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0 INTRODUCTION

The anisotropic Kepler problem was introduced by Gutzwiller as a cla-
ssical mechanical system which approximates the following quantum mechani-
cal system: the study of bound states of an electron near a donor iméurity \
of a semiconductor., For more détails on the physical connections we yefer
to [61,2,3,4,5] . 1 o

. i .

As it is known the anisotropic Kepler problem exhibits many quallta—
tive phenomena of interest in the theory of differential equations such as
non- integrability and chaotic behaviour, see [G5,6] and [D2,3]. This
paper is essentially devoted to the qualitative analysis of this proElem,
and also sufveys the recent techniques and results from it. :

]

The anisotropic Kepler problem is a one parameter family (of paﬁame;
ter M) of Hamiltonian systems w1th two degrees of freedom. The conf*gura-
tion space for the system is Q= R \{O} with coordinates g= (ql'q2)' and the
phase space is the tangent bundle to Q which we denote by TQ={( R \{d} )X Rz

We use coordinates p—(pl,p2) in each fiber. Then the Hamiltonian is,

H(gq,p) =M lp) 2+ V(@)

where H 1s defined on TQ, the mass matrix MJ; g ?) , and the potential
energy V(q)= ~1/]lq]] . The associated Hamilton equations are,
. -1
9=M p,
. 3 (1)
p = ~a/llall

Of course, the Hamiltonian H is an integral of (1). So, orbits of (1)
lie on the energy levels of H. In (II.1) we note that it is sufficient to

.study the cases H=-1, H=0, and H=l.

When u=1, (1) becomes the Kepler problem, which is an integrable sys-
tem. It is known that when u>1 system (1) does not have any real analytic

integral independent on the energy (see [D2] and [Mo])



Note that for U>1 the qz—axis is a "heavy" axis, this means that the

orbits oscillate more and more rapidly about the q2~axis as W increases.

For every energy level system (1) has a singularity at g=0. It has
been studied by Devaney in [D2,5) by using the blow up techniques of | g
McGehee [ Mc] . For non-negative energy levels we have another singularity
at |lgll =« ; again, blow up techniques can be applied, see Lacomba-Simd

in [ns] .

The blow up method réplaces the singularity by an invariant boundary
manifold and the system extends over it. So, the knowledge of the flow on
this boundary allows to study the behaviour of the orbits near the singu-
larity. Thus, the invariant boundaries glued to g=0 and ldlii=« are called the

collision manifold and the infinity manifold, respectively.

In system (1) the blow up of the singularities is essential in order
to make the gualitative analysis of the flow. Thus, in Chapter I we descri-
be the global behaviour of the orbit structure of the Kepler problem by ta-

king into account the blow up of the singularities.

The first part of Chapter II is also devoted to the singularities of
the anisotropic Kepler problem. In the remaining part we analize the homo-
thetic orbits. Since these orbits are heteroclinic and transversal, they
play a major part in the gualitative analysis. Transversality was proved‘
by Devaney for negative energy levels [D4] ; we extend it to non-negative
energy levels in (II.6). In (II.7) we give the global behaviour of the
flow on the collision manifold for all u>1. This improves the results Qﬁ'

Devaney in [D2] .

As it was observed in [LS] the global orbit structure in the zero f’
energy level can be obtained from the global flow on the collision manifold.
This is shown in (III.l). The asymptotic behaviour of the orbits in thé

i

positive energy levels is given in (III.2).

In the non-negative energy levels we do not have recurrent orbits.

So, the interesting case is H<O. In order to describe recurrent motions

it 1s useful to introduce symbolic dynamics.



Gutzwiller and Devaney use symbolic dynamics to claspify the possible
types of orbits in the anisotropic Kepler problem, see [Dﬁ,pp.292-2973 .
As they said, their symbols do not take into account the @gmm@ggggg of the

problem. In this paper symbolic dynamics includes the symmetries, see

Theorems IV.17 and IV.17' given in (IV.7).

Proofs of these theorems need the qualitative analysis of the inter-
section of the stable and unstable invariant manifolds of the equilibrium
points of the problem with the surface of section d/dt(||q|[)=0. Such an ana-
lysis is the key point of this study and it is made in the first five sec-

tions of Chapter 1IV.

In fact, theorems of Gutzwiller, Devaney, Iv.17 and IV.17' prove the
existenceng a subshift with an infinite alphabet as a "subsystem” of an

adequate Poincaré map foryu>9/8.

In Chapter V we describe the transition from the integrable case u=1
to the chaotic one W>9/8. That is, (V.2) shows that the chaotic behaviour ob-

served for U>9/8 is completely lost when 13us9/8.

In Chapter VI we study the symmetric periodic orbits with respect to the
six symmetries of the problem. For the simplest ones we describe their geome-
try, see Theorem VI.5. Also, for each periodic sequence of the subshift given
in Theorem IV.17 and IV.17', we show the existence of a symmetric peripdic or-

bit which realizes it, see Thecorem VI.6.

Vull expressar el meu agraiment a en Jaume Llibre per 1'excel.lent
direceid d'aquest treball i per la paciéncia i encoratjament que sempre
m'ha mostrat. A en Carles Simd 17 agraeixo la seva bona disposicid, la
lectura acurada d'aquesta memoria 1 totes les idees sugerides.

També em cal agrair l'interés i ajut rebut per tots els meus com-

panys.




I. THE KEPLER PROBLEM

(I.1) Formulation

We consider the Hamiltonian,

H(q,p) = % ptM“lp + V(q)

where H is defined on (]RZ-{O}) xIR?', M is the identity 2x2 matrix, ;and the .
i

2 2.-)
+q)/2

. -1
potential energy V(g) = -|| qll = —(q:1 5

Then the Hamiltonian equa-—
tions become :
q=0p I

b = —grad V(q) R

g
1

where thé dot denotes the derivative with respect to t.

These differential equations define the Kepler problem.

Hamiltonian equations (1) are integrable; that is, there exists ano- . .

ther integral, the angular momentum, C(q,p) = qAp, in involution with H

(see [AM]).

We note that equations (1) have two singularities, one when q=0 and
the other when || q]| =.

|

A solution (q(t), p(t)) of (1) is called a collision (resp. ejection)

solution if there exists to such that q(t) + O when tit (resp. tit We

|
say that a solution (q{t),p(t)) is an escape (resp. capture) solution if

ol

|| a(t) ]| » « when t-+® (resp. t + -=),.

First of all, we introduce a change of variables from McGehee‘[ Mcf
This change avoids the singularity g=0 in (1). Later, we shall consider‘ano—w
ther change introduced by Lacomba and Simé [LS] in order to study the singu-

larity || q|] =+=.

(I.2) Collision manifold

l
i "
=

McGehee's coordinates (r,6,v,u) are defined by (for more details see

Devaney ([DS]):

t

o}
i

.
(q"nq)*

t
arc an(qz/ql) (2)



u=r 8
v = rl/2 b % C (2)
i I
at/dc = r/? }
|
i
Then the Kepler problem is defined by,
r' =rv
v' = ZV2 + u2 -1 (3)
8' = u
u' = ~%vu
where the prime indicates differentiation with respect to 7.
The energy relation and the angular momentum are,
Z(u2+v2) - 1 = rh, and (4
4
ré 8' = ¢, (5)

respectively. Note that the change (2) is not canonic, so system (3) is not

Hamiltonian.

Now, the vector field (3) is analytic on the invariant boundary r=0,

denoted by A and called collision manifold. The energy relation (4) shows

that A is a two dimensional torus given by,

2 2
A= {(r,v,8,u): r=0, KBlu +v7)=1, eeSll.

On A system (3) becomes,

v o= %uz ‘ B
8' = u (6)
u' = -%vu

and it has two circles Si of equilibrium points defined by v =t'f§, u=0,
1 ‘

0eS . Of course; these points are also equilibrium points of (3).

Solutions on A move from the lower circle S to the upper one, Sfo

Each rest point (v = -v2, e=eo,0) has associated a unique unstable manifold -

which is the stable manifold of the rest point (v=V2, 0=0_,0).

If we consider the flow of (3), we must add the coordinate r. Then '

the flow on and near the collision manifold is given in Figure 1 (see Theorem

3.2 and Proposition 3.3 of [D2]).
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|
Figure 1. The flow on and near the collision manifold for the Keﬁlef
Problem. oy

|
|
|
i
h

Since A does not depend on the energy h, A lies on the boundagy‘of

W

each energy level H=h.

|
|
. i
i

(I.3) Infinity manifolds

‘ [

Now, we shall study the singularity r=e. From (4) we have rh+1>O0.

If h<0O, then the motion is bounded by the circle of zero velocityérzwl/h;
So, r can only reach the infinity when h >0, J

In order to study the infinity it is necessary to treat the' energy

levels h=0 and h >0 separately.

First of all, we consider the case h=0. We take p:r-l; then system

(3) becomes,

p! = —pv

2
vl o= %u :
6! = u (7)
u' = =-%vu

The new energy relation and angular momentum are given by,

Z(u2+v2) -1 =0, and (8)
. ,
% 8' = ¢ o (9)

&)

From (7) p=0 is an invariant manifold under the flow. We shall call

(L

v



it infinity manifold, No’ and it appears as a boundary manifold glued to
the zero energy level. We note that,

: 1
N, = {(0,v,8,u): =0, %(u"+v")=1, oes’|

is also a two-dimensional torus.

On No’ system (7) is exactly the same as on the collision manifoldf
However, since the first equation of (3) and (7) are the same, with the ex-—
ception of a sign, we get the flow p(t) near NO reversing the sense of

the flow r(t) near A, see Figure 1.

1
Now, we consider the case h>0. We make the change, p:r-l,\ =p/2 v,
1 1 !

U = p/2 u and drt/ds = pé. From (3), (4) and (5) it follows that,

o' = —pW

2
' = ——

Who=U-e (10)

e‘l =U '

U' = -wu
where, now, the prime indicates differentiation with respect to s.

The energy relation and angular momentum go over to,

%(U%wP) = = h ~ (1)
and

-1 ‘

p 8' = ¢ ) (12)

From (10) we have that p=0 is an invariant manifold under the flow,
Nh’ called the infinity manifold, glued to the energy level H=h. That is,

2 1 B
N = {(p,W,0,0): =0, %(US4w°) = h, oes’].

h

By using the change (W,6,U0)= %J(W,EIG) it is immediate that the ex-
presions of the equations are the same than in the case No (of course, they
are not equivalent because they are defined on different spaces). -
|J

(I.4) Summary on the singularities ‘ !

We have made a "blow up" of the singularities and replaced theq witb
invariant boundary manifolds. That is, system (1) has been extended analyti-
cally over the collision manifold A and over the infinity manifold Nh whert '

h >0.
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Since we know the flow on j and Nh?‘we can understand the behavicur

of the flow near them. It is easy to see that the flow is normally hyperbolic

at A and Nhu Then, from [HPS] (see [D2]) we can obtain Table 1.

invariant manifold V| Local unstable manifold at V| Local stable manifold at v
A S1 x R Slx R
No RS Rs
Nh R3 R3

Table 1.

We denote by as (resp. VS) the unstable (resp. stable) manifold at

V. Note that 2" (resp. A%) is formed by the ejection (resp. collision) orbits
and NE (resp. NS) by the capture (resp.escape) orbits. These orbits are the
unique ones such that their limit coordinates are the coordinates of‘ the

equilibrium points.

For an arbitrary system, the unstable and stable invariant manifolds
can only be described locally.However,since system (1) is integrable we can

compute these invariant manifolds globally (see (I.6)).

(I.5) Heteroclinic orbits

A solution (r(t), v(z), 6(t), u(t)) of (3) such that 6(t) is constant

is called a homothetic orbit. From (5), such orbits have angular momentum

c=0, and from (3) and (4) they satisfy,

r' = rv,
v' = rh,

= constant,
u = 0, and

%vz =rh + 1

then the phase portrait in the plane (r,v) is given in Figure 2 '(see Figuré‘ T
2 of [D51). Its projection on the configuration space (r,8) is shdwn in Figu-

re 3.



h>0

\/é o~ ‘ h=0

h<0

_\/2- . h=0

ke

h>0

h< 0 , h>0 ‘ Y

V

Figure 3. Homothetic orbits on the position plane (r,®). ] »
Here z.v.c. means the zero velocity curve.

Since the points (r=0, v=+v2, @=constant, u=0) belong to A, then from
i
Figure 2 we have that all homothetic orbits are collision or ejection orbits.
Conversely, from (5) it follows that each collision or ejection orbit is

a homothetic orbit. Then the invariant manifolds at p are formed by the homo-
thetic orbits.

So, from Figure 2 and Table 1 it follows that

s \
h if h<O and
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u u s
. >0.
AL OA =@, A €N and A % N if h>0

Hence, all the homothetic orbits are heteroclinic orbits. When h <O, :

h=0, h> 0 these orbits are called elliptic, parabolic, hyperbolic collision

or ejection orbits, respectively.

(I.6) Global flow

Recall that the Hamiltonian system (1) 1s integrable; because the‘angular“
momentum C is another integral in involution with H. We consider thé‘inya7

riant sets,

IC = {(a,p) C(qu) = cl, ‘\ ‘ ‘ M !
Ih = {( ’ ) H(D:Q) = h}r 1 \
= . ’

%h IC Ih '

If (c,h) is a regular value of the function (C,H), then I h islan
' . ‘ ‘ . c
invariant two-dimensional manifold. In this case, by using Liouville-Arnold's

theorem(or merely, by elementary considerations) we have that I his diffeo-
C .

, 1 1 1
moxrphic to §'x8°, S'x R or Rx IR (see Theorem 5.2.21 of (AM]). Furthermore,

the flow on Ich is a linear flow (see Theorem 5.2.23 of [aM] ).

System (1) is a Hamiltonian system with symmetry. That is, the Lie

2 2

Group Sl acts diagonally as a transformation group on (IR -{(0,0)})xRR",
as a group of isometries with respect to the kinetic energy and leaves the

potential energy V invariant (for more details see [S1,2]).

From Corollary 4.5 of [82] it follows that st also acts on Iope
“ 8o, if {c,h) is a regular value then ICh ig diffeomorphic either to slx st

or Slx R. Of course, if IC is a compact two manifold then IC = Slx‘Sl.

h h
In this case, by Theorem 5.2.23 of [AM], in action-angle variables the diffe-

rential equations are 1linear on I and the orbits on IC are periodic. or

ch’ h
dense depending on whether the frequencies are rationally dependent or inde~

pendent. However in this problem, if I.y = Sle1 all the orbits are periodic.

Now, we shall describe how the solutions foliate the sets ICh and

how these sets foliate the phase space of the Kepler problem.
"

From (4) and (5) we have that every solution of the Kepler problem
satisfies, |

(r“)2 = r(2hr2+2r—02) (15)



Figure 4 shows us the above curves on the plane (r,r'). Since these curves «

are symmetric with respect to the r-axis and r> 0, we have drawn them only .

on the first quadrant.

We obtain two different qualitative pictures for the curves (13) de-

pending on whether h<0 or h2»0. Furthermore, if h< 0, then the ﬁnique possi-
~1/2 - ‘
ble values of c belong to [-(-2h) / , (=2h) 1/2] = Jp- Otherwise, all the

values of c are possible.

h<0

B ey e = — e

-1/h

Figure 4. The curves (r")2 = r(2hr2+2r~c2). Here we denote by

[wmmemsemess  the curve associated to c=0

—————— » the intersections of ICh with (r,r',e=eo) when ¢ islmoving
in [—(—Zh)%, (-1/2h)1/2] if h<0 or in R if h>0.

———— > the tangent vector to the curve c=0 at the point ﬁ:d; Ip
has slope equal to v2. f }

L <:> the collision torus (see Figure 1). ;‘

Let h be a fixed value of energy. Then, we have,

|
I = i <
h CléJ Iy if h<o0 i
h |
I = Y I if  h>0 I
B celR ch |

o o
In order to describe Ih it is sufficient to take into account the

three coordinates (r,v,6). Since r'=rv and 8 do not appear in (1%){‘from

Figure 4 we obtain Table 2.
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A solution contained in Ic when c#0 is called elliptic, parabolic or

h
hyperbolic because 1its projection on the configuration plane is an ellipse,

parabola or hyperbola, respectively. If c¢=0, the projection orbit is contained
in a straight line, see Figure 3. A solution is called retrogade (resp. di-
rect) if its projection on the configuration plane turns clockwise (resp.
counterclockwise) around the origin.
Since S1 acts on Ich’ we have that S1 appears in every Ich'Of Table 2.
We note that (c:t(—Zh)_%,h) are the unique critical values of (C,H). It is
well known that all the solutions when h< 0 and c#£0 are ellipses, thus every
torus Slx S1 is formed by periodic orbits.

!
In Figures 5 and 6 it is represented the invariant set Iy with h<O0.

V4

i
I
|
P
i

Figure 5. In this picture we identify the point (x,y,z) with (x,—y,il for
all y#yo if it is in the boundary. Then we obtain the invariant

set I, = g I 4 ' when h<O. The numbers 1,2,3,4,5 correspond to the.

h
numbers of Table 2.

t

T
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. ‘ '
. ! C
EEEEEELEJE' The invariant set U. I or U 1 for h<0. It is obtained by
ch c<0 “ch -

c>0 ‘
rotating Figure 4 around the r'-axis and by gluing the collision
manifold. Actually, we have only drawn either the retrogade or- |
bits or the direct ones. Here c¢ denotes the circular orbitL

‘v
|
|
\

8=0

Figure 6.b. The set Ih= Q ICh » h<0O obtained by gluing the collision manifold A
5. ‘ '

to Figure

From Figure 5, if we do not regularize collisions then the topology of

Ih is SS\ Sl. If we add the collision manifold, which corresponds to glue a

torus with one circle identified to the circle Y=y, and another one to the

circle y:—yo, then the topology of Ih becomes a closed three~dimensional so-

1id torus, see Figures 6. ‘

h depends on the choosen coordinates. It is well'
3

known that using other coordinates IhQ:P .

Note that the topology of I
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Now Figures 7 show the invariant set Ih with h20.

Figure 7.a. The invariant set U 1 or U 1 for h» 0. It is obtained
—Ree—— c»o “ch cgo c¢ch :
by rotating Figure 4 around the r'-axis and gluing the collision
and the infinity manifolds. In fact, we have only drawn either

the retrograde orbits or the direct ones.

Figure 7.b., The invariant set I

h
pont to the numbers of Table 2. Here, we have glued to I

h
sion manifold A and the infinity manifold Nh'

i
M ;‘
|

If c#0 it follows that each elliptic (resp. parabolic or hypérbdlic)“ "

solution cuts r'=0 exactly in two (resp. one) points, see Figdre 8.a (resb,

Figure 9.a). If c¢=0, then each elliptic (resp. parabolic or hyperbolic) solu-
tion cuts r'=0 exactly in one (resp. zero) point, see Figure 8.b (resp. Figu-

re 9.b).

= g ICh for h 2>0. The numbers 1,2,3 corres~'
the colli

1

l

[

Ty
b
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plane 6=6,
u s
IT. = =
Clop™ My = Ay
I
é ch “
L2 - .
a ~
; '
% ,
[/ P - Vg
\Yeo

.
for h< O

Figure 8.a. An elliptic orbit Ygo OD the two-dimensional torus ICh

and c#0. This orbit has its apocenter in 6 =6, and its pericentef

in =06 +7.
eeorr

o
Figure 8.b. An elliptic ejection-collision orbit (homothetic orbit) on
I R v e—————— Ye o ] ; ! ,

Ioh for h< 0 and c¢=0. Note that Yoo is contained into the plane

6= Go-
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plane Ozeo

Figure 9.a. A parabolic (resp. hyperbolic) capture-escape orbit on JIch for

h=0 (resp. h>0) and c#0. This orbit has its pericenter in 6:06 and ’

we have only drawn a half part of it.

|

Figure 9.b. A parabolic (resp. hyperbolic) ejection-escape orbit Yoo and a
parabolic (resp. hyperbolic) capture-collision orbit Yéo © for
h=0 (resp. h>0) and c=0. Note that yeo and Yéo are contained into

the plane e:eo.
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(I.7) Poincaré map ' ' ,

In order to define a Poincaré map in the energy level H=h it is necessary
to take h <O, .

1
Let P = {(6,u): v=0 and H=h} = {(8,u): ue [-"2,72], ¢€S }7
We note that the two circular orbits are contained in P, see Figure 10, The

retrogade (resp. direct) circular orbit is the circle u=1 (resp. u=-1),

The torus ICh cuts P in the circles

1 by
u o= == [1—(1+2hc2)4]z ' ‘

1 |c] ' |
and i
|
1 1 !

u, = = [l+(l+2h02)/2]/2, : A

[cl |

and the boundary of P given by the circles u=+/2 belongs to the céllision

manifold A . The circle u=0 1is the zero velocity curve, which is only rea-

ched by the homothetic orbits (elliptic ejection-collision orbits).

u
| P
= u="2 — :
P |
u=l T f
direct | |
orbits l T(p)
ui f
o S U D AU IR
; q; /ICAWS, c<O
retrograde | | . //
orbits | | ‘/c1rcula§/
Us==1 — ; or‘bg//
! L .
- u=—v'2 T(Q)f !
9= f=-1/2 J o=m/2 6 =n
6=0

Figure 10. The Poincaré map T on the four rings of S.

We consider the following surface of section,
S = {(8,u) €P: uft’2, uf+l, uf0}.

For any point (8,u) €S we denote by (6',u') the point at which the orbit' that

2 . .
passes through (r=(u"/2 -1)/h, v=0, @, u) first meets S. The transformation

co
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which carries (6,u) to (6',u') defines a Poincaré map T: S— S given by

the equations,

1/ 1
(8+m, [u2+2(1+2h02)4]4. u/ful) if Oo<|ul<1
(9',11') =
1’7 1
(047, [u2-2(1+2hc2)/2}/2. u/jul) if |u] > 1

Note that T2 = identity.
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(IT.1) Formulation.

We consider the Hamiltonian,

i
|

t ~1
H' (gq,p)= (P M p)/2 + V(q) : : !

! |
i
i

: =1 | ‘
where H' is defined on ( m?‘\{o })x RZ, the mass matrix M =<§U ?) , and: the

potential energy V(g)= -1/ qf -
|

The goal of study the anisotropic Kepler problem is to describe the so-

lutions of the Hamiltonian system associated to H',

]

-1 o
M o) | i

]

P -grad V{q)
They are a one parameter family of Hamiltonian systems depending analyti—
cally on the parameter U21.This system describes the Kepler problem when u=1

(see Chapter I), and the case UW>1 corresponds to consider the qz—axis‘as the

"heavy axis".

From now on, we shall consider the Hamiltonian system,

9, = Py g ’
4, =P

.2 3 “2 ( 2 N 2)—3/2

pl = Uql uq] qz / |

. 2 2,-3/2 \

Py = - q,(Hq) + q,) \

associated to the Hamiltonian, ?

2 |

H(q,p) = [[pl"/2 + V() |

| " , v

2)~1/2
2

the Hamiltonian systems associated to H and H' are equivalent and the angular

|

- | .
where V(q)= —(uqf + g and H is defined on (!RZ\{O})X RZ. We re@ark‘thati

momentum, C(g,p)=gAp, is an integral if and only if u=1-

The case pell,+00 that we shall study includes the case ue(O.l]lbY using'’

= = = 174 - _1/4 1/4
the change: q1=q2, q2=q1, p1= u pZ’ p2=u p1 and dt=y ds.
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If we have the energy level H=h#0 then, the change of coordinates : .
- — ] ;
§i=lhlqi’ §i:|h| 1/zpi for i=1,2 and, hence dt:lhl 3/2ds, carries H=h to H=1 or
H=~1 according as h>0 or h<0 respectively. So, it is sufficient to study the

energy levels H=1, H=0 and H=-1.

(IT.2) Symmetries.

We consider a 2n-dimensional manifold M together with a diffeomorphism R
of M satisfying,
(1) R2 = identity and
(2) dim (Fix(R))=n

then, R is called a reversing involution. A smooth vector field X on M is called

R-reversible if DR(X)= -XoR; for more details on reversible systems see [D1]'.

It is easy to verify that the anisotropic Kepler problem (1) is Si—rever-

sible for i=0,1,2 where,

S {dyrdy P rPy) = (Qysdyr-Py =Pyl
Sl (qllqzlpllpz) = (qll—q2 ’_pl lpz) 14
82 (qllqzlpl :pz) = (—q1:q2,P1,‘P2) "

This means that 1if Y(t)z(ql(t),qz(t),pl(t),pz(t)) is a solution of, the
anisotropic Kepler problem such that <vy(0) belongs to Fix(so), Fix(Sl) or
Fix(S,), then (q1('t)'q2.(‘t)'"Pi('t)'"f’z(‘t))' (ql(—t),—q2<—t),-pl(—'t),’fpizbt‘)), 
or (—ql(—t),q2(—t),p1(—t),—p2(—t)) is, respectively, a solution.

The symmetry So is the usual symmetry with respect to the zero velocity
curve, which is presented by all the Hamiltonian systems where the Hamiltonian

t -1
can be writen as kinetic energy, (P M "P)/2 plus potential energy, V(q).

A plane in the phase space is called invariant plane if and only if everyf

orbit which has a point in the plane 1s contained in it. o

vt

Let V_ be the gradient and V q be the Hessian of the potential V. Set

T= -JV__JV , where J =(_? é) . By Lemma 2.1 of [CPR], the irreductible factors

of degree 1 of the equation< T,JV& =0 are the projections of the invariant pla-
nes on the configuration plane. Here, <,> denotes the Euclidean inner

product.
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o 2.-1/2 ;
If V(g)= ~(uqf + q2) v then we have, <T,qu >= “(1‘M>q1q2(Uqf+qf)'9‘/2;,

Therefore, the unique invariant planes of (1) are,

’n'l= {(Olqzrorpz) b (qzlpz) E( |R\{D})X IR} f
m,= {(a;,0,p,,0): (q,p) € (R\[OD)x R},
where for i=1,2, ™ is invariant under the symmetry ijor 3=0,1,2. Iﬁ short‘

we have proved the following proposition.

'

PROPOSITION 1. The anisotropic Kepler problem has only two invariant planes,

m w ‘
; and T, . ‘

Of course, the flow restricted to an invariant plane is given by a Hamil-

tonian system of degree 1. Then the flow on m is described in Pigure 1. In a

similar way we can obtain the flow on Ty -

|
|
{ :
.
|
|

Figure 1. The flow on the plane m given by the Hamiltonian H= p§/2 +1/lq2'.
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(IT1.3) The Collision Manifold.

From I.(2) the Hamiltonian system associated to H becomcs:

r'= rv

2 2 .
= 2 V(6 :
v v'/2 + u” 4+ vV(0) ‘ (2)
g'= u

o
]

‘= —yu/2 -V'(9)

where the prime on the left part of these equations indicates differeétiation

with respect to T, V'(0)=av(8)/d6, and v(6)= —(ucosZG + sinze)—l/z, The‘éxaphic

of V(8) is given in Figure 2.

Figure 2. The graphic of V(8)= —(ucosz(e) + sinz(e))—l/2

Now, the relation energy is given by:

rh = (u2+‘72)/2+V(6) oo

|
The collision manifold A is determined by i
2 2 1 |
A= { (x,v,0,u): r=0, (u +v )/2=-v(0),0€ s

P k
}. It is a two dimensional tobrus

‘ o
obtained from Figure 2 rotating the graphic of V(6) around the B-axis, see o

Figure 3.

Since r'=0 on A, we have that A is invariant by the flow (2). : .

For y=1 system (2) has two circles of equilibrium points on A (see (r.2))y.
For 4> 1 each of these circles breaks up into four equilibrium points. Dévaﬁéy‘ '

in [D2] proved the following proposition.
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u

.Figure 3. The collision manifold A.

PROPOSITION 2. (i) For every value he€ R and W&(1,), the equilibrium points of

system (2) lie on N and they are given by:
+
(2=0, v=t (-eme )12, 6 = -m/2, 0, e, , u=0) = p°(8,)

(22) The eigenvalues and the dimensions of stable and unstable invariant mani-

folds associated to equilibrium points of system (2) are given in Table 1.

Equilibrium Characteristic exponents Dimensions of Wu, WS Type on A [
point on A off A on A on H=h
+ i
p (0) ‘ _ u ‘
*om a-1to-8yH %) | 4a il ! 2 saddle
p W 1 1 :
+ \
p (1/2) u
+ 1/2 0 ‘
+ (=1/2) B(=1+(9-8) / ) 4B WS ! sink
p _ W 2 2
p (0) u
-1 1 :
~(m A(lt (9-8u )1/2) -4A Ws L saddle
P W 1 2
p (1/2) u
+ 1/2 W 2 2
o (=1/2) B(1-(9-8y) ) ~4B S source
0 1
Table 1. Here we use the notation A=2_3/2 u—1/4 and B=2~3/2°




COROLLARY 3. If W>9/8, then all the sinks and sources on M have characteristic .
exponents with the imaginary part different from zero. That is, they are spiral
sinks and spiral sources. .

/2

In what follows we denote by pi(80)=(r=0, v=t(—2V(eo))1 ,’9= 96, u=0) the'

eight rest points of Proposition 2.

Figure 4 describes the evolution of the characteristic exponents (c.e.) for |

p+(ﬂ/2) and p+(-ﬂ/2) when | goes from 1 toco. For U> 9/8 the c.e. different

from 21/2 are on the line Re=—2—3/2 and their imaginary part goes monotonously -

to infinity with . ;

v Im Im Im
g = 4
(2) (2) (2) (2 ) 1
Re - Re Re ¢
R="2 R="2 R=Y2
s - —=7
Re=—2"2/? Re=-2"%/2 Re=-2" Re=-2 "1 : :
Re=-2_1/2 Co
[

=1 i<u<9/8 w=9/8 u>9/81
i

Figure 4. The evolution of characteristic exponents for p+(t172)

Figure 5 describes the evolution of the c.e. for p+(0) and p+(n) when U
goes from 1 to «® . The behaviour of these c.e.‘is the following one: a) The c.e.
equal to ---2-1/2 for =1 decreases when U is increased reaching a minimum for
U= 144/(S3+/§T7.) and after it increases monotonously to O. The c.e. equal to O
for P=1 increases until U=144/(53-y217 ) and after it decreases monotonously to

0 when U goes to infinity.

Im
Im
]
4
(2) //iiA _(2)\ Im
" Re N
-1/4
R="2
R=Y2 | .

]

- 3/2 Re= 2‘3/2p'1/4

Re=-2" - ’

Re:—Z_l/2 u=1 u>1

. . +
Figure 5. The evolution of characteristic exponents for p+(0) and p ().
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REMARK 1. We note that a solution can only reach (resp. leave)l\ through a stable

(vesp. unstable) invariant manifold of an equilibrium point on A.

(I1.4) The Infinity Manifold.

From (3) we have rh-V(8)20. If h<0, then the motion is bounded by the
ellipse of zero velocity r=V(g)/h. So, r can only reach the infinity when h>C.
Again we shall study the cases h=0 and h>0 separately.

A
~1/h

Figure 6. The zero velocity curve C_ and the region Rh for h<O0,

h

. . -1
First we consider the case h=0. If we introduce the change p=r ° then the

equations (2) become: 1

p' = =pv
vt = u2/2

"=y (4)
u' = -vu/2 -V'(g)

. 2 2
where we have used the energy relation (u +v }/2 + V(8) =0.The manifold p=0 is

invariant under the flow given by (4), and it is called the infinity manifoldl

2 2
Ny- That is, N_= [(p,v,0,w: p=0, (u"+v )/2=-V(p) ,0e 81}, So, N, is defined by

the same equations as A (see (II.3)).

|
Now, we consider the case N>0. We make the change p=r—1, W=91/ZJ, ?:pl/ZU\
|
and d/ds= 91/2. From (2) we obtain: i o
. |
p. = —pW K
2 ‘ |
W' = U™+ 5V(g) | ‘
5
o' = U ! (5)
U' = =WU -gV' (g) |
!
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where the prime on the left side indicates differentiation with respect s and
V' (g)= AV (g)/de,

From (3) the energy relation becomes: .
2 2 ‘
h = (U+W ) /2 -pv(e) : (6)

Again, p=0 is an invariant manifold under the flow given by (5), denoted by Nh;
and called the infinity manifold at the energy level h. So,

2 , , .
Nh= {(p,W,0,U0): =0, h=(U2+w )/2, pesl}. Hence, Ny, is eguivalent to the colli-

sion manifold for the Kepler problem, see (I.Z2).

In short we have the following proposition,

PROPOSITION 4. (7) If w>1 and h=0, then the equilibrium points for system (4)
are given by:

Pi(eo) = (p=0, U:i(_ZV(eo))z/g, 8 -1/2,0, V2,7 , u=0)

'

(i2) Ifw>1 and k>0, then the equilibrium points for system (5) are giveﬁjby:

PE(e) = (p=0, W= tien)1/? ,0est, v=0)
(111) The eigenvalues of stable and unstable invariant manifolds associated to

the equilibrium points of (7) and (i7) are given in Table 2.

Equilibrium Characteristic exponents Dimensions of Wu,wS \

point on N off N on N on H=h
o o o

+.

P (0) -1 Yl

+ a-17(9-8, " HY?)| aa . L

P (m W 1 2

+(n/2) u

P, B(—lt(9—8u)1/2) —4B W 0 0

P’ (-7/2) ' R 3

P (0) - u

B} aito-s, H?) | aa LN 2

P (m) W 1 1

T (n/2) o
P (n u

o (/2) (1% (9-8 1?2 48 vz

K W 0 0

Case h=0. Here we use A=2_3/2LF1/4 and B=2—3/2. ‘
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Equilibrium Characteristic exponents Dimensions of Wu,wS
. N =
point on h off Nh on Nh on H=h
u
+ 1/2 1/2 6]
" () 0, -(am Y ~(m 1/ 0
S
1 2
- 1 u
P (0) 0, (2n) /2 (2h)1/2 1 2 |
) 0
Case h>0.
Table 2.

We note that Table 2 for h=0 follows from the Proposition.

(II.5) Invariant manifolds I. .

h

We fix a negative value of the enexrgy h. The zero velocity curves Ch, ah;

the Hill's regions Rh' ﬁh and the invariant manifolds Ih, Eh are given by:

Ch =’q: h'—V(q):OI ’

e, ={ (x,0): rh - v(8)=0],

R ={q: h-v(q)=0] ,
R, =[(r,8): rh - v(8)=0] ,
I, ={ (q,p): h-V(q)=0 and lel2 = 2(h-v(q)) | ,

I, ={(r,v,6,u): rh-V(8)>0 and u2+v2 = 2(rh—v(e))]

h

tc=C, R GR I si R and T i
Note tha h=Ch’ hg‘ h and IhQ_Ih since and I, take into account the

h h
collision manifold.

When h>0 we denote by ih (resp. ﬁh) the manifold Ih(resp. Rh) together with
the collision and infinity manifold.

h if h>0, and Rh is as

(resp. ﬁh) is topologically a punctured open’

It is clear that Ry = R2 \ {(0,0)} ana R_ = [O,COJXS1
in Figure 6 when h<0. That is, Rh
disk (resp. closed annulus) when h>0 and a punctured closed disk (resp. closed..

annulus) when h<O.
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LEMMA 5. (i) (see Proposition 1.1 and 2.1 of [(D2]). If h<0 then I, is diffeo-

morphic to an open solid torus and Th 18 diffeomorphic to a solid torus with

boundary . The added boundary is the collision manifold 1 .

(12) If h»0, then Ih i8 diffeomorphic to (‘BZ\I(O,O)])xSZ (Z.e, an open' toroi-
dal annulus), fz is diffeomorphic to a closed toroidal annulus and the inner

(resp. outer) boundary of this manifold is the collision manifold A(resp. the ' |

infinity manifold Nh)° 3 3

(I1.6) Heteroclinic orbits. o L

We recall that a solution (r(«t),v(t), o(t),u(t)) of (2) is hométhe#ic‘

when o(t) is constant.

For the Kepler problem (u=1) we know (see Figures I.8b and I.9b) that the'

invariant manifolds (cylinders) I are formed by homothetic orbits. These orbits

Oh
are ejection~collision oxr ejection-escape and capture-collision according as

h<0 or hp0.

In (IT.4) we have seen that the two circles of equilibriﬁm points for p=;
break into eight equilibrium points when p . This is due to the fact that the.
critical points of potential energy V(9) are all the values of E)OEES1 when p=1’
and only the values eo = -n/2,0,1/2, 7 when p>l. For the same reason we shall

see that each cylinder of homothetic orbits for y=1 breaks into four homothetic

orbits at 6= -1w/2,0,n/2,7 . | '
[} o
. S
From (2) and (3) the homothetic orbit at 6= 6  satisfies: | N
|
|

0
r' = rv i
v' = rh |
v'( ) =0 (7).,
o

u=0 and
v2/2 = rh -V(8) . .
. ‘ I R

|
Then 6, = -7/2,0, /2,1 . We denote by Yh( 90) the homothetic orbit aq 0= 90 in

0

the energy level H=h. The phase portrait in the plane (r,v, 0= 90, u=0) 'is
given as in Figure I.2. This phase portrait is equivalent to the corresponding

one of Figure 1. ' ‘ L
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1/2; 0,="1/2,0,7/2, v ; u=0) are the
equilibrium points belonging to A, (p=0, v=i'(-2V(eo))1/2; eo=_n/2,o,n/2,w’; u=0)
the equilibrium points of NO and (p =0, V:t(Zh)l/z; eo=—w/2,0,n/2,n ;U=0) the

Since the points (r=0; v=i(—2v(6 O))

equilibrium points of Ny with h>0, we have that all the homothetic orbits are

ejection-collision if h<0 and ejection-escape or capture -collision if hpO.

While for u=1 there is an equivalence between homothetic orbits and colli-

sion or ejection orbits, Tables 1 and 2 prove that this is not true for u>1l.

In Figure 7 are represented the four (respectively eight) homothetic orbits

on the phase space Ih for h<O (resp. h»0) obtained.as in (I.5).

pt(-n/2) ' pt(n/2)

+(O

p

!
(-n/2) } v, (0)
n

o vy mmm na—--ufﬂ-—mmn-o

}
H
§
!
a)case h<0 Yh(ﬂ) ‘}Yh
|
{
i
i
i
1

b)case h=0




pY () P (=n/2) P (0) P (n/2)

n/z)I voT0)  NOTw/2)
A
\\ : //
~4 -
p" (0)

c)case h>0

Figure 7. Homothetic orbits on the energy level ih'

Let p be an equilibrium point in I We denote by Wu(p) (resp. Ws(p)) tﬂeﬁ

he
unstable (resp. stable) invariant manifold of p restricted to Ihu

By Propositions 2 and 4 the collision (resp. ejection) oxbits form the i
stable (resp. unstable) manifold of A, and the escape (resp. capture) orbits |
form the stable (resp. unstable) manifold of N . From Table 1 and 2 the\follo‘-'

h
wing theorem holds.

THEOREM 6. (1) (see Devaney [D2] ). If uw>I and h<0, then we have, o [ '

v, () = WpT (8 )) = W(pT(0 )) when © = -n/2,7/2 T
v, (0,) & W(p"( eo)) N W (pT( 0,)) when o =0, |

(12) If w>1 and h=0, then we have,

Pl oo,) = W (0 ))& W(F' (e, )) for o= -n/2,1/2

®0( g ) =W (p (6 ))G WP (e )) for 8 = -1/2, 1/2

h o "y . 0 . o o

R, )G W™ (p (5,)) 0 Wo (P (o)) for o = 0,4 | .‘
YR o) & W (o™ ( 6,)) N WP ( 0,)) for o ,y ..

:‘ O:TI i
|
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where Yow(resp. Ymo) means a homothetic orbit of ejection-escape (pesp‘c?pturé—‘
|

i i
Lo
|
\

colligion).

Two submanifolds M, and M, of a manifold M meet transversally at a point

if TX(Ml) + TX(MZ) = TX(M), where TxN is the tangent space to N at the

XEM,NM

12
point x. We say that M1 meets M2 transversally at M3C Mf\Mz if for ail x€M3;
M1 and M2 meet transversally at x. !

i |
H : I
'

From Theorem 6 and Table 1 it follows that a necessary condition in order
that Yh( 60) is a transversal homothetic orbit, is that 90=O,Tr . In fact, L
Devaney in [D4] proved that this condition is sufficient. Now, we gi&e a diffe-

rent proof using ideas of [CLL] and [LLS] . [

THEOREM 7. If eO:O,W then Wu(p+( 60)) meets transversally Ws(p”(e O)) along -
the homothetic orbit v, ( 8 ) on Th with h<0.

Proof. First of all, we shall use variational equations in order to study the
+
tangent space to Wu(p (60)) along Yh(eo)° The symmetry SO provides us with the

corresponding properties for the tangent space to Ws(p_(eo)), ‘ D

From (2) we get the variational matrix along Yh(eo):

L vi(t) r{T) 0 0
0 v () 0 0
B 0 0 0 1
0 0 -V"(g)) -v(D)/2
-3/2

1l

where V”(%Q (1-pu and from (7) we have that

r(t)= v(8_)/(h.cosh” ((-v(8)/2) /2 )), vin)=-(-2v(p ))

1/ztanh((—v(eo)/2)1
The eigenvalues of E are: v, v, w, = (—v:(v2~16v"(eO

/2
f T)"
1/2
+ )) ) /4.
It is clear that the planes {(r,v,e,u): u=0, e=o} and l(r,v,e,u): u=0, o= |

meet I transversally. So, the eigenvalues of E restricted to I_are given by :

h h
v, w+, w_. By using E it follows that the tangent space at a point peYh(Ho)\
splits in direct sum of a line L and an ortogonal plane 7w independently on the
point p. The line L is generated by the eigenvector associated to the eigenvalue

v and the planen by the eigenvectors associated to the eigenvalues W, and wL.M

Let n* be the solution of the equation . ‘ : SR

n': o 1 n ) (8) ,
SV (g)  =v(n)/2 |
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with initial conditions at the unstable eigenvector of:

0 1
—V"(eo) -v () /2

(9)

when 1T =-®, By symmetry S transversality can be lost only when n* turns .
through an angle equal to a multiple of /2 going from p (e ) to Yh( )m{v O}
(that is, from t=-« to t=0).

Now, we shall prove that the angle turned is less than n/2.

Introducing polar coordinates n=(p.cos?d, p.sind) in (8) we obtain,

2 . , ‘ -
o' = —V"(eo)cos ¢—51n2¢ + B.tanh (81 ) singdcose (10}
1/2 e . . ‘
where B=(~V( %)/2) . The initial conditions (9) are now given by r=-« and

= ¢O where ?o is the unique value in (0,w/4) such that,
" 2 .2 .
0= ~V"(6)cos ¢ -sin" & =-R.sin ¢ cosd .
o) o (o) o o

For each value of re(-«,0) we have an angle ¢* (1) € (0,n/4) such that .’ _
o (1, o*(1))=0 while ' (1,)>0 if 0€(0, o*(r)). From (10) it is easy to compute "
that ¢* (1) is monotonically increasing. “} ’
Let ®(t) be the solution of (10) satisfying ®(—w)=<to. Now, we claim tha£
#(t) 1is monotonically increasing for t€(~«,0). ‘ .
By analyticity in a neighbourhood U:(—w,To) of T=-* we have either}¢'(T)>O\
or ¢'(1)<0 for all TEU. Suppose that ¢'(T)<0 for -all TE€U. Since ¢(—m)¥'¢0% O* (=)
then 0< ¢ (1)< ¢O< ¢* (1) for TSU and 1 such that ¢(1)> 0 for all T<TO, By‘definif |
tion of ¢*(T) we have that ¢' (1) >0_for T€U, and this is a contradiction. Let le

be the smallest T (-=,0) such that ¢'(t1,)=0 and for all value T>1, sufficiently
close to 7 , Ot (1) <0.
Since ¢ (1)< ¢*(r) if T<T1, we have that qs(T1 *(Tl)c This implies
o ( 11)= Q*('ﬁ)“ Now, there exists T, in a neigbourhood of Ty such that ¢'(12)<?,
Then, ¢(1,) < ¢(T1)= ¢*(11)< ¢*(T2). So, ®'(T2)>O and this is again a contra-,
diction. Hence, ¢(1) is monotonically increasing and ¢(t)< o* (1) for all ﬁjné;o).

This implies ®(0)- ¢(-«) < m/4 as we wanted. }
0.E.D.

REMARK 2.From the proof of Theorem 7 it follows that the angle rotated by the
tangent vector to W (p*(0)) on v4,(0) between the points p' (0) and Yh(O)ﬁfU— I

is less than w/4. V‘f' -

|
|

| . ' i
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THEOREM 8 (1) If 6,50, then Wu(p+(e )) meets transversally WS(P+(60)), q:Zongv
the homothetic orbit yh( 6 ) on Ih with #7=>0.

(i) If o SO then Ws(p (e )) meets transversally WP (e )) along the homo—
thetic OIbtt f%% 90) on Ih with h=0.

Proof. By using the symmetry sO the case (ii) follows from (i).The notation will
be as in the proof of Theorem 7.

First we assume that h=0. In the variational matrix E along Yg” (o) we.
have:

1/2 -1/4 v =
M oT)y : .

i

r(t) r(0). exp(2

v(t) = 21/2.u_1/4

|
Since the stable and unstable eigenvectors on the plane T are indepeAdent'of v

|
the point of the homothetic orbit, (i) follows for h=0. i

. . Oco
Now, we suppose that h>0. Then in the variational matrix E along yh‘(eo)

we have: i
i : | i
r(t) = 4h‘1.u_1/2.A(1—A)—2, where A=constant.exp(21/2.p_1/4r )i ‘ ‘>}
vit) = (2¢hr(1) + p_1/2)) 1/2- 3 : -

Note that x (T) (an? genc? X(T)) reach infinity for a flnlte value of TN
given by constant. exp(2 U T)=1. Vo ‘
E .
Introducing polar coordinates n= (p.cos®, p.sin® ) in the variational

equations restricted to plane 7, we oObtain,

o = ~V"(GO) cos2 ¢—-sin2¢—{v(r)/2).sin¢,cos¢ (il)

S ) 0
Let ¢u(r) (resp. ¢ (1)) be the angle of the unstable (resp. stable) eigen-

vector associated to Wu(p+(eo)) ( resp. WS(P+( eo))) in the point
(r(t), v(o, olz), u(r))eygmxeo). The functions ¢" (1) and ¢° (1) are solutions
of (11).

For each value TE(-®, +®) we have two angles ®*(T)e(0,T/4) and
¢** (1) € (m/2,2mT) such that ' (T,d*(1))=d"' (1,0**(T))=0 while @' (T,9)>0 if
OE(0,P*(T)) U (P**(T),2m) and ¢'(T,d)<0 if ¢c(d*(T),d** (7)), Furthermore, from
(11) it is easy to see that ®* (1) and ®**(T) are monotonically decreasing.

t
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The initial conditions of @u(r) and @S(T) are @u(—m)= ¢* () E(0,11/4) and
@S(+®)=®**(+w)=ﬁ/2. Then using similar arguments to the proof of Theorem 7,
we obtain that @u(T) and @S(T) are monotonocally decreasing and they satisfy,
0 <O*(T) <@ (T) <% (=) <m/2= P** (+) <@°(7) <P** () <2m. This implies that
@u(T) <®S(T) for all T1€(-w,+w), and so (i) for h>0.

Q.E.D.

REMARK 3. From Theorem 7 we have that the homothetic orbite y, (s ) on Th with
k<0 and %:O,H are transversal. Then, by using the results due to Smale [S1],
Alekseev [A41,2] and Moser (Mol we know that some Bernoulli's subshift is a sub-
system of a convenient Poincaré map defined on a surface of section transversal
to Yh( %) on Tho In fact, Chapter IV is devoted to describe these Bermoulli's

subshifts and their geometrical interpretation.

When h?0 we shall see in Chapter III that all solutions escape to infinity.
Then there are no recurrent orbits and it is not possible to put the Bernoulli's
shift as a subsystem of a Poincaré map associated to the transversal homothetic

orbits yﬁm(%ﬂ and ygo(%ﬁ for 6,=0,n studied in Theorem 8.

(II.7) The flow on the collision manifold.

From Proposition 2 all the equilibrium points are hyperbolic for the flow
(2). Thus the Hartmann-Grobman theorem, describes the local behaviour of the

flow at these points. From now on, in this section, we restrict the flow (2) on

A. Hence, we have that:
pi(o), p~ (1) are saddles,
p (n/2), p (-7/2) are sources if ue(1,9/8land unstable foci if y>9/8

p (1/2), p (-n/2) are sinks if pe&(1,9/8] and stable foci ifu>9/8.

If we compute the symmetries given in (II.2) in cooxdinates {(r,v,9,u,t) we

obtain:
So(rlvl f,u,1) = (r,-v,8,-0,~1),
Sl (r,V,e,\J,T) = (ru"vr"elul_'f) and
Sz(rvvieauv'f) = (r,~V,m=-0,u,~-1).

Of course, every composition of these symmetries give us another symmetry

which leaves invariant the flow (2). For example, the symmetry S3=32081 given

by,
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v -

p=-1/2 f=m/2

Figure 8. Geometrical interpretation of the symmetries Si’ i=0,1,2,3, on the

collision manifold ) and on the configuration space. On

A the conti-

nuous (resp discontinuous) curve is used when the solution has uz0

(resp. u<g0).
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S3(r,V, o,u,1) = (r,v,m+0,u,1)
leaves invariant the flow (2) but does not satisfy the condition (2) of rever-
sing involution. For a geometric interpretation of these symmetries, see Figu-

re 8.

In order to study the local flow at the four eguilibrium points pi(O),
pi(n),(resp. pt(ﬂ/Z), pi(—w/2)) it is sufficient to study one of them and to

use the symmetries.

For a saddle point p we denote its four invariant branches in the following
way : Bi'f(p,p) will be the unstable (u) or stable (s) invariant branch contai-
14
ned in w0 (+) or in u<0 (-) in a neigbourhood of p and for the value p of the

I
parameter. S,

If we compute the eigenvalues £l, AS and their eigenvectors wu,fws‘at'the‘

critical point p (0), then we obtain:

—1)1/2) u

, 00 =(1, A
THV2 S, 8.

u

u 2—3/2 u—1/4( ) and

ATo= 1+ (9-8u

AS = 732 u—1/4(1—(9—8u

Therefore, Figure 9 give us the local behaviour of the four invariant branchés‘

u,s, -
B (07 (0),p).

Figure 9. Local behaviour of Bf'f(p_(O),u). | S Co
1 i

14
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Recall that a vector field is called gradient like with respect to a funct

tion v if v increases along all non-equilibrium point orbits. From (2) and (3)

we have that the flow on A satisfies V'=u2/2 and Lemma 9 follows,

LEMMA 9 (Devaney [D2,5] ). The flow on A is gradient like with respect to the
v-coordinate. ‘

’ 1

Let p be a saddle point of A . Set P (p,u)= Bf’f(p,u)rw{v=0} J Note that

14 ] .“

|

from Lemma 9 P (p W) is a unique p01nt

In order to describe the global qualitative behaviour of the fl%w“on/bit‘
is sufficient to study the sixteen branches Bf's(p,u). The knowledge ?f‘thé :
-

'S

sixteen points Pi (p,H) will be enough.
-

LEMMA 10, For all we(l,») we have that u/2 < G(Pi(pn((?),p))< T,

|
4
| . B
i

2,-1/2 |

Proof. From (2) and (3) we obtain that de/dv=2(-2V(g)-v") on AN{uPQ}. Since
mgn (=v(0)) = “—1/2, we have that, | ‘
0. Q : ' A
A0 =/2(-2\/(e)-v‘2)‘1/2 av < 2(2;1"1‘/2-\72)"1/2 av = g.
T,1/2 ~1/4 _,1/2,-1/4

Then for all p€(l,+=), e(PE(p~(0),u))< . ‘
Now, we assume that S(Pj(p—(O), po))< /2 for some p065(1,+m)o By using
symmetry 82 and Lemma 9 we obtain the behaviour of Bi(p—(O), po), Bs(p—(OS, ﬁo),

+
Bf(p (m), uo) and Bf(p+(w), po) as in Figure 10,

Figure 10. Behaviour of B (p (0), ny) e B (p (0), M) v B (p" (m), ) andl‘ .
BS(p" (1), u) when 6(P, (07 (0), y )< n/2. '
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Since the flow on \ gives us the behaviour of the solutions close to
r=0, we have that there are orbits which go near the homothetic orbit Yh(ﬂ/2)
and after they follow closely to the flow on the region A of Figure 10. For
such an orbit y its projection on the configuration plane looks like Figure .

This is a contradiction because our problem is a central force problem and Y
: o

does not cross the q1~axis.

V4
o]
iy

Figure 11.The projection of the orbit y near Yh(v/Z) and the region A of
Figure 10.

Assume that e(Pf(p—(O), po)) = /2 for some uoe (1,2). Then the flow on A
is shown in Figure 12. Let U be a neigbourhood of Yh(n/2)f1{v:0} on the annulus |
fv:O} and let V be a neigbourhood of Pj(p‘(O), po) on the annulus {v=0}. If we .
follow U through the flow for positive time, then Figure 12 shows that it has N
to cut V. This is a contradiction because there are points in this intersection
whose corresponding orbits have projections as in Figure 11. Hence, Lemma 10
follows.

0.E.D. .

Figure 12. Behaviour of Bf(p-(O), n), B° (p™(0), M), B (pt(m, u,) and

Bf(p+(n), u) vhen 6(P$(p~(0),}10)) = /2.
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LEMMA 11, For all w>1, Figure 13 describes the position of the eight points
Php™(0),u), BT (0),u), Ph(p™(n),u), PLp™(n),u), Po(pT(0),u), P2(p*(0),0),
P (p (n),u) and P (p (m),u).

P (p(0) 1)

\/ez" ‘ a
o= > 16=0 LA P (5 (0) ) -

PE(pY(0), ) TP (n) ) PR,
=-1/2 6=T/2

Figure 13. The points P (p ( 8_) ) where 6 =0,m

The following theorem improves Theorem 2.7 of [D3] and Theorem 41(? of
: |
[D2] . oy

I |
i

|
THEOREM 12. (1) For all ue(l,») we have that the orbits Bu(p+(0) p) 1B (p (0) M),
Bi‘(pﬁw),u) and Bi‘(pﬁn),‘u) are forward asymptotic to p T(n/2), p (—n/2) p (-n/2)
and p+(ﬂ/2) respectively, and the Or’bitsB+(p (0),u), B_(p (0),u), B+(§p (r),u)
and Bf(p-'(n),p) ore backward asymptotic to p (-w/2), v (n/2), v (n/3) and

p (-n/2) respectively. See Figures 14.

(i7) For all ue(l,») we have that the orbits Bs(p+(0),u) Bs(p+(0),u4, ‘

B (0" (n),u) and B (pT(v),u) dre backward asymptotic to p~(m/2), p_(-in/é‘)

p (-n/2) and p” (n/2) respectively, and the orbits B+(p (0),u), B (p (‘0),14)
Bi('(p_(wr),u) and Bf_‘(pn(n),p) are forward asymptotic to p’(-n/2), p *(a/2),
p+(7r/2) and p+(—ﬂ/2) respectively. See Figures 14 i



Figure 14a. The flow on A for p>9/8. b

Figure 14b. The flow on A for 1<u<9/8.

Proof. Part (i) follows from the fact that the flow on A is gradient like
with respect to the v-~coordinate.

Part (ii) follows from Lemmas 9,10,11 and the symmetries S;. ‘
Q.E.D.

Note that Theorem 12 gives us the global flow on A for all HE(L, @) . o

The following corollary extends the results of Devaney [D3]¢
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COROLLARY 13, For n€(l,») the anisotropic Kepler problem cannot be regularized

(in the sense of Easton [ E]).

Proof. From Theorems 7 and 8 and Figure 14, the solutions in a neigbourhood of
00

the homothetic orbits Yh(eo) and Yh (eo) for 60=0,w, cannot be extended in any

continuous fashion after passing near collision.

O.E.D.

Now, we shall study the number of revolutions of B%(p+(eo),p) or Bi(pw (eo),u)
for (%=0,w around the equilibrium points to which they tend when T++® or T+ -
(see Theorem 12), respectively. By using'the symmetries Si is sufficient to study

this behaviour for the branch Bf(p_(n),u) when it tends to p_(w/2) for T+ -,

In order to compute the revolutions around the point p (7/2) we introduce

polar coordinates centered in this point. That is, u=p.sin¢, 6-3/2=p.cosg.

Let p(v) =(v,(r),p,(1),0,() = (v (1), 8r), u (x)) be the solution co-

rresponding to the branch Bf(p—(ﬂ),u) such that g}r) + p (m) when 1+ 4+ and

p (t) + p (n/2) when 1+ -», Then the number of revolutions R(u) of the
u - -
branch Bi(p (7) ,u) around p (m/2) is define by:

R{(n) = (lim ¢p(r) - lim ¢U(T))/2w .
T+400 T =00

PROPOSITION 14, (Z) R(p)=z+~ if ue(9/8,+« )
(11) R(yw) =0 if vwe(1,9/8]

Proof. By Corollary 3, (i) follows. Since p”(w,u) is a saddle and p-@/2,u) is

a source without spiralling when ps(1,9/8 ], (ii) follows from Figure I.1 and the
local behaviour of the flow near p(7/2) (see (V.1) and Figure V.1 for more de-

tails), see Figure 14b.

Q.E.D.



ITI. THE FLOW FOR NON-NEGATIVE ENERGY LEVELS | T

(I11.1) The case h=0-

i

The invariant manifold Tg (see (II.5) and Figure II.7b) is formed by the

manifold IO and the boundary submanifolds A and No' The equations of motionbin

IdJA are,

r' = rv
v' = u2/2
- B¢
u' = ~vu/2 V' (9) ! |
|
and in I U N_the same equations except the first one which becomes p‘ ;‘—pv;
o o |

|

System (1) can be solved in the variables (v, 6,u) and after in phg‘Va~‘
riable r o; p. This means that the flow on IO is projectable on A or ﬁo.‘Sin;
ce we know the flow on p or NO (see Theorem II.12 and Figure II.14), Fhe SO~
lutions on IO can be obtained lifting the solutions on A or NO in the radial

I
]
direction r or p, respectively.

The homothetic solutions yo(eo) for eo =0, n/2, %, -/2 cdnnecﬁ the
|

boundaries A and No, and they are the unigue solutions on IO whose projeéction
‘ ‘
on A or No is a point (see Figure II.7). ‘

Let WS(A) (resp. Wu(A)) denote the set of points in IO whose forhard s

(resp. backward) orbits converge to A . Similarly, we define WS(NO) and Wu(No).

PROPOSITION 1. (<) WS(NO). = IO\WS(A) and W“(zvo) = I\ W), .
(i) W (h) C w”(zvo) and W (L) C ws(zvo),- see Figure 1. |

Proof. Note that WS(A) is formed by all the collision orbits and Wu(A) by all
the ejection orbits, On the other hand, Table II.2 give us dim(WS(No)) = 3 =
dim(wu(No)) . Then Proposition 1 follows.

0.E.D.

|
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- homothetic orbit

Figure 1. The sets W) =w _(p (ONU Wi,_(p—(w)) and

+o

W) = W _(p'(0)) uW,

+, {p'(m)), for u>9/8.

THEOREM 2. (%) On the manifold A oor N we denote by A,B,C, D (resp. A",B',C",
D') the closed strips shown in Figure 2 (resp, Figure 3). Each strip corres-
ponds on I toa different qualitative behaviour of the solutions, whose pro-

jections on the configuration plane are given in Figures 4.

(1) The collision and ejection orbits are projected on the branches C'NB,

"D'n4, A'ND, B'nC and D'NC, A'nB, B'NA, C'ND respectively, i.e., on the bran-

ches of the stable and unstable manifolds of equilibrium points p+’—(60)
with 60:0,ﬂ/2, T,-m/2. Their geometrical behaviour on the configuration pla-
ne s described in Figures 5.

(3ii) If w>1 then the escape (resp. capture) solutions tend to infinity
when 1+ +> (resp. 1 +~%9 in the directions o, = Oyn/2, m, =n/2 with yadial
veloeity v = (-2V(90))1/2 (resp. v = m(—ZV(eO))Z/Z).

(tv) In Figures 4 and 5 the number of oscillations around the q2—amis i8 ze~

ro or infinite depending on whether pe&(1, 9/8] or we(9/8,«),

Proof. Part (i) and (ii) follow from Theorem II. 12 and Figure II.14. By Pro-
position II. 4 and II.i4 we obtain parts (iii) and (iv), respectively.

QOE'!?'
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Figure.3. The regions A',B',C' and D' on A or No for u>9/8.

|
E“J
|
|
P
!
]
}
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Int(A) Int(B?% int(C) T Int(D
)% Int(D'
f gx

Figure 4a. Qualitative behaviour of the orbits of IO whose projection on A or

N

S N
Q
o

VN

g

Int(a' )/ Int(B';lx Int(C!

L
)Tgl
T

- v NN
ool
|

No lies on A,B,C,D,A',B',C' or D' for p>9/8. Here Int(X) means the

interior of the set X.

q, 1 ® ® -
Int(A) Int(B) )& . Int(C) Int(D)
!
\\\ a

\

-Int(At{% Int(B")

|
o0 © H

Figure 4b. Qualitative behaviow of the orbits of Io whose .projection on A or

No lies on A,B,C,D,A',B',C' oxr D' for 1<u<9/8.
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cma:sf(p'(")) p'nA=B% (p™(0)) AmD:Bf(p'(o)) B'NC=B"(p~ ("))
(o] o
M N
q D
b ¢
<> D
(
<> <)
q D
D 4
o &
p'nc=B"(p*(n)) A'nB=B:‘(p+(o)) B'na=B"(p*(0)) C'ﬂD:BS(p+(ﬂ))

Figure 5a. Qualitativebehaviour of the orbits of Io

u,s
+,-

A

+,-

No lies on B (p

(eo)) with b, = 0 or o, for u>9/8.

)
(

- s
C'ﬁB:Bi(p (n)) D'nA=B>

FooA

- X g -
(p7(0)) A'ND=B_(p

D

N

(o]
(0)) B'nC=B%(p7(m))

- o
pnc="(p*(n)) A'nB=B"(p"(0)) B'nA=B (p*(0)) C'ﬂD=B‘j(p*<ﬂ)?M

Figure 5b. Qualitative behaviour of the orbits of i’o whose projection on A or
(0)) with 80=O or m, for ue(1,9/8] .
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(ITI.2) The case h>0.

Similarly to the case h=0, we have that I, (see (II.5) and Figurel 11.7)

h
is formed by the manifold Ih and the boundary submanifolds A and Nh, Nfow‘,‘ the
.
equations of motion in IhuA are, ;

r' = xrv
. 2
v = u"/2 + rh
o' =u

-vu/2 =V'(8)

ul

and in IhU Nh are (see (II.4)),
p' = ~pW
. 2
W' = U + pVi(e)
' = U
~WU -~pV' (0)

c
1t

,, but, in a similay way
] ;

5
8
|

When h>0 the flow is not projectable on A or N

to (III.l), we can prove:

PROPOSITION 3. (%) W’ (N,) = I,\W(n) and W'(N,) = I, \W*(n).

(ii) W (p)C w”(zvh) and W(n)C WS(Nh).

| ' ‘ .o
(222) If u>1 then the escape(resp. capture) solutions have no restridtion im

the O-direction when they tend to infinity, while the radial velocity satis-

fies |W| = (271)1/2. :
I

i



IV. THE FLOW ON NEGATIVE ENERGY LEVELS WHEN U> 9/8.

(IV.1) The intersection of the invariant manifolds with the surface of

section v = 0 o

As we said in Remark 3 of (II.6) we are interested in describing the
Bernoulli's subshift as a subsystem of a Poincaré map defined on a surface

of section transversal to the homothetic orbits'yh(qo) on I forEBo = 0, W/Z;;;

h
7, -W2 and h<O. This surface of section will be the annulus 8 = {(z,v, §u) :
v=0, (u2+v2)/2 + V(®) = rh} = ihﬂ{ v=0} with h<O.
i
The intersection of the annulus S with the collision manifold A is given
by i

Ans = {{r,v,8,u) : r=0, v=0, u2/2 = -V@®)} , see Figure 1.

-/ 2

———

|
|
1
|
!
I
[
|
|
|
I
!
|
|
!
|
f
I
t

~_

Figure 1. The set Ans.

The flow is transversal to the annulus S when v‘$ 0. The curves
w={v'=0}ns = {(6,u): w’ = -V(0) } are shown in Figure 2. The regions
{v'>0}Ns and {v'<0}NS correspond to the orbits which cross the annulus S

with v increasing and v decreasing, respectively (see Figure 2 again).
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=+V-V(8)cw

Figure 2. The curves w and the regions{v'>0 }N$ and {v'< O}NS

We denote by Wf _(p,u) (resp. Wf (p,u)) the unstable (resp. stable) in-
’ [ .

variant manifold associated to the saddle point p such that le (p,u)N A = e o
[ i .
B:: {(pru) (resp. Wi () N A= Bf (pr ). Here, we use the notation-inttoduced
[ [ A '

in (1I.7).

LEMMA 1. For u> 1 the following equalities hold. . o

WP (0)u) = 8 M (), ), | )
W0 (m,u) = 8,08, (1 (p*(0) 1)), |

WAT(0) ) = 808,00 (0" (m), W),

W pT(m,n) = S, (W (pT(0), W),

W (DT (0),u) = S, (Wi (p" (m) W),

W T (m ) = 8,(W(p"(0), 1)) and

W (pT(0),1) = 8, ( (p (m), 1))

The proof follows easily from the symmetries.
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of Wu
+I

We define the curve ou

_{p,W) (resp.

W
+o-

_(prw)

(resp. O

[
:
»
|

_(p,u)) as the first intérsection

(p,1)) with S in forward time (resp. bacderdttlme)

where p is one of the four saddle points on A.

U>9/8 then there is a neighbourhood of Yh(e )N S where O

From Corollary II.3 we can prove (see Proposition 5.3 of [D2]) tﬁat‘if‘

tending to YE(QO)O S, where 60

hood of Yh( GO)FWS in S the curves oi'f

Figure 3.
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The curves qf
-

~
- T e

(p(8,),1) vhere 0, =

of 9 close enough to 0.

8
/ ’/
o (e (m) 1)
yu O=m/2+0*
[6=-1/2+6%]

= 0,m Therefore in a nelghbour*

(p(el),p) look like those in Frgure 3.

* * .
O oxrm. Here 6 =0 () is a value

From now on, we use [ | in order to represent another case in the

same picture.

We choose an arc O

L (0)eY(0) and

1im O]j(s)

S 00

s&[0, ) when Ue(9/84].

such that Yé(O)

u

=0

i+ o

g
+

(s) with se(0,+°] on Wj(p+(0),p) as in Figure 4,
(+°°)eB (p (0) , 1) .

such

This arc gives a natural parame—

(O),u wrth parameter se[0,+®) such that 0 (0)=(0, 0)

E(s),

We shall prove that G+

Let "E(T)=(rs(r), VS(T),

(s) is a contlnuous arc for

6 (1), u (1))
s s

be tﬁe'or—

1

(P(e ) W) ;spirals ..

i
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Bu(p+(

- .
g (s) '
+ ) i ;
/ i
W'Ll
+

(o (0) 1)

0), 1)

4

/

. =
Figure 4. The arc O+(s)a

LEMMA 2. (i) 07:(3) in a neighbourhood of (0,0) is contained in{6> 0 }In{u>0 }Ng,
see Figure § . ‘
(17) Let s* be the smallest value of s>0 such that of(s*) belongs to w or

{u=0 }. Then, uS(T) >0 for all 1<0 and for all s €(0,s*).

Proof. (i): By Remark II.2 and Figure II.9, for s small enough crlj(s) ig an arc

contained in {6>0}N{ u>}NS. Then (i) follows. | |
(ii): The orbits \é(r) with s>0 small enough are such that‘us(T)>O for all T<O'f :
because they are close to Yh(O) and they lie on Wf(p+(0),u) , see Remark II.2. |

Suppose that there exists sy € (0,s*) such that ug (1) <0 for some T<0. Let

1
82 be the smallest value of s> such that us (T2)=0 for some 1:2
2 ‘ C
u'é (12)=O, Therefore, from Ir-(2)we have that 6 (Tz)e{ 0,m/2, w,~n/2} . L
2 2 :
This implies that Y (T ) e v, (6. ( 7,)) and this is a contradiction. Hence
52 2 h 52 2 .

<0. So,

(ii) follows. i

0.E.D.

The global behaviour of o’lj_'s(p(el),u) for uE [9/8,uc) for some
- ‘

= >4 d i i R !
uc Ucritical (see later) is given by the following theorgm In the proof‘wek
shall use ideas given in [1Ms]. L

THEOREM 3. For wel9/8,4] we have that Oi{(s) is a continuous arc for all
sel0,») contained in {v'<0}nS. Furthermore, 63(0)6 (0,m) for all se€l0,).

See Figure .
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/N .l

w i ‘(‘ .
u r+ :
0+ (P (0) , ) ! .

. ﬁ:’n

yu

e

Figure 5. The curve o}:(p-’-(O),p) for pel9/8,41

Proof. The continuity of the arc O‘:(s) can only be lost if it meets the cuz.;ve
w. First of all, suppose that the arc crf(s) meets the curve w before crossing .
the circle |u=0|. Let s* be the smallest value of s>0 such that of(s*)=(6*,u*)
belongs to w. We claim that V(0*) < 2v(0), |

To prove the claim we consider the orbit YS*(T) . From II.(2) we have that
du/d 6= -v/2 -V'(8)/u. Since v_,(1)>0 and u_,(1)>0 (by Lemma 2) for all'T<0,
we obtain that udu <-V'(0) d6. By integration from p+(0) to 01_':(5‘*) we obtain,

u=(-v(e*)) /2 6= 0
u’/2 < —v(D) ] . So, V(B*) <2v(0) and we have proved the

u=0 =0 ‘
claim. ‘

Now, we shall prove that V(8) 22v(0) for all 0 if ue(9/8,4]. This follpws
from the fact that V(0)= —u_1/2§~1/2 = V(r/2)/2<V(0)/2 for all if ue‘(éf/a,éi]ﬁ.‘

Therefore, the arc o‘:(s) can only meet the curve w after crossing the acixv‘—
cle {u=0 }. Now, we shall study the crossing of olj(s) with { u=0 ).

Since the curve OI:(S) spirals around (7/2,0) when s = +®, it must c‘ut u=0.
Let s* be the smallest value of s such that us*(0)=0., By Lemma 2, we have that
uS*(T)gO for all < 0.We shall prove that TT/2<SS*(O)<1T. Since u'>0 in the seg-
ment {(6,u): 0<8< W2 and u=0 }, it follows that m/2<6_, (0). If ©_, (0)>T then,

by using symmetry S3, we have c;l:(p+(0) ,u)nalj(p+ (r) ,uY+= @, and this is not ,
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possible. Of course, cﬁ(s*) is different from (m/2,0) and (r,0) because theSg
two points belong to the homothetic orbits Yh(ﬂ/2) and Yh(ﬂ), respectively.
So, m/2 <%*(O)<n .

Now, by symmetries (see Lemma 1) we have that the curves Of(p+(d),ﬁ),t
Cf(P—(O),U), of(ﬁ—(ﬂ),u) and OB(P+(W),U) look like those in Figure © for
0< s <s*.Again, by symmetries we have that cr(p+(0),u) is contained in the
region bounded by the curve ABCDA, see Figure 6., Otherwise,

ou(p+(0)41)ﬁ {of(p+(0)41)uO'?(p+(ﬂ),u)} # ¢ and this is not poséible._

+
In short, Figure 5 follows.

Q.E.D.

0% (p (0) 1

6'-‘?:77/2

] 1

- + - . i ' )
Figure 6. The curves of(p (0) 1) » Of(p 0) p), Gi(P (m Y ,u) 03§p+(ﬂ),ux'and the '
points A,B,C and D. b |

In order to study the case U>4, let s' be the smallest value of SETO,+§)‘

such that Oz(s)r\w = for all sc& (s',+»). By Proposition 5.3 of [D2]'s' , o

exists for all u>9/8. Of course, s' depends on ., Let s" be the smallest va- ;
lue of s2s' such that Ot(s)rﬁ{(e,u) : 086< 7/2 and u=0} # @. Theorem 3 says

that s'=s"=0 if u€{9/8,4] ; that is, Ur(s)ﬁw = f for LHEp/814]° Numerical com- -
putations show that Of(s)mw = @ until a value of yu, uce(4.9,5,0). See Appendix

1 and Figures 7 for more numerical information on the continuity of the arc . ¢

qu(s).
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PROPOSITION 4.If u>H?then of(s) 18 a continuous arc for all s€ls''®) contai-
ned in {v'<0 }nS. Furthermore, 83(0) €lo,m) for all sels’ 'y=).

Proof. By definition, the continuity of the arc Gli(s) follows when s&ls'® o),
Similar arguments used in the proof of Theorem 3 show that GS(O)E {0,m) for

all s€([s'",»).
0.E.D.

From now on, the arc ol:(s) or o‘i(p+(0),u) shall mean {o‘:(s): s2s''} ifUZUc
and {ci(s) : 520} if pE[Q/S,Ue).Similar notation is used for the other seven

arcs Or’s(p,u) . These arcs can be defined by using the symmetries of Lemma 1.
-

LEMMA 5. For u>1 we have that every orbit determined by a point of {v'<0}NS
either it tends to an equilibrium point on A or it meets in forward time the

annulus S in the region {v'20nS.

Proof. Let pe{v'€0}Ns and let p(T) = (x(T),v(T), B(T),u(T)) be the solution
determined by p for T=0, i.e p(0)=p. Suppose that v(T)<0 for allT>0; that isg,

r' (1) <0 for all 1>0. Then there exists r()= lim ¥ (1) 20, If r(®)>0 then v(T)
T-+00 ¢

will tend to zero when T*+®, but this is impossible becauge p(T) would tend to

an equilibrium point out of the colligion manifold. If r(%)=0 then p(7) tends

to an equilibrium point.

Q.H.D.
w
W
( ) g
w 1
u h;l
Le (5,16) ue (17,35) Wz 36

Figures 7. The arc Oz(pl'.(O) ;M) for a diferent values of u.
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(IV.2) The Poincaré maps g,f and h on v=0,

By Lemma 5, the orbit determined by a point

pel v'<0}ns\{o®(p (0) ) uos(p (M, Wy o (p7(0), 1) U (p (M), 1)} in forvara

time always meets the annuli SN {v'20} in a point p'. The map f(p)=p" is cél—
. |

led the Poincaré map in forward time on {v'<0}nNs.
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P
|

[

Eoyl
Similarly, we can define a Poincaré map in backward time g on {%'<0} N s.

In fact, the domain of definition of g is,

fr<o dns \{d e @ wude' o wudeto,wudetmamy .

We define twoneighbourhoodsUi’u(p,u) and Vi'u(p,U) for each Oiﬂu<p,ﬁ) as |
2 rT re v

i
\
1

in Figure 8. Furthermore, for 0O fixed there are always points of U farther

away from g-axis than the points of V. The choice of these sixteenth‘neigbour—

hoods is made preserving the symmetries given in Lemma 1. For examplé, in

Figure 8 we have that, U (p' (m) )= §

V?(p+(n),u) = S

u
g (s"
+

[

]
v

+ 2+ g+

2

ot (), 1R
e 0,
(0,

oso(vf(p+(0>,u)).

2

oS

0

(u‘j(p‘“(O),u)) and

Vu (P+ ('ﬂ') IU)
U (" (m W
o (" (M, W)

) <

. . s,u s,u
Figure 8. The neighbourhoods U+:_(p,u) and V+:_(p,U). Here, we have that

u u
o, {s'')=(0,0) for HE€(9/8,4] and © +(s") is defined just beﬁorev

to Proposition 4 for u>4.

i

|
'

[



Also, we define the arcs Y, 0, 0',¥, ¥ ' and the open regions X, for

i=1,2,3,4 as in Figure 9.

(o (p™ (m W)

S -

% e" (), ) A
a”(p (0), W) ' '

0% (p" (0), 1)

-6
O'}:(S") Ol_l(S") .
o 4
o\ (0" (0), 1) LM
0} " (m | [oS@
o (]
w
|
O=m/2
(8=-m/2]

Figure 9. The arcs Y, 0, 0', ¥, Y and the regions X, for i=1,2,3,4.

LEMMA 6. f(y) s an open arc with endpoints Pj(p_(O),U) and PZ(p_(TU,M)‘con—
tained in 20 }INS. L
R
Proof. By Lemma 5, we have that £(Y) is an open arc contained in{v'Zolns. By |
definition ofvy, Figures II.13 and II.14a, it follows that the endpoiﬁté of £(Y),
(0),H) and PU(p (M M).

Therefore, by using Figure II.14a the lemma follows. L

are either Pf(p—(O),U) and Pz(p—ﬂT)Ji), or Pf(p

Q.E.D.

oo
By Lemma 6, f(Xl) is the connected region bounded by f(O) and ADS, see

Figures 10. Figure 10b is the same as Figure 10a. In 10b we take © és an an-,

'
|

gular coordinate and u as a radial coordinate with u=0 in the circle | shown

in the picture. From now on, we shall use this type of representatioq for the'
| v

annulus S.
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Figure 10b. The region £(X ). O=-m/2

Here A=Pf(p_(w)) and B=Pf(p_(0)).

55



56

|

By using the symmetry SZOSO we obtain from £(0) and f(Xl), £(0") and
f(Xz) respectively. In a similar way, £(¥), £(¥') and f(X3), f(X4) are obtai—‘
ned, using the symmetry S3, from £(©), £(0o') and f(Xl), f(X2) repectively, see
Figure 11.

Ans !

U -
P+(p (O))

Figure 11. The regions f(Xi) for i=1,2,3,4.

|

Let Yi=S (Xi) for i=1,2,3,4 and let ¥, n, ¥' and n' be the images under

2|s
S2 s of g, Y, o' and ¥ respectively.

o

~Since the symmetry S, applies the stable manifolds WS(.,U) in the unsta-: '

2

bles ones Wu(.,u) according to Lemma 1, we have g(Yi)=S S(f(Xi)) for i=1,2)3}4

2|
see Figures 12 and 13.
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0% (" (), W]
0% (p” (0) , )]

~ 0

s
u, +
0+(p (0), W)

(0 " (m) 1)

¥
0 =m/2
[6 =—W/2]

ou(s")

s
_o+(p (m)y, W)

.
LG+(p (0),w)]}

Figure 12. The arcs Y, n, ¥', n' and the regions Yi for i=1,2,3,4.

X7

T

Q.

% (pr (01}

\".wz“)f _
LAY
N7

6% (" (0) )]’

“Mptm

. 570

Figure 13. The regions g(v;) for i=1,2,3,4 and g(¥,)nf(X;) for i,3=1,2,3,4.

The last ones are the shadowed regions (52§?).
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We consider the Poincaré map hzfog“1 defined from {v'20} NS to itself.
Actually, we are interested in the map h restricted to g(Yj)mf(Xi) for
i,3=1,2,3,4; see Figure 13.Note that this intersection is not empty only if |

i and j have the same parity.

Note that h is not defined on the set, ‘ .
s, - s, - s, ~ s, - - ‘
glo (P (Mauo_p O U g P 0 y)y o (p (m),w). Similarly, the map

h-1 is not defined on the set

E(oo e (0, U ol (MW U G m ) U et (0.

(IV.3) The invariant manifolds under g and f.

LEMMA 7. For u>39/8 the following four statements hold:

(2) The sets g(os(p—ﬁn),u)) and g(gs(p~(0),p)) are a countable union;of dis~"
Joint curves contained in g(Y )Uq(y ). Each curve in g(Y ) has P (p (0);u)
and P° (p (T),4) as endpoznts Also, each curve in g(Y ) has P (p (0),u) and
FL(p (YU,U) as endpoints. Both sets of curves accwnulate at the collision
boundaries IS of g(¥,) and g(¥,), see Figure 14.

(17) The sets g(oj(p—(o),u) and g(of(p~(w),u) are a countable union of dis-
Jjoint curves contained in g(Yg)ug(Y4). Each curve <in g(YS) has Pi(p+(n),u)
and Pf(pf(O),u) as endpoints. Also, each curve on g(Y4) has Pf(p+(0),p) and
Ps(p+(“) W as endpoints. Both sets of curves accumulate at the collision
boundaries MS of g(Y ) and g(Y ), see Figure 14.

(ii7) The sets f(g (p (0),u)) and f(O(p (w),u)) are a countable union of dis-
Joint curves contatned in fX, )Uf(X ). Each curve in f(X ) has P (p~ (0) W and
P+(p (n), W as endpoints. Also, each curve in f(X ) has P (o~ (0),p) and
Pu(p_(ﬂ) W) as endpoints. Both sets of curves accumulate at the coZqumbn
boundaries ANS of f(X;) and f(X,), see Figure 15. { ‘J

(7v) The sets fYo (p* (m),u)) and f(g (p?(0),w)) are a countable union of dis-
joint curves contaﬂned in FIX)UF(X,). Each curve in f(X,) has P (0 ), LJ
and Pu(p (0),u) as endpoints. Also, each curve in f(X ) has P Cp ﬁT)AJ) and

b

P (p (0)0) as endpoints. Both sets of curves accuwmulate at the coZZtsmon
boundaries ANS of f(Xz) and f(Xx,), see Figure 15. :
~ |

Proof. Note that Of(p—(w),u) crosses the regions Y1 and Y alternatiéely, |

2

each time cutting the boundaries oﬁ(p+(0),u) and of(p+(ﬂ),u), and teﬁds tokfhe.

|
point (7/2,0) (see Figure 12). So, by symmetries and Lemma 6, (i) follows.

By symmetry S, we obtain (ii) from (i). Finally, from (i), (ii) and sym-

3

metry S,, (iii) and (iv) follow réspectively. ‘ {V

Q.E.D.
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Q Qa
a a Q
I+ o nt+ v

g(o (p (M)
g(o (p (0))
g(o (p (m)

g{a_(p (0))
P%(p" (0))

0w+ ul n+ v

1

14. The sets g(oi

Figure

Figure 15. The sets f(gu (p+(e ),H) for g,
Togun= 22 - o o)

14

0]

g(o (p (M)
(p (0))
(P (M)
(P (0))

g(o

I 0+ Wit

g(o

+ 0

g(o

_(p7(8),W) for 6_= 0 orm .Here A=P°(p’ (0)) and

(p' (0))
(p" (M)
(e ) |
(p" (M)

~__—ffo
£(0
£(©
£(C

+ oo+ gl g

B=p° (p’ (1)) ,
P (p (0))
£(o, (" (M)
£(0"(p" (0)) —
£(0) (p" (M) —
£ (" (0)
£ (" ) —
£(0, (p"(0)) —
£ (p" (M)
£(, (0" (0))

B=P" (p (0)).

e o)y
(o' (m)

wero)
(pr (M)

— f(o
f(o
f(o

el g+ o

o+

0 or w. Here A=P?(p-(“))_and
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(IV.4) Geometrical interpretation of the neighbourhoods of the invariant

Egnifolds.
i
Coe
! Y
We need the following definitions. An orbit p(T):(r(T),e(T),V(T),u(T))
1
+ o
(m , 1w

will be called a positive(resp. negative) upper ejection when p(T)E&WE(p

(resp. Wr(p+(0),u)) and will be denoted by e(+,u) (resp. e(-,u)).

[Nl
[

An orbit p(T) will be called a positive (resp. negative) upper collision

when p(T)e&Wf(p_(O),U) (resp. Wi(p—(70,u)) and will be denoted by c{+,u)

(resp. c(-,u)).

A positive or negative lower ejection or collision is defined applying -

b
S3 to the above definitions, we denote them by e(+,1), e(-,1), c(+,1) and c(~,1)

respectively. From Figure II.14a we obtain Figure 16.

q

NG e

9
T \ 1r
c(+,u) c(-,u) c(+,1) c(~,1)
95
é// \ T
944
e TN
e(+,u) e(~,u) e(+,1) e(- 1) |

Figure 16. Types of collisionsand ejections.

We note that Lemma 7 gives us the geometrical location of these ejection’

-1
and collision orbits on the boundary of the domain of definition of h and h °

»
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An orbit p(T) will be called a positive (resp. negative) upper crossing
when there are 7, < T, <T3<1?4 such that O(Tl)=8(T2)=TV2, 9(T3)= 8(T4)= fﬂ/2,‘
B(t) # +W2 for all TG(TI,TZ)LJ(TZ,T3)LJ(T3,T4), and @(t) for Te(rz,TB)‘turns
clockwise (resp. counterclockwise). We will denote it by C(+,u) (resp. C(-,u)). -

i

An orbit p(T1) will be called a positive (resp.negative) upper rotation

, t
when there are T, <1, <T5 such that 6t )=0(15)= /2, 8(1,) = -n/2, 8 () # -T/2
3) turns clockwise (resp. counter-
clockwise). We will denote it by R(+,u) (resp. R(-,u)).

for all TG(TI'TZ)U(’E'T3)’ and ©(T) for Te(Tl,T

A positive or negative lower crossing or rotation is defined applying S3

to the above definitions, we denote them by C(+,1), C(-,1), R(+,1) and\R(-,lSA

respectively, see Figure 17.

Dl ‘
11 o ', ‘
2 11><\ Eg Ty
/ N
. I
t : L.A) /
3 T T 3
T 2 2 T4
4 Tl ‘ ‘
C(+,u) R(+,u) C(+,1) R(+,1) ¥

-3
Sl
N;-Q
[ D
N //:‘:*\
w =
S w-—lbbr-%;
%
A

~

e Peguill

Q

N

HS\/

i r—l:
N
~

o

C(—,U) R(“lu) C("ll) R(—ll)

Figure 17. Types of crossings and rotations.

THEOREM 8. For W>9/8 the eight regions of Table 1 contained in the domain of
the definition of h (see the shadowed regions of Figure 13) have the dynamical

behaviour described in Table 1.



62

The orbits defined by the points of

Have a dynamical behavibur

£(uS (p7 (M ) g (U (p" (0) M)CEX INg(¥,)

£(vZ(p7(0),1))ng (V2 (BT (0) )T E (X, INg (¥ )

w !l n+ 0

£(2 (T (M) NG (VI (B (M )ICE (X NG (¥,)

- 1
£ (p” (0) ) )ng (U (p™ (M ,1))CE (X.)Ng (Y.)

+ P ' g + p ’ 3 g 3
£ (p™(0) ,1))ng (U (p" (M M)ICE(X,)Ng(¥,)
S
+

£ ™ (M ung (v (m )ICE (X)NG (¥ )

£(v° (p™(0) ,u))ng (W (p" ¢

+ (p
s

+ 0 + £ |

2

£ (7 (M ,1))ng (0" (" (0) u))CE (X,)Ng (¥,)

0),1J7f)Cf(X4)ﬂg(Y )

R(~,u)

C(~,u)

Cc(~,1)

R(-,1)

R(+,u) - k
C(+,u)

Cl+,1)

R(+,1)

Table 1.

THEOREM 9. For u>9/8 the eight regions of the domain of definition of' hi(see’

the shadowed regions of Figure 13) have the dynamic behaviour described in Table 2,

when we restrict the regions X£ and Yi’ i=1,2,3,4, to a neighbourhood Ugof
|

N%(Go)ms for 6= /2, -=m/& (compare with Figures 9 and 12)

The orbits defined by the points of

In a neighbourhood of Yh(eo)“s 1

have a dynamical beﬂaviour

£(X,)ng(¥,)
£(x,)Ng(¥,)
f(XB)Og(Yl)
f(X3)ﬂg(Y3)
f(X2)ﬂg(Y2)
f(Xz)ﬁg(Y4)
f(X4)ﬂg(Y2)

f(x4)ﬂg(Y )

4

R(-,u) = !
C(-,u) i
c(-,1)
R(-,1)
R(+,u)
C(+,u)

C(+,1)

R{+,1)

Table 2.

The proofs of Theorem 8 and 9 are similar in the sense that we use the

behaviour of the invariant manifolds. Therefore, we only prove Theorem 9.
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Proof (Theorem 9). Figure 13 describes qualitatively the eight regions

f(Xi)ﬁg(Yj) when Xi and Yj (i,3=1,2,3,4) are defined in a convenient and
sufficiently small neighbourhood U of Yh(eo)ﬁs for 60=’rr/2, ~/2. We consider '

an orbit p(r) = (x(T),v(T), 0 (1), uw(T)) such that p(0)€ £(X )ﬁg(Yl). From Fi-

1
gure 13 and Lema II.11 it follows that m<6(0)< 27 and u(0)> 0.

Let T, be the smallest value of T>0 such that u(t)=0. We claim that T

1 1

exists and T/2<§ Tl) <T . In order to prove the claim we take g_1 (p(ON)<e YlﬂU;

-1
of course, g (p(O))=p(T2) with T2>O, Since the flow of YlﬁU in backward time
firstly follows near Yh(TT/Z) and aftexr near A, we have that there exists .

16(0,12) such that u(t)=0. Then there exists Tle(O,TZ) such that T, is the

smallest T>0 with u(T1)=O. From the behaviourof the flow in forward time of -

+ —
Bi(p (0),1) and B}:(P (M), 1) (see Figure II.13 and II.14a), we have that
n/2<86 (T1)< T. So, the claim is proved.

Let Ty be the largest value of T<0 such that u(7)=0. We shall prove that

-1
T, exists and o< G(TB) < T/2. We denote by p(t,) the point f (p(0)) e XNU ; of ..

course T4< 0. Since the flow of XlﬁU in forward time firstly follows close 'to

Yh('ﬂ'/2) and after near A, we have that there exists T3€(T4,O) such that "f3 is,

the largest T<0 with u(r,)=0. From the behaviour of the flow in backward time

of Bf(p+(0),u) and Blj(p":?ﬂ),u) (see Figures II.13 and II.l14a), we have that
o< 6(T3)< /2.

Now, we suppose that T <8(0) < 3m/2 (the case 3n/2< 6(0)<2T follows simi~
larly). Since T/2 <6(T1)<7r , 0< 6(T3)< m/2 and u(T) =6'(1)> 0 for allTe(ty,T,),

the orbit p(1) for TE(T 'Tl) looks like the one in Figure 18. So by continuity

3
of 8(1) there exists Tie (T3,0), Té e(o,Tl) and 'c_;)e (Té’Tl) such that
9(Ti)= 6(”(5) = m/2 and 6(T'2)= -m/2. Hence, the orbit p(1) has a negative upper

rotation, R(-,u).

P(H) p(Ty)

1]
(T1 )

\P\(TB,') ‘ o
q ’ ‘ o

p(o) \\42 ' . 'v 1
(t,") ,

2

Figure 18. The orbit p(T) with p(0)€& f(Xl)ﬂg(Y ).
1
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Now, we consider an orbit p(T) such that p(O)ef(Xl)mg(YB). From Figure 13
it follows that W2< 8(0)< 3m/2 and u(0)>0. As in the above case there exists

T, the largest value of T<0 such that u(tr)=0 and O<9(T )< /2. P

3
Let Tl be the smallest value of 7>0 such that u T) =0. We shall probe that'

T exists and —W/2-<6(Tl)<0. We denote by p(Tz) the point g (p(O))EEYgﬁu, 50

1,>0. Since the flow of YU in backward time firstly follows near yh"(—"n,{z), |

and after near A, we have that there exists T€(0, T2) such that u(T)=0. Then

there exists T € (O,Tz) such that T1 is the smallest T>0 with u(T)=0. From the
behaviour of the flow in forward time of B (p (0),u) and B (p (0) 1) (sge Fi-

gures II.13 and II.14a) we have that —T/2 <8¢r %:O

Now, we suppose that 7/2 <6 (0) <1 (the case m<6(0)<371/2 follows SLm;larly)

since -2 <&t )<0, 0< 6(T;) < 1/2 and u(r)>0 for all Te(T,7,), the orbit of .
|

1

p(T) for T&(T,,T,) looks like the one in Figure 19. i
-

1

P(Tl')\<
D(O)/ p<T2')

p(t,")
‘\>P(T

" p(T4')

w

Figure 19. The orbit p(t) with p(O)Ef(Xl)ﬂg(YB),

So, by continuity of (1) there exist T, 'el(r.,,0) and’té e(O}Tl) such that‘,

3
e(Té) =T/2 and G(Té) = =-T/2. If the neighbourhood U is sufficiently small,
then there exist Ti<E(T1,T2) and Ti e(r Tyr Ty ) such that G(T = —-m/2 and

G(Ti) =m/2, because the function u(T) in the intervals (Tl,rz) and (T4WT ). has
more than one zero. Hence the orbit p(T) has a negative upper crossing, C(-,u).
The other six cases of the theorem can be proved either by using symme-

tries or in a similar way.
0.E.D.

s ‘
We note that if the neighbourhoods UE’ (p, W), Vj's(p,u) and the neighbour-

' ' '
hood of yh(eo)hs of Theorems 8 and 9 are adequate, then Theorem 9 follows from

Theorem 8.
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(IV.5) Regions with a constant number of crossings with the qz—axis,

the map S(eo,u).

Let U(eo,u) be the shadowed region of Figure 20 for eo= : m/2.
Jo =-m/2)
.6 :TT/Z

v (6 (0) ) ut et m W

T :

u +
U+(P (0) u

|
Figure 20. The regions U(Go,u) for eo= : T/2. [
!

For any peU(eo,u), S (p) denotes the number of times the otbi£ 

through p crosses the qzwaxgs between the crossings of the ql—axis just prior

to and just after p along the orbit. The ejection just prior to p ana the

collision just after p are also computed as a crossing .

ity

The following three lemmas are due to Devaney, see [D5, p.303—3p4]}

[y
| !

\
defined on U(T/2,U) is continuous on ‘ ’

LEMMA 10. (i) The map S(”/Z W
uln/2, W oS (07 (0), W oot (0 (MW v dipT(0),u) v T (m) )l on disconti-
nuity points S(n/2,u) inereases or decreaseskby 1. Also, S(W/Z,u)(p)‘—+ + o
when p + (1n/2,0).

(1) A similar resu?t 18 true for the map S(—ﬂ/z,u)°

v
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LEMMA 11. Let peU(m/2,v) with p# (1/2,0). Then the following hold.
. s, - U, + .
(¢) If ped (p (o),u)mc+(p (0),1) then S(ﬂ/g,u)(p) 18 even.

(i2) If peol(p (0)wlno Zp"(m), 0 then S po ) (p) is odd.

(iii) If peoi(p_(ﬂ),u)ﬂgz_f(p+(0),u) then 8 /o 1) (p) te odd. o
(20)If peo L (p (W), W no X (p" (), w) then 8 o ) (p) is even.

A similar result ig true in U(-m/2,U) by using symmetry 83’

LEMMA 12, Let p be a point in the hypotheses of Lemma 11. Then, the values of

S(ﬂ/Z,u) in a small enough neighbourhood of p are given in Figures 21. A simi-
lar result is true for a point peU(-1/2,u).

a” (p”(0), 1)
(resp. o) (p” (M), W)

o, (" (0),1) ,
(resp. o (p"(m),u)) o

Figure 2la. This picture gives the values of S(ﬂ/2 )in a neighbourhood of 'p
2gUre <24 U

in the case (i) (resp. (iv)) of Lemma 11 when s(“/Z,u)(p)zzkw

o (7 (0), 1) o
(resp. o> (" (M), 1)

ST m W
(resp. OE(p+(0),U))

Figure 21b. This picture gives the values of S(TT/2 u):'Ln a neighbourhood of p
r

i 14 ) =2k+1.
in the case (ii) (resp. (iii)) of Lemma 11 when S(“/2,U)ﬁp)‘2k+ L
|| K
I | |
| o
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Proof (Lemma 10, 11 and 12). Lemma 11 follows from Figure 16, counting argumenfs

and the fact that the orbit through p can not be tangent to the qz—axis.
From the local behaviour of the solutions near the ones which have a point

on gs’f(pi(eo),p) with 60=0,Tr(see Figure II.14a), we obtain lemmas 10 and 12.

Q.E.“I‘D.
THEOREM 13. The following holds.

s {1,2’3,4: se } if u€[9/8auc)

5+ (Ut we,u)) =
(=/2,1) I {2n -1, 2n_, «.. ) If upk, ,

= b
where n,= no(u) z 1.

Proof. By symmetries and Lemmas 10, 11 and 12, we obtain Figures 22. Figure

22b is a qualitative and realistic picture if we are in a small enough neigh— 
+

bourhood of (-7/2,0).In fact, Devaney in [D2] has proved that ifyu>9/8 then,

u,s )

+ -

Figure 22a is a qualitative and perhaps realistic picture too, but at least

in a neighbourhood of (fn/2,0), o (p(el,U» where 91=0,TT are' spirals.

it has the number of indicated regions (see Figure 23) when ue5[9/8,u ) I
c 1

Note that the point p' in Figure 22a corresponds to an orbit as in Figu-

re 24, then S
(m/2,u)
of Figure 22a follows using Lemma 12, If we have S(ﬂ/2 )

(p")= 2no+1 for the
point p' in Figure 22b then all the enumeration follows in the same way, Thi§

implies the theorem. 4
|

=P

u .
8=0 é=ﬂ/2 O=m i J
Figure 23. In this case one of the region in Figure 22a has been broﬁeh]in

nine regions.

(p')=3 and all of the enumeration of the different‘regions‘ S

i

P

[
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o (p” (0) , W)

Figure 22a. The values of S(W/2 ) on U(n/2,u). Here the numbers inside the':
ZEJUre <<a , ‘

circl the v S £ th i .
cles are e values of (/2 1) or e open regions

22

Figure 24. The orbit through the point p' of Figure 22a.
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o (s")

o u + -
o, (p" (), W) of<p (m) , 1)

Figure 22b. The values of S(ﬂ_/2 ) in a neighbourhood of (m/2,0).
—_— ?

(IV.6) Basic sets for dynamical description.

Each one of the eight regions of the domain of definition of h given
in Table 2, from now on, will be denoted by thelr dynamic behaviour. For
instance, the region f(Xl)r\g(Yl) in a neighbourhood U of Yh(W/Z)F\S will
be denoted by R(-,u).

In order to study the dynamic of the Poincaré map h we need some defi-

nitions.

Let A,B‘61C(+,u) ,C’(—,u) yR(+,u) ,R(—ru) ,C(“",l) ,C(",l) I'R(+Il) ﬂR(‘ll)] ¢
Then the triad (A,n,B) will be the set of orbits which describe a motion of
type A, after they cut exactly n-times the heavy axis q, between the time Ty

of the motion A and the time T _ of the following motion B; if B is a rotation

2

then the cut corresponding to time'r2 is not taken into account.
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Let A €{e(+,u),e(-,u),e(+,1),e(-,1)} and B as above. Then the tfiaﬁy
[A,n,B) will be the set of orbits which start in an ejection of type A, af-
ter cut n times the heavy axis, g,, between the time 7 (see Figuré 16) of
the motion A and the time T, of the following motion B. The poiht (O'O)iOf -
the ejection is computed as a cutting; if B is a rotation then the cutting

corresponding to time T2 is not computed.

Let A as in the case (A,n,B) and Be{c(+,u),c(-,u),c(+,1),c(-,1)} .Then
the triad (A,n,B] will be the set of orbits which describe a motion of type'

A, after they cut exactly n times the heavy axis a, between the time T3 of

the motion A and the time T of the following motion B, The point (0,0) of

collision is computed as a cutting.

Let A€ {e(+,u),e(~,u),e(+,1),e(-,1)} and Be{c(+,u),c(-,u),c(+,l);c(—,l)}.
Then the triad [A,n,B] will be the set of orbits which starﬁ in an ejection
of type A, after they cut exactly n times the heavy axis 9, between the time
T of the motion A and the time T of the collision of type B. The poiﬁt #0,0f

Pl

of the ejection and collision is computed as two cuttings. | i f
. .

| v .
Now, we shall study the topology of the sets (A,n,B), [A,n,B) and(A,n,B].
The sets [ A,n,B] correspond to the orbits of ejection-collision with}a‘uniﬁ'”‘
. |

que cut with v=0 and it will be studied later.
|

First of all we consider the region R(-,u), see Table 2. If the neigh-
bourhood U of Yh(eo)ﬂs is sufficiently small, then from Figure 13 we have )
that the region R(-,u) is bounded by the curves a,b and ANS, see Figﬁre}25. ‘

| ! "

Therefore, the set g_l(R(—,u)) is described in Figure 26. 1
|
|

s, +
P (p (0),u)

Figure 25. The region R(-,u).
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u + :
o, (@ (0w | oYty

e
~
~

'
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Figure 26. The set g_l(R(—,u)), Here 0 <0*=0*(, U) and U is the neighbourhood

given by Theorem 9.

Again from Figure 13, we have that the region C(—,u):f(xl)mg(Y3) is
1

bounded by the curves a, b and AS of Figure 27. Then the set g (C(-,u)) C Y.

is described in Figure 28.

3

We can study the othersix cases of Table 2 either in a similar way or by

using the symmetries as follows:

Tr(-,1)) = s, (g P R=,w))),

g9 3

-1 -1
gl = syt e,
g R+, 1) = 5,05 (g7 (R(-, 1)),
g e, = szoso<g'1<c<-,1>>>,
g LR+, = s3(g"1<R(+,1)) and
gl = sy e+, 1))

In Figure 29 we describe the topology of the eight regions gwl(Rkwﬂu)),‘

g -, o tc-,1), g tre-,1)), gt

and g—i(R(+,l)),

!

i

Now, in an analogous way we show that f—l(R(—,u)) is a neighbourhood‘

of<f(p—(ﬂ),u) on X1 such that it misses a neighbourhood of GT(p—(O),U) on
Xl' The other seven cases are similar. In Figure 30 we give the topology

e, £ hee,, £iweE),

R, , £ e W), £ C(+,1)), and £ HR(+,1)).

. ~1 -
of the eight regions £ ~(R{(-,u)), f

(R(+,u)), g-l(C(+,u))} g_l(C(Q,l))
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Pf(p”(o),u)

3
Q=
ANs
C(-—,U)
4 ) 1
i
+
S (p* (0), 1N
+
Figure 27. The region C(-,u). Figure 28. The set g’I(C(—,u)).

Here 0<6* =0 *(u,U) and U is

the neighbourhood of Theorem 9.

THEOREM 14. For all u>9/8 and for all positive integers, n3z nj,where
nlznz(u,U) and U is the neighbourhood of Theorem 9, the following hold.
(Z) The sets (A,n,B) (resp. (4,n,B) ) are topologically triangular sectors
(resp. curves) on A with a vertex (resp. an endpoint) at the point Pg(',u)
and its opposite side (resp. the other endpoint) on the opposite side of
the vertex P?(‘,lv of the sector A, see Figures 31 and 32. t
(i1) The sets h((4,n,B)) (resp. [A,n,B)) are topologically triangular sec-
tors (resp. curves) on B with a vertex (resp. an endpoint) at the point
F%(~,u) and its opposite side (resp. the other endpoint) on the opposite
side of the vertex P%(~,u) of the sector B, see Figures 33 and 34.

(ii1) For each point P@’u( ,W) and for each family of triangular sectors
{(a,n,B)} or [n((4,n,b))) (resp. curves |(4,n,B 1), or (ta,n,B)}, )
which has this point as vertex it accumulates at AOS.




-

[g7" (R(-,1))]
6=TT/2— O*
[0=-1/2-6%] u
y

Proof. We denote by (gnl(A)F\f—l(B),n) the component of g

3

-1
g

-1
g
-1

the number n in Figure 22b. The sets (g

Yew,u]
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(c(+,1))

L

(R(=,u))

-1
[¢ (=] gl 5 0

[8=—/2+6%]

Figure 29. The regions g—l(R(~,u)), g_I(C(—,u)), gnl(C(—,l)), gal(R(-,l)),

g R+, g ew,w), g e, 1) and g7 (R(+,1)) .

_1(

For every A andB such that g—l(

Ou( (M) and the opposite one is contained on the image under g_1 of one of

the curves £(ag), £(¢), £(0') and £(¥'), see Figures 35, 10 and 36. ' .

A NE

(A)ﬂf_l(B) with

B) ,n) are drawn in Figure 35;
this picture is obtained fromFigures 22 and the intersection of Figures‘29

and 30. _
(B) # # the set (g_l(A)F\f_l(B),n)

is topologically a sguare contained in U(iﬂ/2,u) such that one side is on
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(£ R+, 1))
f—l(R(+,u))

et cis,100)
£ e e u))

£ e e ) 4 |

[f'1<c( 1))] f (R(-,u)) B=m/240%
0-m/2- 6+’ [ (r(o,1))) [O==/2e 8]
[6=—m/2- 6%] -

'

Figure 30. The regions f'l(R(-,u)), f'l(c(—,u>), f—l(c(—,l)), f_l(R(—,l));

£ RH,W), el e, e, 1)), £ R(+,1)). U

'

From Figure 36 we have that g(a)= Ps(pﬂJ) (this equality is topqloqicaliw
and g(b) is contained in f(o), £(¥), £(o') or £(¥*). The same arguments .
gives us the topology of (A,n,B] . The order of (A,n,B) and (A,n,B] showed .
in Figures 31 and 32 follows from Figures 22. This completes the proof 6f
(i).
Since h((A,n,B)):f((gﬁl(A)r\f-l(B),n)), the proof of (ii) is analogoﬁs°
Part (iii) follows from the fact that the sets (g_l(A)rxf—l(B),n) }

accunulate at the points (fﬂ/Z,O), see Figure 35,

Q.E.D.

REMARK 1. The value nZﬁJ,U) only depends on the netghbourhood U of Theorem 8
in the following way :'2n1(u,U) -1 = min S(+ﬂ/2 u)(U).
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(1(R(-,1) ;2n=1,R(-,1))

2(R(—,l),2n1, c(+,1)]

2(R(-,1) ,2n,,C(+,1))
o(R(=,1),n,R(+,1))
5(R(_ll) ln+1rc("‘ll))

6(R(-,1),n+1,R(-,1))
{R(~,1),n+2,C(+,1))

.
?

C (_lu)

P2’ (M,

‘(C("ll) yznl IC(+ ru))
(C("Il) 12n ,R(“*‘,U))
(C(-,1),2n,+1,c(+,u)]
(C(=,1),2n +1,C (+,)

2((:(“'1) ;hpR(“‘ru))
3(C(“’rl) ,I’H'l rC(‘f'ru))

Ja(C(-,1) ,n+1,R(+,u)) "
s(C(-,1),n+2,C(~,u))

L

C(‘;l)

1(C (—'u) fznllc (+ rl) )
(C(~,u),2n, [R(+,1))

(C(-,u),2n,+1,c(+,1
(C (-ru) 12n1+1rc (_rl)

Z(C (";u) ,n,R(-,l))
3(C(-,u),n+1,C(+,1))

4(C(~,u),n+1,R(+,1))
s{(C(-,u),n+2,C(~,1))

Figure 31. The triangular sectors

Plj(p"("n) Aty /

o ‘
(\(R(~,u),2n,-1,R(-,u))
P(R(“lu) 20 IC(—Iu)J
3(R(—,u),2n1,0(+,u))l

4R (=,0) on,R(+,u))
S(R(‘IU) ,n+1 rc(;'ru) )

G(R(—Iu) N+l yR{=,u))
7(R(—,u),n+2,C§+;u))

°
o

/

(A,n,B) and the curves (A,n,B] with u>0.

The following corollary comes from Theorem 14:

COROLLARY 15. For all u>9/8 and for all nan g, where nz:nl(p,U} and U is the

netghbourhood of Theorem 9 the following triads are realizable for the ant-

sotropic Kepler problem.
(R(+,u),8n ,C(~,u))
(R(+,u),2n=1,R(+,u))
(R(+,u),2n+1,C(+,u))
(R(+,u),2n ,R(-,u))

(R(+,u),2n

(R(+,u),8n+l,e(-,u)l

sel+,u))

le(~,u),on+1,R(+,u))
le(+,u},2n ,R(+,u)) A

|
i P
|
|
i
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(C(+,u),8n+1,R(+,1))
(C(%,u),Zn ,C(=,1))
(Cl+,u)yen ,R(-,1))
(C(+,u),2n+1,C(+,1))

(R(+,1),2n ,R(-,1))
(R(+,1),2n+1,C(+,1))
(R(+,1),2n-1,R(+,1))
(R(+,1),2n ,C(-,1))

(C(+,1),2n+1,R(+,u))
(C(+,l),2n ,C(-,u))
(C(+,1),2n ,R(-,u))
(C(+,1),2n+1,C(+,u))

(R(=,u),2n  ,R(+,u))
(R(=,u),2n+1,C(-,u))
(R(-,u),on-1,FK(~,u))
(R(-,u),2n ,C(+,u))

(Cl~,u),2n+1,R(~,1))
(Cl=yulyon ,C(+,1))
(Cl=,ul)yon  ,R(+,1))
(C(-,u),2n+1,C(-,1))

(R(-y1),2n ,R(+,1))
(R(~,1),2n+1,C(~,1))
(R(~,1),2n~1,R(-,1))
(R(~,1),2n ,C(+,1))

(C(=,1),2n+1,R(=,u))
(C(=,1),2n ,C(+,u))
(C(-,1),2n ,R(+,u))
(C(=,1),2n+1,C(=,u))

(Cl(+,u),2n ,e(+,1)]
(C(+yu),on+l,c(~,1)]

(R(+,1),2n+1,c(-,1)]
(R(+,1),2n ,c(+,1)]

(C(+,1),2n ,e(+,u)l
(C(+,1),2n+1,c(~,u)l

(R(«,u),2n#],é(+yu)]>

(R(-,u),8n ,c(-,u)l

(C("gu)’gn ,c(—’Z)]
(C(=,ul)yn+l,e(+,1)]

(R(=,1),2n+1,c(+,1)]
(R(~,1),2n ,c(-,1)]

(C(-,1),2n ,e(-,u)l
(C(~,1),2n+1,c(+,u)]

le(+,ul),2n  ,C(+,u))

lel-,ul),en4l,C(+,u))

E

!
(e(=,T),2ne1,R(+,10)
le(+,1),2n ,R(+,1))

i

le(+,1),2n ,Cl+,1)

[e(=,1),2n+1,C(+,1)
i

[e(+,u),2n+1,R(~,u))
[e(-,u),2n ,R(-,u))

[e(=,u),2n ,C(=,u))
[e(+,u),2n+1,C(-,u))

le(+,1l),2n+1,R(-,1))
le(-,1),2n ,R(-,1))

le(-,1),2n ,C(-,1))
[e(+,1),2n+1,C(~,1))
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Wc(+rl)£2nlrc(’ru))

(C(+,l)[2n1,R(—.u))
(C(+,1),2n,+1,c(~,u))
(C(+,l),2n1+1,c(+,u))

2(C(+,1),n,R{(+,u))
3(C(+,1),n+1,C(-,u))

“C(+Il)ln+1lR(_lu))
5(C(+,1),n+2,C(+,u))

i .
b

(R(+,1),2n,-1,R (+,1))
aR(+,1),2n, ,c(+,1)]

(R (+,1),2n; ,C(~,1))

N§<+,l),n',R(—,l>> N
5 (+,l),n+1,C(+,l)P

8(R(+,1) ,n+1,R(+,1))

7(R(+Il) !n+2tc ("rl)‘)

—

—

e
€L

NI

AR (+,u),n+2,C(-,
8(R(+,u) ,n+1,R(+,

s(R(+,u) ,n+1,C(+,u))
4R(+,u),n,R(~,u))

MR(+,u),2§ ,C(=,u)
dR(+,u),2n ,C(—:uﬂ
NR(+,u),2nl-1,R(+,u)

Figure 32. The triangular sectors (A,n,B) and the curves (A,n,B] with u<0.
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ATEESSS
SNLIZ L
AR

ot
1

! i
WC(+lu>!?nllc(_ll))

(C(+,u),2n ,R(=,1))
(C(+,u),2n +1rc("rlﬂ
(C(+,u),?n1+1,C(+ql?)

2(C(+,u),n,R(+,1))
3(C(+,u) ,n+1,C(-,1))

4(C(+,u),n+1,R(~-,1))
5(C{+,u) ,n+2,C(+,1))

The triad [A,n,B] where Ac{e(+,u),e(-,u),e(+,1),e(~,1)} and

Be{c(+,u),c(-,u),c(+,1),c(-,1) } is formed by the orbits which start in ejec-

tion and end in collision having to meet the q2—axis n times. Since the;poipﬁs

of [A,n,B]

From Lemma 7 and Figure 22b

are in o ( ,u)rﬁcﬁ( M), neither f nor g are defined on

we have,

them.
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4
"(R(-,1),2n,~1,R(~,1))
A “lle(-,1) .20, R(-, 1))
’ 3(C(+,u),2n, ,R(~,1))
ST R(-rl) N 1
TR 4(R(+,1),n,R(~,1))

. 7
3 25 O
(K

5(C(‘—,u) rn+1 IR(—)l).)

G(R("rl) in+11R(“ll))
nC(+,u),n+2,R(~,1))

HC(+,1),2n,,C (-~ 1))

Z(R("‘ru) lrirc("‘lu))
3(C("rl) ,I’l+1 rc('ru))

4(R(~,u}),n+1,C(~-,u)) C(-,1)
s(C(+,1),n+2,C(-,u)) u
\\\\\\\\‘— 0 | %
o
< By ‘

e u(c(+,u%,2n;fcﬂ—,l))‘

2(R(+,1),n,C(-,1))
3(C(‘Iu)n+llc(—ll))

4R(-,1) ,n+1,C(=,1))
5(C(+,u) ,n+2,C(=,1))

(C(+,1) ,n+2,R(~,u))
6(R(~,u) n+1,R{(~,u))

B(C("rl) fn+1lR(_lu))
4(R(+ lu) ln(R(—lu>)

3(C(+,1),2n, ,R(~,u))
z[e(—lu) I2n ’R(—Iu))
1(R("lu) lznl_llR("pu))

N
|

Figure 33. The triangular sectors h((A,n,B)) and the curves [A,n,B) with 0.

COROLLARY 16. For all u>3/8 and for all n;;nz J:nz(u,U} and U is
the neighbourhood of Theorem 9, the following triads are realizable for the

+1, where n

anisotropic Kepler problem:
lel(+,ul),on-1,c(+,u)l
le(+,ul,2n  ,c(-,u)]
lel(=,u),2n ,c(+,u)]
le(-,ul),n~1,c(-,u))
le(+,1),2n=1,c(+,1)
le(+,1),2n  ,e(-,1)]
le(=,1),2n ,e(+,1)]
le(-,1),8n-1,c(=,1)]
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(R(+,1),2n, -1,R(+,1))
2[e(+,1),2n, ,R(+,1))
uC(—,u),2n1,R(+,l))

4(R(+,1) in,R(+,1))
s(C(-,u),n+1,R(+,1))

6(R(-,1),n+1,R(+,1))
7(C(+,u) ,n+2,R(+,1))

8(C (~,u) ;n+2,C(+,1))
4(R(+,1),n+1,C(+,1)})

3(C(+,u) ,n+1,C(+,1))

KEPLER PROBLEM

2(R("ll) Inlc<+ll))
qc(~,u);2n1,c(+,1)\

Figure 34. The triangular sectors h((A,n,B)) and the curves [A,n,B) with u<O.
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)

)
)

6{R(+,u) ,n+1,R(+,u)) |

!
5(C(+,1) ,n+1,R(+,u))
4(R(-,u) ,n,R(+,u))

3(c(-,1),2n, ,R(+,0))
2[e(+,u),2n, ,R(+,u))

1(R(+,u),2n1—1,R(+,m))‘

|

beg L (£(0)UE (9IUE (G IUE(Y"))

Figure 36. Topological description of the set (g—l(A)ﬁf_l(B),n)a
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(6" (o" (0) ;)]
f(p (m) 1)

[6® (e~ (m,w)]

S(p(0) W

/
L

g

Of(p+(0),u)
[0 (e" (M) )]

O=m/2-0% O=m/2+0%
[B=-m/2-0%] bu : [6:-ﬂ/2+9ﬂ ‘

oY (e (M 1)
S —
[0, (&7 (0) )]

The region Corresponds to the set

(gﬁl(R(+,u))ﬁf (R(+,u),2n —1)

B (o ®e-, o0 e, 1), 2n1—1ﬂ
(" = 1ng ™ R+ u) f2n)) |
i (g™ (- une™ (R (+,1) 20 )]
(" (RG+,u)nE (€ (= u),20))
B3 kg"l(R(+,1»mf'1(c(—,l),zn )]
(g icte, e (c(—,u> 20 +1)
A - - I
4 (g™ (e = mng (e (=, 1), 2n1+1ﬂ |
(6" R(-un e (R(=,0), 20, 1) |
A - :
5 [g™ " (r(=, 10" (R(—,l),2n1—1ﬂ ‘
(0" (-, une"t €+ 0 2n)) |
"6 [ Re=, 100" (c(+,1) , 20, )]
(g‘1<c<+,1»nf‘1<R<~,u) 2n,)
A |

7 (g™ e mi-,1), lﬂ




QUALITATIVE ANALYSIS OF THE ANISOTROPIC KEPLER PROBLEM

The region

Corﬁésponds to ﬁbe set
(g (C(+,1))NE " (Cl+,u)),

2n,+1)
A _1 _1 1
8 (g™ (C+,w)NE " (C(+,1)), 2n,+1)]
X (0"  ®-w)neT R Ge,w), 20))
2 ng”i(R<—,l)>mf"1<R(+,1>), 2n )]
A (g_l(R(—,U))ﬂf_l(C(—,u)), 2n1+1)
10 (g " (r(-,1)nE e (=,10), 20 +1)]
N (07 e, N R +,w), 20,41
1 Kq_l(C(+,u))mf_1<R(+,1>), 2n1+1ﬂ
. (¢ e ne -, 20 42)
12 o™ e, uneT (=, 1)), 2n +2)]
X (67 R+ w)AE TR (-0, 20,)
13 g~  ®e+, 10 ®(=,1)), 20))
N (g“1<R(+,u))mf"1<c(+,u)), 2n, +1)
14 g R+, 1nE @, 1)), 20 +1))
. (0" - 10 R (-,w), 20+ 1)
15 Hg-l(c(~,u))ﬂf_1(R(—,l)), 2n1+1ﬂ
N (07 -, ant e, 20 +2)
16 (g™t e anneT e, 1)), 20 42
. (67" (R(=yw)ne” L R(=,w), 20 +1)
17 (g R-,1)0E T R(=,1)), 2n,+1)
A (g—1(0(+,1>)nf'1(R(—,u)), 2n1+2)
18 (g™ (e w)nE T (R(=,1)), 20 +2)
(g_l(R(—,u))nf"' (C(+,0)), 2n,+2)
Big -1 -1 1
(g "(R(-,1))NE ~(C(+,1)), 2n1+2n
A (g’l(C(+,1>>nf‘1(c<+,u)>, 2n,+3)
20 Kg_l(C(+,u))ﬁf_1(C(+,l)), 2n1+3ﬂ
A (g_i(R(+,u))ﬂf-1(R(+,u)), 2n1+1)
21 (g~ R+, w)ne R G+, 2n, +1)]
A (g—l(R(+,u))nf_1(C(-,u)), 2n1+2)
22 Kg—l(R(+,l))ﬂf—1(C(—,l)), 2n1+2ﬂ
(@ =, )N (R(+,w)), 2n,+2)
Boa -1 -1 1
(g “(C(-,W))NEf "(R(+,1)), 2n,6+2)]

1
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(g =, 1)nE i =,u)),

2n1+3)
A - -

24 (g 1(C(-,u))ﬂf 1(C(—,l)), 2n1+3ﬂ
A (g'l(R(+,u))r\f_1(R(-,u)), 2n1+2)
(g RN R, 2n,+2)
B (9_1(R(+.u))ﬁf~l(c(+,u)), 2n1+3)
(g™ (R, 0)INET (€, 1)), 20, +3)
- (67 (e = 1nE T R (-,w), 2n,+3)
Kg—l(c(—,u))ﬂf—l(R(—,l)), 2n1+3ﬂ
- (@ e e, 2n +a)
g™ (e mnne s, 1)), 20, +4)]
A (67" Re=uNE R (+,0), 2n,+2)
L ~E(g-l(R(:,l))ﬂf:l(R(vk,l)), 2n +2)]
R (g T(c(+,10)nE H(R(+,u)), 2n,+3)

30 -1 -1 !
~ (g (C(f,u))ﬂf (R(+,1)), 2n1+3ﬂ
X (g LR(=,w)NE Lc=-0)), 2n +3)
31 Hg~l(R(—,l))ﬂf'1(R(-,l>), 2n1+3n
A (g—l(C(+,l))ﬁf—l(C(—,u)), 2n1+4)
32 [(g_l(C(+,u))nf'1(C(-,l)), 2n1+4)]
A (gnl(R(+,u)>mf_1(R(+,u)) ’ 2n1+3)
33 (g R+, 1)0E (R (4, 1)), 20, +3)]
A (g-l(C(—,l))ﬁf~1(R(+,u)), 2n1+4)
34 (g c(=,u))ne R+, 1)), 2n, +4)]
A (g~1(R(+,u))ﬂf-1(C(—,u)), 2n1+4)
35 ot @, 10 -1, 2n, +4))
X (67 R(=, 0N (R (=), 2n+5)
36 (g " (R(-,1)INE=" (R(-,1)), 2n +5)]
R (07 ®(=,w)nE ™ (R (-0, 20 +3)
37 gt ®=, 10 ®e-, 1)), 2n, +3)]
A (g_l(R(—,u))ﬂf—l(C(+,u)), 2n1+4)
38 Rg_l(R(—,l))mf"l(c(+,1)), 2n, +4)]
N (9—1(C(+,l))ﬂf—1(R(—,u)), 2nl+4)
39 (g™t g R (=, 1)), 20 +4)]
. (g Hc+, 1N T c W), 2n,+5)
‘%O [(g—l(C(+,U))nf_l(c(+,l)), 2n +5)]

Figure 35. The sets (g_l(A)ﬂf—l(B), n)
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(IV.7) A subshift as subsystem of h .

We consider the set of sequences {Tnl, where n belongs to the integers,
such that Tn is a triad of Corollaries 15 and 16, and Tn+1=(A,r,B) or

Tn+1=(A,r,B] can follow to T =(K,r2§) or Tnz[A',r',B') if and only if B'=A
n \

(we call these two triads compatible). ‘

'
}

We shall be interested in the next four types of sequences {Tn}g
|

|
(a) For all n€ Z there exists Tn of type (A,m,B). We denote this type of se~-

guences by,

T ,To,Tl,TZ, e ) |

Ceve s T_p0T_,

i
| ‘
(b) Let k be a negative integer. Then for all n>k+l there exists Tn qf type

|
(ad,m,B) but Tk does not exists and Tk+1 is of type [A,m,B). We write

this type of sequences by,

[ Tk+1'Tk+2’ Tt

(c) Let 1 be a positive integer. Then for all n<l-1 there exists T of type
n
(A,m,B) but Tl does not exists and Tl 1 is of type (A,m,B], and we wri-
te,

( oevs T1—2’Tl—1 ]

(d) Let k and 1 be integers such that k<0 and 1>0. Then for all k+1<n<1-1
there exists Tn of type (A,m,B) but Tl and Tk do not exist, Tk+1 is of

type [A,m,B) and T is of type (A,m,B], and we write,

1-1

Tl—Z'T

[ TxerrTganr -0 v 1-1

To each seqguence of the above types we shall associate a solution of
the anisotropic Kepler problem for U>9/8. Sequences of type (a) will corres-
pond to orbits without ejection and without collision. Sequences (b) Wi}l
correspond to orbits with ejection and without collision. Sequences (c)lwili
be associated to orbits without ejection and with collision and, finally,

sequences (d) will be for ejection-collision orbits.
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Let p(1) = (x(1), v(T), O(T), u(T)) be a solution of the anisotropic

Kepler problem such that p(0) belongs to the domain of definition of h, and

let !Tn} be a sequence of type (a). We say that p(T) realizes {Tn} if
hn(p(O))e Tn for all n€z. In the same way we define the realization of a :
sequence of type (b), (c) or (d) by a solution of the anisotropic Kepler

problem.
Figures 37 show some sequences and solutions which realize them.
The basic result of this section is:

'THEOREM 17. For all u>9/8 and every sequence {Tn} of type (a), (b), (e) or
(d) there exists a solution of the anisotropic Kepler problem which realizes
it.

Proof. Let Tn and 'I'n be two compatible triads. We shall describe the topo- ' !

+1
logy of the set,

T T = 1 PeT hip)eT

b= Tnﬂh_l(T )

n+1 n+1 Lo
If T =(C,m,A) and T =(A,m',B), from Theorem 14 we have that T f l‘
n n+1 n+

meets h(Tn) as it is shown in Figure 38 (see Figures 31,32,33 and 34). ! o

Figure 38. The set h(Tn)ﬂTn

+1

From Figure 30 it follows that f—l(Tn+1)cf—1(AJCXi, where i€{1,2{3}4l» S

is a strip which spirals to Yh(iﬂ/Z)mS, see Figure 39. In particular,

{.
‘1
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2
/

f N
WA

(«e.(C(+,0),5,R(+,1)), (R(

([e(*fu>l6lR(“ru))I(R('fu)IBrR("ru))r*--)

+ll)l4rc(_ll))l(C(“ll),7rR(”lu))

(cov ) (R(=,1),4,C(+,1)), (C(+,1),7,c(=,u)])

R

.)

([e(—,u),3,R(+,u)),(R(+,u),4,C(-,u)),(C(—,u);3;5{+,iﬂ) ‘

Figure 37. Solutions p(T) which realize the indicated sequences.
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g”I(Tn)nfml(T ) is topologically a square with two opposite sides such that

n+1
one is on gu( 1) and the other on g_l(f(g)k)f(W)LJf(o‘)LJf(W‘)) (see Figu-
re 35). Since g(ou( ,U)) topologically is PS( ,U) and
1 -1 -1 ~1
(Tn+1)— Tdﬂgof (Tn+1)—g(g (Tn)ﬂf

is the triangular sector shadowed in Figure 40.

T Nh (T .)), we have that the set|
n n+1
T T ‘

n n+l

(6% " (0, ]

u

16 (o (m) , 1]
o® (" (m W

0% (e (0), )

\
(P (0), 1)

(p (), W

(0, ;
(" (m) 1) Lu [0 (" (0), W] |

g

+ o

o

+ o

Figure 39. The set gbl(Tn)nf (T . ,). o ‘

Forthwith, we prove the theorem for the sequences {Tn} nez of type (a).
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We claim that the set ,

-2 ' 1
(Tl)ﬁh (Tz)ﬂ o

n -1
= : h = N
z {pGTO (p)eTn for all np1} T h

s ‘ ‘ .
is compact, non-empty and contains an arc joining P ( ,U) to the opposite

side in the triangular sector A if TO=(A,n,B). The proof of this claim al-

!

so show us that the set,

Y={peTO: hn(p)eTn for all ng-1} = T Nh(T_ )ﬁhz(T N ...

1 2

is compact, non-empty and contains an arc joining Pu( ,4) to the opposite
side in A. By using both results we obtain for the sequence {Tn}neEz of ty-
pe (a) the existence of at least one point peZNY which, by construction,

i i. 41.
realizes {Tn}nEEZ’ see Figure 41

Figure 40. The set Tdﬁh-l(T ).

n+1

Figure 41. A point p which realizes the sequence ITnlnE§Z°
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Now, we shall prove the claim. For all m>0 we consider the set,
n
Zm={pSETo : h (p)e Tn}for 1€ngm . We shall show that Zm is compact, non-
empty and contains an arc going from PS( (1) to the opposite side in A.

Then, since Z= N Z and Z DZ the claim follows.
mEN m m m+l

We use induction with respect to m. For m=! we have proved it in Fi~

:wah'l(z') where,
(e} m

gure 40; on the other hand, we have Zm
n

Z'= T, s

m {pe 1 h (p)eTn+1

fies the required condition and then similar arguments used in order to ob-

+1
for 1<n<m—1} . By hypotheses of induction,‘ZA satis—

tain Figure 40, prove that 2 is compact, non-empty and contains an arc
m

+1
. S
going from P ( ,U) to the opposite side in A.

‘

Let [T ) be a sequence of type (b). Since T, . =[B,n,A)

el ka2 ;“ k+1
is an arc going from P ( ,U) to the opposite side in A (see Theorem 14),
Tk+2mh(Tk+l) is another arc satisfying the same conditions. So the same is
2 ~-k-1

true for Y—Téﬁh(Tui)ﬁh (T_Z)ﬁ ... Nh (Tk+1
same as for a sequence of type (a). Then the proof of the theorem follows
in an analogous way for a sequence of type (b).

For sequences of type (¢) and (d) when k=-1 and l=1 (i.,e., a sequence
[To] where TO is a triad of Corollary 16) the theorem follows from Figure

22b.

0.E.D.

The triads Tn={A,m,B} R where{ denotes ( or [ and ldenotes ) or ], of
the sequences of Theorem 17 are such that m is greater than or equal to
either 2n1—1 or 2n1, or 2n
n1=n1(u,U).

1+1 according to Corollaries 15 and 16, where

|,
In order to decrease the value of nl(U,U), for instance nl(u)=i,_énd‘
to improve Theorem 17 we should consider the sets R(-~,u), C(-,u),; ... ,-
R(+,1) as in Table 1 instead of Table 2. That is, we should take R(-,u)=
f(uf(p"<w),u))rwg(uf(p+(0),u)) instead of R(-,u)=£(X,)n g(¥ ).

Now, if we study one of the sets R(-,u),C(-,u}, ... , R(+,1) given in
Table 1, we obtain a picture similar to Figure 42. In this piéture the set
s, - u, +
R(-,u) is drawn if the neighbourhoods U:(p (m) ,1) and U+(p (0) ,1) are cho-

sen containing the spiral strip given in Figure 26. This choosing of the

5,U . . .
neighbourhoods Uj'”( ;1) and Vf’f( /M) is a key point in order to improve
’

’
Theorem 17

). On the other hand, Z is the

i
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The curves a and b of Figure 42 play the same role as the curves a,b
of Figure 25 ,Then the set g—l(R(—,u)) looks like Figure 26 but now O*=7/2
if 9/8gu<4 and m/2-0* =e<of:<s")) if u>4 (see (IV.1)).

Figure 42. The region R(-,u) given by Table 1 with a convenient election of
S, - u, +
U, (p (M, W) and U _(p (0),u)

By using the same arguments we can obtain Theorem 14' and Corollaries
15' and 16' similar to Theorem 14 and Corollaries 15 and 16 but with nl=1

if 9/8<yu < uc and n :no(u) given by Theorem 13 if u:>uc~

1
Now, we consider the set of sequences iTélof types (a),(b),(c) and
(d) where the triads T; belong to Corollaries 15' and 16'. Then, in an ana-

logous way to Theorem 17 we obtain the next result.

THEOREM 17'. For all y>9/8 and every sequence 11%} of type (a),(b),(c) and
(d) there exists a solution of the anisotropic Kepler problem which reali-

zes 1t.

Let A be the set N\Jkﬁ] where we have the usual order extended by
a <o for all a&€lN. Let S be the set of sequences of elements belonging to

A of the types:

(a) (..., anz,aﬁl,ao,al,az, ««.) wWith an#co for all neZ,

(b) [@0,8, 4ed o0 +--) with k<O and a #Aco for all n>k,

{c) (»b~palm2,al_1,@ﬂ with 1>0 and an#Cb for all n<l,

(d) bqak+1, oo o al*lnm] with k<0, 1>0 and an#o: for all k<n<1l.
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We introduce in S a topology through the neighbourhood basis
{Uj(aﬂ, a&€s, jEN where Uj(a) is defined by:

U,(a) ={a'es : a'=a_ if ]nl<j} '

3 n n
Uj(a) ={a'es : aézan if k<n<j and aﬁ}j} ,
U.(a) =1a'es : a'=a_ if ~j<n<l and ai}j} ,
Uj(a) ={a'es : ar'l=an if k<n<1l and ai,ai >3,

according to whether the sequence a is of type (a),(b),(c) or (4), respedtiQ

vely.

Let 0:S —> S be the Bernoulli shift defined by (G(a))n=an+1° o] ié

defined on D(o)=1{ a€s : a 1#0%. The following lemma is well known (see [DGS]),

LEMMA 18. With the given topology, S is compact and ¢ 8 a homeomorphism with

the image.

There is a bijection between the set of triads given in Corollaries
15 and 16 or 15' and 16', and the set of positive integer numbers [N. Let M
be an infinity transition matrix with elements mijE [O,ll for all (i,j)EAxA,_
where mij=1 if and only if the corresponding triads i and j are compatible,

otherwise m, ,=0.
1]

Let T be the set of all sequences of compatible triads of types (a),
(b), (c) and (d). We consider in T the topology induced by S. Let 0 be the
restriction of o on T. Then (T,a) is a subshift of (S,0) with transition ‘

matrix M (see [DGS] ).

LEMMA 19. T is compact and o is a homeomorphism with the image.

Proof. It is immediate from Lemma 18 and the fact that the complementary:of

T in S is open.

Q.E.D. | b

Let D be the subset of the domain of definition of h whose orbits rea-
lize a sequence of T. We denote by E(d) the sequence realized by the point -

deDb. Then, from Theorems 17 and 17', it follows easily:
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COROLLARY 20. The map §:D —> T is a contimious surjection and the following @

diagram commites, o

R
e

T - .

7 ca—————

g

We note that if the map s is injective then, by Lemma 19, s will be a
homeomorphism. In this case, from Corollary 20, 0 is called a subsystem of"
h. In fact, it seems not easy to prove the injectivity of O because this re-

guires a very good knowledge of the global behaviocur of the flow.

(IV.8) Gutzwillex's Theorem.

In this section we give a version of Devaney for a theorem of Gutzwi-

ller [G5,6], for more details see [ D5]

Let,
st= { (q,p)e1. : p.=0, q >0}
_ ! h © 207 2

s = { (q,p)GIh : p2=O, q2<0}

and §ESﬁJS~. Let F be the usual Poincaré map on S. Of course, F in forwérd'

time in not defined on S\ C where Czwf(p_(O),U)UWf(p_(ﬂ),u)uwf(pf(O),u)uwf(p—(ﬂf,uj
+ P }

and in backward time on S\E where E=Wr(p (O),u)uwl_l(p+(ﬂ),p)uwf(p+(0),u)uwr(P+(TT),u)ﬂ

Let A be the sequences of positive integers of the following four types:

(...,s_z,s_l,so,sl,sz,..,)

00,8 co o S S S oon
[ ,.__kl 13 NAEAY )

(--~150151152l e g s,,OO]
0,8 vee 4SS 4 aee 4 S.00]
[ (2 _k' 1 OI 14 Jl

with j,k>1. We topologize A in a similar way to the set S of (IV.7).
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Let peS and suppose that Fj(p) is defined. We define the JEE baspage
of p to be the segment of orbit containing Fj(p) beginning at the firsg
prior crossing of q2=0 and ending at the next crossing of the glm@%iﬁ, We
include the endpoints of the orbit segment, even if one or both is the ori-
gin. Let sjzsj(p) dez;te the number of times the orbit through p crasses the
qz—axis during the j passage. We count collision and ejection as a cros-

sing,

THEOREM 21 (Gutawiller). The mapping §:8 —— N 18 a continuous surjection,
where (S(p)fj :sj(p) for pes.

Theorem 21 can be obtained as a Corollary of Theorem 17'. For example,
the orbit which realizes the sequencel®15,1,1,1,20lof Theorem 21 can bg ob-
tained from the orbit which realizes the sequence,
fe(+,1),15R(-,u)), (R(~,u),1,R(~,u)),{R(-,u),2,c{~,u)] of Theorem 17'. Note
that instead of e(+,u) we can start with e(-,u),e(+,1) or e(-,1). Thus, in
general, for each sequence of Theorem 21 we have more than one of Theorem

17°.

The map s in Theorem 21 is definitively not 1-1 since the symmetries
of the problem give rise to distinct orbits with the same sequences. In [G6]
Gutzwiller has conjectured that, up to the symmetries, there is a unique so-
lution corresponding to each sequence in A. We note that the map~5 of Coro-
1lary 20 takes into account these symmetries but it needs the injectivity

in order to obtain 0 as a subsystem of h.



V. THE FLOW ON NEGATIVE ENERGY LEVELS WHEN 1 <u§9/8.

From Proposition II.2 and Corollary II.,3, the difference between the cases
+
1<y £9/8 and p>9/8 is that the equilibrium points p (n/2) are sources and sinks
without spiraling in the first case and spiral sources and spiral sinkﬁ in the

second one,

The main result of this chapter will be to prove that the subshift for
u >9/8, given in Theorem IV.17 and IV.17', disappears at all when 1 <us9/8. Of

course, along this chapter we shall use the notation of Chapter II and IV.

(V.1) The intersection of the invariant manifolds with the surface of section

v=0.

Lemmas IV.1 and IV.5 are also true for 1 <u£9/8 and the procf of the fo-

llowing proposition is the same as in Theorem IV.3.

PROPOSITION 1. For 1 <us9/8, if we parametrize the arc 03(p+(0),p) with a pa-

rameter se [ 0,0) such that ¢ (0)=(0,0) and lim o (s)=(n/2,0) then, o*(s) ie
+ g oo * +

a continuous arc for all s<[0,») contained in {v'<0} N S. Furthermore,
e(of(s))e [(0,7) for all se(0,»).

From Figures IV.3 and I.11 respectively, we have that the number of cro-

+ .
ssings of OE(P (0) ,n) with the f-axis is infinite if p>9/8 and zero if u=1.

From now on, if we have a curve I' and a point p then we define the num-

ber of revolutions of [ around p, R([',p), in a similar way to (II.7).

. u, +
Let ue(1,9/8]. The orbit B+(p (0) ,u) is forward asymptotic to p+(ﬂ/2)
(see Theorem 1I.12). So, from Figures II.4 and II.5 we have that the number
, , . +
of revolutions which it gives around p (n/2) is zero; see Proposition II.14
and Figure II.4b too. On the other hand, the point p+(ﬂ/2) is an hyperbolic

point for the flow of the anisotropic Kepler problem given in II. (2); so,
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from Hartmann's theorem we have that the curve F=Wf(p+(0),p)ﬂ S*, where S*
is a surface of section transversal to yh(n/Z) and close to A, is such that
R(I,y, (1/2) N S%) is zero. So, we have that R(u)=R(or(p+(O),p), (n/2,0)) is
finite for all pell,9/8]. This is what Proposition 2 will say. We shall gi-

ve another proof using variational equations.

PROPOSITION 2. If Ve(1,9/8 then R(u):R(of(p*(O),u), (1/2,0))< +%°,

Proof. From (II.3) we have that the eigenvalues associated to the equilibrium

point p+(ﬂ/2) are given by,

1/2

A = 2'3/2 [-12 (9-8u)1/2 ] on A and A= 2 off A,

*

On the tangent plane to A at the point p+(ﬂ/2)p (0,u), the eigenvectors asso-

ciated to X+ are given by, w+=(—1,—k+), see Figures 1. Note that X+= A if

oo

and only if_u=9/8a

- w+ 0 QA ‘,1 o .
%’ " S iy 3/2
| P P
i W ]
_______ | -1/2
‘Lu 'u wvu
H=1 1<u<9/8 H=9/8

Figures 1. The eigenvectors w+=(—1,—k+(u)) for 15 u59/8,

As we proved in Theorem II.7, the tangent space at a point p(T)e‘Yh(W/Z)
splits in direct sum of a line L and an ortogonal plane P independently on the
point p(T). The plane P is generated by the eigenvectors wi(T) associated to

the eigenvalues A+(T) of the matrix,
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Vi (wW2) -v(T1)/2

1/2 1/2

where V''(7/2)=p1 and v(7)= -2"" “tanh(2 ' “7). In particular, w+(T=-W0 =,

and A+(r=—a9 = A+ are given in Figures 1. -
In P we introduce polar coordinates through & p cos® and u=p sind .

Let Q+(T) be the angle associated to the eigenvector w+(T) for tel-»,0].

The orbit Br(p+(0),u) is forward asymptotic to p+(ﬂ/2) and if T++w then
its tangent vector tends to the strong direction w+ of Figures 1 with ¢-coox~
dinate equals to ¢;("«ﬂu So, in order to proof the proposition it is epough
to study the function ¢;(T) when T increases from =o to 0.

In polar coordinates the equation,
n' = AN

becomes,

o = (1-pcos d-sin’0 +2” " %tann (272

i

T)sindcosd

(1)
1/2 1/2

(1-1) —(2—u)sin2® +2° tanh (2"

T)sindcosd

The initial conditions are T=-%, &= ¢+(—“ﬁ= atan(2-3/2[—1+(9—8u)1/2 1Yye (m/2,m),
If T=-% then ®' = £(®)+g (P where £(9 = (1-U) «(2~u)sin2¢ and

g(d = ~2_3/Zsin2®, see Figure 2.
,~3/2 0
¢
l_u/, - b
_2—3/2- A
-1 -
$=0 =T/ 2 =T d=3m/2 $=2m

Figure 2. The functions £(®) and g(®).
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We consider ¢' restricted to the interval [0,m]. The same analysip is
true in [7,2m] because ¢°' has periodicity equal to 7.

If u=9/8 then is easy to compute that the equation ¢'(-®) = £()+g(d)=0
has only one zero at ¢= ®+(—W) = atan(—2_3/2)e(ﬂ/2,ﬂ); furthermore, fpr
Te (-©,0] , '(1)<0. In fact, the function f(®) does not depen on T and the

function g(®)= g(®,T) is such that g(d,1)< g(¢,-») for Te(-~,0]; so,

Q1 (1)< ' (-2)=0 for Te(~=,0]

Suppose 1<9/8. The function g(®) does not depend on y and £(¢) = £(&,u)
is such that O>f(d=m,u)> £(d=m,u=9/8) and £(d=n/2,u)= £(d=1/2, u=9/8), see
Figure 2. So, if 1<u< 9/8 then the equation ¢'(d,1=-) = £(d)+g(d)=0 has two
zeros‘on (r/2,7) and there exists TO=To(p)e (-0,0) such that ¢'(d,7t)< O for
all Te(TO,O] and de(n/2,m). Of course ¢'(d,7)< 0 for all Te(-~,0) and

de [0,n/2] , see Figure 3.

T ==

T=TO(U)

$=0 b= /2 O =T = 37"/2 =27

Figure 3. Evolution of &' = ¢'(1) for a value of u&(1,9/8). Note that the points

p and g correspond to the ¢-coordinate of the vectors w_ and v, given

in Figures 1,respectively,in particulaxr, g= ®+(“m)o
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Now, we shall prove the proposition for a fix value of pue(1,9/8). From
Figure 3 we have that the solution <I>+(T) of (1) is bounded on the interval
[ ¥*, &*] and (D_;<O for te[- T, | . Moreover, from T = To(u) to 1= 0 we have fi-
nite time and so the function ®+(T) decreases a finite wvalue from T= ?o to

=0 too.

When =9/8 we can not use Figure 3 because the shadowed regions dg not
exist . We shall prove this case in a different way.

If 1=9/8 then equation (1) becomes,

‘P=-9.2"5/2+7.2"5/2cosv+ tanh (t)sin¥
(2)
=—9.2-5/2+7.2—S/2cos‘1’ ~sinV +(i+tanh(t))sinV¥
-1/2 ¢
where %290 , t= 2 T. and Y=d¥at.

In a neighbourhood of t=-%, equation (2) can be approximated by,
2
2sz' = Dz +Bs (3)

where z=Y -2 ¢+(—°°), A and B are constants, s=ezt and z'=dz/ds.

Now, z(0)=0 and the solutions of (3) are bounded by the solutions of the

equations,
2sz' = (Bte)s (4)

for some €20 in a neighbourhood of z=0 and s=0. Solutions of equations (4)

are given by,
z= (BX€)s/2

and z increases a finite value when s goes from O to a certain value sq>0.

So, Proposition 2 follows for the case W=9/8.

Q.E.D,

Numerical computations show that the number of crossings of 0:1 (p+ {0y, w
with the 6-axis remains equal to zero when U goes from 1 to 9/8 and thyt the

curve o:(p+(0),u) looks as in Figure 4 for 1<us9/8,
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[6=-n/2]
6=’n/2

w

(0" (" (0), )]
%" (m 1)

IR
[0} (0" (m) )]

(o] ~_|

Figure 4. The curve of<p+(0),u) for 1<us9/8.

As we said before, see Figure 1, the ¢-coordinate of the orbit

u, +
B+(p (0) ,u) when T++» depends on U in the following way,

@(Br(p+(0),u),T+ +00) = at&m(2"3/2 [—1+(9—8u)1/2] ) = ¢1(U)-

In Figure 5 it is represented the function (it has been computed numexically),

Q(OE(P+(0),u)pS* +00) = @éu) when ue(1,9/8] , see also Figure 4.

2.5 |
|
2.6 :
|
|
2.7 ¢ @2(u) |
|
2.8 1
|
2.9 :
P |
2 (u)
3.0 s |
Py Y
m ] ' T —+ i ‘ﬂ”
1 1,05 B 1.1 1.125=9/8

Figure 5. The .functions ¢, (M) and ¢, (W) for uel1,9/8) .Here, for Py R,y 6 LW,
P,-P, is the angle rotated when we follow w:(p+(0),u)'from A to {v:O}.
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(V.2) Dynamical description.

Let Ue [1,9/8} and let Y be an orbit of the anisotropic Kepler problem.
From Proposition 2 and (IV.5) the number of crossings of Y with the heavy
axis (q2) between two consecutive crossings with the qi—axis is bounded by

some n*¢ N. Figure 4 shows that n*=2 for all uefl,9/8).




VI. SYMMETRIC PERIODIC ORBITS

(VI.1) Definitions and preliminary results.

From (II.2) the anisotropic Kepler problem has the symmetries,

So t (d10ayrPy iRy Bl ——(dy 1y, =Py "Ry, ~t)
Syt (dyrdyePysPyst)==—r{a, ;=dys =Py Py, ~t)
2 ¢ (d109ysPyrPy B} ——(-qy 1 dy Ry =Py =)
S3= 8,081 ¢ (4119prPy /Py t) ——=(-d) =y, P 7Pps )
847 5308, * (d1+9y/PysPpe B mm—sn(-qy 1 qps =Py Py T
S5 8105, * (d144p/PysPy 8) ——>(dy1=q)/P1 =Py, t)

They can be interpreted in the following way.
Let Y(t)= (ql(t),qz(t),pl(t),pz(t)) be a solution of II.(1). Then, SO(Y(t))=
(q1(-t)yqz(—t)v—pl(—t),~p2(~t))is another solution. In figure 1 we draw all the
solutions Si(‘ﬂt)) for i1=0,1,2,3,4,5.

For i€ {0,1,2,3,4,5} the orbit y(t) will be called s,-symmetric if and
only if si(y(t)) = Y(t).

LEMMA 1. (Z) For i=1,2 we have that an orbit Y(t) is Sinsymmetrie if and only

if 1t crosses the qi—axis ortogonally.

(1<) An orbit Y(t) is'So-symmetric if and only if it has a point on the zero
velocity curve.

(141) For i=4,5, an orbit vy(t) is Si—symmetric if and only if it is Sovsymmetric

(iv) ALl the S -symmetric orbits are pertodic.

The proof of this lemma follows easily. Note that (i), (ii) and(iii) characte-
rize the Si»symmetric orbits for i=0,1,2,4,5.

We are interested in the § -gymmetric periodic orbits. These types of or-~

i
bits were studied by Birkhoff [B] and De Vogelaere [Del for other Hamiltonian
systems.More recently Devaney in [D1] proved (i) of the following proposition,

but (ii) follows in a similar way.
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(N

92
'S
N\
,Y \;sz (,Y) 2.V
[}
]
/ | / i
: \
\\
___//

Figure 1. The symmetric orbits of y({t): Si(y(t)) foxr 130,1,2’3,4;§,

.
‘e
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PROPOSITION 2. Let X be a RZ and R2~Peversible vector fileld on a 2n~dimensional

manifold M. We denote by A the flow of X. Suppose that
x and wT(x)e Fix(RZ)LJFix(Rg), where T is the smallest value of t>0 with this
property.

(¢) For i=1,2, if x, ¢T(m)EEFix(Hi) then, the orbit ¢%(x) 18 pertodic of period
2T and Rinsymmetric. Furthermore, the orbit ¢%(m) meets the set Fix(Ri) exactly
in the points x and YT(m)a

(22) If (m,\PT(m))EEFix(Rl)xFix(Rg)L)Fix(Rg)xFim(Rl) then, the orbit ?%(x) 18
periodic of period 4T and R, and R2 symmetric. Furthermore, the orbit Vt(x)
meets the set Fixz(R,) VU Fix(R,) exactly at the points x, Y,(x), Pynlw) and

‘fST(ac), where x, PzT(x)eF'Lx(Ri), 5”',[,(90), S"ST(x)Esz(Rj) and 1#J.
From Proposition 2 and Lemma 1 it clearly follows that:

COROLLARY 3. (i) For i=1,2 we have that an orbit v (t) is a Si—symmetrﬂc perio-

dic orbit if and only <f it crosses the qi—axis ortogonally and exactly at two

points.

(21) An orbit y(t) is a So_symmetric periodic ovbit 1f and only if it meets the
zero veloceilty curve exactly at two points.

(121) An orbit Y(t) is a 5, and Sg—symmetric periodic orbit if and only if it
erosses the qzoaxis and the qg-axis ortogonally.

(iv) For 1=1,2 an orbit Y(t) is a s, and Si—symmetria periodic orbit if and
only if it meets the zero velocity curve and crosses the qﬁmaxis ortogonally.
(v) For i=4,5, if an orbit Y(t) is S, -symmetric then it s So~symmetric and

periodic.

It is well known that if an orbit meets the zero velocity curve it has
to be in the normal direction. Then it has a cusp point on the zero velocity

curve.

Proposition 2 and Corollary 3 give us a technique in ordex to obtain sym-

metric periodic orbits (s.p.o) with respect to 50,51 or Sz. We shall prove that

there are s.p.o with respect to S, and Sz, so with respect to S

1 3°
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(VI.2) The case U=l.

When U=1 we have the Kepler problem. From Chapter I and (VI.1) it follows
that:

PROPOSITION 4. (i) There is a bijection between the symmetric orbits (put not

periodic) with respect to Sb and the eircle ., They are elliptic ejection-colli-
ston orbits., See Figure 2.

(22) For i=1,2 there is a bijection between the s.p.o with respect to 6, and
two coptes of the segment (0,~1/h). One copy corresponds to the dirvect ellipses
and the other one to the retrogade ellipses. See Figure 3.

(211) There is a bijection between the s.p.o with respect to S, and S, and the

1 2
two points + (2h) 1 They correspond to cireular orbits. See Figure 4.

q2 ¢
: V]
¥
9

-

/

Figure 2. So—symmetric orbits

N

4N it
)

@)

Figure 3. Simsymmetric orbits for i=1,2,
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]
v =
!
|
|

1

Figure 4. Symmetric orbits with respect to 51,52 and S3°

Note that the case U=1 is a degeperated case because a continuous of

symmetries is possible

(VI.3) The case u>9/8,

We denote by A{l) the subset of the positive integers given by,

a(u) ={1,2, ... ,.. } if 9/8< u< u, and
Au) = {2no—1, 2n0, cee o} if pp uc

where no=no(u) is defined in Theorem IV.13.

THEOREM 5. If W>9/8 then the following holds.

(2) For each n such that 2n+2 €A(\W (resp. 2n+1€ Afu)) there are four symmetric
ejection~collision orbits with respect to Sa (resp. SZ) such that the number of
erossings with the q2—axis is 2n (resp. 2n-1). See Figures 5§ (resp. Figures 6).
There are similar figures for the region q,50.

(11) For each n such that 2n-1€A(y) (resp. 2n€A(u)) there are four (resp. two)
s.p.o with respect to S, (resp. S, and 5,5 s0 84) such that the qualitative be=-
haviour is given in Figure 7 (resp. Figure 8). Symmetry 33 gives the other two

orbits.

(ii1) For each n and m such that 2n-1,2m-1€AM) (resp. 2n,2me€ Al )) there are

two s.p.o with respect to S, (resp. SO) such that the qualitative behaviour is
shown in Figure 9 (resp Figure 10). When n=m the orbit is also symmetric with

respect to 5,5 80, Sg—symmetria (resp. S ~symmetric).
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(Zv) For each n and m such that 2n~1, 2m€A(u) there are two 8.p.o with respect

to SO and 52 such that the qualitative behaviour is shown in Figure 11. Symmetry

Sg gives the other orbit.

q2 qZ
S Z.V.C Z.V.C
<A A
q 1' \ q1
\\ ¥
(a) (b)

Figures 5. (a): So—symmetric orbit. This orbit realizes the sequence (Tn]
where To= [e(+,u),2n+2,c(-,u)]. (b): So—symmetric orbit. This

orbit realizes the sequence {Tn} where TO=[e(—,u),2n+2,c(+,u)].

q q2
raas
5 Z.V.C 5 Z.V.0
1 1
g
(a) (b)

Figures 6. (a): Sz—symmetric orbit. This orbit realizes the sequence {Tn}
where To=

[e(+,u),2n+1,c(+,uw)] . (b): S,~symmetric orbit. This
orbit realizes the sequence {Tn}where TO=[e(-,u),2n+1,c(_iu)].
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Figure 7. The two S

2—symmetric p.o

These p.o realize the se-
uence { T where T =

q { .k} 5
(R(+rl)12n‘1lR(+ll)) or
(R(-,1),2n-1,R(~,1) ). for
all kEN.

Figure 9. The two Sz—symmetric p.o

These p.o realize the se-
quence {Tk} where Tk=Tk+2

d T, 1 =
an kak+1

Figure 8.

or

(C(-,u),2m=-1,C(~,1)) (C(~-,1),2n~1,C(~-,u)) oxr
(C(+,u) ,2m-1,C(+,1)) (C(+,1),2n-1,C(+,u))

for all keN.

b,
/
Z.V.C
1 9
2
n

So and 82 symmetric p.o.
This p.o. realizes the se-

quence { Tk} where T = d

k k+2 an
T T =
kk+1
(R(+pl)p2n,R("‘,1))(R(-,1>,2n,ﬁ(+31))

(R(-,1),2n,R(+,1))(R(+,1),2n,R(-,1)),
for all kEN.

d
2@

Figure 10. So—symmetric p.©. This p.o.

realizes the sequence { Tk}

2 and Tka+1=

(C(=,u) ,2m,C(~,1)) (C(-,1),2n,C(=,u)).

where Tk='I‘

The othexr So—symmetric: p.o. is
Sz(y) .
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Figure 11. S(D and 52 symmetric p.o. This p.o realizes the sequence { Tk} where

va 39 T 1 T2 3™
)

k k
1)) (C(+,1),2n-1,C(+,u)) (C(+,u) ,2m,C£-,l)) (c(-,1),2n-1,C(~-,u)).

(C(-,u),2m,C(+,1)

Proof. We consider 1>9/8.
(i) : The existence of s.p.o with respect to S, follows from the fact that

f(p (0) ) (xesp. o:(p+(n),p)) cuts of(pn(O),p) (resp. of(p~ {m) ,1)) and

o (e (m,w (resp. d (p"(0),1) cuts of (p” (M) ,1) (resp. o (p (0),M) on

{u=0 }NS, see Figure IV.22. The existence of s.p.o with respect to 82 follows

from the fact that of(p+<0),u) (resp. O (p (M) ,u)) cutso (p"(w),u) (resp.
(f(pm(o),u)) and <§(p+(ﬁ),u) (resp. O“(p (0) ,u)) cuts 0_(p—(0),u) (resp.
ciq(pm(n) ,) on { e=—+—TT/2 }ns, see Figure 1IV.22.

(ii) and (iii): We define the families of segments { ar}, {br}p {cr}and{ dr}

for r22 like in Fiqure 12,

(a) In a similar way to the proof of Lemma IV.7 we have that g(ar) for rz22

and r even and g(br) for r22 and r odd meets {0= mu<0}Ns and{6=- W2, uw<0l}Ns,

see Figure 13. By Corollary 13 we obtain:

(a.1) If r22 is odd then g(br) N{B=7}NSg are s.p.o with respect to S1 and Sz,

and g(br)ﬂ{ 8=-m/2 }NS are s.p.o with respect to 82

(a.2) If r»2 is even then g(ar)ﬂ{e=1T}ﬁS are s.p.o with respect to S and S,

and g(ar)ﬂ{ezwﬂ/2 }Ns are s.p.o with respect to s, and s,

(b) As above, g(a ) for ¥22 and r odd and g(b ) for ¥22 and r even, meets
{6=0, u>0 }NS and {6=-7T/2, u>0 }Ns like in Figure 14. Again, by Corollary %3
we have:

(b.1) If r22 is odd then g(ar)n{ﬁ =0 }Ns are s.p.0 with respect to 8, and S

i 2°

and g( )ﬂ{G—-—"T/Z Ins are s.p.o with respect to 82.,
(b.2) If rz2 is even then g(br)ﬁ{e =0 }Ns are s.p.o with respect to s, and S,,

and g(br) N{6 =- 72 INS are s.p.o with respect to S and §,.
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(c) By using the symmetry S3, for r=2 we have that the s.p.o obtained from
g(cr) and g(dr) follows from cases (a) and (b) respectively.

We note that if we use the same arguments for f(a,)., f(br), f(cr) and
f(dr), the s.p.o obtained will be the above ones.

(iv): Here, s.p.o correspond to points of f£(A )ng(an) where

2n-1
A'Be{a,b,c,d } .

. T NQ\
(0> () ,iI/Wj . - :{ ‘ I
oS0 (0) ) '

/
/——7
1y
I/
2y (n/2,0)
o K-W/Z,OH
e 5
"l\ /
T /
V-A /
N — T ~. /
~ ~ /
\I N /
N\ /
\ ~ |
\ ey
o, (0" (0), 1) s -
o, (® (w),y
u, + +
[o+(P (W)IUH u S, -
o=m/2 [0, (P (0), )]
[(6=-m/2]
Figure 12. The families of segments lar’relN'{br|rG[N'|cr}reN and ’dr;relN

(compare with Figures IV.22),
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g(a,) @'jon

g(b,) ®
gla,)
q('.bs)

g(o_(p Y0))

O=-1/2

Figure 13 . The families of curves g(ar) for r even and g(br) for r odd,

(compare with Figure IV.12 and IV.14).

S m)
g(05 (" (M)
g(c°(p~(0))
Se7(m)
g(0(p"(0))

»
.

(o

5]

g(as)
g(b4)
g(a3)
g(b2>

Figure 14 . The families of curves g(ar) for r odd and g(br) for r even,

(compare with Figure IV.12 and IV.14).
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REMARK 1. Theorem 5 classifies the qualitative behaviour of s.p.o obtained
from the points of,

ftajne,
f(B,)NC and (1
FIA. )N g(B. )

T Ty

where A,Be{a,b,e,d }, a,b,c and d are the segments defined in the proof
of Theorem § and C is one of the semi-axes {6=0 }NS, {8 = mINS or {8=2w/2 }INS,
In a similar way, we could classify the qualitative behaviour of s.p.o corres-

ponding to points of,

hs(f(Ap) ne), v

h_s(g(Ar)rWC) and (2)
S =t A

W (pa, J)OK (g(E, ))

for s,t 21. The existence of s.p.o of type (2) will follow from Theorem 6.

REMARK 2. Symmetric periodic orbits described in Figure 10 when either n or

m equals 1 were obtained by Devaney in [D5]1 .

REMARK 3. Gutzwiller in [G7] has numerically studied the periodic orbits in
the anisotropic Kepler problem such that during one period they cross the

heavy axis, qg 2N times with n=1,2,3,4,5.

THEOREM 6. For each periodic sequence {T% }given in Theorems IV.17 and IV.17'
-such that if‘T.STL3+1’ veey Ty vee,, Ty 174 18 its period and
T,=(A,myB) then A,BE{C(+,u),C(=,u),C(+,1),C(~,1)} or

A, BE{R(+ ,u),R(-,u) ,R(+,1),R(~,1) }= there exists a s.p.o of the anisotropic

Kepler problem which realizes it

Proof. Let {Tn}be a periodic sequence of Theorem IV.17 and let

T -;To,o..,T be its period. We shall prove Theorem 6 for this

T .o
-8 —g+1’ t«th
sequence; in a similar way it can be proved for sequences of Theorem IV.17°,

Let A,Bg R(-,u),R(+,u),R(-,1),R(+,1),C(-,u),C(+,u),C(~,1),C(+,1)} and
let (g t@yng!
IV.14 and shown in Figure IV.35.

(B),n) be one of the sets defined in the proof of Theorem
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We define the set S(A,n,B)=(g” . (A)N £ " (B),n) N ( {u=0}u{0=n/2}u{0=-1/2}).
Note that, by definition, S{(A,n,B) = @ if and only if,
(A,B) € {(C(+,1),R(+,u)),(C(+,u),R(+,1)), (R(-,u),C{+,u)),(R(-,1),C(+,1)),
(C(-,1);R(~,u)), (C(~,0) ,R(-,1})), (R(+,u),C{+,u)), (R{+,1),C(+,1)),C(+,1),R{~,u)),
(C(+,u) ,R(-,1)), (R(-,u),C(+,u)), (R(-,1),C(+,1)),(C(-,1),R(+,u)),C(~,u) ,R(+,1)),
(R{+,u),C(-,u)), (R(+,1),C(~,1)) }=X. So, if (A,n,B) is such that (A,B)EX then,
T, # (A,n,B).

By using the same arguments as Theorem IV.17, the set :

Z =T _OhT(T__ )0 ...0n (T )N ... nh's"t“('rt_l) nn 5 (s
where S°' = gvi(S(Tt)), is an arc going from the point P ( M) to the gpposite
side in the triangular sector C if T—s = (C,n',D). So, there exists at least
one point p€2z N({6=-m/2}u{0 =0}u{6 =m/2}U{B =7} ),see Figures IV.31 and
Iv.32.

By Corollary 3, the orbit through p is a s.p.o and then realizes the
sequence {Tn} .

Q.E.D.




APPENDIX

(a) The function 9(U)=9(Pr(p_(0),u)) studied in Lemma 10 of Chapter II is

given in Figure 1. It has been computed numerically.

8*

.
=3
!

N
. . e . .
o ~ o v o

L & ao R B - TR R - B SR N N
« . ° . 3 . ° e e
F o

NO® W0 o - N W

=
~
N

Figurq_lu The function 6(u)=6(Pj(pm(0)yu))n

(b) The evolution of the arc Of(u)= of(p+(0),u) is partially showed in Figures 7
of Chapter IV. It has also been computed numerically. So, we can change

Theorem IV.10 by:

+ - . >
S(tﬂ/z,u) (U(‘TT/‘?”U)) {273r4r P } if U_UC,

Also, in Corollary IV.15 we have to add the sets corresponding to
A,. . = (X,k) for 1¢{1,2,3,4,5,6,7,8} , §=1,2,3,... and 25ks2n .

8j+1
In Corollary 1IV.16 we have the triads of type [A,Zn,ﬂ for n=1, ..., n1o
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