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Efectes metabòlics de la insulina i dels IGFs en cèl·lules músculars de l’ orada 

(Sparus aurata) en cultiu. 

 

Resum 

 

S’ha analitzat la funció metabòlica dels IGFs de manera comparativa amb la de 

la insulina en cèl·lules musculars d’orada al llarg del desenvolupament del cultiu. 

S’han estudiat els efectes in vitro de la insulina i dels IGFs sobre la captació de 

2-Deoxy-Glucosa (2-DG) i de L-alanina en miòcits (dia 4) i petits miotubs (dia 9). La 

captació de 2-DG incrementa en presència de la insulina, però en major grau, dels IGFs. 

L’estimulació de la captació de 2-DG és depenent del temps d’incubació i de l’estat de 

diferenciació de les cèl·lules. Per contra, la captació de L-alanina va mostrar un patró de 

desposta invers, essent major quan les cèl·lules musculars estan poc              

diferenciades (dia 4). 

La incubació de les cèl·lules amb PD-98059 o wortmanina, però especialment de 

citocalasina B, va provocar una disminució en la captació de 2-DG en miòcits (cèl·lules 

a dia 5), suggerint que el transport de glucosa és degut a l’acció de transportadors de 

difussió facilitada. Els extractes proteics de cèl·lules preincubades amb wortmanina i 

PD-98059, i posteriorment amb els pèptids, van ser analitzats per Western blot. S’ha 

detectat que l’activació de les vies de transducció de la MAPK i de l’ Akt estan 

implicades en els efectes metabòlics dels IGFs. De la mateixa manera, s’ha detectat que 

la insulina i els IGFs estimulen la síntesis proteïca del transportador GLUT4 durant el 

desenvolupament del cultiu. 

El present treball mostra que els IGFs estimulen la captació de 2-DG i de           

L-alanina en major grau que la insulina. De la mateixa manera, el grau d’estimulació 

dels pèptids varia en funció de l’estat de diferenciació de les cèl·lules. Els efectes 

metabòlics dels IGFs es donen a través de l’activació de les vies de transducció de la 

MAPK i de l’Akt. A més, els canvis en la captació de glucosa poden ser explicats per 

l’acció dels transportador GLUT4, que és estimulat en presència dels pèptids al llarg del 

cultiu. Aquests resultats indiquen el paper dels IGFs en el metabolisme de les cèl·lules 

musculars d’orada.  
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Abstract 

 

The relative metabolic function of insulin compared with IGF-I and IGF-II on 

gilthead sea bream muscle cells, has been investigated at different stages in the cell 

culture. In these cells the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) 

and L-alanine uptake was carried out in myocytes (day 4) and little myotubes (day 9). 

2-DG-uptake in gilthead sea bream muscle cells was increased in the presence of insulin 

and IGFs in a time dependent manner and as well as the cell culture progressed and 

differentiated. On the contrary, L-alanine uptake showed an inverse pattern, being 

higher in little myocytes than in large myotubes. When incubating the cells with PD-

98059, wortmannin and especially cytochalasin B, a reduction in 2-DG uptake was 

observed, suggesting that glucose transport takes place through specific facilitative 

transporters. By means of Western blot on lysates from cells preincubated with the 

specific inhibitors and subsequently stimulated with insulin and IGFs, we detected that 

MAPK and Akt transduction pathways are implicated in the metabolic function of the 

peptides. In the same way, we detected that GLUT4 protein synthesis is stimulated in 

the presence of insulin and IGFs in gilthead sea bream muscle cells in a different 

manner throughout the cell culture. 

In conclusion, this study show that IGFs are more effective than insulin in 

stimulating glucose and alanine uptake in gilthead sea bream myosatellite cells and that 

the degree of stimulation changes when cells differentiate to myotubes. The metabolic 

actions of the IGFs activate the MAPK and Akt transduction pathways. Moreover, 

changes in glucose uptake can be explained by the GLUT4 transporter action, which is 

stimulated in presence of the studied peptides throughout the cell culture. These results 

indicate the important role of IGF-I and IGF-II on the muscle metabolism of the 

gilthead sea bream  
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1. Introduction 

The farming of gilthead sea bream, Sparus aurata, is one of the most important 

aquaculture industries in the Mediterranean area (Mingarro et al., 2002). In the last 

decades the regulation of growth is one of the goals of aquaculture production (Pedroso 

et al., 2005). Considering that muscle in fish can account for about 60% of the weight of 

an adult individual (Millward et al., 1989), and that muscle growth will determine the 

final size of the animal, the adoption of practices for manipulation of fish growth is 

conditioned to the understanding of muscle growth regulating processes (Cyrino and 

Mulvaney, 1999). 

Post-larval growth in fish results from both an increase in diameter of already 

existing fibers (hypertrophy) and the recruitment of new fibers (hyperplasia) 

(Rowerlson and Vegetti, 2001). The hyperplasic phenomenon continues indeterminantly 

beyond puberty (Weatherley et al., 1987; Mommsen and Moon, 2001) and results of the 

recruitment, division, and fusion of satellite cells adjacent to existing fibers (Alfei et al., 

1994). These satellite cells provide a source of nuclei for both hypertrophy and 

hyperplasia events (Koumans and Akster, 1995).  

Culture of muscle satellite cells have been developed for different fish species 

(Reviewed in Fauconneau and Paboeuf, 2000), but in vitro, these satellite cells only 

differentiated to very large myotubes for the studies undertaken on Oncorhynchus 

mykiss by some authors (Rescan et al., 1994; 19995;Faconneau and Paboeuf, 1998). We 

have recently observed that IGF system is implicated in proliferation and differentiation 

processes as well as in metabolical function in cultured Oncorhynchus mykiss satellite 

muscle cells like in mammals (Castillo et al., 2004). The accumulated evidence to date 

suggests that the major components of the IGF signalling system are also implicated in 

the growth of gilthead sea bream. During the past decade, in vivo studies on 

protein/energy ratio (Pérez-Sánchez et al., 1995; Martí-Palanca et al., 1996; Reviewed 

by Pérez-Sánchez an Le Bail, 1999) showed the nutritional regulation of the IGF-I axis 

in gilthead sea bream. In the same scenario, other works showed a positive correlation 

between IGF-I plasmatic values and changes in ration size in this species (Pérez-

Sánchez et al., 1995; Company et al., 1999). Lately, it has been demonstrated the role of 

growth hormone (GH) and IGF-I on seasonal growth and the effect of diets with plant 

protein supply on nitrogen-metabolism and GH-liver axis (Mingarro et al., 2002; 

Gómez-Requeni et al., 2003, 2004). 
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Besides the growth actions of IGF-I, it has been demonstrated that both insulin 

and IGF-I, play a critical role in the regulation of metabolism. Several studies in fish 

reported the action of insulin and IGF-I on glucose and aminoacid uptake in distinct cell 

tissues (Inui et al., 1983; Negatu et al., 1995; Soengas and Moon, 1998; Gallardo et al., 

2001; Castillo et al., 2004; Albalat et al. 2005). Moreover, Vega-Rubín et al., (2004) 

observed increases in glucose, glucagon and insulin plasma levels when arginin was 

injected intraperitoneally on gilthead sea bream, showing the interactions between 

aminoacid metabolism and glucose homeostasis in this specie. Recently, in our group, 

Rojas et al. (2005) partially cloned a specific glucose transporter (saGLUT4) in the red 

muscle of gilthead sea bream, describing the effects of different experimental diets on 

its expression. The same author reported that intraperitoneal administration of arginin 

on gilthead sea bream, provoked increases in the levels of GLUT4 protein in the white 

skeletal muscle. 

All these data suggest an important role of IGFs in gilthead sea bream skeletal 

muscle, which remains to be analyzed in detail. Because the evidence that fish models 

can provide a complementary view to our understanding of the role of the IGF system, 

we use a primary culture of gilthead sea bream muscle cells previously described 

(Montserrat et al., 2006). The aim of this study is to analyze the role of IGFs on 

metabolic processes such as glucose and aminoacid uptake compared to insulin, as well 

as to identify the main signalling pathways undertaken by the IGF-I receptor by using 

specific inhibitors in gilthead sea bream muscle cells. Besides, we have detected the 

stimulation of GLUT4 in those cells in the presence of the different peptides throughout 

the cell culture. 
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2. Material and Methods 

 

2.1. Chemicals 

2-Deoxy-D-[2, 6-
3
H] glucose (cat #TRK672), with a specific activity of 43 

Ci/mmol and L-[2,3-
3
H] alanine, with a specific activity of 52 Ci/mmol were purchased 

from Amersham Pharmacia Biotech Europe (Barcelona, Spain). Recombinant human 

IGF-I was purchased in from Peninsula Laboratories, Europe (Merseyside, UK). Other 

reagents were obtained from Sigma Aldrich Química (Alcobendas, Madrid). Anti-

phospho-p44/42 (cat nº9106), anti-Akt (cat nº 9272), anti-Akt-P (cat nº 9271) and anti-

p44/42 antibodies (cat nº 4696) were ordered from Cell Signaling Technology Inc. 

(Beberly, MA,USA).The remaining reactives were purchased from Sigma-Aldrich 

Química, S.A (Madrid, Spain). The okGLUT4
 
antibody was a kind gift from Dr. Josep 

Planas (University
 
of Barcelona) and has been previously well characterized (Capilla et 

al., 2004). 

2.2. Animals and cell culture 

We used gilthead sea bream (Sparus aurata) with weights ranging from 2.8 to 

8.5 g. Animals were provided by Aquamar S.L (San Fernando, Cádiz, Spain).These fish 

were maintained in Barcelona facilities in closed-circuit flow systems at 19°C, fed ad 

libitum with a commercial diet, and fasted for 24 h before the experiments. The fish (70 

to 80 for each culture) were killed by a sharp blow to the head, weighted and immersed 

in 70% ethanol for 30 s to sterilize external surfaces.  

All experiments were conducted with cells seeded at a density of 2X 10
6
 per 

well in six-well plastic plates (9.6 cm2 /well, NUNC). Observations on morphology 

were regularly made to control the state of the cells, which were used at day4 (myocytes 

and recently differentiated myotubes) at day9 (mostly small myotubes) and day 11 (big 

myotubes) for 2-deoxyglucose (2-DG) and L-alanine uptake assays and Western 

blotting. All experiments were performed in triplicate; each condition was performed in 

triplicate (3 wells). Cells were incubated at 21°C, the optimal temperature for growth of 

the culture. 
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2.3. L-Alanine uptake assay 

For L-alanine uptake assays, fish number and weight, as well as cell density 

were equivalent to that used for 2-DG uptake assays. After 4 or 10 days of culture, the 

culture medium (90% DMEM-FBS 10%) was aspirated and the cells were rinsed with 

ice-cold PBS and maintained in DMEM+0.5% BSA (DMEM-BSA) without FBS for 2–

3 h. After preincubation with DMEM+0.5% containing different concentrations of 

peptides (from 10 to 100 nM for IGF-I and 100 nM to 1 µM for insulin) at different 

times (1 or 2 h), the medium was aspirated, rinsed two times with ice-cold PBS, and the 

cells were incubated with 1 µCi/ml of L-alanine for 20 minutes. Previously, time course 

experiments were performed to find the best conditions for the study (data not shown). 

The amino acid uptake was stopped by aspiration of the supernatant, followed by three 

rapid washes with ice-cold PBS. Next cells were solubilized with NaOH 0.1 N. Finally 

samples were placed in scintillation vials, and the radioactivity was counted (Packard 

Bioscience). 

2.4. DG uptake assays 

For 2-DG assays, 40–70 fish, with an approximate weight of 3, 5 g, were used 

for each culture. After pooling cells from all the animals of the same culture, the 

experiments were conducted with cells seeded at a density of 2X10
6 
per well in six-well 

plastic plates. The cells, after 4 or 9 days of culture, were incubated for 4 h with DMEM 

without FBS and after this period preincubated (30 or 60 min) in the presence or 

absence of insulin, IGF-I and IGF-II in DMEM-0.5% BSA (concentrations 100nM for 

IGF-I, IGF-II and  1µM for insulin). After preincubation, the cells were rinsed two 

times with ice-cold PBS and incubated with unlabeled 50 µM 2-DG together with 

labeled 2-DG (2 µCi/ml) in HEPES-saline buffer. The incubations with labeled and cold 

2-DG, except for the time course experiments, were routinely of 30 min. The contents 

of the wells were aspirated and rinsed three times with ice-cold PBS, and the cells were 

lysed with NaOH 0.5 N. The contents of the wells were removed and placed into 

scintillation vials, and the radioactivity was quantified with a γ-counter (Packard 

Bioscience, Meriden, CT).  

To better characterize glucose transport the effects of several compounds on 

glucose uptake stimulation by IGFs or insulin were analyzed at day 5 in the cell culture. 

PD-98059 is an inhibitor of the MEK1 protein, a component of the MAPK pathway; 

wortmannin is an inhibitor of the PI3K-Akt pathway; and cytochalasin B is a specific 

inhibitor of the facilitative glucose transporters. Cells were preincubated for 30 min 
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with wortmannin (1 µM) or PD-98059 (50µ M), and peptides (IGF-I, IGF-II or insulin) 

were added for 30 additional minutes. The cytochalasin B (20 µM) was added and 

incubated simultaneously with the labeled 2-DG for 30 min. Doses of inhibitors were 

selected from previous results obtained in similar experiments by Castillo et al. (2004). 

2.5. Western blot analysis 

In order to characterize the signal transduction pathways, following 5 days in 

culture, the cells were incubated with DMEM + 0.5 % BSA for 2-3 hours. Next cell 

were incubated in cells were preincubated for 30 min with wortmannin (1 µM) or PD-

98059 (50 µM) Afterwards, cells were incubated with DMEM+0.5% BSA and a fixed 

concentration of peptides (100 nM for IGF-I and IGF-II or 1µM for insulin) for 30 

minutes. Subsequently, the medium was aspirated, the wells were washed with ice-cold 

PBS, and the cells were lysed with lysis buffer (1 % NP-40, 0.4 mM sodium 

orthovanadate, 10 mM Tris, 140 mM NaCl, 5 mM EDTA, 50 mM NaF, 1 mM PMSF, 

10 µg/ml Aprotinin, 10 µg/ml Leupeptin, pH 7 .6). After obtaining cell lysates, protein 

content was determined with the Bradford reagent method (Bradford, 1976) and 

electrophoresis using a polyacrilamide gel was conducted in the presence of SDS (SDS-

PAGE) (each lane loaded with 30 µg of protein). Samples were then transferred to a 

PVDF membrane for 90 minutes under a constant current of 1A in a transfer buffer (25 

mM Tris-HCl, 190 mM Glycine, 20 % Methanol, pH 7.5). Following a 30-minute wash 

(10 mM Tris-HCl, 100 mM NaCl, 0.1% Tween 20, pH 7.5), the membrane was 

incubated for 1 hour at RT with the primary antibody (at 1:500 dilution). The primary 

antibodies detected the presence of mitogenesis activator protein kinase (MAPK) and its 

active form (MAPK-P), as well as the Akt protein and its phosphorylated form (Akt-P).  

 
Lysates of cells at day 4 and day 9, stimulated with 100 nM for IGF-I and IGF-

II or 1µM for insulin for 1 hour were performed for the detection of  GLUT 4. 

Inmunoblots were performed using the okGLUT4 antibody at 1:500 dilution in Tris-

buffered saline containing 0, 1% Tween 20 and 5% non fat dry milk for 2 h at room 

temperature. The secondary antibody was used at 1:5000 dilution in the same buffer, 

and the detection of the luminescence was done using and enhanced chemi 

luminescence kit (Amersham). 
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2.6. Statistical analysis 

 The treatment was performed in triplicate for each experiment. Data are 

presented as means ± SE of at least three experiments. Statistical differences between 

conditions were analyzed by one-way analysis of variance (ANOVA) and the Tukey’s 

test. Differences were considered statistically significant at P< 0.05. 

 

3. Results 

 

3.1. IGF-I, IGF-II and insulin effects on L-alanine uptake 

The effects of IGF-I, IGF-II and insulin on alanine uptake were analyzed at day 

4 in the cell culture. As shown in Figure 1, all the tested peptides stimulated alanine 

uptake over the basal values. IGF-I and IGF-II showed the highest stimulation of 

alanine uptake when comparing with insulin, considering that IGF-I and IGF-II 

concentration is 10 times lower than insulin.   

 

 

 

When the same experiment was carried out in cells at day 9 of the culture 

(myotubes), same tendency was observed, but the basal and stimulated alanine uptake 

was clearly lower than that found in myocytes of 4 days culture (data not shown). 

 

 

 

 

Figure 1. Stimulation of L-alanine uptake by  insulin ,IGF-I and IGF-II .The cells, in day 4 of in vitro  

development, were incubated for 2 h, and subsequently L-alanine uptake was quantified for 20 min. 

Results are expressed as percentage of stimulation over basal levels and mean  SE (n =3 experiments). 

Different letters indicate significantly (P <0.05) different values among groups.
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3.2. IGFs and insulin effects on 2-DG uptake. 

 

Figure 2 shows the effects of IGF-I, IGF-II compared with insulin on glucose 

uptake on muscle cells at day 4; preincubation with the peptides extended for 30 or 60 

min and glucose uptake was fixed at 30 min. In general, preincubating the cells during 

60 minutes in the presence of the different peptides resulted in higher stimulatory 

effects on glucose uptake. IGF-I and IGF-II showed the highest stimulation of glucose 

uptake when comparing with insulin effects.  

 

 

As shown in Figure 3, same experiments were performed at day 9 in the cell 

culture and the stimulatory effects of both IGF-I and IGF-II were higher than those 

exerted by insulin after 30 or 60 minutes incubations. 

 

 

 

 

Figure 2. The 2-deoxyglucose uptake in muscle cells in culture stimulated by insulin, IGF-I or IGF-II. Cells

were isolated and cultured for 4 days and incubated with the peptides (for 30 or 60 min) and subsequently

incubated with 2 Ci/ml of labeled 2-deoxyglucose (2-DG) for 30 additional minutes. Results are expressed as 

percentage of stimulation over basal levels and means SE (n= 3 experiments). Different letters indicate

significantly (P < 0.05) different values among groups.
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The effects of inhibitors of IGF-I, IGF-II and insulin-stimulated glucose uptake 

5 day´s myocytes, are shown in figure 4. Both PD-98059 and wortmannin significantly 

inhibited the basal glucose uptake and the stimulatory effects of IGF-I, IGF-II and 

insulin. Same results were found when cells were incubated in presence of cytochalasin 

B.  

 

 

 

Figure 3. The 2-deoxyglucose uptake in muscle cells in culture stimulated by insulin, IGF-I or IGF-II. Cells

were isolated and cultured for 9 days and incubated with the peptides (for 30 or 60 min) and subsequently

incubated with 2 Ci/ml of labeled 2-deoxyglucose (2-DG) for 30 additional minutes. Results are expressed as 

percentage of stimulation over basal levels and means SE (n =3 experiments). Different letters indicate

significantly (P < 0.05) different values among groups.
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Figure 4.Effect of inhibitors on the 2-DG uptake in 5 day muscle gilthead sea bream cells. For wortmanin

(Wort) (1 µM) and PD-98059 (PD) (50µ M), , the cells were preincubated for 30 min, and peptides [IGF-I, 

IGF-II or insulin (INS)] were added for 30 additional minutes. Cytochalasin B (CK) (20 µM) was incubated

for the 30 min of 2-DG. Results are expressed as percentage of stimulation over basal levels and mean SE (n=

3 experiments). Different letters indicate significantly (P < 0.05) different values among groups.
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3.3. Inhibition of Akt and MAPK signalling pathways 

The effects of the specific inhibitors from both signalling pathways on day 5 

cells are shown in table 1. Preincubation of cells with wortmannin (inhibitor of the Akt 

signalling pathway) reduced the phosphorylation of IGF-I and IGF-II-stimulated Akt 

protein (from 237% to 67% and 345% to 56% above basal values, respectively). The 

effect of PD-98059 (inhibitor of the MAPK signalling pathway) reduced the effects of 

both IGF-I and IGF-II on MAPK phosphorylation (from 146% to 34% and 231% to 

45%, respectively).  

3.4. Immunodetection of GLUT4 

With the use of an anti-okGLUT4 polyclonal antibody,
 
a band of 50 kDa was 

detected at 4 day and 9 day sea bream myoctyes.  Specificity of the 50-kDa
 
band was 

confirmed by the use of preimmune serum (data not shown). At day 4 the incubation of 

myoblast with 1µM insulin for 30 minutes resulted in GLUT4 stimulation (50% above 

basal levels); no changes of GLUT4 protein expression were observed when these cells 

were incubated neither IGF-I nor IGF-II (100nM). When myotubes of day 9 were 

incubated with 100nM IGF-I and IGF-II for 30 minutes, GLUT4 protein expression was 

increased ~200% above basal levels. The incubation with 1µM insulin did not provoke 

any stimulatory effect on GLUT4 protein levels at day 9. 

 

 

 

 

 

 

 

control IGF-I 100nM
IGF-I 100nM

+W (1mM)

IGF-I 100nM

+ PD 98059 (50mM) IGF-II 100nM
IGF-II 100nM

+W (1mM)

IGF-II 100nM

+ PD 98059 (50mM)

MAPK-P

Akt-P

100%a

100%a 237%±17b 67±17c 345±17a 56 %±17b

146%±23b 34%±4b 231%±19a 45%±9b

212±17b 314 %±17a

187% ±17a123%±29a

control IGF-I 100nM
IGF-I 100nM

+W (1mM)

IGF-I 100nM

+ PD 98059 (50mM) IGF-II 100nM
IGF-II 100nM

+W (1mM)

IGF-II 100nM

+ PD 98059 (50mM)

MAPK-P

Akt-P

100%a

100%a 237%±17b 67±17c 345±17a 56 %±17b

146%±23b 34%±4b 231%±19a 45%±9b

212±17b 314 %±17a

187% ±17a123%±29a

Table 1 – Effect of inhibitors on the ERK 1/2 MAPK and PI3K- Akt pathways in IGF-I/IGF-II-

stimulated 5 day muscle  gilthead sea bream cells. Cells were preincubated for 30 min with inhibitors, and 

IGF-I was added for 30 additional minutes. Results are expressed as percentage of stimulation over basal levels 

and mean ± standard error (n=3). Different letters indicate significant differences (P<0.05).
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4.Discussion 

 

This study is the first report assessing the metabolic effects of insulin and IGFs 

on cultured gilthead sea bream myocytes. Although the implication of insulin and IGF-I 

in growth processes have been reported in this species in vivo, the lack of information 

regarding the role of these peptides on sea bream muscle metabolism led us to examine 

the insulin and IGFs-stimulated uptake of metabolic substrates (2-DG and L-alanine). 

The use of specific inhibitors of the main signalling pathways confirmed that MAPK 

and PI3K pathways are implicated in glucose metabolism in gilthead sea bream cultured 

muscle cells. On the other hand, the inhibitory effect of cytochalasin B on insulin and 

IGFs -2DG stimulation, together with the detection of a GLUT4 transporter in sea 

bream myocytes, reveals the role of the studied peptides on sea bream glucose 

metabolism.  

Muscle growth dynamics in fish results in large part from stimulation of protein 

synthesis which directly depends on amino acids availability (Brodeur et al., 2003). Our 

data clearly showed that both IGF-I and IGF-II are more effective than insulin in 

stimulating L-alanine uptake at day 4 in the cell culture. Previous work has 

demonstrated the stimulatory effects on amino acid uptake of insulin and IGF-I, 

respectively, in fish muscle (Inui et al., 1983; Negatu et al., 1995). In the same manner, 

studies on stable cell lines (Benguinot et al., 1985) and in human or rodent muscle strips 

(Bevan et al., 1992), demonstrated the stimulatory effects of IGF-II in L-alanine uptake. 
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More recently, higher stimulatory effects for IGF-I than for insulin have been 

demonstrated in trout isolated cardiomyocytes (Gallardo et al., 2001) and on cultured 

rainbow trout myocytes (Castillo et al., 2004). However, the stimulatory effect of the 

peptides on L-alanine uptake, is more effective in previous stages of the cell culture 

(day 4) than at day 10 (data not shown). This data suggest that amino acid requirement 

seems to be more important during proliferative stages than during cell muscle 

development (Castillo et al., 2004).  

Fish are generally thought to have a limited ability to utilize carbohydrate when 

compared with mammals (Legate et al., 2001) and the skeletal muscle is the main tissue 

responsible for eliminating plasma glucose in brown trout after a glucose load (Blasco 

et al., 1996). In the current study, we investigated the role of IGF-I and IGF-II 

compared with insulin, in the 2-DG uptake in sea bream cultured myocytes. 

The present data showed that IGFs are more effective than insulin in glucose 

uptake stimulation in both myoblast and large myotubes. However, the stimulation 

increased as well as cells differentiated in the cell culture. Previous studies in cultured 

rainbow trout myocytes showed similar results (Castillo et al., 2004), but no data is 

available in gilthead sea bream muscle. Recently, Albalat (2005) demonstrated that 

IGF-I had higher stimulatory effects in the 2-DG uptake than insulin on isolated 

gilthead sea bream adipocytes. In the same way, previous work in mammals showed 

that IGF-I stimulated 2DG-uptake (Beguinot et al., 1985; Wang et al., 1987; Niu et al., 

2003) and IGF-II resulted a positive stimulator of 2-DG in rat and human muscle strips 

(Yu and Czech 1984; Bervan et al., 1992; Zierath et al., 1992). Although type II IGF-

receptor have been identified in our group by Méndez et al. (2001) in brown trout at 

different stages of the development, studies in mammalian cells based on ligand 

competitions (Ewton et al., 1987), IGF-II analogues (Burguera et al., 1994) and the use 

of antibody to the type II IGF-receptor (Kiess et al., 1987), suggested that the biological 

effects of both IGFs are mediated by the type I IGF-receptor.  

The results in this study demonstrated that both IGFs had higher stimulatory 

effects than insulin on the stimulation of 2-DG glucose uptake, and in concentration 

similar to these described by Castillo et al. (2004) in rainbow trout myocytes. Increases 

in absolute 2-DG uptake stimulation by IGFs throughout the cell culture might be 

related with the reported increase in the IGF-I receptor levels as well as with the higher 

metabolic needs in differentiated myotubes (Montserrat et al., 2006). 
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In order to determine the specificity underlying the glucose uptake process, we 

incubated 4 day-sea bream myocytes in the presence of PD-98059 and wortmannin. In 

agreement with the observations of Castillo et al. (2004) in rainbow trout myocytes, we 

found out a decrease on insulin and IGFs- 2-DG stimulation, which indicates that 

MAPK and PI3K pathways are implicated in glucose metabolism in fish muscle. In 

addition, the use of cytochalasin B blocked the stimulatory effects of insulin and IGFs, 

suggesting that glucose transport takes place thought specific facilitative transporters in 

sea bream cultured myocytes. Previous studies on fish reported the existence of 

cytochalasin B-sensitive glucose transport in red blood cells of the eel (Tse and Young, 

1990; Soengas and Moon, 1995) the primitive hagfish (Young et al., 1994) and in the 

black bullhead (Soengas and Moon, 1998). More recently, 2-DG uptake was inhibited 

by cytochalasin B in Xenopus laevis oocytes expressing an insulin-responsive glucose 

transporter (GLUT4) cloned from Onchorynchus kisutch (okGLUT4) (Capilla et al. 

2004). These previous findings led us check the presence of the specific GLUT4 

transporter in sea bream myocytes. In the present study, GLUT 4 protein synthesis is 

stimulated by IGFs and insulin in a different manner throughout the cell culture. These 

data suggest that insulin and IGFs stimulate GLUT4 protein synthesis. In mammals, 

several studies reported the stimulation of IGF-II in GLUT4 protein synthesis (Kaliman 

et al., 1998), as well as the effects of insulin on GLUT4 transcription in human muscle 

cell cultures (Al-Khalili et al., 2003). Current efforts in our laboratory are underway to 

examine whether insulin and IGFs stimulate the protein synthesis of GLUT4 in gilthead 

sea bream muscle cells.  

On the other hand, it has been widely described in mammals that acute insulin 

treatment stimulates glucose transport in adypocytes and myocytes, largely by 

mediating translocation of GLUT4 from intracellular compartment to the plasma 

membrane (Pessin et al., 2000). In the same way, the effects of IGF-I in the 2-DG 

glucose uptake on L6 cells over expressing GLUT4 transporter where higher than in 

wild type L6 cells (Lawrence et al., 1992). 

Previous findings in our group showed the stimulatory effects of insulin and 

IGFs on Akt phosphorylation in cultured sea bream myocytes (Montserrat et al., 2006). 

The present work suggested that such an increase in Akt phosphorylation throughout the 

cell culture could be related of the observed increase of GLUT4 protein content after 

insulin and IGFs incubations, and this observation is also supported by wortmannin and 

cytochalasin B results. In fact, studies in a number of cell types including myoblast, 



Resultats 

 177 

myotubes and adipocytes, related GLUT4 translocation to the plasma membrane with 

PI3K promotion of Akt phosphorylation (Wilson et al., 1995; Zorzano et al., 2000; 

Saltiel et al., 2001; Rauch et al., 2005). In the same way, it has been shown that 

expression of either constitutively active PI-3K (Tengholm et al., 2002) or Akt (Kohn et 

al., 1996) is sufficient to stimulate GLUT4 translocation and insertion to the plasma 

membrane to an extent comparable to that observed with insulin alone. Thus, the 

increase in the insulin-IGFs-stimulated increment in 2-DG uptake in sea bream 

myocytes, may be in part explained by either enhanced insulin-IGFs-stimulated -

GLUT4 protein synthesis, or translocation to the transporter to the membrane through 

PI3-kinase-Akt phosphorylation reported in this study.  

In conclusion, stimulatory effects of both IGF-I and IGF-II on L-alanine uptake 

where higher than those found by insulin in 4 days sea bream myosatellite cells, and this 

stimulatory effect decreased with cell differentiation. In the same way, again both IGFs 

exerted higher stimulatory effects than insulin in 2-DG uptake, being more remarkable 

at day 9 myotubes. The stimulatory effects from both IGF-I and IGF-II in 2-DG uptake 

in differentiated myotubes, together with the stimulation of GLUT4 protein content, 

reveals the important role of those peptides in glucose fish metabolism. Interestingly, 

these findings showed as a first time in this specie the metabolic functions of IGF-II in 

sea bream myosatellite cells. Thus, our in vitro sea bream myocytes culture system 

offers a suitable model to further analyze the link between nutritional status and skeletal 

muscle function in fish.  
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