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Preface

INITIATING in the second half of 1989, this thesis is the outcome of the main part of

the research work carried out by the author within the nudear physics group of the

Departament d'Estructura i Constituents de la Materia of the University of Barcelona.

On the basis of Wigner transform techniques, we set up the semi classical expansion to

order K in relativistic nuclear mean field theory. Our study represents an extension

of the well-known non-relativistic semiclassical theory to relativistic nuclear physics,

where the Dirac structure poses several complications which make the formalism and

numerical treatment substantially more difficult.

To some extent, the contents and layout of this thesis lean on material submitted

for publication or already published in specialized journals, although we here touch

and discuss several matters and results not reported in those contributions. Following

an introduction in Chapter 1, Chapter 2 develops the subject matter of the thesis. In

this chapter we formulate the theoretical formalism and concentrate on the derivation

of the relativistic Wigner-Kirkwood expansions and density functional expressions.

Chapter 3 is devoted to analyze the semiclassical approach in the model problem of a

relativistic harmonic oscillator. In Chapters 4 and 5 we shall use the derived density

functionals to study realistic situations within relativistic nuclear physics, namely finite

nuclei and semi-infinite nuclear matter in the context of the non-linear cr — u> model,

and the description of finite nuclei, fission barriers and heavy ion scattering based on a

local density approximation to microscopic Dirac-Brueckner self-energies obtained in

nuclear matter. These applications will serve to emphasize the physical picture behind

the theoretical exposition and the reliability of the semiclassical scheme. A summary of

XI



Xll Preface

of the main conclusions and perspectives is presented in the last chapter. Finally, some

special topics and derivations are treated in the appendices.

Throughout this work, bold-faced symbols indicate vectors in a three-dimensional

space. Those quantities which are operators are denoted by a circumflex, e.g. H, while

the corresponding classical quantity appears without special designation, e.g. H. We

set fi = c = 1 everywhere unless 7i is written explicitly for the sake of clarity in the

semiclassical expansions.

I have opted for writing up this thesis in a language other than my mother tongue

with the will that it may have a chance to reach a wider audience. I hope that the

reader does not suffer too much from my insufficient proficiency and fluency in the

English usage.

University of Barcelona M.C.A.

July 1992
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Chapter 1

Introduction

.IN THE year 1953, an article entitled "What Holds the Nucleus Together?" by Hans A.

Bethe was published in Scientific American [Be53|. Since the discovery of the atomic

nucleus and its constituents in the first third of this century, the question formulated

by Bethe has been a primary problem in physics and remains only partially answered
at present. Nevertheless, the challenge for the nuclear physicist does not end there.

Once a model for the interaction between the nucléons has been assumed, the difficult

programme of investigating the nuclear properties in terms of the underlying interaction

arises.

Finite nuclei are complex many-body systems. Any attempt to describe these ob-

jects within a single and fundamental theory becomes, from the outset, too ambitious

an undertaking. To overcome the many obstacles that are to be faced, approximation

schemes that make the problem more tractable have to be adopted. The conventional

approach is based on a non-relativistic formulation. Relativistic effects were considered

as being negligible, although it always was clear that nucléons are in principle Dirac

particles: the mean value of the nucleón velocity in the nuclear medium can be as

large as forty per cent of the velocity of light. Traditionally, the description of nuclear

structure has been approached by solving a many-body Schrödinger equation which in-

volves nucléons interacting through static nucléon-nucléon (NN) potentials. This has

been done within the Hartree-Fock (HF) approximation, where the many-body wave

1



Introduction

function of the system is replaced by a Slater determinant of single-particle wave func-
tions obtained in a self-consistent way from the mean field produced by the nucléons
themselves.

In many non-relativistic models, the free two-nucleón interaction is determined

from NN scattering data together with the properties of the deuteron. After Yukawa's

original theory, it is generally recognized that the NN interaction is mediated by the ex-

change of mesons [Ma89] (even though, nowadays, meson theory is already understood

as an effective description of the underlying quark-gluon dynamics in the low-energy

regime). To test the various approximations and assumptions of the theory, and to

investigate the nature of the nuclear force, the mechanism of saturation, or the role
of many-body effects, nuclear physicists chose to study infinite nuclear matter. Major
progress has been made in the microscopic approach of this system, mainly along the

lines of the Brueckner-Bethe-Goldstone many-body theory [Sp72, Ma89]. The prob-
lem of saturation in finite nuclei in non-relativistic Brueckner-Hartree-Fock (BHF)
calculations has been revisited recently [Sc91].

A quantitative microscopic description of real nuclei, however, has so far only been

possible on a phenomenological level. Effective interactions depending on the density

have to be constructed in order to account for ground-state properties. In some stud-

ies these effective forces are determined from a local density approximation (LDA) to

BHF calculations, with additional dependence on the density to simulate the effect of

the omitted higher-order corrections [Ne70, Fr75]. Quite successful approximations are

purely phenomenological density-dependent interactions, like the (zero range) Skyrme

force [Sk56, Va72] or the (finite range) Gogny force [Go75]. These forces may be under-

stood as effective parametrizations of the (7-matrix. With only a few free adjustable

parameters to reproduce densities and binding energies for nuclear matter and for
spherical closed shell nuclei, these forces have shown to be able not only to yield excel-
lent nuclear ground-state properties of spherical as well as of deformed nuclei, but also
to describe on a quantitative level nuclear dynamical phenomena, like fission, heavy ion

collisions at low and intermediate energies or nuclear excitation spectra, using methods

like time-dependent HF or the random phase approximation. See e.g. [F175] and the re-

view articles [Qu78] and [Ne82] for an account of this density-dependent Hartree-Fock
(DDHF) scheme.

Despite the remarkable success achieved by these sophisticated non-relativistic cal-

culations, discrepancies still remain with experimental data indicating that such a
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traditional treatment is reaching its limits. Open problems are the understanding of

the large single-particle spin-orbit interaction in nuclei, the fact that DDHF calcula-

tions yield too strong oscillations in the interior of the charge density distributions, the

correct prediction of spin-dependent effects in scattering experiments, or the quantita-

tive explanation of nuclear saturation (the density at saturation is always too high for

reasonable binding energies).

All of these shortcomings stimulated the investigation of alternative approaches

during the last years. We reproduce in Table 1.1 a table from [Ma89] that illustrates

some possible extensions which go beyond the conventional assumptions concerning

some quantities relevant to the nuclear many-body problem. In analogy to an idea

which was born already a long time ago [Jo55, Du56], Walecka and coworkers developed

quantum hadrodynamics (QHD), a relativistic quantum field theory for the nuclear

many-body problem [Wa74, Ch74, Se86]. It was originally conceived to describe the

behaviour of the equation of state for dense nuclear matter, a subject of great interest

in the fields of heavy ion physics at high energies and of astrophysics. In the formalism

of QHD, baryonic and mesonic degrees of freedom are treated on an equal footing.

Nucléons interact through the exchange of virtual mesons, so that static potentials

need not to be introduced and the effects of relativistic propagation are naturally

incorporated. In the simplest version, only a vector field accounting for the short

range repulsion and a scalar field responsible for attraction are needed to describe
saturation in nuclear matter. The scalar and vector fields may be associated with the

a and u mesons, respectively.

Of course, the full theory of QHD is highly complex and suitable approximations are

needed. In practice, one also deals with a phenomenological approach. The coupling

constants and some meson masses of the effective meson-nucleon Lagrangian are taken

as free parameters, which are adjusted to fit the properties of nuclear matter and

finite nuclei. Most calculations have been done in mean field Hartree approximation,

neglecting exchange terms and without including any contribution from antiparticles

[HoSlb, Re86, GaQOa]. For a review of relativistic nuclear mean field theory, we refer

the reader to [Se86] and [Re89]. These so-called a — u models constitute, in a sense,

the relativistic analog of the non-relativistic DDHF method. It may be stated [Re86,

GaQOa] that relativistic mean field models of reasonable sophistication achieve about

the same agreement with experiment compared with the more elaborated density-

dependent interactions in the non-relativistic HF approximation, with the conceptual
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Table 1.1. Basic assumptions
extensions.

underlying the nuclear many-body problem and possible

Item Simplest assumption Possible extensions

Degrees of freedom * Nucléons only

Hadron structure

Interaction

Dynamical equation

Point structure

(Static, instantaneous)

two-body potential

Non-relativistic

Schrödinger equation

Mesons

Isobars

Quarks and gluons

(Quark) substructure

Non-static interactions

Many-body forces

Relativistic

Dirac equation

advantage of being fully relativistic and thus automatically incorporating the spin-orbit

force, which is of fundamental importance in nuclear structure physics.

More sophisticated approaches have also been investigated in the relativistic frame-
work. Dirac-Hartree-Fock calculations of nuclear matter and finite nuclei are avail-

able [Bo87, B187, Lo88]. Dirac-Hartree-Fock-Bogoliuvob equations to treat pairing

correlations have been derived [Ku91a]. The microscopic Dirac-Brueckner-Hartree-

Fock theory [An83, Ce86, Ha87, Br90, MÜ90] has shown that the old puzzle of the

non-relativistic Coester band can be eschewed, and that the empirical saturation and
incompressibility of nuclear matter can be reproduced if the theory incorporates the

effects of the density-dependent Dirac spinor for the nucléons inside the medium.

However, most of these applications are, as their non-relativistic counterpart, quite

involved on a purely quantum mechanical level. In non-relativistic nuclear physics,

semiclassical models have become very popular [Ha84, Dr85, Ar87] due to their re-
liability and feasibility, as they avoid the task of solving the quanta! mean field HF

equations. Most commonly, these methods are based on the Wigner-Kirkwood (WK)

h expansion [Wi32, KÍ33, Uh36] of the density matrix albeit alternative formulations,

somehow related, are also available in the literature. Among others we cite, for in-

stance, partial resummation and saddle-point techniques, see [RÍ80] for a brief account
of these methods, the gradient expansion of Kirzhnits [Ki67], the Green's function ap-
proach of Balian and Bloch [Ba71], or expansions based on the standard WKB method
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[Kr90]. Indeed, the semiclassical approach, together with density functional theory,
has become a powerful tool for treating inhomogeneous Fermi systems and it is widely

used in a number of fields in physics and chemistry [Lu83, Dr85, Jo89, Dr90, Pe91]

(recent thriving applications are, e.g., metallic clusters and quantum liquids).

In the semiclassical extended Thomas-Fermi (ETF) method [Bo76a, Br85] (and

references quoted therein, see also [Tr86]), the total energy of a nucleus is expressed

as a functional of the local particle density and its gradients. The ground-state den-

sity distribution p is found from the energy density functional £[p] by a variational

approach:

j-Jdr{£(p(r)}-Xp(r)} = 0, (1.1)

a technique that was early used in nuclear physics [Be56].

The theoretical justification of this so-called energy density formalism [Br68a, Lo73]

is given by the Hohenberg-Kohn theorem [Ho64] (generalized to finite temperature by
Mermin [Me65]). For nuclear physics, the theorem states that the exact ground-state
energy E oí a. nucleus can be expressed as a unique functional of the local ground-state

density p alone,

E = J dr £(p(r)}. (1.2)

This furthermore implies that the variational principle (1.1) leads to the exact solutions

E and />, if the exact functional £[p] is used. Unfortunately, the exact functional is not

known and one works with approximate asymptotic expansions in terms of gradients

of the density as in the ETF method.

To cure the deficiencies of the lowest-order Thomas-Fermi approximation, provid-

ing a more accurate description of the nuclear surface, at least corrections of order ft2

have to be considered. In the most elaborated versions, the non-relativistic ETF den-

sity functionals include gradient corrections coming from inhomogeneity and non-local

effects (e.g., spin-orbit and effective mass terms) up to order H [Br76, Gr79, Gr80].
The corresponding theory at finite temperature has also been derived [Br85, Ba85].

A priori, the continuation to include ft6-order terms should be straightforward. But

semiclassical expansions are asymptotical and the ft6-order functional [Mu81] leads to
a term which for large distances goes like p~1/3, and thus diverges when the density p
falls to zero.

The Thomas-Fermi model and its extensions represent the semiclassical treatment

of fermions in a nucleus in the independent particle or HF approximation. The ETF
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method smoothes out quanta! effects and one is left with the average part of the HF

energy, which is similar in spirit to the droplet model [My69, My74]. The remaining

part of the energy, much smaller, is of pure quanta! origin and can be added pertur-

batively to the semiclassical smooth quantity, as indicated by the Strutinsky energy

theorem [St67, St68, Br81] or by the so-called expectation value method [Bo76a, Br85].

In non-relativistic nuclear physics, the ETF method has been mainly used together

with Skyrme or Gogny forces. Detailed ETF calculations with Skyrme forces in com-

parison with the corresponding HF results can be found in [Br85] and [Ce90a]. Many

studies confirm that semiclassical Thomas-Fermi and ETF models, at zero or at finite
temperature, can be very useful in different areas of nuclear physics. For example,
they have been used to deal with the description of excited hot nuclei [BaSla, BaSlb,
Ba85, Br85, Su87], of supernova matter [Ma82, Pi86], of the interaction potential in

heavy ion scattering [Br68b, Ng75, Gu92], or in static constrained calculations of gi-

ant resonances [Su88, Li89, Ce90a, G190], deformation energies and fission barriers

[Br85, Da85a, Ga89a, Ga91]. It is worth mentioning that the domain of application

of semiclassical methods is not restricted to static properties of the nucleus only. The

semiclassical approach has also been generalized to the description of nuclear dynam-

ics, usually on the basis of the Landau-Vlasov equation, giving rise to a field which is

at present still the subject of intensive studies [RÍ80, Pr83, Gr87, Be88, Sc89, Su89].

The success of semiclassical models in non-relativistic physics provides a very strong
motivation for investigating similar methods in the relativistic context. The relativis-

tic Thomas-Fermi model was formulated by Vallaría and Rosen in the early thirties
[Va32]. The basic theorem of Hohenberg and Kohn was extended to the relativistic do-

main (see e.g. [Ra73, Do79, Ra83]), thus setting the foundations of relativistic density
functional theory. Relativistic ñ corrections to the Thomas-Fermi approximation have

been introduced in atomic physics on the basis of a field theoretical formulation by

Dreizler and collaborators [Dr90]. In the first instance, these authors used the gradient

expansion method of Kirzhnits [Ki67] for the derivation of such corrections (Gross and

Dreizler in [Dr85], p. 81, and [Ma86, En87]). Later, they introduced an alternative
approach based on Green's function techniques [En89, MÜ89], which has allowed them
to calculate the fourth-order gradient corrections to the non-interacting kinetic energy

density of a relativistic system of electrons and positrons [Po91].

Until very recently, semiclassical methods applied to relativistic nuclear physics
were at a less developed stage. For instance, the er—u model had only been solved in
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the simplest Thomas-Fermi approximation for finite nudei [Bo77a, Se78, Se79, Se86]

and for semi-infinite nuclear matter [Bo77b, St91, Sh91a, Sh91b]. With respect to the

case of atomic physics, the derivation of ft corrections in the nuclear problem has the

additional difficulty of the existence of a position-dependent effective mass, originating

from the scalar potential, which renders the semiclassical treatment and expressions

much more involved.

In [Ce90b] we have given for the first time the semiclassical relativistic expressions
of the particle and energy densities, including 7i2-order gradient corrections, for a set of

fermions moving in the mean field arising from a scalar potential and from the time-like

component of a four-vector potential. In [Ce92c] we have presented a comprehensive

description of the formalism of this semiclassical expansion. The method is based on

the Wigner transform of operators and affords a transparent and straightforward h

expansion of the propagator, valid for time-independent single-particle hamiltonians

with a matrix structure. The semiclassical picture would be somehow incomplete if

the study were only confined to formal aspects of the theory, without exploring its

versatility in actual applications. To this end, we have investigated the solution of the

relativisitc variational equations corresponding to the fi2 expansion. In [Ce92a, Ce92c]

we have performed calculations of finite nuclei and semi-infinite nuclear matter within

non-linear a—u models, in mean field Hartree approximation, and have compared the

semiclassical results with the ones obtained from the corresponding quantal calculation.

In [Ce91, Ce92b] we have studied the structure of finite nuclei, fission barriers and the

optical potential for heavy ion scattering, using the relativistic kinetic energy density

of order ft2, together with a potential energy density obtained from a local density

approximation to Dirac-Brueckner calculations.

More effort has been devoted to the development of semiclassical expansions in

the relativistic nuclear framework. Weigel, Haddad and Weber [We91] have used the

Green's function scheme and the Wigner representation to obtain in the HF approx-

imation ft2-order WK expressions for a Lagrangian of one-boson-exchange potential

structure. A derivation of the semiclassical approximation to the relativistic finite

temperature HF method has been given by Von-Eiff and Weigel [Ei91a]. A recent and

extensive investigation on the density functional approach to QHD has been carried

out by Speicher, Dreizier and Engel [Sp92]. These authors have shown the validity of

the Hohenberg-Kohn theorem in QHD. On the basis of the expansion techniques of

[En89] for the Green's function, the semiclassical non-interacting kinetic energy density
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has been derived to order H , taking into account vacuum contributions and the four

components of the vector potential. The specific case of the a—uj model in Hartree ap-

proximation is also addressed by these authors. The extension of this density functional

description of QHD to finite temperature has been formulated by Muller and Dreizler

very recently [MÜ92]. However, in all of these studies no numerical applications have

been made.

We finally remark that we have in no sense tried to be exhaustive and complete

in the short review made in this introduction; this would be out of the scope of this

work. It was intended only to bring out the essence of the topics we shall be dealing

with later, to give a brief overview of the past and present work in the field, as well

as to set the stage for the presentation of our original formalism and its applications,

which constitutes the true objective of this thesis. There is an unavoidable element of

arbitrariness in the choice of what to include in the text and how to structure it. In

what follows, our aim has been to provide clear and balanced coverage of the theory

and the applications, with as much interest and as little pain for the reader as possible.



Chapter 2

Semiclässical Expansion in

Relativistic Mean Field Theory

IN THIS chapter we shall introduce and develop the theoretical formalism on which

the subsequent chapters will rest. We shall present in mean field approximation the

formal structure of the relativistic semiclassical expansion, that will be derived from

the propagator in the Wigner representation. We begin by introducing a method based
on the Wigner transform of operators to perform the h expansion of the propagator for

hamiltonians which have a matrix structure. We then turn our attention to the rela-

tivistic nuclear problem, and apply the method to a Dirac hamiltonian which contains

a scalar field and the time-like component of a Lorentz-vector field. The propagator is

related to the density matrix and its connection with ground-state averages of physical

quantities, viz. particle and energy densities, is shown. In the next step, the Wigner-

Kirkwood expansion of these quantities is obtained to order ft2. Finally, we substitute

in favour of the particle density in the Wigner-Kirkwood expressions to obtain the

corresponding 7i2-order density functionals, which we shall refer to as constituting the

relativistic extended Thomas-Fermi (RETF) method.
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2.1 Expansion of the Propagator for Hamiltonians

with Matrix Structure

2.1.1 Statement of the problem

In Quantum Mechanics the problem described by a time-independent single-particle

hamiltonian H has an associated propagator defined by

Gfo)=exp(-i7ff) . (2.1)

The parameter 77 is proportional to time, although it also can be interpreted as the

inverse temperature in statistical physics.

For hamiltonians whose classical counterpart is a scalar in phase space, the h ex-

pansion of the propagator (2.1) is well-known [Ri80]. In fact, for this case the final

objective being the h expansion of the density matrix, there exists a variety of proce-

dures to arrive at the same result. We mention, for instance, the partition function

approach of Bhaduri and collaborators [Bh71, Je75a, Je75b], the Kirzhnits expansion

[Ki67, Ho73], the algebraic method of Grammaticos and Voros based on the Wigner

transform of operators [Gr79, Gr80], or the direct ft expansion of the density matrix

p = 0(A — H) [RÍ80]. With hamiltonians of scalar nature, the choice of one of these

apparently different derivations is a matter of taste and computational ease, for it can

be argued that they are equivalent [Ba84].

However, in problems where the hamiltonian has a matrix structure, like the rel-

ativistic one, the task is much more involved due to the additional difficulty of the

non-commutativity of the matrices entering H. In this case, the above-mentioned

methods are not suitable enough because they yield an infinite series in powers of 77

separately for each order of the h expansion of G. Moreover, they mix positive and

negative energy states, producing strong cancellations in the series. Therefore, to get

the sought-after H expansion one has to be capable of resumming the power series of

77 for the positive and the negative energy solutions independently. Hence the interest

to look for an alternative and more direct way to perform the semiclassical ft expan-

sion of the propagator when the system is described by a hamiltonian with matrix

components.
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2.1.2 The method
A

Consider a time-independent single-particle hamiltonian H which has a matrix
structure. The Bloch equation for the propagator is obtained from Eq. (2.1) by differ-
entiation with respect to 77:

. (2.2)
orj

To perform the semiclassical approximation of the Bloch equation* it is convenient

to write the r.h.s. of (2.2) in a symmetrized way:

0, (2.3)

where {.ff, G j denotes the anticommutator of H and G. The differential equation (2.3)

has to be solved preserving the boundary condition

= J, . (2.4)

I being the unit matrix. The Wigner transform [Wi32, Ri80] of Eq. (2.3) results in

x ' G " = 0 ' (2-5)

where for Aw we mean the Wigner transform of the operator A, and

< ¿w, exp ( l— A 1 , Bw \ = A* exp ( l— A ) £w + Bw exp ( — A ) Aw (2.6)
I \ ^ / J \ 2 / \¿ J

A A

for any two operators A and B. In writing (2.5) we have made use of the following

property of the Wigner transform of a product of operators [Ri80]:

(ÂB) =A w expf f XW, (2.7)'w \ ¿ y

where we have introduced the differential operator A = Vr- Vp — Vp- Vr (the arrows

indicate in which direction the gradients act).

'in this subsection we will follow a procedure which is similar to the one Ikruishi and Schuck have
employed to obtain a semiclassical BCS theory [Ta92].
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If we write the Wigner transform of the Bloch propagator explicitly as a power

series of ft,

n=0

4— t

expand exp (¿ft A /2) and equate the coefficients of the same powers of ft, we obtain

from Eq. (2.5) a set of coupled differential equations for the Gn in the U expansion of

the propagator:

dGn .
« ' 9 ¿_/ _ _ l V o / I "w' V"/ ' ~n-m í ~ " ' U — O, 1, 2, . . . . (2.9)

UTI ¿ m=0

At zero order:
nrj~ i

(2.10)

which has the solution

Go=exp(-77#w). (2.11)

We will now show that from the knowledge of Go a recursive scheme can be worked

out to obtain successively the higher-order corrections to the ft expansion of the prop-

agator. For the first order Git we have from (2.9)

?j± + |{ffw,Gi> + £{ffw, A, Go} = 0. (2.12)

To solve this equation we proceed as follows. Since GO is an exponential, Eq. (2.11),

any power of it is well defined:

(GQ)S = G0(v — > sr¡) = exp (-sr)Hw) . (2.13)

Let us introduce an auxiliary matrix GI defined through

G^G^G^2. (2.14)

After differentiation of this equation with respect to TJ

( (9 1 *.}0 , (2.15)

and combining Eq. (2.15) with Eq. (2.12) we get
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By integrating this equation and using (2.14), one readily obtains

-jri = — -jr0 r0

4 Uo

where the lower limit in the integral ensures that GI(TJ = 0) = 0. Note that the

boundary condition Eq. (2.4) implies Gw(r¡ = 0) = /, and as GO(TJ = 0) = / from

(2.11), it must be

Gn(ij = 0) = 0 V n > 0 . (2.18)

The procedure we have presented for (?i can be easily generalized to get any order

Gn when the Gm with m < n are known. In analogy to (2.14) we define

Gn = Gl/2GnG
l
0

/\ (2.19)

which differentiated with respect to 77 and combined with Eq. (2.9) leads to

dG 1 í n \ f i
~dï = ~2G° [S^iU

(2.20)
^77

and finally:

(2.21)

One therefore ends up with a recursion relation which allows to obtain any desired Gn

in the H expansion of the propagator from the lowest order GQ. The problem has been

reduced to an algebraic question whose main complexity will be the calculation of the

symmetric action of the powers of A between H* and the lower Gn,

The use of the propagator has the advantage that it not only yields the density

matrix as we will show subsequently but, if 77 is interpreted as an inverse temperature,

it also yields the partition function of statistical mechanics, which is represented by G

up to a norm. However, we have to stress the point that here we always deal with a

system at zero temperature.
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2.2 Wigner Representation of the Propagator for

a Scalar- Vector Dirac Hamiltonian

Our aim is to apply the method outlined above to obtain the semiclassical expansion

up to order ft2 of the propagator associated with a Dirac hamiltonian which describes

the single-particle motion of a set of non-interacting fermions submitted to a scalar

field S(r) and to the time-like component V(r) of a four-vector field, as in the case of

relativistic mean field cr—uj models. Defining an effective mass

m*(r) = m + 5(r), (2.22)

such a hamiltonian reads

H = <x-p + ßm*(r) + IV(r), (2.23)

where ex. and ß are the standard 4 x 4 Dirac matrices [Bj64]. According to the plan

drawn in the preceding section, we must start by calculating the Wigner transform of

Eq. (2.23).

2.2.1 Wigner transform of the Dirac hamiltonian

We proceed to show that in the Wigner representation the Dirac hamiltonian (2.23)

is equal to its classical counterpart

H = a-p + ßm* + IV. (2.24)

The Wigner transform of a single-particle operator A(x,x') in Minkowski space is

defined by

Aw = A„(q,p) = J da JP'*(q + a/2\A\q - s/2) , (2.25)

where x and x' are four-vectors, p is the four-momentum, q — (x + x')/2 and s = x — x'.
A

If A is time-independent (2.25) becomes

. (2.26)

We now consider the case where A is the Dirac hamiltonian:

(2.27)



§ 2.2 Wïgner .Representation of the Propagator for a Dirac Hamiltonian 15

with

t = <x-p + ßm. (2.28)

It is straightforward to realize that Vw = V(q) and Sw = S(q], so that we only need

to calculate iw.

The eigenstates of í are the plane waves solution of the free Dirac equation:

ijpo-e) = ee|po-e), (2.29)

where è = (p2 4-m2)1/2, a = ±1/2 and e = ±1. The 4 x 4 unit matrix can be expanded

as

|. (2.30)

Taking into account that

e.p-r
/ « | M _ ~ V ~ . / M ~ . ~ \ /O O 1 \í7^ P¿76) ^= t í ï p C T C I :— . I Z . o l )

with
/C -L m\ 1/2 / 1 \

(2.32)

e + m
and

(2-33)
1

the Wigner transform of t can be written as follows:

= E /V
-7

<r,e

<r,e
' è'u(p' a C)u V

, e í dP' è'u(p' * e)"f(p' o- e) ¿(p' - p)
,e ^

èEeu(P°'e)ut(P<7e). (2-34)
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Upon insertion of (2.32) and (2.33) into (2.34), a simple calculation leads to

tv, = a-p + ßm, (2.35)

and thereby we prove our anticipation that

Hv, = a-p + ßm* + IV. (2.36)

2.2.2 Wigner transform of the relativistic propagator

For the hamiltonian (2.36), the lowest order GO of the propagator takes a simple

form. As

(a.p + ßm*)2k = 62kl,

(a.p + /3m*)2fc+1 = £2k(a-p + ßm*), k = 0,1,2,. . . , (2.37)

where £ = (p2 + m*2)1/2 is the dispersion relation of the effective particle, then

Go = exp (-T)HW)

= exp[—77(cx-p + /3m*)]exp(—r¡IV)

E £e*J- E £e*-1(«-P + 0m*)
fc—even ' fc—odd

7 cosh7/£- ^ (a-p + ßm*)\ exp(-nV). (2.38)
J

Since the hyperbolic functions which appear in (2.38) can be written in terms of

exp(—T)£) and exp(+77£), it is clearly seen that GO contains the positive and negative

energy solutions separately. In addition, all the contributions coming from the expan-

sion of the exponential in Eq. (2.1) in powers of 77 have been consistently resummed.
From the structure of Eq. (2.21), it is evident that these two features of GO are kept
to any order Gn in the H expansion of the propagator. These are the main advantages

of our formalism in comparison with other alternatives, as could be the use of the

Kirzhnits method or the direct calculation of the Wigner transform of Eq. (2.1).
For further understanding of the significance of the indicated properties of GO and

the higher orders Gn we may compare, for example, the simple and compact result for
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the trace of GO that one gets from Eq. (2.38)

Tr (Go) = 2[exp (~r¡(V + e)} + exp (-r,(V - e}}} , (2.39)

with the infinite series in powers of r? that the direct Wigner transform of Eq. (2.1)

would yield for Go, where strong cancellations take place between positive and negative

energy solutions:

Tr(Go) = 2Y ([«p (-?£)] ) |I ft0

= 2 2 - 2r]V + 7?2(£2 + V2} - (2.40)

Naturally, the result displayed in Eq. (2.40) is nothing else but the Taylor expansion

of Eq. (2.39).

It is worth noting that in the situations where H does not have a matrix structure,

ordinarily there is no term of first order in U in the expansion of the propagator [RÍ80].

On the contrary, if the hamiltonian contains matrices which do not commute as in the

present case, there appear odd powers of H. However, these terms have zero trace and

do not contribute to the physical quantities of interest as we shall see later.

Starting from GO, the explicit evaluation of GI and GI from Eqs. (2.17) and (2.21)

is in principle straightforward for the Dirac hamiltonian (2.23). In practice, it is not

an easy task due to the fact that the calculations are very long and the expressions

quite lengthy, and one has to be very careful not to make any trivial mistake, especially

with the vector algebra of the Pauli matrices. We have developed a REDUCE computer

code [He84, Ra87] to handle the hardest job. We do not give here further details of

the intermediate steps of the calculations, neither the final expressions of GI and GI

which involve the gradients of the fields V and S. Instead, we collect in Appendix A

the correspondig terms of the semiclassical density matrix, which is closely related to

the propagator as we shall describe below.
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2.2.3 Connection with other approaches

Before closing this section on the h expansion of the relativistic Bloch propagator,

it may be appropiate to say a few words about other ways which have been pursued

to perform semidassical expansions of the relativistic problem. The authors of refer-

ences [En89, We91, Sp92] start from the equation of motion of the Green's function or

Feynman propagator

GF(z,z') = 8\x - x') , (2.41)

where H is a time-independent Dirac hamiltonian (notation as in [Bj64]). Expansion

of GF into a formal power series of U

GF(z, z') = £7in4n) (*>*')>
n

followed by a Fourier transform of Gp (x, x') [En89, Sp92] or by a Wigner transform of

the Dyson equation [We91], leads to a recursion relation which can be solved iteratively

to obtain the Gp (x,x'). Observables like, e.g., the particle density are then obtained

from the well-known identity [Gr85]

p(r) = -i lim Tr Í7°C?F(x, z')| . (2.42)
x'—*x L J

The relation of the Green's function with the Bloch propagator (2.1) is rather indirect

(stemming from different boundary conditions):

GF = -i [Q(t - í') A+ - Q(t' - 1) A'] 7°G (it - ii') , (2.43)

where

l, (2-44)

with H\Xn) = En\Xn)i are *^e projection operators on positive and negative energy
states. Of course, all necessary information is contained in both propagators GF and G.

To show that Eq. (2.43) holds, let us recall the expression of the Green's function

in terms of the eigenstates and eigenvalues of H [Bj64, Gr85]:

(2.45)
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which is retarded for positive energy solutions (Dirac particles propagating into the
future) and advanced for negative energy solutions (motion backwards in time). Owing
to the hermiticity of H, when we multiply the Bloch propagator G(it — it') by ̂  from
the left we obtain

0] í2-46)

and, in view of (2.45), Eq. (2.43) follows. We may verify that the matrix elements of
Eq. (2.43) in the coordinate representation obey the Dyson equation (2.41). We then
start by applying to Gp(x,x') the time derivative. Using (2.43), this leads to

-Q(t'-t)(r\&-G(it-it')\r')].

Recognizing that dQ(r}/dr = 6(r) and

a straightforward calculation yields

- ÍH [0(t - 0 (r |A+ G (it - it') \r')

- Q(t' - t) (r|A- G (it - it') |r')] , (2.47)

which can be brought to the form (2.41) bearing in mind that A+ + A~ = / due to the
orthogonality and completeness of the set of eigenstates |x*)-

As a matter of interest, we finally mention that the Fourier transform of the Bloch
propagator with respect to the coordinate r',

r'e-P-(p-r') G(r,r') , (2.48)



20 Semidassical Expansion in Relâtivistic Mean Field Theory

is related to the Wigner transform Gw(q,p) simply by [Je78]

Gw(g,p) = exp ( ̂  VP-V, ) g(q,p) (2.49)
\ ¿ J

(cf. Eqs. (2.25)-(2.26) for notation).

On combination with (2.43), Eq. (2.49) could in principle be used to relate the
Fourier transform of the Green's function with the Wigner transform of the Bloch
propagator and, therefore, to relate the h expansion of Speicher et al. [Sp92] with

ours. Despite this charming programme, the exponential in Eq. (2.49) introduces a

new power series of 7i which adds to the others. Thus, there exists no simple relation,
order by order, between the coefficients of the expansion of the Fourier transformed

Green's function and the Wigner-Kirkwod expansion of the Bloch propagator, as the
arrangement of the Ü contributions in the two series is different.

It seems a general fact that the H expansion comes out more easily in a transformed

space than in ordinary coordinate space. The Wigner representation has the interesting

feature that it explicitly keeps the symmetry with respect to the interchange of the
variables r and r'.

2.3 The Relâtivistic Wigner—Kir k wo o d Density

Matrix
_A A

The generalized density matrix TZ is obtained from the propagator G by an inverse
Laplace transform (see e.g. [Ri80]):

*(A) = d, exp(,A) = /-, , (2.50)
¿TTÎ Jc-too ?7 L T) J

where A is the chemical potential and we have made explicit the dependence of 7Í and

G on A and 77, respectively.

Inserting the H expansion of the propagator into (2.50), one finds the expression of
the corresponding Wigner-Kirkwood density matrix:

^M = Uo + ft7^ + h*K2 + ... . (2.51)
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Prom the definitions of the Laplace transform of the step function and of the derivative

of a Laplace transform [Ab65], one formally gets

e ( A - V T S ) . (2.52)

Therefore, the 4 x 4 relativistic density matrix 7iw will contain the step function, the
delta function and its derivatives. As it happens in the non-relativistic problem, 7£w

has to be considered as a distribution rather than as a function, in the sense that

it is only meaningful if used under an integral sign to compute expectation values of
one-body operators. For instance, the zero-order term of the density matrix (cf. Eq.

(2.38)) is

(a.p + /? m.} } (253)
C J

where the first line corresponds to the positive energy states and the second line to the

negative ones. We also indicate that the chemical potentials (A+, A~) may be different

in the two cases. Using Eqs. (2.51) and (2.52), *R,\ and 'R-i are straightforwardly

obtained from G\ and Cr2j respectively. We collect their expressions in Appendix A.

As we have shown for the propagator, the positive and negative energy states are

separated in the expression of the density matrix, and the infinite series in powers

of rj has been automatically summed to each order in ft. On the other hand, a very

interesting property of the density matrix 72. is its idempotency [RÍ80], which holds for

the positive (72.+ )-and negative (7£~) energy solutions* separately:

(T^)2 = ft* . (2.54)

Let us take the Wigner transform of this equation, apply Eq. (2.7) to its l.h.s. and

insert the h expansion Eq. (2.51) of the density matrix. Regrouping the terms of the

same order in ft, we then find a set of relationships which must be fulfilled by each

order of the semiclassical expansion of the density matrix, independently for positive

'Observe that although the density matrix 72. ± and the projection operators A* introduced in Eq.
(2.44) are closely related, they should not be confused since R* = ^\Xn)(X
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and negative energy solutions. Eq. (2.54) yields the following three relations up to

order ft2:

(2.55)

Eq. (2.55) constitutes a stringent test of the correctness of the calculated semiclassical

density matrix.

We have checked that the results we have found for the relativistic ft2-order 7 ,̂

matrix satisfy (2.55). In the case of the Dirac hamiltonian, this is an extremely lengthy

proof and we do not present it here (again the calculations were performed with REDUCE

software). Nevertheless, we think it is worth showing some interesting ingredients of

the procedure. We do so in Appendix B where we prove that the well-known WK

expansion of the local density matrix to order ft2 corresponding to a non-relativistic

hamiltonian [Je78] fulfils (2.55).

2.4 Semiclassical Relativistic Particle and Energy

Densities

Let us now apply the semiclassical relativistic density matrix we have obtained in

the preceding section to calculate the h expansion of the particle and energy densities,
in both the WK approach and the energy density (RETF) formalism.

For a given single-particle operator O, we define its expectation value as

(2.56)

where Tr+ means that the trace is taken disregarding the negative energy terms. Thus,

here and in the following we only consider the positive energy solutions, i.e., we restrict

ourselves to the positive energy part of the spectrum and neglect any contribution from
antipartid.es, as it is currently done in most applications of relativistic mean field theory.
In the case of the operators 0 we will be considering in this section, the semiclassical
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expectation value corresponding to Eq. (2.56) reduces to

<0)sc = ~ ¡dr ¡dp Tr+ [<9W (ft0 + H2 7l2)j (2.57)

up to order ft2, since the other terms which in principle could contribute turn out to be

zero or vanish after angular average in momentum space. Indeed, this fact was expected
for the contributions of first order in H, as we are within a static approximation and

the nuclear ground-state is even under time reversal.

2.4.1 Wigner— Kirkwood expressions

Some details relevant to the calculation of the integrals over p in (2.57) are treated in

Appendix C. Assuming that the integrands are invariant under rotations in momentum

space, and introducing the local Fermi momentum

kF= (A-V)2-m'2 (2.58)

and the definitions

(2.59)

the WK particle p ( r ) , scalar Psfr), energy £ (r), and kinetic energy T(r) densities to
order h2 for each kind of nucléons are found to be:

= io + ft, (2.60)

+ 2^ (3 - x'f) (VV-Vm-) + ¿ (2 - xf) (Vm-)!

m \ ' KF v '

+ 2— (l - 4) dm*] ; (2.62)
m* J
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(2.63)

(2.64)

f (2 + 4) ( W-Vm*) + H- (2 + *|) (Vm*)
KF x x m v '

, „ -,+ 2xp — 6 In A .Am
m*

£2 =
247T2

- 2% (l + 4) àV + 21 (l - 4) (VF- Vm*)

- 2m* ( XF - In
m*

Am* +

and finally

r(r) = ,p)| = To + T2,

287T2
f 5 - 4^) fcpep + m*4 (3 - 4-^) In ̂ ±
\ m*/ V m*/ m*

(2.65)

(2.67)

(2.68)

(2.69)

— m (2.70)
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m*

AF

- 2 - (2 + 4) + 2 z F (3 - 4) + 6 (l -

_ [lü (2 - 4) - f 3 - 2^
[Jfcp v F' \ m*

In
m* m*

- 2m L 4- ̂  (l - 4) - f 3 - 2^) In ̂ ±^1 Am*) . (2.71)
L m * ^ ' \ m J m* j J

Eqs. (2.61), (2.64), (2.67) and (2.70) correspond to the ft°-order WK approach, whereas
Eqs. (2.62), (2.65), (2.68) and (2.71) are the respective Border WK corrections.

Parenthetically it is worthwhile indicating that if we were dealing with applications
where the self-energy operator is determined from a many-body calculation, a term

\\ßS(r) + IV(r)\ (2.72)

should be subtracted from the hamiltonian to avoid double counting of the meson

contributions to the energy. In that case the energy density would become

£_i(m-_m)p._iv> = ~(S + T + mp). (2.73)

In mean field approximation, the expressions obtained by Speicher, Dreizier and
Engel [Sp92] using the Green's function formalism and by Von-Eiff, Haddad and Weigel
[Ei91b] from the Wigner transformed Dyson equation are identical to ours. Setting
m* = m one recovers the expressions already known in the atomic case [En87]. We
have also looked for the non-relativistic limit of the particle and kinetic energy densities.
One has to expand the above equations in powers of &F/m*, retain the lowest orders
and finally expand (m*)" = m"(l + S/m)n in terms of S/m. This yields the standard
non-relativistic formulae for p and T [Ri80] for a set of fermions moving in a potential
well, which in this case is the sum V + S of the meson potentials. In this limit the scalar
and particle densities coincide, pa = />, as the small component of the wave function is
neglected.
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2.4.2 Density functionals

To obtain the RETF density functionals we have to write W and AV as a function

of the particle density, the effective mass and their gradients, and insert them into the

ti2 terms of the WK expansions. That is, we have to eliminate V in favour of p and m*

in Eqs. (2.65), (2.68) and (2.71). For that purpose, one has to invert the semiclassical

expansion of the particle density. This is achieved first by putting in Eq. (2.61) the

expression (2.58) of fcp in terms of V

2 , (2.74)

and computing then W and Ay from this equation. This results in

7T2 _ m'

-4(Vm*)2-— Am*. (2.75)
4V ; £F

In the next step, as one works with the density p rather than with /J0, it is needed

to expand p around a new variable ko up to order ft2:

= Po(k0) + ¿* + pa(*b) + 0(A4) , (2.76)

where 8k = kp — k0 and p2 is defined in (2.62). We then demand that po(k0) reproduces

the exact density:

Po(k0) = p(kF) , (2.77)

whence it follows that

(2.78)
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to order ft2. Then one substitutes in Eqs. (2.63)-(2.71) for kp as given by (2.78),

and expands these equations around the value k0 consistently to order ft2. Finally,

one replaces kQ by kp and takes kp = (Sr2/))1/3. In this way, we get the scalar, en-

ergy and kinetic energy density functional in the RETF formalism including ft2-order

corrections:

(2.79)

f (r) =

m*

(2.80)
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and

_/ x 1 L, -3 .2 (r Am\, - . ,4/o fm\i kpT(r) =
87T2

2fcp4 - m*2 f 5 - 4—) kF£F + m*4 f 3 - 4—) In
V m*/ V m*J

> . + 3 i _
fcp [fcp V m'

_ 2 § _ 4 f ! _ H
¿ V m

-m/). (2.81)

We notice that Eqs. (2.80) and (2.81) take this form after suitable partial integration

of the terms with A/> and Am*, which assumes that />(r) vanishes on the surface of a

large sphere.

If one takes m* = m, Eq. (2.81) reduces to the result of atomic physics [En87].

In the non-relativistic limit (kp <C m, S <C m) we recover from (2.81) the well-known

result
(2-82)

In fact, taking the limit before the elimination of the laplacians in (2.81) by partial

integration, the usual term A/>/6m is also found.

Strictly speaking, the density functionals should have been written in terms of the

densities p and /J8, the latter instead of m*. Obviously, the complicated relation between

pa and m*, even at order ft0, does not allow expressions which are analytical. We want

to point out that the inversion scheme we have used to derive the density functionals

from the WK expansions is not the only possibility which can be considered. An

alternative elimination arises if an additional inversion of the effective mass at order

ft0 is also performed [Sp92]. However, in the scheme we have adopted the effective

mass is treated in a parallel way to the one which has been traditionally used in the
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non-relativistic case, where no supplementary inversion of m* is made (see e.g. [Gr79]

and [Ba85]). We shall not dwell here any further on this point; we shall come back

to it when we study the a — u model in Chapter 4. It will be shown there that the

variational Euler-Lagrange equations obtained from both inversion schemes turn out

to be equivalent.

In concluding this chapter, we note that the semiclassical expansions constructed

here are asymptotical by nature and, a priori, are not expected to converge. Neverthe-

less, one trusts that such expansions truncated after a first few terms provide reliable

and accurate enough numerical results, as it happens in the non-relativistic situation.

The applications investigated in the next chapters will show that this is also the case

in the relativistic context.



Chapter 3

Test Calculations with a

Relativistic Harmonic Oscillator

THE HARMONIC oscillator potential has been extensively studied and has found many

applications in non-relativistic nuclear physics. We shall use a relativistic harmonic

oscillator to investigate quantitatively the accuracy of the semiclassical approximations

deduced in the preceding chapter. We specifically consider the situation where the

scalar field and the zero component of the vector field correspond to a three-dimensional

spherically symmetric harmonic oscillator and have the same strength:

(3.1)

In this case the Dirac equation can be solved analytically and simple expressions are

obtained for the energy eigenvalues and the wave functions [Sm71, Te90] (other types

of a Dirac equation with an oscillator potential which admit analytical solutions are

found in the literature [Ku91b]). In this chapter we shall discuss semiclassical WK

and RETF results for an ensemble of independent particles submitted to the potential

(3.1), in comparison with the quanta! results and also with the corresponding Strutinsky

averaged calculation. To that end, we begin by solving the Dirac equation.

30
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3.1 Solution of the Dirac Equation

If we write down the Dirac spinor as

-*', (3.2)

the Dirac equation associated with the static scalar and vector potentials (3.1) for the

large </?u and small if>¿ components reads

(3.3)

(<T-p}(pn-m(p¿ = E f d- (3.4)

Combining (3.3) and (3.4), the Dirac equation transforms into a Schrödinger-like equa-

tion for the large component </?u with an energy-dependent potential [Sm71, Te90]

/ ^2 El i \ 772 2

(3.5)

and the small component y?j is obtained from </?„ through (3.4),

(3.6)

Unlike Ref. [Te90], we solve this problem without neglecting the mass of the particle.

The Dirac spinor (3.2) is rewritten as

_ÍE t
e

where

Vijm = ̂  (^rntmt\jm}Yiimi(91tp)xi/t,mt (3-8)
mi,m, ^

and the normalization is

°° l. (3.9)

We have taken advantage of the fact that in a central field the angular part of the two-

component spinors t^u and y>a are eigenfunctions of the orbital angular momentum, of

the spin operators and have definite parity. Note that, since the operator cr-p changes
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parity, Eqs. (3.3) and (3.4) show that </?u and y>¿ must have opposite parity. This is
why the pseudoscalar cr-r is introduced in the definition of tp¿ in (3.7).

It is easy to show by standard techniques that the physical solution to Eq. (3.5) is

= Nnl r exp (- (3.10)

where L%(x) are the generalized Laguerre polynomials [Ab65]. With the assumption
(3.7), Eq. (3.6) reads (e.g. [BJ64], ch. 4)

dg ^
KE + m \dr r

with « = (2j + !)(/ -j). Evaluation of (3.11) from (3.10) yields

for j = / + |, and

(3.11)

for j = I — |. The normalization factor is

1
.r0 T(n H

The energy eigenvalue is obtained from

(Eni - rr

and the scale parameter TO is

= 4Ä-

[K(Enl

m)
(3.14)

(3.15)

(3.16)

with n = 1,2,3, . . . , / = 0,1,2,.... Note that E is independent of j (the spin-orbit

couplings arising from the scalar field and from the vector field cancel each other) and
that r0 depends on the state (n,/). A given oscillator shell can be characterized by a
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quantum number N such, that N = 2n 4- 1 — 2. In the ultrarelativistic limit, EH >• m,
we recover the result of [Te90]:

f o v -, 2/3

2 f f 1 ' a t f + , (3.17)

and in the non- relati vistic limit, EN — m <C m,

( Q\ /oTTx1 /2

"+f)(v) + m- <3-18'
For A non-interacting particles moving in an external harmonic oscillator (3.1), the

quanta! particle density p(r) and total energy E are obtained from Eqs. (3.10)-(3.13)
and (3.15) summing over the occupied states. Assuming isospin degeneracy and closed
shells,

p(r) =
n,l,j

= ¿ E [(2Í + Itài + C + l)&=í+1/2 + Vií,i-1/a] (3.19)
n,/

and

= 2 X) (2j + l)Sn, = 4
n,í,j n, I

(3.20)

3.2 Wigner—Kirkwood Expansion of the Particle

Number and the Energy

In the WK representation, Eqs. (2.60)-(2.62) and (2.66)-(2.68), the semiclassical
particle and energy densities become (taking into account that Vm* = VV and Am* =
AV):

4p (ro*(3eP - 5m*2) + £F(4eF - 6m*2)) ( VV)2

37T2 127T2

- 2 (ep + m") + 2 In
*m*

(3.21)
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£wK.(r) = -r~T kp£p(2£p — m*2) — m*4 In
4?r2 L m*

»^,*\2 Q
- 771 I — «3

- 2 - - Í S p + m*)(2£F - m*) - m* In
«F m*

+ (y - m)/)WK , (3.22)

wherç kp is related to the chemical potential A by

kF = (A + m)l'*(X - m - JCr2)1/2 , (3.23)

and £F = A - #r2/2.

Eqs. (3.21) and (3.22) can be integrated analytically from r = 0 to the turning point

r = [(A — m)/K] f , to get the semiclassical WK expansion of the particle number A

and total energy E up to order fi?. With the definition x —. (A — m)/2m, we find:

+ x' - a: + 1 - (1 4- *)-'"
O ¿>

1 /2/, M/2 [9 2 ü , /, X-l/21
(1 + S)1/2 [-22 + JX + 1 - (1 + X) 1/2J

(3.25)

Eq. (3.24) is used to determine the chemical potential A which then is inserted into
(3.25) to compute the energy. The non-relativistic limit of (3.24) and (3.25) is easily

found taking x <C 1. It yields
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3.3 Discussion of Results

As mentioned in the introduction, the Strutinsky averaging method has been suc-
cessfully employed in non-relativistic nuclear physics to separate the smooth part of

the energy from the fluctuating shell corrections [St67, St68, Br73, Je73, Br81, Pr81].
The customary prescription for obtaining the smoothed energy uses single-particle oc-

cupation numbers, or the single-particle level density, smoothed by some averaging

function. We have also performed Strutinsky averaged (SA) calculations for the rela-

tivistic harmonic oscillator of Eq. (3.1). We have used Eq. (3.15) for the single-particle

energies and smoothed occupation numbers n,- obtained from a Gaussian averaging to

get the SA energy

••"- (3-28)

The smoothing procedure is the following [Br73, Pr81]. We compute the n,- as

/•A,-/•
=

J-
dx f (x) + a^ /('"-«(A,-) , (3.29)

where A; = (A — -E^)/7, and 7 is an averaging parameter. For a Gaussian averaging
function

f ( x ) = ~ e-*° , (3.30)

the coefficients a2/J are given by

and

e-*X(*) , (3-32)

where H M are the Hermite polynomials [Ab65]. It has been numerically checked that
the so-called plateau condition (stationarity of the shell correction with respect to the

smoothing width 7) [Br73],

= 0, (3.33)
70

is guaranteed in each case. This is important, because if (3.33) is not exactly fulfilled,
not the entire information about the Strutinsky averaging is contained in the occupation

numbers n,- and the quantity ESA. does not give the correct SA energy.
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For the numerical applications we have taken K = mu;2 /2. The reason for this

choice is that the non-relativistic limit of this problem is just a set of fermions moving

in a potential well given by

= V(r) + S(r) = \m<Jr2 . (3.34)

Table 3.1 collects the energies obtained from the SA and semiclassical approaches in

comparison with the corresponding quantum mechanical (QM) result, for different

values of the particle number (closed shells) and of the rest mass of the particles

(m = mN, m = mN/100, m = mN/1000, where mN = 939 MeV), with fiu = 41A~1/3

(MeV). The semiclassical energies have been calculated from the WK expansion of

order ft2, WKft2 label, and solving the Euler-Lagrange equations associated with the

RETF energy density functional of order ft2, TFft2 label (we will discuss this approach

later on).

For a non-relativistic harmonic oscillator potential, it has been analytically proven

that the SA method and the WK expansion up to order ft4 are equivalent and yield the

same results [Br73, Je 73]. Due to the fact that the relativistic eigenvalues (3.15) have a

more complicated form than the non-relativistic ones, we have not been able to obtain

an analytical expression for the Strutinsky smooth energy. However, the numerical

results shown in Table 3.1 seem to indicate that for our model relativistic oscillator the

SA and WK methods are also equivalent. The agreement between the SA and WKft2

energies is almost perfect irrespective of the value of the rest mass of the particles.

The small difference between the SA and WKft2 methods could be attributed to the

h4 contribution that has not been included in the relativistic treatment.

For the QM results, we see that the relativistic effects on the energy are rather small

if the rest mass is the nucleón mass TON; the relativistic energy is shifted to smaller

values by an amount around 1%. The relativistic corrections become more important

when the mass is reduced. With respect to the non-relativistic results, which are

independent of m, the energy decreases by ~ 35% if m = mN/100 and by ~ 64% if

m = mN/1000. The SA and semiclassical energies show the same trends as the quanta!

ones, similar changes are found in their values if the relativistic and non-relativistic

results are compared. The difference between the quanta! and the SA energy is the so-

called shell correction. Table 3.1 shows that it becomes less important when the mass

of the particles is reduced. Thus, the shell correction is reduced by the relativistic

effects, at least for this example.
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Table 3.1. Total energy for a set of A fermions submitted to the relativistic harmonic oscil-

lator (3.1), with K = mw2/2, hu = 41A"1/3 (MeV) and mN = 939 MeV. The results corre-

spond to quantum mechanical (QM), Strutinsky averaged (SA), ft2-order Wigner-Kirkwood

(WK/i2) and Thomas-Fermi (TF/i2) calculations, respectively. The rest mass contribution

has been subtracted.

E (MeV)

Non-relativistic

Relativistic

771 = mN

Relativistic

m = mN/100

Relativistic

m = mN/100Q

A

16

40

80

140

224

16

40

80

140

224

16

40

80

140

224

16

40

80

140

224

QM

585.8

1438.6

2854.6

4974.5

7939.2

580.0

1424.5

2826.7

4925.9

7861.7

385.4

948.5

1883.7

3284.1

5242.9

207.1

510.4

1014.3

1768.9

2824.4

SA

598.1

1454.7

2874.5

4998.2

7966.8

592.0

1439.9

2845.7

4948.8

7888.4

390.7

955.8

1893.0

3295.4

5255.9

209.7

513.9

1018.7

1774.2

2830.6

WKft2

598.1

1454.7

2874.5

4998.2

7966.8

592.0

1440.2

2846.1

4949.1

7888.6

391.5

956.4

1893.4

3295.6

5256.2

210.1

514.2

1018.9

1774.4

2830.8

TFTi2

582.9

1436.1

2852.8

4973.6

7939.4

576.8

1421.8

2824.7

4925.1

7862.2

378.7

941.5

1876.7

3277.2

5236.2

202.3

505.3

1009.1

1763.6

2819.2

In the non-relativistic situation, the scale parameter r0 is independent of the en-
ergy of the shell but still depends on the mass of the particles, being scaled by a
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<n

5.0
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2.0

1.0

0.0

QM
TFfi2,
WKñ2

A= 224

m= mN/100
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r (fm)
80 100

Figure 3.1. Particle densities for the non-relativistic and relativistic harmonic oscillators

discussed in the text.

factor (mN/ra)1/2. In the relativistic case, TO depends on the mass and on the energy

of each shell, getting smaller as both quantities increase. This causes the relativistic

densities to be pushed to the origin, increasing their central value with respect to the
non-relativistic one. This effect is clearly observable in Fig. 3.1, where we plot the

relativistic and non-relativistic densities for a harmonic oscillator of A = 224 particles
with m = mN/100 in the QM, WKft2 and TFTi2 (see below) approaches. In this case
the relativistic r0 is reduced by 80%, and the central density increases roughly by a
factor 2. The smoothing of the oscillations in the quanta! density when the relativistic

effects are taken into account can also be noticed. This is in agreement with the trend

we have found for the shell correction to the energy.

The semiclassical densities show no oscillations since they lack shell structure. How-

ever, they average the quanta! densities in the non-relativistic as well as in the rela-

tivistic cases. This means that the relativistic effects are properly incorporated by the

semiclassical calculation. As it happens in the non-relativistic situation, the WKft2

semiclassical densities diverge at the classical turning point and, consequently, have to

be regarded more as distributions than as functions. In spite of this, the calculation
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Table 3.2. Same as Table 3.1 keeping the strength of the potential fixed to a constant value

K = JfN = mN(41A-1/3)2/2.

E (MeV)

Relativistic

m = mN/100

Relativistic

m = mN/1000

'A

16

40

80

140

224

16

40

80

140

224

QM

2070.7

5103.8

10142.5

17688.7

28243.8

2156.3

5317.5

10569.7

18436.0

29439.3

SA

2096.9

5139.2

10186.9

17742.0

28306.0

2182.2

5353.0

10614.2

18489.4

29501.6

wia2

2100.5

5141.9

10189.2

17743.9

28307.7

2186.3

5355.9

10616.6

18491.6

29503.6

TFfi2

2022.9

5053.2

10090.5

17636.1

28191.6

2101.9

5259.8

10510.3

18375.9

29379.3

of expectation values of operators is well defined as it happens, for instance, with the

particle number (3.24) and the energy (3.25). Note the steep fall-off of the WKft2

densities in Fig. 3.1; we have put a cutoff at the turning point where they become
negative.

The results reported in Table 3.1 and Fig. 3.1 have been obtained with a poten-

tial well whose strength K depends on the rest mass m of the particles. We have

also made calculations changing m but keeping the strength fixed to a constant value
K = AN = mN(41A~1/'3)2/2. The corresponding results are displayed in Table 3.2. In
this case one finds the same trends as discussed above comparing the semiclassical with
the quanta! results. It is remarkable the excellent agreement between WKft2 and SA.

Finally, we would like to pay some attention to the TFTi2 results obtained applying

the variational principle to the energy density functional (2.80). The corresponding
Euler-Lagrange equation

S£ _dS d£
8p~ dp d(Vp]

= A (3.35)
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10 -3
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TFft"

A= 224
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Figure 3.2. Semi-logarithmic plot of the density tails corresponding to the relativistic

harmonic oscillator of Fig. 3.1.

is solved* using the imaginary time-step method (insight into its practical implemen-

tation can be gained from Subsection 4.2.3 in the following chapter).

As it happens in the non-relativistic case, the TFft2 method is not equivalent to

the WKÄ2 one (see the difference between the WKÄ2 and TF£2 results in Table 3.1),

because they originate from different rearrangements in the U expansion of the energy

functional. Consequently, since we have numerically shown that the WK and SA

methods are equivalent for the harmonic oscillator we are considering, the smooth

part of the energy is not so properly estimated by the TFft2 method. Let us mention,

however, that the divergence problems in the classically forbidden region are not present

in the TFft2 functionals. This is an advantage of TFft2 over the WKft2 method. The

divergent behaviour of WKft2 at the turning point can be seen in Fig. 3.2, where we

have plotted the density tails corresponding to Fig. 3.1 on a semi-logarithmic scale.

'The author wishes to express again his acknowledgement to Marti Pi, whose expertise made
possible the development of the computer codes needed to solve the semiclassical variational equations.
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From Tables 3.1 and 3.2 it is seen that the WKTi2 and SA approximations underbind

the system with respect to the quanta! result regardless of the mass of the particles.

On the contrary, the TFft2 approximation generally yields some overbinding.



Chapter 4

Semiclassical Description of

Nuclear Systems in Relativistic

Mean Field Models

IN CHAPTER 3 we have applied the semiclassical scheme to the discussion of a rela-

tivistic harmonic oscillator. Prom the study of this model external potential, we can

conclude that the semiclassical expansion bears all the relativistic ingredients for pos-

itive energy states, the difference with quanta! results being due to shell effects. This

satisfactory background suggests using the method on a broader scale and in a more

realistic context. In Chapters 4 and 5 we shall address the calculation of properties of

nuclear systems with the ft2-order RETF functionals.

This chapter is concerned with relativistic non-linear a — u> models in mean field

approximation. After a summary of some general aspects of the cr — u model, we

consider the calculation of finite nuclei. First, we introduce the Lagrangians and derive

the corresponding mean field energy densities and variational equations in both the

semiclassical and the quanta! Hartree approach, paying special attention to the former.

Then we sketch out the numerical method we have employed to tackle the semiclassical

variational equations of order A2, and discuss at length the results for finite nuclei that

we have obtained with different parametrizations of the a—u model. Finally, in the

42
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last section of the chapter we give an account of the surface properties (density profiles,

and surface and curvature energies) obtained in semi-infinite nuclear matter from the

RETF model.

4.1 Overview

A short sketch of the a—u model has been given in the introduction. We now men-

tion that in the original mean field linear a—u; model of Walecka the incompressibility
of nuclear matter, K = 545 MeV, is considerably too large as compared to any empirical

values [B180, Sh88], giving rise to an equation of state too stiff. The inclusion by Boguta

and Bodmer [Bo77b] of non-linear contributions through cubic and quartic terms in the

scalar field, shifted the incompressibility to more reasonable values in comparison with

the empirical data. Moreover, the Coulomb repulsion and an isovector p meson have to

be included in the Lagrangian to account for proton-neutron asymmetry effects in any

realistic description of nuclei. The non-linear model has been widely used in the recent

applications (see e.g. [Re86, Ga90a] and [Bo83a, Bo83b, G183, Bo84b, We89, Hi91]),

inasmuch as it yields a successful description of the surface and ground-state properties

of finite nuclei (e.g., binding energies, spin-orbit splittings, density distributions, r.m.s.

radii or isotope shifts).

In the model with cubic and quartic scalar self-interactions, the effective mass at

saturation is rather small (m*/m ~ 0.60) if compared to the value extracted from opti-

cal model analyses (m*/m « 0.83) [Jo87] or to the value of a realistic Skyrme force like

SkM* (m*/m = 0.79) [Ba82, Br85]. Recently, Zimanyi and Moszkowski [ZÍ90] have pro-

posed an alternative type of non-linearity, generated by a derivative coupling between

the scalar and the fermion fields. In contrast to the model of Boguta and Bodmer, this

non-linearity does not introduce extra free parameters. The derivative scalar coupling

yields an acceptable incompressibility and a larger effective mass, m*/m = 0.85, but

it gives too small a value for the spin-orbit splitting. In fact, the spin-orbit splitting

in light nuclei determines m*/m within quite narrow limits to be ~ 0.60, almost inde-

pendently of the form of the scalar coupling [Bo89]. More general types of non-linear

couplings of the scalar cr meson have been investigated [Re88, Fe91, Ko91].

The relativistic mean field model has not only been used to describe ground-state

properties of spherical nuclei but also to study axially symmetric deformed nuclear

shapes [Le86, Pa87, Pr87, Ga90a, Zh91a], giant resonances [HoSla, Pr85, Hu90, Bo91],
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magnetic moments [Bo84a, Ho88a], scattering processes of nucléons on nuclei at inter-

mediate energies [C183, Ne83], or in dynamical calculations of nuclear collisions [MÜ81,
Cu85]. Calculations with mean field Lagrangians whose parameters are fitted to Dirac-

Brueckner self-energies obtained in nuclear matter have also been performed [Ma89,

E190, Gm91, Br92]. The role of vacuum polarization effects in nuclear matter and in

finite spherical and deformed nuclei has been examined in several works (see e.g. [Ch77,

Se78, Ho84, Ho87, G189, Zh91b]).

One has to admit, however, that the number of experimental nuclear properties

investigated within the framework of the relativistic mean field theory is so far con-

siderably smaller than those investigated and successfully reproduced by conventional
density-dependent HF calculations.

The quality of the relativistic mean field results turns out to be very similar to
that of the corresponding results of conventional HF calculations using Skyrme forces.

In any of both theories, the experimental spectrum is generally more compressed as

compared to that obtained in the calculations. The oscillations in the interior of the

calculated charge density distributions are only somewhat milder with respect to those
usually obtained in non-relativistic DDHF. Nevertheless, the relativistic mean field

results are in slight better agreement with experiment and, therefore, are found to
have an edge over their non-relativistic counterparts.

One may attribute the relative success of the simple relativistic mean field model

to the intrinsic Lorentz covariance of the theory, which leads naturally to density-

dependent interactions between nucléons. Furthermore, non-relativistic reduction re-

veals non-central and non-local features inherent in the mean field formalism. An

obvious advantadge of a relativistic approach is the treatment of the spin-orbit force,

which emerges just out from the interplay between the upper and the lower compo-
nents. In relativistic mean field theory, the spin-orbit interaction is given in terms of
the scalar and the vector fields, whose strength is adjusted from the nuclear matter

calculations. This leaves no free fitting of the spin-orbit force. The situation should
be contrasted with Skyrme interactions where the density dependence of the interac-
tion is phenomenological at the outset, and the spin-orbit force has to be build in by

hand and its strength adjusted. A discussion of these aspects and of some merits and

shortcomings of the relativistic mean field model may be found, e.g., in [HoSlb, Re86,

Se86, Ri88, Re89, Ga90a].
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4.2 Calculations of Finite Nuclei

The question remains of the comparison between semiclassical and quantal results
in the relativistic framework when the fields and the densities are self-consistently
generated. It is the purpose of this section to investigate and discuss this point. In the
non-relativistic case, such comparisons have underlined the reliability of semiclassical
methods [Br85, CeQOa). We shall present here binding energies, sizes and density

distributions of finite nuclei calculated in the semiclassical approximations of order H°
and 7i2, as well as the corresponding quantal Hartree solutions.

In order to establish useful comparisons, we have considered two extensions of the
Walecka Lagrangian reproducing sufficiently well the bulk nuclear matter data. The
first one is the non-linear a-u; model proposed by Boguta and Bodmer. Among several
possibilities, we have chosen two recent sets of parameters [Sh91b], denoted SRK3M5
and SRK3M7, for their ability to fit accepted nuclear matter data. They differ through
their effective mass and surface properties. To complement the study, we also perform
calculations with other two sets of parameters. Following [Ra90], we call them HII
[Bo82] and HIV [G187]. As an alternative, the derivative coupling model of Zimany
and Moszkowsld [Zi90] (see also [Ba91, Fe91, Ko91, Sh91a]) has been considered. For
both models, the results of the semiclassical approach will be compared with those
obtained in the Hartree approximation.

4.2.1 Lagrangians and energy densities

The notation closely follows that of Serot and Walecka [Se86], and will not be
explicited here. The extended Walecka Lagrangian advocated by Boguta and Bodmer
(BB) [Bo77b], which will be treated in mean field approximation, can be written as

where

¿mv
2^y, - (4.2)

with
F^ = d^V» - dvV». (4.3)
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The effective mass m* is related to the scalar field $ by

m* = m — gs<j> . (4-4)

In accordance with the one boson exchange (OBE) description of the NN interaction,

this Lagrangian incorporates the nucleoide degrees of freedom through the baryonic

field i/> and the mesonic contributions by means of an isoscalar-vector u> boson (the

field Vp) and an isoscalar-scalar cr boson (the field <^). The existence of such a cr

boson, with a mass in the area of 400-700 MeV, is not supported by any experimen-

tal evidence. However, this (fictious) neutral scalar meson is crucial to provide the

intermediate-range attraction of the nuclear force in OBE potentials, and it is inter-

preted as simulating in part two-pion exchange contributions to the NN force [Ma89].

A TT-meson field is absent in the Lagrangian (4.2) because it does not contribute in a

mean field description of bulk properties of the ground state of nuclei [HoSlb, Re86,

Se86].

The Zimanyi-Moszkowski (ZM) Lagrangian [Zi90] is simply £ZM = £, but in this

case the non-linearity is contained in the connection between the effective mass and

the scalar field, which reads

m* = - - 2L-_. (4.5)
l + <7s¿/m V '

Thus it requires no extra terms, and consequently this Lagrangian is dealing with less

free parameters. At low density, the two kinds of non-linearity are of the same nature,

and they would be equivalent up to first order in <j> [Zi90]. They are clearly different
as <f> gets large.

The two above Lagrangians are merely dealing with symmetric matter. In order

to describe actual nuclei, apart from the neutral cr and u; mesons, it is necessary to

introduce proton-neutron asymmetry effects. This is done by adding the /a-meson

contribution and the electromagnetic field, namely

(4.6)

where

GV» = d^by - dyb^ , Hpv = dpAt, - d^A^ . (4.7)
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Note that b^ is a four vector in Minkowski space and a three vector in isospin space. As

mentioned, this is a phenomenological effective model. The u- meson mass ms, the cou-

pling constants ¿rs, gv and gp, b and c are the free parameters of the Lagrangian. They

are usually adjusted to reproduce the properties of nuclear matter and finite nuclei.

Prom this standpoint, some features and contributions not included in the Lagrangian

(4.6), or suppressed later by the mean field approximation, are indirectly built into the

normalized values of the parameters of the model. These effective parameters turn out
to be essentially density-independent, at least over a moderate range of densities.

The energy density is derived in a standard fashion from the Lagrangian. The

quantum structure is expressed as usual by expanding the nucleón field on a single

particle basis y>a. In the static Hartree approximation it yields

£§* = £H + l^l + \c<& (4.8)

for the BB Lagrangian. The first term in the r.h.s. of (4.8) is given by

£H = X>1 H« • V + /3m* - m + gyV0 + -gpr3b0 + e-(l + T3)A0] <pa
a ¿ ¿

+ £ f , (4.9)

with m" = m — gs<j)0 and

5 = \ [WO2 + m.V2] - \ [(Wo)2 + mSV*]

- \ [(V&o)2 + mp
aftg] - i(V¿0)

2. (4.10)
î

Similarly, we have

£Z
HM = £" (4.11)

for the ZM model, now with m* = m(l + g^0/m)~l.

In the foregoing Hartree energy densities the meson fields have been approximated

by their ground-state expectation values. As in the majority of current applications,

we restrict the index a to run only over occupied shell model orbitals of the positive

spectrum and neglect any contribution from antiparticles (no sea approximation). No

spatial components of the vector meson and photon fields appear due to time reversal
symmetry, as in this case there are no currents in the nucleus and only the time-like

components survive. Charge conservation guarantees that only the third component
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(in isospin space) of the isovector current bo does not vanish. As pointed out in [Ho88a,

Ga90a, Sp92], consideration of the full four-component structure of the vector meson

fields may play an important role in all cases where currents are involved, for instance,

in describing magnetic moments as well as in rotating nuclei.

The corresponding semiclassical energy densities have a very similar structure, ex-

cept that the nucleón variables are now the proton and neutron densities. One evaluates

the TFft2 energy density corresponding to (4.9) from Eq. (2.80):

£sc = ¿o + £2 + gvVQp + -gpbQ(pp - pn) + eA0pp + £{, (4.12)

with
1 f ÍV, J. Cr,l

mp (4.13)
9

and

87T2 m*

= E [*!«(**„ m*)( Vpg)
2 + B,q(kFq, m*)( VPq • Vm*)

(4.14)

The functions Biq are, cf. Eq. (2.80),

(4.15)

(4.17)

The subscript q denotes the charge state of each nucleón, p = pp + pn is the particle
density, kpq = (3K2pg)

1/3 is the Fermi momentum and £pq = (fcp,2 + m*2)1^2.

The semiclassical energy density for the two considered models is given by

CSC CSC i L A3 i .14 / A 1Q\
CDD — t T ~OÇ>O -7- ~~C<f>o I4.J.Ö)

and
CSC _ esc (A IQ)
&J5M — £• • V^>ia/
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4.2.2 Variational equations

In the semiclassical approach, the ground-state densities and the meson and photon
fields are obtained by solving the Euler-Lagrange equations ensuing from the varia-

tional principle applied to (4.18) or (4.19):

1

£pg-m + gvV0 + eA0 + -gpb0 -

T-A, = 0, ,4.20)

(4.21)

-pn), (4.22)

(A-m2)V0 = -gvp, (4.23)

(A-m2)¿0 = -«7.P.Í + Í, (4.24)

where the semiclassical scalar density is

Vm*) + f(Vm')2 . (4.25)

The quantities £ and 8 are defined as f = 1, 8 = bfâ + cfâ for the BB Lagrangian,

and £ = (m*/m)2, S = 0 for the ZM Lagrangian. The explicit evaluation of pa from
(4.25) leads to the expression already given in (2.79). As they have been obtained
in two distinct ways, this gives further confidence on the correctness of the derived

semiclassical equations.

The classical variational principle applied to the Lagrangian (4.6), in mean field
static Hartree approximation, gives the equation of motion for the quanta! fields, i.e.,

the Dirac equation for the nucléons

[-ta- V + ßm* -m + gvVo + -^r360 + e-(l + T3)A0} (pa = eQ <f« (4.26)
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and the Klein-Gordon equations for the mesons, which are the same as the set

(4.21)-(4.24) with the source terms

Let us now come back to a point which was put forward at the end of Subsec-
tion 2.4.2, when we were concerned with the choice of the inversion scheme to obtain

the relâtivisic density functional from the semiclassical Wigner-Kirkwood expansions.

In contradistinction to the case of external potentials, the scalar field <j>0 (and the ef-
fective mass m*) is here self-consistently determined, receiving an explicit contribution

of order ft2 through pa in Eq. (4.24). Therefore, one might think that m* appearing in

SQ should be replaced by its expansion in a pure zero order term mj and a correction

of order A2, 6m* = m* — mj + ö(ft4), as discussed in [Sp92]. If one wants to follow
this route, one should proceed in a similar way as the one used in Subsection 2.4.2 to

obtain the correction 8k to the local Fermi momentum. Expanding the scalar density

around fc0 and m^

(4.28)

\ 0

and imposing

(4.29)

Eq. (4.28) leads to

, (4-30)

finally replacing k0 by % (we drop the subscript q to ease the notation). Then, the

semiclassical energy density (4.12) would have an extra contribution:

(4.31)
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The variational equations obtained from this new functional are formally the same
as the set (4.20)-(4.24) replacing m* by mj and pa by /^.oi^F»"^), except for Eq. (4.20)

which in his l.h.s. has a new term

(dps(kF,m*0)\ 7T2

—a*;— p5 • ( 3 >\ OK? ) ftp

Proceeding in this manner, we have the following additional relation which allows us

to obtain m^ from <f>0:

„ , , „ . fm-^o (BB).
ro0 + om = m = < , . . . , , , . (4.33)

.° Imil + ̂ o/m)-1 (ZM). V '

However, it is easy to realize that this decomposition of m* is not compulsory to get
the self-consistent densities, meson fields and energies up to order ft2: the same Euler-

Lagrange equations are obtained expanding around mj in the former set (4.20)-(4.24)

to order ft2. Thus, the solutions of the original set of variational equations (4.20)-(4.24)
implicitly contain the correction 8m* and, for all practical purposes, are the same as

those which would be obtained starting from the functional (4.31). In addition, the

technical problem of solving the variational equations simplifies if one does not have

to go through Eq. (4.33) to obtain m¡$ at each iteration step.

4.2.3 Numerical solution

This subsection is devoted to questions concerning the numerical treatment of the

semidassical variational equations of second order*. The field equations (4.21)-(4.24)
together with the nucleón equation (4.20) constitute a coupled set of equations which

ought to be solved simultaneously. The non-linear gradient terms in p and m* make the

numerical approach rather delicate. These difficulties notwithstanding, the task much

resembles aon-relativistic ETF calculations with Skyrme forces and similar iterative
schemes can be employed.

To solve the nucleón equation (4.20) we rely on the so-called imaginary time-step
method (ITS) [Da80, Le84, Da85a]. It is inspired from the way time-dependent HP

equations are solved [Bo76b, Da81], and it is currently used in static non-relativistic

'We shall not present here further details about the numerical handling of the relativistic quantal
Hartree equations, as this has been amply discussed in the literature (see e.g. [HoSlb, Se86, Ee86,
Re89, Ga90]).
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HF and ETF calculations. The time-dependent equation

i~(p = h^ (4.34)or ^ v '

is formally solved as

<p(At) = exp (-¿Ath) 9(0). " " ~(4.35)~

If the time step At is replaced by an imaginary quantity —¿Ar, the repeated action of

the exponential

»(n) (4.36)

followed by a normalization of 9?, causes the wave function to converge to the lowest

eigenstate of h [Da80].

In the semiclassical problem we recast Eq. (4.20), 6£sc/Spq ~ A,, into the form

by introducing $q = pj/2 and

Wq = ̂ - + ~^-, (4.38)
Opg 2m $g

where £ is an arbitrary constant. This is an eigenvalue equation of Schrödinger type

for the ETF single-particle hamiltonian /IETF = —í A/2m + Wq which may be solved

by application of the ITS method [Le84, Da85aj.

The differential operators, densities and fields are discretized on a finite mesh in

coordinate space. In practice one works with a [1,1] Fade approximation to the expo-
nential. The algorithm then reads

("+l/2)\ ö(n)
ETF J ®q >

where h^p is calculated in an intermediate step between n and n -f 1 (see [Bo76b,

Da80, Da81]). The Coulomb potential AQ and the Yukawa potentials 6o, Va and <^0

required at each iteration are evaluated by solving, respectively, the discrete Poisson

and Helmholtz equations using Gaussian elimination [Bo76b, Da81].
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The whole procedure can thus be described as follows:

(i) Start from Fermi-shaped densities pq and ps.

(ii) Arrived at the nth-iteration stage, determine the scalar meson potential <^n+1^

by Gaussian elimination of the discretized radial equation, cf. (4.24),

= r {-ga Ps[pï\^} ̂  + ̂ } - (4.40)

The new index n' indicates that between the steps n and n + 1, Eq. (4.40) has to be

iterated until consistency in <^n"1"1^ is achieved. The presence of second order derivatives
of <j)0 in pa can make this condition difficult to fulfil (this point will be discussed below).

Note that in (4.40) the scalar density pa is evolved without changing p^. The boundary

conditions r<j>0 = 0 at the origin and at the infinite mesh point are imposed. We have

found that the results are quite alike if instead, vanishing slope of <^0 is chosen at the

mesh boundaries.

The potentials AQ + , ÒQ and VQ aie generated by similar techniques. Now
the process only requires one elimination in Eqs. (4.21)-(4.23) because the source

terms do not contain the fields. Of course, the appropiate boundary condition for

the Coulomb potential at the infinity is 4TrrA0 = Ze, where Z is the proton number.

(iii) With the new potentials compute AEXF and obtain $(n+1) according to (4.39),

with $g subject to the boundary condition that d$q/dr vanishes at the origin and at

the mesh edge. Normalize p^+1^ to the particle number. Check numerical convergence.

The steps (ii) and (iii) axe then repeated until the desired accuracy is attained.

The calculations have been performed on a mesh with a spacing Ar = 0.1 fm. The

r-derivatives have been discretized using seven-point formulae although, in practice,

simpler formulae suffice. The parameters £ and AT are not independent and influ-

ence critically the rate of convergence. Typical values are £ ~ 2. 10s MeV2 fm2 and
Ar ~ 2.5 10~23 s. The code runs until the condition

< 10~6 (4 411
- ( '

is satisfied (the total energy converges much faster than the densitites).

In the ITS method the chemical potential A, is issued as a by-product and can be

used as an additional test of the degree of convergence achieved. We have found that
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88*c/6pq is independent of the position to a few parts in 107 when it is computed

from the converged densities. Alternatively, the chemical potential can be obtained

from the total energy of neighbouring nuclei as Xq = AS/AW,. We have checked that

both methods yield chemical potentials that agree better than 0.1%. Altogether, these

controls leave little room for numerical error.

4.2.4 Results and discussion

The sets of coupling constants, masses and nuclear matter properties corresponding

to the forces SRK3M5, SRK3M7, ZM, HII and HIV are coUected in Table 4.1. When the

parametrization includes a p meson (SRK3M5, SRK3M7 and ZM), we have adjusted

the coupling constant gp to approximately reproduce the experimental binding energy

of 208Pb in the Hartree approximation. To compare the energies calculated in the

present work with the experimental values, one has to add to them the centre-of-mass

correction —E\¿n/A, where Ej^ is the corresponding total kinetic energy, as it is usually

done in non-relativistic calculations [Be75, F175].

The different approximations will be labelled in the following way. Semidassical

results comprise two cases: ft°-order Thomas-Fermi calculations (TF^°), and solutions

which include 7i2 corrections (TF7Í2). The quanta! results have beeen obtained from

self-consistent Hartree calculations*.

In the non-relativistic case, a simple way of incorporating shell effects into the

semiclassical calculation consists in adding them perturbatively, i.e., the Hartree-Fock

equations are iterated only once employing the self-consistent TFft2 potentials and then

use is made of the wave-functions so obtained to calculate the densities and energies.

The results of this so-called expectation value method [Bo76a, Br85] are found to

be in good agreement with the quanta! ones for spherical closed shell nuclei. The

same technique can be applied to the relativistic case: the Dirac-Hartree equations for

the nucléons are solved only once with the self-consistent relativistic TFTi2 fields and

the resulting quanta! densities are used to evaluate the quanta! fields by solving the

corresponding Klein-Gordon equations. Finally, the energy is obtained by means of

these densities and fields. We will denote this approach by H*.

As indicated in the preceding subsection, the semiclassical densities and fields are

obtained from the set of coupled differential equations (4.20)-(4.24) using the imagi-

*The author feels most gratified towards Saturnino Marcos for supplying us with the Hartree results
which will be presented in this subsection.
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Table 4.1. Parameters and nuclear matter properties (energy per particle E/A, particle

density po, incompressibility K, volume symmetry energy asym = kp/(QEp) + gppo/(8m^) and

effective mass m*¡m at saturation) of the five forces considered in this subsection. We have

introduced the quantities C;2 = </¿2(m/m,-)2, with i = s, v, p, b = b/(mg¿) and c = c/g*.

The masses are given in MeV.

c,2
c-2

C1,2

ò x l O 3

c x l O 3

m

ms

mv

mp

A/A (MeV)

Po (un-3)

« (MeV)

asym (MeV)

m* ¡m

SRK3M5

380.792

264.687

26.645

1.618

-2.297

939

500

783

763

-16.0

0.150

300

23.5

0.55

SRK3M7

233.239

132.497

85.645

3.292

3.978

939

500

783

763

-16.0

0.150

300

28.7

0.75

ZM

169.200

59.100

11.395

938

420

783

763

-16.0

0.160

225

15.7

0.85

HII

246.068

156.327

•

1.8

0.287

939

550

783

-15.85

0.170

345

17.4

0.68

HIV

218.231

102.615

8.95

3.689

939

550

783

-15.97

0.145

240

13.6

0.80

nary time-step method. A word of caution has to be said about the convergence of the

numerical solution of the inhomogeneous Klein-Gordon equation obeyed by the semi-

classical scalar field, Eq. (4.24). When the ft2-order corrections are included, we have
not been able in general to find stable solutions for parametrizations which have an

effective mass at saturation below m*/m « 0.60. Rather than a failure of the numer-

ical method we have employed, we consider it an intrinsic instability of the equation
itself. We have checked that the term .^(¿p,, ra*)Am* arising in the scalar density,

Eq. (4.25), originates the numerical instability. This term comes from the variation

with respect to (f>0 of the correction B3(J(fcF(J,m*)(Vm*)2 which appears in the energy
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density £2, Eq. (4.14).

To bypass this problem, which we encounter with the parametrization SRK3M5
(m*/m = 0.55), we have splitted the term B3q in (4.14) by retaining only a fraction
/ of it in the self-consistent calculation, with / < 1. The total energy is computed

adding perturbatively the remaining (1 — }}Bzq part which has been turned off in the

minimization procedure. We have found that the Euler-Lagrange equations can be

solved if one uses / ~ 0.5 and that the perturbative correction is only a few per cent

of the total energy in the worst case (40Ca, parameter set SRK3M5). In fact, based

upon experience, we have come to the conclusion that any force with m*/m < 0.60

whose numerical solution of order ft2 is not convergent, can be made stable if the value

of the scalar mass ms is conveniently reduced (keeping the ratio <j£/m2 fixed so as not

to change the nuclear matter properties). The converse operation is also true: well-
behaved TF/i2 solutions turn unstable if ms is increased. This is no wonder since a

change in ms means a change in g,, and thus the strength of the source term in the

Klein-Gordon equation for the scalar field is correspondingly decreased or increased.

The total energies, proton and neutron r.m.s. radii calculated in the TF7i°, TFÄ2,
Hartree and H* approximations with the forces SRK3M5, SRK3M7 and ZM are dis-

played in Tables 4.2 and 4.3 for 40Ca and 208Pb, respectively. In Tables 4.4 and 4.5
results obtained with the forces HII and HIV are shown for some spherical nuclei. From

these tables it is seen that the TFft° solution is less bound than the Hartree one for

small values of the effective mass, but becomes more bound than Hartree and TFft2

for large values of m*. The TFft2 approximation yields more binding than the Hartree

Table 4.2. Total energy (in MeV), proton and neutron r.m.s. radii (in fm) of 40Ca calculated
with the different approaches studied in this paper (the label H corresponds to the Hartree

approximation). The listed energies have not been corrected for the centre-of-mass motion.

SRK3M5

TFft0

TFft2

H

H*

E

-292

-318

-304

-304

.3

.8

.9

.8

rn

3.40

3.28

3.35

3.33

rP
3.46

3.33

3.42

3.40

E

-355

-348

-337

-336

SRK3M7

.2

.1

.0

.6

rn

3.19

3.17

3.25

3.24

rP
3.22

3.21

3.30

3.26

E

-345.0

-321.8

-317.0

-316.9

ZM

r„

3.17

3.20

3.27

3.25

rP

3.23

3.26

3.33

3.33
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Table 4.3. Same as Table 4.2 for 208Pb.

SRK3M5

TFa°

TFft2

H

H*

E

-1563

-1641

-1620

-1615

.8

.2

.1

.5

r*

5.76

5.67

5.65

5.71

rP
5.60

5.51

5.47

5.55

SRK3M7

E

-1697

-1679

-1620

-1617

.3

.8

.1

.2

rn

5.60

5.59

5.63

5.64

rP
5.47

5.45

5.44

5.47

ZM

E

-1739.0

-1677.1

-1619.1

-1618.0

rn

5.48

5.49

5.53

5.53

rP
5.46

5.46

5.49

5.50

approximation, i.e., when the relativistic ß2 corrections are added the TFft2 energies al-
ways lie below the Hartree ones. In general, the semiclassical radii are smaller or larger

than the corresponding Hartree values depending on whether the binding energies are,

respectively, larger or smaller than the Hartree ones.

The discrepancy between TFft° and Hartree results varies almost linearly as a func-

tion of the effective mass, both energies would be roughly the same for m*/m « 0.65.

The situation is illustrated in Fig. 4.1, where the difference of the semiclassical ener-

gies to the Hartree ones (Eac — £/H) has been plotted as a function of m*/m for the ft0

and tí2 approximations. Results are presented for the forces SRK3M5, SRK3M7, ZM

Table 4.4. Total energies E (in MeV), neutron r.m.s. radii rn (in fm) and proton r.m.s. radii
rp (in fm) obtained using the parameter set HII. The listed energies have not been corrected
for the centre-of-mass motion. ,

Hartree

40Ca
48Ca
90Zr
116Sn
140Ce
208pb

E

-325.

-405.

-752.

-952.

-1160

-1629

9

6

4

6

.3

.4

rn

3.10

3.35

4.03

4.38

4.66

5.31

rp

3.17

3.22

4.00

4.35

4.61

5.24

TFfc2 TFft°

E

-342.6

-430.6

-793.4

-1008.2

-1203.9

-1696.5

r«

3.00

3.25

3.96

4.31

4.60

5.27

rP
3.05

3.16

3.94

4.29

4.57

5.23

E

-332.

-418.

-774.

-985.

-1178

-1664

0

8

1

5

.7

.7

rn

3.06

3.31

4.01

4.36

4.65

5.31

rP
3.11

3.22

4.00

4.34

4.61

5.27
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Table 4.5. Same as Table 4.4 for thé parametrization HIV.

Hartree

40Ca
48Ca
90Zr

116Sn
140Ce
208pb

E

-392.

-476.

-868.

-1099

-1334

-1869

3

5

6

.3

.0

.9

rn

3.20

3.48

4.21

4.56

4.87

5.56

rP

3.27

3.36

4.18

4.58

4.87

5.55

E

-411.

-511.

-923.

-1169

-1394

-1970

TFft2

7

0

5

.3

.4

.7

rn

3.13

3.38

4.14

4.52

4.83

5.54

rP

3.18

3.32

4.16

4.53

4.84

5.56

TFTi0

E

-428.3

-529.4

-950.7

-1201.2

-1430.2

-2016.9

rn

3.14

3.38

4.15

4.53

4.84

5.55

rP

3.19

3.34

4.17

4.55

4.85

5.58

and HII. Carrying out calculations with parametrizations which have an incompress-

ibility K = 400 MeV and m*/m = 0.55 or 0.75 [Sh91b], we have checked that this

behaviour as a function of m*/m is not significantly affected by the value of the nu-

clear incompressibility.

If we compare the TFA° and TFÄ2 results with the Hartree ones, we can see that

in practically all cases the second order corrections reduce the differences between

TFTi0 and Hartree energies in a sensitive way. For the radii, the improvement is not

so obvious nor systematic. Had we considered a force with m*/m » 0.65, the

results would have been in closer agreement with the Hartree values than the

ones. For instance, this happens with the parametrization HII (see Fig. 4.1) which has

m*/m = 0.68. It does not mean the TFft0 approximation to be better than the TFft2

one. Indeed, semiclassical and quanta! calculations must differ m the shell energy. This

is a subtle quantity that comes from the difference of two large numbers, and it is not

easy to evaluate it correctly. Actually, the shell correction is worse estimated in the

TFft° approach than in the TFft2 one because the semiclassical expansion in powers

of A is less converged in the former than in the latter. We thus consider the agreement

between TFft° and Hartree results around m*/m = 0.65 as fortuitous.

To some extent, the above comments also apply to the phenomenology found in non-

relativistic semiclassical calculations with Skyrme forces. That is, the non-relativistic

TFft2 energies lie below the HF ones, and the position of TFft0 relative to TFft2 and HF

strongly depends on the effective mass of the force. We have performed calculations

for several parametrizations of the Skyrme force. For SV, SIV and SII [Be75], which
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-125
0.55 0.65 0.75

m*/m
0.85

Figure 4.1. Difference between the semiclassical and Hartree energies (E30 - £H) as

a function of m*/m, in the TF/i0 and TFfi2 approximations, for 208Pb (circles) and 40Ca

(triangles). The lines connecting the symbols are only to guide the eye.

have m*/m = 0.38,0.47 and 0.58 respectively, we have found that the TFft° binding

energies are smaller than the HF ones. As the effective mass increases, TFft° yields

more binding, with binding energies which lie between the HF and TFÄ2 ones for SkM*

(m"/m = 0.79) [Ba82, Br85] and are larger than the TFft2 ones when the effective mass

is close to unity (SVI [Be75] or T6 [Ra82]). Results of the energies and radii obtained

with the parametrizations SII, SkM* and SVI for 40Ca and 208Pb are listed, respectively,
in Tables 4.6 and 4.7.

Tables 4.2 and 4.3 also show that the perturbative treatment of the shell effects

(H*) starting from the semiclassical TFft2 fields is a good approximation to the full



60 SemicJassicaJ Description of Nuclear Systems in RMF Models

Table 4.6. Total energy (in MeV), proton and neutron r.m.s. radii (in fm) of 40Ca calculated

with the non-relativistic Skyrme forces SII (m*/m = 0.58), SkM* (m*/m = 0.79) and SVI

(m*/m = 0.95). The listed energies have not been corrected for the centre-of-mass motion.

E

TFft° -310.5

TFft2 -342.9

H ' -326.4

Sil

rn

3.38

3.28

3.37

SkM*
rP

3

3

3

.41

.30

.41

E

-341

-348

-325

.9

.7

.1

rn

3.35

3.25

3.40

rP
3.38

3.29

3.45

E

-364

-354

-324

SVI

.5

.7

.7

ra

3.28

3.26

3.38

rP
3.31

3.29

3.43

self-consistent quanta! calculation, as it happens in the non-relativistic context [Bo76a],
The evaluation of H* from the TFft° fields leads, in general, to an agreement in the

energies only slightly poorer than when the input are the TFft2 fields, the major dis-
cordances (1%) have been found for SRK3M5. However, starting from the TFfi° fields,
the results are considerably worse for the radii.

To ascertain the importance of the different terms of the semiclassical functional in
the TF&2 case, it is useful to discuss in some detail the different contributions to the
total energy. Tables 4.8 and 4.9 show, for 40Ca and 208Pb respectively, the contributions
EQ and EI to the energy. These terms correspond to the integration over the space
of the energy densities £Q and £3, E<ls- (4.13) and (4.14), which are obtained from
the solutions of the A2-order Euler-Lagrange equations (4.20)-(4.24). The same tables
collect the corresponding contributions T0 and T2 to the kinetic energy. It is seen
that the importance of the gradient corrections to the kinetic energy (Tj) and to some
parts of EI decreases when m* increases, since the gradients of m* are more important

Table 4.7. Same as Table 4.6 for 208Pb.

SII

TFa°
TFft2

H

E

-1534

-1626

-1575

.2

.0

.9

rn

5.72

5.64

5.69

rP
5.55

5.50

5.50

E

-1629

-1652

-1618

SkM*

.4

.1

.0

rn

5.65

5.58

5.63

rP
5.52

5.45

5.46

SVI

E

-1701.6

-1679.4

-1618.8

rn

5.60

5.59

5.65

rP
5.55

5.53

5.54
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Table 4.8. Contributions (in MeV) EQ and E-¿ to the total energy of 40Ca, as well as their

partial decomposition. Also displayed are the corresponding contributions to the kinetic

energy (T0) T2).

E0

Ei
E2[(V¡

£2[(Vy

£2[(Vi

TQ

T,

SRK3M5

-10807.3

-36.5

o)2] 32.6

o-Vm*)] —46.3

7i*)2] -22.8

430.4

87.8

SRK3M7

-6557.6

2.2

38.5

-29.9

-6.4

655.1

48.1

ZM

-3361.3

19.2

32.9

-12.5

-1.2

672.9

33.4

for small effective masses. It is interesting to note that around m*/m = 0.75 the E%
contribution vanishes. This is due to the fact that in E% the corrections involving Vm*
have the opposite sign that the ( Vp)2 correction. Again, this behaviour is not sensitive

to the value of the incompressibility. A similar situation is met in non-relativistic

calculations with Skyrme forces: the ft corrections, which include effective mass and
spin-orbit contributions, are negative for small and medium m*, becoming positive for

rn'/m > 0.90 (forces SVI and T6 for example).

Table 4.9. Same as Table 4.8 for 208Pb.

Eo

¡h

E2[(Vp)2}

£2[(Vp-Vi

£2[(Vm*)2

To
r

SRK3M5

-61956.7

-98.8

87.7

m*)] -126.2

] -60.3

2386.1

230.9

SRK3M7

-35773.2

5.4

101.9

-79.6

-16.9

3570.9

127.4

ZM

-19284.9

51.1

89.7

-35.2

-3.4

3813.9

91.3
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Table 4.10. Kinetic, Coulomb and potential energies coming from the exchange of <r, u»

and p mesons for 40Ca obtained with the different approaches discussed in the text (the label

H corresponds to the Hartree approximation). The sum of the figures in each column gives

the corresponding total energies listed in Table 4.2. All quantities are in MeV.

SRK3M5 SRK3M7 ZM

TFft2 H H* TFfi° TFft2 H H* TFh° TFft2 H H*

465.8 518.2 460.0 471.0 652.8 703.2 652.9 665.3 688.1 706.3 673.7 679.8

-Seoul • 77.9 81.1 79.7 80.1 83.4 84.0 82.4 82.9 83.3 82.8 81.5 81.8

Ef x 10-2 -51.3 -57.6 -55.3 -56.0 -37.4 -38.5 -36.5 -37.1 -23.0 -22.7 -22.0 -22.2

EU x IQ"2 42.9 48.4 46.8 47.4 26.5 27.2 25.7 26.2 11.8 11.6 11.3 11.4

Ep x 102 5.1 4.2 4.7 4.4 8.4 7.8 9.5 9.0 3.4 3.2 3.7 3.4

The way the energy is distributed among the various contributions is displayed in

Tables 4.10 and 4.11 for 40Ca and 208Pb, respectively. The dominant contributions are

those of the a and u mesons, although there is a strong cancellation between them.

The contribution of the p meson plays only a minor role in 40Ca but it is not negligible

for 208Pb, all its semiclassical estimates lying close to the quanta! result.

It is worth noting that the good agreement in the total energy between the H* and

Hartree approximations is not achieved term by term; it results from compensatory

effects and is better for parametrizations having larger m*. On the other hand, the

Table 4.11. Same as Table 4.10 for 208Pb. The sum of the figures in each column gives the

corresponding total energies listed in Table 4.3.

SRK3M5 SRK3M7 ZM_

TFft2 H H* TFÄ° TFft2 H E' TFÄ° TFÄ2 H H*

ßidn 2491. 2617. 2479. 2591. 3567. 3698. 3617. 3628. 3855. 3905. 3855. 3859.

Seoul 805.8 818.8 826.4 813.2 824.3 827.7 829.4 824.8 825.7 826.1 823.8 821.6

Ev x 10~3 -30.9 -32.7 -33.0 -32.0 -20.7 -21.0 -20.4 -20.4 -13.1 -13.0 -12.8 -12.8

Eu x 10~3 26.0 27.6 28.1 27.0 14.5 14.7 14.3 14.2 6.7 6.6 6.5 6.5

E 24.5 25.8 25.5 25.4 89.0 88.4 82.4 84.7 13.7 13.4 13.1 13.2
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Figure 4.2. Proton density of 208Pb obtained with the parametrization SRK3M7 in the

Hartree (solid line), H* (long-dashed), TFft2 (short-dashed) and TF/i° (dotted) approxima-

tions.

differences between Hartree and the semidassical methods (TFA° and TFÄ2) in the

partial contributions to the energy are rather large, and also compensatory effects

appear in the final result. The situation is similar in the non-relativistic case if we

compare the different contributions to the total energy evaluated semiclassically with

the corresponding HF contributions (cf. Table 10 of [CeQOa]). Indeed, because of the

shell effects present in the Hartree or HF results, there is no reason for these partial

quantities to be the same in the quanta! and semiclassical approaches.

As a representative example, the proton density of 208Pb calculated with SRK3M7

in the four approaches considered has been plotted in Fig. 4.2. The results obtained

for neutron and scalar densities exhibit similar trends. We notice the good agreement

between the Hartree and the H* densities. The shell effects are rather well incorporated

by H* in the internal region of the densities, which become almost identical in both

approximations in the surface and tail.

To complement this picture, Figs. 4.3 and 4.4 show the radial distribution of the

proton densities of 40Ca and 208Pb, respectively, calculated in the Hartree and TFÄ2
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0.00
6

Figure 4.3. Proton density of 40Ca, calculated with the forces SRK3M5, SRK3M7 and

ZM, in the Hartree (H) and TFft2 approximations.

approximations with the forces SRK3M5, SRK3M7 and ZM. Furthermore, the proton,

neutron and scalar densities of 208Pb obtained in the Hartree, TFft° and TFft2 approx-
imations using the parametrization HII are displayed in Fig. 4.5. The semiclassical

and TFfi2 density distributions do not present oscillations due to the absence
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Figure 4.4. Same as Fig. 4.3 for 208Pb.

of shell effects but they average the Hartree results. In the bulk the TFft0 and TFTi2

densities are very similar. However, as expected, the gradient corrections incorporated
by the TFft2 functionals improve the TFH° densities at the surface. In this region, the
TFft2 densities come closer to the Hartree ones and show a notably better decay than
the TFH° densities, despite that the fall-off is still too steep with respect to the Hartree
solutions. This is illustrated in Fig. 4.6, which shows a semi-logarithmic plot of the
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Figure 4.5. Proton, neutron and scalar densities of 208Pb obtained with the force HII in

the Hartree (H), TPÄ2 and TFft° approximations.

proton density of 208Pb in the outer surface region for SRK3M7.

The comparison between Hartree and TFft2 results shows that the situation is quite

similar to the one found in the non-relativistic case, see for example Fig. 1 of [CeQOa].

Fig. 4.7 is the equivalent of Fig. 4.2 for the proton kinetic energy density Tp; similar

comments to those made for the proton density in Fig. 4.2 apply here.



§4.2 Calculations of Finite Nuclei 67

Pb
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w

Figure 4.6. Proton density of 208Pb, calculated with SRK3M7, in the outer surface region

on a semi-logarithmic scale.

The scalar meson potential Vy = m — m* and the vector meson potential Vu = gvVo

calculated in 208Pb are displayed in Fig. 4.8 for the forces SRK3M5, SRK3M7 and ZM

in the Hartree and TFÄ2 approaches. Notice the change of scale in the vertical axis

for each parametrization. Inside the nucleus, the ratio between the vector potentials of

any two of these parametrizations is, to a good approximation, equal to the ratio of the

corresponding coupling constants C%. For the scalar potential, this is not so because

of the non-linear couplings in Eq. (4.24).

In Fig. 4.9 we show the results obtained in lead with HII for the scalar and vector

meson potentials Va and Vu in the TFft°, TFft2 and Hartree approximations. The
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Figure 4.7. Same as Fig. 4.2 for the proton kinetic energy density,

radial dependence of the quantity

or..«. = -
2m2r dr

(4.42)

which is most sensitive to the nuclear surface, is also shown.
A Foldy-Wouthuysen reduction of the Dirac equation for nucléons moving in the

field generated by Vu and Vff, transforms it into a Schrödinger equation whose central
potential involves Vu — Vff and relates aa.0. with the strength of the corresponding
spin-orbit force [Se86] (i.e., the non-relativistic single-particle effective spin-orbit force
depends on the sum K,-f-T£, whereas the central term depends on the difference Vu—Vg).
The TFÄ2 calculation clearly overestimates the maximum value of as.0. (Fig. 4.9), but
the position of the peak is closer to the Hartree result than with TFfi0.

Figs. 4.8 and 4.9 show that in the bulk, the central potential is around -60 MeV,
deeper for small m*, shallower for large m" in accordance with the optical model

phenomenology [Bo69]. The changes are far more drastic for the spin-orbit potential,
which decreases by a factor of around 3 from SRK3M5 to ZM. This leads to a small
splitting in the single particle levels for forces having an effective mass of the order
of ~ 0.80 (see also [Ba91, Ko91]), a value compatible with the one extracted from
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200 r V. \^ 6

Figure 4.8. Scalar (V, = m - m*) and vector (Vw = gvV0) potentials obtained for 208Pb

with the parametrizations SRK3M5, SRK3M7 and ZM. SoHd line, Hartree approximation;
dashed line, TFft2 approximation.

optical model analyses [Jo87]. It seems to be quite a general feature of all the a-w

Lagrangians that the experimental splitting can only be obtained with rather small

effective masses, m*/m < 0.60, as we stated at the beginning of this chapter.

Finally, let us summarize the two apparent merits which the TF&2 approximation
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Figure 4.9. Radial dependence of the scalar and vector meson potentials (V<, = m — m*,

Vu = gvV0) and of the quantity as.0., Eq. (4.42), calculated in 208Pb with HII.

has over the simple TFft0 one. On the one hand, it allows to obtain fully variational

densities that go exponentially to zero. On the other hand, it takes into account non-
local spin-orbit and effective mass contributions up to order ft , yielding a more reliable

average value.



§ 4.3 Liquid Drop Model Coefficients 71

4.3 Liquid Drop Model Coefficients

The surface energy in relativistic er—u; models has been estimated by fitting a mass

formula to finite nuclei results [Bo77a, Se78, Se79] or calculated from semi-infinite

nuclear matter in the Hartree [Bo77b, Ho89] and TFfi° [Bo77b, St91, Sh91a, Sh91b]

approximations. To our knowledge, no attempt has been made to calculate the curva-

ture coefficient using a relativistic model, and thus merits to be undertaken.

In this section, we shall calculate the semiclassical liquid drop model coefficients

related to the surface and curvature energies for some parametrizations of the a—u>

model. We shall use the forces HII and HIV, and also the parameter sets given in

Table 4.12: PI (notation as in [Ho89]) which was fitted to reproduce ground-state

properties of finite nuclei [Re86], and PW1 which corresponds to the original linear

Walecka model [Se86]. Hartree results of surface properties are available for PI and

PW1 [Ho89].

In the liquid droplet model formulated by Myers and Swiatecki [My69, My74] the

Table 4.12. Parameters and nuclear matter properties of the forces PI and PW1. Notation

as in Table 4.1.

PI PWl

Cs
2 373.176 267.568

Cl 245.458 196.300

b x 103 2.48

c x 103 -3.50

m 938 939

m, 492.25 450

mv 795.36 783

E/A (MeV) -16.41 -15.75

po (far3) 0.154 0.193

K (MeV) 205 546

Osym (MeV) 19.0 22.1

m*/m 0.57 0.56



72 Semidassical Description oí Nuclear Systems in RMF Models

energy of a spherical nucleus is written as:

E = avA + 47T r° dr r2 [£M - avp(r)] , (4.43)
Jo

where av is the energy per particle in infinite nuclear matter and £(r) and p(r) are

the energy and particle densities, respectively. Starting from (4.43) and following the
method outlined in [My69, My 74, St85], one obtains for the surface and curvature
coefficients in semi-infinite nuclear matter the following expressions:

T dz(£(z)-avp(z)}\K=Q, (4.44)
J — 00

as =

[ yoo
/ dz(z - ZQ} [£(z) - a^z)]^

J—oo

+ r ¿z d [g(*)-M*)]
J ~oo v/C

where TO = [3/(4?r/?o)] is the nuclear matter radius, ZQ is the location of the equivalent
sharp surface, and K is the curvature (2/Ä for a sphere of radius R).

The two contributions to the curvature energy in (4.45) are called geometrical and
dynamical, respectively. The geometrical contribution only involves the variation of

the surface energy density £(z) — avp(z) across the surface parallel to the z-axis, while
the dynamical part corresponds to the variation of the surface energy density when
the plane surface is infinitesimally bent. The surface energy density depends on the
curvature K in two different ways: one of them is the explicit dependence of £(z) on the

A operator (think for example of the non-relativistic definition of the kinetic energy

density [Lo91]) which in the limit of R —* oo reads d?/dz2 + nd/dz. The other one

corresponds to the implicit curvature dependence of p(z).

In the relativistic a—w model, the semiclassical energy density (4.12) is free of

explicit A dependences, since they have been removed by partial integration. On the

other hand, the implicit curvature dependence of the nuclear density p and of the meson

fields VQ and <f>0 does not contribute to the dynamical part of the curvature energy in a
self-consistent calculation, because the surface tension of semi-infinite nuclear matter

is stationary with respect to changes in the density and in the meson fields. This is

a consequence of the so-called a-theorem [My69, My74, St85] (see also [St91]). As a
result, the curvature energy is only given by its geometrical contribution.

Fig. 4.10 displays the TFft° and TFft2 density profiles of semi-infinite nuclear matter
obtained with the HII set, and Figs. 4.11 and 4.12 show the TFft° and TFft2 surface
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Figure 4.10. Density profile of symmetric semi-infinite nuclear matter obtained with the

force Hü in the TFft2 and TFft0 approximations.

and curvature energy densities for HII. Table 4.13 collects the surface and curvature

coefficients as well as the surface thickness of the semi-infinite density profile (standard

90% to 10% distance) calculated with PW1, PI, HII and HIV. As may be seen from this

table, the quanta! and semiclassical calculations of the surface coefficient and thickness

Table 4.13. Surface (as) and curvature (ac) energies, and surface thickness (í) corresponding

to different a — u parametrizations and Thomas-Fermi approximations. Also displayed are

some Hartree (H) results (from [Ho89]).

as (MeV)

PW1

PI

HII

HIV

H

33.8

15.8

TFft2

32.8

17.4

16.0

11.1

TFfc°

35.9

19.9

17.3

10.0

H

2.38

2.31

í (fin)

TFÄ2

2.27

2.09

1.23

1.07

ac (MeV)

TFh°

2.71

2.96

1.57

1.00

TFfc2

18.8

12.4

7.2

4.9

TFft0

20.1

16.0

7.5

3.7
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Figure 4.11. Surface energy density es = £(z)—avp(z) corresponding to the interaction HII.

Also displayed is the separate contribution of the terms £(z) and avp(z).

are in reasonable agreement. The values we have found for ac are within the range of

those obtained in non-relativistic semidassical calculations using Skyrme forces [Br85,

Tr86, St88] (the empirical value is a£mp « 0. MeV [MÖ88]). The evolution as a function

of the effective mass of the TFH° results with respect to the TFft2 ones shows the same

trend as for finite nuclei.

As discussed by Hofer and Stocker [Ho89], few parametrizations of the a—u> model

are able to simultaneously yield acceptable values for the surface energy and thickness

(as should be around 16.5-21 MeV and t around 2.2-2.5 fm). Among the ones used

here, only the parametrization PI gives satisfactory results (Table 4.13).
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Figure 4.12. Curvature energy density £c = (z — ZQ)[£(Z) — avp(z)\ calculated with the

interaction HII.



Chapter 5

Relativistic Extended
Thomas-Fermi Calculations of

Finite Nuclei with Realistic
Nucleón—Nucleón Interactions

THE UNDERSTANDING of the nuclear matter properties starting from a realistic NN
interaction fitted to the NN scattering data has considerably been improved in recent
years, as already mentioned, by the recognition of the importance of relativistic effects

in treating nucléons inside a nucleus. The key point has been the observation that
the dominant attractive and repulsive components of a realistic NN interaction exhibit
different properties under a Loreutz transformation.

Within the OBE model, the strong attractive component of the NN interaction
is described in terms of a scalar tr-meson exchange, while the repulsive component is
dominantly due to the exchange of a vector a> meson. This structure of the NN inter-

action implies that the self-energy of the nucléons in nuclear matter, calculated from
this interaction, contains a strong attractive scalar component and a strong repulsive
component, which, in the rest frame of nuclear matter, transforms like the time-like
component of a Lorentz-vector. Inserting this self-energy into the Dirac equation for

76
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the nudeons inside the nuclear medium, one obtains solutions for which the small com-

ponent of the Dirac spinor is drastically enhanced as compared to the Dirac spinors

for the free nucléons. This enhancement of the small component of the Dirac spinor

for a nucleón at finite densities can be described in terms of an effective nucleón mass

m* which is smaller than its bare mass. As a consequence of this change of the Dirac

spinors for the nucleons as a function of the nuclear density, the matrix elements for

the NN interaction and the kinetic energy are modified in the nuclear medium. These

modifications are very important to describe the saturation properties of nuclear mat-

ter within a microscopic many-body calculation starting from a realistic NN interaction

[An83, Br84, Ce86, Ma85, Ha87, Br90].

Such Dirac-Brueckner-Hartree-Fock (DBHF) calculations have also been carried

out for the finite nucleus 160 [MÜ88, MÜ90], using the Bonn potential [Br84, Ma85,

Br90] as the bare NN interaction. Also in this case the relativistic features just dis-

cussed lead to better results than the corresponding BHF ones [Sc91]. For finite nuclei,

however, the relativistic effects considered in the DBHF approach are not sufficient to

yield a complete agreement of the calculated binding energy and radii with the exper-

imental data. Besides these attempts to solve the DBHF equations directly for finite

nuclei, there exist also calculations on ground-state properties of finite nuclei assuming

a LDA for the Dirac-Brueckner self-energies [Ma91].

Heavy ion (HI) scattering and large nuclear deformations are among the low and
intermediate energy nuclear aspects less explored using RMF methods. We have seen

in Chapter 4 that calculations of axially deformed nuclei have been carried out in
relativistic mean field models, and the only calculations of HI optical potentials on

the basis of the microscopic Dirac-Brueckner formalism have been carried out by the
Tübingen group [Oh88].

In this chapter we want to employ our RETF method together with the Dirac-

Brueckner results on nuclear matter of Ohtsuka et al. [Oh88] to evaluate the fission

barriers of some selected nuclei and the complex optical potential for some HI systems

at intermediate incident energies. For this purpose we shall use a LDA to build an

energy density functional. The potential part comes from a microscopic calculation

using a modern version of the realistic Bonn NN interaction, which incorporates the

effects of Brueckner correlations and Dirac effects. The kinetic part is the RETF

kinetic energy density constructed in Subsection 2.4.2. With respect to the results
reported in [Oh88], the main improvement is that the use of the present energy density
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functional will allow us to obtain fully self-consistent nuclear densities, instead of using

parameterized densities as in that reference. With, respect to the previous work on
fission barriers by Garcias et al. [Ga90b], the use here of a RMF method represents
a sizable improvement, since in that reference we were using a non-relativistic NN

interaction that was missing the nuclear matter saturation point, as all other non-

relativistic G-matrix calculations do [Sp72, Ma89, Sc91].

The chapter is organized as follows. In the first section we summarize the way the
DBHF potential energy density has been obtained, construct the complete energy den-

sity functional and adjust its few free parameters, showing the results for finite nuclei.

Next, we calculate the fission barriers for some selected nuclei, with the emphasis in
the angular momentum dependence of these barriers. Finally, the HI potentials are

obtained and some illustrative elastic HI scattering cross sections are calculated.

5.1 The Energy Density Functional

5.1.1 The Dirac—Brueckner-Hartree-Fock potential energy
density

The nucleón Dirac spinor u(k, p) for a nucleón of momentum k in nuclear matter
of density p is determined by solving a Dirac equation

h»kll-m-X(k,p)}u(k,p)=Q, (5.1)

where m is the free nucleón mass, 7^ are the Dirac matrices and S(fc, p) is the self-

energy operator of the nucleón. For symmetric nuclear matter this self-energy contains

a large scalar component and a term, which, in the rest frame of nuclear matter,

transforms like the time-like component of a Lorentz-vector:

E(M = ¿(M+Tb*(M- (5-2)

In a simple relativistic mean field or Hartree approximation to the field theoretical

model for the meson-nucleon many-body system, the coefficients A(k, p) and B(k, p)

are independent of the momentum k and are directly related to the attractive scalar

and repulsive vector meson exchange contributions, respectively. Using a self-energy

of the form given in Eq. (5.2), the solution of Eq. (5.1) for a positive energy nucleón is
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explicitly given by

/ X r _ L r r , * \ l / 2 f 1 \

(5.3)

where m* = m + A(k,p) is the nucleón effective mass and, again, £ = (fc2 + m*2)1/2.

Xa is a Pauli spinor and the normalization is

u*(k,p}u(k,p} = l. (5.4)

In the Dirac-Brueckner approach, ~S(k,p) is defined in terms of the G-matrix G as

(5.5)
spin.sospn

The integration is carried out over the Fermi sphere for nuclear matter of the density

under consideration. The G-matrix G is the solution of the relativistic Bethe-Goldstone

equation for nuclear matter at rest. It is worth mentioning that, in addition to the self-

consistent treatment of the starting energy W which is required in the non-relativistic

BHF approach, the DBHF approach furthermore needs to treat the Dirac spinors self-

consistently. The spinors (5.3) resulting from Eq. (5.1) have to be used in evaluating

the matrix elements of the NN potential in the nuclear medium. We have taken as the

bare NN interaction the Bonn potential of [Br84, Ma85], which was already used by

Ohtsuka et al. in [Oh88]. Employing Eq. (5.2) for £(&,/?), one finds that A(k, p) and

B(k,p) are independent on the momentum k to a very good approximation [E190].

The fc-independent functions A(p) and B(p) are obtained by a fit to the numerical

values for the self-energy of Eq. (5.5) as follows [Br84]:

<fe|E|fc) « A(p] + B(p) - l - . (5.6)

Consequently, the spinors of eq (5.3) can be parameterized in terms of a nucleón effec-
tive mass m* which depends on p but not on k.

The potential energy density is readily obtained from the self-energy as

7^3 <*£(*, ,)!*), (5-7)
(27T)3
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the factor 4 being due to spin-isospin degeneracy. In the relativistic treatment of

nuclear matter, the kinetic energy density is given by

T(P) =

,* ̂

" " (5'8)

The relativistic approach makes the kinetic energy of nuclear matter less repulsive

than in the non-relativistic approach, while on the other hand the potential energy

(5.7) becomes much less attractive. As a sum, the total energy becomes less attractive

at high density and the empirical values of binding energy and density of the nuclear

matter saturation point are obtained.

5.1.2 The complete energy density functional and parameter

fit

For any application to finite nuclei, it is desirable to use an energy density which

incorporates some features not present in the simple functionals (5.7) and (5.8). We

write the total energy of a nucleus as

r € ( p q ( T ) , r g ( r ) } , (5.9)

where the energy density functional £ is given by

+ i?(Vp)2 + £c«d(ft,) • (5.10)

The term IT has been introduced in the previous subsection. The RETF kinetic energy
density

ri(fti m") = Wftn m*) + TI,Q(P<I> m*) (5-n)

is obtained from Eq. (2.81). In the nuclear matter limit, the H° term T0,9 would

correspond to (5.8). We note that in our approach the nucléon effective mass m*

depends only on the total density p = pn + pp.

The last three terms in (5.10) are purely phenomenological. The first one is a

potential symmetry energy term, the gradient term accounts for a part of the surface
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energy, and the Coulomb energy £coui(ft>) contains a direct term and a exchange term
in the standard Slater approximation. The constant a in front of the potential energy

density TL(p) will be used to improve on the finite nuclei results. Altogether, our

functional contains three free parameters a, Csym and rj. Despite the phenomenological

character that these parameters give to the energy density (5.10), connection with the

microscopic calculation is kept in the model inasmuch as it is the density-dependent
Dirac spinor, microscopically derived in the DBHF approach, which determines the

behaviour of II and Tq (through m*) as a function of the density.

The nuclear symmetry energy has been obtained in the DBHF approximation
[MÜ87] so that, in principle, this could be used to fix the Csym parameter, and putting

a = 1 we would have been left with only one free parameter r\. However, as the NN

interaction used in [MÜ87] is different from the one used by Ohtsuka et al. [Oh88], for

which m* and II(p) are available for many values of the density p and for two nuclear

matters in relative motion, we have preferred to take II(/j) from the latter reference and

have let Csym as a free parameter. The functional (5.10), made of the ft2-order kinetic

part and a potential part which contains the minimal phenomenology to make the

whole functional realistic, has to be considered as a single package, which constitutes

our model.

The Euler-Lagrange equations corresponding to the functional £(pq, Tq) are solved
self-consistently using the imaginary time-step method method, once a value for the

set of parameters (a, Csym, f¡} has been chosen. We shall present the results obtained
with three different functionals. The first one will be called TUO and corresponds
to the parameter-free case: rj = Csym = 0 and a = 1. This functional, being the

closest one to a microscopic calculation, in general is not expected to yield good results

when compared to experiment because it lacks some surface and symmetry energy.

It is interesting, however, to know how far one can go without including any kind

of phenomenology in the model. TU1 is the second functional; to fix its parameters

we have adjusted the binding energy of 40Ca and 208Pb, and the semiclassical .fission

barrier (Bt) of 240Pu, which is ~ 3.8 MeV [Br72, Br85] (details about the fission barrier

calculation are given in the next section). The parameters of the third functional, called
TU2, have been adjusted to reproduce the binding energy of 40Ca and 208Pb, and the

value of the surface energy of semi-infinite symmetric nuclear matter corresponding to

the SkM* force, aa = 17.22 MeV [Br85].
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It is very simple to obtain the surface tension a of semi-infinite symmetric nuclear

matter for functionals like that of Eq. (5.10). Neglecting the Coulomb energy and

taking pn = pp = /9/2, Eq. (5.10) can be written as

(5.12)

where

C(p) = E W/>, = P/2) + aU(p) , (5.13)
9

and D(p) is such that

D(p)(Vp^ = ̂ r,,q(Pg = p / 2 ) . (5.14)
i

For a system with a planar surface perpendicular to the z-axis, p = p ( z ) . Following

the method outlined in [Tr86], after some straightforward manipulations, one gets

E
/

+°° r E
dz \£(p) - ̂

•oo L -rl

rf, (5.15)

where E/A is the energy per particle at the saturation density PQ. The surface energy
is

as = 47rr0
2<7, (5.16)

where TO = (3/(47r/>o)] is the nuclear matter radius.
Table 5.1 collects the nuclear matter characteristics of the three functionals, which

are well within the commonly accepted values except for a rather small symmetry
?

energy asym in the TUO case and, less markedly, in the TU1 case. The symmetry energy

of TUO is so small because for this functional only the kinetic energy contributes to

it (the potential energy is calculated for pp = pn). The (bulk) symmetry energy is

obtained by expanding the energy per particle of asymmetric nuclear matter for small

values of the relative neutron excess (pn — pp)/p. The result for the functional (5.10) is

*sym
mm*

(5.17)

tO be evaluated at the saturation density p = PQ. The first term in the r.h.s. of Eq.

(5.17) comes from T(p), and the second term from the phenomenological potential

symmetry energy.
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Table 5.1. Parameters (cc,Csym,TJ) of the TUO, TU1 and TU2 functionals, their nuclear

matter properties (energy per paxticle E/A, particle density pQ, Fermi momentum kp, incom-

pressibility K, effective mass m*/m), volume symmetry energy asym at saturation, surface

energy as of semi-infinite symmetric nuclear matter, and fission barrier B{ of 240Pu.

a

Csym (MeV £m3)

r) (MeV fm5)

E/A (MeV)

Co (fm-3)

kF (fm-1)

« (MeV)

m*/m

asym (MeV)

as (MeV)

Bf (MeV)

TUO

1.0

0.0

0.0

-15.17

0.1780

1.381

239.2

0.616

9.48

13.97

2.2

TU1

1.024

84.0

8.20

-15.90

0.1778

1.381

250.2

0.616

24.41

15.83

3.7

TU2

1.036

118.0

15.25

-16.27

0.1777

1.380

255.7

0.616

30.45 .

17.22

5.6

Table 5.2 shows the binding energies and charge radii we have obtained for some

nuclei with the functionals TUO, TU1 and TU2. The calculated total energies have

been corrected for spurious effects of centre-of-mass motion by subtracting the kinetic

energy per particle, as it is usually done in non-relativistic calculations. The charge
radii have been obtained from the proton radii as rc = (rp

2 + 0.82)1/2 (fm) using a

form factor for the proton charge. One may see from this table that the agreement
between our calculations and the experimental data is globally good, especially for the
binding energies. Even the parameter-free functional TUO yields acceptable values and
it is worthwhile noting the very small change (a « 1, Table 5.1) we have introduced in

the potential part of both the TU1 and TU2 functionals. We want to point out again

that as the spin-orbit is a fully relativistic effect, our expression for the kinetic energy

density functional Tq is automatically incorporating the 7i2-order corrections of spin-

orbit origin to that energy. Also, effective mass corrections are taken into account in

Tq up to the same order. This is conceptually important in the relativistic formalism,
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Table 5.2. Binding energies B (in MeV) and charge radii rc (in fm) obtained with the TUO,

TU1 and TU2 functional^ in comparison with experimental data.

TUO

12C
16Q

40Ca
48Ca

56Ni

90Zr
114Sn
118Sn
140Ce

208pb

B

94

128

333

420

461

759

942

988

1157

1641

.2

.3

.1

.5

.1

.4

.1

.3

.5

.6

rc

2.49

2.66

3.36

3.48

3.70

4.22

4.53

4.57

4.81

5.46

TU1

B

94

129

342

422

476

779

967

1006

1172

1636

.3

.4

.3

.5

.9

.7

.2

.0

.1

.6

rc

2.53

2.69

3.37

3.46

3.70

4.18

4.49

4.52

4.76

5.39

TU2

B

92

127

342

419

479

783

973

1010

1176

1636

.4

.5

.2

.9

.0

.8

.7

.0

.0

.5

rc

2.57

2.73

3.40

3.47

3.72

4.19

4.50

4.53

4.77

5.39

Exp

B

92.2

127.6

342.1

416.0

484.0

783.9

971.6

1005.0

1172.7

1636.5

fc

2.47

2.73

3.49

3.48

3.75

4.27

4.61

4.64

4.88

5.50

and may be of some practical importance because of the large variations of m* ¡m, as

this ratio goes from ~ 0.6 at saturation (Table 5.1) to ~ 1.0 at low densities.

The TUO functional gives good binding energies for the smaller systems 12C and
160, without being necessary to add surface energy nor, obviously, symmetry energy.

Remember that, compared with relativistic Hartree results, relativistic semiclassical

calculations up to order ß2 yield some over binding (Subsection 4.2.4). This is the reason

why the binding energy of 160 obtained with TUO in this RETF approximation is in

better agreement with the experimental value than the fully microscopic DBHF result

[MÜ88, MÜ90]. With increasing neutron excess, the agreement of TUO with experiment

is spoiled. As TUO has a small surface tension, it underestimates the semiclassical

fission barrier of 240Pu (Table 5.1) and that of any other nucleus, consequently. The

TU2 force, which has the higher surface energy, yields slightly better results than TUO

and TU1, at the price of overestimating the fission barrier of 240Pu. Thus, the only

force which is able to fulfil at the same time the requirements of yielding a proper

description of ground-state properties and acceptable fission barriers is TU1.
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The TUO parametrization gives better charge radii than TU1 and TU2. This is

understood in the following terms. The lack of symmetry energy of TUO is unable to
counterbalance the Coulomb repulsion among protons. As a consequence, the proton

density spreads out at the price of yielding unrealistically compact neutron densities.

For example, the neutron r.m.s. radius of 208Pb is 5.29 fm for TUO and 5.44 fm for

TU1 (a HF calculation with the SkM* force would give 5.63 fm [Ce90a]). In any case,

the calculated charge radii are systematically smaller than the experimental ones. This

might be due to the fact that also the saturation density of nuclear matter calculated in

the DBHF approximation is slightly above the empirical value (see Table 5.1). Note,

however, that the radii we have found with the present RETF method are in much
better agreement with the experimental ones than when one uses a non-relativistic

G-matrix calculation as the input to obtain U(p) [Ga90b].

5.2 Fission Barriers

In this section we apply the TU1 functional to the semiclassical description of

symmetric nuclear fission. We do not present here results obtained with TUO and TU2

because these functionals are unable to give a correct quantitative description of fission

barriers, as discussed above in the case of 240Pu (Table 5.1). The basic ingredients of

the method we use have been described in [Ga90b] and references therein (see also
[Ga89b]). It is based on a two dimensional (2D), axially symmetric Thomas-Fermi

model that incorporates rotational effects.

To describe the symmetric fission of a nucleus, we have parameterized the fission
path by a single collective coordinate, namely, the quadrupole moment Q. To obtain

the equilibrium density at given values Q = QQ of the deformation and L of the

angular momentum, we have minimized the total energy with the usual constraints
on Q and Lx:

Q0f-u(Lx), (5.18)

where E is given by Eqs. (5.9) and (5.10), and the Lagrange multiplier w is to be
identified with the angular velocity around the rotation axis x. We have imposed axial

symmetry around the 2-axis, and have solved the Euler-Lagrange equations corre-

sponding to (5.18) in cylindrical coordinates (r, z) employing the ITS method [Da85a,

Da85b, Ga89b]. We have checked that the agreement we obtain between ID and 2D

calculations of spherical nuclei is better than 1-2 MeV in the total energy for the nuclei
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we have studied.

Rotation has been considered in the rigid body approximation [Si86]. At a given

deformation, the moment of inertia Ix, needed to compute the rigid angular velocity

uj = ̂ jt (5.19)

and the rotational energy

£rot = %^ , (5.20)

is obtained from the self-consistent variational density />(r, z):

I,-m I I drdzlirr >(r,z), (5.21)

as well as the quadrupole moment:

(Q) = í í drdzZirr ¡2z2 - r2] p(r, z). (5.22)

We have collected in Table 5.3 the saddle point characteristics (barrier height and

quadrupole moment) and the l/c-values. We compare the RETF results with the ones

we have obtained using the SkM* force [Br85] in a A2-order non-relativistic ETF cal-
culation, and with the corresponding Liquid Droplet values [Co74, My77]. It can be
seen that all three methods yield comparable results.

Fig. 5.1 is a three-dimensional plot of the closest-to-saddle configurations that we
have calculated with TU1 for six nuclei, ranging from the light 52Fe to the heavy 240Pu,
without rotation. Some equidensity lines in the (z,z) plane, corresponding to these

configurations, are shown in Fig. 5.2. These figures show the known fact that the saddle

configuration of a heavy nucleus is rather compact, whereas it is quite elongated for a

light nucleus. The equidensity lines are parallel to a good approximation except those

corresponding to high densities in the neck region. Similar contour plots can be found

in [My91].

The evolution of the fission barrier as a function of the angular momentum is

displayed in Fig. 5.3 for the case of 118Sn, which has in our model a critical angular
momentum I/c = 1027i. It is seen that the configuration of minimum energy is no longer
spherical for high enough values of L. Finally, a more detailed information about the
L-dependence of the fission barrier height is given in Fig. 5.4, which represents the

stability diagram of the nuclei we have studied.
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Table 5.3. Fission baxrier B{ (in MeV), quadrupole moment of the saddle point QB (in barn)

and critical angular momentum Lc (in units of H), obtained with thé TU1 functional in the

RETF approach, with the SkM* force [Br85] in a ft2-order non-relativistic ETF calculation,

and with the Liquid Droplet model [Co74, My77].

52Fe

118Sn

152Dy

1860s

2orBi

240pu

B{

Qa

Lc

Bt

Qs

Lc

Bt

Qs
Lc

Bt

Qs
LC

Bf

Qs
Lc

Bí
Qs
1

TU1

47.7

28

48

56.5

119

102

36.4

180

87

25.2

235

81

13.8

183

74

3.7

91

58

SkM*

49.0

29

55

55.6

140

101

34.1

200

91

20.8

270

75

9.2

210

73

3.9

120

50

LD

48.0

50

52.6

95

36.7

95

22.5

90

12.2

85

3.0

75
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52Fe, Q= 28

152Dy, Q= 180

207Bi, Q= 180

lieSn, Q= 120

186 Os, Q= 240

240Pu, Q= 90

Figure 5.1. Three-dimensional isometric view of the density p, plotted versus the (z,0)

plane, for the closest-to-saddle configurations that we have calculated without rotation using

the TU1 functional. The corresponding quadrupole moment Q (in barns) is indicated for
each nucleus.
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52Fe, Q= 28 118Sn, Q= 120

152Dy, Q= 180 1B6 Os, Q= S40

207Bi, Q= 180 240Pu, Q= 90

Figure 5.2. Equidensity lines in the (z, z) plane corresponding to the configurations plotted

in Fig. 5.1. From outside to inside, the lines represent contours of constant density p = 0.01,

0.06, 0.11, 0.15 and 0.165 fm'3.
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-850

-875

V -900

-925

tí -950
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-1000
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Q (barn)
Figure 5.3. Angular momentum dependence of the fission barrier of 118Sn as a function of

the quadrupole moment Q (with TU1).
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60

OJ

PQ

50 -

40 -

30 -

20 -

10 -

O 20 40 60 80 100

L (ft)
Figure 5.4. Stability diagram showing the evolution of the fission barrier height as a

function of the angular momentum L (with TU1).
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5.3 Heavy Ion Optical Potentials at Intermediate

Energies

Using nuclear matter theory and the energy density formalism, the real and imagi-

nary parts of the optical potential between two nuclei have been derived from realistic

NN interactions by the Tübingen group in non-relativistic [Oh87] and relativistic ap-

proaches [Oh88]. These complex optical potentials have been successfully applied to

describe the HI scattering data at intermediate energies. Therefore, it is of interest to

see if the present formalism, which has been shown to give a satisfactory description of

finite nuclei and fission barriers, can be used to improve on the relativistic calculation

of the HI optical potential.

The optical potential between two nuclei at separation distance R has been calcu-

lated as

U(Kn R) = E(Kt, R) - E(Kn <x>) , (5.23)

using the sudden approximation for the density distribution of the composite system.

In Eq. (5.23), E(KT,R) is the total energy of the system formed by two nuclei whose

centers are at distance R, approaching each other at such relative energy that the

centers of the two Fermi spheres which represent the local densities of the target and

the projectile are at a distance Kr (the relative momentum).

To obtain the potential energy density, it is assumed that the collision can be locally

represented by a system of two nuclear matters colliding with relative momentum KT,

and the total energy of the composite system is calculated using the nuclear densities

obtained in Section 5.1 following the method indicated in [Oh88]. That is, instead

of solving the relativistic Bethe-Goldstone equation for two colliding nuclear matters,

the following steps are taken. First, the relativistic Bethe-Goldstone equation is solved

for a single nuclear matter of density p at rest, and the effective mass m*(p) and the

matrix elements of the bare NN interaction between two nucléons in nuclear matter are

determined in the same way as it has been done in [Br84, Ma85], and which has been

already used to obtain the potential part n(/j) employed in the previous sections. Then,

these relativistic matrix elements are used to solve a non-relativistic Bethe-Goldstone

equation for two nuclear matters with the total density of the combined system. By

this procedure, proposed in [Oh88], the relativistic effects arising from the change of

the Dirac spinors in the nuclear medium are included in this non-relativistic G-matrix

since the matrix elements of the bare NN interaction are evaluated with the modified
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spinors, Eq. (5.3).

Especial attention has to be paid to the kinetic energy density in the case of two

Fermi spheres in relative motion, and to the way to fix KT for a given HI colliding system
and incident energy. These matters are discussed in detail in [Oh88], and references

therein.

One of the nicest features of the microscopic G-matrix approach to HI collisions is

that in the case of two nuclear matters in relative motion, the potential energy becomes

complex since two nucléons can be scattered into unoccupied states with conservation of

their total momentum and energy. Thus one gets both the real and the imaginary part

of the optical potential from the same interaction, and basically only the contributions

of the mutual excitation of target and projectile are left out. As this contribution

can be accounted for by standard coupled-channel techniques, the calculation of HI

scattering cross sections becomes parameter-free.

Fig. 5.5 displays the real and imaginary parts of the optical potential for the
12C + 12C system at 1016, 1449 and 2400 MeV in the laboratory frame, obtained

with the TU1 functional (the ones yielded by TUO and TU2 are very similar). A
detailed comparison of the results of [Oh87] and [Oh88] reveals that the relativistic

treatment affects the real part of the HI potentials obtained from two nuclear matters

flowing through each other in a similar way it does for a single nuclear matter at rest.

The change of the Dirac spinors reduces the attraction of the potential energy which

is again counterbalanced by the reduction of the kinetic energy. The most striking

feature of the relativistic approach to HI optical potentials is that the imaginary part

is considerably enhanced at high densities. The change of the Dirac spinors reduces the

attractive contributions of the cr-meson exchange but does not influence the repulsive

w-meson exchange. Therefore, two nucléons at high densities feel a larger short-range

repulsion, which leads to more scattering into unoccupied states, i.e., to a larger imag-

inary part. Note that this relativistic effect that comes from the potential energy is

not compensated by any effect from the kinetic energy, as it happens for the real part.

We have used the calculated optical potentials to analyze some elastic HI scat-

tering data. The elastic scattering cross sections have been obtained employing the

PTOLEMY code [Ma78] in the optical model (OM) or coupled-channel (CC) analysis.

As we have indicated above, our calculated HI potentials include the effect of 2p-2h in-

elastic excitations, but not the excitation of Ip-lh collective states which are absent in

nuclear matter due to momentum conservation. They can be taken into account either
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Figure 5.5. Real (a) and imaginary (b) part of the optical potential for 12C + 12C at

= 1016, 1449 and 2400 MeV, obtained with the TUI functional.
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as an additional effective potential [Kh81], or explicitly within the CC formalism. We
have followed the latter approach, including the excitation of such collective states in
both the target and the projectile.

We have studied the systems 12C + 12C, 160 + 12C and 160 + 28Si at several
incident energies. The collective states we have included into the CC analysis in the

case of 160 + 28Si, are the lowest 2+ (6.92 MeV) state in 160 and the 2+ (1.78 MeV)
and 4+ (4.62 MeV) states in 28Si. For the 12C + 12C system, we have included the first
2+ (4.44 MeV) and 3~ (9.64 MeV) states in 12C. For 160 + 12C we have considered the
first 2+ and 3~ in both nuclei, as in 12C -f 12C. The coupling interaction is obtained
adopting the vibrational or rotational model for the nuclear excited states. To get
the nuclear transition potential U¡ for a given excited state, one needs to estimate the
so-called nuclear deformation length ß^R^. We have followed Blair's rule

/?NÄN = ßcRc (5.24)

to determine it. The deformation parameter ßc for the charge distribution is obtained
from the electric transition probability J3(E/) using

. (5-25)

with RC = 1.2/11/3 (fm). Then, the transition potential follows from

0¡(r) = /?NAN^T^ , (5-26)

where Uo(r) is the complex optical potential previously determined. Thus, the CC
calculations are essentially free of any adjustable parameter and constitute a good test
of the reliability of the method.

Figs. 5.6 to 5.9 show the elastic scattering cross sections for the systems 12C + 12C
at Slab = 1016, 1449 and 2400 MeV, 160 + 12C at £iab = 1503 MeV and 160 + 28Si at
-Slab = 1503 MeV, respectively. The experimental data have been taken from [Bu84,
Ho88b, Ro85, Ro87]. For the systems 12C + 12C at Eïa.b = 1016 and 1449 MeV and
160 + 28Si at £lab = 1503 MeV we display both the OM and the CC results, calculated

with the TU1 functional. In the case of the systems 12C + 12C at JBub = 2400 MeV and
160 -f- 12C at .Slab = 1503 MeV, we instead present only the CC analysis and compare
the TUO, TU1 and TU2 results. The latter figures evidence that the three functionals
yield comparable results for the cross sections of the systems under consideration. For
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12O12C
E. =1016MeV

8,CJILl

Figure 5.6. Elastic scattering cross section for 12C + 12C at B\&b = 1016 MeV calculated

with the TTJ1 functional. Dashed line, optical model (OM) analysis. Solid line, coupled

channel (CC) calculation. The experimental data are from [Bu84].

this comparison one should be aware that the surface tension contents in TU1 and TU2

gives an attractive contribution to the real part of HI potential at the surface. This is

counterbalanced by the global enhancement factor a in such a way that the real parts

of TUO, TU1 and TU2 potentials are very similar at the surface region which is most

sensitive to HI scattering data. Consequently, the calculated TUO, TU1 and TU2 cross

sections for elastic HI scattering are also very similar.

The figures show that our potentials are reproducing the data quite reasonably in

the CC calculations. The role of the coupling to the lowest collective excitations in

the colliding nuclei is substantial at the energies considered here. In other OM anal-

ysis using phenomenological optical potentials this effect is hidden by the adjustable
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Figure 5.7.
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EUB= 1449 MeV
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Same as Fig. 5.6 for E^ = 1449 MeV. The experimental data are from

parameters of the potentials and, consequently, little information about their explicit

contribution to the cross section can be extracted. Comparing the OM and CC cross

sections of the 12C + 12C reactions, we find that the effect of the Ip-lh contributions
to the optical potential decreases with increasing energy. This shows the diminishing

contribution of the nuclear surface excitations to the elastic scattering as the energy

increases. The remaining discrepancy with the data, basically the lack of absorption, is
expected to be due to other inelastic processes which still are not taken into account by

the CC calculation, like nucleón transfer between target and projectile, and especially

alpha particle transfer [Di89].
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irf .

E = 2400 MeV
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Figure 5.8. Elastic scattering cross section for 12C + 12C at J3ub = 2400 MeV calculated

in the CC analysis. Dashed line, using the TUO functional; dotted line, TU1; and solid line,
TU2. The experimental data are from [Ho88b].
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id5 r

16

Figure 5.9. Same as Fig. 5.8 for the system 160 + 12C at £iab = 1503 MeV. The

experimental data are from [Eo85].
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Figure 5.10. Same'as Fig. 5.6 for the system 160 + 28Si at £lab = 1503 MeV. The

experimental data are from [Ro87].



Summary and

Concluding Remarks

THE PROBLEMS involving bulk properties of nuclei such as nucleón distributions and

binding energies still are among some of the most pertinent topics of modern nuclear

physics. They have been and are being attacked from many different angles. We know

that the complete description of nuclear structure is contained in the quanta! wave func-

tion of the nucleus. But we also know that it is practically impossible to determine

theoretically all details of the behaviour of a many-body system of such complexity

as a nucleus. Even in the situations where it is possible to solve for the complicated

nuclear wave functions explicitly, and despite we are living an era where the amazing

progress of computers allows to perform calculations which only a few years ago would
have required prohibitively large computation times, it is still definitely desirable and

necessary to develop simpler models than the quanta! formulation. Ideally, such sim-

plified models should contain all essential features of the nuclear problem and make the

nuclear behaviour understandable in easy terms, so that a vivid picture of the nucleus
could emerge from them. In the recent years, semiclassical methods have shown to be

especially well suited for that purpose.

On the other hand, nuclear physics is nowadays being increasingly approached on

the basis of a relativistic formalism. Microscopic DBHF calculations seem to be very

promising. The theory of quantum hadrodynamics provides a consistent framework

for a relativistic description of the nucleus. In this theory the degrees of freedom are

the nucléons and the mesons, and the dynamics is specified by renormalizable, local,
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Lorentz covariant Lagrangian densities. The simple mean field approach permits the

model to be solved analitically for nuclear matter. Calculations in quanta! Hartree

approximation give an accurate description of many of the features of nuclear systems.

From the semi classical viewpoint, solutions of the model relied on the lowest order

Thomas-Fermi approximation. In this approximation, the particles at each point in

space feel the potential as if it were locally equal to a constant. Thus, it is not very ap-

propiate to handle many-body nuclear systems because of the short-range two-nucleon

interactions. In particular, the nuclear surface properties cannot be described very well

with the simple Thomas-Fermi theory.

We feel that all of these reasons encourage—and justify more than enough—the

motivation and the interest for undertaking a systematic investigation on the rela-

tivistic nuclear many-body problem within a semidassical framework which provides

a consistent procedure to perform the expansion of physical quantities in powers of H.

Noticeably enough, such a theory was missing in nuclear physics.

The work presented in this thesis, therefore, constitutes a first step in this direction.

We have addressed technical aspects of relativistic semidassical theory, complemented

with iEustrative applications to finite nuclei and semi-infinite nuclear matter. We are

well aware that a meaningful question is whether or not h corrections are important for

the relativistic nuclear problem. It may seem that the phenomenological character of

the relativistic nuclear models does not necessitate such complications. Let us remind,

however, that the Skyrme forces used in the non-relativistic context are also based

on phenomenological models; nevertheless, it was necessary to introduce ft corrections

in semiclassical calculations to accurately describe some quantities, e.g., the surface

energy. The same consideration applies to the relativistic problem. Furthermore, the

fact that in the latter case the nudear potential is given by a difference of two large

numbers makes the introduction of gradient corrections specially relevant.

We have presented a (new) recursive scheme to obtain the semiclassical fi expan-

sion of the propagator associated with a time-independent single-particle hamiltonian

with matrix structure. In analogy to the non-relativistic case, the approach is based

on the Wigner-Kirkwood expansion of the phase-space densities. We have focussed

on the application of the method to a Dirac hamiltonian related to relativistic nuclear

mean field theory, i.e., including a position-dependent effective mass and the time-like

component of a four-vector field. Our H corrections just derive from spatial inhomo-

geneities, whereas time is always resummed to all orders. The method can also be used
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in other problems for which the hamiltonian has matrix components [Ta92].

Compared with the non-relativistic case, the procedure is considerably more compli-

cated owing to the matrix structure of the hamiltonian. For this reason the A expansion

was pushed to order ft2 only. A detailed derivation has been given of the ft2-order

Wigner-Kirkwood expansion of the relativistic density matrix, as well as of the parti-

cle and energy densities. We have shown the idempotency of the semiclassical density

matrix to second order in H, which is a subtle proof since it involves the evaluation of

products of distributions. This is a subject of general interest in the context of semi-

classical theory. The Wigner-Kirkwood expressions, as they stand, are not suitable to

be employed in a self-consistent problem. Therefore, we obtained the corresponding

density functional results, where the energy densities are expressed as a functional of

the local density. Complementarily, we have traced out the non-relativistic limit of the

calculated expressions.

The accuracy of the Wigner-Kirkwood series was tested on a relativistic harmonic

oscillator and perfect agreement with the Strutinsky averaged observables was found

even in the highly relativistic regime. The density functional version was shown to

be slightly less accurate, a feature already known in the non-relativistic case. It turns

out that the semiclassical expressions represent the different quantities (only) on the

average, that is, quantum fluctuations are averaged out. This model study shows that,

for positive energy states, the semiclassical expansions we have derived contain all the

relativistic ingredients, the difference with quanta! results being due mainly to shell

effects.

The method we have introduced to perform the semiclassical expansion of the rel-

ativistic nuclear problem is certainly not unique. In the course of our work, other

authors (the München group of Weigel [We91, Ei91a, Ei91b] and the Frankfurt group

of Dreizier [Sp92, MÜ92]) addressed extensively the same problem with Green's func-

tion techniques. We have attempted to give in short a perspective of the relationship

between these approaches and our. These authors have extended our investigation in
several respects: Fock terms have been included, the spatial components of the four-

vector potential and vacuum contributions have been considered, and the theory has

been formulated at finite temperature. Nonetheless, to our knowledge, the numeri-

cal applications we have investigated remain the only ones carried out with a RETF

method to date.

We have performed Extended Thomas-Fermi calculations for relativistic non-linear
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<7 —u; models using two kinds of Lagrangians which differ in the form of the scalar

coupling for.the isoscalar sigma meson. Comparing TFft with Hartree results, we

have found that the TFA° approximation yields some underbinding when the effective

mass of the model is small, and some overbinding when m* is large. For a value around

m'/m = 0.65, both TF7Í0 and Hartree would roughly yield the same binding energy.

When the 7i2-order gradient corrections are taken into account, we have found a

numerical instability in the solution of the semiclassical Klein-Gordon equation obeyed

by the scalar field in the case of parametrizations which have m*/m < 0.60. Whether

this instability is due to the particular nature of the a — uj model or to a failure of

our semiclassical expansion of order ft2, is an open question that can only be answered

when this expansion be applied to other relativistic models.

Second order corrections in H to the TFA° approximation improve the agreement

with Hartree solutions in a sensitive way, always yielding more bound nuclei than
within the Hartree approach. The sign of the ft2 corrections depends on m*, and they

are found to vanish around m*/m = 0.75 for the models of the type considered here. In

several respects, the semiclassical relativistic phenomenology quite resembles the one

met in the non-relativistic regime using Skyrme forces, in spite of the different origin

of m* in both situations. In the interior of the nucleus the Hartree densities are well

represented on the average by TFft° and TFÄ2. But in the surface and the outer region

the TF&2 densities come appreciably closer than TFA° to the Hartree results, showing

an exponential drop off. Using the TFfò2 semiclassical mean field as a starting point,

perturbative quanta! solutions (H*) have been found which are in good agreement with

the exact Hartree results.

One of the most appealing merits of a semiclassical formulation is the fact that

certain observables are only accessible in a semiclassical framework. This is for instance

the case of the curvature energy because quantally the content in curvature of the wave

function is unknown. Therefore, we have calculated liquid drop model coefficients for

some parameter sets of the or —u model, and have found reasonable values for the

surface thickness and for the surface and curvature energies.

In this work we also wanted to study the effects of the density-dependent Dirac

spinor for the nucléons, as it is determined microscopically in the DBHF approach, on

various properties of the structure and scattering of finite nuclei. For that purpose,

we have constructed a relativistic energy density functional that includes our kinetic

energy density functional of order U2 and a volume part in the potential energy arising
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from a DBHF calculation of nuclear matter. This volume term is supplemented by

some conventional correction terms and the few free parameters are suitably adjusted.

It turns out that the radii of nuclei calculated with the present approach are in a better

agreement with the experimental value than those obtained in similar studies using a

potential energy derived from a non-relativistic G-matrix. This demonstrates that the

Dirac effects improve the calculation of ground-state properties of finite nuclei also in

our RETF approximation.

We want to stress, however, that this study of ground-state properties was not the

main goal of our investigation. For such studies direct microscopic calculations are

possible [MÜ88, MÜ90] and, as we have seen, other more sophisticated phenomenologi-

cal relativistic theories are working well (cr— u> models). The capabilities of our RETF

functional are actually appraised in situations in which a full microscopic relativistic

calculation, or even a phenomenological one, cannot be easily made, like nuclear fis-

sion of rotating nuclei and HI scattering. In these situations, the method constitutes

a reliable tool. For the nuclear fission barriers, the present calculations are the first

ones carried out with a relativistic model. We have shown that the model yields re-

sults comparable to the non-relativistic ones with the conceptual advantage of being

relativistic. For the calculations of HI elastic scattering cross sections, we have been

able to improve the results that the Tübingen group had previously obtained [Oh88]

due to achieving a better description of the nuclear densities.

Clearly, there are still several stimulating topics for continuation and future research

in the field:

• Study of the level density parameter with the relativistic semi classical formalism.

• Analysis of giant resonances in the framework of the sum-rule approach.

• Semi classical calculation of fission barriers in the cr—u; model following the lines

of Section 5.2.

• Some authors have pointed out that relativistic effects may play a significant role

in the nuclear surface and may need to be taken into account in the calculation

of the curvature energy coefficient [St88]. The results for semi-infinite nuclear

matter that we have given here should be considered as preliminary only. A

systematic study of the surface and curvature properties of nuclear matter using

the RETF method remains to be carried out. The dependence of such properties
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upon the effective mass and the incompressibility of different parametrizations of

the er—u; model can be analyzed with the method outlined in Section 4.3, and

the calculations can be extended to the derivative scalar coupling.

• A h -order density functional description of QHD at finite temperature has been

given in [MÜ92]. As in the non-relativistic case, one might attempt to investigate

numerical applications in thermal nuclear systems, where semiclassical methods

are "specially accurate because shell effects are washed out by temperature and

the H expansions converge faster.

• A by far more ambitious project would be to explore, in the semiclassical con-

text, the importance of corrections to the mean field approximation. In order to

improve the mean field results one could include, for instance, exchange contri-

butions, the effects of vacuum fluctuations or allow for currents in the description

of axially deformed nuclei.

To conclude, we would like to stress that we have been able to find well-behaved

solutions of the semiclassical variational equations, whose existence was not evident a

priori. Since the semiclassical expansion of the energy density functional has likely not

converged if one stops the expansion at the 7i2-order terms, this renders the search for

higher order U corrections a worthy and non-merely academic task.



Appendix A

THE EXPRESSION of the lowest term T^o in the semiclassical expansion of the density
matrix for the Dirac hamiltonian (2.23) has been given in Eq. (2.53). It has been shown
to contain separately the positive and negative energy contributions. The H order Tl\

and the ft order TZ^ also have this property and can be written as

n-i = TÏÏ + KÏ , •R,2 = K% + KÏ . (A.I)

We have found that the positive energy part of T^i is:

ft? = ftl,/ + ftljî + ftl.« + ftl.-y (A.2)

with

(A.3)

• (A.4)

= O, (A.5)

(A.6)
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In the above equations we have introduced the Dirac 75 and ~y matrices [Bj64]. The

argument of the 0 function and its derivatives is A+ — £ — V. From Eqs. (A.3)-(A.6),

we see that 72-Í" has zero trace (when it is also taken over the spin degrees of freedom).

Using the same notation, the second-order term is:

with

+ + ^2.« + (A.7)

+ m*2(Vm*)2 + m*(p« V)2rn* + (p- Vm*)2]

+ (£36" + 36*6' + 668 + 60) [(p- V)2F + 2m*( W- Vm*)]

*(£& + <5)Am* (A.8)

/ - 3£:<5 - 30)( W)2

m*(e36" + 6£*8' + 156S + 150) [(p- W)2

m*2(Vm*)2 - m*(p-V)2m- - (p-Vm*)2]

30) [2m*(Vm*)2 + (p-V)2m*j

' + 3<5) [(p-V)2V + 2m*(VV• Vm*)j

5) [2(VV- Vm*) +

- 3p20)Am* ß, (A.9)
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- (€38" -f 6£2«5' + 15e8 + 150) [(p- W)2

- m*2(Vm*)2 - m*(p-V)2m* - (p- Vm*)2]

+ 6\62S" + 368' + 38) [(p- V)2V + 2m*( W • Vm*)]

+ 368 + 30)Am* (a-p)

30) [(p- VV)(a- VV)

The contributions of negative energy states are easily obtained from the positive
terms making the following substitution:

Ter(e) = n+(£—+-e,x+—+x-),
í

) = n+(e— + - £ , A + — * A ~ ) . (
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As DISCUSSED in Section 2.3, the idempotency property (2.54) of the density matrix it

results in some relations which the different orders of its semiclassical expansion have

to satisfy, Eq. (2.55). We here only show how to prove that the well-known 7i2-order

WK expansion of the density matrix p for a non-relativistic hamiltonian

H=¿¿ + V(r) (B.I)

fulfils

(¿2)w = (ß)w = f (B.2)

up to order ti2. This is an essential ingredient also for the relativistic generalization.

For the hamiltonian (B.I), we have [Je78]:

#w = f- + V (B.3)
¿m

and

/ = /o + ¿2/2 (B.4)

with

/o = 0(A-#W) , (B.5)

110



Appendix B 111

(B-6)

At order h it is evident that /o = /o- At second order, using Eq. (2.7):

= (/o 4- &2/2) l + A - A' (/o + ¿2/2)

= /o2 + &2 (2/0/2 - ¿

= 0 - -
4m

To compare Eq. (B.7) with (B.6), it is necessary to interpret the products of the step
function and its derivatives which appear in (B.7). For that purpose, let us recall two
properties of distributions [Go67]:

(B.8)

where T is a distribution (strictly speaking, a continuous linear functional on the space
T> of the base functions [Go67]), T^ is its nth-derivative, <p € Î?, and <}> is a function
of the class COQ. (T, </?) denotes the scalar which results from the action of T on (p. For

example, (5(n),v?) = (-l)rV(n)(0). From (B.8) it is easy to show that

(B.9)
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Then, we formally have:

- ¡s,

, c2 r/+8 = -Í,

.
3 6

Inserting (B.10) into (B.7) we prove (B.2) to order ft2 (we mention that a more indirect

proof has been given in [Ha84], p. 191). The verification that the relativistic density

matrix given in Appendix A fulfils Eq. (2.55) follows along the same lines, and only

the relations (B.10) are required.



Appendix C

IN SECTION 2.4 the integration over the momentum p, needed in order to get the

WK expansion of p, /9S, T and e, could be performed algebraically in closed form

because we introduced the assumption that the corresponding integrands depend on

p only through p, i.e., that they are invariant under rotation in momentum space. In

particular, denoting the angular average of a quantity /(p) by

(C.I)

we made use of the following equalities:

{(p-Vm*)2) =

<(p-V)2T/) = |j

{(p.V)2m') = ip2Am* (C.2)

and

(p. VF) = (p-Vm*) = 0. (C.3)
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To obtain the WK densities, after angular averaging, one has to calculate integrals
of the type

dn

CC.4)

where 0 = 0(A - V - £) and ¿P = ((A - V)2 - m*2)1 2 depend on A. For the cases
n = 1, 2, 3 (and a, b integer) needed in the ft2-order expansion, compact expressions

can be given:

i.a-1
F(l;a,b) =

;a, b) = - j - f(a2 - 4a + 3)4 + (3a - 2ab + 2b - 3)4
£p

+ (b2 - b)4] . (C.5)

For n = 0, one can make use of the relations

F(0; a, b) = F(0- a - 2, b - 2) - m*2F(0; a - 2, b) (C.6)

and if b 5¿ 2

a - 2 , b - 2 ) , (C.7)
' ' 2 - b * " b - 2

to reduce the integrals to one of the elementary cases

F(0; 0, 1) = In '"
m*

F(0; 0, 2) = — arctan — . (C.8)
m* m*
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