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the people in Colegio la Salle de Monteŕıa who shared with me the most beautiful
memories leading to my research life.

My professors and friends in Universidad de Córdoba, Universidad Nacional
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Introduction

Historical Outline

This historical outline begins with two mathematicians: Gastón Darboux and
Emile Picard. Darboux published in 1882 the paper [28] in where he presents
a proposition in a general way, which in particular case the history proved to be
a notable theorem today known as Darboux transformation. Darboux had shown
that whenever one knows to integrate the equation

d2y

dx2
= (f(x) + m)y

for all the values of the constant m, one can obtain an infinite set of equations,
displaying the variable parameter in the same way, which are integrable for any
value of the parameter. This proposition is also to be found in his book [29, p.
210]. One year after, in 1883, Picard published the paper [66] in which gave the
starting point to a Galois theory for linear differential equations. Although the
analogies between the linear differential equations and the algebraic equations for
a long time were announced and continued in different directions, Picard devel-
oped an analogue theory to the Galois theory for algebraic equations, arriving to
a proposition which seems to correspond to the fundamental Galois theorem, in
where he introduces the concept of group of linear transformations correspond-
ing to the linear differential equation, which today is known as Differential Galois
Group (the group of differential automorphism leaving fixed the elements of the
field base). Another contribution of Picard to this Galois theory was the paper
[65] in 1887 and five years after, in 1892, Ernest Vessiot, doctoral former student
of Picard published his thesis [98] giving consolidation to the new Galois theory
for linear differential equations, which today is called Picard-Vessiot theory. Two
years later, in 1894, Picard published the paper [67], summarizing the results pre-
sented in [65, 66, 98] which also can be found in his book [68, §7 ].

Curiously, Picard-Vessiot theory and Darboux transformation were forgotten
during decades. The Picard-Vessiot theory was recovered by Joseph Fels Ritt (in
1950, see [75]), Irving Kaplansky (in 1957, see [46]), and fundamentally by Ellis
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Kolchin (in 1973, see [48] and references therein). Kolchin wrote the Differential
Galois Theory in a modern language (algebraic group theory).

Darboux transformation was recovered as an exercise in 1926 by Ince (see
exercises 5, 6 and 7 [42, p. 132]) follow closely the formulation of Darboux given
in [28, 29].

In 1930, P. Dirac publishes The Principles of Quantum Mechanics, in where
he gave a mathematically rigorous formulation of quantum mechanics.

In 1938, J. Delsarte wrote the paper [30], in which he introduced the notion
of transformation (transmutation) operator, today know as intertwining operator
which is closely related with Darboux transformation and ladder operators.

In 1941, E. Schrödinger published the paper [79] in which he factorized in
several ways the hypergeometric equation. This was a byproduct of his factoriza-
tion method originating an approach that can be traced back to Dirac’s raising
and lowering operators for the harmonic oscillator.

Ten years later, in 1951, another factorization method was presented. L. In-
feld and T. E. Hull published the paper [43] in where they gave the classification
of their factorizations of linear second order differential equations for eigenvalue
problems of wave mechanics.

In 1955, M.M. Crum inspired in the Liouville’s work about Sturm-Liouville
systems (see [54, 55]), published the paper [27] giving one kind of iterative gener-
alization of Darboux transformation. Crum surprisingly did not mention to Dar-
boux.

In 1971, G.A. Natanzon published the paper [62], in which he studies a gen-
eral form of the transformation that converts the hypergeometric equation to the
Schrödinger equation writing down the most general solvable potential, potential
for which the Schrödinger equation can be reduced to hypergeometric or confluent
hypergeometric form, concept introduced by himself.

Almost one hundred years later of the Darboux’s proposition, in 1981, Ed-
ward Witten in his renowned paper [102] gave birth to the Supersymmetric Quan-
tum Mechanics, discussing general conditions for dynamical supersymmetry break-
ing.

Since the work of Witten, thousands of papers, about supersymmetric quan-
tum mechanics, has been written. We mention here some relevant papers.
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In 1983, L. É. Gendenshtein published the paper [36] in where the Shape in-
variance condition, i.e. preserving the shape under Darboux transformation, was
presented and used to find the complete spectra for a broad class of problems in-
cluding all known exactly solvable problems of quantum mechanics (bound state
and reflectionless potentials). Today this kind of exactly solvable potentials satis-
fying the shape invariance condition are called Shape invariant potentials.

In 1986, A. Turbiner in [89] introduces the concept of quasi-exactly solvable
potentials, giving an example that is well known as Turbiner’s potential.

In 1991, V.B. Matveev and M. Salle published the book [59] in where they
focused on Darboux transformations and their relation with solitons. Matveev
and Salle interpreted the Darboux transformation as Darboux covariance of a
Sturm-Liouville problem and also proved that Witten’s supersymetric quantum
mechanics is equivalent to a single Darboux transformation.

In 1996, C. Bender and G. Dunne studied the sextic anharmonic oscillator
in [11], which is a quasi-exactly solvable model derived from the Turbiner’s po-
tentials. They found that the a portion of the spectrum correspond to the roots
of polynomials in the energy. These polynomials are orthogonal and are called
Bender-Dunne polynomials.

Relationships between the spectral theory and differential Galois theory have
been studied by V. Spiridonov [86], F. Beukers [16] and Braverman et. al. [19]. As
far as we know, Spiridonov was the first author that considered the useful of the
Picard-Vessiot theory in the context of the quantum mechanics. This thesis agree
with his point of view.

Structure of the Thesis

This thesis is divided in two parts:

Chapter 1. Theoretical Background. In this part there are not original results.
Summaries of Picard-Vessiot theory and supersymmetric quantum mechanics
is presented here necessary to understand the chapter 2.

Chapter 2. Differential Galois Theory Approach to Supersymmetric Quantum
Mechanics. This part contain the original results of this thesis which were
developed using the chapter 1. Up to specific cases, theorems, propositions,
corollaries and lemmas given in this chapter are original results for this
thesis. Two different Galoisian approaches are studied here, which depends
on the differential field. The first one is C(x) and the second one is K =
C(z(x), ∂z(x)), where z = z(x) is a Hamiltonian change of variable. This
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concept allows to introduce an useful derivation ∂̂z which is an important
tool to transforms differential equations with non rational coefficients into
differential equations with rational coefficients to apply the results given in
the case of C(x).



Chapter 1

Theoretical Background

In this chapter we set the main theoretical background needed to understand the
results of this thesis. We start setting conventions and notations that will be used
along this work.

• The sets Z+, Z−, Z∗+ and Z∗− are defined as

Z+ = {n ∈ Z : n ≥ 0}, Z− = {n ∈ Z : n ≤ 0}, Z∗+ = Z+, Z∗− = Z−.

• The cardinality of the set A will be denoted by Card(A).

• The determinant of the matrix A will be denoted by det A.

• The set of matrices n×n with entries in C and determinant non-null will be
denoted by GL(n,C).

• The derivation d/dξ will be denoted by ∂ξ. For example, the derivations
′ = d/dx and ˙= d/dt are denoted by ∂x and ∂t respectively.

1.1 Picard-Vessiot theory

The Picard-Vessiot theory is the Galois theory of linear differential equations. In
the classical Galois theory, the main object is a group of permutations of the roots,
while in the Picard-Vessiot theory it is a linear algebraic group. For polynomial
equations we want a solution in terms of radicals. From classical Galois theory it
is well if the Galois group is a solvable group.

An analogous situation holds for linear homogeneous differential equations
(see [15, 26, 60, 92]). The following definition is true in general dimension, but for
simplicity we are restricting to matrices 2× 2.
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1.1.1 Definitions and Known Results

Definition 1.1.1. An algebraic group of matrices 2×2 is a subgroup G ⊂ GL(2,C),
defined by algebraic equations in its matrix elements and in the inverse of its
determinant. That is, for A ∈ GL(2,C) given by

A =
(

x11 x12

x21 x22

)
, detA = x11x22 − x21x22

there exists a set of polynomials

{Pi(x11, x12, x21, x22, 1/ det A)}i∈I ,

such that

A ∈ G ⇔ ∀i ∈ I, Pi(x11, x12, x21, x22, 1/ detA) = 0.

In this case we say that G is an algebraic manifold endowed with a group
structure.

Examples (Known algebraic groups). The following algebraic groups should be
kept in mind throughout this work.

• Special linear group group:

SL(2,C) =
{(

a b
c d

)
, ad− bc = 1, a, b, c, d ∈ C

}

• Borel group: B = C∗ nC =
{(

c d
0 c−1

)
, c ∈ C∗, d ∈ C

}

• Multiplicative group: Gm =
{(

c 0
0 c−1

)
, c ∈ C∗

}

• Additive group: Ga =
{(

1 d
0 1

)
, d ∈ C

}

• Infinite dihedral group (also called meta-abelian group):

D∞ =
{(

c 0
0 c−1

)
, c ∈ C∗

}
∪

{(
0 d

−d−1 0

)
, d ∈ C∗

}

• n−quasi-roots: G{n} =
{(

c d
0 c−1

)
, cn = 1, d ∈ C

}

• n−roots: G[n] =
{(

c 0
0 c−1

)
, cn = 1

}

• Identity group: e =
{(

1 0
0 1

)}
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• The tetrahedral group ASL2
4 of order 24 is generated by matrices

M1 =
(

ξ 0
0 ξ−1

)
and M2 =

1
3
(2ξ − 1)

(
1 1
2 −1

)
,

where ξ denotes a primitive sixth root of unity, that is ξ2 − ξ + 1 = 0.

• The octahedral group SSL2
4 of order 48 is generated by matrices

M1 =
(

ξ 0
0 ξ−1

)
and M2 =

1
2
ξ(ξ2 + 1)

(
1 1
1 −1

)
,

where ξ denotes a primitive eighth root of unity, that is ξ4 + 1 = 0.

• The icosahedral group ASL2
5 of order 120 is generated by matrices

M1 =
(

ξ 0
0 ξ−1

)
and M2 =

1
5

(
φ ψ
ψ −φ

)
,

where ξ denotes a primitive tenth root of unity, that is ξ4−ξ3+ξ2−ξ+1 = 0,
φ = ξ3 − ξ2 + 4ξ − 2 and ψ = ξ3 + 3ξ2 − 2ξ + 1.

Recall that a group G is called solvable if and only if there exists a chain of
normal subgroups

e = G0 / G1 / . . . / Gn = G

such that the quotient Gi/Gj is abelian for all n ≥ i ≥ j ≥ 0. Also recall that
an algebraic group G has a unique connected normal algebraic subgroup G0 of
finite index. This means that the identity connected component G0 is the largest
connected algebraic subgroup of G containing the identity and for instance if
G = G0 we say that G is a connected group.

Furthermore if G0 satisfy some property, then we say that G virtually satisfy
such property. In this way, virtually solvability of G means solvability of G0 and
virtually abelianity of G means abelianity of G0 (see [101]).

Theorem 1.1.2 (Lie-Kolchin). Let G ⊆ GL(2,C) be a virtually solvable group. Then
G0 is triangularizable, that is conjugate to a subgroup of upper triangular matrices.

Definition 1.1.3. Let G ⊆ GL(2,C) be a group acting on a vector space V . We say
that (the action of) G is either:

1. Reducible if there exists a non-trivial subspace W ⊂ V such that G(W ) ⊂ W .
We say that G is irreducible if G is not reducible.

2. Imprimitive if G is irreducible and there exists subspaces Vi such that V =
V1⊗· · ·⊗Vm, where G permutes transitively the Vi, i.e ∀i = 1, . . . , m, ∀g ∈ G,
∃j ∈ {1, . . . ,m} such that g(Vi) = Vj . We say that V1, . . . , Vm form a system
of imprimitivity for G.

3. Primitive if G is irreducible and not imprimitive.
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Examples. Any subgroup of the Borel group is reducible, the infinite dihedral
group is imprimitive and the groups ASL2 , SSL2

4 , ASL2
5 , SL(2,C) are primitives

(see [92, 101]).

Definition 1.1.4 (Differential Fields). Let K (depending on x) be a commutative
field of characteristic zero, ∂x a derivation, that is a map ∂x : K → K satisfying
∂x(a+ b) = ∂xa+∂xb and ∂x(ab) = ∂xa ·b+a ·∂xb for all a, b ∈ K. By C we denote
the field of constants of K

C = {c ∈ K|∂xc = 0}

which is also of characteristic zero and will be assumed algebraically closed. In
this terms, we say that K is a differential field with the derivation ∂.

Along this work, up to specific considerations, we consider as differential
field the smallest differential containing the coefficients. Furthermore, up to special
considerations, we analyze second order linear homogeneous differential equations,
that is, equations in the form

L := ∂2
xy + a∂xy + by = 0, a, b ∈ K. (1.1)

Definition 1.1.5 (Picard-Vessiot Extension). Suppose that y1, y2 is a basis of solu-
tions of L given in the equation (1.1), i.e., y1, y2 are linearly independent over K
and every solution is a linear combination over C of these two. Let L = K〈y1, y2〉 =
K(y1, y2, ∂xy1, ∂xy2) the differential extension of K such that C is the field of con-
stants for K and L. In this terms, we say that L, the smallest differential field
containing to K and {y1, y2}, is the Picard-Vessiot extension of K for L.

Definition 1.1.6 (Differential Galois Groups). Let assume K, L and L as in previ-
ous definition. The group of all differential automorphisms (automorphisms that
commutes with derivation) of L over K is called the differential Galois group of
L over K and is denoted by DGal(L/K) or also by DGalK . This means that for
σ ∈ DGal(L/K), σ(∂xa) = ∂x(σ(a)) for all a ∈ ÃL and ∀a ∈ K, σ(a) = a. We
denote by DGalK(L) the differential Galois group DGal(L/K) of the differential
equation L.

Assume that {y1, y2} is a fundamental system of solutions (basis of solutions)
of L. If σ ∈ DGalK(L) then {σy1, σy2} is another fundamental system of L. Hence
there exists a matrix

Aσ =
(

a b
c d

)
∈ GL(2,C),

such that

σ

(
y1

y2

)
=

(
σ(y1)
σ(y2)

)
=

(
y1 y2

)
Aσ,
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in a natural way, we can extend to systems:

σ

(
y1 y2

∂xy1 ∂xy2

)
=

(
σ(y1) σ(y2)

σ(∂xy1) σ(∂xy2)

)
=

(
y1 y2

∂xy1 ∂xy2

)
Aσ.

This defines a faithful representation DGal(L/K) → GL(2,C) and it is pos-
sible to consider DGal(L/K) as a subgroup of GL(2,C). It depends on the choice
of the fundamental system {y1, y2}, but only up to conjugacy.

One of the fundamental results of the Picard-Vessiot theory is the following
theorem (see [46, 48]).

Theorem 1.1.7. The differential Galois group DGal(L/K) is an algebraic subgroup
of GL(2,C).

Examples. Consider the following differential equations:

• L := ∂2
xy = 0, the basis of solutions is given by y1 = 1, y2 = x. If we set

as differential field K = C(x), we can see that σ(1) = 1, σ(x) = x, then the
Picard-Vessiot extension L = K and for instance DGalK(L) = e:

σ

(
y1

y2

)
=

(
y1 y2

) (
1 0
0 1

)
=

(
y1

y2

)
.

Now, if we set K = C, then L = K〈x〉, ∂xx ∈ C, ∂x(σ(x)) = σ(∂xx) = σ(1) =
1 = ∂xx, so σ(x) = x + d, d ∈ C and for instance DGalK(L) = Ga:

σ

(
y1

y2

)
=

(
y1 y2

)(
1 d
0 1

)
=

(
y1

dy1 + y2

)
.

• L := ∂2
xy = κy, κ ∈ C∗, the basis of solutions is given by y1 = e

√
κx,

y2 = e−
√

κx, with κ 6= 0. If we set as differential field K = C(x), we can see
that L = K〈e

√
kx〉 = K(e

√
kx),

σ

(
∂xy1

y1

)
=

∂x(σ(y1))
σ(y1)

=
∂xy1

y1
, σ

(
∂xy2

y2

)
=

∂x(σ(y2))
σ(y2)

=
∂xy2

y2
,

σ(y1y2) = σ(y1)σ(y2) = y1y2 = 1, σ(y1) = cy1, σ(y2) = dy2, c, d ∈ C, but
cd = 1 and for instance DGalK(L) = Gm:

σ

(
y1

y2

)
=

(
y1 y2

)(
c 0
0 c−1

)
=

(
cy1

c−1y2

)
,

Now, if we set K = C, we obtain the same result.

• L := ∂2
xy + n−1

nx ∂xy = 0, the basis of solutions is given by y1 = z, where

zn = x, y2 = 1. If we set K = C(x), then L = K
〈
x

1
n

〉
, yn

1 = x ∈ C(x),



10 Chapter 1. Theoretical Background

σn(y1) = σ(yn
1 ) = x, σ(y1) = cy1, so that cn = 1 and for instance DGalK(L)

is given by:

σ

(
y1

y2

)
=

(
y1 y2

)(
c 0
0 1

)
=

(
cy1

y2

)
, cn = 1.

• L := ∂2
xy + n2−1

4n2x2 y = 0, n ∈ Z, the basis of solutions is given by y1 = x
n+1
2n ,

y2 = x
n−1
2n . If we set K = C(x) and n even, then L = K

〈
x

1
2n

〉
,

σ(y1) = cy1, σ2n(y1) = c2ny2n
1 = σ(y2n

1 ) = y2n
1 , c2n = 1,

σ(y2) = dy2, σ2n(y2) = d2ny2n
2 = σ(y2n

2 ) = y2n
2 , d2n = 1,

σ(y1y2) = y1y2 = σ(y1)σ(y2) = cdy1y2 so that cd = 1 and for instance
DGalK(L) = G[2n]:

σ

(
y1

y2

)
=

(
y1 y2

) (
c 0
0 c−1

)
=

(
cy1

c−1y2

)
, c2n = 1, n > 1.

Now, if we consider n odd, then L = K
〈
x

1
n

〉
, and DGalK(L) = G[2n].

• Cauchy-Euler equation

L := ∂2
xy =

m(m + 1)
x2

y, m ∈ C,

the basis of solutions is y1 = xm+1, y2 = x−m. Setting K = C(x), we have
the following possible cases:

– for m ∈ Z, L = K and DGalK(L) = e,

– for m ∈ Q \ Z, L = K(xm) and DGalK(L) = G[d], where m = n/d,

– for m ∈ C \Q, L = K(xm) and DGalK(L) = Gm.

Definition 1.1.8 (Integrability). Let consider the linear differential equation L such
as in equation (1.1). We say that L is integrable if the Picard-Vessiot extension
L ⊃ K is obtained as a tower of differential fields K = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L
such that Li = Li−1(η) for i = 1, . . . , m, where either

1. η is algebraic over Li−1, that is η satisfies a polynomial equation with coef-
ficients in Li−1.

2. η is primitive over Li−1, that is ∂xη ∈ Li−1.

3. η is exponential over Li−1, that is ∂xη/η ∈ Li−1.



1.1. Picard-Vessiot theory 11

We recall that the differential field of coefficients has been fixed before, i.e.,
the smallest differential field containing the coefficients.

We remark that the usual terminology in differential algebra for integrable
equations is that the corresponding Picard-Vessiot extensions are called Liouvil-
lian.

Theorem 1.1.9 (Kolchin). The equation L given in (1.1) is integrable if and only
if DGalK(L) is virtually solvable.

Let consider the differential equation

L := ∂2
xζ = rζ, r ∈ K. (1.2)

We recall that the equation (1.2) can be obtained from the equation (1.1)
through the change of variable

y = e−
1
2

∫
aζ, r =

a2

4
+

∂xa

2
− b (1.3)

and the equation (1.2) is called the reduced form of the equation (1.1).
On the other hand, introducing the change of variable v = ∂xζ/ζ we get the

associated Riccati equation to the equation (1.2)

∂xv = r − v2, v =
∂xζ

ζ
, (1.4)

where r is obtained by equation (1.3).

Theorem 1.1.10 (Singer 1981, [81]). The Riccatti equation (1.4) has one algebraic
solution over the differential field K if and only if the differential equation (1.2)
is integrable.

For L given by the equation (1.2), it is very well known (see [46, 48, 92]) that
DGalK(L) is an algebraic subgroup of SL(2,C). The well known classification of
subgroups of SL(2,C) (see [46, p.31], [49, p.7,27]) is the following.

Theorem 1.1.11. Let G be an algebraic subgroup of SL(2,C). Then, up to conju-
gation, one of the following cases occurs.

1. G ⊆ B and then G is reducible and triangularizable.

2. G * B, G ⊆ D∞ and then G is imprimitive.

3. G ∈ {ASL2
4 , SSL2

4 , ASL2
5 } and then G is primitive (finite)

4. G = SL(2,C) and then G is primitive (infinite).

Definition 1.1.12. Let consider the differential equation L given by the equation
(1.2). Let {ζ1, ζ2} be a fundamental system of L. Let f = f(Y1, Y2) ∈ C[Y1, Y2] be
a homogeneous polynomial, we say that:
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1. The polynomial f is invariant with respect to L if its evaluation on a C-basis
{ζ1, ζ2} of solutions is invariant under the action of DGalK(L), that is, for
every σ ∈ DGalK(L), σh(x) = h(x), where h(x) = f(ζ1(x), ζ2(x)) ∈ K. The
function h(x) is called the value of the invariant polynomial f .

2. The polynomial f is a semi-invariant with respect to L if the logarithmic
derivative ∂xh

h of its evaluation h(x) = f(ζ1(x), ζ2(x)) on any C-basis {ζ1, ζ2}
is an element of K, that is, for every σ ∈ DGalK(L), σθ = θ, where θ =
∂xh(x)/h(x) ∈ K.

Theorem 1.1.13 (Kovacic, [49]). Let {ζ1, ζ2} be a fundamental system of solutions
of L given by the differential equation (1.2). Then, for some i ∈ {1, 2} and for
every σ ∈ DGalK(L), exclusively one of the following cases holds.

1. DGalK(L) is reducible and then f = ζi is semi-invariant with respect to L,
i.e ∂x(ln ζi) ∈ K.

2. DGalK(L) is imprimitive and then f1 = ζ1ζ2 is semi-invariant with respect
to L, f2 = (ζ1ζ2)2 is invariant with respect to L, i.e [K〈∂x(ln ζi)〉 : K] = 2.

3. DGalK(L) is finite primitive and then the invariants with respect to L is
either f1 = (ζ4

1+8ζ1ζ
3
2 )3, or f2 = (ζ5

1ζ2−ζ1ζ
5
2 )2 or f3 = ζ11

1 ζ2−11ζ6
1ζ6

2−ζ1ζ
11
2 ,

i.e [K〈∂x(ln ζi)〉 : K] = 4, 6, 12 .

4. DGalK(L) is infinite primitive, i.e there are no non-trivial semi-invariants.

Statements and proofs of the theorems 1.1.9, 1.1.10 and 1.1.11 can be found
in [92].

1.1.2 Kovacic’s Algorithm

Considering K = C(x), C = C in the theorems 1.1.9, 1.1.11 and 1.1.13, Kovacic
in 1986 ([49]) introduced an algorithm to solve the differential equation (1.2) and
show that (1.2) is integrable if and only if the solution of the Riccati equation
(1.4) is a rational function (case 1), is a root of polynomial of degree two (case 2)
or is a root of polynomial of degree 4, 6, or 12 (case 3). For more details see refer-
ence [49]. Improvements for this algorithm are given in references [33, 88]. Here,
we follow the original version given by Kovacic in reference [49] with an adapted
version given in reference [5].

Each case in Kovacic’s algorithm is related with each one of the algebraic
subgroups of SL(2,C) and the associated Riccatti equation

∂xv = r − v2 =
(√

r − v
) (√

r + v
)
, v =

∂xζ

ζ
.

According to Theorem 1.1.11, there are four cases in Kovacic’s algorithm.
Only for cases 1, 2 and 3 we can solve the differential equation, but for the case 4
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the differential equation is not integrable. It is possible that Kovacic’s algorithm
can provide us only one solution (ζ1), so that we can obtain the second solution
(ζ2) through

ζ2 = ζ1

∫
dx

ζ2
1

. (1.5)

Notations. For the differential equation given by

∂2
xζ = rζ, r =

s

t
, s, t ∈ C[x],

we use the following notations.

1. Denote by Γ′ be the set of (finite) poles of r, Γ′ = {c ∈ C : t(c) = 0}.
2. Denote by Γ = Γ′ ∪ {∞}.
3. By the order of r at c ∈ Γ′, ◦(rc), we mean the multiplicity of c as a pole of

r.

4. By the order of r at ∞, ◦ (r∞) , we mean the order of ∞ as a zero of r. That
is ◦ (r∞) = deg(t)− deg(s).

The four cases

Case 1. In this case [
√

r]c and [
√

r]∞ means the Laurent series of
√

r at c and
the Laurent series of

√
r at ∞ respectively. Furthermore, we define ε(p) as follows:

if p ∈ Γ, then ε (p) ∈ {+,−}. Finally, the complex numbers α+
c , α−c , α+

∞, α−∞ will
be defined in the first step. If the differential equation has not poles it only can
fall in this case.

Step 1. Search for each c ∈ Γ′ and for ∞ the corresponding situation as
follows:

(c0) If ◦ (rc) = 0, then [√
r
]
c

= 0, α±c = 0.

(c1) If ◦ (rc) = 1, then [√
r
]
c

= 0, α±c = 1.

(c2) If ◦ (rc) = 2, and

r = · · ·+ b(x− c)−2 + · · · , then

[√
r
]
c

= 0, α±c =
1±√1 + 4b

2
.
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(c3) If ◦ (rc) = 2v ≥ 4, and

r = (a (x− c)−v + ... + d (x− c)−2)2 + b(x− c)−(v+1) + · · · , then

[√
r
]
c

= a (x− c)−v + ... + d (x− c)−2
, α±c =

1
2

(
± b

a
+ v

)
.

(∞1) If ◦ (r∞) > 2, then
[√

r
]
∞ = 0, α+

∞ = 0, α−∞ = 1.

(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then

[√
r
]
∞ = 0, α±∞ =

1±√1 + 4b

2
.

(∞3) If ◦ (r∞) = −2v ≤ 0, and

r = (axv + ... + d)2 + bxv−1 + · · · , then

[√
r
]
∞ = axv + ... + d, and α±∞ =

1
2

(
± b

a
− v

)
.

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n = αε(∞)

∞ −
∑

c∈Γ′
αε(c)

c , ∀ (ε (p))p∈Γ

}
.

If D = ∅, then we should start with the case 2. Now, if Card(D) > 0, then for
each n ∈ D we search ω ∈ C(x) such that

ω = ε (∞)
[√

r
]
∞ +

∑

c∈Γ′

(
ε (c)

[√
r
]
c
+ αε(c)

c (x− c)−1
)

.

Step 3. For each n ∈ D, search for a monic polynomial Pn of degree n with

∂2
xPn + 2ω∂xPn + (∂xω + ω2 − r)Pn = 0. (1.6)

If success is achieved then ζ1 = Pne
∫

ω is a solution of the differential equation.
Else, Case 1 cannot hold.

Case 2. Search for each c ∈ Γ′ and for ∞ the corresponding situation as
follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each
c ∈ Γ′ and for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:
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(c1) If ◦ (rc) = 1, then Ec = {4}
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

2 + k
√

1 + 4b : k = 0,±2
}

.

(c3) If ◦ (rc) = v > 2, then Ec = {v}
(∞1) If ◦ (r∞) > 2, then E∞ = {0, 2, 4}
(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then

E∞ =
{

2 + k
√

1 + 4b : k = 0,±2
}

.

(∞3) If ◦ (r∞) = v < 2, then E∞ = {v}

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n =

1
2

(
e∞ −

∑

c∈Γ′
ec

)
,∀ep ∈ Ep, p ∈ Γ

}
.

If D = ∅, then we should start the case 3. Now, if Card(D) > 0, then for each
n ∈ D we search a rational function θ defined by

θ =
1
2

∑

c∈Γ′

ec

x− c
.

Step 3. For each n ∈ D, search a monic polynomial Pn of degree n, such that

∂3
xPn+3θ∂2

xPn+(3∂xθ+3θ2−4r)∂xPn+
(
∂x2θ + 3θ∂xθ + θ3 − 4rθ − 2∂xr

)
Pn = 0.

(1.7)
If Pn does not exist, then Case 2 cannot hold. If such a polynomial is found, set
φ = θ + ∂xPn/Pn and let ω be a solution of

ω2 + φω +
1
2

(
∂xφ + φ2 − 2r

)
= 0.

Then ζ1 = e
∫

ω is a solution of the differential equation.

Case 3. Search for each c ∈ Γ′ and for ∞ the corresponding situation as
follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each
c ∈ Γ′ and for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:
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(c1) If ◦ (rc) = 1, then Ec = {12}
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

6 + k
√

1 + 4b : k = 0,±1,±2,±3,±4,±5,±6
}

.

(∞) If ◦ (r∞) = v ≥ 2, and r = · · ·+ bx2 + · · · , then

E∞ =

{
6 +

12k

m

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
, m ∈ {4, 6, 12}.

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n =

m

12

(
e∞ −

∑

c∈Γ′
ec

)
,∀ep ∈ Ep, p ∈ Γ

}
.

In this case we start with m = 4 to obtain the solution, afterwards m = 6 and
finally m = 12. If D = ∅, then the differential equation is not integrable because
it falls in the case 4. Now, if Card(D) > 0, then for each n ∈ D with its respective
m, search a rational function

θ =
m

12

∑

c∈Γ′

ec

x− c

and a polynomial S defined as

S =
∏

c∈Γ′
(x− c).

Step 3. Search for each n ∈ D, with its respective m, a monic polynomial
Pn = P of degree n, such that its coefficients can be determined recursively by

P−1 = 0, Pm = −P,

Pi−1 = −S∂xPi − ((m− i) ∂xS − Sθ) Pi − (m− i) (i + 1) S2rPi+1,

where i ∈ {0, 1 . . . , m − 1,m}. If P does not exist, then the differential equation
is not integrable because it falls in Case 4. Now, if P exists search ω such that

m∑

i=0

SiP

(m− i)!
ωi = 0,

then a solution of the differential equation is given by

ζ = e
∫

ω,

where ω is solution of the previous polynomial of degree m.
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Some remarks on Kovacic’s algorithm (see [5])

Here we assume that the differential equation falls only in one of the four cases.

Remark 1.1.14. (Case 1). If the differential equation falls in case 1, then its Galois
group is given by one of the following groups:

I1 e when the algorithm provides two rational solutions or only one rational so-
lution and the second solution obtained by (1.5) has not logarithmic term.

I2 G[n] when the algorithm provides two algebraic solutions ζ1, ζ2 such that ζn
1 , ζn

2 ∈
C(x) and ζn−1

1 , ζn−1
2 /∈ C(x).

I3 G{n} when the algorithm provides only one algebraic solution ζ such that
ζn ∈ C(x) and ζn−1 /∈ C(x).

I4 Gm when the algorithm provides two non-algebraic solutions.

I5 Ga when the algorithm provides one rational solution and the second solution
is not algebraic.

I6 B when the algorithm only provides one solution ζ such that ζ and its square
are not rational functions.

Kovacic’s Algorithm in Maple

In order to analyze second order linear differential equations with rational co-
efficients, generally without parameters, a standard procedure is using Maple,
and especially commands dsolve and kovacicsols. Whenever the command
kovacicsols yields an output “[ ]”, it means that the second order linear dif-
ferential equation being considered is not integrable, and thus its Galois group is
non-virtually solvable.

In some cases, moreover, dsolve makes it possible to obtain the solutions in
terms of special functions such as Airy functions, Bessel functions and hypergeo-
metric functions, among others (see [1]).

There is a number of second order linear equations whose coefficients are
not rational, and whose solutions Maple can find with the command dsolve but
the presentation of the solutions is very complicated, furthermore the command
kovacicsols does not work with such coefficients. These problems, in some cases,
can be solved by our algebrization method (see section 2.3.1 and see also [5]).

Beyond Kovacic’s Algorithm

According to the work of Michael Singer [81] we can have another perspective of
the Kovacic’s algorithm by means of L s©m, the m-th symmetric power of a linear
differential equation L (see Michael Singer and Felix Ulmer, [84]).
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Theorem 1.1.15. Let L be a linear homogeneous differential equation of arbitrary
order n. For any m ≥ 1 there is another linear homogeneous differential equation,
denoted by L s©m, with the following property. If ζ1, . . . , ζn are any solutions of L
then any homogeneous polynomial in ζ1, . . . , ζn of degree m is a solution of L s©m.

The Kovacic algorithm then can be stated as follows (see also [33, 88]).
Algorithm. Consider L = ∂2

xζ − rζ.

Step 1. Check if L is integrable, where for a solution ζ, there exists u such that
u = ∂xζ/ζ ∈ C(x). If so then ζ = e

∫
u.

Step 2. Check if L s©2 is integrable, where for a solution ζ there exists u such that
u = ∂xζ/ζ ∈ C(x). If so, let v be a root of

v2 + uv +
(

1
2
∂xu +

1
2
u2 − u

)
= 0.

Then ζ = e
∫

v.

Step 3. Check if L s©4, L s©6, or L s©12 is integrable, where for a solution ζ there
exists u such that u = ∂xζ/ζ ∈ C(x). If so then there is a polynomial of
degree 4, 6 or 12 (respectively) such that if v is a solution of it then ζ = e

∫
v.

This algorithm can be generalized using the results of Michael Singer in [81].
The trick is to find the correct numbers (like 2, 4, 6, 12 of the Kovacic’s algorithm).

Theorem 1.1.16. Suppose a linear homogeneous differential equation of order n is
integrable. Then it has a solution of the form

ζ = e
∫

v

where ω is algebraic over C(x). The degree of v is bounded by I(n), which is defined
inductively by

I(0) = 1
I(n) = max{J(n), n!I(n− 1)}

J(n) =
(√

8n + 1
)2n2

−
(√

8n− 1
)2n2

.

Theorem 1.1.17. If a linear differential equation L has a solution of the form
ζ = e

∫
v where v is algebraic over C(x) of degree m, then L s©m has a solution ζ

with v = ∂xζ/ζ ∈ C(x). v is a solution of a generalized Riccatti equation.

This algorithm is not considered implementable; the numbers I(n) are simply
much too large. For example I(2) = 384064, so this algorithm would require
checking if L s©m has a solution ζ with ∂xζ/ζ ∈ C(x) for m = 1, 2, . . . , 384064.

However, the implementation of this algorithm do exist for order 3, due to
Michael Singer and Felix Ulmer [85], and order 4, due to Sabrina Hessinger [39].
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1.1.3 Eigenrings

We consider two different formalisms for Eigenrings, the matrix and operators for-
malism. We start with the Matrix formalism of Eigenrings following M. Barkatou
in [7], but restricting again to 2× 2 matrices.

Let K be a differential field and let A be a matrix in GL(2,K) such that,

∂xX = −AX. (1.8)

Consider a matrix equation (1.8) and let P ∈ GL(2,K). The substitution X = PY
leads to the matrix equation

∂xY = −BY, B = P−1(∂xP + AP ). (1.9)

Definition 1.1.18. The matrices A and B are equivalents over K, denoted by A ∼
B, when there exists a matrix P ∈ GL(2,K) satisfying the equation (1.9). The
systems (1.8) and (1.9) are equivalents, denoted by [A] ∼ [B], when A and B are
equivalents.

By the equation (1.9) we have PB = ∂xP + AP . In general, assuming PB =
PA, where P is a 2 × 2 matrix, i.e, P is not necessarily in GL(2,K), we obtain
PA = ∂xP + AP , which lead us to the following definition.

Definition 1.1.19. The Eigenring of the system [A], denoted by E(A), is the set of
2× 2 matrices P in K satisfying

∂xP = PA−AP. (1.10)

The equation (1.10) can be viewed as a system of 4 first-order linear differ-
ential equations over K. Thus, E(A) is a C−vector space of finite dimension ≤ 4.
Owing to the product of two elements of E(A) is also an element of E(A) and the
identity matrix I2 belongs to E(A), we have that E(A) is an algebra over C, i.e.,
E(A) is a C−algebra. As a consequence, we have the following results that can be
found in [7].

Proposition 1.1.20. Any element P of E(A) has:

• a minimal polynomial with coefficients in C and

• all its eigenvalues in C.
Proposition 1.1.21. If two systems [A] and [B] are equivalent, their eigenrings
E(A) and E(B) are isomorphic as C−algebras. In particular, one has dimC E(A) =
dimC E(B).

Definition 1.1.22. The system [A] is called reducible when A ∼ B, being B given
by

B =
(

b11 0
b21 b22

)
.
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When [A] is reducible and b21 = 0, the system [A] is called decomposable or
completely reducible. The system [A] is called irreducible or indecomposable when
[A] is not reducible.

Let assume that the eigenring E(A) is known.

Theorem 1.1.23. If E(A) is not a division ring then [A] is reducible and the reduc-
tion can be carried out by a matrix P ∈ GL(2,K) that can be computed explicitly.

Let us note that the condition E(A) is not a division ring implies dimC E(A) >
1. Indeed, if P ∈ E(A)\{0} is not invertible, then the family {I, P} is linearly inde-
pendent (over C) and hence dimC E(A) > 1. In our case the converse is true, due to
the field of constants C is algebraically closed. Indeed, suppose that dimC E(A) > 1
then there exists P ∈ E(A) such that the family {I, P} be linearly independent.
Since C is algebraically closed, there exists λ ∈ C such that det(P −λI) = 0. Hence
E(A) contains an element, namely P − λI, which is non-zero and non invertible.

The computation of eigenrings of the system [A] is implemented in ISOLDE
(Integration of Systems of Ordinary Linear Differential Equations). The function
is eigenring, the calling sequence is eigenring(A, x) being the parameters: A -
a square rational function matrix with coefficients in an algebraic extension of the
rational numbers and x - the independent variable (a name). ISOLDE was written
in Maple V and it is available at http://isolde.sourceforge.net/.

In operators formalism we restrict ourselves to second order differential op-
erators and we follows the works of Singer, Barkatou and Van Hoeij (see [83, 7,
93, 94, 95]). A differential equation L := ∂2

xy + a∂xy + by = 0 with a, b ∈ K cor-
responds to a differential operator f = ∂2

x + a∂x + b acting on y. The differential
operator f is an element of the non-commutative ring K[∂x].

The factorization of operators is very important to solve differential equa-
tions, that is, a factorization f = LR where L, R ∈ K[∂x] is useful for computing
solutions of f because solutions of the right-hand factor R are solutions of f as
well.

Definition 1.1.24. Let L be a second order differential operator, i.e L := L(y) = 0.
Denote V (L) as the solution space of L. The Eigenring of L, denoted by E(L), is
a basis (a vector space) of the set of all operators R for which R(V (L)) is a subset
of V (L), that is LR = SL, where S is also an operator.

As consequence of the previous definition, R is an endomorphism of the so-
lution space V (L). The characteristic polynomial of this map can be computed
with the classical methods in linear algebra. For endomorphisms R, the product
of L and R is divisible on the right by L. This means that if L(y) = 0, then
L(R(y)) = 0, so that R map V → V .
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For the general case of operators

L =
n∑

k=0

bk∂k
x , R =

m∑

i=0

ai∂
i
x, ai, bi ∈ K, n > m, L := L(y) = 0

and G = DGalK(L), we can see R as a G-map. Now, denoting by P the character-
istic polynomial of R, always there exists polynomials P1, P2 with gcd(P1, P2) = 1
such that P = P1P2. This means that we can think in R as a linear map V → V
and choosing one basis of V → R we can see, by elementary linear algebra, that
R has a matrix MR. By Cayley-Hamilton theorem we have that P (MR) = 0
and by kernel theorem we have that V = ker(P1(MR)) ⊕ ker(P2(MR)), in where
ker(P1(MR)) and ker(P2(MR)) are invariants under G.

Assuming λ eigenvalue of R, there exists a non-trivial eigenspace Vλ ⊆ V ,
which means that L and R − λ has common solutions and therefore right −
gcd(L, R − λ) is non-trivial, this means that right − gcd(L, R − λ) it is a fac-
tor of L.

Returning to the second order operators, we establish the relationship be-
tween the Eigenring of the system [A] and the Eigenring of the operator L. We
start recalling that L given by ∂2

xy + a∂xy + by = 0, a, b ∈ K, can be written as
the system

∂x

(
y

∂xy

)
=

(
0 1
−b −a

)(
y

∂xy

)
,

and the system of linear differential equations

∂x

(
y
z

)
=

(
a b
c d

)(
y
z

)
, a, b, c, d ∈ K,

by means of an elimination process, is equivalent to the second-order equation

∂2
xy −

(
a + d +

∂xb

b

)
∂xy −

(
∂xa + bc− ad− a

∂xb

b

)
y = 0. (1.11)

In this way, we can go from operators to systems and reciprocally computing
the Eigenrings in both formalism. In particular, we emphasize in the operator
L = ∂2

x + p∂x + q, which is equivalent to the system [A], where A is given by

A =
(

0 −1
q p

)
p, q ∈ K.

Lemma 1.1.25. Let consider L, A and P as follows:

L = ∂2
x + p∂x + q, A =

(
0 −1
q p

)
, P =

(
a b
c d

)
, a, b, c, d, p, q ∈ K.

The following statements holds
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1. If P ∈ E(A), then R = a + b∂x ∈ E(L).

2. If R = a + b∂x ∈ E(L), then P ∈ E(A), where P is given by

P =
(

a b
∂xa− bq a + ∂xb− bp

)
.

3. 1 ≤ dimC E(L) ≤ 4.

4. P ∈ GL(2,K) ⇔ ∂xa
a − a

b + p 6= ∂xb
b − b

aq.

Remark 1.1.26. Let L be the differential operator ∂2
x + b, where b ∈ K, L :=

L(y) = 0. The dimension of the eigenring of L is related with:

• the number of solutions over K of the differential equation L and its second
symmetric power L s©2 and

• the type of differential Galois group (see [7, 83, 93, 94, 95]).

The previous remark is detailed in the following lemma.

Lemma 1.1.27. Let assume L = ∂2
x +b, where b ∈ K, L := L(y) = 0. The following

statements holds.

1. If dimC E(L) = 1, then either differential Galois group is irreducible (D∞,
primitive or SL(2,C)) or indecomposable (G ⊆ B, G /∈ {e,Gm,Ga,G{n},G[n]}).

2. If dimC E(L) = 2, then either, the differential Galois group is the additive
group or is contained in the multiplicative group, but never will be the identity
group. In this case we can have two solutions but not over the differential field
K.

3. If dimC E(L) = 4, then the differential Galois group is the identity group. In
this case we have 2 independent solutions ζ1 and ζ2 in which ζ2

1 , ζ2
2 and ζ1ζ2

are elements of the differential field K, i.e. the solutions of L s©2 belongs to
K.

The eigenring for a differential operator L has been implemented in Maple.
The function is eigenring, the calling sequences are eigenring(L,domain) and
endomorphism-charpoly(L, R, domain), where L is a differential operator, R is
the differential operator in the output of eigenring. The argument domain describes
the differential algebra. If this argument is the list [Dx,x] then the differential
operators are notated with the symbols Dx and x, where Dx is the operator ∂x.

Example. Let consider K = C(x), L = ∂2
x − 6

x2 and [A] where A is given by

A =
(

0 −1
−6x−2 0

)
.
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The Eigenring of [A] and the Eigenring of L are given by

E(A) =
{(

1 0
0 1

)
,

( −1 x
6x−1 0

)
,

(−3x5 x6

−9x4 3x5

)
,

(
2x−5 x−4

−4x−6 −2x−5

)}
,

E(L) =
{

1, x∂x − 1, x6∂x − 3x5,
∂x

x4
+

2
x5

}
.

1.1.4 Riemann’s Equation

The Riemann’s equation is an important differential equation which has been
studied for a long time, since Gauss, Riemann, Schwartz, etc., see for example
[45, 69]. We are interested in the relationship with the Picard-Vessiot theory.
Thus, we follows the works of Kimura [47], Martinet & Ramis [57] and Duval &
Loday-Richaud [33].

Definition 1.1.28. The Riemann’s equation is an homogeneous ordinary linear dif-
ferential equation of the second order over the Riemann’s sphere with at most
three singularities which are of the regular type. Assuming a, b and c as regular
singularities, the Riemann’s equation may be written in the form

∂2
xy +

(
1− ρ− ρ′

x− a
+

1− σ − σ′

x− b
+

1− τ − τ ′

x− c

)
∂xy (1.12)

+
(

ρρ′(a− b)(a− c)
(x− a)2(x− b)(x− c)

+
σσ′(b− a)(b− c)

(x− b)2(x− a)(x− c)
+

ττ ′(c− a)(c− b)
(x− c)2(x− a)(x− b)

)
y = 0,

where (ρ, ρ′), (σ, σ′) and (τ, τ ′) are the exponents at the singular points a, b, c
respectively and must satisfy the Fuchs relation ρ + ρ′ + σ + σ′ + τ + τ ′ = 1.
The quantities ρ′ − ρ, σ′ − σ and τ ′ − τ are called the exponent differences of the
Riemann’s equation (1.12) at a, b and c respectively and are denoted by λ̃, µ̃ and
ν̃ as follows:

λ̃ = ρ′ − ρ, µ̃ = σ′ − σ, ν̃ = τ ′ − τ.

The complete set of solutions of the Riemann’s equation (1.12) is denoted by the
symbol

y = P





a b c
ρ σ τ x
ρ′ σ′ τ ′





and is called Riemann’s P -function.

Now, we will briefly describe here the theorem of Kimura that gives necessary
and sufficient conditions for the integrability Riemann’s differential equation.

Theorem 1.1.29 (Kimura, [47]). The Riemann’s differential equation (1.12) is in-
tegrable if and only if, either
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(i) At least one of the four numbers λ̃ + µ̃ + ν̃, −λ̃ + µ̃ + ν̃, λ̃− µ̃ + ν̃, λ̃ + µ̃− ν̃
is an odd integer, or

(ii) The numbers λ̃ or −λ̃, µ̃ or −µ̃ and ν̃ or −ν̃ belong (in an arbitrary order)
to some of the following fifteen families

1 1/2 + l 1/2 + m arbitrary complex number
2 1/2 + l 1/3 + m 1/3 + q
3 2/3 + l 1/3 + m 1/3 + q l + m + q even
4 1/2 + l 1/3 + m 1/4 + q
5 2/3 + l 1/4 + m 1/4 + q l + m + q even
6 1/2 + l 1/3 + m 1/5 + q
7 2/5 + l 1/3 + m 1/3 + q l + m + q even
8 2/3 + l 1/5 + m 1/5 + q l + m + q even
9 1/2 + l 2/5 + m 1/5 + q l + m + q even
10 3/5 + l 1/3 + m 1/5 + q l + m + q even
11 2/5 + l 2/5 + m 2/5 + q l + m + q even
12 2/3 + l 1/3 + m 1/5 + q l + m + q even
13 4/5 + l 1/5 + m 1/5 + q l + m + q even
14 1/2 + l 2/5 + m 1/3 + q l + m + q even
15 3/5 + l 2/5 + m 1/3 + q l + m + q even

Here n,m, q are integers.

Using the Möebius transformation [40], also known as homographic substi-
tution, in the Riemann’s equation (1.12), we can maps x = a, b, c to x′ = a′, b′, c′,
respectively:

x′ =
px + q

rx + s
.

In particular, we can place the singularities at x = 0, 1,∞ to obtain the following
Riemann’s equation:

∂2
xy +

(
1− ρ− ρ′

x
+

1− σ − σ′

x− 1

)
∂xy (1.13)

+
(

ρρ′

x2
+

σσ′

(x− 1)2
+

ττ ′ − ρρ′σσ′

x(x− 1)

)
y = 0,

where the set of solutions is

y = P





0 1 ∞
ρ σ τ x
ρ′ σ′ τ ′



 .

Sometimes it is very useful maps x = 0, 1,∞ to x′ = −1, 1,∞ in the Riemann’s
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equation (1.13), for example, setting ρ = 0, we can state the substitution:

P





0 1 ∞
0 σ τ x
1
2 σ′ τ ′



 = P




−1 1 ∞
σ σ 2τ

√
x

σ′ σ′ 2τ ′



 .

We can transforms the equation (1.13) to the Gauss Hypergeometric equation
as follows:

P





0 1 ∞
ρ σ τ x
ρ′ σ′ τ ′



 = xρ(x− 1)σP





0 1 ∞
0 0 κ x

1− γ γ − κ− β β



 ,

where κ = ρ + σ + τ , β = ρ + σ + τ ′ and γ = 1 + ρ− ρ′. Then

y = P





0 1 ∞
0 0 κ x

1− γ γ − κ− β β



 ,

is the set of solutions of the Gauss Hypergeometric differential equation1

∂2
xy +

(γ − (κ + β + 1)x)
x(1− x)

∂xy − κβ

x(1− x)
y = 0, (1.14)

where the Fuchs relation is trivially satisfied and the exponent differences are given
by

λ̃ = 1− γ, µ̃ = 1− γ − β, ν̃ = β − κ.

We remark that the Galoisian structure of the Riemann’s equation do not change
with the Möebius transformation and that the Galoisian structure of the Rie-
mann’s equation does not change with the Möebius transformation.

The confluent Hypergeometric equation is a degenerate form of the Hyper-
geometric differential equation where two of the three regular singularities merge
into an irregular singularity. For example, making “1 tend to ∞” in a suitable way,
the Hypergeometric equation (1.14) has two classical forms:

• Kummer’s form
∂2

xy +
c− x

x
∂xy − a

x
y = 0 (1.15)

• Whittaker’s form

∂2
xy =

(
1
4
− κ

x
+

4µ2 − 1
4x2

)
y (1.16)

1In general, for the Hypergeometric differential equation, is used α instead of κ, but we want
to avoid further confusions.
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where the parameters of the two equations are linked by κ = c
2 −a and µ = c

2 − 1
2 .

Furthermore, using the expression (1.3), we can see that the Whittaker’s equation
is the reduced form of the Kummer’s equation. The Galoisian structure of these
equations has been deeply studied in [57, 33].

Theorem 1.1.30 (Martinet & Ramis, [57]). The Whittaker’s differential equation
(1.16) is integrable if and only if either, κ + µ ∈ 1

2 + N, or κ − µ ∈ 1
2 + N, or

−κ + µ ∈ 1
2 + N, or −κ− µ ∈ 1

2 + N.

The Bessel’s equation is a particular case of the confluent Hypergeometric
equation and is given by

∂2
xy +

1
x

∂xy +
x2 − n2

x2
y = 0. (1.17)

Under a suitable transformation, the reduced form of the Bessel’s equation is a
particular case of the Whittaker’s equation. Thus, we can obtain the following well
known result, see [48, p. 417] and see also [49, 60].

Corollary 1.1.31. The Bessel’s differential equation (1.17) is integrable if and only
if n ∈ 1

2 + Z.

We point out that the integrability of Bessel’s equation for half integer of
the parameter was known by Daniel Bernoulli [99]. By double confluence of the
Hypergeometric equation (1.14), that is making “0 and 1 tend to ∞” in a suitable
way, one gets the parabolic cylinder equation (also known as Weber’s equation):

∂2
xy =

(
1
4
x2 − 1

2
− n

)
y, (1.18)

which is integrable if and only if n ∈ Z, see [49, 33]. Setting n = b2−c
2a − 1

2 and

making the change x 7→
√

2
a (ax+ b), one can gets the Rehm’s form of the Weber’s

equation:
∂2

xy =
(
ax2 + 2bx + c

)
y, a 6= 0, (1.19)

so that b2−c
a is an odd integer.

The Hypergeometric equation, including confluences, is a particular case of
the differential equation

∂2
xy +

L

Q
∂xy +

λ

Q
y, λ ∈ C, L = a0 + a1x, Q = b0 + b1x + b2x

2. (1.20)

We recall that the classical orthogonal polynomials and Bessel polynomials are
solutions of the equation (1.20), see [23, 44, 63]:

• Hermite, denoted by Hn,

• Chebyshev of first kind, denoted by Tn,
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• Chebyshev of second kind, denoted by Un,

• Legendre, denoted by Pn,

• Laguerre, denoted by Ln,

• associated Laguerre, denoted by L
(m)
n ,

• Gegenbauer, denoted by C
(m)
n

• Jacobi polynomials, denoted by P(m,ν)
n and

• Bessel polynomials, denoted by Bn.

In the following table we give Q, L and λ corresponding to the equation
(1.20) for classical orthogonal polynomials and Bessel polynomials.

Polynomial Q L λ
Hn 1 −2x 2n
Tn 1− x2 −x n2

Un 1− x2 −3x n(n + 2)
Pn 1− x2 −2x n(n + 1)
Ln x 1− x n

L
(m)
n x m + 1− x n

C
(m)
n 1− x2 −(2m + 1)x n(n + 2m)

P(m,ν)
n 1− x2 ν −m− (m + ν + 2)x n(n + 1 + m + ν)

Bn x2 2(x + 1) −n(n + 1)

The associated Legendre polynomials, denoted by P
(m)
n , does not appear in

the previous table. They are solutions of the differential equation

∂2
xy − 2x

1− x2
∂xy +

(
n(n + 1)− m2

1−x2

1− x2

)
y = 0. (1.21)

This equation can be transformed into a Riemann’s differential equation through
the change x 7→ 1

1−x2 . Thus, the complete set of solutions of the equation (1.21)
is given by

P





0 1 ∞
− 1

2n 0 1
2m 1

1−x2
1
2 + 1

2n 1
2 − 1

2m



 ,

the exponent differences are λ̃ = 1
2 , µ̃ = 1

2 and ν̃ = 0. By Kimura’s theorem this
equation is integrable.

Finally, we remark that integrability conditions and solutions of differential
equations with solutions orthogonal polynomials, including Bessel polynomials,
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can be obtained applying Kovacic’s algorithm. In the same way, we can apply
Kovacic’s algorithm to obtain the same results given by Kimura [47] and Mar-
tinet & Ramis [57]. Also we recall that Duval & Loday-Richaud applied Kovacic’s
algorithm to some families of special functions [33].

1.2 Supersymmetric Quantum Mechanics

In this section we establish the basic information on Supersymmetric Quantum
Mechanics. We only consider the case of non-relativistic quantum mechanics.

1.2.1 The Schrödinger Equation

In classical mechanics the Hamiltonian corresponding to the energy (kinetic plus
potential) is given by

H =
‖−→p ‖2
2m

+ U(−→x ), −→p = (p1, . . . , pn), −→x = (x1, . . . , xn),

while in quantum mechanics the momentum −→p is given by −→p = −ı~∇, the Hamil-
tonian operator is the Schrödinger (non-relativistic, stationary) operator which is
given by

H = − ~
2

2m
∇2 + U(−→x )

and the Schrödinger equation is HΨ = EΨ, where −→x is the coordinate , the
eigenfunction Ψ is the wave function, the eigenvalue E is the energy level, V (−→x )
is the potential or potential energy and the solutions of the Schrödinger equa-
tion are the states of the particle. Furthermore, is known that H† = H, i.e., the
Schrödinger operator is a self-adjoint operator in a Hilbert space (which in this
thesis is complex and separable). Thus, H has a purely real spectrum spec(H)
and its spectrum spec(H) is the disjoint union of the point spectrum specp(H)
and the continuous spectrum specc(H), i.e., spec(H) = specp(H)∪ specc(H) with
specp(H) ∩ specc(H) = ∅. See for example [6, 71, 87].

Along this memory we only consider the one-dimensional Schrödinger equa-
tion written as follows:

HΨ = EΨ, H = −∂2
z + V (z), (1.22)

where z = x (cartesian coordinate) or z = r (radial coordinate) and ~ = 2m = 1.
We denote by Ψn the wave function for E = En. The potentials should satisfy
some conditions depending of the physic situation such as barrier, scattering, etc.,
see [24, 35, 53, 59, 78].
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Definition 1.2.1 (Bound States). The solution Ψn is called a bound state when E
belongs to the point spectrum of H and its norm is finite, i.e.,

En ∈ specp(H),
∫
|Ψn(x)|2dx < ∞, n ∈ Z+. (1.23)

An interesting property of bound states is given by the Sturm’s theorem, see
[6, 87].

Theorem 1.2.2 (Sturm’s Theorem). If Ψ0,Ψ1, . . . , Ψn, . . . are the wave functions
of the bound states with energies E0 < E1 < · · · < En < . . ., then Ψn has n
nodes (zeros). Furthermore, between two consecutive nodes of Ψn, there is a node
of Ψn−1, and moreover Ψn+r has at least one zero for all r ≥ 1.

Definition 1.2.3 (Ground State and Excited States). Let assume Ψ0, Ψ1, . . . , Ψn, . . .
as in the Sturm’s theorem. The state Ψ0, which is state with minimum energy is
called the ground state and the states Ψ1, . . . , Ψn, . . . are called the excited states.

Definition 1.2.4 (Scattering States). The solution Ψ corresponding to the level
energy E is called a scattering state when E belongs to the continuous spectrum
of H and its norm is infinite.

The wave function belonging to the continuous spectrum have two typical
boundary conditions: the first ones, barrier potentials and the second one periodic
boundary conditions. The transmission and reflection coefficients are related with
the barrier potentials, [35].

When the particle moves in one dimension, we use the classical one dimen-
sional Schrödinger equation with cartesian coordinate x.
Example (The Harmonic Oscillator). We consider the Hamiltonian operator H
given by (1.22). For ω = 1, the one-dimensional harmonic oscillator potential is
V = 1

4x2. In terms of raising (creator) and lowering (annihilator) operators a† and
a given by

a† = −∂x +
1
2
x, a = ∂x +

1
2
x

we can write

H = a†a +
1
2
, [a, a†] = 1, [a†,H] = −a†, [a,H] = a.

Since the operator aa† in H is positive semi-definite, all eigenvalues En ≥ 1
2 .

Therefore, the successive lowering of eigenstates by the operator a must eventually
stop at the ground state wave function Ψ0 by requiring aΨ0 = 0, which has as
solution

Ψ0 = e−
1
4 x2

.

Operating with a† yields a†aΨ0 =
(
H − 1

2

)
Ψ0, which corresponds to a ground

state energy E0 = 1
2 . All higher eigenstates are generates by repeated applications
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of a†. The complete energy spectrum is En = n + 1
2 , n ∈ Z+, which corresponds

to the eigenfunctions
Ψn = (a†)nΨ0 = HnΨ0,

which clearly are bound states.

Also we can consider the particle moving in three dimensions, this means
that −→p = (px, py, pz), where px = −ı∂x, py = −ı∂y, pz = −ı∂z and p = ‖−→p ‖. The
angular momentum operator is given by

−→
L = (Lx, Ly, Lz) where Lx = ypz − zpy,

Ly = zpx − xpz, Lz = xpy − ypx and L = ‖−→L ‖. The square of the angular
momentum operator ‖−→L ‖2 = L2 = L2

x + L2
y + L2

z commutes with all components
of the angular momentum operator.

In spherical coordinates x = r sin ν cos ϕ, y = r sin ν sin ϕ, z = r cos ν, L2 is
given by

L2 = −4ν,ϕ, 4ν,ϕ =
1

sin ν
∂ν (sin ν∂ν) +

1
sin2 ν

∂2
ϕ,

where we denote by 4ν,ϕ that part of the Laplacian acting on the variables ν and
ϕ only. The kinetic energy given by p2 = ∂2

x + ∂2
y + ∂2

z reads in polar coordinates
as

p2 = p2
r +

1
r2

L2, p2
r = − 1

r2
∂r

(
r2∂r

)
= −

(
∂2

r +
2
r
∂r

)
.

Now, for central potentials, where the potential U(−→r ) is spherically symmetric,
i.e., U(−→r ) = U(r), we can reduce the Schrödinger equation to an one dimensional
problem, the so-called radial equation.

We start writing the eigenfunctions and eigenvalues of the operator L2:

L2Y`,m(ν, ϕ) = `(` + 1)Y`,m(ν, ϕ),

the eigenfunctions Y (ν, ϕ) are the spherics harmonics which are related with the
associated Legendre Polynomials

Y`,m(ν, ϕ) = Pm
` (cos ν)eımϕ.

Assuming Φ as eigenfunctions of p2 + U(r) satisfying Φ = R`(r)Y`,m(ν, ϕ),
i.e., the partial wave function decomposition see ([35, 53, 78]), we have

(
p2

r +
1
r2

L2 + U(r)− E

)
R`(r)Y`,m(ν, ϕ) = 0,

so that we obtain
(
p2

r + U(r)− E
)
R`(r) +

R`(r)
r2Y`,m(ν, ϕ)

L2Y`,m(ν, ϕ) = 0

and owing to L2Y`,m(ν, ϕ) = `(` + 1)Y`,m(ν, ϕ) we have the radial equation
(

p2
r +

`(` + 1)
r2

+ U(r)
)

R`(r) = ER`(r).
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Applying the expression (1.3), the radial equation can be reduced to the Schrödinger
equation (1.22) as follows:

HΨ = EΨ, H = −∂2
r + V (r), V (r) =

`(` + 1)
r2

+ U(r), Ψ = rR`(r).

The equation for the angular part is always solved through spherics harmon-
ics, while for the radial part, the analysis depends on the spherically symmetric
potential U(r). One example of the radial equation is the Coulomb potential. The
complete set of physical and mathematical conditions for the potentials, spec-
trum and wave functions in one or three dimensions can be found in any book of
quantum mechanics, including bound states and scattering cases, see for example
[35, 53, 78].

1.2.2 Darboux Transformation

The following theorem is the most general case for Darboux transformation in
second order linear differential equations, which is taken faithfully from [28].

Theorem 1.2.5 (Darboux, [28]). Suppose that we know how to integrate, for any
value of the constant m, the following equation

∂2
xy + P∂xy + (Q−mR)y = 0. (1.24)

If θ is an integral of the equation

∂2
xθ + P∂xθ + Qθ = 0,

then the function

u =
∂xy − ∂xθ

θ y√
R

, (1.25)

will be an integral of the equation

∂2
xu + P∂xu +

(
θ
√

R∂x

(
P

θ
√

R

)
− θ

√
R∂2

x

(
1

θ
√

R

)
−mR

)
u = 0, (1.26)

for m 6= 0.

Darboux in [28, 29] presented the particular for R = 1 and P = 0, which
today is known as Darboux transformation, but really is a corollary of the general
Darboux transformation given in the theorem 1.2.5.

Corollary 1.2.6 (Darboux, [28, 29]). Suppose that we know integrate

∂2
xy = (f(x) + m)y (1.27)
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for any value of m. If θ satisfies the equation ∂2
xθ = (f(x) + m1)θ, the function

u = ∂xy − ∂xθ

θ
y

will be an integral of the equation

∂2
xu =

(
θ∂2

x

(
1
θ

)
−m1 + m

)
u, (1.28)

for m 6= m1. Furthermore,

θ∂2
x

(
1
θ

)
−m1 = f(x)− 2∂x

(
∂xθ

θ

)
= 2

(
∂xθ

θ

)2

− f(x)− 2m1.

Remark 1.2.7. In practice, we need two values of m to apply the Darboux’s results.
Example. Let consider the equation ∂2

xy = my . Employing the solution θ = x, we
shall get

∂2
xy =

(
1 · 2
x2

+ m

)
y.

Applying the same method to the latter equation, but taking now θ = x2, we shall
have

∂2
xy =

(
2 · 3
x2

+ m

)
y

and so on. The cases m1 = 0 and m1 = −1 also can be found as exercises in the
Ince’s book [42, p. 132].

We can see that the equation (1.27) is equivalent to the Schrödinger equation
(1.22). Thus, we can apply the Darboux transformation in where m = −E and
m1 = −E0.

The following definition corresponds with Delsarte’s transformation opera-
tors (isomorphisms of transmutations), which today are called intertwiner opera-
tors, see [30].

Definition 1.2.8. Two operators L0 and L1 are said to be intertwined by an oper-
ator T if

L1T = TL0. (1.29)

We can relate the intertwiner operators with the Darboux transformation of
the equation (1.22), where L1 and L0 are Schrödinger operators and T can be
either ∓∂x + ∂xΨ0

Ψ0
.

Crum, inspired in the works of Liouville [54, 55] obtained one kind of iterative
generalization of Darboux’s result emphasizing in the Sturm-Liouville systems,
i.e., he proved that the Sturm-Liouville conditions are preserved under Darboux
transformations, see [27]. The Crum’s result is presented in the following theorem,
defining the Wronskian determinant W of k functions f1, f2, . . . , fk by

W (f1, . . . , fk) = det A, Aij = ∂i−1
x fj , i, j = 1, 2, . . . , k.
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Theorem 1.2.9 (Crum, [27]). Let Ψ1, Ψ2, . . . Ψn be solutions of the Schrödinger
equation (1.22) for fixed, arbitrary energy levels E = E1, E2, . . . , En, respectively.
Then, we obtain the Schrödinger equation

H [n]Ψ[n] = EΨ[n], E 6= Ei, 1 ≤ i ≤ n, H [n] = −∂2
x + V [n],

where

Ψ[n] =
W (Ψ1, . . . , Ψn,Ψ)
W (Ψ1, . . . , Ψn)

, V [n] = V − 2∂2
x ln W (Ψ1, . . . , Ψn).

Darboux transformation coincides with Crum’s result in the case n = 1 and
the iterations of Darboux transformation coincides with Crum iteration. Both
formalisms allow us obtain new families of Schrödinger equations preserving the
spectrum and the Sturm-Liouville conditions, see [59, 64]. Furthermore, there are
extensions of Crum’s iteration connecting the Sturm-Liouville theory with orthog-
onal polynomial theory [51].

Schrödinger in [79] factorized the Hypergeometric equation (1.14). He started
making the change 2x − 1 = cos θ, after, using the expression (1.3), he reduced
the Hypergeometric equation to establish the conditions of factorization. In this
way, setting κβ = E, we obtain families of Schrödinger equations (1.22). This re-
sult was used by Natanzon in [62] to obtain the well known Natanzon’s potentials,
i.e, potentials which can be obtained by transformations of the Hypergeometric
equation and its confluences, see [24, 25]. In particular, the Ginocchio potentials
are obtained through the Gegenbauer polynomials.

Witten in [102, §6] presented some models in where dynamical breaking of
supersymmetry is plausible. The first model is not a field theory model at all but
a model in potential theory-supersymmetric quantum mechanics.

Definition 1.2.10. A supersymmetric quantum mechanical system is one in which
there are operators Qi, that commute with the hamiltonian H,

[Qi,H] = 0, i = 1, . . . , n (1.30)

and satisfy the algebra

{Qi, Qj} = δijH, H = 2Q2
i . (1.31)

The case n = 2, which involves a spin one half particle moving on the line, is
the simplest example of a supersymmetric quantum mechanical system. This case
is the main object of this thesis. The wave function of HΦ = EΦ is therefore a
two-component Pauli spinor,

Φ(x) =
(

Ψ+(x)
Ψ−(x)

)
.
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The supercharges Qi are defined as

Q± =
σ1p± σ2W (x)

2
, Q+ = Q1, Q− = Q2, p = −i∂x, (1.32)

where the superpotential W is an arbitrary function of x and σi are the usual Pauli
spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Using the expressions (1.30), (1.31) and (1.32) we obtain H:

H = 2Q2
− = 2Q2

+ =
I2p

2 + I2W
2(x) + σ3∂xW (x)

2
, I2 =

(
1 0
0 1

)
. (1.33)

The supersymmetric partner Hamiltonians H± are given by

H± = −1
2
∂2

x + V±, V± =
(

W√
2

)2

± 1√
2
∂x

(
W√

2

)
.

The potentials V± are called supersymmetric partner potentials and are linked
with the superpotential W through a Riccati equation. So that the equation (1.33)
can be written as

H =
(

H+ 0
0 H−

)
,

which lead us to the Schrödinger equations H+Ψ+ = EΨ+ and H−Ψ− = EΨ−,
and for instance, to solve HΦ = EΦ is equivalent to solve simultaneously H+Ψ+ =
EΨ+ and H−Ψ− = EΨ−.

We study the equation QiΦ = 0 which must be satisfied by a supersymmetric
state. Actually, because of the general relation Q2

1 = Q2
2 = 1

2H (or the fact that
in this particular model Q2 = −iσ3Q1, as can easily be checked), it is enough to
satisfy Q1Φ = 0, or σ1pΦ = −σ2WΦ. Multiplying by σ1 and using the facts that
p = −i∂x, σ1σ2 = iσ3, this equation becomes

∂xΦ = W (x)σ3Φ(x), (1.34)

and the solution is
Φ(x) = e

∫
W (x)σ3dx. (1.35)

The most important generalization of the above model would be, of course,
their extension to four dimensions. The existence of a workable mechanism for
dynamical supersymmetry breaking in four dimensions is an open question.

V.B. Matveev and M. Salle in [59] interpret the Darboux Theorem as Dar-
boux covariance of a Sturm-Liouville problem and proved the following result, see
also [76, §5-6].
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Theorem 1.2.11 (Matveev & Salle, [59]). Supersymetric Quantum Mechanics is
equivalent to a single Darboux transformation

According to Natanzon [62], by solvable potential, also known as exactly solv-
able potentials, one means here a potential for which the Schrödinger equation can
be reduced to hypergeometric or confluent hypergeometric form. The following are
examples of solvable potentials, .

Potential V(x) Name
0, x ∈ [0, L]; ∞, x /∈ [0, L] Infinite square well
`(`+1)

r2 , r ∈ [0, L]; ∞, r /∈ [0, L] Radial infinite square well
µ

eκr−1 , Hulthén
µ

eκr−1 + 2µ2

(eµr−1)2 , Generalized Hulthén
1
4ω2x2 + ga

x2−a2

(x2+a2)2 , ga > 0 −−−−−− [22]

(1.36)

We remark that our definition of integrability, definition 1.1.8, is different of
the concept of solvability given by Natanzon. In the next chapter we come back
on this problem.

According Dutt et al. [32] by conditionally solvable potential we means po-
tentials for which the entire bound state spectrum can be analytically obtained,
provided the parameters in the potential satisfy a specific relation. The following
potentials are two examples of conditionally solvable potentials

V (x) =
A

1 + e−2x
− B√

1 + e−2x
− 3

4(1 + e−2x)2
and

V (x) =
A

1 + e−2x
− Be−x

√
e−2x + 1

− 3
4(1 + e−2x)2

. (1.37)

As a generalization of the method to solve the harmonic oscillator [36, 31] ,
the ladder (raising and lowering) operators are defined as

A+ = −∂x − ∂xΨ0

Ψ0
, A = ∂x − ∂xΨ0

Ψ0
,

which are very closed with the supercharges Q± in the Witten’s formalism. Thus,

AΨ0 = 0, A+A = H−, AA+ = H+ = −∂2
x + V+(x), where

V+(x) = V−(x)− 2∂x

(
∂xΨ0

Ψ0

)
= −V−(x) + 2

(
∂xΨ0

Ψ0

)2

.

The supersymmetric partner potentials V+ and V− have the same energy levels,
except for E

(−)
0 = 0. In terms of the superpotential W (x), the operators A and

A+ are given by
A+ = −∂x + W (x), A = ∂x + W (x).
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Also, the supersymmetric partner potentials V±(x) and the superpotential
W (x) satisfies:

V+(x) + V−(x)
2

= W 2(x), [A,A+] = 2∂xW (x).

Let Ψ(−)
n and Ψ(+)

n denote the eigenfunctions of the supersymmetric Hamilto-
nians H− and H+ respectively, with eigenvalues E

(−)
n and E

(+)
n . The integer

n = 0, 1, 2, . . . , denotes the number of nodes in the wave function.

Theorem 1.2.12 (Dutt et al., [31]). If Ψ(−)
n is any eigenfunction of H− with eigen-

value E
(−)
n , then AΨ(−)

n is an eigenfunction of H+ with the same eigenvalue. Fur-
thermore

E(+)
n = E

(−)
n+1, Ψ(+)

n =
A√
E

(−)
n+1

Ψ(−)
n+1.

We can see in Theorem 1.2.12 that the potentials V+ and V− have the same
spectrum, except that the ground state energy E0 = 0 of V− has not corresponding
level for V+. Furthermore, if the eigenfunction Ψ(−)

n+1 of H− is normalized, then
the wave function Ψ(+)

n of H+ is also normalized.

We can note that the operator A not only converts an eigenfunction of H−
into an eigenfunction of H+ with the same energy, but it also destroys a node
since Ψ(−)

n+1 has n + 1 nodes, whereas Ψ(+)
n has n. The operator A+ creates a node

and converts an eigenfunction of H+ into an eigenfunction of H− with the same
energy. In summary, the operators A and A+ connect states of the same energy
for two different (supersymmetric partner) potentials.

According to Gendenstein [36], the shape invariance is a property of some
classes of potentials with respect to their parameter(s), say a, and reads

Vn+1(x, an) = Vn(x, an+1) + R(an), V− = V0, V+ = V1,

where R is a remainder. In this way we say that V± are shape invariant potentials.
This property assures a fully algebraic scheme for the spectrum and wave functions.
Fixing E0 = 0, the excited spectrum is given by

En =
n+1∑

k=2

R(ak)

and the wave functions are obtained from

Ψn(x, a1) =
n∏

k=1

A+(x, ak)Ψ0(x, an+1).
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Following [24, 31] we present the list of shape invariant potentials given in
expression (1.38).

Potential V Name

1
4ω2x2 − ω

2 Harmonic Oscillator

1
4ω2r2 + `(`+1)

r2 − (
` + 3

2

)
ω 3D Harmonic Oscillator

− e2

r + `(`+1)
r2 + e4

8(`+1)2 Coulomb

A2 + B2e−2ax − 2B
(
A + a

2

)
e−ax Morse

A2 + B2

A2 − 2B coth ar + A A−a
sinh2 ar

Eckart

A2 + B2

A2 + 2B tanh ax−A A+a
cosh2 ax

Rosen-Morse Hyp.

−A2 + B2

A2 + 2B cot ax + A A+a
sin2 ar

Rosen-Morse Trig.

A2 + B2−A2−Aa
cosh2 ax

+ B(2A+a) sinh ax
cosh2 ax

Scarf Hyp. I

A2 + B2+A2+Aa
sinh2 ar

− B(2A+a) cosh ar
sinh2 ar

Scarf Hyp. II

−A2 + B2+A2−Aa
cos2 ax − B(2A−a) sin ax

cos2 ax Scarf Trig. I

−A2 + B2+A2−Aa
sin2 ax

− B(2A−a) cos ax
sin2 ax

Scarf Trig. II

−(A + B)2 + A(A−a)
cos2 ax + B(B−a)

sin2 ax
Pöschl-Teller 1

(A−B)2 − A(A+a)
cosh2 ar

+ B(B−a)
sinh2 ar

Pöschl-Teller 2

(1.38)

Now we explain how to obtain the eigenstates and eigenvalues of shape in-
variant potentials. We start constructing a series of Hamiltonians H(s), s ∈ Z+,
where H(0) = H−, H(1) = H+.

H(s) = −∂2
x + V−(x; as) +

s∑

k=1

R(ak), as = fs(a0).
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Now, we compare the spectrum of H(s) with the spectrum of H(s+1), so that

H(s+1) = −∂2
x + V−(x; as+1) +

s+1∑

k=1

R(ak) = −∂2
x + V+(x; as) +

s∑

k=1

R(ak).

We see that H(s) and H(s+1) are supersymmetric partner Hamiltonians and hence
have identical bound state energy spectra except for the lowest level of H(s) whose
energy is

E
(s)
0 =

s∑

k=1

R(ak), E
(0)
0 = 0.

On going back from H(s) to H(s−1), we would eventually reach H(1) = H+ and
H(0) = H−, whose ground state energy is zero and its nth energy level being co-
incident with the ground state of Hamiltonian H(n), n ∈ Z+. Hence, the complete
energy spectrum of H− is given by

E(−)
n =

n∑

k=1

R(ak), E
(−)
0 = 0.

On the other hand, for any shape invariant potential V−(x; a0), the bound
state wave function Ψ(−)

n (x; a0) can be easily constructed from the ground state
wave function Ψ(−)

0 (x; a0). This is possible since the operators A and A+ link up
the eigenfunctions of the same energy for supersymetric partner Hamiltonians H+

and H−.

Let us start from the Hamiltonian H(s) given above. Its ground state eigen-
function is given by Ψ(−)

0 (x; as). On going from H(s) to H(s−1) to H(1) = H+ and
H(0) = H− we then find that the nth state unnormalized energy eigenfunction
Ψ(−)

n (x; a0) for the original Hamiltonian H−(x; a0) is given by

Ψ(−)
n (x; a0) = A+(x; a0)A+(x; a1) . . . A+(x; an−1)Ψ

(−)
0 (x; an).

In practice, if one wants explicit expressions for the wave functions, it is simpler
to use the result

Ψ(−)
n+1(x; a0) = A+(x; a0)Ψ(−)

n (x; a1) =
1

Ψ0
∂x

(
Ψ0Ψ(−)

n (x; a1)
)

.

We can also notes that for shape invariant potentials

Ψ(+)
n (x; a0) = Ψ(−)

n (x; a1).

Repeated application of these previous equations for n ∈ Z+ gives all the eigen-
functions. The procedure for successively obtaining higher energy eigenfunctions
stop if any wave function is not normalizable. Of course, this corresponds to the
case, where a potential can only hold a finite number of bound states.



Chapter 2

Differential Galois Theory
Approach to Supersymmetric
Quantum Mechanics

In this chapter we present our original results of this thesis, which corresponds to
the Galoisian approach to Supersymmetric quantum mechanics. We start rewrit-
ing in a Galoisian context some points of the section 1.2, chapter 1. The results
presented here are also true for any differential field K with field of constants C
in agreement with the definition 1.1.4. We are emphasize in the differential fields
K = C(x) and K̂ = C(z(x), ∂xz(x)), where in both cases C = C.

2.1 Preliminaries

The main object of our Galoisian analysis is the Schrödinger equation (1.22), which
now is written as

Lλ := HΨ = λΨ, H = −∂2
x + V (x), V ∈ K, (2.1)

being K a differential field (with C as field of constants). We are interested in the
integrability of the equation (2.1) in agreement with the definition 1.1.8.

We introduce the following notations.

• Denote by Λ ⊆ C the set of eigenvalues λ such that the equation (2.1) is
integrable according with the definition 1.1.8.

• Assume Λ ⊆ R, we denote by Λ+ the set {λ ∈ Λ : λ ≥ 0} and by Λ− the set
{λ ∈ Λ : λ ≤ 0}.
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We remark that Λ can be ∅, i.e., DGalK(Lλ) = SL(2,C) ∀λ ∈ C. On the other
hand, by theorem 1.1.9, if λ0 ∈ Λ then (DGalK(Lλ0))

0 ⊆ B.

Definition 2.1.1 (Exactly Solvable and Quasi-Exactly Solvable Potentials). We say
that the potential V (x) ∈ K is:

• an exactly solvable potential when Λ is an infinite set, or

• a quasi-exactly solvable potential when Λ is a non-empty finite set.

• a non-solvable potential when Λ = ∅.
Examples. Let assume K = C(x).

1. If V (x) = x, then Λ = ∅, V (x) is non-solvable, see [46, 49].

2. If V (x) = 0, then Λ = C, i.e., V (x) is exactly solvable. Furthermore,

DGalK(L0) = e, DGalK(Lλ) = Gm, λ 6= 0.

3. If V (x) = x2

4 + 1
2 , then Λ = {n : n ∈ Z}, V (x) is exactly solvable. This

example corresponds to the Weber’s equation, see subsection 1.1.4.

Remark 2.1.2. In particular, we are interested in the spectrum of the exactly
and quasi-exactly solvable potentials, that is, spec(H) ∩ Λ 6= ∅. For example, the
potential V (x) = |x| has point spectrum (see [6]) although V (x) is non-solvable.
Thus, when spec(H) ∩ Λ is an infinite set, our definition is in agreement with
the usual physical terminology: these potentials are called solvable potentials, see
Natanzon [62]. In analogous way, when spec(H) ∩ Λ is a finite set, our definition
coincides with the usual definition in physics of quasi-exactly solvable potentials
(Turbiner [89], Bender & Dunne [11], Bender & Boettcher [10], Saad et al. [77],
Gibbons & Vesselov [37]).

Definition 2.1.3. Let be L, L̃, pairs of linear differential equations defined over
differential fields K and K̃ respectively, with Picard-Vessiot extensions L and L̃.
Let ϕ be the transformation such that L 7→ L̃, K 7→ K̃ and L 7→ L̃, we say that:

1. ϕ is an iso-Galoisian transformation if and only if

DGal(L/K)(L) = DGal(L̃/K̃)(L̃).

If L̃ = L and K̃ = K, we say that ϕ is an strong iso-Galoisian transformation.

2. ϕ is an virtually iso-Galoisian transformation if and only if

(DGal(L/K)(L))0 = (DGal(L̃/K̃)(L̃))0.

If L̃ = L and K̃ = K, we say that ϕ is an virtually strong iso-Galoisian
transformation.
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Remark 2.1.4. Let L, L̃,K and K̃ be as in definition 2.1.3, then the following
statements holds.

• If ϕ is either, an iso-galoisian transformation or an virtually iso-galoisian
transformation, then

(DGal(L̃/K̃)(L))0 = (DGal(L̃/K̃)(L̃))0.

• If ϕ is an iso-Galoisian transformation, then E(L) ' E(L̃).

Proposition 2.1.5. Let L be the differential equation (1.1) and L̃ the differential
equation (1.2). Let κ ∈ C, a = 2κ∂x(ln f), f ∈ K and ϕ be the transformation
such that L 7→ L̃ through equation (1.3). The following statements holds:

1. ϕ is an strong isogaloisian transformation for κ ∈ Z.

2. ϕ is a virtually strong isogaloisian transformation for κ ∈ Q \ Z.

3. If L has not algebraic solutions over K and κ ∈ C \ Q (or there is not
exists f ∈ K such that a = 2κ∂x(ln f)), then ϕ is an strong isogaloisian
transformation.

Proof. Assume that B = {y1, y2} is the basis of solutions and L is the Picard-
Vessiot extension of L, B′ = {ζ1, ζ2} is the basis of solutions and L̃ is the Picard-
Vessiot extension of L̃. By equation (1.1.9) K = K̃, but the relationship between
L and L̃ depends on a:

1. If κ = n ∈ Z, then B′ = {fny1, f
ny2} which means that L = L̃ and ϕ is

strong isogaloisian.

2. If κ = n
m , with gcd(n,m) = 1, n

m /∈ Z, then B′ = {f n
m y1, f

n
m y2} which means

that L̃ is either an algebraic extension of degree at most m of L, and ϕ is
virtually strong isogaloisian, or L = L̃ when f

n
m ∈ K which means that ϕ is

strong isogaloisian.

3. If L has not algebraic solutions and either κ /∈ Q or there is not exists f ∈ K
such that a = 2κ∂x(ln f), then L̃ is an transcendental extension of L. This
means that the Galois group acts in the same way in both basis of solutions,
so that ϕ is strong isogaloisian.

¤

Remark 2.1.6. The transformation ϕ in proposition 2.1.5 is not injective, there
are a lot of differential equations L that are transformed in the same differential
equation L̃.

As immediate consequence of the previous proposition we have the following
corollary.
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Corollary 2.1.7 (Sturm-Liouville). Let L be the differential equation

∂x (a∂xy) = (λb− µ)y, a, b ∈ K, λ, µ ∈ C

in where L, L̃, L̃ and Φ are given as in proposition 2.1.5. Then either L̃ is a
quadratic extension of L which means that ϕ is virtually strong isogaloisian or
L̃ = L when a

1
2 ∈ K which means that ϕ is strong isogaloisian.

2.2 Supersymmetric Quantum Mechanics with Ratio-

nal Potentials

Along this section we consider as differential field K = C(x).

2.2.1 Polynomial Potentials

We start considering the Schrödinger equation (2.1) with polynomial potentials,
i.e., V ∈ C[x], see [18, 91]. For simplicity and without lost of generality, we consider
monic polynomials due to the reduced second order linear differential equation with
polynomial coefficient cnxn + . . . + c1x + c0 can be transformed into the reduced
second order linear differential equation with polynomial coefficient xn + . . . +
q1x + q0 through the change of variable x 7→ n+2

√
cnx.

When V is a polynomial of odd degree, is well known that the Galois group
of the Schrödinger equation (2.1) is SL(2,C), see [49].

We present here the complete result for the Schrödinger equation (2.1) with
non-constant polynomial potential (Theorem 2.2.2), see also [5, §2]. The following
lemma is useful for our purposes.

Lemma 2.2.1 (Completing Squares, [5]). Every monic polynomial of even degree
can be written in one only way completing squares, that is,

Q2n(x) = x2n +
2n−1∑

k=0

qkxk =

(
xn +

n−1∑

k=0

akxk

)2

+
n−1∑

k=0

bkxk, (2.2)

where

an−1 =
q2n−1

2
, an−2 =

q2n−2 − a2
n−1

2
, an−3 =

q2n−3 − 2an−1an−2

2
, · · · ,

a0 =
qn − 2a1an−1 − 2a2an−2 − · · ·

2
, b0 = q0 − a2

0, b1 = q1 − 2a0a1, · · · ,

bn−1 = qn−1 − 2a0an−1 − 2a1an−2 − · · · .
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We remark that V (x) as in the equation (2.2) can be written in terms of the
superpotential W (x), i.e., V (x) = W 2(x)− ∂xW (x), when

nxn−1 +
n−1∑

k=1

kakxk−1 = −
n−1∑

k=0

bkxk

and W (x) is given by

xn +
n−1∑

k=0

akxk.

The following theorem also can be found in [5, §2] and see also [4]. Here we
present a quantum mechanics adapted version.

Theorem 2.2.2 (Polynomial potentials and Galois groups, [5]). Let us consider the
Schrödinger equation (2.1), with V (x) ∈ C[x] a polynomial of degree k > 0. Then,
its differential Galois group DGalK(Lλ) falls in one of the following cases:

1. DGalK(Lλ) = SL(2,C),

2. DGalK(Lλ) = B,

and the Eigenring of H−λ is trivial, i.e., E(H−λ) = {1}. Furthermore, DGalK(Lλ) =
B if and only if the following conditions hold:

1. V (x) − λ is a polynomial of degree k = 2n writing in the form of equation
(2.2).

2. ±bn−1 − n is a positive even number 2m, m ∈ Z+.

3. There exist a monic polynomial Pm of degree m, satisfying

∂2
xPm+2

(
xn +

n−1∑

k=0

akxk

)
∂xPm+

(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k −

n−1∑

k=0

bkxk

)
Pm = 0,

or

∂2
xPm−2

(
xn +

n−1∑

k=0

akxk

)
∂xPm−

(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k +

n−1∑

k=0

bkxk

)
Pm = 0.

In such cases, the only possibilities for eigenfunctions with rational superpotentials
are given by

Ψλ = Pmef(x), or Ψλ = Pme−f(x), where f(x) =
xn+1

n + 1
+

n−1∑

k=0

akxk+1

k + 1
.

An easy consequence of the above theorem is the following.

Corollary 2.2.3. Assume that V (x) is an exactly solvable polynomial potential.
Then V (x) is of degree 2.
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Remark 2.2.4. Given a polynomial potential V (x) such that specp(H)∩Λ 6= ∅, we
can obtain bound states and normalized wave functions if and only if the potential
V (x) is a polynomial of degree 4n + 2. Furthermore, b2n must be odd integer is
one integrability condition of HΨ = λΨ for λ ∈ Λ. In particular, if the potential

V (x) = x4n+2n + µx2n, n > 0

is a quasi-exactly solvable, then µ is an odd integer. For this kind of potentials,
we obtain bound states only when µ is a negative odd integer.

On another hand, the non-constant polynomial potentials V (x) of degree
4n are associated to non-hermitian Hamiltonians and PT invariance which are
not considered here, see [10]. Furthermore, b2n−1 must be even integer is one
integrability condition of HΨ = λΨ for λ ∈ Λ. In particular, if the Schrödinger
equation

HΨ = λΨ, V (x) = x4n + µx2n−1, λ ∈ Λ

is integrable, then µ is an even integer.
We present the following examples to illustrate the previous theorem and

remark.

Weber’s Equation and Harmonic Oscillator. The Schrödinger equation with
potential V (x) = x2 + q1x + q0 corresponds to the Rehm’s form of the Weber’s
equation (1.19), which has been studied in section 1.1.4. By lemma 2.2.1 we have

V (x)− λ = (x + a0)2 + b0, a0 = q1/2, b0 = q0 − q2
1/4− λ.

So that we obtain ±b0 − 1 = 2m, where m ∈ Z+. If b0 is an odd integer, then

DGalK(Lλ) = B, E(H −λ) = {1}, λ ∈ Λ = {±(2m+1) + q0− q2
1/4 : m ∈ Z+}

and the set of eigenfunctions is either

Ψλ = Pme
1
2 (x2+q1x), or, Ψλ = Pme−

1
2 (x2+q1x).

In the second case we have bound states and specp(H) ∩ Λ = specp(H) = {Em =
2m + 1 + q0 − q2

1/4 : m ∈ Z+}, which is infinite. The polynomials Pm are related
with the Hermite polynomials Hm, [23, 44, 63].

In particular we have the harmonic oscillator potential, which is given in the
list (1.38) and where HΨ = EΨ. Through the change of independent variable

x 7→
√

2
ω x we obtain V (x) = x2 − 1 and λ = 2

ω E, that is, q1 = 0 and q0 = −1. In
this way Λ = {±(2m− 1)− 1 : m ∈ Z+} and the set of eigenfunctions is either

Ψλ = Pme
1
2 x2

, or, Ψλ = Pme−
1
2 x2

,

where as below, DGalK(Lλ) = B and E(H − λ) = {1} for all λ ∈ Λ. In the second
kind of eigenfunctions we have bound states, specp(H) ∩ Λ = specp(H) = Λ+ =
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{2m : m ∈ Z+} and Pm = Hm. The wave functions of HΨ = EΨ for the harmonic
oscillator potential are given by

Ψm = Hm

(√
2
ω

x

)
Ψ0, Ψ0 = e−

ω
4 x2

, E = Em = mω.

Quartic and Sextic Anharmonic Oscillator. The Schrödinger equation with
potential V (x) = x4 + q3x

3 + q2x
2 + q1x+ q0 can be obtained through transforma-

tions of confluent Heun’s equation, which is not considered here. By lemma 2.2.1
we have

V (x)− λ = (x2 + a1x + a0)2 + b1x + b0,

where a1 = q3/2, a0 = q2/2− a2
1/2, b1 = q1 − 2a0a1 and b0 = q0 − a2

0 − λ. So that
we obtain ±b1 − 2 = 2m, where m ∈ Z+. We assume that Λ 6= ∅, then b1 is an
even integer, Pm satisfy the relation (1.6) and DGalK(Lλ) = B for all λ ∈ Λ. The
set of eigenfunctions is either

Ψλ = Pme
x3
3 +

a1x2

2 +a0x, or, Ψλ = Pme
−

(
x3
3 +

a1x2

2 +a0x

)

,

where λ and m are related, which means that Λ is finite, i.e., the potential is
quasi-exactly solvable. In particular for q3 = 2ıl, q2 = l2− 2k, q1 = 2ı(lk− J) and
q0 = 0, we have the quartic anharmonic oscillator potential, which can be found
in [10].

Now, considering the potentials V (x, µ) = x4 + 4x3 + 2x2 − µx, again by
lemma 2.2.1 we have that

V (x, µ)− λ = (x2 + 2x− 1)2 + (4− µ)x− 1− λ,

so that ±(4− µ)− 2 = 2n, where n ∈ Z+ and in consequence µ ∈ 2Z. Such µ can
be either µ = 2− 2n or µ = 2n + 6, where n ∈ Z+. By theorem 2.2.2, there exists
a monic polynomial Pn satisfying respectively

∂2
xPn + (2x2 + 4x− 2)∂xPn + ((µ− 2)x + 3 + λ)Pn = 0, µ = 2− 2n, or

∂2
xPn − (2x2 + 4x− 2)∂xPn + ((µ− 6)x− 1 + λ)Pn = 0, µ = 2n + 6

for Λ 6= ∅. This algebraic relation between the coefficients of Pn, µ and λ give us
the set Λ in the following way:

1. Write Pn = xn + cn−1x
n−1 + . . . + c0, where ci are unknown.

2. Pick µ and replace Pn in the algebraic relation (1.6) to obtain a polynomial
of degree n with n + 1 undetermined coefficients involving c0, . . . cn−1 and λ.
Each of such coefficients must be zero.
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3. The term n + 1 is linear in λ and cn−1, thus we write cn−1 in terms of λ.
After of the elimination of the term n + 1, we replace cn−1 in the term n
to obtain a quadratic polynomial in λ and so on until arrive to the constant
term which is a polynomial of degree n + 1 in λ (Qn+1(λ)). In this way,
Λ = {λ : Qn+1(λ) = 0} and c0, . . . , cn−1 are determined for each value of λ.

For µ = 2n + 6, we have:

n = 0, V (x, 6), P0 = 1, Λ = {1}
n = 1, V (x, 8), P1 = x + 1∓√2, Λ = {3± 2

√
2}

...

and the set of eigenfunctions is

Ψλ,µ = Pne−
1
3 x3−x2+x.

In the same way, we can obtain Λ, Pn and Ψλ,µ for µ = 2− 2n. However, we
have not bound states, specp(H) ∩ Λ = ∅, DGalK(Lλ) = B and E(H − λ) = {1}
for all λ ∈ Λ.

The well known sextic anharmonic oscillator x6 +q5x
5 + · · ·+q1x+q0 can be

treated in a similar way, obtaining bound states wave functions and the Bender-
Dunne orthogonal polynomials, which corresponds to Qn+1(λ), i.e., we can have
the same results of [11, 37, 77]. The Schrödinger equation with this potential, un-
der suitable transformations, also falls in a confluent Heun’s equation.

2.2.2 Rational Potentials and Kovacic’s Algorithm

In this subsection we apply Kovacic’s algorithm to solve the Schrödinger equation
with rational potentials listed in subsection 1.2.2.

Three dimensional harmonic oscillator potential:

V (r) =
1
4
ω2r2 +

l(l + 1)
r2

−
(

l +
3
2

)
ω, ` ∈ Z,

we can see that the equation (1.22) for this case is

∂2
rΨ =

((
1
2
ωr

)2

+
`(` + 1)

r2
−

(
` +

3
2

)
ω − E

)
Ψ.

By the change r 7→
(√

2
ω

)
r we obtain the Schrödinger equation

∂2
rΨ =

(
r2 +

`(` + 1)
r2

− (2` + 3)− λ

)
Ψ, λ =

2
~ω

E.
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In order to apply Kovacic algorithm, we denote:

R = r2 +
`(` + 1)

r2
− (2` + 3)− λ

we can see that this equation could fall in case one, in case two or in case four (of
Kovacic’s algorithm). We start discarding the case two because by step one (of the
Kovacic’s algorithm) we should have conditions c2 and ∞3, in this way we should
have Ec = {2, 4+4`,−4`} and E∞ = {−2}, and by step two, we should have that
n = −4 /∈ Z+, so that D = ∅, that is, this Schrödinger equation never falls in case
two. Now, we only works with case one, by step one, conditions c2 and ∞3 are
satisfied, so that

[√
R

]
c

= 0, α±c =
1± (2` + 1)

2
,

[√
R

]
∞

= r, α±∞ =
∓(λ + 2` + 3)− 1

2
.

By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ++) n = α+
∞ − α+

0 = − 1
2 (4` + 6 + λ) , λ = −2n− 4`− 6,

Λ+−) n = α+
∞ − α−0 = − 1

2 (4 + λ) , λ = −2n− 4,

Λ−+) n = α−∞ − α+
0 = λ

2 , λ = 2n,

Λ−−) n = α−∞ − α−0 = 1
2 (4` + 2 + λ) , λ = 2n− 4`− 2,

where Λ++ ∪Λ+− ∪Λ−+ ∪Λ−− = Λ, which means that λ = 2m, m ∈ Z. Now, for
λ ∈ Λ, the rational function ω is given by:

Λ++) ω = r + `+1
r , Rn = r2 + `(`+1)

r2 + (2` + 3) + 2n,

Λ+−) ω = r − `
r , Rn = r2 + `(`+1)

r2 − (2`− 1) + 2n,

Λ−+) ω = −r + `+1
r , Rn = r2 + `(`+1)

r2 − (2` + 3)− 2n,

Λ−−) ω = −r − `
r , Rn = r2 + `(`+1)

r2 + (2`− 1)− 2n,

where Rn is the coefficient of the differential equation L̃n := ∂2
rΨ = RnΨ, which

is integrable for every n and for every λ ∈ Λ we can see that DGalK(L̃n) =
DGalK(Lλ), where Lλ := HΨ = λΨ.

By step three, there exists a polynomial of degree n satisfying the relation
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(1.6):

Λ++) ∂2
rPn + 2

(
r + `+1

r

)
∂rPn − 2nPn = 0, λ ∈ Λ−,

Λ+−) ∂2
rPn + 2

(
r − `

r

)
∂rPn − 2nPn = 0, λ ∈ Λ−,

Λ−+) ∂2
rPn + 2

(−r + `+1
r

)
∂rPn + 2nPn = 0, λ ∈ Λ+,

Λ−−) ∂2
rPn + 2

(−r − `
r

)
∂rPn + 2nPn = 0, λ ∈ Λ.

These polynomials exists for all λ ∈ Λ when their degrees are n ∈ 2Z, while
for n ∈ 2Z + 1, they exists only for λ ∈ Λ−+) and Λ−−) with special conditions.
In this way, we have obtained the set Λ = 2Z, where Λ++ = 4Z−, Λ+− = 2Z−,
Λ−+ = 4Z+, Λ−− = 2Z.

The possibilities for eigenfunctions, considering only λ ∈ 4Z, are given by

Λ++) Ψn(r) = r`+1P2n(r)e
r2
2 , λ ∈ Λ−,

Λ+−) Ψn(r) = r−`P2n(r)e
r2
2 , λ ∈ Λ−,

Λ−+) Ψn(r) = r`+1P2n(r)e
−r2
2 , λ ∈ Λ+,

Λ−−) Ψn(r) = r−`P2n(r)e
−r2
2 , λ ∈ Λ.

To obtain the spectrum, we look Ψn satisfying the conditions (1.23) which is in
only true for λ ∈ Λ−+. With the change r 7→ √

ω
2 r, the spectrum and ground

state of the Schrödinger equation with the 3D-harmonic oscillator potential are
respectively specp(H) = {En : n ∈ Z+}, where En = 2nω, and

Ψ0 =
(√

ω

2
r

)`+1

e−
ω
4 r2

.

The rest of bound state wave functions are obtained as Ψn = P2nΨ0. Now, we can
see that DGalK(L0) = B and E(H) = {1}. Since Ψn = P2nΨ0, for all λ ∈ Λ we
have that DGalK(Lλ) = B and E(H − λ) = {1}. In particular, DGalK(Lλ) = B
and E(H − λ) = {1} for all λ ∈ specp(H), where λ = 2

ω E.

We remark that the Schrödinger equation with the 3D-harmonic oscillator
potential, through the changes r 7→ 1

2ωr2 and Ψ 7→ √
rΨ, fall in a Whittaker

differential equation (1.16) in where the parameters are given by

κ =
(2` + 3)ω + 2E

4ω
, µ =

1
2
` +

1
4
.
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Applying the theorem 1.1.30, we can see that for integrability, ±κ± µ must be a
half integer. These conditions coincides with our four sets Λ±±.

Coulomb potential:

V (r) = −e2

r
+

`(` + 1)
r2

+
e4

4(` + 1)2
, ` ∈ Z.

we can see that the equation (1.22) for this case is

∂2
rΨ =

(
`(` + 1)

r2
− e2

r
+

e4

4(` + 1)2
− E

)
Ψ.

By the change r 7→ 2(`+1)
e2 r we obtain the Schrödinger equation

∂2
rΨ =

(
`(` + 1)

r2
− 2(` + 1)

ξ
+ 1− λ

)
Ψ, λ =

4(` + 1)2

e4
E.

In order to apply Kovacic algorithm, we denote

R =
`(` + 1)

r2
− 2(` + 1)

r
+ 1− λ.

Firstly we analyze the case for λ = 1: we can see that this equation only could fall
in case two or in case four. We start discarding the case two because by step one we
should have conditions c2 and∞3, in this way we should have Ec = {2, 4+4`,−4`}
and E∞ = {1}, and by step two, we should have that n /∈ Z, so that n /∈ Z+ and
D = ∅, that is, the Galois group of this Schrödinger equation for λ = 1 is SL(2,C).

Now, we analyze the case for λ 6= 1: we can see that this equation could
fall in case one, in case two or in case four. We start discarding the case two be-
cause by step one we should have conditions c2 and ∞3, in this way we should
have Ec = {2, 4 + 4`,−4`} and E∞ = {0}, and by step two, we should have that
n = 2` ∈ Z+, so that D = {2`} and the rational function θ is θ = −2`

x , but we
discard this case because only could exists one polynomial of degree 2` for a fixed
`, and for instance, only could exist one eigenstate and one eigenfunction for the
Schrödinger equation.

Now, we only works with case one, by step one, conditions c2 and ∞3 are
satisfied, so that

[√
R

]
c

= 0, α±c =
1± (2` + 1)

2
,

[√
R

]
∞

=
√

1− λ, α±∞ = ∓ ` + 1√
1− λ

.
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By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ++) n = α+
∞ − α+

0 = −(` + 1)
(
1 + 1√

1−λ

)
, λ = 1−

(
`+1

`+1+n

)2

,

Λ+−) n = α+
∞ − α−0 = − `+1√

1−λ
+ `, λ = 1−

(
`+1
`−n

)2

,

Λ−+) n = α−∞ − α+
0 = (` + 1)

(
1√
1−λ

− 1
)

, λ = 1−
(

`+1
`+1+n

)2

,

Λ−−) n = α−∞ − α−0 = `+1√
1−λ

+ `, λ = 1−
(

`+1
`−n

)2

.

We can see that λ ∈ Λ− when λ ≤ 0, while λ ∈ Λ+ when 0 ≤ λ < 1. Furthermore:

Λ++) ` ≤ −1, λ ∈
{ Λ−, ` ≤ −n−2

2

Λ+, −n−2
2 ≤ ` ≤ −1

Λ+−) ` > 0, λ ∈
{ Λ−, ` ≥ n−1

2

Λ+, 0 ≤ ` ≤ n−1
2

Λ−+) ` ∈ Z, λ ∈
{ Λ−, ` ≤ −n−2

2

Λ+, ` ≥ −1

Λ−−) ` > 0, λ ∈
{ Λ−, ` ≥ n−1

2

Λ+, 0 ≤ ` ≤ n−1
2

In this way we can obtain the possible set Λ = Λ++ ∪ Λ+− ∪ Λ−+ ∪ Λ−−, that is

Λ =

{
1−

(
` + 1

` + 1 + n

)2

: n ∈ Z+

}
∪

{
1−

(
` + 1
`− n

)2

: n ∈ Z+

}
, (2.3)

Now, for λ ∈ Λ, the rational function ω is given by:

Λ++) ω = `+1
`+1+n

+ `+1
r

, λ ∈ Λ++, Rn = `(`+1)

r2 − 2(`+1)
r

+
(

`+1
`+1+n

)2

,

Λ+−) ω = `+1
`−n

− `
r
, λ ∈ Λ+−, Rn = `(`+1)

r2 − 2(`+1)
r

+
(

`+1
`−n

)2

,

Λ−+) ω = − `+1
`+1+n

+ `+1
r

, λ ∈ Λ−+, Rn = `(`+1)

r2 − 2(`+1)
r

+
(

`+1
`+1+n

)2

,

Λ−−) ω = − `+1
`−n

− `
r
, λ ∈ Λ−−, Rn = `(`+1)

r2 − 2(`+1)
r

+
(

`+1
`−n

)2

,



2.2. Supersymmetric Quantum Mechanics with Rational Potentials 51

where Rn is the coefficient of the differential equation ∂2
rΨ = RnΨ, which is in-

tegrable for every n.

By step three, there exists a polynomial of degree n satisfying the relation (1.6),

Λ++) ∂2
rPn + 2

(
`+1

`+1+n + `+1
r

)
∂rPn + 2(`+1)

r

(
1 + `+1

`+1+n

)
Pn = 0,

Λ+−) ∂2
rPn + 2

(
`+1
`−n − `

r

)
∂rPn + 2(`+1)

r

(
1− `+1

`−n

)
Pn = 0,

Λ−+) ∂2
rPn + 2

(
− `+1

`+1+n + `+1
r

)
∂rPn + 2(`+1)

r

(
1− `+1

`+1+n

)
Pn = 0,

Λ−−) ∂2
rPn + 2

(
− `+1

`−n − `
r

)
∂rPn + 2(`+1)

r

(
1 + `+1

`−n

)
Pn = 0.

These polynomials exists for every λ ∈ Λ when n ∈ Z, but P0 = 1 is satisfied
only for λ ∈ Λ−+. In this way, we have obtained the set Λ given by the equation
(2.3).

The possibilities for eigenfunctions are given by

Λ++) Ψn(r) = r`+1Pn(r)fn(r)er, fn(r) = e

−nr
`+1+n , λ ∈

{ Λ−, ` ≤ −n−2
2

Λ+, −n−2
2 ≤ ` ≤ −1

Λ+−) Ψn(r) = r−`Pn(r)fn(r)er, fn(r) = e

n+1
`−n

r
, λ ∈

{ Λ−, ` ≥ n−1
2

Λ+, 0 ≤ ` ≤ n−1
2

Λ−+) Ψn(r) = r`+1Pn(r)fn(r)e−r, fn(r) = e
nr

`+1+n , λ ∈
{ Λ−, ` ≤ −n−2

2

Λ+, ` ≥ −1

Λ−−) Ψn(r) = r−`Pn(r)fn(r)e−r, fn(r) = e

n+1
n−`

r
, λ ∈

{ Λ−, ` ≥ n−1
2

Λ+, 0 ≤ ` ≤ n−1
2

but Ψn should satisfy the conditions (1.23) which is in only true for Λ−+ ∩Λ+, so
that we choose Λ−+ ∩ Λ+ = specp(H), that is

specp(H) =

{
1−

(
` + 1

` + n + 1

)2

: n ∈ Z+, ` ≥ −1

}
.

By the change r 7→ e2

2(`+1)r, the spectrum and ground state of the Schrödinger
equation with Coulomb potential are respectively

specp(H) = {En : n ∈ Z+}, En =
e4

4

(
1

(` + 1)2
− 1

(` + 1 + n)2

)

and

Ψ0 =
(

e2

2(` + 1)
r

)`+1

e−
e2

2(`+1) r.
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the rest of eigenstates Ψn = PnfnΨ0, where

fn(r) = e
ne2r

2(`+1+n)(`+1) .

Now, we can see that DGalK(L0) = B and E(H) = {1}. Since Ψn = P2nfnΨ0,
for all λ ∈ Λ we have that DGalK(Lλ) = B and E(H − λ) = {1}. In particular,
DGalK(Lλ) = B and E(H − λ) = {1} for all λ ∈ specp(H), where E = e4

4(`+1)2 λ.

We remark that, as in the three dimensional harmonic oscillator, the Schrödinger
equation with the Coulomb potential, through the change

r 7→

√
−4 (` + 1)2 E + e4

` + 1
r,

falls in a Whittaker differential equation (1.16) in where the parameters are given
by

κ =
e2 (` + 1)√

−4 (` + 1)2 E + e4

, µ = ` +
1
2
.

Applying the theorem 1.1.30, we can impose ±κ±µ half integer, to coincides with
our four sets Λ±±.

Remark 2.2.5. By direct application of Kovacic’s Algorithm we have:

• The Schrödinger equation (2.1) with potential

V (x) = ax2 +
b

x2

is integrable for λ ∈ Λ when

– a = 0, b = µ(µ + 1), µ ∈ C, Λ = C,

– a = 1, b = 0, λ ∈ Λ = 2Z+ 1,

– a = 1, b = `(` + 1), ` ∈ Z∗, Λ = 2Z+ 1.

• The only rational potentials, up to transformations, in which the levels of
energy are in the same distance belongs to the family of potentials given by

V (x) =
2∑

k=−∞
akxk, a2 6= 0.

In particular, the set Λ for the harmonic oscillator (a = 1, b = 0) and 3D
harmonic oscillator (a = 1, b = `(` + 1)) satisfies this.
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Proposition 2.2.6. Let Lλ be the Schrödinger equation (2.1) with K = C(x). If
DGalK(L0) is finite primitive, then DGalK(Lλ) is not finite primitive for all λ ∈
Λ \ {0}.
Proof. Pick V ∈ C(x) such that L0 falls in case 3 of Kovacic algorithm, then
◦u∞ ≥ 2. Let assume t, s ∈ C[x] such that V = s

t , then deg(t) ≥ deg(s) + 2 and
V − λ = s−λt

t . Now, for λ 6= 0 we have that deg(s − λt) = deg(t) and therefore
◦(V − λ)∞ = 0. So that for λ 6= 0, the equation Lλ does not falls in case 3 of
Kovacic algorithm and therefore DGalK(Lλ) is not finite primitive. ¤
Corollary 2.2.7. Let Lλ be the Schrödinger equation (2.1) with K = C(x). If
Card(Λ) > 1, then there is either zero or one value of λ such that DGalK(Lλ) is
a finite primitive group.

It seems that the study of the Galois groups of the Schrödinger equation
with the Coulomb potential has been analyzed by Jean-Pierre Ramis using his
summability theory since in the eighties of the past century, see [72].

2.2.3 Darboux Transformations

Here present a Galoisian approach to Darboux transformation, Crum iteration
and shape invariant potentials. We denote by W (y1, . . . , yn) the Wronskian

W (y1, . . . , yn) =

∣∣∣∣∣∣∣

y1 · · · yn

...
...

∂n−1
x y1 · · · ∂n−1

x yn

∣∣∣∣∣∣∣
,

DT the Darboux transformation, DTn the n iteration of DT and CIn the Crum
iteration. Also we use the notation of subsection 1.2. We recall that K = C(x)
and for the rest of differential fields as usually along this memory, we mean the
smallest differential containing the coefficients of the linear differential equations.

Theorem 2.2.8 (Galoisian version of DT). Let assume H± = ∂2
x+V±(x) and Λ 6= ∅.

Let Lλ given by the Schrödinger equation H−Ψ(−) = λΨ(−) with V−(x) ∈ K and
L̃λ given by the Schrödinger equation H+Ψ(+) = λΨ(+) with V+(x) ∈ K̃. Let
DT be the transformation such that L 7→ L̃, V− 7→ V+, Ψ(−) 7→ Ψ(+). Then the
following statements holds:

i) DT(V−) = V+ = Ψ(−)
λ1

∂2
x

(
1

Ψ
(−)
λ1

)
+ λ1 = V− − 2∂2

x(lnΨ(−)
λ1

),

DT(Ψ(−)
λ1

) = Ψ(+)
λ1

= 1

Ψ
(−)
λ1

, where Ψ(−)
λ1

is a particular solution of Lλ1 , λ1 ∈ Λ.

ii) DT(Ψ(−)
λ ) = Ψ(+)

λ = ∂xΨ(−)
λ − ∂x(lnΨ(−)

λ1
)Ψ(−)

λ =
W (Ψ

(−)
λ1

,Ψ
(−)
λ )

W (Ψ
(−)
λ1

)
, λ 6= λ1, where

Ψ(−)
λ is the general solution of Lλ for λ ∈ Λ \ {λ1} and Ψ(+)

λ is the general
solution of L̃λ also for λ ∈ Λ \ {λ1}.
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In agreement with the previous theorem we obtain the following results.

Proposition 2.2.9. DT is isogaloisian and virtually strong isogaloisian. Further-
more, if ∂x(lnΨ(−)

λ1
) ∈ K, then DT is strong isogaloisian.

Proof. Let K, L be the differential field and the Picard-Vessiot extension of the
equation Lλ. Let K̃, L̃ the differential field and the Picard-Vessiot extension of the
equation L̃λ. Due to DT(V−) = V+ = 2W 2− V−− 2λ1, where W = −∂x(lnΨ(−)

λ1
),

we have K̃ = K
〈
∂x(lnΨ(−)

λ1
)
〉

. By theorem 1.1.10 we have that the Riccati equa-

tion ∂xW = V− −W 2 has one algebraic solution, in this case W = −∂x(lnΨ(−)
λ1

).

Let 〈Ψ(−)
(1,λ), Ψ

(−)
(2,λ)〉 be the basis of solutions for equation Lλ and 〈Ψ(+)

(1,λ), Ψ
(+)
(2,λ)〉

the basis of solutions for equation L̃λ. Since the differential field for equation L̃λ

is K̃ = K〈∂x(lnΨ(−)
λ1

)〉, we have that L = K〈Ψ(−)
(1,λ), Ψ

(−)
(2,λ)〉 and

L̃ = K̃〈Ψ(+)
(1,λ), Ψ

(+)
(2,λ)〉 = K〈Ψ(+)

(1,λ), Ψ
(+)
(2,λ), ∂x(lnΨ(−)

λ1
)〉

= K〈Ψ(−)
(1,λ), Ψ

(−)
(2,λ), ∂x(lnΨ(−)

λ1
)〉 = K̃〈Ψ(−)

(1,λ),Ψ
(−)
(2,λ)〉,

for λ = λ1 and for λ 6= λ1. Since ∂x(lnΨ(−)
λ1

) is algebraic over K, then

(DGal(L/K)(Lλ))0 = (DGal(L̃/K)(L̃λ))0, DGal(L/K)(Lλ) = DGal(L̃/K̃)(L̃λ),

which means that DT is an virtually strong and isogalosian transformation.
In the case ∂x(lnΨ(−)

λ1
) ∈ K, then K̃ = K and L̃ = L, which means that DT is an

strong isogalosian transformation. ¤
Proposition 2.2.10. Let consider Lλ := H− − λ and L̃λ := H+ − λ such that
DT(H− − λ) = H+ − λ, then the eigenrings of Lλ and L̃λ are isomorphic.

Proof. Let assume E(Lλ) and E(L̃λ) the eigenrings of Lλ and L̃λ respectively.
By proposition 2.2.9 the connected identity component of the Galois group is
preserved by Darboux transformation and for instance the eigenrings is preserved
by Darboux transformation. Now, suppose that T ∈ E(Lλ), Sol(Lλ) and Sol(L̃λ)
the solutions space for LλΨ(−) = 0 and L̃λΨ(−) = 0 respectively. To transform
E(Lλ) into E(L̃λ) we follows the diagram:

Sol(Lλ) T // Sol(Lλ)

Sol(L̃λ)
T̃

//

A†

OO

Sol(L̃λ)
²²
A ⇒ T̃ = ATA†mod(L̃λ) ∈ E(L̃λ),

where A† and A are the raising and lowering operators. ¤
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Example. Let assume the Schrödinger equation Lλ with potential V = V− = 0,
which means that Λ = C. If we choose λ1 = 0 and as particular solution Ψ(−)

0 = x,
then for λ 6= 0 the general solution is given by

Ψ(−)
λ = c1e

√−λx + c2e
−√−λx.

Applying the Darboux transformation DT we have DT(Lλ) = L̃λ, where

DT(V−) = V+ =
2
x2

and for λ 6= 0

DT(Ψ(−)
λ ) = Ψ(+)

λ =
c1(
√−λx− 1)e

√−λx

x
− c2(

√−λx + 1)e−
√−λx

x
.

We can see that K̃ = K = C(x) for all λ ∈ Λ, the Picard-Vessiot extensions can
be either L = L̃ = C(x) for λ = 0 or L = L̃ = C(x, e

√
λx) for λ ∈ C∗. In this

way we have that DGal(L/K)(L0) = DGal(L/K)(L̃0) = e, and for λ 6= 0 we have
DGal(L/K)(Lλ) = DGal(L/K)(L̃λ) = Gm. The eigenrings are given by

E(L0) = {1, x∂x, x∂x − 1, x2∂x − x}, E(L̃0) =
{

1, x∂x − 1, x4∂x − 2x3,
∂x

x2
+

1
x3

}

and for λ 6= 0

E(Lλ) = {1, ∂x} , E(L̃λ) =
{

1,−
(

λ +
1
x2

)
∂x − 1

x3

}
,

where Lλ := LλΨ(−) = 0 and L̃λ := L̃λΨ(+) = 0.
Applying iteratively the Darboux transformation, theorem 2.2.8, and assum-

ing that the propositions 2.2.9 and 2.2.10 holds, we have the following results.

Proposition 2.2.11 (Galoisian version of DTn). Let be Λ 6= ∅, L(n)
λ given by

H(n)Ψ(n) = λΨ(n), Vn ∈ Kn, K0 = K, V0 = V−, H(0) = H−, Ψ(0) = Ψ(−).
Let L(n+1)

λ given by H(n+1)Ψ(n+1) = λΨ(n+1), Vn+1 ∈ Kn+1. Let DTn such that
L(n)

λ 7→ L(n+1)
λ , Vn 7→ Vn+1, Ψ(n)

λ 7→ Ψ(n+1)
λ . Then the following statements holds:

i) DTn(V−) = DT(Vn) = Vn+1 = Vn− 2∂2
x

(
lnΨ(n)

λ

)
= V−− 2

∑n
k=0 ∂2

x

(
lnΨ(k)

λk

)
,

where Ψ(k)
λk

is a particular solution for λ = λk, k = 0, . . . , n. In particular, if

λn = λ0 and Λ = C, then there exists Ψ(n)
λn

such that Vn 6= Vn−2, with n ≥ 2.

ii) DT(Ψ(n)
λ ) = DTn(Ψ(−)

λ ) = Ψ(n+1)
λ = ∂xΨ(n)

λ −Ψ(n)
λ

∂xΨ
(n)
λn

Ψ
(n)
λn

=
W (Ψ

(n)
λn

,Ψ
(n)
λ )

W (Ψ
(n)
λn

)
where

Ψ(n)
λ is a general solution for λ ∈ Λ \ {λn} of L(n)

λ .
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iii) Kn+1 = Kn

〈
∂x(ln Ψ(n)

λn
)
〉
.

iv) DTn is isogaloisian and virtually strongly isogaloisian. Furthermore, if ∂x(lnΨ(n)
λn

) ∈
Kn then DTn is strongly isogaloisian.

v) The eigenrings of H(n) − λ and H(n+1) − λ are isomorphic.

Proposition 2.2.12 (Galoisian version of CIn). Let consider Lλ given by HΨ = λΨ,
H = −∂2

x + V , V ∈ K, such that Card(Λ) > n for a fixed n ∈ Z+. Let L(n)
λ be

given by H(n)Ψ(n) = λΨ(n), where H(n) = ∂2
x + Vn, Vn ∈ Kn. Let CIn be the

transformation such that Lλ 7→ L(n)
λ , V 7→ Vn, (Ψλ1 , . . . , Ψλn

, Ψλ) 7→ Ψ(n)
λ , where

for k = 1, . . . , n and the equation Lλ, the function Ψλ is the general solution for
λ 6= λk and Ψλk

is a particular solution for λ = λk. Then the following statements
holds:

i) CIn(Lλ) = L(n)
λ where CIn(V ) = Vn = V − 2∂2

x (lnW (Ψλ1 , . . . , Ψλn)) and

CIn(Ψλ) = Ψ(n)
λ =

W (Ψλ1 , . . . , Ψλn ,Ψλ)
W (Ψλ1 , . . . , Ψλn)

,

being Ψ(n)
λ the general solution of L(n)

λ .

iii) Kn = K〈∂x (lnW (Ψλ1 , . . . , Ψλn))〉.
iv) CIn is isogaloisian and virtually strongly isogaloisian. Furthermore, if

∂x (lnW (Ψλ1 , . . . , Ψλn)) ∈ Kn,

then CIn is strongly isogaloisian.

v) The eigenrings of Lλ and L(n)
λ are isomorphic.

Examples. Starting with V = 0, the following potentials can be obtained using
Darboux iteration DTn (see [14, 17]).

I) Vn =
n(n− 1)b2

(bx + c)2
, II) Vn =

m2n(n− 1)(b2 − a2)
(a cosh(mx) + b sinh(mx))2

,

III) Vn =
−4abm2n(n− 1)
(aemx + be−mx)2

, IV ) Vn =
m2n(n− 1)(b2 + a2)

(a cos(mx) + b sin(mx))2
.

In particular for the rational potential given in I ), we have K = Kn = C(x) and
for λn = λ = 0, we have

Ψ(n)
0 =

c1

(bx + c)n
+c2(bx+c)n+1, so that DGal(L/K)(L0) = DGal(L/K)(L(n)

0 ) = e,

E(H(n)) =
{

1, x∂x − 1, x2n+2∂x − (n + 1)x2n+1,
∂x

x2n
+

n

x2n+1

}
,
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whilst for λ 6= 0 and λn = 0, the general solution Ψ(n)
λ is given by

Ψ(n)
λ (x) = c1fn(x, λ)hn(sin(

√
λx) + c2gn(x, λ)jn(cos(

√
λx),

where fn, gn, hn, jn ∈ C(x), so that

DGal(L/K)(Lλ) = DGal(L/K)(L(n)
λ ) = Gm,

and
dimC E(H − λ) = dimC E(H(n) − λ) = 2.

To illustrate the Crum iteration with rational potentials, we consider V = 2
x2 .

The general solution of Lλ := HΨ = λΨ is

c1e
kx(kx− 1)

x
+

c2e
−kx(kx + 1)

x
, λ = −k2,

the eigenfunctions for λ1 = −1, and λ2 = −4, are respectively given by

Ψ−1 =
e−x(x + 1)

x
, Ψ−4 =

e−2x(2x + 1)
2x

.

Thus, we obtain

CI2(V ) = V2 =
8

(2x + 3)2

and the general solution of L(2)
λ := H(2)Ψ(2) = λΨ(2) is

CI2(Ψλ) = Ψ(2)
λ =

c1 (k (2x + 3)− 2) ekx

2x + 3
+

c2 (2 + k (2x + 3)) e−kx

4 x + 6
, λ = −k2.

The differential Galois groups and eigenrings are given by:

DGalK(L0) = DGalK(L(2)
0 = e, dimC E(L0) = dimC E(L(2)

0 ) = 4,

and for λ 6= 0

DGalK(Lλ) = DGalK(L(2)
λ = Gm, dimC E(Lλ) = dimC E(L(2)

λ ) = 2.

Proposition 2.2.13. The supersymmetric partner potentials V± are rational func-
tions if and only if the superpotential W is a rational function.

Proof. The supersymmetric partner potentials V± are written as V± = W 2±∂xW .
We start considering the superpotential W ∈ C(x), so trivially we have that V± ∈
C(x). Now assuming that V± ∈ C(x) we have that ∂xW ∈ C(x) and W 2 ∈ C(x),
which implies that W∂xW ∈ C(x) and therefore W ∈ C(x).

¤
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Corollary 2.2.14. The superpotential W ∈ C(x) if and only if DT is strong isoga-
loisian.

The following definition is a partial Galoisian adaptation of the original defi-
nition given in [36] (K = C(x)). The complete Galoisian adaptation is given when
K is any differential field.

Definition 2.2.15 (Rational Shape Invariant Potentials). Let assume V±(x; µ) ∈
C(x;µ), where µ is a family of parameters. The potential V = V− ∈ C(x) is said
to be rational shape invariant potential with respect to µ and E = En being
n ∈ Z+, if there exists f such that

V+(x; a0) = V−(x; a1) + R(a1), a1 = f(a0), En =
n+1∑

k=2

R(ak), E0 = 0.

Remark 2.2.16. We propose the following steps to check whether V ∈ C(x) is
shape invariant.

Step 1. Introduce parameters in W (x) to obtain W (x; µ), write V±(x;µ) = W 2(x; µ)±
∂xW (x;µ), and replace µ by a0 and a1.

Step 2. Obtain polynomials P ∈ C[x; a0, a1] and Q ∈ C[x; a0, a1] such that

∂x(V+(x; a0)− V−(x; a1)) =
P(x; a0, a1)
Q(x; a0, a1)

.

Step 3. Set P(x; a0, a1) ≡ 0, as polynomial in x, to obtain a1 in function of a0,
i.e., a1 = f(a0). Also obtain R(a1) = V+(x; a0) − V−(x; a1) and verify that
exists k ∈ Z+ such that R(a1) + · · ·+ R(ak) 6= 0.

Example. Let consider the superpotential of the three dimensional harmonic os-
cillator W (r; `) = r − `+1

r . By step 1, the supersymmetric partner potentials are

V−(r; `) = r2 +
`(` + 1)

r2
− 2`− 3, V+(r; `) = r2 +

(` + 1)(` + 2)
r2

− 2`− 1.

By step 2, we have ∂r(V+(r; a0) − V−(r; a1)) = −2a2
0+3a0−a2

1−a1+2
r3 . By step 3,

(a0 +1)(a0 +2) = a1(a1 +1), so that a1 = f(a0) = a0 +1, an = f(an−1) = a0 +n,
R(a1) = 2. Thus, we obtain the energy levels En = 2n and the wave functions
Ψ(−)

n (r; `) = A†(r; `) · · ·A†(r; ` + n− 1)Ψ(−)
0 (r; ` + n) (see [31]).

By theorem 2.2.8 and propositions 2.2.9, 2.2.10 and 2.2.13 we have the fol-
lowing result.

Theorem 2.2.17. Let consider Ln := HΨ(−) = EnΨ(−) where n ∈ Z+ and V =
V− ∈ C(x) is a shape invariant potential. Then

DGalK(Ln+1) = DGalK(Ln), E(H − En+1) ' E(H − En), n > 0.
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Remark 2.2.18. The differential automorphisms σ commutes with the raising and
lowering operators A and A† due to W ∈ C(x). Furthermore the wave functions
Ψ(−)

n can be written as Ψ(−)
n = PnfnΨ(−)

0 , where Pn is a polynomial of degree n
in x and fn is a sequence of functions being f0(x) = 1 as we seen in the previous
examples.

2.3 The Role of the Algebrization in Supersymmetric
Quantum Mechanics

In supersymmetric quantum mechanics there exists potentials which are not ra-
tional functions and, for this reason, it is difficult to apply our Galoisian approach
such as in section 3.2. In this section we give a solution to this problem present-
ing some results concerning to differential equations with non-rational coefficients.
For these differential equations it is useful, whether is possible, to replace it by
a new differential equation over the Riemann sphere P1 (that is, with rational
coefficients). To do this, we can use a change of variables. The equation over P1 is
called the algebraic form or algebrization of the original equation.

This algebraic form dates back to the 19th century (Liouville, Darboux), but
the problem of obtaining the algebraic form (if it exists) of a given differential
equation is in general not an easy task. Here we develop a new method using the
concept of Hamiltonian change of variables. This change of variables allow us to
compute the algebraic form of a large number of differential equations of different
types. In particular, for second order linear differential equations we can apply
Kovacic’s algorithm over the algebraic form to solve the original equation.

The following definition can be found in [12, 96, 97].

Definition 2.3.1 (Pullbacks of differential equations). Let L1 ∈ K1[∂z] and L2 ∈
K2[∂x] be differential operators, the expression L2⊗ (∂x +v) refers to the operator
whose solutions are the solutions of L2 multiplied by the solution e−

∫
vdx of ∂x+v.

• L2 is a proper pullback of L1 by means of f ∈ K2 if the change of variable
z = f(x) changes L1 into L2.

• L2 is a pullback (also known as weak pullback) of L1 by means of f ∈ K2

if there exists v ∈ K2 such that L2 ⊗ (∂x + v) is a proper pullback of L1 by
means of f .

In the case of compact Riemann surfaces, the geometric mechanism behind
the algebrization is a ramified covering of compact Riemann surfaces, see [61, 60].

2.3.1 Second Order Linear Differential Equations

Some results presented in this subsection can be found in [5, §2 ].
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Proposition 2.3.2 (Change of the independent variable, [5]). Let us consider the
following equation, with coefficients in C(x):

Lx := ∂2
xy + a(x)y∂xy + b(x)y = 0, (2.4)

and C(x) ↪→ L the corresponding Picard-Vessiot extension. Let (K, δ) be a dif-
ferential field with C as field of constants. Let θ ∈ K be a non-constant element.
Then, by the change of variable x = θ(t), the equation (2.4) is transformed in

Lt := ∂2
t r +

(
a(θ)∂tθ − ∂2

t θ

∂tθ

)
∂tr + b(θ)(∂tθ)2r = 0, ∂t = δ, r = y ◦ θ. (2.5)

Let K0 ⊂ K be the smallest differential field containing θ and C. Then the equa-
tion (2.5) is a differential equation with coefficients in K0. Let K0 ↪→ L0 be the
corresponding Picard-Vessiot extension. Assume that

C(x) → K0, x 7→ θ

is an algebraic extension, then

DGal(L0/K0)0 = DGal(L/C(x))0.

Proposition 2.3.3. Assume Lt and Lx as in proposition 2.3.2. Let ϕ be the trans-
formation given by

ϕ :
x 7→ θ(t)

∂x 7→ 1
∂tθ

δ.

Then DGal(L0/K0)(Lt) ' DGal(L/K0 ∩ L)(Lx) ⊂ DGal(L/C(x))(Lx). Further-
more, if K0∩L is algebraic over C(x), then (DGal(L0/K0)(Lt))0 ' (DGal(L/C(x))(Lx))0.

Proof. By Proposition 2.3.2, the transformation ϕ lead us to

C(x) ' ϕ(C(x)) ↪→ K0,

that is, we identify C(x) with ϕ(C(x)), and so that we can view C(x) as a subfield
of K0 and then by the Kaplansky’s diagram (see [46, 101]),

L0

xxxxxxxxx

HHHHH
HHHH DGal(L0/K0)(Lt)

¿¿
L

FF
FF

FF
FF

F

DGal(L/(L
⋂

K0))(Lx) &&

K0

ww
ww

ww
ww

w

L
⋂

K0

C(x)
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so that we have

DGal(L0/K0)(Lt) ' DGal(L/K0 ∩ L)(Lx) ⊂ DGal(L/C(x))(Lx)

and if K0 ∩ L is algebraic over C(x), then

(DGal(L0/K0)(Lt))0 ' (DGal(L/C(x))(Lx))0.

¤

Along the rest of this section, for suitability, we write x = x(t) instead of θ.

Remark 2.3.4 (Hard Algebrization). The proper pullback from the equation (2.5)
to the equation (2.4) is an algebrization process. Therefore, we can try algebrize
any second order linear differential equations with non-rational coefficients (proper
pullback) whether we can put it in the form of equation (2.5). To do this, we use
the following steps.

Step 1. Find (∂tx)2 in the coefficient of y to obtain ∂tx and x.

Step 2. Obtain b(x) in the coefficient of y dividing by (∂tx)2 and check whether
b ∈ C(x).

Step 3. Obtain a(x) in the coefficient of ∂ty adding (∂2
t x)/∂tx and dividing by

∂tx. After, check whether a ∈ C(x).

To illustrate this method, we present the following example.

Example. In [82, p. 256], Singer presents the second order linear differential equa-
tion

∂2
t r − 1

t(ln t + 1)
∂tr − (ln t + 1)2r = 0.

To algebrize this differential equation we choose (∂tx)2 = (ln t + 1)2, so that
∂tx = ln t + 1 and for instance

x =
∫

(ln t + 1)dt = t ln t, b(x) = −1.

Now we find a(x) in the expression

a(x)(ln t + 1)− 1
t(ln t + 1)

= − 1
t(ln t + 1)

,

obtaining a(x) = 0. So that the new differential equation is given by ∂2
xy − y = 0,

in which y(x(t)) = r(t) and the basis of solutions is given by 〈ex, e−x〉. The basis
of solutions of the first differential equation is given by 〈et ln t, e−t ln t〉.

In general, this method is not clear because the quest of x = x(t) in b(x)(∂tx)2

can be purely a lottery, or simply there is not exist x such that a(x), b(x) ∈ C(x).
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For example, the equations presented by Singer in [82, p. 257, 261, 270] and given
by

∂2
t r +

∓2t ln2 t∓ 2t ln t− 1
t ln t + t

∂tr +
−2t ln2 t− 3t ln t− t∓ 1

t ln t + t
r = 0,

∂2
t r +

4t ln t + 2t

4t2 ln t
∂tr − 1

4t2 ln t
r = 0, (t2 ln2 t)∂2

t r + (t ln2 t− 3t ln t)∂tr + 3r = 0,

cannot be algebrized easily with this method although corresponds to pullbacks
(not proper pullback) of differential equations with constant coefficients.

In [21], Bronstein and Fredet developed and implemented an algorithm to
solve differential equation over C(t, e

∫
f ) without algebrizing the equation, see

also [34]. As an application of Proposition 2.3.2 we have the following result1.

Proposition 2.3.5 (Linear differential equation over C(t, e
∫

f ), [5]). Let f ∈ C(t)
be a rational function. Then, the differential equation

∂2
t r −

(
f +

∂tf

f
− fe

∫
fa

(
e
∫

f
))

∂tr +
(
f

(
e
∫

f
))2

b
(
e
∫

f
)

r = 0, (2.6)

is algebrizable by the change x = e
∫

f and its algebraic form is given by

∂2
xy + a(x)∂xy + b(x)y = 0, r(t) = y(x(t)).

Proof. Let assume that r(t) = y(x(t)), and x = x(t) = e
∫

fdt. We can see that

∂tx = fx, ∂xy =
∂tr

fx
, ∂2

xy =
1

fx
∂t

(
∂tr

fx

)
=

1(
fe

∫
f
)2

(
∂2

t r − f +
(

∂tf

f

))
∂tr,

replacing in ∂2
xy + a(x)∂xy + b(x)y = 0 we obtain the equation (2.6). ¤

Example. The differential equation

∂2
t r −

(
t +

1
t
− 2tet2

)
∂tr + λ

(
t2et2

)
r = 0,

is algebrizable by the change x = e
t2
2 and its algebraic form is given by

∂2
xy + 2x∂xy + λy = 0.

Remark 2.3.6. In this corollary, corollary 2.3.5, we have the following cases.

1. f = n∂xh
h , for a rational function h, n ∈ Z+, we have the trivial case, both

equations are over the Riemann sphere and they have the same differential
field, so that does not need to be algebrized.

1This result is given in [5, §2], but we include here the proof for completeness.
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2. f = 1
n

∂xh
h , for a rational function h, n ∈ Z+, (2.6) is defined over an algebraic

extension of C(t) and so that this equation is not necessarily over the Riemann
sphere.

3. f 6= q ∂xh
h , for any rational function h, q ∈ Q, (2.6) is defined over a transcen-

dental extension of C(t) and so that this equation is not over the Riemann
sphere.

To algebrize second order linear differential equations it is easier when the
term in ∂tr is absent, that is, in the form of the equation (1.2) and the change of
variable is Hamiltonian.

Definition 2.3.7 (Hamiltonian change of variable, [5]). A change of variable x =
x(t) is called Hamiltonian if and only if (x(t), ∂tx(t)) is a solution curve of the
autonomous classical one degree of freedom Hamiltonian system

H = H(x, p) =
p2

2
+ V (x),

for some V ∈ K.

Remark 2.3.8. Assume that we algebrize equation (2.5) through a Hamiltonian
change of variables, x = x(t), i.e., V ∈ C(x). Then, K0 = C(x, ∂tx, . . .), but, we
have the algebraic relation,

(∂tx)2 = 2h− 2V (x), h = H(x, ∂tx) ∈ C,

so that K0 = C(x, ∂tx) is an algebraic extension of C(x). We can apply Proposition
2.3.2, and then the identity component of the Galois group is conserved. On the
other hand, we say that a change of variable x = x(t) is Hamiltonian if and
only if there exists α such that ∂tx

2 = α(x). The Hamiltonian algebrization is the
algebrization process which has been done using a Hamiltonian change of variable.

The following result, which can be found in [5, §2] is an example of Hamil-
tonian algebrization and correspond to the case of reduced second order linear
differential equations.

Proposition 2.3.9 (Hamiltonian Algebrization, [5]). The differential equation

∂2
t r = q(t)r

is algebrizable through a Hamiltonian change of variable x = x(t) if and only if
there exist f, α such that

∂xα

α
,

f

α
∈ C(x), where f(x(t)) = q(t), α(x) = 2(H − V (x)) = ∂tx

2.

Furthermore, the algebraic form of the equation ∂2
t r = q(t)r is

∂2
xy +

1
2

∂xα

α
∂xy − f

α
y = 0, r(t) = y(x(t)). (2.7)
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Remark 2.3.10 (Using the Algebrization Method). The goal is to algebrize the
differential equation ∂2

t r = q(t)r, so that we propose the following steps.

Step 1 Find a Hamiltonian change of variable x = x(t) and two functions f and
α such that q(t) = f(x(t)) and (∂tx(t))2 = α(x(t)).

Step 2 Verify whether or not f(x)/α(x) ∈ C(x) and ∂xα(x)/α(x) ∈ C(x) to see if
the equation ∂2

t r = q(t)r is algebrizable.

Step 3 If the equation ∂2
t r = q(t)r is algebrizable, its algebrization is

∂2
xy +

1
2

∂xα

α
∂xy − f

α
y = 0, y(x(t)) = r(t).

When we have algebrized the differential equation ∂2
t r = q(t)r, we study its inte-

grability, eigenrings and its Galois group.
Examples. Let consider the following examples.

• Given the differential equation ∂2
t r = f(tan t)r with f ∈ C(tan t), we can

choose x = x(t) = tan t to obtain α(x) = (1 + x2)2, so that x = x(t) is a
Hamiltonian change of variable. We can see that ∂xα

α , f
α ∈ C(x) and the alge-

braic form of the differential equation ∂2
t r = f(tan t)r with this Hamiltonian

change of variable is

∂2
xy +

2x

1 + x2
∂xy − f(x)

(1 + x2)2
y = 0, y(tan t) = r(t).

• Given the differential equation

∂2
t r =

√
1 + t2 + t2

1 + t2
r,

we can choose x = x(t) =
√

1 + t2 to obtain

f(x) =
x2 + x− 1

x2
, α(x) =

x2 − 1
x2

,

so that x = x(t) is a Hamiltonian change of variable. We can see that ∂xα
α , f

α ∈
C(x) and the algebraic form for this case is

∂2
xy +

1
x(x2 − 1)

∂xy − x2 + x− 1
x2 − 1

y = 0, y(
√

1 + t2) = r(t).

We remark that the method of Hamiltonian algebrization is not an algorithm,
because the problem is to obtain a suitable Hamiltonian H satisfying the definition
2.3.7. We present now an example of algorithm for Hamiltonian algebrization
algorithm2.

2Proposition 2.3.11 is a slight improvement of a similar result given in [5, §2]. Furthermore,
we include the proof here for completeness.
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Proposition 2.3.11 (Hamiltonian Algebrization Algorithm, [5]). Let us consider
q(t) = g(x1, · · · , xn), where xi = eλit, λi ∈ C∗. The equation ∂2

t r = q(t)r is
algebrizable if and only if.

λi

λj
∈ Q∗, 1 ≤ i ≤ n, 1 ≤ j ≤ n, g ∈ C(x).

Furthermore, λi = ciλ, where λ ∈ C∗ and ci ∈ Q∗ and for the Hamiltonian change
of variable

x = e
λt
q , where ci =

pi

qi
, pi, qi ∈ Z∗, gcd(pi, qi) = 1 and q = lcm(q1, · · · , qn),

the algebrization of the differential equation ∂2
t r = q(t)r is

∂2
xy +

1
x

∂xy − q2 g(xm1 , . . . , xmn)
λ2x2

y = 0, mi =
qpi

qi
.

Proof. Assuming λi/λj = cij ∈ Q∗ we can see that there exists λ ∈ C∗ and ci ∈ Q∗
such that λi = λci, so that

eλit = eciλt = e
pi
qi

λt =
(
e

λ
q t

) qpi
qi

, pi, qi ∈ Z∗, gcd(pi, qi) = 1, lcm(q1, . . . , qn) = q.

Now, setting x = x(t) = e
λ
q t we can see that

f(x) = g(xm1 , . . . , xmn), mi =
qpi

qi
, α =

λ2x2

q2
.

Due to q|qi, we have that mi ∈ Z, so that

∂xα

α
,

f

α
∈ C(x)

and the algebraic form is given by

∂2
xy +

1
x

∂xy − q2 g(xm1 , . . . , xmn)
λ2x2

y = 0.

¤

Remark 2.3.12. The propositions 2.3.9 and 2.3.11 allow us the algebrization of
a large number of second order differential equations, see for example [70]. In
particular, under the assumptions of the proposition 2.3.11, we can algebrize au-
tomatically differential equations with trigonometrical or hyperbolic coefficients.

Examples. Let consider the following examples.
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• Given the differential equation

∂2
t r =

e
1
2 t + 3e−

2
3 t − 2e

5
4 t

et + e−
3
2

r, λ1 =
1
2
, λ2 = −2

3
, λ3 =

5
4
, λ4 = 1, λ5 = −3

2
,

we obtain we see that λi/λj ∈ Q, λ = 1, q = lcm(1, 2, 3, 4) = 12 and the
Hamiltonian change of variable for this case is x = x(t) = e

1
12 t. We can see

that

α(x) =
1

144
x2, f(x) =

x6 + 3x−8 − 2x15

x12 + x−18
,

∂xα

α
,
f

α
∈ C(x)

and the algebraic form is given by

∂2
xy +

1
x

∂xy − 144
x6 + 3x−8 − 2x15

x14 + x−16
y = 0, y(e

1
12 t) = r(t).

• Given the differential equation

∂2
t r = (e2

√
2t + e−

√
2t − e3t)r, λ1 = 2

√
2, λ2 = −

√
2, λ3 = 3,

we see that λ1/λ2 ∈ Q, but λ1/λ3 /∈ Q, so that this differential equation
cannot be algebrized.

We remark that it is possible to use the algebrization method to transform
differential equations, although either the starting equation has rational coeffi-
cients or the transformed equation has not rational coefficients.
Examples. As illustration we present the following examples.

• Let consider the following differential equation

∂2
t =

t4 + 3t2 − 5
t2 + 1

y = 0,

we can choose x = x(t) = t2 so that α = 4x and the new differential equation
is

∂2
x +

1
2x

∂x − x2 + 2x− 5
4x(x + 1)

y = 0

• Let consider the Mathieu’s differential equation ∂2
t y = (a + b cos(t))y, we

can choose x(t) = ln(cos(t)) so that α = e−2x − 1 and the new differential
equation is

∂2
x −

1
1− e2x

∂xy − ae2x + be3x

1− e2x
y = 0.

Recently, the Hamiltonian algebrization (propositions 2.3.9 and 2.3.11) has
been applied in [2, 3, 5] to obtain non-integrability in the framework of Morales-
Ramis theory [61, 60].
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2.3.2 The Operator ∂̂z and the Hamiltonian Algebrization

The generalization of proposition 2.3.2 to higher order linear differential equations
is difficult. But, it is possible to obtain generalizations of proposition 2.3.9 by
means of Hamiltonian change of variable. We recall that z = z(x) is a Hamiltonian
change of variable if there exists α such that (∂xz)2 = α(z). More specifically, if
z = z(x) is a Hamiltonian change of variable, we can write ∂xz =

√
α, which lead

us to the following notation: ∂̂z =
√

α∂z.
We can see that ∂̂z is a derivation because satisfy ∂̂z(f + g) = ∂̂zf + ∂̂zg and

the Leibnitz rules

∂̂z(f · g) = ∂̂zf · g + f · ∂̂zg, ∂̂z

(
f

g

)
=

∂̂zf · g − f · ∂̂zg

g2
.

We can notice that the chain rule is given by ∂̂z(f ◦g) = ∂gf ◦g∂̂z(g) 6= ∂̂gf ◦g∂̂z(g).
The iteration of ∂̂z is given by

∂̂0
z = 1, ∂̂z =

√
α∂z, ∂̂n

z =
√

α∂z∂̂
n−1
z =

√
α∂z

(
. . .

(√
α∂z

))
︸ ︷︷ ︸

n times
√

α∂z

.

We say that a Hamiltonian change of variable is rational when the potential V ∈
C(x) and for instance α ∈ C(x). Along the rest of this memory, we understand
∂̂z =

√
α∂z where z = z(x) is a Hamiltonian change of variable and ∂xz =

√
α. In

particular, ∂̂z = ∂z = ∂x if and only if
√

α = 1, i.e., z = x.

Theorem 2.3.13. Let consider the systems of linear differential equations [A] and
Â given respectively by

∂xY = −AY, ∂̂zŶ = −ÂŶ, A = [aij ], Â = [âij ], Y = [yi1], Ŷ = [ŷi1],

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, aij(x) = âij(z(x)) and yi1(x) = yi1(z(x)). Let ϕ be
the transformation given by

ϕ :

x 7→ z
aij 7→ âij

yi1(x) 7→ ŷi1(z(x))
∂x 7→ ∂̂z

,
aij ∈ K = C(z(x), ∂x(z(x))),
âij ∈ C(z) ⊆ K̂ = C(z,

√
α).

Then the following statements hold.

• K ' K̂, (K, ∂x) ' (K̂, ∂̂z).

• DGalK([A]) ' DGalK̂([Â]) ⊂ DGalC(z)([Â].

• (DGalK([A]))0 ' (DGalC(z)(Â))0.

• E([A]) ' E([Â]).
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Proof. Due to z = z(x) is a rational Hamiltonian change of variable, the transfor-
mation ϕ lead us to

C(z) ' ϕ(C(z)) ↪→ K, K ' K̂, C(z) ↪→ K̂, (K, ∂x) ' (K̂, ∂̂z)

that is, we identify C(z) with ϕ(C(z)), and so that we can view C(z) as a subfield
of K and then, by the Kaplansky’s diagram (see [46, 101]),

L

{{
{{

{{
{{

{

DD
DD

DD
DD

D
DGalK([A])

¼¼
L̂

BB
BB

BB
BB

DGal
K̂

([Â])) ''

K

||
||

||
||

|

K̂

C(z)

so that we have DGalK([A]) ' DGalK̂([Â]) ⊂ DGalC(z)([Â], (DGalK([A]))0 '
(DGalC(z)(Â))0, and E([A]) ' E([Â]). ¤

We remark that the transformation ϕ, given in theorem 2.3.13, is virtually
strong isogaloisian when

√
α /∈ C(z) and for

√
α ∈ C(z), ϕ is strong isogaloisian.

Furthermore, by cyclic vector method (see [92]), we can write the systems [A] and
[Â] in terms of the differential equations L and L̂. Thus, L̂ is the proper pullback
of L.

Example. Let consider the system

[A] :=

∂xγ1 = − 2
√

2
ex+e−x γ3,

∂xγ2 = ex−e−x

ex+e−x γ3,

∂xγ3 = 2
√

2
ex+e−x γ1 − ex−e−x

ex+e−x γ2,

which through the Hamiltonian change of variable z = ex, and for instance
√

α = z,
it is transformed in the system

[̂A] :=

∂z γ̂1 = − 2
√

2
z2+1 γ̂3,

∂z γ̂2 = z2−1
z(z2+1) γ̂3,

∂z γ̂3 = 2
√

2
z2+1 γ̂1 − z2−1

x(x2+1) γ̂2.



2.3. Algebrization in Supersymmetric Quantum Mechanics 69

One solution of the system [̂A] is given by

1
z2 + 1



√

2
2 (1− z2)

z
−z


 ,

and for instance,

1
e2x + 1



√

2
2 (1− e2x)

ex

−ex




is the corresponding solution for the system [A].
Remark 2.3.14. The algebrization given in proposition 2.3.9 is an example of how
the introduction of the new derivative ∂̂z simplifies the proofs and computations.
Such proposition is naturally extended to ∂2

xy + a∂xy + by = 0, using ϕ to obtain
∂̂2

z ŷ + â∂̂z ŷ + b̂ŷ = 0, which is equivalent to

α∂2
z ŷ +

(
∂xα

2
+
√

αâ

)
∂z ŷ + b̂ŷ = 0, (2.8)

where y(x) = ŷ(z(x)), â(z(x)) = a(x) and b̂(z(x)) = b(x).
In general, for y(x) = ŷ(z(x)), the equation F (∂n

x y, . . . , y, x) = 0 with co-
efficients given by aik

(x) is transformed in the equation F̂ (∂̂n
z ŷ, . . . , ŷ, z) = 0

with coefficients given by âik
(z), where aik

(x) = âik
(z(x)). In particular, for√

α, âik
∈ C(z), the equation F̂ (∂̂n

z ŷ, . . . , ŷ, z) = 0 is the Hamiltonian algebrization
of F (∂n

x y, . . . , y, x) = 0. Now, if each derivation ∂x has order even, then α and âik

can be rational functions to algebrize the equation F (∂n
x y, . . . , y, x) = 0, where

aik
∈ C(z(x), ∂xz(x)). for example, that happens for linear differential equations

given by

∂2n
x y + an−1(x)∂2n−2

x y + . . . + a2(x)∂4
xy + a1(x)∂2

xy + a0(x)y = 0.

Finally, the algebrization algorithm given in proposition 2.3.11) can be is naturally
extended to any differential equation F (∂n

x y, ∂n−1
x y, . . . , ∂xy, y, eλt) = 0, that by

means of the change of variable z = eλx is transformed into F̂ (∂̂n
z ŷ, ∂̂n−1

z ŷ, . . . , ∂̂z ŷ, y, z) =
0. Particularly, we consider the algebrization of Riccati equations, higher order lin-
ear differential equations and systems.
Example. The following corresponds to some examples of algebrizations for differ-
ential equations given in [82, p. 258, 266].

1. The equation L := ∂2
xy + (−2ex − 1)∂xy + e2xy = 0 with the Hamiltonian

change of variable z = ex,
√

α = z, â = −2z− 1 and b̂ = z2 is transformed in
the equation L̂ := ∂2

z ŷ − 2∂z ŷ + ŷ = 0 which can be easily solved. The basis
of solutions for L and L̂ are given by 〈ez, zez〉 and 〈eex

, exeex〉 respectively.
Furthermore K = C(ex), K̂ = C(z), DGalK(L) = DGalK̂(L̂).



70 Chapter 2. Differential Galois Theory Approach to SUSY QM

2. The differential equation

L := ∂2
xy +

−24ex − 25
4ex + 5

∂xy +
20ex

4ex + 5
y = 0

with the Hamiltonian change of variable z = ex,
√

α = z,

â =
−24z − 25

4z + 5
and b̂ =

20z

4z + 5

is transformed in the equation

L̂ := ∂2
z ŷ +

−20(z + 1)
x(4z + 5)

∂z ŷ +
20

z(4z + 5)
ŷ = 0,

which can be solved with Kovacic algorithm. The basis of solutions for L̂ is
〈z + 1, z5〉, so that the basis for L is 〈ex + 1, e5x〉. Furthermore K = C(ex),
K̂ = C(z) and DGalK(L) = DGalK̂(L̂) = e.

Remark 2.3.15 (Algebrization of the Riccati equation). The Riccati equation

∂xv = a(x) + b(x)v + c(x)v2 (2.9)

through the Hamiltonian change of variable z = z(x), becomes in the Riccati
equation

∂z v̂ =
1√
α

(â(z) + b̂(z)v̂ + ĉ(z)v̂2), (2.10)

where v(x) = v̂(z(x)), â(z(x)) = a(x), b̂(z(x)) = b(x), ĉ(z(x)) = c(x) and√
α(z(x)) = ∂xz(x). Furthermore, if

√
α, â, b̂, ĉ ∈ C(x), the equation (2.10) is

the algebrization of the equation (2.9).
Example. Let consider the Riccati differential equation

L := ∂xv =
(

tanh x− 1
tanh x

)
v +

(
3 tanh x− 3 tanh3 x

)
v2,

which through the Hamiltonian change of variable z = tanh x, for instance
√

α =
1− z2, is transformed into the Riccati differential equation

L̂ := ∂zv = −1
z
v + 3zv2.

One solution for the equation L̂ is

− 1
z(3z − c)

, being c a constant ,

so that the corresponding solution for equation L is

− 1
tanh x(3 tanh x− c)

.
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The following result is the algebrized version of Eigenrings.

Proposition 2.3.16. Let consider the differential fields K, K̂ and let consider the
systems [A] and [Â] given by

∂xX = −AX, ∂̂zX̂ = −ÂX̂, ∂̂z =
√

α∂z, A = [aij ], Â = [âij ], aij ∈ K, âij ∈ K̂,

where z = z(x), X(x) = X̂(z(x)), âij(z(x)) = aij(x), then E(A) ' E(Â). In
particular, if we consider the linear differential equations

L := ∂n
x y +

n−1∑

k=0

ak∂k
xy = 0 and L̂ := ∂̂n

z ŷ +
n−1∑

k=0

âk∂̂k
z ŷ = 0,

where z = z(x), y(x) = ẑ((x)), âk(z(x)) = ak(x), ak ∈ K, âk ∈ K̂, then E(L) '
E(L̂), where L := Ly = 0 and L̂ := L̂ŷ = 0. Furthermore, assuming

T =




p11 . . . p1n

...
pn1 . . . pnn


 , A =




0 1 . . . 0
...

−a0 −a1 . . . −an−1


 ,

then

E(L) =

{
n∑

k=1

p1k∂k−1
x : ∂xT = TA−AT, pik ∈ K

}
,

if and only if

E(L̂) =

{
n∑

k=1

p̂1k∂̂k−1
z : ∂̂zT̂ = T̂ Â− ÂT̂ , p̂ik ∈ K̂

}
.

Examples. We consider two different examples to illustrate the previous proposi-
tion.

• Let consider the differential equation L1 := ∂2
xy − (1 + cos x− cos2 x)y = 0.

By means of the Hamiltonian change of variable z = z(x) = cos x, with√
α = −√1− z2, L1 is transformed into the differential equation

L̂1 := ∂2
z ŷ − z

1− z2
∂z ŷ − 1 + z − z2

1− z2
ŷ = 0.

Now, computing the eigenring of L̂1 we have that E(L̂1) = {1}, therefore the
eigenring of L1 is given E(L1) = {1}.

• Now we consider the differential equation L2 := ∂2
xy =

(
e2x + 9

4

)
y. By means

of the Hamiltonian change of variable z = ex, with
√

α = x, L2 is transformed
into the differential equation

L̂2 := ∂2
z ŷ +

1
z
∂z ŷ −

(
1 +

9
4x2

)
ŷ = 0.
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Now, computing the eigenring of L̂2 we have that

E(L̂2) =
{

1,−2
(

z2 − 1
z2

)
∂z − z2 − 3

z3

}
=

{
1,−2

(
z2 − 1

z3

)
∂̂z − z2 − 3

z3

}
,

therefore the eigenring of L2 is given by

E(L2) =
{

1,−2
(

e2x − 1
e3x

)
∂x − e2x − 3

e3x

}
.

The same result is obtained via matrix formalism, where

A =
(

0 1
e2x + 9

4 0

)
, Â =

(
0 1

z2 + 9
4 0

)
, ∂xT = TA−AT, ∂̂zT̂ = T̂ Â− ÂT̂ ,

with T ∈ Mat(2,C(ex)) and T̂ ∈ Mat(2,C(z)).

2.3.3 Applications in Supersymmetric Quantum Mechanics

In this subsection we apply the derivation ∂̂z to the Schrödinger equation HΨ =
λΨ, where H = −∂2

x + V (x), V ∈ K. Assume that z = z(x) is a rational Hamil-
tonian change of variable for HΨ = λΨ, then K = C(z(x), ∂xz(x)). Thus, the
algebrized Schrödinger equation is written as

ĤΨ̂ = λΨ̂, Ĥ = −∂̂2
z + V̂ (z), ∂̂2

z = α∂2
z +

1
2
∂zα∂z, K̂ = C(z,

√
α). (2.11)

The reduced algebrized Schrödinger equation, obtained through the equation (1.3),
is given by

ĤΦ = λΦ, Ĥ = α(z)
(
−∂2

z + V̂(z)
)

,

V̂(z) = V + V̂ (z)
α ,

V = ∂zW +W2,

W = 1
4

∂zα(z)
α(z) .

(2.12)

The eigenfunctions Ψ, Ψ̂ and Φ corresponding to the operators H, Ĥ and Ĥ are
related respectively as

Φ(z(x)) = 4
√

αΨ̂(z(x)) = 4
√

αΨ(x).

In order to apply the Kovacic’s algorithm we only consider the algebrized
operator Ĥ = α(z)H, whilst the eigenrings will be computed on Ĥ − λ. Also it is
possible to apply the version of Kovacic’s algorithm given in reference [88] to the
algebraized operator Ĥ. The following results are obtained by applying Kovacic’s
algorithm to the reduced algebrized Schrödinger equation ĤΦ = λΦ.
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Proposition 2.3.17. Assume the differential equation Lλ given by the reduced al-
gebrized Schrödinger equation (2.12) with K̂ = C(z). If α, û ∈ C[z] with deg α ≤
2 + deg û, then DGalK̂(L) is a not finite primitive for every λ ∈ Λ

Proposition 2.3.18. Let consider the differential equation Lλ given by the reduced
algebrized Schrödinger equation (2.12) with K̂ = C(z). If α ∈ C[z] with deg α ≤ 4
and ◦(û)∞ ≤ −2, then DGalK̂(L) is a not finite primitive for every λ ∈ Λ

Remark 2.3.19. In a natural way, we obtain the algebrized versions of Darboux
transformation, i.e., the algebrized Darboux transformation, denoted by D̂T. By
D̂Tn we denote the n iteration of D̂T, and by ĈIn we denote the algebrized Crum
iteration, where the algebrized wronskian is given by

Ŵ (ŷ1, . . . , ŷn) =

∣∣∣∣∣∣∣

ŷ1 · · · ŷn

...
...

∂̂n−1
z ŷ1 · · · ∂̂n−1

z ŷn

∣∣∣∣∣∣∣
.

In the same way, we define algebrized shape invariant potentials, algebrized super-
potential Ŵ , algebrized supersymmetric Hamiltonians Ĥ±, algebrized supersym-

metric partner potentials V̂±, algebrized ground state Ψ̂0

(−)
= e

− ∫
Ŵ√

α
dz, algebrized

wave functions Ψ̂λ

(−)
, algebrized raising and lowering operators Â and Â†. Thus,

we can rewrite entirely the section 2.2 using the derivation ∂̂z.

The following theorem show us the relationship between the algebrization
and Darboux transformation.

Theorem 2.3.20. Given the Schrödinger equation Lλ := H−Ψ(−) = λΨ(−), the
relationship between the algebrization ϕ and Darboux transformations DT, D̂T
with respect to Lλ is given by D̂Tϕ = ϕDT, that is D̂Tϕ(L) = ϕDT(L). In
other words, the Darboux transformations DT and D̂T are intertwined by the
algebrization ϕ.

Proof. Let assume the equations Lλ := H−Ψ(−) = λΨ(−) , L̂λ := Ĥ−Ψ̂(−) =

λΨ̂(−), L̃λ := H+Ψ(+) = λΨ(+) and ˜̂L := Ĥ+Ψ̂(+) = λΨ̂(+), where the Darboux

transformations DT and D̂T are given by DT(L) = L̃, D̂T(L̂) = ˜̂L,

DT :
V− 7→ V+

Ψ(−)
λ 7→ Ψ(+)

λ

, D̂T :
V̂− 7→ V̂+

Ψ̂(−)
λ 7→ Ψ̂(+)

λ ,

and ϕ(Lλ) = L̂λ, where the algebrization ϕ is given as in theorem 2.3.13. Then
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the following diagram commutes

Lλ
DT // L̃λ

L̂λ
D̂T

//
²²

ϕ

˜̂Lλ

²²
ϕ ⇒ D̂Tϕ(L) = ϕDT(L) ⇔ ˜̂L = ̂̃L.

¤
To illustrate D̂T we present the following example.

Example. Let consider the algebrized Schrödinger equation ĤΨ̂(−) = λΨ̂(−) with:

•
√

α(z) =
√

z2 − 1 and V̂−(z) = z
z−1 . Taking λ1 = 1 and Ψ̂(−)

1 =
√

z+1
z−1 , we

have that D̂T(V̂−) = V̂+(z) = z
z+1 and

D̂T(Ψ̂(−)
λ ) = Ψ̂(+)

λ =
√

z2 − 1∂zΨ̂
(−)
λ +

1√
z2 − 1

Ψ̂(−)
λ ,

where Ψ̂(−)
λ is the general solution of Ĥ−Ψ̂(−) = λΨ̂(−) for λ 6= 1.

The original potential corresponding to this example is given by V−(x) =
cosh x

cosh x−1 and for λ1 = 1 the particular solution Ψ(−)
1 is given by sinh x

cosh x−1 .

Applying DT we have that DT(V−) = V+(x) = cosh x
cosh x+1 and DT(Ψ(−)

λ ) =

Ψ(+)
λ = ∂xΨ(−)

λ + 1
sinh xΨ(−)

λ .

• √α = −z, V̂−(z) = z2 − z. Taking λ1 = 0 and Ψ̂(−)
0 = e−z we have that

D̂T(V̂−) = V+ = z2 + z and D̂T(Ψ̂(−)
λ ) = Ψ̂(+)

λ = −z∂zΨ̂
(−)
λ − zΨ̂(−)

λ , where
Ψ(−)

λ is the general solution of Ĥ−Ψ̂(−) = λΨ̂(−) for λ 6= 0. This example
corresponds to the Morse potential V−(x) = e−2x − e−x, introduced in the
list (1.38).

To illustrate ĈIn we present the following example, which is related with the
Chebyshev polynomials.
Example. Now, considering

√
α = −√1− z2, V = 0 with eigenvalues and eigen-

functions λ1 = 1, λ2 = 4, Ψ̂1 = z, Ψ̂4 = 2z2 − 1, Ψ̂n2 = Tn(z), where Tn(z) is
the Chebyshev polynomial of first kind of degree n. The algebrized Wronskian for
n = 2 is

Ŵ (z, 2z2 − 1) = −
√

1− z2(2z2 + 1),

and by algebrized Crum iteration we obtain the potential

ĈI2(V̂ ) = V̂2 = ((2z2 − 1)∂2
z + z∂z) ln Ŵ (z, 2z2 − 1)
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and the algebrized wave functions

ĈI2(Ψ̂λ) = Ψ̂(2)
λ =

Ŵ (z, 2z2 − 1, Tn)

Ŵ (z, 2z2 − 1)
.

To illustrate the algebrized shape invariant potentials and the operators Â
and Â†, we present the following example. In a natural way we introduce the
concept of algebrized shape invariant potentials V̂n+1(z, an) = V̂n(z, an+1)+R(an),
where the energy levels for n > 0 are given by En = R(a1) + · · ·R(an) and the
algebrized eigenfunctions are given by Ψ̂n(a1) = Â†(z, a1) · · · Â†(z, an)Ψ0(z, an).

Example. Let assume
√

α = 1− z2 and the algebrized super potential Ŵ (z) = z.
Following the method proposed in remark 2.2.16, step 1, we introduce µ ∈ C to
obtain Ŵ (z;µ) = µz, and

V̂±(z; µ) = Ŵ 2(z; µ)± ∂̂zŴ (z;µ) = µ(µ∓ 1)z2 ± µ,

thus, V̂+(z; a0) = a0(a0 − 1)z2 + a0 and V̂−(z; a1) = a1(a1 + 1)z2 − a1. By step 2,

∂̂z(V+(z; a0)− V−(z; a1)) = 2z(1− z2)(a0(a0 − 1)− a1(a1 + 1)).

By step 3, we obtain

a1(a1 + 1) = a0(a0 − 1), a2
1 − a2

0 = −(a1 + a0),

and assuming a1 6= ±a0 we have a1 = f(a0) = a0 − 1 and R(a1) = 2a0 + 1 =
(a0 + 1)2 − a2

0 = a2
1 − a2

0. This means that the potentials V̂± are algebrized shape
invariant potentials where E = En is easily obtained,

En =
n∑

k=1

R(ak) =
n∑

k=1

(
a2

k − a2
k−1

)
= a2

n − a2
0, an = fn(a0) = a0 + n.

Now, the algebrized ground state wave function of V̂−(z, a0) is

Ψ̂0 = e
∫ a0z

1−z2 dz =
1(√

1− z2
)a0 .

Finally, we can obtain the rest of eigenfunctions using the algebrized raising op-
erator:

Ψ̂n(z, a0) = Â†(z, a0)Â†(z, a1) · · · Â†(z, an−1)Ψ̂0(z, an).

This example corresponds to Pöschl-Teller potential introduced in the list (1.38).

Now to illustrate the power of Kovacic’s algorithm with the derivation ∂̂z,
we study some Schrödinger equations for non-rational shape invariant potentials
given in list (1.38). We work with specific values of these potentials, although we
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can apply our machinery (algebrization method and Kovacic’s algorithm) using
all the parameters of such potentials.

Morse potential: V (x) = e−2x − e−x.

The Schrödinger equation HΨ = λΨ is

∂2
xΨ =

(
e−2x − e−x − λ

)
Ψ.

By the Hamiltonian change of variable z = z(x) = e−x, we obtain

α(z) = z2, V̂ (z) = z2 − z, V̂(z) =
z2 − z − 1

4

z2
.

Thus, K̂ = C(z) and K = C(ex). In this way, the algebrized Schrödinger equation
ĤΨ̂ = λΨ̂ is

z2∂2
z Ψ̂ + z∂zΨ̂− (z2 − z − λ)Ψ̂ = 0

and the reduced algebrized Schrödinger equation ĤΦ̂ = λΦ̂ is

∂2
zΦ = rΦ, r =

z2 − z − 1
4 − λ

z2

This equation only could fall in case one, in case two or in case four (of Kovacic’s
algorithm). We start analyzing the case one: by conditions c2 and ∞3 we have
that

[√
r
]
0

= 0, α±0 =
1± 2

√−λ

2
,

[√
r
]
∞ = 1, and α±∞ = ∓1

2
.

By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ++) n = α+
∞ − α+

0 = −1−√−λ, λ = − (n + 1)2 ,

Λ+−) n = α+
∞ − α−0 = −1 +

√−λ, λ = − (n + 1)2 ,

Λ−+) n = α−∞ − α+
0 = −√−λ, λ = −n2,

Λ−−) n = α−∞ − α−0 =
√−λ, λ = −n2.

We can see that λ ∈ Λ− = {−n2 : n ∈ Z+}. Now, for λ ∈ Λ, the rational function
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ω is given by:

Λ++) ω = 1 + 3+2n
2z , λ ∈ Λ++, rn = 4n2+8n+3

4z2 + 2n+3
z + 1,

Λ+−) ω = 1− 1+2n
2z , λ ∈ Λ+−, rn = 4n2+8n+3

4z2 − 2n+1
z + 1,

Λ−+) ω = −1 + 1+2n
2z , λ ∈ Λ−+, rn = 4n2−1

4z2 − 2n+1
z + 1,

Λ−−) ω = −1 + 1−2n
2z , λ ∈ Λ−−, rn = 4n2−1

4z2 + 2n−1
z + 1,

where rn is the coefficient of the differential equation ∂2
zΦ = rnΦ.

By step three, there exists a polynomial of degree n satisfying the relation (1.6),

Λ++) ∂2
z P̂n + 2

(
1 + 3+2n

2z

)
∂zP̂n + 2(n+2)

z P̂n = 0,

Λ+−) ∂2
z P̂n + 2

(
1− 1+2n

2z

)
∂zP̂n + 2(−n)

z P̂n = 0,

Λ−+) ∂2
z P̂n + 2

(−1 + 1+2n
2z

)
∂zP̂n + 2(−n)

z P̂n = 0,

Λ−−) ∂2
z P̂n + 2

(−1 + 1−2n
2z

)
∂zP̂n + 2n

z P̂n = 0.

These polynomials only exists for n = λ = 0, with λ ∈ Λ−+ ∪ Λ−−. So that
the solutions of HΨ = 0, ĤΨ̂ = 0 and ĤΦ = 0 are given by

Φ0 =
√

ze−z, Ψ̂0 = e−z, Ψ = e−e−x

.

The wave function Ψ0 satisfy the conditions (1.23), which means that is ground
state (see [31]) and 0 ∈ specp(H). Furthermore, we have

DGalK(HΨ = 0) = DGalK̂(ĤΨ̂ = 0) = DGalC(z)(ĤΦ = 0) = B,

E(H) = E(Ĥ) = E(Ĥ) = 1.

We follow with the case two. The conditions c2 and ∞3 are satisfied, in this
way we have

Ec =
{

2, 2 + 4
√
−λ, 2− 4

√
−λ

}
and E∞ = {0},

and by step two, we have that 2 ± √−λ = m ∈ Z+, so that λ = − (
m+1

2

)2 and
the rational function θ has the following possibilities

θ+ =
2 + m

z
, θ− = −m

z
.
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By step three, there exist a monic polynomial of degree m satisfying the recurrence
relation (1.7):

θ+) ∂3
z P̂m + 3m+6

z ∂2
z P̂m − 4z2−4z−2m2−7m−6

z2 ∂zP̂m − 4mz+8z−4m−6
z2 P̂m = 0,

θ−) ∂3
z P̂m − 3m

z ∂2
z P̂m − 4z2−4z−2m2−m

z2 ∂zP̂m + 4mz−4m−2
z2 P̂m = 0.

We can see that for m = 1 the polynomial exists only for the case θ−, being
P̂1 = z − 1/2. In general, these polynomials could exist only for the case θ− with
m = 2n− 1, n ≥ 1, that is λ ∈ {−n2 : n ≥ 1}.

For instance, by case one and case two, we obtain Λ = {−n2 : n ≥ 0} =
specp(H). Now, the rational function φ and the quadratic expression for ω are

φ = −2n− 1
z

+
∂zP̂2n−1

P̂2n−1

, ω2 + Mω + N = 0, ω =
−M ±√M2 − 4N

2
,

where the coefficients M and N are given by

M =
2n− 1

z
− ∂zP̂2n−1

P̂2n−1

, N =
n2 − n + 1

4

z2
−

(2n− 1)∂zP̂2n−1

P̂2n−1
− 2

z
+

∂2
z P̂2n−1

P̂2n−1

−2.

Now, 4 = M2 − 4N 6= 0, which means that ĤΦ = −n2Φ with n ∈ Z+ has two
solutions given by Kovacic’s algorithm:

Φ1,n =
√

zP̂ne−z

zn
, Φ2,n =

√
zP̂n−1e

z

zn
.

The solutions of ĤΨ̂ = −n2Ψ̂ are given by

Ψ̂1,n =
P̂ne−z

zn
, Ψ̂2,n =

P̂n−1e
z

zn
,

and therefore, the solutions of the Schrödinger equation HΨ = −n2Ψ are

Ψ1,n = Pne−e−x

enx, Ψ2,n = Pn−1e
e−x

enx, Pn = P̂n ◦ z.

The wave functions Ψ1,n = Ψn satisfies the conditions of bound state, and
for n = 0, this solution coincides with the ground state presented above. Therefore
we have

Φn = Φ0f̂nP̂n, Ψ̂n = Ψ̂0f̂nP̂n, f̂n(z) =
1
zn

.

Thus, the bound states wave functions are obtained as

Ψn = Ψ0fnPn, fn(x) = f̂n(e−x) = enx.
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The Eigenrings and differential Galois groups for n > 0 satisfies

DGalK((H+n2)Ψ = 0) = DGalK̂((Ĥ+n2)Ψ̂ = 0) = DGalC(z)((Ĥ+n2)Φ = 0) = Gm,

dimC E(Ĥ + n2) = dimC E(Ĥ + n2) = dimC E(H + n2) = 2.

We remark that the Schrödinger equation with Morse potential, under suit-
able changes of variables [53], falls in a Bessel’s differential equation. Thus we can
obtain its integrability by means of corollary 1.1.31.

It is known that Eckart, Rosen-Morse, Scarf and Pöschl-Teller potentials,
under suitable transformations, fall in an Hypergeometric equation which allows
apply the theorem 1.1.29. These potentials are inter-related by point canonical
coordinate transformations (see [24, p. 314] ), so that Λ = C due to Pöschl-Teller
potential is obtained by means of Darboux transformations of V = 0 ([59, 76]).
We consider some particular cases of Eckart, Scarf and Poschl-Teller potentials
applying only the case 1 of Kovacic’s algorithm. The case 1 allow us to obtain the
enumerable set Λn ⊂ Λ, which include the classical results obtained by means of
supersymmetric quantum mechanics. Cases 2 and 3 of Kovacic algorithm also can
be applied, but are not considered here.

Eckart potential: V (x) = 4 coth(x) + 5, x > 0.

The Schrödinger equation HΨ = λΨ is

∂2
xΨ = (4 coth(x) + 5− λ)Ψ.

By the Hamiltonian change of variable z = z(x) = coth(x), we obtain

α(z) = (1− z2)2, V̂ (z) = 4z + 5, V̂(z) =
4

(z + 1)(z − 1)2
.

Thus, K̂ = C(z) and K = C(coth(x)). In this way, the algebrized Schrödinger
equation ĤΨ̂ = λΨ̂ is

(1− z2)2∂2
z Ψ̂− 2z(1− z2)∂zΨ̂− (4z + 5− λ)Ψ̂ = 0

and the reduced algebrized Schrödinger equation ĤΦ̂ = λΦ̂ is

∂2
zΦ = rΦ, r =

4z + 4− λ

(z − 1)2 (z + 1)2
=

2− λ
4

(z − 1)2
+

λ
4 − 1

(z − 1)
+

−λ
4

(z + 1)2
+

1− λ
4

(z + 1)

We can see that this equation could fall in any case of Kovacic’s algorithm.
Considering λ = 0, the conditions {c1, c2,∞1} of case 1 are satisfied, obtaining

[
√

r]−1 = [
√

r]1 = [
√

r]∞ = α+
∞ = 0, α±−1 = α−∞ = 1, α+

1 = 2, α−1 = −1.
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By step two, the elements of D are 0 and 1. The rational function ω for n = 0 and
for n = 1 must be

ω =
1

z + 1
+

−1
z − 1

.

By step three we search the monic polynomial of degree n satisfying the relation
(1.6). Starting with n = 0 the only one possibility is P̂0(z) = 1, which effectively
satisfy the relation (1.6), while P̂1(z) = z +a0 does not exists. In this way we have
obtained one solution using Kovacic algorithm:

Φ0 =
z + 1
z − 1

, Ψ̂0 =

√
z + 1

(z − 1)3
,

this means that 0 ∈ Λn. We can obtain the second solution using the first solution:

Φ0,2 =
z2 + z − 4− 4 ln (z + 1) z − 4 ln (z + 1)

z − 1
, Ψ̂0,2 =

Φ0,2√
z2 − 1

.

Furthermore the differential Galois groups and Eigenrings for λ = 0 are

DGalC(z)(ĤΦ = 0) = Ga, DGalK(HΨ = 0) = DGalK̂(ĤΨ̂ = 0) = G{2},

E(Ĥ) =
{

1,
(z + 1)2

(1− z)2
∂z +

2(z + 1)
(1− z)3

}
,

E(Ĥ) =
{

1,
(z + 1)2

(1− z)2
∂z − z2 + 3z + 2

(1− z)3

}
,

E(H) =
{

1,
(coth(x) + 1)2

(1− coth(x))2(1− coth2(x))
∂x − coth2(x) + 3 coth(x) + 2

(1− coth(x))3

}
.

Now, for λ 6= 0, the conditions {c2,∞1} of case 1 are satisfied:

[
√

r]−1 = [
√

r]1 = [
√

r]∞ = α+
∞ = 0, α−∞ = 1,

α±−1 = 1±√1−λ
2 , α±1 = 1±√9−λ

2 .

By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ++−) n = α+
∞ − α+

−1 − α−1 = −1−
√

1−λ−√9−λ
2 , λ = 4− 4

(n+1)2 − n2 − 2n,

Λ+−−) n = α+
∞ − α−−1 − α−1 = −1 +

√
1−λ+

√
9−λ

2 , λ = 4− 4
(n+1)2 − n2 − 2n,

Λ−+−) n = α−∞ − α+
−1 − α−1 =

√
1−λ+

√
9−λ

2 , λ = 5− 4
n2 − n2,

Λ−−−) n = α−∞ − α−−1 − α−1 =
√

1−λ+
√

9−λ
2 , λ = 5− 4

n2 − n2.
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Therefore, we have that

Λn ⊆
{

4− 4
(n + 1)2

− n2 − 2n : n ∈ Z+

}
∪

{
5− 4

n2
− n2 : n ∈ Z+

}
.

Now, for λ ∈ Λ, the rational function ω is given by:

Λ++−) ω = z(n−1)−n2−2n−1
(n+1)(z+1)(z−1)

, rn = −2z2(n−1)+4z(n+1)2+(n+1)(n3+3n2+2n+2)

(n+1)2(z+1)2(z−1)2
,

Λ+−−) ω = nz(n+1)+2
(n+1)(z+1)(1−z)

, rn = nz2(n+1)3+4z(n+1)2+n3+2n2+n+4

(n+1)2(z+1)2(z−1)2
,

Λ−+−) ω = z(n−2)−n2

n(z+1)(z−1)
, rn = −2z2(n−2)+4n2z+n(n3−n+2)

n2(z+1)2(z−1)2
,

Λ−−−) ω = nz(n−1)+2
n(z+1)(1−z)

, rn = n3z2(n−1)+4n2z+n3−n2+4

n2(z+1)2(z−1)2
,

where rn is the coefficient of the differential equation ∂2
zΦ = rnΦ.

By step three, there exists a monic polynomial of degree n satisfying the relation
(1.6),

Λ++−) ∂2
z P̂n + 2

(
z(n−1)−n2−2n−1
(n+1)(z+1)(z−1)

)
∂zP̂n + 2(1−n)

((n+1)2(z+1)(z−1) P̂n = 0,

Λ+−−) ∂2
z P̂n + 2

(
nz(n+1)+2

(n+1)(z+1)(1−z)

)
∂zP̂n + n(n+1)

(z+1)(z−1) P̂n = 0,

Λ−+−) ∂2
z P̂n + 2

(
z(n−2)−n2

n(z+1)(z−1)

)
∂zP̂n + 2(2−n)

n2(z+1)(z−1) P̂n = 0,

Λ−−−) ∂2
z P̂n + 2

(
nz(n−1)+2

n(z+1)(1−z)

)
∂zP̂n + n(n−1)

(z+1)(z−1) P̂n = 0.

The only one case in which there exist the polynomial P̂n of degree n is for Λ+−−).
The solutions of the equation ĤΦ = λΦ, with λ 6= 0, are:

Λ++−) Φn = P̂nf̂nΦ0, Φ0 = 1
z−1 f̂n = (z − 1)

n(1−n)
2(n+1) (z + 1)

n(n+3)
2(n+1) ,

Λ+−−) Φn = P̂nf̂nΦ0, Φ0 = z+1
z−1 fn = (z − 1)

n(1−n)
2(n+1) (z + 1)

−n(n+3)
2(n+1) ,

Λ−+−) Φn = P̂nf̂nΦ1, Φ1 = 1
z−1 f̂n = (z + 1)

n2+n−2
2n (z − 1)

−n2+3n−2
2n ,

Λ−−−) Φn = P̂nf̂nΦ1, Φ1 = z+1
z−1 f̂n = (z + 1)

−n2−n+2
2n (z − 1)

−n2+3n−2
2n .

In any case Ψ̂n = Φn

1−z2 , but the case Λ+−−) includes the classical results obtained
by means of supersymmetric quantum mechanics. Thus, replacing z by coth(x) we
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obtain the eigenstates Ψn. The Eigenrings and differential Galois groups for n > 0
satisfies

DGalK((H − λ)Ψ = 0) ⊆ G{2m}, DGalK̂((Ĥ − λ)Ψ̂ = 0) ⊆ G{2m},

DGalC(z)((Ĥ + n2)Φ = 0) = Gm,

E(Ĥ + n2) = E(Ĥ + n2) = E(H + n2) = {1}.
Scarf potential: V (x) = sinh2 x−3 sinh x

cosh2 x
.

The Schrödinger equation HΨ = EΨ is

∂2
xΨ =

(
sinh2 x− 3 sinh x

cosh2 x
− E

)
Ψ.

By the Hamiltonian change of variable z = z(x) = sinh(x), we obtain

α(z) = 1 + z2, V̂ (z) =
z2 − 3z

1 + z2
.

Thus, K̂ = C(z,
√

1 + z2) and K = C(sinh(x), cosh(x)). In this way, the reduced
algebrized Schrödinger equation ĤΦ = λΦ is

∂2
z =

(
λz2 − 12z + λ− 1

4(z2 + 1)2

)
Φ, λ = 3− 4E.

Applying Kovacic’s algorithm for this equation with λ = 0, we see that does
not falls in case 1. We consider only λ 6= 0. By conditions {c2,∞2} of case 1 we
have that

[
√

r]−i = [
√

r]i = [
√

r]∞ = 0, α±∞ = 1±√1+λ
2 ,

α+
−i = 5

4 − i
2 , α−−i = − 1

4 + i
2 α+

i = 5
4 + i

2 , α−i = − 1
4 − i

2 .

By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ+++) n = α+
∞ − α+

−i − α+
i =

√
λ+1−4

2 , λ = 4n2 + 16n + 15,

Λ+−−) n = α+
∞ − α−−i − α−i =

√
λ+1+2

2 , λ = 4n2 − 8n + 3,

obtaining in this way

Λn ⊆
{
4n2 + 16n + 15 : n ∈ Z+

} ∪ {
4n2 − 8n + 3 : n ∈ Z+

}
.
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Now, the rational function ω is given by:

Λ+++) ω =
5z − 2

2(z2 + 1)
, Λ+−−)

2− z

2(z2 + 1)
.

By step three, there exists P̂0 = 1 and a polynomial of degree n ≥ 1 should satisfy
either of the relation (1.6),

Λ+++) ∂2
z P̂n + 5z−2

z2+1∂zP̂n − nz2(n+4)+3z+n2+4n−3
(z2+1)2 P̂n = 0,

Λ+−−) ∂2
z P̂n + 2−z

z2+1∂zP̂n − nz2(n−2)+3z+n2−2n−3
(z2+1)2 P̂n = 0.

In both cases there exists the polynomial P̂n of degree n ≥ 1. The basis of solutions
{Φ1,n,Φ2,n} of the equation reduced algebrized Schrödinger are:

Λ+++) Φ1,n = P̂nf̂nΦ1,0, Φ1,0 = (1 + z2)
5
4 e− arctan z, f̂n = 1,

Λ+−−) Φ1,n = P̂nf̂nΦ1,0, Φ1,0 = 1
4√1+z2 earctan z, fn = 1.

The second solutions for these cases with associated polynomials P̂n of degree n
are given by

Λ+++) Φ2,n = P̃nfnΦ0, Φ0 = 22+21x+12x2+6x3

4
√

1+z2
e− arctan z, fn = 1,

Λ+−−) Φ2,n = P̃nfnΦ0, Φ0 = 1
4
√

1+z2
earctan z

∫
1√

1+z2
e−2 arctan zdz, fn = 1.

In both cases Ψ̂ = Φ
4√1+z2 , but the classical case (see references [24, 31]) is

Λ+−−), so that replacing z by sinh x and λ by 3−4E we obtain the eigenstates Ψn.

The Eigenrings and differential Galois groups are

E(H − λ) = E(Ĥ − λ) = E(Ĥ− λ) = {1},

DGalK((H − λ)Ψ = 0) = DGalK̂((Ĥ − λ)Ψ̂ = 0) = DGalC(x)((Ĥ− λ)Φ = 0) = B.

Pöschl-Teller potential: V (r) = cosh4(x)−cosh2(x)+2
sinh2(x) cosh2(x)

, x > 0. The reduced alge-

brized Schrödinger equation ĤΦ = EΦ is

∂2
zΦ =

(
λz4 − (λ + 3)z2 + 8

4z2(z2 − 1)2

)
Φ, λ = 3− 4E.
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Considering λ = 0 and starting with the conditions {c2,∞1} of case 1, we
obtain

[
√

r]0 = [
√

r]−1 = [
√

r]1 = [
√

r]∞ = α+
∞ = 0, α−∞ = 1,

α+
−1 = α+

1 = 5
4 , α−−1 = α−1 = − 1

4 , α+
0 = 2, α−0 = −1.

By step two, the elements of D are 0 and 1. The rational function ω has the
following possibilities for n = 0 and for n = 1:

Λ++−−) n = 0, ω = 5/4
z+1 + −1/4

z−1 + −1
z ,

Λ+−+−) n = 0, ω = −1/4
z+1 + 5/4

z−1 + −1
z ,

Λ−+−−) n = 1, ω = 5/4
z+1 + −1/4

z−1 + −1
z ,

Λ−−+−) n = 1, ω = −1/4
z+1 + 5/4

z−1 + −1
z .

By step three we search the monic polynomial of degree n satisfying the relation
(1.6). Starting with n = 0 the only one possibility for Λ++−−) and Λ+−+−) is
P̂0(z) = 1, which does not satisfy the relation (1.6) in both cases, while P̂1(z) =
z + a0 effectively does exists, in where a0 = − 2

3 for Λ−+−−) and a0 = 2
3 for

Λ−−+−). In this way we have obtained two solutions (Φ1,0, Φ2,0) using Kovacic’s
algorithm:

Φ1,0 =
(
1− 2

3z

)
4

√
(z+1)5

z−1 , Ψ̂1,0 =
(
1− 2

3z

)
z+1√
z−1

,

Φ2,0 =
(
1 + 2

3z

)
4

√
(z−1)5

z+1 , Ψ̂2,0 =
(
1 + 2

3z

)
z−1√
z+1

,

this means that 0 ∈ Λn. Furthermore,

DGalC(x)(ĤΦ = 0) = G[4], DGalK̂(ĤΨ̂ = 0) = DGalK(HΨ = 0) = e,

dimC E(Ĥ) = 2, dimC E(Ĥ) = dimC E(H) = 4.

Now, for λ 6= 0 we see that conditions {c2,∞1} of case 1 lead us to

[
√

r]0 = [
√

r]−1 = [
√

r]1 = [
√

r]∞ = 0, α±∞ = 1±√1+λ
2 ,

α+
−1 = α+

1 = 5
4 , α−−1 = α−1 = − 1

4 , α+
0 = 2, α−0 = −1.
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By step two we have the following possibilities for n ∈ Z+ and for λ ∈ Λ:

Λ++++) n = α+
∞ − α+

−1 − α+
1 − α+

0 =
√

λ+1−8
2 , λ = 4n2 + 32n + 63,

Λ+++−) n = α+
∞ − α+

−1 − α+
1 − α−0 =

√
λ+1−2

2 , λ = 4n2 + 8n + 3,

Λ++−+) n = α+
∞ − α+

−1 − α−1 − α+
0 =

√
λ+1−5

2 , λ = 4n2 + 20n + 24,

Λ++−−) n = α+
∞ − α+

−1 − α−1 − α−0 =
√

λ+1+1
2 , λ = 4n2 − 4n,

Λ+−++) n = α+
∞ − α−−1 − α+

1 − α+
0 =

√
λ+1−5

2 , λ = 4n2 + 20n + 24,

Λ+−+−) n = α+
∞ − α−−1 − α+

1 − α−0 =
√

λ+1+1
2 , λ = 4n2 − 4n,

Λ+−−+) n = α+
∞ − α−−1 − α−1 − α+

0 =
√

λ+1−2
2 , λ = 4n2 + 8n + 3,

Λ+−−−) n = α+
∞ − α−−1 − α−1 − α−0 =

√
λ+1+4

2 , λ = 4n2 − 16n + 15,

obtaining Λn ⊆ Λa ∪ Λb ∪ Λc ∪ Λd ∪ Λe, where

Λa =
{
4n2 + 32n + 63 : n ∈ Z+

}
, Λb =

{
4n2 + 8n + 3 : n ∈ Z+

}

Λc =
{
4n2 + 20n + 24 : n ∈ Z+

}
, Λd =

{
4n2 − 4n : n ∈ Z+

}
,

Λe =
{
4n2 − 16n + 15 : n ∈ Z+

}
.

Now, the rational function ω is given by:

Λ++++) ω = 5/4
z+1 + 5/4

z−1 + 2
z , Λ+++−) ω = 5/4

z+1 + 5/4
z−1 + −1

z ,

Λ++−+) ω = 5/4
z+1 + −1/4

z−1 + 2
z , Λ++−−) ω = 5/4

z+1 + −1/4
z−1 + −1

z ,

Λ+−++) ω = −1/4
z+1 + 5/4

z−1 + 2
z , Λ+−+−) ω = −1/4

z+1 + 5/4
z−1 + −1

z ,

Λ+−−+) ω = −1/4
z+1 + −1/4

z−1 + 2
z , Λ+−−−) ω = −1/4

z+1 + −1/4
z−1 + −1

z .

By step three, there exists a monic polynomial of degree n satisfying the
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relation (1.6),

Λ++++) ∂2
z P̂n + (3z+2)(3z−2)

z(z+1)(z−1) ∂zP̂n + n(n+8)
(z+1)(1−z)Pn = 0,

Λ+++−) ∂2
z P̂n + 3z2+2

z(z+1)(z−1)∂zP̂n + n(n+2)
(z+1)(1−z) P̂n = 0,

Λ++−+) ∂2
z P̂n + 6z2−3x−4

z(z+1)(z−1)∂zP̂n + nz(n+5)+6
z(z+1)(1−z) P̂n = 0,

Λ++−−) ∂2
z P̂n + 3z−2

z(z+1)(1−z)∂zP̂n + nz(n−1)−12
4z(z+1)(1−z) P̂n = 0,

Λ+−++) ∂2
z P̂n + 6z2+3z−4

z(z+1)(z−1)∂zP̂n + z(n2+5)−6
z(z+1)(1−z) P̂n = 0,

Λ+−+−) ∂2
z P̂n + 3z+2

z(z+1)(z−1)∂zP̂n + nz(n−1)+3
z(z+1)(1−z) P̂n = 0,

Λ+−−+) ∂2
z P̂n + 3z2−4

z(z+1)(z−1)∂zP̂n + n(n+2)
(z+1)(1−z) P̂n = 0,

Λ+−−−) ∂2
z P̂n + 3z2−2

z(z+1)(1−z)∂zP̂n + n(4−n)
(z+1)(z−1)Pn = 0.

The polynomial Pn of degree n exists for λn ∈ Λb with n even, that is,
Λn = {n ∈ Z : 16n2 + 16n + 3}, for Λ++−+) and Λ+−−+). Therefore E = En =
{n ∈ Z : −4n2 − 4n}.
The corresponding solutions for Λn are

Λ+++−) Φ1,n = P̂2nf̂nΦ1,0, Φ1,0 =
4
√

(z2−1)5

z f̂n = 1, Ψ̂1,0 = z − 1
z ,

Λ+−−+) Φ̂2,n = P̃2nf̂nΦ̂2,0, Φ̂2,0 = z2

4√z2−1
f̂n = 1 Ψ̂2,0 = z2√

z2−1
.

These two solutions are equivalent to the same solution of the original Schrödinger
equation and corresponds to the well known supersymmetric quantum mechanics
approach to this Pöschl-Teller potential, [24, 25].

Searching New Potentials in Parameterized Differential Equations.
The main object to search new potentials using ∂̂z is the family of differential
equations presented by Darboux in [28], see section 1.2.2 and equation (1.24),

∂2
zy + P∂zy + (Q− λR)y = 0.

We recall that the differential equations presented in section 1.1.4 corresponds
to this kind. After, we reduce the previous equation to put it in the form of the
reduced algebrized Schrödinger equation αHΦ = λΦ, checking that Card(Λ) > 1,
to obtain the Schrödinger equation HΨ = λΨ (starting with the potential V̂ and
arriving to the potential V ). To do this, we propose the following heuristic:
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1. Reduce a differential equation of the form (1.24) and put it in the form
αHΦ = λΦ, checking that Card(Λ) > 1 and to avoid triviality, α must be a
non-constant function.

2. Write W = 1
4∂z(lnα) and obtain V̂ (z) = α(V̂ − ∂zW −W2).

3. Solve the differential equation (∂xz)2 = α, write z = z(x), V (x) = V̂ (z(x)).

To illustrate this method, we present the following examples.

Bessel Potentials

• (From Darboux transformations over V = 0) In the differential equation

∂2
zΦ =

(
n(n + 1)

z2
+ µ

)
Φ, µ ∈ C,

we see that λ = −n(n + 1) and α = z2. Applying the method, we obtain
V̂ = µ we obtain V̂ (z) = µz2 + 1

4 and z = z(x) = e±x. Thus, we have
obtained the potentials V (x) = V̂ (z(x)) = µe±2x + 1

4 (compare with [35,
§6.9]).

• (From Bessel differential equation) The equation

∂2
zy +

1
z
∂zy +

z2 − n2

z2
y = 0, n ∈ 1

2
+ Z,

is transformed to the reduced equation

∂2
zΦ =

(
n2

z2
− 4z2 + 1

4z2

)
Ψ.

We can see that λ = −n2, α = z2, obtaining V̂ = −z2− 1
4 , V̂ = −z4− 1

4z2+ 1
4

and z = z(x) = e±x. Thus, so that we have obtained the potential V (x) =
V̂ (z(x)) = −e±4x − 1

4e±2x + 1
4 (compare with [35, §6.9]).

We remark that the previous examples give us potentials related with the
Morse potential, due to their solutions are given in term of Bessel functions.

We can apply this method to equations such as Whittaker, Hypergeometric
and in particular, differential equations involving orthogonal polynomials (compare
with [24, §5]).
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Final Remark

The aim of this work is, in contemporary terms, a formalization of original ideas
and intuitions given by G. Darboux, E. Witten and L. É. Gendenshtein in the
context of the Galois theory of linear differential equations. We found the following
facts:

• We constructed integrable Schrödinger equations through the superpoten-
tial which is an algebraic solution of Riccati equation associated with the
potential, defined over a differential field.

• Darboux transformation was interpreted as an isogaloisian transformation,
allowing to obtain isomorphisms between their eigenrings.

• We introduced in a general way, the Hamiltonian algebrization method, al-
lowing to apply algorithmic tools such as Kovacic’s algorithm to obtain the
solutions, differential Galois groups and Eigenrings. Also, we applied this
algebrization procedure in Supersymmetric quantum mechanics.

As a conclusion, as happen in other areas of the field of differential equations,
in view of the many families of examples studied along this thesis, we can conclude
that the differential Galois theory is the natural framework where should be studied
the supersymmetric quantum mechanics.
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extensions exponentielles, École Polytechnique, Phd Thesis (2001)

[35] A. Galindo & P. Pascual, Quantum Mechanics I, Springer Verlag, Berlin 1990.
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