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Anáıs Garrell Zulueta

Advisor:

Alberto Sanfeliu

November, 2013





Universitat Politècnica de Catalunya
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Abstract

The development of social robots capable of interacting with humans is one of the

principal challenges in the field of robotics. More and more, robots are appearing in

dynamic environments, like pedestrian walkways, universities, and hospitals; for this

reason, their interaction with people must be conducted in a natural, gradual, and

cordial manner, given that their function could be aid, or assist people. Therefore,

navigation and interaction among humans in these environments are key skills that

future generations of robots will require to have. Additionally, robots must also be

able to cooperate with each other, if necessary. This dissertation examines these vari-

ous challenges and describes the development of a set of techniques that allow robots

to interact naturally with people in their environments, as they guide or accompany

humans in urban zones. In this sense, the robots’ movements are inspired by the per-

sons’ actions and gestures, determination of appropriate personal space, and the rules

of common social convention.

The first issue this thesis tackles is the development of an innovative robot-companion

approach based on the newly founded Extended Social-Forces Model. We evaluate how

people navigate and we formulate a set of virtual social forces to describe robot’s behav-

ior in terms of motion. Moreover, we introduce a robot companion analytical metric to

effectively evaluate the system. This assessment is based on the notion of “proxemics”

and ensures that the robot’s navigation is socially acceptable by the person being ac-

companied, as well as to other pedestrians in the vicinity. Through a user study, we

show that people interpret the robot’s behavior according to human social norms.

In addition, a new framework for guiding people in urban areas with a set of co-

operative mobile robots is presented. The proposed approach offers several significant

advantages, as compared with those outlined in prior studies. Firstly, it allows a group
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of people to be guided within both open and closed areas; secondly, it uses several co-

operative robots; and thirdly, it includes features that enable the robots to keep people

from leaving the crowd group, by approaching them in a friendly and safe manner. At

the core of our approach, we propose a “Discrete Time Motion” model, which works

to represent human and robot motions, to predict people’s movements, so as to plan a

route and provide the robots with concrete motion instructions.

After, this thesis goes one step forward by developing the “Prediction and Antici-

pation Model”.This model enables us to determine the optimal distribution of robots

for preventing people from straying from the formation in specific areas of the map,

and thus to facilitate the task of the robots. Furthermore, we locally optimize the work

performed by robots and people alike, and thereby yielding a more human-friendly

motion.

Finally, an autonomous mobile robot capable of interacting to acquire human-

assisted learning is introduced. First, we present different robot behaviors to approach

a person and successfully engage with him/her. On the basis of this insight, we furnish

our robot with a simple visual module for detecting human faces in real-time. We

observe that people ascribe different personalities to the robot depending on its dif-

ferent behaviors. Once contact is initiated, people are given the opportunity to assist

the robot to improve its visual skills. After this assisted learning stage, the robot is

able to detect people by using the enhanced visual methods. Both contributions are

extensively and rigorously tested in real environments.

As a whole, this thesis demonstrates the need for robots that are able to operate

acceptably around people; to behave in accordance with social norms while accompa-

nying and guiding them. Furthermore, this work shows that cooperation amongst a

group of robots optimizes the performance of the robots and people as well.
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Resum

El desenvolupament de robots socials capaços d’interactuar amb els éssers humans és

un dels principals reptes en el camp de la robòtica. Actualment, els robots comencen

a aparèixer en entorns dinàmics, com zones de vianants, universitats o hospitals; per

aquest motiu, aquesta interacció ha de realitzar-se de manera natural, progressiva i

cordial, ja que la seva utilització pot ser col.laboració, assistència o ajuda a les persones.

Per tant, la navegació i la interacció amb els humans, en aquests entorns, són habilitats

importants que les futures generacions de robots han de posseir, a més a més, els robots

han de ser aptes de cooperar entre ells si fos requerit. El present treball estudia aquests

reptes plantejats. S’han desenvolupat un conjunt de tècniques que permeten als robots

interectuar de manera natural amb les persones i el seu entorn, mentre que guien o

acompanyen als humans en zones urbanes. En aquest sentit, el moviment dels robots

s’inspira en la manera com es mouen els humans i en les convenvions socials, aix́ı com

l’espai personal.

El primer punt que aquesta tesi comprèn és el desenvolupament d’un nou mètode

per a “robots-acompanyants” basat en el nou model estès de forces socials. S’ha evaluat

com es mouen les persones i s’han formulat un conjunt de forces socials virtuals que

descriuren el comportament del robot en termes de moviments. Aquesta evaluació es

basa en el concepte de “proxemics” i assegura que la navegació del robot està socialment

acceptada per la persona que està sent acompanyada i per la gent que es troba a l’entorn.

Per mitjà d’un estudi social, mostrem que els humans interpreten el comportament del

robot d’acord amb les normes socials.

Aix́ı mateix, un nou sistema per a guiar a persones en zones urbanes amb un con-

junt de robots mòbils que cooperen és presentat. El model proposat ofereix diferents

avantatges comparat amb treballs anteriors. En primer lloc, es permet a un grup de
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persones ser guiades en entorns oberts o amb alta densitat d’obstacles; segon, s’utilitzen

diferents robots que cooperen; tercer, els robots són capaços de reincorporar a la for-

mació les persones que s’han allunyat del grup anteriorment de manera segura. La base

del nostre enfocament es basa en el nou model anomenat “Discrete Time Motion”, el

qual representa els movimients dels humans i els robots, prediu el comportament de les

persones, i planeja i proporciona una ruta als robots.

Posteriorment, aquesta tesi va un pas més enllà amb el desenvolupament del model

“Prediction and Anticipation Model”. Aquest model ens permet determinar la dis-

tribució òptima de robots per a prevenir que les persones s’allunyin del grup en zones

espećıfiques del mapa, i per tant facilitar la tasca dels robots. A més, s’optimitza lo-

calment el treball realitzat pels robots i les persones, produint d’aquesta manera un

moviment més amigable.

Finalment, s’introdueix un robot autònom mòbil capaç d’interactuar amb les per-

sones per realitzar un aprenentatge assistit. Incialment, es presenten diferents compor-

taments del robot per apropar-se a una persona i crear un v́ıncle amb ell/ella. Basant-

nos en aquesta idea, un mòdul visual per a la detecció de cares humanes en temps

real va ser proporcionat al robot. Hem observat que les persones atribueixen diferents

personalitats al robot en funció dels seus diferents comportaments. Una vegada que el

contacte va ser iniciat es va donar l’oportunitat als voluntaris d’ajudar al robot per a

millorar les seves habilitats visuals. Després d’aquesta etapa d’aprenentatge assistit,

el robot va ser capaç d’identificar a les persones mitjançant l’ús de mètodes visuals.

Ambdues contribucions van ser extensa i rigurasament testejades en experimentació

real.

En conjunt, aquesta tesi presenta i demostra la necessitat de robots que siguin

capaços d’operar de forma acceptable amb la gent i que es comportin d’acord amb les

normes socials mentres acompanyen o guien a persones. Per altra banda, aquest treball

mostra que la coperació entre un grup de robots pot optimitzar el rendiment tant dels

robots com dels éssers humans.
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Resumen

El desarrollo de robots sociales capaces de interactuar con los seres humanos es uno

de los principales retos en el campo de la robótica. Actualmente, los robots empiezan

a aparecer en entornos dinámicos, como zonas peatonales, universidades u hospitales;

por este motivo, dicha interacción debe realizarse de forma natural, progresiva y cor-

dial, puesto que su utilización puede ser colaborar, asistir o ayudar a las personas.

Por lo tanto, la navegación y la interacción con los humanos, en dichos entornos, son

habilidades importantes que las futuras generaciones de robots deben poseer, además

los robots deben ser capaces de cooperar entre ellos si fuese requerido. La presente

disertación estudia los retos planteados. Se han desarrollado un conjunto de técnicas

que permiten a los robots interactuar de manera natural con personas y sus ambientes,

mientras que gúıan o acompañan a los humanos en zonas urbanas. En este sentido, el

movimiento de los robots se inspira en la manera como se mueven las humanos y en las

convenciones sociales, aśı como el espacio personal.

Un primer punto que esta tesis abarca es el desarrollo de un nuevo método para

“robots-acompañantes” basado en el nuevo modelo extendido de fuerzas sociales. Se ha

evaluado como se mueven las personas y se han formulado un conjunto de fuerzas so-

ciales virtuales que describen el comportamiento del robot en términos de movimiento.

Esta evalución se basa en el concepto de “proxemics” y asegura que la navegación del

robot está socialmente aceptada por la persona que está siendo acompañada y por la

gente que se encuentran en el entorno. Por medio de un estudio social, mostramos que

los humanos interpretan el comportamiento del robot acorde con las normas sociales.

Asimismo, un nuevo sistema para guiar a personas en zonas urbanas con un conjunto

de robots móviles que cooperan es presentado. El modelo propuesto ofrece varias

ventajas comparado con trabajos anteriores. En primer lugar, se permite a un grupo
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de personas ser guiadas en entornos abiertos o con alta densidad de obstáculos; segundo,

se utilizan varios robots que cooperan; tercero, los robots son capaces de reincorporar

a la formación las personas que se han alejado del grupo anteriormente de manera

segura. La base de nuestro enfoque se basa en el nuevo modelo llamado “Discrete Time

Motion”, el cual representa los movimientos de los humanos y los robots, predice el

comportamiento de las personas, y planea y proporciona una ruta a los robots.

Posteriormente, esta tesis va un paso más allá con el desarrollo del modelo “Predic-

tion and Anticipation Model”. Dicho modelo nos permite determinar la distribución

óptima de robots para prevenir que las pesonas se alejen del grupo en espećıficas zonas

del mapa, y por lo tanto facilitar la tarea de los robots. Además, se optimiza local-

mente el trabajo realizado por los robots y las personas, produciendo de este modo un

movimiento más amigable.

Finalmente, se introduce un robot autónomo móvil capaz de interactuar con las

personas para realizar un aprendizaje asistido. Incialmente, se presentan diferentes

comportamientos del robot para acercarse a una persona y crear un v́ınculo con él/ella.

Basándonos en esta idea, un módulo visual para la detección de caras humanas en

tiempo real fue proporciado al robot. Observamos que las personas atribuyen diferentes

personalidades al robot en función de sus diferentes comportamientos. Una vez que el

contacto fue iniciado, se dio la oportunidad a las personas de ayudar al robot para

mejorar sus habilidades visuales. Después de esta etapa de aprendizaje asistido, el

robot fue capaz de detectar a las personas mediante el uso de métodos visuales. Ambas

contribuciones fueron extensa y rigurosamente testeadas en experimentación real.

En conjunto, esta tesis presenta y demuestra la necesidad de robots que sean capaces

de operar de forma aceptable con la gente y que se comporten de acuerdo con las normas

sociales mientras acompañan o gúıan a personas. Por otra parte, este trabajo muestra

que la cooperación entre un grupo de robots puede optimizar el rendimiento tanto de

los robots como de los seres humanos.
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Chapter 1

Introduction

There is a single light of science, and to brighten

it anywhere is to brighten it everywhere.

Isaac Asimov

Nowadays, human-robot interaction and robot navigation are two fields within

robotics that have made great progress, thus, it is accepted and well known that in

our future there will be mobile autonomous robots to help society in general, specially

servicing robots to cooperate with humans in their everyday tasks. Concretely, robots

are able to assist people in urban areas as a companion robot, a tour guide, or an

information point.

Mobile robots will interact with people in everyday tasks and they must behave in

such a way that humans perceive robots as human-like. Traditional motion methods for

a mobile robot that navigates near and with people, may not be accepted by humans,

because they might not follow human social norms. When robots do not behave as

socially expected, human-robot interaction may fail.

To address these issues, we have developed a framework that allows robots to in-

teract naturally with humans and their environment, while robots navigate, guide or

accompany people in urban settings. In this sense, robots movements are inspired by

people motion and human social conventions, such as personal space.

Furthermore, robots must be able to cooperate between them if it is required, thus,

one important application within the field of social and cooperative robots is that of

1



1.1 Motivation

using a set of autonomous robots for accompanying a group of people. This kind of

application has already been used for guiding people in museums [19], however the robot

navigation skills were limited to simple path planning functionalities with additional

reactive behaviors to avoid collisions with humans. Besides, no particular actions were

taken to avoid situations were the crowd did not follow the robot, which has been

studied extensively in this dissertation.

Finally, regarding to the field of human-robot interaction research, it is important

to give to the robots the ability to initiate interaction with humans. Generally, it is

thought that social robots can engage in the same way people do, using human-like

physical signals and gestures [122]. Recent studies show that robots are also able to

encourage people to initiate interaction, expecting people to approach them instead of

initiating it themselves [100]. The present work takes this a step further by looking

at how robots can seek assistance from a person, after initiating a conversation and

engaging meaningfully with him/her.

In the rest of this chapter, we briefly state the motivation, overview, main contri-

butions and the derived publications, which had become the contents of the rest of

monograph, set forth chapter by chapter.

1.1 Motivation

These days, robots are starting to emerge in human everyday environments, therefore, it

becomes necessary to find methods, in which they can interact and engage seamlessly.

Human environments, such as pedestrian streets, universities, hospitals or shopping

centers, are places where robots are appearing.

In the last years, researchers developed autonomous mobile robots for outdoor and

public environments. Studies performed on robots which serve to guide humans have

been conducted in museums [20, 125], railway stations [72], as assistants [30, 141], and

in shopping malls [152]; other studies have examined ways in which robots provide

humans with the flexibility of deciding the way in which they want to be guided [132].

Thus, being able to accompany, guide and interact with people in these dynamic

environments are important skills for future robot generations. So far, these tasks have

been performed by humans, as observed in Fig. 1.1. The motivation of this research is
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1.1 Motivation

Figure 1.1: Motivation of the thesis: Left: A group of people being guided in
Barcelona. Center: An information point in a public place. Right: Three men
accompanying/escorting President Obama

to make the robots capable of carrying out these missions. Moreover, to be accepted,

robots must be able to interact and move in a comfortable manner.

Imagine a service robot navigating in a University campus. Some goals the robot

has to reach are the following ones:

• to move around people in the environment in a human-like way;

• to approach people who need assistance in an appropriate way;

• to interact with people to help with the needs of the person, using verbal and

non-verbal communication;

• to accompany people to a certain interested location in a crowded environment

in an acceptable social way;

• and, to guide a group of people and, if needed, to cooperate with other robots to

achieve the task.

In this dissertation, we focus on designing robot behaviors to solve the above tasks.

Moreover, to be accepted as cooperative partners, robots must not only have the ability

to achieve these objectives efficiently, but they must also be accepted by people in the

environment.

Doing so allows people to feel save with a robot, and therefore, humans will trust

it and will follow its instructions. Specially, we believe that if such robots are able to

behave according to human social norms –such as respecting personal space– and in a

human-like motion, they will be better accepted by pedestrians around them. This will

allow both the robots and people to accomplish their jobs more efficiently and easily.
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Figure 1.2: Thesis outline. Block diagram representing the different architectures
proposed in this thesis.

Finally, we hope that this research will encourage development of more social robots

able to escort and guide people in public places, and to cooperate with other robots in

order to accomplish the tasks more efficiently.

1.2 Outlook at the Dissertation

This thesis is organized through seven chapters and two appendices. Next paragraphs

outline the content of each chapter and appendix, and will serve to guide the reader

througt the PhD dissertation.

• Chapter 1 is the introduction. It summarizes the PhD dissertation, including

the motivation, the outline of the thesis and the list of publications

• Chapter 2 reviews the state of the art on robot navigation in urban environ-

ments, cooperative robotics, robot companion and human-robot interaction.

• Chapter 3 defines a novel robot companion framework based on the so-called

Social Force Model to guide or accompany people in dense urban areas. Addi-

tionally, we present a new metric to evaluate the robot companion performance

4



1.2 Outlook at the Dissertation

based on vital spaces and comfortableness criteria. Also, a multimodal human

feedback is proposed to enhance the behavior of the system.

• Chapter 4 describes a new model for people guidance in urban settings using

several mobile robots. The novelty of this approach resides in how the environ-

ment and human and robot motions are modeled. In particular, we present a

“Discrete-Time-Motion” model, which from one side represents the environment

by means of a potential field, that makes it appropriate to deal with open ar-

eas, and on the other hand, the motion models for people and robots respond to

realistic situations.

• Chapter 5 investigates the circumstances in which people might stray from the

formation when following different robots’ instructions. We introduce a novel

approach to locally optimize the work performed by robots and people using

the minimum robots’ work criterion and determining human-friendly types of

movements. The guidance missions were carried out in urban areas that included

multiple conflict areas and obstacles.

• Chapter 6 proposes the results of several experiments conducted at the Barcelona

Robot Lab, in which we studied various aspects of the interaction between a mo-

bile robot and untrained human volunteers. Different pro-active robots behaviors

to use when approaching a person and engaging with him/her are presented. Fur-

thermore, we developed additional communication skills to allow people to assist

the robot and help it to enhance its facial recognition system.

• Chapter 7 concludes the work highlighting the original contributions of this

thesis. Furthermore, this chapter points out future research lines identified as

key trends in the near future for single/multiple mobile robot cooperation to

accompany/guide/interact with people in urban pedestrian scenarios.

• Appendix A shows the two robots used in most of the experimental sections of

this dissertation, listing the on board sensors and devices.

• Appendix B details the method used in Chapters 3 and 6 to evaluate people

perception of robots behaviors. A single factor analysis of variance (ANOVA) has

been computed, according to [13].
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Fig. 1.2 shows the blocks diagrams representing the different architectures proposed

in this thesis, and it also outlines the structure of this document.

1.3 Main Contributions

This dissertation provides four main contributions. First and foremost is our social

companion robot framework. We provide results, both in simulation and in user studies

with a physical robot. In addition, we introduce the “Discrete-Time Motion Model”,

which allows a set of cooperative robots to guide and escort a group of people in a

human-safe manner. Furthermore, we provide an extension to the mentioned model, it

is called “Prediction and Anticipation model”. It enables to determine the particular

distribution of robots that can be used to best prevent people from straying from the

formation in specific areas of a map. By using this model, we were able to prevent

people from straying from the guided group and, thus facilitate the task of the robots.

Furthermore, we could locally optimize the work performed by robots and people alike,

and therefore obtain a human-friendly motion. Finally, we present different robot’s

pro-active behaviors that can be used when approaching a person and engaging with

him/her designed for social human-robot interaction.

1.3.1 Social Companion Robots (Chapter 3)

In Chapter 3, we describe a new model that has been designed to accompany peo-

ple using the Extended Social Force Model. The social force model presented in [75]

takes into account both destinations and interactions by defining a summation of ex-

isting forces determining people trajectories. The social companion robot framework

is the main contribution of this chapter. The proposed model is validated throughout

simulations and a set of real-life experiment.

Furthermore, an interactive approach tests the model forces and learns which is the

desired robots behavior by humans. The purpose of the provided feedback is to learn

a general approaching rule that defines a better robot behavior. The proposed inter-

active learning helps to enlighten the nature of the model, and to generate controlled

interaction forces that otherwise would be extremely complicated to generate.

6



1.3 Main Contributions

Moreover, to evaluate the performance of the companion task accomplished by

the robot, a quantitative metric is defined. This assessment is based on “proxemics”,

proposed by Hall [70]. Finally, we conducted a user study to determine whether the

robot’s behavior was perceived as socially appropriate by the experiment participants.

1.3.2 Discrete Time Motion Model (Chapter 4)

Chapter 4 presents the architecture we developed to guide and escort a group of people

using several robots behaving in a cooperative and human-safe manner. The main

contributions of this chapter are twofold: on the one hand, we represent the environment

by means of a potential field which allows to deal with either open or closed areas, and

with or without obstacles. On the other hand, the motion models for both people

and robots are grounded on social human behaviors learned from training databases of

groups of pedestrians moving in real-world scenarios. All these pieces are integrated

within a common “Discrete-Time Motion Model” that allows to estimate the motion of

people and robots and to compute the robot’s trajectory for guiding people to a specific

goal.

In addition, the guiding capabilities of our approach are initially validated through

synthetic data. Moreover, we also use real data. For the collection of the real data,

we used the camera network available in the Barcelona Robot Lab, which integrates 21

cameras. Using this camera network, we captured a set of video sequences of groups of

people while following a leader. For the validation process, we compared the estimations

obtained by the Discrete Time Motion model and the results obtained from the real

data.

1.3.3 Prediction and Anticipation Model (Chapter 5)

One of the main challenges when robots try to perform the task of guiding a group

of people is the possibility that one or more people will move away from the group,

either out of boredom or due to his/her interest in something which lies away from the

group’s path. In this chapter, we investigate the circumstances in which people might

stray from the formation when following different robots’ instructions. For this reason,

we introduce a “prediction and anticipation model” that predicts the position of the
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group using a Particle Filter, while determining the optimal robot behavior to help

people stay in the group in areas where they may become distracted.

Furthermore, it is crucial to understand the environment in which the group moves.

As a result, we need to know the set of robots and people that would be situated

in the hallways, open spaces, intersections and other settings. We also describe a

mathematical function which determines the density of obstacles that surround the

group during their movement along the path. In the areas with open spaces and a low

density of obstacles, the probability that a person will move away is high and, thus,

these areas were treated as conflict areas in our investigation.

Finally, we present a cost function which computes the optimal configuration of

robots (defined as the behavior of all the members of the group). That configura-

tion should not only minimize the work performed by the robots, but also make the

interaction between robots and people as “comfortable” as possible, in terms of motion.

1.3.4 Robot’s Proactive Behavior to Create Engagements with Hu-
mans (Chapter 6)

The final contribution of this thesis is to enable robots to interact naturally with people

when carrying out the accompanying task. In this chapter, we present the results of

several conducted experiments, in which we studied various aspects of the interaction

between a mobile robot and untrained human volunteers.

First, we identify the optimal robot behavior for initiating interaction with a human.

To do so, we analyzed three variations on this behavior, looking at scenarios in which:

(1) The robot uses only verbal cues to communicate with the participant; (2) The

robot uses both verbal and non-verbal cues (e.g., gestures and eye gazes); and (3) The

robot uses verbal and non-verbal cues and actually approaches humans. Moreover, to

synthesize Tibi’s emotions of happiness, sadness and anger, we used the emotion model

of the three dimensions of emotion [146]. This model characterizes emotions in terms

of stance, valence and arousal.

Secondly, once the robot has engaged with a human, we proposed an approach in

which the robot was able to enhance its visual skills using the human’s help. Following

each interaction, we were able to prove that the robot’s skills were visibly improved.
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Finally, we conducted a user study to determine whether the robot’s behavior was

perceived as socially appropriate by the experiment participants.

1.4 Derived Publications

The derived publications during the PhD are listed below. They correspond to articles

submitted to relevant international and national journals and conferences.

1. G. Ferrer∗, A. Garrell*, F. Herrero and A. Sanfeliu. Robot Social-Awareness

Navigation Framework to Accompany People. IEEE Transactions on Robotics,

[Second revision], [41]. (* indicates equal contribution)

2. G. Ferrer, A. Garrell and A. Sanfeliu. Social-Aware Robot Navigation in Urban

Environments. In 6th European Conference on Mobile Robots, September 2013,

[43].

3. A. Garrell, M. Villamizar, F. Moreno-Noguer, A. Sanfeliu. Proactive Behavior

of an Autonomous Mobile Robot for Human-Assisted Learning. In 22nd IEEE In-

ternational Symposium on Robot and Human Interactive Communication, pages

107-113, August 2013, [59].

4. G. Ferrer∗, A. Garrell* and A. Sanfeliu. Robot Companion: A Social-Force

based approach with Human Awareness-Navigation in Crowded Environments. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, Novem-

ber 2013, [42]. (* indicates equal contribution)

5. G. Ferrer, A. Garrell, M. Villamizar, I. Huerta and A. Sanfeliu. Robot Inter-

active Learning through Human Assistance. In Multimodal Interaction in Image

and Video Applications, pages 185-203, Springer Berlin Heidelberg, 2013 [44].

6. A. Garrell and A. Sanfeliu. Cooperative social robots to accompany groups

of people. The International Journal of Robotics Research , 31(13): 1675-1701,

2012, [57].

7. M. Villamizar, A. Garrell A. Sanfeliu and F. Moreno-Noguer. Online human-

assisted learning using random ferns. In 21st IEEE International Conference on

Pattern Recognition, pages 2821-2824, Tsukuba, Japan, November 2012, [171].

9



1.4 Derived Publications

8. A. Garrell, A. Corominas Murtra and A. Sanfeliu. Robots companions for

guiding people in urban areas. In Workshop de Robótica Experimental, pages

419-426, Seville, 2011 [49].

9. A. Garrell, O. Sandoval and A. Sanfeliu. Adaptive multi agent system for

guiding groups of people in urban areas. In Highlights in Practical Applications

of Agents and Multiagent Systems, Springer Berlin Heidelberg, pages 175-184,

2011, [51].

10. A. Garrell and A. Sanfeliu. Cooperative robots in people guidance mission:

DTM model validation and local optimization motion. In IEEE/RSJ IROSWork-

shop on Network Robot Systems, Taipei, October 2010, [52].

11. A. Garrell and A. Sanfeliu. Model validation: robot behavior in people guid-

ance mission using DTM model and estimation of human motion behavior. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

5836-5841, Taipei, October 2010, [56].

12. A. Garrell and A. Sanfeliu. Local optimization of cooperative robot movements

for guiding and regrouping people in a guiding mission. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 3294-3299, Taipei,

October 2010, [55].

13. A. Garrell, O. Sandoval, J. M. Mirats Tur and A. Sanfeliu. Guiding and regroup-

ing people missions in urban areas using cooperative multi-robot task allocation.

In 15th IEEE International Conference on Emerging Technologies and Factory

Automation, pages 2682-2690, Bilbao, September 2010 [50].

14. A. Garrell and A. Sanfeliu. Cooperative robot movements for guiding and

regrouping people using cost function evaluation. In RSS Workshop on Learning

for Human-Robot Interaction Modeling, pages 14-15, Zaragoza, June 2010, [53].

15. A. Garrell and A. Sanfeliu. La influencia del efecto uncanny valley en el diseño

de un robot social. In 1st International Congress of Design and Innovation of

Catalonia, FUNDIT, pages 84-95, Sabadell, March 2010, [54].
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16. A. Garrell, A. Sanfeliu and F. Moreno-Noguer. Discrete time motion model

for guiding people in urban areas using multiple robots. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 486-491, Saint Louis,

October 2009, [58]. Nominated to best paper Award
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Chapter 2

State of the Art

Do not have to start always with the first notion of things that

are studied, but for that which can facilitate learning.

Aristotle

The overall goal of this research is to develop robots that work cooperatively while

accompanying people in socially acceptable ways. As such, this thesis draws on work

from diverse fields, including robot navigation in urban environments, cooperative

robotics, robot companion and human-robot interaction. This chapter introduces the

data yielded by some of the most relevant research on this subject.

2.1 Social Navigation in Urban Environment

In the last several decades, major technological achievements have been accomplished

with respect to the development of autonomous mobile robots for outdoor and public

environments. Robust and reliable systems for navigation [104, 112], environmental

perception [68], obstacle avoidance [34], and localization [27] have been successfully

integrated into several kinds of robotic platforms [1, 142, 144]. At the same time,

advances in the field of human-robot interaction aimed at making interfaces more nat-

ural [122] and effective [15, 16, 86] have brought robots and human beings closer than

ever before.

Because a mobile robot must be able to avoid obstacles in the environment where

it is working, many different algorithms for obstacle avoidance have been developed.
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Often, dynamic obstacles are handled only in a locally reactive manner, as static (non-

moving). Some works that do account for vehicle dynamic include the Curvature Veloc-

ity Method [156]; the Dynamic Window Approach [48]; or randomized kinodynamic

planning using rapidly-exploring Random Trees [98]. Other algorithms consider ob-

stacles moving over time [93, 116]. Finally, several approaches consider both vehicle

dynamics and dynamic obstacles [46, 131]. While all of these algorithms may be used

to generate varying degrees of safe and effective obstacle avoidance, none of them ex-

plicitly accounts for the pre-established social conventions that people use when moving

around each other.

On top of this, urban pedestrian areas present additional challenges to the robotics

community, such as narrow passages, ramps, holes, steps and staircases, as well as the

ubiquitous presence of pedestrians, bicycles and other unmapped dynamic obstacles.

This leads to new challenges in perception, estimation and control [10, 102], calling for

additional research in robot navigation technologies.

A number of methods have been developed to allow robots to navigate around people

in specific, typically non-generalizable, tasks. Some of these tasks include standing

in line [123]; tending toward the right side of a hallway, particularly when passing

people [129]; and approaching people to join conversational groups [3]. Museum tour

guide robots are often given the capability to detect and attempt to handle people

who are blocking their paths [20, 125, 163]. In [135], a robotic wheelchair that can

follow a person was presented, but this method does not account for the social cues

that the human might use in a certain situation, nor does it allow for any spontaneous

social interaction. Some researchers have begun researching how a robot might adapt

its speed when traveling besides a person, but they have obtained mixed results, even

in controlled laboratory settings [160].

Furthermore, several groups have begun to address issues on how to plan complete

paths around people, rather than relying on solely reactive behaviors. One method

for how a robot might alter its velocity around people is discussed in [151]. While

this method begins to address ideas of planning around people, it does not directly

consider the issue of prevailing social conventions. In contrast, the Human-Aware

Motion Planner, introduced in [159], considers the safety and reliability of the robot’s

movement as well as “human comfort”, by attempting to keep the robot in front of
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people and visible at all times. However, the paths that the planner generates may be

very unnatural, as a direct result of its attempts to stay visible to the people it leads.

Safety and reliability are key to the successful introduction of robots into human en-

vironments. In most studies, safety is assured by preventing humans from approaching

the robots. But said methods are rendered ineffective whenever the robot is designated

to directly assist a human individual. In [2], the notion of safety is studied in detail

with respect to all relevant aspects of Human-Robot Interaction.

Two different notion of human safety are treated in [178]: “physical” safety and

“mental” safety. According to the posits of this work, the notion of safety includes both

physical aspects and psychological effects of the robot’s motions on humans. Physical

safety is necessary for the human-robot interaction. Physical safety is usually assured

by avoiding collisions with humans and by minimizing the intensity of the impact in

case of a collision.

Introducing the science of “proxemics”, Hall demonstrates how man’s use of space

can affect personal business relations, cross-cultural exchanges, city planning, and ur-

ban renewal [70]. A robot should comply with the same conventions [47]. In human-

robot interaction, the spatial formation around a robot has been studied in relation

to initiating interaction [118]. A classification of people’s motion toward a robot was

treated in [12]. In [162], a robot that chooses a target person based on distance was

developed.

Another approach that deals not only with safety but also implicitly with comfort

issues is the work on velocity along a planned trajectory [113]. In this research, the

robot adapts its trajectory and its speed in order to guarantee that no collision will

occur in a dynamic environment. Although the human is not addressed explicitly,

this method guarantees a motion without collision by taking into account the natural

dynamics of the given environment.

This work, in contrast, introduces an innovative notion, whereby the robots are

aware of other robots, the people that are accompanying them, and the bystanders

naturally in the environment. Furthermore, the present study focuses on behaviors

that are not only aware of people but also socially acceptable to the general popula-

tion. Moreover, we are interested in developing robots that cooperate effectively while
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accompanying humans in an acceptable social way. In the next section, we present

some relevant prior studies in robot cooperation.

2.2 Multi-Robot Systems

The majority of research on multiple mobile robot cooperation can be categorized into

a set of key areas of study. Several topics that this field includes are architecture [84],

communication [92], swarm robots [36], and task allocation [61]. The advantages of

multi-robot systems over single-robot systems are the fact that in multi-robot systems

robots are able to take on a higher task complexity.

The first publications on multiple mobile systems where introduced in 1980, since

then the number of publications in the field has grown exponentially. At the most

general level, approaches to multiple mobile robot systems fall into one of two broad

categories: collective swarm systems and intentionally cooperative systems [133]. Col-

lective swarm systems are those in which robots execute their own tasks with only

minimal need for awareness of other robot team members. It is designed for a large

number of homogeneous mobile robots that execute their own tasks with only minimal

need for knowledge about other robot team members [119].

On the other hand, robots in intentionally cooperative systems have awareness

of the presence of other robots in the environment, and act in unision based on the

state, actions, or capabilities of their teammates in order to accomplish common goal.

Intentionally cooperative systems can be divided into Strongly cooperative systems

or Weakly cooperative systems, in function of the dependence on the other robots

in taking decisions [18]. Whereas Strongly cooperative solutions require that robots

act in concert to achieve the common goal [9], Weakly cooperative solutions allow

robots to have periods of operational independence, subsequent to coordinating their

selection of tasks or roles [40]. Intentionally cooperative multi-robot systems can deal

with heterogeneity amongst the various robot involved, whereby team members vary

in their sensor and effector capabilities.

Farinelli et al. provides a sound classification of works on multi-robot systems [38].

The proposed taxonomy is characterized by two kinds of dimensions: coordination
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Figure 2.1: Multi Robot classification. Taxonomy introduced in [38].

dimensions and system dimensions. Here, the term “dimension” refers to specific fea-

tures that are grouped together in the classification. More specifically, a hierarchical

structure is given in Fig. 2.1. The classification dimensions are described below.

Cooperation Level: The first level of the hierarchical structure involved the system’s

ability to cooperate in order to accomplish a specific task. At the cooperation level,

cooperative systems are distinguished from uncooperative ones. A cooperative system

is comprised of “robots that operate together to perform some global task” [124]. In

this manuscript, we are interested only in cooperative multi-robot systems.

Knowledge Level: The second level of the hierarchical structure refers to the aware-

ness that each robot in the team has of its team mates. Aware robots have some degree

of knowledge of their team mates, while unaware robots act without any knowledge of

the other robots in the system. It has to be mentioned that the notion of knowledge

in this instance is not equivalent to communication: in fact, using a communication

mechanism does not imply awareness and on the contrary, a multi-robot system can be

aware even when there is no direct communication among the robots.

Coordination Level: The third level refers to the mechanisms used for cooperation.

Coordination is considered as cooperation in which the actions performed by each

robotic agent consider the actions executed by the other robots. However, a robot

may take the actions of the other team members into account in various ways. The
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coordinated multi-robot system is based on the type of coordination protocol, defined

as a set of rules that the robots must follow while interacting with one other in the

environment. Said classification is as follows: strong coordination refers to a form of

coordination that relies on a coordination protocol, whereas in weak coordination [8,

147] the cooperation does not rely on a given coordination protocol.

Organization Level: The final level of the proposed taxonomy is concerned with the

way the decision system is performed within the multi-robot system. The organization

level introduces a distinction in the forms of coordination, by distinguishing centralized

approaches [157] from distributed ones [22]. The classification of centralized systems

can be further refined, depending on the way the leadership of the group is encated.

Specifically, strong centralization is used to characterize a system in which decisions are

made by the same predefined leader agent for the entire duration of the mission [170],

while in a weakly centralized system, more than one agent is permitted to take on the

role of the leader as the task is being carried out [138].

The kind of coordination that the robots engage in within the confines of this

research is “strong coordination”, seeing as the robots are aware of the position of their

team members, and are dependent on a certain coordination protocol. In addition, the

organization level is centralized, because there is always a leader, though not a pre-

determined one, and other robots may change roles in order to assume the leadership

position at various intervals.

Because this work is predominantly interested in the ways multi-robot systems

can accompany individuals, it is important to review relevant prior research on robot

formation, seeing as the robots themselves must comply with a certain formation as

they perform their task. Conversely, we also discuss the works that uses the concept of

“flocking”, since we have used this concept in our research.

2.2.1 Robot Formation

In recent years, researchers have been interested in the problem of navigation in order

so that multiple robots may achieve a certain desired formation. The basic motivation

arises from the fact that multi-robot navigation cannot achieve a given task without a

certain necessary information. It has been written in the area of formation control for
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multi-robot systems [33, 105, 128]. Occasionally, formation control has been linked to

motion planning, obstacle avoidance, and navigation.

There are primarily two ways to address the problem of motion planning for a team

of mobile robots: centralized and decentralized. On the one hand, the problem has been

addressed in the past with centralized navigation scheme by a number of groups [32].

In the centralized architecture, robots are monitored and controlled by a central

processor. In [37], a formation function is used in order to encode the formation objec-

tives and constraints. A centralized system has an agent (leader) that is in charge of

organizing the performance of the other agents; the leader is involved in the decision

process for the whole team, while the other members can act only according to the

directions of the leader. Other works apply physical analogies to the motion controller.

Concretely, potential fields have been widely used to model the influences over robots

and to define the control laws for the maintenance of their formation. In [67, 111] these

methods are used to mantain the formation shape.

However, the centralized approach involves computational complexity, and it is

based on the assumption that robot information can be transmitted extremely rapidly.

Loizou et al. discusses a multi-robot navigation function that considers all the robots

movement restrictions simultaneously [107]. Nevertheless, this centralization imposes

a limitation on the number of robots in the formation, and can also be a problem when

applied to realistic scenarios.

On the other hand, decentralized solutions are alternatively sought in order to al-

low the control architecture to scale nicely with the size of the group. A decentralized

system is composed of agents which are completely autonomous in the decision-making

process with respect to one other. These systems typically involve obstacle avoidance

in a moving formation using potential field base [35, 110]; reactive or optimal control

approaches [126]; or agent-based local potential fields [60, 101]. In [140], robot nav-

igation using artificial potential functions is introduced. It is also important for the

formation movement that the controller provides a smooth trajectory for all members

of the group. Furthermore, robot kinematics and dynamics impose constraints that can

provoke abrupt and sudden movements, if they are not properly taken into account.

Some published papers use spring-damper systems as links to adapt the formation

topology to the shape and constraints of the surrounding environment. Several naviga-
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tion methods for formations navigating in scenarios with obstacles have been proposed.

A well-known solution is to modify the interconnections between robots to adapt the

shape of the formation [85]. But the problem of deciding the best robot interconnection

graph is not easy to solve, generally speaking. A novel approach was proposed in [126],

wherein the authors computed a configuration space for the whole formation, treating

the team of robots as one entity. This solution presents a lack of flexibility in the shape

of the group.

A navigation system for robot formations with obstacle avoidance and path-planning

capabilities that takes into consideration kinematic and dynamic movement restrictions

was proposed in [126]. However, the provided obstacle avoidance technique presents

some problems, as it does not define the influence of the environment on the formation,

which may lead to unpredictable behaviors. A solution to these problems is presented

in [167].

In this work, robots must follow a certain formation as they accompany a group

of people. However, the above mentioned formation is not purely determined by en-

vironmental factors, but rather by the behavior exhibited by the people in the group.

Therefore, the robots must be able to adapt their movements to not only their sur-

roundings, but also to the unpredictable aspects of human behavior. As previously

mentioned, the robots must prevent the group of people from straying, hence our inter-

est in the concept of “flocking”. Below some of the most relevant studies in this field

are discussed.

2.2.2 Flocking by a set Autonomous Mobile Robots

As mentioned above, coordinating the movements of robots with respects to one other

has been a topic of great interest in multiple mobile robot systems since the inception

of the field. In particular, a great deal of attention has been paid to flocking and

formation control problems. The flocking problem could be seen as a particular case of

the formation control problem, as it requires robots to move collectively along a certain

path, but with only minimal requirements for paths taken by specific robots.

Flocking is a kind of collective behavior amongst a large number of interacting

agents who share a common objective [127]. For many years, scientists from diverse

disciplines including animal behavior, social sciences, and computer science have been

20



2.2 Multi-Robot Systems

Figure 2.2: Flock of animals. A group of wild geese/sheep/birds together, staying
close to each other and maintaining a certain desired formation while in motion.

interested in the emergence of flocking/guiding/schooling in groups of agents. Examples

of these agents include birds, fish, sheep, insects, and crowds (see Fig. 2.2). Specifically,

robot flocking refers to the ability of a group of robots to move in formation and to

maintain the above mentioned formation in motion. Specifically, simple robots are

allowed to move, with only basic rules governing their behavior. This field of research

has many applications, for instance, transporting large objects, exploring hazardous

areas, and withstanding surveillance.

Vaughan introduced a complete robot system that controlled the behavior of another

intelligent system with the presence of variability, uncertainty, and noise [169]. The

robots used in the Sheepdog Project demonstrated the ability to gather a flock of

ducks and carry out maneuvers to safely deliver them to a predetermined point. The

use of ducks in the place of sheep made it possible to conduct the experiment in a

controlled environment. More importantly, the behavior of flocks of ducks is considered

by shepherds to be similar to that of sheep; in fact, ducks are sometimes used to train

sheepdogs, due to their relatively slow movements. A generalized model of group

behavior was designed in order to identify animal-robot interaction. The hypothesis

pointed that if the model accurately captures the basis of behavior, then the system

controlling the model should be able to control behavior in the real world.

Later in the study, it was suggested that it would be possible to describe this

behavior according to a model of the force of attraction between animals, with the

magnitude of attraction varying with the inverse square of the mutual distance between

the animals [71]. It was suggested that the mentioned relationship represents a linear

response in sensorial information, which also varies with the inverse square of the
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distance. Other models have yielded similar results with flocks of birds [168].

These concepts have been adapted to robotics, where these techniques are used

in potential fields for navigation [114]. This type of algorithm uses the analogy of

forces which act on particles, such that the robot moves in a similar way as an indi-

vidual physical particle, attracted or repelled alternatively by the characteristics of its

surroundings. A robot is usually attracted to objects and repelled by obstacles.

Most researchers so far have taken a leader-followers approach [127]. In these works,

a robot leader is designated in the system to lead the other robots, called followers.

This leader is identified and recognized by the other robots in the system. In other

words, the followers just need to follow the leader wherever it goes, and to maintain

the given formation while they are in motion.

A robot formation control strategy based on a visually perceptible follow-the-leader

scenario was proposed in [139], with a strong emphasis on its reliability. Perception is

enhanced by a pan&tilt camera, which enlarges the robot field of vision, and enhanced

leader detection. In [161], the authors showed that a group of autonomous mobile

agents, in which each agent is steered using local state information from its nearest

neighbors, can asymptotically exhibit stable flocking behavior. This paper introduced

a set of control laws that guarantees flocking asymptotically, under the assumption that

the graph representing agent interconnections remains connected at all times.

A leader distributed flocking algorithm was presented in [73]. The combined prob-

lem of obstacle avoidance, navigation towards a goal point, and flocking has been

introduced, which is a very difficult problem.

Some areas for further research in order to improve robot flocking, as identified by

researchers based on flocking algorithm problems [174], are discussed below.

Collision avoidance: There exist two different kinds of collisions that must be con-

sidered: collision between robots and collision between robots and environmental ob-

stacles [176].

Maintaining robot formation: Robots need to keep the neighboring graph connected

during the entire execution of the algorithm. Some applications need to generate a

particular desired formation during flocking. Furthermore, all robots need to maintain

the above mentioned formation to complete the specific tasks at hand.
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Finding the failure detector: The goal of the implementation of failure detection

schemes is to detect the other robots status (alive or crash). Some failures that can

occur during the task performance are: (i) Initially dead robot: A robot is referred to

as initially dead if it does not execute a single step of its local algorithm; (ii) Crash

permanent: a robot is said to crash if it executes its local algorithm correctly up to a

certain point, and does not execute any step thereafter. (iii) Transient failure (crash

recovery): in this case, a robot executes its local algorithm correctly, a transient moment

temporarily interrupts it from performing its task, after which it fully recovers. (iv)

Byzantine failure: a robot is said to be Byzantine, if it acts arbitrarily and possibly

maliciously [136].

Investigating the communication failures: The communication between robots may

cause delays, and so communication is not always reliable, due to limited bandwidth,

range, and interferences, especially in harsh environments. The design of an efficient

flocking algorithm under these conditions represented an important challenge.

Flocking with other failure detectors: To design a fault-tolerant algorithm, one im-

portant (core) question concerns how to ably detect and distinguish the crashed pro-

cesses from the correct ones [175]. In [174], a perfect failure detector was used by

strictly managing the robots’ motion.

The present work also adopts a leader-followers structure, in which a certain leader is

designated to guide the rest of the robots, or followers. However, during the realization

of the task, the robots’ roles can vary, if necessary, such that the leader designation is

not fixed.

A new iteration of the flocking element involves guiding people. Interest in compan-

ion robots has grown significantly in recent years. Some of the major studies conducted

in this field are discussed below.

2.3 Companion Robots

Although human-robot interaction is currently a very active field of research, there is an

extensive research on motion planning in the presence of humans that has to be studied.

Certain methods have been developed to allow robots to navigate around people while

performing specific tasks. The above mentioned tasks include tending toward the right
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Figure 2.3: Examples of Companion Robots. Left: The REEM service robot
developed at PAL-Robotics. Center: Minerva, a museum tour-guide robot [163].
Right: Snackbot, a mobile autonomous robot intended for delivering snacks to stu-
dents, faculty, and office workers at Carnegie Mellon University [99].

side of a hallway [129] and standing in line [123]. Museum tour guide robots are often

given the capacity to detect and attempt to deal with people who are blocking their

paths on a case-by-case basis, [20].

Research in the field of companion robots is still relatively new in comparison to

traditional service robotics, such as robots serving food in hospitals or providing spe-

cific security-related services. Therefore, prior research in this particular field is rela-

tively minimal [30, 173]. The current research predominantly treats robots that act as

companion in the context of social-human interactions [82]. Fig. 2.3 illustrates some

examples of companion robots.

Researchers are currently working on developing this type of companion robot [80].

Many studies have investigated people’s attitudes towards robots and their percep-

tion of robots. For example, robotic dogs such as AIBO, developed by Sony [87], are

autonomous robots created for entertainment purposes; they are made for home use

and are capable of provoking emotions, showing instinct, learning and developing their

skills, as well as interacting with children. The design for AIBO was based on a dog’s

appearance and behavior [117] and various studies have shown that AIBO is capable

of forming psychological relationships with adults and children alike [97].
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Furthermore, researchers are making efforts towards facilitating more natural in-

stances of human-robot interaction. A robot companion should detect the human op-

erator and carry out his/her commands [69]. In [29], researchers showed that a seated

person prefers to be approached by a robot in a fetch-and-carry task from the front left

or right direction rather than frontally or from behind. Further research showed that

there are other important factors which can affect this preference, such as a person’s

prior experience with robots [94], gender [29] or in which part of the room she was

standing or sitting [172]. Satake et al. [145] proposed an approach model for robots

that could initiate interaction in a shopping mall.

In [134], a new perspective on the different uses and identities of a companion robot

has been introduced, while additionally describing the advantages and disadvantages

of this type of companion. The “Robotic Butler/Maid” was able to perform domestic

tasks, but also caused difficulties in relationships at home by being too efficient and

making people feel redundant. In [30], a human-centered approach was adopted in

order to look into people’s perceptions and their desires for a companion robot. If

social robots are going to be used in office and domestic environments, where they will

have to interact with different individuals, they will have to survive and perform tasks

in dynamic, unpredictable environments, and they must act safely and efficiently. The

presence of human beings creates new problems for motion planning and control, as

their security and comfort must be taken into account. The principal goal of the motion

planner is to consider human movements carefully in order to ensure their safety. This

requires the development of routes that are both safe and socially acceptable.

Robots accompanying humans is one of the core capacities every service robot de-

ployed in urban settings should have. Most published works in this field use a single

robot, and only relatively recently researchers have begun to study inter-robot coordi-

nation wherever they must work in unison to achieve a common goal.

2.3.1 Single Robot

A museum-guide robot called Rhino was developed to guide and interact with museum

visitors [20]. The challenge was to guide museum visitors in crowded environments,

achieving localization and motion planning with obstacle avoidance for navigation. An
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improved version of the museum robot was later called Minerva [163], and was used to

interact in a larger museum.

The evolution of robotics and the creation of robots with a greater capacity to

interact with human beings, have together led to the development of cognitive robots

equipped to assist people by acting as assistants and companions. However, robots need

communicative capabilities similar to those of humans in order to truly be accepted

as companions. An autonomous companion robot should be seen as a special type

of service robot, specifically designed for personal home use. Companion robots are

expected to be able to communicate with non-expert users in a natural and intuitive

way.

More recently, researchers performed studies to evaluate different navigation strate-

gies for a robot moving along with a single person [63]. Their study concludes that

people prefer a robot that shows human-like navigation behavior. Mueller et al. [121]

developed a technique that efficeintly navigates trough crowed spaces by following peo-

ple. Their approach continuously tracks people in the robot’s vicinity and chooses to

follow people moving in the direction of the goal. While this technique might result

in more efficient navigation, it relies on manually tuned heuristics and has no explicit

criterion for generating human-like behavior.

However, various new projects in which robots accompany humans have recently

demonstrated that robots are capable of determining safe paths, and also of plan-

ning out socially acceptable routes for humans [158]. Robots operating around people

should move coherently and in easily-understood ways. As a result, they might show

themselves to be capable of acquiring spatial social skills [72].

2.3.2 Multiple Robots

Within the field of companion robots, a small number of studies describe the behavior

of robots when guiding a person or group of people.

Since the initial development of biologically-inspired robots, researchers have been

interested in how humans react in their presence, and have been fascinated by the

possibilities of interaction between robots and their surroundings, and ways in which

26



2.3 Companion Robots

they interact amongst themselves. These groups of social robots are designed to max-

imize benefits (for example, performing tasks) through collective actions. Until now,

researchers have used the principles of self-organization and social behavior based on

interactions within groups of hymenopterous insects, anonymous, homogeneous groups

wherein unique elements are insignificant. This type of social behavior has proved to

be an attractive model for robotics, especially since it allows groups of relatively simple

robots to perform difficult tasks.

The development of a robot as a “social individual” requires the use of different

models and techniques based on “social groups” for robots working collectively. Here,

important factors include learning and social imitation, gestures and natural language

for communication, as well as emotion and recognition of interaction by all the par-

ticipants. Furthermore, most research in this field has focused on the application of

social behaviors and, as a result, social robots are generally understood as assistants,

companions or pets.

Some researchers have developed projects that introduce group attention control,

a system that allows robots to interact with a group of people [154]. The work pre-

sented in [153] looks into human interaction variations when a robot moves forward or

backward as people move around.

The above mentioned methods consider either single robots or multiple robots mov-

ing independently. To our knowledge, only a small number of studies discuss multiple

robots behaving in cooperative manners. For instance, [115] performed a qualitative

analysis of the movements of different entities, humans or animals, and built a multi-

robot system architecture of three robots to guide them. However, they failed to

consider realistic situations, which often involve obstacles, or people straying from the

group. A certain study carried out by Casper and Murphy discusses several types of

robot formations and different strategies for drawing the robots to people [23]. How-

ever, these issues and the general movements of the robots, are governed by a large

number of heuristics, which makes the system impractical.
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2.4 Main Contributions of the Thesis within the State of
the Art

In this chapter, many research works relevant to cooperative social robots that accom-

pany people have been described. Below, the main contributions of the dissertation

within the state of the art are presented.

Looking at the Section 2.1, it is interesting to notice that the research on social robot

navigation have been successfully integrated into several kinds of robotic platforms.

However, in Chapter 3 we introduce an innovative notion, whereby the robots are

aware of other robots and pedestrians, while they accompany a person in a crowded

environment in an acceptable social way.

The main contributions of the thesis within the robot formation and flocking by a

set of autonomous robots -Section 2.2- are proposed in Chapters 4 and 5. In this disser-

tation a leader-followers structure is considered, in which a certain leader is designated

to guide the rest of the robots, or followers. A new iteration of the flocking element

involves guiding people. In Chapter 4, a model capable of performing guidance tasks

within an open and unbounded area with obstacles is defined. This model is also able

to estimate the position, orientation and velocity of the robots and people, as well as

the position of the obstacles at a certain point in time. In addition, Chapter 5 proposes

the a model which offers a new framework for tackling more realistic situations, without

needing to use such a large number of heuristics, by allowing robots to prevent people

from straying from the formation, which is undeniably among the most challenging

aspects of this topic.

Finally, in Section 2.3, works in the field of robot companion have been presented.

On the one hand, this methods consider either single robots or multiple robots moving

independently, this issue has been studied in Chapters 4 and 5. On the other hand, in

Chapter 6, we introduce the ultimate goal of our research, we enable robots to interact

naturally with people when carrying out the accompanying task.

28



Chapter 3

Social Companion Robots

Don’t walk behind me; I may not lead. Don’t walk in front of me;

I may not follow. Just walk beside me and be my friend.

Albert Camus

In this chapter we present a novel robot companion framework based on the Social

Force Model (SFM) for guiding or accompanying people in dense urban areas, with high

numbers of moving people and obstacles. This framework uses people tracking, social

companion robot, and interactive learning to enhance the robot’s behavior. We have

designed new methods for the aforementioned components. First, we have extended

the SFM to include interactions between robot and human, and among obstacles, peo-

ple and the robot; we refer to this model as “Extended Social-Force Model” (ESFM).

Second, we developed a model to allow robots accompany people which relies on the

ESFM. Third, we designed an interactive learning method using multimodal human

feedback to compute the parameters of the model. Finally, we used a quantitative met-

ric, based on people’s personal space and comfortability criteria in order to evaluate the

robots’s performance in completing the accompanying task. The model was validated

throughout an extensive set of simulations and real-life experiments. In addition, a vol-

unteer survey was given to measure the social acceptability of the robot companion’s

behavior. The work in this chapter has been presented in [41, 44, 49].
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Figure 3.1: Tibi accompanies a person. Left: Person being accompanied by Tibi
in an urban area. Right: The same scene using the system interface.

3.1 Introduction

Nowadays, urban robots require some specialized skills to be useful and to successfully

serve people. The robot companion is a basic tool that an urban robot should have, as

it enhances the robot’s ability to accompany people in a safety and natural way; see

Figs. 3.1-3.2.

Robot companion is a multidisciplinary field of robotics that involves a diverse

set of subjects, such as perception, robot navigation, and human-robot interaction.

Because of the heterogeneity of the treated subjects, the robot companion issue must

be addressed in a holistic way, which is not an easy endeavor.

On the one hand, we expand upon the Social Force Model (SFM) introduced by

Helbing [75] to model the social interactions in the robot companion task, and we obtain

the robot-person interaction force parameters specifically suited for Tibi robot [143]

to perform this task. On the other hand, we present a powerful scheme to define

robot’s behavior in terms of motion based on the social-forces concept to accompany

a pedestrian. To this end, additional considerations are required to make the system

work properly, such as a learning stage for the parameters used.

Moreover, we introduce a new metric to evaluate the robot companion’s perfor-

mance, based on vital spaces and comfortability criteria. Since the verification of man-

in-the-loop systems is usually subjective, we require an objective analytical metric that
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Figure 3.2: Tibi accompanies different people. Several experiments where Tibi is
interacting with volunteers.

serves to validate the behavior of our robot companion approach.

Finally, we propose an interactive learning scheme to learn the model’s parameters,

using the human feedback response in the companion system. The parameters are

learned through an extensive analysis of the robot companion task in diverse situations,

where the human feedback response enhances the accuracy of the robot’s companion

performance, yielding improved companion behaviors.

The model was validated through a large set of simulations and real-life experiments,

as well as a questionnaire administered to each individual who participated in the

experiments.

3.2 Chapter’s Overview

As stated earlier, this chapter describes a new model that has been designed to ac-

company people.The contributions and topics described in this chapter are presented

below; see Fig. 3.3.

• ESFM-based Robot Companion: A robot model capable of approaching a person

and accompanying him/her to a known destination is presented. The social force

model described in [75] takes into account both destinations and interactions by

defining a summation of existing forces that detemine people’s trajectories. The

term “social force model” does not refer to a social robot’s behavior, but rather to

the existence of a non-physical force that robots can exert to move or drag people.

More specifically, this work proposes a robot’s reactive motion, based on an ex-

tension of the social force model which results from the internal motivations of the
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Figure 3.3: Overview of the presented work. A general diagram of the robot
companion framework is depicted, as well as its requirements. Our contributions to
advance the topics discussed later in the present work are highlighted in red.

individuals performing certain movements [177]. A robot accompanying humans

is one of the core capacities every service robot deployed in urban settings should

have [57]. The proposed model is validated through a series of simulations and

a set of real-life experiments. We also demonstrate that the interactive learning

enhances the overall performance of the robot companion.

• Interactive Robot Companion Parameters Learning: An interactive approach eval-

uates the learned forces model. At the same time, it learns which robot’s behavior

is preferred by humans. Although the feedback provided here is a subjective met-

ric, its purpose is to learn a general approaching rule that defines a better robot

behavior. The proposed interactive learning scheme enhances the nature of the

model, in addition it generates controlled interaction forces that otherwise would

be extremely complicated to produce. The online feedback is provided by the

target person whom the robot attempted to approach.

• Robot Companion Performance Metric: A quantitative metric is used to evaluate

the performance of the task accomplished by the robot. This assessment is based

on “proxemics”, as proposed by Hall [70].

• User study of robot’s behavior: We conducted a user study to determine whether

the robot’s behavior was perceived as socially appropriate by the experiment

participants. We also looked at various key aspects of the interaction between a

mobile robot and untrained human volunteers.
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3.3 Social Force Model

Pedestrian behavior was first modeled in the late 1950s. These models were primarily

focused on the dynamics of macroscopic quantities (densities and fluxes), and pedes-

trian dynamics was initially treated in a way similar to that of gases or fluids [77]. As

the discipline progressed, researchers’ attention shifted to a more microscopic descrip-

tion, in which the motion of each pedestrian is described individually. These models

can be roughly divided into Cellular Automata models, which use a discrete-space

description [21], and models that use a continuous-space description.

The social-force model (SFM) described in [75] simulates pedestrian dynamics by

using forces of interaction. It introduces a rather general framework, in which the

details of human motion behavior can be expressed through a function depending on

the pedestrians’ relative and absolute positions and velocities.

This model considers both destinations and interactions by defining a summation

of existing forces which determine people’s trajectories. Moreover, [177] proposes a

deviation from the social force model by taking into account the time of collision.

However, the cited works do not consider the interaction between a person and a

robot, nor the interaction between the obstacles which substantiated the coinage of the

Extended Social-Force model (ESFM).

In our development of a model capable of representing the interactions between

a pedestrian and a robot, we were inspired by the works of Helbing [75] and Zan-

lungo [177]. The main contribution of their research is the concept that changes in

behavior can be explained in terms of social fields or forces.

Formally, this approach treats each pedestrian pi with massmpi as a particle abiding

the laws of Newtonian mechanics:
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(3.1)

where (x, y) is person’s position, (vx, vy) is his/her velocity and (ax, yx) is the acceler-

ation.
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Figure 3.4: Social Force Model. Diagram of the social forces corresponding to the
person pi. The blue arrow represents the force aiming at a destination and the orange
arrows represent each of the different kinds of interaction forces: person-person, object-
person, and robot-person. The summation of all three forces is represented by the black
arrow Fi.

Formally, the social forces model assumes that a pedestrian pi with mass mpi tries

to move at a certain desired speed v0pi in a desired direction epi , i.e., with desired velocity

v0pi = v0pi · epi . The desired velocity’s direction is given by a vector pointing from the

present position of the person rpi to the next subgoal gpi , where the speed is the one

at which the human feels more comfortable to walk.

Hence, the basic equation of motion for a pedestrian is given by a social force term:

dvpi(t)

dt
mpi = Fi(t) (3.2)

which describes the movements of the pedestrian pi over time.

A person wants to keep his/her desired velocity through the steering force, f goal
i ,

but is also influenced by others pedestrians pj , f int
i,j , by obstacles, f int

i,o and, in the

present study we model the robot interaction f int
i,Rj

. The resulting force Fi governs

the trajectory described by the target pi.

Fi = f goal
i + F int

i (3.3)
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Assuming that pedestrian tries to adapt his or her velocity within a relaxation time

k−1
i , f goal

i is given by:

f goal
i = ki( v0i − vi) (3.4)

The relaxation time is the interval of time needed to reach the desired velocity and

the desired direction.

Furthermore, repulsive effects from the influences of other people, obstacles and

robot in the environment are described by an interaction force F int
i . This force pre-

vents humans from walking along their intended direction, moreover, it is modeled as

a summation of forces either introduced by people pj , by static obstacles in the envi-

ronment o or the robot R. A diagram of the social forces corresponding to the person

pi is plotted in Fig. 3.4.

F int
i =

∑
pj∈P

f int
ij +

∑
o∈O

f int
io + f int

iRj
(3.5)

Where, P is the set of people moving in the environment where the human interacts

and O is the set of obstacles. The description of each force is described below.

The motion of a pedestrian pi is influenced by other pedestrians pj: f int
ij

A pedestrian keeps a certain distance from other people in the environment. Hu-

mans normally feel increasingly uncomfortable the closer he/she gets to a strange per-

son, who may react in an aggressive way. Below, we introduce different ways in which

such force can be described.

Circular specification:

Circular specification assumes forces to depend only on the distance ‖rij‖ = dij

between pedestrians pi, pj . This assumption works well under high-density conditions.

The interaction force is

f int
ij = Ae(d−dij)/B

ri,j(t)

di,j(t)
(3.6)

where A denote the strength, B the range on interaction force, d is the sum of radii

of the two pedestrians and ri,j = rpi − rpj .
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3.3 Social Force Model

Elliptical specification I:

This specification was introduced in [75], here, the force between two pedestrians is

defined as:

f int
ij = −∇rijVij(bij) (3.7)

A repulsive potential Vij is introduced:

Vij(bij) = ABebij/B (3.8)

Vij(bij) is a monotonic decreasing function of bij with equipotential lines having

the form of an ellipse, which is directed into the direction of motion. bij denotes the

semi-minor axis of the ellipse and is given by

bij =

√
(‖rij‖+

∥∥rij − vpjτ∥∥)2 − ∥∥vpjτ∥∥2
2

(3.9)

τ is the time of pedestrian stride, τ = k−1.

By derivation, the obtained force is

fij(rij) = Ae−bij/B
‖rij‖+

∥∥rij − yij
∥∥

4bij
×

(
rij
‖rij‖

+
rij − yij∥∥rij − yij

∥∥
)

(3.10)

where,

yij = rij − vpjτ (3.11)

This specification takes into account the relative distance and the movements of the

other pedestrians.

Elliptical specification II:

A second elliptical specification was presented in [83]. This work takes into account

the relative positions and velocities of pedestrians. Here, bij is defined by,
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3.3 Social Force Model

bij =

√
(‖rij‖+

∥∥rij − (vpj − vpi)τ
∥∥)2 − ∥∥(vpj − vpi)τ∥∥2

2
(3.12)

that is, vpj is substituted by vij = vpj −vpi . Then, the force is the same as Eq. 3.10,

but with yij as follows:

yij = rij − (vpj − vpi)τ (3.13)

Given the limited field of view of humans, forces’ influences might not be isotropic.

This is formally expressed by scaling the interaction forces with an anisotropic factor,

which is described below.

Anisotropy:

The anisotropy factor depends on ϕij between vpi and ri,j , it can be written as:

w(ϕij) =

(
λ+ (1− λ)1 + cos(ϕij)

2

)
(3.14)

0 ≤ λ ≤ 1

where λ defines the strength of the anisotropic factor,

cos(ϕij) = −nij · epi (3.15)

The term nij is the normalized vector pointing from pj to pi, and it describes

the direction of the force. Fig. 3.5 presents the value of the presented forces and the

anisotropic factor.

The motion of a pedestrian pi is influenced by obstacles: f int
io

Moreover, a pedestrian keeps a certain distance from buildings, walls and obstacles.

People feel more uncomfortable the closer to an obstacle he/she walks. Therefore, an

obstacle o provokes a repulsive effect that can be expressed as

f int
io = −∇rioUio(‖rio‖) (3.16)

Uio(‖rio‖) = U0
ioe

−‖rio‖/C (3.17)
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Figure 3.5: Forces graph. Left: Representation of Eq. 3.15, defined as the given
limited field of view of human. Right: Forces magnitudes, the x-axis shows the
distance from person pi to an object, a person pj or the robot R. The radius of pi is
0.2m and the sum of the radii of pi and pj is 0.4m. The radius assumed fot the robot
is 1m.

Uio(‖rio‖) is a repulsive and monotonic decreasing potential. The vector rio is

computed as rio = rpi − rio, where rio denotes the location of the piece of the obstacle

o that is nearest to pedestrian pi.

The motion of a pedestrian pi is influenced by robots: f int
iR

Finally, the repulsive force between the robot and the pedestrian pi must be defined.

As this thesis considers robots accompanying people, we introduce this repulsive force.

People keeps a certain distance from robots. If the robot is too close to a person, he/she

may feel uncomfortable. Thus, the robot R provokes a repulsive effect if the distance

to the human is lower than a threshold. This effect can be expressed as

f int
iR = AiRe

(dR−diR)/BiR
riR(t)

diR(t)

(
λiR + (1− λiR)

1 + cos(ϕiR)

2

)
(3.18)

Fig. 3.5 presents the value of the presented forces and the anisotropic factor.

3.3.1 Parameters Learning: {k,AiR, BiR, λiR, dR}.

We have already mentioned the three kinds of interaction forces: person-person f int
ij ,

person-obstacle f int
io , and person-robot f int

iR . The first two interactions have been

studied in previous works, such as [75, 109, 177]. However, as person-robot interaction
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3.4 Perception System

parameters had not been directly obtained in any previous work, therefore we use this

section to present a learning method to obtain the parameters {k,AiR, BiR, λiR, dR}.

We decouple the training in two steps: firstly, we optimize the intrinsic parameters

of the model forces {k} describing the expected human trajectories under no exter-

nal constrains. Secondly, we optimize the extrinsic parameters of the force interaction

model {A,B, λ, d} under the presence of a moving robot, making sure it is the only ex-

ternal force altering the outcome of the described trajectory. All optimizations used to

learn the model forces parameters are carried out using genetic optimization algorithms

[65] minimizing the following error function throughout all N training trajectories:

{A,B, λ, d} = argmin{A,B,λ,d}

{∑
N

∑
time

‖xo(t)− xe(t)‖

}
(3.19)

where xo is the person’s observed position and xe is the value expected according to

Eq. 3.1.

3.4 Perception System

Before presenting the robot’s behavior using the Extended Social Force Model to ac-

company people, we will introduce the perception requirements, which are needed for

the system’s real-world implementation, though they remain outside of the scope of

this chapter.

3.4.1 Robot Localization

Dead reckoning navigation proved to be insufficient to make the system work properly.

Because of this, robot localization became indispensible to the system’s implementation.

We use a state-of-the-art localization implementation, known as AMCL. The AMCL

is a probabilistic localization system for a robot moving in 2D. It implements the

adaptive (or KLD-sampling) Monte Carlo localization approach (as described in [164]),

which uses a Particle Filter to track the position of a robot along a known map.
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3.5 Robot Behavioral using Social Force Model

3.4.2 People Detection and Tracking

People’s perception is essential for achieving autonomous navigation in urban environ-

ments. Thus, it is crucial to know where the human beings are located, and where they

intend to go. Sensors, such as lasers and cameras, are able to give us all these data.

Our implementation of the laser detector is fundamentally based on [6], which uses

a boosting method to determine if a set of laser points is a human being. This tool is

built by combining a set of weak classifiers that determine if the laser points correspond

to a leg and consequently to a human being.

The people tracking implementation follows a similar approach to that presented

in [109]. This multi-hypotheses tracker uses linear propagation that can handle occlu-

sions, crossings, and loss of targets, at a relative low error. However, rather than using

a Kalman filter, we used a particle filter in order to accomodate humans’ unpredictable

changes in motion.

3.5 Robot Behavioral using Social Force Model

Previous sections describe a general social interaction model based on social-forces

(Section 3.3) and a perception system to detect pedestrians (Section 3.4). These inde-

pendent areas are aggregated to build a robot companion framework, using the following

idea: the robot is considered as a social agent, moving naturally in human environments

according to the Extended Social-Force Model, headed towards a certain destination,

and responding suitably to obstacles and people in its path. Furthermore, we believe

that a more humanized navigation, in the sense that the robot responds to the ESFM,

will greatly increase the acceptance among pedestrians, do primarily to the similarities

between the robot’s behavior and the expected movements of other pedestrians.

To this end, we describe the robot companion behavior in terms of motion, under-

stood as an instantaneous reaction to sensory information, driven by the social-forces

centered at the robot, as in the research condunted in [90], but focussing more on the

social nature of the approach. In addition, we make use of the ESFM framework to

successfully accompany a person while safely navigating in crowded environments and

avoiding both static and dynamic objects.
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3.5 Robot Behavioral using Social Force Model

Therefore, in this section, we aim to formulate all the social-forces intervening

in the social robot companion, based on Section 3.3. The following equations are

straightforward derivations of the Eqs. 3.3-3.15.

The force to the target’s destination is inferred by considering that the robot is

aware of person’s destination.

f goal
R,dest = kR( v0R − vR) (3.20)

The forces of interaction due to other pedestrians are the repulsive forces every

person generates to the robot, as follows:

F per
R =

∑
pj∈P

f int
R,j (3.21)

where the forces f int
R,j represent the interaction between the pedestrian pj and the

robot R:

f int
R,j = ARpe

(dRp−dR,j)/BRpw(ϕR,j , λRp) (3.22)

which is the formulation of the spherical force (Eq. 3.6) using the parameters

{ApR, BpR, λpR, dpR}. These parameters correspond to the person-to-robot interaction,

and in general are dependent of the robotic platform used.

Correspondingly, the interaction between robot and obstacles is modeled as:

F obs
R =

∑
o∈O

f int
R,o (3.23)

where f int
R,o is obtained following

f int
R,o = ARoe

(dRo−dR,o)/BRow(ϕR,o, λRo) (3.24)

using the specific parameters {ARo, BRo, λRo, dRo} corresponding to the interaction

person-obstacle.
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3.5 Robot Behavioral using Social Force Model

Figure 3.6: Robot’s Social Forces: Forces applied to the robot while accompanies a
person.

As shown in Fig. 3.6, we have defined an additional destination to the robot ap-

proach. The robot aims to the target person in order to accompany him/her, following

the Eq. 3.20.

As described in Section 3.3, repulsive effects from the influences of other people and

obstacles in the environment are described by an interaction force, which is a sum of

forces introduced either by people or by static obstacles in the environment.

In contrast to the social-force model, this scheme yields two discrete goals. Firstly,

a force goal makes the robot drive towards the destination f goal
R,dest. Furthermore, the

robot must approach the person who it accompanies, and hence a second goal compels

the robot to move closer to the person pi, f goal
R,i . The trade off of these forces, in

addition to the interacting forces, describes the resultant force governing the robot

movement:

FR = α f goal
R,dest + β f goal

R,i + γ F per
R + δ F obs

R (3.25)

Once the reactive force action is obtained, the system responds duly to these stimuli,

and linearly propagates its position and velocity according to this force value.
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3.5 Robot Behavioral using Social Force Model

Additional constraints are also taken into account. All those robot propagations

which result in a collision with obstacle are discounted. Current robot maximum ve-

locity is also a constraint, and it depends on the robot navigation state, which is a

function of the proximity of persons:

vR =


vsafety if

dR,i

w(ϕR,i)
≤ µsafety

vcruise if µsafety <
dR,i

w(ϕR,i)
≤ µsocial

vfree otherwise

(3.26)

The vsafety is the maximum velocity the robot can achieve when at least one person

is inside its inner safety zone. We have proposed a social distance to define this region

as dR,iw(ϕr,p), similarly as described in Section 3.3, as a metric of the relative distance

between the robot and a pedestrian and an asymmetric factor deforming the distance

measure w(ϕR,i). This condition also corresponds to the inner robot navigation state.

On the other hand, vcruise is the cruise velocity when someone is inside its social safety

zone and vfree is the maximum robot velocity when there are no people inside its

safety zone. The navigation states associated to this configurations are the social robot

navigation and the free robot navigation, correspondingly.

The most interesting part of the system so far, resides in the fact that the proposed

approach does not require static targets, the robot is able to move near to persons.

Moreover, it can accompany those people who aim to the same destination. The fol-

lowing section discusses the procedure to obtain the value of the parameters {α, β, γ, δ}
and how they are updated.

3.5.1 Quantitative Metrics

A quantitative metric is defined in order to evaluate the the robot’s performance

while accomplishing the task. This assessment is based on “proxemics” 1, proposed

by Hall [70]. This work considers the following taxonomy of distances between people:

• Intimate distance: the presence of another person is unmistakable; appropriate

for close friends or lovers (0-45cm).

1Proxemics is the study of the cultural, behavioral, and sociological aspects of spatial distances
between individuals.

43



3.5 Robot Behavioral using Social Force Model

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
m
e
te
rs

Figure 3.7: Quantitative Metrics: Diagram of the areas used in the evaluation of
the robot’s performance.

• Personal distance: comfortable spacing; appropriate for friends (45cm-1.22m).

• Social distance: limited involvement; appropriate for interaction with non-friends

(1.22m-3m).

• Public distance: outside circle of involvement; appropriate for public speaking

(> 3m).

To define the metric used in the present work, four different areas must be defined:

(i) The pedestrian’s personal space pi Ci, the robot’s navigation must be socially ac-

ceptable to the person being accompanied; and the robot must not invade the human’s

personal space, eq. 3.27. (ii) Social distance area A; robots must be placed at an ac-

ceptable social distance. (iii) The robot should be in the human’s field of vision while

they interact B. (iv) Finally, if there are other pedestrians in the environment pj , the

robot is not allowed to invade those pedestrians’ personal space
⋃
pj

Cj . These different

areas are formalized as follows:
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3.5 Robot Behavioral using Social Force Model

A =
{
x ∈ R2 \ (B ∪ C) | d(x, pi) < 3

}
B =

{
x ∈ R2 \ C | d(x, pi) < 3w(ϕpi,R)

}
C =

{
x ∈ R2 | d(x, pi) < w(ϕpi,R)

}
(3.27)

where w(ϕpi,R) is defined in Eq. 3.15.

Moreover, the robot can be represented as a circle of 1 meter of diameter, with

center robot’s position R, R = {x ∈ R2 | d(x, R) < 0.5}, whose area is |R| = π
4 .

Thus, we can now define the performance of the task accomplished by the robot,

depending on human’s position pi and robot’s position R.

ρ(R, pi) =

∫
(B\

⋃
pj

Cj)∩R

dx

|R|
+

∫
(A\

⋃
pj

Cj)∩R

dx

2|R|
∈ [0, 1] (3.28)

Where x ∈ R2. The introduced function has the maximum performance in the

area described by B, since it is the area of the human’s field of vision, and where the

interaction between the robot and the human is greatest. Additionally, the area A, is a

partial success, since this area is less tolerated by humans. Finally, in the area described

further than three meters there is no interaction, and therefore its performance is zero.

3.5.2 Parameter Learning: Θ = {α, β, γ, δ}

In order to learn the values of the introduced parameters Θ = {α, β, γ, δ}, we used

a two-step learning approach. First, we required an initial estimation to learn the

magnitude of Θ.

We aimed to obtain a social robot model capable of dealing with navigation issues

in a more human-oriented manner. Consequently, it would be wise to define the overall

performance of the task accomplished by the robot ρ̄(Θ),

ρ̄(Θ) =
1

T

T∑
t=0

ρ(R, pi) (3.29)

where pi is the human’s position and r robot’s position, ρ(R, pi) is the metric function

introduced in Section 3.5.1.
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Although the initial conditions could be copied identically throughout all simula-

tions, given the interactive nature of the approach, the parameters Θ alter the outcome

ρ̄(Θ) for each experiment –random variable. This is the main reason for considering

stochastic optimization as an appropriate method for estimating the navigation pa-

rameters. Monte Carlo methods [4] are especially useful for simulating phenomena

with significant uncertainty in inputs and systems with a large number of coupled de-

grees of freedom. More concretely, we have implemented a Markov Chain Monte Carlo

Metropolis-Hastings (MCMC-MH) algorithm to find the best set of Θ.

Using this method, we obtain the best Θ̂ parameters as follows:

Θ̂ = argmaxΘ

{
EP (Θ){

∑
t

ρ̄(t,Θ)}

}
(3.30)

Note that the outcome of the simulations is averaged using the expectation EP (Θ){}
over the probability function of Θ.

3.5.3 Interactive Parameter Learning

The second step of the learning approach consists of an Interactive Learning tech-

nique [88]. Our approach is based on robots interacting with people, and therefore, it

requires a people’s feedback in order to refine the parameters values {α, β, γ}, in the

form of each person’s response to the stimuli generated by the robot. This method

enhances the nature of the model, while also generating controlled interaction forces

that would otherwise be extremely difficult to generate.

The on-line feedback was provided by the target person whom the robot attempted

to accompany. The interaction was generated by a human agent using a wii remote

control. Here, we expected to receive feedback to measure the subjective comfortability

of the target being approached.

Although feedback is inherently a subjective measure, we have modeled a system

weighting the contribution of all active forces. Volunteers used a wii remote control.

They were told to press the button ‘+’ if they wanted the robot to move closer to

them. However, if they preferred the robot to move directly towards the destination,
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they were instructed to push button ‘-’. Below, we present the parameters’ variations

depending on people’s feedback.

Firstly, we can define the function N(T) as follows:

N(T ) =

T∑
t=0

ε(t) (3.31)

where ε(t) is expressed as:

ε(t) =


0 if human does not pres any button at time t
+1 if human presses button ‘+’ at time t
−1 if human presses button ‘-’ at time t

(3.32)

N(T ) is the difference between the number of times the person presses button ‘+’

and button ‘-’ at time T . Then, N(T ) ≥ 0, if N(T ) < 0 we impose N(T ) = 0.

Secondly, the forces that appear during the accompanying process vary according to

the distance between the robot and the person. Then, the variation of the parameters

will change, in function of such distance.

Formally, if h(N(T )) denotes the function corresponding to human’s response, it

can be expressed as:

h(N(T )) =

{
α(N(T )), β(N(T )) if dR,i ≥ w(ϕR,i)
γ(N(T )) if dR,i < w(ϕR,i)

(3.33)

Where, {α(N(T )), β(N(T )), γ(N(T ))} is the set of weighting functions for the pa-

rameters {α, β, γ}, dR,i is the distance between the robot and the person, and, w(ϕR,i)

represents the personal space of a person, see Eq. 3.15.

Below, the definitions of the weighting functions are presented.

Force to the target destination α: As it has been described above, a parameter α

controls the magnitude of the force f goal
R,dest. The value of this parameter is computed

as follows:

α(N(T )) = log(1 +N(T )/σα) (3.34)
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Force to the person being accompanied β: An attractive force towards the ac-

companied person has been described. Either the current target position as well the

expected motion prediction are known. The parameter β controls the magnitude of the

force f goal
R,i . The value of this parameter is computed as follows:

β(N(T )) = 1− α(N(T )) (3.35)

Force of interaction with people γ: A repulsive force due to the relative position

and velocity between the robot and people must be considered,
∑

j∈P f int
R,j , this force

is controlled by the parameter γ. The value of γ is defined as:

γ(N(T )) = log(1 +N(T )/σγ) (3.36)

Force of interaction with obstacles δ: Finally, a repulsive force due to the relative

position and velocity between the robot and obstacles has to be considered,
∑

o∈O f int
R,o ,

this force is controlled by the parameter δ. This parameter is not refined with human

feedback since it only involves robot and obstacles.

The combination of these four forces determines the behavior of the robot while it

physically approaches a person. Although a general approaching rule must be obtained,

it varies greatly from person to person, in addition to the highly noisy environment in

which we are working. While iteratively repeating the robot’s physical approach, the

feedback provided refines the weights of the force parameters, allowing us to infer an

interactive behavior wherein the person feels comfortable under the presence of the

robot.

3.6 Results

In previous sections, we presented the theoretical aspects of a wide variety of topics,

including the extended social force model (ESFM) and a reactive navigation. Addition-

ally, we discussed how these independent topics could be used jointly in a single robot

companion framework. In this section, we focus specifically on experiments and tests

conducted among robot companion, both real or simulated. Due to the complexity
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Figure 3.8: Tibi Robot. Mobile robot platform used in the experiments.

of the present work, which involves many different topics, such as human perception,

robot movement, and human behavior, we will address each area independently.

3.6.1 Robotic Platform and Testing Environment

To conduct all the experiments and to test the approach presented, we used two twin

mobile service robots developed for the URUS project [166], called Tibi and Dabo, each

designed to work in urban pedestrian areas and to interact with people.

They are based on a two-wheeled Segway RMP200 platform, which works as an

inverted pendulum in constant balancing. They can rotate on the spot (nonholonomic),

and have wheel encoders providing odometry, and inclinometers providing pitch and roll

data. To perceive the surrounding environment, they are equipped with two Hokuyo

UTM-30LX 2D laser range sensors, which help them to detect obstacles and people,

giving scans over a local horizontal plane at 40 cm above ground, facing both forward

and backward. A stereo Bumblebee camera is used for computer visualization purposes.

As social robots, Tibi and Dabo are designed to interact with people. They are

equipped with several interaction devices to enable them to engage with friendly in-

teractions, such as a touchable screen, speaker, movable arms and head, and LED

illuminated facial expressions. Power is supplied by two sets of batteries, one for the

segway platform and one for the computers and sensors, giving about a 5 hours’ worth

of full working autonomy. Two onboard computers (Intel Core 2 Quad CPU @ 2.66

and 3.00 GHz) manage all the running processes and sensory signals, and a laptop is
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Figure 3.9: BRL and FME. Left: Barcelona Robot Lab, North campus of the
UPC. Right: FME Lab, South Campus of the UPC.

used for external monitoring. The systems run Ubuntu-Linux, and use a middleware

called ROS [137], a software developmental environment for robot system integration

that provides a wide and useful set of libraries and tools. Fig. 3.8 shows one of the

robots and some of its components.

The experiments were conducted at the BRL (Barcelona Robot Lab) and the FME

(Facultat de Matemàtiques i Estad́ıstica) lab, outdoor urban environments located

at the North and South Campus of the Universitat Politècnica de Catalunya (UPC),

respectively.

The BRL (Fig. 3.9-Left) is a large area of the campus that was outfitted as an

experimental area, covering over 10.000 m2, comprising six buildings and a central

square, with multiple ramps, staircases, and typical obstacles such as bulletin boards,

bicycle stands, trashcans and flower pots. The FME lab (Fig. 3.9-right) consists of a

green space and a paved area, separated by stairs.

3.6.2 ESFM parameters

The first step required for the robot companion is the study of the ESFM, which governs

human motion in general. We take into account three kinds of interaction forces:

person-person, person-obstacle, and person-robot. The first and second interactions

have been studied in previous papers such as [75, 109, 177]. However, as the person-

robot interaction parameters had not been directly obtained in any previous work, in

this section we present the results obtained for the parameters {ARp, BRp, λRp, dRp}.
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ESFM parameters

Interaction k [s−1] A [m/s−1] B [m] d [m] λ

Per-Per [108] 2 1.25 0.1 0.2 0.5

Per-Per [177] 4.9 10 0.34 0.16 1

Robot-Per 2.3 2.66 0.79 0.4 0.59
(our approach) (± 0.37) (± 4.51) (± 0.21) (± 0.25) (± 0.36)

Table 3.1: Model forces parameters: Parameter values of {ARp, BRp, λRp, dRp}.

As discussed in Section 3.3.1, we have recorded two different databases in a real

scenario. During the first part, we optimized the intrinsic parameter of the ESFM {k},
by describing the expected human trajectories under no external constraints.

The second part of the ESFM parameter learning was carried out under the influence

of the Tibi robot. We optimized the extrinsic parameters of the force interaction model

{ARp, BRp, λRp, dRp}, under the presence of a moving robot, making sure it was the

only external force affecting the outcome of the trajectory described by the person.

Table 3.1 shows the parameters learned after applying the minimization process (see

Section 3.3.1), using genetic algorithms, to all database trajectories. Each parameter

includes a standard deviation, obtained after estimating each trajectory independently.

Table 3.1 also demonstrate the parameters proposed by Luber [108] and Zanlungo [177],

works that referred to the person-person ESFM. However, in contrast to these studies,

the presented work implements the ESFM to learn the parameters for a human-robot

interaction. Furthermore, the standard deviation of some parameters is quite high,

because people behave differently when they interact with robots.

3.6.3 Simulations: parameter learning and validation

In order to obtain a good initial estimation of the Θ = {α, β, γ, δ} parameters, and

to mathematically evaluate the accuracy of the social robot companion model, we

constructed a simulated social environment. This simulated environment serves two

purposes: firstly, it allows for an initial estimate of the system parameters Θ; and

secondly, it permits us to validate the performance of the approach, using the function

defined in Section 3.5.1, in different environments with different density of pedestrians.
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Figure 3.10: Simulations comparative. Left column: unconstrained area with
four destinations. Central column: urban settings, corresponding to the Barcelona
Robot Lab. Right column: variation of the BRL with extra obstacles. Top row:
different scenarios of the simulations. Second row: simulations performance; black
indicates the proxemics approach, green shows ESFM companion and red highlights the
ESFM with the human’s destination data. All results are a function of the pedestrian
density in the environment. Third row: rate of successful robot arrivals in bar
diagrams.

To this end, we have implemented a complete social environment, as depicted in the

top row of Fig. 3.10. This considers pedestrians, obstacles, and robots, in an interactive

way, and treating each element in relation to its surroundings, according to the ESFM.

This method allowed us to obtain a dynamic environment, in which each action of the

robot affected the behavior of nearby pedestrians, and vice versa.

We have set the accompanying position at 1.5 m from the target and 60◦ from the
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target’s heading. Our approach for the robot companion task is evaluated in a simulated

environment. This simulated environment consists of an urban setting –inspired by the

BRL– in which obstacles, and a fixed number of pedestrians are both presented.

To obtain a good initial estimation of the system parameters, we developed a set of

simulations. The results of the MCMC-MH optimization, as discussed in Section 3.5.2,

were obtained after two thousand simulations. The outcome of each experiment is

dependent on the parameters Θ, since the system reacts to the behavior of the robot

navigation, and vice versa. After applying the optimization method described in Sec-

tion 3.5.2, we obtained an initial guess of the magnitude of Θ roughly rounded to the

values {α = 0.1, β = 0.6, γ = 5.0, δ = 0.50}. Note that these parameters were obtained

after random initializations and within a virtual environment. However, this initial

guess is a good estimation of Θ and their corresponding standard deviations, which

will be the initial values of the system parameters that we will use for the interactive

learning.

The second objective of the simulations was to validate the parameters obtained

earlier, in a challenging environment. Our method makes use of the ESFM of surround-

ing persons and obstacles while approaching the target. It also assumes that the robot

knows the person’s destination so as to enhance its performance – as shown in red in

Fig. 3.10. We have also implemented two additional methods to compare with our

approach. A second configuration takes into account only the ESFM model –shown in

green in Fig. 3.10–, wherein the robot did not have any previous knowledge of human’s

intended destination. For this reason, the avoidance of moving targets and obstacles is

executed dynamically using the interaction forces. Our method is also compared with

a robot companion based on proxemics, where the robot follows the target person, ig-

noring the force of interactions with other people. When a person enters the robot’s

inner safety zone, the robot halts until the path is clear – as shown in black lines in

Fig. 3.10.

The experiment’s settings were tested in three different scenarios, as observed in the

top row of Fig. 3.10. The first setting is an unconstrained area, free of obstacles, where

four destinations are defined. The second is a urban setting, littered with obstacles,

as well as pedestrians. The third is a variation of the previous setting, with a higher

density of obstacles.
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Figure 3.11: Force parameters α, β, γ. Evolution in time from start to end of each
experiment of the force parameters α, β, γ. These variables were averaged using results
chosen for each participant within the course of the experiment.

For each environment, the algorithms have been tested depending on the density

of persons in the unoccupied area. To lend our results greater statistical consistency,

we conducted over 50.000 experiments, changing only the initial conditions of each

pedestrian in the scene and their intended destination. This conditions are calculated

randomly and the robot has to accompany a person under this uncertain environment.

It is important to note that the environment has a high density of persons and each

individual is headed towards a random destination. This rapidly generates a chaotic

and challenging environment for the robot companion testing.

We consider our robot companion approach as a type of potential navigation system.

Despite their already well-known limitations [96], in which local minima problems may

arise, we did not experience such problems, since either the destination, or the person

being accompanied, consistently described affordable configurations of navigation.

The second row of Fig. 3.10 shows the overall performance of the different methods,

with respect to the density of pedestrians in the scene (Section. 3.5.1), taking into

account penalities due to nearby persons. As expected, using social interaction forces

–red and green lines– highly increases the robot’s performance. Prior knowledge of the

human’s destination clearly enhances the performance of the task, as observed in the

first and second columns. When there is a low density of obstacles, this information is

highly useful. Nevertheless, when there is a high number of obstacles in the scene, and

the robot knows the destination in advance, the strategy is equally successful. This is

due to the fact that such knowledge leads the robot to decide on an alternative paths,

rather than just following the target. This is particularly true in the third scenario,

where we observed movement towards a column to the right when the target moves to

the left; the destination would be more accessible by taking this route. Although this
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Figure 3.12: Experiment results: An average of the performance and its standard
deviation for the experiments, combination using the target’s knowledge and feedback.

behavior denotes some intelligence, its performance is not rewarded in our metric, as

shown in Fig, 3.10. However, the companion’s general performance was better overall

when it knew the human’s destination.

The third row of Fig. 3.10 shows the average percentage of successful arrivals at

the given destinations, reflecting instances in which the robot was within the com-

panion zone –Section 3.5.1– at the moment the target arrived at his/her destination.

Although this metric is highly correlated, we observed that using the human’s destina-

tion increases the arrival rate with respect to the ESFM only and proxemic approaches.

That is, this kind of information increases the likehood of the robot arriving at the des-

tination simultaneously with the target.

3.6.4 Real experiments: interactive learning and real performance

The proposed robot companion approach was tested in the FME and the Barcelona

Robot Lab, Fig. 3.9. The experiment setting considers a robot within a real scenario,

as follows: we instruct each volunteer to walk naturally towards a chosen destination,

among two options represented as red pylons. While approaching the desired destina-

tion, the robot accompanies the volunteers and they should behave naturally.

As part of the interactive multimodal learning, the system learns the desired robot

behavior, as explained in Section 3.5.3. While the feedback provided by the target is a

subjective metric, its purpose is to lead to a general approaching rule for a better robot

behavior. It is provided directly by the target, using a remote control; in this way, the

system automatically weights the contributions of the active forces (Section 3.5.3). An
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initial estimation of the θ parameters is calculated in simulations, and this information

is useful, although a readjustment is provided by the human feedback.

We prepared a set of four experiments, that combine the knowledge of the destina-

tion and feedback provided, in order to evaluate the overall performance within each

combination:

• Without knowledge of the goal and no feedback.

• Knowning the goal but not having feedback.

• Without knowledge of the goal but having feedback.

• Knowning the goal and having feedback.

Fig. 3.11 shows the {α, β, γ} obtained from the user feedback that determines the

robot behavior. It has been averaged using 20 different experiments and is depicted as

a function of time, normalized from the start of the experiment to the end t ∈ [0, 1].

The δ parameter is not drawn in the figure, since not many obstacles were present in

the scene. However, the δ parameter remains mandatory when navigating within the

presence of multiple obstacles.

The robot was able to achieve its goal in all experiments conducted. The volunteers

were told to walk naturally and the robot accompanied the target using the social robot

companion framework described in Section 3.5.3. During the validation of the model

in real experiments, we set unexpected obstacles and pedestrians in the targets’ path,

which the robot was able to avoid successfully.

A summary of the overall performance for each setting is depicted in Fig. 3.12.

Clearly, the goal’s knowledge consistently enhanced the robot companion’s approach.

When we address the human poll results, we get a very similar conclusion.

During the real world experiments, we observed unexpected difficulties that did not

come up during the simulations. We found severe limitations to the perception system,

the laser people detector, and the people tracker. People were not always properly

detected, and the data association was at times wrong. However, a comprehensive

review of the perception system falls outside the scope of the present dissertation, and
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Figure 3.13: Real-life experiments: Some examples of the conducted real experi-
ments. Top: Dabo accompanying a person to a desired destination. Bottom:
The same scene using the system interface.

Figure 3.14: Real-life experiments 2: A single robot companion experiment. Top:
Dabo accompanying a person to a desired destination. Bottom: The same scene
using the system interface.

it is important to note that any other system –vision detection, RF, etc..– would also

be subject to limitations under realistic conditions.

We carried out 80 experiments, 41 of which were used to measure the performance

of the robot companion under different settings as described above. Later, we will

discuss the effect of the feedback, enlighten by the results of the volunteer survey.

This new set of experiments was performed mostly in the BRL, with the interaction

of multiple pedestrians and obstacles. Fig. 3.13 depicts examples of different experi-

ments performed with volunteers in different urban environments. Moreover, it shows

several case scenarios where multiple objects and people are in the scene. In Fig. 3.14,

an example of a single sequence is depicted, wherein a robot accompanies a person,

within the presence of a group of people.
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Survey’s Questions

Robot’s Intelligence Scale Cronbach’s alpha = 0.702
How intelligent did the robot behave?
How well could the robot anticipate to your movements?

Human-Like Motion Scale Cronbach’s alpha = 0.742
How social was the robot’s behavior?
How natural was the robot’s behavior?
How human-like did the robot behave?

Level of Confidence Scale Cronbach’s alpha = 0.704
How comfortable did you feel near the robot?
How safe did you feel around the robot?
How well did the robot’s movements adhere to human social norms?

Table 3.2: Questionnaire. Survey questions asked of each participant. All questions
were asked on a 7-point scale from “Not at all” to “Very much”.

3.7 User study

The results presented above demonstrate that the robot is able to successfully accom-

pany a person. A user study was also conducted to determine whether the different

strategies presented above were perceived by people as socially appropriate.

3.7.1 Results

As mentioned previously, 45 real-life experiments with different volunteers were carried

out. Upon their conclusion, each participant was asked to fill out a questionnaire. The

measurement was a simple rating on a Likert scale between 1 to 7. For the evaluation

score, repeated ANOVA measurements were conducted. In this section, we provide two

different results. On the one hand, we sought to find out if the robot truly needed to

know in advance pedestrian’s desired destination. And, on the other hand, we hoped

to determine if the use of the remote control enhanced or did not the quality of the

human-robot interaction.

Social Scales

Participants were asked to answer eight questions, as shown in Table 3.2, following

their encounter with the robot in each mode of behavior. To analyze their responses,

we grouped the survey questions into three scales: the first measured the robot’s intelli-
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Human-like motion. Right: Level of confidence.

gence, the second evaluated more specific questions on the robot’s movements, and, the

third measured the level of confidence. This scales surpassed the commonly-used 0.7

level of reliability (Cronbach’s alpha)2. Each scale response was computed by averaging

the results of the survey questions comprising the scale. ANOVAs were run on each

scale to highlight differences between the robot behaviors.

Firstly, in order to know if it is necessary that the robot knows the pedestrian’s des-

tination, human perception has been studied. To analyze the source of the difference,

three different scores were examined: “Robot’s Intelligence”, “Human-Like Motion”

and “Level of confidence”, plotted in Fig. 3.15. For robot’s intelligence a repeated-

measures analysis of variance revealed a significant main effect, F (1, 44) = 14.82,

p < 0.001. For robot’s Human-like motion the ANOVA test revealed a great effect,

F (1, 44) = 36.28 p < 0.001. And, finally, the analysis of variance revealed a remarkable

difference in the level of confidence F (1, 44) = 61.79 p < 0.001.

Secondly, in order to analyze if the use of the remote control enhances the interac-

tion between the robot and a person, three different scores were examined: “Robot’s

Intelligence”, “Level of interaction” and “Level of confidence”, plotted in Fig. 3.16. For

2Cronbach’s alpha is a measure used to determine how reliably a set of questions measures a single
dimension. Values less than 0.7 imply that the scale is measuring more than one thing; higher levels
indicate that the questions are essentially asking about the same thing, so the items can be combined
for analysis.
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Figure 3.16: Remote control. People’s perception of the use of the remote control.
Left : Robot’s Intelligence. Center: Level of interaction. Right: Level of
confidence.

robot’s intelligence a repeated-measures analysis of variance revealed that no signifi-

cance was found, F (1, 44) = 1.88, p = 0.18. For the level of interaction the ANOVA

test do not revealed a significant main effect, F (1, 44) = 0.48 p = 0.18. And, finally,

the analysis of variance showed that there is not a remarkable difference in the level of

confidence F (1, 44) = 3.57 p = 0.07.

In summary, after analyzing these two components, we may conclude that when

the robot has the ability to know the human’s intended destination, it yields a greater

degree of human acceptance. People perceived the robot to be more intelligent, as

it could detect and approach them, and they felt that it had a better social skills.

Moreover, we found that the use of the remote control did not enhance the interaction

between the robot and the accompanied person.

Participants Comments

Each questionnaire included several blank lines underneath the social scales, where

participants could record additional thoughts on the experiments. While we did not

explicitly codify and analyze these comments, they do provide further insight into the

effect of the three robot behaviors.

Comments when the robot knew the destination : Many of the comments

we received reflect that volunteers felt that the robot ably accompanied them and
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interacted with them. Participants noted:

“I liked that the robot accompanied me to the destination, I felt comfortable along

the way.”

“I feel that the robot is very sociable because it walks close to me and respects my

personal space.”

“She knew that there were people around us and could navigate with me while

avoiding other people, it is very funny!”

Note that the comments on this behavior generally indicate that participants felt

that the robot accompanied them and respected social conventions.

Comments when the robot did not know the destination: Many of the com-

ments reflect that participants did not notice that the robot walked with them, and that

if the robot did not know the destination, it navigated behind the person; therefore,

these participant did not feel that the robot was really interacting with them:

“I didn’t think the robot was walking with me because it was behind me the whole

time.”

“It seems that the robot is just following me instead of accompanying me.”

“I find the experiment very interesting, however I did not notice that Tibi was

walking with me.”

Note that the comments on this behavior generally indicate that although partic-

ipants felt that the robot tried to walk with them, Tibi was not able to accompany

them, and thusm did not achieve its task.

Comments when the volunteer used the Wii remote control: Many of these

comments indicated that participants did not notice a difference between using the

remote control or not.

“I don’t think we need to use the remote control, I did’nt notice any difference

between using it or not using it.”

“I expected that the remote control would enhance the interaction between Tibi

and me.”
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“I felt that Tibi obeyed social conventions, but the remote control was a hindrance,

it is useless.”

“The remote control is useless, I didn’t notice any relationship between using the

remote and a change on robot’s behavior.”

3.8 Summary

In this chapter a novel robot companion approach based on the so called Social-Forces

Model has been presented. The major contributions of this chapter are threefold. First,

we obtained the force parameters of robot-person interactions, specifically suited for

Tibi. We went one step further into the development of the SFM for robot interactions,

by presenting a powerful scheme for social companion robots based on the social-forces

concept.

Second, we introduced a novel robot companion metric was presented. Since the

verification of any system in which humans intervene is hard to objectively evaluate, we

used an analytical metric that justifies the behavior of our robot companion approach.

Finally, we developed a model of human feedback that successfully yielded a set

of weighting parameters for the robot companion’s behavior. We believe that human

feedback for parameter learning is a key point for the development of robots whose

purpose is to interact with people.

We validated the model through an extensive set of simulations and real-life ex-

periments in an urban area. In contrast to other existing approaches, our method can

handle realistic situations, such as dealing with large environments littered with obsta-

cles and dense crowds. For that reason, this work can be applied to various specific

real-life robot applications; for instance, guiding tourists. The overall validation of the

approach in real scenarios was achieved by using feedback information obtained directly

from the volunteers.

Moreover, we can conclude that when the robot knows the human’s destination, it

greatly increases the overall human-perceived performance of the system, according to

the user surveys. Nevertheless, the multimodal feedback in the form of a wii remote

control did not improved the subjective performance, according to the poll. Moreover,
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the force parameters did not really changed so drastically enought to justify the use of

an additional input channel.
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Chapter 4

Multi-Cooperative Robots to
Guide and to Escort people using
Discrete Time Motion Model

The nice thing about teamwork is that you

always have others on your side.

Margaret Carty

In this chapter, we present a new model for guiding people in urban areas using

several cooperative robots that overcomes the limitations of existing approaches, which

are either tailored to tightly bounded environments, or based on unrealistic human

behaviors. The main contributions of our approach are twofold: from one side, we

represent the environment by means of a potential field which allows to cope with

open or closed areas, and with obstacles. On the other side, the motion models for

both people and robots are grounded on social human behaviors learned from training

databases of groups of pedestrians moving in real-world scenarios. All these pieces are

integrated into a common “Discrete-Time Motion Model” that allows to estimate the

motion of people and robots and to compute the robot’s trajectory for guiding people to

a specific location goal. Several experiments on real and synthetic data demonstrate the

validity of the proposed model. The work in this chapter has been presented in [56, 58].
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4.1 Introduction

The interest on developing social and cooperative robots has significantly increased

throughout the recent years. The applications of this field are very diverse, from devel-

oping automatic exploration sites [165], to building robot formations for transporting

and evacuating people during emergency situations [33].

One important application within this field is that of using one or several robots

for accompanying a group of people. This kind of application has already been used

for guiding people in museums [19, 31], although the robot navigation skills were lim-

ited to simple path planning functionalities with additional reactive behaviors to avoid

collisions with humans. No particular actions were taken to avoid situations were the

crowd did not follow the robot. These shepherding capabilities were developed in [169]

for guiding flocks of animals. Yet, this approach was constrained to closed areas with

no obstacles and only considered one single robot.

The approach we propose in the present chapter offers several advantages with

respect to the existing works just mentioned: (1) It allows guiding a group of people

within open or closed areas that potentially may contain obstacles; (2) The approach

uses multiple cooperative robots and (3) it has functionalities to avoid people leaving

the crowd in a friendly and safe manner. We use a design in which one of the robots

is the leader, as a human tour-guide. It is placed at the front of the group and its

role is to estimate the trajectory of people and the rest of robots. The other robots,

called shepherd, are responsible for guiding the people, preventing any person to leave

the group, and following the path given by the leader. A diagram representing this

proposed approach is shown in Fig. 4.1.

At the core of our approach we propose a “Discrete Time Motion” (DTM) model

which is used to represent people’s and robot’s motions. The DTM predicts people’s

movements in order to perform path planning and provide the motion instructions

to the robots. This is done by means of a Particle Filter formulation [7], in which

the dynamical models are based on realistic human motions. On the other hand, the

interaction with the obstacles of the environment is considered through a potential

field, where both the positions of people and robots are represented by continuous and
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Figure 4.1: Guiding people using a group of cooperative robots. In our ap-
proach, one of the robots is the leader and is responsible for estimating the trajectory
of the people and the rest of robots. The shepherd robots follow the instructions of the
leader for guiding the people and avoiding any person to leave the group.

derivable functions. Using these parameterizations each point in the space will have an

associated potential value, which will be used to control the motion of all the robots.

Finally, another important virtue of our model is the realism we achieve in the

dynamic models for both robots and persons. We validate these models on several

video sequences of groups of persons performing different types of movements. We show

through this experimental validation that the proposed models are good approximations

to real situations.

4.2 Chapter’s Overview

In the next sections we will describe the architecture we developed to accompany a

group of people using several robots behaving in a cooperative and human-safe manner.

This is achieved by means of a framework that enables considering realistic motion

models, as describing environments that include an arbitrary number of obstacles. More

specifically, the main ingredients of our approach (see Fig. 4.2) are the following:

• Realistic people motion model: To represent people’s motion we use realistic mod-

els that describe the dynamics of pedestrian crowds from the “social” point of

view. These models were already introduced in early works [75, 76], and describe
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Figure 4.2: Overview of our approach for guiding people. Given a map repre-
sentation, a desired target position and a motion model for people, we compute the
robots movements in order to guide the group of people along the desired path. The
mathematical framework to compute the motion commands sent to the robots is called
Discrete Time Motion Model, which includes sub-modules to predict people and robot
position, and to represent the whole environment including persons, robots and obsta-
cles. We validate our approach both on synthetic data and real video sequences of a
urban setting.

the motion of pedestrians based on social forces which are the result of the internal

motivations of the individuals to perform certain motions.

• Prediction of people and robots’ positions: In order to model the motion space, it

is necessary to estimate people positions and velocities. We use Particle Filtering

for this purpose.

• Environment representation: Before providing the motion commands to robots

to achieve their goals, we need a unified representation of the obstacles, robots

and people. This is done by means of a potential field. Each person and robot

are represented as a Gaussian distribution centered in its position. Obstacles are

represented by a mixture of Gaussians distributed along the obstacle’s boundary.

Then, the overall potential field is computed by the intersection of all the Gaussian

functions with their associated covariances.
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• Strategy for Guiding People: Once the working environment of the robots is de-

fined by a potential field, robot’s trajectories and motion commands are computed

by minimizing the energy of the potential field. We call the component of our

architecture that performs this minimization the Discrete Time Motion Model.

• Data Collection: The guiding capabilities of our approach are initially validated

through synthetic data. In addition, we also use real data. For collecting real

data, we use the camera network available in the Barcelona Robot Lab, that

integrates 21 cameras, partially and sequentially overlapped. Using this camera

network we captured a set of video sequences of groups of people while following

a leader.

• Validation Process: For validating the model with real data, we initially extract

the ground truth trajectories of each person and the group. These ground truth

trajectories are the compared with the estimations obtained by the Discrete Time

Motion model. Moreover, we perform a set of simple real-life experiments where

our robots Tibi and Dabo carried out the task of leader or shepherd.

4.3 Modeling People’s Motion

In order to model people’s motion we use the formalism introduced by the works of

Helbing et al. [75, 76], that study the dynamics of pedestrian crowds from the “social”

point of view [103]. Fig. 4.3 shows a schematic representation of processes leading

to behavioral changes. A behavioral reaction has been caused by a sensory stimulus,

this reaction depends on personal intentions and it is chosen from a set of behavioral

alternatives.

More specifically, they describe the motion of pedestrians based on social forces

which are the result of the internal motivations of the individuals to perform certain

motions. These forces, for some simple situations, can be described through proba-

bilistic models. The three considered basic concepts that rule the movement of people

are:

1. The pedestrian wants to reach a certain destination as comfortable as possible.
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2. The motion of a pedestrian is influenced by other pedestrians.

3. Pedestrians are sometimes attracted by other humans or objects.

For the first situation, people usually take the shortest path, which may be formally

represented as the shape of a polygon with edges r 1
pi , . . . , r

n
pi := r 0

pi , where pi refers to

a given person and r 0
pi the destination that he/she wants to arrive.

The desired motion direction epi(t) of a pedestrian pi will then be:

epi(t) :=
r k
pi − rpi(t)∥∥r k
pi − rpi(t)

∥∥ (4.1)

where rpi is the current position and r k
pi is the subsequent edge of the polygon that

will be reached. Since we assume the group of persons is moving together and following

the leader robot, the previous equation becomes:

epi(t) = eR(t) + ξ (4.2)

where eR(t) is the robot’s direction motion and ξ is a parameter accounting for noise.

We also consider that a deviation of the actual velocity vpi(t) from the desired

velocity, v 0
pi(t) := v 0

piepi(t), may also exist due to deceleration or obstacle avoidance

processes. This can be written as:

f 0
i (vpi , v

0
piepi) =

1

τpi
(v0piepi − vpi) (4.3)

where v0pi is the current speed and τpi is a relaxation term of pedestrian stride. In

practice, we set the term τ to 0.5 for all the pedestrians.

Let us now consider the second situation in which the pedestrian motion is influ-

enced by other pedestrians from the group. This situation responds to the fact that

each individual tries to maintain an empty security volume surrounding him/her which

is called the vital space. This is in fact a repulsive effect that we model as:

fij(rij) = Ae−bij/B
‖rij‖+

∥∥rij − yij
∥∥

4bij
×

(
rij
‖rij‖

+
rij − yij∥∥rij − yij

∥∥
)

(4.4)
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Figure 4.3: Processes leading to behavioral changes. A sensory stimulus causes
a behavioral reaction which depends on personal aims and is chosen from a set of
behavioral alternatives with the objective of utility maximization.

where fij(rij) is a repulsive potential which is assumed to be a monotonic decreasing

function of bij with equipotential lines having an elliptical shape, rij = rpi − rpj . The

parameter bij denotes the semi-minor axis of the ellipse and is given by:

bij =

√
(‖rij‖+

∥∥rij − vpjτ∥∥)2 − ∥∥vpjτ∥∥2
2

(4.5)

where,

yij = rij − vpjτ (4.6)

and vpjτ is an approximation to the step size of a pedestrian pj , see Fig. 4.4 for

details.

Moreover, we consider the repulsive effect produced by the distance that people try

to keep from the obstacles of the environment. The nature of this force is the same we

just described between individuals, with the difference that we assume static obstacles.

Furthermore, pedestrians are sometimes attracted by other persons or objects in the

environment, such as friends, street artists or windows displays. These attractive effects

fio has the the same form as the inter-agent repulsive forces. The main difference is

that the attractiveness decreases with time t since the interest is declining, fio(‖rio‖ , t),
rio = rpi − ro.
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b

j
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j

Figure 4.4: Person’s vital space. Diagram of the elliptical specification of pedestrian
interaction forces.

Finally, to complete the model of human motion a relation between the actual

velocity vpi(t) and the preferred velocity wpi(t) has to be described. The actual speed

is limited by a pedestrian’s maximal acceptable speed vmax
pi , thus, we assume that the

realized motion is given by

vpi(t) = wpi(t)g

(
vmax
pi

‖wpi‖

)
(4.7)

with

g

(
vmax
pi

‖wpi‖

)
=

{
1 if ‖wpi‖ ≤ vmax

pi
vmax
pi /‖wpi‖ otherwise

(4.8)

In the present chapter, the described Social Force Model is used to simulate people

motion, and thus, to obtain humans’ movements similar to the behaviors found in

reality.

4.4 Computing Robots Motion Commands

In this section, we will describe the model we use to represent the whole environment,

made of an open and not bounded area with obstacles, and how the elements of this

environment are related with the group of robots and persons. The key element to
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represent these relations is the Discrete Time Motion (DTM) model previously intro-

duced, whose ultimate goal is to determine how the robots must operate to guide the

group of persons towards a certain place.

For this purpose, we split the DTM into a static and a dynamic components. The

former (called Discrete Time Component) estimates position, orientation and velocity

of the robots and persons, and the position of the obstacles at a specific time instance.

These estimations are then used to predict the intersection and collision points of the

people with the obstacles and to detect if someone is leaving the group. All this

information is jointly represented using potential maps. The dynamic (or Discrete

Motion) component estimates the change of position, orientation and velocity of people

and robots between two consecutive time instances. In conjunction with the potential

map previously computed, it is then used to compute the robots’ motion commands

necessary to reach the goal while preventing people leaving the group. Fig. 4.5 shows

a schematic representation of the modules used to build the DTM. We next describe

in detail each of these components.

4.4.1 The Discrete Time Component

The first task of the Discrete Time component is to estimate position, orientation and

velocity of the robots and people. This is done using a particle filter formulation, for

which we postpone the details until Section 4.5.

Then, the Discrete Time component represents the areas where the robots will

be allowed to move, by means of potential fields. To this end, we define a set of

functions that describe the tension produced by the obstacles, people and robots over

the working area. These tensions are computed based on the area defined by a security

region surrounding each one of the persons, robots and obstacles.

Particularly, we first define the position and dimension of the working area as a

circle large enough to include all the robots and persons, and placed in such a way that

its perimeter intersects the position of the leader robot. Fig. 4.6 depicts this working

area along with the obstacles within its bounds at a specific instant of time. Note that

the size of this area changes over time, and consequently the whole dimension of the

environment is not strictly limited.
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Figure 4.5: Diagram of the Discrete Time Motion model. To compute the motion
commands sent to the robots for guiding people we propose a two-stage process. First,
we estimate people and robots positions, and merge all this information into a potential
map which also contains obstacles position. We call this initial step Discrete Time
Component. We then use this information to plan the robot trajectories to reach the
goal while preventing people to leave the group. This second stage is called Discrete
Motion Component, which output are the motion commands given to the robots.

In order to decide the trajectories the robots follow we will use a similar approach

to [81] and define a potential field over the working area, that includes all of the

information of the environment and the position of the robots, persons and obstacles.

To this end, we define a set of attractive and repulsive forces. In particular, the target

position the robots try to reach will generate an attractive force pulling the robots

towards it. On the other hand, the obstacles will generate a repulsive potential pushing

a given robot away. The rest of robots and persons will generate similar repulsive forces,

although with less intensity than the obstacle’s forces.

We parameterized all these attractive and repulsive forces by Gaussian functions.

For instance, the repulsive force that a person generates is written as:

Tpi(µpi ,Σpi)(p) =
1

|Σpi |
1/2 (2π)n/2

e−
1
2
(p−µpi

)TΣ−1
pi

(p−µpi
) (4.9)

where µpi = (µpix , µpiy) is the center of gravity of the person, and Σpi is a covariance

matrix whose principal axes (σpix , σpiy) represent the size of an ellipse surrounding the

person which is used as a security area. A similar expression defines the potential map

associated to each robot.

These repulsive forces may be interpreted as continuous probability functions over
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Obstacles

Figure 4.6: Working area at a specific time instance. The dimension and position
of the working area changes over time. Left: Group of people being accompanied by
three individuals. Right: The same scene using the system interface.

the entire space. Once they are defined, the tensions at each point of the space may be

computed as the intersection of these Gaussians.

We can then define people and robots location by the set {(µx, µy), (σx, σy), v, θ, T},
where v and θ are the velocity and orientation estimated by the particle filter and T is

the associated tension. As said above, the variances (σx, σy) represent the security area

around each individual. This could be set to a constant value. However, for practical

issues one may need larger security areas when the robots or persons move faster. As a

consequence, we changed appropriately the values of the variances σx and σy depending

on the velocity parameter v.

In the case of the obstacles, we define their tension as a set of Gaussian func-

tions collocated at regular intervals along their boundaries. Let us denote by X =

{(x1, y1), . . . , (xn, yn)} the set of points uniformly distributed along the boundary. This

boundary will be then represented by a set of positions and their associated potentials:

{(xi, yi), (σxi , σyi), Ti} for i = 1, . . . , n, where Ti follows Eq. 4.9.

After having defined the tensions for each of the components of the environment

–i.e. robots, persons and obstacles– the complete potential field is easily computed as

the intersection of all the Gaussian functions. We can then compute the trajectories

of the robots, based on the position of the persons and the desired goal, and following

the paths with minimum energy in the potential field. The details of this computation

are explained in the following section.
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Algorithm 1 General strategy for guiding people

1: Establish the initial and goal positions.
2: Compute the trajectory using path planning.
3: Search the shortest path of the trajectory.
4: Set every internal node of the shortest path as a new subgoal.
5: for Every subgoal do
6: Choose a motion strategy depending on the situation (open path, narrow pas-

sages. . . ) while ensuring the priorities (prevent people leaving the group) are
satisfied.

7: Move to the next subgoal.
8: end for

4.4.2 Discrete Motion Component

The Discrete Motion Component computes the motion strategies to be achieved by the

robots in order to achieve their goals, which are following a path to reach a specific

target position while preventing people from leaving the group. Therefore, we consider

two different motion strategies: (i) path planning till the goal, and (ii) shepherding

strategies for avoiding people leaving the group.

In the first case the robot motion is computed using a simple path planning algo-

rithm by reasoning directly on the potential field [79]. We first compute all the possible

paths to reach the goal. The whole set of paths is known as the trajectory. Among

all these paths, we then choose the shortest one, and each node of this path will be

considered as a subgoal to reach. The robots will then move between consecutive sub-

goals while ensuring that people does not leave the group. This path planning is only

performed by the leader (L) robot who transmits the computed path to the rest of the

robots called shepherd (Si).

The group non-holonomic mobile robots move along a desired trajectory. During

the motion, the robots are required to maintain a formation. With the leader-follower

formation strategy, the group’s leader L, whose configuration is defined as cL, leads

the group motion, and the other robots, labeled as Si (i = 1, . . . , NR − 1, where NR is

the total number of robots in the group) are the followers that maintain the respective

relationships with the group’s leader L.

A number of leader-follower pairs are introduced with pre-defined relationships of

G1, . . . , GNR−1, where Gi = LF (Si ← L). In order to design the relationship Gi, two
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physically close robots are determined as two neighbors. All robots in the group are

linked, either directly or indirectly, as a network in the group movement. The robots

are labeled in advance based on their relative positions in the group at the beginning.

Without loss of generality, we assume that the desired formation configurations are

designed in a feasible way such that the robots can form the required formations without

conflicts with each other.

A group of NR non-holonomic mobile robots are controlled to move along a desired

trajectory, led by the group’s leader L, whose configuration determines the motion of

the shepherd robots which have to follow the leader with the required leader-follower

relationships G1 −GNR−1, through controlling separation, guiding and orientation de-

viation of the followers with respect to the leader.

Consider that the robots are differential mobile robots with non-holonomic con-

straints. The robot configuration, denoted by ci = [xi yi θi]
T , is described by a

unicycle model as the follows,

ċi =

 ẋi
ẏi
θ̇i

 =

 cosθi
sinθi
0

 vi +

 0
0
1

 ωi (4.10)

where xi and yi are robot coordinates, θi is the orientation of the robot, and vi and

ωi are the linear and angular velocities of the robot, respectively.

To ensure the shepherd robots maintain the desired separation and the orientation

deviation with respect to the leader, we used the work presented in [24], where control

schemes to derive the desired postures of the followers were proposed.

A two-robot formation with the desired leader-shepherd relationship Gi = LF (Si ←
L). With this scheme Si follows L with desired separation ldi , bearing ψ

d
i and orientation

%di . The desired configuration cdi = [xdi ydi θdi ]
T of the shepherd S is given by:

cdi =

 xdi
ydi
θdi

 =

 xL + ldi cosψ
d
i

yL + ldi sinψ
d
i

θL + %di

 (4.11)

The second case is the study of shepherding algorithms [17, 169], which are inspired

in the shepherd dogs. The shepherding task is performed by all the robots except the
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leader, that only carries out the function of a guide. The rest of robots follow the

strategy depicted in Algorithm 1. Note that this algorithm does not explicitly consider

safety conditions for the persons; i.e., when the robots are working it is necessary to

satisfy a set of priorities for the safety of the people, such as avoiding collisions. However

this was already taken into account when we defined the security areas in the Gaussian

functions parameterizing the tensions.

Algorithm 1 just presents the general shepherding strategy. However, we may find

several particular situations which should be considered, such as guiding in open roads

with no obstacles, guiding in narrow corridors, moving closer the group of persons or

rescuing a group member that left the group. In these particular situations one may

have to design specific algorithms.

One important situation we must carefully consider is the case when people move

away from the group. We are not aware of any approach tackling this problem. The

solution we take for this situation is to choose one of the robots –the one closer to the

person who left– and bring him/her back to the formation.

For computing the trajectory that will be considered for intercepting the person

that left the group, we first used a Particle Filter to estimate the position and velocity

of the person and compute the interception point.

Furthermore, the navigation of the robot is tackled with an attractive potential field.

Conventionally, the attractive potential is defined as a function of the relative distance

between the robot and the target only where the target is a fixed point in space. In

this thesis, we believe that it is beneficial to have the velocities of the robot and the

target considered in the construction of the potential field. When the target is moving,

the conventional pure position based potential function is not directly applicable and

has to be modified. Here, the potential field functions are presented as follows:

Uatt(r , v) = κr‖r tar(t)− rRi‖2 − κv‖v tar(t)− vRi‖2 (4.12)

where rRi(t) and r tar(t) denote the positions of the robot and the target, vRi(t)

and v tar(t) denote the velocities of the robot and the target, respectively; ‖rRi(t) -

r tar(t)‖ is the Euclidean distance between the robot and the target at time t; ‖vRi(t)
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- v tar(t)‖ is the magnitude of the relative velocity between the target and the robot at

time t, κr and κv are scalar positive parameters.

From Eq. 4.12, the attractive potential Uatt(r , v) approaches its minimum zero

if and only if the relative distance and velocity between the robot and the target are

zero. The attractive potential Uatt(r , v) increases as the relative distance or velocity

between the robot and the target increases. If κv = 0, Eq. 4.12 degenerates to a

conventional quadratic form, and it does not contain velocity information:

Uatt(r , v) = Uatt(r) = κr‖r tar(t)− rRi‖2 (4.13)

The corresponding virtual attractive force is defined as a the negative gradient of

the attractive potential in terms of position,

F att(r) = −∇Uatt(r) =
∂Uatt(r)

∂r
(4.14)

In this dissertation, the attractive potential function Uatt(r , v) depends on both

position r and velocity v of the robot. Therefore, it is necessary to define the attractive

force with respect to position and velocity:

F att(r , v) = −∇Uatt(r , v) = −∇rUatt(r , v)−∇vUatt(r , v) (4.15)

where,

∇rUatt(r , v) =
∂Uatt(r , v)

∂r
(4.16)

∇vUatt(r , v) =
∂Uatt(r , v)

∂v
(4.17)

Substituting Eq. 4.12 into Eq. 4.14, we obtain:

F att(r , v) = F attr(r) + F attv(v) (4.18)

F attr(r) = 2κr‖r tar(t)− rRi‖nrRi,tar
(4.19)

F attv(v) = 2κv‖v tar(t)− vRi‖nvRi,tar
(4.20)
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Here, nrRi,tar
is the unit vector pointing from the robot to target; nvRi,tar

is the

unit vector denoting the relative velocity direction of the target with respect to the

robot. As it can be seen, attractive force F att consists of two different components:

the first component, F attr(r), pulls the robot to the target while the distance between

them reduces; the second component, F attv(v), attempts the robot to move at the same

velocity than the target.

If the robot approaches the target, that is, ‖r tar(t) − rRi‖ approaches zero, F attr

decreases until zero, and when the velocity of the robot approaches target’s velocity,

F attv decreases to zero as well. Therefore, if both the position and velocity of the robot

approach those of the target, the attractive force F att approaches zero. Thus, when

the robot catches the target they travel at the same velocity, and the robot maintains

the velocity and moves with the target.

In this work, robot motion is subjected to its physical limitation and the magnitude

of its acceleration is upper bounded. The maximum acceleration of the robot is denoted

as amax. According to Newton’s law, the acceleration applied to the robot is given by

a(t) =

{
Fatt
mRi

if ‖Fatt‖
mRi

≤ amax

amax
Fatt

‖Fatt‖ otherwise
(4.21)

In the next subsection, we present the Particle Filter to estimate the position and

velocity of the person.

4.5 Estimating People and Robots Motions

As we previously mentioned, in order to model the space where the robots are allowed to

move, we need to predict both people and robot positions. At a specific time instance,

this is done using a Particle Filter formulation, which is explicitly designed to take

into account the information of the potential field used to represent the environment

in previous time instances.

The problem of predicting the persons and robots positions may be seen as that of

estimating the dynamic state of a nonlinear stochastic system based on a set of noisy

observations. These noisy observations come either from the odometry, in the case of

the robots, or from data such as laser scans or images, for the case of the persons. In
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any event, the estimation process can be written in terms of a process equation and an

observation equation:

xn = f(xn−1,un) (process equation)

yn = h(xn, vn) (observation equation) (4.22)

where f(·) and h(·) are known nonlinear functions, xn is the state vector with either

the robots or persons positions, yn the observation, and un and vn are random noise

components.

Let us denote by x0:n and y0:n the positions and observations up to time n, i.e.,

x0:n := {x0, . . . ,xn} and y0:n := {y0, . . . ,yn}. The problem can be then formulated

in terms of a Bayes filter in which the posterior distribution p(xn|y0:n) is recursively

updated according to

p(xn|y0:n) ∝ Cnp(xn|y0:n−1)p(yn|xn) (4.23)

C−1
n =

∫
p
(
xn|y0:n−1

)
p (yn|xn) dxn

p(xn+1|y0:n) =

∫
p(xn+1|xn)p(xn|y0:n)dxn (4.24)

where p(yn|xn) is the observation (or measurement model), and p(xn+1|y0:n) corre-

sponds to the updating process.

Since we seek to handle situations in which the observations may potentially have

non-Gaussian and multimodal distributions, we use Particle Filtering to approximate

Eqs. 4.23 and 4.24 by a set of weighted particles. The approximation of measurement

and update processes in terms of particle filters is summarized in Algorithms 2 and 3.

Initially, a set ofM particlesX = {x(1)n , . . . ,x
(M)
n } from a so-called importance sampling

distribution π(xn) are generated. A weight w(j) = p(x
(j)
n )/π(x

(j)
n ) is then assigned to

each one of the particles. If we write W = {w(1), . . . , w(M)}, the set {X,W} will

approximate the posterior distribution p(xn|y0:n).

We set the sampling function π(·) to a normal distribution,

p(xn|y0:n−1) = N
(
xn, µ̄n, Σ̄n

)
(4.25)
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Algorithm 2 Approximation of the measurement model

1: Draw samples from π(xn|y0:n) →
{
x
(j)
n

}M

j=1

2: Compute the associated weights by:

w̄n
(j) =

p(yn|x
(j)
n )N(xn = x

(j)
n , µ̄n, Σ̄n)

π(xn
(j)|y0:n)

g(x(j)n ) (4.26)

g(x(j)n ) =


ζ if T (g(x

(j)
n )) = 0, ζ >> 1

1

T (g(x
(j)
n ))

otherwise
(4.27)

3: Normalize the weights

w(j)
n =

w
(j)
n∑M

j=1 w̄
(j)
n

(4.28)

4: Estimate the mean and covariance:

µn =

M∑
j=1

w(j)
n x(j)n

Σn =

M∑
j=1

w(j)
n (µn − x(j)n )(µn − x(j)n )T (4.29)

What is novel from our particle filter implementation is the way we compute the weights.

More specifically, each particle is assigned a weight based on the magnitude of the

potential field in the previous iteration, at the current particle location. This is formally

written in Eq. 4.27 as a new function g(x
(j)
n ), which re-adjusts the weights of all particles

X = {x(1)n , . . . ,x
(M)
n }.

4.6 Experimental Results

The current work was carried out as a part of the European Project URUS [143], and the

scenario where the experiments were performed corresponds to an urban area of about

10.000 m2 within the Campus of the Technical University of Catalonia (UPC). The

area contains different obstacles, such as buildings, benches and trash cans. An aerial

view and a schematic representation of this experimental site is depicted in Fig. 4.7.

In order to evaluate the proposed approach, we did both synthetic and real exper-
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Algorithm 3 Approximation of the update process

1: Draw samples from N(xn,µn,Σn) →
{
x
(j)
n

}M

j=1

2: for j=1,. . . ,M do

3: sample from p(xn+1|xn = x
(j)
n ) to obtain

{
x
(j)
n+1

}M

j=1

4: end for
5: Compute the mean µ̄n+1 and covariance Σ̄n+1:

µ̄n+1 =
1

M

M∑
j=1

x
(j)
n+1

Σ̄n+1 =
1

M

M∑
j=1

(µ̄n+1 − x
(j)
n+1)(µ̄n+1 − x(j)n )T (4.30)

Figure 4.7: Barcelona Robot Lab. Left: An aerial view of our experimental site,
the Barcelona Robot Lab, and the distribution of cameras in the network. The solid
line depicts a sample path followed by the group of persons and guides. Right: A
few images of the group of people, seen from different cameras.

iments. For the synthetic experiments we simulated robot and people trajectories in

open areas, areas with obstacles and in situations were people was leaving the group.

For the real experiments we built a database of people and robot trajectories extracted

from a set of real image sequences. This database was then used to validate the sim-

ulated experiments. Moreover, we perform a set of simple real-life experiments where

our robots Tibi and Dabo carried out the task of leader or shepherd.
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Figure 4.8: Synthetic Experiments. Top: Rate of successful group arrivals in
bar diagrams. Bottom: Time execution of the simulated experiments .

4.6.1 Synthetic Results

In order to evaluate the correctness of the Discrete Time Motion model, we performed

more than 2.000 simulations. In these experiments, we increased the number of people

thay moves away from the group, and the number the robots that perform the guidance

task. We used a computer Intel Core 2 Quad CPU @ 2.66 and 3.00 GHz, which managed

all the running processes.

Firstly, we evaluated the average percentage of successful arrivals to the destina-

tions, that is, if the group of people and robots arrive to the goal destination, see

Fig. 4.8-Top. On the one hand, we observed that as the number of people who leave

the group increases, the task of guiding becomes more difficult. On the other hand,

as more robots carry out the task, the number of successful arrivals to the destina-

tions increases. It has to be mentioned, if a large number of robots are used, the

system is overcrowded, therefore, the task is not performed efficiently, for that reason,

in Chapter 5, a function that evaluates the cost of carrying the task is presented.

84



4.6 Experimental Results

10

14

12

8

6

4

2

0

-2

-2
-4
-4 0 2 4 6

x

y

Goal

Robot

Person
10

14

12

8

6

4

2

0

-2

-2
-4
-4 0 2 4 6

x

y

Goal

Robot

Person
10

14

12

8

6

4

2

0

-2

-2
-4
-4 0 2 4 6

x

y

Goal

Robot

Person

-2 0 2 4
-4
-4

E
n
v
ir

o
n
m

e
n
t 

1
P
o
te

n
ti

a
l 
F
ie

ld

k=1 k=2 k=3 k=4

10

14

12

8

6

4

2

0

-2

-2
-4
-4 0 2 4 6

x

y

Goal

Robot

Person

Figure 4.9: Synthetic Experiment #1: Guiding people in an open area with no
obstacles.

It can be seen, when the group of robots is small (1-3 robots), the time required

to perform the task increases rapidly, meanwhile, for large groups of robots the time

is much lower. However, as mentioned above, it is necessary to compute the work

performed by robots and people, which is presented in the next Chapter 5.

As an example, we present several synthetic experiments in which two robots guided

a group of persons. The robots were supposed to reach a specific target position and

react to unexpected situations in which some of the individuals left the group. Both

the trajectories of the robots and persons were updated according to the motion models

described in Sections 4.3 and 4.4. To simulate the observations of people and robots

positions, Gaussian noise was added to the true values.

In order to make the problem tractable when computing the potential field, we

approximated the working space by a rectangular mesh, with a resolution and size

proportional to the density of people in its interior. Typical sizes are 15×15 meshes with

an internode distance of 25 cm. This mesh corresponds to only a local discretization,

that is swept along the whole environment of 10.000 m2. The tension values and

potential field are uniquely computed at the nodes of the mesh.

We analyzed three different situations. In the first experiment two robots guided

a group of 5 people in an open area without obstacles. Fig. 4.9 shows different time

instances of the simulation process. The top images represent a top view of the envi-
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Figure 4.10: Synthetic Experiment #2: Guiding people in an area with one obsta-
cle.

ronment map, in this case without obstacles. The position of the two robots is plotted

with circles and the five persons are represented by red asterisks. The blue asterisk

represents the target position the robots want to reach. The images at the bottom row

depict the corresponding potential field. The graphs at time k = 1 show the initial

configuration with the robots at the front and back of the group of persons. At time

k = 2 one of the individuals just left group, and immediately after, at k = 3, one of the

robots followed him/her. In the last column we plot the final configuration, where all

the persons reached the goal.

Fig. 4.12-Top, shows the trajectories followed by all the robots and persons and the

covariance of the group distribution. This is an indication of the density of people and

is used to update the size of the working area. Observe that when one of the persons

leaves the group, it is approached by the shepherd robot and returned back to the

group.

In the second experiment we introduced one obstacle between the starting position

of the group and the goal. Fig. 4.10 shows different time instances, again assuming

that one robot is required to intercept one of the individuals who left the group. Note

in the potential field graphs that persons, robots and obstacles are jointly represented.

Yet, since this representation is only local, the decisions of where the robots need to

move can be computed very efficiently. The paths followed by all robots and persons
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Figure 4.11: Synthetic Experiment #3: Guiding people in the Barcelona Robot
Lab.

are depicted in Fig. 4.12-Bottom.

Finally, in the third experiment we show the performance of our algorithm when

the group of 5 people moves across the Campus area (Figs. 4.11 and 4.12-Bottom). In

this case the task of the robots is made easier because the large number of obstacles

–buildings, walls, stairs– highly constrain the movement of the persons.

4.6.2 Validation with Real Data

We also evaluated our approach on real data. For this purpose we captured a large

collection of video sequences of a group of people which was led by three tourist guides

towards a target location. We studied specific situations in which one of the pedestrians

left the group, and one the tourists guides approached him/her and requested returning

back to the group. The behaviors and paths of both the robot and person were then

compared to those simulated with our models. We will next detail these experiments.

First we will focus on the data collection process, and then we will validate our models

in these real situations.
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Figure 4.13: Images of the BRL. Different situations considered for the validation
with real data: walking in open areas; going back and forth; and walking through
narrow corridors.

4.6.2.1 Data Collection

For collecting the data we used the distributed camera network of the Barcelona Robot

Lab, which is composed of 21 interconnected cameras (see Fig. 4.7). We acquired several

video sequences of a group of seven people being guided by three other people playing

the role of the guide robots. The path followed by the group, shown as thick lines in

Fig. 4.7, was repeated 9 times. For each repetition a different behavior was analyzed.

For instance, some examples of the situations we considered are the following:
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• The group follows the guides.

• A person leaves the group and one of the guides has to approach and bring him

back.

• Several people move away from the formation simultaneously and in opposite

directions.

• The whole group stops and moves again.

• The guides are placed at specific locations to create a robot barrier and prevent

people from escaping.

A few sample images of these situations are shown in Fig. 4.13.

The complete database contemplating these situations contains more than 10,000

images, acquired from several synchronized and fully calibrated cameras. The calibra-

tion of the whole camera network was done using [130]. We then manually annotated

the 2D position (on the ground level) of all the persons and guides in all the images.

After computing the homography between the ground plane in the image and that in

the 3D model we could easily map the 2D image positions to the corresponding 3D

camera coordinate system. In addition, since we knew the rigid transformation of each

camera with respect to a global coordinate system, we could finally merge the 3D posi-

tions observed from the different cameras and obtain the complete trajectories (except,

of course, for those areas of the map which were not visible).

4.6.2.2 Validation of the Discrete Time Motion Model

The real trajectories of all the persons of the group and the guides was then used to

validate the accuracy of the motion models we proposed for the persons and robots

(both leaders and shepherds). To simulate the robot paths, we injected the real ob-

servations of the people trajectories and the location of the obstacles into the motion

models described in Section 4.4. A similar operation was done to evaluate the accuracy

of the motion models we defined for the pedestrians. If zobsk is the observed 2D position

of the robot or the person at time k, and zsimk is the corresponding simulated position

we then computed the error at time k as:
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error(k) =

√(
zobsk − zsimk

) (
zobsk − zsimk

)T
. (4.31)
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Figure 4.14: Validating People Motion Model. For each pair of images, the first
plot represents the simulated and true trajectories of two different pedestrians. The
second plot depicts the evolution of the error. In each column row a different situation
is shown: open areas, going back and forth, and narrow corridors.
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Figure 4.15: Validating Leader Robot Motion Model. Top: Images that
represent the paths carried out by the leader robot and the person who performed this
role. Bottom: The error comparison of the two behaviors.

We tested the three different situations shown in Fig. 4.13: the group moving in an

open area with no obstacles; the group going forth and back; and the group walking

through a narrow corridor.

Figures 4.14–4.16 summarize the results of the experiments in the three situations.

For each figure, the plots on top represent the true and simulated paths, and the graphs

on bottom represent the accuracy error of our simulation at different time instances.

In Fig. 4.14 we plot the trajectories estimated for two different pedestrians and

their respective estimations with the Discrete Time Motion model we have proposed

in this chapter. Note that the error is relatively large only for the first few iterations.

This is because these frames correspond to a situation in which both the persons and

guides are still and suddenly start walking. This creates large accelerations which are

not correctly predicted by our model. Yet, after a few frames the error decreases to

very low values, below 50 cm.

Fig. 4.15 shows the accuracy of the path estimated for the leader robot going in

front of the group. The trajectory of this robot is computed using path planning, and
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Figure 4.16: Validating Shepherd Robot Motion Models. Top: Images that
represent the paths carried out by the leader robot and the person who performed this
role. Bottom: The error comparison of the two behaviors. The case of the “back and
forth” is especially interesting, it is example in which one of the pedestrians leaves the
group. Note how one of the shepherds changes its trajectory to intercept this person
and return him/her back to the group formation.

we favor rectilinear paths when no obstacles are found. There is just a slight error

when compared to the person playing the role of leader robot, as completely rectilinear

paths are difficult to follow for a human. Yet, both behaviors are very similar.

Finally, in Fig. 4.16 we show the trajectories of the shepherd robots, which were

going at the back of the group, following the leader while preventing the people from

the group to leave. Different situations are represented. At the top graphs, all the

pedestrians follow the leader and no special action needs to be taken by the shepherds.

In the second row images, one of the shepherds follows the members of the group

walking normally, and the other shepherd focuses on bringing back one person who

left the formation. In the bottom graphs, all persons follow the leader, and again, the

shepherds follow normal trajectories. In all cases, the simulated paths are very close to

the real ones, with an average error below 1 meter.
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Figure 4.17: Real-life experiments of Leader task. Top: Some images of
the experiments performed with Tibi in the BRL. Bottom: Path performed in the
environment, human and robot’s velocity, and distances between Tibi and the volunteer.

4.6.3 Real Experiments

The model described in this chapter has a set of limitations we came across while

testing our model in real-life scenarios and which led us to continue testing through

simulations. For instance, robots cannot accelerate or go faster than people in a safe

way; robot’s localization in dense environments has not been tested widely; and, we

did not find robust methods to detect people’s poses.

Nevertheless, we performed a set of experiments where our robots Tibi and Dabo

carried out guidance task. So far, our robots are not able to communicate between

them, therefore, we have yielded two sets of experiments:the leader task and shepherd

task.

In the first set of experiments, Tibi carried out the leader task in the BRL, see

Fig. 4.17-Top. Tibi was able to guide a person in a area of the BRL using the Dis-

crete Time Motion model. Tibi adjusted its velocity according to human’s motion and

uttered some sentences in order to encourage people to follow its path.
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Figure 4.18: Real-life experiments of Shepherd task. Top: Some images
of the experiments performed with Dabo in the BRL. Bottom: Path performed
in the environment, human and robot’s velocity, and distances between Tibi and the
volunteer.

In the second part of the experiments, we evaluated the behavior of Dabo performing

the shepherd task, see Fig. 4.18. Dabo carried out its task, followed the volunteer and

modified its velocity in accordance with human’s behaviors.

In conclusion, we yielded a set of real-life experiments in order to evaluate robots’

behavior while guiding a person with out robot Tibi and Dabo. Although we use a

single robot due to technological constraint, we plan to implement the cooperative

behavior of a set of robots guiding a group of people to verify the functionality of our

model.

4.7 Summary

We have presented a new framework to guide people in urban areas with a set of

mobile robots working in a cooperative manner. In contrast to existing approaches, our

method can tackle more realistic situations, such as dealing with large environments
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with obstacles, or regrouping people who left the group. We presented various results

in different situations: guiding in open areas, in areas with a single obstacle, and urban

areas with a large number of obstacles. In all of these experiments we showed that the

robots can perform very satisfactorily and approaching realistic situations.

Moreover, this chapter describes the validation process of the simulation model that

have been used to explore the new possibilities of interaction when humans are guided

by teams of robots that work cooperatively in urban areas. The set of experiments,

which have been recorded as video sequences, show a group of people being guided by a

team of three people (who play the role of the guide robots). The video sequences were

recorded in the Barcelona Robot Lab, where people move in the urban space following

diverse trajectories. The motion (pose and velocity) of people and robots extracted

from the video sequences were compared against the predictions of the DTM model.

Finally, we checked the proper functioning of the model by studying the position error

differences of the recorded and simulated sequences. Furthermore, we perform a set of

simple real-life experiments where our robots Tibi and Dabo carried out the task of

leader or shepherd in the Barcelona Robot Lab.
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Chapter 5

Local Optimization of Robots
Movements using Prediction and
Anticipation Model

Success is not achieved only with special qualities.

It is primarily a work record, method and organization

J.P. Sergent

This chapter proposes a new model for guiding people in urban settings using mul-

tiple robots that work cooperatively. More specifically, this investigation describes the

circumstances in which people might stray from the formation when following different

robots’ instructions. To this end, we introduce a “prediction and anticipation model”

that predicts the position of the group using a Particle Filter, while determining the op-

timal robot behavior to help people stay in the group in areas where they may become

distracted. As a result, this chapter presents a novel approach to locally optimize the

work performed by robots and people using the minimum robots’ work criterion and

determining human-friendly types of movements. The guidance missions were carried

out in urban areas that included multiple conflict areas and obstacles. We also provide

an analysis of robots’ behavioral reactions to people by simulating different situations

in the locations that were used for the investigation. The method was tested through

simulations that took into account the difficulties and technological constraints derived

from real-life situations. Despite these problematic issues, we were able to demonstrate
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the robots’ effect on people in real-life situations in terms of pushing and dragging

forces. The work in this chapter has been presented in [50, 55, 57].

5.1 Introduction

In recent years, research and wide-spread interest in the interaction between robots and

humans have increased rapidly, in the academic sphere as well as in laboratories, private

companies, and the media. The applications of this field are very diverse, ranging from

developing automatic exploration sites [165] to using robot formations to transport

and evacuate people in emergency situations [23]. Researchers are also hard at work on

crafting robots that can operate as team members [148], therapists [28] and in robotics

services [89].

Within the area of social and cooperative robots, the nature of interactions between

a group of people and a set of accompanying robots has become a primary point of

interest. As previously described, our findings are based on the behavior of a team of

robots which operate cooperatively to accompany a group of people from a designated

starting point to a specific destination within an urban area.

In Chapter 4, we introduced a representative model of the environment in which

robots were able to perform their assigned tasks. In the present chapter, the investiga-

tion takes this one step further by presenting a “Prediction and Anticipation Model”

(PAM). This model projects the behavior of a group of people (prediction) using a

particle filter [7]. It also enables us to determine the particular distribution of robots

that can be used to best prevent people from straying from the formation in specific

areas of a map (anticipation). By using the Prediction and Anticipation Model, we

were able to prevent people from straying from the guided group and, thus facilitate

the task of the robots. Furthermore, we develop techniques to locally optimize the work

performed by robots and people alike, and therefore obtain a human-friendly motion.

To test the proper functioning of the model, we conducted several simulations. We

were not able to test the complete method in real-life scenarios due to technological

constraints and safety concerns (due to a lack of robots equipped with high acceleration

capabilities and that were also deemed safe to navigate in urban sites). Despite these
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factors, we were able to successfully evaluate the effect of a robot’s pushing and dragging

forces on people in real-life situations using one of our robots (Tibi).

In the simulations, a group of people were led by a group of robots in an urban

area that involved navigation through and around several cross-streets, buildings and

obstacles. The simulations that were performed encompassed a variety of different fac-

tors including: (i) number of people being accompanied, (ii) different layout scenarios

within the environment (for example, corridors, open areas or intersections), and (iii)

situations in which a specific number of people strayed from the designated path at

the same time. In the simulations, we compared two alternative strategies: (i) placing

a robot of the initial formation in the conflict area, in order to prevent people from

straying, and inviting people to return to the formation using voice instructions via

the PAM model. (ii) Wherever participants strayed, we studied the robots’ behavior

and evaluated how they were able to solve this kind of herding task without necessarily

having anticipated the situation. In each of these two strategies, we measured the time

it took to perform the task and assessed the robots’ performance in order to determine

the best strategy for each situation.

We also conducted real-life experiments to analyze the robots’ impact on people

when they are guided by the pushing and dragging forces that exist between robots and

humans, or even between humans and humans. These forces have been identified and

quantified in prior studies of pedestrians in crowds and in evacuation scenarios [76, 149].

To ensure that the above mentioned model was valid for our study, we conducted a

series of real-life experiments that include either: a robot approaching a moving person

from different angles at speeds, or a person following a robot. We compared the results

of these tests with those yielded by the simulations, in order to demonstrate the proper

functionality of the model.

5.2 Chapter’s Overview

As stated earlier, this chapter describes a new model that has been designed to accom-

pany people using a team of robots which work cooperatively to perform the assigned

task. One of the main issues which arises when humans are asked to follow robots’ in-

structions in a given task is the fact that people might stray from the robot formation.
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On the one hand, the main focus of this study is on the “Prediction and Anticipation

Model” (PAM) of human behavioral motion. We introduce a model which suggests a

probable position of the members of the group using a Particle Filter (prediction), and

it attempts to determine the optimal number of robots needed using the minimum

robot energy (or work) criterion, depending on the number of individuals present

and the environment in which they find themselves. We then go on to analyze the areas

of the established map which could cause confusion in the group or result in general

group dispersion, and explore ways of preventing people from straying from the path

by considering the optimal formation of the robots in terms of the task that needs to

be performed (anticipation).

On the other hand, although robots might be able to anticipate human actions,

people might also move away from the group spontaneously. In light of this, our work

introduces a novel approach to locally optimize the work performed by robots and

obtain a human-friendly motion (basically, ensuring that robots do not intrude on the

humans’ personal space). We consider situations in which individuals can move away

from the formation, or in which they must be regrouped by multiple mobile robots

working cooperatively. These issues are addressed by introducing a new cost function

which minimizes the work required by robots to lead and regroup people.

5.2.1 Problem Constraints and Model Assumptions

This subsection describes the limitations we came across while testing our model in

real-life scenarios and which led us to continue testing exclusively through simulations.

We will also explain the model assumptions we adopted for the simulations.

There are at least two types of problem constraints. The first derives from robots’

perception systems and motions; the second one is the result of human behavioral

reactions to the robots’ instructions. The effects of these limitations on our study are

summarized below:

• Robots cannot accelerate or go faster than people in a safe way. This means our

robots cannot usually follow people’s behavioral reactions.

• The localization of urban robots in dense environments has not been tested widely,

and existing methods are not yet robust enough.
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• No robust methods exist to detect people’s poses (position and orientation) when

they move in a group. From the point of view of a robot on one of the sides of

the group, some individuals are inevitably partially or completely out of sight. If

the group has a small number of people the chances of achieving accurate pose

detection are high, but if there are many people, detection becomes very difficult.

Since our method is based on estimating the pose of each person of the group,

pose detection is key to our research.

• There is not currently enough data on people’s reactions to robots’ motion in-

structions. Instructions like “please return to the group” or “do not go away”

might cause different reactive motions in different touring situations.

Because of these limitations, and due to the lack of knowledge of other real-life

experimental works, we have made the following assumptions in our model:

• People in a guided tour “usually” follow the group leader. In this case, the leader

is a robot.

• People understand, agree with and follow the robot’s instructions and motions

(for example, when a robot approaches a person who has moved away, the person

follows the robot’s instructions and movements).

• The number of people who move away from the formation is no more that one or

two people.

• When one or more robots are used to block one area to form a barrier people do

not attempt to cross the robot barrier.

• After 15 minutes of a robot guidance, 26% of people stray from the group, see [125]

for additional information.

• Robots know the pose (position and orientation) of each person in the group.

• Robots are always localized keeping in mind the constraints of the physical envi-

ronment.

• Robots can communicate between them and send and receive information.
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• Robots have a map of the environment in which the tour or visit is going to take

place.

• Robots have enough acceleration capacity and speed to safely reach a person,

who has strayed.

The first four assumptions are usually demonstrated by people who follow the “cit-

izen rules” of common civic behavior and who are not in a state of panic or engaging in

an act of vandalism. As a result, we are assuming people understand and obey the tour

guides. The fifth assumption has been observed in social studies carried out on human

motion behavior [125]. The sixth assumption is difficult to verify at the present time

because, although there exist several algorithms which can detect people’s position,

the methods are not yet precise and robust enough for situations in which people are

partially or completely out of the robots’s field of vision, for example [95]. The next

three assumptions are valid and have been tested in outdoor real-life scenarios [27].

The last assumption is also complicated and, although there are many good and fast

robots with excellent navigation methods [166], there are no safe robust methods that

have been tested in real-life experiments with people. Moreover, robots currently do

not have the adequate acceleration and prediction methods to follow people’s random

and spontaneous changes of motion.

5.2.2 Chapter Topics and Contributions

The contributions and topics described in this Chapter are presented below, see Fig. 5.1.

• Representation of people’s motion: Before working with real robots and real peo-

ple, we first must develop some simulation results. In order to do this, we needed

to model people’s motion by using the concepts introduced in the investigation

carried out by Helbing et al., which studied the dynamics of pedestrian crowds

from the “social force model” point of view [75], this theory has been introduced

in Chapter 3. The meaning of “social force model” does not refer to a social

robot’s behavior, but rather to the existence of a non-physical force (push, drag

or traverse) robots can exert to move or drag people. More specifically, this work

describes the pedestrians’ motion based on a social force model which result from

102



5.2 Chapter’s Overview

Robots' Configuration 

that  maximizes the

 covered area

Map representation Path

(a) (b)

(c)

Figure 5.1: Overview of the study presented. An essential part of our work was to
simulate people’s movements and to show humans’ reactions depending on the stimulus
provoked on them. We also offer solutions to two different problems that were found
while carrying out the mission of guiding people. First, we show the PAM model, to
prevent group dispersion, we identify areas where people might get lost, and robots
are located there to bring them back to the formation. Secondly, if someone moves
away from the group, the behavior of the robots to accompany him/her back to the
formation is shown. For both problems, we use a function that minimizes the cost of
work of robots and humans in order to make the interaction between them as pleasant
as possible.

the internal motivations of the individuals performing certain movements [177].

This theory has been presented previously in Section 4.3.

• Prevent group dispersion: As indicated earlier, our work focuses on the behavior of

robots when guiding a group of people in urban areas. One of the main challenges

when robots try to perform this task is the possibility that one or more people

will move away from the group, either out of boredom or due to his/her interest

in something which lies away from the group’s path.

To use the model presented in this work, Prediction and Anticipation Model

(PAM), we needed to know the layout of the urban map, the path that would be

taken, the final destination of the guided group, and the estimated positions of

the people and robots. The first component of the model is the prediction, which

anticipates the movements that will be made by both the humans and robots.
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The second component, anticipation, detects the conflict areas (where people

are prone to stray) and calculates the number of robots that should cover the

conflict area. The Prediction and Anticipation Model (PAM) uses the previously

gathered data (i.e. people’s and robots’ positions, detection of conflict areas, etc.)

to compute the possible distribution of robots in order to cover the conflict areas

and guide the people to the final destination. Because we needed to minimize

the number of robots and wasted energy, the PAM is designed to seek out the

number of robots and determine their respective tasks so as to minimize the work

done by robots and people.

• Detection of conflict areas: As previously indicated, one of the key components

of our work is the robots’ ability to anticipate human movements. Therefore,

it is crucial to understand the environment in which the group moves. As a

result, we needed to know the set of robots and people that would be situated

in the hallways, open spaces, intersections and other settings. We also describe

a function which determines the density of obstacles that surround the group

during their movement along the path. In the areas with open spaces and a low

density of obstacles, the probability that a person will move away is high and,

thus, these areas were treated as conflict areas in our investigation.

• Minimum work performed by robots and people: We present a function which

determines the optimal configuration of robots (defined as the behavior of all

the members of the group). That configuration should not only minimize the

work performed by the robots, but also make the interaction between robots and

people as “comfortable” as possible, in terms of motion (in this context, the word

“comfortable” denotes that the robots will not try to intrude on people’s personal

space). This function can be used in two different stages of the simulations: (i)

once we have determined that areas in which people are more likely stray, we

can asses which robot ought to be sent to the area; and, (ii) when that person

leaves the group, we can also calculate which robot should be sent to find and

accompany him/her back to the formation. In both cases, we determined the

strategy for assigning robots’ tasks which required the least amount of work and

also led to the minimum displacement problems in the guidance task. Moreover,
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robots had to be able to perform all their tasks while navigating quietly, avoiding

obstacles, and not intruding on people’s personal space.

• Regrouping people: In our work, we allowed for the possibility that one or more

people would move away from the group. The system would then need to assign a

robot to perform the task of retrieving him/her. By using the function introduced

above, we computed the behavior of the team of robots to redirect the person

who has strayed. Once the configuration with minimal work cost was determined,

we could compute the robot’s trajectory to regroup the people.

5.3 Prediction and Anticipation Model

One of the main issue when robots try to perform the task of guiding a group of

people, is the possibility that one or more people move away from the group, either out

of boredom or due to his/her interest in something lying outside the given path.

In the previous Chapter 4, we presented how robots should behave when they

accompany groups of people, or which strategy the group of robots should follow when

a person moves away. In the present Chapter, we go one step further, presenting a

model designed to prevent people from moving away from the formation. Therefore,

the model for this study must incorporate both information about the environment as

well as people’s behavior within that environment, so robots are able to anticipate the

problem of losing people.

To apply the Prediction and Anticipation Model (PAM), the layout of the urban

map must be known a priori, the path to the final destination of the guided group

and the estimated positions of the people and robots. The first component of the

model is the Prediction, which is used to foresee the people’s and robots’ motion some

steps ahead. The second component, Anticipation, identifies the conflict areas (where

people can move away) and computes the number of robots that should cover that

conflict area. The PAM then uses this data (people’s and robots’ positions, detection

of conflict areas) to calculate the distribution of robots to cover the conflict areas and

guide the people to the destination. The PAM also decides the number and distribution

of robots in a way that minimizes the work done by robots and people, see Fig. 5.2.
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Figure 5.2: Components of the PAM model. The first component estimates people
and robots’ positions along the path by using a particle filter. The second components
is anticipation, which detects the areas on the map where people might get distracted
and move away, it also computes the configuration of robots which maximizes the
covered area. Using the junction of the two components, the distribution of robots
that minimizes the work performed by both robots and people is obtained.

5.3.1 Prediction

As previously mentioned, a key aspect of a guiding mission is to prevent people from

straying from the group. To achieve this aim, the model must estimate people’s posi-

tions and velocities with a Particle Filter (PF), in this case a Gaussian Particle Filter

(GPF).

We have modified part of the measurement update algorithm [7] to prevent humans

and robots from colliding with each other and with obstacles, based on the findings

in earlier studies [106]. Furthermore, we use the information on people’s motions in

the Particle Filter to estimate the position of the group over time. The computation

to estimate people/robots’ positions is sequential, it starts from the leader robot, then

people of the group, and finally shepherd robots. In each step of the process, the

people/robot position (personal space occupancy) is updated. In the sampling process,

we do not consider the particles that are located in positions already occupied by the

vital space of other members of the team. So, position estimations where two different

people/robots overlap the personal space occupancy of other people/robots are not

allowed at any time.
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An extensive description of the method has been presented in the previous Chap-

ter 4, in Section 4.5.

Using this method, we can predict where the group of people will be at certain times

in the future. Moreover, once the prediction of people’s motion behavior is computed,

the group of robots can enable us to determine the locations on the path where people

are most likely to stray.

5.3.2 Anticipation

Once the model has predicted the people’s position, it must identify the potential

conflict areas, and determine where the robots should move in order to prevent straying

and assign the robots positions in order to be able to guide the group of people.

Thus, the model is able to compute the optimal number of robots needed and struc-

ture of their formation so as to minimize the work they must perform. The presented

model is applicable to any urban area. To study potential conflict areas, we have taken

into account five different kinds of settings: open areas, entering a hallway, leaving a

hallway, crossing intersections with three streets and crossing intersections with four

streets.Other possibilities which may be considered are merely combinations of the

above mentioned conditions.

In this Chapter, it is assumed the map on which robots perform their task it is

already known as well as the path the group should follow. Therefore, the first step

of the method consists of being aware of the open spaces (the areas in the map where

there are no obstacles or their density is very low) along the planned path, as well as,

hallways, open areas or intersections. After that, the obstacles are modeled as Gaussian

functions,

To(µo ,Σo)(p) =
1

|Σo |1/2 (2π)n/2
e−

1
2
(p−µo)

TΣ−1
o (p−µo) (5.1)

Then, the probability map consist of a set of Gaussian functions where the obstacles

are located, and the rest of the map will be represented as a zero-function. The function

H(map) is the occupied space of the obstacles and is calculated by adding all the

Gaussian functions representing the obstacles:
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Figure 5.3: Gaussian Functions. Graphical representation of Eq. 5.3 using Gaussian
functions of a group of people moving in an urban area. Left: The group starts
moving, on the bottom of the y-axis, then the Prediction and Anticipation Model
detects that one person can move away from the formation in the next corner, computes
which robot can be sent and sends an auxiliary robot to that corner to prevent from
people moving away. Right: The group passes along the crossing area but, as a robot
is located in that area, people cannot move away.

H(map) =
∑
p∈O

To(µo ,Σo) (5.2)

where, O is the set of obstacles in the environment, p ∈ O, means that point p is

located inside an obstacle.

Moreover, we have also defined the robots as Gaussian functions, so, Eq. 5.2 can be

extended to include the robots as well:

Hext(map, conf) =
∑
p∈O

To(µo,Σo) +
∑
p∈R

Tr(µr,Σr) (5.3)

where conf is the set of robots’ positions. In Fig. 5.3 there is an example of this

representation. Therefore, robots can be seen as obstacles, since they can block the

passage and act as a barrier.

According to [66], when pedestrians move in groups, the people formation can be

considered as rows of 2 to 4 people (the distances between them are shown in Table 5.1).

The parameters of this table are: taking the values between brackets as the standard

deviation error of the mean; ϕij is the angle between the walking direction of the person
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Angle and distance measures between people in a group

lϕij (deg) dij (m)

size=2 p1p2 98.8 (±1.12) 0.78 (±0.02)
size=3 p1p2 97.8 (±5.14) 0.79 (±0.05)

p2p3 87.1 (±4.46) 0.81 (±0.10)
size=4 p1p2 99.2 (±6.33) 0.87 (±0.06)

p2p3 87.7 (±6.54) 0.93 (±0.09)
p3p4 85.4 (±5.01) 0.80 (±0.05)

Table 5.1: Angle and Distance measures: Average angle and distance values be-
tween group members for each group size [66].

pi and the segment formed by person pi and person pj ; and dij is the distance between

pi and pj .

Taking into account these measurements, if Np is the number of people who are

being accompanied by robots, it can be assumed that group’s width is k ∗ dside, where
k is the number of people in a row, and dsite is the distance between two people, see

Table 5.1. Furthermore, the length of the group is Np/3 ∗ dfront, where dfront is the

distance between one person and another who is in front of him/her. This measurement

is defined by the personal space of a person described in Section 4.3.

Once the map of obstacles and the group size have been computed, the density of

the obstacles along the path that the group will follow can be calculated. Since the

group will move at a constant speed, we can compute at each instant t, the density of

obstacles that a group of people will find along a specific path on the map.

First, we have to predict the position and velocity of the center of the group, gt.

Here, we combine the social force model presented in Section 3.3 with a Kalman Filter.

Let gt = (xgt , ygt , ẋgt , ẏgt)
T = (xgt ,vgt)

T be the state of the center of the group at

time t and Σt its 4×4 covariance matrix estimate. The term xgt represents the position

and vgt the velocity of the pedestrian in Cartesian space. The constant velocity motion

model is then defined as

p(gt|gt−1) = N(gt;Agt−1,AΣt−1A
T +Q) (5.4)
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where A is the state transition matrix. The matrix Q represents the acceleration

capabilities of humans. We extend this model by considering how the state of the

pedestrian at a generic time t is influenced by its previous state and static obstacles O.

As mentioned earlier, the basic equation of motion for a pedestrian is given by a social

force term:

d

dt
vgt =

F

m
(5.5)

The force term F, is computed as described in Eq. 3.3. Moreover, we use a discrete

time approximation of Eq. 5.5 within a fixed interval of time ∆t to obtain gt, where

gt = Υ(gt−1,O) =

[
xgt−1 + vgt−1∆t+

1
2
F
m∆t2

vgt−1∆t+
F
m∆t

]
(5.6)

This equation describes how the motion of the center of the group evolves over

time. The change in motion is a reactive behavior from interaction forces and physical

constraints from the environment. Assuming that the motion is affected by Gaussian

noise with zero mean and with covariance matrix Q, we can the define

p(gt|gt−1,O) = N(gt; Υ(gt−1,O),JΥΣt−1JΥ
T +Q) (5.7)

where JΥ = ∂Υ(·)
∂g is the Jacobian of Υ(·) evaluated at gt−1.

Second, once the prediction of group’s position is computed along the time t, we

can now define density of obstacles that a group of people will find along a specific path

on the map. Thus, this function Dt is computed as follows:

Dt(group size,map) =

∫
x∈Gt

H(x )dx (5.8)

where Gt is the space occupied by the intersection of the set of obstacles and group’s

position at time t. Therefore, x ∈ Gt means that the density of obstacles is computed in

the area occupied by the group, see Fig. 5.4. Thus, for those areas where the density of

obstacles is low, the probability that people will move away is high. Moreover, according

to [125], when people are being guided by a robot, for instance, in a museum, after 15
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minutes, people’s interest wanes, and about 26% of its members stray from the path.

Therefore, in the present work, we consider that in free areas, up to 26% of the members

can move away. If the value of Dt is low in a specific area, it means there are many

open zones and the robots must remain attentive to human reactions. Using this model,

we can determine the optimal robots’ motion behaviors in different environments for

guiding purposes.

Next, Eq. 5.8 is extended to determine the configuration of the robots that best

ensures that robots will cover the conflict areas -i.e., block the area in order to help

people to remain in the group. We associate a scalar value with the group by using

the function Dtext(conf, group), where conf is the set of positions of the robots and

group is the position of the group of people being accompanied. This function indicates

that the higher the value of Dtext , the more control is needed. Thus, for the particular

configuration of robots conf , the function Dtext will be:

Dtext(conf,map) =

∫
x∈Gt

Hext(x ) dx (5.9)

where Gt is the area occupied by the group of people and robots at time t. So, the

configuration of robots that will be considered is the one that maximizes Eq. 5.9:

C = argmax{Dtext(conf,map)},∀ configurations (5.10)

According to this strategy, the areas where people are likely to move away are

covered. For groups of 6 or more people, the probability that more than one person

will move away at the same place in different directions is high. For smaller groups,

we only need to position a single robot in the open zones. That is, those zones which

have a small value for the function Dt. However, for large groups, it is not enough to

place just a single robot in such areas. As the robots know the map a priori, when they

accompany large groups some might be positioned so as to form a barrier and prevent

people from straying. Other strategies might be also used here, for example, a robot

with an extensible arm or a rope might be employed.

Another issue to be determined is the best distribution of the robots to perform

this task. In order to do that, we studied the work performed by the group. In the
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Figure 5.4: Density of obstacles a long the path. Graphical representation of
a group of people moving through an area with obstacles and crossing areas. Left:
path that the group will follow, fuzzy rectangles are the estimation of the group size,
triangles are the mean position of the group and the direction of motion. Right: The
graph that indicates the density of obstacles along the path using Eq. 5.8.

next section, we present a model that locally optimizes the work carried out by the

robots in a way that achieved the minimum displacement of humans during a guiding

mission.

5.4 Optimal Robot Task Assignment for the Cooperative
Mission

In the previous section, we outlined how we determined the areas where people are

more likely to move away depending on the density of obstacles along the path. The

next step is to decide which robots should be sent to these areas depending on the

group’s motion and the position of the robots. In this section, we introduce a function

based on the minimum robot energy (or work) criterion which determines the

robots’ optimal configuration (as it relates to the group of motion tasks assigned to

each robot). We also tried to minimize the work performed by robots and achieve the

minimum distances of displacement by the people. The following function can be used

to solve two different tasks:

• Once the areas where people could stray have been identified, it must be deter-

mined which robots will be sent.
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• If someone (a person or group of two people) leaves the group, it must be com-

puted which robot should be sent to bring the person back to the formation.

In both cases, we identify the best strategy for the following situation: “Given a fixed

number of robots (usually 2 or 3), assign robots’ tasks which will minimize the work

that will be required by them and, also, produce the minimum displacement problems

for guiding people”. Moreover, robots must be able to perform all their motion tasks

while they navigate, avoid obstacles, and refrain from intruding on people’s personal

space.

In the case where we use two robots, one will be the leader and the second one will

perform the task of regrouping and herding the people. If we use three robots, one will

be the leader, and the other two will be used for regrouping or herding people. The

leader of the robots is not predefined, in fact, the robots can change roles depending

on the evaluation of the cost function. The robot tasks that have to be delegated in

this stage are as follows:

• Leader task : The leader robot computes a path planning and moves to the next

point. We also assume that there exists a drag force which will attract people

behind the robot. Here, the robot only has to move from the present position to

the next one on along guiding path. If a robot that is not the leader assumes the

leading role, this robot will have to move to the leader’s present position before

performing its task.

• Robot acting as a barrier task : As we explained in the previous section, it is more

likely for people to become dispersed within certain areas on the map, therefore,

in those areas where the density of obstacles is low, one or more robots should

be sent to prevent people from straying. Here, it is assumed that the robots that

perform this task well act as a repelling force pushing people to follow the group

and preventing them from walking away from the formation.

• Looking for a person who goes away task : The robot moves to the estimated

position of the person who has strayed from the formation. In this case, the robot

must compute all possible paths to reach the estimated position and then assume
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the one which minimizes the itinerary. In our simulations, we used a selection of

points on the environment where people are more likely to move away.

• Pushing task : The robot pushes a person who has strayed so he/she returns to

the crowd formation. Since “push” has several meanings, the more direct one

denotes the act of physically push a person, a more gentler method is to give

instructions and accompany the person back to the group. This task can be also

applied when a robot pushes a person (or people) who is (or are) following the

formation in order to regroup people when the formation has fallen apart. We

assume a repelling force which pushes the person to follow the robot’s direction.

• Crowd traversing task : The robot has to move through the formation to achieve

the estimated position of the person who strays from the crowd formation. This

task implies that the robot has to push people away from their path, which

creates a set of repulsion forces between the robot and the people. This particular

situation is not addressed in the present work, due to safety concerns.

The cost function, described below, is computed based on the work performed, and

can be divided into two blocks: (i) Robot work motion, and (ii) Human work motion.

In order to compute the dragging, pushing and crowd traversing forces, we use the

equations defined in previous investigations on human behavior with other individu-

als [75]. People’s movements are determined by their desired speed and the goal they

wish to reach. In our case, the direction of the person movement epi(t) is given by:

epi(t) = eRi(t) + ξ(t) (5.11)

where ξ is the noise. Usually, people do not have a concrete goal and should follow

the leader robot, thus, the person’s direction is determined by the robot’s movement

or the person who they have in front of them, if the robot is not in their visual field.

In the following sections, we describe the different forces behind the computation

of the cost function.
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5.4.1 Robot Work Motion

Working with autonomous mobile robots, the robot Ri work motion is expressed as:

f mot
Ri

= mRiaRi

W mot
Ri

= f mot
Ri

∆sRi (5.12)

where mRi is the mass of the Ri robot, aRi its acceleration and ∆sRi the space

traversed by the robot to achieve its goal.

5.4.2 Human Work Motion

In Human Robot Interaction, it is necessary to consider the dragging, pushing and

crowd intrusion forces produced by a certain robot’s motion which can affect people.

This component is called Human Work Motion, and it is the cost of people’s movements

as a result of robot’s motions. As described earlier in this chapter, the group follows

the robot guide/leader, and a set of robots help to achieve their goal. The effect of

robots on people as forces is as follows:

• Leader robot: attractive (dragging) force, inversely proportional to distance.

• Shepherding robot: Repulsive (pushing, traversing) force, which has a repulsive

effect on people’s personal space.

5.4.2.1 Dragging Work

The dragging force is necessary when the leader robot guides the group of people from

one place to another. It acts as an attractive force, hence the force applied by robot

leader L to each person pi is:

f drag
Li (t) = −CLinLi(t) = −CLi

rL(t)− rpi(t)

dLi(t)
(5.13)

dLi(t) = ‖rL(t)− rpi(t)‖ (5.14)
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where dLi(t) is the distance between person pi and robot L at instant t. See [74]

for more information about the parameter CLi , which reflects the attraction coefficient

over the individual pi, and depends on the distance between the robot leader and person

pi.

Thus, the dragging work, which the leader robot exerts on each individual, is defined

by:

W drag =
∑
∀ pi

f drag
Li ∆si (5.15)

Where ∆si is the distance traveled by the person pi.

5.4.2.2 Pushing Work

The Pushing force is understood to be the repulsive effect yielded by the shepherding

robot on the group of people in order to regroup a person or prevent people from

moving away by using a robot as a barrier. This repulsive force is caused by the robots’

movements into people’s personal space which is five feet around the humans body.

This territorial effect might be described as a repulsive social force:

f push
ij = Aiexp

(rij−dij)/Binij

(
λi + (1 + λi)

1 + cos(ϕij)

2

)
(5.16)

Where Ai is the interaction strength, rij the sum of the radii of robot shepherd

Si and person pj , usually people have a radius of one meter and robots 1.5 m, Bi is

the parameter of repulsive interaction, dij(t) =
∥∥rSi(t)− rpj (t)

∥∥ is the distance from

the mass center of robot Si and person pj . Finally, by choising λ < 1 , the parameter

reflects the situation in front of a pedestrian, it has a larger impact on their behavior

than things happening behind them. The angle ϕij(t) denotes the angle between the

direction ei(t) of motion and the direction −nij(t) of the object exerting the repulsive

force, see [74].

So we can write pushing work by:

W push =
∑

∀ pj ∈Pi

f push
ij (t)∆sj (5.17)
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Where Pi is the set of people in which one of the shepherd robots has invaded the

person’s personal space. If an individual is more than two meters away from the robot,

it is considered that the robot has not intruded on his/her personal space.

5.4.2.3 Traversing Work

And last but not least, the Traversing force is determined by the forces applied by

the robot when traversing the crowd. For safety reasons, in this research, it has been

decided the value of this force would be infinity to ensure that a robot would not cross

the crowd or cause any damage.

5.4.3 Total Cost for One Robot

The cost function for robot Ri, given a specific task, is the following:

WRi = δmotW
mot
Ri

+ δdragW
drag
Ri

+ δpushW
push
Ri

+ δtravW
trav
Ri

(5.18)

where δk =

{
1 if this task is assigned
0 if this task is not assigned

Where k could be pushing, dragging, traversing or motion. For each period of time,

the leader and shepherd robots will be given a task in the guiding mission, which will

require one or several robot work motions and human works motions.

5.4.4 Local Optimal Robot Task Assignment

At this point, we are able to compute a local optimal task assignment for the robots

completing the guiding task. In this case, we mean “local” and not “global” optimal

robot task assignment because we are only working with a short period of time ahead,

when an event happens or can happen; for example, when a person strays from the

group or where potential conflict areas in which people are more likely to stray are

located. The local optimal robot task assignment will be one which minimizes the

assigned work cost required to accomplish the local task, and it is computed as follows:
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C = argmin{Wtotal(c)}, ∀ configuration c (5.19)

where the configuration indicates how the tasks are distributed among the robots,

and Wtotal(c) =
∑

∀cWi is the total cost for the c robots that are working coop-

eratively. Eq. 5.19 computes the best configuration based on the minimum robot

motion energy (or work) criterion.

Using C we can identify the motion tasks for each robot and establish their trajec-

tories in order to achieve their goals. A typical mission is to retrieve a person who has

strayed from the group. In this case, the output of the configuration is that one robot

has to reach the person who is moving away; once the robot has reached him/her it

must apply a Pushing force to lead the person back to the group position. The scenario

is adjusted in the case that several people move away in different directions at the same

time. If there are enough robots, the model computes the robot’s optimal configuration

and assigns each one the goal of reaching the assigned person and leading him/her back

to the group. If the number of people moving away in different directions is greater

than the number of shepherd robots available, then, there is neither an optimal solution

nor a good solution. This problem can only be resolved by the following means: when

one shepherd robot is available, if the person is still in an area of the map where the

robot can detect him/her, the best task assignment will be computed and robots will

be set to achieve their goals. However, if this person cannot be detected, the problem

has no possible solution.

Table 5.2 presents robots’ tasks and behaviors, as well as, the forces that are applied

in each case. The computation of the configurations and the procedure that should be

followed by the robots is explained in the following section.

The various issues which emerge from the determination of this local optimal solu-

tion are as follows:

• The method employed has a time complexity of NR!, where NR is the number

of robots used for guiding. Although we have not analyzed other faster methods

(from the complexity point of view) in this work, there are various ways of reduc-

ing this time complexity using the environment or robot formation heuristics.
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• The method finds a local optimal solution when the number of robots is greater

than the number of persons who move away from the group. Otherwise, there is

no local optimal solution.

• The method sequentially assigns the robots to follow the group of people who have

strayed, or to prevent people from straying. If there are several configurations

with the same cost function value, the system will automatically choose the first

solution. In the case where there are two solutions where either the leader or a

shepherding robot can be used to reach a person the method will select the latter.

• The scalability of the method depends on the number of people being guided and

the number of robots present. If the number of robots and people are high, then

due to the time complexity issue, the method might be too slow.

5.5 Computation of the Robot Configurations for Group
Reunification

One of the most common problems which arises when robots guide a group of people

occurs when one or more people move away from the group and need to be retrieved, ei-

ther because they are interested in an object lying outside the trajectory of the group,

or because they become distracted. In this section we describe the method of rein-

tegrating people who have strayed from the group using the cost function described

above.

When this problem occurs, the robots must adjust their goals. For instance, one of

the shepherd robots can change its direction, instead of following leader’s trajectory, or

the leader robot can become a shepherd robot. Therefore, it is necessary to evaluate the

cost and the consequences of such changes in robot roles and trajectories. In Table 5.2

we describe the robots’ forces and behavior in each guiding task.

In order to compute the best configuration C which minimizes the total robot cost in

a regrouping task, the system must predict, for each configuration of robots, people’s

positions and motion vectors [7], as well as how much work each robot must do to

perform its task. People’s motion is predicted with a particle filter which considers
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Tasks and Behaviors

Task Robot Forces Applied Behavior

Guide the group

Leader fdrag Act as a tour guide

Shepherd

fdrag Interchange
fpush the role with
f trav the robot leader
fdrag Act as a tour guide.

Join the group
Leader fdrag Reduce the velocity

Shepherd fpush Increase the velocity

Rescue people
Leader

fdrag
All the group follows
the leader.

fdrag Robot leader interchange
fpush its role with shepherd
f trav robots.

Shepherd
fpuch Compute the
fdrag trajectory for
f trav reconduct people.

Barrier in a cross

Leader fdrag
Follows the trajectory
till the goal

Shepherd fpush
Robot moves toward
the corner and wait
for the group passes.

Narrow corridor
Leader fdrag

Follows the trajectory
till the goal.

Shepherd fpush
Wait all the group
enters the narrow corridor.

Table 5.2: Tasks and Behaviors: Description of robots’ forces and behaviors in each
guiding tasks.

all the positions of people and robots as well as the obstacles in the environment. To

compute the work that each robot must carry out, Eq. 5.18, the system has to compute

the robot work motion, and the robot work required by Helbings’ forces. The robot

work motion must take into account the trajectory the robot has to take in order to

reach the person who is moving away. There are various trajectories the robot has to

perform: (i) if the person who is moving away is within the robot’s field of vision, and

there are no obstacles, then the trajectory is a straight line; (ii) if the person who moves

away is on the same side of the robot, but there are obstacles, then the trajectory must

account for these obstacles, that has been introduced previously in Section 4.4; (iii) if
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People Motion

Robot Intentions

Robot Sensory 

   Information

Represemtation
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Predict Robot
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Predict People
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Convex Hull

Newton Backward

Divided 

Difference

Formula

Robots' Behaviors:
        - Robots' configuration

        - distribution of tasks among robots

Predict Person 

who is moving 

away position (PF)

Figure 5.5: Method of reintegrating people who have strayed from the group.
Procedure for calculating the path that a robot should follow to the position of the
person who is moving away. Using the particle filter the positions of robots and people
are computed. Considering the position of the group of people who are following the
leader and the robots which are accompanying the group, the convex hull is computed
(here, the person who is moving away is not considered, and the robot which will develop
this task neither). Then, the function which interpolates the points in the convex hull
is computed using Newton Backward Difference Formula. Finally, the trajectory the
robot should follow is: firstly, the tangent function of the function f(x) and passing
through this robot, and, secondly, the tangent function of the function f(x) and the
person who is moving away.

the person who strays is on the opposite side of the group of people being guided, in

relationship to the robot, then the robot has to determine first the proper trajectory to

go around the group of people and then compute the trajectory depending on whether

it is more similar to case (i) or case (ii).

A discussion of the second part of case (iii) can be found in Section 4.4, so here we

shall only explain the first part of case (iii) here. In order to compute the trajectory in

order to go around the group of people, we must calculate the convex hull of the people’s

and robots’ positions: {rpi}
Np

i=1∪{rri}
NR
i=1. If we treat the group of people moving away

in the same direction as a single element, then we might use its arithmetic center as the

position of the group. Next, the function that interpolates the points in the convex hull

is computed for each robot using the Newton Backward Divided Difference Formula,
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Algorithm 4 Schematic strategy for regrouping people

1: Estimate people’s position and directions.
2: if There are people moving away then
3: for Each robot do
4: Compute convex hull with robots and people’s position:{rpi}

Np

i=1 ∪ {rri}
NR
i=1

Np∑
i=1

αirpi +

NR∑
j=1

αjrrj | (∀i,∀j : αi, αj ≤ 0) ∧
Np∑
i=1

αi +

NR∑
j=1

αj = 1

 (5.20)

5: Interpolate the function f(x) with the points on convex hull.
6: Compute the trajectory, which will be the f(x)’s tangent passing through the

escaping group.
7: Compute the cost function.
8: end for
9: Choose the configuration such that, minimizes global cost function.

10: Move Robots.
11: else
12: Continue moving the group.
13: end if

which consider only those people in the area between the robot, the convex hull and

the group that is moving away, such that we arrive at the function f(x), see Fig. 5.5.

Then we compute the trajectory of the robot, denoted as the tangent of f(x), that

passes through the center position of the moving group. This procedure is computed

each interval of time k until the robot arrives at the moving group and the group is

redirected toward the formation to be followed, see Fig. 5.5. To compute the total

amount of required work we compared different trajectories and selected the one that

yields a lower cost function.

In the simulation section of this chapter, we present the results of these cost function

calculations, and describe a comparative study of different trajectories. In Algorithm 4

we introduce a schematic procedure to be followed by the group of robots.
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5.6 Real-life Experiments to Verify Human Reactive Be-
havior

The aim of this study is to describe how a group of robots working cooperatively can

effectively accompany a group of people. We focus on two key issues: preventing people

from straying from the formation and studying the behavior of the team of robots when

one or more people of the group move away.

In this section, we demonstrate that the Helbing et al. model of forces is applicable

to our study. To verify these forces, we have conducted a series of real-life experiments

using our own robot, called Tibi, see Fig. 5.6, and a group of volunteers who had not

worked with service robots previously. We selected this group of volunteers so that they

had no prior contact with robots and had not been conditioned by them. We conducted

a set of experiments in which the robot approaches a person from different angles and

at different speeds. The robot was controlled by teleoperation, but the volunteers were

not aware of this fact. The results of these experiments enabled us to determine the

personal space a person requires when he/she interacts with a robot, and allowed us to

assess the effects of pushing and dragging forces on human individuals.

5.6.1 Tibi Robot

For the experiments, we used Tibi robot, pictured in Fig. 5.6, which has been introduced

previously in Section 3.6.1.

The Tibi robot was designed to interact with different people in open spaces. The

robot is socially accepted, and humans take an interest in interacting with it, robot’s

design must be well-rendered, and, its movements should be smooth. Moreover, it

should know the personal space required by humans, so as to avoid invading on it and

causing a negative reaction in people with whom it interacts.

Below, we present the methods and results of a series of experiments conducted with

the robot Tibi. These experiments have been designed to analyze people’s reactions

when Tibi approached them (push force), when they walked together (push force) or

when a person followed a robot (dragging force).
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Figure 5.6: People walking with Tibi Robot. Left: Tibi walks side by side
with the volunteer. Center: Robot walks behind the person pushing him/her (the
Helbings’ pushing force is applied). Right: Tibi walks in front the person and, here,
the dragging force is applied.

5.6.2 Experiment Structure and Design

To perform the experiments, we had the participation of fifteen volunteers aged from

20 to 40 years old. We performed two different sets of real-life experiments: the first

set aimed to obtain the persons’ personal space preferences when the individual stood

at a certain point and was approached by the robot; the second set was designed

to determine the distances between the robot and the person for the dragging and

pushing forces. In the first set, the person stood at a certain point and the robot

approached him/her at different speeds and angles, when the person felt the robot too

close, he/she could start walking away. This reaction manifests the parameters of the

person’s preferences for personal space when he/she interacts with the Tibi robot.

In the second set of experiments, we analyzed the behavior of people when accom-

panied by Tibi. In this set of experiments we measured the distances between the robot

and the person when the pushing forces or the dragging forces were applied in three

distinct situations. In the first scenario the robot was the leader and the person fol-

lowed the robot propelled by the dragging force; in the second, the robot was located

behind the person and forced the person to move via the pushing force; and in the

third, the robot was located at the person’s side and forced him/her to move via the

pushing force. Here, though the robot and the human have followed the same path,
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Figure 5.7: First set of experiments: the person stands at a certain fixed point and
does not move up until the robot is too close. The graphs show the distances between
the robot and the person (y-axis) at different speeds (x-axis) before he/she moved due
to the robot is too close. The graphs show the mean, variance and quartiles of the data
obtained in the experiments at different approach angles.

Tibi moved at different speeds, and it performed the role of the leader or shepherd, see

Fig. 5.6.

The results and conclusions of the set of experiments are described in the following

subsection.

5.6.3 Human Behavioral Responses to Robot Motions

As mentioned above, the first part of the experiments performed aimed to determine

the personal space desired by people when they interact with the robot. To that end, we

conducted a series of tests in which the robot moved towards a person at different speeds

(0.3 m/s, 0.6 m/s and 0.9 m/s) and at different angles (0o, 45o, 90o, 135o and 180o).

Fig. 5.7 shows the distances between the robot and a person, where different speeds

and angles were considered. Note that as speed increases the distances become greater,

and the size of the personal space increases proportionally. The distances also vary,

depending on the angle of approach. The results are summarized in Fig. 5.8, which

shows the size of personal space desired, depending on the robot’s velocity. In Table 5.3

depicts the distances of the person’s vital space, for each speed and angle value.

In the second part of the experiments, we evaluated the effect of the leader robot and

the shepherd robot when they accompanied people. We also studied the participants’

behavior when they were accompanied by Tibi. In the first situation, the robot assumed

the role of the leader, and the participants had to follow him. Fig. 5.9 shows the

distances between the person and the robot along the way. The robot accelerated and
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Figure 5.8: Personal space: Summary of the personal area of a person provoked by
the approach of the Tibi robot at different speed of the robot motion.

People’s Personal Space

Tibi’s velocity of approach
vel.=0.3 m/s vel.=0.6 m/s vel.=0.9 m/s

α = 0 (deg) 0.30 (±0.20) 0.50 (±0.30) 0.70 (±0.25)
α = 45 (deg) 0.50 (±0.25) 0.65 (±0.30) 1.00 (±0.35)
α = 90 (deg) 0.70 (±0.30) 1.10 (±0.35) 1.50 (±0.40)
α = 135 (deg) 1.30 (±0.30) 1.80 (±0.40) 2.15 (±0.45)
α = 180 (deg) 1.60 (±0.25) 2.00 (±0.40) 2.30 (±0.30)

Table 5.3: Personal Space Distances. Average distance values between Tibi and
volunteers, in meters.

decelerated, the remaining distance is constant, within certain parameters. This shows

the force of attraction of the leader and suggests that people follow the path of the

leader.

In Fig. 5.10 the different results that were obtained are presented: the distance

between a volunteer and the robot, and the robot and a volunteer’s speed and accel-

eration while Tibi performed the leader role. It is shown that during the process of

guiding the distances were maintained and the human attempts to imitate the velocity

of the robot, and therefore, if the robot accelerates the person increases its speed, and

analogously if the robot reduces its velocity.

Lastly, we studied people’s behavior when the robots played the role of shepherd.
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Figure 5.9: Second set of experiments: The robot is the leader and the person
follows the robot provoked by the dragging force. The graph shows the distance between
the leader robot and people (y-axis) during a period of time (x-axis) where the robot
accelerated and decelerated. It can be observed that the distances varied between 0.85
m to 1.27 m.

In this scenario, Tibi shifted to people’s sides or positioned itself behind them while

moving at different speeds. In Fig. 5.12, the robot was positioned behind people. When

the robot’s speed was too slow, 0.4 m/s, the human’s interest decreased and the person

strayed from the robot. However, if the robot moved faster, at 0.8 m/s, the person felt

that the robot was pushing him/her and he/she tried to keep the distance constant.

According to [14], the mean comfortable speed ranges from 1.272 m/s to 1.462 m/s,

for this reason, we do not allow the robot to reach speeds greater than 1 m/s. When

volunteers were asked if they felt comfortable with a robot walking behind them at

speeds close to 0.8 m/s, they said they felt safe and walked until the robot stopped

moving. In addition, we conducted a study comparing the behavior of the volunteers

when they have a robot behind them or another person following them. Fig. 5.11 shows

the trajectories performed in both cases and the distances measured during the path. It

was found that if the speeds are between 0.7 m/s and 1 m/s behaviors are very similar.

Finally, Fig. 5.13 shows that when the robot walks side by side with the person, the

distances are smaller, probably because people have less safety concerns in the company

of the robots. Also, in this situatiom, the robot is accompanying the person instead of

pushing him/her.
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Figure 5.10: Distance, velocity and acceleration. Robot acts as a leader while
a person follows it. Distance, velocity and acceleration of the robot and the person
during the guiding process.
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Figure 5.11: Comparison of the trajectories: Left : Robot navigates behind
a volunteer. Center : Distances between the volunteer and the robot (or another
person). Right : A person walks behind the volunteer.

In conclusion, we computed the personal space desired within the company of our

robot Tibi, and we analyzed the effects of the dragging and pushing forces, depending

on robot’s movements and depending on robot’s role, as a leader or shepherd. These

observations were then incorporated into our simulations to verify the functionality of

our model. The following sections present the simulation results in light of the values

obtained in these experiments.
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Figure 5.12: Second set of experiments: The robot is located behind the person
and forces the person to start moving due to the pushing force. The graphs show the
distance between the shepherd robot and people (y-axis) during a period of time (x-
axis). Left: If the robot’s speed is too slow (0.4 m/s), persons’ interest decreases
and the person does not feel the robot is pushing and then, he/she starts moving
independently of robot speed – the distance between the robot and the person increases
during the walking period. Right: If the robot speed is higher (0.8 m/s), then the
person feels that the robot is pushing him/her and the person tries to maintain a
constant distance between them.

5.7 Simulations in the Barcelona Robot Lab

In this section, we explain two series of three simulations conducted using the PAM

model. The first set of simulations was conducted using the map of the Barcelona Robot

Lab. The second set focused only on analyzing the regrouping task. The simulations

used the map of the Barcelona Robot Lab which measures about 10000 m2. This urban

area is located in the North Campus of the Universitat Politècnica de Catalunya (UPC).

The urban area includes corridors, open areas and intersection areas, as well as, static

obstacles (buildings, benches or potted plants), and dynamic obstacles (mobile robots

and people in motion). We then compared the results from the simulations conducted

with and without the PAM model.

The simulations dealt with groups of people who followed the models described by

Helbing et al. [75]; additionally, we assumed the participation of a group of two or

three robots which move according to the Discrete Time Motion Model (DTM) [58],

and behave according to the computation of the configurations explained in Section 5.5.
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Figure 5.13: Second set of experiments: the robot and the person are side by side,
and the person walks due to the pushing force. The graph shows the distance between
the shepherd robot and people (y-axis) during a period of time (x-axis). Notice that
distances between the robot and the person are between 0.2 m and 0.37 m.

5.7.1 Simulations using the PAM model

We performed several simulations in the map of the Barcelona Robot Lab in which two

or three robots guided a group of people. The robots were supposed to reach a specific

target position in the map and react to unexpected situations. For each simulation,

we compared the results with and without the PAM model described above. With the

PAM model the simulated robots were able to anticipate the problem of people moving

away and avoid losing a member of the group. If the robots do not use this model,

then, the time of regrouping was much higher because they had to look for the people

who had moved away, instead of preventing them to leave the group.

In the first simulation, two robots guided a group of five people along a path where

there were two areas where people could move away, see Fig. 5.14. We compared

whether the robots behave in accordance with the Prediction and Anticipation Model

or not, where the behavior of people who do not move away remains constant. Fig. 5.14-

Left shows that when the PAM model is used the group follows the path and nobody

leaves the formation, but where the PAM model is not applied there are two areas

where people move away and robots must look for them and bring them back to the

formation. In Fig. 5.14-Center, the covariance of the size of the group is plotted. Note

that, if the robots are able to anticipate human motion behavior, they can prevent
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Figure 5.14: Simulation #1: Graphic summary of people and robots’ path for
the first simulation, using the Prediction and Anticipation model (top), and without
considering it (bottom). Left: Final trajectories of the simulated people and robots.
Center: Trajectory of the whole group, shown as mean path and covariance. The
increase of the covariance size is produced when a person leaves the group. Right:
Graph of the Work performed by the group.

them from straying and, thus, maintaining the covariance of the group. However, if the

robots have to wait for someone to stray before taking action, the size of the covariance

grows.

Anticipating or expecting someone to stray, can be seen on the graphs that show

the work required by the robots (and people) to maintain the group of people on the

desired path. In other words, the work required by the robots to look for one or more

people who stray from the group, is much lower if robots can anticipate and help people

to follow the path by avoiding dispersions, see Fig. 5.14-Right. Also note that in this

visual aid the two peaks of the work performed, correspond to the two instants of time

in which a person leaves the group and must be accompanied back.

In the second simulation, three robots guide a group of seven people along a path

within an area where people can move away in different directions, see Fig. 5.15. Again,

we used this scenario to compare trends in the robots’ behavior with and without the
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Figure 5.15: Simulation #2: Summary of people and robots’ path for the second
simulation. Top: Using the Prediction and Anticipation model. Bottom: Without
considering PAM.

application of the Prediction and Anticipation Model. In both cases, the behavior of

people who did not move away remained constant. In Fig. 5.15-Left it is demonstrated

that when the PAM model is used, the group follows the path and nobody leaves the

formation. However, where the model is not used, there is an area in which two people

move away in different directions and the robots must look for them and return them

to the group. In Fig. 5.15-Center, the covariance of the group is plotted, and it can be

seen that the covariance is larger when the PAM model is not employed.

Fig. 5.15-Right represents the work performed by the group, where it can be ob-

served that the work is lower when robots can anticipate stray movements and help

people to follow the path by preventing dispersions. Note that the peak of the function

corresponds to the moment in time in which two people leave the group and they must

be accompanied back through the deployment of two shepherd robots.

In the third simulation, three robots guide a group of seven people along a path

within an area where people can move away in different directions, see Fig. 5.16. Again,

a comparison is made between the robots’ behavior with and without the employment

of the Prediction and Anticipation Model. Fig. 5.16-Left demonstrates that when the
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Figure 5.16: Simulation #3: Summary of people and robots’ path for the third
simulation. Top: Using the Prediction and Anticipation model. Bottom: Without
considering PAM.

PAM model is used, the group follows the path and nobody leaves the formation;

however, where the model is not used, there is an area in which two people move away

in different directions and the two shepherd robots must look for them and return them

to the group. Fig. 5.16-Center plots the covariance of the group.

In Fig. 5.16-Right, the work performed by the group is presented. It shows that

the work is lower when robots are able to help people follow the path and preventing

dispersions. It must be mentioned, although there are no shepherd robots in the back

of the formation, people are still attracted by the humans who they have in front, and,

thus, they follow the group and do not disperse.

In summary, we may conclude that, through the application of the prediction and

anticipation model, robots are able to help people to follow the path, managing to

prevent people from straying while carrying out their work at a lower cost.
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5.7.2 Simulations of Regrouping People

In this subsection, we analyze the performance of the regrouping task, through three

simulations conducted in open areas and at intersection.

In the first simulation, two robots guide a group of five people in an open area

without obstacles, see Fig. 5.17. The positions of the two simulated robots are plotted

with circles, the placement of the five people is indicated by asterisks. As mentioned

above, when the robots detect that people are moving away, or an open area exists

that may lead to dispersion, they must determine the optimal configuration of robots

to perform the task of returning the people to the group and/or preventing them from

straying. The following are the possible configurations for regrouping people with two

robots, one leader and one shepherd: (i) The shepherd robot takes care of regrouping

people who have moved away following the left path Fig. 5.17-1st. (ii) Shepherd

robot takes care of regrouping people who have moved away following the right path

Fig. 5.17-2nd. (iii) and (iv) the shepherd robot takes the role of leader, left and right

trajectory respectively, and the leader robot moves toward the person who has strayed.

In all four cases, we assume that the shepherd robot is able to explain to the group

that it has assumed the role of the leader Fig. 5.17-3rd and 4th. (v) The leader robot

regroups the formation, and thus the entire group moves toward the person who has

strayed Fig. 5.17-5th. For all five possible configurations the system computes the work

cost, Fig. 5.17-Right. Note that the first configuration is the one which requires the

lowest work cost.

In the second simulation, three robots guide a group of eight people in a street

crossing area, see Fig. 5.18. In this case the simulated robots must regroup two people

who stray towards different directions at the same time. The following are the possible

configurations for regrouping two different people with two shepherd robots and one

leader: (i) the shepherd1 robot takes care of regrouping person1 and the shepherd2

robot takes care of regrouping person2, Fig. 5.18-1st. (ii) The shepherd2 robot takes

care of regrouping person1 and the shepherd1 robot takes care of regrouping person2,

Fig. 5.18-2nd. (iii) The shepherd1 robot assumes the role of leader, while the leader

robot moves toward person1, and the shepherd2 robot regroups person2. (iv) The

shepherd1 robot assumes the role of leader, the leader robot moves toward the person2,

and the shepherd2 robot regroups person1. (v) The shepherd2 robot assumes the role
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Figure 5.17: Simulation of the Regrouping #1. Left : Different strategies that
robots can follow. Center: Trajectories the group follows. Right: Work
performed by the group.
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Figure 5.18: Simulations of Regrouping #2. Left : Different strategies robots
can follow. Center: Trajectories the group follows. Right: Work performed by
the group.

of leader, the leader robot moves toward the person2, and the shepherd1 robot regroups

person1. (vi) The shepherd2 robot assumes the role of leader, the leader robot moves

toward the person1, and the shepherd1 robot regroups person2. (vii) The leader robot

regroups the formation and the entire group moves toward the people who have strayed.
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(viii) The leader robot regroups the formation and the entire group moves toward people

who have strayed. It should be mentioned that in this specific example, situations (iii)-

(viii) cannot be considered, because if the leader robot moves toward the people who

are moving away, it implies that it would have to cross through the group, but we

have already established that the transverse force has not been considered in these

experiments.

Finally, there are strategies by which we may compute the cost of looking for a

single person. When the person has rejoined the group, the work cost is recalculated to

accommodate the regrouping of the second person. This strategy implies that the two

shepherd robots are not going to look simultaneously for all the people moving away

at a given point. Fig. 5.18-3rd and 4th provide two examples of this strategy.

Fig. 5.18-Right shows the work cost calculated for these possible configurations.

Note that the first configuration is the one which corresponds to the lowest cost. We

also observed that the strategies that first compute the cost of regrouping one person

only and then address the other people who have strayed are much more costly than

other strategies.

Finally, in the third simulation, two robots guide a group of five people in a crossing

area, see Fig. 5.19. The following are the possible configurations for regrouping people

with two robots, one leader and one shepherd robot: (i) The shepherd robot takes care

of regrouping people who have strayed following the right path Fig. 5.19-1st. (ii) The

shepherd robot takes care of regrouping people who have strayed away following the left

path, Fig. 5.19-2nd. (iii) The leader robot regroups the formation and the entire group

moves toward the person who has strayed, Fig. 5.19-3rd. In (iv) and (v) the shepherd

robot assumes the role of leader, left and right trajectories respectively, and the leader

robot moves toward the person who is moving away. In these cases, we assume that the

shepherd robot is able to explain that it has taken the role of the leader Fig. 5.19-4th

and 5th. Fig. 5.19-Right shows the work cost calculated for all possible configurations.

Note that third configuration is the associated with the lowest cost.

In summary, we have presented different scenarios and several strategies with respect

to the cost function in order to determine the ways in which robots can perform the

given task cooperatively with the minimum work expended.
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Strategy Trajectory Work Performed
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Figure 5.19: Simulation of the Regrouping #3. Left: Different strategies
that robots can follow. Center: Trajectories the group follows. Right: Work
performed by the group.
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5.8 Discussion

We developed the Prediction and Anticipation Model, in order to guide people using

multiple robots working cooperatively on a given task. We have also introduced the

minimum robot motion energy criterion to assess the task assignment that might mini-

mize the work required by people and robots during the guiding mission. Although the

PAM model has been applied exclusively to people-guiding missions within the context

of this chapter, we believe it can be extended to other tasks that demand cooperation

between robots and people, for example, robots gardening or robots cleaning in urban

areas.

We have identified other works that use robots functioning cooperatively to guide

people [115], nevertheless, they do not tackle the problem of people straying from the

formation. However, there are various methods for guiding people in museums using

a single robot, as well as, guiding people inside a certain area using robot formation

techniques or even guiding ducks within a controlled environment. Not all of these

methods may be applied to the issue we mainly address in this work, since they do

not allow people to stray from the group. Moreover, these techniques do not use the

anticipation strategy to determine the best configuration of robots to carry out the

mission.

We demonstrate the guiding mission using this model by conducting simulations

instead of real-life experiments. The main reason for this decision is due to the com-

plexity of conducting these experiments with the available technology. For example,

the robots that exist nowadays do not move fast enough and do not navigate safely

enough to follow people’s random motions in an urban area. Nor may people’s motions

be completely and accurate detected when robots and persons are moving together in

a group. These technological limitations will be overcome in the near future and we

do not consider them to be significant challenges for the discipline in general. Further-

more, we have validated Helbing’s forces using our robot Tibi and were able to calculate

people’s personal space when they interacted with Tibi.

Because we have not demonstrated these trends in real-life experiments, we have

had to make a series of assumptions on human motion behavior when people are guided

by robots. Although one might believe that these assumptions are strong, we think

139



5.9 Summary

they are valid wherever people cooperate with robots. Even if said assumptions are

not partially or totally demonstrable in real-life scenarios, the minimum robot motion

criterion can still be applied; we need only to include other criteria that consider human

behavioral movement. These new criteria will need to be incorporated into the selection

of the optimal robots configuration.

The proposed approach has some drawbacks, as described below. One drawback is

time complexity of the optimal robot task assignment. As we mentioned earlier, this

time complexity is NR!, meaning which, it grows factorially. We have not intended to

look for techniques that reduce this time complexity, for example using heuristics, but

this will be a task for a future work. Another drawback is the requirement of having

to know the pose of all the people that move in the group. We think that we do not

need all the poses, we only need the poses of the people that are in the border of the

group, but this will be modified in the near future. At last, there is the drawback of

the validation in real-life scenarios.

Lastly, we must note that the PAM model can be applied to real-life missions. Typ-

ical missions may include guiding tourists at a certain site; accompanying professional

visitors in opened or close environments; service tasks such as cleaning or gardening

in urban areas, etc.; and carrying out military missions. In all these tasks, people are

gathered in small or large groups, and some of the participants may stray out of fatigue,

boredom, injury, distraction, or for personal needs (such as finding a rest room). We

have not considered situations in which the people in the group are in a state of panic

or engaged in vandalism.

5.9 Summary

This chapter has presented a new model, called Prediction and Anticipation Model,

which was developed to guide people using multiple robots that work cooperatively.

Unlike other existing works, our method can be applied in realistic situations such

as dealing with large environments with obstacles, or regrouping people who have left

the group. For that reason, this work can be applied to certain specific real robot

applications, for instance, guiding tourists, accompanying professional visitors or acting

as a robot companion.
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We have described the findings from various simulations conducted in open areas

with obstacles and considered different people’s behavioral movements. In each simu-

lation, we were able to show that, by using the PAM model, the robots could act early

enough and were able to prevent people from getting lost or straying from the group.

We assert that these same results can be extended to urban areas with a large num-

ber of obstacles. Although we have only assessed the functionality of the PAM model

through simulations, we have conducted real-life experiments to validate the Helbing’s

forces using our Tibi robot, and assessed the preferred dimensions of personal space,

data which was then incorporated into our simulations.

Finally, we have identified three areas for further research: the first consists of

adding into the particle filter sampling process the social force model, the second in-

volves conducting real-life experiments in the Barcelona Robot Lab; and the third is

to adjust the assumptions that were made in this work so that we might analyze new

robot motion behaviors and strategies.
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Chapter 6

Proactive Behavior of an
Autonomous Mobile Robot

If you are proactive, you don’t have to wait for circumstances

or other people to create perspective expanding experiences.

You can consciously create your own.

Stephen R. Covey

In recent years, researchers have made great efforts to enable autonomous social

robots to interact with people. However, there remain many unresolved questions

about the social capacities robots should have in order to interact more naturally. The

ultimate goal of our research was to enable robots to interact naturally with people

when carrying out the accompanying task. In this chapter, we present the results of

several experiments conducted at the Barcelona Robot Lab, in which we studied various

aspects of the interaction between a mobile robot and untrained human volunteers.

First, we proposed different pro-active behaviors for robots to use when approaching

a person and engaging with him/her. To do so, we provided the robot with several

perception and action skills, such as that of detecting people, planning an approach,

and verbally communicating its intention to initiate a conversation. To verify that a

relationship was effectively formed, and to manifest that people were interested in the

robot, we offered our volunteers the opportunity to assist the robot in a task. We also

developed additional communication skills to allow people to assist the robot and help

it to enhance its facial recognition system. During this online assisted stage, the robot
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6.1 Introduction

was able to communicate to people and, in doing so, improve its visual skills. The work

in this chapter has been presented in [44, 59, 171].

6.1 Introduction

One major topic within the field of human-robot interaction research is the issue of

giving the robots the ability to initiate interaction with a human. Generally, it is

thought that social robots can engage in the same way people do, using human-like

physical signals and gestures [122]. Recent studies show that robots are also able to

encourage people to initiate interaction [29, 72], expecting people to approach them

instead of initiating it themselves [100].

Satake et al. [145] proposed a model of approaching behavior to initiate a con-

versation with walking pedestrians. Researchers have also attempted to identify the

most advantageous moment for starting the interaction or engagement [150], finding

most often that it should occur when (or just moments before) both human and robot

perceive that they are sharing a conversation. Fogarty et al. [45] proposed models for

estimating the best times to interrupt a person within an office environment.

Recent efforts have also focused on creating robots that are able to start conver-

sations with humans in a friendly and natural manner [120]. The present thesis takes

this a step further, by looking at how robots can seek assistance from the person, af-

ter initiating a conversation and engaging meaningfully with him/her. Specifically, we

show how the robot and person perform a collaborative task, in which the robot asks

the human to help it improve its facial recognition system.

The contributions of this chapter are therefore twofold. Firstly, we introduce a

framework wherein a mobile robot is able to initiate a dialogue with a person and

develop an engagement, focusing on the way the robot initiates the conversation in

a manner perceived as natural by the person. Specifically, we look at the human

communication model proposed by Clark [25], based on the notion that people in a

conversation perceive the roles of other persons, such as a speaker, listener, and side

participants. In order to perform this initial task, we furnished the robot with a simple

visual module for detecting human faces in real-time, with the caveat that faces have

to be in a non-occluded and frontal position.
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6.1 Introduction

Figure 6.1: Human-Robot Interaction and Communication. Left: Tibi mobile
robot approaches a person to initiate a conversation. Right: After the first contact,
the person assists Tibi to improve its visual skills. A Wii’s remote controller is used to
help to validate and improve the visual detector.

Our next contribution was to introduce a second robot-human communication

framework, once the engagement has been initiated, wherein the human can natu-

rally help the robot improve the performance of its facial recognition module. We used

an online learning algorithm [171], and incorporated the human’s assistance, which

enhances the performance and robustness of the initial face detector, by allowing the

robot to detect faces in adverse conditions, i.e., when detection of visual targets is hin-

dered by abrupt changes in light or partial occlusions. In addition, the robot was able

to learn the person’s identity in order to engage in coherent dialogues with him/her in

the future. In this online and real-time assisted algorithm, the human plays the role of

a teacher, guiding the robot through its learning process, and correcting the output of

the facial recognition system. The amount of human intervention falls in intensity over

time, and usually after a few seconds the robot’s visual system becomes significantly

more robust and reliable. Fig. 6.1 shows three different frames from a typical teaching

process between a person and our robot, Tibi.

The robot’s ability to approach people and learn to use human assistance leads to

a number of possible applications. Among the most promising of these is the robot’s

capacity to independently look for people who can assist it, so as to progressively

improve upon its skills throughout the interaction process. Because validating a few

faces proposed by the facial recognition module requires very simple communication,
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this learning stage can be performed by any non-expert person.

6.2 Chapter’s Overview

The sections below describe the architecture we developed to provide autonomous mo-

bile robots with pro-active behaviors. Our goal was to study previous approaches and

take them one step further, by encouraging the robot to actively seek human interaction

and ask the person to help it improve its visual detection skills. The main obstacle in

this scenario was the possibility that the person did not understand that the robot was

trying to initiate a conversation with him/her. Humans typically initiate conversation

by eye gaze [64], and in a real environment, it is very difficult for a robot to recognize

this social gesture. Because of this, we relied more heavily on body’s position, gestures,

and verbal cues. Once the human has effectively understood the robot’s intentions,

he/she could follow a specially-made, simple, and efficient communication protocol for

teaching the robot. The protocol, developed specially for the purposes of this stage of

the study, involved the following key components, see Fig. 6.2:

• The robot’s ability to pro-actively seek interaction: One of the main purposes of

this study was to identify the optimal robot behavior for initiating interaction

with a human. To do so, we analyzed three variations on this behavior, looking

at scenarios in which: (1) The robot uses only verbal cues to communicate with

the participant; (2) The robot uses both verbal and non-verbal cues (e.g., gestures

and eye gazes); and (3) The robot uses verbal and non-verbal cues and actually

approaches humans.

• Online human-assisted face recognition: Once the robot has engaged with a hu-

man, we proposed an approach in which the robot was able to enhance its visual

skills using the human’s help. Following each interaction, we were able to prove

that the robot’s skills were visibly improved.

• Tibi’s emotions: To synthesize Tibi’s emotions of happiness, sadness and anger,

we used the emotion model of the three dimensions of emotion [146]. This model

characterizes emotions in terms of stance, valence and arousal.
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6.3 Robot’s Behavior

Figure 6.2: Approach Overview. Sketch of the experiments performed to analyze
different robot behaviors.

• User study of robot’s behavior: We also conducted a user study to determine

whether the robot’s behavior was perceived as socially appropriate by the ex-

periment participants. We also looked at various key aspects of the interaction

between a mobile robot and untrained human volunteers.

6.3 Robot’s Behavior

In this section, we describe the different behaviors enacted by the robot during the

experiments. First, we show how the robot pro-actively seeks interaction; later we

introduce an approach in which the robot is able to enhance its skills by accessing the

human’s assistance.

6.3.1 Robot’s Proactively Seeking Interaction

Recent studies have focused on developing robots able to encourage people to initiate

interaction [29, 72]. The most common strategy for robots thus far has been to expect

people to approach them to initiate a dialogue. In contrast, as shown in Fig. 6.1, our
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6.3 Robot’s Behavior

Figure 6.3: Levels of Engagement. Robot-to-person levels of distance, to distinguish
levels of engagement while interacting.

research introduces a mobile robot that is able to approach people in a safe and friendly

manner so as to begin a conversation.

The strategy for creating people-to-robot engagements is more pro-active than mod-

els which merely wait for the person to begin the interaction. In addition, the robot’s

ability to approach people opens up a wide range of possible applications. These in-

clude an invitation service, wherein a robot approaches people to offer city information

and invite them on a tour; or the application proposed later in this chapter, where we

use this pro-active behavior to improve the robot’s perception skills by enabling it to

learn from the human it engages with.

In order to allow the robot to independently initiate interaction with humans, we

used a laser range scanner to detect people in the space [6].

After this initial localization phase, the robot approaches the person, always re-

specting common conventions of people’s personal space. The robot is also able to

respond appropriately to human reactions. For example, if after the initial approach,

the robot invites the chosen person to come closer, and he/she does not notice, the robot

will repeat the invitation. However, if the human simply declines to come closer, the

robot will choose another volunteer. The robot will not begin the interaction process

until the person visibly shows interest in the robot.
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Assistance Expressions

Invitation to create
and engagement

Hey, how are you? I am Tibi. I’m trying
to learn to detect faces, will you help me?
Hi, I am Tibi, I’d like to learn how to
recognize different objects, can you be my teacher?

Invitation to continue
the interaction

Please, don’t go. It will take just two minutes.
Let me explain you the purpose of the experiment,
and then, you can decide if you want to stay.

Table 6.1: Phrases Uttered by Tibi. Sample robot phrases to start interaction with
a person.

The use of space we incorporated was based on the conceptual framework known

as “proxemics,” proposed by Hall [70]. This investigation establishes the following

taxonomy of distances between persons within a group of people:

• Intimate distance: the presence of another person is unmistakable, close friends

or lovers (0-45cm).

• Personal distance: comfortable spacing, friends (45cm-1.22m).

• Social distance: limited involvement, non-friends interaction (1.22m-3m).

• Public distance: outside circle of involvement, public speaking (>3m).

Based on these proxemics, Michalowski et al. [118] classified the space around a

robot in order to distinguish human levels of engagement while interacting with or

in the presence of a robot. Fig. 6.3 plots these four levels of distance and their

corresponding engagements. In the present work, our robot uses the proxemics shown

in Table 6.1 to try to maintain a “social distance” in the initial approach, assuming a

“personal distance” only when the person has accepted the invitation to interact.

The active robot’s behavior is carried out by developing a state machine, as shown

in Fig. 6.4. Finite state machines (FSMs) are widely used in many reactive systems to

describe the dynamic behavior of an entity. The theoretical concepts of FSMs and an

entity’s specification, in terms of state transition diagrams, have been used for quite

some time [62]. A deterministic finite state machine is a quintuple (K,H, s0,κ,F),
where: K is a finite, non-empty set of symbols; H is a finite, non-empty set of states;
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Figure 6.4: Example of a state machine. The robot attempts to create an en-
gagement with a person. Top: Different components of the state machine. Bottom:
The full state machine for this experiment.

s0 is an initial state, s0 ∈ H; κ is the state-transition function, κ : H ×K → H; and

F is the set of final states, a (possibly empty) subset of H.

This state machine allows the robot to respond appropriately to people’s behavior.

The robot is able to determine if humans are interested in initiating interaction simply

by tracking their positions.

One of the main objectives of our study was to determine the optimal mode of robot

behavior for initiating interaction with a human. Conducting a review of the literature

on empathy and pro-social behavior [26], we were able to identify three different modes

of behavior, wherein: (1) The robot uses only verbal cues to communicate with the

participants; (2) The robot uses both verbal cues and non-verbal cues (gestures and

eye gazes); and (3) The robot performs verbal and non-verbal cues, and effectively
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6.3 Robot’s Behavior

Figure 6.5: Tibi Gestures. Movements performed by Tibi during experiments. Left:
Three different emotional expressions. Right: Two actions.

approaches humans.

Once initial interaction is established and the human has accepted, the goal is

then for the robot to approach him/her, moving from a “public distance” level to a

“personal distance” level. In order to encourage the person to move even closer, the

robot performs the following actions, depending on the aforementioned behaviors:

• Verbal communication: Encouragement comments, such as “Don’t be afraid, I

just want to talk with you”, “Can you teach me to detect faces?”

• Non-verbal communication: Gestures, arms and neck movements. A few samples

are shown in Fig. 6.5.

• Robot motions: The robot approaches the person until reaching a “social dis-

tance”.

Each of these strategies will have a different impact on different users. For that

reason, we performed a set of experiments to analyze the relative acceptability of each

behavior model. A diagram of the different strategies is illustrated in Fig. 6.2.

6.3.1.1 Emotion Synthesis System

Emotions play a significant role in human behavior, communication and interaction [5].

Accordingly, the robot’s emotions are important in our system. The robot expresses

its emotional status by speech and gestures.

In order to synthesize Tibi’s emotions of happiness, sadness and anger, we used

the emotion model of the three dimensions of emotion [146]. This model character-

izes emotions in terms of stance (open/close), valence (negative/positive) and arousal
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valence

arousal

happy

relaxed

tired

bored

unhappy

angry elated

surprised

e
||e|| = 1

Figure 6.6: Emotion space. This representation is used to define the actual emotional
state of Tibi; every emotion can be described by the parameters arousal and valence.

(low/high), thereby, it allows the robot to derive emotions from physiological variables.

Our system relies on an open stance because Tibi is motivated to be openly involved

in interaction with humans, see Fig. 6.6.

Arousal factor

The arousal factor is determined by the human and the human’s responses, and

by factors such as whether Tibi finds the human, and whether the human responds.

For the implementation of the arousal factor, the intensity of the perceived stimuli

is required. Furthermore, the perception system is able to rate the current state of

engagement between the human and Tibi.

In order to define the intensity of perceived humans is used. In the current im-

plementation the distance is used to measure the intensity. For this computations the

distance zones are used, see Fig. 6.3.

The intensity of a human perceived in the public zone is rated as zero, whereas a

person entered the intimate zone is assigned to the maximum intensity. The relative

intensity of a person is more interesting than the absolute value. If a human enters the

personal zone (coming from the social zone) its intensity will increase and the arousal
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Algorithm 5 The intensity of perceived people is computed depending on their dis-
tance to Tibi.
1: for Each perceived person do
2: Compute corresponding distance zone
3: end for
4: Intensity i = 0
5: for Each distance zone do
6: switch distance zone
7: case social zone
8: Compute i

i+ = (p p(t)− p p(t− 1)) · z l (6.1)

9: end case
10: case personal zone
11: Compute i

i+ = (p p(t)− p p(t− 1)) · z l (6.2)

12: end case
13: case intimate zone
14: Compute i

i+ = p p(t) · z l (6.3)

15: end case
16: otherwise
17: no changes of i
18: end case
19: end switch
20: end for

should be increased as well. Assuming that the volunteer remains in the personal

zone its intensity will remain the same, but the arousal should not increase anymore,

otherwise one would become frightened all the time.

To avoid these problems, the relative intensity is used for the social zone and for

the public zone. Therefore, only changes in the intensity are considered for calculating

the arousal. This is slightly different for the intimate zone. Thus, for the intimate zone

the absolute intensity is used. Based on these assumptions, the global intensity of the

currently detected people can be calculated. The currently perceived people located in

a specific distance zone are represented by p p(t) , whereas the previously people located

in this zone are described by recognized p p(t− 1). For every zone a specific intensity

level is used represented by zone level. In the current implementation these zone levels

(z l) are defined as follows: Public zone z l = 0, social zone z l = 0.25, personal zone

z l = 0.5, and intimate zone z l = 1. This process is presented in Algorithm 5.
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Algorithm 6 Arousal (A(t))

1: if i > 0 then
2:

A(t) = A(t− 1) + weight · i

# p p
(6.4)

3: else
4:

A(t) = A(t− 1)− step (6.5)
5: end if
6: limit A(t) to the interval [−1, 1]

The arousal factor is determined by the human and the human’s responses, and by

factors such as whether Tibi finds the human, and whether the human responds. If

Tibi fails to find the human, the intensity decreases and, therefore, the arousal is lower.

When Tibi finds the human and asks the human something, the arousal decreases if the

human says nothing to the robot for a long time. Low arousal increases the emotion

of sadness. High arousal increases the emotions of happiness and anger by determining

whether the human’s response is positive or negative.

If a certain object has already been recognized before, difference between the current

situation and the previous one is rather small and therefore, the relative intensity value

is rather small, too. Based on these definitions of the objects’ intensities the robot’s

arousal can be calculated according to Algorithm 5. At first the global intensity of all

currently perceived objects is calculated.

To normalize the intensity to the range of [0, 1] the intensity value is divided by

the number of currently perceived people. If a certain intensity has been detected, the

previous arousal value A(t − 1) is increased depending on the global intensity and a

specific weight that indicates how fast the arousal value increases. In this work, the

weight is set to 1. If no intensity is measured the arousal value is decreased. The value

for decreasing is represented by step. Inspired in [78], the current step is set to 0.25.

Finally the arousal value is limited to the range of [-1, 1], Algorithm 6 describes the

process to compute the arousal value. In Fig. 6.7, plots of the stimulus intensity and

arousal value are depicted given the distance between Tibi and a person.

Valence factor

Valence represents the robot’s satisfaction with current situation. For example
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Figure 6.7: Arousal value. Left: Distance between a volunteer and Tibi during the
experiment. Center: Intensity stimulus with weight = 1 and step = 0.25. Right:
Arousal value.

achieving a goal increases the valence. This depends on the current achievement of the

internal goals of the robot. For instance, if the robot is currently pursuing one goal,

the valence depends on the rating of the achievement of this goal. If the goal is almost

achieved, the valence will be rather high; if the robot is far away from achieving this

goal the valence is low. If the robot is pursuing multiple goals, the valence is calculated

depending on the achievement of all of these goals.

In this thesis, valence factor is determined by whether the human responds appro-

priately to the robot’s requests. When Tibi waits for a “yes” or “no” answer, if the

human says something unexpected that Tibi can’t understand, the user responds nega-

tively. A negative response increases the emotion of anger; a positive response increases

the emotion of happiness.

6.3.2 Online Human-Assisted Face Recognition

Once the robot has initiated engagement with a human, we outlined an approach in

which the human helps the robot to enhance its visual skills.

To allow our robot to benefit from the human’s assistance, we equipped it with a

screen that depicts the results of the classifier. When one of the frames in the input

video contains a face about whose identify the robot is not confident, it asks for the

human’s help, through a set of precise and non-technical “yes” or “no” questions, an-

swered using the Wii remote control. Table 6.2 shows some examples of these questions.

The Wii remote control is introduced by the robot, who then is able to explain that

someone running the experiment will give the participants the Wii remote control and

show them how it works.
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6.4 Real-Life Experiments

Assistance Expressions

Assistance
Is your face inside the rectangle?
I’m not sure if I see you, am I?

No detection
I can’t see you, move a little bit.
Can you stand in front of me?

Farewell
Thank you for your help, nice to meet you.
I hope to see you soon.

Table 6.2: Assistance Expression. Sample phrases uttered by the robot when up-
dating the visual classifier.
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Figure 6.8: Diagram of the interaction. Internal elements of Tibi and a person
during the experiments.

Finally, in Fig. 6.8, the illustration of the whole interaction between Tibi and a

volunteer and the internal elements are presented.

6.4 Real-Life Experiments

Before using the user study to determine whether different robot behaviors are socially

appropriate to humans, we conducted real-life experiments to evaluate the robot’s be-

havior. The approach proposed below was effectively tested in the BRL.

Real-world experimentation showed unexpected obstacles that had not come up

during the simulations. We observed severe limitations of the perception system, laser

people detector, and tracker. People were not always properly detected, and the data
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6.4 Real-Life Experiments

Figure 6.9: Real-life experiments: Some examples of the real experiments con-
ducted.

association was occasionally wrong. However, an in-depth discussion of the perception

system falls outside the scope of the present thesis.

6.4.1 Robot Proactively Seeking Interaction

We carried out 40 experiments with different volunteers. In each instance, the robot was

able to approach the participants and initiate engagement. Fig. 6.9 depicts examples

of the experiments performed with several volunteers in different urban environments.

Fig. 6.10 shows two samples of the paths taken by robots when approaching a

person. The left image shows the robot inviting the person, in-motion, to begin the

interaction; on the right, the person is simply waiting for Tibi.

Once a significant number of real experiments with different volunteers were con-

ducted, we observed that the system worked, and the robot was able to approach

humans and begin interactions with untrained people. We used these findings to pro-

ceed to conduct a user study, designed to determine whether the robot’s behavior was

socially acceptable to humans. This component is described in depth in Section 6.5.

6.4.2 Human-Assisted Face Recognition

The human-assisted facial recognition system was evaluated in terms of the degree of

human intervention and its effects on human-robot interaction. We focused specifically

on the duration of the established interactions and the level of users’ comfort therein.

The classifier used in the detection phase yields a score ς ∈ [0, 1], which represents

the classifier confidence. Generally, when ς > 0.5 the detection is assigned to a positive

class. However, there is an interval ϑ in which the system is unable to assign the

detection to a positive or negative value. In these cases, our approach is to ask the user
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6.4 Real-Life Experiments

Figure 6.10: Tibi initiates an interaction. The robot approaches two different
people and begins an interaction with them. Left: Tibi follows the person in motion
and invites her to initiate the interaction. Right: The person waits for Tibi.

if the detection is positive (i.e., correct) or negative, and thus enhance the detections.

By conducting these experiments, we attempted to discover the range and degree of

human assistance in which the interaction becomes more effective. Fig. 6.11 shows

different volunteers assisting Tibi robot.

Fig. 6.12 shows the impact of the human assistance on human-robot interaction.

The figure on the right reflects the percentage of human intervention for different as-

sistance intervals ϑ. It shows that the percentage of assistance increases as the interval

grows larger, suggesting that the greater the distance, the more active people will be

in the interaction, the more they will help the robot to learn and recognize faces, and

the more effort they will make generally in the engagement. This results in shorter

interactions, seeing as people grow tired and quickly lose interest in helping the robot

to enhance its facial recognition skills. Fig. 6.12-Left shows this behavior by illustrating

the average interaction and assistance times. As the degree of human assistance grows

larger (and with it, interval size), the interaction time between robot and humans be-

comes shorter. It is also noteworthy that the interaction time with a smaller percentage

of human intervention is relatively short. This is because when human participation

is minimal (i.e., when human users seldom help the robot), people also lose interest in

158



6.5 User study

Figure 6.11: Human assistance. Top: People assisting Tibi robot in outdoor sce-
narios. Bottom: Tibi’s field of vision. The output of the recognition system is shown
by rectangles. Correct detections are represented by green boxes; blue boxes indicate
when the system is not confident and requires the help of a human.
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Figure 6.12: Human Assistance Results. Left: Average times spent for human-
robot interaction and human-assistance. Center: Percentage of human assistance in
the face recognition system according to varying assistance intervals. Right: Percent-
age of users’ acceptance.

the cooperative and interactive task of face learning and recognition. The illustration

on the right of Fig. 6.12 depicts the percentage of human acceptance of the robot’s

behavior. We found that a satisfactory compromise between the human’s effort and

interaction time is achieved for an assistance interval of ϑ = [0.4, 0.6].

6.5 User study

The results presented above demonstrate that the robot is able to approach people and

initiate interaction. A user study was also conducted to determine whether the three

strategies presented above are perceived by people as socially appropriate.
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6.5 User study

The hypothesis we endeavored to test was as follows: “Participants will perceive a

difference between the three robot behaviors and will assist at a greater rate when the

robot is able to move and approach people according to accepted social conventions.”

6.5.1 Procedure

The urban area considered for the tests is the Barcelona Robot Lab in the campus of

the Universitat Politècnica de Catalunya (UPC), with an approximate size 10.000 m2,

introduced in Section 3.6.1. During the experiments, the robot was randomly navigating

across this area while looking for people to initiate the interaction. For the experiments,

we use a mobile service robot, Tibi, specially designed to operate in urban pedestrian

areas.

The Tibi robot is equipped with multiple sensors, including a Bumblebee stereo

camera and three lasers. In order to initially detect the persons at large ranges we use

the front laser mounted at 40 cm above the ground. This just yields a rough estimation

of the person’s pose. The precise localization of his/her face is performed with one of

the stereo cameras. In addition, a touch screen is located at the front of the robot, it

is used to communicate with people.

6.5.2 Results

In the experiments, we compared the different robot behaviors for initiating interaction,

as described in Section 6.3. At first, the robot used only verbal instructions to attract

people’s attention. Later, it was allowed to rotate so as to focus more closely on people’s

positions. Lastly, the robot was able to move towards the people to interact with them.

Assistance could begin only once engagement had been initiated.

We selected 30 people (16 women, 14 men) on the University Campus to participate

in the experiments. Participants were ranging in age from 20 to 65 years (M = 39.24,

SD = 12.86), and represented a variety of university majors and occupations including

computer science, mathematics, biology, finance and chemistry. For each participant,

we randomly activated one of the three robot behaviors for initiating interaction. Then,

each participant helped the robot to improve its visual skills. Again, none of the

participants had previous experience working or interacting with robots.
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6.5 User study

Survey’s Questions

General Robot Behavior Scale Cronbach’s alpha = 0.74
How comfortable did you feel near the robot?
How safe did you feel around the robot?
How human-like did the robot behave?

Robot’s Sociability Scale Cronbach’s alpha = 0.82
How social was the robot’s behavior?
How natural was the robot’s behavior?
How well did the robot’s movements adhere to human social norms?

Robot’s Intelligence Scale Cronbach’s alpha = 0.79
How intelligent did the robot behave?
How well could the robot anticipate to your movements?

Table 6.3: Questionnaire. Survey questions asked of each participant. All questions
were asked on a 7-point scale from “Not at all” to “Very much”.

Participants were asked to complete a variety of surveys. Our independent variables

considered whether the robot approached the person or if it only used voice instruc-

tions. The main dependent variables involved participants’ perceptions of the robot’s

persuasiveness, their compliance with the robot’s suggestions, and their perceptions

of the robot’s social and intellectual characteristics. Each of these fields, was evalu-

ated by every participant using a questionnaire to fill out after the experiment, based

on [91]. Some questions are presented in Table 6.3. The questions were answered on a

Linkert-scale from 1 to 7 (1 being “Not at all” ; 7 being “Very much”). We conducted

a variance analysis (ANOVA) measurement for the evaluation score. Participants were

also invited to submit additional comments on each robot behavior.

Social Scales

Participants were asked to answer nine questions, as shown in Table 6.3, following

their encounter with the robot in each mode of behavior. To analyze their responses, we

grouped the survey questions into two scales: the first measured overall robot behavior,

while the second evaluated more specific questions on the robot’s movement. Both

scales surpassed the commonly-used 0.7 level of reliability (Cronbach’s alpha).

Each scale response was computed by averaging the results of the survey questions

comprising the scale. ANOVAs were run on each scale to highlight differences between

the three robot behaviors.
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Below, we provide the results of comparing the following three robot behaviors:

(B1) the robot only uses verbal communication; (B2) the robot uses both verbal com-

munication and gestures; and (B3) the robot uses verbal, nonverbal communication

and may approach the person.

For the global evaluation score plotted in Fig. 6.13-Left, repeated ANOVA measures

were conducted. A significant main effect was found, F (2, 27) = 38.23, p < 0.001,

η2 = 0.27. Multiple comparisons with the Bonferroni method revealed that the score

for B3 is significantly higher than both behaviors B1 (p < 0.001) and B2 (p < 0.001).

No significant difference was found between B1 and B2 (p = 0.224).

To analyze the source of the difference, additional scores were examined. For the

sociability of the robot (Fig. 6.13-Center) a repeated-measures analysis of variance

revealed a significant main effect, F (2, 27) = 139.30, p < 0.001, partial η2 = 0.1.

Pairwise comparison with Bonferroni showed a remarkable difference between the three

strategies as well. B1 vs. B2: p < 0.01; B1 vs. B3: p < 0.001; B2 vs. B3: p < 0.001.

Finally, for the robot’s intelligence (Fig 6.13-Right), a repeated-measures analysis

of variance revealed a significant main effect, F (2, 27) = 27.15 p < 0.001, partial

η2 = 0.33. Pairwise comparison with Bonferroni revealed that the score for B3 is

significantly higher than both B1 (p < 0.001) and B2 (p = 0.0015) strategies. No

significant difference was found between B1 and B2 (p = 0.33).

In summary, from our analysis of the three different behaviors, we may conclude

that when the robot uses verbal and non-verbal communication, and is able to approach

the person, it has the largest rate of acceptance by humans. Under these circumstances,

people generally perceived the robot to be more intelligent, seeing as it could detect

and approach them; they also believed that it had better social skills.

Participants Comments

Each questionnaire included several blank lines underneath the social scales, where

participants could record additional thoughts on the experiments. While we did not

explicitly codify and analyze these comments, they do provide further insight into the

effect of the three robot behaviors.

Comments when the robot uses only verbal communication (B1) : Many
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Figure 6.13: HRI Results. Degree of acceptance of the three robot’s behaviors. Left :
Global evaluation of the strategies. Center: Robot’s sociability. Right: Robot’s
intelligence, as perceived by the humans.

of the comments received reflect that the robot did not attract the attention of volun-

teers. Participants noted:

“I didn’t think the robot was talking to me, because it wasn’t moving.”

“The only quality I can attribute to him is that he knew when I was walking around

him.”

“The fact that the robot didn’t move made it difficult for me to know whether it

was interacting with me or not.”

“The robot attracted my attention because it’s cute, but not because of its behav-

ior.”

Note that the comments on this behavior indicate that participants felt that the

robot did not try to initiate engagement with them.

Comments when the robot uses both verbal communication and gestures

(B2) : Many of the comments reflect that the robot did not attract participants’

attention to a satisfactory degree. Tibi was considered a social robot, but was not

perceived as intelligent:

“I like when she gestures, and attracts my attention, but I would have preferred

that the robot also approached me, not just waited for me to act.”

“I love when the robot greets me when I pass nearby, I find it very sociable.”

“If Tibi was able to move, it would draw more attention and hold my interest, yet
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I find it very interesting that I could play the role of a teacher.”

“I like that the robot comes do me and doesn’t wait for me to approach it before

speaking to me.”

Note that the comments on this behavior generally indicate that although partici-

pants felt that the robot tried to initiate an engagement with them, it was not enough,

and most participants wondered if Tibi was moving independently.

Comments when robot uses verbal, nonverbal communication, and was free

to approach the person (B3) : Many of these comments indicated that participants

felt that the robot tried to initiate engagement with them, and they were generally

interested in the robot’s skills:

“This is the first time I find myself around a robot who interrupts me in order to

help me; it’s very original.”

“Tibi is very polite, and I find it charming that it follows me around until I pay

attention.”

“I felt that Tibi obeyed social conventions by approaching me and starting the

interaction.”

“Does it mean that Tibi will be here alone? That’s original but may be dangerous

for her.”

“I feel that the robot is very intelligent because she knows when I’m nearby and

approaches me in order to interact. I’d like to know what else she can do.” (emphasis

in original)

“It’s funny that Tibi gets mad when I ignore her; it would be interesting to see if

she remembered me next time she sees me.”

Note that the comments on this behavior indicated that participants felt that the

robot tried create an engagement with them. Moreover, Tibi behaved in a socially

acceptable manner and generally understood if people wanted to interact with her or

not.
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6.5.3 Discussion

The findings presented in the previous section reinforce the idea that the robot’s ability

to initiate engagement is an important skill in a robot’s natural interaction with people.

Overall, people were surprised to find a robot in a public space, and they were astonished

when the robot caught their attention. Moreover, they enjoyed helping the robot to

detect their faces and were surprised to see how the robot progressively improved its

skills with their help.

The experiments we conducted yielded conclusive results. We found that people

felt their interaction with the robot was more natural when the robot communicated

through gestures, verbal cues, and motion. Detailed analysis showed that these ca-

pacities improved human’s perception of the robot’s intelligence and sociability. We

also found that the amount of speech and comments made by the robot seems to be

appropriate for this type of scenario. Furthermore, people felt comfortable using the

Wii remote control to communicate with the robot.

We were also able to effectively demonstrate that human assistance helps to build

the skills to detect individuals’ faces and identify specific objects. The whole process

was performed very efficiently and with minimal human effort. The results show that

the use of a social robot piques people’s interest and encourages them to help the robot

improve its visual skills.

We noticed that very few participants were capable of specifically listing the robot’s

disadvantages, but most provided helpful suggestions when asked about possible im-

provements for Tibi. People noted an interest in communicating with the robot via

voice commands, believing that kind of communication to be more comfortable. They

also suggested that it would be interesting if they could teach the robot to identify

new objects by pointing them at the robot’s screen. Both of these remarks will be

incorporated in our future research.

Finally, we must address some of the cultural limitations of our project. The param-

eters and definitions for human personal space, employed in the first set of experiments,

are specific to European peoples and to the design of our own robot. Therefore, if this

experiment had to be adapted in other cultures, its parameters would need to be ad-

justed accordingly. In addition, the proposed model of interaction was tested in a
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specific scenario, and so its application in other situations is limited. It is possible that

context and environment significantly affect humans’ preference for a specific mode of

robot behavior. For example, in a business environment, a mobile robot approaching

people could be annoying, as its interruptions could disturb people. We believe that the

University Campus is rather neutral, and can thus reflect general trends in interaction

in many daily use scenarios. Yet, this question warrants further study.

6.6 Summary

We have presented an autonomous mobile robot seeking interaction for human-assisted

learning. The contributions of this chapter are two-fold. First, we have studied dif-

ferent robot behaviors to initiate interaction with humans. The robot was able to

autonomously approach a person and create an engagement with him/her.

Secondly, once the engagement was created, people could assist the social robot

to improve its visual skills. Following the assisted learning stage, the robot was able

to detect people by using its visual skills even under challenging scenarios, such as

when the objects were partially hidden or appeared with major alterations in their

appearance.

Both contributions have been extensively and rigorously tested in a real environ-

ment. The findings suggest that allowing the robot to take initiative when commu-

nicating with people generally increased the number of human-to-robot interactions.

This, in its turn, allows humans to help robots improve their visual skills, and engage

in subsequent and more predictable interactions.
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Chapter 7

Conclusions and Future Work

It’s more fun to arrive at a conclusion than to justify it.

Malcolm S. Forbes

Ending a dissertation gives the chance to write a valuable set of conclusions about

the work in order to share them with the scientific community. Furthermore, a thesis

also opens new questions to be studied, and it is also important to clearly define which

are these new topics to be addressed by future works.

7.1 Conclusions

This thesis has tackled several challenging issues in the field of cooperative social robots.

It has described an innovative framework which allows robots to interact naturally with

humans and their environments, effectively navigating, guiding, or accompanying peo-

ple within urban settings. In this sense, this work effectively addresses four principal

concerns: (i) the concept of social companion robots accompanying people; (ii) the

discrete time motion model for escorting a group of people using several robots which

behave in a cooperative and safe manner; (iii) the Prediction and Anticipation Model

(PAM), which helps to prevent people from straying from the formation, and to deter-

mine the optimal robot behavior for helping people stay in the group in specific areas

where they may become distracted; and (iv) the nature of the robots’ ability to effec-

tively engage with humans. We demonstrated these behaviors both in simulations and
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in user studies with our robots, Tibi and Dabo. This chapter presents the conclusions

yielded by the approaches we proposed in order to investigate the aforementioned tasks.

The first major contribution of this thesis is the innovative robot-companion ap-

proach based on the newly founded Extended Social-Forces Model. By studying how

people navigate around one another, we were able to formulate a key set of social forces,

represented as mathematical constraints. We presented a powerful scheme for robots’

behavior in terms of motion based on the social-forces concept (Section 3.5.3). This

socially behavior is well-suited for tasks of robot companionship, a better performance

has been demonstrated if human interactions are taken into account.

We also introduced a robot companion metric (Section 3.5.1). Since it is difficult

to effectively evaluate any system in which natural human behavior plays a role, we

needed to develop an analytical metric to justify the behavior of our robot companion

approach. This assessment is based on the notion of “proxemics”, as proposed by

Hall [70], and ensures that the robot’s navigation is socially acceptable to the person

being accompanied, as well as to other pedestrians in the vicinity. It also works to

prevent the robot from invading the human’s personal space.

In order to refine the robot’s behavioral skills, we employed an interactive learning

method. This strengthens the model by generating instances of controlled interaction

which enhance the social acceptability of the companion robot’s behavior. We believe

that human feedback for parameter learning is a key component to the development of

robots specially designed to interact with people (see Section 3.5.2).

To validate the model, we performed an extensive set of simulations and real-life

experiments in a an urban environment. We noted several practical applications of

our experiments, among them, robots guiding tourists around a city, or accompanying

professional visitors. Our overall validation of the approach in real scenarios was in-

formed by feedback information received directly from the volunteers themselves. These

contributions have been presented in [41, 44, 49].

The second principal contribution of this thesis is the development of a new frame-

work for guiding people in urban areas with a set of cooperative mobile robots, Chap-

ter 4. The proposed approach offers several significant advantages, as compared with

those outlined in prior studies. Firstly, it allows a group of people to be guided within

both open and closed areas, potentially containing obstacles; secondly, it uses several
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cooperative robots; and thirdly, it includes features that enable the robots to keep peo-

ple from leaving the crowd group, by approaching them in a friendly and safe manner.

Our design assigned one of the robots to be the leader, or tour guide. This head

robot was placed at the front of the group and its role was to predict the trajectory of the

people and the other robots. These follower robots, or “shepherds”, were responsible

for guiding the people, preventing them from leaving the group, and following the path

as determined by the leader.

At the core of our approach, we proposed a “Discrete Time Motion” (DTM) model,

which works to represent human and robot motions, Section 4.4, in order to predict

people’s movements, so as to plan a route and provide the robots with concrete motion

instructions. Moreover, the interaction with the obstacles of the environment is con-

sidered through a potential field, wherein both the people’s and the robots’ positions

are represented by continuous and derivable functions.

Another key feature of our model is the realism we achieved in our dynamic models

for both robots and people. Both models were validated through video sequences of

groups of people performing different kinds of motions. The models we proposed were

in fact very good close approximations of these real situations.

In contrast to previous approaches, our method can tackle realistic scenarios, such

as large environments containing obstacles, or situations in which people naturally stray

from the group. We presented various results in situations wherein robots guide people

in open areas, areas with a single obstacle, and urban areas with a large number of

obstacles and other hazards. In all of these experiments, we were able to show that

the robots could perform satisfactorily and be competent guiding people in realistic

situations.

Moreover, we described the validation process of the simulated model that explores

new possibilities for interaction when humans are guided by teams of robots working

cooperatively in urban settings. In our experiments, a group of people was guided by

a team of three robots. We recorded their motions on video in the Barcelona Robot

Lab, an urban space wherein they followed diverse trajectories. The motions of both

the people and the robots, which were extracted from the video sequences, were later

compared against the predictions yielded by the DTM model. This work has been

published in [56, 58].
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The third contribution of this thesis is the development of a “Prediction and An-

ticipation Model”, which was designed to guide people using multiple robots working

together cooperatively (see Section 5.3). This model projects the behavior of a group

of people (prediction) using a particle filter. It also enables us to determine the opti-

mal distribution of robots for preventing people from straying from the formation in

specific areas of the map (anticipation). Using this model enabled us to keep people

from straying from the guided group, and thus to facilitate the task of the robots. Fur-

thermore, we found that we could locally optimize the work performed by robots and

people alike, and thereby yielding a more human-friendly motion.

We conducted several simulations to test the proper functioning of the model. Due

to technological constraints and safety concerns, we were not able to test the complete

method in real-life scenarios; this constitutes a large component of our future research.

Despite this limitation, we were able to successfully evaluate the effect of a robot’s

pushing and dragging forces on people in real-life situations using one of our robots.

This dissertation describes and interprets the findings yielded by various simula-

tions conducted in open areas littered with obstacles and characterized by individuals’

behavioral movements. In each simulation, we were able to show that, by using the

PAM model, the robots could act preemptively to prevent people from getting lost

or straying from the group, and we believe that the same results can be replicated in

urban areas with a large number of obstacles. Although thus far we have only assessed

the functionality of the PAM model in simulations, we conducted real-life experiments

to validate Helbing’s forces using our robot, Tibi. We also assessed the participants’

preferred dimensions of personal space, data which was then incorporated into our

simulations. These concepts have been presented in [50, 55, 57].

Finally, the forth contribution of this thesis is the framework for an autonomous

mobile robot capable of interacting to acquire human-assisted learning (see Chap-

ter 6). First, we studied different robot behaviors for initiating interaction with humans,

wherein the robot was able to autonomously approach a person and successfully engage

with him/her (see Section 6.3.1). To refine this, we looked into the human communica-

tion model proposed by Clark [25], based on the notion that people in a conversation

perceive the roles of other individuals, such as a speaker, listener, and side partici-

pants. On the basis of this insight, we furnished our robot with a simple visual module
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for detecting human faces in real-time, with the caveat that the faces had to be in a

non-occluded and frontal position in order to be perceived accurately.

Once contact was initiated, people were given the opportunity to assist the robot

to improve its visual skills. After this assisted learning stage, the robot was able to

detect people by using its visual skills, even under challenging scenarios, such as when

objects were partially occluded, or appeared with major changes in their appearance

(Section 6.3.2).

We tested both contributions extensively and rigorously in real environments. Our

findings suggest that allowing the robot to take the initiative generally increased the

number of human-to-robot interactions. This increase, in turn, allows humans to help

robots improve their visual skills, and engage in subsequent and more predictable in-

teractions. These contributions have been presented in [44, 59, 171].

Overall, our research demonstrates the need for robots that are able to operate ac-

ceptably around people; to behave in accordance with social norms while accompanying

and guiding them; and to acquire acceptable behaviors in their presence. Moreover,

our work shows that cooperation amongst a group of robots optimizes the performance

of the robots and the people alike, therefore generating a human-friendly motion. Fi-

nally, while much research remains to be done, we believe that this work will be greatly

beneficial to future robots, as well as to the people who work with them.

7.2 Future Work

Although several problems regarding the cooperation of robots to accompany and guid-

ing people were addressed in this dissertation, there are still some important issues to

be addressed in the future. This chapter is aimed at discussing new possible routes of

research arising from the work presented in the previous chapters, taking into consider-

ation the current and future requirements to be fulfilled in order to build smarter and

friendlier robot companions.

7.2.1 Limitations of the current work

The focus of this thesis has been on the development of a framework that allows robots

to interact naturally with humans and their environment, while robots navigate, guide
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or accompany people in a cooperative way in urban settings. However, the current

implementation of different methods has several limitations that must be addressed

before the framework can be used as part of a complete system. In particular, the

primary limitation relates to people detection and tracking.

7.2.1.1 People detection and tracking

This subsection describes the limitations we came across while testing our model in

real-life scenarios and which led us to continue testing exclusively through simulations.

No robust methods exist to detect people’s poses –position and orientation– when

they move in a group in pedestrians areas. From the point of view of a robot on

one of the sides of the group, some individuals are inevitably partially or completely

occluded. If the group has a small number of people the chances of achieving accurate

pose detection are high, but if there are many people, detection becomes very difficult.

Since our method is based on estimating the pose of each person of the group, pose

detection is key to our research.

Since in this dissertation people must be treated as social entities, and not just

obstacles, robots must be able to accurately detect where people are in the environment.

Unfortunately, the laser-based detection and tracking system we currently employ (see

Section 3.4) performs quite poorly in real world escenarios. The tracker could be

improved in many ways, we are planning to use a multi-sensor approach to better

determine the locations of pedestrians in the environment. For instance, by combining

the laser range scanners with a vision system able to detect people by shape, the tracker

could achieve higher accuracy.

7.2.1.2 Additional real-life experiments

While this dissertation has presented a wide range of results from simulations, and most

robots’ behaviors were addressed in real-life experiments, the cooperative behavior of

a group of robots was addressed in a simple scenario, Section 4.6.3.

Experimental work using teams of robots in real scenarios is necessary. As it has

been mentioned in Section 5.2.1, there are some drawbacks that made it difficult to

carry out more sets of real-life experiments. The analysis made allows us to conclude
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that several drawbacks, common to most strategies, still remain. Among others, future

work will focus on factors such as: resource utilization, interference, communication

load or workload among robots when performing the cooperative tasks.

Finally, there is a problem constraint which derives from robots’ motions. Robots

cannot accelerate or go faster than people in a safe way. This means our robots cannot

usually follow people’s behavioral reactions. Currently, there is not enough data on

people’s reactions to robots’ motion instructions. Instructions like “please return to

the group” or “do not go away” might cause different reactive motions in different

touring situations.

7.2.2 Future lines of research

We believe that the methods presented in this thesis can introduce new lines of research.

Firstly, from Chapter 3, robots behavior in terms of motion can be enhanced by making

robots’ navigation more natural, sociable and comfortable for humans. Moreover, in

this thesis robots navigate in urban environments with pedestrians in the surroundings,

therefore, we believe their navigation systems must understand the social conventions

followed by people. Secondly, a task that we think could be represented with the

frameworks mentioned in Chapters 4 and 5 is emergency evacuation robots. New

people’s behavior must be considered, such as panic situation, thus, a set of robots

could evacuate groups of people if it is required. Finally, continuing the work presented

in Chapter 6, we aim to find new methods for robot interactive learning through human

assistance.

7.2.2.1 Understanding human interaction for social autonomous navigation

Nowadays, a mobile robot must be able to successfully navigate in the environment

where it is working, many different algorithms for obstacle avoidance have been devel-

oped. The presence of humans requires novel approaches in terms of robot navigation.

Allowing robots navigate among humans opens different interaction possibilities for

robots.

Most of the works on human-aware robot navigation attempted to improve robot

acceptance, but the methods might vary. Some of them try to minimize stress, in order
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to make the interaction more comfortable for pedestrians [29, 39]. Others aspire to

make robots behave more natural and sociable according to cultural conventions [11].

Moreover, robots behavior should follow social conventions, respecting proximity

constraints, avoiding people interacting or joining a group engaged in conversation

without disturbing. The sociology literature often refers to the concept of personal

space proposed by Hall [70].

For instance, if the robot aims to join a group, it must get permission from the

group to be integrated. In order to develop social robots, the notion of human to

human interaction needs to be included.

As future work, we plan to improve the robot’s behavior presented in Chapter 3, and

obtain robots which are able to navigate in a more comfortable, natural and sociable

way while accompany/guide a group of people.

7.2.2.2 Emergency evacuation robots

Robots are becoming popular tools for traditional search and rescue missions [23]. Sev-

eral studies have been performed in order to investigate how people react in emergency

situations [155]. Emergency evacuation robots offer many advantages over traditional

methods of notification and guidance. In particular, during an emergency situation the

only notification that people receive is a buzzing alarm, and the guidance they receive

comes from stationary signs and their own recollection. Emergency personnel can as-

sist, but they need time to arrive at the site and they take a great risk by entering

a building during an emergency. Robots can be stored inside and become active as

soon as an evacuation is called. They can approach people and guide them out of the

building with no danger to emergency personnel.

For that reason, we aspire to build a framework to make robots capable of evacuating

people as an expansion of the models presented in Chapters 4 and 5. To solve this task,

people’s behavior such as panic situation must be considered, and new robots’ strategies

have to be studied, thus, a set of robots could evacuate groups of people if it is required.
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7.2.2.3 Robot interactive learning through human assistance

Humans live interacting with other people and perform tasks in individual and collective

ways everyday. Robotic researchers are interested in designing robots that can interact

with people in the same way as humans do. In order to reach this goal, robots must

learn from the interaction with humans and learn humans skills used in everyday life.

The learned social behaviors could be used in a wide range of real-world scenarios,

such as, domestic tasks, shopping, assistance, guidance, entertainment, surveillance, or

rescue.

There are many examples where these interactions occur, but some of them are

very basic and people do not realize the extreme difficulty that entails executing such

tasks for a robot. The navigation in crowded environments, or the social engagement

to initiate a conversation, are typical examples.

Continuing the work presented in Chapter 6, we plan to develop new techniques to

learn from the interaction with humans using multi-modal interaction. The models can

be learned off-line or on-line, and humans can use the information coming from inputs

and the outputs to train the system again in order to improve the models. We expect

that with these new techniques, the multi-modal interactive system can improve the

accuracy and robustness of the methods.
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Appendix A

Tibi and Dabo Mobile Robots

Two mobile service robots, designed to operate in urban, pedestrian areas, were bought

and properly modified and equipped for the URUS (Ubiquitous Networking Robotics

for Urban Sites) project [143]. These are Tibi and Dabo, pictured in Fig. A.1. They

are based on two-wheeled, self-balancing Segway RMP200 platforms, and as such are

highly mobile, with a small footprint, a nominal speed up to 4.4m/s, and the ability to

rotate on the spot (while stationary). The Segway RMP200 is, in many ways, an ideal

platform to run in urban areas. Humanoid robots are not yet equipped to operate in

outdoor environments, and four-wheeled vehicles have a much larger footprint and are

more restricted in their mobility.

Moreover, Segway robots can carry heavy payloads, up to 45 kg for this model. On

the downside, two-wheeled platforms are statically (and dynamically) unstable, keeping

their balance using gyroscopic sensors to track and correct their tilt. The robot will

pitch forward or backward to accelerate or decelerate, or simply to keep its balance

while stationary. This behavior presents two issues for their use in robotics.

The Tibi and Dabo robots have a height of 165 cm, occupy a clearance space of 80

cm, and weight 110 kg. It is equipped with multiple sensors, as well as, a Bumblebee

stereo camera and three lasers.

They are equipped with the following sensors, see Fig. A.2:

• Two Hokuyo UTM-30LX 2D laser range sensors used to detect obstacles and

people, giving scans over a local horizontal plane at 40cm above the ground,
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Figure A.1: Tibi and Dabo robots.

facing forward and backward.

• A stereo Bumblebee camera located in the eyes is used for computer vision pur-

poses.

• A touchable screen to communicate with people.

• A speaker, movable arms and head to express emotions.

• Two on-board computers (Intel Core 2 Quad CPU 2.66 and 3.00 GHz) manage

all the running processes and sensor signals, and a laptop is used for external

monitoring.

Moreover, Tibi and Dabo were designed to interact with different people in open

spaces. The robots are socially accepted, and humans take an interest in interacting

with them, robots’ design are well-rendered, and, their movements are smooth.
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Figure A.2: Components of the Tibi Robot: (1) the head; (2) Bumblebee stereo
cameras; (3) monitor; (4) emergency stop button; (5) maneuvering buttons; (6) Segway
wheels; (7) vertical front laser for navigation; (8) horizontal front laser for navigation
and localization; (9) horizontal back laser for navigation and localization; (10) Seg-
way batteries and controller; (11) additional batteries; (12) on board computers; (13)
wireless antenna.





Appendix B

Analysis of Variance

To evaluate the questionnaires, a single factor analysis of variance (ANOVA) has been

computed, according to [13]. This method compares the mean values of several groups

to test whether the probability that the means of all groups are equal is below a certain

threshold. For the surveys conducted in the context of this dissertation in Chapters 3

and 6, the different groups are the robot’s behaviors, and the means are calculated

from the ratings given by the participants in the evaluation. A precondition for the

anova is that the sample set is normally distributed. Furthermore, the homogeneity of

variances is required.

To run the anova, a hypothesis H0 is made that says all means are equal: µ1 =

µ2 = . . . = µr, where r denotes the number of groups.

For the ANOVA overall distribution of the means is divided into two sub-distributions,

one between the groups in this thesis, between the different behaviors, and another one

within the group, here the ratings for a particular behavior. The distribution between

the groups is represented by the sum of squares for treatments c(SST ), the square sum

of the deviation of the single means from the overall mean. The distribution within a

group is represented by sum of squares for errors (SSE), the square sum of the deviation

of the single values from the mean within a group.

SST and SSE are obtained as follows:
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SST =
r∑

j=1

nj(X̂j − X̂)2 (B.1)

SSE =
r∑

j=1

nj∑
i=1

(Xji − X̂j)
2 (B.2)

where, r represents the number of groups X1, X2, . . . , Xr; and ni the number of

elements within the ith group, Xi1, Xi2, . . . , Xini . Therefore, the overall number of

elements n = n1 + n2 + . . .+ nr. Furthermore, X̂j and X̂ are defined as follows:

X̂j =
1

nj

nj∑
i=1

Xji, j = 1, . . . , r (B.3)

X̂ =
1

n

r∑
j=1

nj∑
i=1

Xji =
1

n

r∑
j=1

njX̂j (B.4)

Then, the test value T is computed as:

T =
SST
SSE

(B.5)

T is compared to the theoretical value from the F-Distribution table Fr − 1, n− r, α
(α level of significance). If T > Fr − 1, n− r, α , H0 is rejected falsely with a probability

of α. This means in the context of the experiments from Chapters 3 and 6 that it

is known that there are significant differences between the ratings for the different

behaviors.
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