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Preface

The secret of getting ahead is getting started.

The secret of getting started is breaking your complex
overwhelming tasks into small manageable tasks,

and then starting on the first one.

Mark Twain

The analysis of crystalline solids played a prominent role in the early stages of the develop-
ment of condensed matter physics (Solid State and Statistical Mechanics) [CL95, AM76].
However, alterations of this “perfect” order are ubiquitous in nature. For many practical
applications we use materials that are weakly or strongly disordered. An outstanding
example are doped semiconductors needed to construct microelectronic devices. Weak
disorder is present in many solids through defects, vacancies or dislocations of the crys-
talline lattice. We say that disorder is strong when long-range order and translational
periodicity break down, even though local order might be preserved. This is the case of
amorphous solids such as glasses, which do not show any kind of long-range order. Dis-
order can be realised in many ways other than structural, such as magnetic, orientational
(in dipolar materials), chemical and vibrational. For this reason, the physics of disorder
is interesting from the point of view of fundamental physics.

Disordered systems display an immense variety of complex static and dynamic phe-
nomena. One of the most interesting, though poorly understood, are those in which the
strong randomness induces the frustration of the ground state and, as a consequence, a
large degeneracy of the lowest-lying states. The canonical example of disordered sys-
tems is the spin glass. The spin glass is the magnetic analogous of a glass. A glass is
an amorphous system that exhibits a dynamical transition from a liquid to a metastable
solid-like phase in which the dynamics is extremely slow. In spin glasses, this freezing
transition is identified with a real thermodynamic transition from a paramagnetic phase
to an “ordered” phase called spin glass.

Even though a spin glass is a useless piece of material from the technological point
of view, it contains a great deal of fascinating physics. In fact, the study of spin glasses
is interesting for fundamental physics not only because they are disordered systems but

X1iX
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also because the simplicity of its modelling makes spin glasses the paradigm of complex
disordered systems. Therefore its study can be useful to understand the behaviour of other
more complex disordered systems such as gels, polymers or ceramic superconductors
[You98]. In this respect it is useful to introduce the notion of complexity. In computer
science a complex problem is a problem that cannot be solved in a time that grows
polynomially with the number of variables [Pap94]. The notion of complex system has
been extended to other fields and gathers a wide range of systems, going from solids to
living organisms and social collectivities [Par02]. For its potential applicability the study
of complex systems has attired much attention in the last years, especially of statistical
physicists, who have tried to understand complex behaviour by reducing the description
to a few relevant variables.

Historically experimentalists and theoreticians working on spin glasses have been
worried about different problems. Even though from the very beginning it was clear
that spin glasses are essentially off-equilibrium systems with very large equilibration
times at low temperatures, theoreticians spent a lot of time trying to understand the
equilibrium properties of mean-field models. Actually, regardless of whether it is relevant
to understand the behaviour of real systems or not, the theoretical treatment of the problem
has required the development of new analytical (e.g. Replica and dynamical formalisms
[FH91a]), as well as numerical techniques (Parallel and Grand Canonical Tempering and
generic Optimisation techniques [MPRLO8b]). These advances have given rise to a new
phenomenology which goes under the name of glassy phenomena from which different
fields have much profited such as neural networks, computer science and disordered
electronic systems.

This thesis is an effort to understand some aspects linked to this phenomenology. The
primary goal is that of emphasising the importance of large-scale excitations in these
systems, an aspect whose complete understanding can provide us with the final solution
to one among the most controversial fields in modern Statistical Physics.



Chapter 1

INTRODUCTION TO SPIN GLASSES

A spin glass is a magnetic material with random competing interactions between mag-
netic moments. As a consequence, the ground state configuration cannot satisfy all the
bonds, and thus is frustrated. The frustration is at the origin of the complex structure of the
free-energy landscape, with many low-energy metastable states that lead to the very slow
relaxation toward the equilibrium state as observed experimentally. This slow dynamics,
also called glassy dynamics, gives rise to a very rich phenomenology with dynamical ori-
gin such as ageing, violation of the fluctuation-dissipation theorem as well as the chaotic
features such as rejuvenation and memory in the magnetic relaxation [VHO796]. Ac-
tually, many of these phenomena are not exclusive of spin glasses, but exhibit striking
similarities with other very different glassy systems such as structural glasses, granu-
lar systems and pinned defects. This is in general attributed to the universality in the
organisation of valleys, saddles and barriers in the complex free-energy landscape.

At high temperatures the system is in a paramagnetic phase. Magnetic moments
flip randomly with time, thus the local magnetisation vanishes: m; = (S;) = 0. At
low temperatures, however, NMR and neutron scattering measurements reveal that spins
freeze in random orientations. Therefore, even though the local magnetisation is finite,
m; # 0, the global magnetisation vanishes, m = % >_;m; = 0, so that it is not a good
order parameter !. In this kind of systems we expect that randomness reduces correlations
to a few spins. Nevertheless there are very long temporal correlations due to the freezing
of the spins. A measure of the local squared magnetisation is given by the average of
the auto-correlation function. This is the order parameter proposed by Edwards and
Anderson [EA75],

gea = lim lim [(S;(t9)Si(to + t))] (1.1)

t—o00 V—oo

The order parameter for anti-ferromagnets, the staggered magnetisation mj, = % El m;e~ " Ti, also vanishes.
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where V' is the total number of magnetic moments in the system and [- - -] and (- - -) stand
for the averages over all the magnetic moments of the system and over all the possible
tp. This parameter measures if there exist different phases in which the system can get
trapped: if the system is ergodic g, vanishes and remains finite otherwise. At high
temperature the system is in a paramagnetic phase so that all the configurations in phase
space are explored and gz, = 0. Below the freezing temperature ergodicity is broken,
so that gz, becomes positive and grows on lowering the temperature until it reaches the
zero temperature value gga (7" = 0). Note that in (1.1) the order of the limits is very
important: in a finite system the whole phase space is sampled in an finite amount of
time so that correlations vanish in the limit £ — oo even if ergodicity is broken in the
thermodynamic limit. Thus, to detect ergodicity breaking one has to take first the limit
V — o0.

The transition into the spin-glass phase is thus a freezing transition in which time-
reversal symmetry (TRS) is spontaneously broken as in ferromagnets. This transition is
of second order in the thermodynamic sense: the first derivatives of the thermodynamic
potentials are continuous, so that there is no latent heat; it is continuous in the order
parameter; and relaxation times diverge as the system approaches the critical temperature
(critical slowing down). Still, this transition is peculiar because there is not a divergence
in the linear susceptibility nor in the specific heat.

In what follows we shall comment on these two aspects and focus on the points which
are most closely linked to the subject of this thesis: the thermal properties and the time-
dependent dynamical effects in magnetic measurements.

1. Experimental facts

The first experimental evidence of spin glass behaviour was reported in 1972 when
Cannella and Mydosh [CM72] found a very pronounced peak in the a.c. susceptibility
for very low fields of dilutions of transition elements in noble metal hosts (see Fig. 1.1).
The position of the cusp determines the freezing temperature 7'y into the SG phase. This
freezing temperature was found to depend on the frequency of the a.c. field T's (w) with
an extrapolated value for very short frequencies different from zero. This finding implies
that there is a transition at a finite temperature 7'¢(0), but that at very low temperatures
the system cannot reach equilibrium within the experimental window. Actually, one
of the most distinctive features of spin glasses is that they show effects over a very
large time window that spans more than 16 orders of magnitude, from timescales (or
inverse frequencies) of 10~2s typical of neutron scattering experiments to 10%s typical
of magnetisation measurements.

1.1  The specific heat

The specific heat contains all the information about the degrees of freedom of the
system. Therefore, information about excitations can be extracted from the analysis of
the specific heat around the critical temperature and at low temperatures.
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Figure 1.1. Peak in temperature of the a.c. susceptibility at a frequency of 0.01 Hz for different spin glass
materials after Cannella and Mydosh [CM72].

At the transition, the specific heat does not diverge, it only shows a broad maximum
at a temperature slightly higher than T’y (see Fig. 1.2). This is due to the nature of the
transition which goes from a disordered paramagnetic phase to a less disordered one,
the spin glass phase. The magnetic moments do not freeze suddenly at T's: spins start
freezing at a higher temperature and follow a gradual process until freezing completely
atT" = 0. For this reason, the specific entropy (s) does not have an abrupt change at 7'y
but decreases rather smoothly with temperature, hence the specific heat is a continuous
function of temperature.

At low temperatures, the specific heat vanishes linearly in 7'. This is a common
feature to other systems such as amorphous materials or structural glasses. Following
Anderson et al. [AHV72] this behaviour can be accounted for if we model the system
at low temperatures as an ensemble of two-level systems with an energy barrier. Each
two-level system is characterised by its energy gap, A 2. Hence, the partition function at
temperature T' = 1/ reads, Z = 1 + e A2

20ne could also extend the argument to a general system where tunnelling processes happen with finite probability at low
temperatures, but this would not change the final result.
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Figure 1.2. Specific heat versus temperature of a spin-glass sample of a dilution of Mn in a Cu matrix.
The arrow signals T's, the temperature at which the peak in the a.c. susceptibility is observed for the same
material (from [WK75]).

The specific heat of each subsystem can be obtained from the fluctuation-dissipation
relation, ¢(A) = 2 ((E?) — (E)?) reading,

c(A)=ﬁ2< e )
(

—_— 1.2
14 e B8)? 42

The energy gaps of the whole ensemble are random variables distributed according to the
density p(A). Therefore, the average specific heat in terms of the variable z = SA is
expressed as follows,

oT) = T/OOo dz p (T z)c(A) 20T p(0) . (1.3)

At low temperature ¢(T') is linear provided the weight of having zero gap is finite, p(0) >
0. Certainly, this is a very simplified model, but the important point to keep in mind is
that there must exist a spectrum of gap-less excitations to have a linear in 1" behaviour.

1.2 Susceptibility
oM

The linear (static) susceptibility x = W‘hfo does not diverge at T’y but shows a

rounded cusp. The susceptibility is related to the correlation functions by the fluctuation-
dissipation relation,

_ 1 - ~(8iS5) — (Si)(S;)
X_VZZJ-X”’ Xij = - : (1.4)
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In the high temperature phase it follows a Curie-Weiss law typical of paramagnets
X = 1/T. Below T} it starts decreasing due to the freezing of the magnetic moments.
At low temperatures, the contribution essentially comes from the auto-correlations, X ;;,
which are related to the local magnetisations m; as follows,

X~ Vi = o (Si) =mi . (1.5)
Since there is no long-range order, the linear susceptibility cannot diverge. Instead, the
relevant order parameter (S;)? acquires long range order and the squared susceptibility
diverges at the transition. Thus, it is useful to define the spin-glass susceptibility as,

1
xsa = 37 2(SiS5)" (1.6)
ij

that diverges at T’y and can be characterised with the usual critical exponents. Further-
more, it is related to the non-linear susceptibility xp;, an observable that can be measured
experimentally because it is related to the magnetisation [Cha77],

2
M=xh—xah® 4 ; xnlzﬂ(ng—§ﬂ2) . (17)

At low temperatures, the linear susceptibility depends strongly on the way the experi-
ment is performed, as expected in an off-equilibrium situation. One of the first phenomena
to be observed were the differences between the field-cooled (FC) and zero field cooled
(ZFC) susceptibilities (see Fig. 1.3). The experimental protocol is the following: FC: the
sample is cooled from above T’y down to low temperature in a small applied magnetic
field; ZFC: the sample is cooled with no magnetic field and then a small magnetic field
is applied to measure xyzrc. After the FC process, the signal for ygrc is stronger than
xzrc and, moreover, reversible to a very good approximation, since one can go back and
forth in temperature and measure the same magnetisation. In contrast, xzrc displays a
sudden irreversible jump when the field is applied and then shows a slow increase until it
merges with the curve corresponding to xrc in the region above T's. This relaxation can
be extremely slow, a fact that is linked to the existence of many deep valleys in which
the system can get trapped depending on the cooling process. At low temperatures, re-
laxation times become so large that only a part of phase space can be explored during
the experimental time window and, thus, leads to irreversibility. This situation is called
weak ergodicity breaking in literature, because in a finite system ergodicity is effectively
broken at finite times.

Irreversibility also manifests in the magnetisation measures, specifically in the differ-
ences observed between the thermo-remanent magnetisation (TRM) and the isothermal
magnetisation (IRM) for not very small magnetic fields. The TRM is the magnetisation
measured when after having cooled the sample in a field, we switch off the field. The
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Tk

Figure 1.3.  ZFC (b & d) and FC (a & c) susceptibilities versus temperature of CuMn for MN concentrations
of 1.08 and 2.02 % after [NKH79]. Curves have been obtained following the protocols described in the text
at a magnetic field of H < 0.05 Oe. Note that at low temperatures both curves are very different and that
only in the region above Tt curves corresponding to both procedures are equivalent.

IRM is the magnetisation measured when after a ZFC protocol a magnetic field is applied
during a macroscopic time. This difference disappears with strong applied fields because
the SG state is erased.

1.3  Ageing
1.3.1 Isothermal ageing

Ageing refers to the dependence of the dynamical evolution of a system upon its
previous history. In spin glasses, it was first observed by Lundgren et al. [LSNB83] in
the relaxation of the ZFC magnetisation. The procedure is the following: cool the sample
from the paramagnetic phase to the non-stationary region. After a certain waiting time
(tw) apply a magnetic field and then measure the growth of the magnetisation during
the observation time (¢). The total time elapsed from the beginning of the experiment
t, = t + ty, is the age of the system. The relaxation was found to depend on both ¢,
and ¢ in such a way that for a fixed ¢, the longer the waiting time the slower the response,
as if the system had reached a deeper metastable sate (see Fig. 1.4). As long as the
applied fields are small, the magnetisation is linear with the field so that the behaviour
of the susceptibilities is the same as that observed for the magnetisations (this is the
linear response regime). Nevertheless, for high fields the ageing process is affected so
differences between both types of measurements are observed [PNS86].

Since the first observations of ageing in amorphous polymers and structural glasses
[Str78], ageing has been observed in many other disordered and non-disordered materials
presenting a slow evolution toward equilibrium such as orientational glasses, supercooled
liquids, gels, foams, granular systems and vortices in superconductors [HVDT00]. The
general procedure is the same as before: quench from high temperature to a temperature
below T’ (typically the temperature at which the system does not equilibrate within the
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Figure 1.4. Decay of the thermo-remanent magnetisation of the AgMn 2.6% spin glass for different
tw = 300, 1000, 3000, 10000 and 30000 s obtained in [OAH85]. The magnetisation is normalised
by the FC value measured just before removing the field (H = 0.1 Oe). In the inset the ageing part of the
TRM is plotted against the adequate scaling variable as discussed inthe text (for details see [VHO96]).

experimental time window), wait during t,, and apply a perturbation. This perturba-
tion can be of any nature: a mechanical stress if it is a polymer or an electric field in
gels. There is ageing if the measured relaxation curve depends on the waiting time (see
Fig. 1.4). Actually, the response to any perturbation can be split into two different
contributions [CK93, CK95]: i) a stationary part that depends only on ¢, and thus is
time-translational invariant; and ii) an ageing part depending on both times. Hence, we
can express the magnetic susceptibility as follows,

X(tobSatw) = Xst(t) + XAG(twata) ; to=t+ 1ty . (1.8)

In a.c. measurements it is usual to analyse the out-of-phase component of the suscepti-
bility " because its signal is stronger than that of the in-phase component x’. In these
protocols, the observation time corresponds to the inverse of the frequency of the oscil-
lating magnetic field: ¢ = 1/w. Because frequencies lower than 0.001 Hz cannot be
reached in magnetic measurements the observation window is limited and thus only the
very early stages of the ageing process where wt, > 1 can be investigated. One finds
that the shape of the imaginary part of the susceptibility can be parametrised as follows,

X" = xh (W) + XA (wts) ; xAG(wtg) ~ 1/ (wta)b } (1.9)

The stationary contribution does not depend on age and vanishes, either as w® with a
small, or as Inw. And, the ageing part is a scaling function of the variable wt, that
vanishes as a power law with an exponent b > 0 (see Fig. 1.5).
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Figure 1.5. Scaling of the x"'-relaxation curves of a sample of CdCry.9Ing.1S4 at T = 8K (T =~ 20K)
for different frequencies w = 0.04, 0.4 and 4H z obtained from [VDA100]. The curves have been shifted
vertically in order to compensate for different equilibrium values, and an off-set time ¢¢ has been added to
account for the fact that the cooling procedure is not instantaneous. The solid line corresponds to a trial fit
proposed in [BCKM98]: X" (w,t) = Xy (w) + [w(t + to)] ™", with b = 0.2 for both temperatures.

In general, the ageing part of any response is a scaling function with a general scaling
variable (see inset Fig. 1.4) [VHO96],

T = M (1.10)

hltw/7]

with 7 being a microscopic time. This scaling function can be very different depending
on the system. The wt, scaling found for the ageing part of the out-of-phase susceptibility
is equivalent to the ¢/t,, obtained in the magnetisation or correlation functions and means
that the relaxation time increases proportionally to the age. This scaling is referred to as
full ageing and is valid for the initial stages of the ageing process when ¢(< t,,) is short.
However, for the larger observation times which can be reached in dc measurements, the
full ageing scaling overestimates the real ageing process in many cases, a phenomenon
known as sub-ageing [VHO ™ 96]. The relaxation time grows more slowly than age, so that
the effective timescale associated with the age ¢ is A ~ t£ with 4 < 1. By appropriately
choosing the effective time A and p one can scale all the curves with the scaling variable
A/th (see inset in fig 1.4).

Another common feature to all glassy systems is that the usual fluctuation-dissipation
theorem (FDT) that relates auto-correlation and response functions through temperature
R = —C/T, does not hold for the ageing part because ageing is an out-of-equilibrium
phenomenon. This can be better visualised in the so-called FDT plots in which the
correlations (magnetisation M) are plotted against the integrated response function (or
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susceptibility x) and the resulting curve is found to substantially deviate from a straight
line of slope —1/T [HOO02].
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Figure 1.6.  Absence of cooling rate effects in the out-of-phase component of the a.c. susceptibility obtained
from [VHO96]. We plot x"’ versus w for the two different cooling processes shown in the inset. Note that
both curves superimpose.

In spite of this common phenomenology, there is a very striking phenomenon observed
in spin glasses: the absence of cooling rate effects in the ageing process. The relaxation
curve measured at temperature 7' < T’y does not depend on how fast the sample is cooled
in the vicinity of the freezing temperature. Only the very late stages at temperatures
close to the final temperature affect the final relaxation signal (see Fig. 1.6). This is
clearly not the case of systems such as disordered ferromagnets, where the evolution
of domain walls at T' < T is activated over energy barriers. In the latter, relaxations
are cumulative so that the previous cooling history amounts to a larger effective waiting
time [HVDT00]. The conclusion that can be drawn from this finding is that, in spin
glasses, ageing at temperature 7 does not bring the system closer to its equilibrium state
at a lower temperature 75.

1.3.2  Temperature shift experiments

Recently more sophisticated protocols with magnetic perturbations applied at differ-
ent stages of the ageing process and temperature shifts have been proposed [RVHOS87,
GSN*88]. From these experiments new dynamical effects have been observed in the
out-of-phase susceptibility which are closely related to the disentanglement of the age-
ing process at different temperatures. These are the rejuvenation and memory effects to
which much attention has been devoted [VHO196, YLBO1, BDHVO1, BB02]?. The

3The same effects have been observed in thermo-remanent measurements.
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Figure 1.7. Effect of a negative temperature shift 12K — 10K — 12K in the time dependence of x"
in a sample of CdCry.7Ing.3S0.4 (Ty = 16.7) at frequency 0.01 Hz obtained after [RVHO87]. The inset
shows the relaxation measured during the time spent at 12K together with the reference curve obtained for
relaxation at 12K with no temperature shift.

protocol is the following: quench the sample from the paramagnetic phase down to a
temperature 717 below T';. Then measure the response to an alternate field of frequency
W, Xac(w), during t,,. Afterwards, change the temperature by an amount AT, and mea-
sure the response at 7o = T7 + AT during %,,. Then, the temperature is set back to the
initial one T7. If AT is negative (see Fig. 1.7), one observes that after changing the
temperature the relaxation process starts abruptly from a higher value. The relaxation
process does not slow down, but restarts again regardless of the thermal energy reduction.
This chaotic-like effect is called rejuvenation. Moreover, when heated back to 7% the
relaxation continues exactly from the point where it left it before cooling the sample down
to T5. This is the so-called memory effect (see the inset in Fig. 1.7) . These effects are not
found in positive shifts of temperature. In this case one observes successive rejuvena-
tion processes upon temperature changes. Therefore, it seems that whereas ageing at low
temperatures does not affect ageing at higher temperatures, ageing at higher temperatures
is able to erase all the memory of the previous thermal history. Of course, these effects
take place provided the temperature difference is sufficiently large since otherwise age-
ing at different temperatures becomes cumulative. This has been interpreted in terms of
hierarchical dynamics: each level of description or length scale has its own independent
dynamics. To each temperature one can associate the length scale explored at ¢,, so that
if length scales at different temperatures are sufficiently separated, the ageing processes
at different temperatures are independent [FH88b, BDHVO1].

These effects can be better visualised in the temperature cycling protocols [DJIN99]
(see Fig. 1.8), in which the " is measured as a continuous function of temperature at
constant cooling rate. In a second run the same procedure is followed but several stops
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are made at a reference temperature, 7" < T, and the system is let to age during 2, .
Then the cooling down is resumed. On heating back, one can observe that " shows a big
dip close to T and, exactly at 7", x matches the values reached at the end of the ageing
process (see Fig. 1.8). Thus, the memory of the ageing process has been kept in the
system during all the cooling protocol. All these memory and rejuvenation phenomena
have been recently observed in other materials such as disordered ferromagnets, dipolar
glasses, polymer glasses (PMMA) or gelatin [HVD 100, JVH1T98, VHO196].

LI B BV, T
1—>— Decreasing T ~
] Increasing T p¢ =
Reference 200
0.02 1 7
. 100
~—~
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;U/ 30 Ts& ) 70
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. T=I2K
ageing at
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Figure 1.8. Temperature cycling experiment in the x" of the CdCri.7Ing.3S¢.4 from [JVH98]. While
cooling down at a constant rate two stops have been made at 12K and 9K during 7h and 40 min respectively.
The solid line corresponds to continuous reheating after continuous cooling. In the inset the same experiment
is shown for the CuMn spin glass from [DJN99]

We have to stress, though, that the recovery of memory is not always perfect. If AT
is too small, the stay at 75 affects the ageing at 7 so that an effective time (smaller
than £,,) has to be added to take into account the time spent at 7%. Moreover, for short
times after the heating process, there is sometimes a small transient known as memory
anomaly [SVDV02]. This anomaly is a non-monotonous function of AT. For small
AT the reference curve is reached from below whereas for larger AT perfect memory is
reached from above.

1.4 Materials

Since the early seventies when this new magnetic behaviour was found in diluted gold-
iron alloys, more and more different classes of spin-glass materials have emerged [BY 86,
Myd93]. These can be classified according to the nature of the magnetic interaction.

The first spin-glass materials studied belong to the RKKY category (for Ruderman and
Kittel [RK54], Kasuya [Kas56] and Yosida [ Yos57]) named after the particular interaction
at the origin of the spin glass behaviour. In these materials the magnetic interaction is due
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to the scattering of the conduction electrons surrounding the magnetic moments, which
leads to an indirect exchange interaction which oscillates strongly with the distance to
the magnetic moment [AM76],

cos (2kpT)

(kpr)®

J(r) = J (L11)

where kp is the Fermi wave vector of the host metal and Jy and ¢ are constants. The
randomness in such systems is realised by the random position of the magnetic impurities
which leads to alternate sign of spin-spin interactions. This class includes crystalline
metallic solids such as Au, Ag, Cu or Pt with sufficiently diluted magnetic impurities
such as Fe or Mn, but also alloys with rare earth components (e.g. YDy or ScTb) as well
some ternary systems (e.g. La;_;GdzAls).

Another class are insulating spin glasses such as Eu,Sr;_ ;S in which the Eu is sub-
stituted by the non-magnetic Sr. The same features are found in other materials where
Mn is the magnetic constituent and the role of S is played by Cd, Cr or Z. In this alloy
the competition of interactions appears because nearest-neighbours are coupled ferro-
magnetically whereas next-nearest-neighbours are coupled anti-ferromagnetically. It is
interesting to note that for low Eu concentrations the system never develops magnetic or-
der at low temperature whereas for large x the system orders ferromagnetically. Thereby,
this kind of materials can also display transitions changing x and also exhibit reentrant
phases in the T — z phase diagram [BY86]. This means that for fixed x the material
can undergo a transition from a SG phase to a FM phase at lower temperatures. This
effect is also present in RKKY spin glasses for high enough concentrations of magnetic
impurities.

Another class of spin glasses are amorphous materials compounded by rare earth
and transition metals such as Fe;Ni;_, or La,;Gd;_,. However the microscopic origin
of the interaction is difficult to determine. Besides, one can also find spin glass be-
haviour in magnetic insulators and even in systems with no magnetic component such
as ferroelectric-anti-ferroelectric mixtures (e.g. RbHoPO,4 and NH4H3POy) in which the
role of the spin is played by the dipolar moment or molecular glasses (e.g. mixtures of
para- and ortho- hydrogen) in which the orientation of the electric quadrupole moment
is frozen at low temperatures.

2. Theoretical facts

The theoretical activity in the field began in 1975 when Edwards and Anderson [EA75]
formulated a model that, leaving aside the microscopic details of the real system, captured
the essential physics of a spin glass. In this model the magnetic moments S; are taken
to be Ising variables sitting on a cubic lattice. Previously, we have described the RKKY
interaction that leads to SG behaviour in some materials. Even though this interaction
is absolutely isotropic, in these systems there is anisotropy coming from dipolar and
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Dzyaloshinski-Moriya type interactions so that many spin glass materials are effectively
of the Ising type *.
The so-called EA model is defined by the following Hamiltonian,

H=—> Ji;SiS;—h>_ S . (1.12)
(i:4) i

where sums are usually restricted to nearest neighbours and 4 is the external magnetic
field. Couplings are independent random variables drawn from a probability distribution
P(J;;) which in most of the cases is either Gaussian with zero mean and variance o ,

1 J2.
P(Ji;) = Vo2 © 27, (1.13)

or bimodal (also referred to as +.J) with two possible values J and —.J,

1 1
P(Jij) = Eé(Jij—J)—FE(S(JZ‘j—i-J) . (1.14)
Note that in this model, the randomness is realised through the couplings between the
magnetic moments (J;;) and not through the positions, nevertheless, these two types of

randomness are supposed to yield similar results [BY86].

2.1 Basic concepts

Spin glass models are characterised by the frustration present in the magnetic config-
urations due to the existence competing random interactions between spins. There are
two types of variables: annealed and quenched. The former correspond to the magnetic
moments or spins that change with time and temperature, and the latter to the couplings
that are fixed at all temperatures.

= Averages
As usual in Statistical Mechanics the important thermodynamical potential at fixed
temperature 71" and volume (the number of spins) V' is the Helmholtz free-energy,

F=FE—kgTS§S,; F=-Tkg InZ . (1.15)
Here, E is the energy, S is the entropy and kg is the Boltzmann constant. For

simplicity, in what follows we shall take the convention kg = 1.

In general, adisordered system is defined by the Hamiltonian, H(.J, {S}), that depends
on both types of variables. To obtain the free-energy or any thermodynamical quantity
one has two perform an average over the quenched disorder in addition to the standard

4Heisenberg type spin glasses also exist, in this kind of systems the transition into the SG glass order is probably due to
the onset of chiral order [FH91a].
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thermal average in the canonical ensemble. The thermal average at temperature
T = 1/p is taken at a fixed realisation of the quenched disorder and is denoted by
(- )7, where hereafter the label J stands for a fixed disorder realisation. Thus, for a
given observable O we have,

=B H{S}HJ)
©) =% O({5s}) €Z L2 =Y e M) (1.16)
J

{5} {5}

Where Z; is the partition function. The average over all possible realisations of the
disorder is given by,

0y, = / 1 d%; P(Ji)(O)s (1.17)
ij

where (---) denotes the > average over all possible samples. Therefore, the average
free-energy reads, F' = Fy = —kp Tln Z;.

Note that real materials correspond to a single sample of the couplings. Thus, in order
to compare theory with experiments, one would like to compute F'; rather than its
average, F'. Unfortunately, this is impossible because we do not know the microscopic
arrangement of all the magnetic moments and their interactions. Nevertheless, as we
show in Sec. 2.2.2, the free-energy is a self-averaging quantity which implies that in
the thermodynamic limit ¥y = F'. Therefore, the free-energy of a large sample can
be obtained from the disorder-averaged free-energy, F'.

Replica Trick

The computation of the average of the logarithm of Z; is usually a hard task. An
alternative technique is the Replica Method [EA75, MPV87]. The starting point is
the following definition of the logarithm,

n
.ot —1
Inz = lim
n—0 n

(1.18)

To compute the free-energy one needs to calculate the average over the disorder of Z7,
the partition function of n identical and independent systems that we call replicas,

Zr=%e? (oo MU D] (1.19)
{52}
where a is the replica index.
The average free-energy is obtained as follows,
— F
Z7 = e BV f(nH) : f===1lim M (1.20)
V  n=0 n

where we have introduced the intensive free-energy, f. Hence if the analytical con-
tinuation in the limit n — 0 is possible we can compute the average free-energy from
the free-energy of the replicated system.
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This method is very useful to perform the average over the disorder. However, one
introduces an effective interaction between replicas which complicates the analytical
treatment. Besides, it is important to point out that at a practical level the limits n — 0
and V' — oo are interchanged, because in order to obtain f(n, ) one needs to solve
the saddle-point equations obtained in the thermodynamic limit.

m Order Parameter

We have already introduced the g, in (1.1), which is the order parameter proposed
by Edwards and Anderson that measures the freezing of the spins. When dealing
with replicas the relevant order parameter is the overlap that corresponds to the scalar
product between two copies of the system (a, b),

1 X 2 N
qabzvzsg‘ S, a=—F—— > (dw) (1.21)
=1

n(n'__1)1§a<b§n

Note that the overlap can take any value in the range [—1,1]. In mean-field theory,
the equilibrium order parameter, g, is not equal to gz . This difference arises because
apart from the two regions corresponding to positive and negative overlap which
appear due to the breaking of TRS in the thermodynamic limit, phase space is further
splitin several ergodic components. This means that there are different pure states, that
we will label «, which have no connected correlations in the limit V' — oo [MPV87].
The gz, defined in (1.1) corresponds to the average self-overlap of each pure state
and measures the average value of the squared local magnetisation in a single valley
or ergodic phase [MPV87],

_l .2_1 q?
Goa = 37 ;<Sz)a =2 (m) (1.22)

where (- - -),, denotes the thermal average restricted to those configurations belonging
to the same pure state o. Therefore, gg, is the maximum value that g can take.
Furthermore, overlaps between different states do not vanish. As pointed out by
Parisi [Par83], the adequate order parameter that reflects this scenario is the probability
distribution of the overlap, P(q) = P;(q), that for a single sample reads,

S (6(g—aw))s - (1.23)

1<a<b<n

A particularity of the P(q) is that, in contrast to F, it exhibits finite sample-to-sample
fluctuations even in the thermodynamic limit and thus it is not self-averaging (see
Sec. 2.2.2).

2.2 Mean-field theory: the Sherrington-Kirkpatrick model

One of the main achievements in the field is the solution of the mean-field theory
found by Parisi [Par79]. The understanding of such a theory introduced a lot of new
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concepts: the definition of a proper order parameter P(q), ultrametricity and the breaking
of ergodicity which gave rise to the well known picture of a free-energy landscape with
a hierarchical structure of wells within wells.

In what follows we will focus on the Sherrington-Kirkpatrick model (SK), but we
note that the general framework is valid for any mean-field model. The SK model is the
mean-field version of the EA model (1.12) in which all spins interact with each other. It
is defined by the following Hamiltonian,

H==> Ji;SS;i — h)> Si; S+l . (1.24)
1<j i

The variance of the distribution of the couplings has to be chosen in order that the energy
is extensive, so that for Gaussian couplings the distribution reads,

1 g J?
P(Jy) = == 277 0" =55 (1.25)

For simplicity, J2 = 1 in what follows.

In order to solve this model one must use the replica formalism described previously.
This method allows to perform the average over the quenched disorder at the cost of
introducing a coupling between different replicas. In the SK model the average of the
n-replicated partition function can be expressed as [MPV87],

=i V52> 2 VA
Zn = dQup (— e~ VARl (1.26)
/al;[b [ 27
1
AQI =268 +56 Y QL -Z[Q] (1.27)
1<a<b<n
2= Ze[ﬁ (4 Sz Qusesion T, 50 )| (1.28)

{s}

where Z1 is the partition function of a single site and Q4 is a symmetric squared matrix
(n x n) with zeroes along the diagonal.
The free-energy of the n replicas in equation (1.20) is obtained by solving the saddle-

point equations % = 0 from which we get Amin[Q] that yields the maximum
ab Imin
contribution to the exponential in (1.26). The free-energy of the n-replicated system is

immediately obtained as f(n,H) = %
The solution of the saddle-point equations can be expressed in the form of self-
consistency equations which read,

Qab = (SaSb>Z1 = <SaSb> (1.29)
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where the thermal average (- - -) z, is evaluated with respect to Z; (1.28). Hence the P(q)
introduced in (1.23) can be expressed in terms of the Q) ,3’s as well,

P(q) = lim ——— 25 — Qap) - (1.30)

This last result puts forward that the replica matrix Q ab contains all the information about
the low-temperature phase. Moreover, to avoid divergences in the limit n — 0, one must
ensure the extensivity of f(n,7') in (1.20) by imposing that the sum of all the elements of
arow or column of these matrices ), ()4 is independent of the row/column. This is the
so-called replica equivalence property and its implications go further by establishing a
set of identities between the joint distribution of several overlaps (see Sec. 2.1) [Par98].

2.2.1 Breaking replica symmetry

For simplicity let us discuss the case without magnetic field (h = 0). The same results
are also found in the case in a field that will be discussed more in detail in Sec. 1.1.1.

Usually in pure systems there is permutation symmetry among replicas and thus all the
elements in the ()4, matrix are equal. This is the solution that corresponds to the replica
symmetric ansatz (RS) that holds in the high temperature paramagnetic phase where all
the elements in the matrix vanish, Q,; = ¢ = 0. On lowering the temperature, it turns out
that the stability matrix ( or Hessian) , H = 36231?%’ develops negative eigenvalues so
that the symmetric solution becomes unstable. This determines the transition temperature
T. = 1. Below this temperature, there is no longer symmetry among replicas and a replica
symmetry broken ansatz (RSB) has to be proposed. The specific way to break replica
symmetry was found by Parisi [Par79].

Thus, at the transition there are two symmetries which are spontaneously broken:
i) time-reversal symmetry (TRS) (or Z5 symmetry, as well as in ferromagnets) and ii)
replica symmetry (RS). The latter means that there are more than two pure states, i.e
states whose connected correlations at long distances vanish (namely the states with
magnetisations =m which exist in a ferromagnet and that here would correspond to
+qgga)- The (euclidean) distance between two pure states («, 3) is related to their overlap,

2 1 g2 1
dop = W; (5? - Si) = 5 (asa — dap) (1.31)

and the distribution of the overlaps is the order parameter (1.23).

The consequences of this broken ergodicity formally expressed as RSB are twofold.
First, the organisation of the states is such that they follow the structure of an ultrametric
tree. Ultrametricity means that given three replicas a, b and c the distances between
them are such that,

dgp = max{dgc, dpc} - (1.32)
Geometrically this means that with the relative distances between a set of three replicas
(or states) we can construct triangles which are either equilateral or isosceles with the
two equal sizes larger than the other one.
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And second, the order parameter has strong sample-to-sample fluctuations in the low-
temperature phase. This is equivalent to say that the joint probability of two overlaps
does not factorise,

P (q1,92) # P(q1) P(g2) (1.33)

Parisi matrices

The simplest way in which one can break replica symmetry is the one-step RSB ansatz.
In this scheme, the n replicas are divided into m blocks, each containing n/m replicas.
The elements of the matrix ()4 can take two different values: ¢ if replicas belong to the
same group and gy if replicas belong to different groups. The (), matrix is constructed
with m X m boxes along the diagonal. The elements inside these boxes are equal to g3
(we recall that the diagonal terms are equal to zero) and g in the off- diagonal bocks as
it is shown below for the case n = 9, m = 3,

0 ¢@ 1 9@ 9@ 9 9 9 9
g1 0 g g 9@ 9 9 g g
g1 g O g 9 9 9 G0 9
qg0 40 9o 0 1 &1 g 9 9
9 9 9 ¢ 0 g g g g (1.34)
9 9 9 ¢ ¢ 0 g 90 9o
g 90 g g g0 9o 0 a1 q
9% 9 9 g 9 9 a 0 ¢
9% 9 9 g 9 9 a ¢ 0

From (1.30), within this ansatz the P(q) consists of two peaks at ¢ = g1 and ¢ = qo,

Pla) = lim s l(n=m) bla — )+ (m—Dilg — )] (139)
= m (g —qo) + (1 —m)i(qg — q) (1.36)

as is shown in Fig. 1.9. Note that for integer n, m is an integer between 1 and n. However,
once we have taken the limit n — 0, in order to keep P(q) non-negative, m must become
a real number in the range [0, 1].

This is the solution found in a generic class of mean-field models known as p-spin
models for p > 2 that will be addressed in Sec. 1.1.

The final solution to the SK model is obtained by iterating the previous scheme an
infinite number of times. This is the so-called full-step RSB. The elements of the matrix
become a continuous function ¢(z) of the parameter z € [0, 1] that is in turn a function
of temperature. x is the equivalent to the size of the blocks m in the one step RSB ansatz
and bears the following relation with the order parameter: dz/dq = P(q). The P(q)
in the low-temperature thermodynamic phase becomes a non-trivial function of ¢ with
support between 0 and gz (see in Fig. 1.9). Note that g has a plateau at gz, which implies
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Figure 1.9. q as a function of z and P(q) in the one-step (fop) and full-step (bottom) RSB ansiitze.

having a delta peak in the probability distribution at ¢ = gg,. For the one step ansatz
one can establish the same relation between the elements of the matrix, ¢; and gy, and
the parameter z. In this case g is a discontinuous function of z (see Fig. 1.9): it consists
of two plateaus with a breaking point at z = m, which leads to the two peak structure of
the P(q) (1.36).

Note that this is true only at finite temperature since, at 7 = 0, g, = 1 and the P(q)
is trivial: P(q) = d(q — 1) °.

We have to point out that the full-step RSB solution recovers the correct thermodynam-
ics because the entropy is always positive. However, the solution is only marginally stable
since the spectra of the eigenvalues of the Hessian matrix extends down to zero [DK83],
implying that the spin-glass susceptibility diverges in the whole low-temperature phase.

2.2.2  Self-averaging and order parameter fluctuations

One of the central points in the treatment of disordered systems is the self-averaging
hypothesis. This hypothesis establishes that all the extensive thermodynamic quantities
X have sample-to-sample fluctuations of variance O(V') so that in the thermodynamic
limit,

2

. X2-X" 1
lim =~V —0 . (1.37)

Voo X

SHere we are only considering the positive region of g. For systems containing TRS in the Hamiltonian we have that
P(q) is symmetric around 0 and, therefore, at T' = 0: P(q) = %J(q +1)+ %6(q —1).
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Such a statement is crucial in order to compare any theoretical result with experiments,
since it means that in the thermodynamic limit averaging over all the set of samples of the
quenched disorder yields equivalent results to those obtained from a very large system
in which we suppose that all the samples, as subsystems, are realised at a time. This
hypothesis is supported by the fact that experimentally one does not observe discrepancies
between the measurements of different samples.

Indeed, Brout (1956) proved the validity of such a statement for short-ranged systems
using the following very general argument. Consider a very large system of volume V'
that is divided in N subsystems of volume v, such that N = V/v is large. In the large
volume limit, keeping N fixed, we have an equally large number of big subsystems. The
free-energy of each subsystem, f;, is, thus, a random variable whose average is extensive
with the size of the subsystem v, f; ~ v. The global free-energy is the sum of the
free-energies of the NV subsystems, 3, y fi ~ N v = V, plus the term accounting
for the interactions between subsystems 3, fi;. As long as the interactions are short-
ranged, the interaction term will be proportional to the surface and thus much smaller
than the sum of the free-energies of each subsystem, which scales with the system size.
Hence, the global free-energy in the thermodynamic limit is a sum of a large number of
random variables. In virtue of the law of large numbers, the total free-energy is a normal
distributed variable with mean F' ~ V and variance ~ V.

Therefore, itis clear that the free-energy is SA, and that the same argument is applicable
to its derivatives. Nonetheless, this property does not hold for the order parameter because
the order parameter distribution cannot be expressed in terms of the derivatives of the
averaged free-energy. This is only possible for the gz, which, in the low-temperature
phase, is related to the susceptibility as follows (1.5),

1- (m?)2 _ 1 —ggpa

T T (1.38)

XN

1—

Which is different from the susceptibility (1.4), x = Tq dq, due to the breaking of
ergodicity at low temperature.

As we have already pointed out, in MFT the order parameter displays very strong
sample-to-sample fluctuations in the thermodynamic limit due to the existence of many
ergodic phases. What is the situation met in short-ranged spin glasses is still an open

question that will be investigated in this thesis.

2.2.3 TAP approach

An alternative approach is the one proposed by Thouless, Anderson and Palmer [TAP77],
who derived coupled self-consistent equations for the local magnetisations m; by making
a high temperature expansion. The so-called TAP equations read,

m; = tanh [ﬁ (Z Jijmi + h; — ﬁz Jizj(l — mf) mz>] . (1.39)
(4] J
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These are found to have a functional form very similar to those of the local magnetisation
obtained in the MFT of ferromagnets except for the Onsager reaction term, JZ-ZJ- (1-m?),
that describes the contribution to the local field acting on spin S; coming from spin S;
itself.

Above T, the TAP equations in the limit V' — oo have only one paramagnetic solution
with m; = 0. However, below T there exist a large number of solutions N that increase
exponentially with size V: N ~ exp[a(T) V] where a(T) is a function of temperature
that vanishes at 7, [BM80]. The important point is that a large number of them correspond
to local minima and saddles with free-energies very close to the ground state. Some of
these solutions (~ V%) are assumed to become in the thermodynamic limit the pure states
separated by infinite energy barriers.

This structure of the free-energy landscape provides a very appealing picture to explain
experimental results. It is believed, at least at a dynamical level, that a finite-dimensional
system is a smeared out version of a MF spin glass. The idea is that there exist many
low-energy states that are relevant in dynamical processes, so that the experimental ob-
servations at finite times would be the result of probing different local minima of the
free-energy landscape.

2.3  Scaling theories: the droplet model

The existence in MFT of an infinite number of ergodic phases is one of the main
differences with the phenomenological theory developed for short-ranged spin glasses by
Fisher and Huse [FH86], Bray and Moore [BM87] and also Koper and Hilhorst [KH88].
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Figure 1.10. Schematic picture of a droplet in 2 dimensions. It consists of a region of spins reversed with
respect to the ground state configuration. The droplet is a compact object of linear size L and volume v ~ L¢
with a surface of fractal dimension ds, S ~ Lds, d—1<ds <d.

The droplet model aims at describing the low-temperature phase of a spin glass using
renormalisation group ideas. Within this picture a spin glass is a disguised ferromagnet
with only one ground state (and its fully reversed configuration) in which the spins
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are frozen in random orientations. Therefore, at equilibrium, the overlap can take two
possible values ¢ = g, and the P(g) is trivial: P(q) = 36 (¢ — gua) + 56 (¢ + gua)-

The low-temperature phase is described by the physics close to T = 0. Thus, at
each temperature well below the critical temperature, a spin glass is described by the
ground state plus excitations or droplets of different linear sizes L. As schematised
in Fig. 1.10, a droplet is a compact cluster of spins of volume L% and fractal surface
L% such that d — 1 < d; < d. The typical free-energy cost to overturn a droplet
of size L is Fzyp ~ Y(T) L? where Y and 6 are the stiffness constant and exponent
respectively ©. The free-energy associated to each droplet is broadly distributed, but as
there are excitations nearly degenerate with the ground state, the distribution has a finite
weight at zero free-energy,

1 [ FL -
p(FL) = @ ; p (@) p(0) >0 . (1.40)

Since the spins at the boundaries have random orientations, itis expected that the energy
cost needed to overturn a droplet is smaller than that needed to overturn a ferromagnetic
domain wall and thus § < d;—l. For this same reason, the spins at the boundaries are
extremely sensible to an external a perturbation and in particular against a change in
temperature: the equilibrium configurations at two different temperatures are different
beyond a crossover length scale [ao7. This the chaotic length associated to chaos in spin
glasses [BM87] which has recently been advocated to be responsible for the rejuvenation
effects observed experimentally [YLBO1] (see Chap. 5).

One of the most controversial predictions of this picture is that the spin glass phase
cannot survive in the presence of a magnetic field, in opposition to the results obtained
in MFT where there is SG order in a field below the AT line (see Sec. 1.1.1). Simple
scaling arguments show that the magnetic field is a relevant perturbation which prevents

the system from acquiring spin-glass order even at low temperatures for length scales

larger than [FH88a],

2

T \im

I = ( )d v (1.41)
h qea

Experimental observations point in different directions [MINT95, PFC99]. Neverthe-
less, as pointed out by Bray [Bra88], the existence of a relevant perturbation does not
necessarily imply that there is no transition in a field.

The thermal exponent 8 plays a central role in this theory. Its sign decides whether SG
order is stable or not with temperature. On the one hand, if # > 0 large regions can be
flipped with a low energy cost implying that zero temperature order is not stable against
thermal fluctuations. When there is a critical point exactly at ' = 0, the ordered domains
survive at a finite temperature up to a length & ~ T~/ that diverges exactly at T' = 0

©The linear size of the droplet here is an adimensional length L = Lyea1 /Lo where Ly is a microscopic length scale.
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so that € is related to the correlation length exponent » = —1/6. On the other hand, if
0 > 0, large droplets happen with vanishingly small probability in the thermodynamic
limit, and, therefore, the zero temperature order is preserved at finite temperature. The
marginal case 6 = 0 is precisely the case of MFT. Since the P(q) has a finite weight at
g = 0, there must be large excitations with a cost in free-energy of O(1). As a matter
of fact, in the SK model the free-energies of the different pure states F'® are independent
random variables with an exponential distribution: p(F®) ~ elfe(F*—Fedlg(F — F,),
where Fy, is the equilibrium free-energy and z(q) is the inverse function of the overlap
g(z) [MPV85]. Therefore, in order to have a well-defined thermodynamics, only states
whose free-energies differ in a constant of O(1) from Feq will contribute significantly at
low temperatures. Hence, we read off # = 0 because p(F') does not explicitly depend
on V((1.40)) and, thus, excitations of any size are allowed with finite probability in the
infinite-size limit.

Measurements of this exponent have been carried out with different numerical tech-
niques. The most famous one is the domain wall method proposed by McMillan to study
excitations in EA spin glasses and finite-dimensional models in general.

2.3.1 The domain wall method

This method is schematised in Fig. 1.11 for a2d system. Itconsists in creating a domain
wall (DW) across the system as follows: first we compute the ground state energy F of a
given sample with periodic boundary conditions (PBC). Then we change from periodic
to anti-periodic (APBC) the boundary conditions along one of the directions of the lattice
and we compute the energy E’ of the new ground state. The configurations of the two
ground states will differ in the existence of a DW of broken bonds along the directions
perpendicular to the direction in which the boundary conditions have been changed. The
cost of creating this DW is the energy difference between both ground states £/ — E and is
expected to scale with system size as LY. RG considerations identify this exponent with
the @ exponent for droplets. The RG approach aims at describing with scaling laws the
behaviour of effective couplings between the degrees of freedom present in the system
at increasingly larger length scales L. The DW created in a system of size L is identified
with the effective coupling at this length scale. In general, it is expected to scale as LY,
so that, in RG language, y is the dimension of the thermal perturbation. The behaviour of
the free-energy close to the 7' = 0 fixed point is, thus, described by the variable T'L Y.
The sign of y determines whether temperature is a relevant operator or not. If ¢y < 0 the
perturbation is relevant and —1/y is identified with the correlation length exponent and
thus 8 = y.

This method allows to create excitations spanning the whole system that are assumed to
be typical and give the relevant contribution to the thermodynamics at low temperatures.
However, even though DW excitations and droplets are compact objects, the equivalence
between these excitations is not clear because it is not evident that the properties of the
surface of a closed line (or droplet see Fig. 1.10) are equivalent to those of an open line
or DW.
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Figure 1.11. Schematic picture of the DW method as described in the text: First we compute the ground
state (gs) with PBC along both directions. Then we change to APBC along one direction, the new ground
state differs from the old one in the existence of a DW along the direction with PBC. The energy cost of this
DW is the energy difference between both gs.

24 Dynamics and relation with experiments

In the droplet model the dynamics is governed by the activation over barriers. The
equilibrium region grows very slowly in time by annihilation of different droplets. The
energy barrier associated to overturning each droplet scales as B ~ Y(T) LY with 6 <
1) < d—1 (see Fig. 1.12). The typical relaxation times are assumed to follow an Arrhenius
law 7,

tr =7l TV (1.42)

Above, Ty is a microscopic timescale that we will omit in what follows by considering
adimensional times, ¢t = t'/7(. Thus, the size of the equilibrium domains grows as L(t) o<
(In t)l/ ¥, The exponential separation between timescales leads naturally to hierarchical
dynamics because at different temperatures the active length scales are very different.
This is an ingredient in common with the hierarchical models inspired in MFT which
have also been proposed to explain the memory and rejuvenation phenomena observed in
experiments [BDHVO1]. This idea had already been introduced by McMillan [McM84d]
who pointed out that at the timescale ¢ only the relaxation of the modes (lengths) whose
relaxation times are ~ ¢ are active, while modes corresponding to larger relaxation times
seem to be frozen.

Hence, in the droplet picture, the length scales experimentally probed in time t are L(t).
Ageing is interpreted as the non-stationary effects which arise when the observation time
is of the order of the age of the system so that ¢/¢,, >> 1 and the size of the dynamically
relevant excitations L(t) is of the order of the size of the equilibrium domains, &(t),
which evolve and age with time. If, on the contrary, the observation time is much smaller

"This is the assumption made by Fisher and Huse [FH88b], other authors have assumed a power law dependence of the
relaxation times reaching similar conclusions [KH88].
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Figure 1.12.  Schematic picture of the energy barrier between two configurations B ~ LY which differ in
a droplet of size L and cost LY. Note that necessarily ¢ > 6, since the barrier is always the rate limiting
process.

than the age of the system, the dynamics is stationary because the system probes the
equilibrated regions.

2.4.1 Ageing of the correlation functions: the FDT violation and the connection
with glasses

This clear-cut distinction between stationary and non-stationary dynamics is also
present in the dynamical solution of mean-field models in the thermodynamic limit [CK93,
CK9513. The dynamical equations can be solved in the large-time limit assuming the
weak long-term memory of the system, i.e. what happened during the early epochs is
not relevant for the large-time dynamics. The solution reveals that the system never
reaches true equilibrium at finite times in agreement with the weak ergodicity breaking
scenario [VHOT96].

Stationary and non-stationary contributions can by disentangled by considering the
auto-correlation function,

O+t ) = 5 3 (S0 + Fu)Siltulc (143

where here and henceforth (- - -) - stands for averaging over the thermal noise or different
dynamical histories. We have already seen that in equilibrium, i.e when ¢,t,, — oo, the
auto-correlation function is equal to gg, (1.1). Here we are interested in the separation
between stationary and non-stationary contributions. We can split the autocorrelation
function into two parts: Cg; and Cag as follows,

C(t + tw,tw) = Cst(t) — gra + Cac(t + tw, tw) - (1.44)

8These results have been shown to be valid also for non-disordered systems such as mean-field structural glass mod-
els [BM94, MPR94b, FH95, CKPR95].
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Where we have defined,
Cet (t) = t31—1>noo C(t + tw, tw) ; tli)r{.lo Cst (t) = {dga (1.45)
and the ageing part is such that,
Iim lim CAg(t + o, tw) — Qga

t—00 oy —00

lm Cac(t+ tustw) =0 - (1.46)

The last equality is a due to the fact that if there is weak ergodicity breaking, a system of
a finite age can explore all the other configurations in phase space in a finite observation
time. Note that these two correlation functions vary at very different timescales. For
t < t, there are only contributions coming from the stationary part and C' > ¢ga;
whereas if ¢t > t,, the main contribution comes from the ageing part C' < gg. Thus
C = g4 signals the crossover between both regimes.

This separation can be found also for the response function R or its integrated form,
the susceptibility: x (¢ + ty,tw) = tijtw R(t + ty,t")dt'. The relation between these
two quantities is such that the ageing part satisfies the fluctuation-dissipation theorem in
a generalised version [CK93, CK95],

_ 1dCu(t)
T dt

X(t,ty) 0Cac(t,t)
T Bt’ t=tw

Ry (t) = Rag(tw, t) = (1.47)
Here the X(¢,t,) is the FDT violation factor. In mean-field models it can be proved
that, asymptotically, X depends on both times through the correlation function, so that
X(t, tw) = X (Cac(t, ty)). In MFT, X depends strongly on the RSB pattern. On the one
hand, in models that display full-step RSB at the transition, there are many timescales and
X is a non-trivial function of C'ag. On the other hand, models that can be solved by the
one-step RSB ansatz have only one relevant timescale. As a consequence, X takes the
constant value m, the size of the blocks in the one-step scheme (1.34), that is a function
of temperature. This class of models, to which, p-spin models belong for p > 2, are
directly linked with the low I" behaviour of glasses (see Sec. 1.1). Glasses have only one
relevant timescale which governs the out-of-equilibrium dynamics. This phenomenon
can be characterised by introducing an effective temperature, Tegr = T/X(Cag), so
that the usual FDT relation is recovered. Remarkably the similarity between glasses
and one-step RSB models goes far beyond: the transition from the liquid to the glass
phase in glasses is analogous to the transition by entropic collapse observed in p—spin
models [pW87, pT87].

2.4.2 Memory, rejuvenation and hierarchical dynamics.

We have seen that any theoretical description of a spin glass must have well sepa-
rated stationary and non-stationary dynamics, but a consensus in the interpretation of
experiments has not yet been reached. The debate has been enhanced by the striking
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rejuvenation and memory effects observed in the ageing process upon temperature shifts
described in Sec. 1.3.2.

In the droplet context the chaotic nature of spin glasses has been advocated to account
for the strong rejuvenation observed when cooling the system from T4 to T = T — AT.
Provided the time spent at low temperatures is enough to grow an equilibrium length
L=(f(T)n t)l/ ¥ larger than the crossover length [, the ageing process will restart
again on cooling the system. On heating back, memory is recovered if there is a large
separation between active length scales at each temperature such that the ageing process
does not become cumulative [YLBO1]. One of the main objections to this interpretation
is that it assumes that dynamics is activated. This would result in strong cooling rate
effects in the ageing process which are not observed experimentally (see Sec. 1.3.1).

There has been another attempt to interpret these experiments in the absence of chaos:
the hierarchical picture. This picture is inspired in the free-energy landscape obtained
in MFT which consists in a system of wells within wells hierarchically organised. The
idea is to translate this structure to real space and associate to each level in the hierarchy
a length scale. As well as in the droplet model, each temperature has a length scale
associated so that temperature plays the role of a microscope revealing the finer details of
the system [BDHVO1]. At T} the system is able to equilibrate a region of size L. Because
the reconformation of smaller length scales has to proceed before equilibrating bigger
domains, the evolution of the domain walls is very slow. On lowering the temperature,
shorter length scales fall out-of-equilibrium so that, as long as there is a drastic separation
between length scales at 77 and T3, one observes the rejuvenation associated to the start
of the ageing process of these smaller regions. Again, memory is recovered if the time
spent at 5 is not too long so that the typical length scales active at 717 are not affected .

3. Simulations

Recently, the interplay between experimentalists and theoreticians has led to the
ideation of experimental procedures trying to provide evidence of the predictions of
different theories [JYNT02b, SVDV02]. For those theoretical predictions that cannot be
experimentally checked, one has to make numerical simulations. The use of simulations
is ubiquitous in spin glasses since the analytical approach has not yet succeeded to yield
any definite conclusion to many problems at both equilibrium and dynamical levels.

Regarding dynamics, one of the main interests is to check whether models repro-
duce experimental phenomenology or not. Remarkably, the three-dimensional EA model
shows ageing in the correlation functions and the susceptibility [Rie93, PRTR01b, PRTRO1a].
However, the chaotic and memory effects have not been observed suggesting that maybe
the timescales explored are too short [PRTRO1b, PRTRO1a]. Despite, some of these
effects have been reproduced in simulations of the EA in 4 dimensions [BB02].

All the same, these dynamical aspects have been investigated only during the last
decade. The main concern has been to work out what is the sound nature of short-ranged
spin glasses, trying to decide which of the two more supported pictures, droplet or MFT,
describes suitably the low-temperature phase of realistic models. At the root of the rather
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contradictory conclusions put forward by several authors are the thermalisation problems
present in any spin glass system, due to the existence of a large number of metastable
states (N ~ €V with low energy that prevent the system from exploring the whole
phase space in a reasonable time. The impossibility to thermalise large systems at low
temperatures raised a long-standing doubt on the relevance that Monte Carlo simulations
at finite temperatures have on the low-temperature physics, as numerical results might
be affected by critical effects. Currently, it is possible to thermalise modest systems at
very low temperatures, thanks to the advance of computer capabilities and of numerical
algorithms [KPYO01, MMZ00], obtaining results compatible with other methods such as
ground state calculations. These results point in the direction that the description of
the low-temperature phase is rather a mixture of both pictures droplet and mean field
giving rise to the so-called TNT scenario (standing for trivial-non-trivial -see Chap. 4-
) [KMOO, PY00a]. Still, on the top of it there are the large finite size effects that affect
finite dimensional systems so that the final answer is yet to come.

4. Scope of this thesis: excitations, OPF and chaos

Dynamical simulations are less hard because there are no thermalisation problems
neither finite-size effects. Then, one may wonder what is the point of investigating
the statics of a system whose experimental phenomenology is that of out-of-equilibrium
systems. Theideais that the characterisation of excitations through equilibrium properties
can give valuable information about the dynamical processes.

The existence of low-lying droplet excitations is typical of many disordered systems
including random magnets and disordered manifolds [You98]. The object of this thesis
is to investigate several aspects of the typical excitations. In this work we shall try to
work out what are the general properties of lowest lying excitations that emerge at finite
temperatures.

We have seen that apart from MFT, any description of the low-temperature phase is
based on scaling arguments that rely on many unproven assumptions. For this reason
many authors have heavily relied upon numerical methods to characterise properly these
excitations. The first approach in this direction was the DW method proposed to estimate
the thermal exponent, #. Nowadays, besides the interest of determining the exponent 8,
the attention has focused on characterising these excitations not only energetically but
also topologically. In this thesis we shall not try to investigate directly typical excitations.
Instead we will try to infer their properties from the equilibrium and dynamical behaviour
observed at low temperatures.

First we shall focus on the study of order-parameter-fluctuations (OPF). MF spin
glasses show strong sample-to-sample fluctuations of the order parameter. This is because
in the thermodynamic limit there exist many large scale excitations with finite probability
that have a very small overlap with the ground state. In a finite-dimensional system this
same situation takes place at least for finite volumes, because large excitations contribute
to the OPF at low T' with a probability ~ L~¢. Therefore, the analysis of OPF is
useful to distinguish between high and low-temperature phases in which large anomalous
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excitations come into play. Moreover, from OPF one can get further information about
the organisation of these excitations. In MFT we know that different states are related in
such a way that the joint distribution of several overlaps fulfils a set of sum rules. Thus,
one can measure the lack of self-averageness of the P(q) through these sum rules to learn,
in return, about the links between different states. For this reason we have investigated
two adimensional parameters that measure these different aspects: the parameter A that
remains finite if OPF do not vanish, and, the parameter G, that, in virtue of the sum rules
valid in MFT, becomes a step function in the thermodynamic limit: G = %@(T e —T).

The behaviour of OPF at very low temperatures can also be studied from a zero-
temperature analysis. This is the spirit of any scaling theory based on RG considerations
trying to describe large typical excitations. Here we will follow a different approach to
investigate low-temperature properties. It consists in studying first excitations, this is to
say the states closest in energy to the ground state. In systems such as spin glasses where
frustration plays a central role, these low-lying states are scattered in phase space. They
can either belong to the ground-state energy valley or to a different energy valley with a
small overlap with the ground state. Our main assumption is that this random character
of excitations is reflected in the spectrum giving rise to what we call uncorrelated energy-
size scenario. In this scenario energy gaps between different excitations are independent
random variables non-correlated with the size of the excitation. On these grounds, we
expect that in the statistics of the lowest excitations is contained the whole information
about the low energy states and, in turn, that of typical excitations. The connection
between first and typical excitations is made through scaling laws that characterise large
size first excitations. Thus, the main interest will be to investigate what low T typical
properties can be inferred from these scaling laws.

Finally, we address a different issue concerning the temperature dependence of the
free-energy landscape. This is the so-called chaos problem. The extreme sensibility of
the equilibrium configuration to a temperature change is one of the central assumptions
in droplet theory. The concept of chaos had also been introduced in MFT. Since free-
energies of different states are random independent variables, the weights of equilibrium
states are expected to reshuffle when temperature is changed [MPV87]. The control of
the changes of the free-energy landscape at finite temperatures is especially relevant at
a dynamical level and recently has attired much attention due to is potential relevance
in temperature shift experiments. Here, it is interesting not only to study what are the
key ingredients leading to static chaos, but also to work out if rejuvenation effects can be
observed in the absence of true static chaos.

5. Summary of the main results

In order to offer a general description of typical excitations a wide number of different
models have been analysed. A lot of time is devoted to mean-field models. The analysis
of these models is useful because we have a good theoretical control on them so that
numerical results for finite systems can be compared with analytical predictions in the
thermodynamic limit.
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This is especially useful in the study of OPF parameters, for which the behaviour in the
thermodynamic limit can be obtained using the Replica Equivalence property. The main
outcome of the numerical investigations of parameters measuring OPF is the following:

i) The study of G and A provides a powerful tool to numerically investigate the tran-
sition of any spin glass model. This is true even when the sizes studied are small,
beyond mean field and also in models without time-reversal symmetry where tradi-
tional quantities such as the kurtosis of the overlap distribution, the so-called Binder
ratio, do not work.

ii) Numerical investigations support the conjecture that, in any spin-glass model regard-
less of whether there is RSB or not, G = 1/3O(T, — T') in the large-size limit.

iii) These parameters take universal values independent of system size at I' = 0. The
study of lowest lying excitations tells us that this universality is reached under two
very mild assumptions: the uniqueness of the ground state and the finite probability of
having an excitation with no gap. Furthermore, from the low-temperature behaviour
of A we can estimate the value of the thermal exponent 6.

At low temperatures we focus on the analysis of lowest-lying excitations. These are
clusters or droplets of volume v and energy cost e that depend on the sample. When the
cluster occupies a finite fraction of the total number of spins v ~ V, a scaling ansatz
can be proposed for the volume and energy distributions. In this situation, the statistics
of these large excitations are described by two scaling exponents that we call as lowest-
droplet exponents: 6; that accounts for the energy cost of first excitations and A; that
describes the probability of having a large lowest-lying excitation. The main results are
the following:

i) From the statistics of lowest lying excitations we can obtain the 6 exponent for
droplets that reads 8 = 6; + Ad.

ii) The uncorrelated energy-size scenario and its predictions are confirmed by numerical
investigations of MF and finite-dimensional models. Within this scenario:

a) The energy exponent is enough to describe the low-temperature behaviour of
energy-related quantities such as the specific heat
b) Overlap-related quantities such as the P(q) are governed by the thermal exponent

0, so that if & = 0, there is RSB.

iii) Numerical results reveal that, in finite dimensions, both finite and large-scale excita-
tions yield the same leading contribution to the low 7" behaviour of any observable.

This last result is linked with the outcome of the study of the chaos and rejuvenation
problem in which large and small excitations play different roles.
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i) Chaos is a large scale phenomenon, so that, only if low-lying excitations far from
the ground state are favoured entropically, a temperature difference can induce the
statistical decorrelation of two identical copies of the system.

ii) The rejuvenation of the ageing process is not necessarily associated to the existence
of chaos, but to the small scale dynamics. This is the situation met when a temper-
ature change leads to the localisation into the deepest minima of an energy valley.
Numerical investigations in a model without chaos, such as the Sinai model, reveal
that, in this situation, dynamics at different temperatures involve very different length
scales. Therefore, at low temperatures the ageing signal corresponds to explore small
excitations that are close in phase space.

This thesis is structured as follows. In chapter 2 we will make a brief overview of the
different models that will be analysed during the thesis. The following chapter is devoted
to the study of the fluctuations of the order parameter (OPF) and of the parameters
measuring them in order to characterise the transition and low-temperature phase of
several spin-glass models. The study of the lowest excitations will be addressed in the
fourth chapter. There we will see how from the study of lowest excitations one can
obtain information about the excitations relevant for the physics at finite temperatures. In
chapter 5 we study the chaos problem in different systems with the aim of characterising
which are the main ingredients that a chaotic system must contain. And finally, we
make detailed numerical simulations to test up to what extent a model with no chaos can
reproduce memory and rejuvenation phenomena. In the last chapter we will present the
Conclusions that can be drawn from this work. For the sake of simplicity many technical
details have been skipped and have been included in several appendices at the end of the
thesis.






Chapter 2

MODELS

The main goal of this thesis is to work out what general properties describe excitations
in spin glasses. For this reason many different models have been studied analytically
and numerically in an attempt to make a unified characterisation of excitations. Usually
spin glasses are modelled as a collection of interacting spins with randomly distributed
couplings. These spin models have the advantage that allow a description of excitations
in energetic and topological terms. Nevertheless, in most of the cases, the numerical
approach limits considerably the analysis because only modest system sizes can be well
studied.

It is also useful to consider disordered elastic systems. These systems share many
of the features of spin glasses including a non-trivial ground state and slow dynamics.
However, the presence of elasticity gives a starting point for analytical and numerical
studies that is not possible in the spin glass case. This has motivated the study of the
directed polymer in random media in 1 4+ 1 dimensions (DPRM). A model that, despite
its simplicity, is believed to possess many of the subtle properties of glassy systems, and
thus it deserves to be called a baby spin-glass [Méz90].

A different point of view is that of random potential models. These models describe
a spin glass in terms of the statistics of the energy levels, so that only a (free-)energetic
characterisation of excitations is possible. We have already seen that the spectrum of
excitations in random frustrated systems is very different from that of a ferromagnet in
the sense that there exist many large-scale low energy configuration states that contribute
to the thermodynamics in the frozen phase. The random model approach offers a much
simpler way to analyse this aspect. Moreover, the analytical approach is possible so that
it gives complementary information to that obtained from the study of spin models.

In what follows we introduce all the models studied in this thesis.

33
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1.  Spin models

The prototypical model for order-disorder transitions in magnetic systems is the Ising
model. In this simple model a magnetic system consists of a set of magnetic moments
sitting in a cubic lattice of d dimensions. Each magnetic moment is reduced to its z-
component so that it is not a vector but a scalar that can take two values S = £1. Spins
interact with each other via an exchange coupling .J;;. The Ising Hamiltonian, thus, reads,

H=— Z JijSiSj — hZSZ' , 2.1

where h is a magnetic field in energy units. Usually the sum is taken over nearest
neighbours (nn) pairs, then in the pure case J;; = J. For d > 1 this model displays a
transition into an ordered magnetic phase. The magnetic ordering at low temperatures,
depends on the sign of J: J > 0 corresponds to ferromagnetic order and the J < 0 to
antiferromagnetic order.

The importance of this model is that, for its simplicity, it is a model for other non-
magnetic order-disorder transitions, e.g. lattice gases or binary alloys.

All the spin models studied in this thesis have this same spirit. The analysis of other
more specific models, albeit more realistic, would not fit in the general plan of this work.
Still, one expects that in the features observed in simple models, most of the physics
relevant in real materials is contained. We have investigated, mostly numerically, mean-
field as well as short-ranged models.

1.1 Mean Field models: p-spin model

The p-spin model is a generic mean-field model for a spin glass. In this model spins are
Ising variables interacting in groups of p spins with p > 2. It is defined by the following
Hamiltonian,

H=— > Jywi Sy Sy, —h> S, Si==+1, (22
11<t2<ip i

where the sum runs over all possible groups of p spins and £ is the applied magnetic field.
Note that the variance of the distribution of the couplings has to be chosen in order that
the energy is extensive, so that for Gaussian couplings it reads ,

2

1 i 9 p!
P(JZ 1p) — \/ﬁe 202 3 g = W (23)

where V is the total number of spins.
1.1.1  Sherrington-Kirkpatrick model
The SK model corresponds to the case p = 2 in equation (2.2),
H=-> Ji; SiS; — h)_Si; S;==+1 . (2.4)
i

1<j
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In Sec. 2.2 we have discussed the behaviour when there is no external field: as T is
lowered the system has a phase transition at 7, = 1 from a paramagnetic phase with
q = 0to a SG phase in which TRS and RS are broken [MPV87]. The case with non-zero
field is different since as TRS is absent in the Hamiltonian it cannot be broken at the
transition. At high temperature, the system is in a ferromagnetic phase with a RS stable
solution with ¢ = g, # 0. However, at lower temperatures, the symmetric solution
is not stable when the system enters the SG phase where RS is broken at infinite step.
This transition is continuous in the order parameter and takes place at the point where
the eigenvalues of the Hessian matrix vanish. This condition draws a line in the T' — h
phase diagram known as the de Almeida-Thouless line [dAT78],

1
T= o /dz e~ 3% sech? (g + %) . (2.5)

The transition temperature for each field A can be found numerically using the self-
consistency equations for ¢ [MPV87]. The resulting line is displayed in Fig. 2.1. As s
schematised in the left panel in Fig. 2.1, below the AT line the P(g) becomes a non-trivial
function of ¢ with support in the range [gmin, gua], Where gmin depends on the applied
field.
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Figure 2.1. AT instability line (2.5). Left: Temperature versus magnetic field obtained from solving
numerically the de Almeida-Thouless instability condition (2.5). Note that at h = 0 T, = 1. The arrows
show the transition points corresponding to the parameters used in simulations in Chap. 3, h = 0.3, 0.6.
Right: Schematic view of the g(z) and its corresponding P(q) below the AT line.

1.1.2  p-spin model,p = 3
This model is described by the following Hamiltonian,

H=— Z Jili2i3SiISi28i3 ; S; = £1. (2.6)

11 <12<13
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We have chosen couplings distributed according to (2.3). Similarly to the SK model in
a field, the 3-spin model does not contain TRS in the Hamiltonian. However, the nature
of the transition is very different. This transition is discontinuous in the order parameter
that jumps from zero to a finite value. The solution below T satisfies the one-step RSB
ansatz described in Sec. 2.2.1 with gy = 0. Thus, only the elements of the ()4 matrix in
the m X m diagonal boxes are different from zero.

This is the situation generically met in p-spin models with p > 2 [Gar85]. The
instability condition %A = 0 of the high temperature RS solution yields the
0Qap9Qbc Qsym
following expression for the transition temperature in the limit of large p [Gar85],

Tu(p) = — <1+21p L) . 2.7)

2v/In2 p(n2)3

We have to point out that even though p = 3 might seem small the results obtained
making this approximation are very accurate, so that we can take 7, ~ 0.65 for p = 3.

These kind of transitions are driven by a collapse of the configurational entropy (also
called entropy crisis) because below 7T the number of states contributing to the partition
function become O(V'). These models have been object of a deep study as they have many
points in common with the glass transition in structural glasses [pT87, pW87, Méz00].
In particular, it is interesting that the breaking parameter m is directly related to the FDT
violation factor in glasses (see Sec. 2.4.1).

These models have also the particularity that at very low temperature the one-step
RSB solution becomes also unstable. The stable solution satisfies the full RSB in a
similar fashion to that described for the SK model in the presence of a high magnetic
field [Gar85].

1.1.3  The spherical Sherrington-Kirkpatrick model

This model is the continuous spin version of the SK model defined above (1.1.1) whose
Hamiltonian reads,

v
H==Y Jijoic; , Y oi=V (2.8)
i<j i=1
Spins are continuous variables —oo < o; < oo that satisfy a global spherical constraint.
Couplings are Gaussian distributed variables with zero mean and variance 1/V.

The properties of the low temperature phase are very different to those of the SK
model [KTJ76]. This model can be solved in several ways: using replicas and using the
eigenvalue spectrum of a large random matrix and its properties [KTJ76]. At T, = 1 it
displays a transition in which the spin configurations condenses on the largest eigenvalue
of the spectrum of the coupling matrix. In replica space, the low temperature solution is
a marginally stable replica symmetric solution with Q45 = gea = 1 — T'. This means
that as well as in the SK model the spin-lass susceptibility diverges in the whole low
temperature phase but as V=% 0 < a < 1.
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1.2 Edwards-Anderson model

The Edwards-Anderson (EA) model is the canonical model of a realistic spin glass.
We will consider the model without magnetic field. We have V' Ising spins sitting on a
cubic lattice of size L and dimension d so that V' = L¢. The Hamiltonian reads (1.12),

H=-) J;SiS;, Si==1 . (2.9)
(1,3
where couplings are Gaussian with a variance O(1). The interaction is short range, so
that usually one spin interacts with its 2d nearest neighbours. In this analysis, we have
also considered the d = 3 model (3d nnn) where spins interact with the nearest and next
nearest neighbours, i.e. one spin interacts with 26 spins instead of 6 spins. The reason
for this is that we expect it to have qualitatively the same features as the 3d model but
with fewer thermalisation problems and smaller finite-size effects.
As we have already noted, theoretically very few is known about models with finite
d. The upper critical dimension above which the MF description is expected to hold
is ucd = 6 [FH91a]. For lower dimensions apart from the Ising chain (d = 1) that
can be solved analytically, only scaling arguments that do not come from microscopic
considerations can try to account for the behaviour of such models at low temperature.
One of the main issues to which many studies have been devoted is the determination
of the lower critical dimension. It is well known that the for d = 1 the transition is at
T = 0 [BMS85]. In the literature [McM84c, BM84, BY88, KHS92, RSB *96b], many
authors have reported that this is also the case also for the two-dimensional Ising spin
glass. The first DW calculations yielded a positive 8 in the 3d implying that there was
a transition at finite temperature [BM84]. However, due to the large finite-size effects
present at criticality, the characterisation of the transition point has only been possible
very recently [MPRL98a, BCF00].

2. The directed polymer in random media

The DPRM belongs to the wide class of elastic manifolds in random media [MP91,
BF93, BBM96, GD9%4, GD95, CGD00, SA00] which describes a wide range of phys-
ically interesting systems such as the domain walls of ferromagnets with weak bond
randomness [HH85] and vortex lattice systems with weak random-periodic pinning cen-
tres [FL78, Grii88, GD94]. We will address the DPRM in 1 + 1 dimensions which is
described by the following Hamiltonian in the continuous limit,

2
Hy[V,h, ] = /OL dz lg (dq;(;)) -I-V()(¢(Z),z)] ) (2.10)

The scalar field ¢ is a single valued function (i.e. oriented. objects with no overhangs
are considered) and stands for the displacement of the elastic object at point z in a one-
dimensional internal space of size L. An example of the ground state configuration and
an excited state is shown in Fig. 2.2. The 1st term in the Hamiltonian is the elastic energy,
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¢

ground state excitation

Figure 2.2.  DPRM: example of the configuration of the ground state (minimum energy) and the lowest
lying excitation for a given realisation of the quenched disorder. Note that ¢(z = L) is the transversal
coordinate of the endpoint of a DP of "length’ L.

k being the elastic constant. The random pinning medium is modelled by the quenched
random potential Vj(¢, z) with zero mean and short-ranged spatial correlation,

Vo(b,2) =0;  Volé,2)Vo(¢',2') =2D3(¢ — ¢')0(z —2') (21D

The main interest is that many exact results are known from this model [HHZ95], and
thus we have a good control of excitations at all levels that can yield valuable hints for
the analysis of more complex spin-glass models. It is in the frozen phase at all finite
temperatures in the sense that its scaling properties are always governed by the T' = 0
glassy fixed point. The interest of this model relies on the existence of anomalously
large excitations with a low free-energy cost ~ L?, § = 1 /3 that bring about very large
(extensive with L) fluctuations of the ground-state end point position A¢. This is the
simplest version of an excitation in a random disordered from which many information
can be obtained because the theoretical analysis is much easier.

3. Random potential models

The random potential models are, in general, models that only provide an energetic
description of the system. Originally, random potential models have been defined by the
statistics of the energy levels {¢; } given by adistribution P({¢; }) without any specification
netiher on dynamics nor on spatial effects. We will also consider models in one dimension
where dynamical rules can be put by hand, so that to each site in a one dimensional box
we can associate an energy drawn from the probability distribution.
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3.1 The random energy (exponential) model

The REM is one of the simplest models of a spin-glass. It was introduced by Der-
rida [Der81] in an attempt to describe a spin glass only by looking at the statistics of the
energy levels. This model is defined by a set of 2" configurations which are drawn from
a Gaussian distribution,

eV . (2.12)

In this model the different energy levels are uncorrelated, so that the joint probabilities
factorise,
P(Ey, Ep) = P(E©)P(E2) (2.13)

implying that all the information is contained in the statistics of a single level. A priori,
this was supposed to describe the level statistics in mean-field models. However, as
pointed out by Derrida, for any generic random p-spin model (2.2) this property only
holds strictly in the limit p — oo. Nevertheless, the analysis of the p—spin model reveals
that the convergence to the REM is very fast and that possibly the low 7" behaviour for
p > 2 is similar to the p — oo behaviour [GM81, Rie92].

This model is solvable analytically. A saddle point equation yields that the average
energy for large V reads E = —f3 % where (- - -) stands for the average over the energy
levels distribution (2.12). From the expression of the entropy,

2
S(T)=V <ln2 - %) (2.14)

it follows that we observe that at Ty = (2 \/111—2) ' the entropy vanishes. Since this is
a discrete model the entropy cannot be negative, therefore below 7'y the system is frozen
into the last available state Ey = — % and the entropy is zero so that the specific heat in
this model vanishes below T';. This kind of transitions where entropy vanishes and there
are a finite number of states which contribute to the partition function is said to be driven
by an entropy collapse. This is precisely the mechanism described above that leads to
the transition in p-spin systems for p > 2 !,

In replica space these transitions are discontinuous in the order parameter g, which
at the transition jumps from zero to a finite value gga, and thus are different from the
transition displayed by the SK model which is continuous in the order parameter. Gross
and Mézard solved the p — oo random p-spin to find that below T’y replica symmetry
was broken in the most simplest way according to the Parisi ansatz: i.e. a one-step RSB,
so that the overlap between states could have only two possible values [GMS81]. In the
TAP approach this discontinuous character is reflected too in the number of solutions

-1
'Note that Ty = (2 Vin 2) is precisely the transition temperature obtained by taking the infinite p limit in expression
2.7).
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(Ns) of the self-consistency equations for the local magnetisations. In the p — oo limit
at Ty there is a jump from Ny = 1 corresponding to the single solution of the PM phase to
N, =2V For p finite, N, is also discontinuous and jumps from one to N, (p) < e*®V
with a(p) not very far from In 2 [Rie92].

In the large-V limit, the number of states above the treshold Ey increases exponentially

Ns = exp [2\/111—2 (B — EO)]. Thus in order to have a finite entropy, levels which
contribute significantly to the partition function will be close in energy to Ey such that
energy differences will be very small e = E — Ey = O(1).

Our interest will be to study the properties at low temperatures. The low-temperature
phase of the REM can be shown to be equivalent to that of the trap model [BM97] in
which enery states are chosen according to an exponential probability distribution,

P(e) Ty (2.15)

= T—fe
where € has been chosen to be negative. This is what we will call random energy expo-
nential model (REEM). Interestingly, in the trap model, the dynamical counterpart of the
entropy collapse is the ageing due to the very long times spent in the deepest minima of
the potential.

3.2 The Sinai model

We have also studied the Sinai model in one dimension [Sin81]. This model describes
the dynamics of a particle under the action of a random force F'(z) which models a
disordered medium [BCGID90]. In general, this is a toy model for a wide range of
physical systems in which activated dynamics over energy barriers play an important role
such as the movement of domain walls or dynamics of dislocations. Recently, this model
was argued to be relevant to describe the unzipping transition of DNA [LNO1]. In our
case we are interested in studying the motion of the pining centre of a domain wall in
a spin glass. In such a system, different domain wall conformations of low energy are
separated by energy barriers. In this very simplified one-dimensional model, each site
corresponds to a different state or configuration with energy V' (z), where z stands for
the phase space coordinate. The Sinai potential is a Random Walk in phase space that
has long range correlations so that energy barriers grow proportionally to the distance,

V() =V(y)?=olz—yl . (2.16)

Therefore in contrast to the REM, the potentials at different sites are correlated. This
model, as well as the DPRM, has no thermodynamic transition. All the thermodynamics
is governed by the absolute minimum and the fluctuations around it. The interest of this
model is that it is explicitly hierarchical because the structure of the random potential is
strictly self-similar and therefore it is very useful to see what is the effect of this structure
of phase space on the dynamics and specially on the rejuvenation and memory effects
observed experimentally.
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V(x)

X

Figure 2.3.  Sinai potential: example of a sample of the random potential where « is the position in phase
space. In the box we plot the amplification of the selected region to show the self-affine character of the
potential .






