ANNEXE II: TABLE AND FIGURE INDEXES

Figure A.5 *Rhodococcus* sp. CR-53.

TABLE INDEX

RESUMEN (SUMMARY)

GENERAL INTRODUCTION

Table I.1 Lipids directly derived from fatty acids.	_84
Table I.2 Classification and biological functions of terpenes.	<u>91</u>
Table I.3 Differences between lipases and esterases.	_99
Table I.4 Reactions catalyzed by lipases.	_102
Table I.5 Families of lipolytic enzymes (Arpigny & Jaeger, 1999; Jaeger & Eggert, 2002).
128-	-129
Table I.6 Main lipolytic microorganisms involved in pathogenesis. 139-	-140

GENERAL MATERIALS AND METHODS

178-180
181-182
186
188
189
190
195–197
198
199
205
210

Table M.12 Gel composition and solutions used for SDS-PAGE gels.	214
Table M.13 Composition of solution B.	219
Table M.14 Compounds which effect was assayed on lipolytic activity.	226

Table C1.1 Lipolytic activity determination of the selected strains.	229
Table C1.2 Amino acid composition of BMLipA and BP6LipA.	251
Table C1.3 Substrate profile of BMLipA and BP6LipA.	255
Table C1.4 Kinetic parameters of BMLipA and BP6LipA.	261
Table C1.5 Effect of several agents on BMLipA and BP6LipA activity.	266

CHAPTER 2

Table C2.1 Number of CFU g^{-1} and isolates from each soil sample.	289
Table C2.2 Screening of the hydrolytic activities of the soil isolates.	291
Table C2.3 Hydrolytic activities of the most active soil isolates.	292–294
Table C2.4 Isolates selected by fluorimetric paper assay.	296
Table C2.5 Spectrofluorimetric determination of the lipolytic activity	of the most
active isolates on lipid substrates.	297–298
Table C2.6. Carbohydrate degradation of strain CR-179 and other Bad	cillus-related
species showing a similar profile.	303
Table C2.7. Characteristics that distinguish strain CR-53 from close I	Rhodococcus
type strain species.	311

Table C3.1 CRL activity evaluated by colorimetric microassay and by HPLC	_339
Table C3.2 CRL inhibition by SFAs evaluated by several methods.	340
Table C3.3 Inhibition of <i>Bacillus</i> -related lipases by SFAs.	_341

 Table C4.1 Effect of natural substances on CRL evaluated by HPLC.
 359

Table C5.1 Amino acid composition of GehA.	386
Table C5.2 Substrate profile of GehA.	389
Table C5.3 Effect of several agents on GehA.	394
Table C5.4 Amino acid composition of EstV.	396
Table C5.5 Purification of EstV.	400
Table C5.6 Substrate profile of EstV.	401
Table C5.7 Effect of several agents on EstV.	406
Table C5.8 Effect of natural substances on GehA and EstV.	409

FIGURE INDEX

CONTENTS

Figure A.1 <i>Bacillus</i> sp. CR-179.	11
--	----

ABBREVIATIONS

Figure A.2 Isolated CR-273.	2	5
e		

RESUMEN (SUMMARY)

Figure R.1 Halo de degradación producido por un microorganismo lipolítico en u	ına
placa suplementada con tributirina y rodamina B3	31
Figure R.2. Hidrólisis y síntesis de acilglicéridos mediante lipasas.	35
Figure R.3 Modelo de la estructura tridimensional de BMLipA y BP6LipA.	19
Figure R.4 Morfología celular de las cepas CR-179 y CR-535	56
Figure R.5 Esquema del nuevo microensayo colorimétrico desarrollado en e	ste
capítulo6	50
Figure R.6 Comparación de la inhibición causada por sustancias naturales sol	bre
CRL, GehA y EstV6	53

GENERAL INTRODUCTION

Figure I.1 Three-dimensional structure of *B. subtilis* LipA (van Pouderoyen *et al.*, 2001).

Figure I.2 Micelles and bilayers formed by	amphipathic lipids8	0
Figure I.3 General classification of lipids.	8	1

Figure I.4 Structure of a saturated (A) and an unsaturated (B) fatty acid83
Figure I.5 Structure of glycerol and acylglycerols (AGs)86
Figure I.6 Honeybee wax87
Figure I.7 Structure of a sphingoceramide89
Figure I.8 Terpenes and related compounds90
Figure I.9 Structure of sterane (A) and cholesterol (B)92
Figure I.10 Ginkgolic acid, a catechol-derived lipid93
Figure I.11 Structure and degradation of glycerophospholipids94
Figure I.12 Hydrolysis or synthesis of acylglycerols by lipases98
Figure I.13 Schematic representation of the canonical α/β hydrolase fold104
Figure I.14 Mechanism of hydrolysis108
Figure I.15 Comparison of the enzymatic activity of carboxylesterases and "true"
lipases109
Figure I.16 Closed (A) and open (B) state of <i>Candida rugosa</i> lipase111
Figure I.17 Active site of <i>Burkholderia cepacia</i> lipase112
Figure I.18 Shape of the scissile fatty acid binding site of esterases and "true"
lipases114
Figure I.19 Ribbon diagram of the three-dimensional structure of Candida rugosa
lipase119
Figure I.20 Model for the regulatory network controlling expression of the lipase
operon lipA/H in <i>Ps. aeruginosa</i> 122
Figure I.21 Major pathways used by bacteria to secrete lipases (Eggert & Jaeger, 2002)
125
Figure I.22 <i>P. acnes</i> and acne141
Figure I.23 Synopsis of main factors involved in the pathogenesis of acne144
Figure I.24 Interaction between <i>P. acnes</i> and immune cells146
Figure I.25 Helicobacter pylori and peptic ulcer. 148
Figure I.26 Main factors involved in Helicobacter pylori-induced pathogenesis
152-153
Figure I.27 Structure of lipstatin154
Figure I.28 Structures of digitonin (A) and glycyrrhizic acid (B)158
Figure I.29 General structure of a flavonoid160

Figure I.30 Skeletal structures of alkaloids found in medicinal plants. _____163

GENERAL MATERIALS AND METHODS

Figure M.1 AKTA FPLC (Fast Protein Liquid Chromatograph).	169	
Figure M.2 Direct PCR amplification.	193	
Figure M.3 General process of inverse PCR.	194	
Figure M.4 Control elements of the pET-28a–E. coli BL21 (DE3).	209	

Figure C1.1 Model of the three-dimensional structure of Bacillus megaterium Lip
22
Figure C1.2 General process of isolation and cloning of <i>Bacillus</i> lipase-coding gene
23
Figure C1.3 Zymogram analysis of <i>B. megaterium</i> CECT 370 lipolytic system24
Figure C1.4 Zymogram analysis of <i>Bacillus</i> sp. BP-6 lipolytic system24
Figure C1.5 Consensus primers for the central region of (Geo)Bacillus lipases24
Figure C1.6 Amplification of <i>Bacillus</i> lipase-coding genes24
Figure C1.7 Primers designed from the 5' and 3'ends of the <i>yfiP</i> gene sequence24
Figure C1.8 Activity on MUF-derivatives of the recombinant clones obtained24
Figure C1.9 Confirmation by Dot blot of the presence of the cloned genes in the
parental strains24
Figure C1.10 Nucleotide and amino acid sequence of B. megaterium CECT 370 lip
ORF25
Figure C1.11 Automated comparative protein model of BMLipA and BP6LipA25
Figure C1.12 Three-dimensional structure of several <i>Bacillus</i> lipases25
Figure C1.13 Substrate range of BMLipA and BP6LipA25
Figure C1.14 Optimum temperature and pH of BMLipA (blue) and BP6LipA (red
25
Figure C1.15 Temperature and pH stability of BMLipA (blue) and BP6LipA (red
after 1 h-incubation. 25

Figure C1.16 Long-term temperature stability of the cloned lipases.	260
Figure C1.17 Kinetic behaviour of BMLipA (blue) and BP6LipA (red).	<u>262</u>
Figure C1.18 Effect of cations and amino acid modifiers on BMLipA (blue)	and
BP6LipA (red).	264
Figure C1.19 Effect of PMSF and other agents on BMLipA (blue) and BP6L	JipA
(red)	<u>265</u>
Figure C1.20 Zymogram analysis on MUF-butyrate of BMLipA and BP6LipA.	267

Figure C2.1 Iguazú rainfalls.281
Figure C2.2 Isolation of microorganisms from a subtropical forest soil286
Figure C2.3 Examples of the morphological diversity found among the isolated
strains290
Figure C2.4 Hydrolytic activity of the most active isolates on the substrates
evaluated295
Figure C2.5 Fluorimetric paper assay of several selected lipolytic isolates296
Figure C2.6 Hydrolytic activity of strain CR-179300
Figure C2.7 Microscopic analysis of strain CR-179 morphological properties301
Figure C2.8 Phylogenetic trees based on the 16S rDNA sequence of strain CR-179.
304
Figure C2.9 Zymogram analysis of <i>Bacillus</i> sp. CR-179 crude cell extracts306
Figure C2.10 Nucleotide and amino acid sequence of the lipase-coding gene
fragment from Bacillus sp. CR-179 obtained by using the primers
FWSUB/BWSUB307
Figure C2.11 Activity of strain CR-53 lipid substrates308
Figure C2.12 Cellular morphology of strain CR-53309
Figure C2.13 Phylogenetic tree based on the 16S rDNA sequence of strain CR-53.
312
Figure C2.14 Zymographic analysis of crude cell extracts from <i>Rhodococcus</i> sp. CR-
53 313

Figure C3.1 Colorimetric microassay.	329
Figure C3.2 Scheme of the new colorimetric microassay developed	l in this chapter.
	334
Figure C3.3 CRL activity evaluated by the colorimetric microassay	and by HPLC.
	338
Figure C3.4 Effect of saturated fatty acids on CRL and Bacillus-related	ed lipases342

CHAPTER 4

Figure C4.1 Three-dimensional structure of digitonin.	351
Figure C4.2 Structure of the saponins, flavonoids and alkaloids ana	lyzed357–358
Figure C4.3 Comparison of the IC_{16} of natural substances evaluated	uated on CRL by
HPLC.	360
Figure C4.4 Comparison of the inhibition produced by saponins	on CRL evaluated
by HPLC (blue) and colorimetric microassay (red).	361

Figure C5.1 <i>H. pylori</i> cells (http://www.helico.com).	<u> </u>
Figure C5.2 Isolation, cloning and purification of <i>H. pylori</i> 26695 EstV.	_382
Figure C5.3 Amino acid sequence and secondary structure prediction of GehA	_387
Figure C5.4 Activity of <i>E. coli</i> XL1-Blue–pUC-GehA on lipid substrates.	388
Figure C5.5 Substrate range of GehA.	390
Figure C5.6 Optimum temperature and pH of GehA.	<u>391</u>
Figure C5.7 Kinetic behaviour of GehA on <i>p</i> -NP butyrate and <i>p</i> -NP caprate.	<u> </u>
Figure C5.8 Effect on GehA of several agents at a concentration of 1 mM (blue)	and
10 mM (red).	<u>393</u>
Figure C5.9 Amino acid sequence and secondary structure prediction of EstV	<u>398</u>
Figure C5.10 Cloning and purification of EstV.	400
Figure C5.11 Substrate range of EstV.	402
Figure C5.12 Optimum temperature and pH of EstV.	403

Figure C5.13 Kinetic behaviour of EstV on MUF-butyrate.	404
Figure C5.14 Effect on EstV of several agents at a concentration of 1 m	M (blue) and
10 mM (red).	405
Figure C5.15 Inhibition (and activation) of GehA and EstV by natura	l substances.
	408
Figure C5.16 Comparison of inhibition by natural substances on CRI	L, GehA and
EstV.	410

GENERAL DISCUSSION

Figure D.1 Three-dimensional structure of (\pm) -catechin (left) and kaempferol	(right).
	425
Figure D.2 Hypothetical interaction between (±)-catechin and CRL.	434

REFERENCES AND WEB RESOURCES

Figure A.3 Natural environments are a source of novel microbial strains and also a source of substances of pharmacological interest. _____437

ANNEXE I: PUBLICATIONS

Figure A.4 Amplification of *B. subtilis lipB*-related genes. _____477

ANNEXE II: TABLE AND FIGURE INDEX

Figure A.5 *Rhodococcus* sp. CR-53. _____595

"Even the difficulties and the deceptions should be considered as positive means to evolve or to start again, since lamentations do not contribute to solve the negative events of life"

Michel Leroy

"Incluso los obstáculos y las decepciones deben ser considerados como medios positivos para evolucionar o comenzar de nuevo, ya que las lamentaciones no aportan ninguna solución a los aspectos negativos de la vida"

Michel Leroy

Cristian Ruiz Rueda

PhD Thesis

2005