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Modelització empı́rica i a escala de conca

Rafael Marcé Romero
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Chapter 4

Using spatially distributed parameters
and multi-response objective
functions to solve parameterization of
complex applications of
semidistributed hydrological models

4.1 Introduction

Semidistributed models are the usual choice in
assessment and prediction of water quality in rivers
when the origin of the water quality constituents
(e.g. point versus diffuse sources) is a major target
(Singh and Woolhiser 2002). Although good em-
pirical alternatives exist if the working time scale is
large enough (e.g. Alexander et al. [2002] for an-
nual time steps), dynamic models should be consid-
ered at shorter time scales. In this modeling frame-
work, the quality and reliability of a water qual-
ity constituent calculation lies on a correct assess-
ment or prediction of the quantity of water flowing
through the river. Thus, the hydrological perfor-
mance of a watershed model is determinant to the
success of its water quality modules.

But to correctly assess the origin of the water
quality constituents (and consequently of the wa-
ter arriving at the river reach) not only the water
flowing through the river channel should be mod-
eled: a good estimation of the surface versus sub-
surface contributions to the runoff is needed. Un-
fortunately, in most water quality applications at the
watershed scale surface flows in the channel of the
rivers are the only hydrological data available to
help the whole parameterization of the hydrological
modules. Even if more data exists, problems related
to incompleteness and inaccuracy usually restricts
the amount of useful data (Singh and Woolhiser
2002). Despite of this, few works check the uncer-
tainty associated to the different components of the
water inflow to the channel. This could be problem-
atic for water quality applications, especially if out-
comes should support management decisions, since
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the same flow record in the river channel can be
obtained from very different combinations of sub-
surface inputs and surface runoff, which can have
dramatic differences in water quality characteristics
(Butturini and Sabater 2000).

This common lack of high quality field measure-
ments of water flows across the watershed, summed
to the high number of adjustable parameters usually
present in semidistributed models, ends with hydro-
logical simulations that reasonably fit observed river
runoff, but with a high degree of uncertainty in pa-
rameter values, and consequently in the separation
of the modeled response in surface and sub-surface
inputs to the river. In complex modeling applica-
tions this situation is even worse: if the model-
driving characteristics of the watershed (meteorol-
ogy, land uses, soil properties, geomorphology)
have high variability across the basin or along the
time, the number of parameters needed to account
for this variability should be even higher. In such
a situation, the uncertainty in adjustable parameter
values and routing calculations will be severely en-
hanced, unless good field data and prior information
on parameter values are available.

During the last years, a considerable effort has
been devoted to combine automatic calibration
methods with proper data management during the
calibration process, in an attempt to minimize the
uncertainty in the modeled hydrological response.
One approach is the use of multiple objective func-
tions during the calibration processes, in order to
constrain the parameter uncertainty forcing the sys-
tem to fit different data measured in the field (Hunt
et al. 2006), or different features of a data series
(Madsen 2000). This can be solved combining the
different objective functions in a single one (Mad-
sen 2003), searching for the entire Pareto set of pa-
rameters that fits the data (Gupta et al. 1998; Vrugt
et al. 2003), or a region of it (Khu and Madsen
2005). On the other hand, the use of proper regu-
larization and prior information methodologies al-
low the inclusion of all the information available
in our observed data and expertise into the calibra-
tion process (Doherty and Johnston 2003). This
last methodology is very useful when a high de-
gree of spatial or temporal heterogeneity in model

parameters is present, because it allows the inclu-
sion of many parameters in the calibration processes
without converting the problem into an ill, under-
determined one.

In this study we show how a complex water-
shed scale hydrological model application can be
successfully solved combining a regularized fitting
methodology with a multiobjective function (OF)
approach. The usefulness of the spatial discretiza-
tion of adjustable parameters was tested with a stan-
dard calculation of parameter uncertainty, whereas
the effect of the inclusion of different data in the
calibration process on the output was tested with a
stepwise procedure, in which different kind of data
were sequentially added to the OF. It is a typical hy-
drological simulation for water quality purposes, in
the sense that only limited river water flow infor-
mation is available to parameterize the flow routing
equations. Also, as the final aim of this model will
be the simulation of water quality constituents, we
pay special attention to the effect of the inclusion of
different data types into the OF on the uncertainty
of the modeled subsurface input to the river.

4.2 The study site and the
model

The Ter River watershed is a 1380 km2 populated
area, mainly covered by woodland (78%) and agri-
cultural land (16%). The headwaters are located
in the north end of the basin (Fig. 4.1), at 2500
m altitude in the Spanish Pyrenees ranges, and for
this study the watershed ends at the Sau Reservoir
dam, at 360 m altitude, configuring a steeped basin
with a mean slope of 0.27. However, the terrain
slope, as well as other features in the watershed,
shows a high spatial heterogeneity across the basin
(Fig. 4.1). The headwaters flow over hard mate-
rials (igneous and metamorphic rocks) covered by
a mixture of high altitude shrublands and conifer
and deciduous forests over a steeped terrain (mean
slope 0.38). Downstream, around the meeting point
of the two main headwater courses, the forested
land accounts for nearly all the terrain, the slopes
have moderated (mean slope 0.28), and the river
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flows over sedimentary rocks. Then the river en-
ters in the populated agricultural plain (most of the
slopes under 0.03) where the main human settle-
ments are located. Here the alluvial deposits are
abundant, and unirrigated crops cover most part of
the land. Finally, the Southeast end of the basin
is a mountainous terrain similar to that located in
the north top section. Thus, the watershed includes
a complex mixture of geomorphologic, lithologic,
and land cover features. In addition, empirical ev-
idence from twelve meteorological stations located
inside the watershed (Fig. 4.1) shows that rain and
other meteorological variables are also highly spa-
tially variable, especially in the North-South direc-
tion, and at any time scale. All in all, the water-
shed under study constitutes a demanding problem
for any hydrological model.

The Hydrological Simulation Program-Fortran
(HSPF) is a lumped hydrological model well suited
to deal with complex watersheds: the possibility
to split the watershed into subbasins converts the
model into a semidistributed application, allowing
the inclusion of spatial heterogeneity of watershed
features and meteorological inputs in the model-
ing framework. Also, the hydrological modules
solve for the surface and subsurface inputs to the
river flow (Bicknell et al. 2001). Nevertheless,
HSPF is a robust, relatively user-friendly applica-
tion that includes many useful tools and sources of
help for modelers, including databases with parame-
ter values from many previous applications (USEPA
1999). In addition, the USEPA supported BASINS
expert system offers a number of preprocessing
tools compatible with HSPF (USEPA 2001).

The basic modeling unit in HSPF is the Hydro-
logical Response Unit (HRU), a piece of terrain that
is intended to have homogeneous watershed and
meteorological characteristics, and thus a unique
hydrological response. For this study, the HRUs
were defined overlaying three watershed features
(terrain slope, lithology, and land use) and the mete-
orological input. The terrain slope was divided into
three categories (S1: 0–0.06; S2: 0.06–0.15; S3:
>0.15) following other HSPF applications (SWM
2002). The lithological layer was defined as a three
items map, and the land uses layer included eight

categories (Fig. 4.1). Twelve meteorological sta-
tions supplying hourly data were available, and the
meteorological variables were spatially distributed
assigning the input of each meteorological station
to one or more subbasins, defining twelve meteo-
rological zones. We discarded the use of Voronoi
polygons or similar methodologies to draw the me-
teorological zones because the spatial extent of the
meteorological events in this watershed is clearly
limited by topography. The combination of the four
layers gave a theoretical maximum of 864 HRUs,
but due to the spatial covariance between layers and
the assimilation of HRUs of less than 500 ha by
HRUs with similar characteristics the actual value
was 109 HRUs. The output of the HRUs is diverted
to the river reaches included in the subbasins where
the HRUs are present. The subbasin delineation
was automatically performed with the ArcView al-
gorithm implemented in the BASINS package, us-
ing a 100 m grid digital elevation model, giving 58
subbasins (Fig. 4.1).

Since each of the 109 HRUs generated acts as an
independent hydrological model, and HSPF has a
considerable amount of parameters (Table 4.1), we
are facing a very complex problem. Fortunately,
some of the parameter values could be estimated
from GIS based information, inventories, or bibli-
ographical research. Thus, a considerable degree of
spatial heterogeneity (i.e. specific parameter values
for each HRU) could be preserved. But many pa-
rameters represent abstract properties of the basin,
or simply there was no field information available,
and consequently a calibration process must opti-
mize their values. Obviously, we cannot calibrate
109 different values for the eleven adjustable param-
eters considered in this study (Table 4.1). Instead,
we tried to preserve some heterogeneity by consid-
ering different parameter values in relation to some
watershed feature (lithology, terrain slope, or land
use) considered as a key factor governing the param-
eter behavior (Table 4.1). Information in USEPA
(1978; 1999; 2000) was used to define the water-
shed feature relevant to each adjustable parameter.

In addition, temporal heterogeneity was con-
sidered relevant for two parameters: UZSN and
LZET P. HSPF is a flexible modeling environment,
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Table 4.1 – Parameters of the Hydrological Simulation Program-Fortran (HSPF) model.

 

Parameters 
Optimized Description Zonation Prior 

Value Range a

Storages     
LZSN Lower zone nominal storage (in) 3 by lithology  0.01-15 
UZSN Upper zone nominal storage (in) 3 by slope  0.01-10 
UZSNΣ Monthly variability for UZSN Applies only to S1 0 0-1 

Infiltration     
INFILT Index to the infiltration capacity (in hr-1) 3 by lithology 0.08 b 0.001-0.5 
INFEXP Exponent in the infiltration equation 3 by lithology  0-10 

Recession     
KVARY Non-exponential groundwater recession (in-1) 3 by lithology 0 0-5 
AGWRC Base groundwater recession (day-1) 2 by land grups  0.85-1 
IRC Interflow recession (day-1) 3 by slope 0.7 c 0.3-0.85 

Routing     
INTFW Interflow inflow parameter  3 by lithology  1-10 
LZETP Lower zone evapotranspiration parameter  5 by land use  0.1-0.9 
LZETPΣ Monthly variability for LZETP Applies to all 0 0-1 
BASETP Baseflow evapotranspiration by deciduous forest Applies only to DC 0 0-0.2 
DEEPFR Groundwater fraction lost by deep percolation 3 by lithology 0 0-0.5 

Parameters 
Estimated Description Source Reference 

Terrain Features    
COVIND Snow pack that covers the entire HRU (in) Function of slope This study d
SLSUR Terrain slope GIS e 
LSUR Length of the overland flow plane (ft) Function of slope This study f
NSUR Manning’s n for the overland flow plane Function of land use c 

Vegetal Cover    
FOREST Fraction of land covered by vegetation Inventories  g 
INTERCEPT Monthly interception storage capacity (in) Inventories + Literature h 

River Reaches     
FTABLE Tables summarizing reaches morphometry Measured i 
a Modified from USEPA 2000. 
b USEPA 1978. 
c USEPA 2000. 
d COVIND = 1+10 · SLSUR. 
e LANDSAT-TM 1997-1998 30m grid by Institut Cartogràfic de Catalunya (Spain). 
f LSUR = 100 + 6358 · exp(-0.099 · SLSUR). 
g CREAF 2001. 
h van der Leeden et al. 1991; Llorens 1997; Llorens et al. 1997; Bellot and Escarré 1998; Rodà et al. 1999; Gallart 
et al. 2002. 
i ACA 2001. 
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Figure 4.1 – (A) Ter watershed location and subbasins delineated for HSPF simulation. (B) Lithological zones
(L1: alluvial deposits and soft sedimentary rocks; L2: consolidated sedimentary rocks; L3: igneous and meta-
morphic rocks) and location of meteorological stations. (C) Land uses in the catchment (UR: urban; CR: unir-
rigated crops; DC: deciduous forest; BL: barren land; MX: for clarity, meadows, shrublands, and few portions
of oak forest are included here; CF: conifers forest). G1 groups the non-forested uses, while G2 includes the
different forestlands. These are used to distribute the parameter AGWRC (see Table 4.1).

and allows the definition of monthly parameter val-
ues. Since defining twelve values for these two pa-
rameters would almost double the number of ad-
justable parameters, we introduced two new param-
eters, that we called UZSNΣ and LZET PΣ (Ta-
ble 4.1), which represent the amplitude of varia-
tion of the corresponding quantity about its average
value. The twelve monthly values were computed
using:

UZSNn =UZSN +(UZSN×UZSNΣ)

× sin
(
(xn−270)× 2π

365.25

) (4.1)

and,

LZET Pn =LZET P+(LZET P×LZET PΣ)

× sin
(
(xn−91)× 2π

365.25

) (4.2)

where n = (1,2, . . . ,12) stands for the month index,
and x = (0,31,60, . . . ,335) represents the day of the
year representative for each of the twelve months.
Thus, the two equations define a sinus curve cen-
tered at a different day of the year, if the Σ parame-
ters have a non-zero value. The parameter UZSNΣ

only affects the UZSN value defined for HRU’s in-
cluded in the slope type 1 (S1), whereas LZET PΣ

affects all the LZET P values (see Table 4.1).
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4.3 Calibration strategy

4.3.1 Objective function

Gupta et al. (1998) proposed a new calibration
paradigm based on the multi-objective function ap-
proach. Following Madsen (2003), in a multi-OF
context calibration can be performed on the basis of
multi-variable measurements (e.g. river runoff and
groundwater levels), multi-site measurements (i.e. a
variable measured in several sites within the water-
shed), and multi-response modes (i.e. OFs that in-
cludes several aspects of the hydrological response,
but on the basis of the same measured variable). In
a typical hydrological simulation for water quality
purposes, rarely the multi-variable approach is ac-
cessible, because usually only river runoff is avail-
able. Thus, in these applications the multi-response
approach is the most frequently applied, supplying
multi-site measurements of river flow in the best sit-
uations. This study represents an extreme situation,
where only the multi-response option was available.
Consequently, we applied our efforts in defining a
good multi-response OF. The responses included in
the OF follow.

• WEEK. This response includes weekly mean
flows in the Ter River during the period 1999–
2002. Since the only recent flow data within
this watershed comes from the daily water bud-
gets in Sau Reservoir (Fig. 4.1), we investi-
gate the relationship at different time scales
between the water budget estimation and the
river flow measures from a gauging station
that operated just upstream the reservoir dur-
ing the 1980s. We found that the best correla-
tion was computed with the mean weekly data
(r2=0.89). The period from January 2003 to
July 2004 was reserved as a validation data set.

• HOUR. Since the recommended HSPF work-
ing time step is the hour, and some of the driv-
ing parameters work at this time step (Bick-
nell et al. 2001), we considered important to
include a series of hourly river flow into the
OF. Again, the source was the water balance
in Sau Reservoir. Since an hourly record of

this kind is prompted to include a high level
of measurement noise, we looked for a strong
storm event with dramatic short-term changes
in the river flow. Only one such event could
be found in the database pertaining to the stud-
ied period (from 10 May 2002 to 14 May 2002,
Figure 4.2). Thus, no validation data was avail-
able for this response.

• TRIM. We aggregated the flow response in 91
days periods. Although this response cannot be
considered independent of the WEEK series,
the inclusion of series at coarse time resolu-
tion is common during calibration of semidis-
tributed models (Shamir et al. 2005). The
calibration and validation periods were as in
WEEK.

• BASE. Although the knowledge of subsurface
inputs to the river flow are of capital impor-
tance both in hydrological and water quality
applications, direct measures of this flow are
very difficult to obtain. Since one of the aims
of this study was to test the effect of differ-
ent kind of data on the uncertainty in the mod-
eled subsurface inputs to the river, we consid-
ered the inclusion of some estimation of the
baseflow in the calibration process. Thus, we
used the Arnold and Allen (1999) numerical
filter to estimate the baseflow hydrograph from
the daily flow record in the Ter River. As a
numerical estimate, this method carries some
uncertainty, expressed in the fact that the re-
sult is not a single baseflow series, but a col-
lection of three passes of the numerical filter.
Although the most probable result is the first
pass (Arnold and Allen 1999), we used all the
available information defining a specific resid-
ual for the BASE data. Whereas for the other
responses the residuals r between observed and
simulated data were just the difference series,
for BASE we used:

if t passi < modi < f passi, ri = 0
if modi > f passi, ri = modi− f passi
if modi < t passi, ri = modi− t passi

(4.3)
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Figure 4.2 – (A) WEEK and (B) BASE ob-
served values and prediction during the valida-
tion period. (C) HOUR observed values and
prediction during the calibration period.

where modi stands for the ith modeled subsur-
face input to the river, and f passi and t passi
are the ith estimated groundwater flux into the
river calculated by the first and third baseflow
algorithm pass, where most probably the ac-
tual baseflow value is located. Following the
reasoning detailed for WEEK, we aggregated
the series taking weekly mean values, and the
calibration and validation periods also were as
in WEEK.

• DURC. The inclusion of duration curves (i.e.
the percent of time in which the river flow
equaled or exceeded some given values) is a
current practice in HSPF applications (Doherty
and Johnston 2003). The definition of several
values to which calculate exceedence times (in
this study 1.7, 3.5, 7, 14, 28, 56, and 85 m3 s-1)
includes a frequency descriptor into the cali-
bration process, which is relatively indepen-
dent of the original flow series and can be com-
pared to a nonparametric streamflow signature,
i.e. its calculation does not depend on statisti-
cal assumptions (Shamir et al. 2005). To cal-
culate DURC we used the daily flow record,
because for this nonparameric descriptor the
small-scale noise should not have a deleterious
effect. Calibration and validation periods were
as in WEEK.

The next step is to define the way in which the
parameter estimation method will use the above re-
sponses during the calibration process. Although
the most powerful way would be to search for the
entire Pareto set of parameter values that simulta-
neously fits the different responses (i.e. consider-
ing each response as a separate OF), previous runs
with standard methods to apply these methodolo-
gies (Vrugt et al. 2003) in our problem revealed
that the convergence of results was extremely slow
(very poor convergence after 100 000 simulations
of 25 seconds each one), therefore unsuitable for all
practical purposes. We turned to the PEST package
(Doherty 2004), which implements a robust variant
of the Gauss-Marquardt-Levenberg method, and be-
cause it is a stable local OF minimum finder, that
also gives an estimation of the uncertainty in op-
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timized parameter values. Since PEST is not able
to manage several OFs at the same time, we ag-
gregated the different responses into a single OF,
using the Euclidian distance function by Madsen
(2003). This transformation function compensates
for differences in the magnitudes of the different re-
sponses, giving to all the same influence on the ag-
gregated OF near the optimum. This is equivalent
to search a point in the front of the Pareto set (Khu
and Madsen 2005). Finally, we used the PD MS2
driver included in the PEST package, which applies
PEST in a population-based inspired approach to ef-
ficiently find the global OF minimum (Skahill and
Doherty, 2006). We compared the results obtained
with the SCE algorithm (Duan et al. 1992) and
PD MS2 in several calibration runs with a simpli-
fied version of our model, and we observed that the
difference between both methods were always less
than 5% of the final value of the OF.

4.3.2 Regularization

The model structure presented in Section 4.2 de-
termines that we had to calibrate 34 parameters,
which is a considerable amount. In this context, the
risk of overfitting and poor convergence due to nu-
merical instability problems during the calibration
process is elevated. Since the reliability of final pa-
rameters values and the resultant spatial and tempo-
ral heterogeneity is highly degraded if such overfit-
ting exists (Moore and Doherty 2005), we should in-
troduce some regularization constraint into the cali-
bration process.

We applied three different regularization strate-
gies. First, we imposed a smoothing constraint on
parameter values. This was achieved by taking dif-
ferences between the values of parameters pertain-
ing to the same model parameter (e.g. between the
three LZSN parameters defined by lithology), and
requesting that each such difference be zero if possi-
ble. The second strategy was to impose a parsimony
criterion. For this, we defined a preferred state for
certain parameter values (Table 4.1), in order to in-
clude the effect caused by these parameters only
if necessary. For instance, UZSNΣ and LZET PΣ

were defined with a preferred value of 0, i.e. no

intra-annual variability for UZSN and LZET P pa-
rameters. Thus, any departure from zero will be pe-
nalized during the calibration process. In a similar
way, a zero preferred prior value was assigned to
KVARY , BASET P, and DEEPFR parameters. Fi-
nally, the third strategy was to assign a prior value
for INFEXP and IRC, using bibliographical infor-
mation consistent with our watershed characteris-
tics (Table 4.1). All these regularization constraints
were implemented in PEST supplying the preferred
values as observations in the form of prior infor-
mation equations (Doherty 2004), which constitutes
an additional observation group (REGU) added to
the OF. This implies that the residuals pertaining to
REGU will depart from zero during the calibration
process only if this is compensated by the residu-
als for the other OF components going to zero. The
advanced regularization options included in PEST
were not implemented, because they are incompati-
ble with the PD MS2 driver.

4.4 Numerical analyses

In order to elucidate if the final values of related
parameters are different enough to justify the pro-
posed zonation, we estimated the distribution of the
final parameters values taking advantage of the con-
fidence interval calculation implemented in PEST
(Doherty 2004). At the end of the calibration run,
PEST gives the optimized value (i.e. the 50 per-
centile), and the 2.5 and 97.5 percentiles for each
parameter. We adjusted a Beta cumulative distri-
bution function (CDF) to these three points, in or-
der to obtain an approximation of the posterior pa-
rameter distribution. If deviation of normality was
too high to prevent a Beta function to fit the per-
centiles, two Beta CDFs were overlaid to draw the
distribution. Once the empirical distributions were
obtained, we sampled 10 000 points from each of
the fitted CDFs. These synthetic samples were then
used to test paired differences between the values
of the parameters pertaining to the same model pa-
rameter (e.g. between the three LZSN parameters
defined by lithology). This was achieved evaluat-
ing the distributions overlapping with a 1000 boot-



RESULTS 97

strap resampling procedure, in which the probability
of a point from one distribution lying inside the 95
percentile range of the other distribution was com-
puted.

Although we first solved a calibration run includ-
ing all the available information (i.e. defining an
OF with all the responses, plus REGU as a regular-
ization constraint. This run will be referred here-
after as 6 f ), the fact that the PD MS2 calibration
runs demanded only a moderate amount of HSPF
runs (around 15 000), allowed us to apply an step-
wise procedure to assess the influence of the in-
clusion of different data on the calibration process.
Taking the most simple regularized calibration run
as a reference (i.e. including only the WEEK se-
ries and REGU in the OF. This run will be referred
hereafter as 2 f ), we performed PD MS2 calibra-
tion runs including one additional response at a time
(e.g. 2 f + T RIM, 2 f + BASE, etc.). Then, the
best calibration run was taken as the new starting
point (called 3 f ), and the process was repeated un-
til all responses were included in the OF (i.e. the
run 6 f ). To define the best runs we calculated the
Nash-Sutcliffe Coefficient (NS) (Legates and Mc-
Cabe 1999) for each component of the OF, and then
we standardized the results by that obtained with
2 f :

zr
c =

yr
c− y2 f

c

sc
(4.4)

where z is the standardized NS calculated with the
c component of the OF for the calibration run r, y
is the NS for the same indices, s is the standard de-
viation of all the NSs calculated for the c compo-
nent of the OF, and y2 f

c is the NS calculated with the
c OF component for the run 2 f . We standardized
the NSs because the variability across runs was very
different between OF components, and we were in-
terested in an aggregate measure of performance.
Then, for each calibration run the mean of the stan-
dardized NSs was calculated (excluding REGU and
the OF response included during the run). There-
fore, this mean expresses the effect of the inclusion
of a new response in the OF on the fit to the other
modeled responses. The run with the highest mean

was considered best, and was taken as the new start-
ing point for the next step.

Finally, the effect of the inclusion of different
data in the OF on the uncertainty in the modeled
baseflow was assessed with the predictive analy-
sis capability of the PEST package. The aim of
predictive analysis is to maximize and minimize
certain model prediction (in this case, the mean
weekly baseflow during the validation period). To
achieve this, the previously optimized parameter
values should be modified, with the restriction that
the OF cannot exceed certain threshold value (for a
comprehensive treatment see Doherty [2004]). For-
tunately, theory exists that relates this threshold to
a specific prediction probability, using a first-order
Taylor series expansion linearization (Vecchia and
Coley 1987). Accordingly, we calculated 95% con-
fidence intervals for the mean weekly baseflow dur-
ing the validation period, for the different calibra-
tion runs stated above. The same approximation
was used to draw 95% prediction intervals for the
different responses using the results from 6 f .

4.5 Results

Table 4.2 shows the NSs calculated for all the
calibration runs, and the NS for the prediction of
6 f compared to validation data. Focusing on 6 f
results, both for calibration and validation experi-
ments the NSs are in the range observed in many
other studies. Only the NS for HOUR shows a
value considerably lower than for the other groups
(except the regularization group REGU). However,
observing Figures 4.2 and 4.3, it is clear that the
major features present in the observed data are rep-
resented in the model with enough detail, including
the HOUR response. Modeled values uncertainty
did not bracket many observed values, suggesting
that error sources other than parameter uncertainty
are present, as is usual in any complex hydrologi-
cal application (Vrugt et al. 2005). Therefore, we
considered that the model performance is accept-
able, and can be compared to that obtained in simi-
lar studies.
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Table 4.2 – Response-specific Nash-Sutcliffe Coefficients for the different calibration runs.
 
 

Objective Function 
Components 

 
WEEK HOUR TRIM BASE DURC REGU  

  Nash-Sutcliffe Coefficient (Calibration) 
 

WEEK + REGU (2f)  0.974 0.223 0.959 0.979 0.9998254 0.931  

2f + TRIM  0.972 0.261 0.979 0.978 0.9999784 0.733  
2f + DURC  0.968 0.641 0.957 0.968 0.9999997 0.739  
2f + BASE  0.972 0.139 0.939 0.993 0.9997346 0.803  
2f + HOUR (3f)  0.975 0.886 0.958 0.976 0.9999183 0.674  

3f + DURC  0.968 0.880 0.961 0.963 0.9999994 0.573  
3f + BASE  0.971 0.857 0.942 0.991 0.9999407 0.682  
3f + TRIM (4f)  0.972 0.872 0.980 0.950 0.9999674 0.711  

4f + DURC  0.971 0.852 0.975 0.938 0.9999989 0.072  
4f + BASE (5f)  0.976 0.866 0.975 0.981 0.9999760 0.539  

5f + DURC (6f)  0.975 0.835 0.976 0.977 0.9999989 0.081  

  Standard Deviation of Nash-Sutcliffe Coefficient  
 

  0.003 0.302 0.015 0.017 0.0000856   

  Nash-Sutcliffe Coefficient Standarized by 2f  Mean a

WEEK + REGU (2f)  0 0 0 0 0   

2f + TRIM  -0.50 0.12 1.33 -0.07 1.79 0.34
2f + DURC  -1.98 1.38 -0.13 -0.68 2.04 -0.35
2f + BASE  -0.75 -0.28 -1.42 0.85 -1.06 -0.88
2f + HOUR (3f)  0.64 2.19 -0.10 -0.17 1.08 0.36

3f + DURC  -2.19 2.17 0.11 -0.97 2.03 -1.02
3f + BASE  -0.94 2.09 -1.19 0.74 1.35 -0.26
3f + TRIM (4f)  -0.66 2.15 1.45 -1.74 1.66 -0.25

4f + DURC  -0.92 2.08 1.06 -2.46 2.03 -0.43
4f + BASE (5f)  0.81 2.12 1.09 0.13 1.76 1.56
5f + DURC (6f)  0.60 2.02 1.17 -0.11 2.03 0.60

  Nash-Sutcliffe Coefficient (Validation)  
 

6f  0.942 na 0.973 0.968 0.99977 0.081 
a Mean of the Nash-Sutcliffe Coefficients for the corresponding calibration run, excluding the 
coefficient corresponding to the response included during the run. 
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Figure 4.3 – (A) TRIM and (B) DURC observed val-
ues and prediction during the validation period.

4.5.1 Spatial distribution of
adjustable parameters

Taking again the results obtained from the 6 f cal-
ibration run, we tabulated the sensitivities of all the
adjustable parameters with respect to the different
components of the OF and the composite, the fi-
nal optimized values, and their uncertainties as cal-
culated by PEST (Table 4.3). From the compos-
ite sensitivity, we can observe that the most sen-
sitive parameters are those related to the nominal
storages (LZSN and UZSN), the losses of the sys-
tem via different pathways (LZET P and DEEPFR),
and the shape of the recession curves (AGWRC).
By contrast, parameters related to the interflow had
no effect on the OF. More interestingly, there were
some parameters that showed a significant spatial

variability. Whereas the storage parameters did not
show any significant variation across the watershed
feature considered (i.e. the distribution of final
parameter values was highly overlapped between
parameters pertaining to the same model parame-
ter), for the infiltration driving parameters (INFILT
and INFEXP), recession parameters, evapotranspi-
ration, and deep percolation values very significant
spatial variability was evident across different basin
attributes. Remarkably, all but one of the sen-
sitive parameters assigned to different lithological
types showed significant heterogeneity, especially
L3 compared to the other two lithologies. Similarly,
parameters defined by land use classes (LZET P)
or groups (AGWRC) showed significant differences
between them.

Monthly variation in parameter values (expressed
by UZSNΣ and LZET PΣ) was only supported for
the evapotranspiration parameters, which showed a
strong seasonal cycle (Table 4.3). Percentiles for
UZSNΣ included zero, therefore no seasonal varia-
tion in this nominal storage is supported by the cal-
ibration data.

4.5.2 Relevance of data types on the
calibration process

Table 4.2 shows that the first response added to
the 2 f calibration setting was HOUR, followed by
T RIM, BASE, and finally DURC. Considering the
standardized NSs for the 6 f run, the most impor-
tant differences with respect to the 2 f run were that
showed by HOUR and DURC, and only the fit with
BASE was marginally inferior. Thus, it can be stated
that the inclusion of different data types into the cal-
ibration process exerted a positive effect on the per-
formance of the model. However, although the in-
clusion of a response in the OF motivated a positive
effect in the model performance modeling this same
response, no clear pattern can be depicted about
the effect on the other responses. For instance, the
effect of the inclusion of DURC into 2 f over the
fit to T RIM was negative (see Table 4.2), but the
same response added to 3 f (when HOUR was al-
ready included in the OF) exerted a positive effect
on T RIM. Similarly, the effect of including addi-
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Table 4.3 – Parameter sensitivity and uncertainty for the run 6f.

 

 Sensitivities a   Percentiles 

Parameter WEEK HOUR TRIM BASE DURC  Composite Optimized 
Value b

 
2.5 97.5 

LZSNL1 0.04 0.03 0.13 0.03 0.20 0.087           3.46  2.13 5.26 
LZSNL2 0.03 0.03 0.11 0.02 0.19 0.077           5.96  3.59 9.40 
LZSNL3 0.04 0.03 0.14 0.05 0.20 0.093           5.57  3.83 7.85 

UZSNS1 0.05 0.04 0.11 0.02 0.36 0.115 0.018  -0.117 d 0.172 
UZSNS2 0.03 0.02 0.09 - 0.19 0.068 0.040  -0.267 d 0.460 
UZSNS3 0.32 0.11 0.71 0.08 1.84 0.612 0.032   0.004 d 0.061 
UZSNΣS1 - - - - - - 0.004  -0.087 d 0.432 

INFILTL1 0.01 0.02 0.02 0.01 0.09 0.033           0.17  0.09 0.30 
INFILTL2 0.02 0.03 0.03 0.02 0.13 0.047           0.09  0.05 0.16 
INFILTL3 0.01 0.02 0.03 0.01 0.09 0.033 *(L1) ***(L2)  0.38  0.23   0.60 d

INFEXPL1 - 0.02 0.01 - 0.03 0.016      4.72  2.63 7.98 
INFEXPL2 0.01 0.01 0.02 - 0.04 0.019      3.78  2.28 5.95 
INFEXPL3 - 0.02 0.02 - 0.03 0.016 **(L1) §(L2)  1.81  0.81 3.34 

KVARYL1 0.01 0.01 0.02 0.02 0.05 0.022        0 c   -0.19 d 0.29 
KVARYL2 0.01 0.01 0.02 0.02 0.04 0.019      0.18   -0.14 d 0.75 
KVARYL3 0.03 0.04 0.06 0.05 0.10 0.056 §(L1)   0.38 0.10 0.77 

AGWRCG1 0.31 0.16 0.61 0.55 0.63 0.452  **(all) 0.980 0.975 0.986 
AGWRCG2 0.11 0.08 0.20 0.18 0.34 0.182  ** 0.959 0.945 0.976 

IRCS1 - - - - - - 0.53  0.39    0.87 d

IRCS2 - - - - - - 0.51  0.39 0.82 
IRCS3 0.01 0.04 - - 0.03 0.016 0.50  0.43 0.60 

INTFWL1 - - - - - - 7.04     0.89 d    55.4 d

INTFWL2 - - - - - - 7.23     0.95 d    54.8 d

INTFWL3 - - - - - - 6.88     0.84 d    56.3 d

LZETPCR 0.02 0.01 0.06 0.03 0.09 0.041 0.61  0.43 0.89 
LZETPMX 0.04 0.03 0.14 0.06 0.18 0.090    §(CR, CF)  0.89  0.68   1.17 d

LZETPDC 0.05 0.02 0.15 0.04 0.18 0.088  ***(all)  0.31  0.24 0.39 
LZETPCF 0.04 0.02 0.11 0.04 0.19 0.080 0.63  0.48 0.83 
LZETPBL - - 0.01 - -  - 0.75  0.46   1.25 d

LZETPΣ 0.05 0.01 0.13 0.05 0.07  0.063 1.0 c  0.83   1.21 d

BASETPDC - - 0.02 0.01 0.03 0.014    0.04  -0.003 d 0.17 

DEEPFRL1 - - 0.01 - 0.02 -      0.05  -0.004 d 0.16 
DEEPFRL2 - - 0.01 - 0.02 -      0.06  0.001 0.18 
DEEPFRL3 0.04 0.04 0.12 0.05 0.21 0.092 ***(all)  0.34  0.24 0.47 
a For clarity, sensitivities below 0.01 are not shown, those above 0.05 are in boldcase, and those above 0.1 
are underlined. 
b Significant paired differences between spatially distributed parameters are denoted by: *** p<0.001, ** 
p<0.01, * p<0.05, and § p<0.1. Within brackets, the index for the significantly different parameter. 
c Parameter optimized on a limit (see Table 4.1). 
d Percentile outside the predifined range for the parameter (see Table 4.1). 
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tional responses into 3 f was notoriously negative
(see the Mean field in Table 4.2), but once T RIM
was added to the OF, the inclusion of BASE ex-
erted a very positive effect on the fit to the other
responses. Again, once BASE was inside the OF,
the inclusion of DURC was positive for the rest of
OF components compared to the 2 f run, despite the
inclusion of this response was consistently negative
before BASE was in the OF. All these indicates that
the inclusion of additional responses in an aggre-
gated, single OF has a profound effect in its multi-
dimensional shape, and consequently in the whole
calibration process.

The inclusion of data types in the OF also affected
the regularization component of the OF (REGU).
Table 4.2 shows that the NS for REGU descended
as more responses were added to the OF, which
means that a moderate additional amount of spatial
heterogeneity and non-parsimony in model parame-
ters were needed to account for the new details to be
modeled. However, the most striking effect is that
showed by the inclusion of DURC once HOUR and
T RIM were already included in the OF. Then, the fit
to REGU descended by an order of magnitude, im-
plying that a huge amount of spatial heterogeneity
and non-parsimony in model parameters was nec-
essary to maintain an acceptable level of fit. This
again stresses the fact that the shape of the aggre-
gated OF in the hypercube defined by the number
of parameters undergoes very profound changes as
new data are included into the calibration process.

The central role played by DURC in the calibra-
tion process was also highlighted from the response-
specific parameter sensitivities during run 6 f (Ta-
ble 4.3). This response was sensible to variations
of several parameters, including nominal storages,
infiltration drivers, recession curves, evapotranspi-
ration losses, and deep percolation. T RIM was also
sensibly affected by the same parameters, excluding
those related to infiltration processes. As expected,
parameters related to recession and groundwater
routing (AGWRC, LZSN, LZET P, and DEEPFR)
showed high sensitivity for BASE. The short-term
surface responses (HOUR and WEEK) were sensi-
tive to several parameters.
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Figure 4.4 – Box-whisker plots of the normalized
range of the 25 sensitive parameters after comple-
tion of five calibration runs (middle line, median;
lower box line, first quartile; upper box line, third
quartile; lower whisker line, 2.5 percentile; upper
whisker line, 97.5 percentile; dots denote individual
outliers).

4.5.3 Relevance of data types on the
uncertainty of baseflow
calculations

The inclusion of several responses into the OF is
intended to constraint the possible values that the
adjustable parameters can take. Thus, it was ex-
pected that the range of the estimated parameter un-
certainty, as implemented in PEST, would reduce as
more data were included in the OF. Consequently,
we calculated the range of uncertainty for the 25
composite-sensitive parameters (Table 4.3), taking
the 95% percentile limits calculated by PEST and
normalizing by the predefined parameter limits (see
Table 4.1). Figure 4.4 shows the results for the five
best calibration runs expressed as box-plots that de-
scribe the distribution of the normalized ranges for
the 25 parameters. The results during the first in-
clusions (3 f to 4 f ) did not support the expectation,
because indeed the parameter ranges globally rose.
Only after the inclusion of DURC (i.e. 6 f ) the un-
certainties were globally below the values obtained
during the run 2 f .

However, the uncertainty in the modeled mean
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Calibration run
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 Figure 4.5 – Modelled mean baseflow and asso-
ciated uncertainty during the validation period after
completion of five calibration runs (middle line, me-
dian; lower box line, 2.5 percentile; upper box line,
97.5 percentile).

baseflow obtained during the validation period sup-
ports the idea that the inclusion of several responses
in the OF had beneficial consequences (Fig. 4.5).
The effect on baseflow uncertainty was conspicuous
in the minimum values, especially in the steps that
defined 3 f and 6 f . Also interesting, the mean value
for 2 f is most probably biased, if it is compared to
the mean values for the other runs, established at
higher values. Thus, the inclusion of responses in
the OF not only reduced the uncertainty of calcula-
tions, but also added accuracy to the results.

4.6 Discussion and
conclusions

The final distribution of optimized parameters
clearly showed that maintaining some spatial het-
erogeneity in the model parameterization was justi-
fied. Several parameters distributed by both lithol-
ogy and land uses showed significant differences,
although those linked to the slope classification did
not show any spatial heterogeneity. This poses the
question whether an a priori definition of intended
homogeneous zones is the best way to impose some
spatial resolution to parameter values. Despite the
fact that this approach worked well in this study,

a more convenient method will involve the defini-
tion of as many parameters as HRUs the model has.
Of course, the application of such a method in a
complex watershed-scale model demands appropri-
ate numerical tools to deal with the hundreds, if
not thousands, of parameters that will be present.
One alternative is the hybrid regularized inversion
by Tonkin and Doherty (2005), in which after a time
consuming initial calibration run the eigenvectors
representing principal orthogonal directions in pa-
rameter space are used to define a feasible number
of super parameters. Then, these super parameters
can be optimized using a standard fitting method-
ology. In principle, we could use this method to
parameterize the system, and then searching for the
relationships between parameter values and water-
shed features. This could be a powerful way to as-
sess the feasibility of the final parameter values, and
to understand the hydrological cycle in the basin.
However, the hybrid regularized inversion is based
on parameter sensitivities, which in a complex hy-
drological model can be dependent on the value
around that sensitivities are calculated. Thus, a
good procedure could be using an a priori defini-
tion of homogeneous zones to search for a suitable
initial parameters set to feed the hybrid inversion.
Although the results from this study could be a good
starting point to test this possibility, this is beyond
the scope of this work.

Independently of the parameter zonation method-
ology applied, a proper prior information scheme
is of a paramount importance for the success of a
regularized calibration process (Tonkin and Doherty
2005). Despite we used an extremely simple reg-
ularization methodology, the calibration runs were
numerically stable, and the final parameter values
and ranges (Table 4.3) were reasonable. For in-
stance, although the prior information scheme im-
posed homogeneity and parsimony criteria, the in-
version process assigned a positive DEEPFR value
for the hard rock, fractured area, while maintaining
the other areas not significantly different from zero.
Similarly, the LZET P value for the deciduous for-
est was significantly lower than that for other forest-
lands, as is expected (Swift et al. 1975). The sea-
sonality of this parameter, expressed by LZET PΣ,
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was also very pronounced, indicating a strong sea-
sonality in evapotranspiration losses, a usual result
for Mediterranean areas (Bernal et al. 2004). It is
also worthy to mention the significant differences
found in the INFEXP parameters (Table 4.3). Since
a value significantly greater than 2 prompt HSPF
to switch from an infiltration-excess runoff gener-
ation to a saturation-excess one (Berris 1995), we
can state that there is a very different hydrological
behavior between the different lithological zones in
our watershed. The high altitude mountainous zone
is governed by a Hortonian overland flow, while
zones dominated by sedimentary rocks and alluvial
deposits show saturation overland flow. This re-
sult agrees with the view of Johnson et al. (2003),
who argued against the common practice of HSPF
modelers to maintain the default (i.e. 2) INFEXP
value during simulations. All the above significant
differences between spatially discretized parameters
clearly shows that a rich variety of hydrological be-
haviors can be present in a complex watershed, and
that a proper regularized inversion is a powerful
methodology to help solving the calibration step.

Although the aggregation of several responses in
the OF was helpful during the calibration process,
it is certainly difficult to predict what kind of data
will be most worthy to include into the OF. Apart
from the main target (e.g. WEEK in this study), the
inclusion of nonparametric descriptors like DURC
is judged convenient (Shamir et al. 2005). How-
ever, as we demonstrated in this study, the bene-
ficial effects of a response can arise only after the
inclusion of other a priori less efficient data. Thus,
we recommend to introduce in the OF as many as
data are available, including by-products of sampled
data (e.g. T RIM and BASE). Since the topological
complexity of an aggregated OF will probably in-
crease as more responses are included, algorithms
that search for the Pareto set of parameters (Gupta et
al. 1998; Vrugt et al. 2003; Khu and Madsen 2005)
without aggregating responses should be preferred a
priori. However, the applicability of these method-
ologies will depend on the computational burden
necessary to reach convergence, which can be very
demanding for complex watershed-scale hydrolog-
ical models. In addition, the use of data derived

from observed data is not free of risk. In our case,
BASE was built with an algorithm that assumes a
constant dynamics for the recession curve. Consid-
ering that HSPF includes a parameter (KVARY ) to
model time-varying recession curves, the use of a
series like BASE could artificially impose zero val-
ues for KVARY . Although it seems that this was not
the case for our calibration, since KVARY L3 was op-
timized to a non-zero value (Table 4.3), the presence
of this significant non-zero value for KVARY is not
in accordance with the assumptions used to build
the BASE series. Thus, caution should be taken
when including non-observational data into the OF.
In principle, temporal aggregation (e.g. T RIM) and
non-parametric values (e.g. DURC) are best options
(Shamir et al. 2005).

In any case, calibrating a complex watershed-
scale model using only one response is a very dan-
gerous procedure, even in the case a good prior in-
formation scheme is available. As depicted in Fig-
ure 4.4, the uncertainty associated to water routing
was very high for the 2 f run, and the estimated val-
ues were probably biased. For a water quality appli-
cation this would be critical, especially if manage-
ment decisions lay on the modeling outcomes, be-
cause this lack of precision and accuracy produces
useless results despite the goodness of fit attained
with river runoff.

In conclusion, combining regularized inversion
and a multi-response OF useful results can be ob-
tained even with complex applications including
spatial and temporal heterogeneity in model param-
eters. Since good numerical methods appropriate
for these purposes are now available (e.g. Tonkin
and Doherty 2005), maintaining the observed basin
heterogeneity in the model abstraction should al-
ways be considered. In fact, the inclusion of the in-
herent heterogeneity present in real catchments into
hydrological models is an old concern that still is
a matter of debate (e.g. Jakeman and Hornberger
1993; Beven 1996; Boyle et al. 2001; Schulz et
al. 2006), and this concern should be transferred
to water quality models despite hydrology is not
the main target in these applications. The manage-
ment of field observations has also focused the at-
tention of hydrologists (Kuczera 1982; Raat et al.
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2004), and the results from this work emphasizes
that when an OF aggregating different data is the
only practical option, caution should be taken when
including and excluding responses. Until a new
generation of poor parameterized ”gray box” mod-
els (in the sense of Kirchner [2006]) are available,
we must work with the state-of-the-art ”mathemat-
ical marionettes” (again in the sense of Kirchner
[2006]), which usually are not suitable to work with
Pareto solvers if the model structure is complex. In
these cases, the approximations outlined in this pa-
per, combined with other tools developed to cali-
brate complex models, like prior sensitivity analy-
sis (Zheng and Keller 2006) and inclusion of water
quality constituents as chemical tracers (Bernal et
al. 2004), can help obtaining reliable model out-
comes even in complex, real world problems.







Chapter 5

Modeling river water temperature in
semidistributed water quality
applications using deterministic,
empirical, and hybrid formulations

5.1 Introduction

The role of water temperature on a myriad of
processes in the river ecosystem is an old issue
in aquatic sciences, and its significant effects have
been demonstrated at every scale, from molecu-
lar interactions to system-wide measures of lumped
processes. Thus, this variable is a recurrent driver
in deterministic or empirical models in which biotic
and/or chemical activity is directly or indirectly in-
volved (Chapra 1997). Nonetheless, water temper-
ature greatly determines the behavior of other phys-
ical features like water density. Although tradition-
ally little attention has been paid to river water den-
sity in studies focused on biological or chemical dy-
namics in the river itself, the situation changes when
the river model outcomes are coupled to a lentic sys-
tem. Since the river water enters the lake at a depth
defined by the reciprocal differences between water
densities (Alavian et al. 1992), a proper modeling

framework coupling a river and a lake ecosystem
should take into account river temperature as an im-
portant factor shaping lake hydrodynamics. This is
particularly relevant in man-made reservoirs, where
the riverine advective flow is a dominant component
of hydrodynamics (Ford 1990).

Despite the coupling between river and lacus-
trine processes can be achieved by raw empirical
approaches (e.g. Marcé et al. 2006), the use of
process-based, spatially explicit models has become
more popular as increasing computing power has
been available to researchers and managers (Singh
and Woolhiser 2002). In despite of the increasing
complexity and associated uncertainty in the model
outcomes, these approximations are tempting be-
cause their inherent causal approach, the possibil-
ity to include dynamic changes in the components
of the system, and the spatial and temporal resolu-
tion they offer. If water quality concerns and their
solutions are major targets of the application, the

107
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river input to the lake (flow, heat, nutrients, etc.)
is usually solved through a semidistributed water-
shed scale model. Although a priori the use of
fully spatially distributed applications is possible,
water quality modelers working at the watershed
scale often face the problem of data scarcity, which
makes fully distributed models far from practical.
However, concerning the simulation of the river
water temperature, the division between distributed
and semidistributed models are of secondary impor-
tance, since the equations that solve for this vari-
able are usually implemented at the level of the
river reach, unit that is topologically and function-
ally equivalent in both modeling frameworks.

Although the role of land derived inputs of heat
on river temperature dynamics is not irrelevant (Bo-
gan et al. 2004), most of the work on river water
temperature has been focused on the non-advective
heat exchanges. From the point of view of model-
ing, the non-advective processes can be formulated
explicitly including all the known heat exchanges
between water, atmosphere, and riverbed. Alterna-
tively, all these processes can be lumped in empiri-
cal relationships relating a defined lumped exchange
process and some variable measured in the field. In
the first case, a considerable amount of meteorolog-
ical and geomorphologic data is needed to feed and
fit the equations, but we gain detailed knowledge
about the precise mechanisms controlling tempera-
ture in the reach. In the second case, we can obtain
reliable results with just a series of meteorological
data (e.g. air temperature), but we loss most of the
details about heat exchange dynamics, an affordable
drawback if our main interest is not the temperature
dynamics itself.

The basic antecedent of our work is the aim
of building a semidistributed watershed scale river
model that will be linked to a reservoir dynamic
model in the future, in order to implement reme-
diation measures against eutrophication. Therefore,
we were interested in the river water temperature
not only as a driver of biological and chemical pro-
cesses, but also as a determinant of the river wa-
ter density. In this paper we explore the ability
of a semidistributed model predicting river water
temperature using a do-everything approach for the

non-advective heat exchanges at the reach level, an
empirical relationship for the same purposes, and
finally a hybrid approximation. For the empirical
models definition, we chose the equilibrium tem-
perature approach, using the air temperature as a
predictor variable. Although temperature gradients
are not the main causal driver of heat exchanges in
rivers (Johnson 2003), we do not consider this pro-
cedure a pure empirical, causal-void exercise, since
in its theoretical formulation the equilibrium tem-
perature is a physically based concept (Edinger et
al. 1968).

One limitation of this work is that we tested the
performance of the three approaches modeling wa-
ter temperature in a single case study. However,
we consider our scenario as a prototypical situation
for temperature modeling in water quality applica-
tions at the watershed scale for several reasons: (1)
as usual in water quality applications, we are fac-
ing a huge watershed, compared to the study sites
of process-based research. (2) We have a lot of
good quality and spatially distributed meteorolog-
ical data, but the meteorological stations are usually
located far from the river reaches, and usually do not
represent the local riverine microclimate. And (3),
only limited river temperature information is avail-
able to parameterize the equations.

5.2 Study site

The Ter River watershed at Sau Reservoir is
1380 km2 (Fig. 5.1), mainly covered by woodland
(78%) and agricultural land (16%). As usual in the
Mediterranean region, precipitation is highly vari-
able in both, the spatial and the temporal dimen-
sions. Most part of the watershed has annual pre-
cipitations around 800 mm, although in the moun-
tainous North end values rise to 1000 mm, and lo-
cally till 1200 mm. Precipitations fall mainly during
April-May and September. Ter River daily mean
temperature at Roda de Ter (Fig. 5.1) ranges from
3 ◦C to 30 ◦C, whereas there is a marked variabil-
ity in the air temperature range across the water-
shed. Whereas in the vicinity of the sampling point
daily mean temperatures go from -3 to 30 ◦C, in the
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Figure 5.1 – Ter watershed map showing stream
network (dark line), temperature sampling point, and
meteorological stations used in this study. Areas
included in gray lines correspond to the subbasins
delineation with HSPF. Background colors (white
to dark gray) define the meteorological information
splitting arrangement.

mountainous North end of the watershed tempera-
ture ranges between -14 to 18 ◦C. This variabil-
ity should be considered during empirical modeling,
because at water temperature below 0 ◦C and above
20 ◦C the relationship between air and water tem-
perature losses its linear dependence (Mohseni and
Stefan 1999).

The headwaters are located in the north end of
the basin (Fig. 5.1), at 2500 m.a.s.l. in the Spanish
Pyrenees ranges, and for this study the watershed
ends in the sampling point near Roda de Ter, just up-
stream Sau Reservoir, at 443 m.a.s.l. The headwa-
ters flow over hard materials (igneous and metamor-

phic rocks) covered by a mixture of high altitude
shrublands, and conifer and deciduous forests over
a steeped terrain. Downstream, around the meet-
ing point of the two main headwater courses, the
forested land accounts for nearly all the terrain, the
slopes have moderated, and the river flows over sed-
imentary rocks. Then the river enters in the popu-
lated agricultural plain where the main human set-
tlements are located. Here the alluvial deposits are
abundant, and unirrigated crops cover most part of
the land. Thus, the watershed includes a complex
mixture of geomorphologic, lithologic, and land
cover features.

The sampling station was located in a well mixed
reach 50 m wide with 2 m of maximum depth. Mean
streamflow was 17 m3 s-1. River water was sam-
pled in the thalweg ca 50 cm above the river bed,
using a pump connected to an automatic sampling
station including a temperature probe (aquaTest by
Adasa Sistemas SA, Barcelona, 0.1◦C resolution),
run by the local water agency (Agència Catalana de
l’Aigua, ACA). Although ACA has strict mainte-
nance routines, periodic checks by the authors as-
sured the performance of the sampling equipments
during the study period. The sampling station col-
lected hourly water temperature data from January
2001 to July 2004. Hourly meteorological data for
this study (air temperature, relative humidity, solar
radiation, wind velocity, and precipitation) comes
from 12 meteorological stations (Fig. 5.1) run by the
local meteorological agency (Servei Meteorològic
de Catalunya, SMC).

5.3 Modeling framework and
advective heat inputs

For water quality applications the most usual time
step for modeling purposes is the day. Only rarely a
shorter time step will be required, and as we move
beyond the week the question of why using a com-
plex dynamic model arises. Thus, the main model-
ing objective was the prediction of mean daily river
water temperatures at the sampling point. A sec-
ond objective was the modeling of the minimum
daily river water temperature. This was motivated
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by two facts. First, the minimum daily temperature
defines the maximum water density achieved during
the 24 hours period. This information could be crit-
ical during some periods of the year (e.g. January-
March), in which the river can enter the reservoir as
a density current or an overflow depending on slight
variations of the river density. And second, we al-
ready had the model application ready to be used at
the hourly time step, because a previous effort was
made to validate the hydrological modules of the
model, which should be run at the hourly step. Thus,
we had the opportunity to test the ability of the
model fitting the daily amplitude of river water tem-
perature (expressed as the ability to fit both, mean
and minimum water temperatures) without signifi-
cant supplementary effort.

HSPF is a semidistributed hydrologic and water
quality modeling environment that includes a vari-
ety of formulations for water routing through the
watershed and other features of the flowing water
and materials carried by it. As a semidistributed ap-
plication, HSPF lumps calculations at the level of
subbasin. Thus, it is necessary to split the water-
shed into subbasins, allowing the inclusion of spa-
tial heterogeneity of watershed features and meteo-
rological inputs to land and river reaches. We refer
to Chapter 4 for the subbasins delineation proce-
dure and other details of the semidistributed model
construction. Regarding temperature modeling, it is
especially relevant to consider that if more than one
meteorological station is available, different inputs
can be defined for the different subbasins. In our
case, each subbasin was assigned to a nearby meteo-
rological station considering topography. Figure 5.1
shows the meteorological information splitting ar-
rangement used in the Ter watershed.

The modeling exercises presented throughout this
work are based on a successful application of the
hydrological modules of the Hydrological Simula-
tion Program-Fortran (HSPF) in the Ter River (see
Chapter 4). The Nash-Sutcliffe coefficient for the
comparison between modeled and observed daily
flow values at the sampling point was 0.93, and the
median absolute error was 1.4 m3 s-1. In addition,
the model separated the surface and subsurface in-
puts to the river with a satisfactory associated uncer-

tainty. Thus, we used these flow routing results to
model the advective heat exchanges and reach water
content in the temperature model.

The advective heat inputs to the river were mod-
eled in an identical way in the different simulations
presented in this work. Using built-in options inside
the HSPF package (Bicknell et al. 2001), the tem-
perature of the water entering the river as surface
runoff from the surrounding land (Tadv,s) was com-
puted using a linear regression with air temperature:

Tadv,s = as +bs×Tair (5.1)

where as and bs are optimized parameters, and Tair
is the measured air temperature.

The temperature of the water entering the river
as subsurface interflow from the surrounding land
(Tadv,i) was computed using a mean departure from
air temperature plus a smoothing factor:

Tadv,i = T ′
adv,i +Si× (Tair +Di−T ′

adv,i) (5.2)

where T ′
adv,i is the temperature of the interflow at the

start of the interval, Si is the smoothing factor, and
Di is the difference between air temperature and the
mean temperature of the interflow. Si and Di are
adjustable parameters.

Finally, the water entering the river as groundwa-
ter flow from the surrounding land (Tadv,g) was com-
puted with a formulation equivalent to that shown
for interflow:

Tadv,g = T ′
adv,g +Sg,m× (Tair +Dg,m−T ′

adv,g) (5.3)

where T ′
adv,g is the temperature of the groundwater

at the start of the interval. Sg,m and Dg,m are the
smoothing factor and the mean departure from air
temperature, respectively. The m = (1, 2, . . . , 12)
index stands for the month of the year. Since the
groundwater versus air temperature relationship can
suffer profound changes in watersheds where spring
snow melting is significant, we decided to apply 12
different monthly values for the parameters control-
ling the groundwater temperature. However, since
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this would add 24 adjustable parameters to the sim-
ulation, we solved the monthly values using a sinus
function with adjustable amplitude and phase:

Sg,m =S′g +
(
S′g×AS′g

)
× sin

(
(xm−Pg)×

2π

365.25

) (5.4)

Dg,m =D′
g +
(
D′

g×AD′g
)

× sin
(
(xm−Pg)×

2π

365.25

) (5.5)

where x = (0, 31, 60, . . . , 335) represents the day of
the year representative for the month m. S′g and D′

g
are adjustable mean values for the smoothing fac-
tor and the mean departure from air temperature,
respectively. AS′g and AD′g are the adjustable am-
plitude of variation for the previous defined mean
values, and Pg is the day of the year in which the
sinus wave is centered. With this formulation, we
can fit 24 adjustable values with just 5 adjustable
parameters.

The upstream and downstream reach boundaries
were solved by HSPF with the built-in hydraulic
modules (Bicknell et al. 2001). The temperature
of other water exchanges (i.e. waste water treat-
ment plants inputs and water supply extractions)
was also considered using information supplied by
ACA. Precipitation on the river reach was also con-
sidered as a source of heat, assuming no difference
between rain and air temperature during the event.

5.4 Non-advective heat
exchanges

We calibrated and validated three models differ-
ing in the formulation of the non-advective heat ex-
changes between the river water and its surround-
ings. First, a deterministic approach was used tak-
ing advantage of the HSPF formulations for solar
radiation (QS), net long-wave radiation (QL), evap-
orative heat flux (QEV ), and convective heat transfer
(QCON). This model will be referred hereafter as

DET. Since HSPF uses common, well-known for-
mulations for these processes (Raphael 1962; Morin
and Couillard 1990; Sinokrot and Stefan 1993),
we will not detail here all these equations. How-
ever, some of the fitted parameters coming from
these processes will be described and discussed
later. All the variables measured in the meteorolog-
ical stations were needed to feed the DET model.
The change in water temperature due to the non-
advective processes is calculated by HSPF through
a Taylor series expansion about the temperature at
the start of the interval.

Second, we defined a model (referred hereafter
as TEQ) modifying the HSPF Fortran code to sub-
stitute the non-advective terms outlined above with
one lumped process, defined using the equilibrium
temperature concept. Equilibrium temperature (Te)
is the water temperature at which the sum of the heat
fluxes across the air/water interface is zero (Edinger
et al. 1968). If such an equilibrium temperature
can be calculated, and we assume that the total
heat flux between the atmosphere and the river (Qa,
kcal m-2 hr-1) is proportional to the temperature dif-
ference between the water temperature and the equi-
librium temperature, this heat exchange would be
reduced to a Newton’s law of cooling (Edinger et
al. 1968):

Qa = Ke× (Te−Tw) (5.6)

where Ke is a heat conduction coefficient
(kcal m-2 hr-1 ◦C-1) and Tw is the water tem-
perature. Obviously, to apply this formulation
for modeling purposes values for both Ke and Te
should be calculated or adjusted. Variability in Ke
figures has been related to meteorological variables,
especially wind velocity (Thomann and Mueller
1987). However most attempts to model river water
temperature using the equilibrium temperature
concept have considered Ke as a constant, with no
evident deleterious effects on model performance
(Caissie et al. 2005). Therefore, we considered Ke
as a single-valued adjustable parameter.

By contrast, the Te cannot be considered as a con-
stant, and its calculation is the trickiest step im-
plementing the temperature equilibrium concept in
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Table 5.1 – Parameters and prior ranges used in the definition of the three different model formulations for
river temperature. Equation numbers refer to equations in the text. 

Parameter Description Units Range 

Advective components (common to all models) 
   
as Intercept for surface runoff temperature simulation (Eq. 5.1) ºC -20 – 40 
bs Slope for surface runoff temperature simulation (Eq.  5.1) - 0 – 2 
Si Smoothing factor for interflow (Eq.  5.2) - 0 – 1 
Di Mean departure from air temperature for interflow (Eq.  5.2) ºC 0 – 30 
S’g Mean smoothing factor for groundwater (Eq.  5.4) - 0 – 1 
AS’g Amplitude of variation of Sg during the year (Eq. 5.4) - 0 – 1 
D’g Mean departure from air temperature for groundwater (Eq.  5.5) ºC -3 – 30 
AD’g Amplitude of variation of Dg during the year (Eq.  5.5) - 0 – 1 
Pg Centre of the sinus wave for Sg and Dg monthly variation (Eq. 5.4,  5.5) Day of the year 1 – 365 
   

Non-advective exchanges for models DET and DET+ 
   
CS Shading factor for net short wave radiation  - 0 – 2 
CL Proportionality constant for atmospheric longwave radiation emissivity K-2 0 – 20·10-6

CC Conductive-convective heat transport coefficient kcal m-3 hr-1 ºC-1 0 – 20·10-4

CE Evaporation coefficient mbar-1 0 – 10·10-9

   
Boundary exchange for model DET+ 

   
Kb Heat conduction coefficient between water and boundary (Eq.  5.8) kcal m-2 hr-1 ºC-1 0 – 200 
T’eb Mean equilibrium temperature for boundary compartment (Eq. 5.9) ºC -10 – 45 
AT’eb Amplitude of variation of Teb during the year (Eq. 5.9) - 0 – 1 
PTeb Centre of the sinus wave for Teb monthly variation (Eq.  5.9) Day of the year 1 – 365 
   

Non-advective exchanges for model TEQ 
   
Ke Heat conduction coefficient (Eq.  5.6) kcal m-2 hr-1 ºC-1 0 – 20 
aTe Intercept for equilibrium temperature simulation (Eq.  5.7) ºC -10 – 45 
bTe Slope for equilibrium temperature simulation (Eq.  5.7) - 0 – 2 
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river temperature models. Although a priori the
equilibrium temperature can be calculated from me-
teorological data equaling to zero the sum of all
non-advective heat exchanges (Bogan et al. 2003),
we deliberately kept the model simple and indepen-
dent of most of the meteorological data assuming a
liner relationship between Te and Tair (Caissie et al.
2005):

Te = aTe +bTe×Tair (5.7)

where aTe and bTe are optimized parameters. The
rationale of this linear rule is based on the close re-
lationship between air temperature and dew point
temperature in temperate regions (Mohseni and Ste-
fan 1999). Thus, air temperature is the only meteo-
rological input required to fit the TEQ model.

Finally, we calibrated a third model including an
additional boundary heat exchange into the DET
formulation (model referred hereafter as DET+).
We modeled this exchange in an empirical way, us-
ing a HSPF built-in option that defines a boundary
heat exchange (Qb, kcal m-2 hr-1) as the adaptation
of the equilibrium temperature concept:

Qb = Kb× (Teb,m−Tw) (5.8)

where Kb is the adjustable heat conduction coeffi-
cient between water and the boundary compartment
(kcal m-2 hr-1 ◦C-1), and Teb,m is the adjustable equi-
librium temperature for the boundary compartment
during month m. Similarly to Equations 5.4 and 5.5,
Teb,m values were computed fitting a sinus wave:

Teb,m =T ′
eb +

(
T ′

eb×AT ′eb
)

× sin
(
(xm−PTeb)×

2π

365.25

) (5.9)

where T ′
eb, AT ′

eb, and PTeb are adjustable parameters.
It is worthy to mention that, defined in this way,
this boundary compartment could represent heat ex-
changes between river water and river bed, but also
an additional exchange with the atmospheric com-
partment.

All in all, the DET model for temperature sim-
ulation using a deterministic approach for the non-
advective terms had 13 adjustable parameters, in-
cluding 4 for the non-advective terms (Table 5.1).
DET+ model had 17 adjustable parameters, eight
of them coming from the equations of the non-
advective terms. The TEQ model is a convenient
simplification of the temperature model, since only
12 adjustable parameters are required, three of them
involved in the non-advective heat exchanges (Ta-
ble 5.1).

5.5 Calibration strategy

We calibrated the three models of river tempera-
ture using a Marcov Chain Monte Carlo (MCMC)
sampler entitled the Shuffled Complex Evolu-
tion Metropolis algorithm (SCEM-UA), which was
specifically developed to deal with calibration of
complex, non-linear models (Vrugt et al. 2003b).
SCEM-UA is an evolutionary MCMC sampler that
works in a Bayesian statistics framework to find the
joint probability distribution of the model parameter
values in the light of observed data. Thus, SCEM-
UA does not give a unique parameter set that fits
observed data. Instead, it draws a probability den-
sity function for each parameter, which expresses
the parameter uncertainty. SCEM-UA methodol-
ogy starts from a prior parameter distribution, usu-
ally consisting in a constant valued function de-
fined inside realistic upper and lower bounds. In
our case, we assigned wide prior parameter ranges
(Table 5.1) to avoid being disturbed by artificially
imposed boundaries. However, the range of some
parameters is already defined in HSPF, and these
limits were not exceeded. Then the algorithm tries
to converge to the posterior target distribution us-
ing the calibration data, calculating the likelihood of
each parameter set generated. This frequently im-
plies thousands of model runs. SCEM-UA uses the
scale reduction factor by Gelman and Rubin (1992)
as a convergence criterion. Scale reduction factor
for all parameters falling below 1.2 indicates con-
vergence. However, we extended the calibration
procedure well beyond this limit to assure a good
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convergence to the true posterior distribution. Some
utilities from the PEST package (Doherty 2004)
were used to assist linking the Matlab SCEM-UA
code from Vrugt et al. (2003b) to the HSPF model-
ing environment.

We used the measured average (ADT ) and mini-
mum (MDT ) daily river temperature from January
2001 to December 2002 to calibrate the model. Data
for 2003 and 2004 were left for the validation check.
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Figure 5.2 – Scale-reduction factor evolution for all
parameters involved in the models tested during cal-
ibration with the SCEM-UA algorithm. The conver-
gence criterion (i.e. 1.2) was added as a dashed
line for reference.

In order to avoid a bias towards the high tempera-
ture summer values during the calibration step, we
assigned weights for each residual to guarantee that
all data had the same potential effect on the ob-
jective function during calibration. The weight for
each residual was calculated as the inverse of the ob-
served value. The objective function was defined as
the sum of all weighted squared residuals between
observed and modeled data.

Model performance was compared calculating
the Root Mean Square Error (RMSE) and the
Nash-Sutcliffe (NS) coefficient (Legates and Mc-
Cabe 1999) for calibration and validation sets. We
also calculated the Akaike’s Information Criterion
(AIC), a model selection procedure that accounts
for model fitting performance but also for the num-
ber of adjustable parameters included in the model
(Johnson and Omland 2004). AIC measures the in-
formation lost when assuming a model structure to
explain a given data set, therefore the model with
the smallest AIC is considered more convenient.
Since AIC values are in a relative scale, the dif-
ferences between AIC values and the smallest AIC
value (∆AIC) are usually reported. Thus, the larger
the ∆AIC difference for a model, the less probable
that it is the best model. Finally, Akaike (1983) sug-
gested that the exp(-0.5 ∆AIC) approximates the rel-
ative likelihood of a model given the data, which are
then normalized to obtain a positive set of Akaike
weights (w) that sum 1.

5.6 Results

5.6.1 Models performance

The three calibration runs with the SCEM-UA al-
gorithm satisfactorily converged to a posterior dis-
tribution for all parameters (Fig. 5.2). The scale-
reduction factor for all parameters was well below
the 1.2 criterion after 40 000 model runs. Since
more than 70 000 model runs were performed dur-
ing calibration of the three scenarios, we considered
results from the final 10 000 model runs (i.e. the fi-
nal 10 000 parameter combinations) a good approx-
imation of the true posterior parameter distribution.
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Figure 5.3 – Marginal posterior distribution for all parameters involved in the models tested during calibration
with the SCEM-UA algorithm (TEQ: dark gray filled distributions; DET+: gray filled distributions; DET: no filled,
bold lined). Distributions were constructed using results from the last 10 000 model runs. Panels A to I show
distributions for parameters associated to advective heat exchanges (common to all models). Panels J to M
show distributions for parameters associated to non-advective heat exchanges (common to DET and DET+
models). Panels N to R define parameter distributions for the boundary exchange process defined in model
DET+. Finally, panels S to U refer to parameters associated to non-advective heat exchanges for model TEQ.
Parameter definitions are as in Table 5.1.
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Table 5.2 – Performance of tested models fitting average (ADT ) and minimum (MDT )
daily river water temperature during calibration and validation periods. The Akaike’s
information criterion and Akaike’s weights calculated pooling both periods are also shown.

 

 Calibration period Validation period  All data 
Model Data series 

 RMSE (ºC) NS RMSE (ºC) NS  AIC ∆AIC w 

ADT  1.21 0.961 1.25 0.964  
DET+ 

MDT  1.30 0.950 1.26 0.962  
1088 0 1.0 

ADT  1.39 0.949 1.46 0.952  
TEQ 

MDT  1.48 0.935 1.46 0.949  
1744 657 0.0 

ADT  1.55 0.936 1.84 0.923  
DET 

MDT  1.74 0.910 1.69 0.931  
2329 1241 0.0 

The distributions for all parameters involved in
the three tested models are plotted in Figure 5.3.
Comparing the range of posterior parameter distri-
butions with the defined prior range (Table 5.1), it
is clear that most parameters showed good sensitiv-
ity to the objective function, and most posterior pa-
rameter distributions were finally adjusted to a nar-
row part of the prior parameter range. Consider-
ing parameters involved in advective heat exchanges
(Fig. 5.3, panels A to I), DET and TEQ models be-
have in a similar way, whereas the same parameters
from DET+ model were adjusted to quite different
values. Parameters shaping non-advecive heat ex-
changes shared by DET and DET+ (Fig. 5.3, panels
J to M) were adjusted to very different values, de-
spite the fact that these parameters control the same
processes in both models.

Considering RMSE and NS values (Table 5.2)
the three models were reasonably well calibrated
and validated for both, minimum (MDT ) and av-
erage (ADT ) daily river water temperature. How-
ever, DET+ model performed best, and DET model
gave the worst outcomes. This model performance
ordination could not be related with the number of
parameters defined in the different models. Despite
being the richest parameterized model, DET+ had
the best AIC, a criterion that accounts for and penal-
izes model complexity. The AIC value for DET+ re-

sults is so good compared to that of the other models
that the associated Akaike weight (w) is one, sug-
gesting that DET+ clearly outperforms the alterna-
tive model formulations even considering the high
number of parameters involved in DET+.

Figure 5.4 shows daily average and minimum wa-
ter temperatures against the range of values obtained
with the last 1000 DET+ simulations, for both cali-
bration and validation periods. The fit was very rea-
sonable and no systematic biases could be detected.
In addition, a comparison of seasonally detrended
observations and results from TEQ and DET+ mod-
els (Fig. 5.5) showed that both temperature models
explain a considerable amount of variance not re-
lated to the strong seasonal effect present in the orig-
inal series. However, also in this case DET+ model
gave better results.

The outperformance of DET+ respect TEQ
model was also apparent when comparing the mod-
eled and observed daily temperature range, ex-
pressed as monthly distributions of the daily range
(Fig. 5.6). Noticeably, TEQ model did not ad-
equately model the daily temperature range from
May to September. Although not perfectly, DET+
model accounted for the seasonal trend in river tem-
perature daily range, suggesting that DET+ outper-
forms TEQ not only at a seasonal or daily scale, but
also at shorter time steps.
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Figure 5.4 – Observed average and minimum daily
water temperature values and prediction range for
model DET+ (i.e. range of the last 1000 simulations
with model DET+). Figure includes both calibration
and validation periods.

Finally, we calculated the insertion depth of the
river water in the downstream reservoir consider-
ing the reciprocal differences in water density (Ar-
mengol et al. 1999). Figure 5.7A shows the ob-
served standardized insertion depth for dates with
reservoir data available (approximately monthly fre-
quency), and Figure 5.7B shows the hourly insertion
depth for two consecutives days showing dramatic
changes in insertion depth. Overlapped are the in-
sertion depth calculated with DET+ and TEQ out-
comes (i.e. the median value of the last 1000 simu-
lations). Although daily calculations are quite sim-
ilar (Figure 5.7A), DET+ gave better results (82%
of explained variance against 63% with TEQ). For
the hourly evolution (Figure 5.7B), DET+ is clearly
superior. Although the initial and final conditions
are similar, the timing of the major changes in river
insertion was much better modeled with DET+.

5.6.2 Heat exchanges

Figure 5.8 details the dynamics of advective
inputs temperature and of the non-advective heat
exchanges for model TEQ. Temperature of the
three advective inputs (Fig. 5.8A) showed a strong
seasonal pattern, and as expected Tadv,g evolution
is much more smoothed than the more superficial
fluxes.
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Figure 5.5 – Detrended modeled values against de-
trended observed values using results from TEQ and
DET+ models. Median values from distributions in
Figure 5.3 were used to generate model results. Re-
gression lines and intervals are added for reference.
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Figure 5.6 – Monthly box-whisker plot for observed daily river temperature range, and results obtained with
DET+ and TEQ models. Median values from distributions in Figure 5.3 were used to generate model results.

However, a close inspection of Figure 5.8 reveals
a problematic feature. Tadv,s reaches remarkable
high values during summer, mainly promoted by
the high value for the intercept of the linear rela-
tionship with air temperature (aS, Fig. 5.3A). Fig-
ure 5.8B shows the range of Te calculated from the
last 1000 model runs, and air and water temperature
for reference. It is remarkable the high equilibrium
temperatures reached during summer, caused by the
high slope of the relationship with air temperature
(Fig. 5.3U). The net non-advective heat exchange
calculated with Equation 5.6 (Fig. 5.8C) ranges
from near zero to 15 MJ m-2 day-1, and shows the
common seasonal pattern. However, maximum val-
ues during summer were relatively small consider-
ing that the study site is located in a Mediterranean
region.

The different components of the non-advective
heat exchange for the DET formulation are plotted
in Figure 5.9A. The net long wave radiation flux
seemed to be relatively high respect the short wave
net radiation, mainly because the shading factor for
solar radiation (CS, Fig. 5.3J) removed around 80%
of incident radiation measured in the meteorological
stations, and because the proportionality constant

for atmospheric long wave radiation (CL, Fig. 5.3K)
was optimized in a value higher than the typical fig-
ure (i.e. around 9×10-6 K-2).

Figure 5.9B shows the very puzzling results ob-
tained for the different components of the non-
advective heat exchange for the DET+ model. If the
physical meaning of results for heat exchanges in
DET model were suspicious, there is no doubt that
the different components of the DET+ model do not
represent what was intended during model formula-
tion. The heat exchange with the boundary com-
partment (Qb) had non-realistic values that could
not be attributed to a plausible bed exchange pro-
cess. The same was true for the net long wave com-
ponent, which toke very unrealistic negative values.
The rest of the heat exchange components seemed
to be small, especially QS and QE .

However, the total net exchange for both mod-
els (Figure 5.10) were quite comparable, suggesting
that the different components of heat exchange in
model DET+ should have some physical meaning.
Remarkably, the sum of QS, QCOND, and QEV com-
ponents of DET+ depicted a rather stable seasonal
cycle, while the sum of Qb and QL accounted for
most of the short-term variability, especially during
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Figure 5.7 – Insertion depth of Ter River in Sau
Reservoir, expressed as the standardized reservoir
depth. (A) Monthly observed data and results us-
ing daily river temperature modeled with DET+ and
TEQ. (B) Observed insertion depth from 23rd Jan-
uary to 24th January 2001, and results using hourly
river temperature modeled with DET+ and TEQ.

summer months. This was stressed by the fact that
the Qb + QL sum was linearly correlated with the
total net heat exchange (n=2404, p-value < 0.0000,
r2=0.84).

5.7 Discussion

Results from the model performance comparison
have an important implication for hydrological ap-
plications at the watershed scale. Even in the case
that good, abundant, and spatially distributed mete-
orological data are available, pure deterministic ap-
proaches could not be the best option to accurately
predict river water temperature. Actually, the only

pure deterministic approach used in this study (DET
model) showed the worst behavior. As we discuss
below, we relate this misperformance with the fact
that meteorological data collected at meteorologi-
cal stations designed and placed to describe regional
patterns could not adequately reflect the riverine
meteorological conditions that ultimately drive heat
exchange processes.
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Figure 5.8 – Daily values during calibration and val-
idation of the TEQ model for (A) temperature of ad-
vective inputs from groundwater, interflow, and sur-
face runoff. (B) Air temperature measured near
the sampling point, range of equilibrium temperature
modeled, and observed water temperature. Addi-
tionally, this panel shows the evolution of the equi-
librium temperature calculated for the boundary ex-
change process in DET+. (C) Net non-advective
heat balance calculated with the TEQ model.
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The empirical boundary heat exchange (Qb) in
DET+ is not working as an exchange processes with
the streambed, but as an air-water exchange over-
lapped to the other defined atmospheric exchanges.
In this sense, we can consider DET+ as a hybrid for-
mulation, in which deterministic and empirical ap-
proximations combined to give the best outcomes.
In fact, the evolution of Teb (Fig. 5.8B) is quite coin-
cident with that shown by Te, especially during sum-
mer months. However we cannot relate this coinci-
dence with a common physical interpretation of Te
and Teb, because Qb exchange defined through Teb
takes only sense in combination with QL. Although
the empirical and deterministic formulations are in-
extricably linked in DET+, it seems that the calibra-
tion procedure has identified a model that depends
on a seasonal defined equilibrium temperature mod-
ulated by processes fed with short term meteorolog-
ical data (mainly QL, which strongly depends on air
temperature).

On the other hand, the TEQ model works better
than DET, suggesting that lumped processes depen-
dent on air temperature are good options when true
(i.e. measured over the river surface) riverine me-
teorological conditions are not available. However,
a close inspection of TEQ results reveals some im-
portant limitations. The relationship between air
temperature and equilibrium temperature showed
very high slope (bTe around 2, Fig. 5.3U), com-
pared to other studies that found slopes around unity
(Mohseni and Stefan 1999; Caissie et al. 2005). Al-
though our values are not directly comparable be-
cause most studies relating air and equilibrium tem-
peratures work with weekly mean temperatures, this
high slope makes difficult to establish a direct link
between TEQ formulation and the customary phys-
ical interpretation of Te. In this sense, another fact
argues against the physical meaning of the fitted Te
in TEQ. While the theoretical linear relationship be-
tween air and equilibrium temperatures strongly de-
pends on the linear relationship between air and dew
point temperature (Mohseni and Stefan 1999), dew
point temperature in our watershed dramatically
losses its linear dependence with air temperature at
19 ◦C. Considering that air temperatures in our wa-
tershed are well above this value during summer, we
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Figure 5.9 – Non-advective heat exchange compo-
nents modeled with (A) DET model, and (B) DET+
model.

suspect that the high slope value obtained fitting the
air versus equilibrium temperature relationship de-
fined for TEQ model could be the result of this dis-
agreement between model formulation assumptions
and the real scenario in our watershed. In addition,
the poor results obtained with the daily tempera-
ture range (Fig. 5.6) and the short term changes in
river insertion depth (Fig. 5.7B), confirms that pure
empirical approximations depending on air temper-
ature cannot work properly at short time scales (Ste-
fan and Preud’homme 1993). Therefore, despite the
fact that TEQ model performance was superior to
that for DET model, we cannot guarantee that the
final fitted model is working in a physical-grounded
way.

The hybrid DET+ formulation has proved to be
the most successful, despite the fact that its physi-
cal meaning is uncertain. It combines deterministic
formulations with wide prior parameter bounds and
a seasonally defined equilibrium temperature con-
cept. This combination seemed to avoid the prob-
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Figure 5.10 – Net non-advective heat exchange for
models DET and DET+. A combination of several
heat exchange components for model DET+ are also
shown for reference.

lems encountered with the raw equilibrium temper-
ature formulation in TEQ, especially for model re-
sults at time steps below one day. However, even
recognizing the limitations of the TEQ formulation,
this approximation could be used in case we are in-
terested in a crude simulation of river water temper-
ature at a daily scale. But in this case, care must
be taken when interpreting results for the advec-
tive components of the model and the non-advective
heat exchanges. The parameterization of the dif-
ferent formulations could be forced to adequately
fit river water temperature (this could be the case
of the advective temperature calculations for TEQ),
but the reliability of the heat fluxes per se could be
very low.

In a more general context, we interpret the re-
sults from this work as a warning against the im-
prudent use of meteorological data collected for re-
gional characterization to feed temperature models
at the watershed scale. Among the variables typi-
cally used to model river water temperature, air tem-
perature seems to be the one most easily corrected
for differences between data collected at the me-
teorological station and the conditions in the river.
Thus, if only meteorological data from far locations
are available, models including empirical or hybrid
formulations driven by air temperature should be
preferred.





Chapter 6

Scaling nutrient in-stream processes
from the reach to the watershed using
nutrient spiralling metrics

6.1 Introduction

Excess of man-induced nutrient loading into
rivers has driven freshwater eutrophication (Vollen-
weider 1968; Heaney et al. 1992; Reynolds 1992)
and degradation of coastal areas and resources at a
global scale (Walsh 1991; Alexander et al. 2000;
McIsaac et al. 2001). Thus, cultural eutrophication
assessment and control are amongst the most im-
portant issues natural resource managers must face,
markedly in watersheds under strong human impact.
Although in most occasions control measures are
based on bulk calculations of river nutrient load-
ing (Marcé et al. 2004), the differentiation between
point and non-point nutrient sources is of great im-
portance in supporting water management decisions
in polluted watersheds.

While the amount of nutrients loaded to rivers
by point sources is easily calculated with effluent
inventories, obtaining figures of non-point nutrient
sources loading to running waters is a difficult topic.
Non-point sources could be evaluated trough empir-

ical approximations or with watershed-scale deter-
ministic models. In the first case, and a part from
crude mass-balance models (Howarth et al. 1996;
Jaworski et al. 1992), information about land uses
and farm and agricultural development in the wa-
tershed is combined with bibliographic or measured
nutrient export coefficients to obtain annual or sea-
sonal nutrient loads (Beaulac and Reckhow 1982).
This method apply the reported yields (mass of nu-
trient per unit drainage area) from small, homoge-
neous watersheds to land types contained within
larger heterogeneous watersheds. Thus, estimates
are potentially imprecise and biased (Beaulac and
Reckhow 1982). Note that some refinements have
been developed, mainly for rivers in United King-
dom (Johnes 1996; Johnes et al. 1996; Johnes and
Heathwaite 1997). Later, Smith et al. (1997) pro-
posed a hybrid methodology (SPARROW) based on
the empirical adjustment of the coefficients through
non-linear regression with data measured in the wa-
tercourses. This approach has proven to be very effi-
cient for studies at the annual time-step (Alexander
et al. 2002).

123
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By contrast, watershed-scale deterministic mod-
els can work at any time scale, and much effort has
been paid to the design and development of this kind
of models during the last decade (e.g. HSPF, Bick-
nell et al. 2001; SWAT, Srinivasan et al. 1993;
INCA, Whitehead et al. 1998; AGNPS, Young et
al. 1995). These models describe transport and loss
processes in detail with mathematical formulations
accounting for the spatial and temporal variations
in sources and sinks in watersheds. The complex-
ity of deterministic models often implies intensive
data and calibration requirements, which generally
limits their application in large watersheds. Deter-
ministic models also often lack robust measures of
uncertainty in model coefficients and predictions,
although recent developments for hydrological ap-
plications are prone to be used in biogeochemical
models as well (Raat et al. 2004).

However, the fundamental problem using
watershed-scale models is the uncertainties in-
volved in aggregating the components of fine-scale
deterministic models in watershed applications
(Rastetter et al. 1992) and in extrapolating the
results of field-scale measurements to larger spatial
scales. This is a very important topic, because in
principle it is highly desirable using the knowledge
gained through fine-scale studies (e.g. nutrient
uptake rate for different river producers commu-
nities, nutrient fate in the food web, and so on) to
predict coarse-scale phenomena (e.g. the overall
nutrient export from watersheds). However, incor-
porating interactions between many components in
a big-scale model could be cumbersome, simply
because the number of possible interactions could
be very large (Beven 1989). The usual strategy to
avoid being seized by a model including precise
formulations for each one interaction (and thus
counting thousands parameters) is to lump compo-
nents into aggregated units. But although lumping
could efficiently reduce the number of parameters
to a few tens, we still cannot guarantee that the
information obtained during fine-scale research will
apply to lumped categories. The behavior of an
aggregate is not necessarily equivalent to the sum
of the behaviors of the fine-scale components from
which it is constituted (O’Neill and Rust 1979).

The working unit for the nutrient in-stream pro-
cesses of most watershed-scale models is the reach.
Within this topological unit, several formulations
for biogeochemical reactions are included depend-
ing on the model complexity (e.g. adsorption mech-
anisms, algae nutrient uptake, benthic release, de-
composition). However, if the quantification of
these processes is not the main research target, a
much more convenient in-stream model would con-
sist in a reach-lumped formulation of stream nutri-
ent consumption. If this consumption is empirically
quantifiable at the reach scale, then we will be able
to apply the field research to the model without the
problems associated to upscaling results from fine-
scale studies.

In the case of nutrients fate in streams, the Nu-
trient Spiralling Concept (Newbold et al. 1981)
is a convenient simplification of the biogeochemi-
cal transformations involved, because the nutrient
spiraling metrics are empirically evaluated at the
reach scale (Stream Solute Workshop 1990). Within
this framework, the fate of a molecule in a stream
is described as an spiral length, that is the aver-
age distance a molecule travels to complete a cy-
cle from the dissolved state in the water column, to
a streambed compartment, and eventually back to
the water column. The spiral length consist of two
parts: the uptake length (Sw), which is the distance
traveled in dissolved form, and the turnover length,
which is the distance traveled as a particle. Usu-
ally, Sw is much longer than turnover length, and
it focuses research based on the nutrient spiraling
concept. Sw is evaluated at the reach scale, with nu-
trient enrichment experiments (Payn et al. 2005) or
following nutrient decay downstream a point-source
(Martı́ et al. 2004). Thus, if we include the formu-
lation of nutrient spiralling metrics in the in-stream
modules of a watershed-scale model, we will be
able to use field-based research to parameterize the
model.

In this chapter, we explore the possibility of us-
ing the information coming from empirical research
based on the nutrient spiraling concept to feed the
nutrient in-stream modules of a watershed-scale
model. However, instead of directly incorporating
the filed data on the model, we let a calibration al-
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gorithm fit the model to observed data, and then
we compared the adjusted parameters to equivalent
information coming from field-based research. In
this way, we are using the model as an heuristic
platform working in two directions: we explore the
possibility of using nutrient spiralling metrics in a
watershed-scale model, but we also analyze some
regularities observed in the nutrient spiraling met-
rics measured in impaired streams. Of course, this
circular reasoning cannot validate any hypothesis,
but considering that a model cannot be used for for-
mal testing anyway (Oreskes et al. 1994), we con-
sidered this procedure a much more interesting ex-
ercise.

6.2 Materials and Methods

6.2.1 Study Site

We were interested in implementing a watershed-
scale model for total phosphorus (T P) concentration
in the Ter River watershed (Spain) from headwa-
ters to Sau Reservoir (Fig. 6.1). We are considering
1380 km2 of land with a mixture of land uses and
vegetal covers. Headwaters are located in the Pyre-
nees ranges above 2000 m.a.s.l., and run over ig-
neous and metamorphic rocks covered by mountain
shrubs communities and alpine meadows. Down-
stream, watercourses are surrounded by a mixture
of conifer and deciduous forest, and sedimentary
rocks become dominant. Then, Ter River enters the
alluvial agricultural plain (400 m.a.s.l.) where non-
irrigated crops dominate the landscape. Main Ter
River tributaries are the Fresser River in the Pyre-
nees, the Gurri River in the agricultural plain, and
Riera Major in the Sau Reservoir basin.

The Ter River watershed includes several ur-
ban settlements, specially in the agricultural plain
(100 000 inhabitants). Industrial activity is also im-
portant, and this implies the existence on numerous
phosphorus point-sources (Fig. 6.1A) coming from
industrial spills and effluents from wastewater treat-
ment plants (WWTP). Additionally, pig farming is
an increasing activity, generating manures that are
directly applied to the nearby crops as a fertilizer,

at a rate of 200 kg P ha-1 yr-1. Ter River long term
median flow upstream Sau Reservoir at Roda de Ter
(Fig. 6.1) is 10 m3 s-1, and T P concentration fre-
quently exceeds 0.2 mg P L-1.

6.2.2 Modeling framework

The main target of the watershed-scale model
was the prediction of daily T P river concentration
at Roda de Ter (Fig. 6.1A). We used the Hydro-
logical Simulation Program-Fortran (HSPF), a de-
terministic, semidistributed model that accounts for
water routing in the watershed and water quality is-
sues (Bicknell et al. 2001). Hydrology and river
temperature have been already simulated and vali-
dated in the Ter River watershed using HSPF at the
hourly time step (see Chapter 4 and 5). Figure 6.2
shows the simulated daily river streamflow and tem-
perature against observations at Roda de Ter for
sampling dates when river T P concentration were
available. Note that not only streamflow, but also
the contribution of surface and subsurface flows are
simulated in HSPF. For simulations included in this
Chapter, we will use the water routing and temper-
ature river results obtained in Chapter 4 and 5. As a
semidistributed application, HSPF splits the water-
shed in different subbasins, were equations are then
solved. The split arrangement used in this work co-
incides with that shown in Chapters 4 and 5, and it
is shown in Fig. 6.1A.

River T P data for this study comes from the Sau
Reservoir long-term monitoring program, which in-
cludes a sampling point upstream the reservoir at
Roda de Ter (Fig. 6.1A). Sampling was weekly to
monthly, and spans from January 1999 to July 2004.
In total 106 samples were analyzed with the alka-
line persulfate oxidation method (Grasshoff et al.
1983). Data collected at Roda de Ter was the basic
data used for calibration and validation of the river
T P modules of HSPF. In addition, T P data coming
from 14 sampling stations run by the local water
agency (Agència Catalana de l’Aigua, ACA) were
used as a supplementary set for model verification
(Fig. 6.1A). The amount of data in those stations
was highly variable, and the reliability of figures
was dubious (e.g. precision only at the first deci-
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Figure 6.1 – (A) River T P sampling points and T P point sources in the Ter River watershed. Subbasins delin-
eated for HSPF simulation are also shown. (B) Main watercourses and land uses in the catchment (UR: urban;
CR: unirrigated crops; DC: deciduous forest; BL: barren land; MX: for clarity, meadows, shrublands, and few
portions of oak forest are included here; CF: conifers forest).

mal in most occasions). Thus, we did not consider
this information adequate for calibrating the model.

6.2.3 Point sources and diffuse
inputs

T P concentration and water load information for
point sources comes from ACA, and consist in a
heterogeneous database with very detailed data for
some spills, and crude annual values for others. For
this, we decided to include in the model an ad-
justable multiplicative factor for WWTP inputs (Cw)
and another for industrial spills (Ci), in order to cor-
rect for potential monotonous biases in the database
(Table 6.1). Thus, daily T P load for one spill was
the ACA value for the day times the correction fac-

tor.
Diffuse T P inputs to the watercourses were mod-

eled using water routing results from Chapter 4.
Since we were mainly interested in the in-stream
processes, and in order to keep the model struc-
ture as simple as possible, we calibrated the model
against river T P data collected during sampling
dates with no surface runoff during at least seven
days before sampling (i.e. the 106 samples men-
tioned above). Thus, we ignored T P transport
in surface runoff. The T P concentration in inter-
flow and groundwater flow was modeled assuming
a power dilution dynamics. We modified the HSPF
code to include the following formulations:
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Table 6.1 – Prior ranges and final adjusted values during calibration of parameters used in the definition
of the T P model. Equation numbers refer to equations in the text.

 

Description Units Range SCE-UA 
value

In-stream TP decay    
    
Vf Watershed scale uptake velocity (Eq. 6.4) m s-1 2.8·10-11 – 2.5·10-5 1.41·10-6

TC Temperature correction factor for TP decay (Eq. 6.4) ºC-1 1 – 2 1.06 
    
Diffuse TP inputs    
    
bi Slope for TP concentration versus interflow discharge (Eq. 6.1) mm-1 0 – 1.8 0.56 
ai Intercept for TP concentration versus interflow discharge (Eq. 6.1) mg P L-1 3.5·10-5 – 0.38 0.002 
bg Slope for TP concentration versus groundwater discharge (Eq. 6.1) mm-1 0 – 1.8 0.026 
ag Intercept for TP concentration versus groundwater discharge (Eq. 6.1) mg P L-1 3.5·10-5 – 0.38 0.05 
    
Point-sources correction    
    
Cw Correction factor for TP load from WWTP’s   - 0 – 9 0.63 
Ci Correction factor for TP load from industrial spills  - 0 – 9 1.16 
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Figure 6.2 – (A) Observed (open circles) and mod-
eled (line) discharge at Roda de Ter for T P sam-
pling dates. (B) Observed (open circles) and mod-
eled (line) mean daily river temperature at Roda de
Ter for T P sampling dates. No observed data was
available before 2001, see Chapter 5.

T Pi = ai×Q bi
i

T Pg = ag×Q bg
g (6.1)

where T Pi and T Pg are T P concentration (mg P L-1)
in interflow and groundwater discharge, respec-
tively. Qi and Qg are the interflow and ground-
water discharge coming from the nearby land to
the watercourse in mm. ai, ag, bi, and bg are ad-
justable parameters. Note that we did not consider
spatial heterogeneity for these parameters. Thus,
they should be considered as averages for the en-
tire watershed. However, since river T P data for
calibration comes from one sampling point, it is ex-
pectable that optimized parameter values will corre-
spond more closely to the situation around this sam-
pling point.

6.2.4 In-stream model definition

The in-stream T P fate was modeled as a first or-
der decay following the Stream Solute Workshop
(1990), and can be conceptualized as:
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(6.2)

where t is time (s), x is distance (m), Q is river dis-
charge (m3 s-1), A is river cross-sectional area (m2),
and kc (s-1) is an overall uptake rate coefficient.
Qi and Qg are as in Equation 6.1 but expressed in
m3 s-1. The first term of the equation refers to ad-
vection, the second one to dispersion, and third and
fourth to lateral subsurface inflows. All these terms
are solved by the HSPF hydrologic and hydraulic
modules.

The last term of Equation 6.2 simulates solute
transfers between water column and benthic com-
partment. Of course, this represents an extreme
simplified formulation, and must be interpreted as
a net transport, because more complex settings ac-
counts for independent dynamics of benthic release
and concentration in one or more benthic compart-
ments (Newbold et al. 1983). In fact, the formula-
tion of solute fate including a first order decay for-
mulated as in Equation 6.2 is one of the default op-
tions in the HSPF in-stream module. However, kc
describes solutes transfer in a volumetric basis, and
applying a single value in a system with varying wa-
ter depth could be very unrealistic. A much more
convenient formulation considers solute transfers as
a flux across the sediment/water interface, by means
of a mass transfer coefficient (v f , m s-1):
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−
v f

h
T P

(6.3)

where h is river depth (m). Obviously, from this we
can establish v f = h× kc, which implies that v f is
a scale free parameter. As well, v f more nearly de-
scribes abiotic transfers (Stream Solute Workshop
1990). We modified the HSPF code to incorporate
this formulation in the in-stream modules, includ-
ing also the built-in HSPF temperature correction
factor. The final formulation was:
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(T Pg−T P)

−
v f TC(Tw−20)

h
T P

(6.4)

where TC is the temperature correction factor and
Tw (◦C) is river water temperature. Thus, the in-
stream module of the watershed-scale model only
included two adjustable parameters (Table 6.1).

v f is related to the nutrient spiralling metric Sw
trough the following relationship:

Sw =
uh
v f

(6.5)

where u is water velocity (m s-1). Since nutrient up-
take experiments in rivers and streams usually re-
port Sw values for representative reaches, we can
calibrate the watershed model with observed data
and compare the obtained Sw with reported values
from real systems (including data from Ter River
watershed).

Some remarks concerning Equation 6.4. First, we
are assuming that areal uptake rate (U = v f ×T P)
will be independent of T P concentration. Although
a Monod function relating U and T P is usually ap-
plied for this purpose, high T P concentrations in Ter
River watershed streams must be well established in
the asymptotic section of the relationship (Mulhol-
land et al. 1990). Thus, no conspicuous effect of
T P on U was expected. Although this is not a re-
alistic assumption for some pristine reaches in Ter
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River headwaters and Riera Major, it most probably
applies to reaches around the main sampling point,
to which model calibration will be more sensitive.
Finally, we are assuming a monotonous effect of
temperature on solute transfer in the range of wa-
ter temperatures measured in our streams.

6.2.5 Calibration strategy

We calibrated the 8 parameters model (Table 6.1)
using T P data at Roda de Ter sampling point col-
lected from 1999 to 2002. T P data for the period
2003-2004 were left for the validation check. How-
ever, since discharge in the river used during cal-
ibration was a modeled variable, we corrected the
possible effect of errors in discharge simulation on
modeled T P values. T P concentration in the river at
Roda de Ter followed a dilution dynamics with dis-
charge (Fig. 6.3), thus any mismatch between ob-
served and modeled discharge will have a profound
effect on the calibration process, especially at low
discharge. To solve this problem, we performed cal-
ibration on a corrected T P observed series, using:

T Pc = T P
T P′

mod
T P′

obs
(6.6)

where T Pc is the corrected T P observed value.
T P′

mod and T P′
obs are the T P values predicted by

the power regression relating T P and discharge at
Roda de Ter (Fig. 6.3), using the modeled and the
observed discharge, respectively (Fig. 6.2A). The
correcting quotient in Equation 6.6 averaged 1.09
for all T P data used during calibration.

Calibration was done automatically using the
Shuffled Complex Evolution algorithm (SCE-UA),
which was developed to deal with highly non-linear
problems (Duan et al. 1992). From an initial pop-
ulation of random generated parameters, the algo-
rithm uses shuffling, competitive evolution, and ran-
dom search to efficiently find the parameter set that
minimize an objective function. In this case, the
sum of the squared errors between model outcomes
and corresponding T Pc values. We performed the
calibration run using SCE-UA as implemented in
the PEST package (Doherty 2003), with parame-
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Figure 6.3 – Power relationship between T P con-
centration and discharge at Roda de Ter. A graphical
example of calculation of the correction factor for T P
is included for reference (see text for details). Qmod
and Qobs represent arbitary modeled and observed
discharges.

ter bounds detailed in Table 6.1. Convergence to
an optimized parameter set was achieved after 7000
model runs.

6.3 Results

Table 6.1 summarizes the optimized values for
model parameters after calibration with the SCE-
UA algorithm. Factors for point sources correction
were different than one, suggesting that the avail-
able database had significant biases. The T P load
from WWTP seemed to be overestimated in the
database, while the industrial spills were slightly
underestimated. Applying Cw and Ci for the mean
annual T P loads we obtained 19 000 kg P yr-1 from
WWTP and 12 300 kg P yr-1 from industrial spills.
Considering the diffuse T P inputs, the power func-
tion fitted for the groundwater discharge T P con-
centration (Table 6.1) had a very mild slope, im-
plying that T Pg was nearly a constant value in the
range of Qg measured in the Ter watershed (T Pg
around 0.06 mg P L-1). By contrast, the slope for
the power relationship between T Pi and Qi defined
a clear dilution dynamics, with T Pi concentration
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Figure 6.4 – Observed T Pc values and model outcomes at Roda de Ter during calibration and validation periods.

ranging from 0.6 to 0.04 mg P L-1 depending on Qi
values. Using these power relationships with time
series of Qi and Qg we obtained mean annual T P
loads of 23 600 kg P yr-1 from groundwater dis-
charge and 12 800 kg P yr-1 from interflow dis-
charge.

The watershed mass transfer coefficient v f was
fitted to a very low value (Table 6.1), only com-
parable with values obtained in point-sources im-
paired streams (Doyle et al. 2003; Martı́ et al.
2004). Values from pristine streams usually falls
between 10-3 and 10-5 m s-1 (Doyle et al. 2003).
Our low v f defines a watershed with watercourses
with very low phosphorus retention capacity. Of
course, this would most probably hold in reaches
around the sampling point at Roda de Ter, while in
headwater streams the value will most probably be
underestimated. Thus, we must take this v f figure
as a coarse-scale value. On the other hand, tem-
perature correction factor (TC, Table 6.1) was ad-
justed to 1.06. Considering that mean daily river
water temperature in the watershed ranges from 5 to
27 ◦C (Fig. 6.2), this implies that v f values were
multiplied by a factor (Equation 6.4) that ranged
from 0.4 to 1.3. Thus, effective v f values after tem-
perature correction ganged between 5.6× 10-7 and
1.8×10-6 m s-1. This significant dependence on wa-

ter temperature suggest that v f for T P in this wa-
tershed is controlled to a some extent by biological
activity.

The fit between observed data and model out-
comes at Roda de Ter was very satisfactory
(Fig. 6.4). The model explained the 72% of vari-
ance in river T Pc values during the calibration pe-
riod (the contribution of the very high value dur-
ing year 2000 was modest. Without this point the
explained variance amounted 69%). However, the
model performed worse during high flow conditions
(or low T P concentrations), as Figure 6.5 clearly
shows. This is most evident during the validation
period, a very wet period (Fig. 6.2). Thus, it seems
that the model is missing some significant effect at
high flows, that could be attributed to physically-
mediated higher retention during high flows not ac-
counted for in our formulation, or to an overestima-
tion of T Pg during very wet periods. Unfortunately,
data from this study did not allow an accurate eval-
uation of this possibility.

In addition, the fit between median T P values
coming from ACA stations and model results was
good (Fig. 6.6), although ACA station 7 showed val-
ues that were considerably higher than model out-
comes. Considering that adjusted v f value repre-
sent a very low value, this most probably implies a
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Figure 6.5 – Observed versus modeled T Pc values
at Roda de Ter during calibration and validation pe-
riods.

missing point source in the database upstream this
sampling point.

6.4 Discussion

Results from this study showed that the basic for-
mulation from which the Nutrient Spiralling Con-
cept research is based is a good alternative to model
the nutrient in-stream processes in watershed-scale
models. Even considering that we worked in a worst
case scenario, in the sense that limited river T P
concentration data were available to calibrate the
model, model outcomes were satisfactory, and final
parameter values realistic.

These results pose the following question: can we
use field estimations of nutrient spiralling metrics
to feed our model? Of course, the best method to
test this possibility were to measure Sw (and cal-
culating v f with Equation 6.5) in several reaches
in the Ter watershed, and then compare this with
our estimate. But this is beyond the scope of this
work, and published data in the Ter watershed re-
ports nutrient spiralling metrics mostly for pris-
tine streams (Martı́ and Sabater 1996; Butturini and
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Figure 6.6 – Median T P values observed in the dif-
ferent ACA sampling stations against modeled val-
ues (numbers as in Fig. 6.1A).

Sabater 1998). However, mean v f for two nutrient
retention experiments in a reach in the impaired Ri-
era de Tona (Gurri River tributary, Fig. 6.1B) were
4.6×10-6 ms-1 (Martı́ et al 2004), which is an aston-
ishing similar figure compared to our adjusted refer-
ence value (Table 6.1). In fact, using Martı́’s empir-
ical value in our model only promoted a modest de-
viation in the model results (66% of T Pc explained
variance compared to 72% with the optimized pa-
rameter).

Is this result just a fortunate coincidence or there
is some regularity for nutrient retention metrics in
nutrient enriched streams? During recent years, re-
searchers have accumulated data that suggest nutri-
ent enriched streams have lower retention efficiency
(i.e, lower v f or higher Sw) than pristine streams
(Doyle et al. 2003; Martı́ et al 2004; Haggard et
al. 2005; Merseburger et al. 2005; Gücker and
Pusch 2006; Ruggiero et al. 2006). To test how
our model results fit into this picture, we collected
Sw results for phosphorus (for many studies v f re-
sults were not available) from pristine and nutri-
ent enriched streams (Table 6.2). Note that these
results come from very heterogeneous field pro-
cedures (nutrient additions, nutrient decay down-
stream a point source, isotopic tracers), and that
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Table 6.2 – Sw and discharge for different nutrient retention experiments in pristine and
impaired streams.

System Discharge (m3 s-1) Sw (m) Source 

Pristine streams 
1 Riera Major (Spain) 0.0544 300 Butturini and Sabater 1998 
2 Pine Stream (USA) 0.0021 49 D’Angelo and Webster 1991 
3 Hardwood Stream (USA) 0.0025 31 D’Angelo and Webster 1991 
4 Pioneer Creek (USA) 0.0856 370 Davis and Minshall 1999 
5 Bear Brook (USA) 0.0145 49 Hall et al. 2002 
6 Cone Pond outlet (USA) 0.0023 8 Hall et al. 2002 
7 Hubbard Brook (USA) 0.0866 85 Hall et al. 2002 
8 Paradise Brook (USA) 0.0067 29 Hall et al. 2002 
9 W2 stream (USA) 0.0011 6 Hall et al. 2002 
10 W3 stream (USA) 0.0069 22 Hall et al. 2002 
11 W4 stream (USA) 0.0042 14 Hall et al. 2002 
12 W5 stream (USA) 0.0016 19 Hall et al. 2002 
13 W6 stream (USA) 0.0027 15 Hall et al. 2002 
14 West Inlet to Mirror Lake (USA) 0.0010 12 Hall et al. 2002 
15 Myrtle Creek (Australia) 0.0049 76 Hart et al. 1992 
16 Montesina Stream (Spain) 0.0019 8 Maltchik et al. 1994 
17 Riera Major (Spain) 0.0578 177 Martí and Sabater 1996 
18 La Solana Stream (Spain) 0.0207 89 Martí and Sabater 1996 
19 West Fork (USA) 0.0042 65 Mulholland et al. 1985 
20 Walter Branch (USA) 0.0060 167 Mulholland et al. 1990 
21 Watershed 2, Oregon (USA) 0.0010 697 Munn and Meyer 1990 
22 Hugh White Creek (USA) 0.0040 85 Munn and Meyer 1990 
23 Coweeta Stream (USA) 0.0022 9 Newbold 1987 
24 Sturgeon River (USA) 1.2600 1400 Newbold 1987 
25 West Fork, 1st order (USA) 0.0042 165 Newbold 1987 
26 West Fork, 2nd order (USA) 0.0310 213 Newbold 1987 
27 West Fork (USA) 0.0046 190 Newbold et al. 1983 
28 Barbours Stream (New Zealand) 0.0450 289 Niyogi et al. 2004 
29 Kye Burn Stream (New Zealand) 0.0240 388 Niyogi et al. 2004 
30 Stony Stream (New Zealand) 0.0700 266 Niyogi et al. 2004 
31 Sutton Stream (New Zealand) 0.0530 872 Niyogi et al. 2004 
32 Lee Stream (New Zealand) 0.0710 240 Niyogi et al. 2004 
33 Broad Stream (New Zealand) 0.1550 920 Niyogi et al. 2004 
34 Dempsters Stream (New Zealand) 0.0290 669 Niyogi et al. 2004 
35 Kuparuk River (Alaska) 1.3500 2955 Peterson et al. 1993 
36 East Kye Burn (New Zealand) 0.0150 94 Simon et al. 2005 
37 North Kye Burn (New Zealand) 0.0230 222 Simon et al. 2005 
38 JK1-JK3 streams (USA) 0.0082 42 Valett et al. 2002 
39 SR1-SR3 streams (USA) 0.0052 87 Valett et al. 2002 
40 Cunningham Creek (USA) 0.0097 104 Wallace et al. 1995 
41 Cunningham Creek after logging (USA) 0.0252 47 Wallace et al. 1995 
42 Hugh White Creek (USA) 0.0190 30 Webster et al. 1991 
43 Sawmill Branch (USA) 0.0025 32 Webster et al. 1991 
44 Big Hurricane Branch (USA) 0.0177 31 Webster et al. 1991 

Point-source-enriched streams 
a Koshkonong River with dam (USA) 6.2107 57449 Doyle et al. 2003 
b Koshkonong River without dam (USA)                12.7500 188115 Doyle et al. 2003 
c Demmitzer Mill Brook (Germany) 0.0220 4144 Gücker and Pusch 2006 
d Erpe Brook (Germany) 0.5110 5539 Gücker and Pusch 2006 
e Columbia Hollow (USA) 0.1183 8667 Haggard et al. 2005 
f Fosso Bagnatore (Italy) 0.0099 3480 Ruggiero et al. 2006 
g Daró Stream (Spain) 0.0460 3510 Martí et al. 2004 
h Riera de Tenes (Spain) 0.0045 2080 Martí et al. 2004 
i Riera de Berga (Spain) 0.0710 14250 Martí et al. 2004 
j Riera d’en Pujades (Spain) 0.0180 170 Martí et al. 2004 
k Riera de Tona (Spain) 0.0305 7550 Martí et al. 2004 
l Ondara Stream (Spain) 0.0600 2560 Martí et al. 2004 
m Verneda Stream (Spain) 0.0250 3200 Martí et al. 2004 
n Riera de Figueres (Spain) 0.1630 250 Martí et al. 2004 
o Passerell Stream (Spain) 0.0120 4790 Martí et al. 2004 
p Barrenys Stream (Spain) 0.1500 2490 Martí et al. 2004 
q Negre Stream (Spain) 0.0220 2120 Martí et al. 2004 
r Salat Stream (Spain) 0.0530 50 Martí et al. 2004 
s Riera d’Osor (Spain) 0.0310 2850 Martí et al. 2004 
t Llobregat de la Muga (Spain) 0.0470 3740 Martí et al. 2004 
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 Figure 6.7 – Discharge versus Sw for pristine and nutrient enriched streams. Numers and letters as in Table 6.2.

See the text for power regressions details.

lump seasonal studies with one-measure data, and
habitat specific experiments with whole stream de-
terminations. In despite of this, a clear relationship
could be established between Sw values and dis-
charge (Fig. 6.7), a result already reported for phos-
phorus (Butturini and Sabater 1998) and ammonia
retention (Peterson et al. 2001) in pristine streams.
Our fitted power relationship between Sw and dis-
charge (1622 Q0.65, n = 44, p-value < 0.0001, r2 =
0.56) differed slightly from equation reported by
Butturini and Sabater (1998), because our database
includes recent data. However, the most interest-
ing fact in Figure 6.7 is that a significant power
relationship was also fitted with data coming from
nutrient-enriched streams (13 163 Q0.51, n = 20,
p-value < 0.0097, r2 = 0.32). Thus, the lack of re-
lationship between phosphorus Sw and discharge re-
ported in some studies (Martı́ et al. 2004) should
be attributed to a narrow discharge range. In fact,
the relationship between Sw and discharge is highly
expectable from Equation 6.6 (Stream Solute Work-
shop 1990).

Now we can plot the power relationship obtained

transforming the adjusted v f value in the Ter wa-
tershed to Sw with Equation 6.6. This is the dashed
bold line in Figure 6.7, and corresponds to the equa-
tion 24 742 Q0.77. Note that for comparisons be-
tween the different power regressions, the adequate
parameter is the intercept of the power regression,
because the slope will depend on the geomorpho-
logic traits of the rivers included in each relation-
ship (Stream Solute Workshop 1990). Taking this
in mind, power regressions for Ter River watershed
and for impaired streams were very similar, spe-
cially is we do not consider points labeled as j, r, and
n to calculate the regression for nutrient enriched
rivers (21 256 Q0.49, n = 17, p-value < 0.0001,
r2 = 0.73, bold line in Fig. 6.7). In fact, it is quite
usual to find very short or even negative values for
phosphorus Sw in nutrient enriched streams (Martı́
et al 2004; Merseburger et al. 2005), and it is cer-
tainly difficult to assign this retention or release to
actual in-stream processes or to lateral inflows of
nutrients by seepage, because in impaired streams
point sources are usually associated to diffuse in-
puts (Merseburger et al. 2005).
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The results from Figure 6.7 could be interpreted
in two ways. First, retention efficiency greatly di-
minishes in nutrient enriched streams, and the vari-
ability between impaired streams is not so high to
prevent assigning a range of typical v f values for
these kind of systems. Then, the second interpreta-
tion follows: we can use data from empirical studies
of nutrient retention to parameterize a watershed-
scale model. Obviously, this is a circular reasoning,
and the model results cannot be used to state that
we demonstrated what the above interpretations im-
ply. But this is a nice example of how models can
work as heuristic tools to compare hypothesis and
stimulate research (see Oreskes et al. 1994).

To conclude, we have demonstrated that a
lumped, hardly parameterized formulation of the
in-stream nutrient fate in rivers could be very ef-
ficient in a large-scale model, and that this opens
the very interesting possibility of directly using data
collected at the field into large-scale models. This
avoids the exercise of upscaling fine-scale research
results to parameterize do-everything models with
many parameters, many of them finally adjusted to
bibliographical values if no adequate field data are
available. Of course, this is not a valid option if
the detailed biogeochemical processes in the stream
are research targets, or if we need explicit formu-
lations of these processes to simulate complex bi-
otic or abiotic interactions. However, the coarse-
formulation approach should suffice in many mod-
eling exercises.







General conclusions

GENERAL CONCLUSION 1. Some features
of the eutrophication process in Sau Reservoir (i.e.
hypolimnetic oxygen content and phosphorus inter-
nal load) are directly linked to the Ter River water
quality. Despite the assumptions of classical em-
pirical models, any epilimnetic process play a sig-
nificant role. This is not a system-specific result,
but a fundamental difference between advective-
dominated systems and most lakes.

Concerning the neuro-fuzzy technique for load
calculations. This new method for river load cal-
culations performs better than classical methodolo-
gies, avoiding the major drawbacks associated with
their use. Also, the new method has shown some
interesting properties that make it a suitable ex-
ploratory data analysis tool for non-linear problems.

Concerning hypolimnetic chemistry in Sau Reser-
voir. The oxygen and phosphorus content in this
layer depends on dissolved organic matter and ni-
trate carried by Ter River, with no significant inter-
vention of epilimnetic processes.

Concerning hypolimnetic oxygen content in
reservoirs. The oxygen content in the hypolim-
nion of reservoirs is greatly influenced by dissolved
organic carbon carried by the river. Since resi-
dence time in reservoirs is short, the effects of al-
lochthonous organic matter will be more conspic-
uous in systems receiving large amounts of labile,
human-derived dissolved organic carbon. These

results should motivate the formulation of a new
paradigm for the empirical modeling of the oxygen
content and resilience to eutrophy in reservoirs.

GENERAL CONCLUSION 2. The state-of-
the-art and the available information for rivers and
watersheds in Catalonia suffice to apply complex
hydrological and biogeochemical watershed-scale
models. The new calibration methodologies and
data-management strategies allow the implementa-
tion of such complex applications even considering
field data scarcity.

Concerning the hydrological simulation. A
proper combination of model structure definition
and multiobjective calibration is essential to imple-
ment semidistributed watershed-scale hydrological
models. If calibration is carefully done, even some
spatial heterogeneity could be saved for some pa-
rameters. However, in a complex modeling scenario
it could be very difficult to establish a priori which
field data will be more useful during the calibration
process.

Concerning the river temperature simulation.
When data from meteorological stations located far
from the river reaches are the only input available,
empirical or hybrid models including formulations
relating air and water temperature should be pre-
ferred.
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Concerning the total phosphorus simulation in
the river. The empirical information collected at the
reach scale following methodologies based in the
nutrient spiraling concept is a very interesting op-
tion to feed models at the watershed scale. Although
the modeling exercises presented in this disserta-
tion are not susceptible to proof hypotheses, our re-
sults support the view that sewage-impacted rivers
are less efficient retaining phosphorus than pristine
streams.
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