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Resum

El problema quàntic de molts cossos ha estat sempre un repte de la f́ısica
teòrica. L’objectiu a què s’intenta arribar és la descripció, des d’un punt de
vista quàntic, dels observables d’un sistema de moltes part́ıcules en interacció.
Si les part́ıcules son més de dos, el sistema interactuant ja no es resoluble ex-
actament, i s’ha d’emprar aproximacions. En el camp espećıfic dels sistemes
nuclears, dels més petits com els nuclis als més grans com la matèria nu-
clear infinita dins de les estrelles, el problema nuclear de molts cossos s’ha
intentat resoldre amb la construcció de diferents formalismes. L’objectiu ha
sigut descriure aproximadament el comportament de molts nucleons, obtenent
resultats els més propers possibles als experimentals i emṕırics.

Una manera de descriure els sistemes nuclears és començant dels principis
bàsics, i.e. ab initio. Aquesta serà la manera en què ho farem en aquesta tesis.
Per fer una descripció ab initio dels sistemes nuclears que interaccionen, cal
començar de la definició del Hamiltonià i consegüentment resoldre l’equació de
Schrödinger per trobar les energies que caracteritzen el sistema. És necessari
doncs descriure com les part́ıcules que formen el sistema, els nucleons, i.e.
neutrons i protons, interaccionen entre elles mateixes. En altres paraules,
s’ha d’escollir un potencial nucleó-nucleó. Nosaltres escollirem un potencial
de tipus microscòpic i realista, és a dir que està adaptat per reproduir les
dades experimentals de dispersió nucleó-nucleó i les propietats de lligam del
deuteró, l’únic estat lligat neutró-protó. Aquests potencials descriuen tots la
part de llarg abast d’intercanvi de pió, i es diferencien en com descriuen la
part de mig i, sobretot, la part més repulsiva de curt abast. Aquesta part
del potencial nuclear, conjuntament amb parts tensorials que puguin existir,
indueix correlacions en la funció d’ona del sistema. Aquestes correlacions no
es poden descriure amb una aproximació de camp mitjà, on cada part́ıcula
està submergida en un potencial promig que és el resultat de la interacció de
totes les altres part́ıcules. En conseqüència, cal un formalisme més complicat.

En la present tesis ens hem centrat en l’estudi de la matèria nuclear in-
finita. En particular, tractem els dos sistemes infinits que es situen en els
extrems en termes d’asimetria d’isosṕın: la matèria nuclear simètrica (SNM),
el sistema format d’un igual nombre de protons i neutrons, i la matèria pu-
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Resum

rament neutrónica (PNM), el sistema format solament de neutrons. Tot i
ser ideal, el sistema infinit de nucleons que interaccionen a través de la força
forta es caracteritza per unes propietats emṕıriques ben conegudes. Aque-
stes propietats es poden obtenir extrapolant els resultats experimentals sobre
nuclis finits. A extrapolar aquestes propietats emṕıriques, ens pot ajudar la
fórmula semiemṕırica de masses (Weizsäcker, 1935; Bethe & Bacher, 1936):

B(N,Z) = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
+ δ(A) . (1)

Aquesta fórmula descriu el nucli com una gota quàntica incompressible (Baym
et al., 1971), formada per un nombre N de neutrons i Z de protons, amb
nombre de massa A = N + Z. Cada terme de l’equació Eq. (1) captura una
propietat f́ısica espećıfica del nucli. A partir d’aquests termes es poden ex-
trapolar les propietats emṕıriques de la matèria nuclear infinita. Per exemple,
el valor extrapolat per un nombre de massa A molt gran defineix l’energia
emṕırica de saturació de la matèria nuclear per una especifica densitat:

E(ρ0)/A = −aV = −16MeV , ρ0 = 0.16 fm−3 . (2)

A més a més, en el cas en què es considera un nombre de nucleons infinits, però
la densitat ρ del sistema es manté a un valor fix, es pot trobar un valor pel
coeficient aA. Aquest coeficient es diu energia de simetria, i té en compte la
pèrdua d’energia d’enllaç per part del sistema quan es va des del cas simètric
al cas asimètric. Si es coneix l’energia del sistema en termes d’un paràmetre
α = (N − Z)/A, que avalua l’asimetria d’isosṕın del sistema, es pot calcula
l’energia de simetria per un sistema infinit a la densitat emṕırica de saturació
a partir de la fòrmula:

S(ρ, α = 0)

A
=

1

2

∂2

∂2α

E(ρ, α)

A

∣∣∣∣
α=0

. (3)

El valor acceptat per aquesta energia és ∼ 32 MeV (Tsang et al., 2012).
Aquest valor està bastant constret tan pels resultats experimentals sobre els
nuclis com pels models teòrics que tracten de predir-ne el valor.

Un formalisme fiable per descriure sistemes de molts cossos és tal si pot rep-
resentar aquestes propietats emṕıriques per al sistema de SNM. Per desgràcia,
és un fet ben establert que siguin quines siguin les forces microscòpiques de
dos nucleons (2NFs, de l’anglès “2 nucleon forces”) que s’utilitzen en el càlcul
nuclears de molts cossos, les propietats emṕıriques de saturació de la matèria
nuclear no es reprodueixen. Les densitats de saturació apareixen a valors alts,
i presenten energies que són massa atractives, causant que la matèria nuclear
sigui massa lligada. La inclusió d’una força nuclear microscòpica entre tres
nucleons (3NFs, de l’anglès “3 nucleon forces”) pot ajudar a resoldre aquesta
discrepància.

Aix́ı doncs, per dur a terme els càlculs d’aquesta tesis, hem escollit un
potencial que descriu, al mateix temps, com interaccionen dos i tres nucleons
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Resum

entre ells mateixos. Hem escollit un potencial basat en una teoria efectiva de
baixes energies aplicada a la Cromodinàmica Quàntica (QCD). En aquesta
teoria efectiva, les 2NFs y 3NFs apareixen coherentment, sense la necessitat
d’ajustar forces que venen de diferents formulacions, com s’havia fet en càlculs
passats. Aquesta força es construeix a partir d’una serie pertorbativa, ordre
per ordre en un paràmetre (Q/ΛQCD), on Q és del ordre de l’energia del procés
que s’està estudiant, mentre que ΛQCD és una energia molt més gran que
defineix fins on la teoria pertorbativa de baixes energies es pot aplicar. En
aquesta tesi, hem fet càlculs utilitzant una 2NF que arriba fins al quart ordre
pertorbatiu en aquesta expansió (N3LO, de l’anglès “next-to-next-to-next-to-
leading order”), i una 3NF fins a al tercer ordre (N2LO, de l’anglès “next-
to-next-to-leading order”). També, en alguns casos, hem utilitzat per la part
a dos cossos una força que arriba al mateix ordre que la força a tres cossos.
D’aquesta manera, obtenim un càlcul consistent amb 2NFs i 3NFs a N2LO
en l’expansió quiral. Aquestes forces depenen d’unes constants, conegudes
com constants de baixa energia (LECs, de l’anglès low-energy constants) que
s’ajusten a partir de les propietats experimentals de dispersió i de propietats
de sistemes de poc cossos.

Com hem dit, una vegada triat el Hamiltonià, necessitem un formalisme
per resoldre el problema de molts cossos. Nosaltres hem escollit un mètode
que es basa en arribar a una solució auto-consistent de la funció de Green
(SCGF, de l’anglès “self-consistent Green’s function). Com veurem, la funció
de Green (GF) descriu totes les maneres en què una part́ıcula, o més d’una, es
pot propagar dins del sistema. Aquesta quantitat, la GF d’un cos, ens permet
calcular totes les propietats monoparticulars del sistema de molts cossos que
estem tractant. Aquesta teoria, que va apareixer per primera vegada al final
dels anys 60 (Martin & Schwinger, 1959), havia estat inicialment formulada
per tractar sistemes on la interacció fos solament entre dues part́ıcules (Fet-
ter & Walecka, 1971; Dickhoff & Van Neck, 2008). Els primers càlculs amb
potencials microscòpics realistes dins d’aquest formalisme, van ser analitzats
pels grups de Barcelona i St. Loius (Ramos, 1988). En aquests càlculs pio-
ners, es va transformar el potencial nuclear en un potencial efectiu, la matriu
T , mitjançant una sumatòria a tots ordres de propagació part́ıcula-part́ıcula i
forat-forat. Aquesta aproximació, anomenada ladder approximation (aproxi-
mació d’escala), és la manera de tenir en compte les fortes correlacions que hi
ha a l’interior del sistema. Aquesta solució inicial,feta a temperatura zero, es
va dur a terme amb una aproximació de quasipart́ıcula, és a dir la dependència
en energies de la funció espectral es va aproximar amb una delta de Dirac a
l’energia de quasipart́ıcula.L’auto-consistència exigita només a aquest nivell,
és a dir nivell on-shell (Ramos et al., 1989b,a). Posteriorment, el grup de
Rostock va dur a terme estudis a temperatura finita (Alm et al., 1995; Schnell
et al., 1996). Més endavant, es va intentar resoldre el problema consider-
ant tota la dependència en energies de la funció espectral (Dickhoff et al.,
1999; Dewulf et al., 2003). El primer càlcul amb potencials reals i exigint
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l’auto-consistència per la funció espectral en tot el rang d’energies va ser pre-
sentat pel grup de Cracòvia, tant a temperatura finita com a temperatura
zero (Bożek & Czerski, 2003). També fou el grup de Cracovia el primer en
desenvolupar un càlcul de SCGF tenint en compte forces a dos i tres nucleons
(Somà, 2009). El grups de Barcelona i Tübingen van estudiar àmpliament el
sistema nuclear infinit a temperatura finita (Frick, 2004; Rios, 2007). El codi
numèric que emprarem en aquesta tesi pel càlcul complet en la teoria SCGF
s’ha fet servir per estudiar les propietats termodinàmiques de SNM i PNM
(Rios et al., 2006b, 2009b).

Aquesta tesi apunta a expandir, de manera consistent, el formalisme SCGF
per incloure forces a tres cossos. Una expansió consistent consisteix en desen-
volupar novament totes les equacions que descriuen aquest mètode, per què es
puguin validar les aproximacions que es fan al formalisme a l’hora de resoldre
el problema de molts cossos en interacció. Hem de fer notar que les equacions
s’han resolt a temperatura zero, però el resultats numèrics s’han calculat a
temperatura finita. El càlculs a temperatura finita eviten el reconegut prob-
lema relacionat amb la inestabilitat d’aparellament que a temperatura zero
es manifesta en la matriu T en la propagació de forat-forat. En el present
formalisme, aquesta inestabilitat no es pot tractar, i la baixa temperatura, és
la manera més directa d’eliminar l’aparellament Alm et al. (1993).

El formalisme de funcions de Green per sistemes de molts cossos

Hom pot considerar les GFs o propagadors els herois del problema de molts
cossos (Mattuck, 1992). Aquestes eines matemàtiques incorporen, per definició,
el comportament correlacionat d’un sistema de molts cossos que interaccionen.
Per aquesta raó, són particularment útils per a caracteritzar les propietats
dels sistemes complexos de moltes part́ıcules, com els sistemes nuclears. El
gran avantatge d’utilitzar GFs està en la possibilitat d’estudiar el problema de
molts cossos d’una manera general, sistemàtica i gràfica a través de l’ús dels di-
agrames de Feynman. Un diagrama de Feynman és una representació gràfica
d’una amplitud de transició d’un estat inicial a un estat final del sistema.
En els sistemes on sèries infinites d’amplituds de transició necessiten ser re-
sumades, com en el cas de la matèria nuclear, les tècniques diagramàtiques es
fan indispensables. Per aquesta raó, la representació diagramàtica s’utilitzarà
al llarg de tota la tesi .

El punt de partida es la definició del Hamiltonià, que en segona quan-
tització i per un sistema de N nucleons no relativistes, s’escriu com:

Ĥ =
∑

α

ε0
α a
†
αaα −

∑

αβ

Uαβ a
†
αaβ

+
1

4

∑

αγ
βδ

Vαγ,βδ a
†
αa
†
γaδaβ +

1

36

∑

αγε
βδη

Wαγε,βδη a
†
αa
†
γa
†
εaηaδaβ . (4)

Els ı́ndexs grecs α,β,γ, etc. etiqueten un conjunt complet d’estats monopart́ıculars
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(SP, de l’anglès single-particle) que diagonalitzen l’Hamiltonià no pertorbat,
Ĥ0, amb valors propis ε0

α. a†α i aα són operadors de creació i aniquilació d’una
part́ıcula en l’estat α. Uαβ representa un element de matriu de l’operador a
un cos (1B, de ’anglès 1 body). De manera equivalent, els elements de matriu
dels operadors a dos (2B, de ’anglès 2 body) i tres cossos (3B, de ’anglès 3
body) són Vαγ,βδ i Wαγε,βδη. El propagador SP, o 1B GF, es defineix com el
valor esperat del producte ordenat temporal d’un operador d’aniquilació i un
operador de creació en la imatge de Heisenberg:

i~Gαβ(tα − tβ) = 〈ΨN
0 |T[aα(tα)a†β(tβ)]|ΨN

0 〉 , (5)

on |ΨN
0 〉 és l’estat fonamental de molts cossos en interacció. L’operador d’

ordenament temporal porta els operadors amb els temps anteriors a la dreta,
amb el corresponent signe de permutació fermiònica. Per tα−tβ > 0, això dóna
com a resultat l’addició d’una part́ıcula a l’estat β a temps tβ i la seva elimi-
nació de l’estat α a temps tα. Alternativament, per tβ − tα > 0, l’eliminació
d’una part́ıcula de l’estat α es produeix a temps tα i la seva creació a l’esta
β a temps tβ. Aquests casos corresponen, respectivament, a la propagació
d’un estat excitat de SP de tipus part́ıcula o forat. L’extensió per descriure
propagadors de n-cossos es pot fer de manera directa. La quantitat descrita
a la Eq. (5) es pot traduir a espai d’energies a partir d’una transformada
de Fourier. Un cop feta aquesta transformada, es pot extreure la definició
de la funció espectral, que pot ser de tipus forat o part́ıcula. Aquestes dues
quantitats són:

Shα(ω) =
1

π
ImGαα(ω)

=
∑

n

∣∣〈ΨN−1
n |aα|ΨN

0

〉∣∣2 δ
(
ω − ε−n

)
, (6)

Spα(ω) = − 1

π
ImGαα(ω)

=
∑

m

∣∣〈ΨN+1
m |a†α|ΨN

0

〉∣∣2 δ
(
ω − ε+

m

)
. (7)

En la primera equació, ω ≤ ε−F , amb ε−F = EN
0 − EN−1

0 , és la mı́nima energia
que cal introduir al sistema per extreure’n una part́ıcula. En la segona equació,
ω ≥ ε+

F , amb ε+
F = EN+1

0 −EN
0 , és la mı́nima energia per afegir una part́ıcula

al sistema. Les funcions espectrals es poden interpretar com una mesura de
la probabilitat d’extreure o afegir un estat espećıfic amb nombres quàntics α i
energia ω. En el nostre cas, on estem tractant un sistema infinit de part́ıcules,
podem considerar les propietats α = {p,σ, τ}, que son el moment, esṕın i
isosṕın d’un estat de SP. D’aquesta manera podem re-escriure novament el
propagador de l’Eq. (5) com:

G(p, ω) =

∫ ∞

εF

dω′
Sp(p, ω′)

ω − ω′ + iη
+

∫ εF

−∞
dω′

Sh(p, ω′)

ω − ω′ − iη , (8)
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on per conveniència no hem escrit els indexs d’esṕın i isosṕın. En l’Eq. (8) hem
introdüıt l’energia de Fermi εF que en un sistema no correlacionat correspon
a l’energia de l’últim estat ocupat d’energia. Ara tenim, ε−F = ε+

F = εF , que
en el cas d’un sistema infinit correspon també al potencial qúımic µ.

L’avantatge de treballar amb els propagadors i les funcions espectrals és
que tenim accés a propietats microscòpiques i de volum del sistema. Per exem-
ple, podem accedir a la distribució de moment de SP mitjançant l’expressió:

n(p) = 〈ΨN
0 |a†αaα|ΨN

0 〉 =

∫ εF

−∞
dωSh(p, ω) . (9)

També podem accedir a l’energia total de l’estat de molts cossos en interacció.
Mitjançant una regla de suma que, tanmateix, només és valida si les part́ıcules
estan interaccionen a través d’una força de dos cossos (Galitskii & Migdal,
1958; Koltun, 1974). Per això, hem hagut de desenvolupar unes noves regles
de suma per obtenir l’energia total per nucleó. Existeixen dues possibilitats:

EN
0 =

1

3π

∫ ε−F

−∞
dω

∑

αβ

(2Tαβ + ωδαβ)ImGβα(ω)

+
1

3
〈ΨN

0 |V̂ |ΨN
0 〉 , (10)

o bé:

EN
0 =

1

2π

∫ ε−F

−∞
dω

∑

αβ

(Tαβ + ωδαβ)ImGβα(ω)

−1

2
〈ΨN

0 |Ŵ |ΨN
0 〉 . (11)

La presencia dels valors esperats de la força de dos i de tres cossos en les dues
equacions anteriors indica que, tant en un cas com en l’altre, cal accedir a una
GF de molts cossos per calcular l’energia. Degut a les aproximacions que fem
per calcular aquests valor esperats, i.e. es calculen només a primer ordre, i al
fet que el valor esperat de 3B és més petit que el valor esperat de 2B (Grangé
et al., 1989; Epelbaum et al., 2009), hem escollit la segona regla, Eq. (11) per
dur a terme els nostres càlculs.

Per calcular l’expressió del propagador vestit, o correlacionat, s’ha de
sumar tots els termes d’aquesta expansió pertorbativa:

Gαβ(tα − tβ) = − i

~

∞∑

n=0

(
− i

~

)n
1

n!

∫
dt1 . . .

∫
dtn

×〈ΦN
0 |T[Ĥ1(t1) . . . Ĥ1(tn)aIα(tα)aIβ

†
(tβ)]|ΦN

0 〉conn . (12)

on només s’han de considerar els diagrames connectats. |ΦN
0 〉 correspon a

l’estat fonamental de molts cossos no correlacionat. Aquesta expansió es
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= + Σ∗

Figure 1 – Representació esquemàtica de l’equació de Dyson Eq. (13). Les
ĺınies amb fletxes individuals corresponen a propagadors SP no pertorbats,
G(0). Les ĺınies amb fletxes dobles són propagadors vestits, G, resultats de
l’expansió completa de l’equació Eq. (12). L’equació de Dyson introdueix el
concepte d’auto-energia irreductible Σ? que agrupa tots els diagrames 1PI.

pot re-escriure en termes d’una auto-energia que descriu l’energia que cada
part́ıcula sent dins del sistema degut a les correlacions. Això es defineix a
través de l’equació de Dyson:

Gαβ(ω) = G
(0)
αβ(ω) +

∑

γδ

G(0)
αγ (ω)Σ?

γδ(ω)Gδβ(ω) , (13)

on G(0) es el propagador no vestit, o no correlacionat, i correspon al primer
terme de l’Eq. (12). La quantitat Σ?(ω) defineix l’auto-energia irreductible.
Per tal que la suma infinita de termes mitjançant l’equació de Dyson es faci
de manera correcta, els diagrames que s’han de considerar dins de Σ?(ω) han
de ser només de tipus connexos, irreductible a una part́ıcula (1PI, de l’anglès
1 particle irreducible). A més a més, han de ser de tipus esquelet, és a dir,
que els diagrames de l’auto-energia estan constrüıts amb el propagador vestit
G, del qual la mateixa Σ?(ω) ens dóna la solució a través de l’Eq. (13). Per
això diem que el mètode és auto-consistent, perquè s’ha d’iterar la solució de
l’equació de Dyson fins que s’obté un valor estable per al propagador vestit
G. Una representació gràfica de l’equació de Dyson, en termes de diagrames
de Feynman, es pot veure a la Fig. 1.

Forces a tres cossos en el formalisme de funcions de Green

Començant amb l’Hamiltonià descrit a l’Eq.(4), hem derivat l’expansió pertor-
bativa del’auto-energia irreductible Σ?(ω). Hem demonstrat com es poden re-
organitzar de manera més eficient els termes de l’auto-energia quan s’inclouen
expĺıcitament forces a tres cossos en l’Hamiltonià, gràcies a la definició d’una
nova classe de contribucions irreductibles, els diagrames d’interacció irre-
ductible. La classe completa de diagrames 1PI, esquelet i d’interacció irre-
ductibles condueix a una descripció simplificada de l’auto-energia, que ha
estat molt útil a l’hora d’aplicar la jerarquia de l’equació de moviment dels
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= + + 1
4

GII

Figure 2 – Representació diagramàtica de la interacció 1B efectiva de
l’Eq. (14), que ve donada per la suma del potencial 1B original (ĺınia pun-
tejada), la interacció 2B (ĺınia discont́ınua) redüıda amb un propagador SP
vestit, G (doble ĺınia amb la fletxa), i la interacció 3B (ĺınia discont́ınua llarga)
redüıda amb un propagador 2B vestit GII . El factor de simetria d’un quart en
l’últim terme es mostra expĺıcitament.

= +

Figure 3 – Representació diagramàtica de la interacció 2B efectiva de
l’Eq. (15), que ve donada per la suma de la interacció original de 2B (ĺınia
discontinua) i la interacció 3B (ĺınia discont́ınua llarga) redüıda amb un propa-
gador SP vestit, G.

propagadors. Aquesta jerarquia proporciona una descripció a tot els ordres,
no només per l’energia pròpia SP sino, a més, per les funcions de vèrtex
d’interacció. Tenir control sobre aquestes quantitats ens permet definir trunca-
ments espećıfics que condueixen a aproximacions de molts cossos ben definides.

Aix́ı doncs, hem definit uns operadors efectius de 1B i 2B, que son de tipus
interacció irreductibles, i tenen en compte les forces de molts cossos descrites
al Hamiltonià:

Ũ =
∑

αβ

[
− Uαβ − i~

∑

γδ

Vαγ,βδ Gδγ(t− t+)

+
i~
4

∑

γε
δη

Wαγε,βδη G
II
δη,γε(t− t+)

]
a†αaβ , (14)

Ṽ =
1

4

∑

αγ
βδ

[
Vαγ,βδ − i~

∑

εη

Wαγε,βδη Gηε(t− t+)
]
a†αa

†
γaδaβ . (15)

Hem introdüıt la quantitat GII , que correspon al propagador de dos cossos:

GII
δη,γε(t− t′) = G4−pt

δη,γε(t
+, t; t′, t′+) . (16)

Una representació gràfica d’aquest termes es pot veure a les Figs. 2-3. Aquesta
manera de definir operadors efectius es pot interpretar com una generalització
de l’ordenació normal de l’Hamiltonià respecte a l’estat de referència no cor-
relacionat |ΦN

0 〉, un procediment que ja s’ha utilitzat en aplicacions de la
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= + +

Γ6−pt

Σ∗

Γ4−pt

Figure 4 – Representació diagramàtica de l’energia pròpia irreductible Σ? per
mitjà dels potencials efectius de 1B i 2B i les funcions 1PI de vèrtex d’interacció,
tal com s’indica a l’Eq. (17). El primer terme és la part independent d’energia
de Σ? i conté tots els diagrames representats a la Fig. 2. Els segon i tercer termes
són dinàmics i consisteixen en configuracions excitades generades a través de
forces 2B i 3B. Aquesta és una equació exacta per Hamiltonians incloent forces
a 3B i no es deriva de la teoria de pertorbacions.

f́ısica nuclear amb 3NFs (Hagen et al., 2007; Bogner et al., 2010; Roth et al.,
2012). Tanmateix, en aquest cas, la contracció del termes d’interacció és
millor, perquè es du a terme respecte a l’estat fonamental correlacionat |ΨN

0 〉.
Amb aquesta definició de potencials efectius, l’expansió pertorbativa de l’auto-
energia irreductible Σ?(ω) es simplifica, fet que ajuda en l’enumeració de tots
el diagrames que la constitueixen.

L’expansió pertorbativa de l’auto-energia és útil per identificar noves aporta-
cions sorgides a partir de la interacció a 3B. No obstant això, els diagrames
fins a un cert ordre no incorporen necessàriament tota la informació necessària
per descriure sistemes quàntics de molts cossos fortament correlacionats. Per
exemple, el fort caràcter repulsiu de la força nuclear a distàncies curtes re-
quereix expĺıcitament la suma a tots ordres de la sèrie d’escala. Per investigar
els esquemes d’aproximació per sumes a tots ordre que inclouen forces a 3B
(3BFs), hem desenvolupat el mètode de l’equació del moviment (EOM) per
els propagadors. Aix́ı obtenim una visió completa de les possibles expansions
de l’auto-energia irreductible auto-consistent, Σ?. Per només forces de 2B, la
tècnica de l’EOM defineix una jerarquia d’equacions que relacionen cada n-cos
GF als (n−1)- i als (n+1)-cos GFs. Quan s’inclouen forces de 3B, la jerarquia
també inclou els (n+2)-cos GFs. Un truncament d’aquesta jerarquia de tipus
Martin-Schwinger és necessari per resoldre el sistema d’equacions (Martin &
Schwinger, 1959; Mattuck & Theumann, 1971).

Hem resolt l’EOM pel propagador 1B i 2B. Això ens ha donat una expressió
a tots els ordres pertorbatius, respectivament, per l’auto-energia irreductible
i per la funció de vèrtex de quatre punts, i.e. Γ4−pt. L’expressió formal per
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l’auto-energia en termes del operadors efectius Eqs.(14-15) esdevé:

Σ?
γδ(ω) = Ũγδ −

(i~)2

2

∑

µ
νλ

∑

ξθ
ε

Ṽγµ,νλ

∫
dω1

2π

∫
dω2

2π
Gνξ(ω1)Gλθ(ω2)

×Γ4−pt
ξθ,δε(ω1, ω2;ω, ω1 + ω2 − ω)Gεµ(ω1 + ω2 − ω)

+
(i~)4

12

∑

µφ
λνχ

∑

θξη
εσ

Wµγφ,λνχ

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

×Gλθ(ω1)Gνξ(ω2)Gχη(ω3)

×Γ6−pt
θξη,εδσ(ω1, ω2, ω3;ω4, ω, ω1 + ω2 + ω3 − ω4 − ω)

×Gεµ(ω4)Gσφ(ω1 + ω2 + ω3 − ω4 − ω) . (17)

L’equació per l’auto-energia completa introdueix les funcions de vèrtex d’in-
teracció, i.e. Γ4−pt i Γ6−pt. Resolent l’EOM pel propagador de 2B hem trobat
l’expressió diagramàtica de la primera d’aquesta funcions a tots ordres. A
les Figs. 4-5 mostrem la representació diagramàtica de l’auto-energia i de la
funció de vèrtex d’interacció Γ4−pt en termes dels operadors efectius.

Els esquemes més simples de truncament per la Γ4−pt vénen de considerar
solament els tres primers termes de la Fig. 5, que només impliquen forces 2B
efectives. Els diagrames Figs. 3.14(a) i 3.14(b) condueixen a la re-sumació
d’escala que inclou forces efectives derivades de la f́ısica de 3B, utilitzada en
estudis recents de matèria nuclear infinita (Somà & Bożek, 2008; Carbone
et al., 2013b):

Γ4ladd
αγ,βδ(ωα, ωγ;ωβ, ωα + ωγ − ωβ) =

Ṽαγ,βδ +
i~
2

∫
dω1

2π

∑

εµθλ

Ṽαγ,εµGεθ(ω1)Gµλ(ωα + ωγ − ω1)

×Γ4ladd
θλ,βδ(ω1, ωα + ωγ − ω1;ωβ, ωα + ωγ − ωβ) , (18)

Aquesta es l’aproximació que hem utilitzat en els càlculs d’aquesta tesi. Per
calcular l’auto-energia de SP mitjançant aquesta aproximació, necessitem
obtenir una expressió pel potencial efectiu de dos cossos. Més espećıficament,
hem de calcular la contribució contreta de 3B que apareix al segon terme de
l’Eq. (15), que mostrem al segon diagrama a la dreta de la Fig. 3. A més a
més, com es veu a la Fig. 4, necessitem també una expressió per la part rela-
cionada amb el potencial efectiu a 1B. En aquesta tesi, aquest terme l’hem
calculat només a primer ordre, i.e. aproximació d’Hartree-Fock. és a dir, el
tercer terme de l’Eq. (14) està calculat solament l’ordre HF i no cal conèixer
el propagador a 2B, sinó que es pot derivar del terme 3B inclòs en el poten-
cial efectiu a 2B. Aix́ı, s’ha de posar molta atenció en el factor de simetria
que multiplica el tercer terme de l’Eq. (14). Aquest factor, en la aproximació
d’HF, canvia de 1/4 a 1/2 (últim diagrama en la Fig. 2). Cal notar que la
contribució 1B que apareix al primer terme en el potencial efectiu 1B no s’ha
de considerar en càlculs de matèria infinita.
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Figure 5 – Expressió auto-consistent de la funció de vèrtex Γ4−pt derivada de
l’EOM del propagador a 2 cossos. Els parèntesis sota alguns dels diagrames in-
diquen que l’expressió obtinguda mitjançant l’intercanvi dels arguments {βωβ}
i {δωδ}, també ha de ser inclòsa. Els diagrames (a), (b), (c) i (f) són els únics
presents en Hamiltonians de 2B, encara que (f) també conté algunes contribu-
cions 3BF intŕınseques, com la que s’obté de l’intercanvi de {αωα} ↔ {γωγ}
en la contribució (e). Tots els altres diagrames es deriven de la inclusió de les
interaccions 3B. El diagrama (b) és el responsable de generar la suma d’escala,
la part directa de (c) genera la sèrie d’anells antisimètrica, i els tres conjunts
[(b), (c) i el canvi de (c)] donen lloc a una de re-sumació de tipus Parquet.

El potencial efectiu quiral de dos cossos

El pas necessari que hem realitzat ha sigut, doncs, el càlcul d’una 3NFs mit-
jana a través de la contracció amb un propagador 1B (segon terme al costat
dret de la Fig. 3.4). L’avantatge d’usar un 2NF depenent de la densitat con-
strüıda a partir de la f́ısica dels tres cossos és clara. La definició d’un potencial
efectiu és el camı́ més fàcil per incloure, encara que a l’ordre més baix de cor-
relacions de 3B, l’efecte de 3NFs. De fet, aquesta, diguem-ne solució ràpida,
proporciona l’efecte de 3B forces sense la necessitat, donada una aproximació
de molts cossos espećıfics, d’alterar la teoria constrüıda només per tractar
forces 2B.

Hem constrüıt un potencial efectiu començant de les 3NFs que apareixen a
tercer ordre en l’expansió quiral, N2LO. Les 3NFs a N2LO estan donades per
tres termes: un intercanvi de dos pions (TPE), que es correspon amb el terme
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d’intercanvi original de 2π de Fujita-Miyazawa (Fujita & Miyazawa, 1957), un
d’intercanvi d’un pió (OPE), i un terme de contacte (cont) (van Kolck, 1994;
Epelbaum et al., 2002b). Per fer una contracció amb un propagador vestit
d’aquestes forces s’ha d’efectuar una integral del estil:

〈1′2′|Ṽ 3NF|12〉A = Trσ3Trτ3

∫
dk3

(2π)3
n(p3)

〈1′2′3′|W (1− P13 − P23)|123〉A12 . (19)

A12 en l’element de matriu al costat esquerre significa que l’estat de tres
part́ıcules està anti-simetritzat només pel que fa a les part́ıcules 1,2. L’intercanvi
(1 − P13 − P23) en el càlcul de l’Eq. (19) és una necessitat per tal d’obtenir
una força depenent de la densitat que té en compte correctament totes les
possibles permutacions. Si es descuida, s’obté una força depenent de la den-
sitat incorrecta, que ha perdut part de la permutació que caracteritzava la
força 3B original. L’operador Pij correspon a l’operador de permutacions del
moment, esṕın i isosṕın de les part́ıcules i, j. Aquesta integral està regulada
internament per una funció de tipus:

f(k, k′, p3) = exp

[
−
(

k

Λ3NF

)4

−
(

k′

Λ3NF

)4
]

exp

[
−2

3

p2
3

Λ4
3NF

(
p2

3

3
+ (k2 + k′2)

)]
. (20)

Λ3NF defineix el valor de tall aplicat a la 3NF per tal d’obtenir una contribució
quiral de 3B que s’extingeix de manera semblant a la part quiral de 2B. k =
|k| = |p1 − p2|/2 i k′ = |k′| = |p′1 − p′2|/2 són els mòduls dels moments
d’entrada i sortida relativa; p3 és el mòdul de l’impuls SP de la part́ıcula
sobre la qual es promitja.

Calculant la contracció escrita a l’Eq. 19 per a les tres contribucions 3B
que apareixen a N2LO, s’obtenen sis termes Ṽ 3NF dependents de la densitats.
De la contribució de TPE en sorgeixen tres termes: un terme que descriu
l’intercanvi d’un pió amb un propagador que té en compte el medi nuclear;
un terme d’intercanvi d’un pió que conté correccions al vèrtex d’interacció; i
una contribució que inclou correccions del medi al terme d’intercanvi de 2π.
La contribució OPE implica dos termes: un primer que defineix correccions
al vèrtex en el terme d’intercanvi d’un pió de 2B i un segon que té en compte
correcions al vèrtex pel terme de contacte de dos cossos. Finalment, el terme
de contacte de 3B genera una única contribució de tipus escalar.

A la Fig. 6 mostrem, a la densitat de saturació emṕırica, l’efecte complet
de la interacció obtinguda fent el promig en el medi sumada a la força de 2B
N3LO. Les corbes s’han obtingut utilitzant tant una funció de distribució no
correlacionada com una correlacionada en l’Eq. (19). La funció de distribució
correlacionada és la distribució dels impulsos auto-consistent obtinguda en
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Figure 6 – Modificacions sobre les ones parcials S, D, S −D (panell superior
(a)) i P (panell inferior (b)) degut al potencial depenent de la densitat, Ṽ 3NF.
Les ĺınies negres cont́ınues representen el potencial 2B N3LO. La ĺınia vermella
puntejada correspon a la suma del potentcial de 2B N3LO i el potencial Ṽ 3NF

calculat amb un propagador de nucleó vestit (corr). Les ĺınies verdes puntejades
discont́ınues corresponen al cas obtingut amb un propagador de nucleó llibre
(free). Els termes dependents de la densitat estan obtinguts a la densitat de
saturació emṕırica de la matèria nuclear simètrica, ρ0 = 0, 16 fm−3.
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cada iteració de la solució de l’equació de Dyson, Eq. (13), considerant tant
2NFs i 3NFs en el càlcul.

Centrant-nos en les ones parcials S, presentades als panells superiors de
la Fig. 6(a), es veu com el potencial 2B N3LO tendeix a tenir valors menys
atractius per a tots moments. La repulsió proporcionada per la força depen-
dent de la densitat arriba a ser el 50% del valor de la força de 2B a impuls
zero. Si ara considerem les ones D, panell inferior esquerre de la Fig. 6(a) ,
s’observa una petita atracció per baixos impulsos, ∼ 0.02 fm, que evoluciona
en una repulsió més forta a moments intermedis, ∼ 0.1 fm en repulsió. Les
modificacions en les ones S i D són dominants . Els canvis que caracteritzen
aquestes ones parcials augmenten amb la densitat. D’aqeusta manera sorgeix
un mecanisme per a la saturació de la matèria nuclear. El comportament
de l’ona S − D és contrari al de l’ona D. S’hi observa una petita repulsió,
de l’ordre de ∼ 0.02 fm, a moments fins a 1 fm−1, i un valor semblant però
atractiu, a moments més grans.

Podem observar que l’efecte principal que ve de l’ús d’un propagador lliure
de nucleó respecte al vestit apareix a la ones D i S −D. El canvi és repulsiu
en l’anterior i atractiu en aquest últim, és a dir, que augmenta en ambdós
casos el valor absolut de l’element de matriu del potencial. Per les ones S
les modificacions són menyspreables. F́ısicament podem interpretar això com
una conseqüència de la manera diferent de tractar els moments disponibles
a l’espai fasic per fer el càlcul mitjà del potencial 3B. Comparant també en
altres ones, s’entén que l’efecte es degut a com estan tractats els moments
més petits de kF. Com més disponibles són aquests moments en el càlcul del
potencial mitjà, més fort és, en termes de valors absoluts, l’efecte del potencial
depenent de la densitat. A la Fig. 6(b) es mostra, per les ones P , la suma
de les sis contribucions Ṽ 3NF al potencial 2B N3LO. Veiem que en les ones
3P0 i 3P2, l’efecte és d’afegir repulsió per a tots moments respecte al potencial
2B N3LO. En l’ona 3P0, el valor mitjà d’aquesta repulsió és de ∼ 0.1 fm, que
mor a petita i gran impulsos relatius. Per l’ona 3P2, aquest valor és una mica
més petit , aconseguint el seu màxim en ∼ 0.05 fm per moments intermedis.
Per l’ona parcial 1P1, l’efecte és atractiu a baix moment i repulsiu per valors
més grans. El comportament s’inverteix para l’ona 3P1. En tots dos casos,
la modificació no és més gran que ∼ 0.04 fm en valor absolut . Per les ones
P , els resultats obtinguts de realitzar el càlcul amb un propagador lliure o
vestit pel nucleó presenten petites diferències. A les ones 1P1 i 3P1, el canvi
causat per la utilització d’un propagador lliure afegeix una repulsió per a tots
moments de la mida de ∼ 0.02 fm. Per al cas de la ona parcial 3P0, l’efecte
és una mica més petit, però amb el signe contrari .

El calcul d’aquests sis termes dependents de la densitat s’ha dut a terme
tant en SNM com en PNM. En PNM hem analitzat l’efecte en les diferents
ones. A més a més, hem analitzat les diferències que sorgeixen en efectuar
el promig sobre les forces 3NFs amb diferents tipus de funció reguladora,
espećıficament hem considerat només el primer terme en la Eq. (20), i.e una
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funció reguladora externa. D’aquesta manera el moment sobre el qual s’integra
fent el promig no està afectat pel regulador. L’efecte obtingut amb aquestes
diferents funcions ha validat l’efecte que ja hav́ıem entès. és a dir, que si els
moments més baixos del moment de Fermi estan més disponibles, l’efecte de
la força obtinguda del promig sobre el valors de les ones parcials, en valor
absoluts, es més gran. Com a conclusió, hem observat en tots dos casos de
SNM i PNM, que l’efecte del la força de 3B es particularment fort en les
ones S, o sigui que el potencial resulta molt més repulsiu respecte al cas
on es considera solament la força de 2B. Aquesta repulsió augmenta amb la
densitat, i causa el mecanisme de saturació en la SNM. També en el cas de
PNM, gracies a l’efecte repulsiu en les ones parcials, l’energia resulta ser més
repulsiva. En PNM, això és una condició fonamental per obtenir una equació
d’estat més ŕıgida que pugui ser consistent amb les grans masses recentment
observades per estrelles de neutrons (Demorest et al., 2010; Antoniadis et al.,
2013).

Energies de matèria nuclear simètrica i matèria purament neutrónica.

Una vegada obtinguda al força dependent de la densitat, hem volgut estudiar
les propietats mircoscòpiques i macroscòpiques de la matèria nuclear infinita.
Com a punt de partida, hem analitzat les propietats microscòpiques. En el
mètode de les funcions de Green, el coneixement de la funció espectral dóna
accés directe al càlcul de quantitats microscòpiques, com ara la funció de
distribució de moments (veure Eq. (9)).

A la Fig. 7(a), mostrem n(k) per SNM a T =5 MeV per tres diferents
densitats, ρ=0,08, 0,16, 0,32 fm−3. Hem comparat els resultats que s’obtenen
només amb la 2B N3LO amb aquells que inclouen també la 2B dependent de
la densitat. Es presenten corbes per tres promitjos diferents: la versió cor-
relacionada i lliure amb el regulador complet, i la versió correlacionada amb
la funció de regulació externa. Centrem-nos ara per ara en la corba obtinguda
solament amb forces 2B i en aquella obtinguda incloent la força promig 2B
en la versió correlacionada amb regulador complet. L’efecte de la 3NFs en la
distribució dels impulsos és relativament petit a totes les densitats. L’escala
logaŕıtmica de la Fig. 7(b), ens dóna la possibilitat d’apreciar, sobretot a 2ρ0,
una diferència en n(k) per moments més alts que l’impuls de Fermi. L’augment
de la funció de distribució a moments alts i les variacions en la supressió a mo-
ments petits son causa de la inclusió de la força dependent de la densitat. De
fet, podem observar que les 3NFs indueixen una dependència forta en la den-
sitat per la supressió de la distribució dels impulsos a moments baixos. Això
es mostra en els requadres de la Fig. 7(a), que es centren en la regió de baix
impuls. La força quiral suau de 2B indueix una disminució a baixos moments
relativament petita, de l’ordre del 10%, en comparació amb potencials 2B més
tradicionals, que normalment tenen el 15−20%. Les 3NFs modifiquen aquest
comportament, possiblement a causa de les estructures tensorials addicionals
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Figure 7 – Distribució de moments per SNM. Les lines negres cont́ınues pre-
senten el càlcul 2B N3LO. Les corbes vermelless discont́ınues, verdes puntejades
discont́ınues i taronjes dobles puntejades i discont́ınues representen la inclusió
de la Ṽ 3NF, obtingudes respectivament en la versió correlacionada (cor.) i lliure
(free) amb el regulador complet (reg. full), i en la versió correlacionada amb la
funció de regulació externa (reg. ext.). Els càlculs es realitzen a ρ= 0,08-0,16-
0,32 fm−3 en els panells que van d’esquerra a dreta. En el panell (a), primera
fila, les subfigures mostren la supressió de moments per sota de la superf́ıcie de
Fermi. El panell (b), segona fila, mostra els mateixos resultats del panell (a)
en escala logaŕıtmica.

associades a la 2NF depenent de la densitat. Per densitats per sota de la
saturació, la 3NF disminueix la supressió a baixos moments. A la densitat
ρ = 0, 08 fm−3, el valor d’impuls zero per n(k) va des de n(0)2NF+2NFdd = 0.868
a n(0)2NF = 0.845, això condueix a una petita caiguda en el valor de l’energia
cinètica, de T2NF = 24.35 a T2NF+2NFdd = 23.53. La diferència és encara
petita a ρ=0.16 fm−3, d’un petit percentatge. També per aquesta densitat,
seguim observant una disminució major quan considerem només 2NF, és a dir,
n(0)2NF = 0.892 enfront de n(0)2NF+2NFdd = 0.911. Això fa que un cop més
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tenim una energia cinètica lleugerament més gran per al sistema sense 3NF, és
a dir, T2NF = 32.88 MeV per ser comparat amb T2NF+2NFdd = 32.02 MeV. A
densitats més altes, ρ=0.32 fm−3, la 3NF indueix una supressió una mica més
gran, n(0)2NF+2NFdd = 0.905, en comparació amb n(0)2NF = 0.919. En con-
seqüència, l’energia cinètica en el sistema amb 3NF, T2NF+2NFdd = 47.98 MeV,
és una mica més alt que aquella que s’obté amb només 2NF, T2NF = 45.49
MeV. Aquest comportament ens porta a concloure que a major densitat, ma-
jor serà la dispersió d’estats SP a impuls més gran a causa de les forces 3B.
Si mirem a les variacions de la funció de distribució d’impulsos degudes als
diferents procediments de promig en la construcció de la força depenent de la
densitat, veiem que són molt petites, quasi menyspreables. Si en centrem en
la regió d’impulsos petits, observem canvis insignificants. La supressió de la
funció de distribució varia amb un percentatge de molt menys de l’1%. Els pe-
tits canvis en la supressió de la n(k) són més visibles dans l’escala logaŕıtmica
presentat a la Fig. 7(b). En general, hem observat que l’efecte de la força a
3B contreta es molt petit en les propietats microscòpiques i és principalment
visible en propietats de quasipart́ıcules. Consegüentment, l’efecte de 3B es
reflectirà principalment en propietats de volum, com l’energia.

Tot i que les forces quirals son suaus, volem insistir que es troba igual-
ment una població considerable de components d’alt impuls. Les 2NF mi-
croscòpiques tradicionals donarien components d’alt impuls encara més grans
i més fragmentació per la funció espectral. Els nostres càlculs demostren la
importància de considerar aquests efectes també en els càlculs de molts cossos
amb interaccions relativament suaus. En particular, hem vist que les propi-
etats de SP a moments baixos es veuen afectats per les correlacions. Aquest
és un efecte directe de l’auto-consistència i proporciona un mecanisme de
retroacció, on les components d’alt moment afecten les propietats de baixa
energia.

Presentem ara els resultats que hem obtingut per l’energia total de la
matèria nuclear simètrica i de la matèria purament neutrónica, obtingudes
usant el formalisme SCGF que inclou consistentment forces 3B.

A la Fig. 8(a) mostrem les corbes de l’energia per nucleó obtingudes per
a la matèria nuclear simètrica a temperatura T =5 MeV. L’efecte de la 3NF
és sorprenent. Com era d’esperar a partir de l’anàlisi de les ones parcials i de
l’estudi de les propietats microscòpiques, l’efecte de les forces 3B és d’induir
la repulsió necessària en els valors d’energia perquè es realitzi el mecanisme de
saturació de la matèria nuclear. El càlcul fet només amb forces 2B, obtingut
amb el 2B N3LO de (Entem & Machleidt, 2003), satura a altes densitats que
no són visibles en el rang de la figura. Precisament, la saturació s’observa a
ρ = 0.42 fm−3 per un valor d’energia més atractiva, E ∼23 MeV. Aquesta
saturació a alta densitat es cura gracies a l’inclusió de la 2NF depenent de
la densitat, que desplaça els mı́nims de l’energia a densitats properes el valor
emṕıric. A la Fig. 8(a) utilitzem per a les constants de baixes energies cD i
cE els mateixos valors usats a l’estudi d’ones parcials, aquests corresponen a
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Figure 8 – Energia per SNM, panell (a), i per PNM, panell (b) a T = 5
MeV. Les ĺınies negres cont́ınues presenten el càlcul 2B N3LO. Les corbes ver-
melles discont́ınues, verdes puntejades discont́ınues i taronjes dobles puntejades
discont́ınues representen la inclusió de la Ṽ 3NF (N2LOdd), obtingudes respec-
tivament en la versió correlacionada i lliure amb el regulador complet, i en la
versió correlacionada amb la funció de regulació externa. El śımbol de creu
taronja identifica el punt de saturació emṕıric de SNM.

cD = −1.11 i cE = −0.66 (Nogga et al., 2006). En conseqüència, el punt de
tall aplicat sobre la 3NF es fixa en Λ3NF =500 MeV.

Es presenta a la Fig. 8(b) la dependència en densitats de l’energia total
per nucleó en matèria només de neutrons calculada a temperatura finita T =5
MeV. Els valors de les LECs s’escullen d’acord a (Entem & Machleidt, 2003),
c1 = −0.81 GeV1 i c3 = −3.2 GeV−1. En el cas en que emprem només forces
2B, el 2B N3LO de (Entem & Machleidt, 2003), els valors de l’energia total del
sistema estan al voltant de ∼ 13 MeV a la densitat emṕırica ρ0 = 0.16 fm−3.
L’energia creix en repulsió de ∼ 10 MeV quan s’arriba a la densitat al doble
de la de saturació, 2ρ0. La inclusió de 3NFs contribueix a millorar encara més
aquesta repulsió en els diferents valors de densitat. Aquesta repulsió és una
conseqüència directa de les ones parcials més repulsives que s’obtenen quan
s’inclou la força depenen de la densitat, Ṽ 3NF.

Veiem que en els dos casos de SNM i PNM, l’efecte d’utilitzar els diferents
mètodes de promig té un efecte generalment petit a totes densitats. L’efecte
es pot apreciar més a densitats altes. Això és una conseqüència directa del
que hav́ıem conclòs en l’anàlisi de les ones parcials. De fet, creiem que l’efecte
és degut sobretot a com es tracten els moments per sota del moment de Fermi.
A densitats més altes també hi ha una població més gran d’aquests moments,
i l’efecte de com es tracten en el promig és més visible. Pel que veiem en la
Fig. 8, si aquests moments son més disponibles, com ara pel promig correla-
cionat no regularitzat, l’efecte de la força 3B es més gran en valors absoluts,
es a dir, energia més atractiva per valors negatius i energia més repulsiva per
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Figure 9 – Energia per SNM a T =5 MeV, panell (a). Les ĺınies negres
cont́ınues presenten el càlcul 2B N3LO. Les ĺınies vermelles discont́ınues, blaves
puntejades discont́ınues, rosa dobles puntejades discont́ınues i verdes punte-
jades dobles discontinues, corresponen a diferents parelles de LEC cD i cE com
s’explica a la figura i al text. El śımbol de creu taronja identifica el punt de sat-
uració emṕırica de SNM. Energia per PNM, panell (b) a T =0 MeV. Les ĺınies
vermelles discont́ınues presenten el càlcul per 2B N3LO més el Ṽ 3NF, obtingut
en la versió correlacionada amb regulador complet. Les ĺınies blaves cont́ınues
presenten el càlcul on s’aplica l’evolució SRG al 2B N3LO. La banda depèn dels
valors de les LECs c1 i c3 utilitzades en el càlcul, com s’explica al text.

valors positius.

També ens hem volgut centrar en l’estudi de les variacions en l’energia
degudes a diferents valors de LECs utilitzades en el potencial quiral. Mostrem
aquestes variacions en la Fig. 9. Per al cas de SNM, les dues constants de baixa
energia addicionals que apareixen a la força quiral 3N són cD i cE. Aquestes
constants no venen donades per la part 2B i s’han d’obtenir de propietats de
sistemes de pocs cossos, com 3H i 4He (Nogga et al., 2006; Navrátil, 2007;
Marcucci et al., 2013). És possible que, segons el tipus d’ajust que es dugui a
terme per determinar les LECs, hom pugui esperar canvis quantitatius de les
propietats de saturació. Explorem aquestes diferències en la Fig. 9(a), on es
mostra la corba de saturació a T =5 MeV obtinguda amb quatre combinacions
diferents de cD i cE. En els tres primers casos, el potencial 2B N3LO (Entem
& Machleidt, 2003) s’ha completat amb la força dependent de la densitat
obtinguda per diferents parelles de LECs, a la versió correlacionada amb el
regulador complet i amb Λ3NF =500 MeV. L’elecció de les combinacions és
representativa de la dispersió dels valors associats a les LECs. La primera
combianció, cD = −1.11 i cE = −0, 66, que ja s’utilitza a la Fig. 8(a), es va
determinar a partir de les energies d’enllaç de 3H i 4He (Nogga et al., 2006).
El segon conjunt, cD = 1.0 i cE = −0.029, s’ha obtingut amb una versió local
del 3NF N2LO, determinant les constants només del sistema de A = 3 cossos
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(Navrátil, 2007). El tercer conjunt de LEC, amb cD = −0.2 i cE = 0.2, s’ha
utilitzat en la Ref. (Krewald et al., 2012) per als càlculs de SNM, escollint els
valors de les constants seguint criteris de “naturalitat” per matèria infinita.
En l’últim cas presentat a la Fig. 9(a), una transformació basada en el grup
de renormalització de similitud (SRG, de l’anglès similarity renormalization
group), s’ha aplicat al potencial 2B N3LO. El valor del tall aplicat a les dues
parts de 2NF i 3NF és la mateixa, i es fixa a Λ/Λ3NF = 2.0/2.0 fm−1. Aquesta
transformació renormalitza la 2NF, suprimint els elements de matriu fora de
la diagonal i donant lloc a una interacció universal a baixos moments. Les
corbes corresponents a diferents valors de cD i cE cauen dins d’una banda
estreta per sota de la saturació. En general, els canvis són suaus encara
que les constants es canviini considerablement, la qual cosa indica que les
contribucions 3NF són petites a baixes densitats. Per densitats més grans
de ρ ∼ 0.16 fm −3, però, les diferències creixen amb la densitat. El càlcul
amb el potencial 2B-SRG presenta el resultat més atractiu per a l’energia
d’enllaç de SNM, que s’aproxima al valor de l’energia de saturació emṕırica
al voltant de ∼-15 MeV i te, una densitat de saturació un poc més alta que
ρ = 0.20fm−3. En general, les diferents corbes de la Fig. 9(a) obtingudes amb
les quatres parelles diferents de LECs donen diferencies màximes de ∼6 MeV
a la densitat emṕırica de saturació ρ0. Aquesta extensió es duplica a 2ρ0.

Al contrari del que es presenta en el cas de SNM, on les incerteses teòriques
estan dominades per les diferents parelles de LECs cD i cE, en el cas de la
matèria pura de neutrons les discepaàncies estan dominades per incerteses en
la determinació de les LECs c1 i c3. En PNM, els termes proporcionals a cD i cE
son zero. Aix́ı doncs, la resta de LECs son suficients per determinar l’equació
d’estat de PNM. Les incerteses experimentals condueixen a una banda d’error
per a cada constant igual a c1 = −(0, 7−1, 4) GeV−1 i c3 = −(3.5−5.7)GeV−1

(Entem & Machleidt, 2003; Epelbaum et al., 2005; Rentmeester et al., 2003).
A la Fig. 9(b) donem els resultats que engloben aquesta banda d’errors. Els
resultats es presenten a temperatura zero, i cada corba s’ha calculat en dos
casos diferents per la força 2B: la completa N3LO (Entem & Machleidt, 2003)
i l’evolucionada amb la transformació SRG aplicada a la força 2B N3LO amb
un tall de Λ =2.0 fm−1. En ambdós casos, la força 2B es complementa amb
la força 2NF depenent de la densitat derivada en matèria de neutrons amb el
promig correlacionat i regulador complet. El punt de tall s’estableix a Λ = 2.5
fm−1 en el primer cas, i Λ =2.0 fm−1 en el segon. Els resultats es representen
de manera semblant als presentats en la Ref. (Hebeler et al., 2013). Les corbes
superiors corresponen al valor ĺımit més negatius per les LECs, mentre que les
corbes inferiors corresponen al valor ĺımit menys negatius. Observem que, en
ambdós casos, la discrepància dels resultats a causa de les incerteses teòriques
en les LECs varia de menys d’1 MeV a densitats de sub-saturació. A densitats
més altes, arribanen a un valor de ∼ 4MeV a ρ0, i al doble d’aquest valor a
2ρ0, presentant un marge més gran per al cas evolucionat. La Fig. 9(b) sembla
indicar que la matèria de neutrons és pertorbativa en la força nuclear quiral
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per densitats superiors a la densitat de saturació de la matèria nuclear.

Conclusions

La idea principal d’aquesta tesi ha estat introduir consistentment forces de tres
cossos en el formalisme de la teoria SCGF. Aquest treball es pot considerar
com el primer intent d’ampliar, a partir d’una formulació teòrica consistent, el
mètode de les funcions de Green per als sistemes nuclears incloent al mateix
temps forces a 2B i 3B. Un enfocament sistemàtic per a la inclusió de les
interaccions 3B en el mètode SCGF era un pas necessari avui en dia. Els
resultats d’aquesta tesi posen de manifest la importància de les 3NF en els
càlculs de molts cossos i la necessitat de nous desenvolupaments ter̀oics per
tractar-les consistentment. La inclusió de les forces de molts cossos, més enllà
de la 2NF, és de fet obligatòria quan els càlculs es fan amb forces quirals.

Finalment, podem concloure que la inclusió dels 3NFs en el càlcul de molts
cossos ha demostrat ser fonamental per obtenir el mecanisme de saturació en
SNM i per proporcionar una equació d’estat més ŕıgida per al sistema de
PNM. Això demostra, un cop més, la necessitat de considerar les forces de
molts cossos per fer càlculs teòrics consistents amb els resultats emṕırics i
experimentals. Ens agradaria subratllar una vegada més que, mentre que la
motivació principal del nostre estudi ha sigut estudiar els sistemes nuclears,
el formalisme de SCGF que hem desenvolupat es pot aplicar fàcilment a al-
tres sistemes de molts cossos, ja siguin de natura atòmica o molecular. En
aquest sentit, l’esforç realitzat en l’obtenció de l’extensió total des de primers
principis, ha estat també per avançar en algun sentit el mètode de SCGF per
resoldre el problema de molts cossos.
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1
Introduction

The quantum many-body problem is an everlasting challenge for theoretical
physics. The aim sought is to analyze, at the quantum level, the observables
arising from a group formed by a certain number of N interacting particles.
If the N particles in the many-body system are non-interacting, the system
is ideal and can be solved as the sum of N one-body (1B) problems. If the
system is interacting, the only analytically solvable system is the two-body
(2B) one. This can be recast in the form of two 1B problems, one for the
center of mass and the other for the relative coordinate of the two particles.
The three-body (3B) problem is already not solvable analytically, but an exact
solution could be obtained iteratively by solution of the Faddeev equations.
As the number of particles increases, theory has to resort to approximations to
encounter a solution. The objective of many-body physics has constantly been
that of dealing with systems formed from few to many interacting particles,
from finite systems, such as nuclei, atoms or molecules, to the infinite ones,
such as the electron gas or nuclear matter present in the interior of stars.
The quest is to provide the best solution to the problem via the application
of consistent approximations, with the aim of achieving results the closest as
possible to the experimental ones.

In the specific case of nuclear physics, the study and interpretation of
interacting nuclear systems has spanned from the finite nuclei to the infinite
nuclear matter case. In order to characterize such systems, the interactions
with which nucleons behave in their interior need to be sorted out. The
nucleon-nucleon (NN) interactions devised to do so can be divided into two
categories: microscopic and phenomenological. The microscopic potentials are
models constructed to fit experimental data of NN scattering and properties
of the deuteron. All microscopic potentials have a common one-pion exchange
(OPE) long-range part and usually differ in the treatment of the intermediate
and especially short-range part. Due to the strong repulsive short-range part,
and possibly the presence of tensor components, these potentials cannot be
used directly in perturbative calculations and need to be renormalized through
the use of many-body methods. Phenomenological potentials are simpler, and
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1. Introduction

are constructed fitting a number of coupling constants to empirical saturation
properties of nuclear matter and observables of ground states of nuclei. For
this reason their validity far from these densities can be questionable. These
potentials can be of a relativistic or nonrelativistic kind and are used directly
in mean-field calculations, such as relativistic mean field theory or the Hartree-
Fock (HF) approximation.

In the present thesis we will focus our study on infinite nuclear matter,
analyzing the properties of the two systems which stand at the extremes in
terms of isospin asymmetry: symmetric nuclear matter (SNM), with an equal
number of neutrons and protons, and pure neutron matter (PNM), with only
neutrons. We will base our approach in terms of realistic microscopic poten-
tials, hence we will need to choose a many-body technique in order to treat
the potential. We choose to perform our calculations exploiting the formal-
ism provided by the self-consistent Green’s function’s (SCGF) theory. This
approach is based on a diagrammatic expansion of the single-particle (SP)
Green’s function, or propagator. This method was devised to treat the corre-
lated, i.e. beyond mean-field, behavior of strongly interacting systems, such
as nuclear matter.

Unfortunately, it is a well established fact that whatever microscopic two-
nucleon forces (2NFs) are used in the many-body calculation, empirical satu-
ration properties of nuclear matter fail to be reproduced. Saturation densities
appear at high values, presenting energies which are inconsistently too attrac-
tive, overbinding nuclear matter. This inconsistency bears some similarities
to the case of light nuclei where, on the contrary, the 2NF-only based theory
underbinds experimental data. The inclusion of three-nucleon forces (3NFs)
has been the indispensable factor to cure this deficiency. Hence, microscopic
3NFs have been mostly devised to provide attraction in light finite systems,
small densities, and repulsion in infinite systems, high densities. However,
phenomenological ingredients have often been chosen to model these 3NFs.
To bypass the need to adjust the potential with ad hoc contributions, an
alternative has been provided by chiral effective effective field theory (χEFT).

Featuring the consistent Hamiltonian at the 2B and 3B level provided by
χEFT, in this thesis we will present calculations including both 2NFs and
3NFs. This will be dealt within an extended SCGF formalism, specifically
formulated to include consistently 3B forces.

In the next section we will present an overview of the different many-
body approaches which have been used to solve the infinite nuclear matter
many-body problem. These approaches can treat the particles either rela-
tivistically or non-relativistically. The non-relativistic assumption seems rea-
sonable, given that the energies involved in nuclear matter provide Fermi ve-
locities which are less than one third the speed of light. All these approaches
try to deal, in one way or another, with the strong short-range force which acts
in between nucleons. We will then focus, in the second section of this intro-
duction, on the variety of microscopic potentials which, through the decades,
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1.1. The nuclear many-body problem

have been devised to describe this kind of interactions. Finally, we will outline
the general program of the thesis.

1.1 The nuclear many-body problem

In theoretical nuclear physics, the ambition to describe from an ab initio point
of view the basic properties of nuclear systems in terms of realistic interactions,
has pushed the development of a variety of many-body methods. The quest to
solve the nuclear many-body problem from first principles, i.e. from the defi-
nition of the Schrödinger equation, is appealing but very challenging. In the
specific case of infinite nuclear matter, this aim is confronted with the lack of
experimental results needed to constrain the construction of the theory from
its building blocks. However, the infinite system of nucleons interacting via
the strong force, in spite of being ideal, is characterized by well-known empir-
ical properties. These properties can be obtained extrapolating experimental
results from finite nuclei. In this sense, the semi-empirical mass formula of
Bethe and Weizsäcker (Weizsäcker, 1935; Bethe & Bacher, 1936), provides a
way to quantify these empirical properties:

B(N,Z) = aVA− aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
+ δ(A) . (1.1)

The formula models the nucleus as an incompressible quantum drop (Baym
et al., 1971) formed by a number N of neutrons and Z of protons, with mass
number A = N + Z. Each term in Eq. (1.1) captures a specific physical
property of the nucleus. The first two contributions, the volume and surface
terms, define respectively the binding energy in the interior and on the surface
of the nucleus. The third contributions accounts for the Coulomb repulsion in
between protons. The last term is known as symmetry energy, and shows how
the nuclei which are isospin symmetric, i.e. N = Z, are energetically favored.
The corrections which can be applied to this formula take into account the
properties of nuclei which emerge along the nuclear chart.

Via experiments of electron scattering on nuclei, it has been tested that
the charge distribution in the interior of heavy nuclei reaches a stable value.
This charge density is proportional to the density inside the nucleus. The ex-
trapolated value for very large mass number A defines the empirical saturation
density of nuclear matter, ρ0 = 0.16 fm−3. In this limit, A→∞, the binding
energy per nucleon of a symmetric nucleus, N = Z, can be obtained from the
semi-empirical mass formula, Eq. (1.1), providing the value aV = 16 MeV.
The empirical saturation properties of nuclear matter can then be defined as
(Mackie & Baym, 1977):

E(ρ0)/A = −16MeV , ρ0 = 0.16 fm−3 . (1.2)

Any ab initio many-body theory must present a minimum at these values
in the energy curve of SNM. Furthermore, from Eq. (1.1), the value for the
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symmetry energy of nuclear matter can be obtained. In the case where the
number of nucleons is taken to infinity, but the density ρ is kept at a fixed
value, we can rewrite the semi-empirical mass formula as

B(N,Z)

A
= aV − α2aA , (1.3)

where we have neglected the Coulomb term which would drive the drop model
unstable. In Eq. (1.3), the isospin asymmetry parameter is identified with
α = (N−Z)/A. The symmetry energy accounts for the loss in binding energy
for the system going from the symmetric to the asymmetric isospin case. The
value of the symmetry energy in infinite matter cannot be directly inferred
from the parameter aA. Though, when the energy per nucleon of the system
is known for different isospin asymmetries, the symmetry energy at empirical
saturation density can be calculated as (note that B(N,Z) = −E(ρ, α)):

S(ρ, α = 0)

A
=

1

2

∂2

∂2α

E(ρ, α)

A

∣∣∣∣
α=0

. (1.4)

The accepted value for this quantity is ∼ 32 MeV (Tsang et al., 2012). This
value is fairly well constrained from both experimental results on nuclei and
theoretical models which try to predict its value. This quantity impacts var-
ious aspects in nuclear physics, from phenomena in nuclear astrophysics, all
the way to nuclear structure and nuclear reactions. However, even though the
value at saturation density can be considered as reliable, its density depen-
dence remains up to today not completely known (Horowitz et al., 2014).

It is customary to characterize the density dependence behavior of the
energy in symmetric nuclear matter with a Taylor expansion (Vidaña et al.,
2009; Piekarewicz & Centelles, 2009):

E(ρ, α = 0) = E(ρ0, α = 0) +
1

2
K0

(
ρ− ρ0

3ρ0

)2

+ O(3) . (1.5)

The quantity K0 is known as the compressibility of nuclear matter and can
be considered as a further empirical value to constrain the many-body theory
under hand. Its formal expression is:

K = 9ρ2
0

∂2

∂2ρ

E(ρ, α)

A

∣∣∣∣
ρ=ρ0

; (1.6)

the compressibility characterizes in some sense the behavior of the energy of
SNM around saturation density. Its value can be estimated from the study of
giant monopole resonances, and it falls between a narrow band of K = 240±10
MeV (Piekarewicz & Centelles, 2009).

A reliable many-body formalism is such if it can reproduce these empirical
properties for infinite system. The first step for the construction of an ab
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initio method is the definition of the Hamiltonian which describes the way
nucleons interact in the interior of the infinite system. Once the Hamiltonian
is chosen, the many-body problem for the group of interacting fermions, the
nucleons, has to be solved.

The simplest approach to the solution of this many-body problem is the
mean-field or HF approximation (Hartree, 1928; Fock, 1930; Slater, 1930).
The idea underlying this kind of approximation is that the strongly interacting
system of fermions may be described in terms of a single Slater determinant. In
other words, each particle is restated as a quasiparticle surrounded by a mean-
field potential which accounts for its interaction with all the other particles of
the system. This procedure can yield good results if used together with the
phenomenological potentials, such as Skyrme or Gogny interactions, which are
constructed as to fit empirical saturation properties of nuclear matter or finite
nuclei observables (Ventura et al., 1992; Rikovska Stone et al., 2003). The
strength of these mean-field theories lies in the fact that they can be recast in
terms of functionals of the energy. Nuclear Density Functional Theory (DFT)
is built on theorems showing the existence of universal energy functionals for
many-body systems, which include, in principle, all many-body correlations
(Lalazissis et al., 2004).

However, in the case of using realistic potentials, this method drastically
fails leading to unbound nuclei and nuclear matter. The strong short-range
part of the potential, to which particles are exposed in the mean-field approx-
imation, induces correlations in between the particles which cannot be solved
within this kind of approach. Over the last 50 years, many-body formalisms
capable to deal with the solution of this problem have been devised.

Several approaches have been based on the variational principle to obtain
the energy of the many-body ground state. To evaluate the Hamiltonian ex-
pectation value, a trial wave function, typically of a Jastrow-kind (Jastrow,
1955), is built to incorporate the effects of correlations. This is done by the
definition of correlation operators on top of the uncorrelated Slater deter-
minant wave-function. These Jastrow factors suppress the short-range and
tensor components present in the wave-function of two-close particles. If the
correlated trial basis is close enough to the exact one, one can perform pertur-
bation theory in the frame of the so called Correlated Basis Function (CBF)
theory (Clark & Westhaus, 1966; Fantoni & Fabrocini, 1998). Alternatively,
further variational techniques have been devised to compute the energy from
the trial wave-function. The energy evaluation using the correlated basis can
be performed by solving the Fermi-Hyper-Netted-Chain (FHNC) equations
(Pandharipande & Wiringa, 1976), which are obtained via a diagrammatic
cluster expansion (Fantoni & Rosati, 1974, 1975). In solving the FHNC equa-
tions, the operatorial structure of the Hamiltonian can lead to additional
approximations to be considered, such as the Single Operator Chain (SOC)
approximation (Pandharipande & Wiringa, 1979), which is used to solve the
set of integral equations. If the variational method is exactly performed, re-
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sults should provide an upper bound to the total energy per particle.

Quantum Monte Carlo approaches have also been widely used to provide
solution to the nuclear many-body problem. These are based on stochastic
algorithms using the central limit theorem to compute multidimensional inte-
grals. On a first step, one can compute the expectation value of the ground
state by means of the Variational Monte Carlo (VMC) calculation. A VMC
calculation uses Monte Carlo integration to minimize the expectation value
of the Hamiltonian via the Rayleigh-Ritz method (McMillan, 1965). Subse-
quently, the output configurations of this calculation can be used as an input
to more extensive approaches. According to the different samplings of the
spin/isospin configuration space performed, these approaches exists in differ-
ent versions. By treating the Schrödinger equation as a diffusion equation,
these methods work by projecting out the exact lowest energy eigenstate from
a trial wave function which is stochastically evolved. Whereas the Green’s
Functions Monte Carlo (GFMC) method (Ceperley & Kalos, 1979) sums over
all possible spin/isospin states of the system to built the trial wave-function,
the Auxiliary Field Diffusion Monte Carlo (AFDMC) method (Schmidt &
Fantoni, 1999) relies on the Hubbard-Stratonovich transformation which re-
duces the number of states to be sampled. This allows the AFDMC method
to be performed in systems with a higher number of nucleons to ensure that
finite size effects are small.

The Coupled Cluster (or expS) approach is also based on the use of a
trial wave function, where the Slater determinant for the uncorrelated basis
is multiplied by an exponential factor (Coester, 1958; Coester & Kümmel,
1960). The operator S is formed by a set of creation-destruction operators
that respectively add particles and holes on top of the Fermi sea to induce the
correlated behavior on the wave-function. The exponential S ansazt, used in
the coupled cluster equations, proves to be preferable with respect to other
parametrizations of the trial wave function. As a matter of fact, it provides
an expectation value for the Hamiltonian which is not extensive and, hence,
doesn’t grow with the number of particles in the system. In solving the energy
expectation value, the coupled cluster equations sum series of hole-hole and
particle-particle scatterings, in some sense similar to the ladder approximation
which we will see in the SCGF method (Baardsen et al., 2013).

A much implemented many-body method, which has gained high popu-
larity in the field of nuclear many-body theory, is the one which was initiated
by Brueckner in the mid-50’s (Brueckner et al., 1954; Brueckner & Levinson,
1955; Brueckner, 1955). This approach, known as the Brueckner-Goldstone
theory, is based on the Goldstone expansion (Goldstone, 1957), which uses
Feynman diagrams (Feynman, 1949) to define a linked-diagram perturbation
series for the ground state energy of the many-body system. Most of the ad-
vances in the understanding of this theory were subsequently brought forward
by Bethe and his collaborators (Bethe, 1956; Rajaraman & Bethe, 1967), and
for this reason one usually refers to this approach as the Bethe-Brueckner-
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Goldstone theory. The diagrams appearing in the perturbation series give rise
to the hole-line expansion, which in principle could be performed up to an
arbitrary number of hole-lines (Day, 1967). In practice, only calculations up
to the two- and three-hole lines expansions have been performed up to now,
which have proved the convergence of the series (Baldo & Burgio, 2001). The
Brueckner-Hartree-Fock (BHF) approach corresponds to the lowest order in
this Bethe-Brueckner-Goldstone expansion. In the BHF approximation, only
the sum of two-hole-line diagrams is considered, which is what accounts for
the correlations present in the system. The potential is renormalized into an
effective one, the G-matrix, which corresponds to the simultaneous particle-
particle propagation on top of the Fermi momentum, iterated to a all-orders.
The BHF method can be seen as a kind of mean-field approach, in that each
SP momentum state is associated with a single SP energy, sum of a kinetic
and a potential part obtained from the renormalized interaction. As far as
the hole-line expansion goes, the contribution to the energy coming from the
three-hole line diagrams has been computed (Song et al., 1998). This has
proved the convergence of this kind of expansion, giving credit to calculations
performed in the lowest-order (two hole-line) BHF approximation. Further-
more, a relativistic version of the BHF is also available, known as the Dirac-
Brueckner-Hartree-Fock approach (Anastasio et al., 1983), in which the rela-
tivistic scattering is corrected to take into account the presence of the nuclear
medium.

In the past decade, many-body approaches for the study of infinite nuclear
matter have also been devised in the frame of chiral perturbation theory (Lutz
et al., 2000; Kaiser et al., 2002). Observables are calculated with the help of
an Effective Field Theory formulated in terms of the Goldstone bosons, pions,
and the low-lying baryons, nucleons. The energy per particle results in an
expansion in terms of the Fermi momentum kF which, being twice the mass of
the pion at saturation density, requires the pions to be kept as explicit degrees
of freedom.

A revolutionary method was brought forward less than ten years ago which,
by means of regularized potentials, avoids the problem related to strong cor-
relations in the many-body wave function. This approach paved the way for
the treating of nuclear matter with the use of Perturbation Theory (Bogner
et al., 2005). In these calculations, a potential obtained from χEFT is evolved
to low-momentum via regularization techniques (Nogga et al., 2004; Bogner
et al., 2007), preserving all the way the observables up to the cutoff value
implemented in the regularization. Given the universality of low-momentum
potentials, many different potentials other then chiral ones could be imple-
mented in this approxiamation. In contrast to the philosophy with which all
other methods were constructed, based on EFT insights, the concept which
has been strongly stressed in this kind of approaches, all along, is that many-
body forces are inevitable and must not be neglected in order to keep the
calculation consistent (Hebeler et al., 2011; Krüger et al., 2013).
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As already stressed in the introduction to this chapter, in this thesis we
will perform calculations by means of the nonperturbative SCGF theory. The
SCGF approach has been continuously improved through the past decades
to study infinite nuclear matter. This method is self-consistent in that the
Green’s function, which describes the propagating particle, is determined
by the interaction of this particle with the surrounding ones. In turn this
same interaction is described by the Green’s function itself. An iterative
self-consistent procedure is then due to find a stable solution for the Green’s
function. In this approach, correlations are taken into account by summing up
multiple particle-partilce and hole-hole scatterings in the medium by means
of the T -matrix. This treatment for nuclear matter is known as ladder ap-
proximation. A diagrammatic approach by means of Feynman diagrams is the
preferred path to follow, to have a direct interpretation of the self-consistent
equations one has have to deal with.

The first approach to many-particle systems from a Green’s functions point
of view was presented by the authors of Ref. (Martin & Schwinger, 1959). A
primitive attempt to carry out calculations for the ground state properties
of nuclear matter was presented not long after (Puff, 1961; Reynolds & Puff,
1963), with the use of simple separable potentials. First implementations with
a hard-core realistic potential were performed by (Foster & Fiset, 1971; Fiset &
Foster, 1972). Later on, calculations with the use of certain realistic potentials
were also presented by (Weber & Weigel, 1985). At this stage, the problem
was solved only at the Hartree-Fock level. Subsequently, high improvements
in the numerical implementation were introduced by the Barcelona and St.
Louis groups (Ramos, 1988). With the use of realistic potentials, the prob-
lem was analyzed at zero temperature considering an all-order summation of
particle-particle and hole-hole propagations. The calculations were performed
in a quasi-particle approximation, meaning that the energy dependence of
the spectral function was approximated to a delta-peak at the quasiparticle
energy, and self-consistency was demanded only at the on-shell level (Ramos
et al., 1989a,b). In addition, a careful analysis of the effects of short-range and
tensor correlations on the SP self-energy and spectral function were analyzed
in subsequent publications (Vonderfecht et al., 1991a,b, 1993). Similar stud-
ies were presented at finite temperature by the Rostock group (Alm et al.,
1995; Schnell et al., 1996). Attention was especially drawn on the analysis
of the occurrence of pairing instability, where bound states in the hole-hole
propagation appear at zero temperature in the low-density region (Alm et al.,
1993, 1996). A substantial improvement was provided by the first attempts
to consider fully dressed SP propagators, including the off-shell dependence
of the spectral function. These were introduced by parametrizing the off-shell
part with a set of Gaussian functions (Dickhoff et al., 1999). The Ghent group
tried to achieve a similar objective, using a discrete number of Dirac peaks
(Dewulf et al., 2002, 2003). At the same time, complete off-shell results where
presented both at zero and finite temperature by the Krakow group. First
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implementations in the off-shell part of the spectral function were done with
simple separable potentials (Bożek, 1999; Bożek & Czerski, 2001) and then,
as an innovation, with separable versions of realistic NN potentials (Bożek,
2002; Bożek & Czerski, 2003). The full off-shell dependency of the spectral
function was then computed by the Krakow group with realistic potentials
including both two- and, for the first time, three-body forces (Somà & Bożek,
2008, 2009; Somà, 2009). A milestone of the Tübingen and Barcelona groups
has been that of achieving a detailed and extensive study of infinite matter at
finite temperature. At zero temperature the T -matrix undergoes the so called
pairing instability, in which the formation of Cooper pairs in the hole-hole
propagation part is favored and a superconducting phase appears. The defini-
tion of anomalous Green’s functions would be necessary to solve this problem
(Dickhoff & Van Neck, 2008). Finite but low temperature automatically solves
the problem related to this instability. A complete numerical routine to calcu-
late full off-shell structure of all relevant quantities at finite temperature was
devised by Frick et al (Frick & Müther, 2003; Frick, 2004). The effect of short
range correlations was analyzed both for symmetric and asymmetric matter
(Frick et al., 2004, 2005; Rios et al., 2006a). Thermodynamical properties
from a self-consistent Green’s function approach were largely investigated us-
ing different kinds of realistic potentials (Rios et al., 2006b; Rios, 2007; Rios
et al., 2009b). The effect of correlations on the depletion of the SP momen-
tum distribution is also still broadly investigated (Rios et al., 2009a; Carbone
et al., 2012; Rios et al., 2013). Recently, a SCGF calculation of the nucleon
mean-free path has been presented (Rios & Somà, 2012).

1.2 The nuclear interaction

To solve the nuclear many-body problem, by means of any of the different
approaches presented in the previous section, one needs to choose a specific
definition of the strong interaction.

Potentials are defined realistic if they are able to reproduce NN scatter-
ing data. After very primitive attempts of static local potentials (Gammel &
Thaler, 1957) with additional spin-orbit terms included (Eisenbud & Wigner,
1941), the most widely used potentials in the 60’s were the Hamada-Johnston
(Hamada & Johnston, 1962) and Yale (Lassila et al., 1962) potentials. An
improvement over these was presented later on by the authors of Ref. (Reid,
1968). However, the Reid potential was mainly fit to reproduce the avail-
able pp (proton-proton) data at the time. In a similar way, the Nijmegen
(Nagels et al., 1978) and Paris (Lacombe et al., 1980) potentials were also
built to reproduce pp phase shifts, and hence provided a poor fit of the np
(neutron-proton) data. Fundamentally this problem was related to the charge-
independence breaking which characterizes the strong interaction. Charge-
independent potentials highly implemented in calculations were the Argonne
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v14 (Wiringa et al., 1984), Urbana v14 (Lagaris & Pandharipande, 1981) and
the Bonn potentials (Machleidt et al., 1987; Machleidt, 1989). The first high-
precision NN microscopic potentials which were able to fit both nn and np
scattering data up to an energy Elab = 350 MeV (Stoks et al., 1993), were
the Nijm93, Reid93 (Stoks et al., 1994) and Argonne v18 potentials (Wiringa
et al., 1995). The Nijm93 and Reid93 potentials were built in momentum and
spin/isospin space, while Argonnev18 was constructed in configuration space.
These potentials were expanded in terms of all operators which respected the
underlying behavior of the NN force. An evolution of the Bonn potentials
to include charge dependency was similarly presented a few years later, the
CdBonn potential (Machleidt, 2001). Unlike other potentials, the Bonn and
CdBonn forces were boson exchange kind potentials built in momentum space.

Along with the formulation of realistic 2B potentials, 3B forces were de-
fined to be included in nuclear many-body calculations (Day, 1981). The first
modern meson-exchange 3B potential was proposed by Fujita and Miyazawa
(Fujita & Miyazawa, 1957). It contained only a 2π exchange three nucleon
interaction. This interaction was due to the scattering of a pion, which is ex-
changed between two nucleons, by a third nucleon via the P -wave ∆ resonance.
Other theoretical models proposed later on, were the Tucson-Melbourne (Coon
et al., 1979) and Brazil (Coelho et al., 1983) potentials, which furthermore in-
cluded S-wave scattering. This 2π exchange interaction was attractive in
both nuclei and nuclear matter. While in nuclei this term would help solve
the underbinding obtained by the sole use of 2B forces, it would increase the
(already far too large) overbinding in nuclear matter. A phenomenological
repulsive term, summed to the Fujita-Miyazawa one, was introduced in the
Urbana (Pudliner et al., 1995) and Illinois (Pieper et al., 2001) models for
the 3B potential. This repulsive term mainly prevented nuclear matter from
being to bound at high densities.

Another approach, which we will follow in this work, is inspired by chiral
perturbation theory. It exploits the structures of the spontaneous and explicit
chiral symmetry breaking in quantum chromo-dynamics (QCD) (Weinberg,
1990, 1991). The theory of QCD describes the strong interaction within the
standard model. Its degrees of freedom are elementary particles, the quarks
and gluons, whose coupling constant αS runs to lower values as the energy
increases. Perturbation theory is however inapplicable to a system described
in terms of these fundamental particles, and for this reason one relies on the
low-energy effective theory applied to QCD, chiral effective field theory, χEFT.
The separation of energy scales divides the family of quarks into two different
sectors, the light sector with the u, d, s quarks and the heavy sector with the
c, b , t quarks. This is exploited to integrate out the heavy degrees of freedom
and define a low-energy theory which is based only on the light sector, where
low refers to a typical hadronic scale of ΛQCD = 1 GeV. In this new low-
energy theory, the remaining particles can be considered as massless and the
Lagrangian describing it exhibits an invariance under global transformations
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of the left- and right-hand quark fields, invariance which goes under the name
of chiral symmetry.

This invariance is spontaneously broken by the ground state of the the-
ory. This breakdown is unveiled by the appearance of massless particles, the
Goldstone’s bosons. In the specific sector that we are considering now, formed
only by the u and d quarks, there are three Goldstone’s boson with spin 0 and
negative parity and they correspond to pions π.

Chiral symmetry is also explicitly broken due to the non-zero mass of
the light quarks. Nevertheless the effects of the explicit chiral symmetry
breaking can still be analyzed in terms of χEFT. A further symmetry related
to the u and d quark mass terms is observed in that hadrons appear in isospin
multiplets, characterized by a splitting in their mass of a few MeV. This is
generated by the small mass difference mu−md, and in the limit of mu = md

we can define the theory as invariant under isospin transformations.

In terms of χEFT, the nuclear force is constructed using nucleons and
pions as degrees of freedom. Other light degrees of freedom, such as the
∆, could be also taken into account. By construction, chiral nuclear forces
are consistent with all symmetries of the underlying interaction. As long as
the energy Q of the process lies below the hard scale ΛQCD at which χEFT
breaks down, the low-energy behavior of nuclear systems can be described in
a perturbative expansion. This is done in orders of (Q/ΛQCD)ν , where ν is the
counting index which defines the so-called power counting (Weinberg, 1990,
1991). This counting allows to identify all contributions at a given order of
expansion. The contributions with the lowest possible value of ν define the
leading-order LO contribution; the first corrections with the second smallest
allowed value of ν define the next-to-next-to-leading-order NLO terms, and
so on. One sees a consistent appearance of 2B, 3B and up to many-body
terms, according to the order in the perturbative expansion (see Fig. 1.1).
The unknown high-energy physics is incorporated in low-energy constants
(LECs) which necessarily have to be determined by a fit to experimental
data. In order to exclude contributions of high-momentum components in
intermediate states, the chiral potential is multiplied by a regulator, which
suppresses momenta larger than a certain cut-off Λ, which is usually set at
the ρ mass value, 700 MeV.

The original approach based on this power counting was defined by Wein-
berg (Weinberg, 1990, 1991). Pioneering work was presented shortly after by
authors in Ref. (Ordoñez et al., 1994, 1996). Here the NLO contributions to
the 2N potential were first considered. We must highlight that Weinberg’s
power counting is not necessarily the only way to evaluate the chiral expan-
sion (Kaplan et al., 1996, 1998a,b; Nogga et al., 2005; Epelbaum & Gegelia,
2009; Epelbaum et al., 2009).

Presently, the complete chiral 2NFs force have been presented up the
fourth order in Weinberg’s power counting (N3LO). A Λ = 500 MeV cutoff
N3LO potential has been computed by authors in Ref. (Entem & Machleidt,
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Figure 1.1 – Figure taken from Ref. (Bogner et al., 2010). 2NF, 3NF and 4NF
chiral nuclear forces which appear up to fourth order in the chiral expansion,
according to Weinberg’s power counting. Solid lines represent nucleons, dashed
lines represent pions. Different colors define the order in the expansion: green
for leading-order LO; blue for next-to-leading-order NLO; red for next-to-next-
to-leading-order N2LO and turquoise green for next-to-next-to-next-to-leading-
order N3LO. The different colors and shapes for the nucleon-pion or contact
interacting vertices are related to the number of nucleon field operators and to
the number of derivatives and/or insertions of the pion mass Mπ (Epelbaum
et al., 2009).

2003). This is the potential which will be used in the 2B sector in this the-
sis. A 2NF potential at both third order, N2LO, and at N3LO in the chiral
expansion has been presented by authors in Refs.(Epelbaum et al., 2002a;
Epelbaum et al., 2005). In this formulation, a variation in the cutoff values
has been applied, usually in ranges of Λ = 500 − 650 MeV. Recently, an op-
timized version of the 2B chiral force at N2LO has been devised by authors
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in Ref (Ekström et al., 2013). In this thesis we will also present results using
this force in the 2B sector.

The chiral 3NFs has been derived up to fifth order in the chiral expansion
(N4LO). The N2LO 3NFs was first performed by author in Ref. (van Kolck,
1994) and then completed in Ref.(Epelbaum et al., 2002b). This potential is
the one we will be using in the 3B sector of our calculations. The N3LO 3NFs
have been computed by authors in Refs.(Ishikawa & Robilotta, 2007; Bernard
et al., 2011b,a). A calculation of the 3NFs at N4LO has been also recently
provided in Ref. (Krebs et al., 2012).

Evaluations of four nucleon forces (4NFs) at N3LO has been presented in
Refs.(Epelbaum, 2006, 2007).

In conclusion, χEFT provides a consistent set of hamiltonians at the two-,
three- and four-body level which can be systematically improved by including
higher orders in an expansion of momenta over a large chiral scale. Further-
more, theoretical errors on observables estimations are expected to decrease
as one increases the order in the chiral expansion.

1.3 Program of the thesis

Following this overview of the different many-body approaches which have
been used to solve the problem for the infinite nuclear matter system, in
the next chapter we will introduce the formalism for the many-body Green’s
functions theory at zero temperature (Ramos, 1988; Dickhoff & Van Neck,
2008). As we have already previously discussed, at zero temperature the T -
matrix undergoes the pairing instability. The formalism which we present in
Chap. 2 is not capable to treat this phase. For this reason, the results that
we will present in Chap. 5 will be performed at finite but low T temperature.
Nevertheless, by means of a simple extrapolation method, we will show the
error that we make on our results due to thermal effects.

After revising the general formalism of the Green’s functions approach, in
Chap. 2 we will analyze the sum rule used to calculate the total energy of the
many-body ground state. We will see how the Galistkii-Migdal-Koltun sum
rule changes when 3B forces are included in the Hamiltonian. Subsequently,
we will describe the self-consistency approach achieved in the SCGF theory
via solution of the Dyson’s equation, focusing especially on the use of specific
class of diagrams in the construction of the SP self-energy.

In Chap. 3 we will extensively describe how the SCGF equations are altered
with the inclusion of 3B forces. The full expansion of the SP self-energy up
to third order will be presented. The concept of effective interactions will be
introduced, as it simplifies the expansion and of the self-energy when including
3B interactions. We will then solve the hierarchy of equation of motion up to
the two-body propagator and perform specific truncations of the interacting
vertex functions, putting special emphasis on the ladder approximation for the
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T -matrix. Finally we will prove the up-to-third order SP self-energy, which
will be validated via the expansion of the interacting vertex functions.

We will then derive the 2B effective interaction in the medium in Chap. 4.
Contraction of the 3NFs appearing at N2LO (Epelbaum et al., 2002b) in the
chiral expansion will be described. A correlated average over the third particle
will be performed. The partial-wave analysis of the potential matrix elements
will be studied, presenting results obtained with the use of both a free and
dressed propagator in the averaging procedure. The use of different regulator
functions on the density dependent 2B potential will also be investigated.
According to the specific regulator used, the function will enter or not the
performance of the average integration.

Finally, in Chap. 5 we will present bulk properties for both symmetric and
pure neutron matter. The energy obtained with the use of the 2B force at
N3LO (Entem & Machleidt, 2003) will be compared to that including 3BFs.
Discrepancies due to the different averaging procedures will be presented.
Spread in results due to the use of different LECs in the 3B part will be an-
alyzed for the case of SNM. In the case of PNM, bands due to uncertainties
in the LECs coming from the 2B part will be studied. By means of a newly
optimized version of the 2B N2LO force (Ekström et al., 2013), results us-
ing consistently 2N and 3N forces will be presented. As a conclusion to the
chapter, the symmetry energy will be studied, focusing on the different values
obtained at saturation density.

A summary and conclusions drawn from the results obtained in the thesis
will be outlined in the concluding Chap. 6.

Moreover, three appendices are included at the end of the thesis. App. A
will report the Feynman rules for diagrams. App. B will provide the demon-
stration of the effective operators defined in Chap. 3. App. C will give com-
plete details on the construction of the density dependent potential from the
3NFs contributions at N2LO.
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Many-body Green’s functions

Green’s functions (GFs) or propagators can be considered as the heroes of the
many-body problem (Mattuck, 1992). These mathematical tools incorporate
by definition the correlated behavior of an interacting many-body system.
For this reason they are particularly useful to characterize the properties of
complex many-particle systems, whether of nuclear, atomic or molecular na-
ture. The great advantage of using GFs lies in the possibility to carry out
the many-body problem in a general, systematic and graphical way through
the use of Feynman diagrams. A Feynman diagram can be seen as a graph-
ical representation of a transition amplitude from an initial to a final state
of the system. In systems where infinite series of transition amplitudes need
to be summed up, as in the case of nuclear matter, diagrammatic techniques
turn out to be indispensable. A graphical interface is then necessary to keep
track of all the terms summed up in the infinite series. Furthermore is vital
to control the approximations so far made via truncations of the series itself.
For this reason the diagrammatic representation will be used throughout the
entire thesis. This will lead to a direct interpretation of the specific processes
under study.

The original many-body Green’s functions formalism dates back to the
1960s (Martin & Schwinger, 1959; Kadanoff & Baym, 1962; Nozières, 1963;
Abrikosov et al., 1975). At that time, they were impossible to implement nu-
merically, but provided a unique theoretical insight. In the past few decades,
the rise of computational power has gradually improved to the point of allow-
ing for ab-initio studies which take into account the strong interacting char-
acteristics of many-body systems. First principles calculations in the Green’s
functions framework are now routinely performed in solid state (Aryasetiawan
& Gunnarsson, 1998; Onida et al., 2002), atomic and molecular physics (von
Niessen et al., 1984; Barbieri et al., 2007; Degroote et al., 2011; Barbieri et al.,
2012; Ortiz, 2013) and nuclear structure (Müther & Polls, 2000; Dickhoff &
Barbieri, 2004).

In nuclear physics, GFs have been used to study the properties of finite
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2. Many-body Green’s functions

nuclei. A variety of techniques, including the SCGF approach, have been
exploited to study in detail the behavior of nuclei beyond the independent
particle model approximation (Barbieri, 2009). The Faddeev random phase
approximation (FRPA), which includes both particle-particle and particle-hole
phonons in the SP self-energy, has been used to describe closed-shell isotopes
(Barbieri, 2002; Barbieri & Dickhoff, 2002; Barbieri & Hjorth-Jensen, 2009).
Besides, within the Gorkov-Green’s function method, semi-magic nuclei have
been studied up to second order in the self-energy expansion (Somà et al.,
2011, 2013b). Moreover, the problem of medium-mass nuclei with open shells
has been also tackled down (Somà et al., 2013a). Very recently, the effect of
3B forces has also been addressed for medium-mass nuclei within an extended
Gorkov-Green’s function method (Somà et al., 2013).

In addition to finite nuclei, as presented in the introduction to the the-
sis, SCGF formalism has also been used extensively to study infinite nuclear
matter, mainly in the so-called ladder approximation. In this approximation,
an effective interaction in the medium, the T -matrix, is constructed in order
to take into account the repeated scattering in between two nucleons. The
necessity to implement this approximation comes from the strong short-range
behavior which characterizes the nuclear force and which cannot be disre-
garded in high-density systems such as nuclear matter. This behavior cannot
be treated perturbatively and therefore needs an infinite summation of terms
to be handled correctly. Nevertheless, the sole use of two-body interactions
doesn’t provide the correct reproduction of empirical properties, such as the
energy/density saturation point of nuclear matter. Saturation densities are
too large and saturation energies too attractive, with calculations falling in
the so-called Coester band (Coester et al., 1970). The inclusion of 3B forces
is then fundamental to avoid this trend.

However, the many-body Green’s functions framework was developed with
Hamiltonians containing up to 2B interactions in mind (Fetter & Walecka,
1971; Ring & Schuck, 1980; Blaizot & Ripka, 1986; Dickhoff & Van Neck,
2008). The first implementations in infinite nuclear systems to include 3B
forces were successfully brought forward by the Krakow group (Somà, 2009).
A correlated average of the Urbana IX (Pieper et al., 2001) force was included
to define an effective 2B potential. This density dependent force yielded strong
improvements in properties of symmetric nuclear and pure neutron matter,
for both zero (Somà & Bożek, 2008) and finite temperature (Somà & Bożek,
2009).

In this thesis we want to propose a more thorough analysis on how the
SCGF method is extended to account for 3B forces (Carbone et al., 2013a).
While the main motivation to do so are nuclear systems, the formalism can
be easily applied to other many-body systems. Such an approach is pivotal
both to provide theoretical foundations to approximations made so far and to
advance the many-body formalisms for much-needed ab-initio nuclear struc-
ture calculations. With a pedagogical perspective, the extension of the SCGF
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2.1. Green’s functions formalism with three-body forces

formalism to include 3BFs will be presented in Chapt. 3 by working out in full
the first orders of the perturbation expansion and the self-consistent equations
of motion.

In this chapter, we will revise the basis of the Green’s functions formal-
ism, drawing attention to the self-consistency which is achieved through the
solution of Dyson’s equation. We will especially focus on the calculation of
the total energy of the system which, when including 3B forces, requires a
corrected sum rule.

2.1 Green’s functions formalism with three-

body forces

The starting point for the analysis of a many-body system, in our case of
a nuclear kind, is the description of the particles which compose it and how
they interact in between each other. We consider a group of N non-relativistic
nucleons. The Hamiltonian Ĥ, in second quantization formalism, is the sum
of a one-, two- and a three-body term. It is useful to separate the Hamiltonian
into two parts, Ĥ = Ĥ0 + Ĥ1. Ĥ0 = T̂ + Û is a 1B contribution, it is the
sum of the kinetic term and an auxiliary 1B potential, Û . This potential
defines the reference state for the perturbative expansion, |ΦN

0 〉, on top of
which correlations will be added1. The second term of the Hamiltonian, Ĥ1 =
−Û + V̂ + Ŵ , describes the interactions. V̂ and Ŵ denote, respectively, the
two- and three-body interaction operators. The full Hamiltonian reads:

Ĥ =
∑

α

ε0
α a
†
αaα −

∑

αβ

Uαβ a
†
αaβ

+
1

4

∑

αγ
βδ

Vαγ,βδ a
†
αa
†
γaδaβ +

1

36

∑

αγε
βδη

Wαγε,βδη a
†
αa
†
γa
†
εaηaδaβ . (2.1)

The greek indices α,β,γ, etc. label a complete set of SP states which diag-
onalize the unperturbed Hamiltonian, Ĥ0, with eigenvalues ε0

α. a†α and aα
are creation and annihilation operators for a particle in state α. The matrix
elements of the 1B operator Û are given by Uαβ. Equivalently, the matrix
elements of the 2B and 3B forces are Vαγ,βδ and Wαγε,βδη. In the following,
we work with antisymmetrized matrix elements in both the 2B and the 3B

1A typical choice in nuclear physics would be a Slater determinant of SP harmonic
oscillator or Woods-Saxon wave functions.
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2. Many-body Green’s functions

sector, i.e.

Vαγ,βδ =
1

2
A〈αγ|V |βδ〉A = 〈αγ|V |βδ〉A

= 〈αγ|V (1− P12)|βδ〉 (2.2)

Wαγε,βδη =
1

6
A〈αγε|W |βδη〉A = 〈αγε|W |βδη〉A

= 〈αγε|W (1− P12)(1− P13 − P23)|βδη〉 . (2.3)

The main ingredient of the formalism is the 1B GF, also called SP prop-
agator or 2-point GF, which provides a complete description of one-particle
and one-hole excitations of the many-body system. More specifically, the SP
propagator is defined as the expectation value of the time-ordered product of
an annihilation and a creation operators in the Heisenberg picture:

i~Gαβ(tα − tβ) = 〈ΨN
0 |T[aα(tα)a†β(tβ)]|ΨN

0 〉 , (2.4)

where |ΨN
0 〉 is the interacting N -body ground state of the system. The time

ordering operator brings operators with earlier times to the right, with the
corresponding fermionic permutation sign. For tα− tβ > 0, this results in the
addition of a particle to the state β at time tβ and its removal from state α
at time tα. Alternatively, for tβ − tα > 0, the removal of a particle from state
α occurs at time tα and its addition to state β at time tβ. These correspond,
respectively, to the propagation of a particle or a hole excitation through the
system. We can also introduce the 4-point and 6-point GFs which will be
useful in the following:

i~G4−pt
αγ,βδ(tα, tγ; tβ, tδ) =

〈ΨN
0 |T[aγ(tγ)aα(tα)a†β(tβ)a†δ(tδ)]|ΨN

0 〉 , (2.5)

i~G6−pt
αγε,βδη(tα, tγ, tε; tβ, tδ, tη) =

〈ΨN
0 |T[aε(tε)aγ(tγ)aα(tα)a†β(tβ)a†δ(tδ)a

†
η(tη)]|ΨN

0 〉 . (2.6)

Physically, the interpretation of Eq. (2.5) and Eq. (2.6) follows that of the
2-point GF in Eq. (2.4). In these cases, more combinations of particle and
hole excitations are encountered depending on the ordering of the several time
arguments. The extension to formal expressions for higher many-body GFs is
straightforward.

In the following, we will consider propagators both in time representa-
tion, as defined above, or in energy representation. Note that, due to time-
translation invariance, the m-point GF depends only on m−1 time differences
or, equivalently, m− 1 independent frequencies. Hence the Fourier transform
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2.1. Green’s functions formalism with three-body forces

to the energy representation is well-defined when the total energy is conserved:

2π~ δ(ωα + ωγ + . . .− ωβ − ωδ − . . .)×Gm−pt
αγ...,βδ...(ωα, ωγ, . . . ;ωβ, ωδ, . . .)

=

∫ +∞

−∞
dtα

∫ +∞

−∞
dtγ . . .

∫ +∞

−∞
dtβ

∫ +∞

−∞
dtδ . . .

×e i~ (ωαtα+ωγtγ+...)Gm−pt
αγ...,βδ...(tα, tγ, . . . ; tβ, tδ, . . .) e

− i
~ (ωβtβ+ωδtδ+...) . (2.7)

For the 1B GFs of Eq. (2.4) one also considers the Lehmann representation,
that gives physical insight to the SP propagator:

Gαβ(ω) = G2−pt
αβ (ω;ω) =

∫ +∞

−∞
dτ e

i
~ωτGαβ(τ)

=
∑

m

〈ΨN
0 |aα|ΨN+1

m 〉〈ΨN+1
m |a†β|ΨN

0 〉
ω − (EN+1

m − EN
0 ) + iη

+
∑

n

〈ΨN
0 |a†β|ΨN−1

n 〉〈ΨN−1
n |aα|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη , (2.8)

where τ = tα − tβ, and m and n label the many-body eigenstates of the
system with (N + 1) or (N − 1) particles. The sum is intended over all dis-
crete/continuum states of the energy spectrum. The poles in Eq. (2.8) repre-
sent the energies of the excited states of the system. Namely, ε+

m = EN+1
m −EN

0

corresponds to the excitation energy of the system with an added particle
|ΨN+1

m 〉 with respect to the energy of the N -particle many-body ground state.
ε−n = EN

0 − EN−1
n corresponds to minus the excitation energy of the system

with a removed particle |ΨN−1
n 〉 with respect to the energy of the N -particle

many-body ground state.
The information enclosed in Eq. (2.8) about the transition amplitudes of

an added or removed particle from the system, illustrates the potential power
of the SP propagator and, for finite systems, its direct connection to exper-
imental data. In fact, the poles in the denominators of Eq. (2.8) signal the
position in energy space of the N + 1 or N − 1 excited states of the system.
Furthermore, the numerators define the corresponding transition amplitudes
from the ground state with N particles to the excited states of the N ± 1
systems. Experimentally, this information is related to the hole spectral func-
tion, which can be extracted from the strength of the removed particle in
(e,e’ p) knockout reactions (Mougey, 1980; Lapikás, 1993). Mathematically
this quantity corresponds to the residue of the poles of the 1B GF and is then
related to the imaginary part of the 1B GF. It can be obtained from Eq. (2.8)
by means of the Plemejl identity:

1

ω±
=

P

ω
∓ πδ(ω) , (2.9)

where ω± is the energy which corresponds respectively to the poles in the
particle and hole part of Eq. (2.8), and P defines the principal value. Hence
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2. Many-body Green’s functions

one can write for the hole spectral function:

Shα(ω) =
1

π
ImGαα(ω)

=
∑

n

∣∣〈ΨN−1
n |aα|ΨN

0

〉∣∣2 δ
(
ω − ε−n

)
, (2.10)

for ω ≤ ε−F , with ε−F = EN
0 − EN−1

0 . ε−F corresponds to the minimum energy
to remove a particle from the N -body ground state into the N − 1-body
ground state. In finite systems, the transition amplitude between the N and
the N − 1 body systems is closely related to the definition of the theoretical
spectroscopic factor (Dickhoff & Barbieri, 2004; Barbieri, 2009). This factor
provides a measure of the correlations present in the system which induce its
behavior to deviate form the independent-particle model description.

The corresponding part of the hole spectral function in the particle domain
is the particle spectral function. This quantity represents the probability to
add a particle to the many-body ground state and, analogously to Eq. (2.10),
it is defined as

Spα(ω) = − 1

π
ImGαα(ω)

=
∑

m

∣∣〈ΨN+1
m |a†α|ΨN

0

〉∣∣2 δ
(
ω − ε+

m

)
, (2.11)

for ω ≥ ε+
F , with ε+

F = EN+1
0 − EN

0 . ε+
F corresponds to the minimum energy

necessary to add a particle to the N -body ground state into the N + 1-body
ground state. In finite systems there can be a considerable difference in be-
tween ε−F and ε+

F . In normal infinite systems, i.e. not superfluid nor super-
conducting, which are the object of this thesis, the difference between ε−F and
ε+
F vanishes in the thermodynamical limit and approaches the value of the

chemical potential.

For an infinite system, translational invariance suggests the use of momen-
tum states for the SP basis. In this case the greek index identifies the quantum
numbers of momentum, spin and isospin α = {p,σ, τ}. Consequently we can
recast the Lehmann representation (2.8) for the 1B propagator as:

G(p, ω) =

∫ ∞

εF

dω′
Sp(p, ω′)

ω − ω′ + iη
+

∫ εF

−∞
dω′

Sh(p, ω′)

ω − ω′ − iη , (2.12)

where for convenience we omit spin/isospin indices. Notice that we have
introduced the Fermi energy εF which, in an uncorrelated system, defines
the last filled energy level and hence corresponds to the energy needed to
remove a particle from the many-body ground state. In the present case of an
interacting system, εF equals the chemical potential µ, and corresponds to the
miminum energy necessary to add or remove a particle to/from the system.
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Furthermore, the knowledge of the hole spectral function gives access to
the SP momentum occupation number in the many-body ground state. For
an infinite system this can be written as:

n(p) = 〈ΨN
0 |a†αaα|ΨN

0 〉 =

∫ εF

−∞
dωSh(p, ω) . (2.13)

The study of the the occupation number, especially at low-momentum SP
states, is a meaningful way to quantify the correlations present in the system.
As a matter of fact, short-range and, if present, tensor correlations embodied
in the nuclear potential increase the depletion observed at zero SP momen-
tum. Consequently, they introduce high momentum states in the distribution
function Eq. (2.13) (Rios et al., 2009a; Carbone et al., 2012). This can have
a direct effect on bulk properties of nuclear matter, such as the symmetry
energy (Vidaña et al., 2011).

As a concluding remark to this section, we would like to stress that the
SCGF formalism aims at providing a reliable calculation of the SP propagator,
and hence of the spectral function, in correlated systems. As we will see, an
efficient way to achieve this purpose is by means of diagrammatic techniques.
The use of a graphical interface can highly simplify the analysis of the dressed
propagator and help enumerate all contributions which are taken into account
in the many-body approximation under hand.

2.2 The Galistkii-Migdal-Koltun sum rule

The SP propagator provides access to expectation values of all 1B operators
and hence is a useful tool to characterize a wide range of the bulk properties
of the system. Furthermore, if only up to 2B terms are considered in the
Hamiltionian, the ground state energy can be computed from the 1B GF
itself. This is a crucial result that arises from the Galitskii-Migdal-Koltun
(GMK) sum rule (Galitskii & Migdal, 1958; Koltun, 1974). In this section we
will see how the inclusion of 3B interaction terms alter the form of the GMK
sum rule. Hence we will need to derive a modified sum rule.

As outlined, the energy of an interacting system via 2B forces can be
obtained within the SCGF approach by means of the GMK sum rule, which
reads (Galitskii & Migdal, 1958; Koltun, 1974):

EN
0 =

1

2π

∫ ε−F

−∞
dω

∑

αβ

(Tαβ + ωδαβ)ImGβα(ω) . (2.14)

Observing Eq. (2.14), we note that not all the information content from the
propagator is needed to obtain the ground state energy. The hole part (see
Eq. (2.10)), which includes details about the transition amplitude for the
removal of a particle from the many-body system, is enough for this purpose.
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2. Many-body Green’s functions

To derive the GMK sum rule, one starts by considering the first moment of
the hole spectral function:

Iα =
1

π

∫ ε−F

−∞
dω ω ImGαα(ω) =

∫ ε−F

−∞
dω ω Shα(ω) . (2.15)

From the spectral representation of Eq. (2.10), one can see that this inte-
gral is also the expectation value over the many-body ground state of the
commutator:

Iα = 〈ΨN
0 |a†α[aα,Ĥ]|ΨN

0 〉 . (2.16)

Using the Hamiltonian in Eq. (2.1), one can evaluate the commutator to find:

Iα = 〈ΨN
0 |
∑

β

Tαβ a
†
αa
†
β +

1

2

∑

γβδ

Vαγ,βδ a
†
αa
†
γaδaβ

+
1

12

∑

γεβδη

Wαγε,βδη a
†
αa
†
γa
†
εaηaδaβ|ΨN

0 〉 . (2.17)

Note that, in general, Tαβ represents the 1B part of the Hamiltonian which,
in addition to the kinetic energy, might also contain a 1B potential. Summing
over all the external SP states, α, one finds,

∑

α

Iα = 〈ΨN
0 |T̂ + 2V̂ + 3Ŵ |ΨN

0 〉 . (2.18)

In other words, the sum over all SP states of the first moment of the spectral
function yields a particular linear combination of the contributions of the 1B,
2B and 3B potentials to the ground state energy,

EN
0 = 〈ΨN

0 |Ĥ|ΨN
0 〉 = 〈ΨN

0 |T̂ + V̂ + Ŵ |ΨN
0 〉 . (2.19)

Since T̂ is a 1B operator, one can actually compute its expectation value
from the SP propagator itself:

〈ΨN
0 |T̂ |ΨN

0 〉 =
1

π

∫ ε−F

−∞
dω
∑

αβ

TαβImGβα(ω) . (2.20)

The energy integral on the right hand side yields the reduced 1B density
matrix:

ρ1B
βα =

1

π

∫ ε−F

−∞
dω ImGβα(ω) = 〈ΨN

0 |a†αaβ|ΨN
0 〉 , (2.21)

which can then be used to simplify the previous expression

〈ΨN
0 |T̂ |ΨN

0 〉 =
∑

αβ

Tαβρ
1B
βα . (2.22)
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2.2. The Galistkii-Migdal-Koltun sum rule

For the 2B case, this is enough to provide an independent constraint and
hence allows for the calculation of the total energy (see Eq. (2.14)). The
ground state energy can then be computed from the 1B propagator alone.

When 3BF are present, however, one needs a third independent linear com-
bination of 〈T̂ 〉, 〈V̂ 〉 and 〈Ŵ 〉. Knowledge of the 1B propagator is therefore
not enough to compute the total energy, since either the 2B or the 3B propa-
gators are needed to compute 〈V̂ 〉 or 〈Ŵ 〉 exactly. Depending on which of the
two operators is chosen, one is left with different expressions for the energy of
the ground state. This freedom in choice could in principle be exploited to test
the validity of different approximations. In practical applications, however,
one should choose the combination that provides minimum uncertainty.

Let us start by considering the case where the 3B operator is eliminated.
Adding 2〈T̂ 〉 and 〈V̂ 〉 to Eq. (2.18), one finds the following exact expression
for the total ground state energy:

EN
0 =

1

3π

∫ ε−F

−∞
dω

∑

αβ

(2Tαβ + ωδαβ)ImGβα(ω)

+
1

3
〈ΨN

0 |V̂ |ΨN
0 〉 . (2.23)

The calculation of this expression requires the hole part of the 1B propagator
and the two-hole part of the 2B propagator, which would appear in the sec-
ond term. We note that this expression is somewhat equivalent to the original
GMK, in that the ground state energy is computed from 1B and 2B opera-
tors, even though the Hamiltonian itself is a 3B operator. This might prove
advantageous in calculations where the 2B propagator is computed explicitly.

Alternatively, one can eliminate the 2B contribution from the GMK sum
rule by adding 〈T̂ 〉 and subtracting 〈Ŵ 〉 to Eq. (2.18). This leads to the
expression:

EN
0 =

1

2π

∫ ε−F

−∞
dω

∑

αβ

(Tαβ + ωδαβ)ImGβα(ω)

−1

2
〈ΨN

0 |Ŵ |ΨN
0 〉 . (2.24)

The first term in this expression is formally the same as that obtained in the
case where only 2BFs are present in the Hamiltonian. Note, however, that
the 3BF does influence the 1B propagator in the first term and hence the
correction should be applied at the very end of the self-consistent procedure.
The second term in Eq. (2.24) requires the knowledge of the three-hole part
of the 3B propagator to be computed. If the 3B expectation value results as
a small error with respect to the total energy of the many-body ground state,
Eq. (2.24) can be favored compared to Eq. (2.23) to compute the total energy
of the system.
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Eqs. (2.23) and (2.24) are both exact. Which of the two is employed in
actual calculations will mostly depend on the accuracy associated with the
evaluation of the expectation values, 〈V̂ 〉 and 〈Ŵ 〉. If the 2B interaction is
dominant with respect to the 3BF, for instance, the former will be a large
contribution. Small errors in the calculation of the 2B propagator could even-
tually yield artificially large corrections in the ground state energy. In nuclear
physics, the 3BF expectation value is expected to provide a smaller contribu-
tion than the 2BF (Grangé et al., 1989; Epelbaum et al., 2009). Consequently,
approximations in Eq. (2.24) should lead to smaller absolute errors. This was
the approach that was recently followed in both finite nuclei and infinite nu-
clear matter calculations (Cipollone et al., 2013; Carbone et al., 2013b; Somà
et al., 2013). In finite nuclei, evaluating 〈Ŵ 〉 at first order in terms of dressed
propagators leads to satisfactory results. However, accuracy is lost if free
propagators, G(0), are used instead (Cipollone et al., 2013). Eq. (2.23) may
eventually be useful in calculations of infinite matter, in which the 2B prop-
agator can be computed nonpertubatively by means of the T -matrix. There-
fore, one could explicitly evaluate the expectation value of the 2B force in the
many-body ground state and compute directly Eq. (2.23).

Even though Eq. (2.23) can prove to be more accurate to study the en-
ergy of infinite matter, in the following we use the prescription presented in
Eq. (2.24). The main motivation for doing so is related to the approxima-
tion with which the second term in Eq. (2.24) is computed. In the present
calculations we estimate the 3B force expectation value computing it only at
first order, i.e. in the Hartree-Fock (HF) approximation. Applying this same
approximation to the 2B force expectation value in Eq. (2.23) would lead to
higher errors in the estimation of the total energy of the system (typically,
〈Ŵ 〉 ≈ 1

10
〈V̂ 〉 for nuclear interactions (Epelbaum et al., 2009)). To avoid this

drawback, and due to the fact that in the present state of the numerical code
we only compute the 2B propagator at the HF level, we then rely on Eq. (2.24)
to evaluate the energy of the many-body ground state.

2.3 Dyson’s equation and self-consistency

It has been pointed out that perturbation theory is helpless when confronted
with the strong interaction in nuclear many-body systems. In the case of
nuclear matter, where the strong short-range behavior of the force has to be
treated, an infinite series of interacting terms must be summed up. For this
reason, methods which perform all-order summations of Feynman diagrams
are necessary, in order to correctly appreciate the correlated behavior of such
systems.

Let’s start by defining the perturbative expansion of the 1B propagator.
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(a) (b)

(c)

Figure 2.1 – Examples of diagrams contributing to the perturbative expansion
of Eq. (2.25). (a) is a connected and one-particle irreducible contribution. (b)
a disconnected contribution. (c) a one-particle reducible contribution, where
short double lines signals where the reduction can be performed. Single-arrowed
lines describe an undressed SP propagator G(0), i.e. the first term of the expan-
sion in Eq. (2.25). Short dashed lines describe a 2B interaction and long-dashed
a 3B interaction.

This reads (Mattuck, 1992; Dickhoff & Van Neck, 2008):

Gαβ(tα − tβ) = − i

~

∞∑

n=0

(
− i

~

)n
1

n!

∫
dt1 . . .

∫
dtn

×〈ΦN
0 |T[Ĥ1(t1) . . . Ĥ1(tn)aIα(tα)aIβ

†
(tβ)]|ΦN

0 〉conn , (2.25)

where |ΦN
0 〉 is the unperturbed many-body ground state. aIα, aIβ

†
and Ĥ1(t)

are now operators in the interaction picture with respect to H0. The sub-
script “conn” implies that only connected contributions (diagrams) have to
be considered when performing the Wick contractions of the time-ordered
product. As an example, a connected and a disconnected diagram are shown
in Fig. 2.1(a) and 2.1(b).

The interacting part of the Hamiltonian H1 (see Eq. (2.1)) contains contri-
butions from 1B, 2B and 3B interactions. Thus, the expansion in perturbation
theory of the GF involves terms with individual contributions of each force, as
well as combinations of these. Feynman diagrams are essential to keep track
of such a variety of different contributions. The rules for Feynman diagrams
used in this thesis are reported in Appendix A.

A first reorganization of all the contributions generated in the perturbative
expansion of the SP propagator given in Eq. (2.25), is obtained by considering
only those terms which are one-particle irreducible (1PI) diagrams. These
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2. Many-body Green’s functions

= + Σ∗

Figure 2.2 – Diagrammatic representation of Dyson’s equation Eq. (2.26).
Single-arrowed lines corresponds to the unperturbed SP propagator G(0).
Double-arrowed lines to the fully dressed propagator G result of the full expan-
sion in Eq. (2.25). Dyson’s equation introduces the concept of the irreducible
self-energy Σ? which groups together all 1PI diagrams.

diagrams cannot be disconnected by cutting a single fermionic line. On the
other hand, a one-particle reducible contribution is a diagram which can be
split in two separated terms by cutting one single fermionic line. In Fig. 2.1,
we depict with diagram Fig. 2.1(a) an example of an irreducible contribution
to the 1B propagator expansion and with Fig. 2.1(c) an example of a reducible
one. Reducible diagrams are generated by an all-orders summation through
Dyson’s equation (Dyson, 1949),

Gαβ(ω) = G
(0)
αβ(ω) +

∑

γδ

G(0)
αγ (ω)Σ?

γδ(ω)Gδβ(ω) , (2.26)

where ω corresponds to the energy variable of the propagator. A diagrammatic
representation of Dyson’s equation is depicted in Fig. 2.2. The process of
carrying out infinite summations is often called renormalization. In this case,
the renormalized quantity is the undressed propagator G(0), which is dressed
up through an infinite summation of contributions, which are grouped together
in the so called irreducible self-energy, Σ?(ω). In fact, to sum properly all
infinite diagrams by means of the irreducible self-energy, all reducible terms
can be disregarded. The complete summation of these reducible contributions
provides the definition of the reducible self-energy, Σ(ω). The diagrammatic
definition of the reducible self-energy would correspond to the second term on
the right-hand side in Fig. 2.2, where the dressed propagator G entering the
self-energy is replaced with a undressed one, G(0).

In Eq. (2.26), the uncorrelated SP propagator, G(0), is associated with the
system governed by the H0 Hamiltonian and represents the n = 0 order in
the expansion of Eq. (2.25). For an infinite system, following Eq. (2.12), the
unperturbed or free propagator can be written in the Lehmann representation
as:

G(0)(p, ω) =
θ(p− kF )

ω − εp + iη
+

θ(kF − p)
ω − εp − iη

. (2.27)

kF represents the Fermi momentum, which corresponds to the last occupied
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2.3. Dyson’s equation and self-consistency

SP state in a system of non-interacting particles. εp = ~2p2/2m is the energy
of the SP state above (p > kF ) and below (p < kF ) the Fermi level. In
Eq. (2.27) and in the following we omit explicitly spin/isospin indices.

In a infinite system we can restate Dyson’s equation (see Eq. 2.26) as

G(p, ω) = G(0)(p, ω) +G(0)(p, ω)Σ?(p, ω)G(p, ω) , (2.28)

which can be solved algebraically:

G(p, ω) =
1

ω − εp − Σ?(p, ω)
. (2.29)

The irreducible self-energy Σ?(p, ω) describes the kernel that includes all 1PI
diagrams. This operator plays a central role in the GFs formalism and can
be interpreted as the non-local and energy-dependent interaction that each
particle feels due to the interaction with the medium. At positive energies,
Σ?(p, ω) is also identified with the optical potential that the scattered particle
feels from the many-body target (Blaizot & Ripka, 1986; Capuzzi & Mahaux,
1996; Cederbaum, 2001; Barbieri & Jennings, 2005; Charity et al., 2006).

The knowledge of the self-energy Σ?(p, ω) then provides direct access to
the spectral functions. According to Eqs. (2.10) and (2.11), through the use
of Eq. (2.29), it can be demonstrated that (Luttinger, 1961):

Sp(p, ω) = − 1

π

ImΣ?(p, ω)

(ω − εp − ReΣ?(p, ω))2 + (ImΣ?(p, ω))2
ω > εF , (2.30)

Sh(p, ω) =
1

π

ImΣ?(p, ω)

(ω − εp − ReΣ?(p, ω))2 + (ImΣ?(p, ω))2
ω < εF . (2.31)

The numerator in Eqs. (2.30-2.31) is related to the width of the spectral func-
tion in energy space. A vanishing width would result in a delta-like spectral
function, and this corresponds to the case of a system in the non-interacting
or mean-field picture. In this picture, each SP momentum is associated to
one SP energy state. Conversely, in the correlated system, a finite width for
the spectral function involves SP momentum states which are spread in the
energy space, and therefore present a given lifetime when propagating through
the system. The value of this life-time is then inversely proportional to the
width of the spectral function.

In Sec. 3.3 we will see clearly how the computation of the imaginary part
of the self-energy requires the knowledge of the spectral function. This indeed
demands a self-consistent iteration for the solution of the spectral function
Eqs. (2.30-2.31). We want to point out that, in the SCGF approach, the com-
plete spectral decomposition of the propagator is kept throughout the entire
self-consistent procedure, applying no approximations of the quasi-particle
kind.
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2. Many-body Green’s functions

(a) (b)

Figure 2.3 – Examples of a skeleton (a) and a non skeleton (b) diagram.
Contribution depicted in (b) contains a portion, a self-energy insertion, which
can be disconnected by cutting twice the middle fermion loop. This portion is
contained by definition in the dressed fermionic loop of diagram (a).

2.3.1 The self-consistet propagator

In the previous section we saw how by means of the iterative scheme defined
by Dyson’s equation, Eq. (2.26), the unperturbed SP propagator, G(0), gets
renormalized into a dressed one, G via an infinite summation. In order to
correctly iterate the equation through the use of the irreducible self-energy
(see Fig. 2.2), the summations must take into only the 1PI contributions.

Nevertheless, one can further develop the quality of the irreducible self-
energy. This is achieved by including in its contributions the use of the same
dressed propagator of which the self-energy provides the value through the
solution of the Dyson’s equation. This is defined as a self-consistent renor-
malization of the propagator, in which the dressed propagator is not only
the solution of the iterative procedure, but furthermore generates the terms
which are included in the irreducible self-energy. In some sense this leads to
a further level of reorganization of the diagrams in the self-energy expansion.

In practice, this self-consistent renormalization is obtained by means of
the so called skeleton diagrams (Blaizot & Ripka, 1986; Dickhoff & Van Neck,
2008). The use of these kind of diagrams ensures that the unperturbed propa-
gators, G(0), in the internal fermionic lines of the irreducible self-energy can be
safely replaces with dressed GFs, G. These are defined as 1PI diagrams that
do not contain any portion that can be disconnected by cutting a fermion loop
twice at two different points. This portion would be defined as a self-energy
insertion. Therefore a skeleton diagram is such that no self-energy insertions
can be encountered. In fact, these insertions are already resummed into the
dressed propagators which builds the skeleton diagram.

An example of a skeleton and non skeleton diagram is depicted in Fig. 2.3.
The SCGF approach is based on a diagrammatic expansion of such skeleton
diagrams with renormalized propagators. When using skeleton diagrams in
the irreducible self-energy, special care must be put when performing the
iterative summation of the Dyson’s equation. As an example, a contribution
like the one depicted in Fig.2.3b, if included in the irreducible self-energy
as a skeleton diagram, i.e. with dressed propagators in the fermion loops,
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2.3. Dyson’s equation and self-consistency

would be counted twice. In fact diagram Fig.2.3b is already accounted for by
contribution depicted in Fig.2.3a.

The number of diagrams which one sums up with the use of the skeleton
irreducible self-energy is much larger than the number that one would obtain
with the ordinary solution of the Dyson’s equation, Eq. (2.26). Therefore,
skeleton diagrams are not only a way to reorganize contributions in the self-
energy, but above all a way to sum up big groups of diagrams hidden in the
self-consistent dressed propagator.
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3
Three-body forces approximations

In the introduction to this thesis we have underlined the necessity to consider
3BFs in order to obtain results both for finite and infinite nuclear systems
which can resemble those obtained experimentally. Even if considered in the
theoretical many-body approximation only by means of effective interactions,
as it has mostly been done in infinite nuclear matter calculations, the 3B
operators should be introduced from first principles, i.e. from the definition
of the Hamiltonian.

Starting with the Hamiltonian described in Eq. (2.1), we want to derive in
this chapter the perturbative expansion of the irreducible self-energy Σ? up to
third order. We will show how the description of the self-energy can be further
reorganized thanks to the definition of a new class of irreducible contributions
to the self-energy, the interaction-irreducible diagrams. The comprehensive
class of 1PI, skeleton and interaction irreducible diagrams leads to a simplified
description of the irreducible self-energy, which proves to be very useful in
view of applying the hierarchy of equation of motion to the propagators. This
hierarchy provides an all-order description not only for the SP self-energy but
furthermore for the interacting vertex functions. Having control over these
quantities allows us to define specific truncations which lead to well defined
many-body approximations.

Such a formal approach to the problem is a much needed step in many-body
calculations. In fact, the various N-body terms, which form the Hamiltonian,
contribute with different factors to the single-particle or bulk properties of
the system (Bogner et al., 2010; Hebeler & Schwenk, 2010). If not treated
properly, these factors can be often mistaken in the process of the calculation.
Special attention must be payed when dealing with effective interactions at
a given N-body level. In fact, the physic of higher body operators included
effectively in these quantities must preserve all the way its characteristics. In
other words, the performance of contractions which turn higher body contri-
butions into lower body ones must not alter the intrinsic multiplicity of the
original operator.
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3. Three-body forces approximations

(a) (b)

Figure 3.1 – Diagram (a) and (b) correspond respectively to a direct and an
exchange diagram. These diagrams arise from the two terms on the right-hand
side of Eq. (2.2). If antisymmetrized potential matrix elements are considered,
(a) and (b) are included in one another.

For the specific purpose of the work presented in this thesis, the newly
defined irreducible self-energy helps us to define in a consistent manner the
ladder approximation for infinite nuclear systems when including 3B forces,
giving theoretical foundations to the calculations implemented numerically.

3.1 Interaction irreducible diagrams and self-

energy expansion

The best way to define the contributions which form the irreducible SP self-
energy is by means of Feynman diagrams. All parts which compose a given
diagram correspond to a specific mathematical expression and, once specific
rules are defined, it is straightforward to associate a mathematical expression
to a diagram. The rules used in this thesis are reported in Appendix A.

In the following, we will work mostly with unlabeled Feynman diagrams,
where unlabeled means that no time is specified for a given interaction vertex.
According to Eq. (2.25), for a given order of expansion n, there are n inter-
acting terms Ĥ1(ti), with i going from 1 to n. Permutation of these operators
gives rise to n! equal diagrams, which can be considered as a unique diagram,
a single “time” unlabeled diagram.

We also work with antisymmetrized potential matrix elements, as defined
in Eq. (2.2-2.3) lead to consider as a unique diagram those contributions which
come from the interchange of two incoming lines to a same interaction. An
example of an antisymmetrized diagram is presented in Fig. 3.1. Special
attention has to be payed when considering antisymmetrized matrix elements,
in fact the correct counting of diagrams gives rise to specific multiplying factors
which are usually not easy to define straightforwardly. This issue will be
treated in detail in Appendix (B).

To go on and introduce the new class of interaction irreducible diagrams
let us first consider an articulation vertex in a generic Feynman diagram. A
2B, 3B or higher interaction vertex is an articulation vertex if, when cut, it
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3.1. Interaction irreducible diagrams and self-energy expansion

+

Figure 3.2 – Example of an articulation vertex: if the first 3B interaction
is cut, where showed by the short double lines, the diagram is divided in two
disconnected sections. One section corresponds to a group of p = 2 lines which
were previously entering and exiting a portion of the same interaction. This
disconnected diagram is part of a 4-pt GF.

gives rise to a disconnected section where all propagating lines enter and exit
a portion of this same interaction vertex1. Formally, a diagram is said to be
interaction-irreducible if it contains no articulation vertices. Equivalently, a
diagram is interaction reducible if there exist a group of fermion lines (either
interacting or not) that leave one interaction vertex and eventually all return
to it. When an articulation vertex is cut, one is left with a cycle of fermion
lines that all connect to the same interaction. If there were p lines connected
to this interaction vertex, this set of closed lines would necessarily be part of
a 2p-point GF 2. An example of an articulation vertex is shown in Fig. 3.2.
In this case, the second set of diagrams on the right-hand side of the figure
belongs to a 4-point GF or a 2-body reduced density matrix. If this GF is
computed explicitly in the calculation, one can use it to evaluate all these
contributions straight away. This eliminates the need for computing all the
diagrams looping in and out of the articulation vertex, at the expense of
having to find the many-body propagator.

An n-body interaction vertex with p fermion lines looping over it is an n−p
effective interaction operator. Infinite sets of interaction-reducible diagrams
can be sub-summed by means of effective contributions. The two cases of
effective interactions which are of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 3.3 and 3.4. These give, respectively,
the diagrammatic definition of the 1B and 2B effective interactions. The 1B
effective potential is obtained by adding up three contributions: the original
1B interaction; a 1B average over the 2B interaction; and a 2B average over
the 3B force. The 1B and 2B averages are performed using fully dressed

11B vertices cannot be split and therefore cannot be articulations.
2More specifically, these fermion lines contain an instantaneous contribution of the

many-body GF that enters and exits the same interaction vertex, corresponding to a
p−body reduced density matrix.
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= + + 1
4

GII

Figure 3.3 – Diagrammatic representation of the effective 1B interaction of
Eq. (3.2). This is given by the sum of the original 1B potential (dotted line),
the 2B interaction (dashed line) contracted with a dressed SP propagator, G
(double line with arrow), and the 3B interaction (long-dashed line) contracted
with a dressed 2B propagator GII . The correct symmetry factor of 1/4 in the
last term is also shown explicitly.

= +

Figure 3.4 – Diagrammatic representation of the effective 2B interaction of
Eq. (3.3). This is given by the sum of the original 2B interaction (dashed
line) and the 3B interaction (long-dashed line) contracted with a dressed SP
propagator, G.

propagators. Similarly, the effective 2B force is obtained from the original 2B
interaction plus a 1B average over the 3B force. Similar definitions would hold
for higher-order forces and effective interactions beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ (3.1)

where Ũ and Ṽ represent effective interaction operators. The diagrammatic
expansion arising from Eq. (2.25) with the effective Hamiltonian H̃1 is formed
only of (1PI, skeleton) interaction-irreducible diagrams to avoid any possible
double counting. Note that the 3B interaction, Ŵ , remains the same as in
Eq. (2.1) but enters only the interaction-irreducible diagrams with respect to
3B interactions. The explicit expressions for the 1B and 2B effective interac-
tion operators are:

Ũ =
∑

αβ

[
− Uαβ − i~

∑

γδ

Vαγ,βδ Gδγ(t− t+)

+
i~
4

∑

γε
δη

Wαγε,βδη G
II
δη,γε(t− t+)

]
a†αaβ , (3.2)

Ṽ =
1

4

∑

αγ
βδ

[
Vαγ,βδ − i~

∑

εη

Wαγε,βδη Gηε(t− t+)
]
a†αa

†
γaδaβ . (3.3)

We have introduced a specific component of the 4-point GFs of Eq. (2.5),

GII
δη,γε(t− t′) = G4−pt

δη,γε(t
+, t; t′, t′+) , (3.4)
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3.1. Interaction irreducible diagrams and self-energy expansion

which involves two-particle and two-hole propagation. This is the so-called
two-particle and two-time Green’s function. Let us also note that the con-
tracted propagators in Eqs. (3.2) and (3.3) correspond to the full 1B and 2B
reduced density matrices of the many-body system:

ρ1B
δγ = 〈ΨN

0 | a†γaδ |ΨN
0 〉 = −i~Gδγ(t− t+) , (3.5)

ρ2B
δη,γε = 〈ΨN

0 | a†γa†εaηaδ |ΨN
0 〉 = i~GII

δη,γε(t− t+) . (3.6)

In a self-consistent calculation, effective interactions should be computed it-
eratively at each step, using correlated 1B and 2B propagators as input. All
in all, the effective Hamiltonian of Eq. (3.1) not only regroups Feynman dia-
grams in a more efficient way, but also defines the effective 1B and 2B terms
from higher order interactions. Averaging the 3BF over one and two spectator
particles in the medium is expected to yield the most important contributions
to the many-body dynamics in nuclei (Hagen et al., 2007; Roth et al., 2012).
We note that Eqs. (3.2) and (3.3) are exact and can be derived rigorously from
the perturbative expansion. Details of the proof are discussed in Appendix B.
As long as interaction-irreducible diagrams are used together with the effec-
tive Hamiltonian, H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective in-medium in-
teractions. More importantly, the formalism is such that symmetry factors
are properly considered and no diagram is over-counted.

This approach can be seen as a generalization of the normal ordering of
the Hamiltonian with respect to the reference state |ΦN

0 〉, a procedure that
has already been used in nuclear physics applications with 3BFs (Hagen et al.,
2007; Bogner et al., 2010; Roth et al., 2012). The normal ordered interactions
affect only excited configurations with respect to |ΦN

0 〉, but not the refer-
ence state itself. Similarly, the effective operators discussed above only enter
interaction-irreducible diagrams. In both the traditional normal ordering and
our approach, the Ũ and Ṽ operators contain contributions from higher order
forces, while Ŵ remains unchanged. Note however that in the latter we go
beyond usual normal-ordering “averages”, in that they are performed over
fully-correlated many-body propagators. If the unperturbed 1B and 2B prop-
agators were used in Eqs. (3.2) and (3.3), the effective operators Ũ and Ṽ
would trivially reduce to the contracted 1B and 2B terms of normal order-
ing. In the present case the contraction is improved because it is performed
with respect to the exact correlated density matrices. To some extent, one
can think of the effective Hamiltonian, H̃1, as being reordered with respect to
the interacting many-body ground-state |ΨN

0 〉, rather than the non-interacting
|ΦN

0 〉. This effectively incorporates correlations that, in the normal ordering
procedure, must be instead calculated explicitly by the many-body approach.
Calculations indicate that such correlated averages are important in both the
saturation mechanism of nuclei and nuclear matter (Cipollone et al., 2013;
Carbone et al., 2013b).
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3. Three-body forces approximations

Note that a normal ordered Hamiltonian also contains a 0B term equal
to the expectation value of the original Hamiltonian Ĥ with respect to |ΦN

0 〉.
Likewise, in our case, the full contraction of Ĥ in Eq. (2.1) according to the
normal-ordering procedure of Appendix B, will yield a 0B term equal to the
exact ground state energy:

EN
0 = −i~

∑

αβ

Tαβ Gβα(t− t+)

+
i~
4

∑

αγ
βδ

Vαγ,βδ G
II
βδ,αγ(t− t+)

− i~
36

∑

αγε
βδη

Wαγε,βδη G
III
βδη,αγε(t− t+)

= 〈ΨN
0 | Ĥ |ΨN

0 〉 . (3.7)

This in accordance with our analogy between the effective Hamiltonian, H̃ =
H̃0 + H̃1, and the usual normal ordered one.

Self-energy expansion up to third-order

As a demonstration of the simplification introduced by the effective interac-
tion approach, we want to derive all interaction-irreducible contributions to
the proper self-energy up to third order in perturbation theory. We will dis-
cuss these contributions order by order, thus providing an overview of how
the approach can be extended to higher-order perturbative and also to non-
perturbative calculations. Among other things, this exercise will illustrate the
amount and variety of new diagrams that need to be considered when 3BFs
are used.

For a pure 2B Hamiltonian, the only possible interaction-reducible con-
tribution to the self-energy is the generalized Hartree-Fock diagram. This
corresponds to the second term on the right hand side of Eq. (3.2) (see also
Fig. 3.3). Note that this can go beyond the usual Hartree-Fock term in that
the internal propagator is dressed. This diagram appears at first order in any
SCGF expansion and it is routinely included in most GF calculations with 2B
forces. Thus, regrouping diagrams in terms of effective interactions, such as
Eqs. (3.2) and (3.3), give no practical advantages unless 3BFs (or higher-body
forces) are present.

If 3BFs are considered, the only first-order, interaction-irreducible contri-
bution is given by the one-body effective interaction depicted in Fig. 3.3,

Σ
?,(1)
αβ = Ũαβ . (3.8)

Since Ũ is in itself a self-energy insertion, it will not appear in any other,
higher-order skeleton diagram. Even though it only contributes to Eq. (3.8),
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3.1. Interaction irreducible diagrams and self-energy expansion

(a) (b)

Figure 3.5 – 1PI, skeleton and interaction-irreducible self-energy diagrams
appearing at second order in the perturbative expansion of Eq. (2.25), using
the effective Hamiltonian of Eq. (3.1).

the effective 1B potential is very important since it determines the energy-
independent part of the self-energy. It therefore represents the (static) mean-
field seen by every particle, due to both 2B and 3B interactions. As already
mentioned, Eq. (3.2) shows that this potential incorporates three separate
terms, including the Hartree-Fock potentials due to both 2B and 3BFs and
higher-order and interaction-reducible contributions due to the dressed G and
GII propagators. Thus, even the calculation of this lowest-order term Σ?,(1) re-
quires an iterative procedure to evaluate the internal many-body propagators
self-consistently.

Note that, if one were to stop at the Hartree-Fock level, the 4-point GF
would reduce to the direct and exchange product of two 1B propagators. In
that case, the last term of Eq. (3.2) (or Fig. 3.3) would reduce to the pure
3BF Hartree-Fock contribution with the correct 1/2 factor in front, due to the
two equivalent fermionic lines (see Fig. 5.2 at the beginning of Chap. 5). This
approximate treatment of the 2B propagator in the 1B effective interaction
has been employed in most nuclear physics calculations up to date, including
both finite nuclei (Otsuka et al., 2010; Roth et al., 2012; Cipollone et al., 2013)
and nuclear matter (Somà & Bożek, 2009; Hebeler & Schwenk, 2010; Hebeler
et al., 2011; Lovato et al., 2012; Li & Schulze, 2012; Carbone et al., 2013b)
applications.

Before we move on, let us mention a subtlety arising in the Hartree-Fock
(or lowest-order) approximation to the two-body propagator. If one were to

insert Ṽ into the second term of the right hand side of Eq. (3.2), one would
introduce a double counting of the pure 3BF Hartree-Fock component. This
is forbidden because the diagram in question would be interaction reducible.
The correct 3BF Hartree-Fock term is actually included as part of the last term
of Eq. (3.2) (see also Fig. 3.3). Consequently, there is no Hartree-Fock term
arising from the effective interactions. Instead, this lowest-order contribution
is fully taken into account within the 1B effective interaction.

At second order, there are only two interaction-irreducible diagrams, that
we show in Fig. 3.5. Diagram Fig.3.5(a) has the same structure as the well-
known contribution due to 2BFs only, involving two-particle–one-hole (2p1h)
and two-hole–one-particle (2h1p) intermediate states. This diagram, however,
is computed with the 2B effective interaction (notice the wiggly line) instead of
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(a) (b)

(c) (d)

Figure 3.6 – These four diagrams are contained in diagram Fig. 3.5(a).
They correspond to one 2B interaction-irreducible diagram, (a), and three
interaction-reducible diagrams, (b)-(d).

the original 2B force and hence it corresponds to further interaction-reducible
diagrams. By expanding the effective 2B interaction according to Eq. (3.3),
the contribution of Fig. 3.5(a) splits into the four diagrams of Fig. 3.6.

The second interaction-irreducible diagram arises from explicit 3BFs and
it is given in Fig. 3.5(b). One may expect this contribution to play a mi-
nor role due to phase space arguments, as it involves 3p2h and 3h2p excita-
tions at higher excitation energies. Moreover, 3BFs are generally weaker than
the corresponding 2BFs (typically, < Ŵ >≈ 1

10
< V̂ > for nuclear interac-

tions (Grangé et al., 1989; Epelbaum et al., 2009)). Summarizing, at second
order in standard self-consistent perturbation theory, one would find a total
of 5 skeleton diagrams. Of these, only 2 are interaction irreducible and need
to be calculated when effective interactions are considered.

Fig. 3.7 shows all the 17 interaction-irreducible diagrams appearing at
third order. Again, note that, expanding the effective interaction Ṽ , would
generate a much larger number of diagrams (53 in total). Diagrams Figs. 3.7(a)
and 3.7(b) are the only third order terms that would appear in the 2BF case.
Numerically, these two diagrams only require evaluating Eq. (3.3) beforehand,
but can otherwise be dealt with using existing 2BF codes. They have already
been exploited to include 3BFs in nuclear structure studies (Somà & Bożek,
2008; Hebeler & Schwenk, 2010; Hebeler et al., 2011; Cipollone et al., 2013;
Carbone et al., 2013b).

The remaining 15 diagrams, from Figs. 3.7(c) to 3.7(q), appear when ir-
reducible 3BFs are introduced. These third-order diagrams are ordered in
Fig. 3.7 in terms of increasing numbers of 3B interactions and, within these,
in terms of increasing number of particle-hole excitations. Qualitatively, one
would expect that this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 3.7(a)-3.7(c), for instance, only involve 2p1h
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3.1. Interaction irreducible diagrams and self-energy expansion

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

Figure 3.7 – 1PI, skeleton and interaction-irreducible self-energy diagrams
appearing at third order in the perturbative expansion of Eq. (2.25) using the
effective Hamiltonian of Eq. (3.1).
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3. Three-body forces approximations

and 2h1p intermediate configurations, normally needed to describe particle
addition and removal energies to dominant quasiparticle peaks as well as to-
tal ground state energies. Diagram Fig. 3.7(c) includes one 3B irreducible
interaction term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies (Hagen et al., 2007; Roth et al., 2012)
clearly suggest that this brings in a small correction to the total energy with
respect to diagrams Figs. 3.7(a) and 3.7(b). This is in line with the qualita-

tive analysis of the number of Ṽ and Ŵ interactions entering these diagrams.
The remaining diagrams of Fig. 3.7 all include 3p2h and 3h2p configurations.
Diagrams Fig. 3.7(d) to 3.7(k) all describe interaction between 2p1h (2h1p)
and 3p2h (3h2p) configurations. These are split into four contributions arising
from two effective 2BFs and four that contain two irreducible 3B interactions.
Similarly, diagrams Fig. 3.7(l) to 3.7(q) are the first contributions to the con-
figuration mixing among 3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to compute the contribu-
tion associated with these diagrams. Specific expressions for some diagrams in
Fig. 3.7 are given. We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ , interactions. Hence,
symmetry factors due to equivalent lines remain unchanged. However, we
provide in App. A a few examples to illustrate the appearance of non-trivial
symmetry factors when 3BFs are considered. This complicates the rules of
the symmetry factors and illustrates some of the difficulties associated with
many-particle interactions.

3.2 Hierarchy of equations of motion

The perturbation theory expansion outlined in the previous section is useful
to identify new contributions arising from the inclusion of 3B interactions.
However, diagrams up to third order alone do not necessarily incorporate all
the necessary information to describe strongly correlated quantum many-body
systems. For example, the strong repulsive character of the nuclear force at
short distances requires explicit all-orders summations of ladder series. All-
order summations of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground state and separation energies, as
well as to preserve the correct analytic properties of the self-energy beyond
second order.

To investigate approximation schemes for all-order summations including
3BFs, we now develop the EOM method. This will provide special insight
into possible self-consistent expansions of the irreducible self-energy, Σ?. For
2B forces only, the EOM technique defines a hierarchy of equations that link
each n-body GF to the (n−1)- and the (n+ 1)-body GFs. When extended to
include 3BFs, the hierarchy also involves the (n+2)-body GFs. A truncation of
this Martin-Schwinger hierarchy is necessary to solve the system of equations
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(Martin & Schwinger, 1959) and can potentially give rise to physically relevant
resummation schemes. Here, we will follow the footprints of Ref. (Mattuck &
Theumann, 1971) and apply truncations to obtain explicit equations for the
4-point (and 6-point, in the 3BF case) vertex functions.

The EOM for a given propagator is found by taking the derivative of its
time arguments. The time arguments are linked to the creation and anni-
hilation operators in Eqs. (2.4) to (2.6) and hence the time dependence of
these operators will drive that of the propagator (Blaizot & Ripka, 1986).
The unperturbed 1B propagator can be written as the n = 0 order term of
Eq. (2.25),

i~G(0)
αβ(tα − tβ) = 〈ΦN

0 |T[aIα(tα)aIβ
†
(tβ)]|ΦN

0 〉 . (3.9)

Its time derivative will be given by the von Neumann equation for the opera-
tors in the interaction picture (Abrikosov et al., 1975):

i~
∂

∂t
aIα(t) = [aIα(t), Ĥ0] = ε0

αa
I
α(t) . (3.10)

Taking the derivative of G(0) with respect to time and using Eq. (3.10), we
find {

i~
∂

∂tα
− ε0

α

}
G

(0)
αβ(tα − tβ) = δ(tα − tβ)δαβ . (3.11)

Note that the delta functions in time arise from the derivatives of the step-
functions involved in the time-ordered product.

The same procedure applied to the exact 1B propagator, G, requires the
time-derivative of the operators in the Heisenberg picture. For the original
Hamiltonian of Eq. (2.1), the EOM for the annihilation operator reads:

i~
∂

∂t
aα(t) = [aα(t), Ĥ] = ε0

αaα(t)−
∑

δ

Uαδaδ(t)

+
1

2

∑

ε
δµ

Vαε,δµa
†
ε(t)aµ(t)aδ(t) +

1

12

∑

εθ
δµλ

Wαεθ,δµλa
†
ε(t)a

†
θ(t)aλ(t)aµ(t)aδ(t) . (3.12)

This can now be used to take the derivative of the full 1B propagator in
Eq. (2.4):

{
i~

∂

∂tα
− ε0

α

}
Gαβ(tα − tβ) = δ(tα − tβ)δαβ

−
∑

δ

UαδGδβ(tα − tβ)

+
1

2

∑

ε
δµ

Vαε,δµG
4−pt
δµ,εβ(tα, tα; t+α , tβ)

+
1

12

∑

εθ
δµλ

Wαεθ,δµλG
6−pt
δµλ,εθβ(tα, tα, tα; t++

α , t+α , tβ) . (3.13)
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= + + +

G4−pt G6−pt

Figure 3.8 – Diagrammatic representation of the EOM, Eq. (3.14), for the
dressed 1B propagator, G. The first term, given by a single line, defines the free
1B propagator, G(0). The second term denotes the interaction with a bare 1B
potential, whereas the third and the fourth terms describe interactions involving
the intermediate propagation of two- and three-particle configurations.

This equation links the 2-point GF to both the 4- and the 6-point GFs. Note
that the connection with the latter is mediated by the 3BF and hence does not
appear in the pure 2BF case. Regarding the time-arguments in Eq. (3.13), the
t+α and t++

α in the 4- and 6-point GFs are necessary to keep the correct time-
ordering in the creation operators when going from Eq. (3.12) to Eq. (3.13).
An analogous equation can be obtained for the derivative of the time argument
tβ. After some manipulation, involving the Fourier transforms of Eqs. (2.7)
and (2.8), one obtains the equation of motion for the SP propagator in fre-
quency representation:

Gαβ(ω) = G
(0)
αβ(ω)−

∑

γδ

G(0)
αγ (ω)UγδGδβ(ω)

−1

2

∑

γε
δµ

G(0)
αγ (ω)Vγε,δµ

∫
dω1

2π

∫
dω2

2π
G4−pt
δµ,βε(ω1, ω2;ω, ω1 + ω2 − ω)

+
1

12

∑

γεθ
δµλ

G(0)
αε (ω)Wγεθ,δµλ

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

G6−pt
δµλ,γβθ(ω1, ω2, ω3;ω4, ω, ω1 + ω2 + ω3 − ω4 − ω) . (3.14)

Again, this involves both the 4- and the 6-point GFs, which appear due to
the 2B and 3B interactions, respectively. The equation now involves n − 2
frequency integrals of the n-point GFs. The diagrammatic representation of
this equation is given in Fig. 3.8.

The EOMs, Eqs. (3.13) and (3.14), connect the 1B propagator to GFs of
different orders. In general, starting from an n-body GF, the derivative of
the time-ordering operator generates a delta function between an incoming
and outgoing particle, effectively separating a line and leaving an (n − 1)-
body propagator. Conversely, the 2B part of the Hamiltonian introduces an
extra pair of creation and annihilation operators that adds another particle
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G4−pt = − + Γ4

Figure 3.9 – Exact separation of the 4-point Green’s function, G4−pt, in terms
of non-interacting lines and a vertex function, as given in Eq. (3.15). The first
two terms are the direct and exchange propagation of two non-interacting and
fully dressed particles. The last term defines the 4-point vertex function, Γ4−pt,
involving the sum of all 1PI diagrams.

and leads to an (n + 1)-body GF. For a 3B Hamiltonian, the (n + 2)-body
GF enters the EOM due to the commutator in Eq. (3.12). This implies that
higher order GFs will be needed, at the same level of approximation, in the
EOM hierarchy with 3BFs.

Eq. (3.14) gives an exact equation for the SP propagator G that, however,
requires the knowledge of both the 4-point and 6-point GFs. Full equations
for the latter require applying the EOMs to these propagators as well. Before
that, however, it is possible to further simplify contributions in Eq. (3.14)
by splitting the n-point GFs into two terms. The first one is relatively sim-
ple, involving the properly antisymmetrized independent propagation of n
dressed particles. The second term will involve the interaction vertices, Γ4−pt

and Γ6−pt, 1PI vertex functions that include all interaction effects (Blaizot &
Ripka, 1986). These can be neatly connected to the irreducible self-energy.

For the 4-point GF, this separation is shown diagrammatically in Fig. 3.9.
The first two terms involve two dressed fermion lines propagating indepen-
dently, and their exchange as required by the Pauli principle. The remaining
part, stripped of its external legs, can contain only 1PI diagrams which are
collected in a vertex function, Γ4−pt. This is associated with interactions and,
at lowest level, it would correspond to a 2BF. As we will see in the follow-
ing, however, 3B interactions also provide contributions to Γ4−pt. The 4-point
vertex function is defined by the following equation:

G4−pt
αγ,βδ(ωα, ωγ;ωβ, ωδ) =

i~
[
2πδ(ωα − ωβ)Gαβ(ωα)Gγδ(ωγ)− 2πδ(ωγ − ωβ)Gαδ(ωα)Gγβ(ωγ)

]

+(i~)2
∑

θµ
νλ

Gαθ(ωα)Gγµ(ωγ)Γ
4−pt
θµ,νλ(ωα, ωγ;ωβ, ωδ)Gνβ(ωβ)Gλδ(ωδ) .

(3.15)

Eq. (3.15) is exact and is an implicit definition of Γ4−pt. Different many-
body approximations arise when approximations are performed on this vertex
function (Dickhoff & Barbieri, 2004; Dickhoff & Van Neck, 2008).
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G6−pt = + +

6

Γ4 Γ6

3

3

Figure 3.10 – Exact separation of the 6-point Green’s function, G6−pt, in
terms of non-interacting dressed fermion lines and vertex functions, as given in
Eq. (3.16). The first two terms gather non-interacting dressed lines and sub-
groups of interacting particles that are fully connected to each other. Round
brackets with numbers above (below) these diagrams indicate the numbers of
permutations of outgoing (incoming) legs needed to generate all possible dia-
grams. The last term defines the 6-point 1PI vertex function Γ6−pt.

A similar expression holds for the 6-point GF. In this case, the diagrams
that involve non interacting lines can contain either all 3 dressed propaga-
tors moving independently from each other or groups of two lines interacting
through a 4-point vertex function. The remaining terms are collected in a
6-point vertex function, Γ6−pt, which contains terms where all 3 lines are
interacting. This separation is demonstrated diagrammatically in Fig. 3.10.
The Pauli principle requires a complete antisymmetrization of these diagrams.
For the “free propagating” term, this implies all 3! = 6 permutations of the 3
lines. The second term, involving Γ4−pt, requires 32 = 9 cyclic permutations
within both incoming and outgoing legs. The 6-point vertex function is al-
ready antisymmetrized and hence no permutations are needed. The equation
corresponding to Fig. 3.10 is exact and provides an implicit definition of the
Γ6−pt vertex function:

G6−pt
αγε,βδη(ωα, ωγ, ωε;ωβ, ωδ, ωη) = (2π)2(i~)2 A[{αωα},{γωγ},{εωε}]

×
[
δ(ωα − ωβ) δ(ωγ − ωδ)Gαβ(ωα)Gγδ(ωγ)Gεη(ωε)

]

+2π(i~)3 P
cycl.
[{αωα},{γωγ},{εωε}]P

cycl.
[{βωβ},{δωδ},{ηωη}]

[
δ(ωα − ωβ)Gαβ(ωα)

×
∑

θµ
νλ

Gγθ(ωγ)Gεµ(ωε)Γ
4−pt
θµ,νλ(ωγ, ωε;ωδ, ωη)Gνδ(ωδ)Gλη(ωη)

]

+(i~)4
∑

θµχ
νλξ

Gαθ(ωα)Gγµ(ωγ)Gεχ(ωε)Γ
6−pt
θµχ,νλξ(ωα, ωγ, ωε;ωβ, ωδ, ωη)

×Gνβ(ωβ)Gλδ(ωδ)Gξη(ωη) . (3.16)
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= + +

Γ6−pt

Σ∗

Γ4−pt

Figure 3.11 – Diagrammatic representation of the irreducible self-energy Σ?

by means of effective 1B and 2B potentials and 1PI vertex functions, as given in
Eq. (3.17). The first term is the energy independent part of Σ? and contains all
diagrams depicted in Fig. 3.3. The second and third terms are dynamical terms
consisting of excited configurations generated through 2B and 3BFs. This is
an exact equation for Hamiltonians including 3BFs and it is not derived from
perturbation theory.

Here, we have introduced the antisymmetrization operator, A, which sums all
possible permutations of pairs of indices and frequencies, {αωα}, with their
corresponding sign. Likewise, Pcycl. sums all possible cyclic permutations of
the index-frequency pairs. Again, let us stress that both Γ4−pt and Γ6−pt are
formed of 1PI diagrams only, since they are defined by removing all external
dressed legs from the G4−pt and G6−pt propagators. However, they can be still
two-particle reducible, since they include diagrams that can be split by cutting
two lines. In general, Γ4−pt and Γ6−pt are solution of all-orders summations
analogous to the Bethe-Salpeter equation, in which the kernels are 2PI and
3PI vertices [see Eqs. (3.19) to (3.21) below].

Inserting Eqs. (3.15) and (3.16) into Eq. (3.14), and exploiting the effective
1B and 2B operators defined in Eqs. (3.2) and (3.3), one recovers the Dyson
equation, Eq. (2.26). One can therefore identify the exact expression of the
irreducible self-energy Σ? in terms of 1PI vertex functions:

Σ?
γδ(ω) = Ũγδ −

(i~)2

2

∑

µ
νλ

∑

ξθ
ε

Ṽγµ,νλ

∫
dω1

2π

∫
dω2

2π
Gνξ(ω1)Gλθ(ω2)

×Γ4−pt
ξθ,δε(ω1, ω2;ω, ω1 + ω2 − ω)Gεµ(ω1 + ω2 − ω)

+
(i~)4

12

∑

µφ
λνχ

∑

θξη
εσ

Wµγφ,λνχ

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

×Gλθ(ω1)Gνξ(ω2)Gχη(ω3)

×Γ6−pt
θξη,εδσ(ω1, ω2, ω3;ω4, ω, ω1 + ω2 + ω3 − ω4 − ω)

×Gεµ(ω4)Gσφ(ω1 + ω2 + ω3 − ω4 − ω) . (3.17)

The diagrammatic representation of Eq. (3.17) is shown in Fig. 3.11. We
note that, as an irreducible self-energy, this should include all the connected,
1PI diagrams. These can be regrouped in terms of skeleton and interaction-
irreducible contributions, as long as Γ4−pt and Γ6−pt are expressed that way.
Note that effective interactions are used here. The interaction-reducible com-
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3. Three-body forces approximations

ponents of Ũ , Ṽ and W are actually generated by contributions involving
partially non-interacting propagators contributions inside G4−pt and G6−pt.
The first two terms in both Eqs. (3.15) and (3.16) only contribute to generate
effective interactions. Note, however, that the 2B effective interaction does re-
ceive contributions from both Γ4−pt and Γ6−pt in the self-consistent procedure,
as will be clear in the following.

The first term entering Eq. (3.17) is the energy-independent contribution
to the irreducible self-energy, already found in Eq. (3.8). This includes the
subtraction of the auxiliary field, Û , as well as the 1B interaction-irreducible
contributions due to the 2B and 3BFs. Once again, we note that the defini-
tion of this term, shown in Fig. 3.3, involves fully correlated density matrices.
Consequently, even though this is a static contribution, it goes beyond the
Hartree-Fock approximation. The dispersive part of the self-energy is de-
scribed by the second and third terms on the right-side of Eq. (3.17). These
account for all higher-order contributions and incorporate correlations on a 2B
and 3B level associated with the vertex functions Γ4−pt and Γ6−pt, respectively.

3.2.1 Interaction vertices: the Γ4−pt

We now apply the EOM method to the 4-point GF. This will provide insight
into approximation schemes that involve correlations at or beyond the 2B-
level. Let us stress that our final aim is to obtain generic nonperturbative
approximation schemes in the many-body sector. Taking the time derivative
of the first argument in Eq. (2.5) and following the same procedure as for the
2-point GF, we find:

G4−pt
αγ,βδ(ωα, ωγ;ωβ, ωδ) =

i~ [2πδ(ωα − ωβ)G
(0)
αβ(ωα)Gγδ(ωγ)− 2πδ(ωγ − ωβ)G

(0)
αδ (ωα)Gγβ(ωγ)]

+
∑

µλ

G(0)
αµ(ωα)UµλG

4−pt
λγ,βδ(ωα, ωγ;ωβ, ωδ)

−1

2

∑

µε
λθ

G(0)
αµ(ωα)Vµε,λθ

∫
dω1

2π

∫
dω2

2π

×G6−pt
λθγ,βεδ(ω1, ω2, ωγ;ωβ, ω1 + ω2 − ωα, ωδ)

+
1

12

∑

µεχ
λθη

G(0)
αµ(ωα)Wµεχ,λθη

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

×G8−pt
λθηγ,βεχδ(ω1, ω2, ω3, ωγ;ωβ, ω4, ω1 + ω2 + ω3 − ωα − ω4, ωδ) , (3.18)

which is the analogous of Eq. (3.14) for the SP propagator. As expected,
the EOM connects the 2-body (4-point) GFs to other propagators. The 1B
propagator term just provides the non-interacting dynamics, with the proper
antisymmetrization. The interactions bring in admixtures with the 4-point
GFs itself, via the one-body potential, but also with the 6- and 8-point GFs,

46



3.2. Hierarchy of equations of motion

G4−pt = − +

G4−pt

+ +

G6−pt G8−pt

Figure 3.12 – Diagrammatic representation of the EOM for the four-point
propagator, G4−pt, given in Eq. (3.18). The last term, involving an 8-point
GF, arises due to the presence of 3B interactions.

via the the 2B and the 3B interactions, respectively. Similarly to what we
observed in Eq. (3.14), the dynamics involve n− 4 frequency integrals of the
n-point GFs. The diagrammatic representation of this equation is given in
Fig. 3.12.

To proceed further, as done for the analysis of the 1B GF and following the
steps of Ref. (Mattuck & Theumann, 1971), we split the 8-point GF into free
dressed propagators and 1PI vertex functions. This decomposition is shown in
Fig. 3.13. In addition to the already-defined vertex functions, one needs 1PI
objects with 4 incoming and outgoing indices. To this end, we introduce the
8-point vertex Γ8−pt in the last term. Note that due care has to be taken of
all antisymmetrization possibilities when groups of fermion lines that are not
connected by Γ8−pt are considered. The first term in Fig. 3.13, for instance,
involves 4 non-interacting but dressed fermion lines, and there are 4! = 24
possible combinations. There are

(
4
2

)(
4
2

)
1
2

= 72 equivalent terms involving two
non-interacting lines and a single Γ4−pt, as in the second term of Fig. 3.13.
The double Γ4−pt contribution (third term) can be obtained in 6 × 3 = 18
equivalent ways. For the term with an independent line and three interacting
lines through a Γ6−pt vertex function there are 4× 4 = 16 equivalent terms.

With this decomposition at hand, one can now proceed and find an equa-
tion for the 4-point vertex function, Γ4−pt. Inserting the exact decompositions
of the 4-, 6- and 8-point GFs, given respectively by Figs. 3.9, 3.10 and 3.13,
into the EOM, Eq. (3.18), one obtains an equation with Γ4−pt on both sides.
The diagrammatic representation of this self-consistent equation is shown in
Fig. 3.14.

A few comments are in order at this point. The left hand side of Eq. (3.18)
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G8−pt = +

24

Γ4

6

+ +Γ4

3

+Γ6

4

Γ8Γ4

12

6 4

Figure 3.13 – Exact separation of the 8-point Green’s function, G8−pt, in
terms of non-interacting lines and vertex functions. The first four terms gather
non-interacting dressed lines and subgroups of interacting particles that are
fully connected to each other. Round brackets with numbers above (below)
these diagrams indicate the numbers of permutations of outgoing (incoming)
legs needed to generate all possible diagrams. The last term defines the 8-point
1PI vertex function Γ8−pt.

in principle contains two dressed and non interacting propagators, as shown in
the first two terms of Fig. 3.9. In the right hand side of Eq. (3.18), however,
one of the 1B propagators is not dressed. However, when expanding the
GFs in terms of the Γ2n−pt vertex functions, the remaining contributions to
the Dyson equation arise automatically (see Fig. 3.8). The free unperturbed
line, therefore, becomes dressed. As a consequence, the pair of dressed non-
interacting propagators cancel out exactly on both sides of Eq. (3.18). This
dressing procedure of the G(0) propagator happens only partially in the last
three terms of the equation and has been disregarded in our derivation. In
this sense, Fig. 3.14 should be taken as an approximation to the exact EOM
for G4−pt.

Eq. (3.18) links 1B, 2B, 3B and 4B propagators. Correspondingly, Fig. 3.14
involves higher order vertex functions, such as Γ6−pt and Γ8−pt, which are
in principle coupled, through their own EOMs, to more complex GFs. The
hierarchy of these equations has to be necessarily truncated. In Ref. (Mattuck
& Theumann, 1971), truncation schemes were explored by neglecting the Γ6−pt

48



3.2. Hierarchy of equations of motion
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Figure 3.14 – Self-consistent expression for the Γ4−pt vertex function derived
from the EOM for G4−pt. The round brackets underneath some of the diagrams
indicate that the term obtained by exchanging the {βωβ} and {δωδ} arguments
must also be included. Diagrams (a), (b), (c) and (f) are the only ones present
for 2B Hamiltonians, although (f) also contains some intrinsic 3BF contribu-
tions such as the {αωα} ↔ {γωγ} exchange of (e). All other diagrams arise
from the inclusion of 3B interactions. Diagram (b) is responsible for generating
the ladder summation, the direct part of (c) generates the series of antisym-
metrized rings, and the three sets together [(b), (c) and the exchange of (c)]
would give rise to a Parquet-type resummation.

vertex function at the level of Fig. 3.14 (Γ8−pt did not appear in the 2BF-only
case). This level of truncation is already sufficient to retain physically-relevant
subsets of diagrams, such as ladders and rings. Let us note, in particular, that
the summation of these infinite series leads to nonperturbative many-body
schemes. For completeness, we show in Fig. 3.14 all contributions coming also
from the Γ6−pt and Γ8−pt vertices, many of them arising from 3BFs.

We have ordered the diagrams in Fig. 3.14 in terms of increasing contribu-
tions from 3BFs and in the order of perturbation theory at which they start
contributing to Γ4−pt. Intuitively, we expect that this should order them in
decreasing importance. Diagrams Figs. 3.14(a), 3.14(b), 3.14(c) and 3.14(f)
are those that are also present in the 2BF-only case. Diagram Fig. 3.14(f),
however, is of a mixed nature: it can contribute only at third order with
effective 2BFs, but does contain interaction-irreducible 3BF contributions at
second order that are similar to diagrams 3.14(d) and 3.14(e). Diagrams
Figs. 3.14(d)-(h) all contribute to Γ4−pt at second order, although the first
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three require a combination of a Ṽ and a W term. The remaining diagrams
in this group, Figs. 3.14(g) and 3.14(h), require two 3B interactions at second
order and are expected to be subleading. Note that diagram Fig. 3.14(d) is
antisymmetric in α and γ, but it must also be antisymmetrized with respect
to β and δ. Its conjugate contribution, diagram Fig. 3.14(e), should not be
further antisymmetrized in α and γ, because such exchange term is already
included in Fig. 3.14(f). All the remaining terms, diagrams Figs. 3.14(i)-(k),
only contribute from the third order on.

In this section we saw how the hierarchy of EOMs links different n-body
GFs to each other, increasing the complexity of the solution together with
the growing of the N-body interacting terms which appear in the description
of the system. We demonstrated how solution of the EOM for the 2p-point
GF yields the formulation of the irreducible self-energy, and how following the
same pattern for the 4p-point GF provides an expression for the Γ4−pt vertex
function.

3.2.2 Interaction vertices truncations

As a final conclusion to this section, we now want to demonstrate the corre-
spondence between the techniques derived in Sec. 3.1 and the EOM method
described in Sec. 3.2. In particular, we want to show how the perturbative
expansion of Eq. (2.25) leads to the self-energy obtained with the EOM ex-
pression, Eq. (3.17). We will do this by expanding the self-energy up to third
order and showing the equivalence of both approaches at this order. To this
end, we need to expand the vertex functions in terms of the effective Hamil-
tonian, H̃1. The lowest order terms entering Γ4−pt can be easily read from
Fig. 3.14. We show these second-order, skeleton and interaction-irreducible
diagrams in Fig. 3.15. Only the first three terms would contribute for a 2BF.
There are two terms involving mixed 2BFs and 3BFs, whereas the final two
contributions come from two independent 3BFs. Note that, to get the third
order expressions of the self-energy, we expand the vertex functions to second
order, i.e. one order less.

Analogously, we display the expansion up to second order of Γ6−pt in
Fig. 3.16. Most contributions to this vertex function contain 3BFs. The
lowest order term, for instance, is given by the 3B interaction itself. Note,
however, that second order terms formed only of 2B effective interactions are
possible, such as the second term on the right hand side of Fig. 3.16. These will
eventually be connected with a 3BF to give a mixed self-energy contribution
[see Eq. (3.17) and Fig. 3.11].

If one includes the diagrams in Figs. 3.15 and 3.16 into the irreducible
self-energy Σ? of Fig. 3.11, all the diagrams discussed in Eq. 3.8, Fig. 3.5
and Fig. 3.7 of Sec. 3.1 are recovered. This does prove, at least up to third
order, the correspondence between the perturbative expansion approach and
the EOM method for the GFs. Proceeding in this manner to higher orders,
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3.2. Hierarchy of equations of motion
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Figure 3.15 – Skeleton and interaction-irreducible diagrams contributing to
the Γ4−pt vertex function up to second order. The round brackets above (below)
some diagrams indicate that the exchange diagram between the {αωα} and
{γωγ} ({βωβ} and {δωδ}) arguments must also be included.

one should obtain equivalent diagrams all the way through.

It is important to note that diagrams representing conjugate contributions
to Σ? are generated by different, not necessarily conjugate, terms of Γ4−pt

and Γ6−pt. For instance, diagram Fig. 3.7(d) is the result of the term 3.15(e+f)
and its exchange, on the right hand side of Fig. 3.15. Its conjugate self-
energy diagram Fig. 3.7(f), however, is generated by the second contribution
to Γ6−pt, Fig. 3.16(b). This term is also related to diagram Fig. 3.7(g). More
specifically, the term in Fig. 3.16(b) has 9 cyclic permutations of its indices,
of which 6 contribute to diagram Fig. 3.7(f) and 3 to diagram Fig. 3.7(g). On
the other hand, the conjugate of diagram Fig.3.7(g) is diagram Fig. 3.7(e),
which is entirely due to the exchange contribution of the Fig. 3.15(d) term in
Γ4−pt. The direct contribution of this same term leads to diagram Fig. 3.7(c),
which is already self-conjugate.

More importantly, however, nonperturbative self-energy expansions can
be obtained by means of other hierarchy truncations at the level of Γ4−pt

and Γ6−pt. Translating these into self-energy expansions is then just an issue
of introducing them in Eq. (3.17). According to the approximation chosen for
the vertex functions appearing in Fig. 3.11, we will be summing specific sets
of diagrams when solving the Dyson equation, Eq. (2.26). However, from the
above discussion it should be clear that extra care must be taken to guarantee
that the truncations lead to physically coherent results. In particular, it is not
always possible to naively neglect Γ6−pt. The last two terms of the self-energy
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3. Three-body forces approximations
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Figure 3.16 – The same as Fig. 3.15 for the Γ6−pt vertex function. The round
brackets above (below) some diagrams indicate that cyclic permutations of the
{αωα}, {γωγ} and {εωε} ({βωβ}, {δωδ} and {ηωη}) arguments must also be
included.

equation, Eq. (3.17), generate conjugate contributions. Hence, neglecting one
term or the other will spoil the analytic properties of the self-energy which
require a Hermitian real part and an anti-Hermitian imaginary part. In the
examples discussed above, diagrams 3.7f and 3.7g would be missing if Γ6−pt

had not been considered.

When no irreducible 3B interaction terms are present in the hierarchy
truncation, only the Γ4−pt term contributes to Eq. (3.17). The ladder and the
ring truncations, shown in Eqs. (3.19) and (3.20) generate their own conjugate
diagrams and can be used on their own to obtain physical approximations to
the self-energy. However, this need not be true in general. A counterexam-
ple is actually provided by the truncation of Eq. (3.22) which, if inserted in
Eq. (3.17) without the corresponding contributions to Γ6−pt, cannot generate
a correct self-energy. Because of its diagrammatic content, Eq. (3.22) can only
be used as a correction to Γ4−pt.
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3.3. Ladder and other approximations

3.3 Ladder and other approximations

Let us now introduce truncations on the Γ4−pt derived in the previous sec-
tion, which will lead us to define specific approximations in the many-body
calculation. The simplest truncation schemes to Γ4−pt come from considering
the first three terms of Fig. 3.14, which involve effective 2BFs only. In the
pure 2B case, these have already been discussed in the literature (Mattuck
& Theumann, 1971). Retaining diagrams Figs. 3.14(a) and 3.14(b) leads to
the ladder resummation to include effectively 3BFs, used in recent studies of
infinite nucleonic matter (Somà & Bożek, 2008; Carbone et al., 2013b):

Γ4ladd
αγ,βδ(ωα, ωγ;ωβ, ωα + ωγ − ωβ) =

Ṽαγ,βδ +
i~
2

∫
dω1

2π

∑

εµθλ

Ṽαγ,εµGεθ(ω1)Gµλ(ωα + ωγ − ω1)

×Γ4ladd
θλ,βδ(ω1, ωα + ωγ − ω1;ωβ, ωα + ωγ − ωβ) , (3.19)

where we have explicitly used the fact that Γ2p−pt is only defined when incom-
ing and outgoing energies are conserved. Likewise, diagrams Figs. 3.14(a) and
the direct contribution of 3.14(c) generate a series of ring diagram which cor-
respond to the antisymmetrized version of the random phase approximation
(RPA):

Γ
4ring
αγ,βδ(ωα, ωγ;ωβ, ωα + ωγ − ωβ) =

Ṽαγ,βδ − i~
∫

dω1

2π

∑

εµθλ

Ṽαε,βµGµλ(ω1)Gθε(ω1 − ωα + ωβ)

×Γ
4ring
λγ,θδ(ω1, ωγ;ω1 − ωα + ωβ, ωα + ωγ − ωβ) . (3.20)

Adding up the first three contributions together, 3.14(a)-(c), and including
the exchange, will generate a Parquet-type of resummation, with ladders and
rings embedded into each other:

Γ
4Parquet

αγ,βδ (ωα, ωγ;ωβ, ωα + ωγ − ωβ) =

Ṽαγ,βδ + i~
∫

dω1

2π

∑

εµθλ

[
1

2
Ṽαγ,εµGεθ(ω1)Gµλ(ωα + ωγ − ω1)

×Γ
4Parquet

θλ,βδ (ω1, ωα + ωγ − ω1;ωβ, ωα + ωγ − ωβ)

−Ṽαε,βµGµλ(ω1)Gθε(ω1 − ωα + ωβ)

×Γ
4Parquet

λγ,θδ (ω1, ωγ;ω1 − ωα + ωβ, ωα + ωγ − ωβ)

+Ṽαε,δµGµλ(ω1)Gθε(ω1 + ωγ − ωβ)

×Γ
4Parquet

λγ,θβ (ω1, ωγ;ω1 + ωγ − ωβ, ωβ)
]
. (3.21)

Eqs. (3.19) and (3.20) can be solved in a more or less simple fashion because
the corresponding vertex functions effectively depend on only one frequency
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3. Three-body forces approximations

(Ω = ωα + ωγ and Ω = ωα − ωβ, respectively). Hence these two resummation
schemes have been traditionally used to study extended systems (Dickhoff &
Barbieri, 2004; Aryasetiawan & Gunnarsson, 1998; Onida et al., 2002). The
simultaneous resummation of both rings and ladders within the self-energy is
possible for finite systems, and it is routinely used in both quantum chemistry
and nuclear physics (Schirmer et al., 1983; Danovich, 2011; Barbieri et al.,
2007; Cipollone et al., 2013). The Parquet summation, as shown in Eq. (3.21),
does require all three independent frequencies and it is difficult to implement
numerically. Specific approximations to rewrite these in terms of two-time
vertex functions have been recently attempted (Bergli & Hjorth-Jensen, 2011),
but further developments are still required.

The next approximation to Γ4−pt would involve diagrams Figs. 3.14(d),
3.14(e), and the exchange part included in 3.14(f). All these should be added
together to preserve the antisymmetry and conjugate properties of the vertex
function. The resulting contributions still depend on all three frequencies
and cannot be simply embedded in all-order summations such as the ladder,
Eq. (3.19), or the ring, Eq. (3.20), approximations. However, these diagrams
could be used to obtain corrections, at first order in the interaction-irreducible
Ŵ , to the previously calculated 4-point vertices. The explicit expression for
these terms is:

∆Γ
4d+e+e′
αγ,βδ (ωα, ωγ;ωβ, ωα + ωγ − ωβ) = (3.22)

(i~)2

2

∫
dω1

2π

∫
dω2

2π

∑

εµξ
θλν

× [−Wανγ,εµδ Gεθ(ω1)Gµλ(ω2)Gξν(ω1 + ω2 − ωβ)

×Γθλ,βξ(ω1, ω2;ωβ, ω1 + ω2 − ωβ)

+Wανγ,εµβ Gεθ(ω1)Gµλ(ω2)Gξν(ω1 + ω2 − ωα − ωγ + ωβ)

×Γθλ,δξ(ω1, ω2;ωα + ωγ − ωβ, ω1 + ω2 − ωα − ωγ + ωβ)

−Γγν,εµ(ωγ, ω1 + ω2 − ωγ;ω1, ω2)

×Gεθ(ω1)Gµλ(ω2)Wαθλ,βδξ Gξν(ω1 + ω2 − ωγ)
+Γαν,εµ(ωα, ω1 + ω2 − ωα;ω1, ω2)

×Gεθ(ω1)Gµλ(ω2)Wγθλ,βδξ Gξν(ω1 + ω2 − ωα)] .

Eq. (3.22) has some very attractive features. First, it should provide the dom-
inant contribution beyond those associated with the effective 2B interaction,
Ṽ . Perhaps more importantly, this contribution can be easily calculated in
terms of one of the two-time vertex functions, Γ4ladd and Γ4ring . This could
then be inserted in Eq. (3.15) to generate corrections of expectation values of
2B operators stemming from purely irreducible 3B contributions.

Once a truncation scheme is chosen at the level of the vertex functions,
one can immediately derive a diagrammatic approximation for the self-energy
(Dickhoff & Van Neck, 2008). In the case of the present work, where we are
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3.3. Ladder and other approximations

studying infinite nuclear matter, we want to focus on the dominant effect of
short-range correlations which characterizes the repulsion at small distances
between nucleons. To take this effect into account we choose to work within
the ladder summation of diagrams described by Eq. (3.19). To analyze more
in detail the analytic structure of the ladder vertex function, let’s introduce
the Lehman representation, in the specific case of an infinite system, of the
2B propagator of Eq. (3.4). We focus on the specific case of particle-particle
(pp) and hole-hole (hh) propagation for the G4−pt:

GII
αγ,βδ(Ω) =

∫ ∞

2εF

dΩ
′N+2
m

〈ΨN
0 |aγaα|ΨN+2

m 〉〈ΨN+2
m |a†βa†δ|ΨN

0 〉
Ω− Ω′N+2

m + iη

−
∫ 2εF

−∞
dΩ

′N−2
n

〈ΨN
0 |a†βa†δ|ΨN−2

n 〉〈ΨN−2
n |aγaα|ΨN

0 〉
Ω− Ω′N−2

n − iη ;(3.23)

Ω defines the energy variable for a 2B state. We must point out that for
the specific purpose of the ladder approximation we only need the first order
approximation of the expectation values that appear in the numerators of
Eq. (3.23). This corresponds to considering the HF approximation for the
GII , namely the independent propagation of two correlated SP states (see first
two terms on the right-hand side of Fig. 3.9). Let’s define relative incoming
and outgoing momenta of the two particles as k = (p1 − p2)/2 and k′ =
(p′1 − p′2)/2, and the momenta of the center of mass as P = p1 + p2. p1,p2

are momenta of the each single incoming nucleon, and p′1,p
′
2 of each outgoing

nucleon. In the following equations we omit the use of spin/isospin indices
for convenience. Making use of Eq. (2.10) and Eq. (2.11), we can rewrite the
first order approximation of Eq. (3.23) as:

GII,f
pp,hh(q,P;ω) =

∫ ∞

εF

dω′
∫ ∞

εF

dω′′
Sp(q + P/2;ω′)Sp(P/2− q;ω′′)

ω − ω′ − ω′′ + iη

−
∫ εF

−∞
dω′

∫ εF

−∞
dω′′

Sh(q + P/2;ω′)Sh(P/2− q;ω′′)

ω − ω′ − ω′′ − iη , (3.24)

where q = k′−k is the transferred momentum. Diagrammatically the previous
expression corresponds to the first two diagrams in Fig. 3.9.

Let’s now restate Eq. (3.19) as:

Γ4ladd
pphh(k,k′,P; Ω) = V (k,k′) + ∆Γ4ladd

pphh(k,k′,P; Ω) , (3.25)

where we have introduced the dispersive energy-dependent part of the ladder
vertex function, ∆Γ4ladd

pphh. Eq. (3.25) is a Lippman-Schwinger-type equation

that defines the ladder vertex function Γ4ladd

pphh as an in-medium T -matrix. This
quantity can be seen as the analogous to the scattering T -matrix in free space.
But, in the present context, it takes into account the medium through the
repeated scattering to all orders of two independent but fully dressed particles.
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3. Three-body forces approximations

This is described by the 2B propagator GII,f
pp,hh included in its dispersive energy-

dependent part, ∆Γ4ladd
pphh. Making use of Eq. (3.24) and combining Eqs. (3.19)

and (3.25), we can write this quantity as

∆Γ4ladd
pphh(k,k′,P; Ω) =

− 1

π

∫ ∞

2εF

dΩ′
Im∆Γ4ladd

pphh(k,k′,P; Ω′)

Ω− Ω′ + iη
+

1

π

∫ 2εF

−∞
dΩ′

Im∆Γ4ladd
pphh(k,k′,P; Ω′)

Ω− Ω′ − iη
= ∆Γ4ladd

↓ (k,k′,P; Ω) + ∆Γ4ladd
↑ (k,k′,P; Ω) . (3.26)

The notation with ↓ and ↑ signals that the corresponding contributions to
∆Γ4ladd

pphh has poles in the lower or upper half of the complex energy plane.
Poles in the lower half plane are associated with forward pp propagation, i.e.
energies above 2εF , while poles in the upper half plane apply for backward hh
propagation, i.e. energies below 2εF . This distinction is helpful to allow the
proper construction of the ladder self-energy which can be defined as:

Σ?
ladd(p;ω) = Σ?

Ṽ
(p) + Σ?

∆Γ(p;ω) , (3.27)

where p defines SP momentum. The first term correspond to the Hartree-
Fock (HF) self-energy, which is included in the first term of Eq. (3.17). In the
present work, the HF self-energy is calculated as

Σ?
Ṽ

(p) =

∫
dp1

(2π)3
Ṽ (p,p1)n(p1) , (3.28)

where the SP momentum distribution function as been introduced in Eq.
(2.13). Diagrammatically this contribution to the self-energy corresponds to
the first order approximation of Fig. 3.3 stripped off the 1B term. The second
term in Eq. (3.27) can be obtained by considering the pole structure defined
in Eq. (3.26), and can be written as:

Σ?
∆Γ(p;ω) =

∫
dp1

(2π)3

∫ εF

−∞
dω′∆Γ4ladd

↓ (p,p1;ω + ω′)Sh(p1;ω′)

−
∫

dp1

(2π)3

∫ ∞

εF

dω′∆Γ4ladd
↑ (p,p1;ω + ω′)Sp(p1;ω′) . (3.29)

Note that conversely to Eq. (3.26), the ladder self-energy is now defined in
terms of SP momenta. Eq. (3.29) tells us that a self-consistent solution for
the system is indeed required, giving that the spectral functions are functions
of the self-energy itself through Dyson’s equation (see Eqs. (2.30)-(2.31)). A
diagrammatic representation of the previous equation is shown by the second
term in Fig. 3.11. Consequently, it is clear how the dispersive part of the
ladder self-energy Eq. (3.29) is connected to the Γ4ladd

pphh vertex function, i.e. the
in-medium T -matrix.

In Sec. 2.3 we saw how the spectral functions are given by a combination
of the real and imaginary part of the self-energy (see Eqs. (2.30)-(2.31)). For
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3.3. Ladder and other approximations

this reason, it is useful to introduce the expression for Eq. (3.29) in which
the imaginary and real part are defined separately. Plugging the spectral
decomposition of the Γ4ladd

pphh vertex function, given in Eq. (3.26), into Eq. (3.29),
leads us to write the imaginary part of the ladder self-energy:

ImΣ?
∆Γ(p;ω) =

∫
dp1

(2π)3

∫ εF

−∞
dω′Im∆Γ4ladd

↓ (p,p1;ω + ω′)Sh(p1;ω′)

+

∫
dp1

(2π)3

∫ ∞

εF

dω′Im∆Γ4ladd
↑ (p,p1;ω + ω′)Sp(p1;ω′) . (3.30)

The real part of the ladder self-energy can then be obtained through a disper-
sion relation:

ReΣ?
∆Γ(p;ω) = −P

π

∫ εF

−∞
dω′

ImΣ?
∆Γ↓

(p;ω′)

ω − ω′ +
P

π

∫ ∞

εF

dω′
ImΣ?

∆Γ↑
(p;ω′)

ω − ω′ ,

(3.31)
to which the HF self-energy Eq. (3.28) must be summed to obtain the total
real part of the self-energy.

To conclude this Chapter, we would like to stress the fact that extensions
to include 3BFs beyond effective 2B interactions, like Ṽ , are a completely
virgin territory. To our knowledge, these have not been evaluated for nuclear
systems (or any other system, for that matter) with diagrammatic formalisms.
Truncation schemes, like those proposed here, should provide insight on in-
medium 3B correlations. The advantage that the SCGF formalism provides is
the access to nonperturbative, conserving approximations that contain pure
3B dynamics without the need for ad hoc assumptions.
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4
Effective two-body chiral interaction

Exploiting the extended SCGF formalism to include 3B forces, presented in
the previous chapter, we want to obtain results in the ladder approximation
for infinite nuclear matter, as described in Sec. 3.3. To achieve this goal, we
define an effective 2B potential, sum of a 2NF and a contracted 3NF, as the
one defined in Eq. (3.3) and depicted in Fig. 3.4. This effective potential
will then be used in the dispersive part of the SP self-energy, Eq. (3.29). In
order to compute the HF part of the self-energy, Eq. (3.28), we would need
furthermore to calculate a 1B effective potential. In the present calculations
though, we don’t compute the complete 1B effective potential, as described in
Eq. (3.2) and graphically shown in Fig. 3.3, but only its HF approximation,
stripped off the 1B part (see Fig. 5.2 in the introduction to Chap. 5). In this
case, as we have already pointed out in Sec. 3.1, the factor in front of the
contracted 3B term in Eq. (3.2) must change from a 1/4 to a 1/2. Hence, to
calculate the 1B effective potential we can resume to use the same 2B effective
potential defined for the dispersive part, but carefully correct the contracted
3NF term with a factor 1/2. The use of these effective interactions will then
lead to a correct evaluation of the complete SP self-energy Eq. (3.27).

The necessary step, which we will perform in this chapter, is the cal-
culation of an averaged 3NF via the contraction with a 1B propagator (see
second term on right-hand side in Fig. 3.4). The advantage of using a density-
dependent 2NF constructed from three-body physics is clear. The definition
of an effective potential is the easiest way to include, at the lowest order in
3B correlations, the effect of 3NFs. In fact this, quick fix, provides the effect
of 3B forces without the need, given a specific many-body approximation, to
alter the overall construction of the theory built for the 2B sector only. Never-
theless, as explained in detail in Sec. 3.1, caution must be kept when defining
the effective terms at the 1B or 2B level.

The Krakow group paved the way for calculations in the SCGF approach
including three-body forces. In their works they built a contracted version
of the Urbana IX force (Carlson et al., 1983), obtained with an average
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4. Effective two-body chiral interaction

that included the effect of correlations. (Somà & Bożek, 2008, 2009; Somà,
2009). This density-dependent potential was then summed to different 2NFs,
such as the Nijmegen (Stoks et al., 1994), CDBonn(Machleidt, 2001) and Ar-
gonneV18(Wiringa et al., 1995) potentials, to define an effective 2B interaction
as the one described in Eq. (3.3).

In this thesis we want to employ interactions at the 2B and 3B level ob-
tained from the same approach, χEFT. We choose to construct our density-
dependent 2B force from a 3NF obtained at N2LO in χEFT (Epelbaum et al.,
2002b). This order corresponds to the leading order for 3B chiral forces. We
reduce the 3NF to a density-dependent effective interaction through a corre-
lated SP average over the third particle. This represents in some sense the
lowest-order contribution of the three-body force in the many-body system.
This is formally defined by the second term in Eq. (3.3) and diagrammatically
represented by the second contribution in Fig. 3.4. As we will see in the fol-
lowing sections, the five LECs appearing in the three leading order 3B terms
are partly known from the corresponding two-body potential. Two additional
low-energy constants need to be obtained by fits in the few-body sector (Nogga
et al., 2006; Navrátil et al., 2007; Hebeler et al., 2011; Marcucci et al., 2013).

In the past, most calculations for infinite matter where performed using
forces for the 2B and 3B sector derived in different model spaces, and at the
three-body level often included phenomenological ingredients (Carlson et al.,
1983). The density-dependent 2NF, arising from three-body physics, was then
added to the original 2NF to provide an interaction that effectively included
both two- and three-body effects, in a similar fashion to what is presented
in this work. Within the Correlated Basis Function theory, phenomenolog-
ical density-dependent 3NF (Lagaris & Pandharipande, 1981; Friedman &
Pandharipande, 1981) have been used for over 30 years (Fantoni & Pand-
haripande, 1984, 1987; Fabrocini & Fantoni, 1989; Benhar et al., 1989, 1992;
Benhar & Valli, 2007; Carbone & Benhar, 2011). Recently, further static
and dynamical correlations have been introduced in the density-dependent
force within the Fermi-Hyper-Netted-Chain approach (Lovato et al., 2011,
2012; Lovato, 2012), for Urbana IX, a chiral inspired revision of the Tucson
Melbourne potential (Coon & Glöckle, 1981) and for a local version of the
N2LO chiral 3NF (Navrátil, 2007). Urbana IX has also been used extensively
within the Brueckner-Hartree-Fock (BHF) approach (Baldo & Ferreira, 1999;
Zuo et al., 2002a,b; Vidaña et al., 2009). Within this approach, most results
have been derived from a density-dependent 2NF following the prescription
of Ref. (Grangé et al., 1989). Modern calculations also include a consistent
defect function in the averaging procedure for other 3NF (Li et al., 2008b; Li
& Schulze, 2008).

Density dependent effective 2NF have been recently constructed from chi-
ral 3NFs at N2LO in Refs. (Holt et al., 2010; Hebeler & Schwenk, 2010). In
both cases, the average is performed using a non-interacting propagator. This
averaged force has been used in perturbative calculations of infinite (Hebeler
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Figure 4.1 – Three 3B interaction terms appearing at N2LO in the chiral
expansion. Diagram (a) corresponds to the TPE exchange term of Eq. (4.1).
Diagram (b) to the OPE term in Eq. (4.2). Diagram (c) is the contact term
defined in Eq. (4.3). Dashed lines describe the 3B interaction. Small and big
dots, and squares define the nature of the vertices as described in Fig 1.1.

et al., 2011, 2013) and finite nuclear systems (Holt et al., 2009). BHF cal-
culations, based on the same chiral 3NF but with an alternative averaging
procedure, indicate a very strong overbinding of nuclear matter (Li & Schulze,
2012). In contrast, within the same approach, a recent calculation which fol-
lows a similar procedure for the construction of the density-dependent chiral
force to the one presented in Ref. (Holt et al., 2010), obtains good saturation
properties for nuclear matter (Kohno, 2013).

In this chapter we describe the construction of the density dependent force
from 3NF at N2LO in the chiral expansion. We then analyze in detail its effect
on the partial wave matrix elements.

4.1 Density dependent potential at N2LO

The 3NF at third order in chiral perturbation theory is given by three terms:
a two-pion- exchange (TPE) contribution, which corresponds to the Fujita-
Miyazawa original 2π exchange term (Fujita & Miyazawa, 1957); an iterated
one-pion-exchange (OPE); and a contact (cont) term (van Kolck, 1994; Epel-
baum et al., 2002b). These three contributions are diagrammatically repre-
sented in Fig. 4.1. Their analytical expressions are given by:

WTPE =
∑

i 6=j 6=k

g2
A

8F 4
π

(σi · qi)(σj · qj)
(q2

i +M2
π)(q2

j +M2
π)
Fαβ
ijk τ

α
i τ

β
j , (4.1)

WOPE = −
∑

i 6=j 6=k

cDgA
8F 4

πΛχ

σj · qj
q2
j +M2

π

(τ i · τ j)(σi · qj) ; (4.2)

Wcont =
∑

j 6=k

cE
2F 4

πΛχ

τ j · τ k . (4.3)
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4. Effective two-body chiral interaction

In the TPE 3B contribution of Eq. (4.1), the quantity Fαβ
ijk is

Fαβ
ijk =

∑

αβ

δαβ[−4M2
πc1 + 2c3qi · qj] +

∑

γ

c4ε
αβγτ γkσk · [qi × qj] . (4.4)

In the previous expressions, qi = p′i−pi is the transferred momentum between
incoming particle and outgoing particle i; pi and p′i are SP initial and final
momentum of nucleon i = 1, 2, 3 as depicted in Fig. 4.1. τ i and σi define the
isospin and spin matrices for particle i. gA = 1.29 is the axial-vector coupling
constant, Mπ = 138.04 MeV the pion mass, Fπ = 92.4 MeV the weak pion
decay constant and Λχ = 700 MeV is the chosen chiral symmetry breaking
constant, of the order of the ρ meson mass.

The LECs appearing in the two-pion exchange term, c1, c3, c4, are the
same as those appearing in the original 2NF at N3LO. These are fixed by
experimental NN phase-shifts and deuteron properties (Entem & Machleidt,
2002; Epelbaum et al., 2002a). In contrast, the two LECs appearing in the
one-pion and contact 3NF terms, cD and cE, remain undetermined and have
to be fit to further experimental values in the few-body sector. Their value
can be obtained from fits to the triton binding energy and to the value of
the nd scattering lenght (Epelbaum et al., 2002b). Fits to both the binding
energies of 4He and 3H can be exploited (Nogga et al., 2004, 2006), or in some
cases even to the triton binding energy alone (Navrátil et al., 2007; Navrátil,
2007). Fitting procedures to 3H binding energy and the radii of the α particle
have also been implemented (Hebeler et al., 2011). Furthermore, the triton
binding energy together with magnetic moments and the Gamow-Teller in
tritium β-decay have also been used to constrain the value of these LECs
(Marcucci et al., 2013). In the next chapter we will analyze the dependency
of our results on different couples of LECs cD and cE.

It must be noted that the leading-order 3NF contributions appearing in
Eqs. (4.1-4.3) are antisymmetrized (Epelbaum et al., 2002b). In other words,
the 3B antisymmetrization operator A123 is applied to the potential term
which, being a symmetric operator, leaves unaltered the following quantity:

V 3NF|Ψ〉A = A123V
3NF|Ψ〉A = V 3NFA123|Ψ〉A = V 3NF|Ψ〉A . (4.5)

Hence one can work equally well with an forces which are antisymmetrized or
not. |Ψ〉A represents an antisymmetric many-body state. In the specific case
of a 3-particle normalized antisymmetric state we have

1√
3!
|Ψ3〉A =

√
3!A123|Ψ3〉 , (4.6)

where the three-particle antisymmetrization operator reads

A123 =
(1− P12)

2

(1− P13 − P23)

3
. (4.7)
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4.1. Density dependent potential at N2LO

P12 is the permutation operator of momentum and spin/isospin of particles 1
and 2, which in spin/isospin space reads

P12 =
1 + σ1 · σ2

2

1 + τ 1 · τ 2

2
. (4.8)

The density dependent 2NF is obtained by tracing over spin/isospin indices
and integrating over the correlated momentum occupation n(p3), Eq (2.13),
of the averaged particle, here identified as the third particle:

〈p′1σ′1τ ′1; p′2σ
′
2τ
′
2|Ṽ 3NF|p1σ1τ 1; p2σ2τ 2〉A =

∑

σ3σ′3

δσ3σ′3

∑

τ3τ ′3

δτ3τ ′3

∫
dp3

(2π)3

∫
dp′3

(2π)3
n(p3)δ(p′3 − p3)

〈p′1σ′1τ ′1; p′2σ
′
2τ
′
2; p′3σ

′
3τ
′
3|W |p1σ1τ 1; p2σ2τ 2; p3σ3τ 3〉A . (4.9)

In the previous equation we used the antisymmetric potential matrix elements
which have been already introduced in Eq. (2.2-2.3). For practical reasons
from now on we will write |p1σ1τ 1〉 = |1〉. When calculating Eq. (4.9),
only part of the exchange which characterizes the 3B-state |123〉A has to be
considered in the averaging procedure, i.e. on the right hand side of Eq. (4.9).
The exchange concerning particles 1,2 should in fact be included only in the
final result, i.e. on the left hand side of Eq. (4.9), because this interchange
doesn’t affect the contraction over the third particle. Namely, only the (1 −
P13−P23) exchange part of the antisymmetrization operatorA123, see Eq. (4.7),
has to be considered in the average. We can then rewrite Eq. (4.9) as:

〈1′2′|Ṽ 3NF|12〉A = Trσ3Trτ3

∫
dk3

(2π)3
n(p3)

〈1′2′3′|W (1− P13 − P23)|123〉A12 , (4.10)

where we have written
∑

σ3σ′3
δσ3σ′3 = Trσ3 , and the same for the isospin space.

A12 in the left-hand side matrix element means that the three-particle ket is
antisymmetrized only with respect to particles 1,2. The performance of the
interchange (1− P13 − P23) when calculating Eq. (4.10) is a must in order to
obtain a density dependent force which takes into account correctly all possible
permutations. If neglected, it leads to the definition of an incorrect density
dependent force which has lost part of the permutation which characterized
the original 3B force.

In this work, the in-medium NN contributions have been derived in the
approximation of zero centre of mass momentum, i.e. P = p1 +p2 = 0, which
has been shown to drive small errors on bulk properties of infinite matter
(Hebeler & Schwenk, 2010). In the process of integration given in Eq. (4.10),
the 3NF has been regularized with a function that reads

f(p, q) = exp

[
−(p2 + 3q2/4)2

Λ4
3NF

]
, (4.11)
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4. Effective two-body chiral interaction

where p = (p1 − p2)/2 and q = 2/3(p3 − (p1 + p2)/2) are, only in this
expression, identified as the Jacobi momenta. Λ3NF defines the cutoff value
applied to the 3NF in order to obtain a 3B contribution which dies down
similarly to the 2B part. The regulator function is applied both on incoming
(p,q) and outgoing (p′,q′) Jacobi momenta. In the approximation of P = 0,
we have for the complete regulator function:

f(k, k′, p3) = exp

[
−
(

k

Λ3NF

)4

−
(

k′

Λ3NF

)4
]

exp

[
−2

3

p2
3

Λ4
3NF

(
p2

3

3
+ (k2 + k′2)

)]
. (4.12)

k = |k| = |p1−p2|/2 and k′ = |k′| = |p′1−p′2|/2 are the modules of the rela-
tive incoming and outgoing momenta. p3 is the module of the SP momentum
of the averaged particle. The first exponential term on the right hand side
of Eq. (4.12) only affects external relative incoming and outgoing momenta
and is similar to the regulator function applied on the 2B part of the chiral
potential (Entem & Machleidt, 2003). The second term in Eq. (4.12) also
affects the momentum of the averaged particle. In Ref.(Holt et al., 2010) the
authors use a regulator function which is equal only to the first exponential
term in Eq. (4.12). For this reason they obtain semi-analytical expressions
for the integrals of Eq. (4.10). The authors of Ref.(Hebeler & Schwenk, 2010)
use a regulator function equal to the full Eq. (4.12). We will see in the fol-
lowing section the effect of using these two different regulator functions in the
averaging procedure. Note that the function in Eq. (4.12) is symmetric in the
interchange of the three particles, hence it is not affected by the permutations
performed in the average (see Eq. (4.10).

In the following we present the in-medium density-dependent contributions
in the specific case of diagonal matrix elements, i.e. equal relative incoming
and outgoing momentum k = |k| = |k′|. We calculate these contributions
for both cases of symmetric nuclear and pure neutron matter. We want to
underline that the expressions that will be presented are formally equivalent
to those obtained in Ref. (Holt et al., 2010), whose method we followed to
calculate our density dependent contributions. We will see however, that
our expressions differ with respect to those in Ref. ??, because of a different
treatment of regulators and correlations in the construction of the in-medium
contributions. We must also point out that in our present calculations, the off-
diagonal elements of the density dependent potential are extrapolated from the
on-diagonal ones following the prescription given in Ref. (Holt et al., 2010).
We follow this approach because it greatly simplifies the evaluation of the
density dependent terms, and avoids the necessity to include more operatorial
structures in the definition of the general NN potential (Erkelenz et al., 1971)
(see Eq. (4.13) further down). We will comment more on this extrapolation at
the end of this chapter. Nevertheless, we write complete off-diagonal potential
elements for the density dependent 2NF at N2LO in App. C.
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4.1. Density dependent potential at N2LO

The most general form for a two-nucleon potential, in diagonal momentum,
which is charge independent, Hermitian and invariant under translation, parti-
cle exchange, rotation, space reflection and time reversal is given by (Erkelenz
et al., 1971):

V (k,q) = V s
c + τ 1 · τ 2V

v
c

+[V s
σ + τ 1 · τ 2V

v
σ ]σ1 · σ2

+[V s
σq + τ 1 · τ 2V

v
σq]σ1 · qσ2 · q

+[V s
SL + τ 1 · τ 2V

v
SL]i(σ1 + σ2) · (q× k)

+[V s
σL + τ 1 · τ 2V

v
σL]σ1 · (q× k)σ2 · (q× k) . (4.13)

We highlight this expression because it will be useful in identifying the dif-
ferent contributions of the density dependent interaction which arise from
contraction of the 3NF terms written in Eqs.(4.1-4.3). Furthermore, following
Refs. (Erkelenz et al., 1971; Kaiser et al., 1997; Holt et al., 2010), the choice
to express the density dependent force in the form presented in Eq. (4.13),
turns out to be helpful when defining the partial wave decomposition of the
matrix elements. In Eq. (4.13), the subscripts identify respectively: c for the
central term; σ the spin-spin term; σq the tensor term; SL spin-orbit and σL
quadratic spin-orbit terms. All contributions are present in an isoscalar V s

and isovector V v form. If written in non-diagonal momentum space, Eq. (4.13)
would include a further operatorial structure (Erkelenz et al., 1971), leading
to a more complicated treatment when performing the partial wave decompo-
sition (see App. C for a detailed description in off-diagonal momentum space).

Symmetric nuclear matter

Let’s start with the isospin-symmetric case of nuclear matter. Evaluating
Eq. (4.10) for the TPE exchange term of Eq. (4.1), depicted in Fig. 4.1(a),
leads to three contracted in-medium 2B interactions. These are represented
in Figs. 4.2(a)-4.2(c).

The first term, Fig. 4.2(a), is an isovector tensor term, i.e. will only con-
tribute to V v

σq in Eq. (4.13). This corresponds to a 1π exchange contribution
with an in-medium pion propagator:

Ṽ 3NF
TPE−1 =

gA ρf
2F 4

π

(σ1 · q)(σ2 · q)

[q2 +M2
π ]2

τ 1 · τ 2[2c1M
2
π + c3 q

2] . (4.14)

ρf defines the integral of the correlated momentum distribution function
weighed by the regulator function f(k, k, p3)

ρf
ν

=

∫
dk3

(2π)3
n(p3)f(k, k, p3) , (4.15)

where ν is the degeneracy of the system, ν = 4 in the isospin symmetric case.
If the regulator function included in Eq. (4.15) were not dependent on the in-
ternal integrated momentum p3, the integral would resume to the value of the
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4. Effective two-body chiral interaction

(a) (b) (c)

(d) (e) (f)

Figure 4.2 – Six density dependent contributions arising from contractions
of the three 3NF terms appearing at N2LO in the chiral expansion. Dashed
lines define the 3B interaction; double arrowed lines correspond to a dressed
single particle propagator. Diagrams (a), (b) and (c) arise form contraction of
the long-range 3NF two-pion-exchange term given in Eq. (4.1), and correspond
respectively to Eqs. (4.14), (4.16) and (4.22). Diagrams (d) and (e) are obtained
from averaging the medium-range 3NF one-pion-exchange term, Eq. (4.2), and
correspond respectively to Eqs. (4.28) and (4.29). Diagram (f) is the result of
contracting the contact 3NF contribution given in Eq. (4.3), and is defined in
Eq. (4.30). Small and big dots, and squares define the nature of the vertices in
the chiral expansion.

total density of the system, ρ, divided by the degeneracy. Consequently, the
expression in Eq. (4.15) would exactly equal the one presented in Ref. (Holt
et al., 2010), even though in our case we use a correlated momentum distri-
bution function, while a step function up to the Fermi level is used in the
latter.

The second term, Fig. 4.2(b), is also a tensor contribution to the in-medium
NN interaction, summing up as the previous density dependent expression to
V v
σq in Eq. (4.13). This term includes vertex corrections to the 1π exchange
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4.1. Density dependent potential at N2LO

due to the presence of the nuclear medium:

Ṽ 3NF
TPE−2 =

g2
A

8π2F 4
π

σ1 · qσ2 · q
q2 +M2

π

τ 1 · τ 2

×
{
− 4c1M

2
π [Γ1(k) + Γ0(k)]

−(c3 + c4)
[
q2(Γ0(k) + 2Γ1(k) + Γ3(k)) + 4Γ2(k)

]

+4c4(2π)2I(k)
}
. (4.16)

We have introduced the functions Γ0(k),Γ1(k),Γ2(k),Γ3(k), I(k), which are
Fermi sphere integrals over a single pion propagator:

Γ0(k)

(2π)2
=

∫
dp3

(2π)3
n(p3)

1

[k± p3]2 +M2
π

f(k, k, p3) ; (4.17)

Γ2(k)

(2π)2
=

1

2k2

∫
dp3

(2π)3
n(p3)

p2
3k

2 − (k · p3)2

[k± p3]2 +M2
π

f(k, k, p3) ; (4.18)

Γ1(k)

(2π)2
=

1

k2

∫
dp3

(2π)3
n(p3)

±k · p3

[k± p3]2 +M2
π

f(k, k, p3) ; (4.19)

Γ3(k)

(2π)2
=

1

2k4

∫
dp3

(2π)3
n(p3)

3(k · p3)2 − p2
3k

2

[k± p3]2 +M2
π

f(k, k, p3) ; (4.20)

I(k) =

∫
dp3

(2π)3
n(p3)

[p3 ± k]2

[p3 ± k]2 +M2
π

f(k, k, p3) . (4.21)

These Fermi sphere integrals are formally equal to those presented in Ref. (Holt
et al., 2010), but differ in that a dressed propagator is used in our average
and the expressions are weighed with an internal regulator function.

The last TPE contracted term, depicted in Fig. 4.2(c), includes in-medium
effects for a 2π exchange 2B term. This expression contributes to all opera-
torial structures of Eq. (4.13). Specifically it contributes to the scalar central
term V s

c , to the isovector spin-spin V v
σ and tensor term V v

σq, to the spin-orbit
in both isoscalar V s

SL and isovector form V v
SL, and to the isovector quadratic

spin-orbit term V v
σL:

Ṽ 3NF
TPE−3 =

g2
A

16π2F 4
π

{
− 12c1M

2
π

[
2Γ0(k)−G0(k, q)(2M2

π + q2)
]

−c3

[
8k3

F − 12(2M2
π + q2)Γ0(k)− 6q2Γ1(k) + 3(2M2

π + q2)2G0(k, q)
]

+4c4τ 1 · τ 2(σ1 · σ2 q
2 − σ1 · qσ2 · q)G2(k, q)

−(3c3 + c4τ 1 · τ 2) i(σ1 + σ2) · (q× k)

×
[
2Γ0(k) + 2Γ1(k)− (2M2

π + q2)G0(k, q) + 2G1(k, q)
]

−12c1M
2
π i(σ1 + σ2) · (q× k)

[
G0(k, q) + 2G1(k, q)

]

+4c4τ 1 · τ 2σ1 · (q× k)σ2 · (q× k)

×
[
G0(k, q) + 4G1(k, q) + 4G3(k, q)

]}
. (4.22)
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4. Effective two-body chiral interaction

Here we have introduced the function G0(k, q), which is a Fermi sphere integral
over the product of two different pion propagators:

G0,?,??(k, q) =∫
dp3

(2π)3
n(p3)

{p0
3, p

2
3, p

4
3}[

[k + q + p3]2 +M2
π

][
[p3 + k]2 +M2

π

]f(k, k, p3) . (4.23)

The functions G?(k, q), G??(k, q) have been introduced to define the rest of
the functions, G1(k, q), G2(k, q), G3(k, q):

G1(k, q) =
Γ0(k)− (M2

π + k2)G0(k, q)−G?(k, q)

4k2 − q2
, (4.24)

G1?(k, q) =
3Γ2(k) + k2Γ3(k)− (M2

π + k2)G?(k, q)−G??(k, q)

4k2 − q2
, (4.25)

G2(k, q) = (M2
π + k2)G1(k, q) +G?(k, q) +G1?(k, q) , (4.26)

G3(k, q) =
Γ1(k)/2− 2(M2

π + k2)G1(k, q)− 2G1?(k, q)−G?(k, q)

4k2 − q2
. (4.27)

Note that G1?(k, q) is needed only to define G2(k, q), G3(k, q).
Integrating Eq. (4.10) for the OPE 3NF term, given in Eq. (4.2), leads to

two contributions, shown in Figs. 4.2(d)-4.2(e). The first one, Fig. 4.2(d), is
a tensor contribution which defines a vertex correction to a 1π exchange NN
term. It is proportional to the quantity ρf , similar to what was obtained for
the TPE 3NF contracted term Ṽ 3NF

TPE−1 (see Eq. 4.14):

Ṽ 3NF
OPE−1 = −cD gA ρf

8F 4
π Λχ

(σ1 · q)(σ2 · q)

q2 +M2
π

(τ 1 · τ 2) . (4.28)

As Ṽ 3NF
TPE−1, this contributes uniquely to the isovector tensor term V v

σq of
Eq. (4.13).

The second term derived from the 3NF TPE is depicted in Fig. 4.2(e). It
defines a vertex correction to the short-range contact NN interaction. This
in-medium interaction contribution is formed up of terms of a central scalar
kind V s

c , and of a spin-spin V v
σ , tensor V v

σq and quadratic spin-orbit kind V v
σL

all in the isovector form (see Eq. (4.13)):

Ṽ 3NF
OPE−2 =

cDgA
16π2F 4

πΛχ

{(
Γ0(k) + 2Γ1(k) + Γ3(k)

) [
σ1 · σ2

(
2k2 − q2

2

)

+(σ1 · qσ2 · q)
(

1− 2k2

q2

)
− 2

q2
σ1 · (q× k)σ2 · (q× k)

1

q2

]

+2Γ2(k)(σ1 · σ2)
]
(τ 1 · τ 2) + 6I(k)

}
(4.29)

The last density dependent term, shown in Fig. 4.2(f), arises from a con-
traction of the contact 3NF term given in Eq. (4.3). This yields a scalar central
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4.1. Density dependent potential at N2LO

contribution to the in-medium NN interaction, i.e. a V s
c term, proportional to

ρf . Hence, being momentum independent it will contribute only to S partial
waves, as we will see in the following section. Its formal expression is:

Ṽ 3NF
cont = − 3cEρf

2F 4
πΛχ

. (4.30)

We would like to underline once more that the obtained in-medium NN
interaction terms, Eqs. (4.14), (4.16), (4.22), (4.28), (4.29) and (4.30) are
formally the same to those obtained by the authors in Ref. (Holt et al., 2010).
The difference lies in the Fermi sphere integrals over single and double pion
propagator and in the function ρf . These integrals differ not only in that our
averaging procedure is performed using the correlated momentum distribution
function n(p3), but furthermore in the weighing of the integrand with the full
regulator function f(k, k′, p3) presented in Eq. (4.12). In the next section
we will test the discrepancies obtained on the effective 2B potential given by
different averaging procedures.

Pure neutron matter

In the case of pure neutron matter, the evaluation of Eq. (4.10) is simplified.
In fact, the trace over isospin is trivial, neutron matter can only be in total
isospin T = 1, i.e. τ 1 · τ 2 = 1. Consequently the exchange operator of
Eq. (4.8) reduces only to the momentum and spin part, i.e.

P12 =
1 + σ1 · σ2

2
. (4.31)

It can then be proved that in-medium terms proportional to c4, cD, cE go to
zero (Tolos et al., 2008; Hebeler & Schwenk, 2010; Holt et al., 2010).

In fact, for the term proportional to cE, contact contribution in Eq. (4.3),
the permutation of spin indices leads to equal direct and exchange terms which
directly eliminate one another. Physically this is a consequence of the Pauli
principle which neutrons, being fermions, must respect. In other words, three
neutrons cannot interact via a scalar central S-wave potential.

For the OPE term proportional to cD, Eq. (4.2), it can be demonstrated
that the spin-momentum structure of this contribution leads to a vanishing
quantity when the trace over spin is applied (for further details see App. C).
As explained in (Hebeler & Schwenk, 2010), the physical reason lies in the
fact that both spin and relative momentum state of the two-neutron system
interacting via the term in Eq. (4.2) is symmetric, which cannot be the case
for an overall wave-function for a two-fermion state.

The other vanishing term, the c4 part of the TPE contribution in Eq. (4.1),
contains an operatorial structure of the kind (τ 1 × τ 2) · τ 3, and further per-
mutations of particles 1,3 and 2,3. This structure is zero in a three neutron
system.
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4. Effective two-body chiral interaction

Therefore the only density dependent contributions, which are non-zero in
neutron matter, are those proportional to LECs c1 and c3 in Eqs. (4.1)-(4.4).
The density dependent interacting terms obtained in neutron matter will only
differ with respect to the symmetric case ones by different pre-factors. This
is due to the fact that the only part which changes from the symmetric to the
pure neutron matter case is the trace over isospin indices.

In order to obtain the correct degeneracy for neutron matter, i.e. ν = 2,
we need to replace ρf → 2ρf in the Ṽ 3NF

TPE−1 contribution of Eq. (4.14), (see

also Eq. (4.15)). The isovector tensor terms Ṽ 3NF
TPE−1 and Ṽ 3NF

TPE−2, given in
Eqs. (4.14)-(4.16), which contribute to V v

σq in Eq. (4.13), must then change
prefactor according to:

Ṽ 3NF
TPE−1 : τ 1 · τ 2 →

1

2
τ 1 · τ 2 , (4.32)

Ṽ 3NF
TPE−2 : τ 1 · τ 2 →

1

4
(τ 1 · τ 2 − 2) . (4.33)

The isoscalar part of the density dependent potential appearing in Ṽ 3NF
TPE−3,

which contributes to both the central V s
c and the spin-orbit V s

SL terms in
Eq. (4.13), must change prefactor according to:

Ṽ 3NF
TPE−3 : 1→ 1

3
. (4.34)

Neutron matter represents a very interesting and unique system for chiral
forces. All many-body forces up to N3LO in the chiral expansion are predicted.
Complete calculations including sub-leading three-nucleon forces and leading
four-nucleon forces can then be performed without the need to adjust further
LECs, except for those obtained in the 2B sector, i.e. c1 and c3. Recent
results presented by the Darmstadt group (Tews et al., 2013; Krüger et al.,
2013) found significant contributions from sub-leading chiral 3NFs, i.e. 3NF at
N3LO. Results obtained at complete N3LO are indeed a major step forward in
providing further constrains for the definition of the neutron matter equation
of state.

4.2 Partial-wave matrix elements

We now want to analyze the different partial wave components of the six
in-medium NN interacting contributions obtained in the previous section.
The partial wave analysis is performed following the prescription presented
in Ref. (Holt et al., 2010). Given the general formulation for the NN inter-
action of Eq. (4.13), each of the 5 operatorial structures is expanded into
eigenstates of the |LSJ〉 basis. To do this one first evaluates the matrix el-
ements in the helicity basis and then rotates with Wigner d-functions to the
|LSJ〉 basis (for details see Sec. 4 in Ref. (Erkelenz et al., 1971)). To follow
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4.2. Partial-wave matrix elements

this approach, we first define the quantities Ui = V s
i + (4T − 3)V v

i , where
i = c, σ, σ q, SL, σL (see Eq. (4.13)) and T = 0, 1 is the total isospin of the
pair (for details see Sec. 3 of Ref. (Kaiser et al., 1997)). We then apply strictly
the projection formulas given in Sec. IVA of Ref. (Holt et al., 2010).

In the |LSJ〉 basis we consider six different matrix elements:

• single matrix element with S = 0 and L = 0;

• triple matrix element with S = 1 and L = J ;

• triple matrix elements with S = 1 and L = J ± 1;

• triple mixing matrix elements with S = 1 and L′ = J − 1, L = J + 1
and its reverse.

Note that the reverse mixing matrix element, i.e. L′ = J + 1, L = J − 1, is
equal to the former one only for diagonal momentum elements, but it differs
in the for the off-diagonal ones.

The effect of the density-dependent 2NF is tested on top of the N3LO NN
force of Ref. (Entem & Machleidt, 2003). Low-energy constants coming from
the 2B sector are chosen accordingly, c1 = 0.81GeV−1, c3 = −3.2GeV−1, c4 =
5.4GeV−1. The remaining LECs, cD = −1.11 and cE = −0.66, are taken from
fits to ground-state properties of 3H and 4He (Nogga et al., 2006) obtained
with the same chiral 2NF and 3NF used in this thesis. The cutoff on the
3NF included in the regulator function Eq. (4.12) is also chosen accordingly,
i.e. Λ3NF = 2.5fm−1 . Now and in the following, unless specified otherwise,
calculations are performed with full regulator function given in Eq. (4.12).

4.2.1 The six terms of the density dependent 2NF at
N2LO

Let us now start by analyzing the effect of each of the six components of
the in-medium interaction Ṽ 3NF. We do it for the specific case of symmetric
nuclear matter at empirical saturation density ρ = 0.16 fm−3. Figs. 4.3 reports
the effect for S, D and S −D mixing partial waves.

For S-waves (see upper left and right panels of Fig. 4.3(a)), the tensor com-
ponents derived from the long-range chiral 3NF, Ṽ 3NF

TPE-1 and Ṽ 3NF
TPE-2, present in

all waves a similar modification but with opposite sign. On one side, Ṽ 3NF
TPE-1

adds repulsion, reaching an approximate maximum value of ∼ 0.4 − 0.5 fm
at intermediate relative momentum. On the other side, Ṽ 3NF

TPE-2 contributes
attractively showing similar values. Therefore their combined modification
to the NN potential will be small, usually providing less than ∼ 0.1 fm of
attraction due to the slightly higher values of Ṽ 3NF

TPE-2. These components go
to zero for zero transferred momentum, hence vanish for k → 0. The other
contribution derived from the 3NF long-range term, Ṽ 3NF

TPE-3, has a repulsive
effect for all momenta. It contributes strongly at low momentum, weighing up
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Figure 4.3 – S, D and S−D mixing partial waves modifications due to the six
in-medium components derived from the 3NFs at N2LO. Black-solid lines corre-
spond to the bare NN N3LO potential. Red-dashed lines depict the contribution
coming from the sum of the NN N3LO plus: 1 for the Ṽ 3NF

TPE-1, Eq. (4.14); 2 for
the Ṽ 3NF

TPE-2, Eq. (4.16); 3 for the Ṽ 3NF
TPE-3, Eq. (4.22); 4 for the Ṽ 3NF

OPE-1, Eq. (4.28);
5 for the Ṽ 3NF

OPE-2, Eq. (4.28); and 6 for the Ṽ 3NF
cont , Eq. (4.30). Density dependent

terms are obtained at empirical saturation density of symmetric nuclear matter,
ρ0 = 0.16 fm−3.
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to ∼ 30% of the value of the NN N3LO force at k = 0. This modification is
the main cause for the suppression of the attraction of the bare 2B potential.
Repulsion dies down as the relative momentum increases. 3NF medium-range
derived components (see upper left and right panels of Fig. 4.3(b)), Ṽ 3NF

OPE-1

and Ṽ 3NF
OPE-2, give a small constant attractive contribution for all momenta, of

the order of ∼ 0.15 fm for the sum of the two. Conversely, Ṽ 3NF
cont , coming

from the contraction of the contact 3NF, weakens the attraction of the NN
N3LO potential, adding an average constant value of 0.35 fm in repulsion, a
bit higher for the 3S1 wave. Its effect diminishes only at high relative mo-
mentum. Combined with Ṽ 3NF

TPE-3, these two contributions to the in-medium
potential have the dominant effect, providing an overall strong repulsion. We
want to point out that the contracted contact term, Ṽ 3NF

cont , is proportional to
the low-energy constant cE, and changes sign accordingly to the one of the
LEC. Hence it can give an attractive or a repulsive effect.

For the D-wave (see lower left panel of Fig. 4.3(a)) the combined effect
of Ṽ 3NF

TPE-1 and Ṽ 3NF
TPE-2 is also small. At intermediate relative momenta, the

former adds an 0.1 fm of repulsion, while the latter a 0.2 fm of attraction,
leading to a small combined attractive effect similar to what is observed for
S-waves. The repulsive effect of the Ṽ 3NF

TPE-3 appears mainly in the range of
1.5-2 fm−1 relative momenta, reaching a maximum repulsion of 0.36 fm on
top of the NN N3LO. For terms derived from the medium-range 3NF (see
lower left panel of Fig. 4.3(b)), Ṽ 3NF

OPE-1 adds a more or less constant attraction
of 0.02 fm at intermediate momentum ranges, diminishing the repulsion of the
Ṽ 3NF

TPE-3. Ṽ 3NF
OPE-2 has a negligible but non zero effect.

The mixing S −D-wave (see lower right panel of Fig. 4.3(a)-4.3(b)) is the
result of a strict balance in between the different components. This balance
results in repulsion at low momenta, and attraction at intermediate and high
momenta, with respect to the NN N3LO force. As can be observed from
Fig. 4.3(a)-4.3(b) (lower right panels), the attractive sum of the density de-
pendent contributions Ṽ 3NF

TPE-1 and Ṽ 3NF
TPE-3 balances the repulsion coming from

the Ṽ 3NF
TPE-2 term. A similar behavior is observed for the contributions derived

from the medium-range 3NF, where the attraction of Ṽ 3NF
OPE-2 is opposed by the

repulsion of Ṽ 3NF
OPE-1.

Let’s now analyze the effect of each in-medium contribution on P partial
waves. In all waves (see Fig. 4.4), the major change with respect to the
bare NN potential is given by a combined effect of the three 3NF long-range
derived in-medium contributions. To this combined effect, the 3NF medium-
range derived term Ṽ 3NF

OPE-1 adds small modifications. The effect due to Ṽ 3NF
OPE-2

is negligible but non zero in all P partial waves.

For the uncoupled singlet 1P1, see upper left panel in Fig. 4.4(a), we have
that the Ṽ 3NF

TPE-1 adds a repulsion of ∼ 0.2 fm around relative momentum of 1
fm−1. This is opposed by the joint attraction of Ṽ 3NF

TPE-2 and Ṽ 3NF
TPE-3 which is

approximately ∼ 0.2fm. Ṽ 3NF
OPE-1, in upper left panel of Fig. 4.4(b), is then the

contribution which provides a small visible attraction, ∼ 0.04 fm. This be-
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Figure 4.4 – P partial waves modifications due to the six in-medium com-
ponents derived from the 3NFs at N2LO. Black-solid lines correspond to the
bare NN N3LO potential. Red-dashed lines depict the contribution coming
from the sum of the N3LO plus: 1 for the Ṽ 3NF

TPE-1, Eq. (4.14); 2 for the Ṽ 3NF
TPE-2,

Eq. (4.16); 3 for the Ṽ 3NF
TPE-3, Eq. (4.22); 4 for the Ṽ 3NF

OPE-1, Eq. (4.28); 5 for
the Ṽ 3NF

OPE-2, Eq. (4.28); and 6 for the Ṽ 3NF
cont , Eq. (4.30). Density dependent

terms are obtained at empirical saturation density of symmetric nuclear mat-
ter, ρ0 = 0.16fm−3.
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havior is maintained for relative momenta up to 1.5 fm−1, where the repulsive
effect of Ṽ 3NF

TPE-1 wins over the other contributions.
In the triplet 3P1 partial wave the changes due to each component are

similar to the ones observed for the former one. Except for the 3NF long-range
derived contribution Ṽ 3NF

TPE-3, lower left panel of Fig. 4.4(a), which presents in
this case a reversed behavior, being repulsive for all momenta. At intermediate
momenta, the repulsion obtained by the sum of Ṽ 3NF

TPE-1 and Ṽ 3NF
TPE-3 is stronger

than the attraction coming from Ṽ 3NF
TPE-2 and Ṽ 3NF

OPE-1, see lower left panel in
Fig. 4.4(b) for the latter contribution. This provides an overall enhancement
for the NN N3LO at k = 1 fm−1 of ∼ 0.05 fm. In this range of relative
momenta is where the main modifications are observed for the 3P1 partial
wave.

In the remaining P partial waves the changes provided by each contribution
are mainly similar. In both 3P0 and 3P2, right panels in Fig. 4.4(a), the 3NF
long-range derived contributions Ṽ 3NF

TPE-2 and Ṽ 3NF
TPE-3 sum up to add repulsion

to the bare NN N3LO. For intermediate relative momentum, the repulsion can
grow up to maximum values of ∼ 0.6 fm in the 3P0 wave. In the 3P2 wave this
is much less, of around ∼ 0.06 fm for k = 1.5 fm−1 relative momenta. This
effect is enhanced in both partial waves by the OPE in-medium term Ṽ 3NF

OPE-1,
right panels in Fig. 4.4(b), especially in the 3P0, where it adds a further 0.02 fm
repulsion to the NN potential. The joint effect of these terms is proportionally
balanced in each partial wave by the attraction of the density dependent
contribution Ṽ 3NF

TPE-1. However, the attraction provided by this contribution is
not enough, and both partial waves result less attractive at all momenta when
considering the inclusion of the complete density dependent interaction.

As a concluding remark, we would like to underline that the terms depen-
dent on the LECs cD and cE can change substantially depending on the value
of these constants. While the effect of the vertex correction to the short-range
contact NN term, Ṽ 3NF

OPE-2 in Eq. (4.29), is always negligible, the other terms
can greatly influence the total modification of the partial waves. In fact, ac-
cording to the sign of cD and cE, the vertex correction to the 1π exchange
term, Ṽ 3NF

OPE-1 in Eq. (4.28), and the vertex correction to the contact NN inter-
action, Ṽ 3NF

cont in Eq. (4.30), can yield an attractive or repulsive effect, whose
strength varies with the modules of the LECs, cD and cE respectively. There-
fore fitting procedures to obtain these constants must be precise, in order to
obtain reliable results for nuclear structure calculations.

4.2.2 The effect of correlations on the density depen-
dent 2NF

In Fig. 4.5 we plot at empirical saturation density the complete effect of the
in-medium NN interaction on top of the NN N3LO chiral force. Curves ob-
tained using both a correlated and a free distribution function in Eq. (4.10)
are presented. The correlated distribution function is the self-consistent mo-
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Figure 4.5 – S, D, S −D (upper panel (a)) and P (lower panel (b)) partial
waves modifications due to complete in-medium potential Ṽ 3NF. Black-solid
lines depict the the bare NN N3LO potential. Red-dashed line correspond
to the sum of NN N3LO to the complete in-medium NN potential calculated
with a dressed nucleon propagator (corr.). Green-dot-dashed correspond to
the case obtained with a free nucleon propagator in the averaging procedure
(free). Density dependent terms are obtained at empirical saturation density
of symmetric nuclear matter, ρ0 = 0.16fm−3.
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mentum distribution obtained at each iteration in the solution of the Dyson’s
equation, Eq. (2.26), considering both 2NFs and 3NFs in the calculation. The
use of a free in-medium propagator corresponds to replacing n(p3) by a Fermi
step function in Eq. (4.15), Eq. (4.17-4.21), Eq.(4.23) and Eq.(4.25), a step
function up to the Fermi momentum kF.

Focusing on the S partial waves, upper panels in Fig. 4.5(a), the NN N3LO
potential is pushed to less attractive values for all momenta. As we previously
analyzed, this effect is mainly provided by the term including medium effects
in a 2π exchange 2B term, Ṽ 3NF

TPE-3 of Eq. (4.22), and by the contact term, Ṽ 3NF
cont

given in Eq. (4.30). The repulsion provided by the density dependent force is
as large as 50% of the value of the bare NN force at zero momentum. If we
now turn to the D-wave, lower left panel in Fig. 4.5(a), we observe a small
attraction at low-momenta, ∼ 0.02 fm, which evolves in a stronger repulsion
at intermediate momenta, ∼ 0.1 fm. Also in this case, the Ṽ 3NF

TPE-3 term plays
a substantial role in providing this repulsion.

The modifications on S and D waves are dominant. We have checked that
the repulsive change which characterizes these partial waves increases with
the density. This promotes the total energy of the system to more repulsive
values, providing the mechanism for nuclear matter saturation. While for the
3NF long-range contracted term, Ṽ 3NF

TPE-3 in Eq. (4.22), this enhancement is
difficult to see from its formal expression, for the contact derived term, Ṽ 3NF

cont ,
it’s easy to verify. As a matter of fact, this contribution is proportional to the
quantity ρf , which directly grows with density (see Eq. (4.30)).

The behavior of the mixing S − D wave is reversed with respect to the
one of the D wave. A small repulsion of the order of ∼ 0.02 fm is observed at
momenta up to 1 fm−1, and a similar value but in attraction is seen for higher
momenta. This is given by the combined effect of all in-medium terms which
contribute to this partial wave.

We can observe that the main effect coming from the use of a free or
dressed nucleon propagator appears in the D and S −D mixing waves. Due
to the use of the free propagator, the change is repulsive in the previous and
attractive in the latter, i.e. it enhances in both cases the absolute value of the
potential matrix element. For the S waves the modifications are negligible,
less than 0.03 fm in attraction with the use of the free in-medium propagator.
From an analysis of each of the six density dependent components, it arises
that the major effect, due to the use of different in-medium propagators, is
observed in the Ṽ 3NF

TPE-3 contribution. This term increases in absolute value
when going from the correlated to the free average. This is a consequence of
the availability of momenta below the Fermi momentum. In other words, the
more momentum states are available below kF, i.e. free in-medium propagator,
the more the partial waves increase in absolute values. This will be clear from
the analysis that we will perform in the next section on the different internal
regulators used in the average

In Fig. 4.5(b) we show for P waves, the sum of the six in-medium NN
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contributions on top of the NN N3LO potential. The effect is mainly given
by the relative effect of the three 3NF long-range derived density dependent
contributions, Ṽ 3NF

TPE-1, Ṽ 3NF
TPE-2 and Ṽ 3NF

TPE-3. As expected from the previous anal-
ysis performed on each contribution, in waves 3P0 and 3P2 this effect is to
add repulsion at all momenta with respect to the bare NN N3LO potential.
In the 3P0 wave, the average enhancement is ∼ 0.1fm, which dies at small
and high relative momenta. In the 3P2 this value is a bit smaller, reaching
its maximum at ∼ 0.05 fm at intermediate momenta. In 1P1 partial wave,
the effect is attractive at low momenta and repulsive for higher; the behavior
is reversed in wave 3P1. In both cases, the modification is never higher than
∼ 0.04 fm in absolute value.

In P partial waves, results obtained performing the calculation with a free
or dressed in-medium nucleon propagator present small differences. In 1P1

and 3P1 waves, the change due to the use of a step function up to the Fermi
momentum adds a repulsion for all momenta of the size of ∼ 0.02 fm. In the
3P0 the effect is slightly smaller but with the opposite sign.

Finally, according to Fig. 4.5, we can conclude that, except for high relative
momenta in the 3P0 partial wave, the effect of using a free propagator in the
averaging procedure is to enhance the absolute value of the potential matrix
elements in all partial waves. Similar conclusions as for the S, D and S −D
waves can be drawn. The global effect will be visible in the next chapter,
where will analyze the bulk properties of nuclear matter. We will see how,
at saturation density, the effect of using the correlated average lowers the
attraction of the 3BF, while at double saturation energy it lowers its repulsion.
We can say that the overall effect of using a correlated in-medium propagator
in Eq. (4.10) is to weaken the effect of 3NFs.

4.2.3 The effect of the regulator function

We now want to analyze the effect of using different regulator functions when
performing the average over the third particle, as explained in the previous
section (see Eq. (4.12) and paragraph thereafter). We will refer to full regu-
lator when the calculation is computed using the complete function given in
Eq. (4.12). Conversely, we will refer to external regulator when the average is
computed using only the first exponential term in Eq. (4.12). In both cases
the self-consistent correlated momentum distribution function is used. We
present in Fig. 4.6 the curves obtained with the use of the external regulator
compared to those obtained with the full function. From a global perspective,
it is interesting to observe the similarities with the modifications which were
obtained when performing the average with a free in-medium propagator (see
Fig. (4.5)). As was concluded in the previous section, this is a consequence
of how momenta below kF are available in the integration of 3NFs. In the
present case, momenta are not internally regulated. They appear to be more
available with respect to the other averaging procedures. As a matter a fact,

78



4.2. Partial-wave matrix elements

0 0.5 1 1.5 2

k [fm
-1

]

-2

-1.5

-1

-0.5

0

0.5
V

(k
,k

) 
[f

m
]

N3LO
N3LO+N2LOdd corr. (ρ

0
) reg. full

N3LO+N2LOdd corr. (ρ
0
) reg. ext.

0 0.5 1 1.5 2

k [fm
-1

]

-2

-1.5

-1

-0.5

0

V
(k

,k
) 

[f
m

]

0 0.5 1 1.5 2

k [fm
-1

]

0

0.1

0.2

0.3

V
(k

,k
) 

[f
m

]

0 0.5 1 1.5 2

k [fm
-1

]

-0.4

-0.3

-0.2

-0.1

0

0.1

V
(k

,k
) 

[f
m

]

1
S

0 3
S

1

3
D

1
3
S

1
-
3
D

1

(a)

0 0.5 1 1.5 2

k [fm
-1

]

0

0.1

0.2

0.3

0.4

V
(k

,k
) 

[f
m

]

N3LO
N3LO+N2LOdd corr. (ρ

0
) reg full

N3LO+N2LOdd corr. (ρ
0
) reg. ext.

0 0.5 1 1.5 2

k [fm
-1

]

-0.2

0

0.2

0.4

V
(k

,k
) 

[f
m

]

0 0.5 1 1.5 2

k [fm
-1

]

0

0.1

0.2

0.3

0.4

V
(k

,k
) 

[f
m

]

0 0.5 1 1.5 2

k [fm
-1

]

-0.2

-0.15

-0.1

-0.05

0

V
(k

,k
) 

[f
m

]

1
P

1

3
P

0

3
P

1 3
P

2

(b)

Figure 4.6 – S, D, S −D (upper panel (a)) and P (lower panel (b)) partial
waves modifications due to complete in-medium potential Ṽ 3NF. Black solid
lines depict the bare NN N3LO potential. Red-dashed lines correspond to the
sum of the NN N3LO to the complete in-medium NN potential calculated with
the full regulator function Eq. (4.12). Orange-dot-dashed lines correspond to
the case obtained with an external regulator function (first term in Eq. (4.12).
Density dependent terms are obtained at empirical saturation density of sym-
metric nuclear matter, ρ0 = 0.16fm−3.
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4. Effective two-body chiral interaction

an even stronger enhancement, with respect to the other cases, is observed on
the absolute values of the partial waves.

If we look at partial waves depicted in Fig. 4.6(a), we see negligible effect
for the S waves (upper panels), while an appreciable change is observed in
D and S − D mixing waves (lower panels). For the latter waves, the modi-
fications observed with respect to the average with full regulator are similar
to those seen in Fig. 4.5(a) (lower panels) when using the free propagator.
With respect to the values in Fig. 4.5(a), in the present case we observe a
further enhancement of the absolute quantities at intermediate momenta of
approximately ∼ 0.02 fm. For P waves, Fig. 4.6(b), a similar behavior is also
observed with respect to changes seen in Fig. 4.5(b). For the 1P1 and 3P1

waves, the use of an external regulator in the average provides repulsion for
all momenta, while it has the opposite effect for the 3P0 partial wave. The
effect is negligible in the 3P2 wave. With respect to Fig. 4.5(b), the change
observed in Fig. 4.6(b) on the 3P1 and 3P0 is higher. Not weighing the internal
integrated momentum results in a repulsion in the 3P1 wave which can reach
values of ∼ 0.5 fm at relative momenta k=1.5-2.0 fm−1. In the 3P0, for similar
relative momenta, a shift of the same strength as the previous one is observed
but in attraction.

We can affirm that the use of an external regulator function drives an over-
all enhancement in the absolute values of the potential partial waves. Using
an external regulator results in a less depleted momentum distribution func-
tion in the integral of Eq. (4.10). We can conclude that the non regulation of
internal momenta below the Fermi momentum is what provides an enhanced
effect of the density dependent force, i.e. stronger attraction for negative val-
ues and stronger repulsion for positive values. The effect will be clearer when
we will look at the total energy of nuclear matter in the next chapter. We will
see that, when using the external regulator, stronger attraction is observed
at saturation density, while higher repulsion is observed at double saturation
energy, with respect to the full regulator calculation. This behavior is similar
to what we will observe for results obtained with the free in-medium propaga-
tor with respect to the correlated average with internal regulator. Conversely,
the free in-medium propagator calculations will yield less attractive negative
energy values, and less repulsive positive values with respect to the correlated
average with external regulator. As momenta become more and more depleted
below kF, from to the free average to the correlated average both internally
regulated, the effect of 3B forces seem to weaken, i.e. less attractive negative
energy values and less repulsive positive energy values. This once again leads
us to the conclusion that the most important role in the integrated functions
is provided by momenta below kF.

The explanation for this behavior could be drawn from the analysis of the
integrated functions which are present in the averaging procedure, Eqs. (4.17-
4.21). In Fig. 4.7 we plot, as functions of relative momenta, the quantities
Γ0(k), Γ1(k), Γ2(k) and Γ3(k), given respectively in Eqs. (4.17), (4.19), (4.18)
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Figure 4.7 – External relative momentum dependence for the integral gamma
functions of Eqs. (4.17)-(4.20). Red-dashed lines correspond to calculation per-
formed with a correlated momentum distribution function weighed with the full
regulator function, Eq. (4.12) (corr. reg. full). Orange double-dot-dashed lines
corresponds to the case with a correlated distribution function and an external
regulator (corr. reg. ext.). Green dot-dashed lines depict the case with a free
momentum distribution function and the full regulator (free reg. full).

and (4.20).

For all the depicted functions, the main effect of using the external regula-
tor is to enhance the absolute value of the integrals for all relative momenta.
Consequently the effect observed on the partial waves, Fig. 4.6, is due to this
enhancement. This increased value for the functions plotted in Fig. 4.7 is
to be expected given that the external regulator doesn’t weigh the internal
integrated momenta, providing larger values for these integrated quantities.

In contrast, the effect of using a free propagator in the integrating proce-
dure results in a non unique behavior. For the Γ0(k) the effect is to increase
the value of the integral for small momenta, while the effect is the inverse for
the Γ2(k). This modification dies for both functions with increasing relative
momenta. For the Γ1(k) and Γ3(k), we observe equal modifications in the
curves absolute values: as a consequence of using a free propagator, higher
values are seen for small relative momenta and slight lower for intermediate
ones. In this case, it is then not directly predictable how the interplay of these
and the other integrated functions, (see for example Eqs. (4.15), (4.21) and
(4.23)), provides the effect observed on the partial waves, Fig. 4.5.

All in all, we can conclude that the effect of the density dependent 2NFs

81



4. Effective two-body chiral interaction

is mostly given by the weight of momenta below the Fermi momentum. This
implies variations on all the integrated quantities presented in the previous
section and, consequently, the interplay of all of these provides the effect
observed on the partial waves.

4.2.4 Partial waves in neutron matter

We will now proceed with the analysis of the in-medium interaction in the
specific case of totally asymmetric isospin matter. In the case of pure neutron
matter, some partial waves are blocked in the antisymmetrization procedure
of the two-neutron wave function, i.e. they can only be in total T = 1 isospin
state. We plot in Fig. 4.8 the dominant partial wave matrix elements in
PNM. In Fig. 4.8(a) we present the curves for the complete density dependent
potential Ṽ 3NF calculated at the empirical saturation density value, ρ0 =
0.16 fm−3. In a similar fashion to the analysis we followed for the case of
SNM, we present all cases of averaging procedures: the ones obtained with a
correlated or a free momentum distribution function with full regulator and
the correlated average but with external regulator. As a starting remark, we
observe that for all averaging cases the contribution of the contracted 3NFs is
a positive value, meaning that repulsion will be added to the bare NN N3LO
potential. The only distinction is presented by the 3P2 partial wave at high
momenta.

The dominant repulsive effect is observed for the 1S0 partial wave, with
values up to 0.44 fm at zero relative momentum. This repulsion decreases with
increasing momenta. The enhancement provided by the other waves decreases
in order starting from the effect of the 3P1, to the 3P0 and finally to the 3P2

partial wave, whose maximum effect is an order of magnitude less than the
1S0 wave.

It is interesting to observe that for all partial waves, except for the singlet
1S0, the modifications due to the different averaging procedures seems to be
a consequence of the availability of the complete range of SP momenta, not
only of those below kF. In other words, this means that the repulsive effect
in absolute values of the density dependent 2NFs increases with the different
presence and weighing of momenta: if states over kF are present, the 3NF has
a higher repulsive effect, if furthermore states are not internally regulated the
effect is even stronger. This seems to agree with what observed in Fig. 4.6,
but it does not agree with the trend studied in Fig. 4.5. Nevertheless the
dominant effect for the potential modification comes from the sinlget 1S0, in
which this behavior is not respected. In this partial wave, on the contrary,
the biggest modification is observed in repulsion, at high relative momenta,
for the correlated average with full regulator. The modification decreases for
the same average but with external regulator, and decreases even more with
the free average. We can derive the same conclusion already stated in the
previous seciton, whereby the effect is due to an interplay of all the integrated
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Figure 4.8 – S and P waves available in PNM for the total in-medium potential
Ṽ 3NF (upper panel (a)), and for the sum of this to the NN N3LO (lower panel
(b)). Red-dashed lines correspond to the in-medium NN contribution calculated
with a dressed nucleon propagator and full regulator (corr. reg. full). Green-
dot-dashed lines correspond to the case with a free propagator and full regulator
(free reg. full). Orange double-dot-dashed lines correspond to the case with a
dressed propagator and external regulator (corr. reg. ext). Density dependent
terms are obtained at empirical saturation density of SNM, ρ0 = 0.16fm−3.
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4. Effective two-body chiral interaction

quantities playing in the averaging of 3NFs.
In Fig. 4.8(b), we plot the effect of the density dependent force summed

to the NN N3LO potential. As expected, the major change is observed in
the 1S0 partial wave, where an increase in the 2B potential matrix element is
observed, with values that range from 0.45 fm to 0.1 fm in a spread of relative
momenta of k=0-2.5 fm−1. The other visible effect is in the 3P1 wave, where
the strongest repulsion is observed around k = 1 fm−1 with a positive value of
0.15 fm, more or less the 30% of the effect of the previous partial wave. The
effect is orders of magnitude smaller in the other two waves.

The overall repulsive effect provided by the density dependent force in all
partial waves is what accounts for the enhancement of the total energy of
PNM. In the next chapter we will see how the effect of 3BFs is to enhance
the energy of the system interacting only via 2B forces. As in the symmetric
matter case, changes in pure neutron matter provided by the inclusion of the
density dependent 2NF will be of a repulsive kind for all densities.

Non-diagonal momentum potential matrix elements

All results presented in this chapter where obtained for the specific case of
diagonal potential matrix elements in relative momentum space, that is equal
relative incoming and outgoing momenta, i.e. k = |k| = |k′|. Complete
off-diagonal expressions for the six density dependent potential contributions
are though necessary to perform nuclear structure calculations. We present
in App. C the complete expressions in momentum space for the six density
dependent terms, Eqs (4.14), (4.16), (4.22), (4.28), (4.29) and (4.30) . For
the case of non diagonal potential matrix elements in relative momentum
space, |k| 6= |k′|, the general formulation given in Eq. (4.13) for the NN
potential acquires a further operatorial structure (Erkelenz et al., 1971). In-
stead of performing the partial wave decomposition of the potential for all
non-diagonal matrix elements, in the present thesis we decided to follow the
approach presented in Refs. (Kaiser et al., 1997; Holt et al., 2009, 2010),
where it is performed only for diagonal momentum matrix elements. The
off-diagonal elements are extrapolated from the diagonal ones, with the sub-
stitution k2 → (k2 + k′2)/2.

In Ref. (Holt et al., 2009), it is observed that the strongest off-diagonal
dependency is provided by the vertex correction to the 1π exchange 2B term
which includes the presence of the medium, i.e. Ṽ 3NF

TPE-2 in Eq. (4.16). This
term decreases the value of the bare 2B 1π exchange in S waves, it has hence
an attractive modification (see also Fig. 4.3(a), upper panels). We can then
consider the bare NN 1π exchange contribution:

V 2NF
OPE = − gA

4F 4
π

τ 1 · τ 2
σ1 · qσ2 · q
q2 +M2

π

, (4.35)

and compare its off-diagonal dependency in S waves to the one obtained for the
Ṽ 3NF

TPE-2 contribution, applying the outlined off-diagonal extrapolation. When
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TPE-2

obtained at density ρ0 = 0.16fm−3.

performing the off-diagonal partial wave analysis of the NN OPE term of
Eq. (4.35) no approximation is performed (Erkelenz et al., 1971; Holt et al.,
2010).

As depicted in Fig. 4.9, the qualitative behavior of the two matrix elements,
presented for a fixed incoming relative momentum k = 0.08 fm−1 and as a
function of the outgoing momenta k′, is in good agreement (note that the
NN OPE term is plotted with an overall negative sign). As already discussed
previously, we observe that the vertex correction to the 1π exchange term,
Ṽ 3NF

TPE-2, has an attractive effect (see also Fig. 4.3(a)).
Therefore, in the results of the next chapter, we employ this off-diagonal

momentum extrapolation for all potential matrix elements.
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5
Nuclear and Neutron matter with three-body

forces

In this chapter we want to present the results obtained for microscopic and
macroscopic properties of SNM and PNM. We will use the extended SCGF
approach to include consistently 3BFs and analyze the effect of this inclusion
in the properties of the many-body system.

Using a variety of many-body approaches (Müther & Polls, 2000; Dewulf
et al., 2003; Baldo et al., 2012), it has been demonstrated that saturation
properties of nuclear matter fail to be reproduced whatever realistic 2NF is
used in the calculation. This deficiency can be cured by the addition of 3NF in
the Hamiltonian. In fact, it is proved that the inclusion of three-body forces
has a crucial effect on bulk properties of both symmetric nuclear and pure
neutron matter (Akmal et al., 1998; Zuo et al., 2002a; Li et al., 2006; Somà
& Bożek, 2008; Hebeler & Schwenk, 2010; Hebeler et al., 2011; Lovato et al.,
2012; Carbone et al., 2013b; Kohno, 2013; Hagen et al., 2014).

Following the partial wave analysis of the potential matrix elements pre-
sented in the previous chapter, we will observe the striking effect of the in-
clusion of the density-dependent force for the total energy of the many-body
ground state. Exploiting the extended SCGF approach presented in this the-
sis, we will see how the modifications induced by the 3B force are larger as
the density increases. This increasing with density is what provides the satu-
ration mechanism for nuclear matter. In pure neutron matter, 3NFs are the
main cause for the stiffening of the equation of state. In view of astrophysical
studies for neutron star masses, this stiffening is a major ingredient for the
achievement of theoretical results which can better match recent astrophysical
observations (Demorest et al., 2010; Antoniadis et al., 2013). We will further-
more analyze the variation of the symmetry energy due to the inclusion of
the density dependent force. The symmetry energy determines to a large ex-
tent the composition of β-stable matter and therefore the structure and mass
of neutron stars (Schulze et al., 2006). Its density dependence is a crucial
ingredient to understand many properties of isospin-rich nuclei and neutron
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Figure 5.1 – Energy per nucleon for SNM, panel (a), and PNM, panel (b).
Results include NN N3LO and density-dependent N2LO, in the correlated av-
erage version and with full regulator. Red-dashed lines display results obtained
at T = 5 MeV. Dot-dashed-violet lines display the extrapolated T = 0 MeV
results as explained in the text. The orange cross in panel (a) defines the
empirical energy/density saturation point, E0=-16 MeV and ρ0=0.16 fm−3.

stars (Li et al., 2008a; Steiner et al., 2005). A detailed study of this quantity
from fully microscopic approaches (Vidaña et al., 2009; Carbone et al., 2012;
Hebeler et al., 2013), can be seen as a safe and necessary alternative to the
variety of phenomenological methods which yield a large dispersion in the
symmetry energy values.

As a starting point, we will first analyze microscopic properties. In the
Green’s functions method, the knowledge of the spectral function gives direct
access to the calculation of microscopic quantities, such as the momentum
distribution function. We will start studying the behavior of the self-energy,
separating the imaginary from the real part. Looking at the real part of the
self-energy, it will be clear how the inclusion of the density dependent 2NF in-
fluences the momentum dependency of the quasi-particle spectra. Conversely,
we will observe how the inclusion of the density dependent force has very little
effect on the spectral function itself and hence on the momentum distribution.

Before going into the details of our calculations, let us first comment on
the temperature dependence of the results we will present. As explained in
the introduction to the thesis, calculations are performed at finite temper-
ature to avoid pairing instabilities. Thermal effects can be estimated using
the Sommerfeld expansion (Rios et al., 2009b). At low temperatures, the
Sommerfeld expansion indicates that the effect of temperature is quadratic
for both the energy and the free energy but with opposite sign. These read
respectively e ∼ e0 + aeT

2 and f ∼ f0 + afT
2, where ae = −af (Rios et al.,

2009b). Consequently, the semi-sum of both thermodynamical potentials is
an estimate of the zero-temperature energy. This expansion is only valid if
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Figure 5.2 – Hartree-Fock term of the 1B effective potential depicted in
Fig. 3.3, stripped off the bare 1B part.

T/εF � 1, which is the case under study. It can be demonstrated than under
these conditions, the energy per nucleon of the system can be expressed in the
Sommerfeld expansion as (Rios, 2007):

E

A
∼
(
T

εF

)2

+ C (5.1)

In other words, as the density gets higher for a fixed T , the energy temperature
dependence gets milder.

In Fig. 5.1 we plot, for both cases of symmetric nuclear and pure neutron
matter, the density dependence of the total energy per nucleon for two dif-
ferent temperatures. The T = 5 MeV corresponds to the calculation of the
energy via the GMK sumrule, once self-consistency for the spectral function
is achieved. The T = 0 MeV curve is given by the semi-sum of total energy
and total free energy per nucleon both obtained at T = 5 MeV. Calculations
are performed with the use of the 2B N3LO force and including the density
dependent force presented in the previous chapter, performing the correlated
average with full regulator. For SNM, temperature drives an enhancement of
less than 5 MeV at very low densities for results calculated at T = 5 MeV.
As expected from the Sommerfeld expansion (see Eq. (5.1)), the thermal re-
pulsion is reduced with density, approaching approximately 1 MeV around
empirical saturation density, and dies as the density increases. A similar be-
havior is observed for pure neutron matter, in which case the spread of the
curves due to temperature is already small at low densities, ∼ 2MeV, and
vanishes quickly as density increases.

We want to stress once again that all expressions, for both microscopic
and macroscopic properties, discussed in chapter 2 and 3 were derived at zero
temperature. In the following, in order to prevent the paring instability and
due to the construction of the numerical code, all microscopic and bulk results
will be derived at temperature T = 5 MeV, unless otherwise stated.

5.0.5 Numerical inclusion of 3BFs in the SCGF ap-
proach

A detailed description of the numerical implementation of the complete SCGF
method at finite temperature can be found in (Rios, 2007). The code has been
written in FORTRAN programming language.
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5. Nuclear and Neutron matter with three-body forces

Figure 5.3 – Hartree-Fock approximation of the expectation value of the 3B
interaction.

In this small subsection we would like to focus mostly on the inclusion
of 3BFs in the existing code. Numerical details for the calculation of the
density dependent contributions are reported at the end of App. C. Following
the complete evaluation of the density dependent force Ṽ 3NF, as presented in
Chap. 4, we sum its values to the bare 2B potential, V 2NF, in two different
forms:

• we define a V NN
T = V 2NF + Ṽ 3NF for the calculation of the T -matrix,

defined in Eq. (3.25). This potential corresponds to the effective 2B
potential depicted in Fig. 3.4;

• we define a V NN
HF = V 2NF + 1

2
Ṽ 3NF for the calculation of the HF part of

the self-energy, defined in Eq. (3.28). The HF self-energy corresponds
to the first order term of the effective 1B potential depicted in Fig. 3.3,
without considering the bare 1B part which, in the case under study,
falls out of the calculation. We show this first order term in Fig. 5.2.

According to what explained in Chap. 3, this ensures that all microscopic
quantities have all diagrams counted correctly.

For the evaluation of the total energy by means of the modified GMK
sumrule given in Eq. (2.24), we need to calculate the expectation value of the
3B operator. As already explained previously, in our calculations this term
is obtained only a the HF level. We depict it in Fig. 5.3. To obtain the 3B
expectation value, we then perform an integration of the kind:

〈W 〉HF =
1

3

∫
dp

(2π)3
n(p)Σ?

Ṽ 3NF(p) . (5.2)

In the previous expression, the HF self-energy for the 3B part, i.e. Σ?
Ṽ 3NF

also shown in the second term on the right hand side of Fig. 5.2, has been
computed from the 3B part of V NN

HF . The momentum distribution in Eq. (5.2)
is obtained as explained in the numerical details of App. C.

5.1 The self-energy

As defined by the Dyson’s equation Eq. (2.26), the self-energy incorporates
all interacting terms, for a specific approximation, which dress up the SP
propagator. For the ladder self-energy, we calculate separately the imaginary
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from the real part. We derived these contributions at zero temperature in
Eq. (3.30-3.31). The latter is derived from the former by means of a dispersion
relation. As a matter of fact, as derived in Eq. (2.30-2.31), a combination of
the real and imaginary part of the self-energy is needed to obtain the spectral
function.

In Fig. 5.4, we present the imaginary part of the ladder self-energy obtained
at T = 5 MeV. For a deeper comprehension of the qualitative and quantitative
behavior of the imaginary part of the self-energy, its mathematical expression
at finite temperature must be analyzed in detail (Frick, 2004; Rios, 2007).
Though, a general qualitative explanation can be given. While the real part
of the self-energy is related to mean-field effects, the imaginary part is mostly
connected to absorption and phase space. We analyze in Fig. 5.4 its behavior
for three different SP momenta, k = 0, kF, 2kF, and for increasing density,
ρ = 0.08, 0.16, 0.32 fm−3. In the figure we compare the self-energy when only
the 2B N3LO force is considered, to the case when the density dependent
N2LO interaction is included. The inclusion of the density dependent force
is presented in the three different cases: correlated and uncorrelated average
with the use of the full regulator as well as the correlated average with the
external regulator, as explained in the previous chapter.

We note that the inclusion of the contracted 3B force doesn’t strongly
affect the overall behavior of the imaginary part of the self-energy. If we look
at momentum k = 0, we see, around energies close to the chemical potential µ,
the parabolic shape predicted by Luttinger for a zero temperature calculation,
i.e. ImΣ(k, ω) ∼ a(ω − µ)2 (Luttinger & Ward, 1960). Due to this parabolic
shape, the imaginary self-energy approaches zero for ω = µ as the density
increases. The fact that the system resembles the zero temperature behavior
is provided by the fact that the higher the density the stronger the degeneracy
of the system. For a fixed density, if we go to higher momenta, k = kF or even
more at k = 2kF, the cusp induced by the parabolic behavior decreases. Here
we see that the imaginary part of the self energy flattens for energies close and
below µ. As Luttinger’s argument is independent of the force, the inclusion of
the density-dependent force generates no variation in the position of the cusp.
On the contrary, mainly at zero momentum, 3NFs generate a smaller absolute
value in the minima observed in the imaginary self-energy, for energies close
and below the chemical potential, with respect to the 2B only results. As we
go to higher densities, the distance in between the minima obtained with the
two cases increases, mostly due to the fact that the value obtained with only
2NFs becomes more negative, while the 3NF results remain approximately at
the same value for all densities. For k = 0, this spread goes from ∼ 2 MeV
at ρ0/2 to approximately 20 MeV at double saturation density. For higher
momenta the behavior is somewhat different, with both minima, obtained
with and without 3NF, increasing to more negative values, showing at 2ρ0

an opposite trend, where the density dependent force generates a few MeV
more negative results for the imaginary part of the self-energy. In general, the
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Figure 5.4 – Imaginary part of the self-energy in SNM for SP momentum
k = 0, kF, 2kF in the first, second and third rows respectively. In each row,
panels going from left to right show the self-energies at densities ρ= 0.08 -
0.16 - 0.32 fm−3. Black-solid line represents the NN N3LO calculation. Red-
dashed, green-dot-dashed and orange-double-dot-dashed curves correspond to
the inclusion of the 2NFdd, obtained, respectively, in the correlated and free
version with full regulator, and in the correlated version with external regulator.
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Figure 5.5 – Imaginary part of the self-energy in SNM for density ρ =
0.32fm−3, for momentum k = 0, kF, 2kF in panels going from left to right.
Black-solid line depicts the NN N3LO calculation. Red-dashed, green-dot-
dashed and orange-double-dot-dashed curves represent the inclusion of the
2NFdd, obtained, respectively, in the correlated and free version with full reg-
ulator, and in the correlated version with external regulator.

minima flattens for all densities as the momenta increases. Though, the fact
that the position of the minima changes is a consequence of the combination
of both phase space availability and the force itself. The overall behavior of
the imaginary part of the self-energy at energies ω < µ, below the minima,
is left unaltered for all densities and momenta, showing a negligible value at
energies already around 250 MeV below the chemical potential.

Looking at energies close but higher than the chemical potential, the imag-
inary self-energy presents a bump around ∼ 100 MeV, for all momenta, which
disappears with increasing density. The three-body contracted force induces
smaller negative values around the bump, but conversely results fall below
the 2B-only calculation when the self-energy reaches the miminum observed
in the region ω > µ. As the density increases, for a fixed momenta, this falling
to more negative results, for calculations performed with the 2NF density-
dependent, becomes steeper. In the region of energies ∼ 200 − 400 MeV, es-
pecially for density 2ρ0, is where we observe the strongest dependence on the
averaging/regulator procedure for the construction of the density-dependent
force. As can be seen in Fig. 5.5, where we focus on this high density region, we
obtained higher absolute values for the miminum when the correlated average
procedure with full regulator is performed, with respect to the other proce-
dures. This calculation shows at the minimum a somewhat stable spread of
∼ 20 MeV, observed for all momenta, with respect to the two-body only cal-
culation. On the other hand, results including the density dependent force
obtained with a correlated average but with the external regulator or with
a free average with the use of the full regulator, present a variation in the
position of the energy minimum with increasing momenta. In these two latter
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5. Nuclear and Neutron matter with three-body forces

cases, the energy value of the mimimum goes from being close to the 2B calcu-
lation one, and departs from it with increasing momentum. Simultaneously,
these mimina approach the more negative result obtained with the complete
calculation of the density dependent 2NF. We will see in the next section
that it is exactly in this high-density region where the main variation for the
spectral function appears. All in all, except for this high-density high-energy
region, we can conclude that the modifications induced by the different av-
eraging procedures are negligible. From a qualitative point of view, the fact
that modifications due to the different averaging procedures appear mostly at
high densities, is a direct consequence of what we concluded from the partial
wave analysis. In fact, we stated that the difference in between the averages
is mainly due to how momenta below the Fermi momenta are treated. As the
density increases, the region of momenta below kF is bigger, consequently the
effect is enhanced. Analyzing the results from a quantitative point of view
is fairly more complicated, given the difficult physical interpretation of the
imaginary part of the self-energy.

However, the low and high energy tails of the imaginary part of the self-
energy are related to off-shell effects, which are determined by the short-
range part of the potential. The inclusion of three-body forces seems to alter
the behavior of this part of the potential especially at high densities, where
we observe a somehow enhanced, in absolute values, high-energy tail. In
some sense, we will observe this effect when analyzing the depletion of the
momentum distribution in the next section, which will result more depleted
at high densities when considering 3BFs. This is in agreement with a stronger
off-shell behavior when including 3BFs.

A much more visible consequence of the density dependent 2NF can be
detected at the quasi-particle energy. This is obtained from the real part of
the self-energy. The quasi-particle energy is obtained at each momentum as
the solution of the following self-consistent equation:

εqp(k) =
k2

2m
+ ReΣ(k, εqp(k)) . (5.3)

The second term on the right-hand side of Eq. (5.3) is shown in Fig. 5.6. This
corresponds to the potential part of the quasi-particle energy. We show it
for three different densities, ρ = 0.08, 0.16, 0.32 fm −3. For all momenta, the
contracted 3NF shifts the quasi-particle strength to more repulsive values.
At zero momentum, the shift amounts to ∼ 5 MeV for ρ0/2, increases to
∼ 20 MeV at saturation density ρ0, and grows as high as 70 MeV at double
saturation density 2ρ0. For all densities, this shift gradually diminishes as
momentum increases. This repulsion at low-momenta leaves mostly unaltered
the qualitative behavior of the SP potential at ρ0/2 and ρ0, except for the shift
in values which yield nevertheless less negative values for the quasi-particle
potential in the entire momentum range. Conversely, at ρ = 0.32 fm−3, the
strong repulsion at low-momenta, induced by the density dependent 2NF,
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Figure 5.6 – Quasi-particle potential in SNM calculated at densities ρ= 0.08 -
0.16 - 0.32 fm−3 respectively in panels going from left to right. Black-solid lines
represent the NN N3LO calculation. Red-dashed, green-dot-dashed and orange-
double-dot-dashed curves correspond to the inclusion of the 2NFdd, obtained,
respectively, in the correlated and free version with full regulator, and in the
correlated version with external regulator.

also affects the qualitative momentum dependence of the SP potential. At
high densities, the quasi-particle potential shows an even stronger repulsion
becoming positive at intermediate momenta. This strong density-dependent
repulsive effect drives the saturation of the total energy of the symmetric
nuclear system, as we will see in the following sections.

Variations caused by the different averaging procedures in the construction
of the density dependent force are negligible at densities ρ0/2 and ρ0. As
expected from the analysis of the high density behavior of the imaginary part
of the self-energy, modifications are mainly visible at 2ρ0. Here the use of the
external regulator in the correlated average drives results for the quasi-particle
spectrum which are ∼ 8 MeV more repulsive at zero momentum with respect
to the other averaging procedures. This repulsion is mainly maintained for
all momentum with respect to the correlated average performed with the full
regulator. The main qualitative variation is observed for the curve performed
in the free average with the use of full regulator. The effect of weighing
internal contracted momenta from 0 to kF and having no presence of momenta
higher than the Fermi momentum, causes a more rapid decreasing of the
quasi-particle potential at high momenta. This could be justified in a HF
picture, where a sharp disappearance of momenta higher than kF increases
the damping of the SP potential.
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5. Nuclear and Neutron matter with three-body forces

5.2 Spectral function and momentum distri-

bution

The SP momentum distribution, defined in Eq. (2.13) at zero temperature,
provides a measure of the correlations embedded in the nuclear wave function.
The spectral function, as shown in Chap. 2 (see Eqs. (2.10-2.11)), describes
the spread in energy of the probability to find single-particle states beyond the
quasi-particle approximation, and hence tests the presence of correlations in
between particles. This behavior can be experimentally seen in (e, e′p) knock-
out reactions on finite nuclei (Mougey, 1980; Benhar et al., 1989; Dickhoff &
Barbieri, 2004).

While we presented in Eq. (2.10) and Eq. (2.11) the formal expressions
for the spectral functions at zero temperature of respectively the hole and
particle part, at finite temperature the spectral function can be described by
a unique quantity, the A(k, ω) (Blaizot & Ripka, 1986). The spectral function
A(k, ω) is related to the discontinuity of the SP propagator along the real axis
(see Eq. (2.8)), and takes into account both effects coming from Eq. (2.10) for
the hole contribution and from Eq. (2.11) for the particle contribution. For
a non-interacting system, this quantity would result in a delta peaked at an
energy equal to the chemical potential (Blaizot & Ripka, 1986).

We plot A(k, ω) in Fig. 5.7 for SNM at temperature T = 5 MeV for dif-
ferent densities and SP momentum. Spectral functions at three characteristic
momenta, k = 0, kF, 2kF, are presented. The left to right panels correspond,
for a specific momentum, to a density of ρ = 0.08, 0.16, 0.32 fm−3. For low and
high momenta, the quasi-particle peak positioned in either the hole, ω < µ, or
particle, ω > µ, part can be clearly distinguished in the energy dependency of
the spectral function. Actually at zero temperature, for k < kF and k > kF,
the spectral function A(k, ω) must go to zero at ω = µ, separating into two
distinct sections which correspond exactly to the hole and particle part given
in Eq. (2.10-2.11). At finite but low temperature, as presented in Fig. (5.7),
this behavior is highly visible especially at low momentum and high density,
given the increased degeneracy of the system under these conditions.

The energy of the spectral function peak is well described by the quasi-
particle potential analyzed in the previous section. For k = 0, panel (a)
of Fig. 5.7, the quasi-particle peak is located in the hole region of energies.
This peak moves to more attractive energies as the density increases. As a
matter of fact, the higher the density, the more bound the zero momentum
state becomes, as observed in the quasi-particle potential (see Fig. 5.6). As
the density increases, the spectral function approaches zero at ω = µ, due
to the more degeneracy of the system. At 2ρ0, the low and high energy tails
are associated to a stronger presence of correlations which scatter states in
energy regions far from the quasi-particle peak. These tails cause the peak
to narrow, especially in the 2NF+3NF calculation, due to the fact that the
spectral function must fulfill a sumrule at all densities (Rios, 2007). In the
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Figure 5.7 – SP spectral function for SNM for SP momentum k = 0, kF, 2kF in
first, second and third row respectively. In each row, panels going from left to
right show the spectral function at densities ρ= 0.08 - 0.16 - 0.32 fm−3. Black-
solid lines depict the NN N3LO calculation. Red-dashed, green-dot-dashed and
orange-double-dot-dashed curves correspond to the inclusion of the 2NFdd,
obtained, respectively, in the correlated and free version with full regulator,
and in the correlated version with external regulator.
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2NF-only case, the peak is broader but overall lower in value, which is why
a region of low and high energy tails is still observed. The quasi-particle
behavior for the spectral function could have been expected observing the
minimum at zero momentum present in the imaginary part of the self-energy
for ω < µ, Fig. 5.4. The imaginary part of the self-energy enters both the
numerator and the denominator of the expression for the A(k, ω) (Rios, 2007).
The deeper the value for ImΣ(k, ω), the smaller the value of the peak for the
spectral function. It is interesting to note that, as the density increases, in
the 2NF-only calculation the quasi-particle peak broadens and lowers in value.
Conversely, if the contracted 3B force is included the peak narrows even more
as the density increases, in accordance to what observed for the minimum of
the imaginary part of the self-energy in Fig. 5.4. We must point out that the
negative values which appear at 2ρ0 when including 3NFs are mostly given
by numerical errors when performing the calculation.

For momentum k = 2kF, panel (c) of Fig. 5.7, the behavior of the spectral
function is similar to the zero momentum one but reflected in the particle
region, ω > µ. In this case the peak shifts to more repulsive energies the
higher the density of the system, conversely to what happens in the zero
momentum behavior. We note that at higher SP momentum, the minimum
of the spectral function at ω = µ is much better resolved with respect to
the zero momentum case, especially at density 2ρ0. This is a consequence of
the flattening of the cusp observed in the imaginary part of the self-energy
(see Fig. 5.4(c)). It is at this density that the largest effect due to the 2B
density dependent force appears, causing the quasi-particle peak to shift of
∼ 50 MeV to lower energies. Naively, one might expect an attractive effect on
the saturation curve when including the 3NF. Note, however, that the energy
dependence is always plotted with respect to the chemical potential, µ. The
variation in the latter is larger than the quasi-particle shift and results in an
overall repulsive effect of the 3NF as the density increases, as observed in the
quasi-particle potential at high densities and momenta (see Fig. 5.6).

At the Fermi momentum, panel (b) of Fig. 5.7, the spectral function
presents a strongly peaked behavior located at energies ω = µ, proving indeed
that at low temperatures the quasi-particle energy must equal the chemical
potential. In contrast to the behavior observed for the other momenta, at
the Fermi momentum the peak narrows and has larger values as the density
increases. This is due to the stronger degeneracy of the system for higher
densities, which leads the spectral function to approach the zero temperature
delta-peaked function at the chemical potential. As previously stated, for
a non-interacting system, the spectral function results in a delta peaked at
εQP (kF) = µ, which is exactly the behavior we observe in this more degener-
ate case. The narrowing of the peak drives high energy tails which grow with
density. These tails, present for all momenta, could have been expected given
the high energy behavior observed in Fig. (5.5) for the imaginary part of the
self-energy.
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Figure 5.8 – Momentum distribution in SNM using 2NF only at N3LO, black-
solid lines, and including the density-dependent 2NF in the correlated average
version with full regulator, red-dashed lines. Calculations are performed at ρ=
0.08 - 0.16 - 0.32 fm−3 in panels going from left to right. Insets in panel (a),
first row, focus on the depletion below the Fermi surface. Panel (b), second
row, presents the same results of panel (a) in logarithmic scale.

From a global perspective, we can affirm that the inclusion of the 2NFdd
force doesn’t induce strong modifications in the spectral function except for
shifts in the QP peak. Though, a narrowing of the peaks is observed for all
momenta as the density increases. This causes modifications in the off-shell
behavior of the spectral function. This leads us to conclude that the inclusion
of 3BFs must be considered not only at the QP level but in the entire off-shell
dependency of the spectral function. As expected from the analysis of the
imaginary and real part of the self-energy, modifications due to the different
averaging procedures are negligible at saturation and sub-saturation densities,
and are more visible for high densities. The effect of the different procedures
will be more evident in the following analysis of the momentum distribution
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Figure 5.9 – Momentum distribution in SNM in same conditions as in Fig. 5.8
but considering all averaging procedures for the 2NFdd force. Red-dashed,
green-dot-dashed and orange-double-dot-dashed curves represent the inclusion
of the 2NFdd obtained, respectively, in the correlated and free version with full
regulator, and in the correlated version with the external one.

function.

Given the knowledge of the spectral function, via Eq. (2.13) we have direct
access to the SP momentum distribution function. In Fig. 5.8(a), we show
n(k) in SNM at T = 5 MeV for three densities, ρ=0.08, 0.16, 0.32 fm−3.
We compare results obtained with and without the density-dependent 2NF,
this latter one calculated in the correlated average with the use of the full
regulator function. The effect of the 3NF in the momentum distribution is
relatively small for all densities. The logarithmic scale in Fig. 5.8(b), gives us
the possibility to appreciate, mainly at 2ρ0, a noticeable difference in n(k) for
momenta higher than the Fermi momentum. This enhancement of the distri-
bution function at high momenta is a consequence of the added correlation
by 3BFs which induce a bigger high-momentum population.
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In fact, we observe that 3NFs induce a somewhat strong density depen-
dence in the depletion of the momentum distribution. This is shown in the
insets of Fig. 5.8(a), which focus on the low-momentum region. The somewhat
soft chiral 2NF induces a relatively small depletion, of order 10%, as compared
to traditional 2NF, which typically have 15−20%. For these traditional two-
body potentials, the density dependence of the depletion is generally very soft
and dominated by tensor correlations (Rios et al., 2009a). 3NF modify this
behavior, possibly due to the additional tensor structures associated to the
density-dependent 2NF explained in Sec. 4.1. At sub-saturation densities, the
3NF decreases the depletion. At density ρ = 0.08 fm−3, the zero momentum
value for n(k) goes from n(0)2NF+2NFdd = 0.868 to n(0)2NF = 0.845, driving a
decrease in the kinetic energy value from T2NF = 24.35 to T2NF+2NFdd = 23.53.
The difference is still small at ρ=0.16 fm−3, within a few percent. Also in this
case, we observe a higher depletion when considering only 2NF, i.e. n(0)2NF =
0.892 versus n(0)2NF+2NFdd = 0.911. This causes once more a somewhat higher
kinetic energy for the system without 3NF, that is, T2NF = 32.88 MeV to be
compared with T2NF+2NFdd = 32.02 MeV. At higher densities, ρ=0.32 fm−3,
the 3NF induces a slightly larger depletion, n(0)2NF+2NFdd = 0.905, compared
with n(0)2NF = 0.919. Correspondingly the kinetic energy in the system with
3NF, T2NF+2NFdd = 47.98 MeV, is a little bit higher than that with 2NF only,
T2NF = 45.49 MeV. This behavior leads us to conclude that the higher the
density, the stronger the scattering of SP state to high momentum due to the
3B forces. This could have been expected given the enhanced high energy
tails at 2ρ0 observed in the imaginary part of the self-energy as also in the
spectral function (see Fig. 5.5 and right column of Fig. 5.7). Nevertheless,
this behavior is reversed at saturation and sub-saturation densities, where the
inclusion of 3NFs lowers in some sense the effect of correlations, inducing a
smaller depletion.

We plot in Fig. 5.9(a) the variations of the momentum distribution function
due to the different averaging procedures in the construction of the density
dependent force. Concentrating on the low momentum region, we observe
negligible changes due to the use of the different density dependent forces.
The depletion varies with a percentage of much less than 1%. The small
shifts in the depletion are better viewable in the logarithmic scale presented
in Fig. 5.9(b). In this scale, we see that the highest modifications are observed
for high densities. If we look at density 2ρ0, a small spread in the different
curves is observed at high-momentum. As already underlined, this is a con-
sequence that the higher the density the stronger the effect induced from the
different averaging procedures. We observe that the biggest high-momentum
population is induced by the correlated average with full regulator, leading to
a more correlated behavior. This provides a higher kinetic energy. Though,
as we will see in the next section, the effect of the correlated average with full
regulator provides less repulsive energy results at high densities with respect
to the other constructions of the averaged force. This once more validates
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the fact that the more regulated the momenta below kF, the less repulsive
the potential. Concluding, the effect of the different averaging procedures is
mostly visible on quasi-particle properties, as observed in Fig. 5.6, and will
reflect mainly in bulk properties.

At this point, let us stress that in spite of the cut-off in both the 2NF and
3NF considered here, one finds a substantial population of high momentum
components. Similarly, the spectral functions display qualitatively important
tails at high energies. Traditional microscopic 2NF would yield even larger
high-momentum components and fragmentation. Our calculations indicate
the importance of considering such effects in many-body calculations even
with relatively soft interactions. In fact, our approach is not affected by a
cut-off in the many-body approximation, as applied on the contrary in the
construction of the chiral interaction. Due to this construction, the high-
momentum region should be free of population and we shouldn’t observe states
beyond the cutoff applied. In particular, let us stress that low-momentum SP
properties are affected by correlations. This is a direct effect of self-consistency
and provides a feedback mechanism, whereby high-momentum modes affect
low energy properties.

Studies towards a thorough analysis of high momentum states in the SP
momentum distribution have been recently presented (Rios et al., 2013), where
calculations are performed in the same approximation presented in this thesis
but with the only use of 2B forces. Using different NN potentials, the authors
show that the high momentum states induced by the short-range correlations
have a universal trend, provided the momentum distribution is normalized
to one. Furthermore it is observed that the distribution of these states is
independent of the isospin asymmetry which can characterize the system.

5.3 Nuclear matter

We present in this section results for the total energy of symmetric nuclear
matter obtained using the extended SCGF formalism described in Chap. 3
which includes consistently 3B forces. As explained in Chap. 4 we include
3NF at N2LO in the chiral expansion in a density dependent form obtained
performing an average over the third particle. Averaging procedures vary
according to correlated or free propagator used in the internal momentum
integral, and on the two different regulator functions included, as explained
after Eq. (4.12). In the correlated average we use the self-consistent SP prop-
agator obtained through solution of the Dyson equation explained in Sec. 2.3.
In the calculation, we include partial waves up to J = 4 (J = 8) in the dis-
persive (Hartree-Fock) contributions. The total energy is computed via the
modified GMK sumrule defined in Eq (2.24), where the 3B expectation value
is evaluate as explained in the introduction to this chapter . When no 3B
forces are included, the standard GMK sumrule of Eq (2.14) is applied.
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Figure 5.10 – Energy for SNM at T = 5 MeV. Black-solid line depicts the
NN N3LO calculation. Red-dashed, green-dot-dashed and orange-double-dot-
dashed curves correspond to the inclusion of the 2NFdd, obtained, respectively,
in the correlated and free version with full regulator, and in the correlated ver-
sion with external regulator. The orange cross identifies the empirical satura-
tion point.

In Fig. 5.10 we show the curves of the energy per nucleon obtained for
symmetric nuclear matter at T = 5 MeV. The effect of 3NF is striking. As
expected from the partial wave analysis and from the study of the microscopic
properties, the effect of 3B forces is to induce repulsion in the energy values.
This repulsion increases with density and is the main cause of nuclear matter
saturation. The 2B only calculation, obtained with NN N3LO of (Entem
& Machleidt, 2003), saturates at high densities not visible in the range of
the figure. To be more precise, saturation is observed at ρ = 0.42 fm−3 at an
attractive energy value of E ∼ −23 MeV. This high saturation density is cured
by the inclusion of the density dependent 2NF, which shifts the minima of the
energy to densities close to the empirical value. In Fig. 5.10 we use for the
low energy constants cD and cE the same values used in Sec. 4.2, cD = −1.11
and cE = −0.66 (Nogga et al., 2006). Note that in this calculation and in
the following ones where the N3LO force is used in the 2B sector, the LECs
c1, c3, c4 applied in the N2LO density dependent force are taken in accordance
to the Ref.(Entem & Machleidt, 2003), i.e. c1 = −0.81, c3 = −3.4, c4 = 5.4 all
measured in GeV−1. The cutoff applied on the 3NF is set at Λ3NF = 500 MeV
according to (Nogga et al., 2006). We obtain a qualitatively good saturation
density of ρ ∼ 0.14 fm−3 and a more repulsive saturation energy of ∼ 9 MeV
with respect to the empirical value. This value decreases of ∼ 1 MeV if
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5. Nuclear and Neutron matter with three-body forces

thermal effects are taken into account (see Fig. 5.1(a)). At saturation density,
the curves obtained performing the different averaging procedures follow what
expected from the partial wave analysis of Chap. 4. A shift of maximum ∼ 0.5
MeV is observed for the saturation energies of the different curves. Specifically,
at the saturation density ρ = 0.14 fm−3, matter is less bound when using the
correlated average with the full regulator. The free average with full regulator
presents a slightly more bound value with respect to the previous one, and
the correlated average with the external regulator provides the highest binding
energy value. As already stressed, this shift is less than 5% going from the
most attractive to the most repulsive result. A greater spreading in curves
is observed at high densities. This could have been expected looking at the
high density behavior of the quasi-particle potential in Fig. 5.6. Conversely to
what observed at saturation density, at double this value, the behavior for the
curves appears reversed. The correlated average with full regulator leads now
the lowest energy value. Though, we can say that in absolute energy values
the effect of the different averages is the same, both at ρ0 and at 2ρ0. In fact,
the correlated average with external regulator presents the highest value, both
in attraction at ρ0 as in repulsion at 2ρ0. The free average with full regulator
follows the former, and the smallest absolute values are presented with the full
correlated average. This is a consequence of what we had argued in Sec. 4.2,
where we stated that the higher the availability of momentum states below
kF, the stronger the effect of the 3NF, wether in attraction or in repulsion.
Nevertheless we must comment on the fact that, except for a maximum energy
shift of less than 4 MeV at high densities, the matching of results obtained
with the different averaging procedure is remarkable.

Different approaches to obtain the two additional low-energy constants
appearing in the 3N chiral force have been presented in the literature. These
are usually based on fits in the few-body sector (Nogga et al., 2006; Navrátil,
2007; Marcucci et al., 2013). Consequently, we might expect quantitative
changes to the saturation properties coming from different determinations
of the LECs. We explore these differences in Fig. 5.11, where we show the
saturation curve at T = 5 MeV obtained with four different combinations of cD
and cE. In the first three cases, the Entem-Machleidt N3LO potential (Entem
& Machleidt, 2003) has been complemented with the density-dependent force
obtained for different couples of LECs, derived in the correlated version with
the full regulator, and with Λ3NF = 500 MeV. The choice of combinations
is representative of the spread in LEC values associated to different fitting
protocols. The first choice, cD = −1.11 and cE = −0.66, already used in
Fig. 5.10, has been determined from the binding energies of 3H and 4He in
exact few-body calculations (Nogga et al., 2006). The second set, cD = 1.0
and cE = −0.029, has been obtained with a local version of the 3NF, but
fit to the A = 3 system only (Navrátil, 2007). The third set of LECs, with
cD = −0.2 and cE = +0.2, has been used in Ref. (Krewald et al., 2012) for
SNM calculations on the basis of naturalness.
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Figure 5.11 – Energy for SNM at T = 5 MeV. Black-solid line depicts the
NN N3LO calculation. Red-dashed, blue-dot-dashed, pink-double-dot-dashed
and green-dot-double-dashed correspond to different couples of LECs cD and
cE as explained in the figure and in the text. The orange cross identifies the
empirical saturation point.

Curves corresponding to different values of cD and cE fall within a narrow
band below saturation, which reaches a maximum spread of ∼ 3 MeV at
ρ0. In general, the modifications are mild even if the constants are changed
considerably, indicating that 3NF contributions are small at low densities.
Above ρ ∼ 0.16 fm−3, however, differences develop as density increases. These
can be largely explained by the contact term and its contribution to the total
energy, proportional to cE. In the Hartree-Fock approximation, this reads:

EcE
A

= − 3

16

cE
f 4
πΛχ

ρ2 = −5.5 cE

(
ρ

ρ0

)2

MeV. (5.4)

One therefore expects positive values of cE to lead to more attractive contribu-
tions. Looking at Fig. 5.11, we see that the curve obtained with the positive
value of cE = +0.2 is, as a matter of fact, the most attractive. The ones
obtained with negative values of cE increase in repulsion as the absolute value
of this constant rises. This is a direct consequence of the effect observed on
S partial waves (see Fig. 4.3). There, we had observed that the contact 3NF
derived term could provide attraction or repulsion to the 2NF-only partial
wave according to the sing in the LEC cE.

In the last case presented in Fig. 5.11, the green double-dash-dotted line,
a similarity renormalization group (SRG) transformation has been applied to
the NN N3LO potential. This transformation renormalizes the 2NF, suppress-
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ing off-diagonal matrix elements and giving rise to a universal low-momentum
interaction. This is usually performed to make the 2NF more tractable in
the many-body framework (Bogner et al., 2007, 2010). The SRG evolution,
however, introduces induced many-body forces and these need to be consis-
tently taken into account. A full SRG evolution of 2NF and 3NF has been
achieved only recently in momentum space, which is the relevant basis for nu-
clear matter calculations (Hebeler, 2012; Hebeler & Furnstahl, 2013; Wendt,
2010). Here we follow a previous simpler strategy, whereby the SRG evolution
is performed on the 2NF alone (Hebeler et al., 2011) and the LECs of the 3NF
are refitted for each scale at which the transformation is performed. In the
specific case of Fig. 5.11 we choose the case where the renormalization scale
on the 2NF is equal to the one applied on the 3NF, i.e. ΛSRG = Λ3NF = 2.0
fm−1. LECs cD = 1.271 and cE = −0.131 are then chosen according to
(Hebeler et al., 2011). The low-momentum potential calculation presents the
most attractive result for the binding energy of symmetric nuclear matter,
approaching the empirical saturation energy value around ∼ −15 MeV, at a
higher density of ρ = 0.20 fm−3 with respect to the empirical one. Overall,
the different curves in Fig. 5.11 obtained with the four different couples of
LECs reach a spread of ∼ 6 MeV at empirical saturation density ρ0; this
spread doubles its value at 2ρ0. Conversely to what previously discussed in
relation to the energy contribution given by the contact term, even though
the cE is negative in the SRG-evolved case, the energy is more attractive with
respect to all other curves. This is due to the decimated high momentum
in the renormalized-2NF, which is consequently less repulsive. As tested in
Ref. (Carbone et al., 2013b), nuclear matter is perturbative, at least up to
saturation density, in the approximations performed in the many-body calcu-
lation (Hebeler et al., 2011).

We must stress, at this point of the discussion, that in all calculations
presented up to now, the order at which χEFT is implemented in the inter-
action is not equivalent in the 2B and 3B sector. A consistent measure of
errors would only be provided if results where compared order by order in
perturbation theory. In other words, NLO, N2LO and N3LO results should
yield smaller and smaller error bands. At N3LO, one would in principle also
have to include four nucleon forces, as recently done for neutron matter in
Ref. (Tews et al., 2013; Krüger et al., 2013) where a full N3LO calculation has
been performed.

For the purpose of consistency in the χEFT expansion, we present in
Fig. 5.12 results obtained for SNM with the use of a 2NF at N2LO which was
recently presented by authors in Ref. (Ekström et al., 2013). We compare the
energy per particle at T = 5 MeV using the N3LO 2B Entem-Machleidt po-
tential (Entem & Machleidt, 2003) and the 2B N2LO of Ref. (Ekström et al.,
2013). Results with and without the correlated averaged 3NF with full regu-
lator are showed. For the N2LO 3NF which complements the optimized NN
N2LO, we use the values of cD and cE quoted in Ref. (Hagen et al., 2014),
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Figure 5.12 – Energy for SNM at T = 5 MeV. Black-solid line depicts the
NN N3LO calculation. Green-dot-dahsed the NN N2LO optimized calculation.
Red-dashed line corresponds to calculation performed with NN N3LO plus the
N2LOdd obtained in the correlated version with full regulator, with LECs cD =
−1.11, cE = −0.66. Pink-doubledot-dashed refer to calculation performed with
the same N2LOdd but with cD = −0.39, cE = −0.389, and c1, c3, c4 according
to (Ekström et al., 2013).

i.e. cD = −0.39 and cE = −0.389. In both calculations, the cutoff on the
3NF contracted force is set to Λ3NF = 500 MeV. In the full-N2LO calculation,
LECs coming from the 2B sector, namely c1, c3, c4, to be used in the N2LO
3NF are set to values reported in (Ekström et al., 2013). Looking at the
2NF-only results, curves obtained are very similar, with N2LO consistently
more attractive than N3LO in the whole density range. As already observed
in Fig. 5.10, the inclusion of 3NF is crucial to obtain saturation at realistic
densities and energies. The full-N2LO calculation yields slightly more attrac-
tive results at low densities, moving the saturation energy to a smaller density
value of ρ = 0.12 fm−3, with respect to the N3LO one. But it turns much
more repulsive above saturation. This indicates a larger compressibility for
results obtained with the optimized version of the N2LO 2NF (Ekström et al.,
2013). For the full-N2LO calculation, our results are in fair agreement with
those performed in the Coupled Cluster many-body approximation, recently
presented by authors in Ref (Hagen et al., 2014).

Overall, the differences in between the two calculations, full-N2LO or 2B-
N3LO+3B-N2LO, can be ascribed mostly to the distinct structure of the 2NF
itself, and consequently on the diverse values of the LECs. Even though the
calculations can be both valid on their own, a direct comparison is hard to
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5. Nuclear and Neutron matter with three-body forces

carry out. An analysis of the kind would be fare if, in going from the N2LO
to the N3LO order in the chiral expansion, the Hamiltonian would have been
left unchanged, i.e. same LECs, which is not the present case. Conclusions
on the compared quality of the results respect to the consistency in the chiral
expansion are then difficult to drive.

5.4 Neutron matter and the symmetry energy

Using the extended SCGF to include 3B forces, we compute in this section the
bulk properties of PNM. The effect that we observe, due to the inclusion of the
density dependent 2NF, is to add repulsion at all densities. Similarly to the
symmetric matter case, repulsion added by the 3B force rises with increasing
density. In the case of pure neutron matter, where the total energy of the
system is always a positive value, the rising of the energy for all densities
contributes to stiffen the EOS of PNM. This effect is necessary in order to
yield higher values for the mass of neutron stars. As a matter of fact, recent
astrophysical observations, where masses as high as twice the solar mass have
been observed for neutron stars (Demorest et al., 2010; Antoniadis et al.,
2013), have ruled out a variety of microscopic descriptions which lead to softer
EOSs.

The case of pure neutron matter is particularly interesting for the im-
plementation of nuclear chiral interactions. In fact, up to fourth order in
the χEFT expansion, i.e. N3LO, all many-body forces among neutrons are
predicted. In other words, no further coupling constants, except for those
present in the 2B sector, i.e. c1 and c3, need to be adjusted. In App. C we
demonstrated the vanishing for 3NF terms at N2LO proportional to cD and
cE. A similar demonstration can be done for 3NF terms at N3LO (Epelbaum
et al., 2009). Recently, studies for the pure neutron matter system have been
computed at full N3LO (Tews et al., 2013; Krüger et al., 2013).

In PNM, as for the symmetric nuclear matter case, we perform calculations
complementing the N3LO by (Entem & Machleidt, 2003) with the density de-
pendent force computed in neutron matter as detailed in Sec. 4.1. We will also
show results obtained using the newly optimized N2LO by (Ekström et al.,
2013), complemented with the same density dependent force of Sec. 4.1, there-
fore being consistent in the order of the chiral expansion. Unless if otherwise
stated, cutoff on the 3NF contracted force is set to Λ3NF = 500.

We present in Fig. 5.13 the density dependence for the total energy per
nucleon in pure neutron matter computed at finite temperature T = 5 MeV.
LECs values are taken in accordance to (Entem & Machleidt, 2003), c1 =
−0.81GeV1 and c3 = −3.2GeV−1. In the 2B only case, calculated with the
NN at N3LO by (Entem & Machleidt, 2003), values for the total energy of the
system are around ∼ 13MeV at empirical saturation density ρ0 = 0.16 fm−3.
The energy gains a ∼ 10 MeV in repulsion at double saturation density 2ρ0.
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Figure 5.13 – Energy for PNM at T = 5 MeV. Black-solid line depicts the
NN N3LO calculation. Red-dashed, green-dot-dashed and orange-double-dot-
dashed curves correspond to the inclusion of the 2NFdd, obtained, respectively
in the correlated and free version with full regulator, and in the correlated
version with external regulator function.

The inclusion of 3NFs contribute to enhance even more the energy values in
the entire density range. This is a direct consequence of the modifications
observed on the partial wave potential matrix elements in Fig. 4.8. Repulsion
due to the density dependent 2NF goes from less than 1MeV at density ρ0/2 =
0.08 fm−3, rising to ∼ 4 MeV at saturation density, and boosting up to ∼ 15
MeV at double saturation density. We must outline that thanks to the non-
perturbative nature of our calculation, which performs an all-order ladder
summation for the in-medium T -matrix interaction, we are not bound to low-
density regions. Therefore, we can span with one same many-body technique
a higher density range, whereas perturbative many-body calculations must
perform some kind of extrapolations.

Furthermore we present in Fig. 5.13 the variation in the total energy curve
due to the different averaging procedures in the construction of the density
dependent force. The difference is negligible for low densities, and becomes
appreciable only around double saturation density. At 2ρ0, we observe a high
energy value of ∼ 40 MeV. Here, the three different averages reach a maximum
shift of ∼ 1MeV. We note that the behavior at high densities is similar to the
one observed in Fig. 5.10 for SNM. Results obtained with the self-consistent
correlated average with the use of the full regulator provide the less repulsive
energies at these high densities. On the contrary, the most repulsive results
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Figure 5.14 – Energy for PNM at T = 0 MeV. Red-dashed lines depict the
calculation for the NN N3LO plus the 2NFdd, obtained in the correlated version
with full regulator. Blue-solid lines correspond to the calculation where the
SRG evolution is applied on the NN N3LO, ΛSRG = 2.0 fm−1. Band depends
on the LECs values used in the calculation as explained in the text.

are observed for the self-consistent correlated average but with the use of
the external regulator function. Nevertheless, the overlap in between the
different curves is striking, leading to an almost complete independence on
the average procedure implemented. For an estimate of the T = 0 energy we
can rely on the Sommerfeld expansion. Thermal effects slightly enhance the
zero temperature quantities, in accordance to what presented in Fig. 5.1b.

Contrary to what was presented in the symmetric matter case, where the-
oretical uncertainties are dominated by the different couples of the additional
LECs cD and cE, in the case of PNM, variations in the calculations are dom-
inated by uncertainties in the determination of the LECs c1 and c3. These
LEC relate NN , πN and 3N interactions in the chiral expansion and their
determination from πN scattering is within uncertainties in agreement with
the NN scattering extracted values. These lead to an error band for each
constant equal to c1 = −(0.7− 1.4)GeV−1 and c3 = −(3.5− 5.7)GeV−1 (En-
tem & Machleidt, 2003; Epelbaum et al., 2005; Rentmeester et al., 2003).
We show this error band in Fig. 5.14. Results are presented at zero tem-
perature, following the extrapolation explained in the introduction to this
chapter, and computing each curve in two different cases for the 2B force: the
complete N3LO Entem-Machleidt force (Entem & Machleidt, 2003) and the
SRG-evolved NN N3LO force with a cutoff of Λ = 2.0 fm−1. In both cases the
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Figure 5.15 – Energy for PNM at T = 5 MeV. Black-solid line depicts the
NN N3LO calculation. Green-dot-dahsed the NN N2LO optimized calculation.
Red-dashed line corresponds to calculation performed with NN N3LO plus the
N2LOdd obtained in the correlated version with full regulator. Pink-doubledot-
dashed refer to calculation performed with the same N2LOdd but with c1, c3

according to (Ekström et al., 2013), on top of the N2LO optimized potential.
Arrows help identify the curves obtained respectively with the N2LO (green-
dot-dashed) and with the N3LO 2NF (black-solid).

2B force is complemented with the density dependent 2NF derived in neutron
matter with the correlated average with full regulator function, with cutoff
set to Λ = 2.5fm−1 in the former case, and Λ = 2.0fm−1 in the latter one.
Results are depicted in a similar fashion to the ones presented in Ref. (Hebeler
et al., 2013) for an easier comparison. Upper curves correspond to the upper
bound value for the LECs, i.e. c1 = −1.4GeV−1 and c3 = −5.7GeV−1 ; while
lower curves correspond to the lower bound value, i.e. c1 = −0.7GeV−1 and
c3 = −3.5GeV−1 . We observe that in both cases, of complete and evolved
NN force, the spread in results due to theoretical uncertainties in the LECs
ranges from less than 1 MeV at sub saturation densities, to ∼ 4 MeV at ρ0,
and doubles this value at 2ρ0, presenting a higher spread for the evolved case.
Looking at Fig. 5.14, we observe that bands overlap perfectly up to almost
ρ = 0.22 fm−3. In this sense, neutron matter can be fairly well described,
up to these densities, with both the full and evolved 2B force, proving the
perturbative behavior in this low-energy regime.

To be consistent in the order of the chiral expansion for the nuclear force,
we perform, also for PNM, calculations at full N2LO using the newly optimized
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NN force from Ref. (Ekström et al., 2013). In the full N2LO calculation the
LECs, c1, c3, used in the density dependent force, are taken in accordance to
(Ekström et al., 2013). In the N3LO case values are taken from (Entem &
Machleidt, 2003). In Fig. 5.15, we see that in both cases, of including or not
the density dependent 2NF, results obtained with the newly optimized N2LO
force are more repulsive for all densities with respect to the N3LO ones. In
the 2B-only case, this repulsion is around ∼ 2 MeV at ρ0 = 0.16 fm−3 and
grows with the density up to ∼ 10 MeV at 2ρ0. In the 2B+3B calculation the
repulsion between the N2LO and N3LO case is a bit stronger at all densities,
with respect to values obtained with the 2B force only. Repulsion approaches
values of ∼ 15 MeV at double saturation density. As discussed for SNM,
we ascribe this overall repulsion between the N2LO optimized and the N3LO
calculations to the different construction of the 2NF force. It is interesting to
note that the 2B N2LO potential provides higher energy values with respect to
the 2B N3LO one. The curve obtained with the former potential approaches
the one obtained with the 2B N3LO plus the density dependent potential.
If thermal effects are taken into account, curves obtained with the N2LO
optimized force are in fair agreement with the Coupled Cluster ones presented
in Ref. (Hagen et al., 2014). Once again, drive conclusions on the quality of
our results in relation to the chiral expansion consistency is difficult, given
that the Hamiltonian changes from the N2LO to the N3LO case.

We want to conclude this chapter with a study of the symmetry energy.
As already outlined in the introduction to this chapter, a reliable estimation
for the density dependence of the symmetry energy is vital to understand
and predict properties of isospin-rich nuclei and neutron stars. To compute
the symmetry energy, one generally resorts to the parabolic formula, i.e. one
assumes that the energy per particle (or any of its components, kinetic and
potential), has a quadratic dependence on asymmetry (Vidaña et al., 2009):

E

A
(ρ, α) =

E

A
(ρ, 0) + S(ρ)α2 . (5.5)

α = (N − Z)/(N + Z) defines the isospin asymmetry of the system, with N
and Z neutrons and protons respectively. This immediately yields that the
symmetry energy, S(ρ), is given by the difference of PNM and SNM energies:

S(ρ)

A
=
E

A
(ρ, 1)− E

A
(ρ, 0) . (5.6)

The SCGF approach can be generalized to isospin asymmetric systems (Frick
et al., 2005). The quadratic dependency of the energy with respect to the
asymmetry parameter α, Eq. (5.5), has been validated using only 2NFs,
though we don’t expect 3NFs to alter this behavior (Carbone et al., 2012).

We plot in Fig. 5.16 the density dependence for the symmetry energy
obtained using both the N3LO potential by (Entem & Machleidt, 2003) and
the optimized N2LO by (Ekström et al., 2013). In both cases, we perform

112



5.4. Neutron matter and the symmetry energy

0 0.08 0.16 0.24 0.32

Density, ρ [fm
-3

]

10

20

30

40

50

60

S
y
m

m
et

ry
 E

n
er

g
y
/N

u
cl

eo
n
, 
S

/A
 [

M
eV

]
N3LO
N2LO
N3LO+N2LOdd
N2LO+N2LOdd

T=5 MeV

Figure 5.16 – Symmetry energy at T = 5 MeV. The black-solid line depicts
the NN N3LO calculation. The green-dot-dahsed line depicts the NN N2LO op-
timized calculation. The red-dashed line corresponds to calculation performed
with NN N3LO plus the N2LOdd obtained in the correlated version with the
full regulator. The pink-double-dot-dashed line represents the calculation per-
formed with the same N2LOdd on top of the N2LO optimized potential. The
orange cross defines the accepted symmetry energy value at saturation density,
32 MeV.

the calculation in the 2B-only case, and in the 2B+3B procedure. Curves are
obtained from those presented in Fig. 5.12 and Fig. 5.15 applying Eq. (5.6).
It is interesting to note that when including the density dependent force,
either on top of the 2NF N2LO or N3LO potential, values of the symmetry
energy lower. This can be interpreted analyzing the different modifications
which 3B forces induce on respectively the PNM and SNM system. In the
latter case, the repulsion provided on energy results when including 3NFs
is stronger with respect to the former case. This affects the subtraction in
Eq. (5.6) providing smaller values for the symmetry energy when considering
the density dependent force in the calculation. To better understand this
behavior, we present in Table 5.1 the values for the total energy per nucleon
in the PNM, SNM and the symmetry energy, at T = 5 MeV and empirical
saturation density ρ0. We must point out that the effect of temperature,
following procedure presented in the introduction to this chapter, would yield
an enhancement in the values written in Table 5.1 of approximately ∼ 1 MeV.

As expected from Fig. 5.16, the result which best approaches the cur-
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ρ0 = 0.16fm−3 EPNM/A ESNM/A S/A
N3LO 13.6 -16.0 29.6

N2LOopt 15.6 -16.9 32.5
N3LO+N2LOdd 17.2 -7.99 25.2

N2LOopt+N2LOdd 20.5 -7.96 28.5

Table 5.1 – Total energy per nucleon in pure neutron matter, symmetric nu-
clear matter and the symmetry energy. Energy values are measured in MeV
at empirical saturation density ρ = 0.16 fm-3 and T = 5 MeV for different NN
interactions as explained in the first column.

rently accepted ∼ 32 MeV symmetry energy value at ρ0 (Tsang et al., 2009)
is obtained from the 2B-only N2LO calculation. Taken thermal effects into
account, this lies slightly on top of the accepted value. Following, the symme-
try energy obtained with the 2B-only N3LO potential is also a good estimate
of the symmetry energy at saturation density, settling a bit below 32 MeV.
Results obtained including the density dependent forces lie farther below the
accepted value, which is a consequence of what we argued before. The less
attractive energy obtained for SNM together with a much more repulsive en-
ergy in PNM when including 3NFs, provides a much smaller value for the
symmetry energy. This effect can be traced back to the choice in the selected
couple of LECs, cD and cE. An alternative choice in this selection could yield
a more bound SNM system, with energies approaching the desired empirical
saturation energy. Consequently, this would strongly improve results for the
symmetry energy.

114



6
Summary and Conclusions

The idea, on which the development of this thesis was based, has been the
consistent introduction of three-body forces in the formalism of the SCGF
theory. This work can be considered as the first attempt to expand, from its
theoretical formulation, the Green’s functions approach for nuclear systems
to include on a same footing 2B and 3B forces. A systematic approach to the
inclusion of 3B interactions in the SCGF theory was a necessary step. We
have extended a method based on a formalism appeared long ago at the end
of 60’s (Martin & Schwinger, 1959). The effort put in performing this task has
been pushed by a twofold ambition. On one side it is a well-recognized fact
that nuclear many-body calculations require the inclusion of 3NFs to provide
reliable nuclear structure results. On the other side, the inclusion of many-
body forces, beyond the 2NF, is mandatory when dealing with calculations
implemented with chiral forces. In conclusion, the wish to provide consistent
nuclear structure calculations with the use of chiral interactions is what has
inspired us.

The introductory chapter of this thesis has been devoted to a general
overview of the many-body problem for infinite nuclear systems. Different
many-body formalisms to deal with this problem have been revised. All the
methods presented are ab initio, in the sense that the problem is treated from
first principles, i.e. the Hamiltonian has to be defined and the Schrödinger
equation has to be solved. The Hamiltonian is built up of microscopic poten-
tials which are constructed to fit experimental scattering data. In this sense,
these potentials reproduce the repulsive short-range and tensor intermediate
and long range part of the strong interaction. Most of the methods presented
here were nonperturbative, meaning that the correlations arising from the re-
pulsive behavior of the potential are taken into account and treated in one
way or another. We also considered the perturbative approaches. Conversely
to the previous, the perturbative methods claim that calculations can be per-
formed with evolved nuclear potentials as well. In the former approach, the
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6. Summary and Conclusions

short-range core strongly characterizes one formulation or another of the nu-
clear potential. In the latter, by means of regularization techniques, universal
low-momentum potentials can be defined. While on one side, the correlated
behavior has always been considered as the necessary condition for nuclear
matter saturation, on the other, many-body forces are an unavoidable ingre-
dient which cannot be neglected. Furthermore, a revision of the most impor-
tant formulations for the microscopic potentials has been presented, including
Argonne v18 (Wiringa et al., 1995) and the CdBonn (Machleidt, 2001) po-
tentials. At the end of the introductory chapter, we have especially focused
our attention on the chiral inspired approach to nuclear forces. Reviewing the
basic ideas on which χEFT is based, we then outlined the state-of-the-art of
chiral forces.

The second chapter has been dedicated to the description of the Green’s
functions many-body approach, starting from the definition of the Hamil-
tonian with the inclusion of a 1B, 2B and 3B contributions. The Green’s
function contains both a hole and a particle part. For a specific SP energy
and momentum, the GF can describe the propagation of a hole or a particle
which interacts with the many-body system. The information enclosed in the
SP propagator can be accessed by the spectral function. The spectral function
defines the probability of encountering a specific hole-state or particle-state in
the many-body system, and its width in energy space defines the lifetime of
this state. For this reason this method goes beyond a mean-field approach, in
that the spread in energy of the spectral function dictates that a certain range
of energies is available for a given SP momentum. The hole spectral function
is directly related to experimental data, as it is connected to the value of the
removed strength in (e, e′p) experiments of knock-out reactions. We have then
focused on the reformulation of the Galitskii-Migdal-Koltun sum rule (Galit-
skii & Migdal, 1958; Koltun, 1974). If the system interacts only with up to
2BFs, the sum rule provides the energy of the many-body ground state via
the sole knowledge of the SP spectral function. When the 3B force is included
in the Hamiltonian, the sum rule needs further information to be evaluated.
There are two different ways to reformulate the sum rule:

• in one case the sum rule implies the computation of the 2BF expecta-
tion value in the many-body ground state. This approach is preferable
if the fully correlated 2B propagator is computed in the many-body
approximation, by means, for example, of the T -matrix.

• in the other case the sum rule requires the knowledge of the 3BF ex-
pectation value in the many-body ground state. In nuclear physics, this
latter quantity is expected to provide a smaller contribution to the to-
tal energy with respect to the 2BF expectation value. We would then
rather use this variation of the sum rule, especially if approximations
are performed in the evaluation of the expectation value.
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The second variation to the sum rule is the one which has been implemented
in the calculations presented in the thesis. Here, the expectation value of
the 3BF needed to evaluate the GMK sum rule has been only computed at
the HF level. Computing the sum rule via the first variation and applying
this same approximation, would have induced higher errors in the total en-
ergy value due to the bigger contribution given by the 2BF operator. In the
last section of Chapt. 2, we have revised the self-consistent solution for the
SP propagator by means of Dyson’s equation. We have highlighted the fact
that the solution of this equation, by means of the irreducible self-energy, re-
quires only the inclusion of 1PI connected diagrams. Furthermore, we have
put particular emphasis on the concept of skeleton diagrams which, if used in
the definition of the irreducible self-energy, sum up big groups of nested dia-
grams. Finally, we stressed that the use of an irreducible self-energy formed
of connected skeleton 1PI diagrams requires a truly self-consistent iterative
solution of Dyson’s equation.

In Chapt. 3, the full expansion of the self-energy including 1B, 2B and 3B
contributions has been presented. A further characteristic in the diagrams to
be included in the irreducible self-energy has been considered:

• the concept of interaction irreducible diagram has been introduced, fol-
lowing the definition of articulation vertices (Blaizot & Ripka, 1986).
Whereas interacting vertices present sections that link group of prop-
agating lines which can be isolated and disconnected, we have defined
these diagrams such if no articulation vertex can be encountered.

The concept of interaction irreducible diagrams has then led us to define the
effective interactions to be used in the construction of the irreducible self-
energy:

• an effective 1B interaction which is the sum of three contributions: the
original 1B interaction; a 1B average over the 2B interaction; and a 2B
average over the 3B force. The 1B and 2B averages are performed using
fully dressed propagators.

• an effective 2B interaction which is the sum of the original 2B interaction
plus a correlated 1B average over the 3B force.

This approach has been compared to the usual normal ordering procedure to
define effective interactions when beyond 2B forces are included in the Hamil-
tonian. We considered our approach as a generalization of the usual normal
ordering, in that the ordering of the Hamiltonian is done with respect to the
correlated many-body wave-function, instead of the Slater determinant used
in the latter approach. Subsequently, we emphasized the fact that, in order to
correctly evaluate the perturbative expansion of the self-energy by means of
the effective interaction Hamiltonian, all interaction reducible diagrams must
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be disregarded. In fact, these are already taken into account by means of the
effective interactions.
The complete perturbative expansion of the self-energy has been performed
all the way up to third order, proving that the definition of the effective 1B
and 2B interactions substantially reduces the number of diagrams to be con-
sidered. This highly facilitates the enumeration of all the contributions which
build the the self-energy expansion. In addition, we passed to the solution
of the equation of motion for the propagator. This solution induces the so
called hierarchy of EOMs for the GFs. In other words the solution for the
EOM of the n-body propagator, requires the knowledge of a different n-body
propagator. In the case of including 3BFs, the EOM technique defines a hi-
erarchy of equations that link each n-body GF to the (n -1)-, (n+1)- and
(n+2)-body GFs. A truncation for this hierarchy is necessary in order to
solve the system of equations. The solution for the EOM of both the 1B and
2B propagator was formally presented without truncations, i.e. with exact ex-
pressions. Evaluating the solution of the EOM for the 1B and 2B propagators
we encountered:

• from the EOM of the 1B propagator we have obtained an all-order def-
inition of the irreducible self-energy in terms of 1PI interacting ver-
tex functions. The 1B effective interaction defines directly the energy-
independent part of the self-energy, which includes the HF approxima-
tion for the SP self-energy. Next, the vertex interacting functions, the
Γ4−pt and Γ6−pt, define the energy-dependent part of the self-energy
which is connected, respectively, to the 2B effective and 3B interaction.

• from the EOM of the 2B propagator, we have obtained a complete defi-
nition of the Γ4−pt vertex function. This includes terms containing both
the 2B effective and the 3B interaction. Special attention was paid in
considering all the exchange contributions when solving the EOM for
the 2B propagator.

Truncations on the Γ4−pt interacting vertex function were finally discussed,
leading to specific many-body approximations:

• we have analyzed the ladder, ring and parquet approximations to the
solution of the many-body problem, paying special attention to the lad-
der approximation used in this thesis. We saw how the inclusion of the
3B force enters these approximations only by means of the effective 2B
interaction. Consequently, this leaves the aspect of the approximation
formally unaltered, with respect to the one in the sole 2B case. First
correcting terms, which included irreducible 3B terms, were proposed.
These should be considered in the truncation of the Γ4−pt in order to
improve on the approximations discussed.

The conclusion of this chapter has been devoted to the demonstration of the
correspondence in between the EOM method and the up-to-third-order self-
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energy expansion performed in the first part of the chapter. This has proved,
at least up-to-third-order, the validity of both approaches to the self-energy.
The pedagogical approach followed in this chapter was willing to clarify the
use of effective interactions in nonperturbative approaches. The inclusion of
3BFs performed not from first principles, i.e. from the definition of the Hamil-
tonian, has led in the past to mislead the correct treatment of a three-body
interaction.

The fourth chapter has been dedicated to the calculation of the density
dependent 2BFs from chiral 3NFs at N2LO. Chapt. 4 has been divided into
two parts: the first part presenting the formal evaluation of the density de-
pendent force, and the second part dedicated to the partial-wave analysis of
the potential matrix elements. In the evaluation of the 2B density dependent
force:

• we have performed the average over the third particle of the three 3B
terms appearing at N2LO in the chiral expansion. This average has
been computed with the use of the self-consistent correlated momentum
distribution function obtained at each step in the iterative procedure
of the SCGF method. In the average, a regulator function in terms of
Jacobi coordinates has been considered. Expressions for the six potential
terms deriving from the contraction of the 3NFs have been presented in
diagonal momentum space. The average has been performed in both
cases of SNM and PNM.

In the second part of the chapter, dedicated to the analysis of the partial
waves of the potential matrix elements:

• we have studied the effect in SNM of each of the six density dependent
terms obtained at saturation density on top of the bare 2B N3LO force.
The effect on S, D, S−D mixing and P waves has been singularly stud-
ied. This analysis has led us to the conclusion that the effect provided
by the 2π exchange contracted term which includes in-medium effects,
i.e. Ṽ 3NF

TPE-3, and the contact contracted term, i.e. Ṽ 3NF
cont , which includes

vertex corrections to the contact 2B term, introduce the strong repulsion
observed in S partial waves. This repulsive effect, which increases with
the density of the system, is what provides the mechanism for nuclear
matter saturation.

• the overall effect of the density dependent force has been studied for
the same partial waves, considering both a free and a correlated average
for the contraction of the 3B force. The comparison between the two
cases has led to small discrepancies in the partial waves. Higher absolute
values have been observed when using the free propagator, mainly in the
D and S−D mixing partial waves, of around ∼ 0.04 fm in enhancement.
This effect has been ascribed to the different depletion of the momentum
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distributions used in the averaging procedure, considering that the less
the depletion, the stronger the repulsive effect of the 3B force.

• furthermore, the effect on partial waves given by the use of different
regulator functions in the averaging procedure has been considered. In
one case, the complete function in Jacobi coordinates has been used.
In the other, an external regulator which doesn’t affect the internal
integrated momentum has been chosen. The effect on partial waves
using an external regulator function has been mostly observed on D
and S −D mixing partial waves, obtaining an effect similar to the one
provided by the use of a free propagator in the averaging procedure,
i.e. higher absolute values when considering a less depleted momentum
distribution function. Some of the integrated functions which build the
density dependent force have also been analyzed considering the different
averaging procedures.

From the analysis performed on the partial waves in SNM, we have concluded
that the repulsion which one observes on the total energy is mostly provided
by the S waves. Furthermore, from the analysis of the different averaging
procedures, we have concluded that the small variations are not mainly related
to the presence of high momentum states, but mostly on how momenta below
kF are regulated. If these momenta are less depleted, the absolute value
of the contracted 3NF rises. In fact, at saturation density, the strongest
effect in absolute values is provided by the correlated average non regulated;
followed by the free average with internal regulation, and the smallest absolute
values are provided by the regulated correlated average. The less regulated
the momenta below kF result, the stronger the effect of the 3B force on the
partial waves.
The effects on partial waves in the case of PNM have also been analyzed,
evaluating the density dependent contribution at saturation density:

• we have observed an overall repulsive effect provided by the density
dependent force on the S and P partial waves accessible in neutron
matter. Also in this case we have analyzed the effects provided by the
different averaging procedures. Similar conclusions as for the SNM case
have been driven.

In addition, at the end of Chap. 4 we have presented the extrapolation fol-
lowed for the diagonal potential matrix elements to non-diagonal elements
in relative momentum space. A qualitative validation for this extrapolation
has been discussed, comparing off-diagonal S partial waves of the density de-
pendent 1π exchange 2B term, i.e Ṽ 3NF

TPE-2 and of the bare 1π exchange 2B term.

In the final chapter, we have presented results for both microscopic and
macroscopic properties of symmetric nuclear and pure neutron matter. In
the introduction to Chap. 5, we have described the effects caused by the
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finite temperature calculations. By means of a simple extrapolation formula,
the effects of temperature have been evaluated at all densities considered,
providing us with an estimation of the error on the results induced by thermal
effects. We started with the analysis of the microscopic properties of the SNM
system:

• the imaginary part of the SP self-energy has been analyzed for three
typical momenta at various densities, i.e. k = 0, kF, and 2kF for ρ0/2,
ρ0 and 2ρ0. We have observed an overall small effect when considering
the 3B force in the calculation. Main differences were noticed at zero
momenta in the position of the minima which appears at energies close
and below µ. Besides, at high densities, the density dependent 2B force
lowered the values in the minima which is observed beyond the chemical
potential. At these high densities, especially at low momenta, the imag-
inary part of the self-energy approached zero at the chemical potential
value, proving the stronger degeneracy of the system in these conditions.

• we performed a study on quasiparticle spectrum, focusing on the SP
potential which is derived in this approach from the real part of the self-
energy. We observed a visible repulsive effect provided by the density
dependent 2NF for all momenta. This modification increases with the
density, justifying once again that density dependence of the repulsive
effect of 3B forces. Effects provided on the self-energy by the different
averaging procedures were mainly visible only at 2ρ0.

• we then focused our analysis on the spectral function. Also on this
microscopic property, the effect of 3B forces has proved to be small.
The spectral function has been analyzed for three typical momenta at
various densities, i.e. k = 0, kF, and 2kF for ρ0/2, ρ0 and 2ρ0. At zero
momenta, the overall change due to the effective 2BF has been that of
narrowing the peak of the spectral function, in some sense approaching
a more pronounced quasi-particle behavior, and consequently inducing
higher tails. For increasing momenta, we kept observing a narrowing
of the QP peak of the spectral function caused by the 3B forces. The
strongest effect was observed at high density and high momenta, causing
a shift in the quasi-particle peak position. The effect caused by the use
of different averaging procedures was damped even more in the spectral
function, with respect to the imaginary part of the self-energy, and very
little discrepancies in the curves were observed.

• finally we analyzed the SP momentum distribution. The main effect
was tested on the depletion of the n(k) at low momenta. At low densi-
ties, 3NF induced a smaller depletion, being in some sense a source of
lower correlations, while at high densities, the modification was reversed,
providing a bigger population of high momentum states. Modifications
due to the different averaging procedures was once again barely visible,
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providing small variations in the high-momentum tails of the n(k) espe-
cially at 2ρ0. As before, we can ascribe this modification to the different
regulation applied on momenta below kF which, at high densities has a
more visible repercussion.

All in all, the small effects, observed on the microscopic properties, lead us
to think that the 3NFs effect can be well accounted for in the QP behavior
of the system. However, modification on the high energy tails in the spectral
function and changes in the population of high-momentum components in the
momentum distribution, is a sign that changes provided by the 3B forces on
the full off-shell dependency must be considered. Furthermore, the modifica-
tions provided by the different averages are mostly visible at high densities.
We can conclude that the average over the third particle in the construction of
the density dependent force will have a visible effect mainly at high densities.
After analyzing the microscopic properties in the case of symmetric nuclear
matter, we have focused our attention on the total energy of the many-body
ground state in both cases of SNM and PNM. In the case of SNM:

• we have studied the effect of the inclusion of 3NFs in the calculation
of the total energy. Repulsion with respect to the 2B only calculation
has been observed for all densities. An increasing repulsion with density
was tested, providing the saturation of the energy around the empirical
saturation density of nuclear matter. A saturation energy a bit smaller
with respect to the empirical one has been obtained.

• computing the energy with the use of the different averages, in the
construction of the density dependent force, provided a stronger effect
mostly at high densities, which follows directly the conclusions driven
from the analysis of the microscopic properties.

• additionally, we have studied the effect of using different LECs in the
intermediate and short-range 3NF derived terms. The use of different
couples of cD and cE constants has led to a band governed by the value of
the cE. The less negative or more positive the value of the cE, the more
attractive the curve for all densities. We have also compared our results
with those obtained applying SRG regularization on the 2B potential.
Results for the energy of SNM appear more attractive for all densities
with respect to the non regularized calculations.

• for the sake of consistency in the chiral expansion, we have implemented
the full N2LO chiral force in both the 2B and 3B sector. We have relied
on a newly optimized version of the N2LO together with the density
dependent force derived in this thesis. While in the 2B only calcula-
tion, the N2LO force yields slightly more attractive results with respect
to the N3LO ones for all densities, in the 2B+3B case, the full N2LO

122



calculation provides results which are a bit more attractive at low den-
sities, but visibly more repulsive at higher ones. A comparison in terms
of consistency in the chiral expansion is made difficult by the different
Hamiltonians which characterize the two cases.

Similarly to what has been studied in the SNM case, we have also analyzed
the properties in PNM:

• we have analyzed the effect of the 3BF on the total energy of the system.
The effect of the inclusion of the density dependence force has been to
provide repulsion at all densities. As in the SNM case, the changes due
to the different averaging procedures have been mostly observed in the
high density region.

• moreover, we have studied the error band in the energy curve of PNM
given by the theoretical uncertainties in the LECs, the c1 and c3 con-
stants. Comparing with the 2B-SRG evolved calculations, we have
proved the perturbative behavior of pure neutron matter in the chiral
nuclear forces expansion.

• to be once again consistent in the chiral expansion, we have performed
calculation at full N2LO. In this case, the sole 2B-N2LO calculation
provided higher energy values with respect to the 2B-N3LO results, on
the contrary to what was obtained in SNM. The 2B-N2LO only cal-
culated values approached those obtained with the 2B N3LO plus the
density dependent N2LO force. When considering the full 2N+3N force
at N2LO in the calculation, results appeared to be highly repulsive, es-
pecially at high densities. As in the SNM case, we ascribe these changes
due to the different construction of the 2B force, and to the different
LECs used.

As a conclusion to the chapter, we have presented calculations for the sym-
metry energy, focusing especially on its value at saturation density. We have
provided calculations with both the N2LO and N3LO in the 2B sector comple-
mented with the density dependent N2LO force. We observed how, in both
cases, the inclusion of the density dependent force lowers the values of the
symmetry energies for all densities. This causes a higher discrepancy with
respect to the accepted value of 32 MeV at saturation density. The 2B only
calculations gave higher values for the symmetry energy in the entire den-
sity range studied, where the 2B-N2LO provided the best value at saturation
density in comparison to the accepted one. Different choices in the LECs cD
and cE in the SNM curve could help improve on the 2B+3B results for the
symmetry energy.

We conclude that the inclusion of the 3BFs in the many-body calculation
has proved to be fundamental to obtain the saturation mechanism in SNM at
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acceptable energy/density values and to provide a stiffer equation of state for
PNM. This once again proves the necessity to consider many-body forces to
render the theoretical calculations consistent with empirical and experimental
results.

This study can be considered as a first step to the analysis, from a nonper-
turbative point of view, of the low-temperature properties of SNM and PNM
with the inclusion of 3BFs in the SCGF approach. Many improvements in
the formalism could be still included.
The full calculation of the 1B effective term, considering the full contraction
of the 3BF with a dressed GII , can be seen as a first implementation to be
performed. In addition, higher orders in the 3B force expectation value, be-
yond the HF level, could be included in the correction to the GMK sum rule.
Some of these terms can be derived directly from the complete 1B effective
potential.
As far as the averaging procedure, calculations with elements in full off-
diagonal momentum space can be considered as the first progress, to test
in addition the validity of the extrapolation so far used. Adding 3BFs cor-
relations in the average, could be a first step towards the construction of a
T3-matrix in the ladder approximation. From the point of view of the chiral
expansion, a full N3LO calculation would likely be implemented, defining new
density dependent terms from the 3NFs appearing at N3LO in the chiral ex-
pansion. Though, a treatment for the 4NFs appearing at N3LO must then be
sorted out.
Accessibility to other formulations of the chiral potentials for different orders
in χEFT (NLO, N2LO, N3LO, etc.) but derived from a unique Hamiltonian,
could provide the possibility to truly test the convergence of results in the
chiral expansion.
The high temperature behavior could also be explored, analyzing how thermo-
dynamical properties of both SMN and PNM are changed due to the inclusion
of 3NFs. Above all, studies on β-stable nuclear matter could really help con-
strain the finite temperature EOS including both 2B and 3B forces.
Furthermore, we would like to underline once again that, while the main mo-
tivation of our study has been nuclear systems, the extended SCGF formalism
can be easily applied to other many-body systems, of either atomic or molec-
ular nature. In this sense, the effort put in deriving the full extension from
first principles, has been also to advance in some sense the SCGF approach
to the quantum the many-body problem.
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A
Feynman rules

We present in this appendix the Feynman rules associated with the diagrams
arising in the perturbative expansion of Eq. (2.25). The rules are given both
in time and energy formulation, and some specific examples will be consid-
ered at the end. We pay particular attention to non-trivial symmetry factors
arising in diagrams that include many-body interactions. We work with an-
tisymmetrized matrix elements, but for practical purposes represent them by
extended lines.

We provide the Feynman diagram rules for a given p-body propagator,
such as Eqs. (2.5) and (2.6). These arise from a trivial generalization of the
perturbative expansion of the 1B propagator in Eq. (2.25). At k-th order
in perturbation theory, any contribution from the time-ordered product in
Eq. (2.25), or its generalization, is represented by a diagram with 2p external
lines and k interaction lines (from here on called vertices), all connected by
means of oriented fermion lines. These fermion lines arise from contractions
between annihilation and creation operators,

aIδ(t)a
I †
γ (t′) ≡ 〈ΦN

0 |T
[
aIδ(t)a

I †
γ (t′)

]
|ΦN

0 〉 = i~G(0)
δγ (t− t′).

Applying the Wick theorem to any such arbitrary diagram, results in the
following Feynman rules.

Rule 1 Draw all, topologically distinct and connected diagrams with k ver-
tices, and p incoming and p outgoing external lines, using directed ar-
rows. For interaction vertices the external lines are not present.

Rule 2 Each oriented fermion line represents a Wick contraction, leading
to the unperturbed propagator i~G(0)

αβ(t − t′) [or i~G(0)
αβ(ωi)]. In time

formulation, the t and t′ label the times of the vertices at the end and at
the beginning of the line. In energy formulation, ωi denotes the energy
carried by the propagator.

Rule 3 Each fermion line starting from and ending at the same vertex is an
equal-time propagator, −i~G(0)

αβ(0−) = ρ
(0)
αβ .

125



A. Feynman rules

Rule 4 For each 1B, 2B or 3B vertex, write down a factor i
~Uαβ, − i

~Vαγ,βδ
or − i

~Wαγξ,βδθ, respectively. For effective interactions, the factors are

− i
~ Ũαβ, − i

~ Ṽαγ,βδ.

When propagator renormalization is considered, only skeleton diagrams are
used in the expansion. In that case, the previous rules apply with the sub-
stitution i~G(0)

αβ → i~Gαβ. Furthermore, note that Rule 3 applies to diagrams
embedded in the one-body effective interaction (see Fig. 3.3) and therefore
they should not be considered explicitly in an interaction-irreducible expan-
sion. In calculating Ũ , however, one should use the correlated ραβ instead of
the unperturbed one.

Rule 5 Include a factor (−1)L where L is the number of closed fermion loops.
This sign comes from the odd permutation of operators needed to cre-
ate a loop and does not include loops of a single propagator, already
accounted for by Rule 3.

Rule 6 For a diagram representing a 2p-point GF, add a factor (−i/~),
whereas for a 2p-point interaction vertex without external lines (such
as Σ? and Γ2p−pt) add a factor i~.

The next two rules require a distinction between the time and the energy
representation. In the time representation:

Rule 7 Assign a time to each interaction vertex. All the fermion lines con-
nected to the same vertex i share the same time, ti.

Rule 8 Sum over all the internal quantum numbers and integrate over all
internal times from −∞ to +∞.

Alternatively, in energy representation:

Rule 7’ Label each fermion line with an energy ωi, under the constraint that
the total incoming energy equals the total outgoing energy at each in-
teraction vertex,

∑
i ω

in
i =

∑
i ω

out
i .

Rule 8’ Sum over all the internal quantum numbers and integrate over each
independent internal energy, with an extra factor 1

2π
, i.e.

∫ +∞
−∞

dωi
2π

.

Each diagram is then multiplied by a combinatorial factor S that origi-
nates from the number of equivalent Wick contractions that lead to it. This
symmetry factor represents the order of the symmetry group for one specific
diagram or, in other words, the order of the permutation group of both open
and closed lines, once the vertices are fixed. Its structure, assuming only 2BFs
and 3BFs, is the following :

S =
1

k!

1

[(2!)2]q[(3!)2]k−q

(
k

q

)
C =

∏

i

Si . (A.1)

126



same int.

· · ·

1
6

1
12

1 1
2

1
12

(a)

same int.

· · ·

1
6

1
12

1 1
2

1
12

(b)

same int.

· · ·

1
6

1
12

1 1
2

1
12

(c)

same int.

· · ·

1
6

1
12

1 1
2

1
12

(d)

Figure A.1 – Examples of diagrams containing symmetric and interacting
lines, with explicit symmetry factors. Diagrams (b) to (d) are obtained by
expanding the effective interaction of diagram (a) according to Eq (3.3). Swap-
ping the 3B and 2B internal vertices in (c) gives a distinct, but topologically
equivalent, contribution.

Here, k represents the order of expansion. q (k − q) denotes the number of
2B (3B) vertices in the diagram. The binomial factor counts the number of
terms in the expansion (V +W )k that have q factors of V and k− q factors of
W . Finally, C is the overall number of distinct contractions and reflects the
symmetries of the diagram. Stating general rules to find C is not simple. For
example, explicit simple rules valid for the well-known λφ4 scalar theory are
still an object of debate Hue et al. (2012). An explicit calculation for C has to
be carried out diagram by diagram Hue et al. (2012). Eq. (A.1) can normally
be factorized in a product factors Si, each due to a particular symmetry of
the diagram. In the following, we list a series of specific examples which is,
by all means, not exhaustive.

Rule 9 For each group of n symmetric lines, or symmetric groups-of-lines as
defined below, multiply by a symmetry factor Si=

1
n!

. The overall sym-
metry factor of the diagram will be S =

∏
i Si. Possible cases include:

(i) Equivalent lines. n equally-oriented fermion lines are said to be equiva-
lent if they start from the same initial vertex and end on the same final
vertex.

(ii) Symmetric and interacting lines. n equally-oriented fermion lines that
start from the same initial vertex and end on the same final vertex, but
are linked via an interaction vertex to one or more close fermion line
blocks. The factor arises as long as the diagram is invariant under the
permutation of the two blocks.
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Figure A.2 – Examples of diagrams entering the static part of the self-energy.
Applying rule 9-ii, diagrams (a) and (b) take a factor Ssi = 1

2 from the sym-
metry between the two bubbles attached to the upper three body vertex. The
symmetry is broken in diagram (c), where the overall factor is Ssi = 1

Ũ +1
2

+1
8

+ . . .

1

. . .

1
2

1
2

1
2

−1
2

Figure A.3 – Diagrams entering the effective one-body interaction, Eq. (3.2),
obtained by substituting the right hand side of Fig. 3.15 into Eq. (3.15). The
two bubble terms correctly reproduce the symmetric factor inferred by applying
rules 9-i and 9-ii.

(iii) Equivalent groups of lines. These are blocks of interacting lines (e.g.
series of bubbles) that are equal to each other: they all start from the
same initial vertex and end on the same final vertex.

Rule 9-i is the most well-known case and applies, for instance, to the two
second order diagrams of Fig. 3.5. Diagram 3.5a has 2 upward-going equivalent
lines and requires a symmetry factor Se=

1
2!

. In contrast,diagram 3.5b has 3
upward-going equivalent lines and 2 downward-going equivalent lines, that
give a factor Se=

1
2! 3!

= 1
12

.
Figs. A.1 and A.2 give specific examples of the application of rule 9-ii. Dia-

gram A.1a has 3 upward-going equivalent, non-interacting lines, which yield a
symmetry factor Se=

1
3!

due to rule 9-i. However, there are also two downward-
going symmetric and equivalent lines, that interact through the exchange of
a bubble and thus give rise to a factor Ssi=

1
2!

. The total factor is therefore
S=Se× Ssi= 1

12
. Let us now expand the two 2B effective interactions that are

connected to the intermediate bubble according to Eq. (3.3). Diagram A.1a
is now seen to contain three contributions, diagrams A.1b to A.1d, with the
symmetry factors shown in the figure. Note that drawing the contracted 3B
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Figure A.4 – Examples of a diagram where equivalent group of lines are present
and one where rule 9-iii does not apply. Swapping the two chains of bubbles
in (a), one finds an identical diagram. This is precisely the case of rule 9-iii,
which brings in a factor Segl=

1
2 . Performing the same exchange in diagram

(b) generates a graph where the direction of the internal loop is reversed. No
symmetry rule applies here and Segl=1

vertex above or below the bubble in A.1c leads to two topologically equivalent
diagrams that must only be drawn once, i.e. diagram A.1c. However, since
the diagram is no longer symmetric under the exchange of the two downward-
going equivalent lines, rule 9-ii does not apply anymore and the Ssi factor is
no longer needed.

A similar situation occurs when the two interacting fermion lines start
and end on the same vertex, as in Fig. A.2. Consider the left-most and right-
most external fermion bubbles. In all three diagrams, they are connected to
each other by a 3B interaction vertex above and by a series of interactions
and medium polarizations below. The intermediate bubble interactions in
diagrams A.2a and A.2b are symmetric under exchange. There are therefore
two sets of symmetric interacting lines (the two up-going and two down-going
fermion lines) and hence both diagrams take a factor Ssi = 1/2. In contrast,
the two external loops in A.2c are not symmetric under exchange due to the
lower 3B vertex. Rule 9-ii does not apply anymore and Ssi = 1. If all the
vertices between the external loops where equal (e.g. effective 2B terms Ṽ ),
a factor Ssi=1/2 would still apply.

The case of Fig. A.2 is of particular importance because these diagrams
directly contribute to the energy-independent 1B effective interaction. In the
EOM approach, these contributions arise from the first three terms on the
right hand side of Fig. 3.15. Note that the ladder diagram has a symmetry
factor Se=1/2 and that the exchange contribution in the bubble term has to be
considered. Using these diagrams to the define the 2B propagator in Eq. (3.15)
and inserting these in the last term of Eq. (3.2), one finds the contributions to
Ũ shown in Fig. A.3. The two bubble terms have summed up to form diagram
A.2a, each of them contributing a factor 1/4 from Eq. (3.2). Consequently,
the approach leads to the correct overall Ssi=1/2 symmetry factor. In our
approach, there is no need to explicitly compute these diagrams, since they
are automatically included by Eq. (3.2).

Finally, rule 9-iii applies to the diagram in Fig. A.4a. In this case, the
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A. Feynman rules

two chains of bubble diagrams are equal and start and end at the same 3BF
vertices. Hence, they are equivalent groups of lines and the diagram takes
a factor Segl = 1

2
. Diagram A.4b is different because the exchange of all the

bubbles generates a diagram in which the direction of the internal fermion loop
is reversed. Therefore no symmetry rule applies and the symmetry factor is
just Segl = 1. This is, however, topologically equivalent to the initial diagram
and hence must be counted only once.

As an example of the application of the above Feynman rules, we give
here the formulae for some of the diagrams in Fig. 3.7. Let us start by a
contribution that has been discussed in Section 3.1, diagram 3.7(c). There
are two sets of upward-going equivalent lines, which contribute to a symmetry
factor Se = 1

22
. Considering the overall factor of Eq. (A.1) and the presence

of one closed fermion loop, one finds:

Σ
(5c)
αβ (ω) = −(i~)4

4

∫
dω1

2π
· · ·
∫

dω4

2π

∑

γδνµελ
ξηθστχ

×Ṽαγ,δνG(0)
δµ (ω1)G(0)

νε (ω2)Wµελ,ξηθG
(0)
ξσ (ω3)G(0)

ητ (ω4)

×G(0)
θγ (ω1 + ω2 − ω)Ṽστ,βχG

(0)
χλ(ω3 + ω4 − ω) . (A.2)

Diagrams 3.7h and 3.7i differ only for the orientation of a loop. Hence,
there are two pairs of equivalent lines in the first case and one pair and one
triplet of equivalent lines in the second, which is reflected in their different
symmetry factors:

Σ
(5h)
αβ (ω) =

(i~)5

4

∫
dω1

2π
· · ·
∫

dω5

2π

∑

γδε
ξθσµνλ
ητφχζ

×Ṽαγ,δεG(0)
δξ (ω1)G(0)

νγ (ω2)Wξθσ,µνλG
(0)
µη (ω3)G

(0)
χθ (ω4)G(0)

ετ (ω − ω1 + ω2)

×Wητφ,βχζ G
(0)
λφ(ω5)G

(0)
ζσ (ω2 + ω3 + ω5 − ω1 − ω4) , (A.3)

Σ
(5i)
αβ (ω) =

(i~)5

12

∫
dω1

2π
· · ·
∫

dω5

2π

∑

γδε
ξθσµνλ
ητφχζ

×Ṽαγ,δεG(0)
δξ (ω1)G

(0)
εθ (ω2)Wξθσ,µνλG

(0)
µη (ω3)G(0)

ντ (ω4)G(0)
χγ (ω1 + ω2 − ω)

×Wητφ,βχζ G
(0)
λφ(ω5)G

(0)
ζσ (ω3 + ω4 + ω5 − ω1 − ω2) . (A.4)
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B
Interaction irreducible diagrams

Interaction-irreducible diagrams can be used to distinguish between two dif-
ferent many-body effects in the SCGF approach. On the one hand, effective
interactions sum all the instantaneous contributions associated with “averag-
ing out” subgroups of particles that lead to interaction-reducible diagrams.
This has the advantage of reducing drastically the number of diagrams at
each order in the perturbative expansion. It also gives rise to well-defined
in-medium interactions. On the other hand, the remaining diagrams will now
include higher-order terms summed via the effective interaction itself.

In this Appendix, we prove that the perturbative expansion can be recast
into a set containing only interaction-irreducible diagrams at any given order,
as long as properly defined effective interactions are used. The argument we
propose has been often used to demonstrate how disconnected diagrams cancel
out in the perturbative expansion. We now apply it to a slightly different case
that requires extra care. We focus on the case of a diagram that includes only
2B and 3BFs. The extension to the general case of many-body forces should
be straightforward.

Eq. (2.25) gives the perturbative expansion of the 1B GF in terms of the
Hamiltonian, H(t), in the interaction picture. The k-th order term of the
perturbative expansion reads:

G
(k−th)
αβ (t− t′) =

(−i

~

)k+1
1

k!

∫
· · ·
∫

dtk

k terms

×〈ΦN
0 |T

[
aIα(t)aI†β (t′)H(t1) · · ·H(tk)

]
|ΦN

0 〉conn . (B.1)

Only connected contributions are allowed and we take the interaction picture
external creation and destruction operators to the left for convenience. Let us
assume, without loss of generality, that the diagram is composed of q 2B and
k − q 3B interaction operators. This gives rise to

(
k
q

)
identical contributions

when expanding H(t) = T (t) + V (t) +W (t) in the time-ordered product, as
discussed right after Eq. (A.1) above.
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B. Interaction irreducible diagrams

Let us denote with O(t) a generic operator, representing either a 2B, V (t),
or a 3B, W (t), potential. Suppose now that there is a sub-set of m operators
that are arbitrary connected to each other, but that share the external links
with a unique operator, O(tn), outside the subset. In other words, O(tn) is the
only way to enter and exit the subset of m- operators {O(tn+1), · · · , O(tn+m)}
as drawn below:

O(t1) · · ·O(tn−1) · O
∣∣∣∣∣ (tn) ·

{
O(tn+1) · · ·O(tn+m)

}
(B.2)

O(tn) is also necessarily connected to the other interactions and, hence, this is
an articulation vertex. In general, there can be an arbitrary number of artic-
ulation vertices, such as O(tn), at any given order. Each one of these vertices
would isolate a particular subset of operators. The following arguments can
be applied to each subset separately.

For simplicity, let us restrict the argument to the simplest case of one
articulation vertex only. Suppose that, among m terms, there are a 2B and b
3B interactions, with a + b = m. The number of time-ordered products V (t)
and W (t) in Eq. (B.1) that is consistent with the above decomposition is

(
k

q

)(
q

a

)(
k − q
b

)
=

(
k

m

)(
m

a

)(
n

q − a

)
(B.3)

where m+ n = k.
Let us consider the case in which O(tn) is a 3B operator, with matrix

elements Wµγδ,θσξ connected with four legs to the internal subset of m vertices
and with two legs to the rest of the diagram. We can factorize the amplitude
in Eq. (B.1) by adding an intermediate identity operator as follows:

1

n!

(
n

q − a

)∫
· · ·
∫

dtn

n terms

1

(3!)2

(
3

1

)2

〈ΦN
0 |T

[
aIα(t)aI†β (t′)O(t1) · · · O(tn−1) aI†µ (t+n )aIθ(tn)

]
|ΦN

0 〉 Wµγδ,θσξ

× 1

(m)!

(
m

a

)∫
· · ·
∫

dtk

m terms

×〈ΦN
0 |T

[
aI†γ (t+n )aI†δ (t+n )aIξ(tn)aIσ(tn)O(tn+1) · · ·O(tk)

]
|ΦN

0 〉δk,n+m . (B.4)

Note that the factorization of the time ordered product, by inserting a |ΦN
0 〉〈ΦN

0 |,
is possible because the Wick theorem normal-orders these products with re-
spect to the reference state, |ΦN

0 〉. In other words, both Eqs. (B.1) and (B.4)
lead to exactly the same results after all Wick contractions have been carried
out.
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All possible orders in which a general O(t) enters Eq. (B.4) are equivalent
and are accounted for by the binomial factors. The factor

(
3
1

)
accounts for all

the possible ways, eventually decided by contractions, in which the six cre-
ation/annihilation operators in W (tn) can be separated in the two factors [see
also Eq. (B.7) below]. We also include an additional factor

(
3
1

)
coming from

all the possible ways to choose one creation/annihilation operator among the
three possible pairs. The correct time ordering for creation and annihilation
operators associated with W (tn) is preserved using a†(t+n ).

With this decomposition, we can identify the second line of Eq. (B.4)
as an m-th order contribution (with a 2B and m − a 3B operators) to the
perturbative expansion of G4−pt

σξ,γδ(tn, tn; t+n , t
+
n ) = GII

σξ,γδ(tn− t+n ). Collecting all
possible contributions of form (B.2) and (B.4) in which the first n operators are
unchanged, the k-th order interaction-reducible contribution to G becomes:

G
(k−th)
αβ (t− t′)→

(−i

~

)n+1
1

n!

(
n

q − a

)∫
· · ·
∫

dtn

×〈ΦN
0 |T

[
aIα(t)aI†β (t′)O(t1) · · ·O(tn−1)aI†µ (t+n )aIθ(tn)

]
|ΦN

0 〉int-irr

×Wµγδ,θσξ
i ~

(2!)2
G
II (m−th,a)
σξ,γδ (tn − t+n )

U eff
µθ

, (B.5)

where GII (m−th,a) sums all the diagrams at m-th order with a two-body op-
erators. Note that the last term no longer depends on time and can be seen
as an energy-independent correction to the 1B potential. We can automati-
cally take into account these interaction-reducible terms by reformulating the
initial hamiltonian to include the effective 1B vertex:

Ũµθ → Uµθ +Wµγδ,θσξ
i~

(2!)2
GII
σξ,γδ (t− t+)

− i
~ ρ

2B
σξ,γδ

(B.6)

where now we use an exact GII . The perturbative expansion obtained with
this effective interaction should only contain interaction-irreducible diagrams
to avoid double counting.

Note that in Eq. (B.5) we automatically obtain the correct symmetry factor
1/(2!)2 associated with the contraction of W with the two pairs of incoming
and outgoing lines of GII . In the general case, a c-body vertex can be re-
duced to a d-body one (with d < c) by using a (c− d)-body GF. The overall
combinatorial factor in that case will be:

1

(c!)2

(
c!

d!(c− d)!

)2

=
1

(d!)2

︸ ︷︷ ︸
new vertex

1

((c− d)!)2

︸ ︷︷ ︸
c−d equal lines

. (B.7)
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B. Interaction irreducible diagrams

This yields both the correct combinatorial factors entering the new effective
d-body vertex and the symmetry factor associated with the contraction with
the (c−d)-body GF. The above arguments can be generalized to any starting
n-body Hamiltonian. Applying these derivation to all possible cases for a
3B Hamiltonians leads to the effective interactions discussed in Eqs. (3.2)
and (3.3).
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C
Complete expressions for density dependent

force

In this appendix we would like to derive the complete expressions for the
density dependent terms obtained from contraction of the 3NFs at N2LO in
the chiral expansion. In Chap. 4.1 we presented the expressions for the six
in-medium contributions Ṽ 3NF only in the specific case of diagonal momentum
space, i.e. equal relative incoming and outgoing momentum k = |k| = |k′|.
When considering the total off-diagonal momentum space, the most general
expression for a two-nucleon potential reads (Erkelenz et al., 1971):

V (k,k′) = V s
c + τ 1 · τ 2V

v
c

+[V s
σ + τ 1 · τ 2V

v
σ ]σ1 · σ2

+[V s
σq + τ 1 · τ 2V

v
σq]σ1 · qσ2 · q

+[V s
σK + τ 1 · τ 2V

v
σK ]σ1 ·Kσ2 ·K

+[V s
SL + τ 1 · τ 2V

v
SL]i(σ1 + σ2) · (q×K)

+[V s
σL + τ 1 · τ 2V

v
σL]σ1 · (q×K)σ2 · (q×K) . (C.1)

In the previous expression we have introduced the total relative momentum
K = (k+k′)/2. Comparing with the on-shell expression written in Eq. (4.13),
we see that a further tensor structure has appeared, i.e. σ1·Kσ2·K. Given the
presence of this additional operatorial form, the partial wave analysis which
we’ve followed from Ref. (Holt et al., 2010) wouldn’t be valid anymore, because
in this approach this structure is disregarded. In fact it is demonstrated that,
in diagonal momentum space, this structure vanishes (Erkelenz et al., 1971).

For each of the three 3NF contributions, Eqs. (4.1)-(4.2)-(4.3), we need
to perform Eq. (4.10). In doing so, we need to define the three different
transferred momenta for each specific case of particles interchange defined in
Eq. (4.10). We define the total momentum P as (Hebeler & Schwenk, 2010):

P = p1 + p2 = p′1 + p′2 , (C.2)
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and the relative incoming and outgoing momentum:

k =
p1 − p2

2
, (C.3)

k′ =
p′1 − p′2

2
.

We can then express incoming and outgoing SP momentum of particle 1 and
2 as functions of P,k,k′:

p1 =
P

2
+ k , (C.4)

p′1 =
P

2
+ k′ ,

p2 =
P

2
− k ,

p′2 =
P

2
− k′ ,

Depending on which of the three interchange terms we are considering in
Eq. (4.10),the transferred momenta qi, with i = 1, 2, 3 will change. For the
direct term we can rewrite

q1 = p′1 − p1 = k′ − k ,

q2 = p′2 − p2 = k− k′ , (C.5)

q3 = p′3 − p3 = 0 .

For the exchange term P13 we have:

q1 = p′1 − p3 =
P

2
+ k′ − p3 ,

q2 = p′2 − p2 = k− k′ , (C.6)

q3 = p′3 − p1 = p3 −
P

2
− k .

In the last case, the one with the exchange term P23, we have;

q1 = p′1 − p1 = k′ − k ,

q2 = p′2 − p3 =
P

2
− k′ − p3 , (C.7)

q3 = p′3 − p2 = p3 −
P

2
+ k .

In the approximation of zero center of mass momenta, i.e. P = 0, the previous
expressions simplify. In the following expressions we define q1 = −q2 = q.
For convenience we also define the following multiplying factors, which include
the LECs:

c̃1 =
c1g

2
AM

2
π

2F 4
π

, c̃3 =
c3g

2
A

4F 4
π

, c̃4 =
c4g

2
A

8F 4
π

, c̃D =
cDgA

8F 4
πΛχ

, c̃E =
cE

2F 4
πΛχ

.

(C.8)
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Starting with the 3NF TPE contribution Eq. (4.1), we need to performe
the integral (see Eq. (4.10)):

〈1′2′|Ṽ 3NF
OPE |12〉A = Trσ3Trτ3

∫
dp3

(2π)3
n(p3)f(k, k′, p3)

〈1′2′3′|
∑

i 6=j 6=k

(σi · qi)(σj · qj)
(q2

i +M2
π)(q2

j +M2
π)
Fαβ
ijk τ

α
i τ

β
j (1− P13 − P23)|123〉A12 , (C.9)

with the tensor Fαβ
ijk given in Eq.(4.4). If we develop the sum over the three

particles inside Eq. (C.9), we obtain:

∑

i 6=j 6=k

(σi · qi)(σj · qj)
(q2

i +M2
π)(q2

j +M2
π)
Fαβ
ijk τ

α
i τ

β
j

=
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[Fαβ

123τ
α
1 τ

β
2 + Fαβ

213τ
α
2 τ

β
1 ]

+
(σ1 · q1)(σ3 · q3)

(q2
1 +M2

π)(q2
3 +M2

π)
[Fαβ

132τ
α
1 τ

β
3 + Fαβ

312τ
α
3 τ

β
1 ]

+
(σ2 · q2)(σ3 · q3)

(q2
2 +M2

π)(q2
3 +M2

π)
[Fαβ

231τ
α
2 τ

β
3 + Fαβ

321τ
α
3 τ

β
2 ]

= 2

{
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[τ 1 · τ 2(−c̃1 + c̃3 q1 · q2)

+c̃4(τ 1 × τ 2) · τ 3 σ3 · (q1 × q2)]

+
(σ1 · q1)(σ3 · q3)

(q2
1 +M2

π)(q2
3 +M2

π)
[τ 1 · τ 3(−c̃1 + c̃3 q1 · q3)

+c̃4(τ 1 × τ 3) · τ 2 σ2 · (q1 × q3)]

+
(σ2 · q2)(σ3 · q3)

(q2
2 +M2

π)(q2
3 +M2

π)
[τ 2 · τ 3(−c̃1 + c̃3 q2 · q3)

+c̃4(τ 2 × τ 3) · τ 1 σ1 · (q2 × q3)]} . (C.10)

We then need to perform the trace over the spin/isospin of the third particle.
In the case of SNM, for each of the three interchanging terms 1, P13 and P23,
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this results is:

Trσ3Trτ3〈1′2′3′|{
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[τ 1 · τ 2(−c̃1 + c̃3 q1 · q2)

+c̃4(τ 1 × τ 2) · τ 3σ3 · (q1 × q2)]

+
(σ1 · q1)(σ3 · q3)

(q2
1 +M2

π)(q2
3 +M2

π)
[τ 1 · τ 3(−c̃1 + c̃3 q1 · q3)

+c̃4(τ 1 × τ 3) · τ 2σ2 · (q1 × q3)]

+
(σ2 · q2)(σ3 · q3)

(q2
2 +M2

π)(q2
3 +M2

π)
[τ 2 · τ 3(−c̃1 + c̃3 q2 · q3)

+c̃4(τ 2 × τ 3) · τ 1σ1 · (q2 × q3)]} |123〉A12

= 4
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[τ 1 · τ 2(−c̃1 + c̃3 q1 · q2)] ; (C.11)

Trσ3Trτ3〈1′2′3′|{
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[τ 1 · τ 2(−c̃1 + c̃3 q1 · q2)

+c̃4(τ 1 × τ 2) · τ 3σ3 · (q1 × q2)]

+
(σ1 · q1)(σ3 · q3)

(q2
1 +M2

π)(q2
3 +M2

π)
[τ 1 · τ 3(−c̃1 + c̃3 q1 · q3)

+c̃4(τ 1 × τ 3) · τ 2σ2 · (q1 × q3)]

+
(σ2 · q2)(σ3 · q3)

(q2
2 +M2

π)(q2
3 +M2

π)
[τ 2 · τ 3(−c̃1 + c̃3 q2 · q3)

+c̃4(τ 2 × τ 3) · τ 1σ1 · (q2 × q3)]}P13|123〉A12

=
(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
τ 1 · τ 2

[σ1 · q1(−c̃1 + (c̃3 + 2c̃4)q1 · q2)− 2c̃4σ1 · q2q
2
1]

+
(q1 · q3) + iσ1 · (q1 × q3)

(q2
1 +M2

π)(q2
3 +M2

π)

[3(−c̃1 + c̃3 q1 · q3) + 2ic̃4τ 1 · τ 2σ2 · (q1 × q3)]

+
(σ2 · q2)

(q2
2 +M2

π)(q2
3 +M2

π)
τ 1 · τ 2

[σ1 · q3(−c̃1 + (c̃3 + 2c̃4)q2 · q3)− 2c̃4σ1 · q2q
2
3] ;

(C.12)
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Trσ3Trτ3〈1′2′3′|{
(σ1 · q1)(σ2 · q2)

(q2
1 +M2

π)(q2
2 +M2

π)
[τ 1 · τ 2(−c̃1 + c̃3 q1 · q2)

+c̃4(τ 1 × τ 2) · τ 3σ3 · (q1 × q2)]

+
(σ1 · q1)(σ3 · q3)

(q2
1 +M2

π)(q2
3 +M2

π)
[τ 1 · τ 3(−c̃1 + c̃3 q1 · q3)

+c̃4(τ 1 × τ 3) · τ 2σ2 · (q1 × q3)]

+
(σ2 · q2)(σ3 · q3)

(q2
2 +M2

π)(q2
3 +M2

π)
[τ 2 · τ 3(−c̃1 + c̃3 q2 · q3)

+c̃4(τ 2 × τ 3) · τ 1σ1 · (q2 × q3)]}P23|123〉A12

=
(σ1 · q1)

(q2
1 +M2

π)(q2
2 +M2

π)
τ 1 · τ 2

[σ2 · q2(−c̃1 + (c̃3 + 2c̃4) q1 · q2)− 2c̃4σ2 · q1 q
2
2)]

+
(σ1 · q1)

(q2
1 +M2

π)(q2
3 +M2

π)
τ 1 · τ 2

[σ2 · q3(−c̃1 + (c̃3 + 2c̃4)q1 · q3)− 2c̃4σ2 · q1 q
2
3]

+
(q2 · q3) + iσ2 · (q2 × q3)

(q2
2 +M2

π)(q2
3 +M2

π)

[3(−c̃1 + c̃3 q2 · q3) + 2ic̃4τ 1 · τ 2σ1 · (q2 × q3)] .

(C.13)

In the case of pure neutron matter, as we argued in Sec. 4.1, the c4 term
goes to zero because the structure (τ 1 × τ 2) · τ 3 (see Eq. (C.10)) is null in a
system of all neutrons. The terms proportional to c1 and c3 follow the changes
explained in the last sub-section of Sec. 4.1. If we then perform the momentum
integral over the third particle, substituting in Eq. (C.11)-(C.12)-(C.13) the
expressions for the transferred momenta given in Eqs. (C.5)-(C.6)-(C.7), we
will obtain three contributions which are the equivalent to those presented in
Eq. (4.14)-(4.16)-(4.22):

Ṽ 3NF
TPE−1 =

gA ρf
2F 4

π

(σ1 · q)(σ2 · q)

[q2 +M2
π ]2

τ 1 · τ 2[2c1M
2
π + c3 q

2] ; (C.14)
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Ṽ 3NF
TPE−2 =

g2
A

16π2F 4
π

τ 1 · τ 2

q2 +M2
π

{
2

[k′2 − k2]
[σ1 · (q×K)σ2 · (q×K) (C.15)

−σ1 · σ2[q2K2 − (q ·K)2] + σ1 · qσ2 · qk2 + σ1 ·Kσ2 ·Kq2
]

[
4c1M

2
π [Γ1(k) + Γ0(k)− Γ1(k′)− Γ0(k′)]

−(c3 + c4)[k′2 − k2]

[
(2π)2A(k) +

Γ2(k)

k2
+ (2π)2A(k′) +

Γ2(k′)

k′2

]

−(c3 + c4)q2

[
(2π)2A(k) +

Γ2(k)

k2
− (2π)2A(k′)− Γ2(k′)

k′2

]]

+(σ1 · q)(σ2 · q)
[
4c1M

2
π [Γ1(k) + Γ0(k) + Γ1(k′) + Γ0(k′)]

+(c3 + c4)[k′2 − k2]

[
(2π)2A(k) +

Γ2(k)

k2
− (2π)2A(k′)− Γ2(k′)

k′2

]

−(c3 + c4)q2

[
(2π)2A(k) +

Γ2(k)

k2
+ (2π)2A(k′) +

Γ2(k′)

k′2

]

+4c4(2π)2(I(k) + I(k′))
]}

;

V 3NF
TPE−3 =

g2
A

16π2F 4
π

{

−12c1M
2
π

[
Γ0(k) + Γ0(k′)−G0(k, k′)(2M2

π + q2)
]

−c3

[
8k3

F − 6(2M2
π + q2)[Γ0(k) + Γ0(k′)]

−3q2[Γ1(k) + Γ1(k′)] + 3(2M2
π + q2)2G0(k, k′))

]

+4c4τ 1 · τ 2(σ1 · σ2 q
2 − σ1 · qσ2 · q)G2(k, k′)

−(3c3 + c4τ 1 · τ 2) i(σ1 + σ2) · (q×K)
[
Γ0(k) + Γ0(k′)

+Γ1(k) + Γ1(k′)− (2M2
π + q2)(G0(k, k′) + 2G1(k, k′))

]

−12c1M
2
π i(σ1 + σ2) · (q×K)

[
G0(k, k′) + 2G1(k, k′)

]

+4c4τ 1 · τ 2σ1 · (q×K)σ2 · (q×K)
[
G0(k, k′) + 4G1(k, k′) + 4G3(k, k′)

]}
. (C.16)

We have introduced the function:

A(k) =
1

(2π)2
[Γ0(k) + 2Γ1(k) + Γ3(k)] , (C.17)

The functions Γ0(k),Γ1(k),Γ2(k),Γ3(k), I(k), which are Fermi sphere integrals
over a single pion propagator, have already been introduced in Sec. 4.1. The
function G0(k, k′), which is a Fermi sphere integral over the product of two
different pion propagators, now reads:

G0,?,??(k, k
′) =

∫
dk3

(2π)3
n(p3)

{p0
3, p

2
3, p

4
3}

[[k′ + p3]2 +M2
π ][[p3 + k]2 +M2

π ]
.

(C.18)
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The rest of the functions, G1(k, k′), G2(k, k′), G3(k, k′), and the auxiliary one
G1?(k, k

′), change according to:

G1(k, k′) =
[k − k′z]

4kk′2z2

[
Γ0(k) + Γ0(k′)− (2M2

π + k2 + k′2)G0(k, q)− 2G?(k, k
′)
]
,

(C.19)

G1?(k, k
′) =

[k − k′z]

4kk′2z2

[
3(Γ2(k) + Γ2(k′)) + k2Γ3(k) + k′2Γ3(k′)

−(2M2
π + k2 + k′2)G?(k, k

′)− 2G??(k, k
′)
]
, (C.20)

G2(k, k′) =
1

2
(2M2

π + k2 + k′2)G1(k, k′) +G?(k, k
′) +G1?(k, k

′) , (C.21)

G3(k, k′) =
[k − k′z]

4kk′2z2

[1

2
(Γ1(k) + Γ1(k′))

−2(2M2
π + k2 + k′2)G1(k, k′)− 4G1?(k, k

′)− 2G?(k, k
′)
]
.(C.22)

where z = cosθkk′ .
Let us now perform the integration in Eq. (4.10) for the 3NF OPE contri-

bution Eq. (4.2):

〈1′2′|Ṽ 3NF
OPE |12〉A = Trσ3Trτ3

∫
dp3

(2π)3
n(p3)f(k, k′, p3)

〈1′2′3′| −
∑

i 6=j 6=k

c̃D
σj · qj

q2
j +M2

π

(τ i · τ j)(σi · qj)(1− P13 − P23)|123〉A12 . (C.23)

If we develop the sum inside equation Eq. (C.23) we get:
∑

i 6=j 6=k

σj · qj
q2
j +M2

π

(τ i · τ j)(σi · qj) =

{
σ1 · q1

q2
1 +M2

π

[(τ 2 · τ 1)(σ2 · q1) + (τ 3 · τ 1)(σ3 · q1)]

+
σ2 · q2

q2
2 +M2

π

[(τ 1 · τ 2)(σ1 · q2) + (τ 3 · τ 2)(σ3 · q2)]

+
σ3 · q3

q2
3 +M2

π

[(τ 1 · τ 3)(σ1 · q3) + (τ 2 · τ 3)(σ2 · q3)]

}
. (C.24)

We then need to perform the trace for each of the three interchanging cases.
If we do it in the case of SNM we obtain:

Trσ3Trτ3〈1′2′3′|
{

σ1 · q1

q2
1 +M2

π

[(τ 2 · τ 1)(σ2 · q1) + (τ 3 · τ 1)(σ3 · q1)]

+
σ2 · q2

q2
2 +M2

π

[(τ 1 · τ 2)(σ1 · q2) + (τ 3 · τ 2)(σ3 · q2)]

+
σ3 · q3

q2
3 +M2

π

[(τ 1 · τ 3)(σ1 · q3) + (τ 2 · τ 3)(σ2 · q3)]

}
|123〉A

= 4

{
σ1 · q1

q2
1 +M2

π

(τ 2 · τ 1)(σ2 · q1) +
σ2 · q2

q2
2 +M2

π

(τ 1 · τ 2)(σ1 · q2)

}
; (C.25)
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Trσ3Trτ3〈1′2′3′|
{

σ1 · q1

q2
1 +M2

π

[(τ 2 · τ 1)(σ2 · q1) + (τ 3 · τ 1)(σ3 · q1)]

+
σ2 · q2

q2
2 +M2

π

[(τ 1 · τ 2)(σ1 · q2) + (τ 3 · τ 2)(σ3 · q2)]

+
σ3 · q3

q2
3 +M2

π

[(τ 1 · τ 3)(σ1 · q3) + (τ 2 · τ 3)(σ2 · q3)]

}
P13|123〉A

=
σ1 · q1

q2
1 +M2

π

[(τ 2 · τ 1)(σ2 · q1) + 3 (σ1 · q1)] + 2
σ2 · q2

q2
2 +M2

π

(τ 1 · τ 2)(σ1 · q2)

+
1

q2
3 +M2

π

[3 q2
3 + (τ 1 · τ 2)(σ1 · q3)(σ2 · q3)] ; (C.26)

Trσ3Trτ3〈1′2′3′|
{

σ1 · q1

q2
1 +M2

π

[(τ 2 · τ 1)(σ2 · q1) + (τ 3 · τ 1)(σ3 · q1)]

+
σ2 · q2

q2
2 +M2

π

[(τ 1 · τ 2)(σ1 · q2) + (τ 3 · τ 2)(σ3 · q2)]

+
σ3 · q3

q2
3 +M2

π

[(τ 1 · τ 3)(σ1 · q3) + (τ 2 · τ 3)(σ2 · q3)]

}
P23|123〉A

= 2
σ1 · q1

q2
1 +M2

π

(τ 2 · τ 1)(σ2 · q1) +
σ2 · q2

q2
2 +M2

π

[(τ 1 · τ 2)(σ1 · q2) + 3 (σ2 · q2)]

+
1

q2
3 +M2

π

[3 q2
3 + (τ 1 · τ 2)(σ1 · q3)(σ2 · q3)] ; (C.27)

In the case of PNM, performing the trace over spin for expression given in
Eq. (C.24), considering all interchanges, leads to a vanishing quantity, as
was introduced at the end of Sec. 4.1. If we then perform the momentum
integration, substituting in Eq. (C.25)-(C.26)-(C.27) the expressions for the
transferred momenta given in Eqs. (C.5)-(C.6)-(C.7), we will obtain two con-
tributions which are the equivalent to those presented in Eq. (4.28)-(4.29):

Ṽ 3NF
OPE−1 = −cD gA ρf

8F 4
π Λχ

(σ1 · q)(σ2 · q)

q2 +M2
π

(τ 1 · τ 2) , (C.28)

Ṽ 3NF
OPE−2 =

cDgA
4F 4

πΛχ

{[[
σ1 · qσ2 · q + σ1 ·Kσ2 ·K

]
[A(k) + A(k′)]

+
[A(k)− A(k′)]

[k′2 − k2]

[
σ1 ·Kσ2 ·Kq2 + σ1 · qσ2 · q

(
k2 + k′2

2
− q2

4

)

+σ1 · σ2(q2K2 − (qK)2) + σ1 · (q×K)σ2 · (q×K)

+(Γ2(k) + Γ2(k′))σ1 · σ2

]
(τ 1 · τ 2)

]
+ 3(I(k) + I(k′))

}
(C.29)

For the contact term Eq. (4.3) we have to perform the integral:

〈1′2′|Ṽ 3NF
cont |12〉A = Trσ3Trτ3

∫
dp3

(2π)3
n(p3)f(k, k′, p3)

〈1′2′3′|
∑

j 6=k

c̃Eτ j · τ k(1− P13 − P23)|123〉A12 . (C.30)
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C.1. Numerical implementation

Expanding the sum inside Eq. (C.30) we get:

∑

j 6=k

τ j · τ k = 2
∑

cycle

τ j · τ k = 2(τ 1 · τ 2 + τ 2 · τ 3 + τ 3 · τ 1) . (C.31)

The trace over spin/isospin in the case of SNM gives for each interchange
term:

Trσ3Trτ3〈1′2′3′|(τ 1 · τ 2 + τ 2 · τ 3 + τ 3 · τ 1)|123〉A12 = 4τ 1 · τ 2 ; (C.32)

Trσ3Trτ3〈1′2′3′|(τ 1 · τ 2 + τ 2 · τ 3 + τ 3 · τ 1)P13|123〉A12 = 2τ 1 · τ 2 + 3 ; (C.33)

Trσ3Trτ3〈1′2′3′|(τ 1 · τ 2 + τ 2 · τ 3 + τ 3 · τ 1)P23|123〉A12 = 2τ 1 · τ 2 + 3 ; (C.34)

In the case of PNM, evaluating the trace over spin of Eq. (C.31), considering
all interchanges, would lead to a vanishing term. The integral over momentum
is trivial and leads to:

Ṽ 3NF
cont = − 3cEρf

2F 4
πΛχ

. (C.35)

If the modules of the relative incoming and outgoing momenta are set to
an equal value, k=k’, it is possible to demonstrate that the complete expres-
sions written in Eqs. (C.14)-(C.16)-(C.16)-(C.28)-(C.29)-(C.35) equal those
for diagonal momentum space given in Eqs. (4.14)-(4.16)-(4.22)-(4.28)-(4.29)-
(4.30).

C.1 Numerical implementation

We will now give some details on the numerical implementation for the cal-
culation of the density dependent force.

We start with the definition of the mesh necessary to calculate the integral
over the internal momenta p3 (see Eq. (4.10)). We have two different cases:

• calculation with dressed distribution function n(p). In this case we need
to cover momenta up to a certain value in which the n(p) goes to zero.
We define 3 gaussian meshes respectively from 0 to kF/3, from kF/3 to
kF + kF/3, from kF + kF/3 to 3kF. Finally, high momenta after kF are
reached through a tangential mesh. We have 50 points in the gaussian
meshes, and 500 in the tangential one.

• calculation with the undressed distribution function, i.e. a step function
up to kF . In this case we use a simple gauss mesh from 0 to kF of 50
points

For the external relative momenta, i.e. k and k′, and the relative angle between
them, i.e. z=cosθ, we define gaussian meshes. For relative momenta we have
Nk = 100, for values from 0 to 1100 MeV. After the complete evaluation of the
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density dependent force Ṽ 3NF, we perform a tangential map of these values
up to ∼ 106 MeV.

In the case of the average using the self-consistent momentum distribution
function coming form the previous iterative step, we need to obtain this via
Eq. (2.13). At each iterative step, the values of the imaginary and real part
of the self-energy are stored, for different points in the energy and momentum
space. The number of points in the energy mesh is Nω ∼ 6000 for energies
ranging from ω = [−2200 : 10000] MeV. For the momentum mesh we have
Nk = 70, for SP momenta going from 0 to 3000 MeV. We then interpolate
through a spline the values of the imaginary and real part of the self-energy
to a fine energy mesh of Nω,spline = 30000. These values are used to define
the spectral function (see Eqs. (2.30)-(2.31)) necessary to evaluate Eq. (2.13).
This last step is performed via a trapezoidal integral in the energy range. We
then perform a linear interpolation of the obtained values of n(p) to the mesh
of p3 defined for the integration of the quantities in the density dependent
force. Extrapolated values are set to zero.
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Bożek, P. & Czerski, P. (2001). Thermodynamic consistency for nuclear
matter calculations. Eur. Phys. J. A, 11, 271–275.
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Coon, S.A. & Glöckle, W. (1981). Two-pion-exchange three-nucleon po-
tential: Partial wave analysis in momentum space. Phys. Rev. C , 23, 1790–
1802.

Danovich, D. (2011). Green’s function methods for calculating ionization
potentials, electron affinities, and excitation energies. WIREs Comput. Mol.
Sci., 1, 377–387.

Day, B.D. (1967). Elements of the brueckner-goldstone theory of nuclear
matter. Rev. Mod. Phys., 39, 719–744.

Day, B.D. (1981). Three-body correlations in nuclear matter. Phys. Rev. C ,
24, 1203–1271.

Degroote, M., Van Neck, D. & Barbieri, C. (2011). Faddeev random-
phase approximation for molecules. Phys. Rev. A, 83, 042517.

Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E. &
Hessels, J.W.T. (2010). A two-solar-mass neutron star measured using
shapiro delay. Nature, 467, 1081.

Dewulf, Y., Van Neck, D. & Waroquier, M. (2002). Effects of self-
consistency in a Green’s function description of saturation in nuclear matter.
Phys. Rev. C , 65, 054316.

Dewulf, Y., Dickhoff, W.H., Van Neck, D., Stoddard, E.R. &
Waroquier, M. (2003). Saturation of Nuclear Matter and Short-Range
Correlations. Phys. Rev. Lett., 90, 152501.

149



Bibliography

Dickhoff, W. & Van Neck, D. (2008). Many-Body Theory Exposed!:
Propagator Description of Quantum Mechanics in Many-Body Systems .
World Scientific Publishing Company, Incorporated, 2nd edn.

Dickhoff, W.H. & Barbieri, C. (2004). Self-consistent Green’s function
method for nuclei and nuclear matter. Prog. Part. Nucl. Phys., 52, 377.

Dickhoff, W.H., Gearhart, C.C., Roth, E.P., Polls, A. & Ramos,
A. (1999). Phase shifts and in-medium cross sections for dressed nucleons
in nuclear matter. Phys. Rev. C , 60, 064319.

Dyson, F.J. (1949). The S matrix in quantum electrodynamics. Phys. Rev.,
75, 1736–1755.

Eisenbud, L. & Wigner, E.P. (1941). Invariant forms of interaction be-
tween nuclear particles. Proc. Natl. Acad. Sci., 27, 281–289.

Ekström, A. et al. (2013). Optimized chiral nucleon-nucleon interaction at
next-to-next-to-leading order. Phys. Rev. Lett., 110, 192502.

Entem, D.R. & Machleidt, R. (2002). Chiral 2π exchange at fourth order
and peripheral nn scattering. Phys. Rev. C , 66, 014002.

Entem, D.R. & Machleidt, R. (2003). Accurate charge-dependent
nucleon-nucleon potential at fourth order of chiral perturbation theory.
Phys. Rev. C , 68, 041001(R).

Epelbaum, E. (2006). Four-nucleon force in chiral effective field theory. Phys.
Lett. B , 639, 456 – 461.

Epelbaum, E. (2007). Four-nucleon force using the method of unitary trans-
formation. Eur. Phys. J. A, 34, 197–214.

Epelbaum, E. & Gegelia, J. (2009). Regularization, renormalization and
peratization in effective field theory for two nucleons. Eur. Phys. J. A, 41,
341.
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