buffering: Two different buffers are used to differentiate the chunks
being consumed at the current iteration and the incoming chunks for consuming
at the next iteration.

• Postponing receptions: Each chunk is waited at the moment when it is really
needed for consumption.

Compared to the overlapping technique illustrated in Figure 3.2, our technique addi-
tionally breaks the original message into chunks and then overlaps the communication

43

time of each chunk independently. Figure 3.3 illustrates overlap with chunks in the
case when the original message is broken into three chunks. The idea is that, ideally,
each third of the computation in some iteration produces one third of the message to
be sent in that iteration. Similarly, each third of the received message in some itera-
tion enables execution of one third of the computation in the next iteration. Then, the
first third of the message can be sent after 33% of the first iteration, and it must arrive
before the start of the second iteration. Thus, the transfer of this first chunk can be
overlapped with the resting 66% of the computation in the first iteration. Therefore,
in our technique there is no need for extracting independent work – work that does
not produce/consume the message. Conversely, this technique overlaps the transfer of
one part of the original message with the production/consumption of the rest of that
message.

Also, it is important to note that the patterns by which each MPI process locally
computes on transferred data can seriously limit the potential for overlap. The over-
lap of chunks comes from the potential of the execution to advance partial sends and
postpone partial receptions. In the presented example, the first chunk is produced after
33% of the iteration, allowing it to be overlapped with the resting 66% of the com-
putation in that iteration. However, if that first chunk was finally produced at 80% of
the iteration, its transfer could overlap with only 20% of the computation. Thus, the
production/consumption patterns can seriously limit the potential for advancing/post-
poning message chunks. Therefore, our study of automatic overlap will pay a special
attention to internal computation patterns of applications.

The goal of this thesis it to explore techniques that achieve chunked overlap from
Figure 3.3b without consequently degrading maintainability of the code. The code re-
structuring that is needed to achieve the chunked overlapped execution seriously hurts
the maintainability of the code (Figure 3.3a). Thus, our goal is to explore the tech-
niques that will achieve chunked overlapped execution (Figure 3.3b) but still preserve
the clarity of the code from Figure 3.1a.

Our contribution in exploring automatic overlap

This thesis tries to design and evaluate an automatic technique that, using a specialized
hardware support, extracts the maximal potential overlap without the need to restruc-

44

ture the source code of an application (Chapter 5). In Section 5.2, we further describe
our technique of automatic overlap. Furthermore, we introduce a new overlapping
technique that we named speculative dataflow. Speculative dataflow is a speculative
technique that, using a specialized hardware support, implements automatic overlap
without any restructuring of the original MPI application. We demonstrate the feasi-
bility of this speculative dataflow (Section 5.3) and evaluate its potential in the case of
real scientific MPI applications (Section 5.4).

Also, throughout our study, we designed a development environment that can be
very useful in further studies of overlap (Section 4.2). Given only the executable of a
legacy MPI application, the environment automatically evaluates the potential overlap.
Moreover, the visualization support allows comparison between the original and the
overlapped execution of the targeted application. Using our environment, a program-
mer can quickly evaluate the potential benefits of overlap in any application. Thus,
prior to any implementation effort, the programmer can estimate the potential bene-
fits of intended overlapping technique and decide whether the implementation is worth
the effort. Furthermore, using the visualization support, the programmer can identify
bottlenecks of the intended implementation and explore solutions to overcome them.

3.3 MPI/OmpSs programming

As already mentioned in Section 2.2.3, MPI/OmpSs generates very efficient and flex-
ible execution. OmpSs enables out-of-order execution of tasks within each MPI pro-
cess. Moreover, OmpSs runtime can dynamically schedule MPI transfers in order to
efficiently hide communication delays. Also, OmpSs can expose additional parallelism
within each MPI process, therefore increasing the overall scalability of the parallel ex-
ecution.

3.3.1 Hiding communication delays

Figure 3.4 illustrates another case of non-overlapped pure MPI execution. In each iter-
ation of the outer loop, the program computes the message and then sends the message
using a blocking MPI call (blocking_MPI_S endrecv). The program produces the MPI
message in four independent iterations of the inner loop (four calls to function work).

45

for (...) {
 for (0:4) {
 work();
 }
 blocking_MPI_Sendrecv();
}

(a) code (b) execution

Figure 3.4: Example of nonoverlapped MPI

#pragma omp task ...
pre_independent_work();
#pragma omp task ...
transfer_dependent_work();
#pragma omp task ...
post_independent_work();
#pragma omp task ...
blocking_MPI_Sendrecv();

for (...) {
 for (0:4) {
 pre_independent_work();
 transfer_dependent_work();
 post_independent_work();
 }
 blocking_MPI_Sendrecv();
}

(a) code

ITERATION 0 ITERATION 1

(b) execution

ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3

(c) execution with noise affecting traffic

Figure 3.5: Example of overlapped MPI/OmpSs

Without any code restructuring, this code achieves no overlap (Figure 3.4b).
In order to port this MPI code to MPI/OmpSs (Figure 3.5), the programmer must

do a minor refactoring. The programmer must separate the code that actually computes
the message (trans f er_dependent_work) from the independent work (pre_independent_work

and post_independent_work). No refactoring of the transferring routine (blocking_MPI_S endrecv)
is needed. Finally, the programmer must encapsulate all the presented functions into
tasks (Figure 3.5a).

46

Then, the OmpSs runtime can dynamically schedule the instantiated tasks in or-
der to achieve overlap (Figure 3.5b). The runtime identifies the task with an MPI call
(blocking_MPI_S endrecv) and sets it as the task with outstanding priority. Further-
more, the runtime identifies all tasks that give dependency to the communication task
and sets their priority to high. Thus, the OmpSs runtime first executes the tasks that
generate the message (red tasks). After these tasks finish, the runtime schedules the
task with the MPI call. As the communication task blocks waiting for the message, the
runtime preempts it and schedules the tasks with independent work (green tasks). This
way, the runtime dynamically overlaps the message transfer time with the computation
that executes independent work.

Furthermore, MPI/OmpSs execution is more tolerant to external noise. Figure 3.5c
shows the case when one of the messages (the red transfer) becomes late (e.g. due to
some contention of the network). Since the message is late, the second process cannot
start the second iteration with instances of transfer-dependent tasks (red tasks). How-
ever, the runtime can schedule the execution of independent work at the beginning of
the iteration 1. Thus, the lower process starts its iteration 1 with independent work, and
as soon as the message arrives, it switches to computing its transfer-dependent work.
This causes the lower process in the iteration 1 to be late sending the message needed
by the upper process in the iteration 2. However, this latency is smaller than the orig-
inally introduced latency. In the following iterations, the message latency additionally
relaxes, so both MPI processes enter the stable state at the beginning of iteration 4.

3.3.2 Additional parallelism within an MPI process

Moreover, OmpSs provides additional parallelism within each MPI process. If the
target machine provides multiple cores per MPI process, tasks within each MPI pro-
cess can execute concurrently. Figure 3.6 shows how the presented MPI/OmpSs code
can execute if each MPI process is parallelized across two cores. For example, let
us consider the case when all red tasks are mutually independent, and all green tasks
are mutually dependent. Thus, instances of red tasks can execute in parallel, signifi-
cantly reducing the total execution time. On the other hand, due to data dependencies,
instances of green task must be serialized.

This example also illustrates how hard it is to anticipate how will an MPI/OmpSs

47

ITERATION 0

ITERATION 1

cpu #0:

cpu #1:cpu #1:

cpu #0:

cpu #1:

Figure 3.6: MPI/OmpSs execution with multiple cores per MPI process

application execute on a different target machine. Concurrency of red tasks accelerates
computation local to each MPI process and consequently reduces the total computa-
tion time. However, accelerated MPI processes put more pressure on the interconnect,
whose speed did not scale accordingly. Transfer independent work (green tasks) can
overlap communication delays. Still, since green tasks cannot execute in parallel, they
can overlap communication delays only for one core per MPI process. All these in-
terrelated execution properties make it hard to predict the performance of MPI/OmpSs
application on a parallel platform.

3.4 Our effort in tuning MPI/OmpSs parallelism

This thesis also explores techniques for tuning MPI/OmpSs parallelism. We want to
investigate techniques to hide stalls in MPI/OmpSs execution, especially in the case of
highly parallel target platform. First, we explore techniques to identify parallelization
bottlenecks in MPI/OmpSs execution. Instrumenting an MPI/OmpSs code, our tech-
nique pinpoints critical code section – the code section whose optimization yields the
highest overall speedup. Second, we explore strategies for exposing and increment-
ing OmpSs parallelism in MPI applications. We describe an iterative approach to test
various task decompositions of the code and select the one that exposes the highest
parallelism for the selected target machine.

48

3.4.1 Identifying parallelization bottlenecks

MPI/OmpSs exposes very irregular parallelism, making it hard to identify the best
way to optimize the execution. In the example from Figure 3.6, there are many ways
to accelerate the parallel execution. One way is to increase the number of cores per
MPI process and increase the concurrency of execution of red tasks. On the other
hand, using faster cores would accelerate both red and green tasks. A faster network
would reduce transfer time. Manual code refactoring could target red tasks (because
they are computation intensive) or green tasks (because they are serialized). Dedicated
accelerators may execute some sections of the code. However, even in this simple
code, each of these optimizations would significantly affect the execution and change
tasks scheduling in a very unpredictable way. Thus, it is very hard to estimate the
potential benefits of these optimization techniques and identify which technique is the
most cost-effective. We further illustrate this issue in the motivating example from
Section 6.1.1.

This thesis tries to gain a better understanding and control of the parallelism ex-
posed by MPI/OmpSs, to evaluate how MPI/OmpSs applications would execute on
future machines and to predict the execution bottlenecks that are likely to emerge. We
explore how MPI/OmpSs applications could scale if the target parallel machine offers
hundreds of cores per node. Furthermore, we investigate how this high parallelism
within the node would reflect on the constraints of the interconnect. We especially
focus on identifying critical code sections in MPI/OmpSs. We explore techniques to
quickly evaluate, for a given MPI/OmpSs application and the selected target machine,
which code section should be optimized in order to gain highest performance benefits.

Throughout our study of parallelization bottlenecks, we developed mpisstrace
(Section 4.3) – a development environment that enables trace-based simulation of
MPI/OmpSs execution. The environment simulates MPI/OmpSs execution on a con-
figurable parallel platform, allowing detailed analysis of various influences. Using our
environment, a programmer can easily explore the scalability of an MPI/OmpSs code.
Furthermore, using the visualization support, a programmer can qualitatively inspect
parallelization bottlenecks. Finally, in Section 6.1 we demonstrate how a programmer
can use the environment to automatically identify the critical code section – the code
section whose optimization would yield the highest benefit to the overall execution

49

time.

3.4.2 Searching for the optimal task decomposition

Another way to tune parallelism in MPI/OmpSs is to select a different task decomposi-
tion. Figure 3.6 points that executing each MPI process on two cores already generates
execution stalls. One way to reduce these stalls could be to refine the decomposition in
order to avoid serialization of the green tasks. Other way would be to refine red tasks
in order to extract more computation that is independent of the message transfer. How-
ever, testing different decomposition is very hard. For testing some decomposition, a
programmer must generate correct MPI/OmpSs code that implements that decomposi-
tion and then measure the obtained parallelism. We further illustrate this issue in the
motivating example from Section 6.2.1.

This thesis studies techniques to quickly explore the potential parallelism in appli-
cations. We provide mechanisms for the programmer to easily evaluate potential paral-
lelism of any task decomposition. Furthermore, we describe an iterative trial-and-error
approach to search for a task decomposition that will expose sufficient parallelism for a
given target machine (Section 6.2). Finally, we explore potential of automating the it-
erative approach by capturing the programmers’ experience into an expert system that
can autonomously lead the process of finding efficient task decompositions (Section
6.3).

In our study of potential parallelism in applications, we designed Tareador (Sec-
tion 4.4) – a tool to help porting MPI applications to MPI/OmpSs programming model.
Tareador provides a simple interface to propose some decomposition of a code into
OmpSs tasks. Then, based on the proposed decomposition, Tareador dynamically
identifies data dependencies among the annotated tasks, and automatically estimates
the potential OmpSs parallelization. Furthermore, Tareador gives additional hints on
how to complete the process of porting the application to OmpSs. Using Tareador,
throughout trial-and-error top-to-bottom iterative approach, a programmer can test var-
ious task decompositions and find one that exposes sufficient parallelism to efficiently
use the target parallel machine. Also, we designed an autonomous driver that runs
Tareador to automatically explore potential task decompositions of an application.

50

4
Infrastructure

The research in this thesis is based on the trace-driven simulation using the tools that
are developed in BSC (Section 2.3). The initial trace-driven infrastructure includes
mpitrace, Dimemas and Paraver. mpitrace library is a dynamic library that intercepts
MPI related events and emits them to the trace. Paraver is a performance analysis
tool that can visualize the traces obtained with mpitrace. Furthermore, Dimemas can
replay the traces obtained with mpitrace to simulate the execution with the changed
configuration of the target parallel machine.

In the conventional trace-driven simulation, simulating a new execution feature is
done completely in the simulator. The tracing library instruments the execution of the
code and inserts to the trace the events that describe that execution. Then, the simulator
consumes the obtained trace, replaying the collected events and calculating new time-
stamps according to the specified configuration of the target parallel machine. Thus,
accounting for a new execution feature is done entirely in the simulator – the simulator
takes the new feature into account when calculating the time-stamps of the simulated
execution.

51

However, the conventional methodology makes it impossible to simulate low level
architectural features in the highly parallel target machine. The problem arises from
the need of simulators to be sequential. For instance, when simulating MPI execution,
any change in the local time-stamps of one MPI process may change the order of
messages on the network. Since the network is a shared resource, the simulator must
explicitly synchronize all MPI processes on every network access. Thus, the simulator
can hardly be parallelized. On the other hand, simulating numerous MPI processes
causes a very large simulation. Thus, the simulation time impedes simulating a low
level architectural feature on a big parallel system. To overcome this problem, we had
to design a different simulation methodology that is based on modifying the trace in
such a way that it models the new feature to be explored.

4.1 Simulation aware tracing

Using the state-of-the-art tools for trace-based simulation, we develop a new simula-
tion technique that models the simulated feature in the earlier part of methodology –
during the tracing of the application. As in conventional trace-driven simulation, our
tracer instruments the execution and generates the trace of the real run. We will call
this trace the authentic trace. However, apart from the records needed for the authentic

trace, the tracer emits to the trace additional records related to the studied feature.
Then, from the authentic trace and the additional events, we derive the arti f icial trace
– what would be the trace of the potential execution of the same application if it would
include the studied feature. Then, the unchanged replay simulator replays both traces,
providing a comparison between the actually executed run and the potential run that
includes the studied feature.

Our methodology allows simulating the effect of a low-level feature on a highly
parallel machine. By making the tracing process responsible for modeling a new ex-
ecution feature, our methodology shifts the major computation effort from simulation
phase to tracing phase. Since each MPI process in traced concurrently, the feature
modeling computation is naturally parallelized across MPI processes. The paralleliza-
tion of the feature modeling effort allowed us to make very complex simulations –
simulations that model very low-level features on very large-scale parallel machines.
In order to instrument low-level execution properties of execution (such as memory

52

CPU_burst (0.112)

Broadcast (/* root */ 0)

CPU_burst (0.121)

CPU_burst (0.111)

Broadcast (/* root */ 0)

CPU_burst (0.122)

PROCESS 0: PROCESS 1:
CPU_burst (0.112)

Broadcast (/* root */ 0)

CPU_burst (0.132)

PROCESS 2:
CPU_burst (0.121)

Broadcast (/* root */ 0)

CPU_burst (0.112)

PROCESS 3:

(a) original trace – broadcast implemented with collective call

CPU_burst (0.112)

Send (-> 1)

Send (-> 2)

Send (-> 3)

CPU_burst (0.121)

CPU_burst (0.111)

Recv (0 ->)

CPU_burst (0.122)

PROCESS 0: PROCESS 1:

CPU_burst (0.112)

Recv (0 ->)

CPU_burst (0.132)

PROCESS 2:

CPU_burst (0.121)

Recv (0 ->)

CPU_burst (0.112)

PROCESS 3:

(b) changed trace – broadcast implemented with point-to-point calls (one-to-many)

CPU_burst (0.112)

Send (-> 1)

CPU_burst (0.121)

CPU_burst (0.111)

Recv (0 ->)

Send (-> 2)

CPU_burst (0.122)

PROCESS 0: PROCESS 1:

CPU_burst (0.112)

Recv (1 ->)

Send (-> 3)

CPU_burst (0.132)

PROCESS 2:

CPU_burst (0.121)

Recv (2 ->)

CPU_burst (0.112)

PROCESS 3:

(c) changed trace – broadcast implemented with point-to-point calls (cyclic)

CPU_burst (0.112)

Send (-> 1)

Send (-> 3)

CPU_burst (0.121)

CPU_burst (0.111)

Recv (0 ->)

Send (-> 2)

CPU_burst (0.122)

PROCESS 0: PROCESS 1:

CPU_burst (0.112)

Recv (1 ->)

CPU_burst (0.132)

PROCESS 2:

CPU_burst (0.121)

Recv (0 ->)

CPU_burst (0.112)

PROCESS 3:

(d) changed trace – broadcast implemented with point-to-point calls (logarithmic)

Figure 4.1: Simulating different implementations of broadcast

accesses), we often designed tracers based on binary translation tools (Valgrind tools).
These tracers can instrument the execution at the level of a single instruction. The
effect of the new feature on every single instruction is calculated and incorporated
into the arti f icial trace of each MPI process. Finally, the simulator replays the trace,
propagating the effect of the new feature across the whole MPI execution.

4.1.1 Illustration of the methodology

This Section illustrates one simple application of our methodology. We present an
example of using this methodology to test various implementations of the collective
broadcast call.

A Dimemas trace consists of computation bursts and communication requests. A
computation burst specifies only the duration of the computation that an MPI process

53

executes sequentially. A communication request specifies the communication among
processes, marking the processes that are involved in the communication and the pa-
rameters of the transfer. A communication request can represent a point-to-point or a
collective communication.

Figure 4.1 illustrates our methodology on the example that explores the effects of
different collective communication patterns. Figure 4.1a illustrates the authentic trace
collected by the mpitrace library. All the processes compute for some time and then
communicate using a broadcast call. After the communication, the processes continue
computing.

From the authentic trace, we offline generate various arti f icial traces that use dif-
ferent implementations of the broadcast. The arti f icial trace is a copy of the authentic

trace with the broadcast event replaced with some equivalent point-to-point implemen-
tation. Thus, the first implementation uses the one-to-many transfer pattern (Figure
4.1b), the second uses the cyclic transfer pattern (Figure 4.1c) and the third uses the
logarithmic transfer pattern (Figure 4.1d). Then, all these four traces (one authentic

and three arti f icial ones) are replayed with the legacy Dimemas simulator, showing
the potential performance of all of the implementations.

In the following Sections, we introduce some advanced simulation environments
that we developed using the described methodology. Section 4.2 describes the envi-
ronment for identifying potential communication/computation overlap in applications.
Section 4.3 describes the environment that replays MPI/OmpSs execution. Finally,
Section 4.4 describes Tareador – the environment that identifies the potential paral-
lelism in sequential codes.

4.2 Framework to identify potential overlap

For a programmer that wants to increase the overlap in his application, it is very im-
portant to anticipate the benefits of the targeted technique, and thus decide in advance
whether implementing that technique is worth the effort. Refactoring applications to
achieve more overlap is an optimization that can be very time consuming. Thus, in or-
der to engage in this effort, the programmer should be convinced that the optimization
will yield a significant performance improvement. Therefore, it would be very useful
to have an environment that would automatically estimate the performance benefits of

54

the targeted overlapping technique.
To respond to this demand, we designed a simulation framework that automati-

cally quantifies the potential benefits of overlap in scientific MPI applications. To our
knowledge, this is the first work that uses a simulation methodology to study overlap.
The simulated overlapping technique works at the MPI level, by automatically captur-
ing all MPI messages and trying to overlap those messages with useful computation
of the application. The overlapping technique consists of the following mechanisms:
message chunking, advancing sends, double buffering, and post-postponing receptions
(as described in Section 3.2.1). Moreover, the programmer can propose a custom over-
lapping technique, and test how much an application would benefit from it.

Our framework is an automatic and easy-to-use approach to obtain a rich simu-
lation output that can significantly increase the overall understanding of communi-
cation/computation overlap. The simulation framework allows us to get predictions
quicker, and furthermore evaluate the impact of different network properties. The main
advantage of this approach is that it automatically predicts the benefits of overlap in
scientific MPI applications, without the need to know or understand the application’s
source code. The second advantage is that our simulation framework can visualize the
simulation’s output, allowing us to qualitatively inspect differences between the non-
overlapped and overlapped executions. Using this feature, a programmer can identify
bottlenecks in the overlapping technique and try to avoid them.

The simulation framework (Figure 4.2) is based on the integration of three widely
used tools: the binary translation tool Valgrind, the network simulator Dimemas, and
the visualization tool Paraver. An MPI application executes in parallel, with each
process running on its own Valgrind virtual machine. Each of these virtual machines
implements an instance of the designed tracing tool. The tool instruments the original
application and extracts the trace of the authentic (non-overlapped) execution, while
at the same time, it generates what would be the trace of the arti f icial (overlapped)
execution. Then, Dimemas simulator uses the traces obtained from each MPI process
and off-line reconstructs the application’s time-behavior on a configurable parallel plat-
form. Finally, Paraver visualizes the obtained time-behaviors, allowing to qualitatively
study the effects of the communication-computation overlap.

The second output of the framework are the production/consumption patterns of
the messages. As explained in Section 3.2.1, production/consumption patterns directly

55

trace of
non‐overlapped
execution

Original
non‐overlapped

MPI execution

Dimemas:
Distributed
machine

execution
pp

execution

Potential

legacy
MPI
code

MPI
process

Valgrind
tracer

trace of
overlapped
execution

machine
simulator overlapped

execution
mpicc

MPI
process

MPI
process

Valgrind
tracer

Valgrind
tracer

tracer

Figure 4.2: The framework for studying overlap integrates Valgrind, Dimemas, and Paraver.

determine the potential for advancing partial sends and postponing partial receives,
thus strongly influencing the overall potential for overlap. Hence, our study must bring
the potential overlap in the application in relation with the application’s computation
patterns. Therefore, our framework will also record the patterns by which each process
produces the buffers that it sends and consumes the buffers that it receives.

4.2.1 Implementation details

Our major implementation effort consisted on designing a Valgrind tracing tool. The
tracer leverages two key Valgrind functionalities for dynamic analysis of applications:
wrapping function calls and tracking memory accesses (loads and stores). The tool
wraps each MPI call to read the parameters of the transfer and tracks each memory
activity to monitor accesses to the transferred data. Furthermore, the tool needs addi-
tional data structures to keep track of the transfers’ state and production/consumption
progress of every chunk. Finally, the tracer obtains time-stamps by scaling the number
of executed instruction by the average MIPS rate observed in a real run.

In every run, the tracing tool generates one non-overlapped (authentic) and two
overlapped (arti f icial) Dimemas traces. The non-overlapped trace describes the orig-
inal execution of a legacy code by emitting two types of Dimemas trace records: com-
putation records specifying the length of the original computation bursts; and com-

56

munication records specifying the MPI message parameters. In addition to that trac-
ing methodology, the first overlapped trace identifies within the original computation
bursts, the points where partial data can be sent/is needed. Then it automatically splits
each original message into various chunks and injects the chunked communication re-
quests after the identified data is fully produced (for sends) and actually first needed
(for receptions). Furthermore, in order to stress the influence of production/consump-
tion patterns, the tool generates the second overlapped trace which assumes that the
application’s production/consumption patterns are ideal. This tracing methodology
models an ideal computation pattern by uniformly distributing the chunked communi-
cation requests throughout the original computation bursts.

To model overlapped execution, the Valgrind tracer must intercept and process each
application’s load and store access. For each load in the application, the tool checks
whether the requested element belongs to some incoming chunk that is not received
so far. If so, the tracer emits a Dimemas wait-for-receive record for the corresponding
chunk and marks that chunk as already received. Therefore, the tool guarantees that
the wait for each incoming chunk is at the point where that chunk is needed for the first
time. Similarly, for each store in the application, the tool checks whether the accessed
element belongs to some chunk to be sent. If so, it refreshes the time of the chunk’s
last update. The tool uses that information in the trace generation process described
below.

Also, the tracer tool has to intercept each MPI call in order to reinterpret the orig-
inal communication using new chunks. When the tracer intercepts a receive call, it
emits a Dimemas non-blocking-receive record for each chunk of the original message.
This way, the tracer initiates the transfers of chunks and proceeds, waiting for the
chunks to be received as late as possible – when those chunks are actually needed for
consumption. On intercepting a MPI send call, the tool consults the time of the last
update of every chunk in the message – the information generated during the produc-
tion tracking. Using this data, the tracer emits a Dimemas send record of every chunk
at the moment of the last update of that chunk, therefore generating the trace in which
every chunk is sent at the exact moment when its final version is produced.

The tracer breaks each collective communication into the corresponding sequence
of point-to-point transfers, and then overlaps each obtained transfer independently.
Note that collective communication operations are performed in Dimemas without as-

57

suming any collective hardware support on the network.
The tracer obtains time-stamps in terms of the number of instructions executed in

computation bursts outside of MPI calls. To represent time, the number of executed
instructions is scaled by the average MIPS rate observed in a real run. The adopted
notion of time obviously ignores many real world factors. The first is that it does not
count time inside MPI routines. That is done intentionally, because MPI overheads
could significantly exceed the lengths of computation phases that we are interested
in. Also, the adopted model excludes effects of memory hierarchy misses (cache,
TLB...) and context switches. This design decision keeps the model simple and easily
controllable. It captures the application properties of interest and isolates the system
from the undesirable and hard to control effects. However, the model can be extended
in the future to include additional parameters.

Recording message production/consumption

As already explained, the potential overlap is very dependent on the message produc-
tion/consumption patterns. To study production patterns, the tracer must record all
stores to a buffer that is to be sent. We adopt as one production interval of some buffer
the execution between two consecutive send calls of that buffer. During this interval,
the tracer records each store to the communicated buffer and marks the store’s relative
time since the last send call. At the end of the interval, the tracer flushes the collected
records, normalizing the relative time of each store with the duration of the interval.
The obtained records now contain the information about all the writes into the produc-
tion buffer and the percentage of production interval progress at which each of those
writes occurred.

Similarly, to study consumption patterns, the tracer has to record all loads from the
received buffer. We adopt as one consumption interval of some buffer the execution
between two consecutive receive calls of that buffer. Now the loads from the buffer are
examined, and the list of all time-stamped loads is generated. Finally, the obtained list
contains all the loads from the received message and the percentage of the computation
phase progress at which each of them occurred.

58

Predicting future sends

In order to monitor production of data that will be sent, it is crucial to know the address
of the sending buffer before the actual send is issued. Without this knowledge, the
tracer cannot know the bounds of the buffer that should be instrumented. To tackle this
issue, we assume a deterministic execution of the studied applications for determining
future transfers. More precisely, we assume that each MPI process has a deterministic
sequence of MPI transfers and memory allocation requests. Then, two consecutive
tracings of the program are used to obtain the final traces.

The first pass just marks the sequence of MPI transfers that occurred, while the
second pass assumes repetition of that sequence. The first pass collects only temporal
traces of MPI transfers and all memory allocations. The second pass reads the sequence
of transfers from the previous execution. Only these transfers with their parameters are
now predicted to occur. Also, during the second pass, memory allocation requests and
their returned addresses are intercepted and compared to the allocations of the first
pass. Based on a comparison of the returned addresses, the second pass dynamically
updates the addresses of the expected transfers. This algorithm guarantees that the
addresses of the future transfers will be determined early enough so the tracer can
monitor the entire production transferred buffer.

4.3 Framework to replay MPI/OmpSs execution

For novel programming models, such as MPI/OmpSs, it is very important to prove that
the programming model can efficiently utilize future parallel machines. MPI/OmpSs
mixes message passing and dataflow dynamic scheduling, exposing very irregular par-
allelism. Thus, the programmer can hardly anticipate how MPI/OmpSs execution
would perform on a different parallel machine. Moreover, it would be very hard to
estimate the potential benefits of optimizing some section of the code or deploying
some part of the application on dedicated accelerators. Therefore, it is very hard to
estimate efficiency of MPI/OmpSs when using new heterogeneous parallel machines.

To tackle this problem, we designed a trace-based simulation framework to replay
MPI/OmpSs execution on a parallel machine. The legacy MPI simulation environment
(mpitrace, Dimemas, Paraver) allow replaying MPI execution varying the properties

59

of the target parallel machine. We extended the legacy environment, enabling it to
replay MPI/OmpSs execution. This allowed us to conduct various parametric studies
of MPI/OmpSs.

Our environment deals with very complex parallel execution, offers fast and flexi-
ble simulation and provides a rich output. Up to our knowledge this is the first simula-
tion environment that can simulate parallel execution that integrates MPI with dataflow
programming model. Tracing part of the simulation is very light, reporting to the trace
only events related to MPI and OmpSs activity. On the other hand, post-mortem sim-
ulation allows to process 4.000 tasks in less than 10 seconds, and 2 million tasks in
about 10 hours. Also, the environment provides conventional techniques for speeding
up trace driven simulation, such as filtering and sampling. Finally, we believe that the
biggest contribution of the environment is its flexibility and rich output. The user can
easily change the targeted platform and visually (qualitatively) inspect how will the
dataflow parallelism react.

In Section 6.1, we show some of the possible usages of the environment. More
specifically, we illustrate three usages of the environment

1. Educating newcomer programmers: The programmer can use the environ-
ment to easily and quickly simulate MPI/OmpSs execution on a configurable
parallel platform, and study in detail various influences on the dataflow exe-
cution. Especially, the programmer can use the visualization support to quali-
tatively inspect the simulated time-behaviors and learn more about the mecha-
nisms of dataflow parallelism.

2. Identifying potential parallelism: The programmer can use the environment to
automatically simulate how would his application perform on target machines
that provide different degrees of parallelism.

3. Identifying parallelization bottlenecks: The programmer can use the envi-
ronment to automatically identify the critical section of the code – the section
whose optimization would yield the highest benefit to the overall execution time.

60

Original
sequential
execution

Input
OmpSs

code

sequential trace with

Dimemas:
distributed
machine
simulator

Potential
OmpSs

execution

code
translation

gcc
sequential trace with
OmpSs related events

MPISs
tracer

tasks
extractor

OmpSs
trace

Figure 4.3: The environment integrates Mercurium code translator, MPISS tracer, tasks extractor,
Dimemas simulator and Paraver visualization tool.

4.3.1 Implementation details

The main idea of our methodology is 1) to instrument the execution without OmpSs
parallelism; and then 2) to reconstruct what would be the execution with OmpSs paral-
lelism. The input code executes without task parallelism (ignoring the OmpSs pragma
annotations). Thus, the authentic trace describes the execution without OmpSs paral-
lelism. Still, in runtime, we evaluate pragma annotations and incorporate the evaluation
results into the trace of the run. Then, offline, from the collected enriched authentic

trace, we reconstruct the final arti f icial trace – what would be the trace of the potential
run with OmpSs parallelism. Finally, we replay the reconstructed arti f icial trace, by
scheduling the OmpSs tasks in dataflow manner.

The environment (Figure 4.3) consists of Mercurium based code translator, MP-
ISS tracer, tasks extractor, Dimemas replay simulator and Paraver visualization
tool. A Mercurium based tool translates the input OmpSs code into the sequential
code with inserted functions that annotate pragma primitives. The obtained code exe-
cutes sequentially. While tracing that execution, MPISS tracer emits to the trace ad-
ditional user events that signal OmpSs primitives. From the collected trace, the tasks
extractor reconstructs the trace of the potential OmpSs execution. Then, Dimemas
replays the reconstructed trace to simulate the potential OmpSs execution. Finally,
Paraver can visualize the simulated execution.

Note that simulating MPI/OmpSs codes differs only in tracing, where the environ-
ment traces the corresponding MPI execution, and then extracts OmpSs tasks. The

61

input code is a correct MPI/OmpSs code. The application executes without OmpSs
parallelism (as a pure MPI execution). Therefore, the authentic trace describes the cor-
responding MPI execution. On the other hand, offline processing of the trace extracts
OmpSs parallelism and generates the final arti f icial trace that describes MPI/OmpSs
execution. Finally, the arti f icial MPI/OmpSs trace is fed to Dimemas in order to
reconstruct the potential parallel time-behavior. For reasons of simplicity, in the fol-
lowing subsections, we further describe the methodology steps in simulating OmpSs
execution (without MPI parallelism).

Code translator

Our Mercurium based tool forces in-order execution of tasks (Figure 4.4). The trans-
lated code is a sequential code with empty functions annotating occurrences of OmpSs
primitives. Thus, for each section of the execution, the introduced functions specify: 1)
to which task that section belongs; and 2) what are input and output parameters of that
section. The translated code is executed sequentially and traced with MPISS tracing
library.

1 #pragma omp task input(A) output(B)
2 void compute(float *A, float *B) {
3 ...
4 }
5
6 int main () {
7
8 ...
9
10
11
12 compute(a,b);
13
14 ...
15
16 }

(a) input code

1
2 void compute(float *A, float *B) {
3 ...
4 }
5
6 int main () {
7
8 ...
9 mpisstrace_start_task("compute");
10 mpisstrace input par("A", a);
11 mpisstrace_output_par("B", b);
12 compute(a,b);
13 mpisstrace_end_task();
14 ...
15
16 }

(b) translated code

Figure 4.4: The code translation inserts functions that signal OmpSs pragma annotations.

62

Tracer (MPISS tracing library)

The most important feature of the tracer is to detect dependencies in run-time and mark
them into the trace (Figure 4.5). In addition to the functionality of MPI tracing library,
MPISS tracer intercepts the functions inserted in code translation. On intercepting
mpisstrace_start_task (mpisstrace_end_task), the tracer emits to the trace an event
to mark start (end) of a task. Thus, the collected trace also carries the information
of which section of trace belongs to which task. More importantly, on intercepting
function mpisstrace_input_par and mpisstrace_output_par, MPISS tracer calculates
data-dependencies among the identified tasks and emits that information into the trace.
Thus, the trace obtained with MPISS tracer specifies how is the sequential execution
decomposed into OmpSs tasks and what are the data-dependencies among the instan-
tiated tasks.

Tasks extractor (Trace translator)

From the collected trace, tasks extractor reconstructs the potential trace with task-based
dataflow parallelism. For each task, tasks extractor crops from the sequential trace the
segment that belongs to that task, and instantiates a new task in the OmpSs trace.
Moreover, for each dependency user event from the sequential trace, task extractor
creates a two-sided synchronization event in the reconstructed OmpSs trace (Figure
4.5). Thus, the trace derived with tasks extractor instantiates a separate trace entity for
each task, defining the dependencies among the tasks using semantics that Dimemas
simulator can process.

Replay simulator

We extended Dimemas in order to simulate MPI/OmpSs execution (Figure 4.5). We
implemented a task synchronization as an intra-node instantaneous MPI transfer that
specifies the source and the destination task. This implementation allows Paraver to
visualize both MPI communications among processes and data dependencies among
tasks. Furthermore, we implemented a new scheduling policy that optimizes MPI/OmpSs
execution. The new scheduling policy optimizes parallel execution by favoring tasks
that are on the critical path of execution. Furthermore, when simulating MPI/OmpSs
execution, the scheduler assigns outstanding priority to tasks that contain MPI calls,

63

t k 1

event(start_task, 1)
CPU_burst

event(end task, 1)

task_1:
CPU_burst
dep→2

dependencies
found in runtime

(MPISS tracer)

tracing in‐order
execution of tasks collected trace: translated trace:

OmpSs simulation

(2 cpus per node)

cpu1 cpu2

simulated dataflow
parallel execution

task_1

task_2

CPU_burst

(_ ,)
event(start_task, 2)
event(dependency, 1)

CPU_burst
event(end_task, 2)
event(start_task, 3)
event(dependency, 1)

t(d t k 3)

p
dep→3

task_2:

CPU_burst
dep←1

dep→4

task_3:
dep←1

p p

d
ats

task_3

t k 4

CPU_burst

event(dependency, 2)

event(end_task, 4)

event(start_task, 4)
event(end_task, 3)

event(dependency, 3)

CPU_burst
dep←1

dep→4

task_4:

CPU_burst

dep←2
dep←3

taflo
w
 sim

u
latio

n

seq
u
en
tial execu

t

f d d t t k l dtask_4

tracing extracting tasks simulating OmpSs

ntio
n found dependencies

coded as user events
and flushed to trace

dependency events
translated to 2‐sided

synchronization primitives

tasks replayed
obeying the obtained

inter‐task synchronization

MPISS tracer intercepts functions inserted by code translation, detects dependencies among tasks and marks these dependencies
in the trace (example: at the beginning of task_2 the tracer identifies dependency from task_1, and emits to the trace
event(dependency, 1)).
Tasks extractor translates dependency user events into two sided synchronizations (example: event(dependency, 1) is translated
into outgoing dependency (dep→ 2) in task_1 and incoming dependency (dep← 1) in task_2).
Dimemas replays the tasks obeying the defined dependcies (example: due to events (dep → 2) in task_1 and (dep ← 1) in
task_2, task_2 cannot start before task_1 finishes).

Figure 4.5: Environment methodology

and allows these tasks to preempt regular (non-MPI) tasks. This latter scheduling fea-
ture significantly improves execution by prioritizing messaging tasks.

4.4 Tareador – Framework to identify potential dataflow
parallelism

Dataflow programming models can extract very distant and irregular parallelism, a
type of parallelism that a programmer himself can hardly identify. Tareador allows the
programmer to start from a sequential application, and using a set of simple constructs
propose some decomposition of the sequential code into tasks. Then, Tareador dynam-
ically instruments the annotated code and in run-time detects actual data-dependencies
among the proposed tasks. Furthermore, Tareador automatically estimates the poten-
tial parallelism of the proposed decomposition, providing to the programmer the data-
dependency graph of the tasks, as well as the simulation of potential parallel time-
behavior. In a similar manner, the programmer can start from an MPI application,
propose some decomposition of MPI processes into OmpSs tasks and observe the par-

64

allelism of the potential MPI/OmpSs execution.

4.4.1 Implementation details

The idea of the framework is to: 1) run a sequential code with annotations that mark
task the decomposition; 2) dynamically detect memory usage of each annotated task; 3)
identify dependencies among all task instances; and 4) simulate the parallel execution
of the annotated tasks. First, Tareador instruments all annotated tasks in the order of
their instantiation. That way, the instrumentation can monitor accesses to all memory
objects and thus identify data dependencies among tasks. Considering the detected
dependencies, Tareador creates the dependency graph of all tasks, and finally, simulates
the OmpSs execution. Moreover, Tareador can visualize the simulated time-behavior
and offer deeper insight into the OmpSs execution.

The framework (Figure 4.6) takes the input code and passes it through the tool
chain that consists of Mercurium based code translator, Valgrind based tracer, Dimemas
replay simulator and Paraver and dependency graph visualization tools. Input code is
a complete OmpSs code or a sequential code with only light annotations specifying the
proposed taskification. A Mercurium based tool translates the input code in the sequen-
tial code with inserted functions annotating entry and exit from each task. The obtained
code is compiled and executed sequentially. The Valgrind tracer dynamically instru-

sequential
code with
Tareador

annotations

Code
translation

TAREADOR
Valgrind

instrumentation

execution trace

Dimemas
simulator

Graph
Maker
script

Task graph visualizerParaver visualizer

Figure 4.6: The Tareador framework integrates Mercurium code translator, Valgrind tracer, Dimemas
simulator, Paraver and dependency graph visualization tool

65

ments this sequential execution. The tracer makes the authentic trace of the (actually
executed) sequential execution, while at the same time, it reconstructs what would be
the arti f icial trace of the (potential) OmpSs execution. Processing the obtained traces,
Dimemas simulator reconstructs parallel time-behavior on a reconfigurable platform.
Paraver can visualize the simulated time-behaviors and allow to profoundly study the
differences between the (instrumented) sequential and the (corresponding simulated)
OmpSs execution. Furthermore, simple offline processing translates the OmpSs trace
into the tasks dependency graph that can be visualized through the Graphviz graph
visualization environment [1].

Note that instrumenting an MPI code with annotated tasks, Tareador can recon-
structs the potential parallel MPI/OmpSs execution. Input code is a complete MPI/OmpSs
code or an MPI code with only light annotations specifying the proposed taskification.
The translated code is executed in pure MPI fashion. Each MPI process runs on top
of one instance of Valgrind virtual machine that implements a designed tracer. The
tracer makes the authentic trace of the MPI execution, and the arti f icial trace of the
(potential) MPI/OmpSs execution. Both traces are fed to Dimemas for the simulation
of the parallel execution. For reasons of simplicity, in the following subsections, we
further describe the methodology steps in instrumenting sequential applications and
identifying the potential OmpSs parallelism (without MPI parallelism).

Input code

The input code can be an OmpSs code or a sequential code with light annotations that
specify task decomposition. The input code has to specify which functions (parts of
code) should be executed as tasks, but not the directionality of the function parameters.
Thus, the input code can be a sequential code, only with annotations that specify some
task decomposition. Figure 4.7 on the left shows an example of a sequential code with
annotated taskification choice.

Code translator

Our Mercurium based tool translates the input code into the code with forced serializa-
tion of tasks. The obtained code is the sequential code with empty functions (hooks)
annotating when the execution enters and exits from a task (Figure 4.7). The trans-

66

lated code is then compiled with a native sequential compiler, and the binary of the
sequential execution is passed to the Valgrind tracer for further instrumentation. It is
important to note that functions tareador_start_task and tareador_end_task may be
injected directly into the input code. This feature allows very flexible specification of
task decomposition, even in applications with very irregular code layout. Nesting of
tasks is also supported.

Tracer

Leveraging Valgrind functionalities, the tracer instruments the execution and makes
two Dimemas traces: the authentic trace describing the instrumented sequential exe-
cution; and the arti f icial trace describing the potential OmpSs execution. The tracer
uses the following Valgrind functionalities: 1) intercepting the inserted hooks in order
to track which task is currently being executed; 2) intercepting all memory alloca-
tions in order to maintain the pool of data objects in the memory; and 3) intercepting
memory accesses in order to identify data dependencies among tasks. Using the ob-
tained information, the tracer generates the authentic trace of the original (actually
executed) sequential execution. Concurrently with that process, the tracer reconstructs
the arti f icial trace of the potential (simulated) OmpSs execution.

The tool instruments accesses to all memory objects and derives data dependen-
cies among tasks. By intercepting all dynamic allocations and releases of the memory

1 #pragma omp task
2 void compute(float *A, float *B) {
3 ...
4 }
5
6 int main () {
7
8 ...
9
10 compute(a,b);
11
12 ...
13
14 }

(a) input code

1
2 void compute(float *A, float *B) {
3 ...
4 }
5
6 int main () {
7
8 ...
9 tareador_start_task("compute");
10 compute(a,b);
11 tareador_end_task();
12 ...
13
14 }

(b) translated code
Note: The input code must specify the entry/exit of each task. Thus, the input code does not have to be a complete OmpSs code,
but rather a sequential code only with a specified proposed decomposition.

Figure 4.7: Translation of the input code required by the framework.

67

(allocs and frees), the tool maintains the pool of all dynamic memory objects. Sim-
ilarly, by intercepting all static allocations and releases of the memory (mmaps and
munmaps), and reading the debugging information of the executable, the tool main-
tains the pool of all the static memory objects. The tracer tracks all memory objects,
intercepting and recoding accesses to them at the granularity of one byte. Based on
these records, and knowing in which task the execution is at each moment, the tracer
detects all read-after-write dependencies and interprets them as dependencies among
tasks.

The tool creates the authentic trace of the executed sequential run and, consider-
ing identified task dependencies, creates the arti f icial trace of the potential OmpSs
run (Figure 4.8). When generating the original trace, the tool describes the actually
executed run by putting in the trace the computation record stating the length of com-
putation burst in terms of the number of instructions. Additionally, when reconstruct-
ing the trace of the potential OmpSs run, the tracer breaks the original computation
bursts into tasks, and then synchronizes the created tasks according to the identified
data dependencies.

Collected
sequential

trace

Collected
OmpSs trace

execution Task
dependencies

OmpSs simulation

(2 cpus per node)
sequential
simulation

Task_1

Task_2

cpu1 cpu2cpu1
Process_1:
CPU_burst
CPU_burst
CPU_burst
CPU_burst

task_1:
CPU_burst
dep‐>2
dep‐>3

task_2:

CPU_burst
dep<‐1

d

Task_3

Task_4

dep‐>4

task_3:

CPU_burst
dep<‐1

dep‐>4

task_4:
dep<‐2
dep<‐3

CPU_burst
dep 3

Note: The tracer describes the OmpSs trace by breaking the original computation bursts into tasks and synchronizing the created
tasks according to the identified data dependencies.

Figure 4.8: Collecting trace of the original sequential and the potential OmpSs execution.

68

4.4.2 Usage of Tareador

Based on Tareador, we design the top-to-bottom trial-and-error approach that can be
used to port sequential applications to OmpSs. The approach requires no knowledge or
understanding of the target code. The programmer starts by proposing a very coarse-
grain task decomposition of the studied sequential code. Then, Tareador estimates the
potential parallelism of the proposed decomposition and plots the potential parallel
time-behavior. Based on this output, the programmer decides how to refine the decom-
position to achieve higher parallelism. The programmer repeats these steps of propos-
ing decomposition until finding a decomposition that exposes satisfactory parallelism.
In Section 6.2, we illustrate this iterative process on the examples of sequential code
of Cholesky and MPI code of HP Linpack. Furthermore, in Section 6.3 we describe
an effort to automate the process of exploring potential decompositions of sequential
codes.

Given the final decomposition, the programmer can use Tareador to get hints to
complete the process of exposing OmpSs parallelism. Tareador detects for each param-
eter of the task whether it is used as input, output or inout. Moreover, Tareador warns
the programmer about the objects that are accessed in tasks but not passed through
the parameters list. Finally, Tareador can be used as a debugging tool – the program-
mer can run it on the already existing MPI/OmpSs code to automatically detect all
the miss-uses of the memory. By doing all these checks with Tareador, the program-
mer can assure that an MPI/OmpSs code is correct from the point of view of OmpSs
parallelization.

69

5
Overlapping communication and

computation in MPI scientific
applications

Overlapping communication and computation is believed to be a very promising tech-
nique to optimize MPI execution. As already mentioned in Section 3.1.2, overlap is the
concurrency of computation and communication that results in hiding transfer delays.
The overlap leads to two clear benefits: 1) overall speedup of the parallel execution;
and 2) relaxation of network demand without the consequent degradation of the par-
allel performance. However, state-of-the-art techniques that increase overlap require
serious refactoring of a target application and significantly reduce the maintainability
of the code. Therefore, the goal of our research presented in this Chapter is to achieve
higher overlap without any refactoring of the legacy code.

The rest of the Chapter is organized as follows. In Section 5.1, we present three
characteristic behaviors in MPI bulk-synchronous programming. We show that these

70

behaviors seriously suffer from lack of overlap. Section 5.2 introduces automatic over-
lap at the level of MPI calls. The technique increases overlap by breaking each message
into independent chunks and maximizing the overlap of each chunk. In Section 5.3, we
present speculative dataflow – a hardware assisted technique that achieves automatic
overlap at the level of MPI calls without any need to restructure the original legacy
code. We prove the feasibility of the technique and demonstrate that it improves exe-
cution of the three characteristic behaviors. Moreover, Section 5.4 quantifies the po-
tential benefits of automatic overlap in real-world scientific applications. The study
especially focuses on different patterns of production and consumption that seriously
influence the overall potential of overlap.

5.1 Characteristic application behaviors

The mainstream methodology for MPI programming is bulk-synchronous program-
ming that suffers from lack of overlap of communication and computation. Bulk syn-
chronous programming tends to maximize the size of each MPI transfers and therefore
reduce the overhead per sent byte ratio. We identify three characteristic application
behaviors for applications written using bulk-synchronous programming. These three
behaviors (Figure 5.1) express a significant lack of overlap that causes performance
losses.

The first characteristic behavior is balanced execution (Figure 5.1a). In balanced
execution, in each iteration, all MPI processes have the same amount of computation.
During this computation phase, the network is completely idle. After the computation
phase finishes, all MPI processes start communicating. During this communication
phase, all the processors are idle, waiting for the communication to finish. Moreover,
the second problem appears from the fact that all the processes demand network service
at the same time. This type of “bursty” traffic causes a lot of network contention and
puts a serious pressure on the interconnect. The length of the communication phase
depends only on the technological parameters of the network, such as bandwidth and
latency. Therefore, relaxing network constraints (decreasing bandwidth or increasing
latency) directly increases the duration of the communication phase, and the overall
length of the parallel execution.

The second characteristic behavior is micro-imbalanced execution (Figure 5.1b).

71

ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3

proc 0:

proc 1:

(a) balanced execution

ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3

proc 0:

proc 1:

(b) micro-imbalanced execution

ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3

proc 0:

proc 1:

proc 2:

(c) pipeline execution

Figure 5.1: Three characteristic MPI behaviors that suffer from lack of overlap

Micro-imbalanced execution is globally balanced – at the level of the whole execution,
all MPI processes compute for the same time. At the same time, micro-imbalanced
execution is locally imbalanced – at the level of one iteration, different MPI processes
compute for different time. Although the application is globally balanced, imbalance
at the level of one iteration causes significant communication delays. Whenever the
sending process has more computation than the corresponding receiving processes, the
receiver stays idle until the sender finishes the computation. Moreover, this transfer is
completely non-overlapped and causes communication delays.

The third characteristic behavior is pipeline execution (Figure 5.1c). In pipeline
execution, the end of computation of one process provides data for the other process to
start. As data is sent at the end of the computation, the second processor cannot start

72

until the previous one finishes. Moreover, apart from waiting the sending process to
finish the computation, receiving process must also wait for the complete transfer to
arrive.

5.2 Automatic Communication-Computation Overlap
at the MPI Level

Overlapping communication and computation at the MPI level consists of overlapping
MPI transfers with the computation in which the data elements of these MPI transfers
are produced and consumed. This can be achieved using the following four techniques.

• Message chunking: Each original MPI message is partitioned into independent
chunks consisting of one or more data elements.

• Advancing sends: Each chunk is sent as soon as it is produced.

• Double buffering: Two different buffers are used to differentiate the chunks
being consumed at the current iteration from the incoming chunks for consuming
at the next iteration.

• Postponing receptions: Each chunk is waited at the moment when it is really
needed for consumption.

Figure 5.2 shows the traditional case of non-overlapped MPI communications.
Here, process A must wait until the MPI message that consist of four data elements
is fully produced during the iteration i. Then, process A sends the MPI message to
process B, so process B can execute its iteration i + 1. Thus, there is no overlap of the
communication of the MPI message with any of the computation phases in the itera-
tions i and i+1. Consequently, both processes suffer the corresponding communication
delays.

Conversely, Figure 5.3 shows the case of using the four mentioned techniques to
overlap communication and computation. Using automatic overlap, the application can
overlap the communication of a chunk with the computation that produces succeeding
chunks at the sender side and with the computation that consumes preceding chunks
at the receivers side. For example, the communication delays of the chunk p1 can be

73

Tp2 Tp3 Tp4Tp1

Tc1 Tc2 Tc3 Tc4

MPI
transfer

MPI send buffer

MPI receive buffer

computation computationcomm

computationcomputation comm

iteri Iteri+1

process B

process A

time

non‐overlapped execution

iteri Iteri+1 time

Figure 5.2: Non-overlapped execution

Tp2 Tp3 Tp4Tp1

process A

iteri

process B Tc1 Tc2 Tc3 Tc4

computation computation

Iteri+1 time

double
buffering

computation computation

overlapped execution

Figure 5.3: Overlapped execution

overlapped with the computational time to produce the following chunks p2 and p3

(T p2 + T p3) and also with the computational time to consume the chunk c0 (Tc0). In
general, the transfer of a chunk i can be overlapped with the following computation
times:

n−1∑
i+1

T p j +

i−1∑
0

Tc j, 0 ≤ i ≤ n − 1 (5.1)

where T p j and Tc j are the production and consumption time intervals to process the
chunk j, and n is the total number of chunks in a MPI message.

Additionally, the double buffering technique is used to prevent overwriting of the
communicated data at the receiver side. As illustrated in Figure 5.3, the chunk p0 might
arrive to process B during the iteration i, instead of at the next iteration i+1. Therefore,
it can conflict with the previous value p0 that is already there. The double buffering
technique solves this anti-dependency by storing the message for the iteration i + 1 in
a different buffer from the values used in the current iteration i.

It is important to note that the equation above describes the ideal case where
the computation time available to overlap the transfers is the highest possible for
all chunks. However, an application can use a different production/consumption pat-
tern that might be less favorable for overlap than the pattern above, and thus the total
amount of computational time available for overlap may be drastically reduced. For
example, if an application first consumes the last produced chunk, there is no compu-
tational time available to overlap this particular chunk. Even worse, if an application
produces and consumes all chunks at the same time, there is no computational time
available to overlap any of the chunks. The diversity of production/consumption pat-
terns and their influence on the overlapping potential will be analyzed in detail by our
simulation framework.

74

ITERATION 0 ITERATION 1 ITERATION 2 ITERATION 3

proc 0:

proc 1:

(a) balanced execution

ITERATION 0

ITERATION 1

ITERATION 2

ITERATION 3

proc 0:

proc 1:

(b) micro-imbalanced execution

ITERATION 0

ITERATION 1

ITERATION 2

ITERATION 3

proc 0:

proc 1:

proc 2:

(c) pipeline execution

Figure 5.4: Three characteristic behaviors with chunked overlap

5.2.1 Automatic overlap applied on the three characteristic behav-
iors

This Section illustrates the effect of automatic overlap at MPI level in the described
characteristic MPI behaviors. For the sake of ease of illustrating, we assume that the
overlapping technique breaks each original computation into two independent chunks.
We also assume that the production/consumption patterns are ideal. Assuming an ideal

75

pattern means that, after finishing n% of the iteration, the sender produces n% of the
whole message. Similarly, on the receiver’s side, after receiving n% of the original
message, the receiver can process n% of the corresponding computation interval.

In balanced execution, automatic overlap can bring the maximal speedup of 2 and
a significant relaxation of network constraints (Figure 5.4a). In the balanced execution
without overlap (Figure 5.1a), the phases of computation and communication are dis-
junctive, and the total execution time is the sum of the two. With automatic overlap,
each process sends a half of the message at the half of the iteration 0. Then the iter-
ation 1 can start as soon as this half of the message arrives. Therefore, if the transfer
time of a half of the message takes less than a half of the computation in one iteration,
the parallel execution can proceed with no communication delays. Therefore, if in
the non-overlapped balanced execution, the communication phase takes equal time as
the computation phase, automatic overlap can hide all the communication delays and
achieve the maximum speedup of 2x. On the other hand, automatic overlap can also
significantly relax the network constraints. As long as the transfer time of the original
message takes less time than the computation in one iteration, automatic overlap can
overlap this transfer time and hide all communication delays. Also, the traffic becomes
less “bursty”, since the automatic overlap with n chunks breaks one big transfer burst
into n smaller bursts.

Automatic overlap can bring a significant execution speedup to the micro-imbalanced
execution. In non-overlapped execution (Figure 5.1b), process 1 cannot start its iter-
ation 1 until the process 0 finishes its iteration 0. Conversely, with automatic overlap
(Figure 5.4b), process 1 can start its iteration 1 as soon as the process 0 finishes the first
half of its iteration 0. This way, start of the iteration 1 of the process 1 overlaps with
the end of the iteration 0 of the process 0. This overlap of iterations leads to smoother
execution that has less communication delays and achieves better performance.

Finally, in pipeline executions, automatic overlap achieves better parallelization
and leads to high speedup. In the presented non-overlapped pipeline execution (Figure
5.1c), process 1 can start its iteration 1 only after process 0 finishes its whole iteration
0. Thus, the iterations 0 and 1 are completely disjunctive. On the other hand, when
using automatic overlap (Figure 5.4c), process 1 can start its iteration 1 after process 0
finishes only one half of its iteration 0. This way, iteration 1 partially overlaps with it-
eration 0. This overlap leads to better hiding of communication delays and the overall

76

speedup of the applications. Theoretically, for p number of processes and the auto-
matic overlap that breaks the original message into c chunks, the maximal speedup is
min{p, c}.

5.3 Speculative Dataflow – A proposal to achieve auto-
matic overlap

In this Section, we propose speculative dataflow – a speculative technique that imple-
ments automatic overlap. Speculative dataflow introduces mechanisms that achieve
automatic overlap without restructuring the code of the application. The technique
allows each MPI process to advance sends by speculatively sending parts of the orig-
inal message. Furthermore, the technique allows each process to postpone receives
by waiting parts of the incoming message only when these parts are needed. Finally,
speculative dataflow must ensure correctness by guaranteeing that it can recover from
miss-speculation.

Our main goal is to show that the protocol is feasible and that it is beneficial for the
three targeted behaviors from Figure 5.1. Also, we discuss in more details the possible
implementation of the mechanism, specially focusing on the recovery mechanism and
the potential hardware support. Furthermore, in Section 5.4, we investigate in more
depth the potential benefits of this mechanism in real-world scientific applications.

5.3.1 Protocol of speculative dataflow

The protocol uses speculation to advance partial sends. Speculative dataflow can ad-
vance sends using two mechanisms: 1) a mechanism to identify which buffer will be
sent in the future; and 2) a mechanism to identify when some part of the message is
produced and ready to be sent. In a general case, these two mechanisms cannot be both
efficient and always correct. Therefore, our technique implements these mechanisms
as speculative, allowing them to be aggressive, but providing that the errors can be
recovered.

The protocol also postpones partial receives. Automatic overlap breaks the whole
message into chunks and identifies the moment when each of the chunks is needed

77

for consumption. Therefore, speculative dataflow can postpone partial receives by
waiting for each part of the message to be received exactly when that part is needed
for consumption.

To complete the speculation protocol, the receiving process has to control spec-
ulation. Receiver is in speculative phase if it computes using the data that was sent
speculatively, and still is unconfirmed by the sender. While in the speculative phase,
the receiver produces temporal data, data that is not committed into memory. If the
sender confirms the transfer, the receiver commits the temporal data to the memory. If
instead of confirmation, the receiver gets notification of miss-speculation, the receiver
activates its recovery mechanism and discards the temporal data.

Conditions and assumptions

In order to keep the complexity of the initial implementation low, we adopt a set of sim-
plifying assumptions. Our speculation technique relies on the highly repetitive pattern
of MPI codes [41]. For each intercepted MPI_S end call, we predict that this MPI call
will repeat – that during the execution, the same buffer will be again sent to the same
destination. We implemented the mechanism for detecting the end of a data chunk
production assuming sequential order of data production. In other words, we consider
that the production of some element of the buffer signifies that all previous elements
in the buffer are already produced and ready to be sent. We model the recovery mech-
anism as a re-computation of the miss-speculated phase. In a future implementation
of speculative dataflow, we expect to include the hardware mechanisms for checkpoint
and recovery proposed in the scope of multi-threaded speculation [73].

5.3.2 Emulation

In order to gain experience, identify issues, and spot the possible problems, we de-
signed an emulation framework for the proposed solution. This emulation environment
consists of a modified MPI library and a set of probes used to intercept every mem-
ory access. These software hooks detect memory usage of the data that is involved in
communication. To make the initial evaluation of the potential benefit of our proposal,
we imported a set of benchmarks into the emulation framework and executed them on
MareNostrum.

78

Figure 5.5: Software mock-up for the evaluation

The emulation environment consists of wrappers for MPI calls and manually in-
serted software hooks for instrumenting memory accesses. Code lines in black color
belong to the original MPI code while lines in red represent the injected calls. The
role of every new procedure is marked on Figure 5.5. Each MPI routine is intercepted
and replaced with a new customized MPI routine that enforces speculative dataflow.
Function write_update instruments message production and signals if the process fin-
ished producing some chunk of the message. Function check_avail_read instruments
message consumption and signals if the process wants to access some chunk that is
not received yet. Finally, function check_avail_write instruments message production
and signals the anti-dependency hazard – the process wants to write into some chunk
although that chunk is not sent in the previous iteration.

The described mock-up environment requires manual insertion of software hooks.
Our target is to achieve the same functionality without modifying even the binary of the
target application. Thus, we need a hardware mechanism that detects the production
and consumption events and fires exception handling routines that drive our speculative
protocol. In Section 5.3.3, we describe hardware support that can drastically reduce
the overhead of our pure software solution.

Emulation results

We used the three characteristic MPI behaviors to test the potential of speculative
dataflow. For each of the characteristic behaviors, we wrote a micro-benchmark and

79

Figure 5.6: Influence of the network bandwidth on execution time

adapted it for instrumenting inside our emulation environment.
First we tested speculative dataflow on a balanced application with 8 processes.

The application consists of computation and a two-way ring communication pattern.
We execute the application with both non-overlapped and overlapped model. Then we
processed the obtained traces using Dimemas simulator, to plot how execution time de-
pends on the network bandwidth. Figure 5.6 shows the relative performance normal-
ized to the performance of the non-overlapped execution with unlimited bandwidth.
The results show that speculative dataflow can achieve significant speedup. For exam-
ple, for the network bandwidth of 250MB/s (bandwidth of MareNostrum) speculative
dataflow achieves the speedup of 1.72 over the non-overlapped execution. The results
also show that speculative dataflow achieves significant bandwidth relaxation without
consequent performance penalty. More specifically, to achieve the performance of the
overlapped execution with a bandwidth of 450MB/s, the non-overlapped execution
requires a bandwidth of 4200MB/s.

As mentioned above, speculative dataflow optimizes bandwidth usage by elimi-
nating “bursty” traffic patterns. Figures 5.7 and 5.8 illustrate five iterations of non-

80

Figure 5.7: Bandwidth usage for the link bandwidth of 2.5GB/s

Figure 5.8: Bandwidth usage for the link bandwidth of 250MB/s

overlapped execution, followed by five iterations of overlapped execution. The upper
pictures show execution timeline, where blue regions represent computational phases
and white regions denote communication delays. The lower plots show the system
bandwidth usage throughout the execution (the time scale is the same as for the up-
per plots). Figure 5.7 illustrates the execution with link bandwidth of 2.5GB/s, while
Figure 5.8 is for link bandwidth of 250MB/s. It is interesting to note that speculative
dataflow ”flattens“ bandwidth usage peaks, causing the reduction of needed bandwidth
and the execution speedup.

The second experiment uses the same set of processes and communication pat-
tern, but now modeling a micro-imbalanced application. Figure 5.9 illustrates 20 itera-
tions of original execution followed by the same number of iterations in the “chunked
mode”. The vertical line separates the two modes. White color represents processor
stalls and other colors represent different iterations. The same color in two different

81

Figure 5.9: Trace of a micro-imbalanced application

Figure 5.10: Overlapping in pipeline executions

processes indicates matching iterations. The results show that speculative dataflow
reduces the time spent in stalls from 35% to 2.3%. Furthermore, in spite of added
overhead, speculative dataflow achieves the speedup is 1.51.

Figure 5.10 illustrates the potential benefits of speculative dataflow in pipeline ap-
plications. The figure shows the execution of the non-overlapped run, followed by few
iterations that include speculative dataflow. Again, white color represents stalls and
the same colors represent matching iterations. Speculative dataflow eliminates almost
all stalls from the non-overlapped execution and achieves the speedup of 3.32.

82

5.3.3 Hardware support

Profiling of the implementation indicated the functions for intercepting memory ac-
cesses to be the ones that represent the highest overhead. The emulation environment
calls these functions for each memory access of the application, while the actual chunk
transfer happens only few times per computation burst. In order to hide this overhead
and try the proposed technique on legacy binaries, we propose a possible hardware
device to take over the hooks’ detection functionality. Hardware support that detects
such events and raises a signal would avoid large fraction of the overhead and allow a
very flexible implementation in the software signal handlers.

Hardware support should be the activation mechanism for the protocol of specu-
lative dataflow. The hardware records the actual state of ongoing transfers, monitors
the accesses to the data involved in communication and detects the events when some
chunk should be sent/received. Upon detection of such event, the hardware stalls the
processor and raises a signal. The protocol of speculative dataflow handles the signal,
executes the necessary communication operations and updates the hardware records
about the state of ongoing transfers. Upon termination of the signal handler, the host
processor regains the control of execution. Similar hardware structures have already
been proposed in the field of speculative multithreading [93].

The proposed hardware is similar to TLB table. The difference is that TLB table
raises the signal if the address is not found in the table, while our table should trigger
the signal when the match occurs. The other properties of these two matching mecha-
nisms are the same. Hence, dualism with the already implemented mechanism of TLB
proves the feasibility of our proposal.

5.3.4 Conclusions and future research directions

We showed that speculative dataflow could be an efficient technique to achieve au-
tomatic overlap at the level of MPI calls. We designed a speculative technique that
can increase overlap in applications, without any refactoring of the target code. We
especially explored how speculative dataflow would affect the three characteristic be-
haviors of bulk-synchronous programming. We proved that speculative dataflow can
bring the two expected benefits of overlap: 1) execution speedup; and 2) bandwidth
relaxation without consequent performance penalty.

83

Throughout our study of speculative dataflow, we assumed very regular application
behaviors. To continue researching overlap, we must test these assumptions against
realistic workloads. Therefore, in the following Section, we use the environment de-
scribed in Section 4.2 to measure the potential overlap in a set of real scientific codes.

5.4 Quantifying the potential benefits of automatic over-
lap

State-of-the-art scientific applications achieve very little overlap. Most of techniques
to increase overlap are based on code refactoring. Theses code optimizations are cum-
bersome and demand a lot of programming time. On the other hand, other techniques,
such as speculative dataflow (Section 5.3), achieve overlap relying on additional hard-
ware support. In both cases, it is very hard to anticipate how much would a real-world
application benefit from these overlapping techniques. The anticipation of the poten-
tial benefits is very important, because the programmer can evaluate the potential of
the technique and decide whether the implementation of the technique is worth the
effort.

So far, evaluating the potential benefits of overlapping communication and compu-
tation has not been sufficiently addressed. There have been attempts to treat this issue
[76], but they mostly rely on theoretical quantification of overlap, by trying to make
representative mathematical models of the applications studied. However, these stud-
ies in their modeling of scientific codes tend to suppress some very important execution
properties, and later omit their influence on the final result. More specifically, these
studies assume that applications have the ideal computation patterns – that each MPI
process linearly produces/consumes buffers that are involved in communication. Our
study invalidates this assumption, and furthermore proves that computation patterns of
the data that is communicated, decisively determines the potential overlap.

The major goal in this work is to offer to the community a fast and precise frame-
work that estimates how much an MPI application can benefit from increased overlap.
We designed a framework (Section 4.2) that takes a binary of the legacy MPI applica-
tion and directly determines how much the application can profit from overlap. Our
technique requires no intervention on the studied application. Using our framework,

84

prior to any implementation effort, a programmer can instrument the targeted applica-
tion and identify the potential of the planned optimizations. Moreover, the framework
can increase the understanding of overlap by providing a visualization support that
can compare non-overlapped and overlapped executions. All these features make the
framework a very useful tool for studying overlap in the real scientific applications.

5.4.1 Experimental Setup

We conducted our measurements on two popular benchmarks and four well-known
scientific applications. The choice of the application suite provides a wide range of
different program behaviors to be studied. For all the codes we use their original
version, as directly obtained from the distribution. The application pool consists of
Sweep3D [4], POP [3], Alya [51], SPECFEM3D [22] and NAS [2] benchmarks BT
and CG. Sweep3D is a wavefront application that solves a three-dimensional neutron
transport problem. The problem size used is 50 × 50 × 50 with mk=10. POP, Parallel
Ocean Program, simulates oceans and their influence on climate. The input deck used
is test with grid size of 192 × 128 × 20. Alya is a multi-physics application that solves
a variety of physics problems such as Convection-Diffusion-Reaction, Incompressible
Flows, Compressible Flows, Turbulence, Bi-Phasic Flows and so on. We used the
NASTIN module that solves the Incompressible Navier-Stokes. SPECFEM3D sim-
ulates earthquakes in complex three-dimensional geological models. The input deck
used is test with 80 cells. And finally, BT and CG are two NAS parallel benchmarks.
The problem used is class B.

Our test-bed system consist of 64 PowerPC 970 2.3 GHz processors interconnected
with a Myrinet network that provides a unidirectional bandwidth of 250 MB/s. This
basic system configuration corresponds to the Marenostrum supercomputer (as of 10th

of June of 2010).

5.4.2 Patterns of production and consumption

For studying the potential of automatic overlap, it is very important to explore how are
the transferred messages produced at the sender side and consumed at the receiver side.
Each MPI program consists of computation bursts separated by MPI communication
calls. A computation burst consumes the data received in the preceding MPI call and

85

produces the data for the forthcoming MPI call. Ideally, if the production of the buffer
to be sent is linear and uniform across the burst, the process can send the first half of
the message half way through the computation burst. Similarly, if the consumption of
the received buffer is linear and uniform across the burst, the process can postpone the
blocking wait for the second half. Thus, computation patterns determine the potential
for advancing sends and postponing receives and strongly influence the potential for
overlap. Therefore, our first study focuses on characterizing patterns of consumption
and production of the communicated data. To that end we developed an instrumenta-
tion tool based on Valgrind (Section 4.2.1). For each MPI transfer, the tool identifies
the address of a communicated buffer and instruments all memory accesses to that
buffer. This information allows us to determine when each element of a communicated
buffer is produced or consumed.

Results of tracing patterns

Due to complex computational algorithms, scientific applications tend to have diverse
patterns of production and consumption (Figure 5.11). Figures on the left show pro-
duction patterns, and figures on the right show consumption patterns. For each plot, the
x axis represents the normalized time within the corresponding computation interval
(from start to end), while the y axis represents an element’s address within the ac-
cessed buffer. Points represent when each element was written for production patterns
and read for consumption patterns. Many such patterns have been identified within
each application.

Figures 5.11a and 5.11b present the production and consumption patterns that are
present in 50% of all transfers in Sweep3D. As presented on the y-axis, the communi-
cated buffer has 600 elements and all of them are revisited and accessed many times
during one computation phase. This causes very late production of the final version
of the elements and decreases the potential for advancing partial sends. As shown in
Figure 5.11a, the final version of the first element is produced at 66.3% of the produc-
tion interval, while the final version of the first quarter of the message is produced at
94.8% of the production interval. Figure 5.11b indicates that the potential for postpon-
ing partial receives is even lower. This is because the application reads all the elements
of the received message very early in the consumption phase. Compared to the ideal

86

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is updated
 at certain percentage of iteration progress

(a) SWEEP3D production pattern

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is read
 at certain percentage of iteration progress

(b) SWEEP3D consumption pattern

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 99.65 99.7 99.75 99.8 99.85 99.9 99.95 100N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is updated
 at certain percentage of iteration progress

(c) NAS-BT production pattern

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is read
 at certain percentage of iteration progress

(d) NAS-BT consumption pattern

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 92 93 94 95 96 97 98 99 100N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is updated
 at certain percentage of iteration progress

(e) POP production pattern

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3.8 3.9 4 4.1 4.2 4.3 4.4N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is read
 at certain percentage of iteration progress

(f) POP consumption pattern

Figure 5.11: Production and consumption patterns of various applications

patterns, where with a received quarter of the message the program can execute 25%
of the consumption interval, in Sweep3D a quarter of the message allows only 0.03%
of the interval to be passed.

87

NAS-BT represents a separate class of applications with respect to the patterns of
production and consumption. Figures 5.11c and 5.11d show that the communicated
buffers are effectively accessed in a very short bursts of time. Figure 5.11d shows
that all of the elements of the received buffer are loaded four times, each time in an
extremely short interval, implying that the data is copied to some other location from
where it is consumed during the computation. The production pattern (Figure 5.11c)
suggests that the only activity in the buffer is packing of the message at the very end
of the production phase (note the change in horizontal scale). As can be seen, in an
application that uses out-of-place computation, the potential for advancing sends and
postponing reception of independent chunks is negligible.

Some characteristic patterns of POP are presented in Figures 5.11e and 5.11f. The
production pattern shows presence of data rewriting and late production of the final
versions of the elements, starting from 99% of the production interval. Figure 5.11f
shows that the received message is accessed only in a short portion of computation
time, but allowing 3.9% of the interval to be passed before waiting for any part of the
incoming message. Patterns like these provide low potential for automatic overlap, but
still more than in the case of the applications that use buffer copying techniques.

Characterization of real patterns

Due to many different transfers in real codes it is very hard to come up with the concise
characterization of the production/consumption patterns of an application. In order to
give at least a rough estimate of the potential for advancing sends and postponing
receptions, we provide the average values describing at what percentage of the com-
putation phase progress certain portions of the message are produced and consumed.
This data, presented in Table 5.1, can further be used to coarsely estimate the expected
benefits of automatic overlap in the application. Since the critical transfers in Alya are
of length of one element and no chunking is possible, only the data for producing the
whole message and consuming the first element is presented.

Averaged patterns seem very unfavorable for overlap. The table on the left shows
when in the production phase the final version of the message or its part is produced.
Most of the applications produce the first element very late in the execution, many
of them after 95% of the production interval, thus providing negligible potential for

88

Percent of production phase
needed to produce
a part of message

1 elem quarter half whole
ideal 0% 25% 50% 100%
NAS-BT 99.1% 99.37% 99.56% 99.98%
NAS-CG 3.98% 27.98% 51.99% 99.97%
Sweep3D 66.3% 94.8% 98.2% 99.8%
POP 95.5% 96.62% 97.75% 99.99%
Specfem 95.3% 96.48% 97.65% 99.99%
Alya 98.8%

(a) Potential for advancing sends

Percent of consumption phase
that can be passed

upon reception of a part of message

nothing quarter half
ideal 0% 25% 50%
NAS-BT 13.68% 13.71% 13.74%
NAS-CG 2.175% 18.35% 34.53%
Sweep3D 0.02% 0.003% 0.004%
POP 3.525% 3.53% 3.534%
SPECFEM 0.032% 0.034% 0.036%
Alya 0.4%

(b) Potential for postponing receptions

Table 5.1: Average patterns of production and consumption

advancing sends. Average patterns of consumption are even less favorable for overlap.
For some applications, the reception of half of the incoming message allows less than
1% of the consumption phase to be executed. On the other hand, in NAS-BT, the
averages indicate that a noticeable part (13%) of the consumption interval can be
executed before waiting for any part of the incoming message, i.e., does not depend
on the incoming message. This transfer independent computation provides significant
potential for overlapping communication and computation.

Also, it is important to note that, due to many different transfers and their patterns,
this averaging may also hide or misrepresent some of the results of interest. An exam-
ple of this is NAS-BT, where in 63% of the consumption patterns, all the elements of
the received message are loaded in the first 1% of the consumption interval. Still, due
to averaging with the other 37% of the transfers, the average value shows that 13.68%
of the work in the consumption phase can execute before the reception of any part of
the message. For this reason, a study of all of the patterns independently in such cases
may be beneficial.

The obtained results raise two issues. The first is that the measured patterns seem
to be less beneficial than initially thought. The question is whether a code restructur-
ing can rearrange computation pattern to make it similar to the ideal linear patterns
(this issue is tackled in the following Section). The second question is that, even if
the pattern may show some potential, it is important to be able to quantify the actual
impact of the overlap on performance (Section 5.4.3 covers this issue). Furthermore,
it is important anticipate the benefit that pattern linearization can achieve in terms of

89

absolute performance. This information will be very useful to determine whether the
restructuring effort is worthwhile.

Achieving more profitable patterns

We propose code restructuring to change the applications’ computational patterns. Due
to complex algorithms and high level optimizations, restructuring a computational ker-
nel in order to obtain sequential patterns is a difficult task. Therefore, our approach
is to use a blocking technique that requires less knowledge about the computational
kernel.

The idea is to make coarser granularity for the transfers than for computation, so
the buffer could be transferred at once, while the computation with the buffer could be
done by several independent computational iterations. Then, the computations access-
ing the same buffer are set in the desired order. This preserves the original computa-
tion patterns within the small computational iteration, while at the level of the whole
buffer, the computations could be arranged in such way that the obtained patterns are
”quasi-linear“. Theoretically, increasing the ratio of the granularities of transfers and
computations leads to patterns that are closer to the ideal.

Our code restructuring technique to obtain more favorable computation patterns
is tested using Sweep3D. This choice of the application is made because Sweep3D
has very interesting patterns, as shown in Figure 5.11. Furthermore, it represents a
real scientific application and its non-trivial structure of more than 3500 lines of code
proves the applicability of the approach in real scientific codes.

One iteration in Sweep3D consists of a reception of the buffer, a computation that
consumes the received data and produces the buffer that will be sent, and a sending of
the produced data. As in many scientific codes, one input parameter determines the
granularity of the iteration, thus influencing the size of the buffer and the length of the
computation. In the case of Sweep3D, this parameter is called k-plane. Our block-
ing technique converts this parameter into two independent parameters that define the
granularity of the execution. One parameter represents the granularity of the commu-
nication, thus influencing the length of transferred messages. The second parameter
denotes the granularity of the computation, hence specifying the length of workset of
a computational iteration.

90

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is updated
 at certain percentage of iteration progress

(a) production pattern

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

N
um

be
r

of
 th

e
el

em
en

t i
n

th
e

bu
ff

er

percentage of the iteration progress

element of the buffer that is read
 at certain percentage of iteration progress

(b) consumption pattern

Figure 5.12: Production and consumption patterns of the restructured Sweep3D

Figure 5.12 represents the patterns for the case when the granularity of transfers is
ten times coarser than the granularity of computations. Compared to the patterns of the
original Sweep3D code presented in Figure 5.11, the new results show a significantly
increased potential for advancing sends and postponing receives of the independent
chunks. Now, the first final version of some of the elements is produced at 6.8%
through the computation burst. When partitioning messages into 4 chunks, the final
version of the first chunk can be produced and sent at around 30% through the com-
putation interval. The consuming plots also show similar ”quasi-sequential“ pattern,
hence allowing the receptions of the independent chunks to be delayed.

The code restructuring technique showed to be easily applicable in the case of
Sweep3D. The proposed modifications affected less than 2% of the total code lines
and required only a superficial knowledge of the application’s algorithm. The obtained
patterns seem much more favorable for overlap than the original patterns. However, in
order to confirm the usefulness of this refactoring, we must prove that the refactoring
increased the potential overlap in the application.

5.4.3 Simulating potential overlap

This Section presents the simulation results that evaluate the overlapping potential in
scientific MPI applications. The simulated overlapping technique works at the MPI
level, by automatically capturing all MPI messages, and trying to overlap these mes-
sages with useful computation of the application. The overlapping technique consists

91

of the following mechanisms: message chunking, advancing sends, double buffering,
and post-postponing receptions. These mechanisms are broadly described in Section
5.2. Our methodology takes into account a wide range of application behaviors, with-
out requiring the knowledge of the application’s algorithmic structure. Additionally,
the results of our simulation can be visualized, thereby allowing qualitative comparison
between non-overlapped and overlapped execution. Moreover, our framework allows
us to simulate various network configurations and evaluate the impact of overlap on
future networks.

For illustration purposes, Figure 5.13 presents Paraver visualization of overlap in
NAS-CG executed with four MPI processes. The overlapped execution achieves 8%
performance improvement with respect to the non-overlapped execution. Using Par-
aver visualization, we can easily investigate the cause of this improvement. Figure 5.13
shows that the overlapping technique can significantly advance partial sends, allow-
ing to partially overlap chunk transfers with the production of the succeeding chunks.
However, the overlapping technique cannot postpone partial receives. Thus, to in-
crease the application’s overlapping potential, the programmer should rearrange the
consumption patterns and expose potential for postponing receives.

Simulation results

The results of our simulation show and compare execution of the same program with
and without automatic overlap applied. The simulation of the overlapped execution
is made assuming that each original message is partitioned into four chunks. Both
Sancho’s work [76] and our study show that finer-grain chunking brings no significant
improvement compared to the granularity used in our evaluation. Furthermore, in order
to study the influence of the computation pattern on the potential of overlap, we extract
two different simulations of the overlapped execution. The first overlapped execution
takes into account the real production/consumption patterns of the code, while the
second assumes the ideal patterns. Reconfigurability of the Dimemas simulator is used
to change parameters of the targeted system and to examine the influence of various
network properties.

All the results are obtained for runs on 64 processors. The Dimemas configuration
for a homogeneous distributed multiprocessor is selected for the target parallel ma-

92

Non-overlapped execution

Overlapped execution

timetimetime

time

Computation

MPI_Wait

Synchronization from the
MPI_Send to the MPI_Wait

Figure 5.13: Paraver visualization for the non-overlapped and overlapped executions of NAS-CG.

chine. Every processor uses one input and one output port to connect to the network,
which is modeled as an unlimited number of buses. That means that the network can
support an unlimited number of simultaneous transfers and the only limitation comes
from the processors’ injection rate to the network.

Figure 5.14 shows the overlapping speedup both for real and ideal computation
patterns. Due to different values of speedup in the applications, the plots for Sweep3D
and SPECFEM3D are made on a different scale. Figure 5.14 shows that the over-
lap provides a speedup for a wide range of bandwidths. At high bandwidths, auto-
matic overlap never causes performance degradation. On the other hand, Figure 5.14c
demonstrates that in the range of very low bandwidths, automatic overlap can cause
a slowdown. Also, Figures 5.14f and 5.14a show that the idealized patterns provide
much higher overlap than the realistic ones. The following sections further discuss
the results and reveal more about the mechanism of overlapping communication and
computation.

93

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Speedup of overlapped execution over original execution

Sources of the potential overlap

The presented plots show three characteristic regions of system’s bandwidth in which
different sources of the potential overlap dominate the performance. For extremely

94

high bandwidths, greater than one hundred times the bandwidth needed for the peak
overlap speedup, time spent in computation dominates the total execution time. In
these cases, automatic overlap establishes finer-grain communication and dependen-
cies among processors, thus achieving a higher degree of overlap of computations.
Advancing sends and postponing receives allows the destination processor to start be-
fore the source processor finishes its computation and sends the complete message,
therefore allowing concurrency among these two computation phases of different pro-
cessors. This source of the potential overlap is especially expressed in applications
with microscopic imbalance of computation. In these applications, finer-grain trans-
fers and dependencies lead to significant hiding of communication delays caused by
the imbalance at the level of one iteration.

In the range of low bandwidths, lower than one hundred times the bandwidth
needed for the peak overlap speedup, execution time is dominated by the time spent
in communication. The mechanism of automatic overlap breaks all the messages into
chunks, thus allowing higher concurrency of the created fine-grain partial transfers to
be achieved. By postponing receives, the destination processor can start its iteration
before the complete message is received. Moreover, the receiver can start advancing its
partial sends, therefore creating concurrency among the sending and receiving trans-
fers. This source of the potential overlap is especially expressed in applications in
which at the level of one iteration processes communicate different amounts of data,
while at the level of the whole application the amount of the communicated data is
similar for all of the processes. We will refer to this type of codes as codes with mi-
croscopic imbalanced communication.

For intermediate bandwidths, in which the time spent in message transferring is
comparable to the time spent in computation, the dominant source of the potential
overlap lies in hiding the in-flight time of transfers. Automatic overlap increases the
time gap between the initialization of the transfer and the wait for its completion,
thus relaxing the time constraints for the transfer’s completion. Therefore, automatic
overlap increases the portion of the computation that can be used to overlap and hide
communication stalls. Since the mechanism is based on hiding the transfer time by
literally overlapping it with computation, it provides a maximal speedup of two. This
source of overlap is present in all types of codes and it is especially expressed in the
case of balanced execution.

95

Figure 5.14 shows that all the applications experience the peak value of the speedup
in the middle range of bandwidths, since that source of the overlap is present in all
applications. In addition, due to its pipeline behavior, Sweep3D shows a significant
speedup on both high and low ranges of bandwidths (Figure 5.14f). This is because
the pipeline application could be considered as an execution that expresses microscopic
imbalance of both computation and communication.

The proposed technique of automatic overlap is based on the mechanism for ad-
vancing sends and postponing receptions of the independent chunks. A linear commu-
nication model would guarantee that the advanced send arrives earlier to the destina-
tion, thus providing better performance of the overlapped execution for any network
bandwidth. However, due to a limited network resources, the simulation allows the ap-
pearance of non-linear effects, such as network contention. At extremely high network
bandwidths, contention of the network is very unlikely to happen, thus practically elim-
inating the non-linear effects from the Dimemas communication model. Consequently,
in these ranges, overlapped execution always performs better than the original execu-
tion, as evidenced by Figure 5.14. However, for low bandwidths, non-linear effects are
more likely to occur. The partial sends cause different serialization of the messages
in the shared network, therefore not guaranteeing any more that a chunk that is sent
in advance will arrive earlier to its destination. This behavior can cause performance
degradation, as evidenced in Figures 5.14a and 5.14c. Fortunately, this behavior is sig-
nificant only in the range of very low network bandwidths. In state-of-the-art networks,
the bandwidth is high enough to mitigate this effect.

Reduction of bandwidth requirements

Figure 5.15 compares the absolute execution time for both the non-overlapped and the
two overlapped runs. The results for SPECFEM (Figure 5.15a) show that the over-
lapped execution is much more tolerant to bandwidth reduction. Thus, going from
the range of very high to the range of low bandwidths, the non-overlapped execu-
tion loses performance much faster than the overlapped execution. This delayed drop
of performance is the source of the peak speedup that appears at the middle range
of bandwidths, as evidenced by Figure 5.14e. The results also show that sometimes
the non-overlapped execution on extremely high bandwidths, cannot reach the perfor-

96

(a) (b)

Figure 5.15: Execution time for original and overlapped (real and ideal patterns) execution

mance of the overlapped run on moderate bandwidths. For example, in the case of
Sweep3D (Figure 5.15b), performance of the overlapped execution with ideal patterns
on bandwidth of 5 MB/s, cannot be achieved by non-overlapped execution even with
the infinite bandwidth.

Figure 5.16 shows the factor of bandwidth reduction that would still allow the over-
lapped execution to have the same performance as the original execution that uses the
full bandwidth. The plot is obtained by measuring the bandwidths at which the original
and the overlapped execution deliver the same performance. Then the x axis marks the
bandwidth of the original execution and the y axis shows how many times lower band-
width can be used with the overlapped execution to achieve the same performance. For
example, the performance of the non-overlapped Sweep3D at 1GB/s could be achieved
with overlapped execution with the bandwidth which is 11.7 times lower when the real
patterns of production and consumption are considered. On the other hand, the over-
lapped execution needs 142 times lower bandwidth if the ideal patterns are assumed.
The value marked on y axis is referred to as the coefficient of tolerable bandwidth re-
duction because it describes how much the bandwidth can be reduced when applying
the automatic overlap, in order to preserve the performance of the original execution.
Overall, the overlapped run requires many times lower bandwidth for achieving the
same performance as the original run on the state-of-art bandwidths. Also, the con-
stantly increasing plot in all of the figures proves that in the range of high bandwidths
the overlapped run always has better performance than the original run.

97

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Factor of bandwidth reduction for which the overlapped execution maintains the perfor-
mance of the original execution on full bandwidth

98

Correlation of the potential overlap with the patterns of production and consump-
tion

Figure 5.14 shows that there is a significant performance difference in the runs that
have real computation patterns and the runs which assume the ideal patterns. In order
to study these differences and to determine the influence of the computation patterns
on the speedup induced by overlap, we revisit Table 5.1.

Computation patterns determine the applications potential for overlap. As men-
tioned, NAS-BT has a very late production of chunks in all the computation bursts and
a very early consumption in 63% of the bursts. Thus, the real patterns are unfavorable
for overlap, providing much lower speedup than in the case of the ideal patterns. On
the other hand, POP has no potential for advancing sends in 75% of the bursts. How-
ever, POP has at least 3% of the computation phase before any part of the message
is consumed in all of the consumption intervals, thus giving a maximum speedup of
about 3% for real patterns and a higher speedup when the patterns are idealized.

However, profitable patterns cannot guarantee high potential overlap. NAS-CG has
profitable patterns, but still the speedup obtained by overlap is quite low, for both the
real and the assumed ideal patterns. This is because the application contains compu-
tation bursts of very different lengths, causing the potential for advancing sends and
postponing receives in extremely short bursts to be very low in terms of absolute time.
Consequently, in these short bursts, the time constraints for the transfers completion
are kept fixed, thereby presenting strong synchronization points and causing a lot of
communication delays. Also, it is interesting to note that these short computation in-
tervals make the code sensitive to changes of the serialization of chunks, as evidenced
by the ”jagged“ plot in Figure 5.14b.

Sometimes, the speedup achieved by automatic overlap is attributed to changed
ordering of messages. In Alya, the speedup in the low range of bandwidths comes from
breaking collectives into point-to-point communications. Also, a small peak for the
middle range of bandwidths is due to a small overlap of computation and transferring
time. Furthermore, the overlap in SPECFEM provides higher speedup than what can
be predicted considering the data from Table 5.1. This is because the processes that
in one computation burst send more messages have earlier production of chunks than
the processes that send fewer messages, thus favoring processes with more intensive

99

(a) (b)

Figure 5.17: Benefit of only advancing sends or only postponing receives

communication. For the idealized patterns, due to significantly faster production and
slower consumption of chunks the speedup is much higher.

Figure 5.14f also illustrates the effect of the code restructuring for pattern lineariza-
tion applied to Sweep3D. The real patterns provide little potential for advancing sends
and postponing receives, thus offering very low overlapping speedup. On the other
hand, the ideal patterns provide high speedup in all ranges of bandwidth. Figure 5.14f
also shows the speedup achieved after the code restructuring for pattern linearization.
The obtained ”quasi-linear“ patterns provide almost as much potential for the overlap
as the ideal patterns.

Figure 5.17 shows the potential benefits of overlap if only advancing send or only
postponing receives is used. Figure 5.17a shows that applying only one of the mech-
anisms drastically decreases the overlapping potential. Furthermore, as explained
above, sources of overlap in the ranges of low and high bandwidths achieve speedup
only when the technique both advances sends and postpones receives. Since this is not
the case here, the obtained speedup in these ranges is very low, as evidenced by Figure
5.17b.

MareNostrum case study

This Section estimates the potential benefits of overlap in scientific applications exe-
cuted on MareNostrum parallel platform. For that purpose, target machine configura-
tion in Dimemas is set to faithfully model MareNostrum. Table 5.2 shows the number

100

Note: In Figure (c), the equivalent bandwidth improvement for Sweep3D for both real and ideal patterns tends to infinity, and
therefore it is not shown.

Figure 5.18: Simulation of the overlapped executions on the real and ideal production/consumption
patterns.

of buses used in our experiments for each application. The number of buses is de-
termined empirically, by comparing Dimemas simulation with the real execution on
MareNostrum parallel computer.

Table 5.2: Number of network buses used in Dimemas for each application.

Sweep3D POP Alya SPECFEM3D BT CG

12 12 11 8 22 6

Overlap provides a small speedup for the real patterns and a decent speedup for
the ideal patterns (Figure 5.18(a)). The unfavorable production/consumption patterns
seriously limit the applications’ overlapping potential. As anticipated from Table 5.1,
the real patterns allow speedup only in the case of NAS-CG. On the other hand, for
modeled ideal patterns, some applications achieve a significant speedup. The highest
speedup is reached for Sweep3D due to the wavefront behavior of the application. For
this type of applications (concurrent, pipeline), the chunking mechanisms of overlap
causes finer-grain dependencies among processes and potentially increases parallelism

101

among the processes.
The biggest benefit of overlap is that it allows to significantly relax network band-

width without consequently degrading the performance. Figure 5.18(b) shows that
in order to achieve the performance of the non-overlapped execution on 250MB/s,
the overlapped execution needs much less bandwidth. Again, Sweep3D benefits from
overlap the most and allows to reduce the network bandwidth to 11.75MB/s and main-
tain the performance of the original execution. Relaxation of network bandwidth is
very important because it means that in order to achieve the performance of the origi-
nal execution on a state-of-the-art network, the overlapped execution requires a much
cheaper network.

Finally, the benefits achieved by applying automatic overlap sometimes cannot
be reached by simply increasing the network bandwidth. Figure 5.18(c) shows the
bandwidth required by the non-overlapped execution in order to achieve the perfor-
mance of the overlapped execution at 250MB/s. In other words, it presents what is the
overlap’s equivalent in increased network bandwidth. The result of Sweep3D shows
that for some applications, the performance of the overlapped execution cannot be
achieved with non-overlapped execution on any bandwidth. Also, it is interesting to
note that overlap brings little speedup in SPECFEM3D (Figure 5.18(a)), but the bene-
fits achieved by overlap are equivalent to benefits that could be achieved by increasing
the network bandwidth almost four times.

5.4.4 Conclusions and future research directions

Our study confirms that overlapping communication and computation is a very promis-
ing solution for achieving more efficient communication. We show that overlap brings
significant execution improvements, especially in the case of favorable production/-
consumption patterns. We showed that real scientific applications have diverse com-
putation patterns that are often unfavorable for overlap. We confirm that for favorable
patterns, overlap achieves two benefits: execution speedup and relaxation of bandwidth
without consequent degradation of performance. Moreover, we show that in applica-
tions with micro-imbalance of computation, the benefits achieved by overlap cannot
be reached by simple increasing network bandwidth.

Our study can be useful for researchers in the field to understand better the po-

102

tential and the mechanism of overlap. We designed a simulation framework that can
simulate applications’ overlapped execution automatically, without the need to know
or change the application’s legacy code. Compared to the previous studies in the field,
our framework accounts for a wider range of application properties and allows to study
overlap on diverse network configurations. Finally, the framework provides useful vi-
sualization of the simulated time behaviors, so we can qualitatively compare the non-
overlapped and the overlapped execution.

Also, our environment can be very useful for a programmer that intends to in-
crease the overlap in his application. The programmer can use our environment to
anticipate the potential impact of overlapping technique that he wants to implement.
Furthermore, the programmer can visually inspect the potential overlapped execution
and conclude how to customize the planed implementation in order to increase the
overlap.

The results of this study showed us that the overlap at the level of MPI calls is very
limited by the application’s production/consumption patterns. Unfavorable computa-
tion patterns decrease the potential for advancing sends and postponing receives, thus
limiting the potential for automatic overlap. We also showed that code refactoring can
rearrange these patterns in order to increase the potential overlap. However, this code
refactoring requires a deep understanding of the targeted code, so applying it on many
applications is unfeasible. Therefore, we believe that it is of major importance to find a
way to rearrange computation patterns without code refactoring. The following Chap-
ter explores OmpSs programming model. OmpSs introduces dynamic task scheduling
that can rearrange computation patterns into ones that are more profitable for overlap.

103

6
Task-based dataflow parallelism

Our research of automatic overlap showed that there is a need for a mechanism to
change the internal computation pattern by which each MPI process locally com-
putes on the data that is involved in communication. We also illustrated that man-
ual code restructuring can obtain patterns that are more favorable for overlap. How-
ever, this manual code restructuring requires significant programming effort. Thus, we
want to explore the potential of hybrid programming models that integrate MPI with
some shared memory parallel programming model. The shared memory programming
model should rearrange the execution inside each MPI process and dynamically obtain
computation patterns more suitable for overlap.

Our choice is to explore the integration of MPI and OmpSs programming model, a
programming model developed in BSC. OmpSs is a dataflow task-based programming
model that can execute tasks out-of-order, as long as data dependencies are satisfied. In
addition, OmpSs integrates with MPI into a hybrid MPI/OmpSs programming model in
which the workload is parallelized across distributed address spaces using MPI, while
the workload of each MPI process is parallelized using OmpSs. This integration leads

104

to higher performance, as well as to execution more tolerant to network contention
and OS noise [63]. More detailed description of the MPI/OmpSs programming model
can be found in Sections 2.2.3 and 2.2.4. Furthermore, the potential for overlap in
MPI/OmpSs execution is further explained in Section 3.3.1.

In this Chapter, we explore two approaches for tuning MPI/OmpSs parallel execu-
tion – first by optimizing some sections of the code, and second by changing the task
decomposition of the code. The rest of this Chapter is organized as follows. In Section
6.1, we explore the mechanisms to find the critical code sections in MPI/OmpSs ap-
plications. Furthermore, Section 6.2 describes how using Tareador, a programmer can
iteratively explore the potential task decompositions for a given application. Finally,
in Section 6.3, we present the autonomous driver that iteratively runs Tareador to find
the optimal task decomposition of an application.

6.1 Identifying critical code sections in dataflow paral-
lel execution

Task-based dataflow programming models showed to be very powerful in exposing
high level of parallelism. Dataflow can extract very irregular parallelism. Also, dataflow
introduces significant asynchronism in the execution, providing performance that is
more tolerant to external contention and OS noise [63]. Due to all these potential
benefits, dataflow became the parallelization strategy for various programming models
[69][40][53], as well as for application specific backends [83].

However, due to irregularity of dataflow parallelism, it is very hard to anticipate and
control the parallelism exposed in the application. By varying granularity of execution
or task decomposition of the code, the programmer generates different number of tasks,
thus changing the potential parallelism of the execution [84]. If there is too few tasks,
the application may expose insufficient parallelism to keep the target machine utilized.
However, if there is too many tasks, the runtime overhead may seriously harm the
performance [63]. Thus, to optimize the performance, the programmer must control
the parallelism released in the application and suit it for the parallelism offered by the
target machine.

Moreover, to fine-tune the execution of his application, the programmer may try

105

to optimize some section of the code, either by rewriting the code of that section,
or by executing that section on an accelerator. The years of practice in optimizing
applications points that the major issue is focus – identifying the code section whose
optimization would yield the highest overall applications speedup. In other words,
prior to any optimization effort, the programmer must identify the critical section –
the code section whose optimization would bring the highest reduction of the total
execution time.

To address this issue, we designed an environment that automatically estimates
the potential parallelism of an application and furthermore identifies critical code sec-
tions. The programmer can use this environment to estimate the potential optimization
speedup. This is very important, because it allows the programmer to anticipate the
benefits of the intended optimization and decide in advance whether the optimization
is worth the effort. We show that in many applications, the choice of the critical sec-
tion of the code decisively depends on the configuration of the target machine. For
instance, in HP Linpack, optimizing a task that takes 0.49% of the total computation
time yields the overall speedup of less than 0.25% on one machine, and at the same
time, yields the overall speedup of more than 24% on a different machine.

6.1.1 Motivation

In this Section, we present a simple OmpSs application (Figure 6.1) and explore the
potential benefits of optimizing different sections of the code. There are three functions
(comp1 − comp3) of equal duration. These functions are encapsulated into tasks. The
code consists of one loop that calls each of the functions in every iteration. Depending
on the loop index, each function selects on which buffers to compute. The only differ-
ence among the functions is the step (step1 − step3) based on which they determine
which buffers to use.

Although the application is simple, the resulting parallelism is very irregular. The
task dependency graph (Figure 6.2) has sections of low concurrency, as well as sec-
tions of high concurrency (for example, tasks number 7, 8, 9, 5, 10, 15 can all execute
concurrently). This irregular parallelism leads to a scalability that is hard to antici-
pate. Thus, for executing on 2 cores the speedup is almost ideal. On the other hand,
for 3 cores the speedup is ideal, while, surprisingly, adding one more core gives no

106

1 #pragma omp task inout(A,B)
2 void comp1(float *A, float *B);
3 #pragma omp task inout(A,B)
4 void comp2(float *A, float *B);
5 #pragma omp task inout(A,B)
6 void comp3(float *A, float *B);
7
8 #define buf_cnt 19
9 #define iterations 11

10 #define step1 9
11 #define step2 10
12 #define step3 11
13 #define buffer_length 400
14
15 int main () {
16 static float a[buf_cnt][buffer_length];
17
18 for (int i=0; i<iterations; i++) {
19 comp1(a[(i*step1)%buf_cnt], a[(i*step1+1)%buf_cnt]);
20 comp2(a[(i*step2)%buf_cnt], a[(i*step2+1)%buf_cnt]);
21 comp3(a[(i*step3)%buf_cnt], a[(i*step3+1)%buf_cnt]);
22 }
23
24 return 0;
25 }

Figure 6.1: Code of the motivating example.

additional speedup.
Although the tasks in the code (Figure 6.1) appear to be of the same importance,

accelerating different tasks yields very different overall speedup (Figure 6.3). Figure
6.3a shows the resulting speedup when some of the tasks is accelerated by a factor
of 2. On the machine with 1 or 2 cores all tasks are equally critical. However, on
the machine with 3 or 4 cores, comp1 is significantly more critical than the other two
tasks. Thus, the choice of the critical task depends on the configuration of the target
machine. Moreover, if the tasks are to be accelerated by a factor of 100 (Figure 6.3b),
on the machine with 4 cores, tasks comp1 and comp3 are equally critical. Thus, the
choice of the critical task also depends on the potential acceleration factor. Therefore,
in order to identify the critical code section, one has to take into account both the
targeted machine and the acceleration factor of the possible optimization.

107

1

2

3

7 8

4

5 10

6 21

11

13 14

24

9

20

16

1712

2325

18

15

22

27

19 26

28

29

33

30

3231

comp3comp2comp1legend:

Note: The numbers in the nodes annotate the number of the task in the execution.

Figure 6.2: Data-dependency graph of the motivating example.

Table 6.1: Speedup for different number of cores.

cores 1 2 3 4

speedup 1.00 1.94 3.00 3.00

6.1.2 Motivation example interpreted by the state-of-the-art tech-
niques

A very common technique for performance analysis is tracing [55, 65, 67, 91]. Tracing
environments instrument the execution and provide visualization of the obtained data.
However, tracing presents to the programmer a vast amount of data, so the programmer

108

1 2 3 4
number of cores per node

1.0

1.1

1.2

1.3

1.4

1.6

sp
ee

du
p
re
la
tiv

e
to
 n
om

in
al
 S
M
PS

s
ex
ec
ut
io
n

 w
he

n
al
l t
as
ks
 e
xe
cu
te
 w
ith

 n
om

in
al
 s
pe

ed

speedup for speeding up some tasks

comp1 comp2 comp3

(a) Scaling all tasks by a factor of 2

1 2 3 4
number of cores per node

1.0

1.1

1.2

1.3

1.4

1.6

sp
ee

du
p
re
la
tiv

e
to
 n
om

in
al
 S
M
PS

s
ex
ec
ut
io
n

 w
he

n
al
l t
as
ks
 e
xe
cu
te
 w
ith

 n
om

in
al
 s
pe

ed

speedup for speeding up some tasks

comp1 comp2 comp3

(b) Scaling all tasks by a factor of 100

Note: The figure shows the resulting execution speedup when some of the tasks is speeded up. The overall speedup is calculated
over the original execution – execution in which each task has its original duration.

Figure 6.3: The resulting speedup when accelerating different tasks.

can identify bottlenecks on his own. In other words, tracing does not directly focus the
programmers attention to the bottleneck.

Profiling is usually more efficient, since it reduces the collected information into a
short report. The traditional profilers report the percentage of computation time spent
in each function. Thus for a sequential application, gprof [46] identifies the most
time consuming code section, and that section is automatically the critical section.
However, the same information derived from the parallel profilers [44, 57, 75, 79, 88]
cannot directly identify the critical code section. As shown in the motivation example
from Section 6.1.1, all functions take the same portion of the total computation time,
but not all functions are equally critical.

Other approaches identify the critical code section as the code section that con-
tributes the most to the critical path of execution. The representatives of this technique
are Vtune [30] from Intel and Spartan [5] from University of Illinois. In the motivation
example, these techniques would identify only one critical path of length 11 (the bold
path marked in Figure 6.2). Then, they would identify comp1 as the critical function,
since it has 6 task instances in the critical path. However, these tools would overlook
the path of length 10 (marked with dotted bold lines in Figure 6.2). This path is slightly
shorter, but it has only 2 instances of task comp1. Thus, accelerating comp1 would
faster reduce the first path than the second one, and the second path would prevail.
One of the illustrations of this behavior is that in Figure 6.3b, accelerating functions

109

comp1 and comp3 often gives the same overall speedup. The tools like VTune and
Spartan would fail to detect this effect.

The newest approaches identify the sections of execution with low parallelism and
try to find which sections of code to blame. Quartz [6] and Intel Thread Profiler[17][29]
try to quantify the potential parallelism of each section of the code. Similarly, Tallent
at. el. [85][86] try to identify threads that are responsible for synchronizations that in-
troduce stalls. Furthermore, they consider different policies of spreading the blame for
low parallelization, from contexts in which spin-waiting occurs (victims), to directly
blaming a lock holder (perpetrators). However, in the example from Section 6.1.1,
seeing the execution on 3 cores (Table 6.1), these approaches would see no stalls, so
they would not be able to identify any part of code as more critical than some other.

We show that the previous approaches cannot capture some influences that showed
to be very decisive in the motivation example. First, that the choice of the critical sec-
tion depends on the parallel target machine on which the application executes. Second,
that depending on the factor of acceleration different sections may be the most benefi-
cial to accelerate. Finally, all the previous techniques work with “measure-modify” ap-
proach. In this approach, the technique profiles the execution and points to the critical
section. Then, the programmer optimizes that section, and then again runs the applica-
tion “hoping” that the optimization will bring some overall speedup. Conversely, our
approach anticipates the benefits prior to any optimization effort by providing a “what
if” approach. This approach in advance evaluates the overall speedup of the applica-
tion executed on a specified parallel machine if a specified code section is accelerated
by a specified optimization factor.

6.1.3 Experiments

Based on the infrastructure described in Section 4.3, we designed an automatic ap-
proach to pinpoint the critical code section of MPI/OmpSs execution. First, we trace
an MPI/OmpSs code and derive the trace of that execution. Then, an automatic script
drives the environment to make multiple simulations of MPI/OmpSs execution, each of
them with a different code section accelerated by some factor. Based on the collected
results, the script identifies the code section whose acceleration yields the highest over-
all speedup. Finally, the script delivers to the user a single information – identification

110

of the critical code section.
We partition the experiments Section into two parts: one studying OmpSs codes

and other studying MPI/OmpSs codes. For OmpSs applications we experiment with
four well-known computation kernels, while for MPI/OmpSs codes we experiment
with two large MPI/OmpSs applications. For each application, we identify sections of
code that should be optimized in order to increase parallelism.

OmpSs codes

In the study of OmpSs applications, we experimented with four representative kernels:
Jacobi, Cholesky, LU and HM transpose. Jacobi executes on a problem size of 8192,
using block size of 128. Cholesky executes on a problem size of 8192, using a block
of size 128. LU factorization executes on a problem size of 4096, with the block size
of 128. Finally, HM transpose executes on a problem size of 4096, with the block
size of 256. For Cholesky and HM transpose, we simulate OmpSs execution of the
first four iterations of the main loop. For Jacobi, we simulate OmpSs execution of
the first 32 iteration of the main loop, because the major source of parallelism comes
from concurrency among iterations of the main loop. Finally, for LU factorization, we
simulate the entire execution.

All codes expose a substantial amount of parallelism that a many-core node can
efficiently exploit (Figure 6.4). It is important to note that, with up to 32 cores in the
target machine, all the applications achieve speedup that is close to the ideal. However,
beyond 32 cores, the level of parallelism is different for all the applications. In par-

1 2 4 8 16 32 64 128 256 512 1024
number of cores

1

2

4

8

16

32

64

128

256

512

1024

sp
ee

du
p

ideal
tranpose
cholesky
lu
jacobi

Note: Plotted speedup is the speedup of OmpSs execution (using different number of cores), over the sequential execution (using
always one core). Ideal speedup is of value N, if OmpSs executes on a machine with N cores.

Figure 6.4: Parallelism of OmpSs applications.

111

ticular, HM transpose, Cholesky, LU, and Jacobi achieve maximal speedup of 156.79,
65.36, 31.77, and 30.50, respectively (for 256 cores).

Figure 6.5 illustrates machine utilization throughout the execution of the studied
applications. For each application, we show the number of cores that are active in each
moment of execution. The plots are made for unlimited number of cores in the target
machine. Thus, these plots illustrate the application’s inherent parallelism (unbounded
by the target parallel machine). Also, note that the total length of the plot represents
the application’s total execution time, while the surface below the plot represents the
application’s total computation time.

The aforementioned Figure points to the presence of two parallelization patterns.
The first pattern characterizes applications HM transpose (Figure 6.5a) and Jacobi

s

376

time [ns]

co
re
s

time [ns]

(a) HM transpose

s

186

time [ns]

co
re
s

time [ns]

(b) Cholesky

s

214

time [ns]

co
re
s

time [ns]

(c) LU factorization

s

63

time [ns]

co
re
s

time [ns]

(d) Jacobi
Note: These Paraver views show the number of cores that are active in each moment of execution. All the applications execute
with the unlimited number of cores on the target machine. It is interesting to note that the surface below the plot represents the
application’s computation time, while the total length of the plot represents the application’s total execution time.

Figure 6.5: Number of cores active during execution.

112

HM transpose

task name percentage [%]

main_task 0.61

transpose 2.77

transpose_exchange 96.63

Cholesky

task name percentage [%]

main_task 0.33

sgemm_tile 59.29

spotrf_tile 0.52

ssyrk_tile 0.75

strsm_tile 39.12

LU factorization

task name percentage [%]

main task 0 28main_task 0.28

bdiv 2.76

block_mpy_add 54.44

bmod 38.29

fwd 3.49fwd 3.49

lu0 0.53

Jacobi

task name percentage [%]

main_task 2.35

getfirstcol 3.18

getfirstrow 0.98

getlastcol 1.48

Getlastrow 1.46

jacobi 90.54

Note: The tables suppress
functions that take less
0.2% of the total
computation time of the
application.

Figure 6.6: Tasks pro-
file

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

transpose transpose_exchange

(a) HM transpose

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

sgemm_tile
spotrf_tile

ssyrk_tile strsm_tile

(b) Cholesky

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

bdiv
block_mpy_add

bmod
fwd

lu0

(c) LU factorization

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

getfirstcol
getfirstrow

getlastcol
getlastrow

jacobi

(d) Jacobi

Figure 6.7: Speedup when one task is speeded up by 2x (OmpSs codes).

(Figure 6.5d). In these applications, as the execution approaches the middle of the
run, increases the number of cores that can be utilized concurrently. After reaching
the peak concurrency, the parallelism drops until the end of the run. This way, HM
transpose and Jacobi achieve the peak parallelism of 376 and 63, respectively.

The other parallelization pattern characterizes applications Cholesky (Figure 6.5b)
and LU factorization (Figure 6.5c). In these applications, throughout the run, the exe-
cution passes through interleaved sections of high and low parallelism. Usually, each
following section of high parallelism has lower peak parallelism than the previous one.
Thus, in Cholesky, peak speedups of the first four iterations are 186, 123, 61 and 60,
respectively, while in LU factorization, peak speedups of the first four iterations are
214, 113, 113 and 84, respectively.

Figure 6.6 shows the distribution of the computation time on different tasks. Appli-
cations HM transpose and Jacobi have one very dominant task – HM transpose spends
96.63% of time in transpose_exchange, while Jacobi spends 90.54% of time in ja-

cobi. Other two applications have two dominant tasks – Cholesky spends 59.29% of

113

s

376

time [ns]

co
re
s

time [ns]

(a) all tasks with the original duration

s

376

time [ns]

co
re
s

time [ns]

(b) transpose speeded up two times

s

376

time [ns]

co
re
s

time [ns]

(c) transpose_exchange speeded up two times

Figure 6.8: HM transpose: number of active cores

s

214

time [ns]

co
re
s

time [ns]

(a) all tasks with the original duration

s

214

time [ns]

co
re
s

time [ns]

(b) block_mpy_add speeded up two times

s

214

time [ns]

co
re
s

time [ns]

(c) bmod speeded up two times

Figure 6.9: LU factorization: number of active cores

114

time in sgemm_tile and 39.12% in strsm_tile, while LU factorization spends 54.44%
of time in block_mpy_add and 38.29% in bmod. In a sequential execution of all the
four applications, these dominant tasks would be the best candidates for optimization.

However, in the parallel execution, the function that is dominant in the total compu-
tation time is not necessarily the function that is critical for the execution time. Figure
6.7 shows the speedup obtained by speeding up some of the functions by a factor of
2. In HM transpose and Jacobi, for a target machine with a low number of cores, op-
timizing the identified dominant function brings the highest benefits. However, as the
number of cores in the target machine grows, these benefits significantly drop. Nev-
ertheless, Cholesky and LU show even more drastic behavior. For a machine with a
small number of cores, the critical function is the most dominant one – sgemm_tile

for Cholesky, and block_mpy_add for LU factorization. Nevertheless, as the target
machine gets more cores, other tasks are becoming critical. In fact, in both applica-
tions when executing on 256 cores, accelerating the dominant function yield the overall
speedup of less than 2%.

Identification of the critical tasks can be brought in relation with the parallelization
pattern of the application. In HM transpose and Jacobi, the dominant task is the critical
one. In HM transpose, speeding up the task that takes a small portion of computation
time has no detectable effect on the execution of the application (Figure 6.8b). On the
other hand, speeding up transpose_exchange by a factor of 2 (Figure 6.8c), signifi-
cantly reduces both the computation and the execution time. It is interesting to note
that the peak parallelism drops, as well. This happens because, as transpose_exchange

takes shorter time, the probability of concurrent execution of different instances of that
task drops.

On the other hand, in Cholesky and LU factorization, some task that takes a small
share of the total computation time may become a task that is critical for the total
execution time. In LU factorization (Figure 6.9a), the total computation time is 47.29s,
while the total execution time is 1.55s. When speeding up block_mpy_add by a factor
of 2, the computation time drops for 54.44%

2 = 27.22%, while the total execution time
drops for only 1.97% (Figure 6.9b). On the other hand, when speeding up bmod by a
factor of 2, the computation time drops for 38.29%

2 = 19.14%, while the total parallel
execution time drops for 32.48% (Figure 6.9c). The figures show that speeding up
block_mpy_add shrinks the sectors with high parallelism. On the other hand, speeding

115

up bmod shrinks the sectors with low parallelism, thus bringing the sectors with high
parallelism closer together. Therefore, a small reduction in the total computation time
can cause a significant reduction in the total execution time.

MPI/OmpSs codes

In the study of MPI/OmpSs applications, we use the codes of HP Linpack [36] and
SPECFEM-3D [22]. Linpack is one of the most famous parallel applications used to
rank parallel machines on the top 500 list [87]. We run it for the problem size of
65536 and block size of 128. SPECFEM-3D simulates earthquakes in complex three-
dimensional geological models. We run it with the configuration NS PEC = 198352
and NGLOB = 12912201. We simulate only four iterations of the main loop for each
application. Both applications execute with 16 MPI process with each MPI process
running on a separate node in the machine.

Figure 6.10 shows the potential parallelism of the studied MPI/OmpSs codes. If
the parallel machine has up to 8 cores per node, both application express enough par-
allelism to achieve the parallelization close to the ideal. However, for machines with
more cores per node, the speedup grows until saturation. In particular, SPECFEM-3D
saturates on 32, and Linpack on 64 cores per node. The resulting maximum speedups
are of 10.31 for SPECFEM-3D and 21.18 for Linpack.

Finally, MPI/OmpSs applications especially emphasize the phenomenon where a
task that takes a small portion of the computation time becomes the critical task in the
execution. In SPECFEM-3D, scatter takes only 6.37% of the total computation time

1 2 4 8 16 32 64 128 256 512 1024
number of cores per node

1

2

4

8

16

32

64

128

256

512

1024

sp
ee

du
p

ideal
SPECFEM-3D
HP LINPACK

Note: Plotted speedup is the speedup of MPI/OmpSs execution (using different number of cores per node), over the MPI
execution (using always one core per node). Ideal speedup is of value N, if MPI/OmpSs executes on a machine with N cores per
node.

Figure 6.10: Parallelism of MPI/OmpSs applications.

116

SPECFEM‐3D

k []task name percentage [%]

compute_max 0.46

gather 4 15gather 4.15

process_elem 84.60

scatter 6.37

update_acc 1.75

update_disp 2.55

HP Linpack

task name percentage [%]task name percentage [%]

fact 0.49

dlaswp00N 0.34p

dlaswp01N 0.63

dlaswp06N 1.29

update 96.99

Figure 6.11: Tasks
profile

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

compute_max
gather

process_elem
scatter

update_acc
update_disp

(a) SPECFEM-3D

1 4 16 64 256
number of cores

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

fact
dlaswp00N

dlaswp01N
dlaswp06N

update

(b) HP Linpack

Figure 6.12: Speedup when one task is speeded up by 2x (MPI/OmpSs codes).

(Figure 6.11). Thus, speeding up scatter by a factor of 2 reduces the total computation
time for 6.37%

2 = 3.14%. However, when the application executes with 64 cores per
node, this small reduction of total computation time results in the overall execution
speedup of 44.16% (Figure 6.12a).

HP Linpack shows even more extreme behavior. The dominant task in HP Linpack
(update), takes 96.99% of the total execution time. Speeding up update by a factor
of 2, reduces the computation time for 96.99%

2 = 48.50%. When HP Linpack executes
with only 1 core per node, this reduction of computation time results in the overall
speedup of 95.46%. However, when HP Linpack executes with 64 cores per node, the
same reduction of the computation time results in less than 10% of overall speedup.
On the other hand, f act is the fourth most dominant function, taking only 0.49% of
the total computation time (Figure 6.11). Speeding up f act by a factor of 2 reduces
the computation time for 0.49%

2 = 0.24%. Still, when HP Linpack executes with 64
cores per node, this small reduction in computation time brings the overall application
speedup of 24.54% (Figure 6.12b).

This effect happens because task instances of update are highly parallelizable,
while task instances of f act are extremely non-parallelizable. Although update takes
a big portion of the computation time, instances of update parallelize across available
cores without throttling the execution. On the other hand, f act takes a small portion of
computation time, but instances of f act cannot execute concurrently on different cores.
Furthermore, fact has numerous MPI communications so execution of some instance
of f act in one MPI process also may condition some other instance of f act in other

117

MPI processes.

6.1.4 Conclusion and future research directions

Task based dataflow programming models potentially extract very irregular parallelism,
making it hard to estimate the potential parallelism in applications. For a real appli-
cation with thousands of tasks, this estimation exceeds the prediction ability of any
human programmer. To tackle this problem, we design an environment that quickly
estimates the possible parallelization of an application on a parallel platform. Further-
more, the environment pinpoints the causes that limit the dataflow parallelism. These
two features of the environment can significantly facilitate the development and opti-
mization of applications based on dataflow programming models.

We showed how, using the designed environment, a programmer can easily identify
the critical task – a task that should be optimized in order to increase the scalability
of the code. We identified that many parallel applications exhibit the phenomenon in
which a task that takes a small portion of the total computation time may decisively
contribute to the total parallel execution time. In particular, in the case of HP Linpack,
function f act takes only 0.49% of the total computation time. However, when the ap-
plication executes with 16 MPI processes, with 64 cores for each MPI process, speed-
ing up task f act by a factor of 2 results in the overall execution speedup of 24.54%.
Also, we observed that this phenomenon is especially significant at large-scale.

Finally, it is our great hope, that our environment can be very useful to help a
programmer understand the mechanisms of dataflow parallelism. The environment al-
lows fast and flexible simulation, so various influences on the dataflow can be studied
quickly. Moreover, the environment provides visualization support so the programmer
can qualitatively inspect the simulated dataflow execution. We believe that our envi-
ronment can be of great help to all newcomers to the dataflow programming models.

To investigate other approaches for tuning MPI/OmpSs parallelism, in following
Sections we explore the techniques for identifying optimal task decomposition of the
code.

118

6.2 Tareador: exploring parallelism inherit in applica-
tions

New proposals for large-scale programming models are persistently spawned, but most
of these initiatives fail because they attract little interest of the community. It takes a
giant leap of faith for a programmer to take the already working parallel application
and to port it to a novel programming model. This is especially problematic because
the programmer cannot anticipate how would the application perform if it was ported
to the new programming model, so he may doubt whether the porting is worth the
effort. Moreover, the programmer usually lacks developing tools that would make the
process of porting easier.

In order to port the application to a task-based programming language, the pro-
grammer must partition the sequential code into tasks and take advantage of the ex-
isting dataflow parallelism inherent in the application. However, obtaining the par-
titioning that achieves optimal parallelism is not trivial because it depends on many
parameters such as the underlying data dependencies and global problem partition-
ing. To assist the process of finding a partitioning that achieves high parallelism, we
designed Tareador (Section 4.4) – a framework that a programmer can use to find the
best strategy to expose dataflow parallelism in his application. Furthermore, we present
an iterative approach that uses Tareador to find the optimal task decomposition of the
code. The presented approach requires only superficial knowledge of the studied code
and iteratively leads to the optimal partitioning strategy.

The main objective of Tareador is to get a wider community involved with OmpSs
by encouraging MPI programmers to port their applications to MPI/OmpSs. This en-
couragement is strictly related to assuring the programmer that he can benefit from
this porting and that the porting would be easy. Therefore, our goal in this study is to
illustrate how Tareador can be used to:

• Help an MPI programmer estimate how much parallelism he can achieve using
MPI/OmpSs

• Help an MPI programmer find the optimal strategy to port his MPI application
to MPI/OmpSs

119

6.2.1 Motivating example

Even if the sequential application is trivial, finding the optimal task decomposition
can be a difficult job. Dataflow parallelism allows exploiting very irregular and distant
parallelism, parallelism among sections of code that are mutually far from each other.
This type of parallelism is very hard for the programmer to identify and expose without
any development support. The programmer must know the application in depth in
order to identify all the data dependencies among tasks. Furthermore, even knowing
all dependencies, the programmer must anticipate how will all the tasks execute in
parallel, and what is the possible parallelism that these tasks can achieve.

Figure 6.13 shows a simple sequential application composed of four computational
parts (A, B, C and D), the data dependencies among those parts, and some of the
possible taskification strategies. Although the application is very simple, it allows
many possible decompositions that expose different amount of parallelism. T0 puts all
the code in one task and, in fact, presents a sequential code. T1 and T2 both break the
application into two tasks but fail to expose any parallelism. On the other hand, T3
and T4 both break the application into 3 tasks, but while T3 achieves no parallelism,
T4 exposes parallelism between C and D. Finally, T5 breaks the application into 4
tasks but achieves the same amount of parallelism as T4. Considering that increasing
the number of tasks increases the runtime overhead, one can conclude that the optimal
taskification is T4, because it gives the highest speedup with the lowest cost of the
increased number of tasks.

Nevertheless, compared to the presented trivial execution, a real-world applica-
tion would be more complex in various aspects. A real application would have hun-
dreds of thousands of task instances, causing complex and well populated dependency
graphs. The large dependency graph would allow unpredictable scheduling decisions
that would exploit very distant parallelism. Also, with the task instances of different

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C D

A

B

C D

T1 T2 T3 T4 T5T0

ti
m

e

application’s
code

task

data
dependency

Figure 6.13: Execution of different possible taskifications for a code composed of four parts.

120

length, evaluating the potential parallelism would be even harder. Moreover, in an
MPI/OmpSs application, the total number of task increases by the factor of the number
of MPI processes. Furthermore, taskifying MPI calls spreads inter-task dependencies
across MPI processes. Finally, the MPI transfers cause communication delays that also
affect overall parallelism. Due to all this complexity, it is unfeasible for a programmer
to do the described analysis and estimate the potential parallelism of a certain task
decomposition.

We believe that it would be very useful to have an environment that quickly antici-
pates the potential parallelism of a particular taskification. We designed such environ-
ment and we show how it should be used to find the optimal taskification. Furthermore,
we present two cases studies that use a black-box approach to explore potential task
decomposition of applications.

6.2.2 Experiments

Our experiments demonstrate how the programmer can use Tareador to explore the
potential parallelization of an application. We present two case studies that explore
the potential parallelization strategies in the sequential code of Cholesky and the MPI
code of HP Linpack. Our experiments demonstrate the top-down trial-and-error ap-
proach that requires no knowledge of the studied code, and ultimately leads to exposing
dataflow parallelism in the code. The approach uses the following algorithm:

1. Propose a coarse-grained taskification of the code;

2. Given the taskification, estimate the potential parallelism and obtain the visual-
ization of the parallel execution.

3. Based on the estimation of the potential parallelism, choose a finer-grained task-
ification that should expose more parallelism.

4. Return to step 2.

We start from the most coarse-grain taskification (T0) that puts whole execution into
one task. Then, using T0 as the baseline decomposition, we determine the potential

parallelism of T i normalized to T0 as the speedup of Ti over T0 when both taskifica-
tions execute on an idealized machine with unlimited number of cores.

121

Due to the huge overhead introduced by Tareador, we conduct the experiments on
small input sets. Tareador counts executed instructions and translates that information
to get a notion of time. Thus, the time spent in each code section should be considered
not as the absolute value, but rather as relative comparison of the time spent in different
code sections.

Case study 1: Using Tareador on Cholesky

Our first case study explores the potential parallelization of the sequential code of
Cholesky. We used Cholesky with the problem size of 1024 and various granularities
of execution (block sizes of 8, 16, 32, and 64). We are primarily interested in the
potential parallelism inherent in the application. Thus, we often simulate the parallel
execution on the idealized target machine – a machine with infinite number of cores.
These results represent the upper bound of achievable parallelism. Finally, we show
how this inherent parallelism results in speedup when the application executes on a
realistic target machine.

First, the framework instruments the application to obtain the profile that guides the
taskification process. Table 6.14b shows the accumulated time spent in each function
of the application. This information identifies functions that need to execute concur-
rently in order to achieve significant parallelism. In this case, this is sgemm_tile, be-
cause it is the most time consuming function. On the other hand, Table 6.14c shows the
average duration of each function. This information identifies which function is a good
candidate to be decomposed into smaller tasks. It is important to note that decreasing
BS reduces execution time of most of the functions, thus making a finer granularity of
execution.

Considering the data showed in the described tables, we start the process of ex-
ploring parallelism by iteratively refining decomposition. Figure 6.14a illustrates the
code of Cholesky and the tested taskifications. On the other hand, Figure 6.15 shows
the Tareador output for the selected taskifications – the number of created tasks and
the obtained parallelism. The top-down trial-and-error iterative approach starts with
baseline taskification T0 that puts the whole sequential execution into one task. The
next taskification T1 puts each iteration of the main loop in one task. This strategy
gives no additional parallelism compared to T0. Furthermore, T2 breaks each iteration

122

of the main loop into three separate loops and the call to function spotr f _time. This
decomposition exposes very limited parallelism. T3 additionally refines the decompo-

…

for (long j = 0; j < DIM; j++)

{

for (long k= 0; k< j; k++)

{

for (long i = j+1; i < DIM; i++)
{

sgemm_tile(&A[i][k][0], &A[j][k][0], &A[i][j][0], NB);

}

}

for (long i = 0; i < j; i++)

{
ssyrk_tile(A[j][i], A[j][j], NB);

}

spotrf_tile(A[j][j], NB);

for (long i = j+1; i < DIM; i++)

{

strsm_tile(A[j][j], A[i][j], NB);
}

}

…

T0 T1 T2 T3 T4 T5 T6

taskification

(a) Potential decompositions of Cholesky.

granularitygranularity

BS‐64 BS‐ 32 BS‐16 BS‐8

am
e

spotrf_tile 2.54 0.89 0.32 0.11

strsm_tile 18.80 9.90 5.01 2.66

ta
sk

n
a

sgemm_tile 59.06 76.67 86.63 90.18

ssyrk_tile 19.57 12.40 7.30 3.81

main_task 0.03 0.14 0.74 3.23

(b) Distribution of time spent in tasks (%).

granularityg y

BS‐64 BS‐ 32 BS‐16 BS‐8

k
 n
am

e spotrf_tile 0.259 0.054 0.012 0.004

strsm_tile 0.547 0.081 0.014 0.003

sgemm tile 0 859 0 134 0 024 0 005

ta
sk

sgemm_tile 0.859 0.134 0.024 0.005

ssyrk_tile 0.569 0.101 0.020 0.005

(c) Average function duration (ms).

Figure 6.14: Exploring potential decomposition of Cholesky code

123

sition, by breaking the uppermost loop into its iterations. This decomposition achieves
a significant parallelism, reaching the parallelism of 11.09 for block size of BS = 8.
Further refining of taskifications passes through T4, T5 and T6, reaching the maximal
parallelism of 77.20 for decomposition T6 and block size BS = 16.

Refining decomposition increases the number of generated task instances (Table
6.15a). Also, reducing block size further augments the number of instances. Higher
number of tasks virtually always provides higher potential parallelism (Figure 6.15b).
However, in decomposition T6, transition from block size 16 to block size 8 causes
the drop in parallelism. This can be explained by very fine granularity, that causes the
increase of the loop control overhead. The overhead increases the percentage of time
spent in the main task. Consequently, for block size of 8, the execution spends 3.23%
of total computation time in the main task (Table 6.14b). Since the main task is not
parallelized, Amdahl’s law limits the potential parallelism to 100

3.23 = 30.96. Therefore,
in this configuration, the achieved parallelism is 29.78 (Figure 6.15b).

Figure 6.16 shows the speedup and the parallel efficiency of T6 for different num-
ber of cores. For all tested block sizes, T6 performs similar for machines with up
to four cores(Figure 6.16a). However, on machines with more cores, different block
sizes achieve different speedups. Thus, on 128 cores, block size of 64, 32, 16 and 8
achieve speedups of 8.08, 27.18, 77.20 and 29.78, respectively. Furthermore, Figure

granularitygranularity

BS‐64 BS‐32 BS‐16 BS‐8

io
n

T1 8 16 32 64

T2 32 64 128 256

ta
sk
if
ic
at
i

T3 52 168 592 2.208

T4 72 272 1.056 4.126

T5 92 376 1.520 6.112

T6 120 816 5 984 45 760T6 120 816 5.984 45.760

(a) Total number of tasks created.

 1

 2

 4

 8

 24

 77

BS-64

BS-32

BS-16

BS-8

sp
ee

du
p

ov
er

 T
0

 u
si

ng
 u

nl
im

ite
d

nu
m

be
r

of
 c

or
es

 p
er

 n
od

e

parallelism normalized to T0

T1
T2
T3
T4
T5
T6

(b) Speedup normalized to T0.
Note: In Figure 6.15b, all taskifications (T0-T6) execute in OmpSs fashion on an ideal target machine. Then, the parallelism of
taskification Ti normalized to taskification T0 represents the speedup of taskification Ti over taskification T0.

Figure 6.15: Number of task instances and the potential parallelism for various taskifications of
Cholesky.

124

6.16b shows parallel efficiency (core utilization) – the ratio between the application’s
speedup achieved on some parallel machine and the number of cores in that machine.
The higher the parallelism of some configuration (Figure 6.15b), the bigger machine
that configuration can utilize efficiently. Assuming that utilization is efficient if the
parallel efficiency is higher than 75%, the block size of 64, 32, 16 and 8 can efficiently
utilize machines of approximately 8, 28, 88 and 41 cores, respectively. Also, it is in-
teresting to note that for 16 cores, BS-8 achieves slightly higher efficiency than BS-16.
However, on machines with more cores, BS-16 becomes by far more efficient than BS-

8. Also, although the BS-64 achieves the maximum speedup of 8.08 (Figure 6.16a),
executing on a machine with 8 cores, BS-64 achieves the efficiency of only 75%.

Case study – Using Tareador on HP Linpack

Our second case study explores MPI/OmpSs execution of HP Linpack on a cluster of
many-core nodes. We used HPL with the problem size of 8192 and with 2x2 (PxQ) data
decomposition. Also, we test various granularities of execution by running HPL with
block sizes (BS) of 32, 64, 128, and 256. Our target machine consists of four many-
core nodes, with one MPI process running on each node. Each node has an infinite
number of cores while the network connecting nodes is ideal (infinite bandwidth and
zero latency).

 1

 2

 4

 8

 16

 32

 64
 77

 1 2 4 8 16 32 64 128 256 512

sp
ee

du
p

ov
er

 T
0

number of cores per node

Speedup of T6 over T0 for limited resources

BS-64
BS-32
BS-16

BS-8

(a) Speedup of T6 for different granularities.

 0

 0.25

 0.5

 0.75

 1

 1 2 4 8 16 32 64 128 256 512

pa
ra

lle
l e

ffi
ci

en
cy

number of cores per node

parallel efficiency of T6

BS-64
BS-32
BS-16

BS-8

(b) Parallel efficiency for T6 for different granu-
larities.

Note: Parallel efficiency denotes the ratio between the application’s speedup achieved on some parallel machine and the number
of cores of that parallel machine. In fact, the metric presents average core utilization in the whole machine.

Figure 6.16: Speedup and parallel efficiency for T6 for various number of cores.

125

void update(...) {

HPL_dtrsm(...);
HPL_dgemm(...);

}

main() {

...

for(j = 0; j < N; j += BS)

{
panel_init(...);

if (cond0)

fact(...);
init_for_pivoting(...);

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

taskification

init_for_pivoting(...);

for(i = k; i < P; i+= BS) {

if(cond1)

HPL_dlaswp01N(...);
HPL_spreadN(...);

if(cond2)

HPL_dlaswp06N(...);
if(cond3)

HPL_dlacpy(...);

HPL_rollN(...);
HPL_dlaswp00N(...);

update(...);

}
}

...

}

(a) HPL and the evaluated taskifications.

granularity

BS-32 BS- 64 BS-128 BS-256

n
a
m
e

outer

panel_init 0.0003 0.0002 0.0001 0.0000

fact 0.7525 1.2071 1.8795 3.2077

init_for_pivoting 0.0246 0.0487 0.0925 0.1795

HPL_dlaswp01N 0.2583 0.2917 0.2906 0.2815

HPL_spreadN 0.1599 0.0800 0.0378 0.0181

ta
sk
n
a
m
e

inner

HPL_spreadN 0.1599 0.0800 0.0378 0.0181

HPL_dlaswp06N 0.1222 0.1359 0.1367 0.1274

HPL_rollN 0.3267 0.1619 0.0762 0.0363

HPL_dlacpy 0.0857 0.0932 0.0929 0.0912

HPL_dlaswp00N 0.3706 0.4485 0.4736 0.4837

update
HPL_dtrsm 0.8269 1.6674 2.8347 5.0772

HPL_dgemm 97.0683 95.8614 94.0813 90.4935

(b) Distribution of total execution time spent in
tasks (%).

granularity

BS-32 BS- 64 BS-128 BS-256

ta
sk

n

a
m

e

outer

panel_init 0.0003 0.0003 0.0003 0.0003

fact 1.3468 3.7670 11.3572 37.8463

init_for_pivoting 0.0221 0.0761 0.2797 1.0594

inner

HPL_dlaswp01N 0.0073 0.0289 0.1130 0.4392

HPL_spreadN 0.0022 0.0040 0.0073 0.0141

HPL_dlaswp06N 0.0034 0.0135 0.0532 0.1987

HPL_rollN 0.0046 0.0080 0.0148 0.0283

HPL_dlacpy 0.0024 0.0092 0.0361 0.1423

HPL_dlaswp00N 0.0052 0.0222 0.0921 0.3773HPL_dlaswp00N 0.0052 0.0222 0.0921 0.3773

update
HPL_dtrsm 0.0117 0.0826 0.5514 3.9605

HPL_dgemm 1.3677 4.7492 18.3016 70.5900

(c) Average function duration (ms).

Note: In Tables 6.17b and 6.17c, apart from statistic for each function of the code, we present the statistics for two logical
sections: outer – consisting of panel_init, fact and init_for_pivoting; and inner consisting of HPL_dlaswp01N, HPL_spreadN,
HPL_dlaswp06N, HPL_rollN, HPL_dlacpy and HPL_dlaswp00N.

Figure 6.17: Exploring task decompositions of HP Linpack.

126

Again, the framework instruments the application to obtain the profile that guides
the taskification process. Table 6.17b shows the accumulated time spent in each func-
tion of the application. In this example, a good taskification should provide concur-
rency of instances of functions update, because the application spends in that function
at least 95.57% of the computation time. On the other hand, Figure 6.17c shows the
average duration of each function. This information identifies which function is a good
candidate to be decomposed into smaller tasks. In this example, function panel_init

is very short so breaking it into smaller tasks makes little sense. Also, it is impor-
tant to note that decreasing BS reduces execution time of most of the functions, thus
generating finer-grained execution.

We pass the HPL code through the iterative approach for exploring potential taskifi-
cations (Figure 6.17a). We adopt the baseline taskification T0 that makes only one task
per MPI process. T1 puts each iteration of the outer loop in one task, but this strategy
exposes no additional parallelism. Furthermore, T2 breaks down the code into sec-
tion outer and separate iterations of the inner loop, still providing no improvement in
speedup. T3 additionally breaks down section outer, but with no increases in speedup.
Finally, T4 compared to T2 separates section inner from function update and releases
the significant amount of parallelism. Namely, it achieves the speedup of 6.76, 12.28,
21.48 and 32.02 for block sizes of 256, 128, 64 and 32, respectively (Figure 6.18b).
Also, T4 significantly increases the number of tasks in the application to 2.128, 8.336,

granularity

BS-32 BS-64 BS-128 BS-256

ta
sk
if
ic
a
ti
o
n

T1 1024 516 260 132

T2 66.314 16.778 4.298 1.130

T3 69.898 18.570 5.194 1.578

T4 131.600 33.040 8.336 2.128

ta
sk
if
ic
a
ti
o
n

T5 135.184 34.832 9.232 2.576

T6 327.458 81.826 20.450 5.122

T7 425.382 106.216 26.502 6.614

T8 331.042 83.618 21.346 5.570

T9 428.966 108.006 27.398 7.062

(a) Total number of tasks created.

 1

 7

 13

 22

 32

 38

BS-32 BS-64 BS-128 BS-256

sp
ee

du
p

ov
er

 T
0

us
in

g
un

lim
ite

d
nu

m
be

r
of

 c
or

es
 p

er
 N

od
e

parallelism normalized to T0

T1
T2
T3
T4
T5
T6
T7
T8
T9

(b) Speedup normalized to T0.
Note: In Figure 6.18b, all taskifications (T0-T9) execute in MPI/OmpSs fashion on an ideal target machine. Then, the speedup
of taskification Ti over taskification T0 represents the parallelism of taskification Ti normalized to taskification T0.

Figure 6.18: Number of task instances and the potential parallelism of each taskification.

127

33.040 and 131.600 for block sizes of 256, 128, 64 and 32, respectively (Figure 6.18a).
Using Paraver visualization, the programmer can visually inspect the tested taski-

fications and understand the nature of the exposed parallelism. Taskification T2 joins
sections inner and update into one task (Figure 6.17a). Since all these tasks are mutu-
ally dependent, T2 provides no parallelism. On the other hand, T4 breaks that task into
separate tasks of inner and update. Paraver view from Figure 6.19 reveals that each
task inner depends on the task inner from the previous iteration of the loop; and each
task update depends on the task inner from the same iteration of the loop. Since inner

is much shorter than update, all dependent instances of inner can serialize quickly, and
then independent instances of update can execute concurrently.

Further decomposition of outer, inner and update contributes little to the potential
speedup (Figure 6.18b). Breaking outer, for block sizes of 256, 128 and 64, causes
slightly higher parallelism of T5, T8 and T9, compared to T4, T6 and T7. On the
other hand, breaking inner, for block size of 32, causes significantly higher paral-
lelism of T6, T7, T8 and T9, compared to T4, T5. This effect happens because for
very high concurrency of update (speedup is higher than 30), the critical path of the
execution moves and starts passing through section inner. In these circumstances,
breaking inner significantly increases parallelism by allowing concurrency of func-
tions HPL_dlaswp00N, HPL_dlaswp01N and HPL_dlaswp06N. Finally, breaking of
update, for block size 32, causes slightly higher parallelism of T9 compared to T8.

Figure 6.20 shows the speedup and parallel efficiency of T9 for different number

outer

updates
inner

outer

updates

Figure 6.19: Paraver visualization of the first 63 tasks and the dependencies among them (taskification
T4, BS=256).

128

of cores per node. The results show that high parallelism in the application is useful
not to achieve high speedup on a small parallel machine, but rather to utilize efficiently
a large parallel machine. Figure 6.20a shows that for a machine with 4 cores per node,
T9 with all block sizes achieves the speedup of around 4, with difference between the
highest and the lowest of less than 2%. However, for a machine with 32 cores per
node, T9 with block sizes of 256, 128, 64 and 32, achieves the speedup of 6.80, 12.34,
21.57 and 29.47, respectively. Furthermore, Figure 6.20b shows parallel efficiency
(core utilization) – the ratio between the application’s speedup achieved on some par-
allel machine and the number of cores in that machine. Adopting that an application
efficiently utilizes a machine if the parallel efficiency is higher than 75%, the results
show that T9 with block sizes of 256, 128, 64 and 32, can efficiently utilize the ma-
chine of 8, 15, 26 and 47 cores per node, respectively. Therefore, to efficiently employ
many-core machine with hundreds of cores per node, HPL has to expose even more
parallelism, for instance, by making finer-grain taskification with further reduction of
block size.

6.2.3 Conclusion and future research directions

Tasks-based parallel programming languages are promising in exploiting additional
parallelism inherent in MPI parallel programs. However, the complexity of this type
of execution impedes an MPI programmer from anticipating how much dataflow par-

 1
 4

 8

 16

 32

 38

 1 2 4 8 16 32 64 128 256 512

sp
ee

du
p

ov
er

 T
0

Number of cores per node

Speedup of T9 over T0 for limited resources

BS=32
BS=64

BS=128
BS=256

(a) Speedup.

 0.25

 0.5

 0.75

 1

 1 2 4 8 16 32 64 128 256 512

pa
ra

lle
l e

ff
ic

ie
nc

y

Number of cores per node

parallel efficiency of T9

BS=32
BS=64

BS=128
BS=256

(b) Parallel efficiency.

Note:

Parallel efficiency denotes the ratio between the application’s speedup achieved on some parallel machine and the number of
cores of that parallel machine. Infact, the metric presents the overall average core utilization in the whole machine.

Figure 6.20: Speedup and parallel efficiency for T9 for various number of cores.

129

allelism can be extracted from the application. Moreover, it is nontrivial to determine
which parts of code should be encapsulated into tasks in order to expose the parallelism
and still avoid creating unnecessary tasks that increase runtime overhead. To address
this issue, we have developed Tareador – a framework that automatically estimates
the potential dataflow parallelization in applications. We show how, using Tareador,
one can find optimal taskification choice for any application through a trial-and-error
iterative approach that requires no knowledge of the studied code. We prove the ef-
fectiveness of this approach on a case study in which we explore the taskification of
Cholesky and High Performance Linpack. We show that the global partitioning signifi-
cantly impacts parallel efficiency, and thus, in order to efficiently utilize higher number
of cores, finer granularity of execution should be used.

Our next goal is to explore the potential for automating iterative approach that uses
Tareador. The described iterative approach was successful, but it required significant
interaction of the programmer. In the following Section, we try to formalize the pro-
grammer’s experience into a set of policies that can autonomously lead the process of
finding a good task decomposition.

6.3 Automatic exploration of potential parallelism

The previous Section described the iterative top-to-bottom approach that uses Tareador
to find a suitable task decomposition of a code. Using very simple annotations, the
programmer proposes some task decomposition of the studied sequential code. Then,
Tareador automatically identifies potential parallelism of that decomposition. If the
programmer is not satisfied with the achieved parallelism, he refines the last task de-
composition and repeats Tareador instrumentation. The programmer iteratively tests
different task decompositions, until finding one that provides sufficient parallelism.

The described manual iterative approach strongly relies on the programmer. The
programmer must have sufficient experience to drive the iterative process of finding
the optimal task decomposition. A programmer that has little experience with paral-
lel programming may make wrong decisions in the iterative process of refining task
decompositions. This decisions may lead to the final decomposition that is far from
the optimal, resulting in the less efficient parallel execution. Also, the manual iterative
approach requires frequent programmer interaction.

130

In this Section we go one step further and explore the possibility of automatic ex-
ploration of parallelization strategies. Our goal is to formalize good programmers’ ex-
perience into simple metrics that can autonomously drive the above iterative top-down
process. We believe that automatic exploration of parallelization strategies would bring
the following benefits:

1. Fast and autonomous exploration of parallelization strategies based on task
decomposition, with no major programmer interaction.

2. Automatic estimation of the potential parallelism with no major understand-
ing of the sequential code, providing the programmer with hints on how to
achieve that parallelism.

3. Educating programmers about parallelism, showing them which decisions,
and in which order, are taken in order to exploit the inherent parallelism in the
application.

6.3.1 The search algorithm

We propose an iterative algorithm to explore different task decomposition strategies
and estimate their performance. The inputs are the original unmodified sequential code
and the number of cores in the target platform. With that information the algorithm
(Figure 6.21) performs of the following steps:

1. Start from the most coarse-grain task decomposition, i.e. the one that considers
the whole main function as a single task.

sequential code

choose the most
coarse‐grain

task decomposition
(whole main in one task)

identify potential
parallelism of the selected

decomposition

is
parallelism
sufficient?

Refine
decomposition
to get more

no
yes

task decomposition
that provides

sufficient parallelism

identify
parallelization
b l k

to get more
parallelism

bottleneck

Figure 6.21: Algorithm for exploring possible task decompositions.

131

2. Perform an estimation of the potential parallelism of the current task decompo-
sition (the speedup with respect to the sequential execution).

3. If the current task decomposition is satisfactory (heuristic 2), report it as final
and finish.

4. Else, identify the parallelization bottleneck (heuristic 1) in the current task de-
composition, i.e. the task that should be further decomposed into finer-grain
tasks.

5. Refine the current task decomposition in order to avoid the identified bottleneck.
Go to step 2.

In the following Sections, we further describe the design choices made in designing
these two heuristics and the three metrics used. But before that, we must define more
precise terminology. First, we need to make a clear distinction between a task type
and a task instance. If function compute is encapsulated into task, we will say that
compute is a task type, or just a task. Conversely, each instantiation of compute we
will call a task instance, or just an instance. Then, if we can define some metric for
each task instance, we can derive a collective metric for the whole task type.

Second, we will often use a term breaking a task to refer to the process of trans-
forming one task into more fine-grain tasks. For example, Figure 6.22 illustrates the
iterative task decomposition process. The process starts with the most coarse-grain de-
composition (D1) in which function A is the only task. By breaking task A, we obtain
decomposition D2 in which A is not a task anymore and instead the direct children (B
and C) become tasks. If in the next step we break task B, since B contains no children

A
break A

C

break BB

C

break C

Seq
u
en

tial co
d
e

potential
tasks D1 D2 D3 D4

Figure 6.22: Iterative refinement of decompositions.

132

tasks, B will be serialized (i.e. B is not a task anymore and it becomes a part of the
sequential execution). Similarly, the next refinement serializes task C and leads to the
starting sequential code. At this point, no further refinement is possible, so the iterative
process naturally stops.

Heuristic 1: which task to break

In the manual search for a satisfactory decomposition, the programmer himself decides
which task is the parallelization bottleneck. Our goal is to formalize this programmer
experience into simple metrics that can lead an autonomous algorithm for exploring
potential task decompositions.

Metric 1: task length cost

A task type that has long instances is a potential parallelization bottleneck. Thus,
based on the duration of instances, we define a metric called length cost of a task type.
Length cost of some task type is proportional to the duration of the longest instance of
that task. Therefore, if task i has task instances whose lengths are in the array Ti, the
length cost of task i is:

li = max(t), t ∈ Ti (6.1)

Furthermore, we define a normalized length cost of task i as:

li(p) =
(li)p

N∑
j=1

(l j)p
(6.2)

where a control parameter p is used to tune the weight of this metric in the overall cost
function.

Metric 2: task dependency cost

A task type that causes many data-dependencies is another potential parallelization
bottleneck. Thus, based on the number of dependencies, we define a metric called
dependency cost of a task type. Dependency cost of some task is proportional to the
maximal number of dependencies caused by some instance of that task. Therefore, if

133

task i has instances whose numbers of dependencies are in the array Di, the dependen-
cies cost of task i is:

di = max(z), z ∈ Di (6.3)

Furthermore, using a control parameter p, we define the normalized dependency cost
of task i as:

di(p) =
(di)p

N∑
j=1

(d j)p

(6.4)

Metric 3: task concurrency cost

A task type that has low concurrency is another potential parallelization bottleneck.
Concurrency of some instance is determined by the number of other instances that ex-
ecute in parallel with that instance. Thus, we define concurrency cost of some task
to be inversely proportional to the number of instances that run concurrently with that
task (number of instances that execute on all cores). Therefore, if task i has task in-
stances which run for time Ti, j while there are j instances running concurrently, the
concurrency cost of task i is:

ci =
∑

i

Ti, j

j
(6.5)

Again, using a control parameter p, we define the normalized concurrency cost of task
i as:

ci(p) =
(ci)p

N∑
j=1

(c j)p

(6.6)

Overall cost

The cost function for task type i is defined as the sum of the three previous normalized
metrics

li(p1) + di(p2) + ci(p3) (6.7)

with different weights p1, p2 and p3 for each metric.

134

Control parameter p

In all the defined metrics, the normalized cost is calculated using a control parameter p.
For each metric separately, the sum of the normalized costs across all tasks is equal to
1. The parameter p additionally controls the mutual distance of the normalized costs
for different tasks. For instance, let us assume that the applications consists of task
instances A and B and that A is two times longer than B. If the control parameter p is
equal to 1, task A has the length cost of 0.67, while task B has the length cost of 0.33.
However, if the selected control parameter p is equal to 2, task A has the length cost of
0.8, while task B has the length cost of 0.2.

Therefore, the control parameter of some metric determines the impact of that met-
ric on the overall cost. For instance, if we select the control parameter for length cost to
be 0, all tasks will have the same normalized length cost, independent of the duration
of instances of these tasks. Thus, the length of task instances would have no impact on
the overall cost. On the other hand, if we select the control parameter for length cost to
be infinite, the task with the longest instance will have the normalized length cost of 1,
while all other tasks will have the normalized length cost of 0. In this case, the length
of task instances would have a huge impact on the overall cost.

6.3.2 Heuristic 2: When to stop refining the decomposition

At this stage of our study, the goal of the automatic search is not to find the opti-
mal decomposition, but rather to explore the broad space of possible decompositions.
Claiming that some decomposition is optimal is dubious in itself, because there is no
straightforward and complete comparison of decompositions. For instance, although
some decomposition provides the highest parallelism on one machine, it does not nec-
essarily provide the highest parallelism on a different machine. Thus, the goal of our
algorithm is to explore various decompositions and find some that provide satisfactory
parallelism. As already mentioned, the iterative refinement of decompositions natu-
rally ends in the starting sequential code with no tasks. Having made the complete
cycle, the optimal decomposition may be found by comparing all the tested decompo-
sitions.

135

6.3.3 Working environment

INPUT CODE

mark all

potential

tasks

legacy

sequential

code

DRIVER FOR

AUTOMATIC DECOMPOSITION

FILTER
select decomposition TAREADOR

estimate

parallelism

of the specified

decomposition

INPUT

CODE

CODE

TRANSLATOR
select decomposition

by realizing a subset

of all potential tasks

TAREADOR

PARAMEDIR

FILTER UPDATE
process metrics

to select

new decomposition

derive metrics

to evaluate

parallelism

Figure 6.23: The environment that automatically explores possible task decompositionss.

The environment for exploring potential decompositions consists of Mercurium
code translator, Tareador, Paramedir and the search Driver. The Mercurium code trans-
lator marks in the code all the potential tasks – code sections that are suitable for tasks.
The Driver sets a filter that decides which of the potential tasks should result into real
OmpSs tasks, thus specifying one task decomposition of the code. Tareador evaluates
the potential parallelism of the specified task decomposition, generating a Paraver trace
of the potential parallel execution. Paramedir processes the obtained Paraver trace to
derive metrics that describe simulated parallel execution. Based on the derived metrics,
the Driver decides how to refine the task decomposition, updates the filter and starts
new Tareador instrumentation. The following paragraphs further explain the role of
each tool in the environment.

Code translation

Code translator processes a legacy sequential code and marks all potential tasks – all
code sections that may represent a task (Figure 6.24). First, code translation marks
the start and the end of the main function with calls to functions tareador_start_main

136

and tareador_end_main. Furthermore, each function call is wrapped with calls to
tareador_start_ f unction and tareador_end_ f unction. Finally, each loop in the origi-
nal code is wrapped with calls to tareador_start_loop and tareador_end_loop. This
way, the translation marks each code sections that potentially takes significant time to
be a potential task in parallel execution.

Paramedir

Paramedir is a non-graphical user interface to the Paraver analysis module. Paramedir
accepts the same trace and configuration files as Paraver. This way the same informa-
tion can be captured in both systems. Still, while Paraver processes input and visualizes
the results in graphical user interface, Paramedir reports the same results in textual for-

1 #define N 50
2 #define M 10
3
4 float summarize (float a) {
5 total = 0;
6
7
8 for (j=0; j<N; j++){
9 total += a[j]
10 }
11
12 }
13
14 int main () {
15
16
17
18 float A[M][N];
19 float sum = 0;
20
21
22 for (i=0; i<M; i++) {
23
24 sum += summarize (A[i]);
25
26 }
27
28
29
30 }

(a) original sequential code

1 #define N 50
2 #define M 10
3
4 float summarize (float a) {
5 total = 0;
6
7 tareador_start_loop("main.c:8");
8 for (j=0; j<N; j++){
9 total += a[j]
10 }
11 tareador_end_loop();
12 }
13
14 int main () {
15
16 tareador_start_main();
17
18 float A[M][N];
19 float sum = 0;
20
21 tareador_start_loop("main.c:22");
22 for (i=0; i<M; i++) {
23 tareador_start_function("summarize");
24 sum += summarize (A[i]);
25 tareador_end_function();
26 }
27 tareador_end_loop();
28
29 tareador_end_main();
30 }

(b) translated code

Figure 6.24: Code translation for automatic task decomposition.

137

mat. Avoiding the graphical user interface allows to translate the detailed human driven
analysis into rules suitable for processing by an expert system.

Driver

The Driver is a python script that integrates all the previously described tools in a
common environment. It receives as input the binary code and a list with the tasks
that compose the current task decomposition. Initially the list just contains the main
function of the program. The Driver automates the process of exploring potential de-
compositions by guiding the environment through the following steps:

1. Run Tareador to estimate the potential parallelism of the current decomposition.

2. If the current decomposition is satisfactory (Heuristic 2), finish the process and
report the current decomposition as the final one.

3. Else, run Paramedir to derive the metrics and identify the bottleneck task (Heuris-
tic 1).

4. Update the list of potential tasks in the Filter Update, by breaking the bottleneck
task into its children task, if any.

5. Go to step 1.

6.3.4 Experiments

Our experiments explore possible parallelization strategies for four well-know compu-
tation kernels (Jacobi, HM transpose, Cholesky and LU factorization). We start from
OmpSs parallel versions, removing all parallelization directives to generate a sequen-
tial version. The OmpSs reference task decomposition will be used to compare the task
decompositions found by the proposed environment. We select a homogeneous multi-
core processor as the target platform. The goal of our experiment is to show that the
proposed search algorithm, metrics and heuristics can find decompositions that provide
sufficient parallelism.

In our experiments, we calculate the cost function as a sum of duration, dependency
and concurrency cost (Section 6.3.1), tuning the control parameters to increase the

138

weight of concurrency metrics. More specifically, we determine the cost of task type i

as:
ti = li(1) + di(1) + ci(3) (6.8)

The selected control parameters are not result of an extensive parametric study. Rather
than that, our initial experiments showed that concurrency criteria prevails very rarely,
thus we increased the concurrency control parameter as a positive discrimination mea-
sure.

For each application, we present four plots that illustrate the process of automatic
task decomposition. The first plot presents the parallelism of all tested decompositions
– the speedup over the sequential execution of the application. The second plot shows
the number of task instances generated by each decompositions. Also, the first two
plots show the parallelism and the number of instances in the default decomposition of
the original OmpSs code. The third plot presents the cost distribution for the bottleneck
task of each iteration. Finally, the fourth plot shows the most dominant cost for the
bottleneck task.

Results

The proposed search algorithm finds decompositions with very high parallelism, often
finding the reference decomposition from the original OmpSs code. The algorithm
finds the reference decomposition for Jacobi and HM transpose in iterations 4 and 5,
respectively (Figures 6.25 and 6.26). In these two applications, the algorithm bases its
decisions strictly on the duration criteria. The algorithm also finds the reference de-
composition for Cholesky in iteration 7 (Figure 6.27). However, in order to get to this
decomposition, the algorithm refines decompositions based on the concurrency metric
in iterations 3 and 5. In all three applications, after finding the reference decomposi-
tion, the algorithm passes through finer-grain decompositions that provide significantly
lower parallelism.

Sparse LU (Figure 6.28), as the most complex of the studied applications, demon-
strates the power of our search. Compared to the previous codes, Sparse LU forces the
algorithm to use various bottleneck criteria through the exploration of decompositions.
It is interesting to note that the search finds a wide range of decompositions (iterations
18 − 36) that provide higher parallelism than the default decomposition. In this case,

139

0 2 4 6 8 10 12 14 16
iteration

0

1

2

3

4

5

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 2 4 6 8 10 12 14 16
iteration

100

101

102

103

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 2 4 6 8 10 12 14 16
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 2 4 6 8 10 12 14 16
iteration

Dominant cost for the critical task

Figure 6.25: Jacobi on 4 cores

it is unclear which of these decompositions is the optimal one. Quantitative reasoning
suggests that the optimal task decomposition is the one that provides highest paral-
lelism with the lowest number of created task instances. Following this reasoning, the
optimal decomposition (iteration 22) achieves the speedup of 3.98 with the cost of 301
instantiated tasks (note the sudden drop in the number of task instances). On the other
hand, qualitative reasoning suggests that, within a set of decompositions that provide a

140

0 2 4 6 8 10
iteration

0

1

2

3

4

5

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 2 4 6 8 10
iteration

100

101

102

103

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 2 4 6 8 10
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 2 4 6 8 10
iteration

Dominant cost for the critical task

Figure 6.26: HM transpose on 4 cores

similar parallelism generating a similar number of instances, the optimal decomposi-
tion is the one that is the easiest to express using semantics offered by the target parallel
programming model. At this stage of development, our algorithm is not capable of es-
timating how easy a decomposition can be expressed using some programming model.
Our future research in this field should especially tackle this aspect of the algorithm.

It is also interesting to study how the algorithm adapts to the target parallel ma-

141

0 2 4 6 8 10
iteration

0

1

2

3

4

5

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 2 4 6 8 10
iteration

100

101

102

103

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 2 4 6 8 10
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 2 4 6 8 10
iteration

Dominant cost for the critical task

Figure 6.27: Cholesky on 4 cores

chine. Figures 6.29 and 6.30 illustrate potential decompositions for Sparse LU for
executing on machines with 8 and 16 cores. Apparently, changing configuration of
the target machine changes the algorithm decisions. In the experiments with 8-core
target machine (Figure 6.29), the default decomposition achieves the speedup of 7.1
at the cost of generating 316 task instances. The automatic search finds a wide range
of decompositions (iterations 20− 44) that provide slightly higher parallelism than the

142

0 10 20 30 40 50 60
iteration

0

1

2

3

4

5

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

100

101

102

103

104

105

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 10 20 30 40 50 60
iteration

Dominant cost for the critical task

Figure 6.28: Sparse LU on 4 cores

default decomposition. Again, a sudden drop in number of task instances causes that
the quantitatively optimal decomposition is in iteration 25 (parallelism 7.73, 325 task
instances). On the other hand, in the experiments with 16-core target machine (Figure
6.30), the default decomposition achieves the speedup of 8.85 (316 instances). The
algorithm finds only five decompositions (iterations 21 − 25) that provide higher par-
allelism than the default decomposition. The quantitatively optimal decomposition is

143

0 10 20 30 40 50 60
iteration

0
2
4
6
8

10
12

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

100

101

102

103

104

105

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 10 20 30 40 50 60
iteration

Dominant cost for the critical task

Figure 6.29: Sparse LU on 8 cores

found in iteration 25 (speedup 9.92, 453 task instances). It is also interesting to note a
wide valley of low parallelism caused by decompositions from iterations 26− 43. This
happens because the algorithm, after finding the peak parallelism in iteration 25, ag-
gressively tries to expose additional parallelism needed by the target 16-core machine.
However, the selected code with the selected execution granularity offers no additional
parallelism. Still, the algorithm identifies tasks that are culprits for low parallelism and

144

0 10 20 30 40 50 60
iteration

0
2
4
6
8

10
12

pa
ra

lle
liz

at
io

n
sp

ee
du

p parallelism for different decompositions

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

100

101

102

103

104

105

nu
m

be
r o

f t
as

k
in

st
an

ce
s

automatic decomposition
default decomposition

0 10 20 30 40 50 60
iteration

0

1

2

3

di
st

rib
ut

io
n

of
 c

os
ts

Cost distribution for the critical task

length
dependencies
concurrency

0 10 20 30 40 50 60
iteration

Dominant cost for the critical task

Figure 6.30: Sparse LU on 16 cores

continues refining them (in iterations 24 − 28, the refining is based on the concurrency
criteria). The refining finds no additional parallelism, and furthermore diminishes the
existing one. The refining also results in a significant drop in number of task instances
(transition on iterations 25 − 26 causes the drop from 1285 to 453 instances).

145

6.3.5 Conclusion

We have explored the potential for the automatic exploration of task decomposition
strategies in a sequential code. We have presented an effective search algorithm based
on three simple metrics, a parametrizable cost function and a couple of heuristics. The
cost function and metrics take into account the length (duration) of the tasks, the de-
pendences among tasks and tasks’ concurrency level. The search algorithm has been
implemented leveraging a tool (Tareador) previously developed in the group. In our
experiments, we demonstrate that our search algorithm is able to find task decom-
positions that provide sufficient parallelism, often higher than the parallelism of the
decompositions specified by an experienced programmer.

As future work, we have identified the need to include a new metric that evaluates
the cost of expressing the task decomposition using the syntax (and constraints) offered
by the target parallel programming model (for example, traditional fork-join, data flow,
...). The automatic search should be able to quantify how expressible (or viable) a
decomposition could be and to use this information to guide the iterative exploration
process. The result would be the best task decomposition that can be expressed in the
target programming model.

Our next step in this research is to try our methodology on real-world applications.
So far, we worked in the fashion of reversed engineering – we start from a legacy
OmpSs code and remove all OmpSs pragma annotations to obtain the sequential code.
However, a sequential application obtained this way inherits structure that is very fa-
vorable for parallelization. Thus, starting from a legacy sequential code, automatic
search for a good task decomposition would be much harder. Still, proving that our
environment can explore parallelism in legacy sequential applications is the only proof
of our concept. Therefore, that is our definite future work.

146

7
Related Work

In relation to the topics covered in this thesis, we present the related work in four
distinct fields of research:

• Methodologies for simulating parallel execution

• Overlapping communication and computation

• Identifying bottlenecks in parallel execution

• Tools for assisted parallelization

7.1 Simulation methodologies for parallel computing

The simulation of parallel computing systems is still an unsolved issue. The simulation
can be very computation intensive, since the target machine may consist of numerous
processing units. Moreover, the simulation is hard to parallelize, because the sepa-
rate processing units may have very complex interactions. Thus, simulating low level

147

details in a large-scale parallel machine generates a very computation intensive se-
quential execution. Consequently, these simulations are often unfeasible, due to time
or memory constraints.

The conventional trace-driven simulators successfully simulate MPI executions,
but they fail to simulate multicore systems. Trace driven simulators, such as Dimemas
[45] or MPI-SIM [71], simulate MPI parallel execution. They replay the collected
traces and reconstruct the potential parallel time-behavior. However, the conventional
traces fail to capture time-dependent executions – executions with dynamic thread
scheduling and inter-thread synchronizations. Therefore, with the appearance of mul-
ticore systems, the trace-driven simulators failed to provide satisfactory simulations.

In order to simulate time-dependent execution, many recent studies turned to execution-
driven simulators. These simulators provide cycle accurate simulations, capturing all
possible time-dependent influences. Most of the current execution-driven simulators
are based on the off-the-shelf simulation infrastructures such as M5 [14], Simics [60],
Simplescalar [8], PTLsim [90], etc. These simulators introduce extremely high over-
head. Therefore, for simulating a very large system, the execution-driven approach
becomes unfeasible.

Finally, the newest simulation proposals tend to find a sweet spot between execution-
driven and trace-driven approaches. COTSon [7] uses AMD functional emulator to-
gether with timing models, to achieve a proper combined timing. Compared to execution-
driven simulators, COTSON reduces the simulation time, but also reduces simulation
flexibility. On the other hand, TaskSim [74] tries to differentiate the applications in-
trinsic computation from the parallelism related computation. Then, the application
intrinsic computation is replayed as in the conventional trace-driven simulation, while
the parallelism related computation is recomputed during the simulation.

In this thesis, we introduced a novel simulation methodology called simulation
aware tracing. Our methodology allows simulating very low-level architectural fea-
tures in a large-scale parallel machine. This is enabled by modeling the introduced
low-level feature already in the process of tracing. Since each MPI process is traced
independently, the computation related to modeling a new feature is naturally paral-
lelized across all MPI processes in the execution. The tracer includes the effects of
the new feature into the trace, while the regular replay simulator replays the trace and
spreads the effect of the modeled feature across the whole parallel MPI execution.

148

However, a drawback of our techniques is that the influence of the new feature can
spread only bottom-up – a change at low-level can change the performance of parallel
execution of MPI processes, but a change in parallel execution of MPI processes can-
not change the performance at low-level. For instance, a change in cache performance
can affect the scheduling of tasks. On the other hand, change in the scheduling of tasks,
cannot affect the cache performance.

Our methodology deals with a very complicated parallel execution, offers fast and
flexible simulation and provides a rich output. Up to our knowledge this is the first
simulation methodology that can simulate parallel execution that integrates MPI with
task-based programming model. Although our methodology originally targets dataflow
parallelism, it can be easily adapted to simulate other fork-join based programming
models such as OpenMP or Cilk. Finally, we believe that the biggest contribution of
the environment is its flexibility and rich output. The user can easily change the target
platform and visually (qualitatively) inspect the effects on the parallel execution.

7.2 Overlapping communication and computation

Previous research in the field of overlapping communication and computation could
roughly be categorized in three directions. These are:

• exploring state-of-the-art support for exploiting overlap;

• exploring overlapping techniques; and

• measuring the potential for overlap that is present in applications.

First, several studies evaluated the overlapping capability of different processors,
networks and programming languages. Sohn et al. [82] tested various multiprocessors
and compared their overlapping efficiency. Furthermore, Brightwell et al. [19] quanti-
fied in detail the potential influence of overlap, offload and independent progress. Later
work studied many MPI implementations and showed that their overlapping abilities
are different [18, 58]. Further research [26, 27] explored the potential of PGAS lan-
guages to decouple communication and synchronization and achieve higher overlap.
Furthermore, Bell at al. [10] showed overlapping advantages of light one-sided trans-
fers implemented in UPC. Throughout our study, we assume that the used underlying

149

communication layer is fully capable of overlapping communication and computation.
Namely, our major goal is to identify the potential overlap inherent in the application.

Second, many research efforts explored implementation issues of overlapping tech-
niques. In an effort to hide communication delays, Leu et al. [59] identified overlap-
ping as a technique that can achieve the maximum application speedup of two. Later,
Danalis et al. [33] defined general code restructuring approaches that lead to better
overlap in applications that exhibit limited dependencies among iterations. Hoefler et

al. [50] proved overlapping potential of non-blocking collective communications in
MPI. Furthermore, Das et al. [34] introduced compiler features that postpone recep-
tions (sink waits) in MPI applications, while Iancu et al. [52] extended UPC runtime
library to implement demand-driven synchronization, automatic message strip mining
and message scheduling. However, the mentioned efforts fail to clearly determine the
potential benefits of their overlapping techniques, because they fail to isolate the over-
lapping effect from the implementations’ side-effects such as changed locality (cache
and TLB misses) and non-deterministic events (OS daemons, preemptions, interfer-
ences in a shared resource). On the other hand, our simulation can measure isolated
impact of overlap, since the simulation framework introduces overlapping mechanisms
without impacting other execution properties.

Third, there was little effort to identify the potential for overlap in applications.
Sancho et al. [76] provided a theoretical estimation of the overlapping potential in
scientific codes by modeling an application with one iterative loop and parameters
that roughly describe the computation pattern. Our study continues Sancho’s work by
designing a simulation framework that automatically estimates the potential overlap,
without the need to understand the studied application. Moreover, our methodology
allows studying overlap on diverse network configuration and provides visualization
support to qualitatively inspect the simulated execution. Our framework allowed us to
analyze how overlap depends on application properties, the overlapping technique and
network resources.

7.3 Identifying parallelization bottlenecks

Tracing is a common technique for identifying performance bottlenecks. In tracing, the
environment instruments the parallel execution and collects a vast amount of perfor-

150

mance data. Usually, the environment provides a visualization support that facilitates
the programmer to explore the performance bottlenecks. Still, tracing rarely directly
focuses the programmer’s attention to the problem. The most wide-spread environ-
ments for tracing parallel executions are Jumpshot [91] from Argonne National Lab-
oratory, Paraver [55] from Barcelona Supercomputing Center, Vampir [65] from TU
Dresden and ScalaTrace project [67] from North Carolina State University.

Profiling is more efficient as it collects information throughout the execution and
then reduces that information into a short report. The traditional profilers showed to be
very useful for analyzing sequential execution. The most popular profiler, gprof [46],
reports the percentage of computation time spent in each function. Identifying the most
time consuming code section, gprof automatically finds the critical code section. How-
ever, in parallel executions, the most time consuming code section is not necessarily the
critical code section. The most well-known parallel profilers are FPMPI-2 [57] from
Argonne National Laboratory, mpiP [88] from Lawrence Livermore National Labora-
tory , HPCT [23] from IBM, TAU [79] from University of Oregon and Scalasca [44]
from Julich Supercomputing Center.

Other techniques explore critical code sections by analyzing the critical path of
execution. These techniques identify the critical code section as the code section that
contributes the most to the overall critical path. The most popular representatives are
Vtune [30] from Intel and Spartan [5] from University of Illinois. However, the analy-
sis of the critical path omits the influence of the target parallel machine on which the
application executes. Moreover, optimizing the code may shorten the starting critical
path, and some other execution path may prevail, becoming the new critical path.

The newest approaches identify execution phases of low parallelism and then find
culprit code sections. Quartz [6] and Intel Thread Profiler [17] [29] try to quantify the
potential parallelism of each section of the code. These tools identify critical code sec-
tions as the ones with lowest parallelism. Similarly, Tallent at. el. [86] try to explore
which code sections are responsible for processor stalls. Furthermore, this study con-
siders different policies of spreading the blame for lost performance, from contexts in
which spin-waiting occurs (victims), to directly blaming a lock holder (perpetrators).
However, the drawback of all these techniques is that the conclusions obtained for one
target platform can hardly be applied to a target platform with a different amount of
parallelism.

151

Using our environment (Section 4.3) we show that the previous approaches cannot
capture some influences that are very decisive in identifying critical code sections.
First, that the choice of the critical section depends on the parallel target machine on
which the application executes. Second, that depending on the factor of acceleration
different sections may be the most beneficial to accelerate. Finally, all the previous
techniques work with “measure-modify” approach – from the profile of one run the
technique points to the critical section, the programmer optimizes the section, and then
runs again the application “hoping” that the optimization resulted in overall speedup.
Conversely, our approach provides anticipation of benefits – prior to any optimization
effort, the programmer can estimate the potential benefits of the planned optimization.

7.4 Parallelization development tools

The multicore era created a rising interest for tools that help parallelizing applica-
tions. Multicores introduced the need to re-design (parallelize) applications in order
to utilize the increased number of available cores. Despite decades of research efforts
[12, 16, 89] on auto-parallelization, and the inclusion of auto-parallelization features
in some commercial compilers [13], the experience witnesses very limited applica-
bility. In the current scenario, in which systems (from mobile to desktop/laptop and
servers) are based mostly on parallel architectures, programmers must use explicit par-
allel programming to reach the efficiency and scalability demands of future generations
of software. However, the years of experience show manual parallelization without any
development support has inadmissible cost. Therefore, the community started search-
ing for the tools that assist the parallelization process.

Various academic research efforts tried to make tools that will help parallelization.
For example, Alchemist tool [92] identifies parts of code that are suitable for thread-
level speculation. Embla [61] is a Valgrind based tool that estimates the potential
speed-up of Cilk parallelization. Kremlin [43] identifies regions of the serial program
that need to be parallelized. Kremlin uses hierarchical critical path analysis to detect
parallelism across nested regions of the program. Then, the parallelism planner eval-
uates various potential parallelizations to find the best way for the user to parallelize
the target program. Starsscheck [21] checks correctness of pragma annotations for
STARSs family of programming models. The biggest drawback of the mentioned tools

152

is that they offer very little qualitative information about the target program. These
tools are either checkers for different race conditions, or profiling tools that identify
code sections that are good candidates for parallelization. None of the mentioned tools
provides a visualization support. We believe that this is a major drawback, because
in practice, parallelization often requires the programmer to restructure the sequential
code in order to enable it for parallelization. However, the mentioned tools provide no
guidelines that suggest to the programmer what restructuring is needed.

Also, various vendors started producing their solutions for assisted parallelization.
These tools are available for trial usage, so we had an opportunity to test them. Intel’s
Parallel Advisor [28] helps parallelizing applications using Thread Building Blocks
(TBB) [70]. Parallel Advisor provides the profile timing information based on which
the programmer can choose which loops should be parallelized. Then, the tool runs an
extensive instrumentation to provide additional information of how to complete TBB
code, so the program can run in parallel. The drawback of Parallel Advisor is that the
tool initially chooses loops only based on the timing profile, and not based on which
loops are easy to parallelize. The Scottish company Critical Blue delivers a paralleliza-
tion tool called Prism [15]. Prism allows the programmer to do “what if” analysis with
the sequential program – to test the potential parallelism of any specified decomposi-
tion of the code. However, Prism does not target any specific parallel programming
model and gives no hints of how the sequential code can be refactored into the par-
allel code. The Dutch company Vector Fabrics delivers a parallelization tool called
Pareon [39]. Pareon also allows “what if” analysis but only for parallelizing loops.
Pareon provides to the programmer additional hints that help parallelize the code us-
ing vfTasks library (a library developed by Vector Fabrics that is a wrapper for both
pthread and Win32 threads). All the three mentioned tools provide very rich GUI and
visualization of the potential parallelizations.

Our work tries to make a tool that will be a superset of the previously described
efforts. In addition, we believe that a strategic decision to use OmpSs as the targeted
programming model gives us a certain advantage, because the semantics of OmpSs
matches the type of parallelism identified during the instrumentation. Currently, the
main features of Tareador are:

• unbounded “what if” analysis (not limited only to loop iterations)

153

• visualization of the simulated execution

• estimation of the parallelism on a configurable target platform

• support for MPI applications

• automatic exploration of the potential decompositions

Fruthermore, we hope that in future we will provide the following new Tareador fea-
tures:

• automatic generation of correct OmpSs (MPI/OmpSs) code

• visualization of objects usage

• integration of Tareador outputs (dependency graph, Paraver time-plots, objects
visualization, Tareador logs)

• highly assisted parallelization (more parallelization hints to the programmer)

154

8
Conclusion

This thesis proposes techniques to improve performance in parallel applications with-
out increasing the complexity of the parallel code. The starting point is the bulk-
synchronous MPI programming model. Although widely used to program for very
large-scale systems, the execution of bulk-synchronous programs introduces signifi-
cant stalls in their parallel execution, mainly caused by load imbalance and excessive
communication among processes. The causes for that performance degradation can be
attacked at the expense of reducing programming productivity. The main objective of
this thesis is to explore solutions that provide both high parallel performance and low
programming complexity.

In the first part of this thesis, we target techniques for tuning MPI execution. More
specifically, we explore the potential of communication/computation overlap. We pro-
posed speculative dataflow – a hardware assisted technique that increases the overlap
in applications and requires no intervention on the parallel code. Using a set of micro
benchmarks, we demonstrated the feasibility and the effectiveness of this speculative
technique. Furthermore, we designed an environment that automatically estimates the

155

potential overlap in an MPI application. We showed that real-world scientific appli-
cations have a significant potential for overlap. However, the potential overlap is very
limited by the application internal computation patterns. If the computation patterns
are unprofitable, the overlap achieves only diminishing benefits. For one of the ap-
plications we show that code refactoring can be used to rearrange the computation
patterns and increase the application’s overlapping potential. However, we conclude
that it is not productive, in terms of programming, to manually change the computation
patterns for each application. Therefore, to increase the overlap, there is a need for an
automatic way to restructure these patterns in order to increase potential overlap.

Since pure MPI execution showed significant lack of overlap, we turned to explor-
ing hybrid parallel programming models. We decided to proceed with MPI/OmpSs
programming model, because the potential asynchrony introduced by OmpSs could
result in high overlap and deep lookahead. Therefore, the second part of this thesis
explores two techniques for tuning MPI/OmpSs parallelism. Namely, we explore how
MPI/OmpSs execution can be improved by optimizing some section of the code or by
refining the task decomposition of the code.

In exploring the optimization opportunities in MPI/OmpSs execution, our goal was
to identify the application’s critical code section – the code section whose optimization
would bring the highest benefit to the overall execution time. Identifying the critical
section in sequential applications is trivial, because the critical section is always the
most time consuming section. However, in parallel applications different sections con-
tribute differently to the total parallel execution time. We showed that the choice of the
critical section decisively depends on the target machine on which the application ex-
ecutes. For instance, we demonstrate that in HP Linpack, optimizing a task that takes
0.49% of the total computation time yields the overall speedup of less than 1% on a
machine with 4 cores per node, and at the same time yields the overall speedup of more
than 24% on a machine with 64 cores per node. Moreover, the choice of the critical
section also depends on the optimization factor that will be applied. Finally, we de-
signed a tool that predicts, for the targeted parallel machine and the given input, which
section of the code should be optimized in order to get the highest overall execution
speedup.

Second, we explored how the MPI/OmpSs parallelism could be tuned by selecting
a different task decomposition of the code. Different task decompositions provide very

156

different parallelization potential. For a programmer without any development sup-
port, it is very hard to anticipate which decomposition exposes parallelism and which
not. To that end, we designed Tareador – a tool that estimates the potential parallelism
of a task decomposition. Using Tareador, the programmer can easily test various task
decompositions and quickly find one that exposes sufficient parallelism to keep the
selected target machine efficiently utilized. Furthermore, we designed an autonomous
driver that iteratively runs Tareador in the search for a good task decomposition. We
show that by using very simple heuristics, the automatic search can find decomposi-
tions that provide very high parallelism.

Also, throughout the work on this thesis, we designed two development environ-
ments that can be useful to other researchers in the field. These environments are:

1. mpisstrace – an environment for replaying MPI/OmpSs parallel execution. The
already existing BSC tool-chain allowed replaying MPI execution. We extended
this infrastructure, in order to provide support for replaying MPI/OmpSs execu-
tion. Our changes are already included in the official distribution of BSC tools.

2. Tareador – a tool to help porting MPI applications to MPI/OmpSs. Tareador
provides to the programmer a very simple and flexible interface to propose any
task decomposition of the code. Then, Tareador dynamically instruments the
target code, identifies data dependencies among the annotated tasks and recon-
structs the potential parallel time-behavior. If the programmer is satisfied with
the obtained parallelization, Tareador can provide further guidelines on how to
complete the parallelization process (fill the pragma annotations). Tareador al-
ready proved itself useful by entering the undergraduate academic program at
UPC. Our ongoing work is concentrated on developing computer logic that can
automatically guide Tareador, so the required programmer’s interaction could be
further reduced.

8.1 Future work

For decades, microprocessors have been improving their performance following Moore’s
law without requiring major changes in the applications. The performance improve-
ments relied on architectural techniques that improve ILP (instruction-level parallelism)

157

exploitation and compilers that optimize the code for each target architecture. How-
ever, due to severe technological constraints, ILP performance gains entered stagna-
tion. Consequently, multicore architectures appeared as the high-performance “promise
land”. Multicores introduced the need to re-design (parallelize) applications in order to
utilize the increasing number of available cores. As the software community struggles
to fulfill this demand, the gap between parallel hardware and sequential software keeps
growing. In the following subsection, I give my personal view on bridging this gap.

8.1.1 Parallelism for everyone: my view

The problem of multicore era is not in the fact that the existing applications are sequen-
tial, but rather in the fact that the existing programmers are sequential. The major issue
in crossing the chasm between sequential software and parallel hardware is enabling
existing programmers to write applications that can efficiently execute in parallel.

To that end, it is crucial to make parallel programming similar to sequential pro-
gramming. Some mainstream parallel programming models require the programmer
to change the structure of the sequential application. Thus, for MPI or pthreads, the
programmer must make an explicit parallel structure of the code. On the other hand,
OpenMP and OmpSs enable parallel execution, but seemingly maintain the structure
of the sequential application. Maintaining the code structure is very important, because
eases parallel programming for sequential programmers.

Maintaining the code structure also eases the task of automatic parallelization. In
OpenMP and OmpSs, parallelizing the application consists of only adding pragmas
that define the rules of parallel execution. Tareador can automatically search for a
decomposition that exposes parallelism. Furthermore, we need to extend Tareador to
continue searching for a decomposition that is easy to express with the semantics of-
fered by the targeted parallel programming model. Then, after finding the optimal
decomposition, Tareador should output the content of pragmas needed to generate the
correct parallel code. It is important to note that during parallelization, Tareador main-
tains the structure of the sequential code, and just suggests where to put pragmas.

However, this type of automatic parallelization would often provide very limited
parallelism. The search for a decomposition that provides parallelism could go very
deep – resulting in a very fine-grain decomposition. This decomposition would be

158

useless for the real run, because the execution would be dominated by the runtime
overhead. Thus, the structure of the original sequential code must be changed in order
to get more coarse-grain tasks that can still execute in parallel.

At this point, Tareador should advise the programmer how to change the access
patterns of the original sequential code, in order for automatic parallelization to be
more efficient. Tareador should provide visualization of the memory usage from the
objects perspective. Using this visualization, the programmer could see how different
tasks access different objects. Then, the programmer could learn how to restructure the
sequential application, so the access patterns allow a more coarse-grain task decompo-
sition of the sequential code.

In summary, the result of the described approach is that the programmer only writes
the sequential code, while Tareador assures parallel execution of that code. The pro-
grammer only writes the sequential code and passes that code to Tareador for auto-
matic parallelization. Tareador reports to the programmer the achieved parallelism. If
the programmer is satisfied with the achieved parallelism, the parallelization process
is finished. However, if the obtained parallelism is insufficient, Tareador provides to
the programmer a set of hints how to rearrange the sequential application. After rear-
ranging the sequential application, the programmer passes the updated code for new
automatic parallelization. This process iterative repeats until the programmer is satis-
fied with the achieved parallelism. Once the code is parallelized, throughout further
development of the code, the code maintaining responsibilities are again decoupled.
The programmer guarantees the correct execution of the sequential execution – mak-
ing sure that code updates did not harm the correctness of sequential execution. On
the other hand, Tareador guarantees the correctness of parallel execution – making
sure that code updates did not harm the concurrency rules among tasks. In conclusion,
Tareador should teach the programmer how to write the sequential codes that have
more potential for automatic parallelization.

This type of parallelization is not new. In vector processing, the programmer writes
a sequential code while the compiler automatically extracts parallelism. The compiler
identifies particular parts of the sequential program and transforms these parts into
equivalent vectorized code. The compiler especially targets loops vectorization. How-
ever, due to possible dependencies among the loop iterations, the vectorization may
lead to low performance gains. In this case, the compiler suggests the programmer

159

how to restructure the loop in order to remove these dependencies. After the program-
mer eliminates dependencies among loop iteration, the compiler can parallelize the
code more efficiently.

160

9
Publications

Conference papers:

Vladimir Subotić, Jesús Labarta, Mateo Valero.
Overlapping MPI Computation and Communication by Enforcing Speculative
Dataflow.
INA-OCMC-08. Workshop on Interconnection Network Architectures On-Chip, Multi-

Chip. Held in conjuction with HiPEAC-2008. Göteborg, Sweden, January 27-29, 2008

Vladimir Subotić, José Carlos Sancho, Jesús Labarta, Mateo Valero.
A Simulation Framework to Automatically Analyze the Communication-Computation
Overlap in Scientific Applications.
Proceedings of the 2010 IEEE International Conference on Cluster Computing, Her-

aklion, Crete, Greece, 20-24 September, 2010

Vladimir Subotić, José Carlos Sancho, Jesús Labarta, Mateo Valero.

161

The Impact of Application’s Micro-Imbalance on the Communication-Computation
Overlap.
Proceedings of the 19th International Euromicro Conference on Parallel, Distributed

and Network-based Processing, PDP 2011, Ayia Napa, Cyprus, 9-11 February 2011

Vladimir Subotić, Roger Ferrer, José Carlos Sancho, Jesús Labarta, Mateo Valero.
Quantifying the Potential Task-Based Dataflow Parallelism in MPI Applications.
Euro-Par 2011 Parallel Processing - 17th International Conference, Euro-Par 2011,

Bordeaux, France, 29 August - 2 September, 2011, Proceedings, Part I

Vladimir Subotić, José Carlos Sancho, Jesús Labarta, Mateo Valero.
Identifying Critical Code Sections in Dataflow Programming Models.
Proceedings of the 21th International Euromicro Conference on Parallel, Distributed

and Network-based Processing, PDP 2013, Belfast, Northern Ireland, 27 February - 1

March 2011

Vladimir Subotić, José Carlos Sancho, Eduard Ayguadé, Jesús Labarta, Mateo Valero.
Automatic exploration of potential parallelism in sequential applications.
Submitted to Euro-Par 2013 Parallel Processing - 19th International Conference, Euro-

Par 2013, Aachen, Germany, 2013

Journal papers:

Vladimir Subotić, Steffen Brinkmann, Vladimir Marjanović, Rosa M. Badia, Jose
Gracia, Christoph Niethammer, Eduard Ayguade, Jesus Labarta, Mateo Valero
Programmability and portability for Exascale: Top Down Programming Method-
ology and Tools with StarSs.
Journal of Computational Science, Available online 11 February 2013, ISSN 1877-

7503

162

Tutorials:

Eduard Ayguadé, Rosa M. Badia, Daniel Jiménez, Jesús Labarta, Vladimir Subotić.
SC12 HPC Educators session: Unveiling parallelization strategies at undergrad-
uate level.
ACM/IEEE Conference on High Performance Computing, SC 2012, November 10-16,

2012, Salt Lake City, Utah, USA

Eduard Ayguadé, Rosa M. Badia and Vladimir Subotić.
SC13 HPC Educators session: Exploring parallelization strategies at undergrad-
uate level.
Submitted to ACM/IEEE Conference on High Performance Computing, SC 2013, Novem-

ber 17-22, 2013, Denver, Colorado, USA

Posters:

Vladimir Subotić, Jesús Labarta, Mateo Valero.
Simulation environment for studying overlap of communication and computa-
tion.
IEEE International Symposium on Performance Analysis of Systems and Software, IS-

PASS 2010, www.ispass.org, 28-30 March 2010, White Plains, NY, USA

163

Bibliography

[1] Graphviz - Graph Visualization Software, web-site confirmed active on
15.03.2013. URL http://www.graphviz.org/. 66

[2] NAS PARALLEL BENCHMARKS, web-site confirmed active on 15.03.2013.
URL http://www.nas.nasa.gov/Resources/Software/npb.html. 85

[3] POP: Parallel Ocean Program, web-site confirmed active on 15.03.2013. URL
http://climate.lanl.gov/Models/POP/. 85

[4] SWEEP3D: 3D Discrete Ordinates Neutron Transport , web-site confirmed active
on 15.03.2013. URL http://wwwc3.lanl.gov/pal/software/sweep3d. 85

[5] Mayank Agarwal and Matthew I. Frank. SPARTAN: A software tool for Par-
allelization Bottleneck Analysis. In Proceedings of the 2009 ICSE Work-

shop on Multicore Software Engineering, IWMSE ’09, pages 56–63, Wash-
ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3718-4.
doi: 10.1109/IWMSE.2009.5071384. URL http://dx.doi.org/10.1109/
IWMSE.2009.5071384. 109, 151

[6] Thomas E. Anderson and Edward D. Lazowska. Quartz: a tool for tuning parallel
program performance. In Proceedings of the 1990 ACM SIGMETRICS confer-

ence on Measurement and modeling of computer systems, SIGMETRICS ’90,
pages 115–125, New York, NY, USA, 1990. ACM. ISBN 0-89791-359-0. doi:
10.1145/98457.98518. URL http://doi.acm.org/10.1145/98457.98518.
110, 151

164

http://www.graphviz.org/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://climate.lanl.gov/Models/POP/
http://wwwc3.lanl.gov/pal/software/sweep3d
http://dx.doi.org/10.1109/IWMSE.2009.5071384
http://dx.doi.org/10.1109/IWMSE.2009.5071384
http://doi.acm.org/10.1145/98457.98518

BIBLIOGRAPHY

[7] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and
Daniel Ortega. COTSon: infrastructure for full system simulation. SIGOPS Oper.

Syst. Rev., 43:52–61, January 2009. ISSN 0163-5980. doi: http://doi.acm.org/

10.1145/1496909.1496921. URL http://doi.acm.org/10.1145/1496909.
1496921. 148

[8] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling. Computer, 35:59–67, February 2002. ISSN 0018-
9162. doi: 10.1109/2.982917. URL http://dl.acm.org/citation.cfm?id=
619072.621910. 148

[9] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael
Mayo, and Enrique S. Quintana-Ortí. An Extension of the StarSs Program-
ming Model for Platforms with Multiple GPUs. In Proceedings of the 15th In-

ternational Euro-Par Conference on Parallel Processing, Euro-Par ’09, pages
851–862, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03868-6.
doi: 10.1007/978-3-642-03869-3_79. URL http://dx.doi.org/10.1007/
978-3-642-03869-3_79. 29

[10] Christian Bell, Dan Bonachea, Rajesh Nishtala, and Katherine A. Yelick. Opti-
mizing bandwidth limited problems using one-sided communication and overlap.
In IPDPS. 2006. 149

[11] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. CellSs: a
programming model for the cell BE architecture. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM. ISBN 0-7695-2700-0. doi: 10.1145/1188455.1188546. URL http://
doi.acm.org/10.1145/1188455.1188546. 29

[12] Siegfried Benkner. VFC: The Vienna Fortran Compiler. Scientific Programming,
7(1):67–81, 1999. 152

[13] Aart Bik, Milind Girkar, Paul Grey, and X. Tian. Efficient Exploitation of Paral-
lelism on Pentium III and Pentium 4 Processor-Based Systems, 2001. 152

[14] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,
and Steven K. Reinhardt. The M5 Simulator: Modeling Networked Systems.

165

http://doi.acm.org/10.1145/1496909.1496921
http://doi.acm.org/10.1145/1496909.1496921
http://dl.acm.org/citation.cfm?id=619072.621910
http://dl.acm.org/citation.cfm?id=619072.621910
http://dx.doi.org/10.1007/978-3-642-03869-3_79
http://dx.doi.org/10.1007/978-3-642-03869-3_79
http://doi.acm.org/10.1145/1188455.1188546
http://doi.acm.org/10.1145/1188455.1188546

BIBLIOGRAPHY

IEEE Micro, 26:52–60, July 2006. ISSN 0272-1732. doi: 10.1109/MM.2006.82.
URL http://dl.acm.org/citation.cfm?id=1158826.1159085. 148

[15] Critical Blue. Prism, web-site confirmed active on 15.03.2013. URL http:
//www.criticalblue.com/criticalblue_products/prism.shtml. 153

[16] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David A. Padua, Yunheung Paek, William M.
Pottenger, Lawrence Rauchwerger, and Peng Tu. Parallel Programming with
Polaris. IEEE Computer, 29(12):87–81, 1996. 152

[17] Clay Breshears. Using Intel Thread Profiler for Win32
threads: Philosophy and theory. web-site confirmed active on
15.03.2013. URL http://software.intel.com/en-us/articles/

using-intel-thread-profiler-for-win32-threads-philosophy-and-theory/.
110, 151

[18] Ron Brightwell, Keith D. Underwood, and Rolf Riesen. An Initial Analysis of
the Impact of Overlap and Independent Progress for MPI. In PVM/MPI, pages
370–377. 2004. 149

[19] Ron Brightwell, Rolf Riesen, and Keith D. Underwood. Analyzing the Impact
of Overlap, Offload, and Independent Progress for Message Passing Interface
Applications. IJHPCA, 19(2):103–117, 2005. 22, 149

[20] William W. Carlson, Jesse M. Draper, and David E. Culler. S-246, 187 Introduc-
tion to UPC and Language Specification. 16

[21] Paul M. Carpenter, Alex Ramírez, and Eduard Ayguadé. Starsscheck: A Tool to
Find Errors in Task-Based Parallel Programs. In Euro-Par (1), pages 2–13, 2010.
152

[22] Laura Carrington, Dimitri Komatitsch, Michael Laurenzano, Mustafa M.
Tikir, David Michéa, Nicolas Le Goff, Allan Snavely, and Jeroen Tromp.
High-frequency simulations of global seismic wave propagation using
SPECFEM3D_GLOBE on 62K processors. In SC, page 60. 2008. 85, 116

166

http://dl.acm.org/citation.cfm?id=1158826.1159085
http://www.criticalblue.com/criticalblue_products/prism.shtml
http://www.criticalblue.com/criticalblue_products/prism.shtml
http://software.intel.com/en-us/articles/using-intel-thread-profiler-for-win32-threads-philosophy-and-theory/
http://software.intel.com/en-us/articles/using-intel-thread-profiler-for-win32-threads-philosophy-and-theory/

BIBLIOGRAPHY

[23] IBM Advanced Computing Technology Center. High Performance Computing
Toolkit., web-site confirmed active on 15.03.2013. URL http://www.ibm.com.
151

[24] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel Pro-
grammability and the Chapel Language. IJHPCA, 21(3):291–312, 2007. 16

[25] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In Proceedings of

the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’05, pages 519–538, New York,
NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094852.
URL http://doi.acm.org/10.1145/1094811.1094852. 16

[26] Wei-Yu Chen, Costin Iancu, and Katherine A. Yelick. Communication Optimiza-
tions for Fine-Grained UPC Applications. In IEEE PACT, pages 267–278. 2005.
149

[27] Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt, and John M. Mellor-Crummey.
Co-array Fortran Performance and Potential: An NPB Experimental Study. In
LCPC, pages 177–193. 2003. 149

[28] Intel Corporation. Intel Parallel Advisor, web-site confirmed ac-
tive on 15.03.2013. URL http://software.intel.com/en-us/

intel-advisor-xe. 153

[29] Intel Corporation. Intel thread profiler, web-site confirmed active on 15.03.2013.
URL http://software.intel.com/file/17321. 110, 151

[30] Intel Corporation. Intel VTune Amplifier XE, web-site confirmed active
on 15.03.2013. URL http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe/. 109, 151

[31] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. Computing in Science and Engineering, 5:46–

167

http://www.ibm.com
http://doi.acm.org/10.1145/1094811.1094852
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/file/17321
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

BIBLIOGRAPHY

55, 1998. ISSN 1070-9924. doi: http://doi.ieeecomputersociety.org/10.1109/99.
660313. 16, 22, 29

[32] William James Dally. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, 2004. 2

[33] Anthony Danalis, Ki-Yong Kim, Lori L. Pollock, and D. Martin Swany. Trans-
formations to Parallel Codes for Communication-Computation Overlap. In SC,
page 58. 2005. 150

[34] Dibyendu Das, Manish Gupta, Rajan Ravindran, W. Shivani, P. Sivakeshava, and
Rishabh Uppal. Compiler-controlled extraction of computation-communication
overlap in MPI applications. In IPDPS, pages 1–8, 2008. 150

[35] Narayan Desai, Pavan Balaji, P. Sadayappan, and Mohammad Islam. Are non-
blocking networks really needed for high-end-computing workloads? In CLUS-

TER, pages 152–159, 2008. 2, 40

[36] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark:
past, present and future. Concurrency and Computation: Practice and Experi-

ence, 15(9):803–820, 2003. 116

[37] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Mar-
tinell, Xavier Martorell, and Judit Planas. OmpSs: a Proposal for Program-
ming Heterogeneous Multi-Core Architectures. Parallel Processing Letters, 21
(2):173–193, 2011. 16, 27

[38] Ryan Eccles, Blair Nonneck, and Deborah A. Stacey. Exploring Parallel Pro-
gramming Knowledge in the Novice. In HPCS, pages 97–102, 2005. 3

[39] Vector Fabrics. Pareon, web-site confirmed active on 15.03.2013. URL http:
//www.vectorfabrics.com/products. 153

[40] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,
Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,
William J. Dally, and Pat Hanrahan. Memory - Sequoia: programming the mem-
ory hierarchy. In SC, page 83, 2006. 105

168

http://www.vectorfabrics.com/products
http://www.vectorfabrics.com/products

BIBLIOGRAPHY

[41] Felix Freitag, Jordi Caubet, Montse Farreras, Toni Cortes, and Jesús Labarta.
Exploring the Predictability of MPI Messages. In IPDPS, page 69. 2003. 78

[42] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In PLDI, pages 212–223, 1998. 29

[43] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford
Taylor. Kremlin: rethinking and rebooting gprof for the multicore age. In PLDI,
pages 458–469, 2011. 152

[44] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,
and Bernd Mohr. The Scalasca performance toolset architecture. Concurr.

Comput. : Pract. Exper., 22(6):702–719, April 2010. ISSN 1532-0626. doi:
10.1002/cpe.v22:6. URL http://dx.doi.org/10.1002/cpe.v22:6. 109,
151

[45] Sergi Girona, Jesús Labarta, and Rosa M. Badia. Validation of Dimemas Com-
munication Model for MPI Collective Operations. In PVM/MPI, pages 39–46.
2000. 37, 148

[46] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call
graph execution profiler. In Proceedings of the 1982 SIGPLAN symposium on

Compiler construction, SIGPLAN ’82, pages 120–126, New York, NY, USA,
1982. ACM. ISBN 0-89791-074-5. doi: 10.1145/800230.806987. URL http:
//doi.acm.org/10.1145/800230.806987. 109, 151

[47] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edi-

tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2006. ISBN 0123704901. 10, 11

[48] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,
Kevin J. Lang, Satish Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bis-
seling. BSPlib: The BSP programming library. volume 24, pages 1947–1980.
1998. 40

169

http://dx.doi.org/10.1002/cpe.v22:6
http://doi.acm.org/10.1145/800230.806987
http://doi.acm.org/10.1145/800230.806987

BIBLIOGRAPHY

[49] Lorin Hochstein, Jeffrey Carver, Forrest Shull, Sima Asgari, and Victor R. Basili.
Parallel Programmer Productivity: A Case Study of Novice Parallel Program-
mers. In SC, page 35, 2005. 3

[50] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. Implementation and
performance analysis of non-blocking collective operations for MPI. In SC,
page 52, 2007. 17, 150

[51] Guillaume Houzeaux, Beatriz Eguzkitza, and Mariano Vazquez. A variational
multiscale model for the advection-diffusion-reaction equation. Communications

in Numerical Methods in Engineering, 2007. 85

[52] Costin Iancu, Parry Husbands, and Paul Hargrove. HUNTing the Overlap. In
IEEE PACT, pages 279–290. 2005. 150

[53] James Christopher Jenista, Yong Hun Eom, and Brian Demsky. OoOJava: soft-
ware out-of-order execution. In PPOPP, pages 57–68, 2011. 105

[54] David J. Kuck, Robert Henry Kuhn, David Padua, Bruce Leasure, and
Michael Joseph Wolfe. Dependence graphs and compiler optimizations. In Pro-

ceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL ’81, pages 207–218, New York, NY, USA, 1981.
ACM. ISBN 0-89791-029-X. doi: 10.1145/567532.567555. URL http:
//doi.acm.org/10.1145/567532.567555. 28

[55] Jesús Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, and Luis Gregoris. DiP:
A Parallel Program Development Environment. In Proceedings of the Second In-

ternational Euro-Par Conference on Parallel Processing-Volume II, Euro-Par ’96,
pages 665–674, London, UK, UK, 1996. Springer-Verlag. ISBN 3-540-61627-
6. URL http://dl.acm.org/citation.cfm?id=646669.701233. 36, 108,
151

[56] Vincent Pillet Jesus Labarta, Todi Cortes, and Sergi Girona. PARAVER: A Tool
to Visualize and Analyze Parallel Code. In WoTUG-18. 1995. 37

170

http://doi.acm.org/10.1145/567532.567555
http://doi.acm.org/10.1145/567532.567555
http://dl.acm.org/citation.cfm?id=646669.701233

BIBLIOGRAPHY

[57] Argonne National Laboratory. The FPMPI-2 MPI profiling library., web-site con-
firmed active on 15.03.2013. URL http://www-unix.mcs.anl.gov/fpmpi/.
109, 151

[58] William Lawry, Christopher Wilson, Arthur B. Maccabe, and Ron Brightwell.
COMB: A Portable Benchmark Suite for Assessing MPI Overlap. In CLUSTER,
pages 472–475. 2002. 149

[59] JaSong Leu, Dharma Prakash Agrawal, and Jon Mauney. Modeling of parallel
software for efficient computation-communication overlap. In Fall Joiny Com-

puter Conference. IEEE Press, 1987. 150

[60] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. Simics: A Full System Simulation Platform. IEEE Computer, 35(2):
50–58, 2002. 148

[61] Jonathan Mak, Karl-Filip Faxén, Sverker Janson, and Alan Mycroft. Estimating
and Exploiting Potential Parallelism by Source-Level Dependence Profiling. In
Euro-Par (1), pages 26–37, 2010. 152

[62] Vladimir Marjanovic, Jose Maria Perez, Eduard Ayguadé, Jesús Labarta, and
Mateo Valero. Overlapping Communication and Computation by Using a Hybrid
MPI/SMPSs Approach. In UPC-DAC-RR-2009-35, Research Report, Technical
University of Catalunya, 2009. 33

[63] Vladimir Marjanovic, Jesús Labarta, Eduard Ayguadé, and Mateo Valero. Over-
lapping communication and computation by using a hybrid MPI/SMPSs ap-
proach. In ICS, pages 5–16, 2010. 30, 31, 105

[64] Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia Teller, Robert
Araiza, Maria Gabriela Aguilera, and Jamie Nava. Performance Profiling and
Analysis of DoD Applications Using PAPI and TAU. In Proceedings of the

2005 Users Group Conference on 2005 Users Group Conference, DOD_UGC
’05, pages 394–, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2496-6. 36

171

http://www-unix.mcs.anl.gov/fpmpi/

BIBLIOGRAPHY

[65] Wolfgang E. Nagel. VAMPIR: Visualization and Analysis of MPI Resources.
1996. URL http://books.google.es/books?id=LnCmPgAACAAJ. 37, 108,
151

[66] Nicholas Nethercote and Julian Seward. Valgrind, web-site confirmed active on
15.03.2013. URL http://valgrind.org/. 36

[67] Michael Noeth, Jaydeep Marathe, Frank Mueller, Martin Schulz, and Bronis
de Supinski. Scalable compression and replay of communication traces in mas-
sively parallel environments. In Proceedings of the 2006 ACM/IEEE confer-

ence on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. ISBN
0-7695-2700-0. doi: 10.1145/1188455.1188605. URL http://doi.acm.org/
10.1145/1188455.1188605. 108, 151

[68] David A. Patterson and John L. Hennessy. Computer Organization and Design,

Fourth Edition, Fourth Edition: The Hardware/Software Interface (The Morgan

Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 4th edition, 2008. ISBN 0123744938,
9780123744937. 9

[69] Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. A dependency-aware task-
based programming environment for multi-core architectures. In CLUSTER,
pages 142–151. 2008. 29, 105

[70] Chuck Pheatt. Intel threading building blocks. J. Comput. Sci. Coll., 23(4):298–
298, apr 2008. ISSN 1937-4771. URL http://dl.acm.org/citation.cfm?
id=1352079.1352134. 153

[71] Sundeep Prakash and Rajive L. Bagrodia. MPI-SIM: Using Parallel Simulation
To Evaluate MPI Programs, 1998. 148

[72] SPIRAL project. Software/Hardware Generation for DSP Algorithms, web-site
confirmed active on 15.03.2013. URL http://www.spiral.net/problem.
html. x, 10

172

http://books.google.es/books?id=LnCmPgAACAAJ
http://valgrind.org/
http://doi.acm.org/10.1145/1188455.1188605
http://doi.acm.org/10.1145/1188455.1188605
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://www.spiral.net/problem.html
http://www.spiral.net/problem.html

BIBLIOGRAPHY

[73] Milos Prvulovic, Josep Torrellas, and Zheng Zhang. ReVive: Cost-Effective Ar-
chitectural Support for Rollback Recovery in Shared-Memory Multiprocessors.
In ISCA, pages 111–122. 2002. 78

[74] Alejandro Rico, Alejandro Duran, Felipe Cabarcas, Yoav Etsion, Alex Ramírez,
and Mateo Valero. Trace-driven simulation of multithreaded applications. In
ISPASS, pages 87–96, 2011. 148

[75] Luiz De Rose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon.
Cray Performance Analysis Tools. In Parallel Tools Workshop, pages 191–199,
2008. 109

[76] José Carlos Sancho, Kevin J. Barker, Darren J. Kerbyson, and Kei Davis. MPI
tools and performance studies - Quantifying the potential benefit of overlapping
communication and computation in large-scale scientific applications. In SC,
page 125. 2006. 84, 92, 150

[77] Robert R. Schaller. Moore’s law: past, present, and future. IEEE Spectr., 34
(6):52–59, June 1997. ISSN 0018-9235. doi: 10.1109/6.591665. URL http:
//dx.doi.org/10.1109/6.591665. 9

[78] John Paul Shen and Mikko H. Lipasti. Modern processor design : fundamentals

of superscalar processors. McGraw-Hill Higher Education, Boston, 2005. ISBN
0-07-057064-7. URL http://opac.inria.fr/record=b1129703. Index. 15

[79] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System.
Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006. ISSN 1094-
3420. doi: 10.1177/1094342006064482. URL http://dx.doi.org/10.1177/
1094342006064482. 109, 151

[80] James Smith and Gurindar S. Sohi. The Microarchitecture of Superscalar Pro-
cessors. 1995. URL citeseer.ist.psu.edu/35243.html. 28

[81] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI: The Complete Reference, web-site confirmed active on 15.03.2013. URL
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html. 15, 16

173

http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1109/6.591665
http://opac.inria.fr/record=b1129703
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
citeseer.ist.psu.edu/35243.html
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

BIBLIOGRAPHY

[82] Andrew Sohn, Jui Ku, Yuetsu Kodama, Mitsuhisa Sato, Hirofumi Sakane, Hayato
Yamana, Shuichi Sakai, and Yoshinori Yamaguchi. Identifying the capability of
overlapping computation with communication, 1996. 149

[83] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic task scheduling
for linear algebra algorithms on distributed-memory multicore systems. In SC,
2009. 105

[84] Vladimir Subotic, Roger Ferrer, José Carlos Sancho, Jesús Labarta, and Mateo
Valero. Quantifying the Potential Task-Based Dataflow Parallelism in MPI Ap-
plications. In Euro-Par (1), pages 39–51, 2011. 105

[85] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance mea-
surement and analysis of multithreaded applications. In PPOPP, pages 229–240,
2009. 110

[86] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyzing
lock contention in multithreaded applications. In PPOPP, pages 269–280, 2010.
110, 151

[87] top500. Top500 List: List of top 500 supercomputers., web-site confirmed active
on 15.03.2013. URL http://www.top500.org/. 2, 116

[88] J. Vetter and C Chambreau. The mpiP MPI profiling library., web-site confirmed
active on 15.03.2013. URL http://mpip.sourceforge.net/. 109, 151

[89] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An In-
frastructure for Research on Parallelizing and Optimizing Compilers. SIGPLAN

Notices, 29(12):31–37, 1994. 152

[90] Matt T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. In ISPASS 07. 2007. 148

[91] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. To-
ward Scalable Performance Visualization with Jumpshot. Int. J. High

174

http://www.top500.org/
http://mpip.sourceforge.net/

BIBLIOGRAPHY

Perform. Comput. Appl., 13(3):277–288, August 1999. ISSN 1094-3420.
doi: 10.1177/109434209901300310. URL http://dx.doi.org/10.1177/
109434209901300310. 108, 151

[92] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. Alchemist: A Trans-
parent Dependence Distance Profiling Infrastructure. In CGO, pages 47–58,
2009. 152

[93] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iWatcher:
Efficient Architectural Support for Software Debugging. In ISCA, pages 224–
237. 2004. 83

175

http://dx.doi.org/10.1177/109434209901300310
http://dx.doi.org/10.1177/109434209901300310

	Acknowledgement
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goals
	1.2 Approach
	1.3 Contributions
	1.4 Document structure

	2 Background
	2.1 Parallel machines
	2.1.1 Processor architecture trends
	2.1.2 Memory Organization
	2.1.3 Message Passing Cost

	2.2 Parallel programming models
	2.2.1 MPI
	2.2.2 OpenMP
	2.2.3 OmpSs
	2.2.4 Example - MPI/OmpSs vs. MPI/OpenMP

	2.3 Tools
	2.3.1 mpitrace
	2.3.2 Valgrind
	2.3.3 Paraver
	2.3.4 Dimemas

	3 Motivation
	3.1 MPI programming
	3.1.1 Bulk-synchronous programming
	3.1.2 Communication Computation Overlap

	3.2 Our effort in tuning MPI parallelism
	3.2.1 Automatic overlap

	3.3 MPI/OmpSs programming
	3.3.1 Hiding communication delays
	3.3.2 Additional parallelism within an MPI process

	3.4 Our effort in tuning MPI/OmpSs parallelism
	3.4.1 Identifying parallelization bottlenecks
	3.4.2 Searching for the optimal task decomposition

	4 Infrastructure
	4.1 Simulation aware tracing
	4.1.1 Illustration of the methodology

	4.2 Framework to identify potential overlap
	4.2.1 Implementation details

	4.3 Framework to replay MPI/OmpSs execution
	4.3.1 Implementation details

	4.4 Tareador – Framework to identify potential dataflow parallelism
	4.4.1 Implementation details
	4.4.2 Usage of Tareador

	5 Overlapping communication and computation in MPI scientific applications
	5.1 Characteristic application behaviors
	5.2 Automatic Communication-Computation Overlap at the MPI Level
	5.2.1 Automatic overlap applied on the three characteristic behaviors

	5.3 Speculative Dataflow – A proposal to achieve automatic overlap
	5.3.1 Protocol of speculative dataflow
	5.3.2 Emulation
	5.3.3 Hardware support
	5.3.4 Conclusions and future research directions

	5.4 Quantifying the potential benefits of automatic overlap
	5.4.1 Experimental Setup
	5.4.2 Patterns of production and consumption
	5.4.3 Simulating potential overlap
	5.4.4 Conclusions and future research directions

	6 Task-based dataflow parallelism
	6.1 Identifying critical code sections in dataflow parallel execution
	6.1.1 Motivation
	6.1.2 Motivation example interpreted by the state-of-the-art techniques
	6.1.3 Experiments
	6.1.4 Conclusion and future research directions

	6.2 Tareador: exploring parallelism inherit in applications
	6.2.1 Motivating example
	6.2.2 Experiments
	6.2.3 Conclusion and future research directions

	6.3 Automatic exploration of potential parallelism
	6.3.1 The search algorithm
	6.3.2 Heuristic 2: When to stop refining the decomposition
	6.3.3 Working environment
	6.3.4 Experiments
	6.3.5 Conclusion

	7 Related Work
	7.1 Simulation methodologies for parallel computing
	7.2 Overlapping communication and computation
	7.3 Identifying parallelization bottlenecks
	7.4 Parallelization development tools

	8 Conclusion
	8.1 Future work
	8.1.1 Parallelism for everyone: my view

	9 Publications
	Bibliography

