
Chapter 5

CHAOS IN SPIN GLASSES

1. Chaos in spin glasses: the droplet model
The chaoticity of the free-energy landscape is an old problem in disordered frustrated

systems [BY86, Rit94]. Recently it has attracted renewed attention due to its poten-
tial relevance in the rejuvenation of the ageing process observed experimentally in ac
susceptibility measurements of spin glasses when changing the temperature [VHO92].

Within the spin-glass context the word chaos accounts for the extreme sensibility of
the free-energy landscape against the introduction of infinitesimal perturbations � such
as a small change in temperature or in the random bonds, or a small applied magnetic
field. The introduction of a perturbation does not take the system out of the frozen phase
but changes the structure of the free-energy landscape, so that the distance in phase space
between equilibrium configurations grows with perturbation strength.

As pointed out in the Introduction such a property lies at the core of the phenomeno-
logical droplet theory proposed for low-dimensional spin glasses by Bray and Moore and
Fisher and Huse [BM87, FH88a]. Within this picture, the relative spin orientations are
increasingly sensitive with increasing distance to an external perturbation � �

� , so that
the equilibrium state changes completely beyond a certain length scale � �� � � � . Consider
the ground state of a given sample. The energetic cost of overturning a droplet is

�
� �

where
�

is a measure of the bond strength and � � � � �

� � � � 1. The spins lying at the
surface are assumed to be very sensible to perturbations, so that when � �� � these can
randomly change orientations. Since a droplet has a fractal surface � �

�
� � � � � , the

energy of the new ground state is increased by a factor � � � � � � � , � being the entropy
stiffness constant. Thus, as long as � �

� � � � , the droplet might be energetically favoured

1We note that � is the zero temperature equivalent of the stiffness constant � �
�

� introduced in the Introduction (Sec. 2.3).
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102 LARGE SCALE EXCITATIONS IN DISORDERED SYSTEMS

at length scales larger than,

� � � � � �
� �

� �

� � � �
� � � �

� � � (5.1)

where � is the so called chaos exponent. This crossover length scale diverges when �
is set to zero but remains finite for any non-vanishing perturbation so that two copies
of the system are completely uncorrelated when taking the limit � � � . Here, like in
phase transitions, the order in which limits are taken is very important: one must take the
infinite-volume limit keeping � fixed and finally take the limit � �

� to obtain meaningful
results.

The existence of chaos under magnetic and bond strength perturbations has been thor-
oughly studied and is well established for mean-field as well as short-ranged spin glass
systems [BM87, Rit94, AFR95, RSB � 96a, NN97]. However, the most intriguing case
is to elucidate whether there is chaos with temperature because this is not understood
at a theoretical level and has been the subject of recent experimental investigation. Ex-
plicit results have only been only obtained for some Migdal-Kadanoff type real space
renormalisation-group (MKRG) studies [BB87, NNH93].

Early studies of mean-field models assumed that there was chaos with temperature
even though with a slightly different meaning. Such an assumption derived from the
knowledge that in the SK model there are many metastable states which have a free-
energy difference of

�
� � � [MPV87]. A change in temperature results in a reshuffling of

the statistical weights of these states, the equilibrium state being a different one. However,
the study of saddle-point solutions reveals that there can exist global solutions with and
without correlations between the equilibrium states at different temperatures [Som85,
Kon89, KV93, FNN95]. The most recent study made by Crisanti and Rizzo [CR02b]
reveals that there is chaos in the SK model but that this effect is very small and very
difficult to observe numerically [Rit94, AFR95, NN97, HK97, BM00, MPP01, BM02].
However, this is not the case in spherical � -spin models where there is a solution in
which the overlap between two systems at different temperatures remains finite for any

� � �� � [Riz01, Riz02].
Certainly, chaos is linked with the existence of low cost system-size excitations which

completely change the equilibrium state. Thus the study of the sensitiveness of the actual
ground-state configuration to a perturbation is another way to understand the role of these
excitations. Besides it is very interesting to analyse the dynamical counterpart of these
excitations to try to understand what leads to strong rejuvenation and absence of cooling
rate effects in the ageing process at low temperatures (see Sec. 1.3).

It is out of question that a system that displays chaos in temperature would exhibit such
effects. Still, it is interesting to study the opposite situation: is it really necessary to have
static chaos in order to observe chaotic effects? The underlying mechanism leading to
strong rejuvenation effects is the large response to a change in temperature. This can be
achieved in the absence of true chaos if the dynamics at different temperatures take place
at different length scales. The restart of the ageing process when lowering the temperature
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would be due to the relaxation of smaller length scales that have fallen out of equilibrium.
This is the alternative explanation proposed by hierarchical models [VHO � 96].

However, it is still not clear whether true chaos exists or not in real systems. Recent
experiments have been interpreted in terms of overlap lengths [JYN02a], but numerical
simulations of the EA model in 3d have not been able to find chaos [PRTR01b, PRTR01a]
but only rejuvenation effects associated to scale freezing in the case of 4d [BB02]. As a
matter of fact, temperature chaos is so difficult to observe in the 3d EA model because
the lattice sizes which can be thermalised are roughly of the order of the crossover length
[ABM02]. This puts forward the idea that if short-ranged spin glasses were chaotic, the
existence of such large crossover length scales would make it difficult to identify static
chaos with the chaotic phenomena observed experimentally, as the typical length scales
grown in experiments are too small. However, we cannot rule out the possibility that at
small length scales there arise weak perturbation regime effects due to the existence of
true chaos at large length scales.

In this chapter we propose a comprehensive study of what type of excitations lead
to temperature chaos and what is their relevance in rejuvenation. We investigate three
different models: the directed polymer in random media (DPRM) [HHH93], the random-
energy (exponential) model (REEM) [Der81] and the Sinai model [Sin81]. The interest of
the DPRM relies on its simplicity that allows us analyse what is the effect of perturbations
through scaling arguments. In turn, we gain the knowledge of how this chaoticity in real
space is seen in replica space mapping the onset of chaos with the onset of replica
symmetry breaking. For this situation to take place it is important that the stable (replica)
solution of the saddle point equations is marginally stable.

The REM and the Sinai models are two well known random potential models. In
the former we will see that the existence of a delocalisation transition leads to chaotic
effects which can yield rejuvenation and memory effects very similar to those found
experimentally [SN00, Kaw01]. The Sinai model is the simplest model where the energy
landscape is explicitly hierarchical. In high dimensions, this problem is equivalent to a
mean-field spin-glass with a continuous replica symmetry breaking solution [MP91]. In
one dimension, however, there is no phase transition: the long-time, large-scale behaviour
of the system is ruled by the zero-temperature fixed point, where the deepest minimum
determines low- � behaviour. There is no true chaos in this model, but still the are
crossover effects leading to embryonic rejuvenation and memory effects.

1.1 Correlation functions; a definition of chaos in replica space
To elucidate the chaotic properties of a system one needs to study the correlations

between two identical copies of the same system, also called real replicas A and B. The
bare Hamiltonian describing each replica is

� �

� �

�
� �

� � . Now, if we introduce a
perturbation � to replica B the global Hamiltonian reads,

�
�

� �

� �
� �

� �
�

� � � � � (5.2)
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where
�

� � � � stands for the perturbation term 2.
In spin systems the usual measure of the distance between the configurations of the

unperturbed replica A � � � � and of the perturbed one B � � � � is the overlap between
both,

� � � �
�

� �� � � � �
� � �� � �� � � (5.3)

where � is the number of spins and the thermal average is taken with respect to the
global Hamiltonian (5.2). The first analytical approaches tried to see whether solutions
with � � � �� � where stable by means of perturbation methods. Following this direction
the distribution of the cross-overlap has been studied. In this situation the system is non
chaotic if the � � � � � � is a non-trivial function of � � � [BM00, BM02]. It is also useful
to define the following adimensional parameters � and � [Rit94],

� � � � �
� � �� � �� � �� � � �� � �� � � 	

�

� � �� � �� � � �
�

� � � � � �
� � �� � �� � �

� � �� � �� � � 	
�

(5.4)

which fulfil the requirement that if the equilibrium configurations are the same (i.e. when

� � � ) � and � are equal to � . Whereas if the system is chaotic these parameters are
smaller than � in the thermodynamic limit 3.

Here, we will follow a different approach. From the point of view of configurational
space one can address the problem by probing directly the free-energy landscape. In
a random system, the free-energy is also a random variable with a certain distribution
law whose average is

� � � �

 �

� . Thus the value of the free-energy for a certain
realisation of the couplings has a deviation from the mean:

� � � � �
. To study the

change in the free-energy landscape under a perturbation, we need to analyse if the free-
energy fluctuations of systems � and � are correlated when � �� � . We can construct the
following correlation function [FH91b],

� � � � � � � �
�

� � � �
� � � � �� � �

� � � � �
� � �� � � �

� �
� � � � �

� � � � �
� � � (5.5)

If the correlation function vanishes at large length scales


 � �
�  �


 � �
�  � � � � � � � � �

� (5.6)

this implies that the free-energy landscapes of � and � decorrelate completely. If this
statistical decoupling takes place in the thermodynamic limit even when the perturbation
is arbitrarily weak, � �

� , we say that there is chaos. The measure of chaos was

2Note that here the global Hamiltonian corresponding to � is � � � � �� � � � �
� � .

3We have to point out that one has to be careful when investigating these parameters close to the critical temperature
where parameter � might vanish even in the absence of true chaos [Rit94].
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originally introduced in terms of correlation functions by Bray and Moore [BM87], who
put forward that in a chaotic system the correlations should vanish exponentially as �

� � � � � �
�

� � � � � � under the addition of an external perturbation � . This is the case of spin
glasses when a magnetic field is introduced or the random bonds are perturbed. However,
here we assume that there is chaos when correlations vanish in the thermodynamical
limit, even if the decay is not exponential. In this situation, one can still define an overlap
length scale signalling the crossover between a weak perturbation regime with a power-
law decay, to a strong perturbation regime with a faster decay that might be stretched or
barely exponential [SY02].

Our main concern is to analyse the temperature chaos problem. Already a very simple
argument can help us to make some insight in what are the relevant ingredients leading
to a significant change in the free-energy landscape when the temperature is shifted. If
we consider a system with

�
different states of energies � � with a given statistics, the

partition function at temperature �
� � � � reads � � � � � � � � �

�
� � � . Consider two

systems � and � at different temperatures very close to � such that � �
�

� � �
� � �

and � � �
� � � � � � , with � �

� . Using the thermodynamic relations for the entropy
� �

�

� �

�
�

and the heat capacity �
�

�
� �

�
�

we obtain that the free-energy at � � reads,

�
�

� �
� � � � � �

� � � � �
�

� � �
� � � � � �

�
� �

�

� (5.7)

Hence, up to order � � the difference of free-energy between both systems for a given
realisation of the disorder has an entropic origin 4,

�
� � � � �

�
�

� � � �
� � � � �

�
� �

�

� � � � � � � � � � � � � �
�

� �
�

� (5.8)

This result can be used to simplify the expression for � � in (5.5). We observe that the
numerator and denominator in � � can be reexpressed as follows,

� � � �
� � � � � � �

�
� �

�
� � � � � � � � � � �

�
� � � �

�
� � (5.9)

� � � � � � � � � � � �
�

�
�

� � �

�
�

�
� � � � �

� (5.10)

As long as � � is small, � �
�

� , thereby we can expand numerator and denominator to
obtain the following result for � � ,

� � �
� �

�
�

� �

� �

�

� � �
� � � � �

�
�

�
� � � � � � � �

� �

�

� � � �
� � � � � � � � � � (5.11)

where we have used that
�

�
� �

�
�

�
� � � � . In the last equality we have defined the

susceptibility �
� which measures the response of the system to temperature changes:

4Note that in (5.8) there is no term � � �

� � because we consider � �
� � 	 �

� � �
� � . Considering different � �

� � would
imply a non zero term of order

�

� , but this would not alter the result because the leading term is linear in
�
.
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if �
� diverges in the limit � � � the system is chaotic. In the scaling picture of

spin glasses when we consider temperature changes it is assumed that
�

� � � � � � �
and �

� �
� � � � � � � � � where we have introduced the generalised stiffness constants

associated to free-energy and entropy � � � � and � � � � . Hence we expect that the following
functional dependence for the correlation,

�
� � � � � � � � � � � �

(5.12)

where � has been defined in (5.1) and � � is generalised to � �

� � �
� �

�
� . This same relation

had already been derived by Bray and Moore in [BM87] for any kind of perturbation
in the limit � �

� . On general grounds we expect that if the system is chaotic � � is a
scaling function � � � � � � � with the appropriate overlap length.

The importance of the result in (5.11) is that a system is chaotic if entropy fluctuations
grow faster with system size than free-energy fluctuations. This fact was already noted
by Banavar and Bray in [BB87] in MK spin glasses, and means that the equilibrium state
changes with temperature if there exist excited states with low cost in free-energy which
are very favoured entropically. In what follows we will see that this is the case of the
directed polymer in random media. However, in the study of the REEM we will see that
even in the absence of true chaos, �

� can diverge when we are close to a localisation
transition.

We have to note that this definition of chaos is valid also for other types of perturbation
than temperature changes such as the introduction of a small uniform magnetic field.
There is a consensus on the existence of chaos under this kind of perturbation, however
the mechanism is different as we will see in the analysis of the DPRM. Despite the fact
that different perturbations can lead to different decays of correlation functions, it is very
remarkable that in replica space there exists a unified framework in which chaos acquires
a definite meaning for any kind of perturbation.

1.1.1 The interpretation of chaos in replica space.

In systems which are suitable for replica analysis there can be introduced an equivalent
definition of chaos. Let us suppose that each of the two copies A and B are replicated
further into � replicas. From the disorder average of the replicated partition function

�
�

� � � � � � we can obtain the distribution function of sample-to-sample fluctuation of
the free-energy. This is because when the analytical continuation to �

�
� is pos-

sible [Kar96], �
�

� � � � � � can be identified with the generator of cumulant correlation
functions of sample-to-sample fluctuations of the free-energy as follows,

� � �
� � �

� �
�

�

� � � � � �

� � � �
� � � � � � � 	

� �

� 
 � �
� � � � � � � � �

� 	 � � � 	
�

�
� � 
 � �

� � � � � � � �
�

� 	 � � �

� � 
 � �
�

�
� � � � � � � � � � � � � 	

� �

� 
 � �
�

�
� � � � � � � � � � � � � �

�
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�
� � �

�

�
�

� � � �
�

�

�
� �

� �
� � �

�

� � � � � (5.13)

where � � � � �
�

� stands for � -th cumulant correlation functions of the total free-energies
�

�
�

�
� �

� � � � with
�

� � � � and
� � � � � being free-energies of subsystems A and B

respectively and �
� and � � being inverse temperatures of A and B respectively.

Obviously, the decorrelation of the free-energy fluctuations between A and B is equiv-
alent to the factorisation of the replicated partition function, �

�

� � � � � � � � �
�

�

� � � � �

�
�� � � � . Hence,

� � �
� � 	

� � �
� � 
 � � �

� � 	
� � � �

�

� � � � � � � � �
�

�
� �

�
�

� � � �
�

�
� �

�
�� � � �

�
(5.14)

Note that if the latter result holds, automatically (5.6) holds too. An important remark
is that the order in which limits are taken is crucial to obtain sensible results: the limit

�
�

� must be taken before than the thermodynamic limit � � � and finally the limit

� �
� must be taken 5. We have to stress, that this definition of chaos is general and

holds for generic random systems.
This definition implies that chaos can be regarded as a spontaneous symmetry breaking

phenomenon. In the absence of an external perturbation, A and B are equivalent, so that
one expects the exchange symmetry � � � and also the permutation symmetry among
the replicas in each group to be present. This is usually denoted as replica symmetry.
Besides, it turns out that the disorder-averaged replicated partition function of the � � �

replicas �
�

� � � without any perturbation has an even higher symmetry: it is invariant under
any permutation among the � � � replicas. Now, if (5.14) holds, this higher symmetry
is reduced: after having introduced a perturbation the permutation symmetry remains at
most within each subset associated with A and B. Thus, the perturbation should show
up in the replicated partition function as a symmetry breaking term which tries to break
the full permutation symmetry. Therefore, because (5.14) tells us that this symmetry
breaking happens even with an arbitrary weak perturbation, chaos is a spontaneous replica
symmetry breaking phenomenon. Such a definition of replica symmetry breaking was
introduced under the name explicit replica symmetry breaking first by Parisi and Virasoro
[PV89] in an attempt to give a sound thermodynamic definition for the replica symmetry
breaking phenomena found in the saddle point solutions of mean-field models [Par80,
MPV87].

1.2 Response to temperature changes: a geometrical measure
One of the most interesting issues is to work out the mechanism which brings about

the strong rejuvenation effects in dynamical quantities.

5Note that this is not the usual situation met in mean-field models where the limit � � 	 has to be taken after having
solved the saddle-point equations valid in the infinite-volume limit.
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Specially in models defined in configuration space, it is useful to assign to each state
� � � �

� � � with energy � � an observable
� � independent from the energy of the state. For

instance, in a model describing the position of the pinning centre of an interface, it can
be the spatial position of the state, or in a spin system, the magnetisation of a certain spin
configuration. The thermodynamical value of this observable is thus,

� � � �

�

� � �
� � � � �

� � �
� � � � � �

� � � � (5.15)

We can then construct the following response function,

�
� � � �

� � � � � � � � � � � � � �
� � � (5.16)

In the case of the observable being the position
� � � � � �

�
�

� this is a geometrical
way to visualise temperature chaos. Besides, this observable could be interesting in
pulling experiments of DNA molecules where to each separation between the end points

� of the two chains, there is a (free-)energy associated [LN01]. The study of the distance
between average positions corresponding to different temperatures gives us an indication
of the distance between states contributing to � at different temperatures. If typical states
contributing to � at � � and � � are completely different, then

�
� � � � � will remain finite

as � � � . It can be proved that
�

� � � � � has an upper bound
�

� � � � � �
� �

� , where � �
�

is the value reached if the occupied sites are completely uncorrelated 6.
For small temperature differences between A and B, � � � � � � �

� � . Hence, from
the fluctuation-dissipation relation � � � �

� �
� � � �

� � � we obtain,

�
� � � �

� � � � � � �

� � � � �
� � � � � � �

� � � � � � � �

�
� � � � � � � � � � � (5.17)

where thermal averages are evaluated at the middle temperature � . Note that we have
introduced the variance of the observable which scales as

�
in order to define an adi-

mensional susceptibility, which we expect to diverge in the large-size limit if the system
is chaotic.

2. The Directed Polymer in Random Media
The DPRM [HHZ95] is a simple model compared to spin-glass models.However,

there exist, as well, gap-less excitations that bring about an anomalous response toward
various kinds of weak perturbations [HHH93] including a signature of temperature-
chaos [FH91b].

6Note that if positions are completely uncorrelated the weights are flat so that: � � � � �
�

� � � �
�

�
�

�
� �

�
�

� ��
�

� 	 � �
�

� � �

� .
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The DPRM is an elastic line in a disordered medium that in �
�

� dimensions is
described by the following Hamiltonian in the continuous limit (5.18),

� � � � � � � � � � �
�

� � �

� �
�

�
� � � � �

� �

� �

� � � � � � � � � � � � � (5.18)

The scalar field � represents the displacement of the elastic object at point � in a 1-
dimensional internal space of size � . In the following, we assume that one end of the string
is fixed as � � � � � � while the other end � � � � is allowed to move freely. � is the elastic
constant and the disorder is introduced by the quenched random potential � � � � � � � with
zero mean and short-ranged spatial correlation � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �
� � � .

2.1 Droplet Scaling Approach
First we review and discuss the scaling approach picture [FH91b, HHH93] for the

problem of the anomalous response.
The DPRM is characterised by having a very large (extensive with � ) fluctuations of

the ground-state end-point position. This is due to the existence of anomalously large
excitations with a low free-energy cost

� � � �� � � � � � , where � � is a the typical free-energy
scale cost when � � � . One can depict the DP as a deep valley corresponding to the
ground-state configuration and many branched valleys of low (free-)energy excitations
which for given longitudinal size � differ from the ’ground state’ over a transverse size

� � 7 , � being the so called roughness exponent related with the stiffness exponent � by
the exact scaling relation, � � � � � � .

In a � � � dimensional system these exponents are believed to be exactly � � � � � and
� � � � � [HH85, HHZ95]. The probability distribution function of the free-energy gap
� � is expected to have a natural scaling form,

� � �
� � � � �

� � � � ��
� � �

� � � �
� � �

� � �
� � � � � (5.19)

with non-vanishing amplitude at the origin, �� � � � � � , allowing rare gap-less excited
states [FH91b, Méz90]. These excitations will exist at any finite temperature � for large
enough length scales with probability � �

� � � . These will dominate at large � over
the contributions from the smaller scales and in particular from the typical fluctuations
of order � �

� �
� � � , giving rise to anomalously large fluctuations of the DP around its

ground state,

� � � � � � � � � � � � � �
�� � � � � � � � � � (5.20)

7We note that
�

is here an adimensional length which stands for
� � � � 	 � �

� where
�

� is the Larkin length [Lar70] beyond
which pinning becomes important. The same is true for the transverse length scale associated to

�
,

� � � � �� � � 	 � � � ,

with � � � � �
� .
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The existence of such excitations is of much relevance in the existence of chaos.
Consider a generic perturbation as expressed in (5.2) which triggers an excitation from
the ’ground state’ with a free-energy gain of order �

�
�

�

, when the perturbation is small

�
� � � � �

� . If we consider perturbations such that � � � , under the influence of such
a perturbation, the system in the deepest valley may jump into other valleys with free-
energy gap

�
if the possible gain of free-energy due to the perturbation becomes larger

than the original free-energy gap itself. According to (5.19) the probability of such an
event is estimated as,

� �
�

�
� � � � �

� � � �
� �

�

� � � �
�

� �
� � � �

� �
� �

� � � � � � �
� � �

�
�

�

� �

� � � � �
�

� � �

(5.21)

where we have defined a characteristic length scale called overlap length beyond which
both DPs become uncorrelated introduced in (5.1). Note that � � � � � diverges as �

� � � � �

� with exponent � � � � � � � � , in (5.1) we have called this exponent � as is usual in spin
glass problems. Here we do not use the convention because in this context � is usually
used for the roughness exponent 8.

It is important to note that the above expressions make sense only for short enough
length scales � � � � � �

� � . In this regime the effect of the jumps on physical quantities
can be analysed in a perturbative way because the probability of a jump is small enough.
Let us call this regime weakly perturbed regime. However, in strongly perturbed regime

� � � � � �
� � , standard perturbative treatments will fail because jump events will happen

with probability one.

2.1.1 Correlation Functions

In order to characterise the jump events triggered by the perturbations we have analysed
the correlations of free-energy fluctuations through � � as defined in 5.11. One can also
study other correlation functions such as the overlap � and � � , the disorder average of the
q-th moment of the transverse distance between the end points of the two real replicas,
defined as,

� � � � �
� � �

�

� �� � � � � � � � � � � � � � � � � � � (5.22)

� � � � � �
� � � � � � � � � � � � � � � � � � (5.23)

Nevertheless the information about the scalings and crossovers yield by these quantities
is analogous to that given by � � , so that we will focus our analysis in the latter [SY02].

What is interesting in this study is the fact that apart from giving arguments on the
existence of chaos against any small perturbation for the DP [SY02] we can also give

8Note that in the same way we can define a characteristic length scale in transverse space which is conjugate to
�

� �
� � � ,

�
� �

� � � � � �

�
� �

� � � �
�
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scaling arguments for the crossover to the strongly perturbed regime which will be con-
firmed by the numerics. Here we will investigate the behaviour of � � for two different
perturbation types a change in temperature and applied uniform magnetic field.

In virtue of the analysis made in Sec. 1.1 we expect � � to be a scaling function of
�

�
� � � �

� � going to zero in the limit � � � . And in particular from (5.12) we expect
the following functional form for small perturbations,

�
� � � �

�
�

� �

� � �
�

� � � � �
�

� � �
� (5.24)

In the strongly perturbed regime � � � � � � � , the correlation function may decay faster.

2.1.2 Perturbations

We shall consider two different types of perturbations: the introduction of a magnetic
field and a change in temperature. The interesting point is that even though the system
is sensible to both type of perturbations, the symmetries preserved by each perturbation
are different. This leads to different exponents governing the divergence of the overlap
length, and thus to different universality classes. This is the reflex of the different nature
of the mechanisms leading to chaos in each case. Such a difference will become clearer
in the replica analysis performed in Sec. 2.2.

Uniform Tilt Field

We first consider the application of a uniform tilt field � to the end-point of the real
replica B at �

� � by which the statistical rotational symmetry is violated. In the
presence of the tilt field the Hamiltonian becomes,

�
� �

� � � � � � � � � � � � � � � � � � � � � � � �
�

� � �

� � � � � �
� �

(5.25)

The unperturbed Hamiltonian
� � is given in (5.18). If the string makes a jump

responding to the uniform tilt field over a distance of order � � � � into the next valley,
it obtains an energy gain of order � � � � � with characteristic exponent �

� � � � � � .
Therefore we find the overlap length (5.1) to be [Méz90],

� � � � � � � � � �
� �

� �
�

� (5.26)

Temperature Change

The thermal perturbation does not break the translational symmetry present in the
unperturbed Hamiltonian, but we will see that breaks the symmetry between replicas
noted in Sec. 1.1.

If we consider the introduction of a slight temperature difference between the two real
replicas A and B , we expect that �

� � � � based on the following observation made
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by Fisher and Huse [FH91b]. They conjectured that valley-to-valley fluctuations of
the energy and the entropy are just that of a sum of random variables put on a string
of length � . Thus the amplitude of these fluctuations scales as �

� �

�
� � � and

�
� � � � �

� � � . However, it is argued that the free-energy is optimised so that these
wild fluctuations of energy and entropy cancel out to yield much smaller valley-to-
valley free-energy fluctuations,

�
� � � � � � � � with � �

� � � � Such considerations
can be confirmed numerically [FH91b]. Actually , the exponent for the free-energy
fluctuations is believed to be exactly � � � � � which is smaller than � � � . A slight
temperature-difference between the two replicas A and B, induces one of the two
replicas to jump into a different valley taking advantage of the large gain in entropy.
Such a gain should typically scale as

�
� �

�
� � � � and therefore �

� � � � and �
� � �

� �
�
.

From (5.1), one then finds the overlap length as [FH91b],

� � � � � � � � �
� �

�

� �
� � �

� (5.27)

Going back to the previous analysis of � � for this particular perturbation, we recall
that the susceptibility �

� is proportional to the ratio between entropy and free-energy
fluctuations so that,

�
�

�
�

� � � � � �

� �
�

�
� � � � �

� �
� �

�
� � � �

�
� (5.28)

Therefore for any finite temperature there is chaos in temperature, since �
� diverges

in the limit � � � . Only exactly at �
� � the susceptibility vanishes as expected

from the fact that entropy vanishes.

As we have summarised previously, what is crucial is the role of entropy. In the so
called Larkin model [Lar70], in which the effect of pinning is modelled by quenched
random forces with short ranged correlations, entropy plays very little role and free-
energy is dominated by energy so that there is no temperature-chaos (see [FLN91]),
this is the case also of the Sinai model as we sill show in Sec. 4.

2.2 Replica Bethe Ansatz Approach
Now let us turn to the replica approach introduced in Sec. 1.1.1 to address the chaos

problem. We start from the partition function of � � � replicas: � and � and their �
copies. It can be expressed by a path integral over all possible configurations of � � �
replicas labelled by two indexes � � � � � and � � � � � � � � � ,

�
�

� � � � � � � � �� � � � �

�
��

� �
�

� � �
� � � � � � �

� � � � � � �
� � � � (5.29)
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where we have introduced the dimension-less effective action,

�
� � � � � � � � � � �

�

� � �

��
�

� � �

�

� � � �

�
� � � � � � � �

� �

� �

� �

� � � � � � �� � �
�

� � � �
� � � � � � � � � � � �

�
� � � � � �

��
(5.30)

To obtain the last equation we have used that the random potential has short range corre-
lations.

The effective action (5.30) has several important symmetries. First, it has a symmetry
under global rotation in the � � � � � plane and second, it is symmetric under all possible
permutations among the � � � replicas. Let us call the latter as RS (replica symmetric)
for simplicity. As we explained in Sec. 1.1.1 our primary interest is how the RS is broken
by infinitesimally weak perturbations.

Now we focus on the study of the disorder averaged partition function �
�

� � � � � � . In
the absence of perturbations this problem can be solved by using the well-known mapping
to an � -body imaginary time quantum mechanical problem in one dimension, as noted
by Kardar [Kar87, Kar96]. The advantage of this approach is that one can find the exact
ground state by means of the Bethe ansatz. Moreover, from the latter one gets many
hints about how to construct the relevant excited states. In what follows the main steps
in this procedure are outlined to emphasise several points which will become relevant
in the analysis of the perturbation. The path-integral of the partition function defined in
(5.29) through the action in (5.30) can be reinterpreted as that of a quantum system in
imaginary time, with the longitudinal coordinate playing the role of time. In the absence
of perturbations the Schrödinger equation reads,

�
�

�
� �

�
� � � � � � � � � � � � � � � � �

�
� � � � � � � � � � � � � � (5.31)

with the following Schrödinger operator for � � � -bosons,

� � � � �� � �

� � �

� �

� �

� � � � � �
� �

� � � � � � �� � � � �

� � � �
�

� � � �
� � � � � � � � �

�
� � � � (5.32)

The 1st term represents the kinetic energy. The 2nd term stands for the attractive short-
ranged interactions between all possible pairs of replicas (excluding unphysical self-
interactions which are absent in lattice models). Let us note that even though we have
two different groups of identical particles (bosons), A and B, the Schrödinger operator
has an even higher bosonic symmetry: it is symmetric under permutations of all the � � �

replicas. Therefore, the ground state will contain this symmetry. This is nothing but the
RS we mentioned above.
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In the large � (large time) limit, the partition function will be dominated by the eigen-
state of the Schrödinger operator with lowest eigenvalue (energies) including the ground
state. The ground-state wave function is well-known to satisfy the Bethe ansatz read-
ing [Kar87],

� � � �

�
� � � � � � � � � � �

�
� � � �� � � � � � � � � � � � � �

� � � � � � � � � � �

�
�
� (5.33)

where we have introduced �
� � � � � � � � �

�
and the sum is taken over all possible pairs

among the � � � replicas labelled as � � � � � � � � � � � � � � � � � � � � � . The index RS stands
for the fact that this wave function contains the permutation symmetry among all � � � -
replicas. In the following we label this state as replica symmetric (RS). The ground-state
energy is the sum of the kinetic energy of the � � � free-particles,

� � � � � � �

� �

�
�

�� � �
�

�

�
� � � � �

� �

�
� �

� � � �

�
� � � � � � (5.34)

Although the ground state yields the most important contribution to the partition func-
tion, it may not be the only one. If one only takes into account the contribution of the
ground state neglecting all other excited states, one would wrongly conclude from the
only presence of term of order � and � �

in (5.34) and the relation (5.13) that only the
1st and 3rd cumulants of the correlation functions of free-energy fluctuations exist. This
conclusion is definitely unphysical because it can be shown that the 2nd cumulant cannot
be zero. Such a pathology implies existence of continuum of gap-less excited states
which give important contributions to the partition function.

Orland and Bouchaud [BO90] pointed out that the translational symmetry of the
Schrödinger operator allows to construct a continuous spectrum of excited states with
non-zero centre of mass moment. As we show in Sec. 2.3 the resultant partition function
obtained by integrating out the continuous spectrum can be put into the following scaling
form [Kar96],

� �
�

�
� � � � � � � � �

� � � � � �
�

� � �
� � (5.35)

where � in the 1st term represents the average free-energy density. The function � � � � in
the 2nd term is analytic for small � � � �

�
� � �

, implying that the � -th cumulant of the
correlation function of free-energy fluctuations scales as �

� � �
. Thus the characteristic

exponent for the free-energy fluctuation, which is called stiffness exponent, is obtained
as �

� � � � , being consistent with extensive numerical results of transfer matrix calcula-
tions [HHZ95] and other analytical approaches such as the mapping to the noisy Burgers
equation [HHF85].

As Parisi [Par90] pointed out one can construct other excited states in which replicas
are grouped into clusters of bound states. Each cluster is described by a Bethe ansatz
type wave function so that there is replica (permutation) symmetry within each cluster.
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An important assumption is that these clusters are located far enough from each other so
that their mutual overlap is negligible. The latter is allowed if the transverse size of the
system is infinitely large.

In the present context, this means considering an excited state that consists of two
separate Bethe type clusters � �

�
� �

�
and � �

�

� �

�
, with no mutual overlap,

� � � � �

�
�

� �
�

� �

�
�

� �
�

� �

� �
� �

�

� �
�

�
�

� � � � � � (5.36)

whose associated energy is readily obtained as twice the energy of a single Bethe cluster,

�
� � �

� � � � �

� �

�
� �

� � � � � � � � � � � (5.37)

This wave function has the reduced replica symmetry mentioned before, i.e. it is sym-
metric under permutations among A and B groups and the exchange operation �

�
� .

We will call this state as replica symmetry broken (RSB) state in the following.
The important point here is that the gap with respect to the true ground state is of order

�
� �

�
� and thus vanishes in the �

�
� limit. Thus such an excited state should be also

taken into account since we must take �
�

� before � � � in the evaluation of the
replicated partition function. Presumably each cluster of bound states can have its own
centre of mass motion, and therefore it should have the continuum of excited states of CM
motion similar to that associated with the RS ground state mentioned above. Then the
resultant partition function �

�
�

�

� may be put again into the scaling form (5.35), yielding
�

� � � � .
To sum up, replica symmetry is not strictly broken but it is so in a marginal way. As

suggested by Parisi [Par90], the role of these RSB excited states will become important if
perturbations are considered. In the following we generalise the approach of [Par90] and
exploit its implications to study the stability of the frozen phase against the perturbations
considered in Sec. 2.1.

2.2.1 A Perturbative Approach by Replica Scaling Ansatz

Now we address the situation in which the two real replicas � and � are under infinites-
imally weak perturbations. The partition function of the system under such a perturbation
can be formally written as,

�
�

�
�

� � � � � � �
� � � � �

�
�

�

� �
�

� � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � (5.38)

Above, the action �
� � � � �

� � � � is the original one (5.30), which is fully replica symmetric,
and the 2nd one � �

� � � � � � � � � is the perturbation term.
Suppose that we can map the problem onto a quantum mechanical one such that the

corresponding Schrödinger operator becomes,
�

� � � � � � � �
�

(5.39)
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where
� � is the original fully replica symmetric � � � -boson operator given in (5.32)

and �
�

corresponds to � � in the path-integral. As we will see in the following, these
perturbations try to break the RS present in the original system down to the reduced
symmetry: replica symmetric only within A and B subgroups. At this stage, the whole
quantum problem can not be solved exactly. However, we can obtain a useful insight into
our problem by a perturbation analysis as proposed by Parisi [Par90].

From standard perturbation theory we can evaluate the first order corrections to the
original ground-state energy as,

� � �

�
� �

�
�

� � �

� �
�

� � � �

�
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�
� � �

�
�

� �
� � � �

�
� � �

�
� � � � � (5.40)

where the label � stands for the perturbation strength and �
� � �

�
is the ground-state wave

function given in (5.33). The 1st term corresponds to the ground-state energy given in
(5.34).

Following Parisi, we will consider the RSB excited state (5.36). At 1st order in
perturbation theory, we can compute the energy of the RSB excited states as follows,

� � � �
� � �

�
�

� � �

� �
�
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�
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�

� �
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�
� � � � �

� � � � � � (5.41)

where the 1st term is the energy of the unperturbed system given by (5.37).
Let us introduce the difference of the contributions to the partition function �

�� �
� due

to the RS ground state and the RSB excited state,

� � � � � �
�

� � � � �
� � � � �

� � �
� � � � � � � � � � � � � � � � (5.42)

where
� � � � � � � � � � �

�
�

� �
�

� � � (5.43)

is the original ’energy gap’ and the correction is due to the 1st order perturbation,

� � � � � � � �
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�
� � � �
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� �

� � � �
�

� � � �
� � � �

�
� (5.44)

In the following we use the term gap to refer to � � � � � � . If it is large enough, the
contribution of the RSB excited state to the partition function becomes negligible. We
will find that, in general, the correction term of the gap has the form,

� � � � � � � � � � � �
�

� �
�

� (5.45)

Here the symbol � stands for the strength of the perturbation. In general, the correction
term � � � � � � � � � � is polynomial in � but the term which becomes most relevant in
the �

�
� limit is the one with smallest exponent � which hereafter we will call order

of the perturbation. Most importantly, � � �
�

will turn out to be negative for all the
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perturbations under consideration, which means that the introduction of a perturbation
results in a gain of (free-)energy.

If the 1st order correction vanishes, we would have to proceed to higher order pertur-
bation calculations which is not possible without the complete knowledge of the whole
spectrum of excited states. This is the case of the uniform tilt field, however we have been
able to find exact RS and RSB bound states of the system which will allow the evaluation
of the gap � � �

� � � also in this situation. In the other cases, we expect that higher order
correction terms will be of

�
� �

� � and therefore irrelevant in the limit � �
� . Since it

is unlikely that the higher order terms are lower orders of � , these will be also irrelevant
in the �

�
� limit.

Substituting relations (5.45) and (5.43) in (5.42) we can express the gap as follows,

� � �
� � � � � � � �

� � �

�
�

�

� �
�

� � � �
� � � �

�
� � � (5.46)

with

�
� � � � �

�
�
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� �

� � � � �
�

� �

� (5.47)

As long as � is integer and the strength of the perturbation � is small, the contribution
of the RSB state becomes negligible in the thermodynamic limit � � �

9. However,
we have to consider the other limiting case: the �

�
� limit should be taken before

� � � . Now if �
�

� , which will turn out to be the case for all the perturbations under
study, an arbitrarily small perturbation � will induce a level crossing at �

� � � � below
which the contribution of the RSB excited state becomes larger than that of the original
RS ground state. The result (5.46) matches perfectly with our definition of chaos (5.14)
since it suggests that the partition function of the total system factorises in the �

�
�

limit,
� � �

� � �
�

� � �
�
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�

�
�

�
�

�
�

� if �
�

�
� (5.48)

implying a complete change of the free-energy landscape.
Now let us further exploit from the above result to find a more physical picture. In the

absence of perturbations, the logarithm of the replicated partition function has a functional
form (5.35) which reads as, � �

�
�

� �
� �

�
� � � � � � � 	 � � � � � � � �

� �
On the other hand,

(5.46) implies that � � �
� is another natural variable of the replicated partition function 10.

Combining the two, we conjecture the following scaling ansatz,

� �
�

�
� �

� 	 � � � � � � � � �
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�
� � �

� � � �
� � � � � � � �

� � � � � � � (5.49)

9This is a generalisation of an argument used by Parisi in [Par90] for the explicit repulsive case (
� 
 � ) to extract the

following conclusions.
10To treat the replica number � as a scaling variable has been proposed by several authors [HHZ95, Kar96, EK01].
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where we introduced a characteristic length � � defined as,

� �
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� � �

�
�

�
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�
� � �

�

� �
(5.50)

An interesting observation is that if the variable � � � �
� � � is fixed, the limit �

�
�

induces the thermodynamic limit � � � . Then at fixed � we expect,
�

� � � � � � � � �
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� � � � �
� �

� �
’weak perturbation regime’

�
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� �
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� �

� �
’strong perturbation regime’ � (5.51)

The 1st equation means that for small enough length scales, the effect of the perturbation
is small and the partition function is essentially the same as that of the unperturbed system
of � � � -replicas given in (5.35). The 2nd equation is the consequence of having two
statistically independent systems in the limit � � � .

From the above scaling ansatz, it follows that the correlation function of the free-
energy fluctuations � � � � � should have the scaling form

�
� � � � � � � � which goes to � as

� � � � � � 11.
Thus the crossover length � � should be identified with the overlap length � � � �

� � .
The above ansatz implies that the decorrelation of the free-energy landscape between A
and B takes place as a universal phenomenon whose features are classified according
to the order of the perturbation � . In the following, we consider the temperature shift
and uniform tilt perturbations and evaluate the correction to the gap (5.45) explicitly
and extract the strength of perturbation � and the order of perturbation � . Moreover, we
recover the same overlap length obtained via real-space scaling arguments in the previous
section.

The perturbations considered are such that the original symmetry is preserved as much
as possible : the � � � -replica system remains invariant at least under permutations among
the � -replicas belonging to the same subset A and B and the exchange � � � , i. e. the
reduced replica symmetry.

2.2.2 Temperature Change

We have two real replicas in the same quenched random potential � � � � � � � � � that are
subjected to a small temperature difference. The Schrödinger operator for the � � � -
replica system with A at temperature � � and B at temperature � � is the following,

� � � � �

� � � �
� �

� �

� � �
� � �

� � �

� � � �
� �

� �

� � �� � �

� �� � � � �

� � � �
�

� � � �

�

� � � � � � � � � � �
�

� � � � � � � � � �
�

� � � � (5.52)

11The scaling in
� � �

� applies for all correlation functions such as the overlap � and
� � defined in (5.23) [SY02].



CHAOS 119

RS is apparently lost in the operator, but for small symmetric temperature shift � � � �
�

� � � � � � � � �
� we can put the operator in the form,

� � � � � �
�

� (5.53)

where
� � is given in (5.32) and the symmetry breaking terms are the following,

�
� �

� � � �

� � �

� �

� �

� � �
� � �

� � � � � � �

�

� � � � � � � � � � � � � � � � � �

� � � �

� � �

� �

� �

� � �� � �
� � � � � � �

�

� � � � � � � � � � � � � � � � � �

� � � �

� � � �

�

� � � � � � � � � � � � � � � � � � � � � �
� � � (5.54)

Since RS and RSB wave functions are symmetric with respect to the change � � � ,
the expectation value of the perturbing operator is of order � � . Computing explicitly the
expectation value of the delta-interaction term with respect to the Bethe ground state one
obtains [Par90], �

� � �

�
� � � � � � � � � � � �

�
� � � �

�
� � �

�
� � � �

� �

�

� � � � � � � (5.55)

while for the RSB states the correction term vanishes because the bound states of A and
B subsets have no overlap �

�
�
� � �

�
�

�
� � � � � � (5.36),

�
� � � � �

� � � � � � � � � � � �
�

� � � � �
�

� � � � �
� � � � �

� � � (5.56)

Therefore, we obtain that the correction to the gap reads,

� � � � � � � �
�

� � �

�

�

� � � � � � � � � � � � � �
�

� �

�

� � � � � � (5.57)

Note that this expression is invariant under the exchange � � � , which is possible thanks
to the anti-symmetric change in temperature. From the above results, we read off that
the order of the perturbation is � � � and the strength of the perturbation is �

� � � � � � .
Hence, introducing this information in (5.50) yields the same crossover length found in
the real-space-scaling approach (5.27): � �

� � � � � � � .
Notably, applying a random field or perturbing the actual value of the random potential

preserves the same symmetries and is a perturbation of the same order � � � implying
that they belong to the same universality class [SY02]. In spin glasses the situation
seems to be different. Except for MKRG spin glasses [BB87], numerical simulations
show that bond perturbations lead to a fast decay of the correlations whereas temperature
differences result in a much slower decorrelation (if ever reaching total decorrelation).
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This could be either due to the fact that the symmetry breaking term in the action is of
higher order or to the fact that the amplitude of the perturbation term is very small, as
happens in the SK model [CR02b]. In the following section that in the DPRM magnetic
field perturbations are more effective because they have a smaller chaos exponent, in
agreement with the observations made in spin glass systems.

2.2.3 Uniform Tilt Field

Finally we consider the application of a uniform tilt � to one real replica and � � to
the other. The corresponding Schrödinger operator of the quantum mechanical problem
reads as,

�
�

� �
� � �

� � �

� �

�
�

� � �
� � �

� �

� � � � � � �
� � �

�
� � � �

� � � � � � � �

� �
� � �

�

� � � � � �
�
� � �

�

� � � � � � (5.58)

Note that the first two terms are the original operator
�

� given in (5.32). Here not only
the full permutation symmetry among the � � � replicas but also the global rotational
symmetry is lost due to the field. Thus the universality of this perturbation should be
very different from the ones discussed so far.

Now let us analyse the change of the RS state (5.33). One can easily see that the 1st
order perturbation vanishes simply because the total “momentum” of the ground state is
zero. On the other hand, one can also easily note that when a field is applied, the original
wave function is no longer an eigenstate. Fortunately, the exact eigenstate can be found
in this odd situation in which particles belonging to different subsets (A and B) are driven
into opposite directions. The former Schrödinger operator (5.58) can be rewritten into the
fully symmetric form of the original problem (5.32) by shifting the momenta as follows,

�

� � �� � �

�
�

� � � � � � �
� � �

�
�

� � � � � �

�
�

� � � � � �
�

� � �
� (5.59)

Note that this transformation preserves the commutation relations between conjugated
coordinates and moments (i.e. �

�� �
�

�
�

�

, � � � � � � �
�

�� �
�

�

�

, � � � � � ). In terms of these new

coordinates the RS ground state again takes the form of the Bethe Ansatz solution of
(5.33). And, therefore, the final ground state can be obtained from Bethe’s wave function
by undoing the previous shifting of moments,

� � � � � � � � � � � � � � � � � �
� � � � �

� � � � � � � � � � �
� � � � �

� � � � � 	 (5.60)

where � � � � � � � � � � � is the original Bethe ansatz wave function for � � � replicas given
in (5.33). The eigenvalue 
 � corresponding to this wave function is obtained as,


 � � 
 � �
� � �

� � � �
� (5.61)
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Here �
� is the original ground-state energy � � given in (5.34). Although the original

full permutation symmetry is lost in the wave function (5.60), it still describes a sort of
bound state of � � � -particles. So we may refer to it as RS state. In the next subsection,
we will discuss the mapping onto the Sinai model and the physical meaning will become
clearer. The 2nd term of (5.61) gives the change of the eigenvalue of the RS state due to
the perturbation �

�
� �

� � � � � � � � � � � .
Next let us consider the change of the eigenvalue corresponding to the RSB excited

state which again is formed by two separate bound states for A and B subsets. Here it is
useful to note that if all the particles are subjected to the common field, the unperturbed
single-bound-state wave function is still an eigenstate of the operator. Based on this
observation, it follows that the reasons why the unperturbed RSB wave function is still
a valid eigenstate are twofold: i) there is no overlap between A and B and ii) rotational
and replica symmetries are preserved within the same subsets. Thus the eigenvalue of
the RSB state does not change by the perturbation, then � �

� � � � � .
Using the above values of � �

� � and � �
� � � we obtain,

�

� � �
� � �

�

�
�

� � �

� � � �
� (5.62)

We can now read off � � � and � � � � , which yields the overlap length � �
� � �

�
.

Then using (5.50) we find the same overlap length � �
� � �

�
that is consistent with the

result (5.26) of the real-space scaling argument.

2.3 Mapping to a modified Sinai Model
In the previous section we have shown how the crossover from a weakly perturbed

regime to a strongly (chaotic) perturbed regime can be interpreted in replica space as a
crossing of levels corresponding to RS and RSB states. Here we aim at showing how
chaos is explicitly realised in the decoupling of the energy landscape of two different
replicas.

Specifically, we analyse the uniform tilt case and we use the well-known mapping to
the Sinai model (see Sec. 4). to obtain an effective one-dimensional energy landscape for
the free end � � � � . We derive this mapping by considering the spectrum of excited states

� �
� � generated by adding non-zero CM motion to the wave functions given in (5.60) and

(5.36) for the RS and RSB cases. The former is supposed to describe the weakly perturbed
regime � � � � � � � while the latter represents the strongly perturbed regime � � � � � � � .
In order to interpolate between the two limits, one can use a phenomenological model
using a bounded Sinai potential.

Calculations can be made following Bouchaud and Orland [BO90] and are described
in Appendix D. The idea is that the partition function of the � � replicas can be exactly
computed from the excited states described above. These � �

� � are eigenfunctions of the
Hamiltonian with eigenvalue � � . The resulting free-energy has two contributions: the
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ground-state (free-)energy
�

� � and the term accounting for fluctuations,

� � �
�

� � � � � � � � �
� �

�
�

� � � � � � �
� � � �

�
� � � � � � � �

�
� � �

� �
� � �

�

� �
� � � � (5.63)

The free-energy fluctuations depend on an effective Hamiltonian in terms of the magnetic
field � , the end-point position � and a random potential defined at the end point of the
polymer

�
� � � � � � . By means of defining the following rescaled variables,

� �
�

� �
�

� � �
� � � �

�
� �

� ��
� � � � � �

�
� � �

� �
� � (5.64)

the effective Hamiltonian can be put into the form � � � � �
�

� �
� �� � �

, meaning that
fluctuations scale as �

� �
�

as expected. From the above scaling relation it follows that
the effective Hamiltonian has long-ranged correlations in transverse space equivalent to
those of the Sinai potential,

� �
��

� � � � ��
� � � � � � � �� �

�
� � � �

�
� (5.65)

Replica Symmetric case: � � � � � � � �
Here we construct the excited state wave function by adding centre of mass motion
to the ground-state wave function under a uniform tilt (5.60),

� � � � � � � � � � � � � � � (5.66)

� � � � � � � � � � � � � �
�

�
�

� � � � � � � � � � � � � � � � �
�

� 	 � � � � � �
� � � �

�
Within this ansatz the effective Hamiltonian in terms of rescaled variables given in
(5.64) reads,

�
� � � � � � � � � � � � � � � � � � � � � �

�

� � � �

� � � 
 � � � �

� (5.67)


 ��
� � � � 
 ��

� � � � �
�

�
� � �

� � 

�

�
� � �

� � �

By increasing �
�

� � �
, the partition function will be dominated by the minimum of

the effective Hamiltonian � � � � � � � � � � � � � � � � � � � � � � . Then the following physical
interpretation can be made: the end points of the strings � and � are subjected
to the same effective quenched random potential which has the same long-ranged
correlations in transverse space as the Sinai model. There are two competing effects:
an effective Hookian spring acting on the CM which tries to bind together the two
real replicas and the transverse force due to the uniform field that pulls the two end
points in opposite directions and increases with � (at fixed � ).
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RSB case, � � � � � � � �
In this case, the two groups of replicas are assumed to be non-interacting. Thus, we
consider the spectrum of excited states where each group � � � is described by an
independent Bethe cluster with its own CM motion,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (5.68)

� � � � �
� � � � �

� � � � � � � � �
� � � � �

� � � � � �
The partition function can be computed to find the following rescaled effective Hamil-
tonian,
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�
� � � � � ��

� � �� � �
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� � � � � 
 �
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�

� � � �
�

�� �
�� � � � � � �

�
�

� � �
� � � (5.69)

It is interesting to compare the last result with the replica symmetric (RS) one given
in (5.67). Here the two subsets � and � are now subjected to independent Hookian
springs which try to confine the CM of each subset while the total CM was confined in
the RS case. Moreover, the two replicas are now subjected to completely independent
Sinai potentials

��
� and

�� � . Again, the effect of the uniform tilt field amounts to an
effective transverse force

�
� applied at the end points of both replicas trying to drive

them in opposite directions just as in the replica symmetric case.

A phenomenological model for the crossover.
In Sec. 2.2, we conjectured a possible scaling form (5.49) of the crossover from the
weakly perturbed regime at length scales shorter than the overlap length � � where the
RS holds, to the strongly perturbed regime where replica symmetry breaking becomes
relevant,

� �
�

�
� � � � � �

� � � � � � �
� � � �

�
� � � � �

�
� � � � (5.70)

Indeed, the partition functions based on the RS and RSB ansätze have the expected
form: the

�
� � � term which provides the average free-energy � �

� � � � � plus a function
which contains the two scaling variables �

�
� � �

and
�

� �
�

� � �
� � � �

�
� � � � � � � � �

. In
the last equation we have used the relation � � � � � � � �

�
given in (5.26).

Nevertheless, the crossover between the two limits remains an open problem. Here
we propose a modified Sinai model which interpolates between the limits. At length

� the modified Hamiltonian reads,

� � �
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�
�

� �
� � �

�
�

� � �
�� �
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� � � � �

�
� � ��

� � �
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� � �
�� �

��
� �

� � 
 �
� �

�
(5.71)
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where
��

� � � is a bounded Sinai potential with correlations,

�
��

� � � �
��

� � � � �
� � �

�
� � �

�
� with � � � � �

� � � � � � � � � � � � � (5.72)

Here the correlation grows as � � � � �
� for � �

� and saturates � � � � � � for larger
separations � � � . This saturation is equivalent to having a confined random walk
and allows to realise statistically independent Sinai valleys at large separations (RSB).
Actually such a saturation of the effective energy landscape was observed numerically
in the DPRM by Mézard [Méz90].

In Sec. 2.4.1 we analyse the crossover phenomena in detail by a transfer matrix method
and we compare it with the numerical results obtained with the modified Sinai model
defined above .

2.4 Numerical Analysis
In this section, we examine numerically by transfer matrix calculations the proper-

ties of the anomalous response of the DPRM toward various perturbations discussed in
the previous sections. We focus on the anticipated universal scaling properties of the
crossover from the weakly to the strongly perturbed regime through the overlap length
which has not been clarified in previous numerical studies (see however [Méz90]).

First we prepare two real replicas A and B identically except from small perturbations
which we will describe in detail. Depending on the type of problem, we use either
the zero-temperature [HH85] or the finite-temperature versions [Kar85] of the transfer
matrix method to compute the correlation functions. Then we compute the exact free-
energies (or ground-state energies at zero temperature) of both replicas and examine the
correlation of the free-energies � � defined in (5.5).

Numerical details: Specifically, we consider a lattice model on a two-dimensional lattice of size
� � �

as shown in Fig. 5.1. The string of length � is directed along the � axis with transverse
displacements in the direction of the � -axis. The configuration of the string is represented by
the positions of the vertexes “X” in which the configuration goes through, i. e. � � � � �

� � �
with

� �

� � � � � � � . The “gradient” � � � � � � � � �
�

�
� � � � �

is constrained to take only the values�
� or � � . Note that elasticity is realised entropically within this lattice model an thus it does

not contribute to � . The random potential
� � � � � �

is defined on each vertex � � � � �
on which it

takes a random value drawn from a uniform distribution between �

� � and
� � . The energy of a

configuration � � � � � �
is thus � � �

� � � � �
�

� � �
� � � � � �

� � �
. One end of the configuration is fixed

at � � � �
�

and the other end is allowed to move freely. On the transverse direction we have imposed
periodic boundary conditions such that

� � � � �
� � � � � � � � � � 12.

We have examined various system sizes up to �
�

� �
� and have averaged over � �

�
� �

� different
realisations of the random potential. We have used the following parameters for each perturbation:
a) uniform tilt perturbation: we have used the � �

� transfer matrix method and obtained the ground

12The natural unit for the temperature is the scaled thermal energy
�

� �
�

� � where
� � is the unit for the random potential.

In the following, the Boltzmann’s constant is set to
�

�
� � and the unit for the random potential to

� � � � , so that we
will often denote the scaled thermal energy simply as

�
.
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Figure 5.1. The lattice of the �
�

� dimensional DPRM model of size � � � � � . The string is directed in
the direction of the � -axis with transverse displacements in the direction of � -axis as we show with the thick
zig-zag line.

states with various perturbation strengths: �
�

� � � � � � � � � � � � � � � � � � � � � � for each realisation of ran-
dom potential;b) temperature perturbation: we have used the finite temperature version of the trans-
fer matrix method. The temperature of replica A is set to � �

� � � � . The temperature of replica B is
changed as � �

�
� �

� �
� with different temperature shifts

�
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � ;
c) modified Sinai potential: we have looked for the ground states of each replica in the random
potentials corresponding to various field strengths �

� � � � � � � � � � � � � � � � � � � � � � � � � � � .

2.4.1 Uniform Tilt Field

First we examine the case of the perturbation by a uniform tilt field. In order to simplify
the temperature is set to zero �

� � . The two replicas have exactly the same random
potential. The difference is that replica B is subjected to a uniform tilt field � which
amounts to a force acting just on its end,

� �
� � � � � �

� � � � � � � �
�
� � � � � � � � � � � � �

� � � � � � � �
� � �

� � � �
�
� � � � � � �

� � � � � � � � � � �
� � � � �

(5.73)

We examine the correlation of the ground-state energies of the perturbed and un-
perturbed systems through (5.5) evaluated at �

� � so that
�

corresponds to energy
fluctuations,

� � � � �
� � .

In Fig. 5.2, the data of the correlation function of the ground-state energies of the
perturbed and unperturbed systems and its scaling plot is shown. The data shows a
decorrelation of the (free-) energy landscape of the two systems as expected. The scaling
plot is obtained using � � � � � � � �

�
without any adjustable parameters. The initial

part of the master curve is well fitted by the expected form (5.24) using �
� � � � ,

� � �
�

� � � � � � � � � � � � � � � � � � �
�

� � �
� � � with �

� �
�

� , but for � � � � � � � � � the decay
is faster.

2.4.2 Modified Sinai model

In Sec. 2.3 we have proposed a modified Sinai model as an effective model for the
free-ends of DPRM under uniform tilt field. Here we numerically study the correlation
function of the ’ground-state energies’. The effective Hamiltonian given in (5.71) and
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Figure 5.2. � � � �
�

of the uniform tilt field case and its scaling plot (right) with � � � �
� �

�
�

�

. The fit is
� � � �

� �

� � � �
�

� � � � � � � �
� �

�

�

�

�
�

� � �
� � �

with � � � � � .

(5.72) at a given length � reads as 13 14,

�
�

�
� �

�
�

� �
�

� �
�

� � �

� �
�

� � � �
�

� � �
�

� � � � �
�

� � � � � � � �
(5.74)

where
�

� � � is the modified Sinai potential with correlations,

�
�

� � � �
�

� � � � � �
� � � � � � � � � � � � � � � � � � � � � with � � � � � � � � �

�

(5.75)

In first place, we prepare the same bounded Sinai potential � � � � for replicas � and
� on a 1 dimensional lattice �

� � � � � � � � �
�

of size
�

by generating random walks
confined in a box of size � � . And for the B replica, we add an extra tilting potential � � � .

The correlation function (5.5) of the fluctuation of ground-state energies is computed
for various � and � , taking

� � � � � � � as the deviation of a ground-state energy from the
mean ground-state energy. In Fig. 5.3 we show the correlation function of the fluctuation
of the ground state energy as well as its scaling plot using the scaling variable � � � � � � � .
In the plot, we have included the master curve of the equivalent DPRM problem shown
in Fig 5.2.

It can be seen that the agreement between the modified Sinai model and the original
DPRM under uniform tilt field is good. If the original unbounded Sinai potential is used,
the agreement becomes very bad for large length scales. Specifically, the correlation
function � � � � � tends to saturate, supporting the picture that RSB is needed to account
for the decorrelation of energy landscape of DPRM under uniform tilt field.

13Note that here we do not use re-scaled variables such as in (5.67).
14The same results are obtained if we consider that the two strings are tilted with � � and � � respectively.
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Figure 5.3. � � � �
�

of Sinai model under uniform tilt field and its scaling plot (right) with
�

� � �
� �

� � � � � �
�

�
. In the scaling plot, the master curve of DPRM under uniform tilt field plotted vs � � � � � � �

as in
Fig. 5.2 is also included for comparison (black crosses).

2.4.3 Perturbation on temperature

Finally we examine the class of perturbations to which temperature shift belongs
(which includes potential change and random tilt field). These perturbations are charac-
terised by the exponent �

� � � � found in Sec. 2.1.2 (which is related to the order of the
perturbation � � � in the replica analysis - see Sec. 2.2.1-).

The Hamiltonians of replicas A and B are exactly the same,

� � � � � � � � �
�

�� � �
� � � � � � � � � � � � � � � � �

� � �
�

�� � �
� � �

� � � � � � � (5.76)

In Fig. 5.4, the correlation of the ground-state free-energies of the perturbed and
unperturbed systems are shown together with its scaling plot. The initial part of the
master curve fits nicely into the expected form (5.24) using �

� � � � , � � �
�

� � � � � � �
� � � � � � � � � � � � � � � �

� � � with �
� � � � . One can see that the decay is faster for � � � � � � � �

� .

3. The Random-Energy Exponential model (REEM)
The REM, as introduced by Derrida, is a set of � �

energy levels that are Gaussian
distributed with variance � . This model displays a transition at � � � � � � � � � � � � from

a PM phase where � �
energy levels contribute to � to a low temperature phase where

only a few states are relevant. At low temperatures the system collapses around the
very last available state of average energy � � � � � � � � . Here we are interested in the
low- � phase so that we will study the random energy exponential model. This model
model shares the same low-temperature properties of the REM but has an exponential
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Figure 5.4. � � � �
�

of the temperature-shift perturbation case for � � �

� � � and �
�

� � � � � � for various
� � . In the right panel we show its scaling plot with � � � � � � � � � � � � � � � � �

.

distribution of levels (see Sec. 3.1),

� � � � �
�

� �
�

� �� � �
� � � � � � � (5.77)

� � being the transition temperature. Below the transition only levels whose energies are
�

� �
� � � contribute significantly to the low-temperature thermodynamics, as expected

in a transition driven by an entropy crisis. These transitions have been widely studied
because of their connection to the liquid-glass transition [pT87]. The collapse of the
number of relevant states is reflexed in the localisation of the probability moments ,

� �
�

� �
� � � � �

�

� � � � � � � �
� � � � � � �

� 	
� �

� � � �
� � 	

�

(5.78)

where
� � � 


is the total number of states and we have introduced the parameter
� � � � � � . Above the transition all the states contribute significantly to the partition
function so that

�
vanishes as � � �

, but below � � the partition function is localised in a
few states so that

�
becomes a constant .

3.1 Response to a change in temperature
Our aim is to investigate the response of the REM against temperature changes. The

general procedure to perform calculations on this model is given in the Appendix E,
so that in what follows we discuss the final results obtained for the free-energy and its
fluctuations.

In first place, it is useful to consider the free-energy at low temperatures, that reads
(E.8),

� � � � � � � � � � � � � � � � � � � � � � � � � � � (5.79)
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Figure 5.5. Plot of the rejuvenation susceptibilities � � (plain line) and �
� (dotted line) in semi-log scale,

as a function of �
�

� � � � . Note that both quantities vanish at �
�

� and diverge at �
�

� � , with different
exponents.

where � is Euler’s constant and � � � � is the usual Gamma function. Note that here the first
contribution comes from the fact that the minimum energy that can be drawn from an
exponential distribution is � � � � �

�
, and thus corresponds to the energy of the ground-

state. Fluctuations around the minimum which will contribute to � � will therefore be of
order 1. Since we are at the low-temperature phase we know that entropy fluctuations will
also be of

�
� � � . Therefore in virtue of equation (5.11) we expect that �

� is a function
dependent only on temperature ( � ).

In Fig. 5.5 we plot the behaviour in the limit � � � of �
� versus �

� � � � � .
The susceptibility of the free-energy landscape against temperature changes is given by
expression E.12. In the limit � � � this susceptibility vanishes as �

� �
�

�
� �

� � �
�

�
�

as expected from the fact that only the ground state contributes to the free-energy and
the entropy is very small and does not favour the contribution of different states with
temperature. Hence one expects the two systems at different temperatures to be strongly
correlated. This is precisely the situation met in the Sinai model addresses in the following
section where all the low temperature phase is governed by the ground state and the
fluctuations around it. Regardless of this, the interesting result is given by the behaviour
close to the freezing temperature. Close to � � � one finds that the susceptibility diverges
as,

�
�

�
�

� �
� � � � �

� �
� � �

�
� (5.80)
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This is a signature that close to the “delocalisation transition” the system has a tendency
to occupy rather different states. Therefore, even though the model is not chaotic in the
sense that the free-energy landscape is fixed at low temperatures, exactly at � � the model
exhibits a strong sensibility to temperature changes and thus is chaotic. We have to
point out that close to a critical point chaos can be seen as a critical phenomenon due
to the existence of large fluctuations, and no necessarily linked to any specific type of
transition [Rit94].

A change in temperature from high to the low temperature phase can lead to significant
changes in different observables. Consider an observable

� � independent of energy such
as the position

� � � � � in a box of size � . It turns out that this is a random variable whose
variance depends on whether we are above or below the transition temperature. Below
� � as there are a few relevant states, it has finite variance so that the mean position is
extensive with system size � � � � � � � � �

15. Instead, in the high temperature phase it
is sub-extensive � � � �

�
� with �

�
� . Dynamically this implies that a quench from high

temperature to � � � � implies a complete rearrangement of the equilibrium properties
which takes place in a slow way.

This is reflected in the response function defined in (5.16) that measures the change
of this observable against small temperature changes �

� � �� � within the glassy phase,

�
� � � �

� � �

� �
� � � �

� �� 	 (5.81)

The calculation follows similar steps to the computation of � � . The final result for �

�

is is plotted in Fig. 5.5. Its limiting behaviours are the following,

� � � � � � �

� � � � � � 
 � �
�

� � � � � � � (5.82)
� � � � � � �

� � � � � �
� � � � �

� 
 (5.83)

Thus, we find that again there is a divergence of the susceptibility close to � � . Instead, if
we compare temperatures above � � we find that �

� vanishes as
� �

�

� � � with � � � � � � .
The relevance of this result is that a change in temperature implies a big change

(extensive with the system size) of the position of the system. In this sense we can
conclude that rejuvenation is strong even though the system is not chaotic, because the
response of the system to the temperature change is very large. In spite of this, we have
to point out that since the states which are available below � � are finite, the probability
to find the system in the same state at � � and � � is finite in the

�
� � limit. This

probability is related to �

� and reads,

� � �
� �

� � 	 
 �

� � � � �
� � �

�


 �

� � � � �
�

�
� �

�
� � �

� � � �

� �
� � � � � � � � �

� � �

� �
� (5.84)

15This result can be easily obtained from the squared probability moments in (5.78).
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where note that � � �
� �

� as it should. Then, it becomes evident that the time-evolution at
� � would be affected by any previous stay at � � . To find strong rejuvenation effects in the
glassy phase, one needs to generalise the REM or REEM with models such as the gener-
alised or multilevel REM in which there is a hierarchy of phase transitions with different
transition temperatures � � � � . Still, the results reported in this section give a meaning to
the numerical investigations of these more sophisticated models that report very simi-
lar effects to those observed experimentally such as rejuvenation and the corrections to
perfect memory in temperature shift experiments [SN00, Kaw01, SVDV02].

4. The Sinai Model
The Sinai model belongs to the wide class of random potential models. It can serve

as a model of a wide range of systems and in particular of the movement of pinning
centres of domain walls [BCGlD90]. Interestingly, the effective potential acting on the
end point of the disordered directed polymer in 1+1 dimensions is also of the Sinai
type [Méz90, Par90, BO90]. However, as we have seen in Sec. 2, the effective potential
itself becomes temperature dependent, and the role of temperature changes in the directed
polymer is much more subtle [FH91b, SY02, dSB02].

Here we model the phase space of the pinning centre of a Domain Wall with the Sinai
potential. In the following, we consider the discrete version of the Sinai model. The
system consists of a box of length � in which we generate a random potential. Each
sample of the random potential is constructed as follows, at each site � � � �

� � � we
generate a random Gaussian force � � distributed with zero mean � � � � and variance

� � �
�

� � � � � . The potential in each site is the sum of the forces in the previous
sites � � �

� � � � � � � �
� and thus is a random walk as a function of the position. Thus

correlations (and equivalently barriers) grow like (2.16),

� � � � � � � � � � �
� �

� �
� (5.85)

This is always in the low temperature phase, so that the physics in the infinite-volume
limit is dominated by the � � � glassy fixed point [OMM93, CMY98]. From the relation
above it is clear that a change in the scale by a factor � is equivalent to a change in energy
or � � � of a factor

�
� . As far as the statics are concerned, this means that being at low

temperature and having a small system is equivalent to having a larger system at larger
temperature. In dynamics however the change in temperature and size implies a change
in timescales.
In the following section we analyse exactly the same quantities studied in the REEM,

� � and
�

� � � � � where we have seen that even if the energy landscape is fixed, the model
is extremely sensible to temperature changes around the critical temperature, where the
Boltzmann weight ‘condensates’ into a finite number of sites. Because there is no finite
temperature transition in the Sinai model, under a temperature change one only observes
mild chaotic effects that are maximum around the crossover temperature � �

�
� � � � .
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4.1 The effect of temperature changes
The thermodynamics of the Sinai model has been well studied [OMM93, CMY98].

In the large- � limit temperature is irrelevant. The system is frozen or localised in the
minima of the potential, so that physical observables are governed by the ground state
and its fluctuations. On the one hand, the free-energy grows as

�
�

�

�
� independently

of temperature and even at small system sizes. The same happens with its fluctuations
so that

�
� �

� [CMY98]. And, on the other hand, the entropy reaches an � indepen-
dent value which depends on temperature � �

� � � � �
� but its fluctuations around

the deepest well are constant � �
� � � �

� as is shown in Appendix F. Therefore, it is
reasonable to expect that in the thermodynamic limit a change in temperature means no
significant change in physical observables measuring fluctuations since the ground state
properties are temperature independent.

Numerical details: we have generated random potentials generating Gaussian forces with variance
�

�
� in each site of a box of size �

�
� �

with �
�

� � � � � � � � . We have averaged over � � � �
samples of the random potential for different temperatures or temperature differences in the case of
correlations.

In this model corrections to the thermodynamic limit behaviour depend on a single
parameter �

� � �
�

�
� . Corrections become important when �

� � which allows to
define at a crossover length scale � �

� � �
� � � � between two different regimes:

� � � � : energy barriers are smaller than temperature, so that like in a high temper-
ature phase, all the sites contribute to the partition function .

� � � � : when the system is very large, barriers become too big and the system gets
localised, only a few states within the deepest valley contribute significantly to the
partition function. The system is effectively at �

� � and its behaviour is governed
by the fluctuations around the ground state.

Let us consider for instance normalised mean position fluctuations,

� � � �
� � � �

�
� � �

� � � �

�

�
� � 	 �

� � 
 (5.86)

We expect the following behaviour in the two limiting regimes,

� �
� �� � � �

� � �
� �

� � � �
�

�� � � � � �
� �

� � � � (5.87)

The small � behaviour is obtained by a high temperature expansion. For large � , average
position fluctuations should approach the position fluctuations of the ground state. We
expect that since the probability distribution of the position of the ground state is uniform,

� � � � � � � �
� the average fluctuations of the ground state position are � �

� � � � � � . This
last result is equivalent to that found in the REEM where in the low temperature phase
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the average position is a random variable with finite variance. However, we will see that
when comparing two systems at different temperatures the susceptibility is not constant
as in the REEM but vanishes for large system sizes.

In Fig. 5.6 we show the results for different temperatures versus the scaling variable
�

�

�
� �

� . As we can see in the figure, the behaviour for small � matches nicely with the
expected �

� � � � � . For large � note that the scaling function for � � approaches the � � � �

expected for the average fluctuations of the position of the absolute minimum. Numeri-
cally the crossover takes place at � �

� , hence we can estimate that � � �
� �

�
� . This
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Figure 5.6. Sinai Potential: � � plotted versus the scaling variable � � � �
� for �

�

� � � � � � � � � and � � � . The dashed line corresponds to the position fluctuations at zero temperature.
For small � we have plotted a line showing the power-law behaviour �

� � � � � .

static crossover is exactly mapped to the dynamical crossover from a Brownian diffusive
regime to an activated regime as we will see in the analysis of the correlation length in
Sec. 5.1.

In the large � limit, regardless of temperature the physics is dominated by the ground
state, hence we expect that systems at different temperatures are correlated in this limit.
From the analysis of two temperature quantities, we arrive to the conclusion that there
is also a crossover length scale ( � � ) which separates the high- � phase from the �

� �

phase but that depends on the observable. Nevertheless, when the temperature difference
is infinitesimally small, all the crossover length scales coincide with the crossover length
obtained for the single temperature quantities: � �

�
�

� .
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4.1.1 Free-energy correlation functions

As we can see in the inset in Fig. 5.7 free-energy correlations are a non-monotonous
function of � . For small � the systems at different temperatures start decorrelating but
at a certain length, � � � � � � � � � , � � reaches a minimum. Then, it starts increasing to
eventually reach 1 when � � � regardless of the temperature difference (provided it is
finite) as expected.
We can thus distinguish between two different regimes in the behaviour of � � ,

� � � ��
For small system sizes at large enough temperatures there are no significant barriers
so that all the sites contribute to � . A high temperature expansion reveals that in this
limit entropy is extensive � �

�
� � , so that entropy fluctuations � � �

�
� are much

larger than free-energy fluctuations
�

�

�
� . Therefore we expect the two systems to

decorrelate. Actually a high temperature expansion yields the following expression
for the correlation function reads,

� � � � � � �
� � �

� � �
� � � �

�

�
� � � � � (5.88)

note that for small temperature changes � � � �
�

� � �
�

� so that following eq. (5.11)
we can express �

� in terms of the adimensional parameter �
� � �

�
� � � �

� �
� � �

� �
�

�
� .

� � � ��
In this limit the system is governed by the ground state and its fluctuations, thus when

� � � the free-energy landscape is independent of temperatures and � �
� � . In the

Sinai model, we know that in the low � /large � limit, on average, entropy ( � � � � ) is
much smaller than free-energy ( � �

� ). More specifically, free-energy fluctuations
� � � � are much larger than entropy fluctuations that are constant (see Appendix F).
Thereby, we expect for small � the following behaviour for the susceptibility �

� ,

� � �� � �
�

� � �
� � �

� � �
� �

�
� � � � � � � (5.89)

Note that in this limit it is as well a function of the reduced variable � that vanishes
for � � � , this is to say in the limits � � � or � � � which are equivalent.

Crossover
The crossover between both regimes will take place at a certain length � �� such that

� � � � � ��
� � � � � � � �� , which yields � ��

� � � � �
� � � . The maximum of � � � �

actually occurs at � �� �
� � � � � �

� � � (see left panel in Fig. 5.7).

For small � � we have seen that � � is a scaling function depending on a single parameter
� and that the crossover between the two limiting regimes takes place when �

� � � ,
precisely at the point where decorrelation is maximal. As a matter of fact, the crossover
coincides with the crossover already observed for thermodynamic quantities at a fixed
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temperature and takes place at � � �
� �

�
� . Therefore, �

� is a scaling function of
the variable �

�

�
�

� � with the following limiting behaviours,

� � � � � �

� � �
�

� �
� � � �

�

(5.90)

In Fig. 5.7 we plot �
� versus the scaling variable

�
�

�
for different temperature dif-

ferences. As expected the maxima of all the curves lie on the same value of
�

�
��

.

However, as we show in the left plot of Fig. 5.7, this scaling only works when tem-
perature differences are not too big as one would expect.

Figure 5.7. Susceptibilities. Left: � � as a function of
�

� �� for different pairs of temperatures ( � � � �
�

). Note

that curves with big temperature differences do not scale. In the inset we show � � versus system size for
various temperature differences. Right: �

�

plotted versus � � �
�

�

for different � � and �
�

. In the inset we
show � � �

� � �

�
versus system size for different temperature differences.

4.1.2 � � � � 	 
 � : position differences

In Fig. 5.7 we show the results for the average distance shift
�

� � � � � � as defined
in (5.16) where

�
� �

� � �
�

� � , � � � �
� � � , for several temperature differences. Even

though we have seen that there is no true chaos it is still interesting to study if the response
to temperature changes might lead to rejuvenation effects in dynamical measurements.

As we can see in the inset of Fig. 5.7,
�

� � � � � � is non-monotonic with � and follows
a behaviour rather parallel to that found for �

� � � . The crossover length scale � �
�

determines the same well defined regimes:

� � � ��

For high temperatures, the system decorrelates because all the sites contribute to the
correlation function an therefore

�
� � � � � � (and correspondingly �

� ) increases with � .
This situation is analogous to that found for �

� , where a high temperature expansion
was enough to recover numerical results. As shown in Appendix G, we find that in
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this regime
�

� � � � � � �
�

� � � � �
� � �

�
�

� and thus, for small temperature changes the
susceptibility defined in (5.17) depends only on � : �

�

�
�

� .

� � � �
�

The behaviour at large � should be governed by ground state fluctuations. Starting
from (5.17) we note that it is not enough to consider the ground state and its surround-
ing sites because these yield contributions to � � � which are

�
� � �

� � , and, hence, much
smaller than those arising from the valley closest in energy 16. Typically the distance
between the absolute minimum and the minimum of this valley is of � � � �

�
� in

energy and of � � � � � �

� �
� � � in position space. Thereby we can approximate

the partition function by , � � � � � �
�

� � � � � � � �
�

� to evaluate thermal averages.
Consequently, at leading order in � � � � �

�
we get for the main term entering in the

computation of �
� (5.17),

�
� � � � � � � � �

� � � � � �
�

� � � � � �
�

� (5.91)

The average of the square power of this expression depends on the probability dis-
tribution of the excitations � � � � � � . In general, we do not expect any correlation
between valley-to-valley distance and energy gaps 17 so that, we can assume that the
probability distribution factorises � � � � � � �

� � � � � � � � . In the limit � � � we
have that the average of (5.91) reads,

� � � � � � � �
�

� �
�

� � � � �
�

� � � � � � � � � � � � �
�

� �

�
� � �

� �
� � �� � � � �

� � � �
� �

�
(5.92)

which yields 18,
�

�
� �

� � �
�

	 
 � � � � �
� � � � � (5.93)

Crossover
As for the free-energy correlation, we can extract a crossover length scale which
separates both regimes. The crossover length that is obtained is � ��

� � � � � � �
�
�

�
� �� ,

that coincides with � �� in the limit � � �
� � .

16Note that we work with normalised positions in the range
� � � � � � �

.
17This assumption has been numerically checked.
18This result holds provided � � � �

�

� � � . The fact that the constant that not depend on
�

is guaranteed from the
normalisation condition for the distribution of energy cost of the excitation � � � � � . Since on average � �

� �
�

,
normalisation yields � � � � � �

�  � � �  � � � �
� � . Therefore � � � � is either a constant or zero, but, numerically, it

is easy to check that � � � � � � .
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For small temperature changes �
�

� �
�

�

�
� � � � � � �

� �

� is, as well as, �
� a scaling

function of the variable �
� � � �

� . Nevertheless, we find that the limiting behaviours
are different to those of �

� ,

�
�

� �
�

�
�

�
� �

� � � �
�

� �
� �

�
� � �

�
� � �

� (5.94)

This reflects the fact that that the two observables probe different mechanisms. In the
right panel of Fig. 5.7 we show the scaling plot for different pairs � � � � � � � . Note that
all the curves display the maximum at the same value of the scaling variable

�
�

�

�

�
� � .

4.1.3 Discussion: The Sinai Model the DPRM and the REEM

The outcome of the numerical analysis of the Sinai potential is clear: in the thermo-
dynamic limit statistical properties are governed by the �

� � fixed point. This means
that regardless of temperature, for large enough system sizes, the system only sees the
free-energy valley associated to the minimum. Effectively this situation is equivalent to
say that, in this limit, there is no chaos in temperature since the statistical properties are
those of the minimum of the potential.

We have seen in the REEM that the existence of a transition from a high temperature
phase to a localised phase where all the states are very close in energy can enhance a
large response against temperature changes.

However, this situation is very different from that what happens in the directed polymer
problem discussed in Sec. 2. Even though this model has no thermodynamic transition
either, it is extremely sensible to an external perturbation which leads to the decorrela-
tion of systems at different temperatures. This is due to existence of anomalous large
excitations which have a very low free-energy cost � � � � �

. These excitations cost a lot

of energy � � � � � � � � � but are very favoured entropically � � � � � � � � � � , so that
these two contributions cancel to yield a low cost in free-energy. In the Sinai model these
anomalous excitations do not exist because entropy is too small (not extensive) to cancel
its energy cost ( � � � � � ).

We have already pointed out that different observables probe different mechanisms,
leading to different crossover length scales ( � �� and � �� ) which are equivalent to � �

�
� �

�

in the limit of vanishingly small temperature differences. Nonetheless, the important
point here is that the maximal decorrelation length and the crossover length scale at
each temperature are related as follows: � �

� �
� � �� � � � � �

� �
. This implies that for

small system sizes � � � � � � � �� , both systems decorrelate as expected in a random high-
temperature phase. The maximum decorrelation takes place at system sizes � � � �� � �

when the system at � � is already localised whereas the system at � � is still delocalised.
The strong influence of temperature shifts in this case is a smeared out version of the
infinite susceptibility found in the REEM, in which there is a true finite-temperature phase
transition, and not a mere crossover as in the Sinai case. However, when we increase the
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system size when � � � � � �� � � both systems are governed by the zero temperature fixed
point and therefore, correlations increase.

5. Rejuvenation in the absence of chaos: dynamics of the Sinai
model

The aim of this section is to study the temperature cycling experiments which are car-
ried out in spin glasses that have shown striking rejuvenation and memory effects [Bou00,
BDHV01]. Our main goal here is see to what extent these effects are already present in
the Sinai model which is hierarchical by construction. We have performed numerically
the standard temperature cycling experiment: quench from infinite temperature down to
� � and let the system relax during � � � ; then change the temperature to � �

�

� � � � �

and let the system evolve during � �

�

and finally go back to � � . We have studied cycles
with positive and negative � � for several waiting times and frequencies.

The dynamics of this model have been well studied, both analytically [BCGlD90,
DMF99] and numerically [LD98]. Single-time as well as two-time quantities have been
analysed. Here, we shall study one observable of both types. First we analyse the corre-
lation length as well as its ageing properties and then we define an ‘a.c. susceptibility’
that should be closely related to the analogous observable studied in spin-glasses.

Numerical details: in the simulations we have used boxes of length �
�

� � � � with periodic
boundary conditions. The dynamics has been simulated by the Monte Carlo method using Metropolis
algorithm. For each realisation of the random potential (with �

�
� ), in order to sample adequately

the energy landscape we have considered all possible initial conditions ( �
�

� � � � ) and we have
averaged over � � � � � different histories for each starting point. The total number of samples used
in temperature cycling experiments is around � � � �

�
� � .

5.1 Correlation length
We have analysed the correlation or explored length defined as follows,

�
� � � � � � � � � � � � � � � � � � �

�
(5.95)

The brackets and overline mean that we average over both the � � � histories and samples
respectively. The initial condition is a uniform distribution equivalent to a quench from
infinite temperatures. The interest of studying this quantity is that it gives information
about the large scale mechanisms and thus about the global ageing process.

The time evolution for the correlation length at different temperatures is shown in
Fig. 5.8. The growth of the correlation length depends exclusively on a temperature de-
pendent microscopic timescale � � � � � . This timescale is related to the crossover between
two different dynamical regimes [BCGlD90, DMF99]:

� � � � : Short time dynamics where no barriers are present, so that in this regime we
have usual Brownian diffusion � � � � � � � � .
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� �
� � : Long time, activated dynamics, with an activation time which follows an

Arrhenius law, � � � � � � � � �
�

� � , with a typical barrier �
�

�

�
� [BCGlD90],

leading to � � � � � � � �
� � � � � � � �

�
�

�
� .

The crossover takes place when barriers become comparable to temperature so that acti-
vation between valleys dominates the dynamics. This crossover is directly related to the
static crossover found for position or free-energy correlations from a high-temperature
regime (no barriers) to a (thermodynamic) low-temperature regime (see Sec. 3.47). The
microscopic timescale can be thus identified with the typical time that the system takes
to explore this static crossover length scale � � �

� � � � �
� � � � . Therefore, for � � � ,

� � � � � � � �

� � �
�

� � �
�

� , ( � can be evaluated numerically by measuring � � -see
Fig. 5.8-. We find �

�
�

� � ).
From the previous discussion we expect that the correlation length at a given temper-
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Figure 5.8. Correlation length versus time for different temperatures. The solid line corresponds to the short
time diffusive behaviour � � � �

�
� �

. In the inset we plot � � � �
� versus the scaling variable �

� �
� � � � �

� .
Averages over � � � � � � � histories.

ature (5.95) can be expressed in terms of the rescaled times � � � � � � � � � as follows
� � �

�
� � � � � , where � � � � has the following limiting behaviours,

� � � � � � � � � �
� � � � � � � � � � � � (5.96)

This scaling behaviour works very well, as shown in the inset of Fig. 5.8, where we
rescale together all temperatures. This situation is analogous to that depicted for domain
wall dynamics in the droplet approach to spin glasses outlined in Sec. 2.3. The growth of
equilibrium domains at long times becomes activated over barriers which grow with the
size � of the excitations as � � � � � � � � � �

�

, where � � � � is a function of temperature.
This leads naturally to a logarithmic growth of the size of the droplets, �

� � � � � � � � � � � � �
�

,
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where � � is a microscopic attempt time 19 [BDHV01, DVB � 01, JYN � 02b]. The Sinai
case corresponds to

�
� � � � and � � � �

� , thus the correlation length is the analogous of
the domain size in the droplet description.

In order to characterise the ageing process we e correlation length we have studied
the dependence on � � and � of the following quantity � � � � � � � � � � � � � � � � � � � � � � � �

� .
From (5.96) we distinguish three different regimes,

� � � � � � �

�

�
�

�

�
�

�

� � � � � � � � � � �
� �

� � � � � �
�

� �
� � � � � � � �

� � � � � � � � � � �

� � � � � �
� � � � � � � �

� � � � � �
� �

� � � � �
� � �

�

� � � � � � � � �

� (5.97)

Different regimes can be reached changing temperature and waiting time. In Fig. 5.9
we plot � � � � � � � versus the adequate scaling variable for regimes a) and b). Note the
numerical results reproduce the analytical predictions. Remarkably we have been able to
scale curves for different temperatures. Regime a) does not need to take into account any
microscopic time � � . But, on the contrary, in regime b) � � enters in the scaling variable
and note that we have been able to superpose all the curves using � � �

�
� . Actually,
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Figure 5.9. Ageing in the correlation length. We plot � � � � � � �
in the regimes a) and b) as expressed in

(5.97). Regime a) ageing when
� � � � �

�
� �

� . We plot � � � � � � �
versus the scaling variable

�
�

� �
for

temperatures �
�

� and � � for different waiting times. Regime b) ageing when
� � �

�
�

�
� ,

� � � �
. We

plot � � � � � � �
versus the scaling variable 	 � � 
 � 
 �
 � �

� 	 � � 
 �
� �

�
for temperatures �

� � � � � � and � for different
waiting times.

we find that since this is a purely activated model, the scaling variable for long times is

19In the most general case,
� � is renormalised by critical fluctuations if the system is close to the critical point .
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logarithmic. Such scaling is found experimentally in coarsening systems rather than in
spin glasses. We have to note that barriers in this model do not depend on temperature
and, therefore, we should expect cooling rate effects to be present. But still, this situation
reflects that dynamics at different length scales are exponentially separated in this model
and we expect it to account for the mild rejuvenation phenomena observed also in random
ferromagnets [Bou00, HVD � 00].
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Figure 5.10. Correlation length � � � � �
versus time for the following experiments: Left) spend

� �
at � �

�
�

and then quench the system down to �
�

�
� � for

� � �
� � � � � � � � �

�
� � � � �

�
�

�
and � � � � � � from bottom

to top; Right) spend
� �

at � �
�

� and then heat the system up to �
�

�
� for

� � �
�

� � � � � � � �
�

� � and
� � � � � � .

So far we have seen that � is a monotonic function of time and temperature. The
temperature only plays the role of slowing down dynamics, therefore a change in temper-
ature only changes the growth law. Any time � � spent at a temperature � � is equivalent to
having spent an effective time �

� �

� � � � � � � � � � at � � such that � � � � � � � � � � � � � �
� �

� � � � .
Thus in temperature cycling protocols there is no trace of the chaotic effects observed
experimentally on the correlation length itself (see Fig. 5.10). This is presumably due to
the fact that, in a.c. experiments, after a negative temperature shift one probably observes
how the ‘domain walls’ reconform on a scale which is small compared to � � � � � . This
can be studied by defining a suitable a.c. susceptibility that probes these ‘small’ length
scales and might show an interesting behaviour during temperature cycling, not revealed
by � � � � � (see Fig. 5.10).



142 LARGE SCALE EXCITATIONS IN DISORDERED SYSTEMS

5.2 Susceptibility
In order to probe smaller length scales that are more sensitive to temperature changes,

we have defined the following a.c. susceptibility � � � � � � � 20:

� � � � � � �
� � �

� � � � �
�

�

� � � � � � � � � �
����� � � � � � � �

� (5.98)

where the average is taken over the probability � � � � � � � that a particle is at position �
at time � � , with a uniform distribution of particles at time � � � 21. In other words,
we measure the typical extra distance travelled by particles during a time � �

� , weighted
by the dynamical distribution at time � � . The study of this ‘response’ function is useful
because the results admit an intuitive interpretation in terms of the evolution of � � � � � � � ,
which is the quantity that keeps track of the thermal history of the system.

In order to compare with experiments, one should be in the following conditions: long
waiting times � � and low frequencies � (as compared to microscopic timescales), but
such that � � � � � . This last condition is imposed by the fact that a harmonic response
can only be measured on a time larger than one oscillation period. This also ensures that
one is in a regime where the FDT violations are weak and one can identify the fluctuation
that we measure to a response (see Sec. 2.4.1).

From the results of the simulations we observe that the effect of ageing at temperature
� � on the relaxation at � � depends strongly on the temperature difference and on the
waiting time. This effect can be quantified by defining an effective time. For instance,
when cooling the system from � � to � � one expects that if the system is completely
rejuvenated, the relaxation curve � � � � � �

� � � � � � � should correspond to that obtained after
quenching from high temperature � � � � �

� � � � � � � . (Here � � � is counted from the time
at which the system reaches � � ). However, if the relaxation at � � affects ageing at � �

then rejuvenation is only partial and the new relaxation corresponds to that of the system
after ageing during an effective time �

� �

at � � , � � � � �
� � � � � � � �

� �

� . Thus if �
� � � � ,

rejuvenation is complete. In Fig. 5.12 we show how this effective time is measured. Note
that only the late part of the curves can be superimposed: there is a transient that cannot
be accounted for using an effective time. A similar effect can be observed in spin-glasses.
The same effective time can also be defined when heating back the system, as a measure
of memory recovery.

In the Introduction (Sec. 1.3.2) we have already described the experimental observa-
tions so that we will directly comment the outcome of simulations.

Rejuvenation in negative � � shifts.
In Fig. 5.13 we plot two different examples of cycles with negative shifts in tem-
perature: plot A corresponds to the cycle � � �

� , � �
� � � � and plot B to � � � � ,

20Such a quantity was also considered in [LD98, DMF99].
21We have also investigated the case where the initial distribution is localised on an arbitrary point, with similar results.
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Figure 5.12. Normalised effective times
� �

� �
� �

� corresponding to negative temperature shifts: plot A) at
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� �
� , plot B) at fixed

� �
� versus � � � .

� �
� �

� � . The main observation here is that there is clear rejuvenation, with an
effective shift time that decreases as � � increases, as in the experiments. Intuitively,
this corresponds to the fact that since the potential is self-similar, the local dynamics
probed by � � � � � � � is not sensitive to the depth of the potential valley that is currently
occupied. Therefore, ageing at � � has already selected some low-lying valleys, but the
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intra-valley dynamics is insensitive to this. This is precisely the underlying idea in the
approach based on a hierarchical energy landscape [BDHV01]. Lower frequencies,
that correspond to larger length scales, are less easily rejuvenated, as expected, since
the separation of time scales is not as sharp. This is measured quantitatively with the
(normalised) effective waiting times that are plotted in Fig. 5.12 as a function of both

� � � and � �
� .

Memory after heating in negative � � shifts.
On heating the system back to the initial temperature � � , some memory is observed.
However, when the temperature difference is not very large, some effective time,
accounting for the period spent at � � , must be included, as in the experiments, and a
strong transient ‘memory anomaly’ is observed, even for quite large � � ’s (see plots
A and B in Fig. 5.13). This memory anomaly is defined as,

� �
�

� � � � � � � � � � � �
� � � � � � �

� � � � (5.99)

where � � � �

� � �
� � � is the susceptibility just before the quench and � � � � � � � � � � � �

� �
corresponds to the first possible measurement at frequency � after heating back to � � .
The dependence of the memory anomaly on frequency and waiting time is shown in
figures 5.14 and 5.15. In Fig. 5.14 we show how the memory anomaly corresponding
to the cycle with larger � � ( � � �

� � � �
�

�
� ) varies with the time � � � spent at � � ,

at fixed �
� � � � � � and � � � � � � �

�

. From the inset,
�

� �
�
decreases with increasing

� � , as expected when temperature enhances the separation between length scales.
Note that we have always observed this memory anomaly to be negative, i.e. the
reference curve is always reached from below. On the plot in Fig. 5.15 we show how
the memory anomaly depends on the frequency � . Since the susceptibility at � � � itself
depends on � we plot the relative variation of the susceptibility with respect to � � � �

� � �
at fixed � � � � � � �

� � � �
�

. In the inset we show � �
�

� � � �
� � � versus � . Note that

� �
�

� � � �
� � � is always negative and decreases in absolute value with increasing � �

� .
This same effect has been investigated in the REM in [SVDV02] by Sasaki et al. to
find that the anomaly can be both positive and negative when one works in the vicinity
of a transition temperature. In the Sinai model we have not been able to observe such
a positive anomaly. For smaller � � ’s these effects are blurred because length scale
separation becomes weak. Ageing at different temperatures is cumulative and � �

�
�

is also larger (see fig 5.13 for the � � � �
� � �

� �
� � cycle). For these smaller � � ’s,

we have found that the memory anomaly becomes non monotonous with frequency.

Positive temperature cycles.
For positive � � we have also observed that the third stage is completely independent
of � � � . Heating back the system to � � erases the initial ageing accumulated at � � .
This is expected, since the dynamics at � � allows the system to leave the traps that it
had slowly explored at � � . The new relaxation at � � is aged, but the age is only due
to the effect of ageing at � � . This is similar to the effect observed experimentally.
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Figure 5.13. Negative and positive temperature cycles. Plots A and B correspond to cycles with � � � � ,
for fixed frequencies and waiting times, � �

� � � �
�
,

� �
�

�
� � �

and
� �

�
�

� � � � ; cycle A) �
�

�
� ,

�

�

�
� � � and cycle B) �

�

� � , �

�

�
� � � . Plots C and D correspond to cycles with � �

�
� ; for cycle C)

�
�

�
� � � , �

�

�
� , � �

� � � � � � and
� �

�
� � �

�

� �
�

� � and for cycle D) �
�

�
� � � , �

�

� � , � �
� � � � � �

and
� �

�
� � �

�

� � � � �
.The solid vertical lines in each plot correspond to the first possible measurement in

an experiment at frequency � which is
� �

� � � .

In the study of temperature chaos in the previous section we have seen that in the
large size limit this model is effectively at zero temperature, so that temperature shifts
are not interesting in this limit. Nevertheless, for finite sizes/finite times, some inter-
esting crossover phenomena qualitatively reproduce the spin-glass phenomenology. In
particular, dynamical rejuvenation effects in the absence of temperature chaos are ob-
served. This rejuvenation is ascribed to the local dynamics, which, since the potential is
self-similar, is insensitive to the particular valley that has been reached during ageing at a
higher temperature. Still, the separation of timescales/length scales with temperature is
much weaker that in experimental spin glasses [BDHV01], partly due to the rather modest
time scales investigated in the present study. Correspondingly, abrupt rejuvenation as the
temperature is decreased and strict memory when the temperature is cycled cannot be
achieved. Rejuvenation and memory are present in embryo.
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Figure 5.14. Memory anomaly in a negative temperature cycle at fixed � . We plot the � � � � �
�
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�
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fixed � �
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6. Discussion: excitations in dynamics
Let us summarise the main observations with respect to the chaos and rejuvenation

problem. Temperature chaos reflects the decorrelation of free-energy landscapes at dif-
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ferent temperatures. This situation is met if the system allows anomalously large gap-less
excitations that are entropically favoured. These excitations must be of system size to
ensure that they are far in phase space so that at different temperatures the statistics of
different valleys describe equilibrium properties. Besides, entropy fluctuations must be
large enough to overcome the (free-)energy cost. This is the situation met in the DPRM.
In the droplet picture it is argued that these large excitations are the only ones relevant
for the dynamics and thus the sole responsible for the striking dynamical effects such as
rejuvenation.

All the same, in the analysis of the REEM we have seen that a large response to
temperature changes can be observed in the absence of chaos when there is a transition
characterised by a drastic change in the number of available states or so called entropy
crisis. This is realised in the Sinai model at a dynamical level. At a given temperature,
the system is able to equilibrate a region in phase space. On lowering the temperature,
the system gets trapped in a smaller region of phase space because barriers become too
large. Thus we say that the system is localised in fewer available states. At this point
the dynamical evolution concerns only the local small excitations of the bigger valley
explored at a higher temperature. In the Sinai model, the larger the temperature shift the
more drastic this localisation and thus the larger the rejuvenation response. This response
becomes infinite when this separation is infinitely sharp as in the REEM when there is
a real thermodynamic transition in the infinite-volume limit. This is precisely the idea
hidden in the hierarchical picture of which the Sinai model is the canonical example:
at low temperatures the system probes a very small region in phase space so that it is
not large droplets but small local excitations that bring about rejuvenation effects of
the susceptibility in negative temperature shifts. Interestingly, from these observations it
follows that not only large but small excitations are relevant for the dynamics. On the one
hand, the ageing process would be linked with the existence of large scale droplets that
are out-of-equilibrium, but, on the other hand, because at low � only small excitations
are active the rejuvenation signal must be associated with them.





Chapter 6

CONCLUSIONS

A widespread idea in random systems with frustration is that the low-temperature
physics is governed by the �

� � fixed point [FH86]. So that any system can be depicted
as a ground state plus a spectrum of excitations or droplets with low energy. In this thesis
we have investigated several aspects of large-scale excitations in disordered systems in
general. In spite of having developed the main part of the analysis in the spin glass
framework, many of the ideas and results reported in this thesis are also applicable to
other systems presenting a spectrum of excitations with no gap. Indeed, many dynamical
phenomena observed in spin glasses are observed in other complex glassy systems, such
as glasses or polymers, whose free-energy landscapes present many features in common.
Precisely the complex structure of the free-energy landscape is what favours the existence
of rare excitations that involve a finite fraction of the spin variables (or degrees of freedom)
of the system and thus are well separated from the ground state in configuration space. In
the many-valley description of the free-energy landscape, this amounts to say that there
are several deep valleys contributing to the thermodynamics. From our analysis it follows
that the existence of several well defined valleys in phase space (i.e. the existence of large-
scale excitations) is what yields the typical behaviour of these systems at the equilibrium
level. Nonetheless, small intra-valley excitations also contain information about the
typical statics and dynamics. All the same, the main part of the analysis presented in this
thesis has been carried out through scaling hypothesis valid, in principle, for large-size
droplets.

The central part of this thesis turns around the study of the absolute lowest-lying
excitations, this is to say, the excitations that are closest in energy to the ground state.
This is a novel zero-temperature approach to study typical behaviour. As far as we can
see, this expansion is valid for systems that allow large-scale excitations. Its validity for
cases in which these excitations have a vanishing probability in the thermodynamic limit,
(e.g. “replica symmetric phases” with � �

� ) remains to be checked. In this approach
we assume that the physics close to zero temperature of a system of size �

�

�
� is

149
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described by the ground state and the first excitation. This lowest-lying excitation is a
cluster whose size ( � ) and gap ( � ) are random variables. Regarding large-scale excitations,
gap and volume distributions are characterised with the lowest-droplet exponents � � and

� � respectively. The exponent � � describes the average energy gap �
�

� � � , thus � � �
�

and for finite-dimensional systems it is argued to be � � . The lowest-droplet exponent,
� � , describes the probability of having a large lowest-lying excitation � � � � �

� , so that
the average volume scales as �

� � � � � �

�
�

� , � � �
� . Remarkably, the knowledge of the

statistics of these lowest-lying excitations is enough to determine the thermal exponent �

characterising typical excitations through the following relation � � � � � � � � . The fact
that the typical behaviour can be inferred from the analysis of non-typical excitations is
due to the random nature of the spectrum of energy gaps. Based on numerical results,
we have gathered the main features of this spectrum under the name of uncorrelated
energy-size scenario: i) there are no correlations between energy gaps and ii) there are
no correlations between gaps and excitation volumes. These two assumptions are very
reasonable in systems with a rugged free-energy landscape where frustration induces
the existence of a continuous band of energy levels within uncorrelated gaps. From
here it follows that the knowledge of the thermal exponent is enough to determine the
low-temperature behaviour of energy-related quantities such as the specific heat that
vanishes as � �

�
� � � � � . Thereby it is linear provided � �

�
� � , in agreement with the

value obtained via extreme statistics arguments. Numerical investigations show that this
thermal exponent has very large finite-size corrections so that the specific heat at low
temperature is not linear in a finite system. On the other hand, quantities related to the
overlap depend on both exponents � � � � � � � and, in particular, on the thermal exponent

� . Specifically, the weight at at � � � , � � � � � � , remains finite at finite temperature
provided � � � . In this case the volume distribution is equivalent to the � � � � at low
temperature as observed in a mean-field example, the SK model. Furthermore, the
analysis of short-ranged models (EA in � � �

�
� ) reveals that apart from fulfilling the

uncorrelated energy-size assumptions, small size lowest-lying excitations yield the same
contribution than large-scale excitations to any energy or overlap related quantity. This
finding puts forward the idea that typical excitations that involve a large number of spins
but that happen with finite probability at finite temperature are not necessarily single
clusters but could consist of several clusters of small size.

In the first part of the thesis we have investigated the organisation of excitations in
phase space through the measure of order parameter fluctuations in spin glass systems. In
mean-field models, large excitations happen with finite probability in the thermodynamic
limit. This means that there exist many degenerate free-energy valleys in phase space
corresponding to different states. Thereby, the overlap between two of these states can
take any value in the range � �

�
� � , and thus is a random variable with non-vanishing

fluctuations in the thermodynamic limit. Formally this is expressed as the breaking of
replica symmetry at low temperatures and in the existence of sum rules between the
joint probabilities of several overlaps. In this thesis we have studied mean-field models
which OPF are finite, as well as short-ranged models for which the infinite-volume limit
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behaviour is unknown. Nevertheless, in a finite system we expect OPF to be finite
because there can exist large excitations with finite probability �

�
� � . For this reason

parameters measuring order parameter fluctuations, � and � , are a good numerical tool
to study transitions into the spin glass phase of MF and short-ranged models, in contrast
to other parameters such as the Binder cumulant which are only sensible to the breaking
of time-reversal symmetry. In mean-field models, with or without TRS, these parameters
work very well even for very small systems. Besides, the behaviour of these parameters,
as well as the connected quantities can be computed exactly. In RS phases where � �

� ,
� and � are ratios of quantities which vanish in the thermodynamic limit, but that for
finite systems have contributions coming from rare anomalously large excitations. This
is the reason why very high precision statistics is needed to compute OPF parameters.
Thus, in systems where TRS is broken at the transition these parameters do worse than
the Binder cumulant at locating the exact transition as observed in the EA model in 3d.

Notwithstanding this, these parameters are very useful to characterise the low-temperature
phase. � remains finite in the large size limit provided there is RSB below � � , whereas

� takes a finite value even when OPF vanish. In mean-field models that display RSB,
� is equal to � � � in the frozen phase because the sum rules hold strictly hold at any
temperature. In RS phases � remains also finite, despite being the ratio of two quantities
that vanish in the thermodynamic limit. The numerical results of all the models stud-
ied support the conjecture that indeed �

� � � � below � � in the thermodynamic limit
in any spin glass model. This suggests that finite-size contributions to OPF in models
with � �

� verify the sum rules. On these grounds one can assume that, at least in
finite systems, the organisation of valleys is similar to that of mean-field models. In fact,
Guerra proved that these sum rules hold in systems with disorder that are stable with
respect to a random perturbation of mean-field type (this is the property of stochastic
stability) [Gue96]. However, the systems to which this treatment applies has remained
rather obscure. Furthermore, all parameters measuring OPF are found to take universal
values at �

� � for any finite volume provided the ground state is unique with a spec-
trum of gap-less excitations. This general result has been derived in the framework of
the lowest-excitation expansion, from which one learns the following conclusions: that
the sum rules of the probability distribution of the overlap hold in any system at least at
order � and that at low temperature � vanishes as �

� � � � with � being the exponent.
This last assertion has been confirmed in short-ranged models in 1 and 2 dimensions.
Since there is a critical point at �

� � , the droplet exponent is related to the correlation
length exponent � �

�
� �

� and, thus, can be obtained also from the scaling behaviour of
adimensional parameters such as the Binder ratio, producing the same numerical values
for � .

In the last part of the thesis, we have analysed the so called chaos problem, or in
other words the dependence of the free-energy landscape in temperature. We say that a
system is chaotic if introducing a perturbation � causes a change of the equilibrium state
or equivalently leads to the decorrelation of the free-energy landscape. Here we have
investigated energy landscapes of different systems that allow gap-less large excitations to
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find out under what conditions the free-energy landscape is chaotic. The phenomenology
of chaos is the same as that of phase transitions, with � playing the role of �

� � � � � � � �
� � ,

thus the limits � � � and � �
� do not commute. In analogy to the correlation length,

one can define an overlap length � �
�

�
� � , � being the so called chaos exponent, that

separates the weak and large perturbation regimes and diverges when � �
� because the

equilibrium configuration remains unchanged. Remarkably, the onset of chaos acquires
in physical space the particular meaning of spontaneously breaking replica symmetry,
as well as in the transitions of mean-field spin-glass models. Within this context, the
introduction of a perturbation amounts to a repulsive term in the Hamiltonian which is
polynomial in � , the replica index. If we keep the replica index finite, we observe that
there is a crossing of levels corresponding to RS and RSB solutions. This crossing of
levels is identified with the crossover from weak to strong perturbation regimes from
which one can infer the crossover length scale. In fact, the order of the perturbation in the
replica index determines the universality class of each perturbation because it is directly
related to the chaos exponent describing the overlap length.

The chaoticity against bond or magnetic perturbations has been extensively reported
in various systems where large excitations are present [Rit94, NN97]. Here, the main
interest has been to study temperature chaos. The analysis of response and correlation
functions tells us that decorrelation is possible if entropy fluctuations are large enough to
compensate the energy cost. In the DPRM problem this is possible because energy and
entropy fluctuations cancel to yield much smaller free-energy fluctuations. In fact, we
have observed that, regarding exponents, temperature and bond chaos belong to the same
universality class. In spin glasses it is not clear whether this scenario holds. Recent results
on the SK model show the temperature perturbation has the same critical exponents as
the bond perturbation but with a much smaller amplitude [Rit94, CR02a]. However, it
could well happen that temperature chaos is a less effective perturbation because it has a
bigger chaos exponent.

We have also investigated a model closely related to the DPRM, the Sinai model.
Both systems have no transition and thus are always in the glassy phase. However, the
physics of the Sinai model is absolutely governed by the ground state. Entropy in this
model does not play any role, so that excitations have an enormous free-energy cost and
cannot be favoured by the temperature perturbation. Still, the study of the low- � phase
of the REEM, a mean-field model without chaos, reveals that the existence of a real
thermodynamic transition driven by an entropy collapse can produce a large response to
temperature changes. This finding provides a new mechanism to explain rejuvenation, and
numerical investigations on related models have produced results similar to experimental
observations [Kaw01, SVDV02]. This same situation is met dynamically in the Sinai
model, because length scales are exponentially separated by temperature. However, this
separation is not as sharp as in the REEM because there is no real phase transition. For this
reason, the rejuvenation and memory effects observed are a smeared out version of those
that arise from drastic separation between length scales. Nevertheless, the interesting
fact is that as this model is strictly self-similar, the details probed at low temperature are
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independent of the specific valley occupied before the quench. The outcome is that these
local excitations do bring about strong rejuvenation signals upon negative temperature
shifts. Thus there is no need of chaos, i.e. of large excitations, to produce rejuvenation
signals dynamically.

In summary, the study of excitations reveals that the random nature of disordered
systems is reflected in the spectrum of lowest excitations. This is the reason why studying
first excitations (that are not typical) one can describe the equilibrium behaviour at finite
temperatures. Remarkably, in short ranged systems both small (intra-valley) and large
(off-valley) lowest excitations yield the same contributions, suggesting that both types
of excitations are relevant. From the investigation of order-parameter fluctuations the
picture that one gets from the lowest-lying excitations is that at least for finite system
sizes, excitations are organised following a mean-field like structure. The study of the
chaos problem reveals that only if large-size excitations are entropically enhanced there
can be decorrelation effects in the free-energy landscape. Nonetheless, these large-scale
phenomena do not necessarily account for dynamical signals at low temperature because
these length scales are presumably frozen, so that the activation of small local excitations
relevant at low temperatures is the responsible for the restart of the ageing process.

Open problems and future research
At the end of a thesis one expects to have answered some of the questions posed

at the beginning. Nevertheless, there are still several aspects that would deserve further
investigation and, besides, many different problems that emerge from the ideas developed
in this work. There are several points that I would like to highlight.

Regarding the study of OPF it is evident that it remains an open problem the proof of
the conjecture that parameter �

� � � � below � � in the thermodynamic limit. The search
of an answer to this problem can be very instructive since it implies understanding the
organisation of lowest-lying excitations in any spin-glass model. Certainly, the investi-
gations from low-temperature expansions are very appealing, but the inclusion of higher
order excitations is not trivial. In the same context, I think that it could be interesting to
exploit the connection between � -spin models and structural glasses. One could define
parameters equivalent to � and � where the averages over the samples are substituted by
averages over different configurations. In my opinion this could be a different point of
view to study the liquid-glass transition that might yield useful information. In this same
direction, the analysis of the connected quantities � � , � � and � � would be interesting
because we have seen that they only depend on temperature through the RSB parameter

� which is related to the FDT violation factor in glasses.
As far as low-temperature expansions are concerned one of the most complex problems

is that of going to higher orders, since it implies understanding how are the correlations
between excitation volumes of excitations occupying different levels in the spectrum.
However, as far as I can see, this question cannot be answered without numerical inves-
tigations of larger systems than the ones studied here, at least for the 2d EA model. In
this direction, the analysis of the 3d EA model, even for modest sizes, would be also
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very instructive. Still, there are also several extensions of the lowest-excitation approach
presented here that could be interesting, such as the analysis of the properties of the sur-
face of first excitations through investigations of the link overlap, as well as the study of
the effects of a magnetic field in the volume and gap distributions. As far as mean-field
models are concerned, the extension of the analysis of the SK model to �

� spin models
with �

�
� is very appealing. In particular, the study of the dependence of

�
� with � .

We have seen that for � � � ,
�

�
�

�
� � whereas in the limit �

� � (or the REM), we
know from extreme value statistics that

�
�

� � [BM97]. Thus, it would be interesting
to see what is the shape of this

�
� � � � and what are the effects on the specific heat at

low temperatures, which according to the results reported here should not be linear in � .
Notably, this problem can be studied numerically and analytically, since the possibility
of computing the distribution of local-fields through TAP equations offers a good starting
point for analytical treatment of this problem. Besides, it remains totally unexplored the
dynamical counterpart of this analysis. Or in other words, how the distribution of exci-
tations and energy costs corresponding to large-scale excitations is realised dynamically
in large samples.

In the chaos problem there are two questions that attire my attention. The first one
is to discern between chaos induced by critical fluctuations and true chaos in the frozen
phase. For instance, one could study a model such as the DP in 1+2 dimensions, which
has a transition at finite temperature but is believed to have the same low-temperature
properties as the DP in 1+1 dimensions studied in this thesis. The interest would be to see
if the response against external perturbations changes or not at the critical temperature.
Following this same direction, it would be interesting to see compare the chaotic properties
of systems with different types of transitions. Of course, the link between this analysis and
the problem of rejuvenation is straightforward, and the interest is to see what mechanisms
lead to rejuvenation and which do not by performing numerical simulations of temperature
cycling experiments around the critical region. Thus, in a systems like the DP in 1+2
dimensions, the analysis of temperature cycling experiments is interesting for two reasons,
i) to study differences in the ageing process in different temperature regions (frozen and
critical) and ii) to study what is the dynamical phenomenology that characterises the
existence of a weak perturbation regime in comparison to that observed in non-chaotic
systems such as the multi-layer REM or the Sinai model.


