Projective Forcing

Roger Bosch
Departament de Lògica, Història i Filosofia de la Ciència
Universitat de Barcelona

Advisor: Dr. Joan Bagaria

Dissertation submitted in partial satisfaction of the requeriments for the degree of doctor in Philosophy of the Universitat de Barcelona

November 2001

Doctoral Program: Pure and Applied Logic (1993-1995)

Contents

1 Introduction vii
2 Projective forcing 1
2.1 Projective posets 1
2.1.1 Definitions and basic facts 1
2.1.2 Projective forcing with the countable chain condition 4
2.2 Martin's Axiom for projective posets 10
2.2.1 λ-club and λ-stationary sets 11
2.2.2 Forcing iteration of projective posets 13
2.3 $M A($ Proj $)$ is weaker than $M A$ 20
2.3.1 Projective forcing after collapsing a weakly-compact cardinal 20
2.3.2 Suslin trees 28
2.3.3 Gaps in ω^{ω} 30
2.3.4 Entangled sets of reals 33
2.3.5 $\quad\left(\exists \kappa<2^{\aleph_{0}}\right)\left(2^{\aleph_{0}}<2^{\kappa}\right)$ 35
2.3.6 Final remarks and open questions 36
3 Generic absoluteness for projective ccc forcing 37
3.1 Solovay models 37
3.2 Collapsing an inaccessible cardinal 49
3.3 Collapsing a Σ_{ω}-Mahlo cardinal 54
3.3.1 $\quad \Sigma_{\omega}$-Mahlo cardinals 55
3.3.2 Absoluteness by collapsing a Σ_{ω}-Mahlo cardinal 59
3.3.3 The strength of \sum_{4}^{1}-absoluteness for projective and ccc forcing notions 66
3.3.4 Final remarks and open questions 84
3.4 Collapsing a Mahlo cardinal 85
3.4.1 Absoluteness by collapsing a Mahlo cardinal 85
3.4.2 The strength of \sum_{4}^{1}-absoluteness for σ-centered subposets of Borel posets 90
3.5 Collapsing a weakly-compact cardinal 95
R eferences 99

Chapter 1

INTRODUCTION

In this introduction we give the historical background of the themes developed in this dissertation and state the main results. We also set up the notation and state some facts that we will use further on.

Remarks and notation

We work in Zermelo-Fraenkel Set Theory with the Axiom of Choice, ZFC. Our basic references are: T. Jech, Set Theory (Academic Press, 1978) and K. Kunen, Set Theory. An Introduction to Independence Proofs (North Holland, 1980). With ZFC* we refer to a finite fragment of $Z F C$ sufficient for the proof at hand.
$\alpha, \beta, \gamma, \delta, \eta, \nu, \xi, \zeta$ denote ordinal numbers. We reserve κ, λ, μ for cardinal numbers. ω is the set of all finite ordinals, or natural numbers, which we denote by i, j, k, l, m, n.
ω^{ω} is the Baire space. i.e., the set of all functions from ω into ω viewed as product space. 2^{ω} is the Cantor space. i.e., the set of all functions from ω into $\{0,1\}$ viewed as product space. Finally, R is the real line with the topology generated by open intervals with rational endpoints.

There is a close relationship between these three spaces: they are "almost" homeomorphic, that is, there exists an homeomorphism from any of them into any other except for a countable subset (see [L2], VII.3). So, most of the topological and regularity questions can be transferred from one of these spaces to another. Since all the questions that we shall consider are of this kind, we will work in the space that is most convenient for each particular problem. In each case we will indicate explicitly what space we are working on.

Strictly speaking, only the members of R are real numbers. But, by our previous remarks, we also call real numbers or, for short, reals the elements of ω^{ω} and 2^{ω}. We use $a, b, c, r, s, t, x, y, z$ to denote reals and reserve f, g, h for elements of ω^{ω} and 2^{ω}.

These three spaces are polish spaces: separable complete metric spaces. In general, given a polish space X, we say that a subset A of X is a Borel set iff* it belongs to smallest σ-algebra of subsets of X containing all open sets. More explicitly:

Definition Let X be a polish space. For every countable ordinal $\alpha,(\alpha \geq 1)$ we define, by recursion on ω_{1}, the collection \sum_{α}^{0} of subsets of X :

[^0]- $A \in \sum_{\sim}^{0}$ iff A is an open subset of X.
- $A \in \sum_{\alpha}^{0}$ iff there exists a sequence $\left\langle B_{n}: n \in \omega\right\rangle$ such that for every $n \in \omega$ there is $\beta_{n}<\alpha$ with $B_{n} \in \sum_{\sim}^{0} \beta_{n}$ and $A=\bigcup_{n \in \omega} \tilde{B}_{n}$, where \tilde{B}_{n} is the complement of B_{n}.

We also define the collections ${\underset{\sim}{~}}_{\alpha}^{0}$ and $\underset{\sim}{\underset{\sim}{\alpha}} 0,1 \leq \alpha<\omega_{1}:{\underset{\sim}{\sim}}_{\alpha}^{0}=\left\{\tilde{A}: A \in{\underset{\sim}{B}}_{\alpha}^{0}\right\}$ and $\Delta_{\alpha}^{0}=\sum_{\alpha}^{0} \cap \prod_{\alpha}^{0}$. Finally, $B \subseteq X^{\sim}$ is a Borel set iff there is $\alpha<\omega_{1}$ such that $\widetilde{B} \in \sum_{\alpha}^{0}$.

A subset A of polish space X is an analytic set iff it is the projection of a Borel subset of $X \times Y$, where Y is some polish space. Also, A is analytic iff it is the projection of a closed subset of $X \times \omega^{\omega}$. Clearly, every Borel set is analytic.

We define the projective sets of a polish space X as follows:
Definition For every $n \geq 1$, we define the collection of \sum_{\sim}^{1} of subsets of X :

- $A \in \sum_{\underset{1}{1}}^{1}$ iff A is an analytic subset of X.
- $A \in \sum_{n+1}^{1}$ iff $A=\{x: \exists y\langle x, y\rangle \in B\}$ for some $B \subseteq X \times \omega^{\omega}$ such that $\tilde{B} \in \sum_{n}^{1}$.

We also define the collections ${\underset{\sim}{\underset{\sim}{n}}}_{1}^{1}$ and $\underset{\sim}{\Delta}{ }_{n}^{1}$ as follows: ${\underset{\sim}{n}}_{n}^{1}=\left\{A: \tilde{A} \in{\underset{\sim}{n}}_{n}^{1}\right\}$ and $\underset{\sim}{\Delta}{ }_{n}^{1}=\sum_{n}^{1} \cap \prod_{n}^{1}$. A subset A of \widetilde{X} is a projective set iff for some $n \geq 1, A \in \underset{\sim}{\sum_{n}^{1}}$.
M. Suslin showed in 1917 ([Su]) that the ${\underset{\sim}{1}}_{1}^{1}$ sets of every polish space are precisely the Borel sets.

The projective sets of the Baire space are definable in the following way: For every $n \geq 1$ and every $a \in \omega^{\omega}$,

- If n is odd, then:
$-A$ is $\Sigma_{n}^{1}(a)$ iff for all $x \in \omega^{\omega}$

$$
x \in A \text { iff } \exists z_{1} \forall z_{2} \ldots \exists z_{n} \forall m\left\langle x^{1} m, z_{1}{ }^{1} m, z_{2}{ }^{1} m, \ldots, z_{n}{ }^{1} m\right\rangle \in R
$$

where R is an arithmetical relation on a. i.e., definable in the model $\left\langle V_{\omega}, \in, a\right\rangle$.
$-A$ is $\Pi_{n}^{1}(a)$ iff for all $x \in \omega^{\omega}$

$$
x \in A \text { iff } \forall z_{1} \exists z_{2} \ldots \forall z_{n} \exists m\left\langle x^{1} m, z_{1}{ }^{1} m, z_{2}{ }^{1} m, \ldots, z_{n}{ }^{1} m\right\rangle \in R
$$

where R is an arithmetical relation on a.

- If n is even, then:
$-A$ is $\Sigma_{n}^{1}(a)$ iff for all $x \in \omega^{\omega}$

$$
x \in A \text { iff } \exists z_{1} \forall z_{2} \ldots \forall z_{n} \exists m\left\langle x^{1} m, z_{1}{ }^{1} m, z_{2}{ }^{1} m, \ldots, z_{n}{ }^{1} m\right\rangle \in R
$$

where R is an arithmetical relation on a.
$-A$ is $\Pi_{n}^{1}(a)$ iff

$$
x \in A \text { iff } \forall z_{1} \exists z_{2} \ldots \exists z_{n} \forall m\left\langle x^{1} m, z_{1}{ }^{1} m, z_{2}{ }^{1} m, \ldots, z_{n}{ }^{1} m\right\rangle \in R
$$

where R is an arithmetical relation on a.
Finally, for every $n \geq 1, \sum_{n}^{1}=\bigcup_{a \in \omega^{\omega}} \Sigma_{n}^{1}(a)$ and $\prod_{n}^{1}=\bigcup_{a \in \omega^{\omega}} \Pi_{n}^{1}(a)$.

Forcing

A forcing notion $\mathrm{P}=\left\langle P, \leq_{P}\right\rangle$ is a set P with a binary relation \leq_{P} on P that is reflexive and transitive. We do not require that \leq_{P} be antisymmetric nor that P have a \leq_{P}-least element, although this is almost always the case. p, q and r (possibly with subindexes) denote elements of P, which we call conditions (of the forcing). $p \leq_{P} q$ means that " p extends q ". i.e., p gives more information than q on the generic object that is added by forcing with P. $p \perp_{P} q$ means that p and q are incompatible conditions. i.e., there is no $r \in P$ such that $r \leq_{P} p$ and $r \leq_{P} q$. P is separative if for all $p, q \in P$, if $p £_{P} q$, then there exists $r \in P$ such that $r \leq_{P} p$ and $r \perp_{P} q$. ${ }^{\circ}{ }_{\mathrm{P}}$ denotes the forcing relation of $\mathrm{P} . \sigma, \tau, \rho, \dot{a}, \dot{b}, \dot{c}, \dot{P}, \dot{Q}, \dot{\mathrm{P}}, \dot{\mathrm{Q}}, \dot{G}$ (possibly with subindexes) denote P-names. $\breve{n}, \breve{a}, \breve{\mathrm{P}}$ denote canonical P-names for elements in the ground model. If G is a P-generic filter over some model V, then $\tau[G], \dot{a}[G], \breve{n}[G]$ denote the evaluations of τ, \dot{a} and \breve{n} by G in $V[G]$.

Sometimes we do forcing with complete Boolean algebras. If B is a complete Boolean algebra, then $\left\langle B \backslash\left\{0_{\mathrm{B}}\right\}, \leq_{\mathrm{B}}\right\rangle$, where \leq_{B} is the canonical partial order from B, is a forcing notion. It is a well-known fact that every separative poset P can be densely embedded into an unique (up to isomorphism) complete Boolean algebra, the completion of P , r.o. (P). So, all forcing arguments can be carried out with complete Boolean algebras. The main advantage of working with complete Boolean algebras is that for every formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and all B-names $\tau_{1}, \ldots, \tau_{n}$ there exists a condition $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket_{\mathrm{B}}$ in B such that for every generic filter G over V,

$$
V[G]^{2} \varphi\left(\tau_{1}[G], \ldots, \tau_{n}[G]\right) \text { iff } \llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket_{\mathrm{B}} \in G
$$

Namely, $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket_{\mathrm{B}}=\sup \left(\left\{p \in B \backslash\left\{0_{\mathrm{B}}\right\}: p^{\circ}{ }_{\mathrm{B}} \varphi\left(\tau_{1}, \ldots, \tau_{n}\right)\right\}\right.$) (see [Ku], VII. 7 or [J2], 2.18).

Descriptive Set Theory and forcing

Descriptive Set Theory is the study of definable sets of reals, mainly the projective sets of reals. One of the main objectives in this field is to look into the regularity properties of projective sets, like the Lebesgue measurability, the property of Baire or the perfect set property.

We use the following notation: we write ${\underset{\sim}{n}}_{n}^{1}(L)\left(\underset{\sim}{n}{ }_{n}^{1}(L),{\underset{\sim}{\Delta}}_{n}^{1}(L)\right)$ if every \sum_{n}^{1} (respectively, ${\underset{\sim}{~}}_{n}^{1},{\underset{\sim}{n}}_{n}^{1}$) set of reals is Lebesgue measurable. We write ${\underset{\sim}{~}}_{n}^{1}(B)\left(\underset{\sim}{~}{ }_{n}^{1}(\widetilde{B})\right.$, $\left.\Delta_{n}^{1}(B)\right)$ if every $\sum_{n}^{\Upsilon}\left(\prod_{n}^{1}, \Delta_{n}^{1}\right)$ set of reals has the property of Baire. Finally, we write

The first results on regularity properties of projective sets date from the beginning of the 20th century: in 1917, N. Luzin ([Lu1]) proved $\sum_{1}^{1}(L)$, in 1923, N. Luzin and W. Sierpiński ([Lu-Si]) proved $\sum_{1}^{1}(B)$, and, in 1917 M. Suslin proved ${\underset{\sim}{1}}_{1}^{1}(P)$ (see [Lu2]).

But it was quickly realized the difficulty to extend this results to more complex projective sets. If a set of reals is Lebesgue measurable, then so is its complementary set. The same occurs with the property of Baire. So, the results mentioned above imply $\prod_{1}^{1}(L)$ and $\prod_{1}^{1}(B)$. Therefore, the question about the measurability and the property of Baire was for sets in the $\underset{\sim}{2} \frac{1}{2}$ level. For the perfect set property, the question remained at the ${\underset{\sim}{\sim}}_{1}^{1}$ level.

Then K. Gödel obtained in 1938 the first negative results: in the model of constructible sets, L, used by him to prove the consistency of the Generalized Continuum Hypothesis and the Axiom of Choice with $Z F$ ([Gö]) there exists a $\underset{\sim}{\Delta} \frac{1}{2}$ set which is not Lebesgue measurable and does not have the property of Baire. He also noticed that in this model there is a \prod_{1}^{1} set without the perfect set property.

After the method of forcing was invented by Cohen to prove the independence of the Continuum Hypothesis and the Axiom of Choice from $Z F$, it has been applied to produce a vast array of consistency results in Descriptive Set Theory. For instance, R. Solovay ($[\mathrm{So}]$) proved that $Z F C+$ "Every projective set of reals is Lebesgue measurable and has the property of Baire" is consistent, supposing that ZFC+"There exists an inaccessible cardinal" also is. We can find other applications of forcing in Descriptive Set Theory in the proof of S. Shelah ([Sh1]) that the existence of an inaccessible cardinal is a necessary hypothesis in order to obtain a model of ZFC where all projective set of reals (in fact, all \sum_{\sim}^{1}) are Lebesgue measurable, and in the proof that this large cardinal hypothesis is not necessary in order to obtain a model of $Z F C$ where all projective sets of reals have the property of Baire.

Cohen Forcing ([C]) which adds a real that does not belong to any meager Borel set with code in the ground model, and Random forcing ([So]) which produces a real not belonging to any null Borel set with code in the ground model, play an essential role in Solovay's proof. Shelah used the Amoeba forcing ([M-So]) which adds a measure one set of Random reals over the ground model, to show that the inaccessible cardinal assumption is necessary to find a model of $Z F C$ where all projective sets of reals are Lebesgue measurable. He also used Amoeba forcing for Category ([M-So]) which adds a comeager set of Cohen reals over the ground model, for the aforementioned result on the property of Baire.

Looking at the partially ordered sets used in these and other forcing arguments in Descriptive Set Theory, we realize that they are, essentially, sets of reals definable in a simple way: they are projective partial orderings. By a projective partial ordering we mean a partially ordered set (a poset, for short) where the ordering and the incompatibility relation are projective subsets of the real plane. Cohen, Random, Amoeba and Amoeba for the Category forcing notions are Borel (${\underset{\sim}{1}}_{1}^{1}$). Other examples of projective, in fact Borel, and ccc forcing notions can be found in [He], [To2], [Ju-R-Sh], and more complicated projective forcing notions in [B2].

Thus, the study of the projective forcing notions arise in a natural way. It starts in [Sh1], where the absoluteness properties of \sum_{2}^{1} sets are exploited. It continues
in [Ju-Sh1], [Ju-Sh3] and [Ju-Sh4]. In [Ju-Sh1], H. Judah and S. Shelah develop a general theory for ω-Suslin forcing notions. i.e., Σ_{1}^{1} posets. Their work was continued in [B1] and in [B-Ju] restricted to \sum_{1}^{1} ccc posets. Other papers, as for instance [G-Sh1], [G-Sh2], [Sh2], [Ju-R] and [Ju-R-Sh], study some other properties of Σ_{1}^{1} ccc forcing notions.

In Section 2.1, we generalize these results by developing a general theory of projective and projective ccc posets. We give the basic definitions and facts and we compute the complexity of some sets of reals associated to these forcing notions, such as the set of codes of the posets of reals of a given complexity, the set of codes of maximal antichains of a poset and the set of codes of simple names for reals. We finish this section showing that forcing a projective formula by means of a projective ccc poset is a projective relation and computing its complexity:

Theorem 2.1.23 Let \mathbf{P} be a projective ccc poset and let $\theta(x)$ be a $\Sigma_{k}^{1}\left(\Pi_{k}^{1}\right)$ formula with $k \geq 2$. Then the relation

$$
\left.R(p, \tau) \leftrightarrow p \in \mathrm{P} \wedge \tau \text { is a simple } \mathbf{P} \text {-name for a real } \wedge p^{\circ}{ }_{\mathrm{P}} \theta(\tau)\right)
$$

is a projective relation. Moreover,

1. If P is a ${\underset{\sim}{n}}_{n}^{1}$ poset, then R is ${\underset{\sim}{\sim}}_{n+k-1}^{1}\left(\underset{\sim}{\prod_{n+k-1}^{1}}\right)$.
2. If P is a $\underset{\sim}{\underset{\sim}{1}}{ }_{n}^{1}$ poset, then R is $\sum_{n+k}^{1}\left(\underset{\sim}{\prod_{n+k}}\right)$.

The remainder of the second chapter is devoted to Martin's Axiom restricted to projective posets. Martin's Axiom (henceforth, MA) was formulated for the first time by A. Martin and R. Solovay in [M-So]: For every ccc poset P and every family $\left\{A_{\alpha}: \alpha<\kappa\right\}, \kappa<2^{\aleph_{0}}$, of maximal antichains of P there exists a filter $G \subseteq P$ such that for every $\alpha<\kappa, A_{\alpha} \cap G \neq \emptyset$. We obtain Martin's Axiom for projective posets by adding the condition that P is a projective poset. R. Solovay and S . Tennenbaum showed the consistency of $M A$ with $Z F C+\neg C H$ ([So-T]). MA has become a powerful tool for consistency results. For instance, A. Martin and R. Solovay show in their paper that $M A$ implies that there are no Suslin trees, and that it implies the additivity of the Lebesgue measure, the additivity of category, $\Sigma_{2}^{1}(L)$ and $\Sigma_{2}^{1}(B)$.

In [Ju-Sh1], H. Judah and S. Shelah define the Martin's Axiom for ${\underset{\sim}{1}}_{1}^{1}$ posets, $M A\left(\sum_{1}^{1}\right)$, as the restriction of $M A$ to \sum_{1}^{1} posets and show that although $M A\left(\sum_{1}^{1}\right)$ implies the additivity of the Lebesgue measure, it is weaker than $M A$. Since all consequences of $M A\left(\sum_{1}^{1}\right)$ in [Ju-Sh1] are consequences of the additivity of measure, they asked if they are equivalent. The negative answer was given by J. Bagaria and H. Judah in [B1] (see also [B-Ju]), where they build a transitive model where the additivity of the Lebesgue measure holds and Martin's Axiom fails for a Borel ccc poset. Moreover, they give a combinatorial characterization of Martin's Axiom restricted to the Amoeba poset and show its equivalence to the additivity of the Lebesgue measure.

In Section 2.2, we define Martin's Axiom for projective posets, MA(Proj), and we show:

Theorem 2.2.14 (GCH) Let κ be a regular cardinal which is not the successor of a cardinal of countable cofinality. Then there is an iteration of projective and ccc posets such that whenever G is a generic filter for the iteration,

$$
V[G]^{2} M A(\operatorname{Proj}) \wedge 2^{\aleph_{0}}=\kappa .
$$

As Theorem 2.2.14 states, we build a model of $Z F C+M A(\operatorname{Proj})+\neg C H$ by iterating only projective ccc posets. We want to proceed imitating the usual proof of consistency of $M A+\neg C H$ with $Z F C$. But when we check that $M A$ (Proj) holds in the final generic extension, some difficulties arise. Firstly, A. Levy ([L1]) showed that if $Z F C+$ "There exists an inaccessible cardinal" is consistent, so is $Z F C+$ "Every uncountable projective set of reals has the cardinality of the continuum", where the continuum is as large as you want. Hence, we cannot assume that $M A($ Proj $)$ is equivalent to $M A(P r o j)$ restricted to posets with cardinality less than the continuum, a crucial fact in the proof of the consistency of $Z F C+M A+\neg C H$. Secondly, and more important, in general, projective formulas fail to be absolute for transitive models of $Z F$. Since we only force with posets which are defined by projective formulas at some stage of the iteration, given a projective poset in the final generic extension, there is a priori no reason to ensure that we have forced with this same poset at some stage along of the iteration. However, as we shall see, we can arrange the iteration in such a way so that the projective formulas are absolute for sufficiently-many models along of the iteration, where "sufficiently" means for a ω_{1}-closed and unbounded subset of κ (ω_{1}-club subset of κ, for short). This notion is a generalization of a club subset of κ : a ω_{1}-club subset of κ is an unbounded subset of κ closed under supremums of sequences of length $\gamma, \omega_{1} \leq \operatorname{cf}(\gamma)<\kappa$, of its elements. So, we begin this section by showing some properties of λ-club subsets of κ, analogous to the well-known properties of club subsets of κ, which we use in the proof of Theorem 2.2.14.

In Section 2.3, we show that $M A$ (Proj) is weaker than $M A$. We first collapse a weakly-compact cardinal κ onto ω_{1} using the Levy-collapsing poset Coll $(\omega,<\kappa)$. This allows us to apply a version of a well-known theorem of K. Kunen (Theorem 2.3.2) to projective ccc posets and prove that they are indestructible-ccc in every ccc generic extension of the collapse. Then, we use Theorem 2.2.14 to prove the following:

Theorem 2.3.18 Let κ be a weakly-compact cardinal and let $V_{0}=L[C]$, where C is a Coll $(\omega,<\kappa)$-generic filter over L. Suppose that $\varphi(x)$ is a formula of the language of Set Theory such that:

1. For every $X \subseteq \omega^{\omega}$, there are posets $\mathbf{P}_{0}^{X}, \ldots, \mathbf{P}_{n}^{X}$ such that

$$
Z F C \vdash\left(\varphi(X) \leftrightarrow \mathbf{P}_{0}^{X}, \ldots, \mathbf{P}_{n}^{X} \text { are ccc posets }\right) .
$$

2. For every $X \subseteq \omega^{\omega}, \varphi(X)$ is preserved under direct limits of finite support iterations of ccc forcing notions.

Moreover, suppose that there exists a ccc generic extension V_{1} of V_{0} and $A \in$ V_{1} such that $V_{1}{ }^{2} \varphi(A)$. Then there is a ccc poset $\mathrm{P} \in V_{1}$ such that whenever G is a

P -generic filter over V_{1},

$$
V_{1}[G]^{2} M A(\operatorname{Proj}) \wedge \neg C H \wedge \varphi(A) .
$$

This theorem essentially says that $Z F C+M A($ Proj $)+\neg C H$ is consistent with the existence of almost any kind of uncountable structure that $M A+\neg C H$ forbids. Then, in the following subsections, we apply Theorem 2.3.18 to show the consistency, modulo a weakly-compact cardinal, of "There exists a Suslin tree", "There exists a non-strong gap in $\omega^{\omega "}$ and of "There exists an entangled set of reals" with $Z F C+$ $M A(\operatorname{Proj})+\neg C H$, in spite of there being no such structures under $M A+\neg C H$. Thus we improve a result of H. Judah and S. Shelah in [Ju-Sh1], where they show that $Z F C+M A\left(\sum_{1}^{1}\right)+\neg C H+$ "There exists a Suslin tree" is consistent. Finally, in the last subsection of the Section 2.3, we show that in some cases we do not need to collapse a weakly-compact cardinal in order to obtain the consistency with $\mathrm{MA}(\operatorname{Proj})+\neg \mathrm{CH}$ of statements like "There exists a cardinal κ less than the continuum such that $2^{\aleph_{0}}<2^{\kappa}$ " or "No set of reals is a Q set", which are false under $M A+\neg C H$. Note that, since Martin's axiom for σ-centered posets (for short, MA(σ-centered)) implies that for every $\kappa<2^{\aleph_{0}}, 2^{\kappa}=2^{\aleph_{0}}$, we obtain a model of $M A(\operatorname{Proj})+\neg C H$ where $M A(\sigma$ centered) does not hold. Therefore, $M A$ (Proj) does not imply $M A$ (σ-centered).

Generic absoluteness for projective ccc posets

In the third chapter, we study the absoluteness properties of projective formulas between a model and its generic extensions.

Definition Let M, N be transitive models of $Z F$ such that $M \subseteq N$. A formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ of the language of Set Theory is absolute for M and N iff for all $x_{0}, \ldots, x_{n} \in M$,

$$
M^{2} \varphi\left(x_{0}, \ldots, x_{n}\right) \text { iff } N^{2} \varphi\left(x_{0}, \ldots, x_{n}\right) .
$$

A model M of $Z F$ is \sum_{n}^{1}-absolute $(n \geq 1)$ iff every Σ_{n}^{1} formula is absolute between M and every model N of $Z F$ such that $M \subseteq N . M$ is projective absolute iff M is \sum_{n}^{1}-absolute for all $n \geq 1$.

It is a well-known fact that every transitive model of $Z F$ is \sum_{1}^{1}-absolute. Shoenfield's Absoluteness Theorem, [Sho] (see [J2], Theorem 98) states that every transitive model of $Z F+D C$ containing all countable ordinals is \sum_{2}^{1}-absolute. This is the best result we can prove in $Z F C$: it is easy to find two transitive models of $Z F C$ with all countable ordinals, $M \subseteq N$, such that \sum_{3}^{1}-absoluteness for M, N fails. For instance, if M^{2} " $V=L$ ", then "There is a non-constructible real" is a Σ_{3}^{1} sentence true in all generic extensions of M that add a real but it is false in M.

However, if we only take into consideration generic extensions of a transitive model of $Z F C$, instead of all extensions, the situation changes significantly.

Definition Let M be a model of $Z F$ and let Γ be a class of posets. M is \sum_{n}^{1}-absolute for $\Gamma(n \geq 1)$ iff every Σ_{n}^{1} formula is absolute between M and every generic extension
of M by a poset $\mathbf{P} \in \Gamma . M$ is projective absolute for Γ iff M is ${\underset{\sim}{2}}_{n}^{1}$-absolute for Γ for all $n \geq 1 . M$ is \sum_{n}^{1}-absolute for P (projective absolute for P) iff M is ${\underset{\sim}{n}}_{n}^{1}$-absolute (projective absolute) for $\{\mathrm{P}\}$.

We are interested in the generic absoluteness and projective generic absoluteness properties because they are a simple way to turn consistent statements into true statements. Roughly speaking, given some statement, we force with an appropriate forcing notion showing that the statement is true in the generic extension, thereby concluding, by absoluteness, that it is true in the ground model. Since most of the regularity properties of projective sets can be expressed by means of projective sentences which may be forced by an appropriate forcing notion, projective generic absoluteness properties provide us with a new way to prove some of these regularity properties. For instance, H. Judah uses this way of reasoning in [Ju] to give a new proof of $\sum_{1}^{1}(L)$ and $\sum_{1}^{1}(B)$. Moreover, from [Ju-Sh2], [M-So] and [B1] we have that $\Delta_{2}^{1}(L), \widetilde{\sim}_{2}^{1}(B), \sum_{2}^{1}(\widetilde{L})$ and $\sum_{2}^{1}(B)$ are equivalent, respectively, to \sum_{3}^{1}-absoluteness for Random, Cohen, Amoeba and Amoeba for Category posets. From [Ju] and [B1], we have that \sum_{3}^{1}-absoluteness for Amoeba plus \sum_{4}^{1}-absoluteness for Random implies $\underset{\sim}{\Delta} \frac{1}{3}(L)$ and that \sum_{3}^{1}-absoluteness for Amoeba for category plus $\sum_{\mathbb{\alpha}}^{1}$-absoluteness for Cohen implies $\underset{\sim}{\underset{3}{1}}(B)$. Finally, from $[\mathrm{Ju}]$ and $[\mathrm{Br}]$, we have that ${\underset{\sim}{~}}_{1}^{1}$-absoluteness for Amoeba implies $\sum_{3}^{1}(L)$ and from $[\mathrm{Ju}]$ and $[\mathrm{Br}-\mathrm{Ju}-\mathrm{Sh}]$ we have that \sum_{4}^{1}-absoluteness for Hechler forcing implies $\sum_{3}^{1}(B)$. Thus, projective generic absoluteness properties for projective posets imply regularity properties for projective sets of low complexity.

Note that Shoenfield's Absoluteness Theorem implies that every transitive model of $Z F C$ containing all countable ordinals is \sum_{2}^{1}-absolute for all forcing notions. And, as we remarked above, if M^{2} " $V=L$ ", then \widetilde{M} is not \sum_{3}^{1}-absolute for any poset that adds reals, as for instance, the Cohen poset. Therefore, in general, transitive models of ZFC are not \sum_{3}^{1}-absolute for the Cohen poset.

However, there is a close relationship between Martin's axiom, and in general Forcing axioms, and generic absoluteness of formulas of the language of Set Theory for certain classes of posets. Recall the Levy hierarchy of formulas of language of Set Theory:

Definition A formula is Σ_{0} (also Π_{0}) iff all its quantifiers are bounded; i.e., they all are of the form $\exists x \in y$ or $\forall x \in y$. A formula is Σ_{n+1} iff it is of the form $\exists x_{0} \ldots x_{n} \psi$ where ψ is Π_{n} and it is Π_{n+1} iff it is of the form $\forall x_{0} \ldots x_{n} \psi$ where ψ is Σ_{n}. A class C (a property P, a relation R) is a Σ_{n}-class (Σ_{n}-property, a Σ_{n}-relation) iff $x \in C$ $(P(x), R(x, y))$ can be written as a Σ_{n}-formula. A function F is a Σ_{n}-function iff the relation $y=F(x)$ is a Σ_{n}-relation. Similarly for Π_{n}. A property P is a Δ_{n}-property iff it is both Σ_{n} and Π_{n} (similarly for relations and functions)

If A is a set, then we say that φ is a $\Sigma_{1}(A)$ formula iff it is a Σ_{1} formula and all its parameters belongs to A. In [B3], it was proved that $M A$ is equivalent to the absoluteness of $\Sigma_{1}(\mathcal{P}(\kappa))$ formulas with $\kappa<2^{\aleph_{0}}$, for all ccc posets. So, Martin's axiom is a sort of generic absoluteness axiom between a model and its ccc generic extensions for a class of simple formulas. In [B3] it is also shown that all models of $Z F C+M A_{\omega_{1}}$ are \sum_{\sim}^{1}-absolute for the class of ccc posets. But $M A_{\omega_{1}}$ is stronger than
\sum_{\sim}^{1}-absoluteness for ccc posets: if there exists a weakly-compact cardinal, then one can force to obtain a transitive model of $Z F C$ which is projective absolute for all ccc posets and where $M A_{\omega_{1}}$ is false.

In order to have \sum_{4}^{1}-absoluteness we need an inaccessible cardinal. More precisely, \sum_{3}^{1}-absoluteness for Random forcing plus \sum_{4}^{1}-absoluteness for Cohen forcing implies that ω_{1} is an inaccessible cardinal in L ([B1], see also [B-Ju]). So, in order to obtain a transitive model of $Z F C \sum_{4^{4}}^{1}$-absolute for ccc posets we need a large cardinal hypothesis. In fact, the existence of an inaccessible cardinal is enough to obtain transitive models of $Z F C$ projective absolute, not only \sum_{4}^{1}-absolute, for all \sum_{1}^{1} ccc posets ([B1], see also [B-Ju]).

In the third chapter of this work, we extend all these results. We begin in Section 3.1 by studying one of the main notions of this chapter, namely, the Solovay models over a model V. Essentially, a Solovay model over a transitive model V of $Z F C$ is the class of all sets constructible from real numbers, $L(\mathrm{R})$, of a generic extension of V obtained by Levy-collapsing an inaccessible cardinal in V. Solovay models are, of course, the models discovered by Solovay [So] in which every set of reals is Lebesgue measurable and has the property of Baire. We shall prove:

Lemma 3.1.6 Suppose that $L(\mathrm{R})^{M}$ and $L(\mathrm{R})^{N}$ are Solovay models over V such that $\mathbf{R}^{M} \subseteq \mathbf{R}^{N}$ and $\omega_{1}^{M}=\omega_{1}^{N}$. Then there is an elementary embedding $j: L(\mathbb{R})^{M} \rightarrow$ $L(\mathrm{R})^{N}$ which is the identity on the reals and the ordinals.

So, all formulas with ordinals and reals as parameters, and hence all projective formulas, are absolute between two Solovay models over V with the same first uncountable cardinal. Thus, whenever the property of $L(\mathrm{R})$ of being a Solovay model is preserved under forcing notions that do not collapse ω_{1}, a strong form of generic absoluteness occurs. We call it $L(\mathrm{R})$-absoluteness.

Then, also in Section 3.1, we give some consequences of $L(\mathrm{R})$-absoluteness and of projective absoluteness. We first show that absoluteness for Borel ccc (Suslin ccc) implies two-step projective absoluteness, a stronger form of generic projective absoluteness, for Borel ccc (Suslin ccc) posets. Then, we prove a weak version of this fact for more complex projective ccc posets and for ccc posets in $L(\mathbf{R})$. Then, to motivate the interest of generic absoluteness properties for classes of definable and ccc posets, we prove that a form of generic absoluteness for ccc posets in $L(\mathrm{R})$ implies that every projective set of reals is Lebesgue measurable and has the property of Baire. We also show, using an argument of H . Woodin, that projective absoluteness for Borel ccc posets implies that there are no uncountable projective well-orderings of reals and, hence, that ω_{1} is an inaccessible cardinal in L.

The remainder of the Chapter 3 is devoted to study the consistency strength of generic absoluteness properties for several classes of forcing notions. We begin, in Section 3.2, by extending the results of [B1] and [B-Ju] to $\sum_{\sim}^{\frac{1}{3}} \mathrm{ccc}$ posets. We prove the following:

Theorem 3.2.1 Suppose $L(\mathrm{R})^{M}$ is a Solovay model over V and P is a \sum_{3}^{1} and ccc poset in M. Then the $L(\mathrm{R})$ of any P -generic extension of M is also a Solovay model over V.

Note that (by Lemma 3.1.6) this theorem implies more than $L(\mathrm{R})$-absoluteness for \sum_{3}^{1} ccc posets. It implies $L(\mathrm{R})$-two-step absoluteness, namely,

Definition Let V be a model of $Z F C . V$ is $L(\mathrm{R})$-two-step absolute for P and $\dot{\mathrm{Q}}$ iff for every P -generic filter G over V and every $\mathbf{Q}[G]$-generic filter H over $V[G]$, there is an elementary embedding

$$
j: L(\mathrm{R})^{V[G]} \rightarrow L(\mathrm{R})^{V[G][H]}
$$

that fixes all ordinals and reals. Let Γ be a class of posets, V is $L(\mathrm{R})$-two-step absolute for Γ iff for all $\mathbf{P} \in \Gamma$ and every P -name for a poset $\dot{\mathrm{Q}}$ such that ${ }^{\circ}{ }_{\mathrm{P}}$ " $\dot{\mathrm{Q}} \in \Gamma$ ", V is $L(\mathrm{R})$-two-step absolute for P and $\dot{\mathrm{Q}}$.

As a corollary, from [B1] (see also [B-Ju]) and Theorem 3.2.1, we have:
Corollary 3.2.8 The following are equiconsistent (modulo ZFC):

1. There exists an inaccessible cardinal.
2. L(R)-two-step absoluteness for \sum_{\sim}^{1} ccc forcing notions.
3. \sum_{4}^{1}-absoluteness under Cohen and Random forcing.

In the next section, Section 3.3, we deal with generic absoluteness for all projective and ccc sets. We prove the following theorem:

Theorem 3.3.1 The following are equiconsistent (modulo ZFC)

1. There exists a Σ_{ω}-Mahlo cardinal.
2. L(R)-two-step absoluteness for projective and ccc posets.
3. \sum_{4}^{1}-absoluteness for projective and ccc posets.

We begin this section by defining the Δ_{n}-Mahlo, Σ_{n}-Mahlo, Π_{n}-Mahlo and Σ_{ω}-Mahlo cardinals and studying their reflection properties. They are definable versions of Mahlo cardinals: κ is a Σ_{n}-Mahlo cardinal iff κ is an inaccessible cardinal such that the set of inaccessible cardinals below κ has non empty intersection with all clubs of κ which are definable by means of a Σ_{n} formula in V_{κ} (similarly for Δ_{n}-Mahlo and Π_{n}-Mahlo). κ is Σ_{ω}-Mahlo cardinal iff κ is Σ_{n}-Mahlo for all $n \in \omega$. Note that all these cardinals are below a Mahlo cardinal. The following subsection is devoted to prove (1) implies (2) of Theorem 3.3.1. We do it by showing that every projective and ccc forcing extension of a Σ_{ω}-Solovay model over V, the $L(\mathrm{R})$ of a generic extension of V obtained by Levy-collapsing a Σ_{ω}-Mahlo cardinal in V, is also a Σ_{ω}-Mahlo Solovay model over V. In the next subsection, we prove (3) implies (1) of the theorem. More precisely, we prove that \sum_{4}^{1}-absoluteness for projective and ccc forcing notions implies that ω_{1} is a Σ_{ω}-Mahlo cardinal in L.

In Section 3.4, we study the projective generic absoluteness by Levy-collapsing a Mahlo cardinal. First we show that every extension of a Mahlo Solovay model over V by means of a ccc subposet of projective poset is a Mahlo Solovay model over V. As consequence, we get that every σ-linked extension of a Mahlo Solovay model over V is a Mahlo Solovay model over V. J. Brendle, H. Judah and S. Shelah ([Br-Ju-Sh]) have shown that $\sum_{4^{1}}^{1}$-absoluteness for Hechler forcing, a σ-centered forcing notion, implies that ω_{1} is an inaccessible cardinal in L. On the other hand, A. R. D. Mathias (see [B-F]) using an argument of R. Jensen showed that if ω_{1} is an inaccessible cardinal in L and \sum_{4}^{1}-absoluteness for σ-centered posets holds, then ω_{1} is a Mahlo cardinal in L. So, we conclude:

Theorem 3.4.18 The following are equiconsistent (modulo ZFC)

1. There exists a Mahlo cardinal.
2. L(R)-two-step absoluteness for ccc subposets of projective posets.
3. $L(\mathrm{R})$-two step absoluteness for σ-linked posets.
4. $L(\mathrm{R})$-two-step absoluteness for σ-centered posets.
5. \sum_{4}^{1}-absoluteness for σ-centered posets.
6. \sum_{4}^{1}-absoluteness for σ-centered subposets of Borel posets.

In the last section, Section 3.5, we remark that Theorem 2.3.2 of K. Kunen, can be rephrased as saying that every ccc generic extension of a weakly-compact Solovay model over V is also weakly-compact Solovay model over V, where weakly-compact Solovay model is Solovay model obtained by Levy-collapsing a weakly-compact cardinal. Then, using a version of an argument of L. Harrington and S. Shelah ([H-Sh]), we show

Theorem 3.5.5 The following are equiconsistent (modulo ZFC)

1. There exists a weakly-compact cardinal.
2. L(R$)$-two step absoluteness for ccc forcing notions.
3. $L(\mathrm{R})$-two step absoluteness for Knaster forcing notions.
4. One step \sum_{\sim}^{1}-absoluteness for Knaster forcing notions.

The Levy-collapsing forcing notion

We use the Levy-collapsing forcing notion in almost every section of this work. Here, we state the definitions and the main facts about this forcing notion. We will use them without further comment.

Definition For every ordinal $\alpha, \operatorname{Coll}(\omega, \alpha)$ is the following partial order:

- $p \in \operatorname{Coll}(\omega, \alpha)$ iff p is a function, $\operatorname{dom}(p) \subseteq \omega$ is finite and $\operatorname{rec}(p) \subseteq \alpha$.
- $p \leq q$ iff $q \subseteq p$

The Levy-collapse for $\alpha, \operatorname{Coll}(\omega,<\alpha)$, is the product with finite support of $\operatorname{Coll}(\omega, \beta)$, all $\beta<\alpha$. i.e.,

- $p \in \operatorname{Coll}(\omega,<\alpha)$ iff $p \in \prod_{\beta<\alpha} \operatorname{Coll}(\omega, \beta)$ and $p(\beta)=\emptyset$ for all but finitely many β.

For $p \in \operatorname{Coll}(\omega,<\alpha), \operatorname{supp}(p)=\{\beta<\alpha: p(\beta) \neq \emptyset\}$.

- $p \leq q$ iff $q(\beta) \subseteq p(\beta)$, all $\beta<\alpha$.

Therefore, for every $p, q \in \operatorname{Coll}(\omega, \alpha), p \perp q$ iff p, q are incompatible functions. i.e., there is $\beta \in \operatorname{dom}(p) \cap \operatorname{dom}(q)$ such that $p(\beta) \neq q(\beta)$. And for every $p, q \in$ $\operatorname{Coll}(\omega,<\alpha), p \perp q$ iff there is $\beta \in \operatorname{dom}(p) \cap \operatorname{dom}(q)$ such that $p(\beta), q(\beta)$ are incompatible functions.

Note that our notation departs from the usual one. We use $\operatorname{Coll}(\omega,<\alpha)$ for the Levy-collapsing poset (and not $L v(\alpha)$ as $[\mathrm{Ku}]$) instead of the Levy-collapsing algebra, as in [J2].

Thus forcing with $\operatorname{Coll}(\omega, \alpha)$ collapses α onto ω, and forcing with Coll $(\omega,<\alpha)$ collapses all ordinals less than α onto ω.

Remark We can regard the conditions $p \in \operatorname{Coll}(\omega<\alpha)$ as functions on subsets of $\alpha \times \omega$ such that

1. $\operatorname{dom}(p)$ is finite.
2. $p(\beta, n)<\beta$, all $\langle\beta, n\rangle \in \operatorname{dom}(p)$.

Then $p \leq q$ iff $q \subseteq p$.
The following basic facts about the Levy-collapse can be found in $[\mathrm{K}]$, III.10, [Ku], VII.8, or [J2], IV.25, so we state them here without proof:

Fact Let κ be a regular uncountable cardinal. Then,

1. Coll $(\omega,<\kappa)$ is a κ-cc partially ordered set.

$$
\text { 2. }{ }^{\circ}{ }_{C o l l}(\omega,<\kappa) ~ " ~ \breve{\kappa}=\omega_{1} " \text {. }
$$

Definition A partially ordered set \mathbf{P} is almost-homogeneous iff for all $p, q \in \mathbf{P}$ there exists an automorphism h of \mathbf{P} such that $h(p)$ and q are compatible.

Fact

1. If a partially ordered set \mathbf{P} is almost-homogeneous, then for every formula $\varphi\left(x_{1}, . ., x_{n}\right)$ and $a_{1}, \ldots, a_{n} \in V$, either ${ }^{\circ} \mathrm{\rho} \varphi\left(\breve{a}_{1}, \ldots, \breve{a}_{n}\right)$ or else ${ }^{\circ} \mathrm{p} \neg \varphi\left(\breve{a}_{1}, \ldots, \breve{a}_{n}\right)$.
2. Coll $(\omega,<\alpha)$ is an almost-homogeneous partially ordered set.

Robert Solovay [So] showed the following property of the Levy-collapse forcing notion which plays a crucial role in his proof of the consistency of $Z F C+$ "All projective sets of reals are Lebesgue measurable and have the property of Baire":

Lemma (Factor Lemma) Suppose that κ is an uncountable regular cardinal and G is a Coll $(\omega,<\kappa)$-generic filter over V. Then for every countable set of ordinals x in $V[G]$ there is a Coll $(\omega,<\kappa)$-generic filter H over $V[x]$ such that $V[x][H]=V[G]$.

We also use that the Levy-collapse is a very simple definable forcing notion:
Fact The function $\alpha \mapsto \operatorname{Coll}(\omega,<\alpha)$ is Δ_{1}. So, Coll $(\omega,<\alpha)$ is a partially ordered set which is Δ_{1} definable with α as parameter. Moreover, if κ is a regular uncountable cardinal, then Coll $(\omega,<\kappa)$ is Δ_{1}-definable over V_{κ} without parameters. That is for every p, q, " $p \in \operatorname{Coll}(\omega,<\kappa)$ " is a Δ_{1} property and " $p \leq q$ " and " $p \perp q$ " are Δ_{1} relations.

Proof. Note that $x=\operatorname{Coll}(\omega,<\alpha)$ iff α is an ordinal and there is a function f such that $\operatorname{dom}(f)=\alpha$ and $(\forall \xi \in \alpha)(\xi+1 \in \alpha \rightarrow f(\xi+1)=\operatorname{Coll}(\omega, \xi) \times f(\xi))$ and $(\forall \xi \in \alpha)\left(\xi\right.$ is limit $\left.\rightarrow f(\xi)=\bigcup \operatorname{rec}\left(f^{1} \xi\right)\right)$. Since for every $\xi, x=\operatorname{Coll}(\omega, \xi)$ is Δ_{1}, the above is a Σ_{1} definition of the function $\alpha \mapsto \operatorname{Coll}(\omega,<\alpha)$. Since its domain is the Δ_{0} class of all ordinals, it is a Δ_{1} function (see [J2], Lemma 14.2).

Suppose now that κ is a regular uncountable cardinal. Then, since $\kappa=V_{\kappa} \cap$ $O N$, for every $p, p \in \operatorname{Coll}(\omega,<\alpha)$ iff V_{κ} satisfies that p is a function and dom (p) is a finite subset of ordered pairs and for every $\langle\beta, n\rangle \in \operatorname{dom}(p), \beta$ is an ordinal and $n \in \omega$ and $p(\beta, n) \in \beta$. Since " x is finite" is a Δ_{1} property of x and all other notions involved in the definition of $\operatorname{Coll}(\omega,<\kappa)$ are Δ_{0} on p, " $p \in \operatorname{Coll}(\omega,<\kappa)$ " is a property of p which is Δ_{1}-definable without parameters over V_{κ}. Since the ordering of $\operatorname{Coll}(\omega,<\kappa)$ is the inverse inclusion, it is clear that " $p \leq q$ " is a relation which is Δ_{1}-definable without parameters over V_{κ}. Finally, since for all p, q, V_{κ} satisfies that $p \perp q$ iff

$$
V_{\kappa}{ }^{2} p, q \in \operatorname{Coll}(\omega,<\kappa) \wedge(\exists\langle\beta, n\rangle \in \operatorname{dom}(p) \cap \operatorname{dom}(q))(p(\beta, n) \neq q(\beta, n)),
$$ " $p \perp q$ " is also a relation which is Δ_{1}-definable without parameters over V_{κ}.

A cknowledgments

I want to thank Joan Bagaria, my thesis advisor, for introducing me to the topics of this work, for his encouragement to work in Set Theory, and his constant, technical and human, support. I also want to thank E. Casanovas, R. Jansana, I. Jané and J. C. Martínez, who spent many hours teaching me logic during my undergraduate and doctoral studies. I am grateful to Pilar Dellunde for her suggestions and encouragement. Thanks to my grandmother, Mercè Porcel, for being on my side.

I am grateful to the Philosophy Department of the Universidad de Oviedo for its warm reception and its support, specially the members of the Logic and Philosophy of Science area.

The preparation of this dissertation was partially supported by the Ministry of Education within the research projects DGES PB95-1048 and DGES PB98-1568 and by the PR-01-GE-10 funds of the Principado de Asturias.

Only Noelia knows the burden of sharing her life with this doctoral dissertation. My deepest thanks to her.

Chapter 2

PROJECTIVE FORCING

2.1 Projective posets

2.1.1 Definitions and basic facts

Definition 2.1.1 $A \underset{\sim}{\Sigma_{n}^{1}}$ poset $(n \geq 1)$ is a triple $\left\langle P, \leq_{P}, \perp_{P}\right\rangle$, where \leq_{P} is a ${\underset{\sim}{n}}_{n}^{1}$ subset of $\omega^{\omega} \times \omega^{\omega}$, $P=$ field $\left(\leq_{P}\right),\left\langle P, \leq_{P}\right\rangle$ is a partial order, and \perp_{P} is a \sum_{n}^{1} subset of $\omega^{\omega} \times \omega^{\omega}$ contained in $P \times P$ such that for every $x, y \in P, x \perp_{P} y$ iff for no $z \in P$, both $z \leq_{P} x$ and $z \leq_{P} y$; i.e., iff x, y are incompatible. Similarly, we define $\prod_{n}^{1}{ }_{n}^{1}$ posets by substituting \sum_{n}^{1} for \prod_{n}^{1} in the above definition. A ${\underset{\sim}{n}}_{n}^{1}$ poset is a poset that is both \sum_{n}^{1} and ${\underset{\sim}{n}}_{n}^{1}$. Finally, $\left\langle\widetilde{P}, \leq_{P}, \perp_{P}\right\rangle$ is a projective poset iff there exists $n \geq 1$ such that $\left.\widetilde{\langle P}, \leq_{P}, \widetilde{\perp}_{P}\right\rangle$ is a ${\underset{\sim}{n}}_{n}^{1}$ poset.

Fact 2.1.2 Let $\left\langle P, \leq_{P}, \perp_{P}\right\rangle$ be a ${\underset{\sim}{n}}_{1}^{1}$ poset. Then,

1. P is a \sum_{n}^{1} subset of ω^{ω}.
2. \perp_{P} is a ${\underset{\sim}{~}}_{n}^{1}$ subset of $\omega^{\omega} \times \omega^{\omega}$.

Proof. (1) $x \in P$ iff $\exists y\left(x \leq_{P} y \vee y \leq_{P} x\right)$.
(2) $x \perp_{P} y$ iff $\forall z\left(z \leq_{P} x \rightarrow \neg z \leq_{P} y\right)$. So \perp_{P} is both \sum_{n}^{1} and \prod_{\sim}^{n}. Hence, \perp_{P} is a Δ_{n}^{1} subset of $\omega^{\omega} \times \omega^{\omega}$.

We shall refer to ${\underset{\sim}{d}}_{1}^{1}$ posets as Borel posets, to ${\underset{\sim}{1}}_{1}^{1}$ posets as Suslin posets and to \prod_{1}^{1} posets as co-Suslin posets.

Following the standard notation, we will write \mathbf{P} for $\left\langle P, \leq_{P}, \perp_{P}\right\rangle$ and, usually, we also write P instead of $P=$ field $\left(\leq_{P}\right)$. If P is a projective poset, there are projective formulas $\varphi(x, y)$ and $\psi(x, y)$ such that $\leq_{P}=\{\langle x, y\rangle: \varphi(x, y)\}$ and $\perp_{P}=$ $\{\langle x, y\rangle: \psi(x, y)\}$ (see [J2], 40.6).

Suppose M is a transitive class, A is a projective set, and M contains the parameters of the projective formula that defines A. Then A^{M} denotes the set in M defined by the relativization to M of this formula.

Definition 2.1.3 Let M be a transitive model of $Z F$. M is a $\underset{\sim}{\underset{n}{1}}{ }^{1}$-correct (${\underset{\sim}{n}}_{n}^{1}-$ correct) model iff for every \sum_{n}^{1} (respectively, $\underset{\sim}{1}$) set A such that \widetilde{M} contains the parameter of the formula that defines A, A is absolute for M; i.e., $A^{M}=A \cap M$.

So, if P is a projective poset and M is a model of $Z F$ that contains all the parameters of the formulas that define \mathbf{P}, then we say that \mathbf{P} is absolute for M iff $\leq_{P}^{M}=\leq_{P} \cap M$ and $\perp_{P}^{M}=\perp_{P} \cap M$.

Remark 2.1.4 Suppose that M a transitive model of $Z F$. Then, since for every $n \geq 1$, the \prod_{n}^{1} sets are the complements of \sum_{n}^{1} sets, M is \sum_{n}^{1}-correct iff M is \prod_{n}^{1} correct.

Fact 2.1.5 1. Every transitive model of $Z F$ is \sum_{1}^{1}-correct.
2. Every transitive model of $Z F+D C$ containing all countable ordinals is $\sum_{2^{-}}^{1}$ correct.

Proof. (1) Since "to be a well-founded relation" is a Δ_{1} property and, so, absolute for these models. (2) By Shoenfield's Absoluteness Theorem. ([J2], Theorem 98).

Corollary 2.1.6 1. Let \mathbf{P} be a Borel, Suslin or co-Suslin poset. Then \mathbf{P} is absolute for every transitive model of $Z F$ containing the parameters of the formulas that define \mathbf{P}.
2. Let \mathbf{P} be a $\underset{\sim}{\Delta} \frac{1}{2}$, \sum_{2}^{1} or $\underset{\sim}{~}{\underset{\sim}{2}}_{1}^{1}$ poset. Then \mathbf{P} is absolute for every transitive model of $Z F+D \widetilde{C}$ containing all the countable ordinals and the parameters of the formulas that define P .

Remark 2.1.7 If P is a projective poset, then we may assume, by merging all the parameters in the projective formulas that define P , that there is only one parameter in its definition.

If M is a transitive model of $Z F$, then " $\mathrm{P} \in M$ " should be interpreted as " M contains the parameter of the definition of P ".

Fact 2.1.8 Every projective poset can be coded by a real. Moreover,

1. The set of all codes of \sum_{n}^{1} posets is a ${\underset{\sim}{n}}_{n+1}^{1}$ subset of ω^{ω}.
2. The set of all codes of \prod_{n}^{1} posets is a \prod_{n+2}^{1} subset of ω^{ω}.

Proof. Let \mathcal{U} be a universal ${\underset{\sim}{n}}_{n}^{1}$ set in $\omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ as in [J2], 39.4.; i.e., \mathcal{U} is a Σ_{n}^{1} and for every \sum_{n}^{1} set X in $\omega^{\omega} \times \omega^{\omega}$, there exists $a \in \omega^{\omega}$ such that $X=$ $\{\langle x, y\rangle:\langle x, y, a\rangle \in \mathcal{U}\}$.

Let $h: \omega^{\omega} \rightarrow \omega^{\omega} \times \omega^{\omega}$ be the one-to-one and onto function given by $h(a)=$ $\left\langle a_{0}, a_{1}\right\rangle$ iff for all $n \in \omega, a_{i}(n)=a(2 n+i)$, where $i \in\{0,1\}$.

Let P be a \sum_{n}^{1} poset. Then there is a $a \in \omega^{\omega}$ such that
(i) $\leq_{P}=\left\{\langle x, y\rangle:\left\langle x, y, a_{0}\right\rangle \in \mathcal{U}\right\}$
(ii) $\perp_{P}=\left\{\langle x, y\rangle:\left\langle x, y, a_{1}\right\rangle \in \mathcal{U}\right\}$

We say that a codes \mathbf{P}. Similarly for \prod_{n}^{1} posets using a universal \prod_{n}^{1} set.
On the other hand, to every $a \in \omega^{\omega}$ we can associate two relations $\leq_{a}, \perp_{a} \subseteq$ $\omega^{\omega} \times \omega^{\omega}$ such that:
(i) $\leq_{a}=\left\{\langle x, y\rangle:\left\langle x, y, a_{0}\right\rangle \in \mathcal{U}\right\}$
(ii) $\perp_{a}=\left\{\langle x, y\rangle:\left\langle x, y, a_{1}\right\rangle \in \mathcal{U}\right\}$
where $h(a)=\left\langle a_{0}, a_{1}\right\rangle$.
We say that $a \in \omega^{\omega}$ codes a ${\underset{\sim}{n}}_{n}^{1}$ poset if
(i) $\left\langle\operatorname{field}\left(\leq_{a}\right), \leq_{a}\right\rangle$ is a partial ordering
(ii) $\left(\forall x, y \in \operatorname{field}\left(\leq_{a}\right)\right)\left(x \perp_{a} y \leftrightarrow \neg\left(\exists z \in \operatorname{field}\left(\leq_{a}\right)\right)\left(z \leq_{a} x \wedge z \leq_{a} y\right)\right)$

Now, since $x \in$ field $\left(\leq_{a}\right)$ iff $\exists y\left(x \leq_{a} y \vee y \leq_{a} x\right)$, field $\left(\leq_{a}\right)$ is a $\Sigma_{n}^{1}(a)$ subset of ω^{ω}. Since $\left\langle\right.$ field $\left.\left(\leq_{a}\right), \leq_{a}\right\rangle$ is a partial ordering iff

- $\left(\forall x \in \operatorname{field}\left(\leq_{a}\right)\right)\left(x \leq_{a} x\right)\left(\Pi_{n+1}^{1}(a)\right)$
- $\left(\forall x y \in \operatorname{field}\left(\leq_{a}\right)\right)\left(x \leq_{a} y \wedge y \leq_{a} x \rightarrow x=y\right)\left(\Pi_{n}^{1}(a)\right)$
- $\left(\forall x y z \in \operatorname{field}\left(\leq_{a}\right)\right)\left(x \leq_{a} y \wedge y \leq_{a} z \rightarrow x \leq_{a} z\right)\left(\Pi_{n+1}^{1}(a)\right)$
(i) is $\Pi_{n+1}^{1}(a)$. Also, since field $\left(\leq_{a}\right)$ is $\Sigma_{n}^{1}(a)$, (ii) is $\Pi_{n+1}^{1}(a)$. It follows that " a codes a \sum_{n}^{1} poset" is a Π_{n+1}^{1} condition on a.

In the same way, we can define $a \in \omega^{\omega}$ codes a $\underset{\sim}{\Pi}$ poset and show that this is a Π_{n+2}^{1} condition on a. Indeed, since field $\left(\leq_{a}\right)$ is $\Sigma_{n+1}^{1}(a)$, (i) is $\Pi_{n+1}^{1}(a)$ and (ii) is $\Pi_{n+2}^{1}(a)$.

Corollary 2.1.9 Let $N \subseteq M$ be a transitive models of $Z F$. Let $a \in \omega^{\omega} \cap N$. Then

1. If N, M are $\prod_{n}^{1}{ }^{1}$-correct, then

$$
N^{2} \text { "a codes a }{\underset{\sim}{n}}_{n}^{1} \text { poset" iff } M^{2} \text { "a codes a } \sum_{n}^{1} \text { poset" }
$$

2. If N, M are $\prod_{n}^{1}{ }^{1} 2^{\text {-correct, }}$, then
N^{2} "a codes a ${\underset{\sim}{n}}_{n}^{1}$ poset" iff M^{2} "a codes a ${\underset{\sim}{n}}_{n}^{1}$ poset"

Moreover, if \mathbf{P}_{a}^{N} and \mathbf{P}_{a}^{M} denote the posets coded by a in N and M respectively, then $\mathrm{P}_{a}^{N}=\mathrm{P}_{a}^{M} \cap N$.

Proof. (1) and (2) follow from the fact above and from absoluteness for Π_{n+1}^{1} and Π_{n+2}^{1} formulas of, respectively, $\prod_{n}^{1}{ }_{n+1}^{1}$-correct and $\prod_{n}^{1}{ }_{n}^{1}$-correct transitive models of $Z F$. The second part is clear since $\mathcal{U}^{N}=\mathcal{U}^{M} \cap N$.

Corollary 2.1.10 Let $N \subseteq M$ be a transitive models of $Z F+D C$ containing all countable ordinals. Let $a \in \omega^{\omega} \cap N$. Then,

$$
N^{2} \text { "a codes a Suslin poset" iff M }{ }^{2} \text { "a codes a Suslin poset" }
$$

Moreover, if P_{a}^{N} and P_{a}^{M} denote the posets coded by a in N and M respectively, then $\mathrm{P}_{a}^{N}=\mathrm{P}_{a}^{M} \cap N$.

Proof. By Shoenfield's Absoluteness Theorem ([J2], Theorem 98) these models are \prod_{2}^{1}-correct.

Definition 2.1.11 Let P, Q be posets. $i: \mathrm{P} \rightarrow \mathrm{Q}$ is a dense embedding iff

1. $\left(\forall p, p^{\prime} \in \mathrm{P}\right)\left(p \leq_{P} p^{\prime} \rightarrow i(p) \leq_{Q} i\left(p^{\prime}\right)\right)$
2. $\left(\forall p, p^{\prime} \in \mathrm{P}\right)\left(p \perp_{P} p^{\prime} \rightarrow i(p) \perp_{Q} i\left(p^{\prime}\right)\right)$
3. $i " \mathbf{P}$ is dense in \mathbf{Q}. i.e., $(\forall q \in \mathbf{Q})(\exists p \in \mathbf{P})\left(i(p) \leq_{Q} q\right)$

Fact 2.1.12 Let P, Q be posets in a transitive model M. Suppose $i: \mathrm{P} \rightarrow \mathrm{Q}$ is a dense embedding lying in M. Then,

1. If G is \mathbf{P}-generic over M, then $H=\left\{q \in \mathbf{Q}:(\exists p \in G)\left(i(p) \leq_{Q} q\right)\right\}$ is \mathbf{Q} generic over M and $M[H]=M[G]$.
2. If H is \mathbf{Q}-generic over M, then $G=i^{-1}(H)$ is \mathbf{P}-generic over M and $M[G]=$ $M[H]$.

Proof. See [J2], 17.4, or [Ku], VII.7.11.
Remark 2.1.13 In view of this fact, if \mathbf{P} and Q are equivalent forcing notions and P is projective, then we will also say that Q is projective (and with the same complexity as $\mathbf{P})$. This is, of course, just a convenient abuse of language since Q need not be projective in the strict sense of the definition 2.1.1.

2.1.2 Projective forcing with the countable chain condition

Definition 2.1.14 A poset P satisfies the countable chain condition (or, for short, is ccc) iff every antichain of P (i.e., every set of pairwise incompatible elements) is at most countable.

Fact 2.1.15 If P is a projective and ccc poset, then every antichain of P can be coded by a real. Moreover, we can set up the coding so that,

1. If P is a \sum_{n}^{1} poset, then " x codes a maximal antichain of P " is a ${\underset{\sim}{n}}_{n}^{1}$ predicate.
2. If P is a \prod_{n}^{1} poset, then " x codes a maximal antichain of P " is a \prod_{n+1}^{1} predicate.

Proof. Since P is a projective and ccc poset, every antichain A is a countable set of reals. So, we can write A as sequence $\left\langle p_{n}: n<\omega\right\rangle$. But any such a sequence of reals can be recursively coded by a real. e.g., let $J: \omega \times \omega \rightarrow \omega$ be the standard, one-to-one and onto, pairing function given by $J(n, m)=2^{n}(2 m+1)-1$ and define $a \in \omega^{\omega}$ by $a(J(n, m))=p_{n}(m)$. So, $p_{n}=\{\langle i, j\rangle: a(J(n, i))=j\}$ and a codes an antichain of P .

Now, a codes a maximal antichain of P iff
(i) $\forall n m\left(n \neq m \rightarrow\{\langle i, j\rangle: a(J(n, i))=j\} \perp_{P}\{\langle i, j\rangle: a(J(m, i))=j\}\right)$
(ii) $\neg \exists y \forall n\left(y \perp_{P}\{\langle i, j\rangle: a(J(n, i))=j\}\right)$

Hence, if P is a \sum_{n}^{1} poset, then, since \perp_{P} is ${\underset{n}{n}}_{n}^{1}$, (i) is Δ_{n}^{1} and (ii) is \prod_{n}^{1}. If P is a \prod_{n}^{1} poset, then, since \perp_{P} is \prod_{n}^{1}, (i) is \prod_{n}^{1} and (ii) is $\prod_{n}^{1}{ }_{n+1}$.

Corollary 2.1.16 Let $N \subseteq M$ be transitive models of $Z F$ and let P be a projective and ccc poset with $\mathrm{P} \in N$. Suppose $a \in \omega^{\omega} \cap N$. Then,

1. If N, M are \prod_{n}^{1}-correct and P is \sum_{n}^{1}, then
N^{2} " a codes a maximal antichain of $\mathbf{P}^{N "}$
iff
M^{2} " a codes a maximal antichain of $\mathrm{P}^{M "}$.
2. If N, M are $\prod_{n}^{1}{ }_{n}^{1}$-correct and \mathbf{P} is \prod_{n}^{1}, then
N^{2} " a codes a maximal antichain of $\mathrm{P}^{N "}$ iff
M^{2} "a codes a maximal antichain of $\mathbf{P}^{M "}$.
Moreover, if A_{N} and A_{M} denote the maximal antichains of P^{N} and P^{M} coded by a in N and M respectively, then $A_{N}=A_{M}$.

Proof. (1) and (2) follows from the fact above and from absoluteness of Π_{n}^{1} and Π_{n+1}^{1} formulas for, respectively, \prod_{n}^{1}-correct and $\prod_{\sim}^{1}{ }_{n+1}^{1}$-correct transitive models of $Z F$. The last sentence of the corollary is clear since the coding is recursive.

Corollary 2.1.17 1. Let $N \subseteq M$ be a transitive models of $Z F$ and let P be a Suslin and ccc poset with $\mathrm{P} \in N$. Suppose $a \in \omega^{\omega} \cap N$. Then,
N^{2} " a codes a maximal antichain of \mathbf{P}^{N} " iff
M^{2} " a codes a maximal antichain of P^{M} ".
2. Let $N \subseteq M$ be a transitive models of $Z F+D C$ containing all countable ordinals and let P be a $\sum_{2}^{\frac{1}{2}}$ and ccc poset with $\mathrm{P} \in N$. Suppose $a \in \omega^{\omega} \cap N$. Then,

$$
\begin{gathered}
N^{2} \text { "a codes a maximal antichain of } \mathrm{P}^{N "} \\
M^{2} \text { "a codes a maximal antichain of } \mathrm{P}^{M "} .
\end{gathered}
$$

Moreover, if A_{N} and A_{M} denote the maximal antichains of P^{N} and P^{M} coded by a in N and M respectively, then $A_{N}=A_{M}$.

Proof. These are particular cases of the previous corollary.

Definition 2.1.18 Let \mathbf{P} be a poset. τ is a P -name for a real $i f f{ }^{\circ}{ }_{\mathrm{P}}$ " τ is a real ". τ is a simple P -name for a real if

1. The elements of τ are of form $\langle p, \breve{n}, \breve{m}\rangle$, where $p \in \mathrm{P}$, and \breve{n}, \breve{m} are the standard P-names for some $n, m \in \omega$.
2. For every $n \in \omega$, the set $\{p \in \mathbf{P}:(\exists m \in \omega)(\langle p, \breve{n}, \breve{m}\rangle \in \tau)\}$ is a maximal antichain of P .
3. For every $n, m_{0}, m_{1} \in \omega$, if $\left\langle p, \breve{n}, \breve{m}_{0}\right\rangle \in \tau$ and $\left\langle p, \breve{n}, \breve{m}_{1}\right\rangle \in \tau$, then $m_{0}=m_{1}$.

Fact 2.1.19 For every poset \mathbf{P}, and for every P -name τ for a real, there is a simple P -name for a real σ such that ${ }^{\circ}{ }_{\mathrm{P}} " \tau=\sigma$ ".

Proof. Fix P and τ and suppose ${ }^{\circ}{ }_{\mathrm{P}}$ " τ is a real". For every $n \in \omega$, let A_{n} be a maximal antichain of \mathbf{P} such that for every $p \in A_{n}, p^{\circ}{ }_{\mathbf{P}}$ " $\tau(\breve{n})=\breve{m}$ ", for some $m \in \omega . A_{n}$ exists since ${ }^{\circ}{ }_{\mathrm{P}}$ " τ is a real" and hence for every $p \in \mathrm{P}$ there exists $q \leq_{P} p$ and $m \in \omega$ such that $q{ }^{\circ}{ }_{\mathrm{P}}$ " $\tau(\breve{n})=\breve{m}$ ". Now, let σ be the simple P -name defined by

$$
\langle p, \breve{n}, \breve{m}\rangle \in \sigma \text { iff } p \in A_{n} \wedge p^{\circ}{ }_{\mathrm{P}} " \tau(\breve{n})=\breve{m} " .
$$

Definition 2.1.20 Let P, Q be partial orderings. A complete embedding of P into \mathbf{Q} is a function e from \mathbf{P} into \mathbf{Q} such that:

1. e is one-to-one.
2. e is order-preserving. i.e., for all $p, q \in \mathrm{P}$, if $p \leq_{P} q$, then $e(p) \leq_{Q} e(q)$.
3. e preserves maximal antichains. i.e., for every maximal antichain A of \mathbf{P}, the set $\{e(p): p \in A\}$ is a maximal antichain of \mathbf{Q}.

We write $\mathbf{P} \lessdot \mathbf{Q}$ when $\mathbf{P} \subseteq \mathbf{Q}$ and the identity function is a complete embedding of \mathbf{P} into Q .

Fact 2.1.21 Let P, Q be posets such that $\mathrm{P} \lessdot \mathrm{Q}$ and let τ be a simple P -name for a real. Then (if we identify the standard P -names for natural numbers with the corresponding standard Q -names) τ is a simple Q -name for a real. Moreover, if $G \subseteq \mathbf{Q}$ is a generic filter, then $G \cap \mathrm{P}$ is a generic filter for \mathbf{P} and $\tau[G \cap \mathrm{P}]=\tau[G]$.

Proof. Since the identity function is an order-preserving map of \mathbf{P} into \mathbf{Q} which preserves incompatibility, if $G \subseteq \mathrm{Q}$ is a filter, $G \cap \mathrm{P}$ is a filter. If G is a filter on Q , then G is generic over V iff $|G \cap A|=1$ for every maximal antichain of Q in V. But, since every maximal antichain of P is a maximal antichain of Q , if A is a maximal antichain of P in $V,|(G \cap \mathrm{P}) \cap A|=1$. It follows that $G \cap \mathrm{P}$ is generic for P.

Let τ be a simple \mathbf{P}-name for a real. Since $\mathbf{P} \lessdot \mathbf{Q}$, if we replace the standard P -names for natural numbers for the corresponding standard Q-names, then τ is a simple Q-name for a real and for every $n \in \omega, \breve{n}[G]=\breve{n}[G \cap \mathrm{P}]=n$. So, $\tau[G]=$ $\{\langle n, m\rangle:\langle p, \breve{n}, \breve{m}\rangle \in \tau \wedge p \in G\}=\tau[G \cap \mathbf{P}]$.

Fact 2.1.22 Let \mathbf{P} be a ccc partial ordering with $\mathbf{P} \subseteq \omega^{\omega}$. Then every simple \mathbf{P}-name for a real can be coded by a real. Moreover, the coding can be arranged so that:

1. If \mathbf{P} is a ${\underset{\sim}{n}}_{n}^{1}$ poset, then the set of codes of simple \mathbf{P}-names for a real is a ${\underset{\sim}{n}}_{n}^{1}$ subset of ω^{ω}.
2. If P is a ${\underset{\sim}{n}}_{n}^{1}$ poset, then the set of codes of simple P -names for a real is a ${\underset{\sim}{n}}_{n+1}^{1}$ subset of ω^{ω}.

Proof. Let τ be a simple P-name for a real. So,

$$
\tau=\bigcup\left\{\left\{\left\langle p, \breve{n}, \breve{m}_{i}\right\rangle: i \in \omega\right\}: n \in \omega\right\},
$$

where for all $n \in \omega, A_{n}=\left\{p_{i}:\left(\exists m_{i} \in \omega\right)\left(\left\langle p_{i}, \breve{n}, \breve{m}_{i}\right\rangle \in \tau\right)\right\}$ is a maximal antichain of \mathbf{P}. Let $z_{n} \in \omega^{\omega}$ be a code for A_{n} as in the Fact 2.1.15. For every $n \in \omega$, let $B_{n}=\left\{m_{i}:\left(\exists p_{i} \in \mathrm{P}\right)\left(\left\langle p_{i}, \breve{n}, \breve{m}_{i}\right\rangle \in \tau\right)\right\}$ and let $y_{n} \in \omega^{\omega}$ be such that for every $i<\omega$, $y_{n}(i)=m_{i}$. So, y_{n} codes B_{n}. Let x_{n} be such that $x_{n}(m)=J\left(z_{n}(m), y_{n}(m)\right)$. So, x_{n} codes both z_{n} and y_{n}. Finally, let x be a code for $\left\langle x_{n}: n<\omega\right\rangle$ as in the Fact 2.1.15. We say that x codes τ.

Thus, x codes a simple P -name for a real iff
(i) x codes $\left\langle x_{n}: n<\omega\right\rangle$. i.e., $\forall n m\left(x(J(n, m))=x_{n}(m)\right)$
(ii) $\forall n\left(x_{n}\right.$ codes both z_{n} and $\left.y_{n}\right)$. i.e., $\forall n m\left(x_{n}(m)=J\left(z_{n}(m), y_{n}(m)\right)\right)$
(iii) $\forall n\left(z_{n}\right.$ codes a maximal antichain of $\left.\mathbf{P}\right)$
(iv) $\forall n\left(x_{n}\right.$ codes both z_{n} and $y_{n} \wedge$

$$
\left.\wedge \exists i j\left(\left\{\langle k, l\rangle: z_{n}(J(i, k))=l\right\}=\left\{\langle k, l\rangle: z_{n}(J(j, k))=l\right\} \rightarrow y_{n}(i)=y_{n}(j)\right)\right)
$$

Clearly, (i) ,(ii) and (iv) are arithmetical and (iii) is \prod_{n}^{1} (if P is \sum_{n}^{1}) or \prod_{n+1}^{1} (if P is $\prod_{n}^{1}{ }_{n}^{1}$.

Theorem 2.1.23 Let P be projective ccc poset and let $\theta(x)$ be a $\Sigma_{k}^{1}\left(\Pi_{k}^{1}\right)$ formula with $k \geq 2$. Then the relation

$$
R(p, \tau) \leftrightarrow p \in \mathbf{P} \wedge \tau \text { is a simple } \mathbf{P}-n a m e \text { for a real } \wedge p^{\circ}{ }_{\mathrm{p}} \theta(\tau)
$$

is a projective relation. Moreover,

1. If P is a ${\underset{\sim}{n}}_{1}^{1}$ poset, then R is ${\underset{\sim}{\sim}}_{n+k-1}^{1}\left(\underset{\sim}{\prod_{n+k-1}^{1}}\right)$.
2. If P is a ${\underset{\sim}{n}}_{n}^{1}$ poset, then R is ${\underset{\sim}{n}}_{n+k}^{1}\left(\underset{\sim}{\prod}{ }_{n+k}^{1}\right)$.

Proof. We prove it only for Σ_{k}^{1} formulas, $k \geq 2$. The proof for Π_{k}^{1} formulas is analogous. We proceed by induction on k :
$\underline{k+1}$: Let $\theta(x)$ be a Σ_{k+1}^{1} formula, $k \geq 2$. So, $\theta(x)$ is of the form $\exists y \neg \psi(x, y)$, where $\bar{\psi}$ is Σ_{k}^{1}. Assume the fact holds for Σ_{k}^{1} formulas and suppose that $p \in \mathbf{P}$ and τ is a simple P -name for a real such that $p{ }^{\circ}{ }_{\mathrm{p}} \theta(\tau)$. By Maximal Principle ($[\mathrm{Ku}]$, VII.8.2) and Fact 2.1.19,

$$
\begin{aligned}
p^{\circ}{ }_{\mathrm{P}} \theta(\tau) & \text { iff } p^{\circ}{ }_{\mathrm{P}} \exists y \neg \psi(\tau, y) \\
& \text { iff } \exists \sigma\left(\sigma \text { is a simple } \mathrm{P} \text {-name for a real } \wedge p{ }^{\circ}{ }_{\mathrm{P}} \neg \psi(\tau, \sigma)\right) \\
& \text { iff } \exists \sigma\left(\sigma \text { is a simple } \mathrm{P} \text {-name for a real } \wedge \forall q\left(q \leq_{P} p \rightarrow \neg q{ }^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma)\right)\right.
\end{aligned}
$$

Now, by inductive hypothesis, " $q^{\circ} \mathrm{P} \psi(\tau, \sigma)$ " is ${\underset{\sim}{~}}_{n+k-1}^{1}$ (if \mathbf{P} is $\underset{\sim}{\sum_{n}^{1}}$) or $\underset{\sim}{\sum_{n+k}^{1}}$ (if \mathbf{P} is $\left.\prod_{n}^{1}\right)$. Therefore, the last sentence is $\sum_{n+k}^{1}\left(\sum_{n+k+1}^{1}\right.$, respectively $)$.
$\underline{k=2}$: Then, $\theta(x)=\exists y \psi(x, y)$, where $\psi(x, y)$ is a Π_{1}^{1} formula. So, by the Maximal Principle,

$$
p^{\circ}{ }_{\mathrm{P}} \theta(\tau) \text { iff } \exists \sigma\left(\sigma \text { is a simple } \mathbf{P} \text {-name for a real } \wedge p^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma)\right)
$$

Suppose that $\varphi_{\leq}(x, y)$ and $\varphi_{\perp}(x, y)$ are the projective formulas that define \mathbf{P} with parameter $a \in \omega^{\omega}$. Let $\mathrm{wf}(x)$ be the predicate " x is a well-founded relation". Then, $\mathrm{wf}(x)$ is a Δ_{1} predicate (see [J2], 14.3). Therefore there exists a finite set S of axioms of $Z F$ such that

$$
Z F \vdash \forall M\left(M \text { transitive } \wedge M^{2} \wedge S \rightarrow \operatorname{wf}(x) \text { is absolute for } M\right)
$$

where $\bigwedge S$ denotes the conjunction of the sentences in S (see [Ku], IV, Exercise 17). Let $Z F C^{*}$ be a finite set of axioms of $Z F C$ containing all axioms which are needed to define the forcing relation in a model and to prove the Forcing Theorem and including the set S.

Claim 2.1.24 The following are equivalent:

1. $p^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma)$.
2. For every transitive model M of $Z F C^{*}$ containing a, p and (the codes of) τ and σ and such that $\mathbf{P}^{M} \lessdot \mathbf{P}, M^{2} " p{ }^{\circ} \mathrm{P} \psi(\tau, \sigma) "$.
3. There exists a transitive and countable model M of $Z F C^{*}$ containing a, p and (the codes of) τ and σ and such that $\mathrm{P}^{M} \lessdot \prec \mathrm{P}, M^{2}$ " $p{ }^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma)$ ".

Proof. $(1 \Rightarrow 2)$ Let M be as in (2). Assume M does not satisfy $p^{\circ}{ }_{\mathrm{p}} \psi(\tau, \sigma)$. Then, since $M^{2} Z F C^{*}$, there is $q \in M$ such that $q \leq_{P} p$ and M^{2} " $q{ }^{\circ}{ }_{\mathrm{p}}{ }^{\circ} \neg \psi(\tau, \sigma)$ ". Let G be a P -generic filter over V with $q \in G$. Then, since G is closed upwards, $p \in G$. Let $G^{\prime}=G \cap M$. Since $\mathrm{P}^{M} \lessdot \mathrm{P}$, by the Fact 2.1.21, G^{\prime} is P -generic over M. Also, since $q \in G^{\prime}, M\left[G^{\prime}\right]^{2} \neg \psi\left(\tau\left[G^{\prime}\right], \sigma\left[G^{\prime}\right]\right)$. But, given that $\tau, \sigma \in M$ and $\mathrm{P}^{M} \lessdot \mathrm{P}$, by Fact 2.1.21, we have that $\tau\left[G^{\prime}\right]=\tau[G]$ and $\sigma\left[G^{\prime}\right]=\sigma[G]$. So, $M[G]^{2} \neg \psi(\tau[G], \sigma[G])$, which is a Σ_{1}^{1} formula. Since $M^{2} Z F C^{*}$, also $M[G]^{2} Z F C^{*}$, and therefore the
Σ_{1}^{1} formulas are absolute for $M[G]$ as being a well-founded relation is absolute for models of $Z F C^{*}$. This implies $V[G]^{2} \neg \psi(\tau[G], \sigma[G])$, which contradicts (1).
$(2 \Rightarrow 3)$ Since $Z F C^{*}$ is a finite fragment of $Z F C$, by the Reflection Principle, there exists an ordinal $\alpha>\omega+2$ such that for every formula of $Z F C^{*} \cup$ $\left\{\varphi_{\leq}(x, y), \varphi_{\perp}(x, y)\right\}$ is absolute for V_{α}. Let $X=\{a, p, \tau, \sigma, T C(\tau), T C(\sigma)\}$ and let M the Skolem hull of X in V_{α}. So $M 4 V_{\alpha}$, and, since $|X|=\omega, M$ is countable. Moreover, M is extensional since V_{α} satisfies the axiom of extensionality. Without loss of generality, we can suppose that M is transitive (if not, since Mostowski's collapsing preserves sets of reals, we collapse it). Clearly, $M^{2} Z F C^{*}$ and $a, p, \tau, \sigma \in M$. Since $M 4 V_{\alpha}$, for every pair of reals $b_{1}, b_{2} \in M$, if $M^{2} \varphi_{\leq}\left(b_{1}, b_{2}\right)$ then $V_{\alpha}{ }^{2} \varphi_{<}\left(b_{1}, b_{2}\right)$ and hence, by absoluteness of $\varphi_{\leq}(x, y)$ for $V_{\alpha}, \varphi_{\leq}\left(b_{1}, b_{2}\right)$. Therefore, $\mathrm{P}^{M} \subseteq \overline{\mathrm{P}}$. Suppose that A_{M} is a maximal antichain of P^{M} in M. Then, there is a code for it, that is, there is a real $b \in M$ such that M^{2} " b codes A_{M} ". Now, since $M 4 V_{\alpha}, V_{\alpha}{ }^{2}$ " b codes $A_{V_{\alpha}}$ " and since the coding is recursive $A_{M}=A_{V_{\alpha}}$. So, A_{M} is a maximal antichain of $\mathrm{P}^{V_{\alpha}}$. Therefore, $\mathrm{P}^{M} \lessdot \mathrm{P}^{V_{\alpha}}$. But, by the choice of $V_{\alpha}, \mathrm{P}^{V_{\alpha}} \lessdot \mathrm{P}$. So, $\mathrm{P}^{M} \lessdot \mathrm{P}$. Then, by (2), M^{2} " $p{ }^{\circ} \mathrm{P} \psi(\tau, \sigma)$ ".
$(3 \Rightarrow 1)$ Let M be a countable and transitive model of $Z F C^{*}$ containing a, p, τ, σ and such that $\mathrm{P}^{M} \lessdot \mathrm{P}$ and M^{2} " $p{ }^{\circ} \mathrm{p} \psi(\tau, \sigma)$ ". Let $G \subseteq \mathrm{P}$ a generic filter over V with $p \in G$. Since $\mathrm{P}^{M} \lessdot \mathrm{P}, G^{\prime}=G \cap \mathrm{P}^{M}$ is a P^{M}-generic filter over M and $p \in G^{\prime}$. So, since $M^{2} Z F C^{*}$,

$$
M\left[G^{\prime}\right]^{2} \psi\left(\tau\left[G^{\prime}\right], \sigma\left[G^{\prime}\right]\right) .
$$

Moreover, by Fact 2.1.21, $\tau\left[G^{\prime}\right]=\tau[G]$ and $\sigma\left[G^{\prime}\right]=\sigma[G]$. So,

$$
M[G]^{2} \psi(\tau[G], \sigma[G]) .
$$

But then, since $M^{2} Z F C^{*}, M[G]^{2} Z F C^{*}$, and therefore the Π_{1}^{1} formulas are absolute for $M[G]$. Thus,

$$
V[G]^{2} \psi(\tau[G], \sigma[G]) .
$$

This proves the claim.
Now, (2) of the claim above holds iff for every transitive set M,

$$
\langle M, \in\rangle^{2} Z F C^{*} \wedge a, p, \tau, \sigma \in M \wedge \mathrm{P}^{M} \lessdot \prec \mathrm{P} \rightarrow\langle M, \in\rangle^{2} " p{ }^{\circ} \mathrm{P} \psi(\tau, \sigma) "
$$

iff for every well-founded extensional relation E over ω,

$$
\begin{gathered}
\langle\omega, E\rangle^{2} Z F C^{*} \wedge \exists n_{0} n_{1} n_{2} n_{3}\left(\pi_{E}\left(n_{0}\right)=a \wedge \pi_{E}\left(n_{1}\right)=p \wedge \pi_{E}\left(n_{2}\right)=\tau \wedge\right. \\
\left.\wedge \pi_{E}\left(n_{3}\right)=\sigma\right) \wedge \forall n m\left(\langle\omega, E\rangle^{2} \varphi_{\leq}\left(n, m, n_{0}\right) \rightarrow \varphi_{\leq}\left(\pi_{E}(m), \pi_{E}(m), a\right)\right) \wedge \\
\wedge \forall n\left(\langle\omega, E\rangle^{2} n \text { codes a max. antichain } \rightarrow \pi_{E}(n) \text { codes a max.antichain }\right) \rightarrow \\
\rightarrow\langle\omega, E\rangle^{2} " p{ }^{\circ} \psi(\tau, \sigma) "
\end{gathered}
$$

where π_{E} is a transitive collapse of $\langle\omega, E\rangle$ onto $\langle M, \in\rangle$; iff

$$
\begin{aligned}
& \forall z\left(z \in W F \wedge\left\langle\omega, E_{z}\right\rangle^{2}\right. Z F C^{*} \wedge \exists n_{0}, n_{1}, n_{2}, n_{3}\left(\pi_{E_{z}}\left(n_{0}\right)=a \wedge \pi_{E_{z}}\left(n_{1}\right)=p \wedge\right. \\
&\left.\wedge \pi_{E_{z}}\left(n_{2}\right)=\tau \wedge \pi_{E_{z}}\left(n_{3}\right)=\sigma\right) \wedge \\
& \wedge \forall n m\left(\left\langle\omega, E_{z}\right\rangle^{2} \varphi_{1}\left(n, m, n_{0}\right) \rightarrow \varphi_{1}\left(\pi_{E_{z}}(n), \pi_{E_{z}}(m), a\right)\right) \wedge \\
& \wedge \forall n\left(\left\langle\omega, E_{z}\right\rangle^{2} n \text { codes a max. antichain } \rightarrow \pi_{E_{z}}(n) \text { codes a max. antichain }\right) \rightarrow \\
&\left.\rightarrow\left\langle\omega, E_{z}\right\rangle^{2} " p{ }^{2}{ }_{\mathrm{P}} \psi(\tau, \sigma) "\right)
\end{aligned}
$$

Now, $W F$ is Π_{1}^{1} (see [J2], 40.2). $\left\langle\omega, E_{z}\right\rangle^{2} Z F C^{*},\left\langle\omega, E_{z}\right\rangle^{2}$ " $p{ }^{\circ}{ }_{\mathrm{p}} \psi(\tau, \sigma)$ " and $\pi_{E_{z}}(n)=x$ are all arithmetical relations in z (see [J2], 41.1). Moreover, the formula

$$
\forall n m\left(\left\langle\omega, E_{z}\right\rangle^{2} \varphi_{\leq}\left(n, m, n_{0}\right) \rightarrow \varphi_{\leq}\left(\pi_{E_{z}}(n), \pi_{E_{z}}(m), a\right)\right)
$$

is as complex as the poset. Finally, if \mathbf{P} is a $\sum_{n}^{1}\left(\prod_{\sim}^{1}\right)$ poset, the formula

$$
\forall n\left(\left\langle\omega, E_{z}\right\rangle^{2} n \text { codes a max. antichain } \rightarrow \pi_{E_{z}}(n)\right. \text { codes a max. antichain) }
$$

is $\underset{\sim}{\prod_{n}^{1}}\left(\underset{\sim}{\sim} \prod_{n+1}^{1}\right.$, respectively $)$. It follows that (2) is ${\underset{\sim}{~}}_{n+1}^{1}$.
Similarly, (3) iff

$$
\begin{gathered}
\exists z\left(z \in W F \wedge \langle \omega , E _ { z } \rangle ^ { 2 } Z F C ^ { * } \wedge \exists n _ { 0 } n _ { 1 } n _ { 2 } n _ { 3 } \left(\pi_{E_{z}}\left(n_{0}\right)=a \wedge\right.\right. \\
\left.\wedge \pi_{E_{z}}\left(n_{1}\right)=p \wedge \pi_{E_{z}}\left(n_{2}\right)=\tau \wedge \pi_{E_{z}}\left(n_{3}\right)=\sigma\right) \wedge \\
\wedge \forall n m\left(\left\langle\omega, E_{z}\right\rangle^{2} \varphi_{\leq}\left(n, m, n_{0}\right) \rightarrow \varphi_{\leq}\left(\pi_{E_{z}}(n), \pi_{E_{z}}(m), a\right)\right) \wedge \\
\wedge \forall n\left(\left\langle\omega, E_{z}\right\rangle^{2} n \text { codes a max. antichain } \rightarrow \pi_{E_{z}}(n) \text { codes a max. antichain }\right) \wedge \\
\left.\wedge\left\langle\omega, E_{z}\right\rangle^{2}{ }^{2} p^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma) "\right)
\end{gathered}
$$

But this is \sum_{n+1}^{1} (if P is ${\underset{\sim}{~}}_{n}^{1}$), or ${\underset{\sim}{\sim}}_{n+2}^{1}$ (if P is $\underset{\sim}{\prod_{n}^{1}}$).
Hence, if P is \sum_{n}^{1}, then " $p^{{ }^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma) \text { " is } \underset{\sim}{\Delta}{ }_{n+1}^{1} \text {. Therefore, " } p^{\circ}{ }_{\mathrm{P}} \theta(\tau) \text { " is } \sum_{n+1}^{1} \text {. } \text {. }{ }^{1} \text {. }{ }^{1} \text {. }}$ On the other hand, if \mathbf{P} is ${\underset{\sim}{n}}_{n}^{1}$ then " $p{ }^{\circ}{ }_{\mathrm{P}} \psi(\tau, \sigma)$ " is $\underset{\sim}{\Delta}{ }_{n+2}^{1}$. Hence, " $p{ }^{\circ} \mathrm{P} \theta(\tau)$ ", is \sum_{n+2}^{1}.

2.2 Martin's Axiom for projective posets

Definition 2.2.1 Let Γ be a class of posets. Martin's Axiom for Γ, henceforth denoted by $M A(\Gamma)$, is the following statement: For every ccc poset $\mathbf{P} \in \Gamma$ and for every family $\left\{A_{\alpha}: \alpha<\kappa\right\}, \kappa<2^{\aleph_{0}}$, of maximal antichains of \mathbf{P}, there exists $G \subseteq \mathbf{P}$ directed such that for every $\alpha<\kappa, G \cap A_{\alpha} \neq \emptyset$.

Martin's Axiom, in the sequel denoted by $M A$, is $M A(\Gamma)$, where Γ is the class of all posets.

Definition 2.2.2 Martin's Axiom for projective posets, MA(Proj), is Martin's Axiom restricted to the class of projective posets. i.e., $M A(\Gamma)$ where Γ is the class of projective posets. Similarly, for every $n \geq 1$, we define Martin's Axiom for \sum_{n}^{1} posets, $M A\left(\sum_{n}^{1}\right)$, Martin's Axiom for \prod_{n}^{1} posets, $M A\left(\prod_{n}^{1}\right)$, and Martin's Axiom for Δ_{n}^{1} posets, $M A\left(\Delta_{\sim}^{1}\right)$.

In this section we shall construct a model of $M A(\operatorname{Proj})+\neg C H$ by iterating only projective posets. As it was pointed out in the Introduction, the main difficulty of the proof comes from the fact that, in general, projective formulas are not absolute. However, as we shall see, we can arrange the construction so that they are absolute for "sufficiently" many models along of the iteration, where "sufficiently" means for a ω_{1}-club set.

2.2.1 λ-club and λ-stationary sets

Definition 2.2.3 Let $\kappa>\lambda$ be regular cardinals. A set $C \subseteq \kappa$ is λ-closed iff for every ordinal γ with $\lambda \leq \operatorname{cf}(\gamma)<\kappa$ and for every increasing sequence $\left\langle\beta_{\xi}: \xi<\gamma\right\rangle$ of elements of $C, \sup _{\xi<\gamma}\left(\beta_{\xi}\right) \in C$. A set $C \subseteq \kappa$ is unbounded in κ iff for every $\alpha<\kappa$ there is $\beta>\alpha$ such that $\beta \in C$. A set $C \subseteq \kappa$ is a λ-club in κ iff C is $a \lambda$-closed and unbounded in κ.

Remark 2.2.4 Let $\kappa>\omega$ be a regular cardinal. $C \subseteq \kappa$ is a club in κ iff C is an ω-club in κ.

The following facts are well-known. We give a proof for the convenience of the reader.

Fact 2.2.5 Let $\kappa>\lambda$ be regular cardinals. The intersection of any family of less than $\kappa \lambda$-club subsets of κ is a λ-club in κ.

Proof. Let $\left\{C_{\alpha}: \alpha<\beta\right\}$, with $\beta<\kappa$, be a family of λ-club subsets of κ. Let $C=\bigcap_{\alpha<\beta} C_{\alpha}$. It is easy to see that C is λ-closed. To show that C is unbounded, let $\gamma<\kappa$. We construct a sequence $\left\langle\xi_{\eta}: \eta<\lambda\right\rangle$ by induction:
$\eta=0$: Then $\xi_{0}=\sup _{\alpha<\beta}\left(\zeta_{\alpha}^{0}\right)$ where $\left\langle\zeta_{\alpha}^{0}: \alpha<\beta\right\rangle$ is defined by an other induction:
$\underline{\alpha=0}$: Let ζ_{0}^{0} be the least $\nu \in C_{0}$ greater than γ.
$\alpha>0$: Let ζ_{α}^{0} be the least $\nu \in C_{\alpha}$ greater than $\sup _{\delta<\alpha}\left(\zeta_{\delta}^{0}\right)$.
Since κ is regular and for every $\alpha<\beta, C_{\alpha}$ is unbounded, this sequence is well-defined.
$\underline{\eta>0}$: Then $\xi_{\eta}=\sup _{\alpha<\beta}\left(\zeta_{\alpha}^{0}\right)$ where $\left\langle\zeta_{\alpha}^{\eta}: \alpha<\beta\right\rangle$ is defined by an other induction:
$\underline{\alpha=0}$: Let ζ_{0}^{η} be the least $\nu \in C_{0}$ greater than $\sup _{\delta<\eta}\left(\xi_{\delta}\right)$.
$\alpha>0$: Let ζ_{α}^{η} be the least $\nu \in C_{\alpha}$ greater than $\sup _{\delta<\alpha}\left(\zeta_{\delta}^{\eta}\right)$.
As in the previous case, these sequences are well defined.
Let $\delta=\sup _{\eta<\lambda}\left(\xi_{\eta}\right)$. By regularity of $\kappa, \delta<\kappa$. Clearly, $\gamma<\zeta_{0}^{0}<\delta$. Finally, since for every $\alpha<\beta, \delta=\sup _{\eta<\lambda}\left(\zeta_{\alpha}^{\eta}\right), \delta$ is the supremum of a λ-sequence of elements of C_{α}. So, for every $\alpha<\beta, \delta \in C_{\alpha}$ and, hence, $\delta \in C$.

Fact 2.2.6 Let $\kappa>\lambda$ be regular cardinals. The diagonal intersection of a κ-sequence of λ-club subsets of κ is a λ-club in κ.

Proof. Let $\left\langle C_{\alpha}: \alpha<\kappa\right\rangle$ be a sequence of λ-club subsets in κ. Let $D=$ $\triangle_{\alpha<\kappa} C_{\alpha}$. D is easily seen to be λ-closed. To see that D is unbounded in κ, let $\gamma<\kappa$. We construct a λ-sequence $\left\langle\xi_{\eta}: \eta<\lambda\right\rangle$ by induction:
$\underline{\eta=0}$: Then ξ_{0} is the least $\nu \in \bigcap_{\alpha<\gamma} C_{\alpha}$ greater than γ.
$\overline{\eta>0}$: Let $\zeta=\sup _{\delta<\eta}\left(\xi_{\delta}\right)$. Then ξ_{η} is the least $\nu \in \bigcap_{\alpha<\zeta} C_{\alpha}$ greater than ζ.
$\overline{\text { Since }} \kappa$ is regular and, by Fact 2.2.5, for every $\beta<\kappa, \bigcap_{\alpha<\beta} C_{\alpha}$ is λ-club set in κ, this sequence is well-defined.

Let $\delta=\sup _{\eta<\lambda}\left(\xi_{\eta}\right)$. By regularity of $\kappa, \delta<\kappa$. Clearly, $\gamma<\xi_{0}<\delta$. Finally, since for every $\beta<\lambda,\left\langle\xi_{\eta}: \beta \leq \eta<\lambda\right\rangle$ is a λ-sequence of elements of $\bigcap_{\alpha<\xi_{\beta}} C_{\alpha}$ and $\delta=\sup _{\beta \leq \eta<\lambda}\left(\xi_{\eta}\right)$, for every $\beta<\lambda, \delta \in \bigcap_{\alpha<\xi_{\beta}} C_{\alpha}$. Hence, $\delta \in \bigcap_{\alpha<\delta} C_{\alpha}$ and therefore, $\delta \in D$.

Definition 2.2.7 Let $\kappa>\lambda$ be regular cardinals. A function $f: \kappa \rightarrow \kappa$ is λ-normal if it is increasing (if $\alpha<\beta$, then $f(\alpha)<f(\beta))$ and λ-continuous $\left(f(\alpha)=\sup _{\beta<\alpha}(f(\beta))\right.$, for every limit $\alpha<\kappa$ with $\operatorname{cf}(\alpha) \geq \lambda)$.

Fact 2.2.8 Let $\kappa>\lambda$ be regular cardinals. $C \subseteq \kappa$ is a λ-club in κ iff there exists a λ-normal function f such that $\operatorname{ran}(f)=C$.

$$
\begin{gathered}
\text { Proof. }(\Rightarrow) \text { Let } C \subseteq \kappa \text { be a } \lambda \text {-club in } \kappa \text {. Define } f: \kappa \rightarrow \kappa \text { by } \\
\qquad f(\alpha)=\text { the least ordinal of } C \backslash\{f(\beta): \beta<\alpha\} .
\end{gathered}
$$

Since κ is regular, $|C|=\kappa$ and so f is well-defined. Clearly, f is increasing. If $\langle f(\beta): \beta<\gamma\rangle$ is a sequence with γ limit and cf $(\gamma) \geq \lambda$, then $\sup _{\beta<\gamma}(f(\beta)) \in C$. But $\sup _{\beta<\gamma}(f(\beta))$ is the least ordinal in C greater than every $f(\beta), \beta<\gamma$. So, $f(\gamma)=\sup _{\beta<\gamma}(f(\beta))$.
(\Leftarrow) Let f be a λ-normal function. Since f is increasing, for every $\alpha<\kappa$, $\alpha \leq f(\alpha)<f(\alpha+1)$. So, ran (f) is unbounded. Let $\left\langle\alpha_{\xi}: \xi<\gamma\right\rangle$ an increasing sequence of elements of $\operatorname{ran}(f)$ with γ limit and $\operatorname{cf}(\gamma) \geq \lambda$. Let $\left\langle\beta_{\xi}: \xi<\gamma\right\rangle$ be the sequence of elements of κ such that for every $\xi<\gamma, f\left(\beta_{\xi}\right)=\alpha_{\xi}$. Then, since f is λ-continuous

$$
f\left(\sup _{\xi<\gamma}\left(\beta_{\xi}\right)\right)=\sup _{\xi<\gamma}\left(f\left(\beta_{\xi}\right)\right)=\sup _{\xi<\gamma}\left(\alpha_{\xi}\right) .
$$

Hence, $\sup _{\xi<\gamma}\left(\alpha_{\xi}\right) \in \operatorname{ran}(f)$.
Definition 2.2.9 Let $\kappa>\lambda$ be regular cardinals. A set $S \subseteq \kappa$ is λ-stationary iff $S \cap C \neq \emptyset$ for every λ-club in κ.

Fact 2.2.10 Let $\kappa>\lambda$ be regular cardinals. Then,

1. Every λ-club subset in κ is a λ-stationary set in κ.
2. If C is a λ-club in κ and S is a λ-stationary set in κ, then $C \cap S$ is a λ-stationary set in κ.
3. Every λ-stationary set in κ is unbounded in κ. So, every λ-stationary set in κ has cardinality κ.

Proof. (1) By Fact 2.2.5. (2) Since $(S \cap C) \cap C^{\prime}=S \cap\left(C \cap C^{\prime}\right) \neq \emptyset$. (3) Since the set $\{\beta<\kappa: \alpha \leq \beta\}$ is a λ-club for every $\alpha<\kappa$.

Theorem 2.2.11 (S. Ulam) Let κ be a successor cardinal and let λ be a regular cardinal $\kappa>\lambda$. Then any λ-stationary set in κ is the disjoint union of $\kappa \lambda$-stationary subsets.

Proof. Let $\kappa=\mu^{+}$. For every $\alpha<\kappa$, let $f_{\alpha}: \alpha \rightarrow \mu$ be a one-to-one function. Now, for every $\beta<\kappa$ and every $\xi<\mu$, let

$$
X_{\beta}^{\xi}=\left\{\alpha<\kappa: f_{\alpha}(\beta)=\xi\right\}
$$

Then, since every f_{α} is a one-to-one function, for any $\xi<\mu$, if $\beta \neq \gamma$, then $X_{\beta}^{\xi} \cap X_{\gamma}^{\xi}=$ \emptyset. Furthermore, for every $\beta<\kappa, \bigcup_{\xi<\mu} X_{\beta}^{\xi}=\{\alpha<\kappa: \beta<\alpha\}$.

Let S be a λ-stationary subset of κ. Then, for every $\beta<\kappa, \bigcup_{\xi<\mu} X_{\beta}^{\xi} \cap S$ (by Fact 2.2.10) is a λ-stationary set. Furthermore, for every $\beta<\kappa$, there is $\xi<\mu$ such that $X_{\beta}^{\xi} \cap S$ is λ-stationary. Otherwise, for every $\xi<\mu$, let C_{ξ} be a λ-club such that $\left(X_{\beta}^{\xi} \cap S\right) \cap C_{\xi}=\emptyset$. So $\bigcap_{\xi<\mu} C_{\xi}$ is a λ-club such that,

$$
\bigcup_{\xi<\mu}\left(X_{\beta}^{\xi} \cap S\right) \cap \bigcap_{\xi<\mu} C_{\xi}=\left(\bigcup_{\xi<\mu} X_{\beta}^{\xi} \cap S\right) \cap \bigcap_{\xi<\mu} C_{\xi}=\emptyset .
$$

A contradiction.
We define $h: \kappa \rightarrow \mu$ by

$$
h(\beta)=\text { the least } \xi<\mu \text { such that } X_{\beta}^{\xi} \cap S \text { is a } \lambda \text {-stationary set. }
$$

Since $\kappa=\mu^{+}$, there is $\xi<\mu$ such that $|\{\beta<\kappa: h(\beta)=\xi\}|=\kappa$. Let ξ be the least such ordinal. Then, $\left\{X_{\beta}^{\xi} \cap S: h(\beta)=\xi\right\}$ is the desired set.

Corollary 2.2.12 Let $\kappa>\lambda$ be regular cardinals. Then κ is the disjoint union of κ λ-stationary subsets in κ.

Proof. If κ is a successor cardinal, then apply Theorem 2.2.11. If κ is a limit cardinal, and hence weakly inaccessible, then there are κ regular cardinals μ, $\lambda \leq \mu<\kappa$, and for each such $\mu,\{\gamma<\kappa: \operatorname{cf}(\gamma)=\mu\}$ is a λ-stationary in κ.

2.2.2 Forcing iteration of projective posets

Lemma 2.2.13 Let $\kappa>\aleph_{1}$ be a regular cardinal and let P be the direct limit of an iteration $\left\langle\mathbf{P}_{\alpha}, \dot{\mathbf{Q}}_{\alpha}: \alpha<\kappa\right\rangle$ with finite support of ccc forcing notions such that for each $\alpha<\kappa$, ${ }^{\circ}{ }_{\alpha}$ " $2^{\aleph_{0}}<\kappa$ ". Let G be a P -generic filter over V. Assume that $\varphi(x)$ is a projective formula with parameter $a \in V[G]$. Then, for every $b \in V[G]$,

$$
V[G]^{2} \varphi(b)
$$

iff there is an ω_{1}-club $C \subseteq \kappa$ such that for all $\alpha \in C$,

$$
V\left[G_{\alpha}\right]^{2} \varphi(b) .
$$

Proof. (\Rightarrow) We prove this direction by induction on the complexity of the projective formulas:
$\underline{n=1}$: That is, $\varphi(x)$ is a $\Sigma_{1}^{1}(a)$ formula or a $\Pi_{1}^{1}(a)$ formula. Since $a, b \in$ $\omega^{\omega} \cap V[G]$, there is an ordinal $\alpha<\kappa$ such that $a, b \in V\left[G_{\alpha}\right]$ (see [Ku], VIII.5.14). By absoluteness of $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$ formulas for transitive models of $Z F$, for every $\beta, \alpha \leq \beta<\kappa$,

$$
V\left[G_{\beta}\right]^{2} \varphi(b)
$$

So, since \mathbf{P} preserves cofinalities, $C=\{\beta<\kappa: \alpha \leq \beta\}$ is the desired set.
$\underline{n+1}$: Let $\varphi(x)=\exists y \psi(x, y)$ be a $\Sigma_{n+1}^{1}(a)$ formula. Take a witness $c \in V[G]$ so that

$$
V[G]^{2} \psi(b, c)
$$

Since $\psi(b, c)$ is a $\Pi_{n}^{1}(a)$ formula, the lemma follows by inductive hypothesis.
So, suppose $\varphi(x)$ is $\Pi_{n+1}^{1}(a)$. Then, $\varphi(x)=\forall y \psi(x, y)$ where $\psi(x, y)$ is a $\Sigma_{n}^{1}(a)$ formula. We define an ω_{1}-club $C=\left\{\alpha_{\xi}: \xi<\kappa\right\}$ by induction on $\xi<\kappa$.
$\underline{\xi=0}$: α_{0} is the supremum of an increasing sequence $\left\langle\beta_{\gamma}: \gamma<\omega_{1}\right\rangle$ of ordinals satis$\overline{\text { fying }}$

$$
\begin{equation*}
\text { For all } \delta<\gamma<\omega_{1} \text { and all reals } r \in V\left[G_{\beta_{\delta}}\right], V\left[G_{\beta_{\gamma}}\right]^{2} \psi(b, r) . \tag{*}
\end{equation*}
$$

We define this sequence by another induction on $\gamma<\omega_{1}$:
$\gamma=0$: Let $\zeta<\kappa$ be the least ordinal such that $a, b \in V\left[G_{\zeta}\right]$. Since $V\left[G_{\zeta}\right]^{2} 2^{\aleph_{0}}=$ $\lambda<\kappa$, let $\left\langle r_{\eta}^{0}: \eta<\lambda\right\rangle$ be an enumeration of all the reals in $V\left[G_{\zeta}\right]$. Since ψ is $\Sigma_{n}^{1}(a)$ and for each $\eta<\lambda$,

$$
V[G]^{2} \psi\left(b, r_{\eta}^{0}\right)
$$

by inductive hypothesis for every $\eta<\lambda$ there is an ω_{1}-club $C_{\eta}^{0} \subseteq \kappa$ such that for all $\nu \in C_{\eta}^{0}$,

$$
V\left[G_{\nu}\right]^{2} \psi\left(b, r_{\eta}^{0}\right)
$$

Let $D_{0}^{0}=\bigcap_{\eta<\lambda} C_{\eta}^{0}$. D_{0}^{0} is an ω_{1}-club. Let β_{0} be the least $\nu \in D_{0}^{0}$ greater than ζ. $\gamma>0$: Let $\zeta=\sup _{\delta<\gamma}\left(\beta_{\delta}\right)$. Let $\left\langle r_{\eta}^{\gamma}: \eta<\lambda\right\rangle, \lambda<\kappa$, be an enumeration of all reals in $V\left[G_{\zeta}\right]$. As in the previous case, for every $\eta<\lambda$, there is an ω_{1}-club $C_{\eta}^{\gamma} \subseteq \kappa$ such that for all $\nu \in C_{\eta}^{\gamma}$,

$$
V\left[G_{\nu}\right]^{2} \psi\left(b, r_{\eta}^{\gamma}\right)
$$

Let $D_{\gamma}^{0}=\bigcap_{\eta<\lambda} C_{\eta}^{\gamma}$. Then D_{γ}^{0} and $\bigcap_{\delta \leq \gamma} D_{\delta}^{0}$ are ω_{1}-clubs. Let β_{γ} the least ordinal in $\bigcap_{\delta \leq \gamma} D_{\eta}^{0}$ greater than ζ.

Thus, $\left\langle\beta_{\gamma}: \gamma<\omega_{1}\right\rangle$ is an increasing sequence of ordinals satisfying (*). Let $\alpha_{0}=\sup _{\gamma<\omega_{1}}\left(\beta_{\gamma}\right)$.

To see that

$$
V\left[G_{\alpha_{0}}\right]^{2} \forall y \psi(b, y)
$$

suppose that $r \in V\left[G_{\alpha_{0}}\right]$ is a real. Since \mathbf{P} preserves cofinalities, $\operatorname{cf}\left(\alpha_{0}\right)=\omega_{1}$, and so, there exists a least $\gamma<\omega_{1}$ and $\eta<\lambda<\kappa$ such that $r=r_{\eta}^{\gamma} \in V\left[G_{\beta_{\gamma}}\right]$. But, for every $\delta \geq \gamma, \beta_{\delta} \in C_{\eta}^{\gamma}$. So, $\left\langle\beta_{\delta}: \gamma \leq \delta<\omega_{1}\right\rangle$ is an increasing ω_{1}-sequence of elements of C_{η}^{γ} with supremum α_{0}. Hence, $\alpha_{0} \in C_{\eta}^{\gamma}$ and, therefore,

$$
V\left[G_{\alpha 0}\right]^{2} \psi(b, r)
$$

$\xi>0$: We take two cases into consideration.
$\overline{\text { Case 1 }}$: $\operatorname{cf}(\xi) \leq \omega$. We define α_{ξ} in the same way as in case $\xi=0$; i.e., as the supremum of an increasing sequence $\left\langle\beta_{\gamma}: \gamma<\omega_{1}\right\rangle$ of ordinals satisfying (*). We obtain this sequence like before except for $\gamma=0$. In this case, we define β_{0} as the least ordinal $\zeta \in \bigcap_{\nu<\xi} D_{\nu}$ greater than $\sup _{\nu<\xi}\left(\alpha_{\nu}\right)$, where for every $\nu<\xi, D_{\nu}=\bigcap_{\gamma<\omega_{1}} D_{\gamma}^{\nu}$. Case 2: $\operatorname{cf}(\xi)>\omega$. Let $\alpha_{\xi}=\sup _{\nu<\xi}\left(\alpha_{\nu}\right)$. We now show that

$$
V\left[G_{\alpha_{\xi}}\right]^{2} \forall y \psi(b, y) .
$$

Since $\operatorname{cf}\left(\alpha_{\xi}\right)=\operatorname{cf}(\xi)=\mu>\omega$, we can fix a subsequence $\left\langle\beta_{\gamma}: \gamma<\mu\right\rangle$ of $\left\langle\alpha_{\nu}: \nu<\xi\right\rangle$ with supremum α_{ξ}. Let $r \in V\left[G_{\alpha_{\xi}}\right]$ be a real. Let $\gamma<\mu$ be the least ordinal such that $r \in V\left[G_{\beta_{\gamma}}\right]$. But, if $\gamma \leq \delta<\mu$, then $\beta_{\delta} \in D_{\beta_{\gamma}}$. So, $\left\langle\beta_{\delta}: \gamma \leq \delta<\mu\right\rangle$ is a μ-sequence of elements of $D_{\beta_{\gamma}}$ with supremum α_{ξ}. Hence, $\alpha_{\xi} \in D_{\beta_{\gamma}}$ and, therefore,

$$
V\left[G_{\alpha_{\xi}}\right]^{2} \psi(b, r)
$$

Since P preserves cofinalities, $C=\left\{\alpha_{\xi}: \xi<\kappa\right\}$ is the range of an ω_{1}-normal function and therefore C is an ω_{1}-club contained in κ.
(\Leftarrow) Assume that there is an ω_{1}-club $C \subseteq \kappa$ such that for all $\alpha \in C$,

$$
V\left[G_{\alpha}\right]^{2} \varphi(b),
$$

and suppose that

$$
V[G] 2 \varphi(b) .
$$

Then, $V[G]^{2} \neg \varphi(b)$ and, by (\Rightarrow), there exists an ω_{1}-club D such that for all $\alpha \in D$, $V\left[G_{\alpha}\right]^{2} \neg \varphi(b)$. By Fact 2.2.5, $C \cap D \neq \emptyset$. But if $\alpha \in C \cap D$, then

$$
V\left[G_{\alpha}\right]^{2} \varphi(b) \wedge \neg \varphi(b) .
$$

A contradiction.
Theorem 2.2.14 (GCH) Let κ be a regular cardinal which is not the successor of a cardinal of countable cofinality. Then there is an iteration of projective and ccc posets such that whenever G is a generic filter for the iteration,

$$
V[G]^{2} M A(\operatorname{Proj}) \wedge 2^{\aleph_{0}}=\kappa .
$$

Proof. We divide the proof in two parts: first, we construct the poset P and, second, we show that forcing with this poset gives a model of $M A(\operatorname{Proj})$ and $2^{\aleph_{0}}=\kappa$.
(I) Construction of P: To start with, we fix a function π from κ onto $\kappa \times \kappa$ such that for every $\beta, \gamma<\kappa$,

1. $(\forall \alpha<\kappa)(\pi(\alpha)=\langle\beta, \gamma\rangle \rightarrow \beta \leq \alpha)$.
2. $S_{\beta, \gamma}=\{\alpha \in \kappa: \pi(\alpha)=\langle\beta, \gamma\rangle\}$ is an ω_{1}-stationary set in κ.

There exists a such a function. Indeed, by Corollary $2.2 .12, \kappa$ is the disjoint union of $\left\{X_{\xi}: \xi<\kappa\right\}$, a family of ω_{1}-stationary subsets of κ. So, let f be a one-to-one function from $\kappa \times \kappa$ onto κ and define π by:

$$
\pi(\alpha)=\left\{\begin{array}{l}
\langle\beta, \gamma\rangle, \text { if } \alpha \in X_{f(\beta, \gamma)} \text { and } \beta \leq \alpha \\
\langle 0,0\rangle, \text { if } \alpha \in X_{f(\beta, \gamma)} \text { and } \beta>\alpha
\end{array}\right.
$$

Clearly π satisfies (1), and $S_{\beta, \gamma}=X_{f(\beta, \gamma)} \cap\{\alpha \in \kappa: \beta \leq \alpha\}$ is an ω_{1}-stationary set, for every $\beta, \gamma<\kappa$. So, π also satisfies (2). We shall use π as a bookkeeping function to ensure that we force with all projective ccc posets that appear along the iteration.

We obtain the poset P as the direct limit of an iteration $\left\langle\mathrm{P}_{\alpha}, \dot{\mathrm{Q}}_{\alpha}: \alpha<\kappa\right\rangle$ with finite support such that for every $\alpha<\kappa$,

$$
{ }^{\circ}{ }_{\alpha} \text { " } \dot{\mathrm{Q}}_{\alpha} \text { is a projective ccc poset". }
$$

We proceed by induction on $\alpha<\kappa$: suppose that for every $\beta<\alpha, \mathbf{P}_{\beta}$ and $\dot{\mathbf{Q}}_{\beta}$ have been already defined and satisfy that:

1. P_{β} is a ccc poset.
2. ${ }^{\circ}{ }_{\beta}$ " $2^{\aleph_{0}}<\kappa$ ".
3. ${ }^{\circ}{ }_{\beta}$ " \dot{Q}_{β} is a projective ccc poset".

Then we define \mathbf{P}_{α} and show that it satisfies (1)-(3):
$\underline{\alpha=0}$: Let P_{0} the trivial poset.
$\underline{\alpha=\beta+1}$: Let $\mathbf{P}_{\alpha}=\mathbf{P}_{\beta} * \dot{\mathbf{Q}}_{\beta}$. Since \mathbf{P}_{β} is a ccc poset and ${ }^{\circ}{ }_{\beta}$ " \dot{Q}_{β} is a projective ccc poset", P_{α} is a ccc poset. So, P_{α} satisfies (1).

Moreover, on one hand, it is easy to see that $\left|\mathrm{P}_{\beta}\right|<\kappa$. On the other hand, since ${ }^{\circ}{ }_{\beta} " 2^{\aleph_{0}}<\kappa$ " and ${ }^{\circ}{ }_{\beta}$ " $\dot{\mathrm{Q}}_{\beta}$ is a projective poset", ${ }^{\circ}{ }_{\beta} "\left|\dot{\mathrm{Q}}_{\beta}\right|<\kappa$ ". So, $\left|\mathrm{P}_{\alpha}\right|=$ $\left|\mathrm{P}_{\beta} * \dot{\mathrm{Q}}_{\beta}\right|<\kappa$. But then, since κ is a regular cardinal and $G C H$ holds, $\kappa^{\aleph_{0}}=\kappa$. So, since P_{α} is a ccc poset, ${ }^{\circ}{ }_{\alpha} " 2^{\aleph_{0}}<\kappa$ ". Therefore, P_{α} satisfies (2).

Given P_{α}, it only remains to find $\dot{\mathrm{Q}}_{\alpha}$ satisfying (3). Since ${ }^{\circ}{ }_{\alpha}$ " $2^{\aleph_{0}}<\kappa$ ",

$$
V\left[G_{\alpha}\right]^{2} \text { "There are less than } \kappa \text { projective posets". }
$$

Let $\left\langle\dot{\mathbf{Q}}_{\alpha}^{\gamma}: \gamma<\kappa\right\rangle$ be a sequence of all \mathbf{P}_{α}-names (where for some $\eta<\kappa$, for every $\gamma \geq \eta, \mathbf{Q}_{\alpha}^{\gamma}$ is the trivial poset) such that:

$$
{ }^{\circ}{ }_{\alpha} "\left\langle\dot{\mathbf{Q}}_{\alpha}^{\gamma}: \gamma<\kappa\right\rangle \text { enumerates all projective posets". }
$$

There is a such a sequence by the Maximal Principle.
Suppose that $\pi(\alpha)=\langle\delta, \gamma\rangle$. Since $\delta \leq \alpha, \dot{Q}_{\delta}^{\gamma}=\left\langle\dot{Q}_{\delta}^{\gamma}, \dot{\leq}_{\delta}^{\gamma}, \dot{\perp}_{\delta}^{\gamma}\right\rangle$ has been already defined; i.e., there are projective formulas $\varphi_{\leq}(x, y ; z)$ and $\varphi_{\perp}(x, y ; z)$ and a simple P_{δ}-name for a real \dot{a} that define the projective poset $\dot{\mathrm{Q}}_{\beta}^{\gamma}$. i.e.,

$$
\begin{aligned}
& \circ_{\delta} \text { " } \dot{Q}_{\delta}^{\gamma}=\operatorname{field}\left(\dot{\leq}_{\delta}^{\gamma}\right) \\
& { }^{\circ}{ }_{\delta} "\left(\forall x, y \in \omega^{\omega}\right)\left(x \dot{ذ}_{\delta}^{\gamma} y \leftrightarrow \varphi_{\leq}(x, y ; \dot{a})\right) " \\
& { }_{\delta} \text { " }\left(\forall x, y \in \omega^{\omega}\right)\left(x \dot{\perp}_{\delta}^{\gamma} y \leftrightarrow \varphi_{\perp}(x, y ; \dot{a})\right) "
\end{aligned}
$$

Let $\dot{\mathrm{Q}}=\langle\dot{Q}, \dot{\leq}, \dot{\perp}\rangle$ be a P_{α}-name such that

$$
\begin{aligned}
& { }^{\circ}{ }_{\alpha}{ }^{\alpha} \text { " } \dot{Q}=\text { field }(\dot{\leq}) \\
& { }^{\alpha}{ }^{\alpha} "\left(\forall x, y \in \omega^{\omega}\right)\left(x \leq y \leftrightarrow \varphi_{\leq}(x, y ; \dot{a})\right) " \\
& { }^{\circ}{ }_{\alpha} "\left(\forall x, y \in \omega^{\omega}\right)\left(x \dot{\perp} y \leftrightarrow \varphi_{\perp}(x, y ; \dot{a})\right) "
\end{aligned}
$$

Then we put $\dot{\mathbf{Q}}_{\alpha}=\dot{\mathrm{Q}}$, providing that ${ }^{\circ}{ }_{\alpha}$ " $\dot{\mathrm{Q}}$ is a ccc poset", and $\dot{\mathrm{Q}}_{\alpha}=\{\emptyset\}$, otherwise. So

$$
{ }^{\circ}{ }_{\alpha} \text { " } \dot{Q}_{\alpha} \text { is a projective ccc poset", }
$$

and P_{α} satisfies (3).
 ${ }^{\circ}{ }_{\beta}$ " \dot{Q}_{β} is a ccc poset", P_{α} satisfies (1).

Since we are working with an iteration with finite support,

$$
\left|\mathrm{P}_{\alpha}\right|=\left|\bigcup_{\beta<\alpha} \mathrm{P}_{\beta}\right|=\sum_{\beta<\alpha}\left|\mathrm{P}_{\beta}\right|
$$

But κ is a regular cardinal, $\alpha<\kappa$ and, by inductive hypothesis, for all $\beta<\alpha$, $\left|\mathrm{P}_{\beta}\right|<\kappa$. So, $\left|\mathrm{P}_{\alpha}\right|<\kappa$. But then, as above, ${ }^{\circ}{ }_{\alpha} " 2^{\aleph_{0}}<\kappa$ " and P_{α} satisfies (2).

We can see that P_{α} satisfies (3) as in the previous case.
This completes the construction of the P_{α} 's, $\alpha<\kappa$. P is its direct limit.
(II) If G is a P-generic filter over V, then $V[G]^{2} M A($ Proj $) \wedge 2^{\kappa_{0}}=\kappa$: We fix a P -generic filter G over V.

We first show that $V[G]^{2} 2^{\aleph_{0}}=\kappa$. Since P is a ccc poset which is the direct limit of a finite support iteration of length κ of posets of cardinality less than κ and κ is a regular cardinal, $|\mathrm{P}| \leq \kappa$. Furthermore, by $G C H, \kappa^{\aleph_{0}}=\kappa$. Hence,

$$
{ }^{\circ}{ }_{\mathrm{P}} " 2^{\aleph_{0}} \leq \kappa " .
$$

On the other hand, if Q is the Cohen poset for adding one generic real, then, since it is a projective ccc poset, \mathbf{Q} is the denotation of $\dot{\mathbf{Q}}_{\alpha}$ for arbitrary large $\alpha<\kappa$. Each time we force with one of these Q_{α} one more new real is added and therefore we have

$$
\circ_{\mathrm{p}} " 2^{\aleph_{0}} \geq \kappa \text { ". }
$$

We now show that $V[G]{ }^{2} M A($ Proj $)$. Let Q be a projective ccc poset in $V[G]$. Suppose that $\leq_{Q}=\left\{\langle x, y\rangle: \varphi_{\leq}(x, y)\right\}$ and that $\perp_{Q}=\left\{\langle x, y\rangle: \varphi_{\perp}(x, y)\right\}$, where $\varphi_{\leq}(x, y)$ and $\varphi_{\perp}(x, y)$ are projective formulas with parameter $a \in \omega^{\omega} \cap V[G]$. Let $\left\{A_{i}: i<\mu\right\}, \mu<\kappa$, be a family of maximal antichains of Q in $V[G]$.

We code every maximal antichain $A_{i}, i<\mu$, by a real a_{i} like in Fact 2.1.15. Hence, for every $i<\mu$,

$$
V[G]^{2} \text { " } a_{i} \text { codes a maximal antichain of } \mathrm{Q} \text { ". }
$$

Note that, by Fact 2.1.15, the right-hand side is a projective sentence. So, by Lemma 2.2.13, for every $i<\mu$, there exists an ω_{1}-club $C_{i} \subseteq \kappa$ such that for every $\xi \in C_{i}$,

$$
V\left[G_{\xi}\right]^{2} \text { " } a_{i} \text { codes a maximal antichain of } \mathrm{Q}^{\xi "},
$$

where Q^{ξ} denotes the poset in $V\left[G_{\xi}\right]$ which is defined by the same formulas that define the poset Q in $V[G]$. Let $C=\bigcap_{i<\mu} C_{i}$. Then, C is an ω_{1}-club such that for every $i<\mu$ and every $\xi \in C$,

$$
V\left[G_{\xi}\right]^{2} \text { " } a_{i} \text { codes a maximal antichain of } \mathrm{Q}^{\xi "} \text {. }
$$

Moreover, since the coding is recursive, if for each $\xi \in C, A_{i}^{\xi}$ denotes the maximal antichain of Q^{ξ} coded by a_{i}, then $A_{i}^{\xi}=A_{i}$.

Claim 2.2.15 There exists an ω_{1}-club $D \subseteq \kappa$ such that for every $\alpha \in D$ and for all reals $r, r^{\prime} \in V\left[G_{\alpha}\right]$,

$$
\begin{array}{llll}
V\left[G_{\alpha}\right]^{2} & \varphi_{\leq}\left(r, r^{\prime}\right) & \text { iff } & V[G]^{2}
\end{array} \varphi_{\leq}\left(r, r^{\prime}\right)
$$

Proof. Let $\left\langle\left\langle r, r^{\prime}\right\rangle_{\gamma}: \gamma<\kappa\right\rangle$ be an enumeration of all pairs of reals in $V[G]$. Let C be the following set:
$C=\left\{\beta<\kappa:\left\langle\left\langle r, r^{\prime}\right\rangle_{\gamma}: \gamma<\beta\right\rangle\right.$ enumerates all pairs of reals of $\left.V\left[G_{\beta}\right]\right\}$.
It is easy to see that C is a ω_{1}-closed set. To see that C is unbounded, given an ordinal $\alpha<\kappa$, we construct by induction a ω_{1}-sequence $\left\langle\alpha_{\xi}: \alpha<\omega_{1}\right\rangle$ of ordinals as follows:
$\xi=0: \alpha_{0}=\alpha$
$\underline{\xi>0}: \alpha_{\xi}$ is the least ordinal greater than $\sup _{\zeta<\xi}\left(\alpha_{\zeta}\right)$ such that for every $\zeta<\xi$, $\left\langle\left\langle r, r^{\prime}\right\rangle_{\gamma}: \gamma<\alpha_{\xi}\right\rangle$ enumerates all pairs of reals of $V\left[G_{\alpha_{\zeta}}\right]$.

Clearly $\alpha<\sup _{\xi<\omega_{1}}\left(\alpha_{\xi}\right) \in C$.
By Lemma 2.2.13, for every pair of reals $\left\langle r, r^{\prime}\right\rangle_{\gamma}, \gamma<\kappa$, there exists an ω_{1}-club E_{γ} such that for every $\xi \in E_{\gamma}$,

$$
V\left[G_{\xi}\right]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) \quad \text { iff } \quad V[G]^{2} \varphi_{\leq}\left(r, r^{\prime}\right)
$$

For every $\gamma<\kappa$, let $D_{\gamma}=E_{\gamma} \cap C$. Let $D_{\varphi_{\leq}}=\triangle_{\gamma<\kappa} D_{\gamma}$. So $D_{\varphi_{\leq}}$is an ω_{1}-club (by Fact 2.2.6).

We now show that for every $\xi \in D_{\varphi_{\leq}}$and all reals $r, r^{\prime} \in V\left[G_{\xi}\right]$,

$$
V\left[G_{\xi}\right]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) \quad \text { iff } \quad V[G]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) .
$$

Let $\xi \in D_{\varphi_{\leq}}$and $r, r^{\prime} \in V\left[G_{\xi}\right]$. Since $\xi \in D_{\varphi_{\leq}}$, for every $\zeta<\xi, \xi \in C \cap E_{\zeta}$. Since $r, r^{\prime} \in V\left[G_{\xi}\right]$ and $\xi \in C$, there exists $\gamma<\xi$ such that $\left\langle r, r^{\prime}\right\rangle=\left\langle r, r^{\prime}\right\rangle_{\gamma}$. But $\xi \in E_{\gamma}$ and so

$$
V\left[G_{\xi}\right]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) \quad \text { iff } \quad V[G]^{2} \varphi_{\leq}\left(r, r^{\prime}\right)
$$

We obtain $D_{\varphi_{\perp}}$ in a similar way. Finally, we put $D=D_{\varphi_{\leq}} \cap D_{\varphi_{\perp}}$ which, by Fact 2.2.5, is also an ω_{1}-club.

Let D be as in the claim above and we put $E=C \cap D$. Clearly, $E \neq \emptyset$. So, pick $\beta \in E$. Since $\beta \in D$, for all reals $r, r^{\prime} \in V\left[G_{\beta}\right]$,

$$
V\left[G_{\beta}\right]^{2} \varphi_{\perp}\left(r, r^{\prime}\right) \text { iff } V[G]^{2} \varphi_{\perp}\left(r, r^{\prime}\right)
$$

Thus, every antichain of Q^{β} in $V\left[G_{\beta}\right]$ is an antichain of Q in $V[G]$. Therefore, since Q is a ccc poset in $V[G]$ and forcing with P preserves cardinals, Q^{β} is a ccc poset in $V\left[G_{\beta}\right]$. Hence, there exists a P_{β}-name $\dot{\mathrm{Q}}_{\beta}^{\gamma}$ such that $\mathrm{Q}^{\beta}=\dot{\mathrm{Q}}_{\beta}^{\gamma}\left[G_{\beta}\right]$. Since $S_{\gamma, \beta}$ is an ω_{1}-stationary subset of $\kappa, E \cap S_{\gamma, \beta} \neq \emptyset$. Let $\eta \in E \cap S_{\gamma, \beta}$. So, \mathbf{Q}^{η} is a projective ccc poset and $\mathrm{Q}^{\eta}=\dot{\mathrm{Q}}_{\eta}\left[G_{\eta}\right]$. But then, $V\left[G_{\eta+1}\right]$ contains a Q^{η}-generic filter H over $V\left[G_{\eta}\right]$. Since $\eta \in C$, for every $i<\mu, A_{i}^{\eta}=A_{i}$ is a maximal antichain of \mathbf{Q}^{η} in $V\left[G_{\eta}\right]$. Hence, for every $i<\mu, H \cap A_{i}^{\eta} \neq \emptyset$. Finally, since $\eta \in D$, for all reals $r, r^{\prime} \in V\left[G_{\eta}\right]$,

$$
V\left[G_{\eta}\right]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) \quad \text { iff } \quad V[G]^{2} \varphi_{\leq}\left(r, r^{\prime}\right)
$$

Thus, H is a directed subset of \mathbf{Q} in $V[G]$ such that for every $i<\mu, H \cap A_{i} \neq \emptyset$. Hence, $V[G]^{2} M A($ Proj).

Theorem 2.2.16 (GCH) Let κ be a regular cardinal which is not the successor of a cardinal of countable cofinality. Then for every $n \geq 1$, there is an iteration of \sum_{n}^{1} $\left(\prod_{n}^{1},{\underset{\sim}{n}}_{n}^{1}\right)$ ccc posets such that whenever G is a generic filter for the iteration, $V \widetilde{[G]}$ satisfies $M A\left(\sum_{n}^{1}\right)\left(M A\left(\underset{\sim}{\Pi}{ }_{n}^{1}\right), M A\left(\underset{\sim}{\Delta}{ }_{n}^{1}\right)\right)$ and $2^{\aleph_{0}}=\kappa$.

Proof. As in Theorem 2.2 .14 but using only ccc $\sum_{n}^{1}(\underset{\sim}{n}, \underset{\sim}{1}, \underset{n}{1})$ posets.
We finish this section by remarking that with a similar argument as in Theorem 2.2.14, we can improve a result from [Ju-R]. The following is an alternative axiom to $M A_{\kappa}(\Gamma)$ introduced in [vD-F]:

Definition 2.2.17 Let Γ be a class of posets and let κ be any cardinal. κ-Anti Martin's Axiom for Γ, henceforth denoted by $A M A_{\kappa}(\Gamma)$, is the following statement: For every ccc poset $\mathrm{P} \in \Gamma$ there exists a family $\left\{G_{\alpha}: \alpha<\kappa\right\}$ of filters on P such that for every maximal antichain $A \subseteq \mathrm{P}$ there exists $\alpha<\kappa$ such that for every $\beta \geq \alpha$, $G_{\beta} \cap A \neq \emptyset$.

Theorem 2.2.18 (GCH) Let κ be cardinal such that $\omega_{1}<\operatorname{cf}(\kappa)$ and κ is not the successor of a cardinal of countable cofinality. Then there is an iteration of projective ccc posets such that whenever G is a generic filter for the iteration,

$$
V[G]^{2} A M A_{\mathrm{cf}(\kappa)}(\operatorname{Proj}) \wedge 2^{\aleph_{0}}=\kappa .
$$

Proof. Note that for all results of 2.2 .1 on λ-clubs and λ-stationary subsets of κ only need that $\operatorname{cf}(\lambda)<\operatorname{cf}(\kappa)$. So, the theorem follows with a similar argument to that 2.2.14.

Remark 2.2.19 The case for consistency of $A M A_{\lambda}(\operatorname{Proj}) \wedge 2^{\aleph_{0}}=\kappa$ with $\omega_{1} \leq \lambda \leq$ κ for λ regular and $\kappa^{\aleph_{0}}=\kappa$ has been solved in [R-Sh].

2.3 $M A($ Proj $)$ is weaker than $M A$

2.3.1 Projective forcing after collapsing a weakly-compact cardinal

Fact 2.3.1 Let V be a transitive model of $Z F$. Then, V and $L(\mathrm{R})$ are projective absolute. i.e., for every projective formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $b_{1}, \ldots, b_{n} \in \mathbf{R} \cap V$,

$$
V^{2} \varphi\left(b_{1}, \ldots, b_{n}\right) \text { iff } L(\mathbf{R})^{2} \varphi\left(b_{1}, \ldots, b_{n}\right) .
$$

We need the following form of a theorem of K. Kunen. The proof is taken from [To1]:

Theorem 2.3.2 Let κ be a weakly-compact cardinal and let $V_{0}=V\left[C_{0}\right]$, where C_{0} is a Coll $(\omega,<\kappa)$-generic filter over V. Suppose that \mathbf{P} is a ccc poset in V_{0} and G is $a \mathrm{P}$-generic filter over V_{0}. Then, $L(\mathrm{R})^{V_{0}}$ and $L(\mathrm{R})^{V_{0}[G]}$ satisfy the same sentences of Set Theory with parameters in V.

Proof. Let κ be a weakly-compact cardinal and let $\dot{\mathrm{P}}$ be a $\operatorname{Coll}(\omega,<\kappa)$-name for a ccc poset. Let $\mathrm{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$.

We need the following lemma of K. Kunen (see [H-Sh], Lemma 1). We work with complete Boolean algebras in order to simplify the proof.

Lemma 2.3.3 Let κ be a weakly-compact cardinal and let B a complete and κ-cc Boolean algebra. Then for every $Z \subseteq \mathrm{~B}$, if $|Z|<\kappa$, there exists a complete subalgebra B^{*} of B such that $Z \subseteq \mathrm{~B}^{*}$ and $\left|\mathrm{B}^{*}\right|<\kappa$.

Proof. Let κ be a weakly-compact cardinal, B a κ-cc complete Boolean algebra and $Z \subseteq \mathrm{~B}$ such that $|Z|<\kappa$. Let C be a complete subalgebra of B containing Z. Since B is κ-cc and $|Z|<\kappa,|\mathrm{C}| \leq \kappa$. So, without loss of generality, we may assume that $\mathbf{C}=\langle\kappa,+, \cdot,-, 0,1\rangle$.

Let $U_{1}=\{a \subseteq \kappa: a$ is a maximal antichain of C$\}$. Since C is κ-cc, for all $a \in$ $U_{1},|a|<\kappa$. So, $U_{1} \subseteq \kappa^{<\kappa}$. Let $U_{2}=\left\{\langle x, \alpha\rangle: x \subseteq \kappa \wedge|x|<\kappa \wedge \alpha \in \kappa \wedge \alpha=\sup _{\mathrm{C}}(x)\right\}$. And let $U_{3}=\{Z\}$.

Let σ be the conjunction of the following sentences of the second order language of type $\left\{\in, U_{1}, U_{2}, U_{3},+, \cdot,-, 0,1\right\}$:

1. C is a Boolean algebra and $Z \subseteq \mathrm{C}$; i.e., the conjunction of Boolean algebra axioms and $\forall x\left(U_{3} x \rightarrow x \subseteq \kappa\right)$ (first order).
2. $\forall x\left(x \subseteq \kappa \wedge|x|<\kappa \rightarrow \exists z U_{2}(x, z)\right)$. i.e., C is κ-complete (first order).
3. $\forall X(X \subseteq \kappa \wedge \forall y z(X y \wedge X z \wedge y \neq z \rightarrow y \cdot z=0) \wedge$

$$
\left.\wedge \forall z(z<\kappa \wedge z \neq 0 \rightarrow \exists y(X y \wedge \neg y \cdot z=0)) \rightarrow \exists x\left(U_{1} x \wedge x=X\right)\right)
$$

i.e., every maximal antichain of C belongs to U_{1} (second order and Π_{1}^{1}).

Since $\mathbf{C}=\langle\kappa,+, \cdot,-, 0,1\rangle$ is a complete Boolean algebra, $Z \subseteq \kappa$ and $U_{1} \subseteq \kappa^{<\kappa}$ is the set of all maximal antichains of C ,

$$
\left\langle V_{\kappa}, \in, \kappa,+, \cdot,-, 0,1, U_{1}, U_{2}, U_{3}\right\rangle^{2} \sigma .
$$

Then, since σ is a Π_{1}^{1} sentence, by Π_{1}^{1}-indescribability of κ, there is $\alpha<\kappa$ such that

$$
\left\langle V_{\alpha}, \in, \kappa \cap V_{\alpha},+\cap V_{\alpha}, \cdot \cap V_{\alpha},-\cap V_{\alpha}, 0,1, U_{1} \cap V_{\alpha}, U_{2} \cap V_{\alpha}, U_{3} \cap V_{\alpha}\right\rangle^{2} \sigma
$$

Let $\mathrm{B}^{*}=\mathrm{C} \cap V_{\alpha}$. Then, by (1) $\mathrm{B}^{*}=\langle\alpha,+, \cdot,-, 0,1\rangle$ is a subalgebra of C such that $Z \subseteq \mathrm{~B}^{*}$. Clearly, $\left|\mathrm{B}^{*}\right|=\alpha<\kappa$. $\mathrm{By}(2), \mathrm{B}^{*}$ is a α-complete Boolean algebra and, by (3), every maximal antichain of \mathbf{B}^{*} belongs to $U_{1} \cap V_{\alpha}=U_{1} \cap \alpha^{<\alpha}$. Hence \mathbf{B}^{*} is a α-cc Boolean algebra. Therefore, \mathbf{B}^{*} is a complete Boolean algebra and it is a subalgebra of C.

So, it only remains to see that \mathbf{B}^{*} is a complete subalgebra of \mathbf{C}. Let $X \subseteq \alpha$. If $|X|<\alpha$, then $\left\langle X, \sup _{\mathrm{B}^{*}}(X)\right\rangle \in U_{2} \cap V_{\alpha}$, so $\left\langle X, \sup _{\mathrm{B}^{*}}(X)\right\rangle \in U_{2}$ and therefore, $\sup _{\mathrm{B}^{*}}(X)=\sup _{\mathrm{C}}(X)$. If $|X|=\alpha$, then, since B^{*} is $\alpha-\mathrm{cc}, \sup _{\mathrm{B}^{*}}(X)=1$. Further, let $X^{\prime}=\left\{u \in \alpha:(\exists v \in X)\left(u \leq_{\mathrm{B}^{*}} v\right)\right\}$. Then, since X^{\prime} is open in \mathbf{B}^{*}, there exists a maximal antichain A in B^{*} such that $A \subseteq X^{\prime}$. But then, by (3), $A \in U_{1}$ and, so, A is a maximal antichain of C . Hence $\sup _{\mathrm{C}}(A)=\sup _{\mathrm{C}}\left(X^{\prime}\right)=\sup _{\mathrm{C}}(X)=1$. Therefore, B^{*} is a complete subalgebra of C of size less than κ and includes Z.

Let E be the poset of all complete embeddings from a complete subalgebra of r.o. (S) of size less than κ into r.o. $(\operatorname{Coll}(\omega,<\kappa))$, ordered by inverse inclusion. i.e.,

- $h \in \mathrm{E}$ iff h is a complete embedding from a complete subalgebra of r.o. (S) of cardinality less than κ into r.o. $(\operatorname{Coll}(\omega,<\kappa))$.
- $h \leq h^{\prime}$ iff $h^{\prime} \subseteq h$.

By Kripke's Theorem (see [J2], Theorem 62) and lemma above, we know that $E \neq \emptyset$.

Definition 2.3.4 Let κ be a cardinal. A poset \mathbf{P} is $<\kappa$-closed iff whenever $\gamma<\kappa$ and $\left\langle p_{\alpha}: \alpha<\gamma\right\rangle$ is a decreasing sequence of elements of \mathbf{P} (i.e., for all $\alpha, \beta<\gamma$, if $\alpha<\beta$, then $p_{\beta} \leq p_{\alpha}$) there is $p \in \mathbf{P}$ such that for all $\alpha<\gamma, p \leq p_{\alpha}$.

Claim 2.3.5 E is $a<\kappa$-closed poset.
Proof. Suppose that $\left\langle h_{\alpha}: \alpha<\gamma\right\rangle$, with $\gamma<\kappa$, is a decreasing sequence of elements of E . Let $Z=\bigcup_{\alpha<\gamma} \operatorname{dom}\left(h_{\alpha}\right)$. By regularity of $\kappa,|Z|<\kappa$. So, since r.o. (S) is a complete and κ-cc Boolean algebra, by Lemma 2.3.3, we have that there is a complete subalgebra (Z) of r.o. (S) including Z of size less than κ. Since $\left\{h_{\alpha}: \alpha<\gamma\right\}$ is a family of complete embeddings pairwise compatible, $h=\bigcup_{\alpha<\gamma} h_{\alpha}$ is an embedding from Z into r.o. $(\operatorname{Coll}(\omega,<\kappa))$. But then, we may extend h to a complete embedding h^{*} from (Z) into r.o. $\left(\operatorname{Coll}(\omega,<\kappa)\right.$) (see [J2], 25.12). Then $h^{*} \in \mathrm{E}$ and for every $\alpha<\gamma, h \leq h_{\alpha}$.

Lemma 2.3.6 Let H be a E-generic filter over V. Then $e=\bigcup H$ is a complete embedding from r.o. (S) into r.o. $(\operatorname{Coll}(\omega,<\kappa))$.

Proof. Let H be a E-generic filter over V and $e=\bigcup H$. Clearly e is an embedding from dom (e) into r.o. $(\operatorname{Coll}(\omega,<\kappa))$. So, we only need to show that $\operatorname{dom}(e)=$ r.o. (S) and that for every maximal antichain $A \subseteq$ r.o. (S), e " A is a maximal antichain of r.o. (Coll $(\omega,<\kappa))$.

To see this it will suffice to show that for every $X \subseteq$ r.o. (S) with $|X|<\kappa$, $D_{X}=\{h \in \mathbf{E}: X \subseteq \operatorname{dom}(h)\}$ is a dense subset of \mathbf{E}. Since then, on one hand, for every $u \in$ r.o. (S), $H \cap D_{\{u\}} \neq \emptyset$, and so $\operatorname{dom}(e)=$ r.o(S). On the other hand, since r.o. (S) is κ-cc, for every maximal antichain $A \subseteq$ r.o. (S), D_{A} is a dense subset of E . But, if $A \subseteq \operatorname{dom}(h)$, then, since $\operatorname{dom}(h) \lessdot$ r.o. (S), $h^{\prime \prime} A$ is a maximal antichain of r.o. (Coll $(\omega,<\kappa))$. But $e^{\prime \prime} A=h " A$. So, e is also a complete embedding.

Now, as in Claim 2.3.5, using Lemma 2.3.3, it is clear that for every $X \subseteq$ r.o. (S) of size less than κ, D_{X} is a dense subset of \mathbf{E}.

Suppose that G is a S -generic filter over V. Let H be a E-generic filter over $V[G]$. Since E is a poset in $V, G \times H$ is a $\mathrm{S} \times \mathrm{E}$-generic filter over V. Since $\mathbf{S} \times \mathbf{E} \cong \mathbf{E} \times \mathbf{S}, V[G \times H]=V[H \times G]=V[H][G]$. Now, since \mathbf{E} is a $<\kappa$-closed poset, E does not add new reals. i.e., $\mathrm{R} \cap V[G]=\mathrm{R} \cap V[H][G]$ (see [Ku], VII.6.14). Therefore, all new reals in $V[H][G]$ have been added by \mathbf{S}. So, for every $p \in \mathbf{S}$, every formula $\varphi(v)$ and every $x \in V$,

$$
V^{2} " p^{\circ} \mathrm{s} \varphi(\breve{x})^{L(\mathrm{R})} " \text { iff } V[H]^{2} " p{ }^{\circ} \mathrm{s} \varphi(\breve{x})^{L(\mathrm{R})} " .
$$

Similarly, for every $p \in \operatorname{Coll}(\omega,<\kappa)$, every formula $\varphi(v)$ and every $x \in V$,

$$
V^{2} " p{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) \varphi(\breve{x})^{L(\mathrm{R})} " \text { iff } V[H]{ }^{2} " p{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) ~ \varphi(\breve{x})^{L(\mathrm{R})} " .
$$

Let $e \in V[H]$ be the generic complete embedding from S into $\operatorname{Coll}(\omega,<\kappa)$ given by Lemma 2.3.6 and let i be the canonical embedding from $\operatorname{Coll}(\omega,<\kappa)$ into $\mathrm{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$. Then,

Claim 2.3.7 $V[H]^{2}$ " ${ }^{\circ}{ }_{\mathrm{s}} \varphi(\breve{x})^{L(\mathrm{R})} "$ iff $V[H]^{2} "{ }^{\circ}{ }_{\operatorname{Coll}(\omega,<\kappa)} \varphi(\breve{x})^{L(\mathrm{R})} "$.
Proof. We show it by induction on the complexity of formulas:
$\underline{n=0}$: By absoluteness of Σ_{0} formulas and the fact that for every S-generic filter G over $V[H]$, there exists a $\operatorname{Coll}(\omega,<\kappa)$-generic filter C over $V[H]$ such that $e^{-1}(C)=G$ and, hence, $V[H][G]=V[H]\left[e^{-1}(C)\right] \subseteq V[H][C]$.
$\underline{n+1}$: Let $\varphi(v)=\exists y \neg \psi(v, y)$ where $\psi(v, y)$ is a Σ_{n} formula. Suppose that

$$
V[H]^{2}{ }^{\circ}{ }_{\mathrm{s}} \exists y \neg \psi(\breve{x}, y)^{L(\mathrm{R})} "
$$

So, there exists a S-name \dot{b} in $V[H]$ such that $V[H]{ }^{2}$ " ${ }^{\circ}{ }_{\mathrm{s}} \neg \psi(\breve{x}, \dot{b})^{L(\mathrm{R})}$ ". But then, by inductive hypothesis, $V[H]^{2} "{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) \neg \psi\left(\breve{x}, e_{*}(\dot{b})\right)^{L(R)}$ ", where for every S-name τ,

$$
e_{*}(\tau)=\left\{\left\langle e(p), e_{*}(\sigma)\right\rangle:\langle p, \sigma\rangle \in \tau\right\}
$$

(see [Ku], VII.7.12). Therefore,

$$
V[H]^{2}{ }^{\circ}{ }^{\text {Coll }(\omega,<\kappa)}{ }^{\prime} \exists y \neg \psi(\breve{x}, y)^{L(\mathrm{R})} " .
$$

We show that if $V[H]{ }^{2}$ " ${ }^{\circ}{ }_{\operatorname{Coll}(\omega,<\kappa)} \exists y \neg \psi(\breve{x}, y)^{L(\mathrm{R})}{ }^{\prime}$, then $V[H]{ }^{2}$ " ${ }^{\circ} \mathrm{s}$ $\exists y \neg \psi(\breve{x}, y)^{L(\mathrm{R})} "$ as above but using the complete embedding i from Coll $(\omega,<\kappa)$ into S.

But, by almost homogeneity of $\operatorname{Coll}(\omega,<\kappa)$, we get that for every formula $\varphi(v)$ and every $x \in V,{ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)}$ " $\varphi(\breve{x})$ " or ${ }^{\circ}{ }_{C o l l(\omega,<\kappa)}{ }^{\prime} \neg \varphi(\breve{x})$ ". So, by Claim 2.3.7, for every formula $\varphi(v)$ with all its parameters in V and every $x \in V$

$$
\begin{aligned}
V^{2} "{ }^{\circ}{ }_{\operatorname{Coll}(\omega,<\kappa)} \varphi(\breve{x})^{L(\mathrm{R})} " & \text { iff } V[H]{ }^{2}{ }^{\circ}{ }^{\circ} \operatorname{Coll(\omega ,<\kappa)} \varphi(\breve{x})^{L(\mathrm{R})} " \\
& \text { iff } V[H]^{2} "{ }_{\mathrm{s}} \varphi(\breve{x})^{L(\mathrm{R})} " \\
& \text { iff } V^{2} "{ }^{\circ} \mathrm{s} \varphi(\breve{x})^{L(\mathrm{R})} "
\end{aligned}
$$

This ends the proof of Theorem 2.3.2.
Note that, in the Theorem 2.3.2, if all the parameters of the formula are reals, then by the Factor Lemma for the Levy-collapse, we can assume that they are in V_{0}. So, $L(\mathrm{R})^{V_{0}}$ and $L(\mathrm{R})^{V_{0}[G]}$ satisfy the same projective sentences with reals in V_{0} as parameters.

Definition 2.3.8 Let \mathbf{P} be a forcing notion, let V be a model of $Z F C^{*}$ and let $n \geq 1$. V is \sum_{n}^{1}-absolute for \mathbf{P} if for every \sum_{n}^{1} formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with parameters in V and for every $b_{1}, \ldots, b_{n} \in \mathrm{R} \cap V$,

$$
V^{2} \varphi\left(b_{1}, \ldots, b_{n}\right) \text { iff } V[G]^{2} \varphi\left(b_{1}, \ldots, b_{n}\right),
$$

for every P -generic filter G over $V . V$ is projective absolute for P iff for every $n \geq 1$, V is \sum_{n}^{1} absolute for P . Finally, V is projective absolute for ccc forcing notions iff for every ccc poset $\mathrm{P} \in V, V$ is projective absolute for P .

Thus, from the remark following the proof of Theorem 2.3.2, we obtain the following corollary:

Corollary 2.3.9 Let κ be a weakly-compact cardinal and let C be a Coll $(\omega,<\kappa)$ generic filter over V. Then $V[C]$ is projective absolute for ccc forcing notions.

Lemma 2.3.10 Let κ be a weakly-compact cardinal and let C_{0} be a Coll $(\omega,<\kappa)$ generic filter over V. Suppose that $\mathrm{P} \in V\left[C_{0}\right]$ is a ccc poset and G_{0} is a P -generic filter over $V\left[C_{0}\right]$. Then $V\left[C_{0}\right]\left[G_{0}\right]$ is projective absolute for ccc forcing notions.

Proof. Let $V_{0}=V\left[C_{0}\right]\left[G_{0}\right]$ and suppose that $\mathrm{Q} \in V_{0}$ is a ccc poset, H is a Q-generic filter over V_{0} and $V_{0}[H]^{2} \varphi$, where φ is a $\Sigma_{n}^{1}(a)$ sentence with parameter $a \in V_{0}$. We need the following fact:

Fact 2.3.11 There exists a Coll $(\omega,<\kappa)$-generic filter C_{1} over V such that $a \in V\left[C_{1}\right]$ and $V\left[C_{1}\right] \subseteq V\left[C_{0}\right]\left[G_{0}\right]$.

Proof. By a Skolem argument, we may assume that $V\left[C_{0}\right]^{2}|\mathrm{P}| \leq \aleph_{1}$. Let \dot{a} be a simple $\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$-name for a. Since \dot{a} is of size less than κ and κ is weakly-compact, by 2.3 .3 , we can find $\mathrm{Q}^{\prime} \lessdot \operatorname{Coll}(\omega,<\kappa) * \mathrm{P}$ such that $\left|\mathrm{Q}^{\prime}\right|=\lambda<\kappa, \dot{a}$ is a simple \mathbf{Q}^{\prime}-name and there is a dense embedding π from \mathbf{Q}^{\prime} into $\operatorname{Coll}(\omega,<\lambda+1)$. As $\left(C_{0} * G_{0}\right) \cap \mathrm{Q}^{\prime}$ is a Q^{\prime}-generic filter, $\pi "\left(C_{0} * G_{0} \cap \mathrm{Q}^{\prime}\right)$ is a $\operatorname{Coll}(\omega,<\lambda+1)$-generic filter and $a=\dot{a}\left[C_{0} * G_{0}\right]=\dot{a}\left[\left(C_{0} * G_{0}\right) \cap \mathbf{Q}^{\prime}\right]=\pi_{*}(\dot{a})\left[\pi^{\prime \prime}\left(C_{0} * G_{0} \cap \mathrm{Q}^{\prime}\right)\right]$.

We continue with the proof of Lemma 2.3.10. Fix C_{1} as in 2.3.11. So, $a \in$ $V\left[C_{1}\right] \subseteq V\left[C_{0}\right]\left[G_{0}\right]$. Then there exists a ccc generic extension $V\left[C_{1}\right]\left[G_{1}\right]$ of $V\left[C_{1}\right]$ such that $V\left[C_{1}\right]\left[G_{1}\right]=V\left[C_{0}\right]\left[G_{0}\right]$ (see, [J2], 25.3). Hence, $V\left[C_{1}\right]\left[G_{1}\right][H]^{2} \varphi$. Now, $V\left[C_{1}\right]\left[G_{1}\right][H]=V\left[C_{1}\right]\left[G_{1} * H\right]$ is a single ccc extension of $V\left[C_{1}\right]$. So, since, $a \in V\left[C_{1}\right]$, by Corollary 2.3.9, $V\left[C_{1}\right]^{2} \varphi$. Again by 2.3.9, $V\left[C_{1}\right]\left[G_{1}\right]^{2} \varphi$. But $V\left[C_{1}\right]\left[G_{1}\right]=V_{0}$. Hence, $V_{0}{ }^{2} \varphi$.

Corollary 2.3.12 Let κ be a weakly-compact cardinal and let C be a Coll $(\omega,<\kappa)$ generic filter over V. Suppose $\mathrm{P} \in V[C]$ is a ccc poset and G is a P -generic filter over $V[C]$. Let $V_{0}=V[C][G]$. Suppose that $\mathrm{Q}_{0}, \mathrm{Q}_{1} \in V_{0}$ are ccc posets and Q_{1} is projective. Then for every Q_{0}-generic filter H over V_{0},

$$
\mathbf{Q}_{1}^{V_{0}^{0}} \lessdot \mathbf{Q}_{1}^{V_{0}[H]} .
$$

Proof. Since V_{0} is projective absolute for ccc forcing notions.
Definition 2.3.13 Let P be a poset. P is indestructible-ccc iff for every ccc poset $\mathrm{Q},{ }^{\circ} \mathrm{Q}$ " P is a ccc poset".

The next theorem shows that after Levy-collapsing a weakly-compact cardinal to ω_{1}, all projective ccc posets are indestructible-ccc, i.e., they remain ccc in all ccc forcing extensions.

Theorem 2.3.14 Let κ be a weakly-compact cardinal and let C_{0} be a Coll $(\omega,<\kappa)$ generic filter over V. If $\mathrm{P}, \mathrm{Q} \in V\left[C_{0}\right]$ are ccc posets and Q is projective, then for every P -generic filter G over $V\left[C_{0}\right]$,

$$
V\left[C_{0}\right][G]^{2} \text { "Q is a ccc poset". }
$$

Proof. Fix a projective ccc poset Q in $V\left[C_{0}\right]$. By the Factor Lemma for the Levy-collapse we may assume the parameters of the definition of \mathbf{Q} are all in the ground model. Further, since $\operatorname{Coll}(\omega,<\kappa)$ is an almost homogenous poset, we may assume that

$$
{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) \text { " } \mathrm{Q} \text { is a ccc poset". }
$$

Let P be a ccc poset in $V\left[C_{0}\right]$ and suppose $\dot{A}=\left\{\tau_{i}: i<\kappa\right\}$ is a $\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$-name for an uncountable antichain of Q .

Let $\mathrm{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$ and let E be the set of all complete embeddings from complete subalgebras of the algebra r.o. (S) of size less than κ into r.o. ($\operatorname{Coll}(\omega,<\kappa)$) ordered by inclusion. By Claim 2.3.5, E is a $<\kappa$-closed poset. So, forcing with E does not add new reals. Hence, projective statements are absolute between the ground model and the E-generic extension.

Let $V_{0}=V[H]\left[C_{0} * G\right]$ be a $\mathrm{E} \times$ S-generic extension of V. That is, H is E-generic over V, C_{0} is $\operatorname{Coll}(\omega,<\kappa)$-generic over $V[H]$ and G is $\dot{\mathrm{P}}\left[C_{0}\right]$-generic over $V[H]\left[C_{0}\right]$. By the Product Lemma (see [Ku], VIII.1.4), $V_{0}=V\left[C_{0} * G\right][H]$. So, since $\dot{A} \in V$ and projective absoluteness holds between $V\left[C_{0} * G\right]$ and V_{0}, we have:

$$
V_{0}{ }^{2} \text { " } \dot{A}\left[C_{0} * G\right] \text { is an uncountable antichain of } \dot{\mathbf{Q}}\left[C_{0} * G\right] \text { ". }
$$

Let $e \in V[H]$ be the generic complete embedding from S into $\operatorname{Coll}(\omega,<\kappa)$ given by H. Then there is a $\operatorname{Coll}(\omega,<\kappa)$-generic C_{1} over $V[H]$ such that $C_{0} * G=$ $\pi^{-1}\left(C_{1}\right)$. Note that $V[H]\left[C_{1}\right]$ is a ccc generic extension of V_{0} (see [J2], 25.3) and, hence, the projective formulas are absolute between V_{0} and $V[H]\left[C_{1}\right]$.

Let $e_{*}(\dot{A})=\left\langle e_{*}\left(\tau_{i}\right): i<\kappa\right\rangle \in V[H]$, the e-image of \dot{A}. For every $i<\kappa$, $V[H]{ }^{2}$ " ${ }^{\circ}{ }_{\mathrm{s}} \tau_{i} \in \dot{\mathrm{Q}}$ ". Thus, since " $\tau_{i} \in \dot{\mathrm{Q}}$ " is a projective formula with τ_{i} as the only possible non-standard term-parameter and since the projective formulas are absolute between V_{0} and $V[H]\left[C_{1}\right]$,

$$
V[H]^{2}{ }^{\circ}{ }_{C o l l}(\omega,<\kappa)=e_{*}\left(\tau_{i}\right) \in \dot{\mathrm{Q}} "
$$

Hence, for every $i<\kappa$,

$$
V[H]\left[C_{\mathbf{1}}\right]^{2} \quad \text { " } e_{*}\left(\tau_{i}\right)\left[C_{\mathbf{1}}\right] \in \dot{\mathrm{Q}}\left[C_{\mathbf{1}}\right] "
$$

Since $V\left[C_{1}\right]^{2}$ " $\mathrm{Q}\left[C_{1}\right]$ is a ccc poset", E is a σ-closed poset and no σ-closed poset can kill the ccc-ness of any ccc poset, $V\left[C_{1}\right][H]^{2}$ " $\mathrm{Q}\left[C_{1}\right]$ is a ccc poset". So, by the Product Lemma,

$$
V[H]\left[C_{\mathbf{1}}\right]^{2} \text { " } \mathrm{Q}\left[C_{\mathbf{1}}\right] \text { is a ccc poset". }
$$

Thus we can find $i, j<\kappa$ such that

$$
V[H]\left[C_{1}\right]^{2} \text { " } e_{*}\left(\tau_{i}\right)\left[C_{1}\right], e_{*}\left(\tau_{j}\right)\left[C_{1}\right] \text { are compatible". }
$$

But, since e is a complete embedding, $e_{*}\left(\tau_{i}\right)\left[C_{1}\right]=\tau_{i}\left[C_{0} * G\right]$ and $e_{*}\left(\tau_{j}\right)\left[C_{1}\right]=$ $\tau_{j}\left[C_{0} * G\right]$. So, since \mathbf{Q} is a projective poset, the compatibility relation in \mathbf{Q} is also projective, and, by projective absoluteness between V_{0} and $V[H]\left[C_{1}\right]$,

$$
V_{0}{ }^{2} \text { " } \tau_{i}\left[C_{0} * G\right], \tau_{j}\left[C_{0} * G\right] \text { are compatible". }
$$

A contradiction.
Corollary 2.3.15 Let κ be a weakly-compact cardinal and let C_{0} be a Coll $(\omega,<\kappa)$ generic filter over $V, \mathrm{P} \in V\left[C_{0}\right]$ is a ccc poset and G_{0} is a P -generic filter over $V\left[C_{0}\right]$. Let $V_{0}=V\left[C_{0}\right]\left[G_{0}\right]$. Suppose that $\mathrm{Q}_{0}, \mathrm{Q}_{1} \in V_{0}$ are ccc posets and Q_{1} is projective. Then for every Q_{0}-generic filter H over V_{0},

$$
V_{0}[H]^{2} \text { " } \mathrm{Q}_{1} \text { is a ccc poset". }
$$

Proof. Fix a projective and ccc poset \mathbf{Q}_{1} in V_{0}. Let $a \in \mathbf{R} \cap V_{0}$ the parameter of the definition of Q_{1}. By 2.3.11, we can find a $\operatorname{Coll}(\omega,<\kappa)$-generic filter C_{1} over V such that $a \in V\left[C_{1}\right]$ and $V\left[C_{1}\right] \subseteq V_{0}$. Now,

$$
V\left[C_{1}\right]^{2} \text { " } \mathrm{Q}_{1} \text { is a projective poset". }
$$

Since $V_{0}=V\left[C_{1}\right]\left[G_{1}\right]$ is a ccc extension of $V\left[C_{1}\right], V_{0}$ is a projective absolute extension of $V\left[C_{1}\right]$ and, hence,

$$
V\left[C_{1}\right]^{2} \text { " } \mathrm{Q}_{1} \text { is a ccc poset". }
$$

Since $V_{0}[H]=V\left[C_{1}\right]\left[G_{1} * H\right]$ is a single ccc forcing extension of $V\left[C_{1}\right]$, by Theorem 2.3.14 we know that

$$
V_{0}[H]^{2} \text { " } \mathbf{Q}_{1} \text { is a ccc poset". }
$$

Lemma 2.3.16 Let $\mathrm{P}, \mathrm{Q} \in V$ be ccc posets and suppose that Q is projective. Assume that

1. For every P -generic filter G over $V, \mathrm{Q}^{V} \lessdot \mathrm{Q}^{V[G]}$ and
2. ${ }^{\circ}{ }_{\mathrm{P}} " \mathrm{Q}$ is ccc",
then ${ }^{\circ} \mathrm{Q}$ " P is ccc".
Proof. Suppose otherwise. So, there exists $q \in \mathrm{Q}$ such that $q{ }^{\circ}{ }_{\mathrm{Q}}$ " P is not ccc". Hence, $\mathbf{Q} * \mathrm{P}$ is not ccc. Since $\mathrm{P}, \mathrm{Q} \in V, \mathbf{Q} * \mathrm{P} \cong \mathbf{Q} \times \mathbf{P} \cong \mathbf{P} \times \mathbf{Q}, \mathrm{P} \times \mathrm{Q}$ is not ccc. But, since for every \mathbf{P}-generic filter G over $V, \mathrm{Q}^{V} \lessdot \mathrm{Q}^{V[G]}$, we have $\mathbf{P} \times \mathrm{Q} \lessdot \mathrm{P} * \mathrm{Q}$. Hence, $\mathrm{P} * \mathrm{Q}$ is not ccc. A contradiction, since P is ccc and ${ }^{\circ} \mathrm{P}$ " Q is ccc".

Definition 2.3.17 Let $\varphi(x)$ be a formula of the language of Set Theory. We say that $\varphi(x)$ is preserved under direct limits of finite support iterations of ccc forcing notions if, whenever \mathbf{P} is the direct limit of $\left\langle\mathrm{P}_{\alpha}, \dot{\mathbf{Q}}_{\alpha}: \alpha<\nu\right\rangle$ a finite support iteration of ccc forcing notions such that for every $\alpha<\nu, V\left[G_{\alpha}\right]^{2} \varphi(A)$, then $V[G]^{2} \varphi(A)$, where G is a \mathbf{P}-generic filter over V.

Theorem 2.3.18 Let κ be a weakly-compact cardinal and let $V_{0}=L[C]$, where C is a Coll $(\omega,<\kappa)$-generic filter over L. Suppose that $\varphi(x)$ is a formula of the language of Set Theory such that:

1. For every $X \subseteq \omega^{\omega}$, there are posets $\mathbf{P}_{0}^{X}, \ldots, \mathbf{P}_{n}^{X}$ such that

$$
Z F C \vdash\left(\varphi(X) \leftrightarrow \mathrm{P}_{0}^{X}, \ldots, \mathrm{P}_{n}^{X} \text { are ccc posets }\right) .
$$

2. For every $X \subseteq \omega^{\omega}, \varphi(X)$ is preserved under direct limits of finite support iterations of ccc forcing notions.

Moreover, suppose that there exists a ccc generic extension V_{1} of V_{0} and $A \in V_{1}$ such that $V_{1}{ }^{2} \varphi(A)$. Then there is a ccc poset $\mathrm{P} \in V_{1}$ such that whenever G is a P -generic filter over V_{1},

$$
V_{1}[G]^{2} M A(\operatorname{Proj}) \wedge \neg C H \wedge \varphi(A) .
$$

Proof. Let λ be a regular uncountable cardinal in V_{1} which is not the successor of a cardinal with cofinality ω. Let P the poset to force $M A(\operatorname{Proj})+2^{\aleph_{0}}=\lambda$ defined in V_{1} as in 2.2.14. Let G be a P -generic filter over V_{1}. Then $V_{1}[G]^{2} M A(\operatorname{Proj}) \wedge$ $2^{\aleph_{0}}=\lambda$. Thus it only remains to prove that $V_{1}[G]^{2} \varphi(A)$. Since P is the direct limit of $\left\langle\mathrm{P}_{\alpha}, \dot{\mathrm{Q}}_{\alpha}: \alpha<\lambda\right\rangle$ we prove this by showing, by induction on $\alpha \leq \lambda$, that $V_{1}\left[G_{\alpha}\right]^{2} \varphi(A)$.
$\underline{\alpha=0}$: Obvious, since P_{0} is the trivial poset.
$\underline{\alpha=\beta+1}$: By inductive hypothesis, we have that

$$
V_{1}\left[G_{\beta}\right]^{2} \varphi(A)
$$

We also have that

$$
V_{1}\left[G_{\beta}\right]^{2} \text { " } \dot{\mathrm{Q}}_{\beta}\left[G_{\beta}\right] \text { is a projective ccc poset". }
$$

So, by 2.3.12, for every $i \leq n$ and every P_{i}^{A}-generic filter H_{i} over $V_{1}\left[G_{\beta}\right]$,

$$
\dot{\mathrm{Q}}_{\beta}\left[G_{\beta}\right]^{V_{1}\left[G_{\beta}\right]} \lessdot \dot{\mathrm{Q}}_{\beta}\left[G_{\beta}\right]^{V_{1}\left[G_{\beta}\right]\left[H_{i}\right]} .
$$

Further, by 2.3.15, for every $i \leq n, V_{1}\left[G_{\beta}\right]^{2}$ " ${ }^{\circ}{ }_{\mathrm{p}_{i}^{A}} \dot{\mathrm{Q}}_{\beta}\left[G_{\beta}\right]$ is a ccc poset". So, by 2.3.16, for every $i \leq n$,

$$
V_{1}\left[G_{\alpha}\right]^{2} \text { " } \mathrm{P}_{i}^{A} \text { is a ccc poset". }
$$

But then, by condition (1) of this theorem,

$$
V_{1}\left[G_{\alpha}\right]^{2} \varphi(A)
$$

$\underline{\alpha}$ limit: Since \mathbf{P}_{α} is the direct limit of $\left\langle\mathbf{P}_{\beta}, \dot{\mathbf{Q}}_{\beta}: \beta<\alpha\right\rangle$, by condition (2) of this theorem,

$$
V_{1}\left[G_{\alpha}\right]^{2} \varphi(A)
$$

The next lemma gives a sufficient condition for a formula to be preserved under direct limits of finite support iterations of ccc forcing notions whenever we can relate the satisfaction of the formula to the nonexistence of certain homogenous sets.

Definition 2.3.19 Let X be a set. A 2-coloring of X is a map π from $X \times X$ onto the set $\{0,1\}$. A set $Y \subseteq X$ is homogeneous for (the 2-coloring) π iff $\pi " Y \times Y=\{i\}$, where i is either 0 or 1 .

Lemma 2.3.20 Let $X \in V$ be an uncountable set and let $\pi \in V$ be a 2-coloring of X. Let \mathbf{P} be the direct limit of $\left\langle\mathbf{P}_{\alpha}, \dot{\mathrm{Q}}_{\alpha}: \alpha<\nu\right\rangle$, a finite support iteration of ccc forcing notions. Suppose that for every P -generic filter G over V and for every $\alpha<\nu$:

$$
V\left[G_{\alpha}\right]^{2} \neg(\exists Y \subseteq X)\left(|Y|=\aleph_{1} \wedge Y \text { is homogeneous }\right)
$$

Then $V[G]^{2} \neg(\exists Y \subseteq X)\left(|Y|=\aleph_{1} \wedge Y\right.$ is homogeneous $)$.
Proof. Suppose the lemma is true for $\alpha<\nu$. Towards a contradiction, let p and \dot{Y} be such that $p{ }^{\circ}$ " $\dot{Y} \subseteq X \wedge|\dot{Y}|=\breve{\aleph}_{1} \wedge(\forall x y \in \dot{Y})(\pi(x, y))=0$ ".

For each $x \in X$, choose $q_{x} \in \mathrm{P}$ so that $q_{x} \leq p$ and $q_{x}{ }^{\circ}$ " $x \in Y$ ", if there is such. Otherwise, let $q_{x}=0$. Without loss of generality, $B=\left\{q_{x}: x \in X \wedge q_{x} \neq 0\right\}$ is uncountable. By the Δ-system Lemma (see [Ku], II.1.5), there is $B^{\prime} \subseteq B$ uncountable such that $\left\{\operatorname{supp}\left(q_{x}\right): q_{x} \in B^{\prime}\right\}$ forms a Δ-system with root r. Pick $\delta<\nu$ such that $r \subseteq \delta$.

Fix $\left\{q_{x_{\alpha}}: \alpha<\lambda\right\}$ an enumeration of B^{\prime}
Claim 2.3.21 There exists $p^{\prime} \leq p$ such that p° 。" $\left\{\alpha: q_{x_{\alpha}} \in \dot{G}\right\}$ is uncountable", where \dot{G} is the canonical P -name for the generic.

Proof. Otherwise, let

$$
C=\left\{\eta:\left(\exists p^{\prime} \leq p\right)\left(p^{\prime} \circ " \sup \left(\left\{\alpha: q_{x_{\alpha}} \in \dot{G}\right\}\right)=\eta "\right)\right\}
$$

Since \mathbf{P} is ccc, C is countable. Let $\eta=\max (C)$. So $\eta<\omega_{1}$. Now, $q_{x_{\eta+1}}{ }^{\circ}$ " $\eta+1 \in$ $\left\{\alpha: q_{x_{\alpha}} \in \dot{G}\right\} "$. Hence $q_{x_{n+1}}{ }^{\circ} " \sup \left(\left\{\alpha: q_{x_{\alpha}} \in \dot{G}\right\}\right)>\eta "$. A contradiction. This proves the claim.

Fix $p^{\prime} \leq p$ as in the claim. Suppose G_{β} is a P_{β}-generic filter with $p^{\prime} \in G_{\beta}$ for some $\beta, \delta \leq \beta<\nu$. The set $\left\{\alpha: q_{x_{\alpha}}{ }^{1} \beta \in G_{\beta}\right\}$ is uncountable. For otherwise we can extend G_{β} to a generic G for the whole iteration and then $V[G]^{2}\left\{\alpha: q_{x_{\alpha}} \in \dot{G}\right\}$ is countable.

Since $V\left[G_{\beta}\right]^{2} \neg(\exists Y \subseteq X)\left(|Y|=\aleph_{1} \wedge Y\right.$ is 0-homogeneous), we can find $x, y \in X$ such that $q_{x}{ }^{1} \beta, q_{y}{ }^{1} \beta \in G_{\beta}$ and either $\pi(x, y)=1$ or $\pi(y, x)=1$. But, since $r \subseteq \beta, q_{x}$ and q_{y} are compatible. So, we can find $q \leq q_{x}, q_{y}$ so that q° " $q_{x}, q_{y} \in \dot{G}$ and either $\pi(x, y)=1$ or $\pi(y, x)=1$ ". This proves the Lemma 2.3.20.

2.3.2 Suslin trees

Definition 2.3.22 A Suslin tree T is a tree T (i.e., a partial order $T=\left\langle T, \leq_{T}\right\rangle$ where for every $x \in T,\left\{y \in T: y<_{T} x\right\}$ is well-ordered by $\left.<_{T}\right)$ such that $|T|=\aleph_{1}$ and every chain and every antichain (i.e., every set of incomparable elements) of T are countable.

Without loss of generality, we can restrict ourselves to normal Suslin trees. A normal tree is a tree T such that $\mathrm{ht}(T)=\omega_{1}, T$ has a unique least point (the root), each level of T is at most countable, if $x \in T$ is not maximal in T, then there exist
infinite many $y>x$ at each higher level and, if $\beta<\omega_{1}$ is a limit ordinal, x, y belong to level β of T and $\{z \in T: z<x\}=\{z \in T: z<y\}$, then $x=y$.

It is a well-known fact that Martin's axiom implies that there are no Suslin trees (see [J2], 23.1, or [Ku], II.5.14). However,
Theorem 2.3.23 Suppose $\operatorname{Con}(Z F+\exists \kappa(\kappa$ is weakly-compact $)$). Then $\operatorname{Con}(Z F C+$ $M A($ Proj $)+\neg C H+$ There exists a Suslin tree).

Proof. Let κ be a weakly-compact cardinal. Using Theorem 2.3.18 we only need to show that: (1) there is a ccc extension V_{1} of $V_{0}=L[C]$, where C is any $\operatorname{Coll}(\omega,<\kappa)$-generic filter over L, and a normal Suslin tree $T \in V_{1}$, (2) there is a poset \mathbf{P}_{T} such that T is a Suslin tree iff \mathbf{P}_{T} is ccc, and (3) there exists a 2 -coloring π of T such that T is a Suslin tree iff there are no homogeneous uncountable subsets of T for π.

It is well-known that the Tennenbaum poset to add a generic Suslin tree is a ccc poset. (See [T] or [J2], Exercise 22.9). Moreover, S. Todorčević has showed that forcing with Cohen poset adds a Suslin tree (see [B2]).

Let $\mathbf{P}_{T}=\left\langle T, \geq_{T}\right\rangle$. Since T is a normal Suslin tree, \mathbf{P}_{T} is a ccc poset. On the other hand, suppose that T is a normal ω_{1}-tree and P_{T} is ccc. Then, since being an antichain of \mathbf{P}_{T} is the same as being an antichain of T, every antichain of T is countable. Moreover, if $B \subseteq T$ is a branch, then, since T is a normal tree, for every $x \in B$ there exists $y_{x} \in T$ such that $x<_{T} y_{x}$ and $y_{x} \notin B$. But, $\left\{y_{x}: x \in B\right\}$ is an antichain of T. Thus, T is a Suslin tree iff P_{T} is a ccc poset.

Let $\pi: T \times T \longrightarrow\{0,1\}$ be a 2 -coloring of T defined by:

$$
\pi(x, y)= \begin{cases}0, & \text { if } x £ y \text { and } y £ x \\ 1, & \text { otherwise }\end{cases}
$$

Then it is easy to see that $A \subseteq T$ is an antichain iff $\pi " A \times A=\{0\}$.
H. Woodin has remarked that the existence of a weakly-compact cardinal is not necessary in order to find a model of $Z F C+M A(\operatorname{Proj})+\neg C H+$ "There exists a Suslin tree": For every poset P and every model of $Z F C$, let V^{P} denote any P generic extension of V. Let $M A(\operatorname{Proj})^{L}$ denote the iteration in length ω_{2} for getting $M A(\operatorname{Proj})+2^{\aleph_{0}}=\aleph_{2}$ (see 2.2.14) as defined in L. Let P_{T} be the Jech's poset for adding a generic Suslin tree T with countable conditions ([J1], see also [J2], Theorem 48). We want to show that $L^{\mathrm{P}_{T} * M A(\text { Proj })^{L}}$ is a model of $M A($ Proj $)+2^{\aleph_{0}}=\aleph_{2}+$ "There exists a Suslin tree". First note that, since \mathbf{P}_{T}, is a σ-closed poset, it does not add new reals. So, in $L^{\mathrm{P}_{T}}, M A(\operatorname{Proj})^{L}=M A(\operatorname{Proj})^{L^{\mathrm{P}_{T}}}$, the iteration in length ω_{2} for getting $M A(\operatorname{Proj})+2^{\aleph_{0}}=\aleph_{2}$ defined in $L^{\mathrm{P}_{T}}$. Hence,

$$
L^{\mathrm{P}_{T} * M A(\text { Proj })^{L}}{ }_{2} M A(\text { Proj }) \wedge 2^{\aleph_{0}}=\aleph_{2} .
$$

Further, since $\mathbf{P}_{T} * T$ is also an σ-closed poset and a σ-closed poset cannot kill the countable chain condition of any poset, $M A(\operatorname{Proj})^{L}$ it is still a ccc poset in $L^{\mathrm{P}_{T^{*}}}$. So, by 2.3.16, $L^{\mathrm{P}_{T} * M A(\text { Proj })^{L}} 2$ " T is a ccc poset" and hence

$$
L^{\mathrm{P}_{T} * M A(\text { Proj })^{L}} 2 \text { " } T \text { is a Suslin tree". }
$$

2.3.3 Gaps in ω^{ω}

Definition 2.3.24 For $f, g \in \omega^{\omega}$, we let $f<^{*} g$ if for all but finitely many $n \in \omega$, $f(n)<g(n)$.

Suppose γ and δ are ordinals. $A(\gamma, \delta)$-pregap in $\left\langle\omega^{\omega},<^{*}\right\rangle$ is a sequence $\left\langle g_{\alpha}, f_{\beta}\right.$: $\alpha<\gamma, \beta<\delta\rangle$ such that for every $\alpha<\alpha^{\prime}<\gamma, \beta<\beta^{\prime}<\delta$ we have that $g_{\alpha}<^{*} g_{\alpha^{\prime}}<^{*}$ $f_{\beta^{\prime}}<{ }^{*} f_{\beta}$.

Further, $\left\langle g_{\alpha}, f_{\beta}: \alpha<\gamma, \beta<\delta\right\rangle$ is a (γ, δ)-gap in $\left\langle\omega^{\omega},<^{*}\right\rangle$ if for no $h \in \omega^{\omega}$ it is true that for all $\alpha<\gamma, \beta<\delta, g_{\alpha}<^{*} h<^{*} f_{\beta}$. We call such an h a split.

We shall mainly interested in $\left(\omega_{1}, \omega_{1}\right)$-gaps. Thus, henceforth, pregap and gap will mean $\left(\omega_{1}, \omega_{1}\right)$-pregap and $\left(\omega_{1}, \omega_{1}\right)$-gap, respectively. We need the following facts about pregaps and gaps in ω^{ω} that can be found in $[\mathrm{B}-\mathrm{W}]$ or in $[\mathrm{S}]$.
Definition 2.3.25 Given a pregap $G=\left\langle g_{\alpha}, f_{\alpha}: \alpha<\omega_{1}\right\rangle$, let $\mathrm{P}_{G} \subseteq \omega_{1}^{<\omega} \times \omega^{<\omega}$ the following poset:

- $\left\langle\alpha_{0}, \ldots, \alpha_{n, s}\right\rangle \in \mathbf{P}_{G}$ iff

$$
(\forall k \geq \operatorname{dom}(s))\left(\max \left\{g_{\alpha_{i}}(k): i \leq n\right\} \leq \min \left\{f_{\alpha_{i}}(k): i \leq n\right\}\right)
$$

- We let $\left\langle\alpha_{0}, \ldots, \alpha_{n,} s\right\rangle \leq\left\langle\beta_{0}, \ldots, \beta_{m}, t\right\rangle$ iff:

1. $\left\{\beta_{0}, \ldots, \beta_{m}\right\} \subseteq\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$
2. $t \subseteq s$
3. For all $k \in \operatorname{dom}(s) \backslash \operatorname{dom}(t)$,

$$
\max \left\{g_{\beta_{i}}(k): i \leq n\right\} \leq s(k) \leq \min \left\{f_{\beta_{i}}(k): i \leq n\right\}
$$

Fact 2.3.26 Forcing with P_{G} splits G. More precisely, if H is a P_{G}-generic filter, then $h=\bigcup\left\{s \in \omega^{<\omega}:\left(\exists \alpha_{0} \ldots \alpha_{n} \in \omega_{1}\right)\left(\left\langle\alpha_{0}, \ldots, \alpha_{n}, s\right\rangle \in H\right)\right\}$ splits G. Moreover, H can be recovered from h. Indeed, $\left\langle\alpha_{0}, \ldots, \alpha_{n}, s\right\rangle \in H$ iff

$$
s \subseteq h \wedge(\forall k \geq \operatorname{dom}(s))\left(\max \left\{g_{\alpha_{i}}(k): i \leq n\right\} \leq h(k) \leq \min \left\{f_{\alpha_{i}}(k): i \leq n\right\}\right)
$$

Definition 2.3.27 A gap G is strong if it cannot be split in any ccc forcing extension.
Lemma 2.3.28 (K. K unen) Assume that $G=\left\langle g_{\alpha}, f_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a pregap such that for every $\alpha<\omega_{1}, g_{\alpha} \leq f_{\alpha}$. i.e., for every $n \in \omega, g_{\alpha}(n) \leq f_{\alpha}(n)$. Further, suppose that if $\alpha \neq \beta$, then either $g_{\alpha} £ f_{\beta}$ or $g_{\beta} £ f_{\alpha}$. Then G is a strong gap.

Proof. First we will show that G is a gap. Suppose that h splits G. For every $\alpha<\omega_{1}$, let $\pi(\alpha)$ be the least $n \in \omega$ such that for every $k \geq n, g_{\alpha}(k) \leq h(k) \leq f_{\alpha}(k)$. Since π is a function from ω_{1} into ω, without loss of generality, we may assume that there exists $n_{0} \in \omega$ such that for all $\alpha<\omega_{1}, \pi(\alpha)=n_{0}$. Since there are only countable many ordered pairs $\left\langle g_{\alpha}{ }^{1} n_{0}, f_{\alpha}{ }^{1} n_{0}\right\rangle$, we also may assume, without loss of generality, that for every $\alpha, \beta<\omega_{1}, g_{\alpha}{ }^{1} n_{0}=g_{\beta}{ }^{1} n_{0}$ and $f_{\alpha}{ }^{1} n_{0}=f_{\beta}{ }^{1} n_{0}$. But then, since $\alpha \neq \beta$ implies $g_{\alpha} \leq f_{\beta}$ and $g_{\beta} \leq f_{\alpha}$, we get a contradiction. Therefore G is a gap.

It is clear, that, as long as G is not countable, this argument works. So, G is an strong gap.

Lemma 2.3.29 (H. Woodin) If G is a pregap, then \mathbf{P}_{G} is ccc iff G is not a strong gap.

Proof. (\Rightarrow) Clearly, if G is an strong gap, then P_{G} is not a ccc poset.
(\Leftarrow) Suppose that \mathbf{P}_{G} is not a ccc poset. Let $\left\{p_{\gamma}: \gamma<\omega_{1}\right\}$ be an uncountable antichain in P_{G}.

Let $p_{\gamma}=\left\langle\alpha_{0}^{\gamma}, \ldots, \alpha_{n}^{\gamma}, s\right\rangle$, where $n \in \omega$ and $s \in \omega^{<\omega}$ has been stabilized. However, since if $\gamma \neq \gamma^{\prime}, p_{\gamma}$ and $p_{\gamma^{\prime}}$ are incompatible, $\left\langle\alpha_{0}^{\gamma}, \ldots, \alpha_{n}^{\gamma}, \alpha_{0}^{\gamma^{\prime}}, \ldots, \alpha_{n}^{\gamma^{\prime}}, s\right\rangle$ is not a condition.

Therefore, given $\gamma \neq \gamma^{\prime}$, there exists $k \geq m=\operatorname{dom}(s)$, else $\max _{i \leq n}\left(g_{\alpha_{i}^{\gamma}}(k)\right) £$ $\min _{i \leq n}\left(f_{\alpha_{i}^{\gamma^{\prime}}}(k)\right)$ or $\max _{i \leq n}\left(g_{\alpha_{i}^{\gamma^{\prime}}}(k)\right) £ \min _{i \leq n}\left(f_{\alpha_{i}^{\gamma}}(k)\right)$.

We define, for every $\gamma<\omega_{1}, \bar{g}_{\gamma}, \bar{f}_{\gamma} \in \omega^{\omega}$ as follows:

$$
\begin{aligned}
& \bar{g}_{\gamma}(k)= \begin{cases}0, & \text { if } k<m \\
\max _{i \leq n} g_{\alpha_{i}^{\gamma}}(k), & \text { if } k \geq m\end{cases} \\
& \bar{f}_{\gamma}(k)= \begin{cases}0, & \text { if } k<m \\
\min _{i \leq n} f_{\alpha_{i}^{\gamma}}(k), & \text { if } k \geq m\end{cases}
\end{aligned}
$$

For every $\gamma<\omega_{1}$, let $\alpha_{\gamma}=\max \left\{\alpha_{0}^{\gamma}, \ldots, \alpha_{n}^{\gamma}\right\}$. So, modulo a finite set, $\bar{g}_{\gamma}=g_{\alpha_{\gamma}}$ and $\bar{f}_{\gamma}=f_{\alpha_{\gamma}}$.
$\left\{\alpha_{\gamma}: \gamma<\omega_{1}\right\}$ is a unbounded subset of ω_{1}. Otherwise $\left\{p_{\gamma}: \gamma<\omega_{1}\right\}$ will not be an uncountable antichain. Therefore, picking a subsequence of G, if necessary, we may assume that $\bar{G}=\left\langle\bar{g}_{\gamma}, \bar{f}_{\gamma}: \gamma\left\langle\omega_{1}\right\rangle\right.$ is a pregap that determines the same gap that G; i.e., h splits G iff h splits \bar{G}.

But, since $\gamma \neq \gamma^{\prime}$ implies either $\bar{g}_{\gamma} £ \bar{f}_{\gamma^{\prime}}$ or $\bar{g}_{\gamma^{\prime}} £ \bar{f}_{\gamma}$ and, for every $\gamma, \bar{g}_{\gamma} \leq \bar{f}_{\gamma}$, by Lema 2.3.28, \bar{G} is an strong gap. But then G is also a strong gap.

As an immediate corollary of 2.3.29, we have that Martin's Axiom (plus $\aleph_{1}<$ $\left.2^{\aleph_{0}}\right)$ implies that every gap is a strong gap.

Definition 2.3.30 Given a pregap $G=\left\langle g_{\alpha}, f_{\alpha}: \alpha<\omega_{1}\right\rangle$, let Q_{G} be the following poset:

- The conditions of \mathbf{Q}_{G} are finite sequences $\left\langle\left\langle\alpha_{0}, g_{\alpha_{0}}^{*}, f_{\alpha_{0}}^{*}\right\rangle, \ldots,\left\langle\alpha_{n}, g_{\alpha_{n}}^{*}, f_{\alpha_{n}}^{*}\right\rangle\right\rangle$ such that:

1. The α_{i} are ordinals $<\omega_{1}$.
2. For each $\alpha_{i}, g_{\alpha_{i}}^{*}, f_{\alpha_{i}}^{*} \in \omega^{<\omega}$ are perturbations of $g_{\alpha_{i}}$ and of $f_{\alpha_{i}}$, respectively, with the property that if one modifies $g_{\alpha_{i}}$ and $f_{\alpha_{i}}$ by $g_{\alpha_{i}}^{*}$ and $f_{\alpha_{i}}^{*}$ to get $g_{\alpha_{i}}^{\prime}$ and $f_{\alpha_{i}}^{\prime}$, then for all $i, j \leq n$, if $i \neq j, g_{\alpha_{i}}^{\prime} £ f_{\alpha_{j}}^{\prime}$ or $g_{\alpha_{j}}^{\prime} £ f_{\alpha_{i}}^{\prime}$ and for all $i \leq n, g_{\alpha_{i}}^{\prime} \leq f_{\alpha_{i}}^{\prime}$.

- The ordering of Q_{G} is the reversed inclusion.

Fact 2.3.31 Forcing with Q_{G} makes G into a strong gap, provided that ω_{1} is not collapsed.

Proof. Follows from Lemma 2.3.28.
Notice that if Q_{G} is ccc, then G is a gap. For otherwise, a split for G would exist in every generic extension of V, even in the Q_{G}-generic extension where G should be a strong gap. The converse is also true:

Lemma 2.3.32 If G is a pregap, then Q_{G} is ccc iff G is a gap.
Proof. (\Rightarrow) By the remark before the lemma.
(\Leftarrow) Suppose otherwise. Without loss of generality, we may fix an antichain $\left\{q_{\gamma}: \gamma<\omega_{1}\right\}$ such that for every $\gamma \neq \gamma^{\prime}$ the ordinals of q_{γ} do not appear in $q_{\gamma^{\prime}}$.

For every $\gamma<\omega_{1}$, let $G_{\gamma}, F_{\gamma} \in \omega^{\omega}$ be such that:

$$
\begin{aligned}
G_{\gamma}(k) & =\min _{i}\left(g_{\alpha_{1}^{\gamma}}^{\prime}(k)\right) \\
F_{\gamma}(k) & =\max _{i}\left(f_{\alpha_{i}^{\gamma}}^{\prime}(k)\right)
\end{aligned}
$$

where, for $G_{\gamma}(k)$, the minimum is taken over the $g_{\alpha_{i}^{\gamma}}^{\prime}$'s obtained from the $g_{\alpha_{i}^{\gamma}}^{*}$'s appearing in q_{γ}. We compute the $F_{\gamma}(k)$'s in a similar way.

Since, for $\gamma \neq \gamma^{\prime}$, the ordinals in q_{γ} do not belong to $q_{\gamma^{\prime}}$, the set $\left\{G_{\gamma}: \gamma<\omega_{1}\right\}$ is unbounded with $\left\{g_{\alpha}: \alpha<\omega_{1}\right\}$. The same is true for $\left\{F_{\gamma}: \gamma<\omega_{1}\right\}$ and $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$. Further, $G_{\gamma} \leq F_{\gamma^{\prime}}$ for $\gamma, \gamma^{\prime}<\omega_{1}$. This follows from incompatibility of q_{γ} and $q_{\gamma^{\prime}}$ for different γ, γ^{\prime}. i.e., $q_{\gamma} \cup q_{\gamma^{\prime}}$ is not a condition.

Define $H \in \omega^{\omega}$ as $H(k)=\min \left\{F_{\gamma}(k): \gamma<\omega_{1}\right\}$. Therefore, for every $\gamma<\omega_{1}$, $G_{\gamma} \leq H \leq F_{\gamma}$. But this implies that H splits G. A contradiction with the fact that G is a gap.

Theorem 2.3.33 Suppose Con $(Z F+\exists \kappa(\kappa$ is weakly-compact $)$). Then Con $(Z F C+$ $M A($ Proj $)+\neg C H+$ There exists a non-strong gap).

Proof. Let κ be a weakly-compact cardinal. By Theorem 2.3 .18 we only need to show that: (1) there is a ccc extension V_{1} of $V_{0}=L[C]$, where C is any $\operatorname{Coll}(\omega,<\kappa)$-generic filter over L, and a non-strong gap $G \in V_{1}$, (2) there are posets $\mathrm{P}_{1}^{G}, \ldots, \mathrm{P}_{n}^{G}$ such that G is a non-strong gap iff $\mathrm{P}_{1}^{G}, \ldots, \mathrm{P}_{n}^{G}$ are ccc and, finally, (3) there are 2 -colorings of an uncountable set such that G is a non-strong gap iff there do not exist 0 -homogeneous sets for the 2-colorings.

S . Todorčević has showed that forcing with the Cohen poset adds a generic non-strong gap (see [S], 49, see also [S], 35 and 48).

Clearly, by 2.3.29 and 2.3.32, a gap G is a non-strong gap iff both \mathbf{P}_{G} and \mathbf{Q}_{G} are ccc posets.

Finally, let $\pi_{\mathrm{P}_{G}}: \omega_{1} \times \omega_{1} \longrightarrow\{0,1\}$ and $\pi_{\mathrm{Q}_{G}}: \omega_{1}^{<\omega} \times \omega_{1}^{<\omega} \longrightarrow\{0,1\}$ be 2-colorings defined by:

$$
\pi_{\mathbf{P}_{G}}(\alpha, \beta)= \begin{cases}0, & \text { if } \alpha=\beta \text { or } g_{\alpha} £ f_{\beta} \text { or } g_{\beta} £ f_{\alpha} \\ 1, & \text { otherwise }\end{cases}
$$

and

$$
\pi_{Q_{G}}(\bar{\alpha}, \bar{\beta})= \begin{cases}0, & \text { if }(\exists i \leq n)(\exists j \leq m)\left(\alpha_{i} \neq \beta_{j} \wedge g_{\alpha_{i}}^{\prime} \leq f_{\beta_{j}}^{\prime} \wedge g_{\beta_{j}}^{\prime} \leq f_{\alpha_{i}}^{\prime}\right) \\ 1, & \text { otherwise }\end{cases}
$$

where $\bar{\alpha}=\left\langle\alpha_{0}, \ldots, \alpha_{n}\right\rangle$ and $\bar{\beta}=\left\langle\beta_{0}, \ldots, \beta_{m}\right\rangle$. It is easy to see, that if X is an uncountable subset of ω_{1} such that $\pi_{\mathrm{P}_{G}} " X \times X=\{0\}$, then $\left\langle g_{\alpha}, f_{\alpha}: \alpha \in X\right\rangle$ is a subgap of G (i.e., a subsequence of G that is also a gap) that is a strong gap. Thus G is also a strong gap. On the other hand, if Y is an uncountable subset of $\omega_{1}^{<\omega}$ such that $\pi_{Q_{G}} " Y \times Y=\{0\}$, then Y is an uncountable antichain of Q_{G}. So, by 2.3.32, the pregap G is not a gap.

2.3.4 Entangled sets of reals

In [A-Sh], S. Shelah defined the notion of entangled set of reals:
Definition 2.3.34 Let κ be an uncountable cardinal. A set of reals E is κ-entangled if $|E|=\kappa$ and for every $n \in \omega$ and every $s \in 2^{n}$, in every uncountable family $F \subseteq E^{n}$ of increasing (under the usual ordering of the reals) and pairwise disjoint n-tuples we can find two $x, y \in F$ such that $(\forall i<n)\left(x_{i}<y_{i} \rightarrow s(i)=0\right)$. Let $x(s) y$ abbreviate the preceding formula.

We are mainly interested in \aleph_{1}-entangled sets. So, henceforth, entangled will mean \aleph_{1}-entangled.
U. Abraham and S. Shelah have showed that if E is a set of \aleph_{1} Cohen reals, then E is entangled, that $C H$ implies that there exists an entangled set of reals and that $M A$ implies that there are no entangled sets ([A-Sh]). And S. Todorčević has showed that in all Cohen generic extensions there exists an entangled set of reals (see [Be]).

Theorem 2.3.35 Suppose $\operatorname{Con}(Z F+\exists \kappa(\kappa$ is weakly-compact $))$. Then $\operatorname{Con}(Z F C+$ $M A($ Proj $)+\neg C H+$ There exists an entangled set of reals)

Proof. We have already remarked that adding a Cohen real to $V_{0}=L[C]$, where C is a Coll $(\omega,<\kappa)$-generic filter over L, produces an entangled set of reals. Thus, by Theorem 2.3.18, we only need to show that: (1) for every entangled set E there is a poset P_{E} such that E is an entangled set iff P_{E} is ccc, and (2) there are 2 -colorings such that E is an entangled set iff there are no 0 -homogeneous sets for these 2-colorings.

Definition 2.3.36 Let E be a set of reals of cardinality \aleph_{1}, let $n \in \omega, s \in 2^{n}$ and $F \subseteq E^{n}$ a set of increasing and pairwise disjoint n-tuples. Then \mathbf{Q}_{F}^{s} is the following poset:

- $p \in \mathbf{Q}_{F}^{s}$ iff p is a finite subset of F such that for all distinct $x, y \in p$, either $x(s) y$ or $y(s) x$
- $p \leq q$ iff $q \subseteq p$.

Let \mathbf{P}_{E} be the product with finite support of all $\mathbf{Q}_{F}^{s}, s \in 2^{n}, n \in \omega$, ordered coordinate-wise.

For (1) we show:

Lemma 2.3.37 P_{E} is ccc iff E is entangled.
Proof. (\Rightarrow) Suppose that E is not entangled. We need the following claim from [B2]:

Claim 2.3.38 E is entangled iff for every $n \in \omega$, every $s \in 2^{n}$ and every uncountable set $F \subseteq E^{n}$ of increasing and pairwise disjoint n-tuples, Q_{F}^{s} is ccc.

Proof. (\Rightarrow) Let $n \in \omega, F \subseteq E^{n}$ uncountable and $s \in 2^{n}$. Let $\left\{p_{\alpha}: \alpha<\omega_{1}\right\}$ be a uncountable subset of \mathbf{Q}_{F}^{s}. We may assume that all p_{α} 's have the same size m. For every $\alpha<\omega_{1}$, we fix an ordering $\left\langle p_{\alpha}(i): i<m\right\rangle$ of p_{α}. Let D be a countable dense subset of E. Every p_{α} can be separated by a sequence of $n \cdot m$ of pairwise disjoint open intervals with endpoints in D. Therefore, we may assume that the sequence that separates the p_{α} is the same for every $\alpha<\omega_{1}$. Suppose now that $\alpha, \beta<\omega_{1}$, $i, j<m$ and $i \neq j$. If $p_{\alpha}(i)(s) p_{\alpha}(j)$, then $p_{\alpha}(i)(s) p_{\beta}(j)$. In a similar way, if $p_{\alpha}(j)(s) p_{\alpha}(i)$, then $p_{\beta}(j)(s) p_{\beta}(i)$, and so $p_{\beta}(j)(s) p_{\alpha}(i)$. Hence, we may assume, without loss of generality, that for every $\alpha, \beta<\omega_{1}$ and every $i, j<m$, if $i \neq j$, then else $p_{\alpha}(i)(s) p_{\beta}(j)$ or $p_{\beta}(j)(s) p_{\alpha}(i)$. Now, consider every p_{α} as element of $E^{n \cdot m}$ and let s^{\prime} the concatenation of n copies of s. Since E is an entangled set, we may find $\alpha, \beta<\omega_{1}$ such that $\alpha \neq \beta$ and $p_{\alpha}\left(s^{\prime}\right) p_{\beta}$. i.e., for every $i<m, p_{\alpha}(i)(s) p_{\beta}(i)$.
(\Leftrightarrow) Suppose that E is not entangled. Let $n \in \omega, s \in 2^{n}$ and $F \subseteq E^{n}$ be a counterexample to the entangledness of E. Let $A=\{\{x\}: x \in F\}$. Clearly, $A \subseteq \mathrm{Q}_{F}^{s}$ is a set of pairwise incompatible conditions.

We continue with the proof of Lemma 2.3.37. From 2.3.38 follows that at least one of the factors of \mathbf{P}_{E} is not ccc. Hence, \mathbf{P}_{E} is not ccc.
(\Leftarrow) Suppose that E is an entangled set of reals. Then, by 2.3 .38 , we know that for every $n \in \omega$, every $s \in 2^{n}$ and every uncountable subset F of increasing and pairwise disjoint n-tuples in $E^{n}, \mathrm{Q}_{F}^{s}$ is ccc. Since we are dealing with a product of ccc posets with finite support, we only need to show that the product of a finite, in fact of two, of these posets is ccc. For this we need the following:

Claim 2.3.39 There is a dense embedding from $\mathbf{Q}_{F}^{s} \times \mathbf{Q}_{F^{\prime}}^{s^{\prime}}$ into $\mathbf{Q}_{F \neg F^{\prime} s s^{\prime}}$, where $F^{\wedge} F^{\prime}=$ $\left\{x \frown x^{\prime}: x \in F \wedge x^{\prime} \in F^{\prime}\right\}$.

Proof. Define $h: \mathbf{Q}_{F}^{s} \times \mathbf{Q}_{F^{\prime}}^{s^{\prime}} \longrightarrow \mathbf{Q}_{F}^{s-s^{\prime}}$, as follows: for every $p \in \mathbf{Q}_{F}^{s}$ and $q \in \mathbf{Q}_{F^{\prime}}^{s^{\prime}}, h(\langle p, q\rangle)=p^{\complement} q$, where $p^{\complement} q=\left\{x \frown x^{\prime}: x \in p \wedge x^{\prime} \in q\right\}$. h is a dense embedding.

So, if $A \subseteq \mathbf{Q}_{F}^{s} \times \mathbf{Q}_{F^{\prime}}^{s^{\prime}}$, is an antichain, so is $\{h(\langle p, q\rangle):\langle p, q\rangle \in A\}$ in $\mathbf{Q}_{F-F^{\prime}}^{s-s^{\prime}}$. But, since E is an entangled set, by $2.3 .38, \mathrm{Q}_{F-F^{\prime}}^{s-s^{\prime}}$ is a ccc poset. Therefore, $\mathrm{Q}_{F}^{s} \times \mathrm{Q}_{F^{\prime}}^{s^{\prime}}$ is ccc. This ends the proof of Lemma 2.3.37.

Continuing with the proof of Theorem 2.3.35, we define for every $n \in \omega$ and every $s \in 2^{n}$ a 2 -coloring $\pi_{s}: E^{n} \times E^{n} \longrightarrow\{0,1\}$ by:

$$
\pi_{s}(x, y)= \begin{cases}0, & \text { if } \neg x(s) y \text { and } \neg y(s) x \\ 1, & \text { otherwise }\end{cases}
$$

Then, E is an entangled set of reals iff there is no $n \in \omega, s \in 2^{n}$ and an uncountable set $F \subseteq E^{n}$ of increasing and pairwise disjoint n-tuples such that $\pi " F \times F=\{0\}$.

2.3.5 $\left(\exists \kappa<2^{\aleph_{0}}\right)\left(2^{\aleph_{0}}<2^{\kappa}\right)$

Theorem 2.3.40 Suppose that V satisfies $C H$ plus $2^{\aleph_{1}}=\aleph_{3}$. Then there exists a poset $\mathrm{P} \in V$ such that whenever G is a generic filter over V, then

$$
V[G]^{2} 2^{\aleph_{0}}=\aleph_{2} \wedge M A(\text { Proj }) \wedge \aleph_{3} \leq 2^{\aleph_{1}} .
$$

Proof. Let \mathbf{P} be the direct limit of the iteration $\left\langle\mathbf{P}_{\alpha}, \dot{\mathbf{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ with finite support of projective and ccc posets as in Theorem 2.2.14. Let G be a generic filter over V. Since \mathbf{P} is ccc, it preserves cardinalities, and thus,

$$
V[G]^{2} \aleph_{3} \leq 2^{\aleph_{1}}
$$

It only remains to check that in $V[G]$, we have $M A(\operatorname{Proj})$ and $2^{\aleph_{0}}=\aleph_{2}$. Since in V, \aleph_{2} is not a successor of a cardinal with cofinality ω, it only remains to see that for every $\alpha<\omega_{2},{ }^{\circ}{ }_{\alpha}$ " $2^{\aleph_{0}}<\aleph_{2}$ ". We can show by induction on ω_{2} that for every $\alpha,\left|\mathbf{P}_{\alpha}\right| \leq \aleph_{1}$. Thus, for every $\alpha<\omega_{2}$, there are at most $\aleph_{1}^{\aleph_{0}}=\aleph_{1}$ many simple P_{α}-names for reals. Hence, for every $\alpha<\omega_{2},{ }^{\circ}{ }_{\alpha}$ " $2^{\aleph_{0}}=\aleph_{1}$ ".
$\underline{\alpha=0}$: Obvious, since P_{0} is the trivial poset.
$\frac{\alpha+1}{}$: Since, by inductive hypothesis, $\left|\mathrm{P}_{\alpha}\right| \leq \aleph_{1}$, we have ${ }^{\circ}{ }_{\alpha}$ " $2^{\aleph_{0}}=\aleph_{1}$ ". So, since ${ }^{\circ}{ }_{\alpha}$ " $\dot{\mathrm{Q}}_{\alpha}$ is a projective ccc poset", ${ }^{\circ}{ }_{\alpha} "\left|\dot{\mathrm{Q}}_{\alpha}\right| \leq \aleph_{1}$ ". Hence $\left|\mathrm{P}_{\alpha+1}\right|=\left|\mathrm{P}_{\alpha} * \dot{\mathrm{Q}}_{\alpha}\right| \leq$ \aleph_{1}.
$\underline{\alpha}$ limit: Since we are working with an iteration with finite support and \aleph_{1} is a regular cardinal, $\left|\mathbf{P}_{\alpha}\right|=\left|\bigcup_{\beta<\alpha} \mathrm{P}_{\beta}\right|=\sum_{\beta<\alpha}\left|\mathrm{P}_{\beta}\right| \leq \sum_{\beta<\alpha} \aleph_{1}=\aleph_{1}$.
Corollary 2.3.41 Suppose Con $(Z F)$. Then Con $(Z F C+M A(P r o j)+\neg C H+(\exists \kappa<$ $\left.\left.2^{\aleph_{0}}\right)\left(2^{\aleph_{0}}<2^{\kappa}\right)\right)$.
Definition 2.3.42 A poset \mathbf{P} is σ-centered iff there exist a family $\left\{P_{n}: n \in \omega\right\}$ such that $\mathbf{P}=\bigcup_{n \in \omega} P_{n}$ and for every finite collection $\left\{p_{0}, \ldots, p_{k}\right\} \subseteq P_{n}$, some $n \in \omega$, there exists $p \in \mathbf{P}$ such that $p \leq_{P} p_{0}, \ldots, p_{k}$.

Note that every σ-centered poset is ccc.
Definition 2.3.43 Martin's Axiom for σ-centered posets is $M A(\Gamma)$ for Γ the class of σ-centered posets. We denote it by MA (σ-centered).

Since every σ-centered poset is a ccc poset, $M A$ implies $M A$ (σ-centered). Since $M A(\sigma$-centered $)$ implies $\left(\forall \kappa<2^{\aleph_{0}}\right)\left(2^{\kappa}=2^{\aleph_{0}}\right)$, from above theorem we also obtain the following corollary:
Corollary 2.3.44 If Con $(Z F)$, then $\operatorname{Con}(Z F C+M A($ Proj $)+\neg C H+\neg M A(\sigma-$ centered)).
Definition 2.3.45 A Q set is an uncountable set of reals such that every subset of it is a relative F_{σ} (i.e., \sum_{\sim}^{0}).
Corollary 2.3.46 If Con $(Z F)$, then $\operatorname{Con}(Z F C+M A($ Proj $)+\neg C H+$ No set of reals is Q set).

Proof. Since $2^{\aleph_{0}}<2^{\aleph_{1}}$ implies that there are no Q sets (see [Ha]).

2.3.6 Final remarks and open questions

1. Let $M A$ (Indestructible-ccc) be Martin's Axiom restricted to indestructible-ccc posets (see Definition 2.3.13). Notice that $M A$ (Indestructible-ccc) does not imply $M A$ (co-Suslin): Let T be a Suslin tree on the reals in L. Let $L[H]$ be a generic extension of L for an iteration of length ω_{2} with finite support of posets such that for every $\alpha<\omega_{2}$,

$$
{ }^{\circ}{ }_{\alpha} \text { " } \dot{Q}_{\alpha} \text { is indestructible-ccc" }
$$

Then, $L[H]^{2}$ " $M A\left(\right.$ Indestructible-ccc) $\wedge 2^{\aleph_{0}}=\aleph_{2}$ ". Moreover, since we have forced only with indestructible-ccc posets, T remains a Suslin tree in $L[H]$. Since $\omega_{1}^{L[H]}=\omega_{1}^{L}$ and $L[H]^{2} M A_{\aleph_{1}}(\sigma$-centered), by an argument of A. Martin and R. Solovay $([\mathrm{M}-\mathrm{So}]), T$ and every set of \aleph_{1} reals is a \prod_{1}^{1} set. But, P_{T}, the ccc poset that adds a unbounded branch to T defined in Theorem 2.3.23, has the same complexity as T. So, $L[H]^{2 /} M A$ (co-Suslin).
2. Since \sum_{1}^{1} ccc posets are indestructible-ccc, (see [Ju-Sh1] or [B1] 1.1.1.20), from (1) it follows that $M A$ (Suslin) does not imply $M A$ (co-Suslin). Since $M A\left(\Delta_{2}^{1}\right)$ implies $M A$ (co-Suslin) and $M A$ (Suslin) implies $M A$ (Borel), $M A$ (Suslin) does not imply $M A(\underset{\sim}{2})$ and $M A$ (Borel) does not imply $M A$ (co-Suslin). Is it still an open question whether $M A\left(\sum_{n}^{1}\right)$ implies $M A\left(\prod_{n}^{1}\right)$, for $n>1$. It is also open whether $M A$ (Borel) implies $M \widetilde{A}$ (Suslin) and whether $M A$ (co-Suslin) implies $M A\left(\Delta_{2}^{1}\right)$.
3. Is the assumption of (the consistency of) the existence of a weakly-compact cardinal necessary to obtain the consistency results of 2.3.33 and of 2.3.35?
4. Let $M A(L(\mathrm{R}))$ be Martin's Axiom restricted to ccc posets, with reals as conditions, that belong to $L(\mathrm{R})$. Clearly, $M A$ implies $M A(L(\mathrm{R}))$ and $M A(L(\mathrm{R}))$ implies $M A($ Proj $)$. Can these implications be reversed?
5. Let P be a poset. We say that P is a proper poset iff it preserves stationary subsets of $[\lambda]^{\omega}=\{X \subseteq \lambda:|X|=\omega\}$, for all regular cardinal λ. Clearly, every ccc poset is proper. Let PFA (Proj) be the Proper Forcing Axiom restricted to projective posets. Is $P F A($ Proj $)$ weaker than $P F A$? What is its exact consistency strength?

Chapter 3

GENERIC ABSOLUTENESS FOR PROJECTIVE CCC FORCING

3.1 Solovay models

If κ is an inaccessible cardinal in some model V, then a Solovay model over V is the $L(\mathbf{R})$ of a model M resulting from collapsing κ to ω_{1} over V using the Levy-collapse. Thus, if $L(\mathrm{R})^{M}$ is a Solovay model over V, then M has the following properties:

1. For every $x \in \mathbf{R}, \omega_{1}$ is an inaccessible cardinal in $V[x]$.
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Lemma 3.1.1 (H. Woodin) Suppose that M satisfies

1. For every $x \in \mathbf{R}, \omega_{1}$ is an inaccessible cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset

Then there exists a forcing notion W such that does not add reals and creates a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over V such that M and $V[C]$ have the same reals. Thus, W forces that $L(\mathrm{R})^{M}$ is a Solovay model over V.

Proof. We define the Woodin pseudo-collapse W as follows:

- $g \in \mathrm{~W}$ iff there exists $\alpha<\omega_{1}$ such that $g \subseteq \operatorname{Coll}(\omega, \leq \alpha)$ is a generic filter over V.
- $g \leq h$ iff $h \subseteq g$.

By (1), for every $g \in \mathbf{W}, \omega_{1}$ is an inaccessible cardinal in $V[g]$ and, hence, for every $\alpha<\omega_{1}$ there are only countably many antichains of $\operatorname{Coll}(\omega, \leq \alpha)$ in $V[g]$. Therefore, for every $\alpha<\omega_{1}, D_{\alpha}=\{g \in \mathrm{~W}: g \cap \operatorname{Coll}(\omega, \leq \alpha)$ is generic over $V\}$ is a dense subset of W.

Since every $g \in \mathrm{~W}$ is a countable set in $L(\mathbf{R})$, given any real x, we can code x and g into a single real y. By (2), $V[y]$ is a generic extension by some countable poset in V. Hence, we can find $\alpha<\omega_{1}$ and a generic filter $h \subseteq \operatorname{Coll}(\omega, \leq \alpha)$ such that $y \in V[h]$. But then, $h \leq g$ and $x \in V[h]$. Therefore, for every real x, $E_{x}=\{g \in \mathbf{W}: x \in V[g]\}$ is a dense subset of \mathbf{W}.

Suppose that H is a W -generic filter over M and let $C=\bigcup H$.

Clearly, $C \subseteq \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a filter. Since $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a ω_{1}-cc poset, if $A \in V$ is a maximal antichain of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$, then $|A|<\omega_{1}$ and hence for some $\alpha<\omega_{1}, A \subseteq \operatorname{Coll}(\omega, \leq \alpha)$. But, then, by density of $D_{\alpha}, C \cap A \neq \emptyset$. So, C is a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter over V.

Notice that if $x \in \mathrm{R} \cap V[C]$, then $x \in V[g]$, for some $g \in H$. So $x \in M$. And if $x \in \mathrm{R} \cap M$, then, by density of $E_{x}, x \in V[g]$ for some $g \in H$. So $x \in V[C]$. This shows that M and $V[C]$ have the same reals, hence the same $L(\mathrm{R})$.

Finally, we show that W does not add any new ω-sequences, hence no new reals. Suppose $f: \omega \rightarrow M$ is such that $f \in M[H]$. We may assume that for some $B \in M, f: \omega \rightarrow B$. Let \dot{f} be a W -name for f. For every $n \in \omega$, let $g_{n} \in H$ be such that $g_{n}{ }^{\circ} \mathrm{w}$ " $\dot{f}(\check{n})=(\check{f}(n))$. Since $\left\{g_{n}: n \in \omega\right\} \subseteq H$ and H is a filter, $\left\{g_{n}: n \in \omega\right\}$ is a chain. Let α the least ordinal such that $\bigcup_{n \in \omega} g_{n} \subseteq \operatorname{Coll}(\omega, \leq \alpha)$. Since ω_{1} is regular, $\alpha<\omega_{1}$. So, $H \cap D_{\alpha} \neq \emptyset$. Let $g \in H \cap D_{\alpha}$. Then, for every $n \in \omega, g \leq g_{n}$ and hence

$$
f=\left\{\langle n, x\rangle \in \omega \times B: g^{\circ} \mathrm{w} \dot{f}(\check{n})=\check{x}\right\} .
$$

So $f \in M$.
Corollary 3.1.2 If M is countable, then $L(\mathrm{R})^{M}$ is a Solovay model over V iff M satisfies

1. For every $x \in \mathbf{R}, \omega_{1}$ is an inaccessible cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Remark 3.1.3 If M satisfies

1. For every $x \in \mathrm{R}, \omega_{1}$ is an inaccessible cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset, then $L(\mathrm{R})^{M}$ satisfies every sentence with reals x and ordinals as parameters that has Boolean-value 1, as computed in $V[x]$, in r.o. $\left(\operatorname{Coll}\left(\omega,<\omega_{1}^{M}\right)\right)$. Hence, by [So], every set of reals in $L(\mathbb{R})^{M}$ is measurable, has the Baire property, etc.

In view of Lemma 3.1.1, we will call a Solovay model any model satisfying (1) and (2) above. So, we re-define:

Definition 3.1.4 $L(\mathrm{R})^{M}$ is a Solovay model over V iff

1. For every $x \in \mathbf{R}, \omega_{1}$ is an inaccessible cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

We can see that " $L(\mathrm{R})$ is a Solovay model over L " is Π_{4}^{1} sentence:
Fact 3.1.5 [B-W] There exists $a \Pi_{4}^{1}$ sentence σ such that $L(\mathbf{R})^{2} \sigma$ iff $L(\mathbf{R})$ is a Solovay model over L.

Proof. We may rewrite (1) and (2) of Definition 3.1.4 as projective sentences. Namely:

1'. $\forall x y\left(y \in W O \rightarrow(\exists z \in W O)\left(\|y\|<\|z\| \wedge L[x]^{2}\right.\right.$ " $\|z\|$ is a cardinal" $\left.)\right)$.
2'. $\forall x \exists y(y$ codes a poset $P \wedge x$ is P-generic over $L)$.
where $W O$ is the Π_{1}^{1} set of all $x \in \omega^{\omega}$ which code a well-ordering of ω and for every $x \in W O,\|x\|$ is the order type of the well-ordering coded by x (see [J2] 40.2). So, since " $L[x]^{2}\|z\|$ is a cardinal" is a $\Pi_{2}^{1}(x, z)$ and " y codes a poset $P \wedge x$ is P-generic over $L^{\prime \prime}$ is $\Pi_{2}^{1}(x, y),\left(1^{\prime}\right)$ and (2^{\prime}) are Π_{4}^{1}.

Lemma 3.1.6 Suppose that $L(\mathrm{R})^{M}$ and $L(\mathrm{R})^{N}$ are Solovay models over V such that $\mathbf{R}^{M} \subseteq \mathbf{R}^{N}$ and $\omega_{1}^{M}=\omega_{1}^{N}$. Then there is an elementary embedding $j: L(\mathbb{R})^{M} \rightarrow$ $L(\mathrm{R})^{N}$ which is the identity on the reals and the ordinals.

Proof. Notice that if such an embedding exists, then it is unique and must be defined by:

$$
j(A)=\left\{x \in L(\mathrm{R})^{N}: L(\mathrm{R})^{N} 2 \varphi(x, \alpha, a)\right\},
$$

where φ is some formula with parameters an ordinal α and a real a, that defines A in $L(\mathbf{R})^{M}$.

In order to prove that j is well-defined and is an elementary embedding, we only need to show that for every formula $\varphi\left(x_{1}, x_{2}\right)$, every ordinal α and every real $a \in M$,

$$
L(\mathrm{R})^{M} 2 \varphi(\alpha, a) \text { iff } L(\mathrm{R})^{N} 2 \varphi(\alpha, a) .
$$

Notice that $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M}=\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{N}$. Let \dot{H} and \dot{H}^{*} be W -terms for $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M}$-generic filters over $V[a]$ such that, with W -value $1, \mathrm{R}^{M}$ is the set of reals of $V[a][\dot{H}]$ and \mathbf{R}^{N} is the set of reals of $V[a]\left[\dot{H}^{*}\right]$. Then, the following equivalences have all W -value 1 in M :

$$
L(\mathrm{R})^{2} \varphi(\alpha, a) \text { iff } V[a][\dot{H}]^{2} \varphi(\alpha, a)^{L(\mathrm{R})} \text { iff } V[a]^{2}{ }^{\circ}{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M}} \varphi(\check{\alpha}, \check{a})^{L(\mathrm{R})} "
$$

(the last one, by almost-homogeneity of the Levy-collapse).
And the following equivalences have all W -value 1 in N :

$$
L(\mathrm{R})^{2} \varphi(\alpha, a) \text { iff } V[a]\left[\dot{H}^{*}\right]^{2} \varphi(\alpha, a)^{L(\mathrm{R})} \text { iff } V[a]^{2}{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{N}} \varphi(\check{\alpha}, \check{a})^{L(\mathrm{R})} "
$$

Hence,

$$
L(\mathrm{R})^{M} 2 \varphi(\alpha, a) \text { iff } L(\mathrm{R})^{N} 2 \varphi(\alpha, a) .
$$

We are interested in the absoluteness properties of generic extensions of Solovay models under ccc forcing notions.

Definition 3.1.7 Let V be a model of $Z F C$. Let $\mathrm{P} \in V$ a forcing notion and let φ be a formula (with parameters in V). V is φ-absolute for P iff for every P -generic filter G over V,

$$
V^{2} \varphi \text { iff } V[G]^{2} \varphi
$$

Let Σ be a set of formulas. V is Σ-absolute for \mathbf{P} iff for every $\varphi \in \Sigma, V$ is φ-absolute for P . Let Γ be a class of posets. V is Σ-absolute for Γ iff for every $\mathrm{P} \in \Gamma, V$ is Σ-absolute for P . (Compare with Definition 2.3.8)

Let \mathbf{P} be a forcing notion in V, and $\dot{\mathbf{Q}}$ a \mathbf{P}-name for a forcing notion. V is two-step φ-absolute for P and $\dot{\mathrm{Q}}$ if for every P -generic filter G over V and every $\dot{\mathbf{Q}}[G]$-generic filter H over $V[G]$,

$$
V[G]^{2} \varphi \text { iff } V[G][H]^{2} \varphi
$$

(Note that in two-step absoluteness φ may have parameters in $V[G]$, not just in V). Let Σ be a set of formulas, we define V is two-step Σ-absolute for P and $\dot{\mathrm{Q}}$ in the obvious way. Let Γ be a class of posets. V is two-step Σ-absolute for Γ iff for every $\mathrm{P} \in \Gamma$ and every P -name $\dot{\mathrm{Q}}$ for a forcing notion such that ${ }^{\circ}{ }_{P}$ " $\dot{\mathrm{Q}} \in \dot{\Gamma}$ ", Σ is absolute for P and $\dot{\mathrm{Q}}$.
V is $L(\mathbf{R})$-absolute for \mathbf{P} iff for every \mathbf{P}-generic filter G over V there exists an elementary embedding

$$
j: L(\mathrm{R}) \rightarrow L(\mathrm{R})^{V[G]}
$$

that fixes all the ordinals (hence all the reals). For Γ a class of posets, V is $L(\mathrm{R})$ absolute for Γ iff for every $\mathrm{P} \in \Gamma, V$ is $L(\mathrm{R})$-absolute for P .
V is $L(\mathrm{R})$-two-step absolute for \mathbf{P} and $\dot{\mathbf{Q}}$ iff for every \mathbf{P}-generic filter G over V and every $\dot{\mathrm{Q}}[G]$-generic filter H over $V[G]$, there exists an elementary embedding

$$
j: L(\mathrm{R})^{V[G]} \rightarrow L(\mathrm{R})^{V[G][H]}
$$

that fixes all the ordinals (hence all the reals). Let Γ be a class of posets, we define V is $L(\mathrm{R})$-two-step absolute for Γ similarly as above.

Since we are interested mainly in the absoluteness of projective formulas, henceforth, with " V is absolute" and with " V is two-step absolute" we will mean that V is Σ-absolute or, respectively, that V is two step Σ-absolute where Σ is the set of projective formulas.

We next observe that for some classes of posets, absoluteness implies two-step absoluteness.

Lemma 3.1.8 Let V be a transitive model of $Z F C$ and let $\varphi(x)$ be a $\Sigma_{k}^{1}\left(\Pi_{k}^{1}\right)$ formula. Then there are projective sentences σ_{0} and σ_{1} such that

1. $V^{2} \sigma_{0}$ iff V is φ-absolute for Borel ccc posets.
2. $V^{2} \sigma_{1}$ iff V is φ-absolute for Suslin ccc posets.

Proof. Suppose that V is a transitive model of $Z F C$ and let $\varphi(x)$ be a Σ_{k}^{1} $\left(\Pi_{k}^{1}\right)$ formula. Note that for every ccc poset $\mathbf{P} \in V$, identifying every real $a \in \mathbf{R} \cap V$ with its canonical P -name in V, V is φ-absolute for P iff

$$
V^{2} \forall x\left(\left(^{\circ} \mathrm{P} \varphi(x)\right) \leftrightarrow \varphi(x)\right) .
$$

So, V is φ-absolute for Borel ccc posets iff

$$
V^{2} \forall x \forall y\left(y \text { is a Borel ccc poset } \rightarrow\left(\left({ }^{\circ}{ }_{y} \varphi(x)\right) \leftrightarrow \varphi(x)\right)\right) \text {. }
$$

Since φ is a projective formula, we only need to show that " y is a Borel ccc poset" and " ${ }^{\circ}{ }_{y} \varphi(x)$ " are expressible with projective formulas.

Note that, using the Π_{1}^{1} set of codes of Borel subsets of the real plane (see [J2], 42.1), we can code every Borel poset with a real in a such a way that, as in Fact 2.1.8, " y codes a Borel poset" is a Π_{1}^{1} predicate on the reals. Moreover,

Claim 3.1.9 Let \mathbf{P} be a Suslin poset. Then, the following are equivalent:

1. \mathbf{P} is $c c c$.
2. For every transitive well-founded model M of $Z F$ with $\mathrm{P} \in M, M^{2} \mathrm{P}$ is ccc.
3. There exists a transitive well-founded model M of $Z F$ with $\mathrm{P} \in M$ such that $M^{2} \mathbf{P}$ is $c c c$.

Proof. See [Ju-Sh1]. See also [B1], 1.1.1.17.

Then, y is codes a Borel ccc poset iff
(a) y is a code of a Borel poset P and
(b) P is ccc.

But (a) is a Π_{1}^{1} predicate on y and, as in Theorem 2.1.23, we can show that (2) and (3) of the Fact 3.1.9 are $\Pi_{2}^{1}(y)$ and $\Sigma_{2}^{1}(y)$ respectively. Hence, (b) is $\Delta_{2}^{1}(y)$. So, " y codes a Borel ccc poset" is a Δ_{2}^{1} predicate on y.

From Theorem 2.1.23, we have that, if $k \geq 2$, then ${ }^{\circ}{ }_{y} \varphi(x)$ " is a \sum_{k+1}^{1} relation, if φ is \sum_{k}^{1}, or a \prod_{k+1}^{1} relation, if φ is \prod_{k}^{1}.

We show (2) of the lemma in a similar way.
Corollary 3.1.10 Suppose that V is absolute for Borel (Suslin) ccc posets. Then V is two-step absolute for Borel (Suslin) ccc posets.

Proof. Since for every projective formula φ, " V is φ-absolute for Borel (Suslin) ccc posets" is expressible with a projective sentence, for every Borel (Suslin) ccc extension W of V, W satisfies the same projective formula, and hence, " W is φ-absolute for Borel (Suslin) ccc posets". Therefore, V is two-step absolute for Borel (Suslin) ccc posets.

For more complex projective and ccc forcing notions we have a similar result. Recall that for every transitive $M^{2} Z F C$, if P is a projective poset, then " $\mathrm{P} \in M$ " means that the parameters of the definition of P belong to M.

Fact 3.1.11 Suppose that V is absolute for $\sum_{n}^{1}(\underset{\sim}{\Pi})$ and ccc posets. Then, for all $\sum_{n}^{1}\left(\prod_{n}^{1}\right)$ and ccc posets $\mathrm{P}, \mathrm{Q} \in V, V$ is two-step absolute for P and Q .

Proof. We prove it only for \sum_{n}^{1} and ccc posets. The proof for \prod_{n}^{1} and ccc posets is analogous. Suppose V is absolute for Σ_{n}^{1} and ccc posets and ${ }^{n}$ let P, Q be Σ_{n}^{1} and ccc posets in V. Suppose that G is a $\widetilde{\mathrm{P}}$-generic filter over V and H is a $\widetilde{\mathrm{Q}}^{V[G]}$-generic filter over $V[G]$. We will show that for every projective formula $\varphi(x)$ and every real $a \in V[G]$,

$$
V[G][H]^{2} \varphi(a) \text { iff } V[G]^{2} \varphi(a)
$$

Suppose that $V[G][H]^{2} \varphi(a)$. So, $V[G]^{2}$ " $q^{\circ} \mathrm{Q} \varphi(a)$ ", for some condition $q \in \mathbf{Q}$. Since $\mathbf{Q} \in V$ is a \sum_{n}^{1} and ccc poset, by absoluteness for \mathbf{Q},

$$
V^{2} \forall x \forall q\left(\left(q^{\circ} \mathrm{Q} \varphi(x)\right) \leftrightarrow \varphi(x)\right)
$$

But, by Theorem 2.1.23, the sentence on the right hand is projective and hence, by absoluteness for P ,

$$
V[G]^{2} \forall x \forall q\left(\left(q^{\circ} \mathrm{Q} \varphi(x)\right) \leftrightarrow \varphi(x)\right) .
$$

But then, $V[G]^{2} \varphi(a)$.
The converse follows from the fact that if $V[G][H]^{2} / \varphi(a)$, then $V[G][H]^{2}$ $\neg \varphi(a)$ for all $a \in \mathrm{R} \cap V[G]$.

Fact 3.1.12 $L(\mathbf{R})$-absoluteness for ccc posets in $L(\mathbb{R})$ implies $L(\mathbb{R})$-two-step absoluteness for ccc posets in $L(\mathrm{R})^{V}$.

Proof. We show it as in the previous fact, using that every poset \mathbf{P} in $L(\mathbf{R})$ is defined by formulas with only ordinals and reals as parameters and the fact that, since P is ccc, we may code every simple P -name for a real with a real.

The interest in the generic absoluteness of projective sentences under some class of definable ccc forcing notions can be seen from the following two theorems.

Theorem 3.1.13 Suppose that V is $L(\mathrm{R})$-two-step absolute for ccc posets in $L(\mathrm{R})$. Then every set of reals in $L(\mathbb{R})$ is Lebesgue measurable and has the Baire property.

Proof. Let X be a set of reals in $L(\mathrm{R})$. So, there is a formula φ with reals and ordinals as parameters such that

$$
\forall x(x \in X \leftrightarrow \varphi(x)) .
$$

Let $\mathrm{A}=$ r.o. $(A m o e b a)$ (see [M-So] or [J2], Theorem 106) and let G be a A-generic over V. In $V[G]$ there is a measure-one set of Random reals over V. Let \dot{r} be the canonical term for a Random real and suppose r is one of the Random-generic reals over V added by G.

Claim 3.1.14 $V[G]^{2}$ " $\varphi(r) \leftrightarrow r \in \llbracket \varphi(\dot{r}) \rrbracket^{\text {Random" }}$
Proof. Work in $V[G]$. Suppose $\varphi(r)$ holds in $V[G]$. Let $U=\left\{u_{n}: n \in \omega\right\}$ where for every $n \in \omega, u_{n}=\llbracket \check{n} \in \dot{r} \rrbracket$. So, if B is the complete subalgebra of A generated by U, then $H=G \cap \mathrm{~B}$ is a \mathbf{B}-generic filter over V and $V[H]=V[r]$ (see [J2], 25.2, Corollary 2). Note that $\mathrm{B} \in L(\mathrm{R})$ since it is definable with parameter \dot{r}, the Amoeba term for a Random real which we may assume that is essentially a real.

Let Γ be the canonical B-name for the generic filter. Let A / \dot{r} be the following poset:

- $\langle\check{q}, p\rangle \in \mathrm{A} / \dot{r}$ iff $q \in \mathrm{~A}$ and $p \in \mathrm{~B}$ and $\left(\forall p^{\prime} \leq p\right)\left(q \not \chi_{\mathrm{A}} p^{\prime}\right)$.
- $\langle\check{q}, p\rangle \leq\left\langle\breve{q}^{\prime}, p^{\prime}\right\rangle$ iff $q \leq q^{\prime}$ and $p \leq p^{\prime}$.

Then, $V[G]=V[r][G]$ (see $[\mathrm{Ku}]$, VII, Exercise D.5).
So, $V[G]$ is a ccc forcing extension of $V[r]$ via a definable forcing notion in $V[r]$, with parameter r. So, by $L(\mathrm{R})$-two-step absoluteness, we have $V[r]^{2} \varphi(r)$.

Since for every Borel-null set B_{c} with code in V,

$$
B_{c}^{V[r]}=B_{c}^{V[G]} \cap V[r],
$$

$V[r]^{2}$ " r is a Random real over V ". Hence, $V[r]$ is a Random-generic extension of V (see [So] or [J2], 42) and $V[r]^{2} r \in \llbracket \varphi(\dot{r}) \rrbracket^{\text {Random }}$. So, by Borel absoluteness, $V[G]^{2} \quad r \in \llbracket \varphi(\dot{r}) \rrbracket^{\text {Random }}$.

We show the converse in a similar way.
By the Claim, X is measurable in $V[G]$: Since $V[G]^{2} \mu(R a(V))=1$, where μ denotes the measure of Lebesgue and $R a(V)$ denote the set of random reals over $V, V[G]^{2} \mu\left(X \triangle \llbracket \varphi(\dot{r}) \rrbracket^{\text {Random }}\right)=0$.

But " X is measurable" is a sentence with only reals and ordinals as parameters. Hence, by absoluteness, X is measurable in V.

That all sets of reals in $L(\mathrm{R})$ have the Baire property is proved in a similar way, using Amoeba for category and Cohen forcing notions instead of Amoeba and Random forcing notions, respectively.

Also, using absoluteness for Borel ccc posets, we can show, using a result of H . Woodin ([W]), the following:

Theorem 3.1.15 Suppose that V is absolute for Borel ccc posets. Then there is no uncountable projective well-ordering of reals.

Proof. Suppose that $X=\left\langle X,<_{X}\right\rangle$ is a projective uncountable well-ordering of reals. Let $\varphi(x, y)$ be a projective formula that defines X with parameter $a \in \omega^{\omega}$.

Without loss of generality, we may assume that o.t. $(X)=\omega_{1}$. Otherwise, let $R \subseteq \omega^{\omega} \times \omega^{\omega}$ be defined as follows: for every $b, c \in \omega^{\omega}$,

$$
b R c \text { iff }\left\{(b)_{n}: n \in \omega\right\}=\left\{d: d<_{X} c\right\}
$$

where for every $b \in \omega^{\omega}$ and every $n \in \omega,(b)_{n}=\{\langle i, j\rangle: b(J(i, n))=j\}$. Note that R is a projective relation. Indeed, for every $b, c \in \omega^{\omega}, b R c$ iff

$$
\forall n \varphi\left((b)_{n}, c\right) \wedge \forall x\left(\varphi(x, c) \rightarrow \exists n\left(x=(b)_{n}\right)\right)
$$

Therefore, if $\varphi(x, y)$ is $\Sigma_{n}^{1}(a), R$ is $\Delta_{n+1}^{1}(a)$, and if $\varphi(x, y)$ is $\Pi_{n}^{1}(a), R$ is $\Pi_{n+1}^{1}(a)$.
Note that for every real $b \in X$, there exists $x \in \omega^{\omega}$ such that $x R b$ iff $\rho_{<_{x}}(b)<$ ω_{1}, where $\rho_{<_{X}}$ is the rank function for the well-ordering X. i.e., for every $b \in \omega^{\omega}$, $\rho_{<_{X}}(b)=\sup \left(\left\{\rho_{<_{X}}(x)+1: x<_{X} b\right\}\right)$. Finally, let

$$
b<_{X^{\prime}} c \text { iff } \exists x y\left(x R b \wedge y R c \wedge b<_{X} c\right)
$$

Then, $X^{\prime}=\left\langle X^{\prime},<_{X^{\prime}}\right\rangle$, where $X^{\prime}=$ Field $\left(<_{X^{\prime}}\right)$, is a projective well-ordering (in fact $\Sigma_{n+1}^{1}(a)$, if $\varphi(x, y)$ is $\Sigma_{n}^{1}(a)$, or $\Sigma_{n+2}^{1}(a)$, if $\varphi(x, y)$ is $\left.\Pi_{n}^{1}(a)\right)$ and o.t. $\left(X^{\prime}\right)=\omega_{1}$.

Claim 3.1.16 Let \mathbf{P} be a Borel ccc poset in V. Then for every \mathbf{P}-generic filter G over $V, \varphi(x, y)$ defines the well-ordering X in $V[G]$.

Proof. Let $X^{V[G]}=\left\langle X^{V[G]},<_{X}^{V[G]}\right\rangle$, where $X^{V[G]}=\operatorname{Field}\left(<_{X}^{V[G]}\right)$, and for all $b, c \in \omega^{\omega} \cap V[G], b<_{X}^{V[G]} c$ iff $V[G]^{2} \varphi(b, c)$.

Note that in V the following hold

1. $\forall x \neg \varphi(x, x)$,
2. $\forall x y(\varphi(x, y) \rightarrow \neg \varphi(y, x))$,
3. $\forall x y z(\varphi(x, y) \wedge \varphi(y, z) \rightarrow \varphi(x, z))$,
4. $\forall x y(\varphi(x, y) \vee x=y \vee \varphi(y, x))$,
5. $\neg \exists x \forall n\left((x)_{n} \in X \wedge \varphi\left((x)_{n+1},(x)_{n}\right)\right)$,
and (1)-(5) are projective formula with parameters in V. Moreover, $b \in X$ iff $\exists x(\varphi(b, x) \vee \varphi(x, b))$. Hence, by absoluteness for Borel ccc posets, $V[G]$ satisfies (1)-(5). Therefore, $X^{V[G]}$ is a projective well-ordering.

Moreover, by absoluteness, for every $b, c \in \omega^{\omega} \cap V$,

$$
V^{2} \varphi(b, c) \text { iff } V[G]^{2} \varphi(b, c) .
$$

So, $X \subseteq X^{V[G]}$ and o.t. $\left(X^{V[G]}\right) \geq \omega_{1}$. Since

$$
V^{2} \forall x(\exists y \varphi(y, x) \rightarrow \exists z z R x)
$$

by absoluteness,

$$
V[G]^{2} \forall x(\exists y \varphi(y, x) \rightarrow \exists z z R x) .
$$

Therefore, o.t. $\left(X^{V[G]}\right)=\omega_{1}$ and $X=X^{V[G]}$.
Claim 3.1.17 For every $b \in \omega^{\omega}$, $\omega^{\omega} \cap L(X, b)$ is a projective set of reals.

Proof. For every real $x \in X$, let $X_{x}=\left\{y \in X: y<_{X} x\right\}$. Note that, by reflection in $L(X, b)$, for every $c \in \omega^{\omega}, c \in L(X, b)$ iff $\exists x\left(x \in X \wedge c \in L\left(X_{x}, b\right)\right)$. Define $S \subseteq \omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ as follows: for every $x, y, z \in \omega^{\omega}$,

$$
\langle y, z, x\rangle \in S \text { iff } z \operatorname{codes} X_{x} \text { and }\left\langle X_{x},<_{X_{x}}\right\rangle \cong\left\langle\omega, E_{y}\right\rangle
$$

where E_{y} is the well-ordering on ω coded by y (see [J2] 40.2). S is a projective relation since for all $x, y, z \in \omega^{\omega},\langle y, z, x\rangle \in S$ iff

$$
z R x \wedge y \in W O \wedge \forall n m\left((z)_{n}<_{X}(z)_{m} \leftrightarrow y(J(n, m))=0\right) .
$$

So, for every real $c \in \omega^{\omega}$,

$$
c \in L(X, b) \text { iff } \exists x y z(x \in X \wedge\langle y, z, x\rangle \in S \wedge r \in L(y, z, b)) .
$$

But $L(y, z, b)=L[y, z, b]$ and $\omega^{\omega} \cap L[y, z, b]$ is a $\Sigma_{2}^{1}(y, z, b)$ set. So, if X is a \sum_{n}^{1} well-ordering, then R is ${\underset{\sim}{~}}_{n+1}^{1}, S$ is ${\underset{\sim}{d}}_{n+1}^{1}$ and, hence, $\omega^{\omega} \cap L(X, b)$ is \sum_{n+1}^{1}. And if X is a \prod_{n}^{1} well-ordering, then R is \prod_{n+1}^{1}, S also is $\prod_{n}^{1}{ }_{n+1}$ and $\omega^{\omega} \cap L(X, \widetilde{b})$ is \sum_{n+2}^{1}.

Continuing with the proof of Theorem 3.1.15, let \mathbf{B} be the Random forcing notion and suppose G is a B -generic filter over V. Then for every real $b \in \omega^{\omega} \cap V$,

$$
V[G]^{2} \text { "There exists a Random real over } L(X, b) \text { ". }
$$

Claim 3.1.18"There exists a Random real over $L(X, b)$ " is a projective sentence.
Proof. Recall that every Borel set can be coded by a real in such a way that the set of codes of Borel sets is a Π_{1}^{1} set (see [So] or [J2], 42.1). Then, r is a Random real over $L(X, b)$ iff for all real z, if z codes a Borel null set B_{z} and $z \in L(X, b)$, then $r \notin B_{z}$.

A set of reals X is null iff

$$
\left.\forall n \exists y\left(y \text { codes an open set } O_{y} \wedge X \subseteq O_{y} \wedge \mu\left(O_{y}\right) \leq \frac{1}{n}\right)\right) \text {. }
$$

If X is a Borel set, then the expression between parentheses is Π_{1}^{1} (see [J2] 42.4). So, " X is null" is a Σ_{2}^{1} statement about the code of X.

Moreover, for a measurable set $X, \mu(X)>0$ iff there exists a closed set $F \subseteq X$ such that $\mu(F)>0$. Therefore, if X is a Borel set, then " X is not null" is a Σ_{2}^{1} statement with parameter the code of X.

Hence, for every Borel set X, " X is null" is a Δ_{2}^{1} statement with parameter the code of X.

By Claim 3.1.17, for every real $b \in \omega^{\omega} \cap V, \omega^{\omega} \cap L(X, b)$ is a projective set. So, for every real $b \in \omega^{\omega} \cap V$, " r is a Random real over $L(X, b)$ " it is a projective sentence.

Now, by absoluteness,

$$
V^{2} \forall x \exists r(r \text { Random over } L(X, x)) .
$$

Let C be the Cohen forcing (see [C] or [J2], 42) and suppose c is a Cohen real over V. Since \mathbf{C} is a Borel ccc poset and $\forall x \exists r(r$ Random over $L(X, x)))$ is a projective sentence, by absoluteness, and the fact that $X=X^{V[c]}$,

$$
V[c]^{2} \forall x \exists r(r \text { Random over } L(X, x)) .
$$

So,

$$
V[c]^{2} \exists r(r \text { Random over } L(X, c)) .
$$

But, since X is a projective uncountable sequence of different reals, this contradicts the following lemma of H . Woodin, [W].

Lemma 3.1.19 (H. Woodin) Suppose that S is a uncountable sequence of distinct reals and c is a Cohen real over V. Then, in $V[c]$ there is no Random real over $L(S, c)$.

Proof. Let $S=\left\langle s_{\alpha}: \alpha<\lambda\right\rangle$. Fix in $L(S)$ a sequence $\left\langle A_{\alpha}: \alpha<\lambda\right\rangle$ of infinite and almost-disjoint subsets of ω and a enumeration $\left\langle I_{k}: \kappa \in \omega\right\rangle$ of open intervals of R with rational endpoints and such that every interval appears infinitely many times.

Let $c \in \omega^{\omega}$ a Cohen real over $L(S)$. We work in $L(S, c)$. Define $f, g \in \omega^{\omega}$ as follows: for every $n \in \omega$,

- $f(n)=c(2 n)$.
- $g(n)=c(2 n+1)$.

For every $\alpha<\lambda$, let $g_{\alpha}=g^{1} A_{\alpha}$.
For every $\alpha<\lambda$ and every $n \in \omega, 1 \leq n$, we will construct an open set $O_{\alpha}^{n} \subseteq \mathrm{R}$ such that $\mu\left(O_{\alpha}^{n}\right) \leq \frac{1}{n}$.

Fix $\alpha<\lambda$ and $n \in \omega$ with $1 \leq n$. Define a sequence of natural numbers $\left\langle k_{i}^{\alpha, n}: i \in \omega\right\rangle$ recursively:
$\underline{i=0}$: Then, $k_{0}^{\alpha, n}=\min \left(\left\{k \in \omega: g_{\alpha}(k)=n \wedge \mu\left(I_{f(k)}\right)<\frac{1}{n}\right\}\right)$.
$\overline{i+1}$: Then, $k_{i+1}^{\alpha, n}=\min \left(\left\{k \in \omega: g_{\alpha}(k)=n \wedge \mu\left(\bigcup_{j \leq i} I_{f\left(k_{j}\right)} \cup I_{f(k)}\right)<\frac{1}{n}\right\}\right)$.
We show that $\left\langle k_{i}^{\alpha, n}: i \in \omega\right\rangle$ exists. For every $\varepsilon>0$ and every $m \in \omega$, we define in $L(S)$,

$$
D_{m, \varepsilon}=\left\{p: \operatorname{dom}(p)>m \wedge\left(\exists k \in A_{\alpha}\right)\left(p(2 k+1)=n \wedge \mu\left(I_{p(2 k)}\right)<\varepsilon\right)\right\} .
$$

Claim 3.1.20 $D_{m, \varepsilon}$ is a dense subset of the Cohen poset.
Proof. Suppose that $q \in \mathrm{C}$. Let $p \in \mathrm{C}$ be such that:

1. $\operatorname{dom}(p)=2 k+2$, where $k \in A_{\alpha}$ and $k>\max (\{\operatorname{dom}(q), m\})$.
2. For all $i \in \operatorname{dom}(q), p(i)=q(i)$.
3. $p(2 k)$ is the least $i \in \omega$ such that $\mu\left(I_{i}\right)<\varepsilon$.
4. $p(2 k+1)=n$.
5. $p(i)=0$, otherwise.

Then, $p \leq q$ and $p \in D_{m, \varepsilon}$. So, $D_{m, \varepsilon}$ is dense.
Since c is a Cohen real over $L(S)$, for every $m \in \omega$ and $\varepsilon>0$ there exists $p \in D_{m, \varepsilon}$ such that $p \subseteq c$. But then, $\left\langle k_{i}^{\alpha, n}: i \in \omega\right\rangle$ exists.

Let $O_{\alpha}^{n}=\bigcup_{i \in \omega} I_{f\left(k_{i}^{\alpha, n}\right)}$. So, O_{α}^{n} is open and $\mu\left(O_{\alpha}^{n}\right) \leq \frac{1}{n}$.
Fact 3.1.21 If $\sigma \subseteq \lambda, \sigma \in L(S)$ and σ is infinite, then for all $n \in \omega, \bigcup_{\alpha \in \sigma} O_{\alpha}^{n}=\mathrm{R}$.
Proof. Fix $\sigma \subseteq \lambda$ infinite and such that $\sigma \in L(S)$. We will prove that for every $k \geq 1,[-k, k] \subseteq \bigcup_{\alpha \in \sigma} O_{\alpha}^{n}$.

Suppose otherwise. Then there exists $p \in \mathrm{C}$ such that

$$
p^{\circ}{ }^{\mathrm{C}} \text { " }(\exists k \geq 1)\left([-k, k] * \bigcup_{\alpha \in \sigma} O_{\alpha}^{n}\right) "
$$

Since $\operatorname{dom}(p)$ is finite, there exists $\tau \subseteq \sigma, \tau$ infinite, such that for every $\alpha, \beta \in$ τ, $\operatorname{dom}(p) \cap A_{\alpha}=\operatorname{dom}(p) \cap A_{\beta}$. Then, by definition of the sequences $\left\langle k_{i}^{\alpha, n}: i \in \omega\right\rangle$, there is $m \in \omega$ such that for all $\alpha \in \tau$,

$$
\left\langle k_{0}, \ldots, k_{m}\right\rangle=\left\langle k_{i}^{\alpha, n}: i \in \omega\right\rangle^{1} \operatorname{dom}(p) .
$$

Let $\varepsilon>\frac{1}{n}-\mu\left(\bigcup_{i<m} I_{f\left(k_{i}\right)}\right)$. Clearly, $\varepsilon>0$. Fix $m^{\prime} \in \omega$ such that $\frac{m^{\prime} \cdot \varepsilon}{2}>2 k$. Fix $\alpha_{0}, \ldots, \alpha_{m^{\prime}-1} \in \tau$ all different. Let $m^{\prime \prime} \in \omega$ such that for all $i, j<m^{\prime}, A_{\alpha_{i}} \cap A_{\alpha_{j}} \subseteq m^{\prime \prime}$. Let $q \in \mathrm{C}$ be such that:

1. $\operatorname{dom}(q)=m^{\prime \prime}$.
2. For all $i \in \operatorname{dom}(p), q(i)=p(i)$.
3. For all $i \in \operatorname{dom}(q) \backslash \operatorname{dom}(p), q(i)=0$.

Since $n \neq 0$, for all $j<m^{\prime},\left\langle k_{i}^{\alpha_{j}, n}: i \in \omega\right\rangle^{1} \operatorname{dom}(p)=\left\langle k_{i}^{\alpha_{j}, n}: i \in \omega\right\rangle^{1} \operatorname{dom}(q)$.
Since $\frac{m^{\prime} \cdot \varepsilon}{2}>2 k$, we can find open intervals $J_{0}, \ldots, J_{m^{\prime}-1}$ with rational endpoints such that:
a) For every $i<m^{\prime}, \mu\left(J_{i}\right)=\frac{\varepsilon}{2}$.
b) $[-k, k] \subseteq \bigcup_{i<m^{\prime}} J_{i}$.

For every $i<m^{\prime}$, let k_{i}^{\prime} be the least $k>\operatorname{dom}(q)$ such that $k \in A_{\alpha_{i}}$. So, for all $i, j<m^{\prime}$, if $i \neq j$, then $k_{i}^{\prime} \neq k_{j}^{\prime}$. Define $q^{\prime} \in \mathrm{C}$ such that

1. $\operatorname{dom}\left(q^{\prime}\right)=2\left(\max \left\{k_{i}^{\prime}: i<m^{\prime}\right\}\right)+2$.
2. For all $i \in \operatorname{dom}(q), q^{\prime}(i)=q(i)$.
3. For all $i<m^{\prime}, q^{\prime}\left(2 k_{i}^{\prime}\right)$ is the least $j \in \omega$ such that $J_{i}=I_{j}$.
4. For all $i<m^{\prime}, q^{\prime}\left(2 k_{i}^{\prime}+1\right)=n$.
5. $q^{\prime}(i)=0$, otherwise.

But then, $q^{\prime} \leq p$ and $q^{\prime}{ }^{\circ} \mathrm{C} "[-k, k] \subseteq \bigcup_{i<m^{\prime}} O_{\alpha_{i}}^{n}$ ". A contradiction.
For every $\alpha<\lambda$ and every $n \geq 1$, let $C_{\alpha}^{n}=\mathrm{R} \backslash O_{\alpha}^{n}$. Then, for all $\alpha<\lambda$, $\mathrm{R} \backslash \bigcup_{1 \leq n<\omega} O_{\alpha}^{n}$ is a null set of reals. For every $\alpha<\lambda$ and every $n \geq 1$, let \dot{C}_{α}^{n} the canonical C-name in $L(S)$ for C_{α}^{n}. Then, by the last claim, the following holds in $L(S)$:

For all $\sigma \subseteq \lambda$ infinite, all $p \in \mathrm{C}$ and all $n \geq 1, p \% \mathrm{c}$ " $\bigcap_{\alpha \in \sigma} \dot{C}_{\alpha}^{n} \neq \emptyset "$.
Fact 3.1.22 (*) is true in V
Proof. For every $p \in \mathrm{C}, k \in \omega$ and $n \geq 1$, define in $L(S)$ the following tree $T_{p, k, n}$ of sequences of ordinals less than λ :

- $\left\langle\alpha_{0}, \ldots, \alpha_{m}\right\rangle \in T_{p, k, n}$ iff all $\alpha_{i}<\lambda$ are different ordinals and $p{ }^{\circ}{ }_{\mathrm{c}}$ " $[-k, k] \cap$ $\bigcap_{i \leq m} \dot{C}_{\alpha_{i}}^{n} \neq \emptyset "$
- $\left\langle\alpha_{0}, \ldots, \alpha_{m}\right\rangle \leq\left\langle\beta_{0}, \ldots, \beta_{m^{\prime}}\right\rangle$ iff $\left\langle\alpha_{0}, \ldots, \alpha_{m}\right\rangle \subseteq\left\langle\beta_{0}, \ldots, \beta_{m^{\prime}}\right\rangle$.

Suppose that $(*)$ is false in V. So, there is $\sigma \subseteq \lambda$ infinite, a $q \in \mathrm{C}$ and $n \geq 1$ such that $q{ }^{\circ}{ }^{\circ}$ " $\bigcap_{\alpha \in \sigma} \dot{C}_{\alpha}^{n} \neq \emptyset$ ". Then there is $p \leq q$ and $k \in \omega$ such that $p^{\circ}{ }^{\mathrm{c}}$ " $[-k, k] \cap \bigcap_{\alpha \in \sigma} \dot{C}_{\alpha}^{n} \neq \emptyset "$. Therefore, $T_{p, k, n}$ has an infinite branch.

If there are $p \in \mathrm{C}, n \geq 1$ and $k \in \omega$ such that $T_{p, k, n}$ has an infinite branch, then there exists an infinite sequence $\left\langle\alpha_{i}: i<\omega\right\rangle$ of different ordinals less than λ and $m<\omega$ such that

$$
p^{\circ} \mathrm{c} "[-k, k] \cap \bigcap_{i \leq m} \dot{C}_{\alpha_{i}}^{n} \neq \emptyset "
$$

But, since for every $m<\omega, \bigcap_{i \leq m} C_{\alpha_{i}}^{n} \cap[-k, k]$ is a compact set of reals, $\bigcap_{m<\omega} C_{\alpha_{m}}^{n} \cap$ $[-k, k] \neq \emptyset$. So, there is $r \leq p$ such that $r{ }^{\circ}{ }_{\mathrm{C}}$ " $\bigcap_{m<\omega} \dot{C}_{\alpha_{m}}^{n} \neq \emptyset$ " and, therefore, $(*)$ is false in V.

So, for all $p \in \mathrm{C}$, all $k \in \omega$ and every $n \geq 1, T_{p, k, n}$ is a well-founded tree in $L(S)$. But, by the absoluteness of "being well-founded", $T_{p, k, n}$ is a well-founded tree in V. Therefore, $(*)$ is true in V.

We can now finish the proof of Lemma 3.1.19 and of Theorem 3.1.15. Suppose that c is a Cohen real over V and there is a Random real over $L(S, c)$ in $V[c]$. Note that for every $\alpha<\lambda, r \in \bigcup_{1 \leq n<\omega} C_{\alpha}^{n}$, since $\mathbf{R} \backslash \bigcup_{1 \leq n<\omega} C_{\alpha}^{n}$ is null. Pick, in V, a Cohen name \dot{r} for r. For every α, we pick $p_{\alpha} \in \mathrm{C}$ and $n_{\alpha} \geq 1$ such that $p_{\alpha}{ }^{\circ}{ }_{\mathrm{c}}$ " $\dot{r} \in \dot{C}_{\alpha}^{n_{\alpha}}$ ". Since C is countable and λ is uncountable, there is a $\sigma \subseteq \lambda$ infinite, $p \in \mathrm{C}$ and $n \geq 1$ such that for every $\alpha \in \sigma, p=p_{\alpha}$ and $n=n_{\alpha}$. So, $p{ }^{\circ}{ }^{\mathrm{C}}$ " $\bigcap_{\alpha \in \sigma} \dot{C}_{\alpha}^{n} \neq \emptyset$ ", in contradiction with the above Fact.

Note that the above theorem really shows that $\sum_{n+2}^{1}-$ absoluteness for Cohen poset and \sum_{n+1}^{1}-absoluteness for Random poset implies that there are no uncountable \sum_{n}^{1} well-orderings of the reals. So, as a corollary we get the following result of [B1] (see also [B-Ju])

Corollary 3.1.23 \sum_{4}^{1}-absoluteness for Cohen poset and \sum_{3}^{1}-absoluteness for Random poset implies that ω_{1} is an inaccessible cardinal in L.

Proof. Since for every real $a \in V$, the well-ordering of $\mathbf{R} \cap L[a]$ is $\Sigma_{2}^{1}(a)$, there are only countable many reals in $L[a]$. So, $\omega_{1}^{L[a]}<\omega_{1}$, for every real a.

3.2 Collapsing an inaccessible cardinal

In this section we study the absoluteness properties of Solovay models under ccc forcing extensions. We will show that every \sum_{3}^{1} and ccc forcing extension of a Solovay model is also a Solovay model. We will also show in Section 3.3 that this is, in some sense, the optimal result for Solovay models.

Theorem 3.2.1 Suppose $L(\mathrm{R})^{M}$ is a Solovay model over V and \mathbf{P} is a $\sum_{\sim}^{\frac{1}{3}}$ and ccc poset in M. Then the $L(\mathrm{R})$ of any P -generic extension of M is also a Solovay model over V.

Proof. Suppose $L(\mathbf{R})^{M}$ is a Solovay model over V. Let $\kappa=\omega_{1}^{M}$. Force over M with W to obtain a $\operatorname{Coll}(\omega,<\kappa)$-generic filter C over V so that $\mathrm{R}^{V[C]}=\mathrm{R}^{M}$ (Lemma 3.1.1). Let P be a \sum_{3}^{1} and ccc poset in M. Notice that for a filter $G \subseteq \mathrm{P}, G$ is P -generic over M iff G is $\widetilde{\mathrm{P}}$-generic over $V[C]$. Moreover, $\mathrm{R}^{M[G]}=\mathrm{R}^{V[C][G]}$. Thus, to prove the theorem it will be enough to show that every real in $V[C][G]$ is generic over V for a countable poset.

Let $\dot{\mathrm{P}}$ be a $\operatorname{Coll}(\omega,<\kappa)$-name for P in V. So, ${ }^{\circ} \operatorname{Coll}(\omega,<\kappa)$ " $\dot{\mathrm{P}}$ is a ccc poset" and there are a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real \dot{a} and Σ_{3}^{1} formulas $\varphi_{\leq}(x, y ; u)$ and $\varphi_{\perp}(x, y ; u)$ such that:

1. ${ }^{\circ}{ }_{\text {Coll }}(\omega,<\kappa) "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{\leq}_{P} y \leftrightarrow \varphi_{\leq}(x, y ; \dot{a})\right) "$.
2. ${ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{\perp}_{P} y \leftrightarrow \varphi_{\perp}(x, y ; \dot{a})\right) "$.

Let $\mathrm{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$. Note that S is a κ-cc poset.
Notation 3.2.2 Recall that if A is a projective set and N is a transitive model of (a fragment of) ZFC that contains the parameters of the projective formula that defines A, then A^{N} denotes the set defined by the relativization to N of this formula.

- For every $\alpha<\kappa$ and every Coll $(\omega,<\kappa)$-generic filter C over V let $C_{\alpha}=$ $C \cap \operatorname{Coll}(\omega,<\alpha)$.
- For every Coll $(\omega,<\kappa)$-generic filter C over V, let $\mathbf{P}=\dot{\mathbf{P}}[C]$. Moreover, for every $\alpha<\kappa$, if $a=\dot{a}[C]$, the parameter of the definition of P , belongs to $V\left[C_{\alpha}\right], \mathrm{P}_{\alpha}=\mathrm{P}^{V\left[C_{\alpha}\right]}$. If $a \notin V\left[C_{\alpha}\right]$, then P_{α} denotes the trivial poset. Let $\dot{\mathrm{P}}_{\alpha}$ be $a \operatorname{Coll}(\omega,<\alpha)$-name for \mathbf{P}_{α}. i.e.,

$$
\begin{aligned}
& \text { 1. }{ }^{\circ} \operatorname{Coll}(\omega,<\alpha) "\left(\forall x \in \dot{\omega}^{\omega}\right)\left(x \in \dot{P}_{\alpha} \leftrightarrow \varphi_{\leq}(x, x ; \dot{a})\right) " \\
& \text { 2. }{ }^{\circ} \operatorname{Coll}(\omega,<\alpha) "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{S}_{P_{\alpha}} y \leftrightarrow \varphi_{\leq}(x, y ; \dot{a})\right) "
\end{aligned}
$$

$$
\text { 3. } \left.{ }^{\circ} \text { Coll(} \omega,<\alpha\right) "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{\perp}_{P_{\alpha}} y \leftrightarrow \varphi_{\perp}(x, y ; \dot{a})\right) "
$$

We may assume that for every $\alpha<\kappa$, ${ }^{\circ}{ }^{\text {Coll }(\omega,<\alpha)}$ " $\dot{\mathrm{P}}_{\alpha}$ is a poset". Finally, for every $\alpha<\kappa$, let $\mathrm{S}_{\alpha}=\operatorname{Coll}(\omega,<\alpha) * \dot{\mathrm{P}}_{\alpha}$.

- Let $\dot{\mathrm{R}}$ denote the set of all simple Coll $(\omega,<\kappa)$-names for reals and for every $\alpha<\kappa$, let $\dot{\mathbf{R}}_{\alpha}$ be the set of all simple Coll $(\omega,<\alpha)$-names for reals.

Notice that, by Shoenfield's Absoluteness Theorem, if $\xi \leq \xi^{\prime}$ then $\mathrm{S}_{\xi} \subseteq \mathrm{S}_{\xi^{\prime}}$ and, since Coll $(\omega,<\kappa)$ is a κ-cc poset, $\mathrm{S}=\bigcup_{\xi<\kappa} \mathrm{S}_{\xi}$. Thus, for every subposet X of S of cardinality less than κ there exists $\alpha<\kappa$ such that X is a subposet of S_{α}.

For every $\alpha<\kappa$, let $\xi(\alpha)$, if it exists, be the least $\xi<\kappa$ such that for every $\xi^{\prime} \geq \xi$ the following holds: For every simple $\operatorname{Coll}(\omega,<\alpha)$-name \dot{A} for a subset of $\dot{\mathbf{R}}_{\alpha}$, every simple $\operatorname{Coll}(\omega,<\alpha)$-name for a real \dot{c} and every $q \in \operatorname{Coll}\left(\omega,<\xi^{\prime}\right)$, if

$$
q^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} ",
$$

then

$$
q^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\xi^{\prime}\right)} \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathbf{P}} \text { below } \dot{c} \text { " }
$$

Lemma 3.2.3 For every $\alpha<\kappa, \xi(\alpha)$ exists.
Proof. Note that " x codes a maximal antichain of $\dot{\mathbf{P}}$ below \dot{c} " iff " x codes a maximal antichain of $\dot{\mathbf{P}}_{c}$ ", where P_{c} is the subposet of P consisting of all conditions of \mathbf{P} below c. Since \mathbf{P} is a $\sum_{\frac{1}{3}}^{1}$ poset, \mathbf{P}_{c} also is a \sum_{3}^{1} poset. So, by Fact 2.1.15, " x codes a maximal antichain of $\widetilde{\mathrm{P}}$ below \dot{c} " is a Π_{3}^{1} predicate on x, and (the codes of) \dot{c} and \dot{a}.

In order to simplify the notation, we work with the algebra r.o. (Coll $(\omega,<\kappa))$. Fix $\alpha<\kappa$. Note that every subset in $V[C]$ of reals in $V\left[C_{\alpha}\right]$ is countable, and hence can be coded by a real in $V[C]$. So, by Shoenfield's Absoluteness Theorem, for every simple Coll $(\omega,<\alpha)$-name \dot{A} for a subset of $\dot{\mathbf{R}}_{\alpha}$ and every simple Coll $(\omega,<\alpha)$-name for a real \dot{c}, if

$$
\llbracket \dot{A} \text { does not code a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} \rrbracket_{\text {Coll }(\omega,<\kappa)} \neq 0
$$

then there exists a final segment F of κ such that for every $\xi \in F$,

$$
\begin{aligned}
& \llbracket \dot{A} \text { does not code a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} \rrbracket_{\operatorname{Coll}(\omega,<\kappa)}{ }^{\circ}{ }_{\text {Coll }(\omega,<\xi)} \\
& \quad{ }^{\circ} \operatorname{Coll}(\omega,<\xi)
\end{aligned} \text { " } \dot{A} \text { does not code a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} "
$$

For all simple Coll $(\omega,<\alpha)$-name \dot{A} for a subset of $\dot{\mathbf{R}}_{\alpha}$ and all simple Coll $(\omega,<\alpha)$ name for a real \dot{c}, let $D_{\dot{A}, \dot{c}}$ be this final segment, if $\llbracket \dot{A}$ does not code a maximal antichain of $\dot{\mathrm{P}}$ below $\dot{c} \rrbracket_{\text {Coll }(\omega,<\kappa)} \neq 0$. Let $D_{\dot{A}, \dot{c}}=\kappa$, otherwise.

Since there are less than κ simple $\operatorname{Coll}(\omega,<\alpha)$-names \dot{A} for subsets of $\dot{\mathrm{R}}_{\alpha}$ and less than κ simple $\operatorname{Coll}(\omega,<\alpha)$-names \dot{c} for a real, the intersection D of all $D_{\dot{A}, \dot{c}}$ is a
non-empty final segment of κ. Let $\xi(\alpha)$ be the least $\xi \in D$ greater than α. It is easy to check that $\xi(\alpha)$ works.

We continue with the proof of Theorem 3.2.1.
For every $\alpha<\kappa$, let $\overline{\mathrm{S}}_{\alpha}$ be the complete subalgebra of r.o. (S) generated by S_{α}. And for every $\alpha \leq \xi<\kappa$, let $\overline{\mathrm{S}}_{\alpha}^{\xi}$ be the complete subalgebra of $\overline{\mathrm{S}}_{\xi}$ generated by S_{α}.

Claim 3.2.4 For every $\xi \geq \xi(\alpha), \overline{\mathrm{S}}_{\alpha}=\overline{\mathrm{S}}_{\alpha}^{\xi}$.
Proof. It is clear that $\mathrm{S}_{\alpha} \subseteq \overline{\mathrm{S}}_{\alpha}^{\xi}$. So, since $\overline{\mathrm{S}}_{\alpha}^{\xi}$ is a complete subalgebra of r.o. (S), $\overline{\mathrm{S}}_{\alpha} \subseteq \overline{\mathrm{S}}_{\alpha}^{\xi}$. To prove that $\overline{\mathrm{S}}_{\alpha}^{\xi} \subseteq \overline{\mathrm{S}}_{\alpha}$, we only need to show that $\overline{\mathrm{S}}_{\alpha}$ is a complete subalgebra of \bar{S}_{ξ}. It is clear that $\overline{\mathrm{S}}_{\alpha}$ is a subalgebra of $\overline{\mathrm{S}}_{\xi}$. So, let $A \subseteq \mathrm{~S}_{\alpha}$ be a maximal antichain below $\langle p, \dot{c}\rangle \in \mathrm{S}_{\alpha}$ and suppose that A is not a maximal antichain of S_{ξ} below $\langle p, \dot{c}\rangle$. Let $\dot{A}_{1}=\left\{\dot{b} \in \dot{\mathbf{R}}_{\alpha}:(\exists q \in \operatorname{Coll}(\omega,<\alpha))(\langle q, \dot{b}\rangle \in A)\right\}$. Then there exists $q \in \operatorname{Coll}(\omega,<\xi)$ such that

$$
q^{\circ}{ }_{\text {Coll }(\omega,<\xi)} \text { " } \dot{A}_{1} \text { is not a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} "
$$

Since $\xi \geq \xi(\alpha)$,

$$
q^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \text { " } \dot{A}_{1} \text { is not a maximal antichain of } \dot{\mathbf{P}} \text { below } \dot{c} "
$$

So, A is no a maximal antichain of S below $\langle p, \dot{c}\rangle$. A contradiction, since $\overline{\mathrm{S}}_{\alpha}$ is a complete subalgebra of r.o. (S) and A is a maximal antichain of $\overline{\mathrm{S}}_{\alpha}$ below $\langle p, \dot{c}\rangle$.

Definition 3.2.5 Let E be the following poset:

- $h \in \mathbf{E}$ iff there exists $\alpha<\kappa$ such that h is a complete embedding from $\overline{\mathbf{S}}_{\alpha}$ into r.o. $(\operatorname{Coll}(\omega,<\kappa))$.
- $h \leq h^{\prime}$ iff $h^{\prime} \subseteq h$

Note that the $\overline{\mathrm{S}}_{\alpha}, \alpha<\kappa$, have cardinality less than κ. Hence, by Kripke's Theorem (see [J2], Theorem 62), $\mathbf{E} \neq \emptyset$.

Lemma 3.2.6 Let $H \subseteq \mathrm{E}$ be a generic filter over V. Then $e=\bigcup_{h \in H} h$ is a complete embedding from r.o. (S) into r.o. $(\operatorname{Coll}(\omega,<\kappa))$.

Proof. It is clear that $e=\bigcup_{h \in H} h$ is an embedding from dom (e) into r.o. $(\operatorname{Coll}(\omega,<\kappa))$. Thus to prove the lemma it will be enough to show that for every $h \in \mathrm{E}$ and every $\beta<\kappa$ there is $h^{\prime} \leq h$ such that $\operatorname{dom}\left(h^{\prime}\right)=\overline{\mathrm{S}}_{\xi}$ and $\xi \geq \beta$.

So, fix h and β. Let α such that h is a complete embedding from $\overline{\mathrm{S}}_{\alpha}$ into r.o. $\left(\operatorname{Coll}(\omega,<\kappa)\right.$). Let $\xi \geq \xi(\alpha), \xi \geq \beta$. By claim 3.2.4, $\overline{\mathrm{S}}_{\alpha}^{\xi}=\overline{\mathrm{S}}_{\alpha}$. Hence, (see [J2], 25.12), we can extend h to a complete embedding h^{\prime} form $\overline{\mathrm{S}}_{\xi}$ into r.o. (Coll $(\omega,<\kappa)$).

Lemma 3.2.7 E is a<k-closed poset. Hence, forcing with E does not add new bounded subsets of κ. In particular, it does not add reals.

Proof. Let $\left\langle h_{\alpha}: \alpha<\gamma\right\rangle$, with $\gamma<\kappa$, be a decreasing sequence of elements of \mathbf{E}. For each $\alpha<\gamma$, let ξ_{α} be such that $\operatorname{dom}\left(h_{\alpha}\right)=\overline{\mathbf{S}}_{\xi_{\alpha}}$. Let $\xi_{\gamma}=\sup _{\alpha<\gamma}\left(\xi_{\alpha}\right)$ and let $\xi \geq \xi_{\gamma}$. Let $h_{\gamma}=\bigcup_{\alpha<\gamma} h_{\alpha}$. Let B the complete subalgebra of $\overline{\mathrm{S}}_{\xi}$ generated by $\bigcup_{\alpha<\gamma} \overline{\mathrm{S}}_{\xi_{\alpha}}$. So, h_{γ} extends uniquely to a complete embedding h from \mathbf{B} into r.o. $(\operatorname{Coll}(\omega,<\kappa)$). Now (see [J2], 25.12) we can extend h to a complete embedding h^{\prime} from $\overline{\mathrm{S}}_{\xi}$ into r.o. $(\operatorname{Coll}(\omega,<\kappa))$. It is clear that h^{\prime} is below all $h_{\alpha}, \alpha<\gamma$.

Now we complete the proof of Theorem 3.2.1. We need to show that every real in $V[C * G]$, where $C * G$ is a S -generic filter over V, is generic over V for a countable poset. So, let \dot{r} be a simple S-name for a real, $\dot{r} \in V$. Let $\alpha<\kappa$ be such that \dot{r} is a S_{α}-name. Suppose H is E^{V}-generic filter over $V[C * G]$. Notice that by the Product Lemma, $C * G$ is S^{V}-generic over $V[H]$ and $V[C * G][H]=V[H][C * G]$. We have that $e=\bigcup_{h \in H} h$ completely embeds r.o. (S) onto a complete subalgebra Q of r.o. $(\operatorname{Coll}(\omega,<\kappa))$. Let $h \in H$ be such that $h: \overline{\mathrm{S}}_{\xi} \rightarrow$ r.o. $(\operatorname{Coll}(\omega,<\kappa))$ with $\xi \geq \xi(\alpha)$ and let $\zeta<\kappa$ such that $h\left[\overline{\mathbf{S}}_{\xi}\right] \subseteq$ r.o. $(\operatorname{Coll}(\omega,<\zeta))$. Notice that $\mathbf{Q}^{\prime}=\mathbf{Q} \cap$ r.o. $(\operatorname{Coll}(\omega,<\zeta))$ is a complete subalgebra of \mathbf{Q}. Then $g=e[C * G] \cap \mathbf{Q}^{\prime}$ is a \mathbf{Q}^{\prime}-generic filter over $V[H]$. Further,

$$
e_{*}(\dot{r})=\{\langle e(p, \dot{b}), \check{n}\rangle:\langle p, \dot{b}, \check{n}\rangle \in \dot{r}\}
$$

is a \mathbf{Q}^{\prime}-name and $r=\dot{r}[C * G]=e_{*}(\dot{r})[g]$. By Lemma 3.2.7, $\mathrm{Q}^{\prime} \in V$ and so g is $\mathbf{Q}^{\prime}-$ generic over V. Also, Q^{\prime} is countable in $V[C * G]$. Also, by Lemma 3.2.7, $g \in V[C * H]$ and $e_{*}(\dot{r}) \in V[C * G]$. Thus, in $V[C * G], r$ belongs to a countable forcing extension of V.

Corollary 3.2.8 The following are equiconsistent (modulo ZFC):

1. There exists an inaccessible cardinal.
2. $L(\mathrm{R})$-two-step absoluteness for $\sum_{\sim}^{1} \frac{1}{3}$ and $c c c$ forcing
3. \sum_{4}^{1}-absoluteness under Cohen and Random forcing notions.

Proof. (1) implies (2) follows from Theorem 3.2.1 and Lemma 3.1.6. (2) implies (3) is trivial. (3) implies (1) is a result of J. Bagaria and W. H. Woodin (see [B1], 2.1.1.3 or [B-Ju]. See also Corollary 3.1.23).

From Theorem 3.1.15 and the fact that Solovay models are Borel ccc absolute, it readily follows that in a Solovay model there are no uncountable projective wellorderings of reals. Hence, there are no uncountable projective gaps. We will now show that in a Solovay model there are no $\sum \frac{1}{3}$ Suslin trees.
Definition 3.2.9 We say that a poset \mathbf{P} is a \sum_{n}^{1}-indestructible-ccc poset iff for every \sum_{n}^{1} and ccc poset Q,
○Q"P is a ccc poset".

Similarly, we define the \prod_{n}^{1}-indestructible-ccc posets and the ${\underset{\sim}{n}}_{n}^{1}$-indestructible-ccc posets. Finally, \mathbf{P} is a projective-indestructible-ccc poset iff for all $n \geq 1, \mathbf{P}$ is a \sum_{n}^{1}-indestructible-ccc poset

Theorem 3.2.10 Let $L(\mathbb{R})^{M}$ be a Solovay model over V. Then, every ccc poset $\mathrm{P} \in L(\mathrm{R})^{M}$ is a \sum_{\sim}^{1}-indestructible-ccc poset.

Proof. It is essentially the same proof as that of Theorem 2.3.14.
Suppose $L(\mathrm{R})^{M}$ is a Solovay model over V. Let $\kappa=\omega_{1}^{M}$. Force over M with W to obtain a $\operatorname{Coll}(\omega,<\kappa)$-generic filter C_{0} over V so that $\mathrm{R}^{V\left[C_{0}\right]}=\mathrm{R}^{M}$ (Lemma 3.1.1). We work in $V\left[C_{0}\right]$.

Let $\mathrm{P} \in L(\mathrm{R})^{V\left[C_{0}\right]}$ be a ccc poset so that the set, the ordering and the incompatibility relation of \mathbf{P} are definable with a real a and an ordinal α as parameters. By the Factor Lemma for the Levy-collapse, we may assume that the parameters of the definition of P are in the ground model V. Further, since $\operatorname{Coll}(\omega,<\kappa)$ is an almost-homogeneous poset, we may assume that

$$
{ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \text { " } \dot{\mathrm{P}} \text { is a ccc poset". }
$$

Let Q be a $\sum_{\sim}^{1} \frac{1}{3}$ and ccc poset in $V\left[C_{0}\right]$. Suppose that there exists a filter $G \subseteq \mathbf{Q}$ generic over $V\left[C_{0}\right]$ such that $V\left[C_{0} * G\right]^{2}$ " $\dot{\mathrm{P}}\left[C_{0} * G\right]$ is not ccc". Let $\mathrm{S}=$ $\operatorname{Coll}(\omega,<\kappa) * \mathrm{Q}$ and let $\dot{A}=\left\{\tau_{i}: i<\kappa\right\}$ be a S-name for an uncountable maximal antichain of $\mathrm{P}\left[C_{0} * G\right]$.

By Lemma 3.2.6 and Lemma 3.2.7, we know that there exists a $<\kappa$-closed poset $\mathrm{E} \in V$ such that for every $H \subseteq \mathrm{E}$ generic over V there exists a complete embedding e from \mathbf{S} to $\operatorname{Coll}(\omega,<\kappa)$ in $V[H]$.

Let $V_{0}=V[H]\left[C_{0} * G\right]$ be a $\mathbf{E} \times \mathbf{S}$ forcing extension of V. That is, H is E-generic over V, C_{0} is $\operatorname{Coll}(\omega,<\kappa)$-generic over $V[H]$ and G is $\dot{\mathbf{Q}}\left[C_{0}\right]$-generic over $V[H]\left[C_{0}\right]$. Since \mathbf{E} is $<\kappa$-closed, $L(\mathbf{R})^{V[C 0 * G]}=L(\mathbf{R})^{V_{0}}$ and $\omega_{1}^{V\left[C_{0} * G\right]}=\omega_{1}^{V_{0}}$. Hence, $V_{0}{ }^{2}$ " $\dot{A}\left[C_{0} * G\right]$ is an uncountable antichain of $\dot{\mathrm{P}}\left[C_{0} * G\right]$ ".

Let $e \in V[H]$ be the generic complete embedding given by H. Then, there is a filter $C_{1} \subseteq \operatorname{Coll}(\omega,<\kappa)$ generic over $V[H]$ such that $C_{0} * G=e^{-1}\left(C_{1}\right)$. Let $e_{*}(\dot{A})=\left\{e_{*}\left(\tau_{i}\right): i<\kappa\right\} \in V[H]$ be the e_{*}-image of \dot{A}. Since, for every $i<\kappa$, $V[H]^{2}$ " ${ }^{\circ} \mathrm{s} \tau_{i} \in \dot{\mathrm{P}}$ ", " $\tau_{i} \in \dot{\mathrm{P}}$ " is a formula with only a, α and τ_{i} as parameters and e is a complete embedding,

$$
V[H]^{2} " \circ_{\operatorname{Coll}(\omega,<\kappa)} e_{*}\left(\tau_{i}\right) \in \dot{\mathrm{P}} "
$$

Hence,

$$
V[H]\left[C_{1}\right]^{2} " e_{*}\left(\tau_{i}\right)\left[C_{1}\right] \in \dot{\mathrm{P}}\left[C_{1}\right] ",
$$

for every $i<\kappa$.
Note that, $V\left[C_{1}\right]^{2}$ " $\dot{\mathrm{P}}\left[C_{1}\right]$ is a ccc poset" and that, in $V\left[C_{1}\right], \mathrm{E}$ is a σ-closed poset. But no σ-closed poset can kill the ccc-ness of a ccc poset. So $V\left[C_{1}\right][H]^{2}$ " $\dot{\mathrm{P}}\left[C_{1}\right]$ is a ccc poset" and, by the Product Lemma,

$$
V[H]\left[C_{1}\right]^{2} \text { " } \dot{\mathrm{P}}\left[C_{1}\right] \text { is a ccc poset". }
$$

Thus, we can find $i, j<\kappa, i \neq j$, such that $V[H]\left[C_{1}\right]^{2}$ " $\tau_{i}\left[C_{1}\right], \tau_{j}\left[C_{1}\right]$ are compatible".

Now, $L(\mathrm{R})^{V[H]\left[C_{1}\right]}=L(\mathrm{R})^{V\left[C_{1}\right]}$ and $L(\mathrm{R})^{V[H]\left[C_{0}\right]}=L(\mathrm{R})^{V\left[C_{0}\right]}$, since E is a $<\kappa$-closed poset. Hence $L(\mathbf{R})^{V[H]\left[C_{1}\right]}$ and $L(\mathbf{R})^{V\left[H \|\left[C_{0}\right]\right.}$ are Solovay models over V. Therefore, by Theorem 3.2.1, $L(\mathrm{R})^{V_{0}}$ is also a Solovay model over V. Moreover, since $\omega_{1}^{V_{0}}=\omega_{1}^{V[H]\left[C_{1}\right]}$ and $L(\mathrm{R})^{V_{0}} \subseteq L(\mathrm{R})^{V[H]\left[C_{1}\right]}$, by Lemma 3.1.6, there is an elementary embedding j from $L(\mathbf{R})^{V_{0}}$ into $L(\mathrm{R})^{V[H]\left[C_{1}\right]}$ which is the identity on the reals and ordinals. So, by absoluteness between $L(\mathrm{R})^{V_{0}}$ and $L(\mathrm{R})^{V[H]\left[C_{1}\right]}$ (see [Ku], VII.7.13),

$$
V_{0}{ }^{2} " \tau_{i}\left[C_{0} * G\right], \tau_{j}\left[C_{0} * G\right] \text { are compatible". }
$$

But since E is $<\kappa$-closed, $L(\mathrm{R})^{V_{0}}=L(\mathrm{R})^{V\left[C_{0} * G\right]}$ and hence,

$$
V\left[C_{0} * G\right]^{2} \text { " } \tau_{i}\left[C_{0} * G\right], \tau_{j}\left[C_{0} * G\right] \text { are compatible". }
$$

A contradiction.
Corollary 3.2.11 If $L(\mathbf{R})^{M}$ is a Solovay model over V, then in $L(\mathbf{R})^{M}$ there are no \sum_{\sim}^{1} Suslin trees.

Proof. If T is a \sum_{3}^{1} Suslin tree, then $\mathbf{P}_{T}=\left\langle T, \geq_{T}\right\rangle$ is $\sum_{\frac{1}{3}}^{1}$ ccc poset. But, in every P_{T}-generic extension adding an uncountable branch to $\widetilde{T}, \mathrm{P}_{T}$ is not ccc. A contradiction with Theorem 3.2.10.

3.3 Collapsing a $\Sigma_{\omega}-M$ ahlo cardinal

This section is devoted to proving the following theorem:
Theorem 3.3.1 The following are equiconsistent (modulo ZFC)

1. There exists a Σ_{ω}-Mahlo cardinal.
2. L(R)-two-step absoluteness for projective and ccc posets.
3. \sum_{4}^{1}-absoluteness for projective and ccc posets.

We first define the Δ_{n}-Mahlo cardinals, Σ_{n}-Mahlo cardinals, the Π_{n}-Mahlo cardinals and the Σ_{ω}-Mahlo cardinals, we fix their place in the large cardinal hierarchy (below a Mahlo) and study some of their properties that we use in the proof of the theorem. We divide the proof of the theorem in two parts (subsection 3.3.2 and subsection 3.3.3). In the first part we will show that every projective and ccc forcing extension of a Σ_{ω}-Mahlo Solovay model over V is also a Σ_{ω}-Mahlo Solovay model in V. In the second part we prove that \sum_{4}^{1}-absoluteness for all projective and ccc posets implies that ω_{1} is a Σ_{ω}-Mahlo cardinal in L. Finally, we observe that both proofs really give an almost level-by-level proof: the first shows that for all $n \geq 3$, every \sum_{n+1}^{1} and ccc forcing extension of a Π_{n}-Mahlo Solovay model over V is a Π_{n}-Solovay model over V. The second shows that for all $n \geq 2, \sum_{4}^{1}$-absoluteness for ${\underset{\sim}{n}}_{n+2}^{1}$ and ccc forcing notions implies that ω_{1} is a Σ_{n}-Mahlo cardinal in L.

3.3.1 Σ_{ω}-Mahlo cardinals

Definition 3.3.2 Let κ be a cardinal. $C \subseteq \kappa$ is a Σ_{n}-closed and unbounded subset of κ, a Σ_{n}-club in κ for short, iff C is a club in κ and there exists a Σ_{n} formula, $\varphi(x ; y)$ and $a \in V_{\kappa}$ such that for every $\alpha<\kappa$

$$
\alpha \in C \text { iff } V_{\kappa}{ }^{2} \varphi(\alpha ; a)
$$

i.e., C is definable over V_{κ} with a Σ_{n} formula with parameters from V_{κ}. Similarly, we define Π_{n}-clubs in κ by substituting Π_{n} for Σ_{n} in the above definition. $A \Delta_{n}$-club in κ is a club in κ that is both Σ_{n} and Π_{n}.

Note that for every cardinal κ and every club $C \subseteq \kappa, C$ is a Σ_{0}-club iff it is a Π_{0}-club iff it is a Δ_{0}-club. Moreover, for every $n \in \omega$, if C is a Σ_{n}-club (Π_{n}-club, Δ_{n}-club), then C is a Σ_{m}-club, Π_{m}-club and Δ_{m}-club for every $m>n$.

Note also that for every $n \in \omega$, if C and D are Σ_{n}-clubs (Π_{n}-clubs, Δ_{n}-clubs) then $C \cap D$ is also a Σ_{n}-club (Π_{n}-club, Δ_{n}-club). So for every $n \in \omega$, the collection of all Σ_{n}-clubs (Π_{n}-clubs, Δ_{n}-clubs) has the finite intersection property. So, these collections generate non-principal and proper filters over κ.

Definition 3.3.3 Let κ be a cardinal. $S \subseteq \kappa$ is a Σ_{n}-stationary subset of κ iff for all Σ_{n}-club C in $\kappa, S \cap C \neq \emptyset$. Similarly, we define Π_{n}-stationary and Δ_{n}-stationary subset of κ.

Note that every stationary subset of κ is a Σ_{n}-stationary (Π_{n}-stationary, Δ_{n} stationary) set for every $n \in \omega$. Moreover, if C is a Σ_{n}-club (Π_{n}-club, Δ_{n}-club) and S is a Σ_{n}-stationary (Π_{n}-stationary, Δ_{n}-stationary) set, then $C \cap S$ it is also a Σ_{n}-stationary (Π_{n}-stationary, Δ_{n}-stationary) set. Finally, for every $n \in \omega$, every Σ_{n}-stationary (Π_{n}-stationary, Δ_{n}-stationary) subset of κ is unbounded (because the final segments of κ are Σ_{0}-clubs) and hence, of cardinality κ.

Definition 3.3.4 Let κ be a cardinal. κ is a Σ_{n}-Mahlo cardinal (Π_{n}-Mahlo cardinal, Δ_{n}-Mahlo cardinal) iff κ is an inaccessible cardinal and the set I of all inaccessible cardinals below κ is a Σ_{n}-stationary (respectively, Π_{n}-stationary, Δ_{n}-stationary) subset of κ. Finally, κ is a Σ_{ω}-Mahlo cardinal iff κ is a Σ_{n}-Mahlo cardinal for all $n \in \omega$.

Note that a cardinal κ is Σ_{0}-Mahlo iff it is Π_{0}-Mahlo iff it is Δ_{0}-Mahlo. Moreover for every $n \in \omega$, if κ is a Σ_{n}-Mahlo (Π_{n}-Mahlo, Δ_{n}-Mahlo), then κ is Σ_{m}-Mahlo, Π_{m}-Mahlo and Δ_{m}-Mahlo for every $m<n$. In particular, if κ is Σ_{ω}-Mahlo cardinal, then κ is also Π_{n}-Mahlo and Δ_{n}-Mahlo for every $n \in \omega$.

It is obvious that every Mahlo cardinal is a Σ_{ω}-Mahlo cardinal. Moreover,

Fact 3.3.5 If κ is a Mahlo cardinal, then the set of Σ_{ω}-Mahlo cardinals below κ is a stationary subset of κ.

Proof. Suppose that κ is a Mahlo cardinal. Let C be a club in κ.
Note that if $D \subseteq \lambda$ is a Σ_{n}-club on $\lambda, \lambda<\kappa$ inaccessible, for some $n \in \omega$, then $D^{\prime}=D \cup(\kappa \backslash \lambda)$ is a club in κ and, since $V_{x}=y$ is a Π_{1} function, it is Π_{1} definable, with λ as parameter, on V_{κ} : for all $\xi<\kappa, \xi \in D^{\prime}$ iff

$$
V_{\kappa}^{2}\left(\xi<\lambda \wedge \operatorname{Sat}\left(V_{\lambda},{ }^{\mathrm{p}} \varphi^{\mathrm{q}}, \xi\right)\right) \vee \lambda \leq \xi,
$$

where φ is the Σ_{n} formula that defines D in $V_{\lambda},{ }^{\mathrm{p}} \varphi^{\mathrm{q}}$ is the Gödel number of φ and $\operatorname{Sat}\left(v_{0}, v_{1}, v_{2}\right)$ is the Δ_{1} formula that defines the satisfaction relation for sets. i.e., Sat (v_{0}, v_{1}, v_{2}) iff the set v_{0} satisfies the formula (of Gödel number) v_{1} by means of the sequence v_{2}.

Let $\left\langle D_{\alpha}: \alpha<\kappa\right\rangle$ be an enumeration of all clubs in κ which are first order definable (with parameters) over V_{κ} and such that for every inaccessible cardinal $\lambda<\kappa,\left\langle D_{\alpha}: \alpha<\lambda\right\rangle$ enumerates all clubs in κ such that $D_{\alpha} \cap \lambda$ is a club in λ which is first order definable on V_{λ}. Then $D=\Delta_{\alpha<\kappa} D_{\alpha}$ is a club in κ. Let $E=C \cap D$. Since κ is a Mahlo cardinal,

$$
\left\langle V_{\kappa}, \in, E\right\rangle^{2} \forall \alpha \exists \mu(\alpha<\mu \wedge \mu \text { is inaccessible } \wedge \mu \in E)
$$

and there is an inaccessible cardinal λ such that $\left\langle V_{\lambda}, \in, E \cap V_{\lambda}\right\rangle 4\left\langle V_{\kappa}, \in, E\right\rangle$ (see $[\mathrm{K}]$, I.6.2). So,

$$
\left\langle V_{\lambda}, \in, E \cap V_{\lambda}\right\rangle^{2} \forall \alpha \exists \mu(\alpha<\mu \wedge \mu \text { is inaccessible } \wedge \mu \in E)
$$

Notice that λ is a Σ_{ω}-Mahlo cardinal: Let $D \subseteq \lambda$ be a Σ_{n}-definable $(n \in \omega)$ club in λ. So, for some $\alpha<\lambda, D_{\alpha} \cap \lambda=D$. Let μ be a inaccessible cardinal such that $\alpha<\mu$ and $\mu \in E \cap V_{\lambda}$. So, $\mu \in D_{\alpha}$ and hence $\mu \in D$. Moreover, since $E \cap V_{\lambda}=E \cap \lambda$ is unbounded in λ and E is a club, $\lambda \in E$ and so $\lambda \in C$. Therefore, the set of Σ_{ω}-Mahlo cardinals below κ is a stationary subset of κ

Lemma 3.3.6 Let $n \geq 1$. Suppose that κ is a cardinal and let $I_{n}=\{\lambda<\kappa: \lambda$ is inaccessible $\left.\wedge V_{\lambda} 4_{n} V_{\kappa}\right\}$. Then,

1. κ is a Π_{n}-Mahlo cardinal iff κ is an inaccessible cardinal and the set I_{n} is a Π_{n}-stationary subset of κ.
2. If κ is an inaccessible cardinal and I_{n} is an unbounded subset of κ, then κ is a Σ_{n}-Mahlo cardinal.

So, κ is a Σ_{ω}-Mahlo cardinal iff κ is inaccessible and for every $n \in \omega, I_{n}$ is a Π_{n} stationary subset of κ.

Proof. We need the following fact:
Fact 3.3.7 If κ is an inaccessible cardinal, then for all $n \geq 1, C_{n}=\left\{\alpha<\kappa: V_{\alpha} \mathbf{4}_{n}\right.$ $\left.V_{\kappa}\right\}$ is a Π_{n}-club on κ.

Proof. Suppose that κ is inaccessible. It is easy to see that C_{n} is a closed and unbounded subset of κ (see [K] I.6.1). So, we only need to see that C_{n} is a $\Pi_{n^{-}}$ definable over V_{κ}. Let $\sigma_{n}\left(v_{0}, v_{1}\right)$ the formula that defines the satisfaction relation for Σ_{n} formulas. i.e., $\sigma_{n}\left(v_{0}, v_{1}\right)$ iff v_{0} is (the Gödel number of) a Σ_{n} formula $\varphi, v_{1} \in V_{\kappa}$ and $V_{\kappa}{ }^{2} \varphi\left(v_{1}\right)$. Note that $\sigma_{n}\left(v_{0}, v_{1}\right)$ is a Σ_{n} formula (see [J2] 14.18 and ff.).

We claim that for every $\alpha<\kappa, \alpha \in C_{n}$ iff

$$
\begin{equation*}
V_{\kappa}{ }^{2}\left(\forall^{\mathrm{p}} \varphi^{\mathrm{q}} \in \Sigma_{n}\right)\left(\forall a \in V_{\alpha}\right)\left(\sigma_{n}\left({ }^{\mathrm{p}} \varphi^{\mathrm{q}}, a\right) \rightarrow \operatorname{Sat}\left(V_{\alpha},{ }^{\mathrm{p}} \varphi^{\mathrm{q}}, a\right)\right), \tag{*}
\end{equation*}
$$

where Σ_{n} denotes the set of (Gödel numbers of) Σ_{n} formulas. Since $\sigma_{n}\left(v_{0}, v_{1}\right)$ is a Σ_{n} formula with $n \geq 1, \operatorname{Sat}\left(v_{0}, v_{1}, v_{2}\right)$ is a Δ_{1} formula, Σ_{n} is a Δ_{1} definable set and V_{α} is a Π_{1} definable set with parameter α, it is easy to see that the right-hand of $(*)$ is a Π_{n} formula with α as parameter.

It is clear that if $\alpha<\kappa$ and $\alpha \in C_{n}$, then $(*)$. Now, we show by induction on $m \leq n$ that if $(*)$ holds for α then for every Σ_{m} formula $\varphi(x)$ and every $a \in V_{\alpha}$, $V_{\alpha}{ }^{2} \varphi(a)$ iff $V_{\kappa}{ }^{2} \varphi(a)$:
$\underline{m=0}$: Clear since the Σ_{0} formulas are absolute between transitive sets containing all the parameters of the formula.
$\underline{m+1}$: By inductive hypothesis the Σ_{m+1} formulas are upward absolute. So suppose that $\varphi(x)$ is a Σ_{m+1} formula, $a \in V_{\alpha}$ and $V_{\kappa}{ }^{2} \varphi(a)$. So, since $m+1 \leq n$, $\varphi(x)$ is a Σ_{n} formula and so, $V_{\kappa}{ }^{2} \sigma_{n}\left({ }^{\mathrm{p}} \varphi^{\mathrm{q}}, a\right)$. Hence, by $(*), V_{\kappa}{ }^{2} \operatorname{Sat}\left(V_{\alpha}{ }^{\mathrm{p}} \varphi^{\mathrm{q}}, a\right)$. Therefore, $V_{\kappa}{ }^{2} \varphi(a)^{V_{\alpha}}$. i.e., $V_{\alpha}{ }^{2} \varphi(a)$.

Hence, if α satisfies $(*)$, then $V_{\alpha} \mathbf{4}_{n} V_{\kappa}$.
Now, we prove the lemma.
(1) If κ is a Π_{n}-Mahlo cardinal, then since $C_{n}=\left\{\alpha<\kappa: V_{\alpha} \mathbf{4}_{n} V_{\kappa}\right\}$ is a Π_{n}-club on κ, the set I of all inaccessible cardinals below κ is Π_{n}-stationary and $I_{n}=I \cap C_{n}, I_{n}$ is Π_{n}-stationary. The other direction is obvious.
(2) Suppose that κ is an inaccessible cardinal and there are unbounded many inaccessible cardinals λ such that $V_{\lambda} \preceq_{n} V_{\kappa}$. Let C be a club on κ which is definable over V_{κ} by means of a Σ_{n} formula $\varphi(x)$ with a parameter $a \in V_{\kappa}$. Then,

$$
V_{\kappa}{ }^{2} \forall \alpha \exists \beta(\alpha<\beta \wedge \varphi(\beta))
$$

Since $\varphi(x)$ is a Σ_{n} formula, the right-hand is a Π_{n+1} sentence with a as parameter. Since there are unbounded many inaccessible cardinals such that $V_{\lambda} \preceq_{n} V_{\kappa}$, there is an inaccessible cardinal λ such that $a \in V_{\lambda}$ and $V_{\lambda} 4_{n} V_{\kappa}$. Therefore,

$$
V_{\lambda}{ }^{2} \forall \alpha \exists \beta(\alpha<\beta \wedge \varphi(\beta))
$$

by downward absoluteness of Π_{n+1} formulas for V_{λ}, V_{κ}. So, $C \cap \lambda$ is unbounded in λ. But then $\lambda \in C$.

Corollary 3.3.8 For every $n \in \omega$, $n \geq 1$, every Π_{n}-Mahlo cardinal is a Σ_{n}-Mahlo cardinal.

Proof. Follows from (1) and (2) of Lemma 3.3.6.

Corollary 3.3.9 If κ is an inaccessible cardinal limit of inaccessible cardinals, then κ is a Σ_{1}-Mahlo cardinal.

Proof. Recall that for every uncountable infinite cardinal $\lambda<\kappa, H_{\lambda} 4{ }_{1} H_{\kappa}$. Since for every inaccessible cardinal $\mu, H_{\mu}=V_{\mu}$, if κ is an inaccessible cardinal limit of inaccessible cardinals, there are unbounded many inaccessible cardinals λ such that $V_{\lambda} 4_{1} V_{\kappa}$. So, by (2) of Lemma 3.3.6, κ is a Σ_{1}-Mahlo cardinal.

Note that if κ is a Σ_{0}-Mahlo cardinal then κ is an inaccessible cardinal limit of inaccessible cardinals. So, Corollary 3.3.9 implies that for every Σ_{0}-Mahlo cardinal is Σ_{1}-Mahlo.

Definition 3.3.10 Let κ be a regular cardinal. κ is 0 -inaccessible iff κ is an inaccessible cardinal; κ is α-inaccessible $(\alpha>0)$ iff for every $\beta<\alpha$, κ is the limit of β-inaccessible cardinals; κ is hyperinaccessible iff κ is a κ-inaccessible cardinal.

It is easy to see that for every α and every $\kappa, " \kappa$ is a α-inaccessible cardinal" is a relation between α and κ which is Δ_{2} definable over V_{κ}. So,

Fact 3.3.11 If κ is a Δ_{2}-Mahlo cardinal, then κ is an hyperinaccessible cardinal.
Proof. Suppose that κ is a Δ_{2}-Mahlo cardinal. We prove that κ is hyperinaccessible by showing by induction on $\alpha<\kappa$ that κ is α-inaccessible: If $\alpha=0$ or α is limit, it is clear by the definitions of Δ_{2}-Mahlo cardinal and of α-inaccessible cardinal, respectively. So suppose that $\alpha=\beta+1$ and assume that κ is a β-inaccessible cardinal. Suppose, towards a contradiction, that κ is not $\beta+1$-inaccessible. Then there exists $\gamma<\kappa$ such that for all $\mu>\gamma$, if μ is a cardinal limit of δ-inaccessible cardinals with $\delta<\beta$, then μ is a singular cardinal. But then,

$$
C=\{\mu<\kappa: \gamma<\mu \wedge(\forall \delta<\beta)(\mu \text { is limit of } \delta \text {-inaccessible cardinals })\}
$$

is a Δ_{2}-club in κ of singular cardinals. A contradiction.
Corollary 3.3.12 The least Σ_{1}-Mahlo cardinal is not a Δ_{2}-Mahlo cardinal.
Fact 3.3.13 The least hyperinaccessible cardinal is not a Π_{2}-Mahlo cardinal.
Proof. Let κ be the least hyperinaccessible cardinal and suppose that κ is a Π_{2}-Mahlo cardinal. Since κ is a hyperinaccessible cardinal,

$$
V_{\kappa}{ }^{2} \forall \alpha \beta \exists \mu(\beta<\mu \wedge \mu \text { is } \alpha \text {-inaccessible }) .
$$

Note that the right hand is a Π_{3}-sentence. By (1) of Lemma 3.3.6, there exists $\lambda<\kappa$ such that λ is inaccessible and $V_{\lambda} \preceq_{2} V_{\kappa}$. Since the Π_{3}-sentences are downward absolute for V_{λ}, V_{κ},

$$
V_{\lambda}{ }^{2} \forall \alpha \beta \exists \mu(\beta<\mu \wedge \mu \text { is } \alpha \text {-inaccessible })
$$

But, then λ is a hyperinaccessible cardinal. A contradiction.

Fact 3.3.14 Suppose that κ is a Π_{n+1}-Mahlo cardinal with $n \geq 1$. Then the set of Σ_{n}-Mahlo cardinals below κ is a Π_{n+1}-stationary subset of κ.

Proof. Let κ be a Π_{n+1}-Mahlo cardinal with $n \geq 1$. Let D be a Π_{n+1}-club on κ. Let $C_{n+1}=\left\{\alpha<\kappa: V_{\alpha} 4_{n+1} V_{\kappa}\right\}$. By Lemma 3.3.7, C_{n+1} is also a Π_{n+1}-club on κ and so, $E=C_{n+1} \cap D$ is a Π_{n+1}-club on κ. Since κ is a Π_{n+1}-Mahlo cardinal with $n \geq 1$, the set of inaccessible cardinals below κ is Π_{n+1}-stationary.

Let $\lambda \in E$ an inaccessible cardinal. So, $\lambda \in D$.
Suppose that C is a Σ_{n}-club on λ. Let $\varphi(x)$ be the Σ_{n}-formula (with possibly parameters in V_{λ}) such that for every $\alpha<\lambda$,

$$
\alpha \in C \text { iff } V_{\lambda}{ }^{2} \varphi(\alpha)
$$

Then V_{λ} satisfies

1. $\forall \alpha \exists \beta(\alpha<\beta \wedge \varphi(\beta))$.
2. $\forall \alpha((\forall \beta<\alpha)(\exists \gamma<\alpha)(\beta<\gamma \wedge \varphi(\gamma)) \rightarrow \varphi(\alpha))$.

Recall that (1) and (2) are Π_{n+1}-formulas. Since $\lambda \in C_{n+1}, V_{\lambda} \mathbf{4}_{n+1} V_{\kappa}$. Let $C^{\prime} \subseteq \kappa$ be defined by $\alpha \in C^{\prime}$ iff $V_{\kappa}{ }^{2} \varphi(\alpha)$. Since, $V_{\lambda} 4_{n+1} V_{\kappa}, C^{\prime}$ is a Σ_{n}-club on κ. Hence, since κ is a Π_{n+1}-Mahlo cardinal,

$$
V_{\kappa}{ }^{2} \exists \mu(\mu \text { is inaccessible } \wedge \varphi(\mu)) .
$$

Since φ is a Σ_{n} formula with $n \geq 1$ and " μ is inaccessible" is Δ_{2} predicate on μ, the formula on the right-hand is a Σ_{n+1}-formula and hence it is satisfied by V_{λ}. But then, λ is a Σ_{n}-Mahlo cardinal.

Corollary 3.3.15 For all $n \geq 1$, the least Σ_{n}-Mahlo cardinal is not a Π_{n+1}-Mahlo cardinal.

3.3.2 Absoluteness by collapsing a Σ_{ω}-Mahlo cardinal

Definition 3.3.16 $L(\mathrm{R})$ is a Σ_{ω}-Mahlo Solovay model over V iff

1. For every $x \in \mathbf{R}, \omega_{1}$ is a Σ_{ω}-Mahlo cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Clearly, every Σ_{ω}-Mahlo Solovay model over V is a Solovay model over V. So, we can give a characterization of Σ_{ω}-Mahlo Solovay models in the same way as that of Lemma 3.1.1. Namely

Lemma 3.3.17 Suppose that M satisfies

1. For every $x \in \mathbf{R}, \omega_{1}$ is a Σ_{ω}-Mahlo cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Then there exists a forcing notion W such that does not add reals and creates a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over V such that M and $V[C]$ have the same reals. Thus, W forces that $L(\mathrm{R})$ is a Σ_{ω}-Mahlo Solovay model over V.

Theorem 3.3.18 Suppose $L(\mathrm{R})^{M}$ is a Σ_{ω}-Mahlo Solovay model over V and P is a projective and ccc poset in M. Then the $L(\mathrm{R})$ of any P -generic extension of M is also a Σ_{ω}-Mahlo Solovay model over V.

Proof. Suppose $L(\mathrm{R})^{M}$ is a Σ_{ω}-Mahlo Solovay model over V. Let $\kappa=\omega_{1}^{M}$ and let C be the C oll $(\omega,<\kappa)$-generic filter over V such that, with W -value $1, \mathrm{R}^{M}=\mathrm{R}^{V[C]}$. Notice that, as in Theorem 3.2.1, to prove the theorem it will be enough to show that for every $n \geq 4$, if P is a \sum_{n}^{1} and ccc poset in $V[C]$, then, for every G is P -generic filter over $V[C]$, every real in $V[C][G]$ is generic over V for a countable poset.

Let P be a \sum_{n}^{1} and ccc poset in $V[C]$ and let $\dot{\mathrm{P}}$ be a $\operatorname{Coll}(\omega,<\kappa)$-name for P in V. So, ${ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)}$ " $\dot{\mathrm{P}}$ is a ccc poset" and there are a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real \dot{a} and Σ_{n}^{1} formulas $\varphi_{\leq}(x, y ; u)$ and $\varphi_{\perp}(x, y ; u)$ such that:

1. ${ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{\leq}_{P} y \leftrightarrow \varphi_{\leq}(x, y ; \dot{a})\right) "$.
2. ${ }^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} "\left(\forall x y \in \dot{\omega}^{\omega}\right)\left(x \dot{\perp}_{P} y \leftrightarrow \varphi_{\perp}(x, y ; \dot{a})\right) "$.

Let $\mathbf{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$. Note that S is a κ-cc poset.
We use the same notational conventions from Theorem 3.2.1.
Definition 3.3.19 Let κ be an inaccessible cardinal. For every $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ formula $\varphi(x)$ with $n \geq 2$, every simple Coll $(\omega,<\kappa)$-name τ for a real and every $p \in$ Coll $(\omega,<\kappa)$, let $R_{\varphi}(p, \tau)$ be defined by induction on the complexity of $\varphi(x)$ as follows:
$\underline{n=2}$: Then, $\varphi(x)$ is Σ_{2}^{1}. Suppose that $\varphi(x)$ is $\exists y \psi(x, y)$ where $\psi(x, y)$ is Π_{1}^{1}. Then, $R_{\varphi}(p, \tau)$ iff
$\exists \alpha \exists \sigma\left(\tau, \sigma\right.$ are simple Coll $(\omega,<\alpha)$-names for reals $\left.\wedge p{ }^{\circ}{ }_{\text {Coll }}(\omega,<\alpha) \psi(\sigma, \tau)\right)$
$\underline{n+1}$: Then, $\varphi(x)$ is of the form $\exists y \neg \psi(x, y)$ where $\psi(x, y)$ is a Σ_{n}^{1} formula. Then $\overline{R_{\varphi}(p, \tau) i f f}$
$\exists \sigma\left(\sigma\right.$ is a simple Coll $(\omega,<\kappa)$-name for a real $\left.\wedge(\forall q \leq p) \neg R_{\psi}(q, \tau, \sigma)\right)$
If $\varphi(x)$ is Π_{n}^{1} formula with $n \geq 2$, then $R_{\varphi}(p, \tau)$ iff $(\forall q \leq p) \neg R_{\neg \varphi}(p, \tau)$.
Recall (see the Introduction) that for an inaccessible cardinal $\kappa, \operatorname{Coll}(\omega,<\kappa)$ is a poset which is Δ_{1}-definable with κ as parameter and it is Δ_{1}-definable without parameters over V_{κ}. We use this fact to prove the following.

Lemma 3.3.20 Let κ be an inaccessible cardinal. Suppose that $p \in \operatorname{Coll}(\omega,<\kappa)$, τ is a simple Coll $(\omega,<\kappa)$-name for a real and $\varphi(x)$ is a $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ formula with $n \geq 2$. Then, $R_{\varphi}(p, \tau)$ is a relation which is Σ_{n-1} (respectively, Π_{n-1}) definable without parameters over V_{κ}.

Proof. We need the following facts:
Fact 3.3.21 Suppose that κ is a regular uncountable cardinal. Then " x is a maximal antichain of Coll $(\omega,<\kappa)$ " is a property which is Δ_{1}-definable with κ as parameter and it is Δ_{1}-definable without parameters over V_{κ}.

Proof. Recall that for every uncountable cardinal, $\operatorname{Coll}(\omega,<\kappa)$ is a κ-cc poset. Hence, if x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$, then $|x|<\kappa$. So, by regularity of κ, there is $\alpha<\kappa$ such that x is a maximal antichain of $\operatorname{Coll}(\omega,<\alpha)$. Hence, " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " iff there is $\alpha<\kappa$ such that:

1. $(\forall p \in x)(p \in \operatorname{Coll}(\omega,<\alpha))$
2. $(\forall p q \in x)(p \neq q \rightarrow p \perp q)$
3. $\neg(\exists p \in \operatorname{Coll}(\omega,<\alpha))((\forall q \in x)(p \perp q))$

But since $y=\operatorname{Coll}(\omega,<\alpha)$ is a relation which is Δ_{1} definable with α as parameter, " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " is a property which is Δ_{1}-definable with κ as parameter.

Since for every maximal antichain x of $\operatorname{Coll}(\omega,<\kappa),|x|<\kappa$ and $x \subseteq V_{\kappa}$, $x \in V_{\kappa}$. Note, also, $V_{\kappa}{ }^{2}$ " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " iff V_{κ} satisfies that there is α such that (1)-(3) above holds. So, " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " is a property of x which is Σ_{1} definable (without parameters) over V_{κ}.

Moreover, $V_{\kappa}{ }^{2}$ " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " iff V_{κ} satisfies:

1. $(\forall p \in x)(p \in \operatorname{Coll}(\omega,<\kappa))$
2. $(\forall p q \in x)(p \neq q \rightarrow p \perp q)$
3. $\neg \exists p(p \in \operatorname{Coll}(\omega,<\kappa) \wedge(\forall q \in x)(p \perp q))$

But, since that $\operatorname{Coll}(\omega,<\kappa)$ is a Δ_{1}-definable (without parameters) poset over V_{κ}, (1) and (2) are Δ_{1}-predicates on x over V_{κ} and (3) is a Π_{1}-predicate on x over V_{κ} (all without parameters). So, " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " is a property on x which is Π_{1}-definable without parameters over V_{κ}.

So, " x is a maximal antichain of $\operatorname{Coll}(\omega,<\kappa)$ " is a property which is $\Delta_{1^{-}}$ definable without parameters over V_{κ}.

Fact 3.3.22 Suppose that κ is a regular uncountable cardinal. Then, " τ is a simple Coll $(\omega,<\kappa)$-name for a real" is a Δ_{1}-definable, with κ as parameter, property of τ and Δ_{1}-definable, without parameters, property of τ over V_{κ}.

Proof. Suppose that τ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real. Identifying the standard $\operatorname{Coll}(\omega,<\kappa)$-names for natural numbers with elements of ω, τ is a simple Coll $(\omega,<\kappa)$-name for a real iff

1. $(\forall x \in \tau)\left(x\right.$ is an ordered triple $\left.\wedge x_{0} \in \operatorname{Coll}(\omega,<\kappa) \wedge x_{1} \in \omega \wedge x_{2} \in \omega\right)$.
2. $(\forall n \in \omega)(\exists x \in \tau)\left(x_{1}=n\right)$.
3. $(\forall n \in \omega)\left(\left\{x_{0}: x \in \tau \wedge x_{1}=n\right\}\right.$ is a maximal antichain of $\left.\operatorname{Coll}(\omega,<\kappa)\right)$.
4. $(\forall x y \in \tau)\left(x_{0}=y_{0} \wedge x_{1}=y_{1} \rightarrow x_{2}=y_{2}\right)$
where for an ordered triple x, x_{0}, x_{1} and x_{2} denote, respectively, the first, the second and the third coordinates of x. Since the function that sends every ordered triple x to $x_{i}(0 \leq i \leq 2)$ is a Δ_{0} function, (1) and (4) are Δ_{0} on τ. Since $\operatorname{Coll}(\omega,<\kappa)$ is a Δ_{1}-definable, with κ as parameter, poset (1) is Δ_{1} with κ as parameter. Finally, by fact above, (3) is Δ_{1} with κ as parameter. So, " τ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real" is a property which is Δ_{1}-definable with κ as parameter.

Moreover, if τ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real, then $\tau \in V_{\kappa}$. So, as above fact, " τ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real" is Δ_{1}-definable without parameters over V_{κ}.

Now, we prove Lemma 3.3.20 for Σ_{n}^{1} formulas ($n \geq 2$) by induction. The proof for Π_{n}^{1} formulas is analogous. So, suppose that κ is an inaccessible cardinal. Then $\operatorname{Coll}(\omega,<\kappa)=\operatorname{Coll}(\omega,<\kappa)^{V_{\kappa}}$ and, by above fact, " τ is a simple Coll $(\omega,<\kappa)$-name for a real" is a Δ_{1} property over V_{κ} :
$\underline{n+1}$: Let $\varphi(x)$ be a Σ_{n+1}^{1} formula, $n \geq 2$. So, $\varphi(x)$ is of the form $\exists y \neg \psi(x, y)$, where $\bar{\psi}$ is Σ_{n}^{1}. Assume that the lemma holds for Σ_{n}^{1} formulas. Suppose that $p \in$ $\operatorname{Coll}(\omega,<\kappa)$ and τ is a simple Coll $(\omega,<\kappa)$-name for a real. Then, $R_{\varphi}(p, \tau)$ is defined by the formula

$$
\exists \sigma\left(\sigma \text { is a simple } \operatorname{Coll}(\omega,<\kappa) \text {-name for a real } \wedge(\forall q \leq p) \neg R_{\psi}(q, \tau, \sigma)\right) .
$$

Now, " σ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real" is a Δ_{1} predicate on σ over V_{κ} and, by inductive hypothesis, $R_{\psi}(q, \tau, \sigma)$ is a Σ_{n-1} relation over V_{κ} with $n \geq 2$. So, the above is Σ_{n} a formula with parameters p and τ.
$\underline{n=2}$: Then, $\varphi(x)$ is of the form $\exists y \psi(x, y)$, where $\psi(x, y)$ is a Π_{1}^{1} formula. Note that $R_{\varphi}(p, \tau)$ iff

$$
\exists \alpha \exists \sigma\left(\tau, \sigma \text { are simple } \operatorname{Coll}(\omega,<\alpha) \text {-names for reals } \wedge p^{\circ}{ }_{\text {Coll }(\omega,<\alpha)} \psi(\sigma, \tau)\right)
$$

Since " σ is a simple $\operatorname{Coll}(\omega,<\alpha)$-name for a real" is a property on σ which is $\Delta_{1^{-}}$ definable with α as parameter over V_{κ}, we only need to show that " $p{ }^{\circ}{ }^{C o l l}(\omega,<\alpha)$ $\psi(\tau, \sigma)$ " is expressible over V_{κ} by means of a Σ_{1} formula and a Π_{1} formula both with α, σ, τ and p as parameters.

As in Theorem 2.1.23, let wf (x) be the predicate " x is a well-founded relation". Then, since wf (x) is a Δ_{1} predicate, there exists a finite set S of axioms of $Z F$ such that

$$
Z F \vdash \forall M\left(M \text { is transitive } \wedge M^{2} \wedge S \rightarrow \mathrm{wf}(x) \text { is absolute for } M\right)
$$

Let $Z F C^{*}$ be a finite set of axioms of $Z F C$ containing all axioms which are needed to define the forcing relation in a model, to prove the Forcing Theorem, and including S. Then,

Claim 3.3.23 The following are equivalent:

1. $p^{\circ}{ }_{C o l l}(\omega,<\alpha) \psi(\tau, \sigma)$.
2. For all transitive model M of $Z F C^{*}$ containing p, τ, σ and α, M^{2} " $p{ }^{\circ}{ }_{C o l l}(\omega,<\alpha)$ $\psi(\tau, \sigma)$ ".
3. There exists a transitive model M of $Z F C^{*}$ containing p, τ, σ and α and such that M^{2} " $p{ }^{\circ}{ }_{\text {Coll }(\omega,<\alpha)} \psi(\tau, \sigma)$ ".

Proof. $(1 \Rightarrow 2)$ Let M be as in (2). Assume M does not satisfy $p^{\circ}{ }_{\text {Coll }}(\omega,<\alpha)$ $\psi(\tau, \sigma)$. Then, since $M^{2} Z F C^{*}$, there is $q \in M$ such that $q \leq p$ and M^{2} " ${ }^{\circ}{ }^{\operatorname{Coll}(\omega,<\alpha)} \neg \psi(\tau, \sigma)$ ". Let C be a $\operatorname{Coll}(\omega,<\alpha)$-generic filter over V with $q \in C$. Then, since C is closed upwards, $p \in C$. Since $\alpha \in M$ and M is transitive, $\operatorname{Coll}(\omega,<\alpha)^{M}=\operatorname{Coll}(\omega,<\alpha)$ and hence C is $\operatorname{Coll}(\omega,<\alpha)$-generic over M. Also, since $q \in C, M[C]^{2} \neg \psi(\tau[C], \sigma[C])$, which is a Σ_{1}^{1} formula. Since $M^{2} Z F C^{*}$, also $M[C]^{2} Z F C^{*}$. Therefore, the Σ_{1}^{1} formulas are absolute for $M[C]$ as being a well-founded relation is absolute for models of $Z F C^{*}$. This implies $V[C]^{2}$ $\neg \psi(\tau[C], \sigma[C])$, which contradicts (1).
$(2 \Rightarrow 3)$ Since $Z F C^{*}$ is a finite fragment of $Z F C$, by the Reflection Principle, there exists an ordinal $\beta>\alpha \geq \omega+2$ such that for every formula of $Z F C^{*}$ is absolute for V_{β}. Let $X=\{\alpha, p, \tau, \sigma, T C(\tau), T C(\sigma)\}$ and let M the Skolem hull of X in V_{β}. So M4 V_{β}. Moreover, M is extensional since V_{β} satisfies the axiom of extensionality. Without loss of generality, we can suppose that M is transitive (if not, we collapse it with Mostowski's collapsing). Clearly, $M^{2} Z F C^{*}$ and $\alpha, p, \tau, \sigma \in M$. Then, by (2), M^{2} " $p{ }^{\circ}{ }_{C o l l(\omega,<\alpha)} \psi(\tau, \sigma)$ ".
$(3 \Rightarrow 1)$ Let M be a transitive model of $Z F C^{*}$ containing α, p, τ, σ and M^{2} " $p{ }^{\circ}{ }_{C o l l}(\omega,<\alpha) \psi(\tau, \sigma)$ ". Let $C \subseteq \operatorname{Coll}(\omega,<\alpha)$ a generic filter over V with $p \in C$. Since $\alpha \in M, \operatorname{Coll}(\omega,<\alpha)^{M}=\operatorname{Coll}(\omega,<\alpha)$. Hence C is a $\operatorname{Coll}(\omega,<\alpha)$-generic filter over M and $p \in C$. Since $M^{2} Z F C^{*}, M[C]^{2} \psi(\tau[C], \sigma[C])$ and $M[C]^{2}$ $Z F C^{*}$. But then, the Π_{1}^{1} formulas are absolute for $M[C]$. Thus,

$$
V[C]^{2} \psi(\tau[C], \sigma[C])
$$

This proves the claim.
We finish the proof of Lemma 3.3.20. Note that (2) of the claim above is a Π_{1} formula with p, τ, σ and α as parameters and (3) is a Σ_{1} formula with p, τ, σ and α as parameters. So, (1) is Δ_{1} on p, τ, σ and α. Since κ is inaccessible, $V_{\kappa}{ }^{2} Z F C$. So the above claim shows that (1) is Δ_{1} on p, τ, σ and α over V_{κ}. Therefore, $R_{\varphi}(p, \tau)$ is a Σ_{1} relation over V_{κ}.

Lemma 3.3.24 Let κ be an inaccessible cardinal and let $\varphi(x)$ be a $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ formula with $n \geq 2$. Then, for every $p \in \operatorname{Coll}(\omega,<\kappa)$ and every simple Coll $(\omega,<\kappa)$-name for a real τ,

$$
p^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \varphi(\tau) \text { iff } V_{\kappa}{ }^{2} R_{\varphi}(p, \tau)
$$

Proof. Recall that $\operatorname{Coll}(\omega,<\kappa)^{V_{\kappa}}=\operatorname{Coll}(\omega,<\kappa)$. So, it will be sufficient to prove the lemma for Σ_{n}^{1} formulas $(n \geq 2)$ because for every Π_{n}^{1} formula $\forall x \varphi(y, x)$, every $p \in \operatorname{Coll}(\omega,<\kappa)$ and every simple $\operatorname{Coll}(\omega,<\kappa)$-name τ for a real,

$$
\begin{aligned}
p^{\circ}{ }_{\operatorname{Coll}(\omega,<\kappa)} \forall x \varphi(\tau, x) & \text { iff } p^{\circ}{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) \neg \exists x \neg \varphi(\tau, x) \\
& \text { iff for all } q \leq p, \neg q{ }^{\circ} \operatorname{Coll(\omega ,<\kappa)} \exists x \neg \varphi(\tau, x) \\
& \text { iff for all } q \leq p, V_{\kappa}{ }^{2} \neg R_{\exists x \neg \varphi}(q, \tau) \\
& \text { iff } V_{\kappa}{ }^{2}(\forall q \leq p)\left(\neg R_{\exists x \rightarrow \varphi}(q, \tau)\right) \\
& \text { iff } V_{\kappa} 2 R_{\forall x \varphi}(p, \tau)
\end{aligned}
$$

We prove the lemma by induction on $n \geq 2$:
$\underline{n+1}$: Let $\varphi(x)$ be a Σ_{n+1}^{1} formula with $n \geq 2$. So, $\varphi(x)$ is of the form $\exists y \neg \psi\left(\overline{x, y)}\right.$, where $\psi(x, y)$ is Σ_{n}^{1}. Assume that the lemma holds for Σ_{n}^{1} formulas and suppose that $p \in \operatorname{Coll}(\omega,<\kappa)$ and τ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real. Then, $p^{\circ}{ }_{C o l l(\omega,<\kappa)} \exists y \neg \psi(\tau, y)$ iff $\exists \sigma(\sigma$ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real $\wedge(\forall q \leq p)\left(\neg q{ }^{\circ}\right.$ Coll($\left.\left.\left.\omega,<\kappa\right) \psi(\tau, \sigma)\right)\right)$. Fix a witness σ. Then, on one hand,
σ is a simple Coll $(\omega,<\kappa)$-name for a real iff
iff $V_{\kappa}{ }^{2}$ " σ is a simple $\operatorname{Coll}(\omega,<\kappa)$-name for a real"
On the other hand, fix $q \leq p$. Then, by inductive hypothesis

$$
\neg q^{\circ}{ }_{\operatorname{Coll}(\omega,<\kappa)} \psi(\tau, \sigma) \text { iff } V_{\kappa}{ }^{2} \neg R_{\psi}(q, \tau, \sigma)
$$

But, since $\operatorname{Coll}(\omega,<\kappa)=\operatorname{Coll}(\omega,<\kappa)^{V_{\kappa}}$,

$$
(\forall q \leq p)\left(\neg q^{\circ}{ }_{\text {Coll }}(\omega,<\kappa) \varphi(\tau, \sigma)\right) \text { iff } V_{\kappa}{ }^{2}(\forall q \leq p) \neg R_{\psi}(q, \tau, \sigma)
$$

Therefore, $p^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \varphi(\tau)$ iff $V_{\kappa}{ }^{2} R_{\varphi}(p, \tau)$.
$\underline{n=2}$: So, $\varphi(x)$ is of the form $\exists y \psi(x, y)$, where $\psi(x, y)$ is a Π_{1}^{1} formula. Let $p \in \operatorname{Coll}(\omega,<\kappa)$ and τ be a $\operatorname{Coll}(\omega,<\kappa)$-name for a real.

Suppose that $p^{\circ}{ }_{C o l l}(\omega,<\kappa) ~ \varphi(\tau)$. So, since $\operatorname{Coll}(\omega,<\kappa)$ is a κ-cc poset, by Shoenfield's Absoluteness Theorem formulas and Maximal Principle,

$$
(\exists \alpha<\kappa) \exists \sigma\left(\sigma, \tau \text { are simple } \operatorname{Coll}(\omega,<\alpha) \text {-name for reals } \wedge p^{\circ}{ }_{\operatorname{Coll}(\omega,<\alpha)} \psi(\tau, \sigma)\right)
$$

Now, since $\alpha<\kappa$ and κ is regular and uncountable, $\alpha, \tau, \sigma \in V_{\kappa}$ and $V_{\kappa}{ }^{2}$ " σ, τ are simple Coll $(\omega,<\alpha)$-names for reals". So, only remains to show that

$$
V_{\kappa}{ }^{2} " p^{\circ}{ }_{\operatorname{Coll}(\omega,<\alpha)} \psi(\tau, \sigma) " \text {. }
$$

But, since κ is inaccessible, $V_{\kappa}{ }^{2} Z F C$. Moreover, $p, \tau, \sigma, \alpha \in V_{\kappa}$ and $\psi(x, y)$ is a Π_{1}^{1} formula. So, by (2) of Claim 3.3.23, $V_{\kappa}{ }^{2}$ " $p^{\circ}{ }^{C o l l}(\omega,<\alpha) \psi(\tau, \sigma) "$. So, $V_{\kappa}{ }^{2} R_{\varphi}(p, \tau)$.

Suppose now that $V_{\kappa}{ }^{2} R_{\varphi}(p, \tau)$. i.e.,

$$
V_{\kappa}{ }^{2} \exists \alpha \exists \sigma\left(\tau, \sigma \text { are simple } \operatorname{Coll}(\omega,<\alpha) \text {-names for reals } \wedge p^{\circ}{ }_{\operatorname{Colll}(\omega,<\alpha)} \psi(\tau, \sigma)\right)
$$

Let $\alpha, \sigma \in V_{\kappa}$ such that V_{κ} satisfies that τ, σ are simple $\operatorname{Coll}(\omega,<\alpha)$-names for reals and $p{ }^{\circ}{ }_{C o l l(\omega,<\alpha)} \psi(\tau, \sigma)$. Then, by absoluteness of Δ_{1} predicates with parameters
in V_{κ}, τ and σ are simple $\operatorname{Coll}(\omega,<\alpha)$-names for reals. Moreover, since κ is inaccessible, $V_{\kappa}{ }^{2} Z F C$. So, since $V_{\kappa}{ }^{2}$ " $p{ }^{\circ}{ }^{\text {Coll }(\omega,<\alpha)} \psi(\tau, \sigma)$ ", by (3) of Claim 3.3.23, $p^{\circ}{ }_{\text {Coll }(\omega,<\alpha)} \psi(\tau, \sigma)$. But then, since Coll $(\omega,<\alpha) \lessdot \operatorname{Coll}(\omega,<\kappa)$ and by Shoenfield's Absoluteness Theorem, $p^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \varphi(\tau)$.

We continue with the proof of Theorem 3.3.18. Since $\dot{\mathbf{P}}$ is a $\operatorname{Coll}(\omega,<\kappa)$-name for a \sum_{n}^{1} and ccc poset, by Lemma 3.3.20, for every $p \in \operatorname{Coll}(\omega,<\kappa)$ and every simple $\operatorname{Coll}(\omega,<\kappa)$-names for reals $\tau, \sigma, R_{\varphi_{P}}(p, \tau, \dot{a}), R_{\varphi_{\leq}}(p, \tau, \sigma, \dot{a})$ and $R_{\varphi_{\perp}}(p, \tau, \sigma, \dot{a})$ are Σ_{n-1} relations over V_{κ}.

Since κ is a Σ_{ω}-Mahlo cardinal, by Lemma 3.3.6, we can fix an unbounded sequence $\left\langle\lambda_{\xi}: \xi<\kappa\right\rangle$ such that for every $\xi<\kappa, \lambda_{\xi}$ is an inaccessible cardinal and $V_{\lambda_{\xi}} 4_{n-1} V_{\kappa}$ and \dot{a} is a simple $\operatorname{Coll}\left(\omega,<\lambda_{0}\right)$-name for a real.

Let $p \in \operatorname{Coll}(\omega,<\kappa)$ and let σ, τ be simple $\operatorname{Coll}(\omega,<\kappa)$-names for reals. So there is a least $\xi<\kappa$ such that $p \in \operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)$ and σ and τ are simple $\operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)$-names for reals. Then, for every $\zeta<\kappa, \xi \leq \zeta$, since κ and λ_{ζ} are inaccessible cardinals, by Lemma 3.3.24,

$$
\begin{aligned}
& p{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) \varphi_{\leq}(\sigma, \tau, \dot{a}) \text { iff } \\
& \text { iff } V_{\kappa}{ }^{2} R_{\varphi_{\leq}}(p, \tau, \sigma, \dot{a}) \\
& \text { iff } \\
& V_{\lambda_{\zeta}}{ }^{2} R_{\varphi_{\leq}}(p, \tau, \sigma, \dot{a}) \\
& \operatorname{Coll}\left(\omega,<\lambda_{\zeta}\right)
\end{aligned} \varphi_{\leq}(\sigma, \tau, \dot{a}) .
$$

And the same holds for the Σ_{n}^{1} formula $\varphi_{\perp}(x, y ; z)$.
So, for every $\xi \leq \zeta<\kappa$, every $p \in \operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)$ and all simple $\operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)-$ names for reals τ, σ,

$$
\begin{array}{cccc}
p^{\circ}{ }^{\circ} \operatorname{Coll}(\omega,<\kappa) & \varphi_{P}(\tau, \dot{a}) " & \text { iff } & p^{\circ}{ }^{\circ} \operatorname{Coll}\left(\omega,<\lambda_{\zeta}\right)
\end{array} \varphi_{P}(\tau, \dot{a})
$$

Hence, if $\xi \leq \zeta$ then $\mathrm{S}_{\lambda_{\xi}} \subseteq \mathrm{S}_{\lambda_{\zeta}}$ and, since $\operatorname{Coll}(\omega,<\kappa)$ is a κ-cc poset, $\mathrm{S}=\bigcup_{\xi<\kappa} \mathrm{S}_{\lambda_{\xi}}$. Thus, for every subposet X of \mathbf{S} of cardinality less than κ there exists $\xi<\kappa$ such that X is a subposet of $\mathrm{S}_{\lambda_{\xi}}$.

Moreover, for every $\xi \leq \zeta<\kappa$, every $p \in \operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)$ and all simple $\operatorname{Coll}\left(\omega,<\lambda_{\xi}\right)$-names for a real τ, \dot{c}
$p^{\circ}{ }_{\text {Coll }(\omega,<\kappa)}$ " τ codes a maximal antichain of $\dot{\mathbf{P}}$ below $\dot{c} "$ iff

$$
\text { iff } p^{\circ}{ }_{\text {Coll }\left(\omega,<\lambda_{\zeta}\right)} \text { " } \tau \text { codes a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} "
$$

For every $\alpha<\kappa$, let $\xi(\alpha)$, if it exists, be the least $\xi<\kappa$ such that for every $\zeta \geq \xi$ the following holds: For every simple $\operatorname{Coll}\left(\omega,<\lambda_{\alpha}\right)$-name \dot{A} for a subset of $\dot{\mathbf{R}}_{\lambda_{\alpha}}$, every simple Coll $\left(\omega,<\lambda_{\alpha}\right)$-name for a real \dot{c} and every $q \in \operatorname{Coll}\left(\omega,<\lambda_{\zeta}\right)$, if

$$
q^{\circ}{ }_{\text {Coll }(\omega,<\kappa)} \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathbf{P}} \text { below } \dot{c} ",
$$

then

$$
q^{\circ}{ }_{C o l l}\left(\omega,<\lambda_{\zeta}\right) \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathrm{P}} \text { below } \dot{c} \text { ". }
$$

Lemma 3.3.25 For every $\alpha<\kappa, \xi(\alpha)$ exists.
Proof. As in Lemma 3.2.3.
The rest of the proof of Theorem 3.3.18 is like the proof of Theorem 3.2.1 but using only the $\lambda_{\xi}(\xi<\kappa)$ inaccessible cardinals instead of all ordinals below κ.

Corollary 3.3.26 Con $\left(Z F C+\exists \kappa\left(\kappa\right.\right.$ is a Σ_{ω}-Mahlo cardinal $)$ implies Con $(Z F C+$ $L(\mathrm{R})$-two-step absoluteness for projective and ccc posets).

Note that the proof of Theorem 3.3.18 really shows that for every $n \geq 3$, every \sum_{n+1}^{1} and ccc forcing extension of a Π_{n}-Mahlo Solovay model is a Π_{n}-Mahlo Solovay model. So,

Corollary 3.3.27 For every $n \geq 3$, $\operatorname{Con}\left(Z F C+\exists \kappa\left(\kappa\right.\right.$ is a Π_{n}-Mahlo cardinal $)$) implies Con(ZFC+L(R)-two-step absoluteness for $\sum_{\sim}^{\sum_{n+1}^{1}}$ and ccc posets).

Further, all ccc posets in a Σ_{ω}-Mahlo Solovay model are projective-indestructi-ble-ccc (see Definition 3.2.9). Hence, in any Σ_{ω}-Mahlo Solovay model there are no projective Suslin trees. The same holds in every Π_{n}-Mahlo Solovay model for \sum_{n+1}^{1} and ccc posets: every ccc poset in a Π_{n}-Mahlo Solovay model is \sum_{n+1}^{1}-indestructibleccc and, therefore, there are no \sum_{n+1}^{1} Suslin trees.

Theorem 3.3.28 Let $L(\mathbf{R})^{M}$ be a Σ_{ω}-Mahlo Solovay model over V. Then, every ccc poset $\mathrm{P} \in L(\mathrm{R})^{M}$ is a projective-indestructible-ccc poset. More precisely, in any Π_{n}-Mahlo Solovay model every ccc poset is ${\underset{\sim}{\sim}}_{n+1}^{1}$-indestructible-ccc.

Proof. As in Theorem 3.2.10.
Corollary 3.3.29 If $L(\mathrm{R})^{M}$ is a Σ_{ω}-Mahlo Solovay model over V, then in $L(\mathrm{R})^{M}$ there are no projective Suslin trees. More precisely, if $L(\mathrm{R})^{M}$ is a Π_{n}-Mahlo Solovay model over V, then in $L(\mathrm{R})^{M}$ there are no \sum_{n+1}^{1} Suslin trees.

3.3.3 The strength of \sum_{4}^{1}-absoluteness for projective and ccc forcing notions

We will show that \sum_{4}^{1}-absoluteness for projective and ccc posets implies that ω_{1} is Σ_{ω}-Mahlo in L. In the proof we use an argument of R. Jensen implicit in [Je-So]. We assume that ω_{1} is not Σ_{n}-Mahlo $(n \geq 2)$ in L, so there is a Σ_{n}-club D on ω_{1} of singular cardinals in L. Then, we force with $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ to add a function π that, to every real a coding a countable ordinal $\|a\|$ in the generic extension, assigns a real that codes the least singular cardinal in D greater than $\|a\|$. We prove that π has a Coll $\left(\omega,<\omega_{1}\right)$-name that can be coded by a $\underset{\sim}{\underset{\sim}{n}+2} 1$ subset of $\omega^{\omega} \times \omega^{\omega}$ (Lemma 3.3.31). Then, working in the $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic extension, we define a version of Solovay's almost-disjoint coding poset, P_{π}, that adds a generic real b_{H} that codes π and we show that in every $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi^{-}}$-generic extension $\omega_{1}^{L\left[b_{H}\right]}=\omega_{1}$ holds (Lemma 3.3.42). Finally, we prove that, even if P_{π} was not a projective forcing notion in the $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ generic extension, since π has a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name coded by a
$\underset{\sim}{\Delta}{ }_{n+2}^{1}$ set of pairs of reals, $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ is a ${\underset{\sim}{n}}_{n+2}^{1} \operatorname{ccc}$ poset (Lemma 3.3.44). So, since "there exists a real x such that $\omega_{1}^{L[x]}=\omega_{1}$ " is expressible with a Σ_{4}^{1} sentence, this is true in the ground model, in contradiction with the inaccessibility of ω_{1} from the reals.

Theorem 3.3.30 Suppose that V is \sum_{4}^{1}-absolute for projective and ccc forcing notions. Then ω_{1} is a Σ_{ω}-Mahlo cardinal in L.

Proof. Suppose, towards a contradiction, that ω_{1} is not a Σ_{ω}-Mahlo cardinal in L. By 3.1.23, ω_{1} is an inaccessible cardinal in L. So, there is $n \geq 2$ and a Σ_{n}-club D on ω_{1} of singular cardinals in L. Let $\varphi(x)$ be the Σ_{n}-formula such that for every $\alpha<\omega_{1}, \alpha \in D$ iff

$$
\left[V_{\omega_{1}}\right]^{L}{ }^{2} \varphi(\alpha) .
$$

Since ω_{1} is an inaccessible cardinal in $L,\left[V_{\omega_{1}}\right]^{L}=L_{\omega_{1}}=[H C]^{L}$. So, for every $\alpha<\omega_{1}$, $\alpha \in D$ iff

$$
H C^{2} \varphi(\alpha)^{L}
$$

Since " $x \in L$ " is a Σ_{1}-formula and $\varphi(x)$ is a Σ_{n}-formula with $n \geq 2, \varphi(x)^{L}$ is also a Σ_{n}-formula. Therefore, D is a club on ω_{1} of singular cardinals in L which is Σ_{n}-definable over $H C$.

Let $D^{*}=\left\{a \in \omega^{\omega}:\|a\| \in D\right\}$. So, D^{*} is a \sum_{n+1}^{1} set of reals (see [J2], 41.1)
Note that $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ belongs to L and is a ccc poset in V. Moreover,
Lemma 3.3.31 Suppose C is a Coll $\left(\omega,<\omega_{1}\right)$-generic filter over V. Then, there is a function $\pi \in V[C]$ from $W O$, the set of all reals in $V[C]$ that code a countable ordinal, into D^{*}, the set of all reals in $V[C]$ that code a countable ordinal in D, such that:

1. For every $x \in W O, \pi(x)$ is a code for the least ordinal in D greater than $\|x\|$ and for every $x, y \in W O$, if $\|\pi(x)\|=\|\pi(y)\|$, then $\pi(x)=\pi(y)$.
2. π has a Coll $\left(\omega,<\omega_{1}\right)$-name that can be coded by a ${\underset{\sim}{n}}_{n+2}^{1}$ set in $\omega^{\omega} \times \omega^{\omega}$.

Proof. We need the following claims and definitions:
Definition 3.3.32 We say that τ is a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω iff ${ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ " $\tau \subseteq \breve{\omega}$ ". We say that τ is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω iff

1. The elements of τ are of form $\langle p, \breve{n}\rangle$, where $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ and \breve{n} is a standard Coll $\left(\omega,<\omega_{1}\right)$-name for some $n \in \omega$.
2. For every $n \in \omega$, the set $A_{n}=\left\{p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\langle p, \breve{n}\rangle \in \tau\right\}$ is an antichain of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$.

Note that as in Fact 2.1.19, for every $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω there exists a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω such that ${ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right)$ " $\tau=\sigma$ ". Moreover, for every $\alpha<\omega_{1}$ there is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω, τ, such that ${ }^{\circ}{ }_{C o l l\left(\omega,<\omega_{1}\right)} "\|\tau\|=\breve{\alpha} "$. Note also that, since for every $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over $V, \omega_{1}^{L[C]}=\omega_{1}^{V[C]}=\omega_{1}$, the same is true for names in L.

Let $W O_{\omega_{1}}$ be the set of all simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names σ for a subset of ω such that ${ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) "\|\sigma\|=\breve{\gamma} "$ for some $\gamma<\omega_{1}$. Let $\dot{W} O=\operatorname{Coll}\left(\omega,<\omega_{1}\right) \times W O_{\omega_{1}}$.
 name τ for a subset of ω such that ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} "\|\tau\|=\breve{\gamma} "$. Let $B_{\omega_{1}}=\left\{\tau_{\gamma}: \gamma \in D\right\}$. Let $\dot{B}=\operatorname{Coll}\left(\omega,<\omega_{1}\right) \times B_{\omega_{1}}$.

Define the function $\pi_{\omega_{1}}$ from the set $W O_{\omega_{1}}$ into $B_{\omega_{1}}$ as follows: for every $\sigma \in W O_{\omega_{1}}, \pi_{\omega_{1}}(\sigma)=\tau i f f$

1. $\tau \in B_{\omega_{1}}$
2. ${ }^{\circ}{ }^{C o l l}\left(\omega,<\omega_{1}\right) "\|\sigma\|<\|\tau\| "$
3. $\left(\forall \rho \in B_{\omega_{1}}\right)\left({ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}{ }^{*}\|\sigma\|<\|\rho\| " \rightarrow{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}{ }^{*}\|\tau\| \leq\|\rho\| "\right)$

Let $\dot{\pi}=\operatorname{Coll}\left(\omega,<\omega_{1}\right) \times \pi_{\omega_{1}}$.
Clearly, we have that \dot{B} and π are $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names for, respectively, a subset of $P(\omega)$ and a subset of $P(\omega) \times P(\omega)$. We will show that for every Coll $\left(\omega,<\omega_{1}\right)$ generic C over $V, \pi=\dot{\pi}[C]$ satisfies (1) of Lemma 3.3.31.

Claim 3.3.34 Suppose $C \subseteq \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a generic filter over V and let $B=$ $\dot{B}[C]$. Then, for every $\alpha \in D$ there exists one and only one $a \in B$ such that $\|a\|=\alpha$. i.e., we have:

1. $V[C]^{2}\{\|a\|: a \in B\}=D$.
2. $V[C]^{2}(\forall a, b \in B)(\|a\|=\|b\| \rightarrow a=b)$.

Proof. (1) (\Rightarrow) Suppose that $V[C]^{2} \gamma \in D$. Then, since $D \in L, L^{2} \gamma \in D$. But, $\tau_{\gamma} \in B_{\omega_{1}}$ and hence ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\tau_{\gamma} \in \dot{B}$ ". So $V[C]^{2}$ " $\tau_{\gamma}[C] \in \dot{B}[C] \wedge\left\|\tau_{\gamma}[C]\right\|=$ $\gamma^{\prime \prime}$. Therefore, $V[C]^{2} \gamma \in\{\|a\|: a \in B\}$.
(\Leftarrow) Suppose that $V[C]^{2} \gamma \in\{\|a\|: a \in B\}$. Then, for some $p \in C$, $p^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $(\exists x \in \dot{B})(\|x\|=\breve{\gamma})$ ". Hence, there exists a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ name \dot{a} for a subset of ω such that $p^{\circ}{ }_{C o l l\left(\omega,<\omega_{1}\right)} " \dot{a} \in \dot{B} \wedge\|\dot{a}\|=\breve{\gamma}$ ". But then, there are $q \in C$ and $\tau \in B_{\omega_{1}}$ such that $q \leq p$ and $q{ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} " \tau=\dot{a} "$.

Since $\tau \in B_{\omega_{1}}$, for some $\delta \in D, \tau=\tau_{\delta}$ and $q{ }^{\circ}{ }_{C o l l\left(\omega_{1},<\omega_{1}\right)} "\|\tau\|=\breve{\delta} "$. But then, since $q \leq p, q{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} "\|\tau\|=\breve{\gamma} "$, and so $q{ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} " \breve{\gamma} "=\breve{\delta} "$. Therefore, $\gamma=\delta$ and $V[C]^{2} \gamma \in D$.
(2) Suppose that $a, b \in B$ and $V[C]^{2}$ " $\|a\|=\|b\| "$. Let \dot{a}, \dot{b} be simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names for subsets of ω such that $a=\dot{a}[C]$ and $b=\dot{b}[C]$. So, there
exists $p \in C$ such that $p{ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\dot{a}, \dot{b} \in \dot{B} \wedge\|\dot{a}\|=\|\dot{b}\|$ ". Then, as in (1), there are $q \in C$ and $\sigma, \tau \in B_{\omega_{1}}$ such that $q \leq p$ and

$$
q^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} " \sigma=\dot{a} \wedge \tau=\dot{b} \wedge\|\sigma\|=\|\tau\| "
$$

Since $\sigma, \tau \in B_{\omega_{1}}$, there are countable ordinals $\gamma, \delta \in D$ such that ${ }^{\circ}{ }^{C o l l}\left(\omega,<\omega_{1}\right)$ " $\|\sigma\|=$ $\breve{\gamma} "$ and ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\|\tau\|=\breve{\delta} "$. So, $q^{\circ}{ }_{C o l l\left(\omega,<\omega_{1}\right)}$ " $\breve{\gamma}=\breve{\delta} "$ and hence $\gamma=\delta$. But then, by $<_{L}$-minimality of τ and $\sigma, \tau=\sigma$. Therefore,

$$
a=\dot{a}[C]=\sigma[C]=\tau[C]=\dot{b}[C]=b .
$$

So, in order to prove (1) of 3.3.31, we only need:
Claim 3.3.35 Suppose $C \subseteq \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a generic filter over V and $\pi=\dot{\pi}[C]$. Then π is a function from $W O$ to B such that for every $a \in W O$, if $\pi(a)=b$, then b is the unique code in B of the least ordinal in D greater than $\|a\|$.

Proof. We work in $V[C]$. Clearly $\pi \subseteq W O \times B$ and π is a function. So, it will suffice to show that:

1. $W O \subseteq \operatorname{dom}(\pi)$
2. If $\pi(a)=b$, then $b \in B,\|a\|<\|b\|$, and for every $c \in B$, if $\|a\|<\|c\|$, then $\|b\| \leq\|c\|$.
(1) Suppose that $a \in W O$. Then, there are a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name \dot{a} and $p \in C$ such that $\dot{a}[C]=a$ and $p^{\circ}{ }^{\circ} \operatorname{Coll}\left(\omega_{\omega},<\omega_{1}\right) " \dot{a} \in W \dot{O}$ ". So, there are $q \in C$ and $\tau \in W O_{\omega_{1}}$ such that $q \leq p$ and $q{ }^{\circ}{ }^{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\tau=\dot{a}$ ". Let $\delta<\omega_{1}$ be such that ${ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}{ }^{"}\|\tau\|=\breve{\delta}$ ". Since D is an unbounded subset of ω_{1} there is a least $\gamma \in D$ such that $\delta<\gamma$. But then, $\tau_{\gamma} \in B_{\omega_{1}}$. So, $\left\langle\tau, \tau_{\gamma}\right\rangle \in \pi_{\omega_{1}}$ and therefore $q^{\circ}{ }^{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\dot{a}=\tau \in \operatorname{dom}(\dot{\pi}) "$. So, $a \in \operatorname{dom}(\pi)$.
(2) Suppose that $\langle a, b\rangle \in \pi$. So there are $p \in C$ and simple Coll $\left(\omega,<\omega_{1}\right)-$ names \dot{a}, \dot{b} such that $p^{\circ}{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right) "\langle\dot{a}, \dot{b}\rangle \in \dot{\pi}$ ". Hence, there are $q \in C$ and $\langle\sigma, \tau\rangle \in$ $\pi_{\omega_{1}}$ such that $q^{{ }^{\circ}{ }^{C o l l}\left(\omega,\left\langle\omega_{1}\right)\right.}{ }^{"}\langle\dot{a}, \dot{b}\rangle=\langle\sigma, \tau\rangle$ ". Since $\langle\sigma, \tau\rangle \in \pi_{\omega_{1}} \subseteq W O_{\omega_{1}} \times B_{\omega_{1}}$, $q^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} " \tau \in \dot{B} "$, that is, $q^{\circ}{ }^{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\dot{b} \in \dot{B} "$.

Moreover, since $\langle\sigma, \tau\rangle \in \pi_{\omega_{1}}$, by definition of $\pi_{\omega_{1}}{ }^{\circ}{ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} "\|\sigma\|<\|\tau\| "$, and hence, $q^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\|\dot{a}\|<\|\dot{\dot{b}}\|$ ". Therefore, $\|a\|<\|b\|$.

Now Suppose that $c \in B$ and $\|a\|<\|c\|$. Then there are $p^{\prime} \in C$ and a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name \dot{c} such that $\dot{c}[C]=c$ and $p^{\prime}{ }^{\circ}{ }_{C o l l(}\left(\omega,<\omega_{1}\right) \quad " \dot{c} \in \dot{B} \wedge\|\dot{a}\|<\|\dot{c}\| "$. But then, by compatibility in the filter and as in the above case, there are $q^{\prime} \in C$ and a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name $\rho \in B_{\omega_{1}}$ such that $q^{\prime} \leq q, p^{\prime}$ and $q^{\prime}{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right) " \dot{c}=\rho^{\prime}$. Therefore,

$$
q^{\prime \circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) "\langle\dot{a}, \dot{b}\rangle=\langle\sigma, \tau\rangle \wedge\langle\sigma, \tau\rangle \in \dot{\pi} \wedge \dot{c}=\rho \wedge \rho \in \dot{B} \wedge\|\sigma\|<\|\rho\| " .
$$

But then, by definition of $\pi_{\omega_{1}}$,

$$
q^{\prime \circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right){ }^{6}\|\tau\| \leq\|\rho\|^{"}
$$

Therefore, $q^{\prime}{ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\|\dot{b}\| \leq\|\dot{c}\|$ " and, so, $\|b\| \leq\|c\|$.
To prove (2) of Lemma 3.3.31 we need to compute the complexity of the sets involved in the definition of π :

Fact 3.3.36 $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a Δ_{2}^{1} poset.
Proof. Let $A=\left\{\langle\alpha, n, \beta\rangle \in \omega_{1} \times \omega \times \omega_{1}: \beta \in \alpha\right\}$. We say that $x \in \omega^{\omega}$ codes $\langle\alpha, n, \beta\rangle \in A$ iff $x(0)=n,\left\|\left(x^{\prime}\right)_{0}\right\|=\alpha$ and $\left\|\left(x^{\prime}\right)_{1}\right\|=\beta$, where for all $n \in \omega$, $x^{\prime}(n)=x(n+1)$ and for every $i \in\{0,1\},(x)_{i}=\{\langle k, x(2 k+i)\rangle: k \in \omega\}$.

Hence " x codes a triple in A " is a Π_{1}^{1} predicate on $x: x \in \omega^{\omega}$ codes a triple in A iff

$$
\left(x^{\prime}\right)_{0} \in W O \wedge\left(x^{\prime}\right)_{1} \in W O \wedge\left\|\left(x^{\prime}\right)_{1}\right\|<\left\|\left(x^{\prime}\right)_{0}\right\|
$$

But $W O$ is a Π_{1}^{1} set and $<$ is a Π_{1}^{1} relation.
Let A^{*} be the Π_{1}^{1} set of codes of elements of A.
Let $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$. We may assume that p is lexicographically ordered in the first two coordinates. Suppose that $p=\left\langle\left\langle\alpha_{i}, n_{i}, \beta_{i}\right\rangle: i<n\right\rangle$ where $n=|\operatorname{dom}(p)|$. Then, we say that $x \in \omega^{\omega}$ codes p iff $x(0)=n$ and for every $i<n,\left(x^{\prime}\right)_{i}$ codes $\left\langle\alpha_{i}, n_{i}, \beta_{i}\right\rangle$.

Let $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ be the set of all codes of elements of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$. Then, for all $x \in \omega^{\omega}, x \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ iff

1. $(\forall i<x(0))\left(\left(x^{\prime}\right)_{i} \in A^{*}\right)$
2. $(\forall i j<x(0))\left(\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{0}\right\|=\left\|\left(\left(x^{\prime}\right)_{j}^{\prime}\right)_{0}\right\| \wedge\left(x^{\prime}\right)_{i}(0)=\left(x^{\prime}\right)_{j}(0) \rightarrow\right.$

$$
\left.\rightarrow\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{1}\right\|=\left\|\left(\left(x^{\prime}\right)_{j}^{\prime}\right)_{1}\right\|\right)
$$

Now, since (1) is $\Pi_{1}^{1}(x)$ and (2) is $\Delta_{2}^{1}(x), \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ is a Δ_{2}^{1} set of reals.
Define \leq_{*} in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*} \times \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ by: for all $x, y \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$, $x \leq_{*} y$ iff the sequence coded by x extends the sequence coded by y. Hence, for all $x, y \in \omega^{\omega}, x \leq_{*} y$ iff

1. $x, y \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
2. $(\forall j<y(0))(\exists i<x(0))\left(\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{0}\right\|=\left\|\left(\left(y^{\prime}\right)_{j}^{\prime}\right)_{0}\right\| \wedge\right.$

$$
\left.\wedge\left(x^{\prime}\right)_{i}(0)=\left(y^{\prime}\right)_{j}(0) \wedge\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{1}\right\|=\left\|\left(\left(y^{\prime}\right)_{j}^{\prime}\right)_{1}\right\|\right)
$$

So, since (1) is $\Delta_{2}^{1}(x, y)$ and (2) is $\Sigma_{1}^{1}(x, y), \leq_{*}$ is a Δ_{2}^{1} relation in $\omega^{\omega} \times \omega^{\omega}$. Note that \leq_{*} is reflexive and transitive relation but not a antisymmetric, and $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}=$ Field $\left(\leq_{*}\right)$.

Define \perp_{*} in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*} \times \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ as follows: for every $x, y \in$ $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}, x \perp_{*} y$ iff x, y code incompatible sequences. So, for all $x, y \in \omega^{\omega}$, $x \perp_{*} y$ iff

1. $x, y \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
2. $(\exists i<x(0))(\exists j<y(0))\left(\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{0}\right\|=\left\|\left(\left(y^{\prime}\right)_{j}^{\prime}\right)_{0}\right\| \wedge\right.$

$$
\left.\wedge\left(x^{\prime}\right)_{i}(0)=\left(y^{\prime}\right)_{j}(0) \wedge\left\|\left(\left(x^{\prime}\right)_{i}^{\prime}\right)_{1}\right\| \neq\left\|\left(\left(y^{\prime}\right)_{j}^{\prime}\right)_{1}\right\|\right)
$$

But then, (1) and (2) are $\Delta_{2}^{1}(x, y)$ and hence \perp_{*} is also a Δ_{2}^{1} relation in $\omega^{\omega} \times \omega^{\omega}$.
So, $\left\langle\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}, \leq_{*}, \perp_{*}\right\rangle$ is a Δ_{2}^{1} forcing notion.
Finally, we define $F: \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*} \rightarrow \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ by $F(x)$ is the condition coded by $x . F$ is a dense embedding (but not one-to-one) from $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ into $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$. Therefore $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a Δ_{2}^{1} poset.

Since Coll $\left(\omega,<\omega_{1}\right)$ is a Δ_{2}^{1} and ccc poset, by Fact 2.1.15, " x codes an antichain of Coll $\left(\omega,<\omega_{1}\right)$ " is a Δ_{2}^{1} predicate. Hence, as in Fact 2.1.22, we may code every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω with a real in a such a way that " x codes a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω " is a Δ_{2}^{1} predicate and " x is codes a simple Coll $\left(\omega,<\omega_{1}\right)$-name in L for a subset of ω " is the intersection of a Δ_{2}^{1} and a Σ_{2}^{1} predicate. Hence, Σ_{2}^{1}.

Fact 3.3.37 Let $\theta(x)$ be a $\Sigma_{1}^{1}\left(\Pi_{1}^{1}\right)$ formula. Then the relation

$$
\begin{aligned}
& R(p, \tau) \leftrightarrow p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right) \wedge \\
& \wedge \tau \text { is a simple Coll }\left(\omega,<\omega_{1}\right) \text {-name for a subset of } \omega \wedge \\
& \wedge p^{\circ}{ }_{\operatorname{Coll}\left(\omega_{,},<\omega_{1}\right)} \theta(\tau)
\end{aligned}
$$

is a Δ_{2}^{1} relation.
Proof. We prove it for Π_{1}^{1} formulas. The case for Σ_{1}^{1} formulas is analogous.
By Claim 2.1.24, for every Σ_{1}^{1} formula $\varphi(x)$, every $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ and every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω, the following are equivalent:

1. $p^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} \varphi(\sigma)$
2. For every transitive model M of $Z F C^{*}$ containing p and (the code of) σ, and such that $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M} \lessdot \operatorname{Coll}\left(\omega,<\omega_{1}\right), M^{2} " p{ }^{\circ}{ }_{C o l l(}\left(\omega,<\omega_{1}\right) \varphi(\sigma) "$.
3. There exists a transitive and countable model M of $Z F C^{*}$ containing p (the code of) σ and such that $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M} \lessdot \operatorname{Coll}\left(\omega,<\omega_{1}\right) M^{2}{ }^{\prime \prime} p{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ $\varphi(\sigma)$ ".

For every transitive model M of $Z F C^{*}, \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{M}=\operatorname{Coll}\left(\omega,<\omega_{1}^{M}\right)$. So, since $\omega_{1}^{M} \leq \omega_{1}$, $\operatorname{Coll}\left(\omega,<\omega_{1}^{M}\right) \lessdot \operatorname{Coll}\left(\omega,<\omega_{1}\right)$. Therefore (2) and (3) above are equivalent to, respectively,

2'. For every transitive model M of $Z F C^{*}$ containing p and (the code of) σ, M^{2} $" p{ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} \varphi(\sigma)$ ".

3'. There exists a transitive and countable model M of $Z F C^{*}$ containing p (the code of) σ and such that $M^{2}{ }^{\prime \prime} p{ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) \varphi(\sigma)$ ".

But it is easy to see that $\left(2^{\prime}\right)$ is expressible with a Π_{2}^{1} sentence and (3^{\prime}) is expressible with a Σ_{2}^{1} sentence, both with p and σ as parameters.

Corollary 3.3.38 Let $W O^{*}$ be the set of codes of simple Coll $\left(\omega,<\omega_{1}\right)$-names for a subset of ω that belong to $W O_{\omega_{1}}$. Then $W O^{*}$ is a Δ_{2}^{1} set of reals.

Proof. Since $x \in W O$ is a Π_{1}^{1} formula.
Claim 3.3.39 Let B^{*} be the set of all codes for simple Coll $\left(\omega,<\omega_{1}\right)$-names for a subset of ω belonging to $B_{\omega_{1}}$. Then B^{*} is a \sum_{n+1}^{1} set of reals.

Proof. We define the relation Dif as follows: for every $x, y \in \omega^{\omega}$, xDify iff x codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω different from the simple Coll $\left(\omega,<\omega_{1}\right)$-name coded by y.

So, for every $x, y \in \omega^{\omega}$, xDify iff x, y code simple Coll $\left(\omega,<\omega_{1}\right)$-names for subsets of ω and

$$
\begin{aligned}
& \exists n m\left(J^{-1}\left(x_{n}(m)\right)_{0} \wedge J^{-1}\left(y_{n}(m)\right)_{0} \text { code different elements of } \operatorname{Coll}\left(\omega,<\omega_{1}\right) \vee\right. \\
&\left.\vee J^{-1}\left(x_{n}(m)\right)_{1} \neq J^{-1}\left(y_{n}(m)\right)_{1}\right) .
\end{aligned}
$$

(see Fact 3.3.36 and the remark following it). So x Dify is a $\Delta_{2}^{1}(x, y)$ relation.
Let $<_{L}^{*}$ be the following relation: for every $x, y \in \omega^{\omega}, x<_{L}^{*} y$ iff x, y code simple Coll $\left(\omega,<\omega_{1}\right)$-names in L for subsets of ω and the simple Coll $\left(\omega,<\omega_{1}\right)$-name coded by x is $<_{L}$-less than the simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name coded by y. Since " x codes a simple Coll $\left(\omega,<\omega_{1}\right)$-name in L for a subset of $\omega^{\prime \prime}$ is a Σ_{2}^{1} predicate, $<_{L}$ is a Σ_{1}-relation over $H C$ and every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω is hereditarily countable, $<_{L}^{*}$ is a Σ_{1} definable relation over $H C$. Hence $<_{L}^{*}$ is a Σ_{2}^{1} relation.

Recall that D^{*} is the \sum_{n+1}^{1} set of codes of ordinals in D. Let R be the relation: $R(\sigma, \breve{a})$ iff
σ is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of $\omega \wedge$

$$
\wedge a \in W O \wedge{ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) \quad "\|\sigma\|=\|\breve{a}\| "
$$

Note that R is a Δ_{2}^{1} relation (by Fact 3.3.37).
We have that for every $x \in \omega^{\omega}, x \in B^{*}$ iff

1. x codes a simple $\operatorname{Coll}\left(\omega<\omega_{1}\right)$-name in L for a subset of ω.
2. There exists $y \in D^{*}$ such that $R(x, y)$ and
$\forall z\left(z\right.$ codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name in L for a subset of $\omega \wedge$

$$
\left.\wedge x D i f z \wedge R(z, y) \rightarrow \neg z<_{L}^{*} x\right)
$$

(1) is $\Sigma_{2}^{1}(x)$. Since the universally quantified formula in (2) is $\Pi_{2}^{1}(x)$ and D^{*} is \sum_{n+1}^{1} with $n \geq 2$, (2) is \sum_{n+1}^{1}. So, B^{*} is a \sum_{n+1}^{1} set of reals.

Let $\pi^{*}: W O^{*} \rightarrow \omega^{\omega}$ be such that $\pi^{*}(x)=y$ iff $\exists \sigma \tau(x$ codes $\sigma \wedge y$ codes $\left.\tau \wedge \pi_{\omega_{1}}(\sigma)=\tau\right)$.

We finish the proof of (2) of Lemma 3.3.31 by showing that π^{*} is a $\underset{\sim}{\Delta}{ }_{n+2}^{1}$ function in $\omega^{\omega} \times \omega^{\omega}$.

Let S and T be the following relations:

$$
\begin{aligned}
& S(\sigma, \tau) \text { iff } \sigma, \tau \text { are simple } \operatorname{Coll}\left(\omega,<\omega_{1}\right) \text {-names for subsets of } \omega \wedge \\
& \\
& \wedge{ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} \text { " }\|\sigma\|<\|\tau\| "
\end{aligned}
$$

and

$$
T(\sigma, \tau) \text { iff } \wedge \sigma, \tau \text { are simple } \operatorname{Coll}\left(\omega,<\omega_{1}\right) \text {-names for subsets of } \omega \wedge
$$

$$
\wedge^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} "\|\sigma\| \leq\|\tau\| "
$$

Since $\|x\|<\|y\|$ is a Π_{1}^{1} formula and $\|x\| \leq\|y\|$ is a Σ_{1}^{1} formula, by Fact 3.3.37, S and T are Δ_{2}^{1} relations between codes for simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names for subset of ω.

So, for every $x, y \in \omega^{\omega},\langle x, y\rangle \in \pi^{*}$ iff

1. $x \in W O^{*}$
2. $y \in B^{*}$
3. $S(x, y)$
4. $\forall z\left(z \in B^{*} \wedge y D i f z \wedge S(x, z) \rightarrow T(y, z)\right)$

Since (1) is $\Delta_{2}^{1}(x)$, (2) is \sum_{n+1}^{1}, (3) is $\Delta_{2}^{1}(x, y)$ and, as it can be easily seen, (4) is \prod_{n+1}^{1}, π^{*} is $\underset{\sim}{\Delta}{ }_{n+2}^{1}$. Actually, it is the intersection of a \sum_{n+1}^{1} and a \prod_{n+1}^{1} relation. This ends the proof of Lemma 3.3.31.

We continue with the proof of Theorem 3.3.30. Working in $V[C]$, we define the Solovay's almost-disjoint forcing for π, P_{π}, which adds a real that codes π.

Let $\left\langle s_{n}: n \in \omega\right\rangle$ be a recursive enumeration of $2^{<\omega}$, the set of all finite sequences of 0 's and 1's such that each sequence is enumerated before any of its proper extensions. Let $\left\{X_{n}: n \in \omega\right\}$ be a recursive partition of ω into infinite pieces. For any $a \subseteq \omega$, let \tilde{a} be the characteristic function of a. For every $a \subseteq \omega$ and every $n \in \omega$, define

$$
\begin{aligned}
& S^{a}=\left\{k \in \omega: s_{k} \subseteq \tilde{a}\right\} \\
& S_{n}^{a}=\left\{k \in \omega: s_{k} \subseteq \tilde{a} \wedge \lg \left(s_{k}\right) \in X_{n}\right\}
\end{aligned}
$$

Note that $\left\{S^{a}: a \subseteq \omega\right\}$ is a perfect maximal almost-disjoint family of infinite subsets of ω. Also, notice that S^{a} is the disjoint union of the $S_{n}^{a}, n \in \omega$.

For any subsets a and b of ω, let

$$
b \odot a=\left\{n \in \omega: b \cap S_{n}^{a} \text { is finite }\right\}
$$

Note that \odot is a Borel operation from $P(\omega) \times P(\omega)$ into $P(\omega)$:

$$
b \odot a=c \text { iff } \forall n\left(n \in c \leftrightarrow \exists m \forall k\left(k \in b \cap S_{n}^{a} \rightarrow k<m\right)\right)
$$

and S_{n}^{a} is recursive on a and X_{n}.
Definition 3.3.40 Suppose C is a Coll $\left(\omega,<\omega_{1}\right)$-generic filter over V. Then, in $V[C]$, let $G(\pi)=\{\langle a, n\rangle: n \in \pi(a)\}$, the graph of π. Then, the Solovay's almostdisjoint coding for π, P_{π}, is the following poset:

- $\langle s, g\rangle \in \mathbf{P}_{\pi}$ iff $s \in[\omega]^{<\omega}$ and $g \in[G(\pi)]^{<\omega}$. i.e., $s \subseteq \omega$ is finite and $g \subseteq G(\pi)$ is finite.
- $\langle s, g\rangle \leq\langle t, h\rangle$ iff $t \subseteq s, h \subseteq g$ and $(\forall\langle a, n\rangle \in h)\left(s \cap S_{n}^{a} \subseteq t\right)$.

Remark 3.3.41 Note that in $V[C], \mathrm{P}_{\pi}$ is a σ-centered poset (see Definition 2.3.42). For $\langle s, g\rangle,\langle s, h\rangle \in \mathbf{P}_{\pi}$, then $\langle s, g \cup h\rangle \leq\langle s, g\rangle,\langle s, h\rangle$. Hence, any two conditions in \mathbf{P}_{π} with the same first coordinate are compatible.

We shall see that forcing with P_{π} over $V[C]$ adds a real that codes π.
Lemma 3.3.42 Suppose that H is a P_{π}-generic filter over $V[C]$. Then there is a real $b_{H} \in P(\omega) \cap V[C][H]$ such that $\omega_{1}^{L\left[b_{H}\right]}=\omega_{1}$.

Proof. Suppose that H is a P_{π}-generic filter over $V[C]$ and let

$$
b_{H}=\bigcup\left\{s \in[\omega]^{<\omega}:\left(\exists g \in[G(\pi)]^{<\omega}\right)(\langle s, g\rangle \in H)\right\}
$$

Clearly $b_{H} \in P(\omega) \cap V[C][H]$.
Claim 3.3.43 For every $a \in \operatorname{dom}(\pi), b_{H} \odot a=\pi(a)$.
Proof. To prove the claim, it will be enough to show that for every $a \in$ $\operatorname{dom}(\pi)$ and $n \in \omega$,

$$
S_{n}^{a} \cap b_{H} \text { is finite iff } n \in \pi(a) .
$$

Fix $a \in \operatorname{dom}(\pi)$ and $n \in \omega$. Suppose that $n \in \pi(a)$. Then, $D_{a, n}=\{\langle s, g\rangle \in$ $\left.\mathbf{P}_{\pi}:\langle a, n\rangle \in g\right\}$ is a dense subset of \mathbf{P}_{π}. For suppose $\langle s, g\rangle \in \mathbf{P}_{\pi}$. Let $h=g \cup\{\langle a, n\rangle\}$. Then $\langle s, h\rangle \in D_{a, n}$ and $\langle s, h\rangle \leq\langle s, g\rangle$. Let $\langle s, g\rangle \in H \cap D_{a, n}$. Then $\langle a, n\rangle \in g$ and for every $\langle t, h\rangle \in H$, if $\langle t, h\rangle \leq\langle s, g\rangle$, then $S_{n}^{a} \cap t \subseteq s$. So, $S_{n}^{a} \cap b_{H} \subseteq s$. Therefore $S_{n}^{a} \cap b_{H}$ is finite.

Suppose now that $n \notin \pi(a)$. Note that for every $m \in \omega$ the set $E_{a, n}^{m}=\{\langle s, g\rangle \in$ $\left.\mathrm{P}_{\pi}:(\exists k>m)\left(k \in S_{n}^{a} \cap s\right)\right\}$ is dense in \mathbf{P}_{π}. Indeed, fix any $m \in \omega$ and $\langle s, g\rangle \in \mathrm{P}_{\pi}$. Since $\left\{S^{a}: a \subseteq \omega\right\}$ is an almost-disjoint family and for every $a \subseteq \omega, S^{a}=\bigcup_{k \in \omega} S_{k}^{a}$,
$S_{n}^{a} \backslash \bigcup_{\langle b, j\rangle \in g} S_{j}^{b}$ is an infinite set. Let k be the least element of $S_{n}^{a} \backslash \bigcup_{\langle b, j\rangle \in g} S_{j}^{b}$ greater than m. Put $t=s \cup\{k\}$. Since $m<k \in S_{i}^{a} \cap t,\langle t, g\rangle \in E_{a, n}^{m}$. Moreover, $s \subseteq t$ and, since for every $\langle b, j\rangle \in g, k \notin S_{j}^{b}, S_{j}^{b} \cap t=S_{j}^{b} \cap s \subseteq s$. So, $\langle t, g\rangle \leq\langle s, g\rangle$.

Let $\langle s, g\rangle \in H \cap E_{a, n}^{m}$. Since $\langle s, g\rangle \in H, s \subseteq b_{H}$. But then, there is $k>m$ such that $k \in S_{n}^{a} \cap s \subseteq S_{n}^{a} \cap b_{H}$. We have shown that for every $m \in \omega$ there exists $k>m$ such that $k \in S_{n}^{a} \cap b_{H}$ and so $S_{n}^{a} \cap b_{H}$ is infinite.

Let $\left\{\delta_{\xi}: \xi<\omega_{1}\right\} \in L\left[b_{H}\right]$ be an increasing and continuous enumeration of D. Let $\nu=\omega_{1}^{L\left[b_{H}\right]}$. We define, by recursion on $\xi<\nu$, a sequence of reals $\left\langle d_{\xi}: \xi<\nu\right\rangle$ such that:

1. For every $\xi<\nu, d_{\xi} \in W O$ and $\left\|d_{\xi}\right\|=\delta_{\xi}$.
2. For every $\xi<\nu, d_{\xi} \in L\left[b_{H}\right]$.
$\xi=0$: Let $a \in L$ be a code for a well-ordering of ω with $\|a\|=\omega$. Since the S_{n}^{a} $(n \in \omega)$ are recursive on $a, S_{n}^{a} \in L\left[b_{H}\right]$, for every $n \in \omega$. Since $a \in W O, a \in \operatorname{dom}(\pi)$. Let $d_{0}=\pi(a)$. So, $d_{0} \in W O$. Moreover, $\left\|d_{0}\right\|=\min (D \backslash \omega+1)=\min (D)=\delta_{0}$ and $d_{0}=\pi(a)=b_{H} \odot a \in L\left[b_{H}\right]$.
$\xi=\eta+1$: Suppose that d_{η} satisfies (1) and (2). Since $d_{\eta} \in W O, d_{\eta} \in \operatorname{dom}(\pi)$. Let $d_{\eta+1}=\pi\left(d_{\eta}\right)$. Clearly, by definition of $\pi, d_{\eta+1} \in B \subseteq W O$ and $\left\|d_{\eta+1}\right\|=$ $\delta_{\eta+1} \in D$. Finally, since $d_{\eta} \in L\left[b_{H}\right]$, for every $n \in \omega$, $S_{n}^{d_{\eta}} \in L\left[b_{H}\right]$, and hence $d_{\eta+1}=\pi\left(d_{\eta}\right)=b_{H} \odot d_{\eta} \in L\left[b_{H}\right]$.
ξ limit: Suppose that for every $\eta<\xi, d_{\eta}$ has been defined and satisfies (1) and (2). Note that $\left(d_{\eta}\right)_{\eta<\xi} \in L\left[b_{H}\right]$. We work in $L\left[\left(d_{\eta}\right)_{\eta<\xi}\right.$. Since for every $\eta<\xi$, $d_{\eta} \in L\left[\left(d_{\eta}\right)_{\eta<\xi}\right], L\left[\left(d_{\eta}\right)_{\eta<\xi}\right]^{2}$ " δ_{η} is countable" for all $\eta<\xi$. Moreover, since D is a club and for every $\eta<\xi, \delta_{\eta} \in D, \delta_{\xi}=\sup _{\eta<\xi}\left(\delta_{\eta}\right) \in D$. But, then $L\left[\left(d_{\eta}\right)_{\eta<\xi}\right]^{2}$ " δ_{ξ} is singular" and hence, $L\left[\left(d_{\eta}\right)_{\eta<\xi}\right]^{2}$ " δ_{ξ} is countable". Let d_{ξ} by the least real in the canonical well-ordering of $L\left[\left(d_{\eta}\right)_{\eta<\xi}\right]$ coding a well-ordering of ω with $\left\|d_{\xi}\right\|=\delta_{\xi}$. So, d_{ξ} satisfies (1) and, since $L\left[\left(d_{\eta}\right)_{\eta<\xi}\right] \subseteq L\left[b_{H}\right], d_{\xi} \in L\left[b_{H}\right]$; i.e., it satisfies (2).

Suppose now that $\nu<\omega_{1}$. Then, since $\left\langle\delta_{\xi}: \xi<\nu\right\rangle$ is an increasing sequence of elements of D and $\nu=\sup _{\xi<\nu}\left(\delta_{\xi}\right), \nu \in D$. So, for some $\xi<\omega_{1}, \nu=\delta_{\xi}$. But then, $L\left[b_{H}\right]^{2}$ " ω_{1} is singular". A contradiction. Therefore, $\omega_{1}^{L\left[b_{H}\right]}=\omega_{1}$.

Note that if V is projective absolute, then P_{π} is not a projective poset: Since V is projective absolute for projective and ccc posets and $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is a Δ_{2}^{1} and ccc poset, by the Factor Lemma, $V[C]$ is projective absolute for Borel ccc posets. Indeed, by Fact 3.3.37, every Borel and ccc extension of $V[C]$ is a Δ_{2}^{1} ccc extension of V. Suppose now, towards a contradiction, that P_{π} is a projective poset so that B has a projective definition. We define \leq in $B \times B$ as follows: for every $x, y \in B, x \leq y$ iff $\|x\| \leq\|y\|$. Then, $\langle B, \leq\rangle$ is an uncountable projective well-ordering. A contradiction with Theorem 3.1.15.

However,
Lemma 3.3.44 $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathbf{P}}_{\pi}$ is a $\underset{\sim}{\Delta}{ }_{n+2}^{1}$ poset.

Proof. We need the following facts and definitions in order to code the coding apparatus of P_{π} and calculate its complexity.

Definition 3.3.45 Let $\dot{G}(\pi)$ be the Coll $\left(\omega,<\omega_{1}\right)$-name for the graph of π defined as follows:

$$
\langle p, \sigma, \breve{n}\rangle \in \dot{G}(\pi) \text { iff } \exists \tau\left(\langle\sigma, \tau\rangle \in \pi_{\omega_{1}} \wedge\langle p, \breve{n}\rangle \in \tau\right) .
$$

Let $G(\pi)^{*}$ be the set of all ordered triples $\langle x, y, n\rangle \in \omega^{\omega} \times \omega^{\omega} \times \omega$ such that for some $\langle p, \sigma, \breve{n}\rangle \in \dot{G}(\pi), x$ codes p and y codes σ.

It is clear that for every $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$,

$$
p^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right) "\langle\sigma, \breve{n}\rangle \in \dot{G}(\pi) " \operatorname{iff} p^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} " \breve{n} \in \dot{\pi}(\sigma) " .
$$

Moreover,
Fact 3.3.46 $G(\pi)^{*}$ is a $\underset{\sim}{\Delta}{ }_{n+2}^{1}$ relation in $\omega^{\omega} \times \omega^{\omega} \times \omega$.
Proof. First recall that for every $x, y \in \omega^{\omega}$ and $n \in \omega,\langle x, y, n\rangle \in G(\pi)^{*}$ iff

1. $x \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
2. $y \in W O^{*}$
3. $\exists z\left(\langle y, z\rangle \in \pi^{*} \wedge \exists m\left(x=\left(\left\{\langle k, j\rangle:(z)_{n}(k)=J(j, n)\right\}\right)_{m}\right)\right)$

Since (1) is $\Delta_{2}^{1}(x)$, (2) is $\Delta_{2}^{1}(y)$ and, since π^{*} is ${\underset{\sim}{d}}_{1}^{1}$, (3) is \sum_{n+2}^{1}. Therefore, $G(\pi)^{*}$ is \sum_{n+2}^{1}.

But since $\pi_{\omega_{1}}$ is a function, if $\langle x, z\rangle,\left\langle x, z^{\prime}\right\rangle \in \pi^{*}$ and $z \neq z^{\prime}$, then z and z^{\prime} are different codes for the same simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name. Therefore, for every $x, y \in \omega^{\omega}$ and $n \in \omega,\langle x, y, n\rangle \in G(\pi)^{*}$ iff

1. $x \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
2. $y \in W O^{*}$
3. $\forall z\left(\langle y, z\rangle \in \pi^{*} \rightarrow \exists m\left(x=\left(\left\{\langle k, j\rangle:(z)_{n}(k)=J(j, n)\right\}\right)_{m}\right)\right)$
and since (3) is $\prod_{\widetilde{\pi}}^{n+2}, G(\pi)^{*}$ is also \prod_{n+2}^{1}.
So, $G(\pi)^{\widetilde{*}}$ is ${\underset{\sim}{d}}_{n+2}^{1}$.
Definition 3.3.47 We say that \dot{g} is a nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $G(\pi)$ iff for some $n \in \omega$ there exists $\left\{\left\langle\sigma_{j}, \breve{c}_{j}\right\rangle: j<n\right\} \subseteq \operatorname{rec}(\dot{G}(\pi))$ such that $\dot{g} \subseteq \dot{G}(\pi)$ is of form

$$
\bigcup\left\{A_{\left\langle\sigma_{j}, i_{j}\right\rangle} \times\left\{\left\langle\sigma_{j}, \breve{\imath}_{j}\right\rangle\right\}: j<n\right\}
$$

where for every $j<n, A_{\left\langle\sigma_{j}, i_{j}\right\rangle}$ is an antichain of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$.

Fact 3.3.48 Suppose that \dot{h} is a Coll $\left(\omega,<\omega_{1}\right)$-name such that ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\dot{h} \subseteq$ $\dot{G}(\pi) \wedge \dot{h}$ is finite" and let $D_{\dot{h}}$ be the set of all $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ such that for some nice Coll $\left(\omega,<\omega_{1}\right)$-name \dot{g} for a finite subset of $\dot{G}(\pi), p^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\dot{h}=\dot{g} "$. Then $D_{\dot{h}}$ is a dense subset of Coll $\left(\omega,<\omega_{1}\right)$.

Proof. Suppose that \dot{h} is a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name such that ${ }^{\circ}{ }_{C o l l}\left(\omega_{,},<\omega_{1}\right)$ " $\dot{h} \subseteq$ $\dot{G}(\pi) \wedge \dot{h}$ is finite" and let $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$. Since $p{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $\dot{h} \subseteq \dot{G}(\pi) \wedge \dot{h}$ is finite", we may find $n \in \omega$ and a condition $p^{\prime} \leq p$ such that $p^{\prime}{ }^{\circ}{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ " $\dot{h}=$ $\left\{\left\langle\dot{a}_{j}, \dot{k}_{j}\right\rangle: j<\breve{n}\right\} \subseteq \dot{G}(\pi) "$. So, for every $j<n$,

$$
p^{\prime \circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) "\left\langle\dot{a}_{j}, \dot{k}_{j}\right\rangle \in W \dot{O} \times \breve{\omega} "
$$

We can find a decreasing sequence $\left\langle p_{j}: j<n\right\rangle$ in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ such that:

1. For every $j<n, p_{j} \leq p^{\prime}$.
2. For every $j<j^{\prime}<n, p_{j^{\prime}} \leq p_{j}$.
3. For every $j<n$, there exists $\sigma_{j} \in W O_{\omega_{1}}$ and $i_{j} \in \omega$ such that $p_{j}{ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $\left\langle\dot{a}_{j}, \dot{k}_{j}\right\rangle=\left\langle\sigma_{j}, \breve{u}_{j}\right\rangle$ ".

Let $r=p_{n-1}$. Then for every $j<n$,

$$
r^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} "\left\langle\dot{a}_{j}, \dot{k}_{j}\right\rangle=\left\langle\sigma_{j}, \breve{\imath}_{j}\right\rangle "
$$

for some $\sigma_{j} \in W O_{\omega_{1}}$ and $i_{j} \in \omega$. Note that for every $j<n,\left\langle\sigma_{j}, \breve{\imath}_{j}\right\rangle \in \operatorname{rec}(\dot{G}(\pi))$. Let

$$
\dot{g}=\bigcup\left\{A_{\left\langle\sigma_{j}, i_{j}\right\rangle} \times\left\{\left\langle\sigma_{j}, \breve{u}_{j}\right\rangle\right\}: j<n\right\}
$$

where for every $j<n, A_{\left\langle\sigma_{j}, i_{j}\right\rangle}=\left\{p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\left\langle p, \sigma_{j}, \breve{\imath}_{j}\right\rangle \in \dot{G}(\pi)\right\}$. It is clear that \dot{g} is a nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$. Since $r \leq p^{\prime}$,

$$
r^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)} \text { " } \dot{h}=\left\{\left\langle\dot{a}_{j}, \dot{k}_{j}\right\rangle: j<\breve{n}\right\}=\left\{\left\langle\sigma_{j}, \breve{l}_{j}\right\rangle: j<\breve{n}\right\}=\dot{g} "
$$

Therefore, $r \in D_{\dot{h}}$ and $D_{\dot{h}}$ is a dense subset of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$.
Fact 3.3.49 We may code every nice Coll $\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$ with a real so that the set F^{*} of all reals that code some nice Coll $\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$ is a Δ_{n+2}^{1} set of reals.

Proof. Let \dot{g} be a nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$. Suppose that $|\operatorname{rec}(\dot{g})|=n$, where $n \in \omega$. Fix an enumeration $\left\{\left\langle\sigma_{j}, \breve{c}_{j}\right\rangle: j<n\right\}$ of $\operatorname{rec}(\dot{g})$. For every $j<n$, let $A_{j}=\left\{p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\left\langle p, \sigma_{j}, \breve{\imath}_{j}\right\rangle \in \dot{g}\right\}$ be the antichain associated to $\left\langle\sigma_{j}, \breve{\imath}_{j}\right\rangle$ in \dot{g}. For every $j<n$, let y_{j} be a code for A_{j} and let $u_{j} \in W O^{*}$ be a code for σ_{j}. For every $j<n$, let $z_{j} \in \omega^{\omega}$ be such that $z_{j}(0)=i_{j}$ and $z_{j}^{\prime}=u_{j}$. Finally, for all $j<n$, let $x_{j} \in \omega^{\omega}$ be such that $\left(x_{j}\right)_{0}=y_{j}$ and $\left(x_{j}\right)_{1}=z_{j}$. Then we say that x codes \dot{g} iff $x(0)=n$ and for every $j<n,\left(x^{\prime}\right)_{j}=x_{j}$.

Let F^{*} be the set of all reals that code some nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$. Then, for all $x \in \omega^{\omega}, x \in F^{*}$ iff

1. x codes $\left\langle x_{j}: j<x(0)\right\rangle$
2. $(\forall j<x(0))\left(x_{j} \operatorname{codes}\left\langle y_{j}, z_{j}\right\rangle\right)$
3. $(\forall j<x(0))\left(y_{j}\right.$ codes an antichain of $\left.\operatorname{Coll}\left(\omega,<\omega_{1}\right)\right)$
4. $(\forall j<x(0)) \forall n\left(\left\langle\left(y_{j}\right)_{n}, z_{j}^{\prime}, z_{j}(0)\right\rangle \in G(\pi)^{*}\right)$

Since (1) and (2) are $\Delta_{1}^{1}(x),(3)$ is $\Delta_{2}^{1}(x)$ and (4) is ${\underset{\sim}{~}}_{n+2}^{1}, F^{*}$ is a ${\underset{\sim}{~}}_{n+2}^{1}$ set of reals.

Definition 3.3.50 We define Caract (x, y) in $\omega^{\omega} \times \omega^{\omega}$ as follows: for all simple Coll $\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and all simple Coll $\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} (i.e., a simple Coll $\left(\omega,<\omega_{1}\right)$-name τ for a real such that for every $n \in \omega$, ${ }^{\circ}$ Coll $\left.\left(\omega,<\omega_{1}\right) " \tau(\breve{n}) \in\{0, \breve{1}\} "\right)$, Caract (σ, τ) iff

$$
{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right) " \tilde{\sigma}=\tau "
$$

That is, Caract (σ, τ) iff ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " τ is the characteristic function of σ ".
It is clear that for every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω there exists a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} such that $\operatorname{Caract}(\sigma, \tau)$ and, conversely, for every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} there is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω such that $\operatorname{Caract}(\sigma, \tau)$. Moreover, for every simple Coll $\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and all simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names τ, τ^{\prime} for reals in 2^{ω}, if $\operatorname{Caract}(\sigma, \tau)$ and $\operatorname{Caract}\left(\sigma, \tau^{\prime}\right)$, then ${ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}{ }^{\prime} \tau=\tau^{\prime \prime}$ and, conversely, for every simple Coll $\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} and all simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names σ, σ^{\prime} for subsets of ω, if $\operatorname{Caract}(\sigma, \tau)$ and $\operatorname{Caract}\left(\sigma^{\prime}, \tau\right)$, then ${ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) " \sigma=\sigma^{\prime \prime}$ ".

Claim 3.3.51 Let Caract* $\subseteq \omega^{\omega} \times \omega^{\omega}$ be defined by: for all $x, y \in \omega^{\omega}, \operatorname{Caract}^{*}(x, y)$ iff x codes a simple Coll $\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and y codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} and Caract (σ, τ). Then Caract* is a Δ_{2}^{1} relation in $\omega^{\omega} \times \omega^{\omega}$.

Proof. Notice that Caract* $^{*}(x, y)$ iff x codes a simple Coll $\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and y codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a real in 2^{ω} and

$$
{ }^{\circ} \operatorname{Coll}\left(\omega,<\omega_{1}\right) * \tilde{\sigma}=\tau "
$$

But ${ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} \quad$ $\tilde{\sigma}=\tau "$ iff ${ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) \quad "(\forall n \in \breve{\omega})(n \in \sigma \leftrightarrow \tau(n)=\breve{1}) "$ and $(\forall n \in \omega)(n \in x \leftrightarrow y(n)=1)$ is an arithmetical sentence with x and y as parameters. Thus, by Fact 3.3.37, Caract* is a Δ_{2}^{1} relation in $\omega^{\omega} \times \omega^{\omega}$.

Note that $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ has the following property: $p_{0}, \ldots, p_{n} \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ are pairwise compatible iff $p_{0} \cup \ldots \cup p_{n} \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$. And, in this case, $p_{0} \cup \ldots \cup p_{n} \leq$ p_{0}, \ldots, p_{n}. So, if $n \in \omega$ and $\left\{A_{i}: i \leq n\right\}$ is a family of antichains of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$, then

$$
A=\left\{p_{0} \cup \ldots \cup p_{n}:(\forall i \leq n)\left(p_{i} \in A_{i}\right) \wedge(\forall i, j \leq n)\left(i \neq j \rightarrow p_{i} \not \perp p_{j}\right)\right\}
$$

is an antichain of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$. Moreover, if for every $i \leq n, A_{i}$ is maximal, then A is also maximal.

Let s be a finite sequence of 0 's and 1 's and $i<\lg (s)$. By $\breve{s}(i)$ we denote the canonical $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for the i-value of s.

Definition 3.3.52 For every simple Coll $\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω}, let \dot{S}^{τ} be the following Coll $\left(\omega,<\omega_{1}\right)$-name:

$$
\begin{aligned}
\dot{S}^{\tau}=\{\langle p, \breve{n}\rangle: p \in \operatorname{Coll} & \left(\omega,<\omega_{1}\right) \wedge \\
& \left.\left.\wedge\left(\forall i<\lg \left(s_{n}\right)\right) \exists q_{i}\left(\left\langle q_{i}, \breve{,}, \breve{s}_{n}(i)\right\rangle \in \tau \wedge p=\bigcup_{i<\lg \left(s_{n}\right)} q_{i}\right)\right)\right\} .
\end{aligned}
$$

Claim 3.3.53 For all simple Coll $\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω}, \dot{S}^{τ} is a simple Coll $\left(\omega,<\omega_{1}\right)$-name for a subset of ω. Moreover, for every $n \in \omega$, ${ }^{\circ}{ }^{C o l l}\left(\omega,<\omega_{1}\right) " ~ \breve{n} \in$ $\dot{S}^{\tau} \leftrightarrow \breve{s}_{n} \subseteq \tau^{\prime \prime}$.

Proof. Let τ be a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a real in 2^{ω}. To see that \dot{S}^{τ} is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of ω, we only need to show that for every $n \in \omega, A_{n}=\left\{p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\langle p, \breve{n}\rangle \in \dot{S}^{\tau}\right\}$ is an antichain of $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$.

For every $i<\lg \left(s_{n}\right)$, let $B_{i}=\left\{q \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\left\langle q, \breve{\imath}, \breve{s}_{n}(i)\right\rangle \in \tau\right\}$. Then,

$$
A_{n}=\left\{\bigcup_{i<\lg \left(s_{n}\right)} p_{i}: p_{i} \in B_{i} \wedge\left(\forall i, j<\lg \left(s_{n}\right)\right)\left(i \neq j \rightarrow p_{i} \not \perp p_{j}\right)\right\}
$$

But, since for every $i<\lg \left(s_{n}\right), B_{i} \subseteq\left\{q \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\langle q, \breve{,}, 0\rangle \in \tau \vee\langle q, \breve{\imath}, 1\rangle \in \tau\right\}$ and τ is a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a real in 2^{ω}, the last set is a maximal antichain and, hence, B_{i} is an antichain. Therefore, A_{n} is also an antichain.

Let $C \subseteq \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ be a generic filter over V such that $V[C]{ }^{2}$ " $n \in$ $\dot{S}^{\tau}[C]$ ". So, for some $p \in C,\langle p, \breve{n}\rangle \in \dot{S}^{\tau}$. Hence, by definition of \dot{S}^{τ}, for every $i<\lg \left(s_{n}\right)$ there exists q_{i} such that $\left\langle q_{i}, \breve{\imath}, \breve{s}_{n}(i)\right\rangle \in \tau$ and $p=\bigcup_{i<\lg \left(s_{n}\right)} q_{i}$. But, since $p \in C$ and for every $i<\lg \left(s_{n}\right), p \leq q_{i}, q_{i} \in C$ for every $i<\lg \left(s_{n}\right)$. So, for every $i<\lg \left(s_{n}\right),\left\langle i, s_{n}(i)\right\rangle \in \tau[C]$. i.e., $V[C]^{2}$ " $s_{n} \subseteq \tau[C]$ ".

Now suppose that $V[C]{ }^{2}$ " $s_{n} \subseteq \tau[C]$ ". For every $i<\lg \left(s_{n}\right)$ there is $q_{i} \in C$ such that $\left\langle q_{i}, \breve{\imath}, \breve{s}_{n}(i)\right\rangle \in \tau$. But then, by compatibility in the filter, there exists $r \in C$ such that for all $i<\lg \left(s_{n}\right), r \leq q_{i}$. Therefore, if $p=\bigcup_{i<\lg \left(s_{n}\right)} q_{i}, r \leq p$ and hence $p \in C$. By definition of $\dot{S}^{\tau},\langle p, \breve{n}\rangle \in \dot{S}^{\tau}$. Therefore, $V[C]^{2}$ " $n \in \dot{S}^{\tau}[C]$ ".

So, for all simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and every simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names τ, τ^{\prime} for reals in 2^{ω}, if $\operatorname{Caract}(\sigma, \tau)$ and $\operatorname{Caract}\left(\sigma, \tau^{\prime}\right)$, then ${ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) " \dot{S}^{\tau}=\dot{S}^{\tau^{\prime}}$ ".

Definition 3.3.54 Let $A d^{*}(x, y, k)$ iff x codes a simple Coll $\left(\omega,<\omega_{1}\right)$-name σ for a subset of ω and y codes $\dot{S}_{k}^{\tilde{\sigma}}$, where, recall, $\tilde{\sigma}$ denotes a Coll $\left(\omega,<\omega_{1}\right)$-name for the characteristic function of the subset of ω named by σ.

Fact 3.3.55 $A d^{*}(x, y, k)$ is a Σ_{3}^{1} subset of $\omega^{\omega} \times \omega^{\omega} \times \omega$.

Proof. Let $\left[\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}\right]^{<\omega}$ be the set of all finite sequences of reals in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ the set of all reals coding a condition in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ (see the proof of Fact 3.3.36). We define $\operatorname{Uni} \subseteq\left[\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}\right]^{<\omega} \times \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ by: for all $n \in \omega, x_{0}, \ldots, x_{n}, x \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}, \operatorname{Uni}\left(x_{0}, \ldots, x_{n}, x\right)$ iff x_{0}, \ldots, x_{n} code compatible conditions and x codes its union. It is easy to see that $U n i$ is a Π_{2}^{1} subset of $\left(\omega^{\omega}\right)^{<\omega}$: for every $x_{0}, \ldots, x_{n}, x \in \omega^{\omega}, \operatorname{Uni}\left(x_{0}, \ldots, x_{n}, x\right)$ iff

1. $x \leq_{*} x_{0} \wedge \ldots \wedge x \leq_{*} x_{n}$. $\left(\Delta_{2}^{1}\left(x, x_{0}, \ldots, x_{n}\right)\right)$
2. $\forall z\left(z \leq_{*} x_{0} \wedge \ldots \wedge z \leq_{*} x_{n} \rightarrow z \leq_{*} x\right)$. $\left(\Pi_{2}^{1}\left(x, x_{0}, \ldots, x_{n}\right)\right)$

Let $R(x, y)$ iff x codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} and y codes \dot{S}^{τ}. So, for all $x, y \in \omega^{\omega}, R(x, y)$ iff:

1. x codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a real in $2^{\omega}\left(\Pi_{2}^{1}(x)\right)$
2. y codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a subset of $\omega\left(\Delta_{2}^{1}(y)\right)$
3. x codes $\left\langle x_{n}: n \in \omega\right\rangle$ and y codes $\left\langle y_{n}: n \in \omega\right\rangle\left(\Delta_{1}^{1}(x, y)\right)$
4. $\forall n\left(x_{n}\right.$ codes z_{n} and $u_{n} \wedge y_{n}$ codes v_{n} and $\left.n\right)\left(\Delta_{1}^{1}(x, y)\right)$
5. $\forall n, m(\forall i<l g(n)) \exists k\left(u_{i}(k)=s_{n}(i) \wedge U n i\left(\left(z_{0}\right)_{k}, \ldots\left(z_{n-1}\right)_{k},\left(v_{n}\right)_{m}\right)\right)$
6. $\forall n(\forall i, j<l g(n)) \exists k\left(u_{i}(k)=s_{n}(i) \wedge\left(z_{i}\right)_{k} \not \perp\left(z_{j}\right)_{k} \rightarrow\right.$ $\left.\rightarrow \exists m \operatorname{Uni}\left(\left(z_{0}\right)_{k}, \ldots\left(z_{n-1}\right)_{k},\left(v_{n}\right)_{m}\right)\right)$
where, for every $n \in \omega, \lg (n)=\lg \left(s_{n}\right)$. So, (5) and (6) are Π_{2}^{1}, and hence R also is a Π_{2}^{1} subset of $\omega^{\omega} \times \omega^{\omega}$.

Let $S \subseteq \omega^{\omega} \times \omega^{\omega} \times \omega$, defined as follows: for every $x, y \in \omega^{\omega}$ and $k \in \omega$, $S(x, y, k)$ iff x codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name τ for a real in 2^{ω} and y codes \dot{S}_{k}^{τ}. Thus, for all $x, y \in \omega^{\omega}$ and every $k \in \omega, S(x, y, k)$ iff

1. x codes a simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a real in $2^{\omega}\left(\Pi_{2}^{1}(x)\right)$
2. There exists z such that
(a) $R(x, z)$ and
(b) y codes $\left\langle y_{n}: n \in \omega\right\rangle$ and z codes $\left\langle z_{n}: n \in \omega\right\rangle$ and
(c) $\forall n\left(z_{n}\right.$ codes u_{n} and $n \wedge y_{n}$ codes v_{n} and $\left.J(k, n)\right)$ and
(d) $\forall n, m\left(J(k, n)=m \rightarrow v_{n}=u_{m}\right)$

But since $(2 a)$ is $\Pi_{2}^{1}(x, z)$, and $(2 b)-(2 d)$ are $\Delta_{1}^{1}(y, z),(2)$ is $\Sigma_{3}^{1}(x, y)$. Hence, S is Σ_{3}^{1}. Finally, since for every $x, y \in \omega^{\omega}$ and $k \in \omega, A d^{*}(x, y, k)$ iff

$$
\exists z\left(\text { Caract }^{*}(x, z) \wedge S(z, y, k)\right),
$$

$A d^{*}$ is also a Σ_{3}^{1} relation in $\omega^{\omega} \times \omega^{\omega} \times \omega$.

Fact 3.3.56 For every $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right), s, t \in[\omega]^{<\omega}$ and every $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ name \dot{S}_{i}^{τ}, the following are equivalent:

1. $p^{\circ}{ }_{C o l l\left(\omega,<\omega_{1}\right)} " \breve{s} \cap \dot{S}_{i}^{\tau} \subseteq \breve{t} "$
2. $\forall n\left(n \in s \wedge(\forall q \leq p) \exists r\left(r \not \perp q \wedge\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\tau}\right) \rightarrow n \in t\right)$.

Proof. $(1 \Rightarrow 2)$ Suppose that $p{ }^{\circ}{ }_{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $\breve{s} \cap \dot{S}_{i}^{\tau} \subseteq \breve{t}$ ". Fix $n \in s$ such that for all $q \leq p$ there exists r such that $q \not \perp r$ and $\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\tau}$. Since $n \in s, p{ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right)$ " $\breve{n} \in \breve{s} "$. Since for every $q \leq p$ there exists $r \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ such that $q \not \perp r$ and $\langle\breve{n}, r\rangle \in \dot{S}_{i}^{\tau}$, the set $\left\{p^{\prime} \in \operatorname{Coll}\left(\omega,<\omega_{1}\right):\left(\exists r \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)\right)\left(p^{\prime} \leq r \wedge\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\tau}\right)\right\}$ is dense below p. So, for every $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over V such that $p \in C$, $n \in \dot{S}_{i}^{\tau}[C]$. Therefore, $p{ }^{\circ}{ }_{C o l l}\left(\omega,<\omega_{1}\right) " ~ \breve{n} \in \dot{S}_{i}^{\tau} "$. So, $p^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}{ }^{\prime} \breve{n} \in \breve{s} \cap \dot{S}_{i}^{\tau} "$. But

$(2 \Rightarrow 1)$ Suppose (2) and $p^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\breve{n} \in \breve{s} \cap \dot{S}_{i}^{\tau}$ ". Since $p^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\breve{n} \in$ $\breve{s} \cap \dot{S}_{i}^{\tau}$ ", on one hand, $p^{\circ}{ }^{\circ}$ Coll($\left.\omega,<\omega_{1}\right) " \breve{n} \in \breve{s}$ ", so $n \in s$. On the other hand, since $p^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $\breve{n} \in \dot{S}_{i}^{\tau}$ ", for every $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over V such that $p \in C, n \in \dot{S}_{i}^{\tau}[C]$. So, for every Coll $\left(\omega,<\omega_{1}\right)$-generic filter C over V with $p \in C$, there exists $r \in C$ such that $\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\tau}$. So, for every $q \leq p$ there exists r such that $q \not \perp r$ and $\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\tau}$. But then, by (2), $n \in t$ and hence, $p^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " $\breve{n} \in \breve{t}$ ". So, p° " $\breve{s} \cap \dot{S}_{i}^{\tau} \subseteq \breve{t}$ ".

Finally, we will show that $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ is a ${\underset{\sim}{~}}_{n+2}^{1}$ poset.
By Fact 3.3.48, we may assume that for every $\langle p, \breve{s}, \dot{g}\rangle \in \operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}, \dot{g}$ is a nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$.

Let $h: \omega^{\omega} \rightarrow \omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ be the one-to-one and onto function given by $h(x)=\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ iff for all $n \in \omega, x_{i}(n)=x(3 n+i)$, where $i \in\{0,1,2\}$. If $h(x)=\left\langle x_{0}, x_{1}, x_{2}\right\rangle$, we say that x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$.

Recall that F is the dense embedding from $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$ into $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ of Fact 3.3.36. If $x \in \omega^{\omega}$, we say that x codes a condition $\langle p, \breve{s}, \dot{g}\rangle \in \operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ iff x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ and $F\left(x_{0}\right)=p, x_{1}$ codes s and x_{2} codes the nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ name \dot{g} for a finite subset of $\dot{G}(\pi)$.

Define $\left\langle Q^{*}, \leq^{*}, \perp^{*}\right\rangle$ as follows:

- $Q^{*}=\left\{x \in \omega^{\omega}: x\right.$ codes a condition in $\left.\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}\right\}$
- $x \leq^{*} y$ iff the condition coded by x extends in $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ the condition coded by y
- $x \perp^{*} y$ iff x, y code incompatible conditions of $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$

So $x \in Q^{*}$ iff

1. x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$
2. $x_{0} \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
3. x_{1} codes a finite subset of ω
4. x_{2} codes a nice $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-name for a finite subset of $\dot{G}(\pi)$
where x_{1} codes a finite subset of ω iff x_{1} is the characteristic function of a finite subset of ω. (1) and (3) are Δ_{1}^{1} predicates on the reals. Note that, by Fact 3.3.36, (2) is $\Delta_{2}^{1}\left(x_{0}\right)$ and, by Fact 3.3.49, (4) is ${\underset{n}{n}}_{n+2}^{1}$. Therefore, Q^{*} is a ${\underset{\sim}{n}}_{n+2}^{1}$ subset of ω^{ω}.

Note that for every $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$ and all nice $\tilde{\operatorname{Coll}}\left(\omega,<\omega_{1}\right)$-names \dot{h}, \dot{g} for finite subsets of $\dot{G}(\pi), p^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)}$ " $\dot{h} \subseteq \dot{g}$ " iff for all $\langle\sigma, \breve{\imath}\rangle \in \operatorname{rec}(\dot{h})$,

$$
\begin{aligned}
& \left(\left(\forall q_{1} \leq p\right)\left(\exists q_{2} \leq q_{1}\right)\left(\exists\left\langle q_{3}, \tau_{1}, \breve{\imath}\right\rangle \in \dot{h}\right)\left(q_{2} \leq q_{3} \wedge q_{2}{ }^{\circ}{ }^{\operatorname{Coll}\left(\omega,<\omega_{1}\right)} " \sigma=\tau_{1} "\right) \rightarrow\right. \\
& \left.\quad \rightarrow\left(\forall r_{1} \leq p\right)\left(\exists r_{2} \leq r_{1}\right)\left(\exists\left\langle r_{3}, \tau_{2}, \breve{\imath}\right\rangle \in \dot{g}\right)\left(r_{2} \leq r_{3} \wedge r_{2}{ }^{\circ} \operatorname{Coll}\left(\omega_{,},<\omega_{1}\right) " \sigma=\tau_{2} "\right)\right)
\end{aligned}
$$

(see [Ku], VII.3.3). Let R be the relation defined by: $R(p, \sigma, \tau)$ iff $p \in \operatorname{Coll}\left(\omega,<\omega_{1}\right)$, σ, τ are simple $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-names for reals and $p{ }^{\circ}{ }_{\text {Coll }}\left(\omega,<\omega_{1}\right) " ~ \sigma=\tau$ ". Note that R is a Δ_{2}^{1} relation (by Fact 3.3.37). So, using the above equivalence and that given by Fact 3.3 .56 , for all $x, y \in \omega^{\omega}, x \leq^{*} y$ iff

1. $x \in Q^{*}$ and $y \in Q^{*}$
2. x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ and y codes $\left\langle y_{0}, y_{1}, y_{2}\right\rangle$
3. $x_{0} \leq_{*} y_{0}$, where, recall, \leq_{*} denotes the ordering relation in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$
4. $\forall n\left(y_{1}(n)=1 \rightarrow x_{1}(n)=1\right)$.
5. Let $\varphi_{\text {incl }}(x, y)$ be the conjunction of:
(a) x_{2} codes $\left\langle a_{j}: j<x_{2}(0)\right\rangle$ and y_{2} codes $\left\langle b_{j}: j<y_{2}(0)\right\rangle$
(b) $\left(\forall j<x_{2}(0)\right)\left(a_{j} \operatorname{codes}\left\langle a_{j}^{0} a_{j}^{1}\right\rangle\right) \wedge\left(\forall j<y_{2}(0)\right)\left(b_{j} \operatorname{codes}\left\langle b_{j}^{0} b_{j}^{1}\right\rangle\right)$
(c) $\left(\forall j<x_{2}(0)\right) \forall n\left(\left\langle\left(a_{j}^{0}\right)_{n},\left(a_{j}^{1}\right)^{\prime}, a_{j}^{1}(0)\right\rangle \in G(\pi)^{*} \wedge\right.$

$$
\wedge\left(\forall j<y_{2}(0)\right) \forall n\left(\left\langle\left(b_{j}^{0}\right)_{n},\left(b_{j}^{1}\right)^{\prime}, b_{j}^{1}(0)\right\rangle \in G(\pi)^{*}\right.
$$

(d) $\left(\forall j<y_{2}(0)\right)\left[\forall z_{0}\left(z_{0} \leq_{*} x_{0} \rightarrow \exists z_{1}\left(z_{1} \leq_{*} z_{0} \wedge\right.\right.\right.$

$$
\begin{aligned}
& \left.\left.\wedge \exists k\left(\exists m<y_{2}(0)\right)\left(z_{1} \leq_{*}\left(b_{m}^{0}\right)_{k} \wedge R\left(z_{1},\left(b_{j}^{1}\right)^{\prime},\left(b_{m}^{1}\right)^{\prime}\right)\right)\right)\right) \rightarrow \\
& \quad \rightarrow \forall z_{2}\left(z_{2} \leq_{*} x_{0} \rightarrow \exists z_{3}\left(z_{3} \leq_{*} z_{2} \wedge\right.\right. \\
& \left.\left.\left.\left.\quad \wedge \exists n\left(\exists l<x_{2}(0)\right)\left(z_{3} \leq_{*}\left(a_{l}^{0}\right)_{n} \wedge R\left(z_{3},\left(b_{j}^{1}\right)^{\prime},\left(a_{l}^{1}\right)^{\prime}\right)\right)\right)\right)\right)\right]
\end{aligned}
$$

6 . Let $\varphi_{\text {presv }}(x, y)$ be the conjunction of the following:
(a) x_{2} codes $\left\langle a_{j}: j<x_{2}(0)\right\rangle$
(b) $\left(\forall j<x_{2}(0)\right)\left(a_{j} \operatorname{codes}\left\langle a_{j}^{0} a_{j}^{1}\right\rangle\right)$
(c) $\left(\forall j<x_{2}(0)\right) \forall n\left(\left\langle\left(a_{j}^{0}\right)_{n},\left(a_{j}^{1}\right)^{\prime}, a_{j}^{1}(0)\right\rangle \in G(\pi)^{*}\right.$
(d) $\left(\forall j<x_{2}(0)\right) \forall u\left(A d^{*}\left(\left(a_{j}^{0}\right)_{n}, u, a_{j}^{1}(0)\right) \wedge\right.$
$\wedge \forall n\left(x_{1}(n)=1 \wedge \forall z_{0}\left(z_{0} \leq_{*} x_{0} \rightarrow \exists z_{1}\left(\neg z_{0} \perp_{*} z_{1} \wedge \exists m\left((u)_{m}=z_{1}\right)\right) \rightarrow\right.\right.$ $\left.\left.\left.\rightarrow(y)_{1}(n)=1\right)\right)\right)$

We know that (1) is Δ_{n+2}^{1}, (2) and (4) are $\Delta_{1}^{1}(x, y)$ and (3) is $\Delta_{2}^{1}(x, y)$. Note that (5.a) and (5.b) also are $\Delta_{1}^{1}(x, y)$ and, by Fact 3.3.46, (5.c) is Δ_{n+2}^{1}. Moreover, (5.d) is a formula which is equivalent both to a $\Sigma_{4}^{1}(x, y)$ formula and to a $\Pi_{4}^{1}(x, y)$ formula. Hence, since $n \geq 2$, (5) is Δ_{n+2}^{1}. Finally, (6.a) and (6.b) are $\Delta_{1}^{1}(x, y),(6 . c)$ is Δ_{n+2}^{1}, and, since, by Fact $3.3 .55, A d^{*}$ is $\Sigma_{3}^{1},(6 . d)$ is $\Pi_{3}^{1}(x, y)$. So, (6) is Δ_{n+2}^{1}. Therefore, \leq^{*} is ${\underset{\sim}{n}}_{n+2}^{1}$ relation in $\omega^{\omega} \times \omega^{\omega}$ included in $Q^{*} \times Q^{*}$.

Finally, note that for every $\langle p, \breve{s}, \dot{g}\rangle,\langle q, \breve{t}, \dot{h}\rangle \in \operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi},\langle p, \breve{s}, \dot{g}\rangle \perp$ $\langle q, \breve{t}, \dot{h}\rangle$ iff $p \perp q$ or there exists $\langle\sigma, i\rangle \in \operatorname{rec}(\dot{g} \cup \dot{h})$ such that

$$
\exists n\left(n \in s \wedge\left(\forall p^{\prime} \leq p, q\right) \exists r\left(r \not \perp p^{\prime} \wedge\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\sigma}\right) \wedge n \notin t\right)
$$

or there exists $\langle\sigma, i\rangle \in \operatorname{rec}(\dot{g} \cup \dot{h})$ such that

$$
\exists n\left(n \in t \wedge\left(\forall p^{\prime} \leq p, q\right) \exists r\left(r \not \perp p^{\prime} \wedge\left(\langle r, \breve{n}\rangle \in \dot{S}_{i}^{\sigma}\right) \wedge n \notin s\right)\right.
$$

Let $\varphi_{\text {incom }}(x, y)$ the conjunction of following:

1. x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ and y codes $\left\langle y_{0}, y_{1}, y_{2}\right\rangle$
2. x_{2} codes $\left\langle a_{j}: j<x_{2}(0)\right\rangle$ and $y_{2} \operatorname{codes}\left\langle b_{j}: j<y_{2}(0)\right\rangle$
3. $\left(\forall j<x_{2}(0)\right)\left(a_{j}\right.$ codes $\left.\left\langle a_{j}^{0}, a_{j}^{1}\right\rangle\right) \wedge\left(\forall j<y_{2}(0)\right)\left(b_{j}\right.$ codes $\left.\left\langle b_{j}^{0} b_{j}^{1}\right\rangle\right)$
4. $\left(\exists j<\max \left\{x_{2}(0), y_{2}(0)\right\}\right) \exists z\left(A d^{*}\left(\left(a_{j}^{1}\right)^{\prime}, z, a_{j}^{1}(0)\right) \vee A d^{*}\left(\left(b_{j}^{1}\right)^{\prime}, z, b_{j}^{1}(0)\right)\right) \wedge$

$$
\begin{aligned}
& \wedge \exists n\left(x_{1}(n)=1 \wedge \forall v\left(v \leq_{*} x_{0} \wedge v \leq_{*} y_{0} \rightarrow\right.\right. \\
& \left.\quad \rightarrow \exists u\left(\neg u \perp_{*} v \wedge \exists m\left((z)_{m}=u\right)\right) \wedge(y)_{1}(n)=0\right)
\end{aligned}
$$

(1), (2) and (3) are $\Delta_{1}^{1}(x, y)$. Since $A d^{*}$ is Σ_{3}^{1}, (4) is equivalent both to a Σ_{3}^{1} and a Π_{3}^{1} formula with parameters x, y. Hence, $\varphi_{\text {incom }}(x, y)$ is equivalent also to a $\Sigma_{3}^{1}(x, y)$ formula and to a $\Pi_{3}^{1}(x, y)$ formula. Finally, for all $x, y \in \omega^{\omega}, x \perp^{*} y$ iff

1. $x \in Q^{*}$ and $y \in Q^{*}$
2. x codes $\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ and y codes $\left\langle y_{0}, y_{1}, y_{2}\right\rangle$
3. $x_{0} \perp_{*} y_{0} \vee \varphi_{\text {incom }}(x, y) \vee \varphi_{\text {incom }}(y, x)$,
where, recall, \perp_{*} denotes the incompatibility relation in $\operatorname{Coll}\left(\omega,<\omega_{1}\right)^{*}$. So, \perp^{*} is a Δ_{n+2}^{1} relation in $\omega^{\omega} \times \omega^{\omega}$ included in $Q^{*} \times Q^{*}$.

Therefore, $\left\langle Q^{*}, \leq^{*}, \perp^{*}\right\rangle$ is a Δ_{n+2}^{1} poset.
Let G be the map from Q^{*} into $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ sending every $x \in Q^{*}$ to the condition coded by it. It is clear that G is a dense embedding (but not one-to-one) from $\left\langle Q^{*}, \leq^{*}, \perp^{*}\right\rangle$ into $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$. Therefore, $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ is a Δ_{n+2}^{1} poset. End of proof of Lemma 3.3.44.

Now we finish the proof of Theorem 3.3.30: From Lemma 3.3.42, we know that for every $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi^{-}}$generic filter $C * H, V[C * H]^{2} \omega_{1}^{L\left[b_{H}\right]}=\omega_{1}$. Note that $\omega_{1}^{L\left[b_{H}\right]}=\omega_{1}$ is expressible by means of a $\Pi_{3}^{1}\left(b_{H}\right)$ sentence:

$$
\forall y\left(y \in W O \rightarrow \exists z\left(z \in W O \wedge z \in L\left[b_{H}\right] \wedge\|y\|<\|z\|\right)\right) .
$$

So, $\exists x\left(\omega_{1}^{L[x]}=\omega_{1}\right)$ is equivalent to a Σ_{4}^{1} sentence and

$$
V[C * H]^{2} \exists x\left(\omega_{1}^{L[x]}=\omega_{1}\right)
$$

Since $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$ is ccc and ${ }^{\circ}{ }_{\text {Coll }\left(\omega,<\omega_{1}\right)}$ " \dot{P}_{π} is σ-centered", $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ is ccc. So, by Lemma 3.3.44, $\operatorname{Coll}\left(\omega,<\omega_{1}\right) * \dot{\mathrm{P}}_{\pi}$ is a Δ_{n+2}^{1} and ccc poset. Therefore, by \sum_{4}^{1}-absoluteness between V and $V[C * H]$,

$$
V^{2} \exists x\left(\omega_{1}^{L[x]}=\omega_{1}\right)
$$

in contradiction with the inaccessibility of ω_{1} in L.
Note that the proof of Theorem 3.3.30 really shows that for every $n \geq 2, \Sigma_{4^{-}}^{1}$ absoluteness for Δ_{n+2}^{1} and ccc forcing notions implies that ω_{1} is a Σ_{n}-Mahlo cardinal in L. So,

Corollary 3.3.57 For every $n \geq 2$, $\operatorname{Con}\left(Z F C+\sum_{4}^{1}\right.$-absoluteness for $\underset{\sim}{\underset{\sim}{n}}{ }_{n+2}^{1}$ and ccc forcing notions) implies Con($Z F C+\exists \kappa\left(\kappa\right.$ is a Σ_{n}-Mahlo cardinal) $)$.

As consequence of Theorem 3.3.18 and of Theorem 3.3.30, we have proved Theorem 3.3.1:

Theorem 3.3.1 The following are equiconsistent (modulo ZFC)

1. There exists a Σ_{ω}-Mahlo cardinal.
2. L(R)-two-step absoluteness for projective and ccc posets.
3. \sum_{4}^{1}-absoluteness for projective and ccc posets.

3.3.4 Final remarks and open questions

1. For every $n \in \omega$, let σ_{n}, π_{n} and δ_{n} denote, respectively, the least Σ_{n}-Mahlo cardinal, the least Π_{n}-Mahlo cardinal and the least Δ_{n}-Mahlo cardinal. We know that $\delta_{0}=\sigma_{0}=\pi_{0}=\delta_{1}=\sigma_{1}<\delta_{2}$ and that for every $n>1, \delta_{n} \leq \sigma_{n} \leq$ $\pi_{n} \leq \delta_{n+1}$. We also know (see Corollary 3.3.15) that $\sigma_{n}<\pi_{n+1}$. But we do not know if $\delta_{n}<\sigma_{n}$ or $\sigma_{n}<\pi_{n}$ or $\pi_{n}<\delta_{n+1}$. What of these inequalities hold?
2. From Theorem 3.3.30 we have that \sum_{4}^{1}-absoluteness for Δ_{4}^{1} and ccc forcing notions implies that ω_{1} is a Σ_{2}-Mahlo cardinal in L. This shows that Theorem 3.2.1 is optimal in the following sense: in order to obtain \sum_{\sim}^{1}-absoluteness for ccc forcing notions of complexity greater than \sum_{\sim}^{1}, we need a large cardinal greater than an inaccessible.
3. There is a little gap between Theorem 3.2.1 and Theorem 3.3.30: the case for the \sum_{4}^{1}-absoluteness for \prod_{3}^{1} and ccc posets. We don't know which is its exact consistency strength. Let us call P a strongly \prod_{3}^{1} poset iff P is a \prod_{3}^{1} poset and \perp_{P}, the incompatibility relation for P , is a Δ_{3}^{\sim} subset of the real plane. Then as in Fact 2.1.15, it is easy to see that for every for every strongly \prod_{3}^{1} and ccc poset P and every real $x \in \omega^{\omega}$, " x codes a maximal antichain of $\mathrm{P}{ }^{\prime}$ it is a \prod_{3}^{1} predicate. So, with a few modifications, the proof of Theorem 3.2.1 also shows that every strongly \prod_{3}^{1} and ccc extension of a Solovay model is a Solovay model.
4. Note that, in spite of Theorem 3.3.1, the proofs of Theorem 3.3.18 and of Theorem 3.3.30 are not optimal for $n \geq 3$, because on one hand, we need a Π_{n}-Mahlo cardinal in order to obtain $L(\mathrm{R})$-two-step absoluteness for \sum_{n+1}^{1} and ccc posets (see Corollary 3.3.29). On the other hand, with \sum_{4}^{1}-absoluteness for $\underset{\sim}{\Delta}{ }_{n+2}$ and ccc posets, we only obtain the existence of a Σ_{n}-Mahlo cardinal in L (see Corollary 3.3.57).
5. Note also that in the case for the \sum_{4}^{1}-absoluteness for \prod_{n+1}^{1} and ccc posets (with $n \geq 3$) there is a gap between Theorem 3.3.18 and Theorem 3.3.30. As in the case for the \prod_{3}^{1} and ccc posets, we can define the strongly ${\underset{\sim}{n}}_{n+1}^{1}$ posets and adapt the proof of Theorem 3.3.18 to show that every strongly ${\underset{\sim}{\sim}}_{n+1}^{1}$ and ccc extension of a Π_{n}-Mahlo Solovay model is a Π_{n}-Mahlo Solovay model.
6. The following is a natural question: Does $L(\mathrm{R})$-two-step absoluteness for \sum_{n+1}^{1} and ccc posets imply ${\underset{\sim}{4}}_{4}^{1}$-absoluteness for $\underset{\sim}{\underset{n}{1}}{ }^{1}$ and ccc posets?

3.4 Collapsing a M ahlo cardinal

3.4.1 Absoluteness by collapsing a Mahlo cardinal

Definition 3.4.1 $L(\mathrm{R})$ is a Mahlo Solovay model over V iff

1. For every $x \in \mathbf{R}, \omega_{1}$ is a Mahlo cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

As in the case of Solovay models over V and of Σ_{ω}-Mahlo Solovay models over V, we can give a characterization of Mahlo Solovay models in the same way as that of Lemma 3.1.1. Namely,
Lemma 3.4.2 Suppose that M satisfies

1. For every $x \in \mathbf{R}$, ω_{1} is a Mahlo cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Then there exists a forcing notion W such that does not add reals and creates a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter C over V such that M and $V[C]$ have the same reals. Thus, W forces that $L(\mathrm{R})^{M}$ is a Mahlo Solovay model over V.

Note that \mathbf{P} is a subposet of a projective poset \mathbf{Q} iff $\mathbf{P}=\left\langle P, \leq_{P}, \perp_{P}\right\rangle$ where $\leq_{P}=\leq_{Q}{ }^{1} P$ and $\perp_{P}=\perp_{Q}{ }^{1} P$ and P is any subset, not necessarily projective, of Q. Hence, P is a subposet of a projective poset iff there are Σ_{n}^{1} formulas $\varphi_{\leq}(x, y)$ and $\varphi_{\perp}(x, y)$ with $a \in \omega^{\omega}$ as parameter such that for all reals $x, y \in \omega^{\omega}$,

$$
\begin{aligned}
& x \leq_{P} y \text { iff } x, y \in P \text { and } \varphi_{\leq}(x, y) \\
& x \perp_{P} y \text { iff } x, y \in P \text { and } \varphi_{\perp}(x, y)
\end{aligned}
$$

and P is any set of reals.
In order to study the generic absoluteness properties of a Mahlo Solovay model, we need to look into the reflection phenomena of projective sentences along the Levycollapsing forcing for a Mahlo cardinal.

Lemma 3.4.3 Suppose that κ is Mahlo cardinal and $C \subseteq \operatorname{Coll}(\omega,<\kappa)$ is a generic filter over V. Let $\varphi\left(v_{0}, \ldots, v_{k}\right)$ be a $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ formula. Then for all reals $b_{0}, \ldots, b_{k} \in$ $V[C]$,

$$
V[C]^{2} \varphi\left(b_{0}, \ldots, b_{k}\right)
$$

iff there exists a stationary set $S \subseteq \kappa$ of inaccessible cardinals such that for every $\lambda \in S$,

$$
V\left[C_{\lambda}\right]^{2} \varphi\left(b_{0}, \ldots, b_{k}\right) .
$$

Proof. We write \bar{v} for v_{0}, \ldots, v_{k} and \bar{b} for b_{0}, \ldots, b_{k}. Let κ be a Mahlo cardinal and let $C \subseteq \operatorname{Coll}(\omega,<\kappa)$ be a generic filter over V. For every $\alpha<\kappa$, let $C_{\alpha}=$ $\operatorname{Coll}(\omega,<\alpha) \cap C$. Fix an enumeration $\left\langle r_{\alpha}: \alpha<\kappa\right\rangle$ of all reals in $V[C]$ such that for every inaccessible cardinal $\lambda<\kappa,\left\langle r_{\alpha}: \alpha<\lambda\right\rangle$ enumerates all reals of $V\left[C_{\lambda}\right]$. Let I be the stationary set of all inaccessible cardinals below κ. We need the following fact:

Fact 3.4.4 Suppose that κ is Mahlo cardinal and suppose that $C \subseteq \operatorname{Coll}(\omega,<\kappa)$ is a generic filter over V. Let $\varphi\left(v_{0}, \ldots, v_{k}\right)$ be a $\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right)$ formula. Then for all reals $b_{0}, \ldots, b_{k} \in V[C]$, if

$$
V[C]^{2} \varphi\left(b_{0}, \ldots, b_{k}\right)
$$

then, there exists a club $D \subseteq \kappa$ that for every $\lambda \in D \cap I$,

$$
V\left[C_{\lambda}\right]^{2} \varphi\left(b_{0}, \ldots, b_{k}\right)
$$

Proof. We show this fact by induction on the complexity of projective formulas.
$\underline{n=1}$: Follows from absoluteness of Σ_{1}^{1} and Π_{1}^{1} formulas and the fact that $\operatorname{Coll}(\omega,<\kappa)$ is a κ-cc poset.
$\underline{n+1}$: Suppose that for every Σ_{n}^{1} and every Π_{n}^{1} formula $\psi(\bar{v})$ and every $\bar{b} \in$ $V[C]$, if $V[C]^{2} \psi(\bar{b})$, then there exists a club $D \subseteq \kappa$ such that for every $\lambda \in D \cap I$, $V\left[C_{\lambda}\right]^{2} \psi(\bar{b})$.
Σ_{n+1}^{1} formulas: Follows from inductive hypothesis.
Π_{n+1}^{1} formulas: Let $\forall x \psi(\bar{v}, x)$ be a Π_{n+1}^{1} formula with $a \in V[C]$ as parameter and let $\bar{b} \in V[C]$. Suppose that $V[C]^{2} \forall x \psi(\bar{b}, x)$. Then, for every $\alpha<\kappa, V[C]^{2} \psi\left(\bar{b}, r_{\alpha}\right)$. But $\psi(\bar{v}, x)$ is a Σ_{n}^{1} formula and therefore, for every $\alpha<\kappa$, there exists a club $D_{\alpha} \subseteq \kappa$ such that for every $\lambda \in D_{\alpha} \cap I, V\left[C_{\lambda}\right]^{2} \psi\left(\bar{b}, r_{\alpha}\right)$. Let $D=\triangle_{\alpha<\kappa} D_{\alpha}$. Clearly, for every $\lambda \in D \cap I, V\left[C_{\lambda}\right]^{2} \forall x \psi(\bar{b}, x)$.

Now we prove the lemma:
(\Rightarrow) Follows from Fact 3.4.4 since $D \cap I$ is a stationary set of inaccessible cardinals.
(\Leftarrow) Let $\varphi(\bar{v})$ be a projective formula and let $\bar{b} \in V[C]$ be such that there exist a stationary set S of inaccessible cardinals such that for every $\lambda \in S, V\left[C_{\lambda}\right]^{2} \varphi(\bar{b})$. Suppose that $V[C]^{2} \neg \varphi(\bar{b})$. Let $D \subseteq \kappa$ be the club from Fact 3.4.4 for $\neg \varphi(\bar{b})$. Let $\lambda \in S \cap D$. Then, since λ is an inaccessible cardinal in $D, V\left[C_{\lambda}\right]^{2} \neg \varphi(\bar{b})$. But, since $\lambda \in S, V\left[C_{\lambda}\right]^{2} \varphi(\bar{b})$. A contradiction.

Corollary 3.4.5 There is no projective sentence σ such that $Z F C \vdash " \sigma \leftrightarrow \omega_{1}$ is a Mahlo cardinal in $L^{\prime \prime}$.

Proof. Suppose otherwise. Then, there exists some real a and a Σ_{n}^{1} sentence σ with parameter a such that $Z F C \vdash " \sigma \leftrightarrow \omega_{1}$ is a Mahlo cardinal in L ". Let κ be the least Mahlo cardinal in L. Let $C \subseteq \operatorname{Coll}(\omega,<\kappa)$ be a generic filter over L. Then, $L[C]^{2} \sigma$. So, by Lemma 3.4.3, there exists an stationary set $S \subseteq \kappa$ of inaccessible cardinals such that, for every $\lambda \in S, L\left[C_{\lambda}\right]^{2} \sigma$. So, $L\left[C_{\lambda}\right]^{2}$ " ω_{1} is a Mahlo cardinal in L " and, by downward absoluteness of Π_{1} predicates, L^{2} " $\omega_{1}^{L\left[C_{\lambda}\right]}$ is a Mahlo cardinal". But $\omega_{1}^{L\left[C_{\lambda}\right]}<\kappa$. A contradiction with the minimality of κ.

Theorem 3.4.6 Suppose $L(\mathbb{R})^{M}$ is a Mahlo Solovay model over V and P is a ccc subposet of a projective poset in M. Then the $L(\mathrm{R})$ of any P -generic extension of M is also a Mahlo Solovay model over V.

Proof. Suppose that $L(\mathbf{R})^{M}$ is a Mahlo Solovay model over V and let $\kappa=$ ω_{1}^{M} be the Mahlo cardinal in V such that forcing over M with W , we obtain a Coll $(\omega,<\kappa)$-generic filter C over V so that $\mathbf{R}^{V[C]}=\mathbf{R}^{M}$. Let $\mathbf{P}=\left\langle P, \leq_{P}, \perp_{P}\right\rangle$ be a ccc subposet of a projective poset in $V[C]$. As in Theorem 3.2.1, it will be enough to show that for every P-generic filter G over V, every real in $V[C][G]$ is generic over V for a countable poset.

Let $\dot{\mathrm{P}}$ be a $\operatorname{Coll}(\omega,<\kappa)$-name for P . Let $a \in \omega^{\omega}$ be the parameter of the ${\underset{\sim}{n}}_{n}^{1}$ formulas $\varphi_{\leq}(x, y ; a)$ and $\varphi_{\perp}(x, y ; a)$ that define the ordering \leq and the relation \perp such that $\leq_{P}=\leq \cap(P \times P)$ and $\perp_{P}=\perp \cap(P \times P)$ respectively. Suppose that \dot{a} is a simple Coll $(\omega,<\kappa)$-name for a.

Let $\mathrm{S}=\operatorname{Coll}(\omega,<\kappa) * \dot{\mathrm{P}}$. Note that S is a κ-cc poset.
Notation 3.4.7 We use the same notational conventions from 3.2.1 with only the following two exceptions:

- For every $\alpha<\kappa, \mathrm{P}_{\alpha}=\left\langle P_{\alpha}, \leq_{P_{\alpha}}, \perp_{P_{\alpha}}\right\rangle$ where $P_{\alpha}=P \cap V\left[C_{\alpha}\right]$ and $\leq_{P_{\alpha}}$ and $\perp_{P_{\alpha}}$ are defined in $V\left[C_{\alpha}\right]$ by the same formulas $\varphi_{\leq}(x, y ; a)$ and $\varphi_{\perp}(x, y ; a)$ restricted to elements of P_{α}, whenever $a, P_{\alpha} \in V\left[C_{\alpha}\right]$. Otherwise, P_{α} is the trivial poset.
- We use \leq and \perp only for the relations defined by the formulas $\varphi_{\leq}(x, y ; a)$ and $\varphi_{\perp}(x, y ; a)$.

Lemma 3.4.8 Let κ be a Mahlo cardinal, $C \subseteq \operatorname{Coll}(\omega,<\kappa)$ a generic filter over V and P be ccc subposet of a \sum_{n}^{1} poset in $V[C]$. Then there exists a stationary set $S \subseteq \kappa$ of inaccessible cardinals such that for every $\lambda \in S, \mathrm{P}_{\lambda}$ is a subposet P .

Proof. Suppose that $\mathrm{P} \in V[C]$ is a ccc subposet of a \sum_{n}^{1} poset. Let $\varphi_{\leq}(x, y)$ and $\varphi_{\perp}(x, y)$ be Σ_{n}^{1} formulas with parameter $a \in V[C]$ that define the ordering \leq and the incompatibility relation \perp in $V[C]$. Let $\left\langle\left\langle r, r^{\prime}\right\rangle_{\alpha}: \alpha<\kappa\right\rangle$ be an enumeration of all ordered pairs of reals in $V[C]$, such that for every inaccessible cardinal $\lambda<\kappa$, $\left\langle\left\langle r, r^{\prime}\right\rangle_{\alpha}: \alpha<\lambda\right\rangle$ enumerates all pairs of reals of $V\left[C_{\lambda}\right]$. Since for every real $r, r^{\prime} \in$
$V[C], \varphi_{\leq}(x, y)$ and $\neg \varphi_{\leq}(x, y)$ are projective formulas, using Fact 3.4.4, for every $\alpha<\kappa$ we can fix a club set $D_{\alpha} \subseteq \kappa$ such that for every inaccessible cardinal $\lambda \in D_{\alpha}$,

$$
V\left[C_{\lambda}\right]^{2} \varphi_{\leq}\left(r, r^{\prime}\right) \text { iff } V[C]^{2} \varphi_{\leq}\left(r, r^{\prime}\right)
$$

where $\left\langle r, r^{\prime}\right\rangle_{\alpha}=\left\langle r, r^{\prime}\right\rangle$. Let $D_{\leq}=\triangle_{\alpha<\kappa} D_{\alpha}$. Note that for every inaccessible cardinal $\lambda \in D_{\leq}$and for all reals $r, r^{\prime} \in V\left[C_{\lambda}\right]$,

$$
V\left[C_{\lambda}\right]^{2} r \leq r^{\prime} \text { iff } V[C]^{2} r \leq r^{\prime}
$$

We define the club D_{\perp} in the same way but using the formula $\varphi_{\perp}(x, y)$.
Claim 3.4.9 There exists a stationary set $S \subseteq \kappa$ of inaccessible cardinals such that for every $\lambda \in S, \mathrm{P}_{\lambda} \in V\left[C_{\lambda}\right]$.

Proof. For every $\alpha<\kappa$, let

$$
D_{\alpha}=\left\{\eta<\kappa: P_{\alpha} \in V\left[C_{\eta}\right]\right\} .
$$

We know that for every $\alpha<\kappa, P_{\alpha} \in V[C], P_{\alpha} \subseteq \omega^{\omega} \cap V\left[C_{\alpha}\right] \in V\left[C_{\alpha}\right]$ and $\left|\omega^{\omega} \cap V\left[C_{\alpha}\right]\right|<\kappa$. Hence, there exists $\eta<\kappa$ such that $P_{\alpha} \in V\left[C_{\eta}\right]$ (see $[\mathrm{Ku}]$, VIII.5.14). So, $D_{\alpha} \neq \emptyset$ and, since for every $\beta<\gamma<\kappa$, $V\left[C_{\beta}\right] \subseteq V\left[C_{\gamma}\right]$, for every $\alpha<\kappa, D_{\alpha}$ is a club in κ.

Let $D=\triangle_{\alpha<\kappa} D_{\alpha}$. Let I be the stationary of inaccessible cardinals below κ. Let $S=I \cap D$. Let $\lambda \in S$. Then, since $\lambda \in D$, for every $\alpha<\lambda, P_{\alpha} \in V\left[C_{\lambda}\right]$. Since λ is an inaccessible cardinal, for every real b in $V\left[C_{\lambda}\right]$, there exist $\alpha<\lambda$ such that $b \in V\left[C_{\alpha}\right]$. So $P_{\lambda}=\bigcup_{\alpha<\lambda} P_{\alpha}$. Thus P_{λ} belongs to $V\left[C_{\lambda}\right]$.

Let $S_{\mathrm{P}}=S \cap D_{\leq} \cap D_{\perp}$. Clearly, $S_{\mathrm{P}} \subseteq \kappa$ is a stationary set of inaccessible cardinals such that for every $\lambda \in S_{\mathrm{P}}, \mathrm{P}_{\lambda}$ is a subposet of P .

Thus for every $\mu, \lambda \in S_{\mathbf{P}}$, if $\mu \leq \lambda$ then $\mathrm{S}_{\mu} \subseteq \mathrm{S}_{\lambda}$ and $\mathrm{S}=\bigcup_{\lambda \in S_{\mathrm{P}}} \mathrm{S}_{\lambda}$. Hence, for every subposet X of S of cardinality $<\kappa$ there exists $\lambda \in S_{\mathrm{p}}$ such that X is a subposet of S_{λ}.

For every $\lambda \in S_{\mathrm{P}}$, let $\xi(\lambda)$, if it exists, be the least $\xi \in S_{\mathrm{P}}$ such that for all $\mu \in S_{\mathrm{P}}$ such that $\mu \geq \xi$ the following holds: For every simple $\operatorname{Coll}(\omega,<\lambda)$ name \dot{A} for a subset of $\dot{\mathrm{R}}_{\lambda}$, every simple $\operatorname{Coll}(\omega,<\lambda)$-name for a real \dot{c} and every $q \in \operatorname{Coll}(\omega,<\mu)$, if

$$
q^{\circ}{ }_{C o l l}(\omega,<\kappa) \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathbf{P}} \text { below } \dot{c} "
$$

then

$$
q^{\circ}{ }_{\text {Coll }(\omega,<\mu)} \text { " } \dot{A} \text { is not a maximal antichain of } \dot{\mathbf{P}} \text { below } \dot{c} " .
$$

Lemma 3.4.10 For every $\lambda \in S_{\mathrm{P}}, \xi(\lambda)$ exists.

Proof. As in Lemma 3.2.3, but using the fact that if A is not a maximal antichain of P then there exists r a real belonging to P which is incompatible with all reals in A. But then, this real belongs to some P_{μ} for some $\mu \in S_{\mathrm{P}}$ and the incompatibility relation in P is absolute for $V\left[C_{\mu}\right]$ and $V[C]$, since $\mu \in S_{\mathrm{P}}$.

The rest of the proof of Theorem 3.4.6 is like the proof of Theorem 3.2.1 but using only inaccessible cardinals in S_{P} instead of all ordinals below κ.

As a consequence of Theorem 3.4.6, we will see that being a Mahlo Solovay model is preserved for σ-linked forcing notions.

Definition 3.4.11 A poset \mathbf{P} is σ-linked iff there exists a family $\left\{P_{n}: n \in \omega\right\}$ such that $\mathrm{P}=\bigcup_{n \in \omega} P_{n}$ and for every $n \in \omega$ and every $\{p, q\} \subseteq P_{n}$, there exists $r \in \mathrm{P}$ such that $r \leq_{P} p, q$.

Theorem 3.4.12 Suppose $L(\mathrm{R})^{M}$ is a Mahlo Solovay model over V and P is a σ linked poset in M. Then the $L(\mathbf{R})$ of any P -generic extension of M is also a Mahlo Solovay model over V.

Proof. In view of Theorem 3.4.6 we only need to prove the following:

Fact 3.4.13 Every σ-linked poset can be densely embedded into a subposet of a Borel poset.

Proof. Let P be a σ-linked poset. We find a σ-linked poset X_{P} which is a subposet of a Borel poset and a dense embedding from P into X_{P}.

Definition 3.4.14 Let \mathbf{P} be a σ-linked poset. A set $X=\left\{X_{n}: n \in \omega\right\}$ is a σ-linking family of P iff $\mathrm{P}=\bigcup_{n \in \omega} X_{n}$ and for every $n \in \omega$, if $p, p^{\prime} \in X_{n}$, then there exists $q \in \mathrm{P}$ such that $q \leq p, p^{\prime}$. Suppose that X, Y are σ-linking families of P . Y extends X iff for every $n \in \omega, X_{n} \subseteq Y_{n}$. Y is a maximal σ-linking family of P iff there is no σ-linking family of P that properly extends Y.

Claim 3.4.15 Let \mathbf{P} be a σ-linked poset. Then every σ-linking family of P can be extended to a maximal one.

Proof. By Zorn's Lemma.
Definition 3.4.16 Let P be a σ-linked poset and let Y be some maximal σ-linking family of \mathbf{P}. We define $X_{\mathbf{P}}$ as follows: For every $p \in \mathrm{P}$, let $x_{P}=\left\{n \in \omega: p \in Y_{n}\right\}$. Let

- $x_{p} \in X_{\mathrm{P}}$ iff $p \in \mathbf{P}$
- $x_{p} \leq X_{\mathrm{P}} x_{q}$ iff $x_{p} \subseteq x_{q}$.

So, for every $x_{p}, x_{q} \in X_{\mathrm{P}}$,

$$
x_{p} \perp_{X_{\mathrm{P}}} x_{q} \text { iff } x_{p} \cap x_{q}=\emptyset .
$$

Since $x \subseteq y$ and $x \cap y=\emptyset$ are arithmetical, it is clear that for every σ-linked poset $\mathrm{P}, X_{\mathrm{P}}$ is a subposet of Borel poset.

Claim 3.4.17 If P is a σ-linked poset, there exists a dense embedding (not necessarily one-to-one) from P onto X_{P}.

Proof. Let i be the function from P into X_{P} such that $i(p)=x_{p}$. If $p \leq_{P} q$ and $p \in Y_{n}$, then, by maximality of $Y, q \in Y_{n}$. Hence, $x_{p} \subseteq x_{q}$ and so $i(p)=x_{p} \leq_{X_{\mathrm{P}}}$ $x_{q}=i(q)$. Moreover, if $p \perp_{P} q$ then, there is no $n \in \omega$ such that $p, q \in Y_{n}$. Hence, $x_{p} \cap x_{q}=\emptyset$ and, therefore, $i(p)=x_{p} \perp_{X_{\mathrm{P}}} x_{q}=i(q)$. Finally, note that $i^{\prime \prime} \mathrm{P}=X_{\mathrm{P}}$. So i is a dense embedding of \mathbf{P} onto X_{P}. This ends the proof of the claim, of Fact 3.4.13 and of Theorem 3.4.12.

Note that X_{P} is a σ-linked poset: for every $n \in \omega$, let $X_{n}=\left\{x_{p}: n \in x_{p}\right\}$. Then, $\left\{X_{n}: n \in \omega\right\}$ is a σ-linking family of X_{P}.
3.4.2 The strength of $\sum_{4^{-}}^{1}$ absoluteness for σ-centered subposets of Borel posets

Theorem 3.4.18 The following are equiconsistent (modulo ZFC)

1. There exists a Mahlo cardinal.
2. L(R)-two-step absoluteness for ccc subposets of projective posets.
3. $L(\mathrm{R})$-two-step absoluteness for σ-linked posets.
4. L(R)-two-step absoluteness for σ-centered posets (see Definition 2.3.42).
5. \sum_{4}^{1}-absoluteness for σ-centered posets.
6. \sum_{\sim}^{1}-absoluteness for σ-centered subposets of Borel posets.

Proof. (1) implies (2) follows from Theorem 3.4.6. (2) implies (3) follows from Fact 3.4.13, (3) implies (4), (4) implies (5) and (5) implies (6) are obvious.
(6) implies (1): essentially is a result of A. R. D. Mathias (see [B-F]), which uses a theorem of J. Brendle, H. Judah and S. Shelah (see [Br-Ju-Sh]). For completeness, we give a proof of these results:

Definition 3.4.19 For all $x, y \in \omega^{\omega}, y \leq^{*} x$ iff there exists $n \in \omega$ such that for all $m \geq n, y(m) \leq x(m)$. In this case, we say that x dominates y. Let $F \subseteq \omega^{\omega}$. $x \in \omega^{\omega}$ dominates F iff for all $y \in F, y \leq^{*} x$. In this case, we also say that x is a dominating real for $F . F$ is an unbounded set iff for every $y \in \omega^{\omega}$ there exists $x \in F$ such that $x £^{*} y$.

Definition 3.4.20 Let \mathbf{D} be the Hechler forcing to add a dominating real:

- $\langle s, x\rangle \in \mathrm{D}$ iff $s \in \omega^{<\omega}, x \in \omega^{\omega}$, s and x are increasing and $s \subseteq x$.
- $\langle s, x\rangle \leq\langle t, y\rangle$ iff $t \subseteq s$ and $\forall n(y(n) \leq x(n))$.

Remark 3.4.21 Note that D is a Borel poset. D also is a σ-centered poset: suppose $\langle s, x\rangle,\langle s, y\rangle \in \mathrm{D}$. Let $z \in \omega^{\omega}$ such that for every $n \in \operatorname{dom}(s), z(n)=s(n)$ and for every $n \in \omega \backslash \operatorname{dom}(s), z(n)=x(n)+y(n)$. Then $\langle s, z\rangle \leq\langle s, x\rangle,\langle s, y\rangle$. So, all conditions in \mathbf{D} with the same first coordinate are compatible.

Fact 3.4.22 If G is a D -generic filter over V, then

$$
d=\bigcup\left\{s \in \omega^{<\omega}:\left(\exists x \in \omega^{\omega}\right)(\langle s, x\rangle \in G)\right\}
$$

is a dominating real for $\omega^{\omega} \cap V$.
Theorem 3.4.23 (J.Brendle, H.J udah and S. Shelah) Assume \sum_{4}^{1}-absoluteness for the Hechler poset holds. Then ω_{1} is an inaccessible cardinal in \tilde{L}.

Proof. Suppose V is \sum_{4}^{1}-absolute for \mathbf{D} and ω_{1} is not inaccessible in L.
Let $\theta=\exists x\left(L[x] \cap \omega^{\omega}\right.$ is unbounded). First, note that θ is equivalent to a Σ_{4}^{1} sentence:

$$
\exists x \forall y \exists z\left(z \in L[x] \wedge z £^{*} y\right)
$$

Since \leq^{*} is a Borel relation and $\omega^{\omega} \cap L[x]$ is a $\Sigma_{2}^{1}(x)$ set of reals, the formula between parenthesis is $\Sigma_{2}^{1}(x, y, z)$ and so θ is Σ_{4}^{1}.

Fact 3.4.24 V 2θ.
Proof. Fix $x \in \omega^{\omega} \cap V$. Let G be a D-generic filter V and let $d \in \omega^{\omega}$ be the D-generic real over V. Then, for all $z \in \omega^{\omega} \cap V, z \leq^{*} d$ and, since $L[x] \subseteq V$,

$$
V[G]^{2} \forall z\left(z \in L[x] \rightarrow z \leq^{*} d\right)
$$

So,

$$
V[G]^{2} \exists y \forall z\left(z \in L[x] \rightarrow z \leq^{*} y\right) .
$$

But the right-hand formula is $\Sigma_{3}^{1}(x)$ and $x \in \omega^{\omega} \cap V$. So, by \sum_{\sim}^{1}-absoluteness for \mathbf{D},

$$
V^{2} \exists y \forall z\left(z \in L[x] \rightarrow z \leq^{*} y\right) .
$$

Therefore,

$$
V^{2} \forall x \exists y \forall z\left(z \in L[x] \rightarrow z \leq^{*} y\right) .
$$

i.e., $V^{2} \neg \theta$.

Fact 3.4.25 $V[G]^{2} \theta$.

Proof. Recall that in the proof of Theorem 3.3.30, we have fixed a recursive enumeration $\left\langle s_{i}: i \in \omega\right\rangle$ of $2^{<\omega}$ such that every finite sequence of 0 's and 1's is enumerated before all its proper extensions and recursive partition of ω in infinitely many infinite pieces. Also recall that for every $a \subseteq \omega, \tilde{a}: \omega \rightarrow\{0,1\}$ denotes its characteristic function. Finally, let $\left\{S^{a}: a \subseteq \omega\right\}$ be the perfect and maximal almost-disjoint family defined in 3.3.30.

Definition 3.4.26 Let $x \in \omega^{\omega}$ be an increasing function and let $a \subseteq \omega$ be such that $S^{a} \cap \operatorname{rec}(x)$ is infinite. We define $h_{a, x} \in \omega^{\omega}$ as follows: for every $i \in \omega$,

$$
h_{a, x}(i)=k \text { iff } x\left(n_{i}\right) \in S_{k}^{a},
$$

where n_{i} is the i-th element of $S^{a} \cap \operatorname{rec}(x)$.
Claim 3.4.27 For every $a \in P(\omega) \cap V$, $\operatorname{rec}(d) \cap S^{a}$ is infinite.
Proof. We only need to show that for every $a \subseteq \omega$ and every $n \in \omega$,

$$
D_{n}^{a}=\left\{\langle s, x\rangle:(\exists m \geq n)\left(s(m) \in S^{a}\right)\right\}
$$

is a dense subset of \mathbf{D}, for then, by definition of d, for every $n \in \omega$ there is $m \geq n$ such that $d(m) \in S^{a}$.

Let $\langle s, x\rangle \in \mathrm{D}$. Suppose that $m=\max \{n, \operatorname{dom}(s)\}+1$ and let $s^{\prime} \in \omega^{m+1}$ be defined as follows: for every $i \in \operatorname{dom}(s), s^{\prime}(i)=s(i)$, for every $i \in m \backslash$ $\operatorname{dom}(s), s^{\prime}(i)=x(i)$ and, finally, let $s^{\prime}(m)$ be the least $i \in S^{a}$ such that $i>$ $\max \left(\left\{s^{\prime}(i): i<m\right\} \cup\{x(m)\}\right)$.

Let $x^{\prime} \in \omega^{\omega}$ be such that for every $i \leq m, x^{\prime}(i)=s^{\prime}(i)$ and for every $i>m$, $x^{\prime}(i)=\max \left\{x(i), x^{\prime}(i-1)+1\right\}$.

Since s and x are increasing and $s \subseteq x, s^{\prime}$ is increasing. Moreover, by definition of x^{\prime}, x^{\prime} is increasing and $s^{\prime} \subseteq x^{\prime}$. So, $\left\langle s^{\prime}, x^{\prime}\right\rangle \in \mathrm{D}$. Since $m>n$ and $s^{\prime}(m) \in S^{a}$, $\left\langle s^{\prime}, x^{\prime}\right\rangle \in D_{n}^{a}$. Finally, by definition of $s^{\prime}, s \subseteq s^{\prime}$ and, by definition of x^{\prime}, for all $i \in \omega$, $x(i) \leq x^{\prime}(i)$. Therefore, $\left\langle s^{\prime}, x^{\prime}\right\rangle \leq\langle s, x\rangle$.

Definition 3.4.28 Let $s \in \omega^{<\omega}$ and $D \subseteq \mathrm{D}$. We define the rank of s in $D, \mathrm{rk}_{D}(s)$, by recursion on $\omega^{<\omega}$ as follows:

1. $\mathrm{rk}_{D}(s)=0$ iff there exists $x \in \omega^{\omega}$ such that $\langle s, x\rangle \in D$.
2. $\operatorname{rk}_{D}(s)=\alpha$ iff there is no $\beta<\alpha$ such that $\operatorname{rk}_{D}(s)=\beta$ but there are $m \in \omega$ and $\left\{t_{k}: k \in \omega\right\} \subseteq \omega^{m}$ such that $k \in \omega, s \subseteq t_{k}, t_{k}(\operatorname{dom}(s)) \geq k$ and $\mathrm{rk}_{D}\left(t_{k}\right)<\alpha$.
3. $\operatorname{rk}_{D}(s)=\infty$ otherwise.

Note that, since $\omega^{<\omega}$ is countable, for all $s \in \omega^{<\omega}$, either $\operatorname{rk}_{D}(s)<\omega_{1}$ or $\mathrm{rk}_{D}(s)=\infty$. Moreover,

Claim 3.4.29 Let D be a dense subset of D . Then for every $s \in \omega^{<\omega}$ increasing, $\mathrm{rk}_{D}(s)<\omega_{1}$.

Proof. Suppose that $s \in \omega^{m}$ is a increasing sequence. First note that if $\mathrm{rk}_{D}(s)=\infty$, then

$$
\left|\left\{n \in \omega: \operatorname{rk}_{D}\left(s^{\mathrm{a}} n\right) \neq \infty\right\}\right|<\omega
$$

We define, by recursion on ω, a sequence $\left\langle k_{i}: i \in \omega\right\rangle$ of natural numbers such that for all increasing sequence $t \in \omega^{<\omega}$, if $k_{i} \leq t(i)$, then $\mathrm{rk}_{D}\left(s^{\mathrm{a}} t\right)=\infty$:
$\underline{i=0}$: Since $\left|\left\{n \in \omega: \operatorname{rk}_{D}\left(s^{\mathrm{a}} n\right) \neq \infty\right\}\right|<\omega$, there exists $k \in \omega$ such that for all $k^{\prime} \geq k, k^{\prime} \in \omega \backslash\left\{n \in \omega: \operatorname{rk}_{D}\left(s^{\mathrm{a}} n\right) \neq \infty\right\}$. Let k_{0} be the least such k greater than $s(m-1)$.
$\underline{i>0}$: Suppose that $\left\langle k_{j}: j<i\right\rangle$ has been defined. Then, by inductive hypothesis, $\operatorname{rk}_{D}\left(s^{\mathrm{a}}\left\langle k_{j}: j<i\right\rangle\right)=\infty$. So, $\left|\left\{n \in \omega: \mathrm{rk}_{D}\left(s^{\mathrm{a}}\left\langle k_{j}: j<i\right\rangle\right) \neq \infty\right\}\right|<\omega$. Therefore, there is $k \in \omega$ such that $k^{\prime} \geq k, k^{\prime} \in \omega \backslash\left\{n \in \omega: \operatorname{rk}_{D}\left(s^{\mathrm{a}}\left\langle k_{j}: j<i\right\rangle^{\mathrm{a}} n\right) \neq \infty\right\}$. Let k_{i} be the least such k greater than k_{i-1}.

Let $x \in \omega^{\omega}$ defined as follows:

$$
x(n)= \begin{cases}s(n), & \text { if } n<m \\ k_{n-m}, & \text { if } n \geq m\end{cases}
$$

Then x is increasing and $s \subseteq x$. So, $\langle s, x\rangle \in \mathrm{D}$. But then, by density of D, there is $\langle t, y\rangle \in D$ such that $\langle t, y\rangle \leq\langle s, x\rangle$. Therefore, for all $j \in \operatorname{dom}(t)$, if $m \leq j$, $x(j) \leq y(j)=t(j)$ and, then, by definition of the sequence $\left\langle k_{i}: i \in \omega\right\rangle, \mathrm{rk}_{D}(t)=\infty$. But, since $\langle t, y\rangle \in D, \mathrm{rk}_{D}(t)=0$. A contradiction.

Lemma 3.4.30 Every real $x \in V[G]$ is eventually different form at most countably many reals $h_{a, d}$ with $a \in P(\omega) \cap V$. i.e., for every $x \in V[G]$,

$$
\left|\left\{a \in P(\omega) \cap V:(\exists n \in \omega)(\forall m \geq n)\left(h_{a, d}(m) \neq x(m)\right)\right\}\right| \leq \omega .
$$

Proof. Let \dot{x} be a D-name for a real ω^{ω}. Let, for every $n \in \omega, D_{n} \subseteq \mathbf{D}$ be a dense and open subset such that every $\langle s, y\rangle \in D_{n}$ decides $\dot{x}^{1}(n+1)$. Let N be a countable elementary submodel of $H(\chi)$ such that $\left\{S^{a}: a \in P(\omega) \cap V\right\}, \dot{x} \in N$. We will prove that if $S^{a} \notin N$, then,

$$
{ }^{\circ} \mathrm{D}(\forall n \in \omega)(\exists m \geq n)\left(\dot{x}(m)=h_{a, d}(m)\right) .
$$

Fix $S^{a} \notin N$ and suppose that $\langle s, y\rangle \in \mathrm{D}$ such that for some $k \in \omega$,

$$
\langle s, y\rangle^{\circ} \mathrm{D}(\forall m \geq k)\left(\dot{x}(m) \neq h_{a, d}(m)\right) .
$$

Let $l \geq k$ be such that $\left|\operatorname{rec}(s) \cap S^{a}\right|=l$ and let

$$
Y=\left\{t \in \omega^{<\omega}: s \subseteq t \wedge\left|\operatorname{rec}(t) \cap S^{a}\right|=l \wedge(\forall i \in \operatorname{dom}(t) \backslash \operatorname{dom}(s))(y(i) \leq t(i))\right\}
$$

We fix $t \in Y$ with minimal $\mathrm{rk}_{D_{l}}(t)$.
Claim 3.4.31 $\mathrm{rk}_{D_{l}}(t)=0$

Proof. Suppose otherwise. Since $\operatorname{rk}_{D_{l}}(t) \neq \infty$, there are $m \in \omega$ and a set $\left\{t_{k}: k \in \omega\right\} \subseteq \omega^{m}$ of increasing sequences such that for all $k \in \omega, \operatorname{rk}_{D_{l}}\left(t_{k}\right)<\operatorname{rk}_{D_{l}}(t)$ and $t_{k}(\operatorname{dom}(t))>k$. Note that $\left\{t_{k}: k \in \omega\right\} \in N$. For every $j<m-\operatorname{dom}(t)$ we define $Z_{j}=\left\{t_{k}(\operatorname{dom}(t)+j): k \in \omega\right\}$. Note that every infinite subsequence of $\left\{t_{k}: k \in \omega\right\}$ also witnesses that $\mathrm{rk}_{D_{l}}(t)>0$. So, picking the appropriate subsequence, and since the S^{a} form a maximal almost-disjoint family, we may assume that $\left\{t_{k}: k \in \omega\right\}$ has the following property:

For every $j<m-\operatorname{dom}(t)$, the exists only one $a_{j} \subseteq \omega$ such that $Z_{j} \subseteq S^{a_{j}}$
Since $N \prec H(\chi)$, we may carry this construction in N.
Since $S^{a} \notin N, Z_{j} \cap S^{a}$ is finite for all $j<m-\operatorname{dom}(t)$. Therefore, there is $k \in \omega$ such that $\operatorname{rec}\left(t_{k}\right) \cap S^{a}=\operatorname{rec}(t) \cap S^{a}$. So, in particular, $t_{k} \in Y$ and $\operatorname{rk}_{D_{l}}\left(t_{k}\right)<\operatorname{rk}_{D_{l}}(t)$. A contradiction with the minimality of $\mathrm{rk}_{D_{l}}(t)$ in Y.

Since $\operatorname{rk}_{D_{l}}(t)=0$, there exists $z \in \omega^{\omega}$ such that $\langle t, z\rangle \in D_{l}$. Let $z^{\prime} \in \omega^{\omega}$ be such that for all $n \in \omega, z^{\prime}(n)=\max \{y(n), z(n)\}$. Then, $\left\langle t, z^{\prime}\right\rangle \leq\langle s, y\rangle$ and, since $\left|\operatorname{rec}(t) \cap S^{a}\right|<l,\left\langle t, z^{\prime}\right\rangle$ decides $\dot{x}(l)$ without deciding $h_{a, d}(l)$.

Suppose that $\left\langle t, z^{\prime}\right\rangle{ }^{\circ} \mathrm{D} \dot{x}(l)=j$. Fix $i \geq z^{\prime}(\operatorname{dom}(t))$ such that $i \in S_{j}^{a}$. Then,

$$
\left\langle t^{\mathrm{a}} i, z^{\prime}\right\rangle^{\circ} \mathrm{D} \dot{d}(l)=j=h_{a, d}(l)
$$

A contradiction with the election of $\langle s, y\rangle$.
We finish the proof of Fact 3.4.25: Since ω_{1} is not inaccessible in L, for some real $b \in \omega^{\omega} \cap V, \omega_{1}^{L[b]}=\omega_{1}$. Clearly,

$$
\left\{h_{a, d}: a \in P(\omega) \cap L[b]\right\} \subseteq \omega^{\omega} \cap L[b][d] \subseteq \omega^{\omega} \cap V[G]
$$

and, by Lemma 3.4.30, $\left\{h_{a, d}: a \in P(\omega) \cap L[b]\right\}$ is an unbounded set of reals in $V[G]$. Therefore, $\omega^{\omega} \cap L[b][d]$ is not countable. Let $x \in \omega^{\omega} \cap V[G]$ be such that x codes b and d. Then

$$
V[G]^{2} \text { " } \omega^{\omega} \cap L[x] \text { is unbounded". }
$$

Therefore, $V[G]^{2}$ " $\exists x\left(\omega^{\omega} \cap L[x]\right.$ is unbounded)" and so $V[G]^{2} \theta$.
Since $V 2 \theta, V[G]^{2} \theta$ and θ is a Σ_{4}^{1}, V is not \sum_{4}^{1}-absolute for D. A contradiction. This ends the proof of Theorem 3.4.23.

Now we prove (6) implies (1) of Theorem 3.4.18. We will show that $\sum_{4^{-}}^{1}$ absoluteness for σ-centered subposets of Borel posets implies that ω_{1} is a Mahlo cardinal in L. Suppose otherwise. Since $\sum_{\sim_{4}^{1}}^{1}$-absoluteness for σ-centered subposets of Borel posets implies \sum_{4}^{1}-absoluteness for Hechler forcing, by Theorem 3.4.23, ω_{1} is an inaccessible cardinal in L. So, there exists a club $D \in L$ on ω_{1} of singular cardinals in L.

Let $D^{*} \subseteq P(\omega)$ be the set of all codes of a well ordering of ω of order type ω or an ordinal in D. Let $\pi: D^{*} \rightarrow D^{*}$ be such that for all $a \in D^{*}, \pi(a)$ is a code for the least ordinal in D greater than $\|a\|$.

Let P_{π} the Solovay almost-disjoint coding for π (see Definition 3.3.40). Recall that \mathbf{P}_{π} is a σ-centered poset. Hence, by Fact 3.4.13 and the remark following it, \mathbf{P}_{π} can be densely embedded into a σ-centered subposet \mathbf{P}_{π}^{*} of a Borel poset. But, by Fact 2.1.12 and by Lemma 3.3.42, in every P_{π}^{*}-generic extension over V there exists a real x such that $\omega_{1}^{L[x]}=\omega_{1}$. But this is expressible with a Σ_{4}^{1} sentence that, by $\sum_{4^{4}}^{1}$-absoluteness, it is true in V. A contradiction with the inaccessibility of ω_{1}.

3.5 Collapsing a weakly-compact cardinal

Definition 3.5.1 $L(\mathrm{R})$ is a weakly-compact Solovay model over V, henceforth a w-c Solovay model over V, iff

1. For every $x \in \mathbf{R}, \omega_{1}$ is a weakly-compact cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Clearly, every w-c Solovay model over V is a Solovay model over V. So, we can give a characterization of w-c Solovay models in the same way as in Lemma 3.1.1. Namely

Lemma 3.5.2 Suppose that M satisfies

1. For every $x \in \mathbf{R}, \omega_{1}$ is a weakly-compact cardinal in $V[x]$ and
2. For every $x \in \mathrm{R}, V[x]$ is a generic extension of V by some countable poset.

Then there exists a forcing notion W such that does not add reals and creates a Coll $\left(\omega,<\omega_{1}\right)$-generic filter C over V such that M and $V[C]$ have the same reals. Thus, W forces that $L(\mathrm{R})^{M}$ is a $w-c$ Solovay model over V.

Note that we can formulate Theorem 2.3.2 in the following way:
Theorem 3.5.3 (K. K unen) Suppose $L(\mathrm{R})^{M}$ is a $w-c$ Solovay model over V and \mathbf{P} is a ccc poset in M. Then the $L(\mathbf{R})$ of any \mathbf{P}-generic extension of M is also a w-c Solovay model over V.

Definition 3.5.4 A poset P is Knaster iff for all uncountable subset X of P there exists an uncountable $Y \subseteq X$ of pairwise compatible conditions.

Theorem 3.5.5 The following are equiconsistent (modulo ZFC):

1. There exists a weakly-compact cardinal.
2. L(R)-two-step absoluteness for ccc forcing notions.
3. $L(\mathrm{R})$-two-step absoluteness for Knaster forcing notions.
4. \sum_{\sim}^{1}-absoluteness for Knaster forcing notions.

Proof. (1) implies (2) follows from 3.5.3. (2) implies (3) and (3) implies (4) are obvious.
(4) implies (1): Let V be a model of $Z F C$ that is \sum_{4}^{1}-absolute under Knaster forcing notions. Suppose that ω_{1} is not a weakly-compact cardinal in L.

Lemma 3.5.6 (J . Silver) Suppose that κ is a regular cardinal which is not a weakly compact cardinal in L. Then, in L, there is an Aronszajn tree T on κ such that for every model M of $Z F C$, if M^{2} " T has a branch of length κ ", then M^{2} "cf $(\kappa)=\omega$ ".

Proof. See [D], 5.1.C.
Since ω_{1} is not a weakly-compact cardinal in L, we can fix an Aronszajn tree $T \in L$ as given by the lemma. Without loss of generality, we may assume that T has infinitely-many nodes of height 0 .

Definition 3.5.7 For every sequence $\left(d_{\alpha}\right)_{\alpha<\omega_{1}}$ of reals let $\mathrm{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ be the following poset:

- $p \in \mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ iff:

1. p is a function from a finite subset of T into \mathbf{Q}, the set of rational numbers.
2. $\left(\forall t, t^{\prime} \in \operatorname{dom}(p)\right)\left(t \leq_{T} t^{\prime} \rightarrow p(t) \leq_{Q} p\left(t^{\prime}\right)\right)$
3. $(\forall t \in \operatorname{dom}(p))\left(\mathrm{ht}_{T}(t)=\omega \cdot \alpha \wedge p(t) \in \omega \rightarrow p(t) \in d_{\alpha}\right)$

- $p \leq q$ iff $q \subseteq p$.

Lemma 3.5.8 For every sequence $\left(d_{\alpha}\right)_{\alpha<\omega_{1}}, \mathrm{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ is Knaster poset.
Proof. Let $\left(d_{\alpha}\right)_{\alpha<\omega_{1}}$ be any sequence of ω_{1} reals. We need the following claim:
Claim 3.5.9 If T is an Aronszajn tree and for every uncountable subset of $X \subseteq T$, there exists an uncountable subset $Y \subseteq X$ of pairwise incomparable elements, then $\mathrm{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ is a Knaster poset.

Proof. Let $\left\{p_{\xi}: \xi<\omega_{1}\right\}$ be an uncountable subset of $\mathrm{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$. By a Δ-system argument we may assume that for every $\xi<\omega_{1}$, $\operatorname{dom}\left(p_{\xi}\right)=x \cup x_{\xi}$, where $\{x\} \cup\left\{x_{\xi}: \xi<\omega_{1}\right\}$ is a family of pairwise disjoint finite sets. Moreover, by thinning out the family $\left\{p_{\xi}: \xi<\omega_{1}\right\}$ we can assume that:

1. For all $\xi, \zeta<\omega_{1}, p_{\xi}{ }^{1} x=p_{\zeta}{ }^{1} x$.
2. There exists $n \in \omega$ such that for all $\xi<\omega_{1}, x_{\xi}=\left\{t_{i}^{\xi}: i \leq n\right\}$
3. For every $i \leq n$ and every $\xi, \zeta<\omega_{1}, p_{\xi}\left(t_{i}^{\xi}\right)=p_{\zeta}\left(t_{i}^{\zeta}\right)$
4. For every $\xi<\zeta<\omega_{1}$, every $t \in x_{\xi}$ and every $t^{\prime} \in x_{\zeta}, \mathrm{ht}_{T}(t)<\mathrm{ht}_{T}\left(t^{\prime}\right)$.

Since $\bigcup\left\{x_{\xi}: \xi<\omega_{1}\right\}$ is an uncountable subset of T, there exists $S \subseteq \omega_{1}$ uncountable such that $\bigcup\left\{x_{\xi}: \xi \in S\right\}$ is a set of pairwise incomparable elements of T.

Note that $p, q \in \mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ are incompatible iff there are $t \in \operatorname{dom}(p)$ and $t^{\prime} \in \operatorname{dom}(q)$ such that $t \leq_{T} t^{\prime}$ but $p(t) £ q\left(t^{\prime}\right)$. But, since $\bigcup\left\{x_{\xi}: \xi \in S\right\}$ is a set pairwise of incomparable elements of $T,\left\{p_{\xi}: \xi \in S\right\}$ is an uncountable set of pairwise compatible conditions of $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$. So, $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ is Knaster.

So, in order to prove Lemma 3.5.8, it only remains to show that for every uncountable set $X \subseteq T$ there exists an uncountable set $Y \subseteq X$ of pairwise incomparable elements of T.

Suppose otherwise. Let $T^{\prime} \subseteq T$ uncountable such that for every $Y \subseteq T^{\prime}$ of pairwise incomparable conditions is countable. So, $T^{\prime}=\left\langle T^{\prime}, \leq_{T^{\prime}}\right\rangle$, where $\leq_{T^{\prime}}=\leq_{T}{ }^{1}$ $\left(T^{\prime} \times T^{\prime}\right)$ is a Suslin subtree of T. But then, $\mathbf{P}_{T^{\prime}}=\left\langle T^{\prime}, \geq_{T^{\prime}}\right\rangle$ is a ccc poset and for every $\mathrm{P}_{T^{\prime}}$-generic filter G over $V, V[G]^{2}$ " T has a branch of length ω_{1} ". Hence, by Lemma 3.5.6, $V[G]^{2}$ "cf $\left(\omega_{1}\right)=\omega$ ". A contradiction, since $\mathbf{P}_{T^{\prime}}$ is a ccc poset and hence preserves cofinalities.

Claim 3.5.10 For every $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$-generic filter G over V, there exists a orderpreserving function $f \in V[G], f: T \longrightarrow \mathrm{Q}$ such that:

1. For every $\alpha<\omega_{1}, n \in d_{\alpha}$ iff there exists $t \in T$ with $h t_{T}(t)=\omega \cdot \alpha$ such that $f(t)=n$.
2. For every $t \in T$, if $h t_{T}(t)$ is a limit ordinal, then

$$
f(t)=\sup \left\{f\left(t^{\prime}\right): t^{\prime}<_{T} t\right\} .
$$

Proof. Let G be a $\mathrm{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$-generic filter over V. Let $f=\bigcup G$. Then since G is a filter, f is an order-preserving function and, by genericity, dom $(f)=T$.

By definition of $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$, if there exists $t \in T$ with $h t_{T}(t)=\omega \cdot \alpha$ such that $f(t)=n$, then $n \in d_{\alpha}$. Moreover, since for every $\alpha<\omega_{1}$ and every $n \in d_{\alpha}$,

$$
D_{\alpha}^{n}=\left\{p \in \mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right):(\exists t \in \operatorname{dom}(p))\left(h t_{T}(t)=\omega \cdot \alpha \wedge p(t)=n\right)\right\}
$$

is a dense subset of $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$, if $n \in d_{\alpha}$, then there exists $t \in T$ with $h t_{T}(t)=$ $\omega \cdot \alpha$ such that $f(t)=n$. So, (1) holds.

Finally, since for every $t \in T$ with $h t_{T}(t)$ a limit ordinal, every condition $p \in \mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ with $t \in \operatorname{dom}(p)$ and every rational number $r<p(t)$, the set

$$
D_{r}^{p}=\left\{q \in \mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right): q \leq p \wedge r \in \operatorname{rec}(p)\right\}
$$

is dense below p. Hence, (2) follows.
Now we finish the proof of Theorem 3.5.5: Let $\left(d_{\alpha}\right)_{\alpha<\omega_{1}}$ be a sequence of reals such that for every $\alpha<\omega_{1}, d_{\alpha} \in W O_{\alpha}$. Then forcing with $\mathbf{P}\left(T,\left(d_{\alpha}\right)_{\alpha<\omega_{1}}\right)$ adds a real $c \in V[G]$ such that $\left(d_{\alpha}\right)_{\alpha<\omega_{1}} \in L[T, c]$. Since $T \in L, L[T, c]=L[c]$. Moreover,
$V[G]{ }^{2}$ " $L[c]$ has uncountably-many reals". But this can be expressed by means of the $\Pi_{3}^{1}(c)$ sentence:

$$
\neg \exists x \forall y(y \in W O \wedge y \in L[c] \rightarrow\|y\|<\|x\|)
$$

So, " $\exists x$ ($L[x]$ has uncountably many reals)" is a Σ_{4}^{1} sentence, and by \sum_{\sim}^{1}-absoluteness,

$$
V^{2} \exists x(L[x] \text { has uncontably many reals). }
$$

Therefore, there is $a \in V$ such that $\omega_{1}^{L[a]}=\omega_{1}$. But, since V is ${\underset{\sim}{1}}_{4}^{1}$-absolute for Borel ccc posets, by Corollary 3.1.23, $\omega_{1}^{L[a]}<\omega_{1}$. A contradiction. Hence, ω_{1} is a weakly-compact cardinal in L.

R eferences

[A-Sh] U. Abraham and S. Shelah, Martin's axiom does not imply that every \aleph_{1}-dense sets of reals are isomorphic, I srael J ournal of M athematics, vol. 38 (1981) 161-176.
[B1] J. Bagaria, Definable forcing and regularity properties of projective sets of reals, Ph. D. Thesis, University of California, Berkeley, 1991.
[B2] J. Bagaria, Fragments of Martin's axiom and $\Delta \frac{1}{3}$ sets of reals, A nnals of P ure and A pplied Logic, vol. 69 (1994) 1-25.
[B3] J. Bagaria, A characterization of Martin's axiom in terms of absoluteness, TheJ ournal of Symbolic Logic, vol. 62 (1997) 366-372.
[B-F] J. Bagaria and S. Friedman, Generic absoluteness, A nnals of Pure and A pplied Logic, vol. 108 (2001) 3-13.
[B-Ju] J. Bagaria and H. Judah, Amoeba forcing, Suslin absoluteness, and additivity of measure, in: H. Judah, W. Just and H. Woodin, eds., Set Theory of the Continuum, MSRI Berkeley, Springer-Verlag, Berlin, 1992.
[B-W] J. Bagaria and W. H. Woodin, $\underset{\sim}{\Delta}{ }_{n}^{1}$ sets of reals, TheJ ournal of Symbolic Logic, vol. 62 (1997) 1379-1428.
[Be] M.Bekkali, Chains and antichains in interval algebras, The J ournal of Symbolic Logic, vol. 59 (1994) 860-867.
[Br] J. Brendle, Amoeba absoluteness and projective measurability, The Journal of the Symbolic Logic, vol. 58 (1993) 1284-1290.
[Br-Ju-Sh] J. Brendle, H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, A nnals of Pure and A pplied Logic, Vol. 59 (1992) 185-199.
[C] P. Cohen The independence of the continuum hypothesis I, II, P roceedings of the N ational A cademy of Sciences of the United States of A merica, 50 (1963) 1143-1148; 51 (1964) 105-110.
[D] K. Devlin, Constructibility. Springer Verlag, Berlin, 1984.
[vD-F] E. K. van Douwen and W. G. Fleissner, Definable forcing axiom: An alternative to Martin's axiom, Topology and its A pplications, vol. 35 (1990) 277-289.
[G-Sh1] M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel J ournal of M athematics, vol. 68 (1989) 129-160.
[G-Sh2] M. Gitik and S. Shelah, More on simple forcing notions, and forcing with ideals, A nnals of Pure and A pplied Logic, vol. 59 (1993) 219-238.
[Gö] K. Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis, Proceedings of the N ational A cademy of Sciences of the U nited States of A merica, vol. 24 (1938) 556-557.
[H-Sh] L. Harrington and S. Shelah, Some exact equiconsistency results, N otre Dame

J ournal of Formal Logic, vol. 26 (1985) 178-188.
[Ha] F. Hausdorff, Problème 58, Fundamenta M athematicae, vol. 20 (1933) 286.
[He] S. H. Hechler, On the existence of certain cofinal subsets of ${ }^{\omega} \omega$, in: T. Jech ed., A xiomatic Set Theory, vol. II. American Mathematical Society, Providence, Rhode Island, 1974.
[J1] T. Jech, Trees, The J ournal of Symbolic Logic, vol. 36 (1971) 1-14.
[J2] T. Jech, Set Theory. Academic Press, New York, 1978.
[Je-So] R. Jensen and R. Solovay, Some applications of almost disjoint sets in: Y. BarHillel, ed., M athematical Logic and Foundations of Set Theory. NorthHolland, Amsterdam, 1970.
[Ju] H. Judah, Absoluteness for projective sets in: J. Oikkonen and J. Väänänen eds., Logic Colloquium'90. Springer-Verlag, Berlin, 1993.
[Ju-R] H. Judah and A. Rosłanowski, Martin's axiom and the continuum, The J ournal of Symbolic Logic, vol. 60 (1995) 374-391.
[Ju-R-Sh] H. Judah, A. Rosłanowski and S. Shelah, Examples for Suslin forcing, Fundamenta M athematicae, vol. 144 (1994) 23-42.
[Ju-Sh1] H. Judah and S. Shelah, Souslin forcing, The J ournal of Symbolic Logic, vol. 53 (1988) 1188-1207.
[Ju-Sh2] H. Judah and S. Shelah, Δ_{2}^{1} sets of reals, A nnals of Pure and A pplied Logic, vol. 42 (1989) 207-223.
[Ju-Sh3] H. Judah and S. Shelah, Martin's axiom, measurability and equiconsistency results, The J ournal of Symbolic Logic, vol. 54 (1989) 78-94.
[Ju-Sh4] H. Judah and S. Shelah, Counterexamples for Souslin forcing, Unpublished notes (1990).
[K] A. Kanamori, The Higher Infinite. Springer-Verlag, Berlin, 1997.
[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs. North-Holland, Amsterdam, 1980
[L1] A. Levy, Independence results in set theory by Cohen's method (IV), N otices of the A merican M athematical Society, vol. 10 (1963) 593.
[L2] A. Levy, Basic Set Theory. Springer-Verlag, Berlin, 1979.
[Lu1] N. Luzin, Sur la classification de M. Baire, Comptes Rendus de l'A cadèmie des Sciences Paris, vol. 164 (1917) 91-94.
[Lu2] N. Luzin, Lessons sur les ensembles analytiques. Gauthier-Villars, Paris, 1930.
[Lu-Si] N. Luzin and W. Sierpiński, Sur un ensemble non measurable B, J ournal de M athématiques. Neuvième Série, vol. 2 (1923) 53-72.
[M-So] D. Martin and R. Solovay, Internal Cohen extensions, A nnals of M athematical Logic, vol. 2 (1970) 143-17.
[R-Sh] A. Rosłanowski and S. Shelah, Simple forcing notions and forcing axioms, The J ournal of Symbolic Logic, vol. 62 (1997) 1297-1314.
[S] M. Scheepers, Gaps in ω^{ω} in: H. Judah, ed. Set Theory of the Reals. Israel Mathematical Conference Proceedings, vol. 6. Bar Ilan University, 1993.
[Sh1] S. Shelah, Can you take Solovay's inaccessible away?, Israel J ournal of M athematics,vol. 48 (1984) 1-47.
[Sh2] S. Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of the subsets of reals modulo meager or null, I srael J ournal of M athematics, vol. 88 (1994) 159-174.
[Sho] J. Shoenfield, The Problem of Predicativity in: Y. Bar-Hillel , E. I. J. Poznanski, M. O. Rabin and A. Robinson, eds., Essays on the Foundations of M athematics Dedicated to A. A. Fraenkel on his Seventieth A nniversary. Magnes Press, Jerusalem, 1961.
[So] R. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, A nnals of M athematics, vol. 92 (1970) 1-56.
[So-T] R. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, A nnals of M athematics, vol. 94 (1971) 201-245.
[Su] M. Suslin, Sur une definition des ensembles measurables B sans nombres transfinis, Comptes Rendus de l'A cadèmie des Sciences Paris, vol. 164 (1917) 88-91.
[T] S. Tennenbaum, Souslin's problem, P roceedings of the National A cademy of Siences of the United States of A merica, vol. 59 (1968) 60-63.
[To1] S. Todorčević, Remarks on Martin's axiom and the continuum hypothesis, Canadian J ournal of M athematics, vol. 43 (1991) 832-851.
[To2] S, Todorčević, Two examples of Borel partially ordered sets with the countable chain condition, Proceedings of the A merican M athematical Society, vol. 112 (1991) 1125-1128.
[W] W.H. Woodin, On the consistency strength of projective uniformization in: J. Stern, ed. Logic Colloquium'81 (North-Holland, Amsterdam, 1982) 365-383.

[^0]: *"iff" abreviates "if and only if"

