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Abstract

Transactional Memory (TM) aims at making shared-memory parallel program-
ming easier by abstracting away the complexity of managing shared data. The
programmer defines sections of code, called transactions, which the TM system
guarantees that will execute atomically and in isolation from the rest of the
system. The programmer is not required to implement such behaviour, as hap-
pens in traditional mutual exclusion techniques like locks – that responsibility
is delegated to the underlying TM system. In addition, transactions can exploit
parallelism that would not be available in mutual exclusion techniques; this is
achieved by allowing optimistic execution assuming no other transaction oper-
ates concurrently on the same data. If that assumption is true the transaction
commits its updates to shared memory by the end of its execution, otherwise,
a conflict occurs and the TM system may abort one of the conflicting transac-
tions to guarantee correctness; the aborted transaction would roll-back its local
updates and be re-executed. Even though, hardware and software implemen-
tations of TM have been studied in detail, large-scale adoption of software-only
approaches have been hindered for long due to severe performance limitations.

In this thesis, we focus on identifying and solving hardware transactional mem-
ory (HTM) issues in order to improve concurrency and scalability. Two key di-
mensions determine the HTM design space: conflict detection and speculative
version management. The first determines how conflicts are detected between
concurrent transactions and how to resolve them. The latter defines where
transactional updates are stored and how the system deals with two versions
of the same logical data. This thesis proposes a flexible mechanism that allows
efficient storage and access to two versions of the same logical data, improving
overall system performance and energy efficiency.

Additionally, in this thesis we explore two solutions to reduce system con-
tention – circumstances where transactions abort due to data dependencies
– in order to improve concurrency of HTM systems. The first mechanism pro-
vides a suitable design to apply prefetching to speed-up transaction executions,
lowering the window of time in which such transactions can experience con-
tention. The second is an accurate abort prediction mechanism able to identify,
before a transaction’s execution, potential conflicts with running transactions.



This mechanism uses past behaviour of transactions and locality in memory ref-
erences to infer predictions, adapting to variations in workload characteristics.
We demonstrate that this mechanism is able to manage contention efficiently
in single-application and multi-application scenarios.

Finally, this thesis also analyses initial real-world HTM protocols that recently
appeared in market products. These protocols have been designed to be simple
and easy to incorporate in existing chip-multiprocessors. However, this sim-
plicity comes at the cost of severe performance degradation due to transient
and persistent livelock conditions, potentially preventing forward progress. We
show that existing techniques are unable to mitigate this degradation effec-
tively. To deal with this issue we propose a set of techniques that retain the
simplicity of the protocol while providing improved performance and forward
progress guarantees in a wide variety of transactional workloads.
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1
Introduction

During the last decades the number of transistors in a single chip has increased exponen-

tially, from the first home computers that had a few thousands of transistors to today’s de-

signs that involve hundreds of millions; with desktop-oriented chips being close to 1 billion

transistors, and server-oriented chips surpassing the 2 billion transistors mark. These ever-

increasing transistor densities led to substantial performance improvements of sequential

processors [64]. However, computer architects ended up hitting the power wall, i.e., unde-

sired levels of power consumption associated to the increase of operation frequency [15].
In order to continue delivering performance improvements, manufacturers have shifted

towards designs that integrate several processing units or cores on a single chip. Unfor-

tunately, software developers can no longer rely on the next generation of processors to

improve performance of their sequential programs, making thread-level parallelism the

new challenge to achieve high performance.

The advent of such multi-core chips has moved parallel programming from the domain

of high performance computing to the mainstream. Now, software developers have the

difficult task to write parallel programs to take advantage of multi-core hardware archi-
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1. INTRODUCTION

tectures. However, in spite of years of research, writing parallel programs using existing

parallel programming methodologies is extremely hard, error prone, and difficult to debug.

1.1 Parallel Programming Problems

Multi-cores usually operate under a shared memory model, allowing parallel tasks of an

application to cooperate by concurrently accessing shared resources using a common ad-

dress space. Each task can be seen as a sequential thread of execution that performs useful

computation. Thus, a parallel programming model has to create and manage several tasks

that need to synchronise and communicate to each other. However, having concurrent

parallel tasks may introduce several new classes of potential software bugs, of which data

races (e.g., data dependencies) are the most common [63]. Today’s programming models

commonly target this problem via lock-based approaches. In this parallel programming

technique, locks are used to provide mutual exclusion for shared memory accesses that are

used for communication among parallel tasks.

Unfortunately, when using locks, programmers must pick between two undesirable

choices:

• Use coarse-grain locks, where large regions of code are indicated as critical regions.

This makes the task of adding coarse-grain locks to a program quite straightforward,

but introduces unnecessary serialisation that degrades system performance.

• On the other side, fine-grain locking aims at critical sections of minimum size. Smaller

critical sections permit greater concurrency, and thus scalability. However, this scheme

leads to higher complexity, and it is usually difficult to prove the correctness of the

resulting algorithm.

This two choices establish a programming effort versus performance trade-off. The

complexity associated with fine-grain locking can lead to incorrect synchronisation, i.e.,

data races, which could manifest in the form of non-deterministic bugs, producing incor-

rect results for certain executions of an application. This fact makes lock-based programs

difficult to debug, because bugs are hard to reproduce. Synchronisation errors may also

result in deadlock or livelock conditions. Using multiple locks requires strict programmer

discipline to avoid cyclic dependencies where two or more threads create circular requests

2



to acquire locks, leading to a deadlock scenario where threads are blocked and no forward

progress is made. On the other hand, livelocks occur when two or more threads cease to

make forward progress while performing the same piece of work repeatedly.

Even correctly parallelised applications may behave poorly due to coherence or unnec-

essary contention in critical sections. Parallel applications have to modify a certain amount

of shared data. Modifying the same data in different cores causes cache-lines to move be-

tween private caches, penalising system throughput. Mutual exclusion enforced by locks

restricts parallelism even if two critical sections would not access the same shared data, in

such cases an opportunity for greater performance is lost due to the restrictive nature of

lock based concurrency.

1.2 Transactional Memory

To address the need for a simpler parallel programming model, Transactional Memory

(TM) [39, 40] has emerged as a promising paradigm to provide good parallel performance

and easy-to-write parallel code.

Unlike in lock-based approaches, with TM programmers do not need to explicitly specify

and manage the synchronisation among threads; however, programmers simply mark code

segments as transactions that should execute atomically and in isolation with respect to

other code, and the TM system manages the concurrency control for them. It is easier for

programmers to reason about the execution of a transactional program since transactions

are executed in a logical sequential order according to a serialisable schedule model.

To provide atomicity, the TM system ensures that transactions are executed under all-

or-nothing semantics, i.e., either the entire region of code in the critical section is executed,

or none of it is executed. Isolation is provided by ensuring that no partial results are visible

to the rest of the system, results are made visible only when a transaction completes its

execution successfully. To guarantee this properties all TM systems need to perform two

important tasks – conflict detection and version management.

Conflict detection performs the task of detecting whether two concurrent transactions

conflict with each other. A conflict occurs when two or more transactions access the same

data and at least one is a writer. Conflicts may be resolved by aborting one of the transac-

tions and restoring its pre-transactional state in order to maintain atomicity. A transaction
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that executes without conflicts can commit, releasing isolation by making the transaction’s

state visible. Conflict detection can be done eagerly, by inspecting every memory access; or

lazily, by deferring the detection until commit time.

Version management handles the way in which the system stores both old (original)

and new (transactional) versions of the same logical data, maintaining isolation. Version

management can also be implemented either eagerly or lazily. Eager systems put new

values in-place and old values are kept in an auxiliary structure, while lazy systems store

new values in separate buffers and old values are kept in-place. In either case, old values

need to be restored on a transactional abort, and new values need to be made visible to

the rest of the system on a transactional commit.

TM systems can be implemented in software (STM) [41, 75], hardware (HTM) [3,

37, 40, 57], or a combination of both hardware and software [28, 49, 56]. Large-scale

adoption of STM systems has been hindered for long due to severe performance penal-

ties arising out of the need for extensive instrumentation and book-keeping in order to

detect conflicts. Hybrid systems, despite offering hardware support, are likely to be sig-

nificantly slower than HTMs [17]. This thesis focuses on HTM systems, which can deliver

performance comparable to fine-grain locking. However, HTM systems require non-trivial

hardware changes and are limited due to hardware space constrains.

1.3 Problem Statement

This thesis addresses several issues present in HTM systems. These can be categorised

under three heads: data version management, contention management, and performance

in initial real-world HTM implementations.

1.3.1 Issues in Data Version Management

The first issue tackled in this thesis is that traditional version management schemes, eager

or lazy, fail to efficiently handle two versions (old and speculative) of the same logical data.

This results in a number of inefficiencies, including additional data movement when trans-

actional operations take place, making workloads susceptible to performance degradation.

Solutions that allow efficient handling and access to both versions of the same logical data

in eager and lazy version management schemes are necessary.
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1.3.2 Issues in Contention Management

Workloads that experience contention – circumstances where transactions abort due to

data dependencies – usually suffer from noticeable performance degradation. Speeding

up transactions can potentially change their contention characteristics, and consequently

improve performance. This defines the second issue addressed in this thesis. Transactions

that experience contention tend to access the same data repeatedly. This fact opens an

opportunity to study potential benefits to be had when applying a prefetching technique for

TM. By prefetching data that may experience locality of reference transactional execution

times can be improved.

In the presence of data conflicts transactions may abort, i.e., the results of speculative

execution are discarded. This leads to wasted work, expensive rollbacks of application

state, and inefficient utilisation of computational resources. While conflicts due to con-

current accesses to shared data cannot be completely eliminated, mechanisms to avoid

starting a transaction when it is likely to fail are necessary for maximising computational

throughput. The third issue addressed in this thesis targets the problem of blindly allowing

transactions to start execution in the presence of contention, which is clearly suboptimal.

1.3.3 Issues in Initial Real-world HTM Implementations

The fourth issue is related to initial implementations of HTM systems that are starting

to be widely available. Such systems employ simple policies that are easy to incorporate

in existing multi-core chips. However, this simplicity comes at the cost of no inherent

forward progress guarantees and susceptibility to certain performance pathologies. The

likelihood of pathological behaviours and their impact on performance remains unclear.

Efficient techniques to provide forward progress guarantees and to ameliorate performance

pathologies, while still retaining implementation simplicity, are needed to make these sys-

tems appealing.

1.4 Thesis Contributions

In order to address the issues described in the previous section, this thesis makes the fol-

lowing contributions:
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• A reconfigurable data cache to improve version management. We introduce a re-

configurable L1 data cache architecture that is able to manage efficiently two versions

of the same logical data. The Reconfigurable Data Cache (RDC) has two execution

modes: a 64KB general purpose mode and a 32KB TM mode. The latter mode allows

the RDC to keep both old and new values in the cache; these values can be accessed

and modified within the cache access time using special operations supported by the

RDC. We explain how these operations solve existing version management problems

in both eager and lazy version management schemes. Our experiments show perfor-

mance as well as energy-delay improvements compared to state-of-the-art baseline

HTM systems; with a modest area impact.

• Speeding up transactions through prefetching. We investigate potential gains to

be had when lines in the write-set – the set of speculatively updated cache lines – of a

transaction are prefetched when it begins execution. These lines are highly likely to

be referenced again when an aborted transaction re-executes. We also demonstrate

that high contention typically implies high locality of reference. Prefetching cache

lines with high locality can, therefore, improve overall concurrency by speeding up

transactions and, thereby, narrow the window of time in which such transactions

persist and can cause contention. We propose a simple design to identify and re-

quest prefetch candidates; and show performance gains in applications with high

contention.

• Transaction abort prediction. We introduce a hardware mechanism to avoid spec-

ulation when it is likely to fail, using past behaviour of transactions and locality in

conflicting memory references to accurately predict conflicts. The prediction mecha-

nism adapts to variations in workload characteristics and enables better utilisation of

computational resources. We demonstrate that HTMs that integrate this mechanism

exhibit reductions in both wasted execution time and serialisation overheads when

compared to prior work.

• Techniques to improve initial real-world HTM implementations. We show that

protocols that merely guarantee livelock freedom may not be the most efficient. We

investigate in depth the performance implications of a number of existing livelock

mitigation and avoidance techniques that must be used in available HTM implemen-
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tations in order to guarantee forward progress. Our study shows that these tech-

niques impose a significant performance cost. To minimise this cost we introduce

a number of novel techniques, in hardware and software, that retain the simplicity

of current HTM designs while effectively ameliorating performance costs of existing

techniques.

1.5 Thesis Organisation

Chapter 2 discusses additional background on transactional memory with emphasis on

HTM systems design dimensions. Chapter 3 introduces our work on the reconfigurable

data cache, including a design description, implementation details of the resulting HTM

systems and evaluation. Chapter 4 presents a mechanism that makes prefetching effec-

tive for transactions. Chapter 5 contains the description of a hardware abort prediction

mechanism that preempts transaction executions that are likely to fail. We explain how

the prediction mechanism is able to make informed decisions, and provide an extensive

evaluation using single-application and multi-application workloads. Chapter 6 highlights

potential performance issues present in initial real-world HTM implementations, and de-

scribes a set of simple techniques that aim to enhance performance of such systems while

retaining implementation simplicity. Chapter 7 concludes this dissertation.
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2
Background on Hardware Transactional

Memory

Hardware Transactional Memory (HTM) [40] offers performance comparable to fine-grain

locks while, simultaneously, enhancing programmer productivity by largely eliminating the

burden of managing access to shared data. Recent usability studies support this claim [18,

71], suggesting that TM can be an important tool for building parallel applications. With

TM, programmers simply demarcate sections of code – called transactions – where synchro-

nisation occurs, as shown in Figure 2.1, and the TM system guarantees correct execution

by providing the following properties: atomicity, isolation, and serialisability.

Atomicity means that either all or none the instructions inside a transaction appear to

be executed. Having isolation means that none of the intermediate state of a transaction

is visible outside of the transaction – i.e., memory updates are not visible to other threads

during the execution of a transaction. Finally, serialisability requires the execution order of

concurrent transactions to be equivalent to some sequential execution order of the same

transactions [38].
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atomic {
if ( foo != NULL ) a.bar();
b++;

}

Figure 2.1: Group of instructions representing a transaction.

TM systems achieve good performance by allowing transactions to execute without ac-

quiring locks, assuming that no other transaction is concurrently accessing the same data.

Throughout a transaction’s execution the memory addresses that are read are added to

a read-set, and the ones that are written are added to a write-set. Transactions execute

speculatively, i.e., a transaction execution may fail if the TM system detects data conflicts

with other concurrent transactions. This is achieved by comparing the read and write

sets of concurrent transactions, which allows to perform fine-grain read-write and write-

write conflict detection. If a conflict is found, one of the conflicting transactions has to be

aborted, the execution state is then rolled back to the point where the transaction started,

and the transaction is retried. Otherwise, if no conflicts where found, the transaction com-

mits successfully.

Using large transactions simplifies parallel programming because it provides ease-of-

use and good performance. First, like coarse-grain locks, it is relatively easy to reason

about the correctness of transactions. Second, to achieve a performance comparable to

that of fine-grain locks, the programmer does not have to do any extra work because the

TM system will handle that task automatically. There are three key design dimensions that

determine how the properties of atomicity and isolation are implemented in a HTM system:

the version management scheme, the conflict detection policy, and the way conflicts are

resolved.

2.1 Version Management

Transactional systems must be able, at least, to deal with two versions of the same logical

data. A new (transactional) version and an old (pre-transactional) version. The way in

which these versions are stored in the system determines the version management scheme.

The old version is used in case a transaction fails to commit, to perform a roll back to

restore pre-transactional state. Updates to memory can be handled either eagerly or lazily.
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In lazy version management, updates to memory are done at commit time [19, 36].
New values are saved in a per-transaction store buffer, while old values remain in place.

This guarantees isolation because the speculative updates are not visible by other threads

until the transaction commits, at which point the updates are made visible. In contrast,

eager version management applies memory changes immediately and the old values are

stored in a software undo log [3, 12, 57, 90]. If the transaction aborts, the undo log is

used to restore memory state. Note that in order to grant isolation in eager TM systems,

transactionally modified variables must be locked, and therefore cannot be accessed until

the owner either commits or aborts the transaction. This can derive into classic deadlock

situations, thus eager systems require contention management mechanisms that, when

detecting a potential deadlock cycle break it by choosing a victim to abort and roll-back.

Each version management scheme has its own advantages and disadvantages. Eager

versioning systems have higher overhead on transaction abort because they have to restore

the memory changes from a software undo log. In contrast, lazy versioning aborts have a

smaller overhead since no speculative updates were visible. However, a lazy scheme has a

higher performance penalty at commit time, at which point all transactional updates have

to become visible.

2.2 Conflict Detection

Conflict detection can be performed either taking a lazy (optimistic) [19, 36] or an ea-

ger (pessimistic) [3, 12, 57, 90] approach. Systems with eager conflict detection check

possible data dependency violations as soon as possible, checking for conflicts on every

memory access during transaction execution. In contrast, lazy conflict detection assumes

that a transaction is going to commit successfully and waits until the transaction finishes

its execution to detect possible conflicts. Figure 2.2 illustrates how both approaches work

– example inspired from [80].

Eager conflict detection attempts to minimise the amount of wasted work in the system

by detecting and resolving conflicts as soon as possible, however, such attempts to reduce

wasted work are not always successful. This happens due to a limitation in eager systems;

it addresses potential conflicts caused by an offending access to a shared location, at this

point the system has to decide which transaction will apply the conflict resolution policy,
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Figure 2.2: Pessimistic and optimistic conflict detection.

but it does not have all the necessary information to make the optimal decision and the

prediction is sometimes wrong [14], as can be seen in Figure 2.2a. On the other hand,

lazy conflict detection deals with conflicts that are unavoidable in order to allow a trans-

action to commit; and as a consequence, it is more robust under high contention [77].
Though lazy conflict detection systems guarantee forward progress – because a transaction

only aborts to allow another transaction to commit – individual threads waste substantial

computational resources due to aggressive speculation.

Eager conflict detection systems are easier to integrate in existing multi-cores because

they piggyback on the already existing cache coherence protocol to perform the task of con-

flict detection [21, 24]. Basic extensions are sufficient to implement a simple eager conflict

detection scheme. For this reason, initial widely available real-world HTM implementa-

tions are using this approach [43]. However, simplicity comes at the cost of no forward

progress guarantees and susceptibility to severe performance penalties. On the other hand,

lazy schemes need to detect conflicts at commit time, requiring an additional specific mech-

anism to compare the write set of the committing transaction against concurrently running

transaction’s read and write sets to detect conflicts.

2.3 Synergistic Combinations

We introduced two ways to deal with data version management and two ways to perform

conflict detection. Intuitively, eager version management, where memory updates are done

while the transaction is executed, is commonly used with eager conflict detection to ensure
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that only one transaction has exclusive access to write a new version of a given address. In

contrast, lazy version management is usually combined with lazy conflict detection, doing

both tasks (conflict detection and memory updates) at commit time.

However, these are not the only two options. Some of the first TM proposals used lazy

version management with eager conflict detection [3, 69]. In addition, other proposals

split the monolithic task of conflict detection and adopt an approach that detects conflicts

while the transaction is still active (i.e., at every memory access), but resolves them when

the transaction is ready to commit [62, 85]. The second generation of HTMs focused on

flexible mechanisms such as detecting write-write conflicts eagerly and read-write conflicts

lazily [77], detecting and resolving conflicts eagerly or lazily depending on the applica-

tion [60], or providing protocols that can handle simultaneous execution of eager and lazy

transactions [52].
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3
Efficient Version Management: A

Reconfigurable L1 Data Cache

3.1 Introduction

Three key design dimensions impact system performance of hardware transactional mem-

ory (HTM) systems: conflict detection, conflict resolution and version management [14].
The conflict detection policy defines when the system will check for conflicts by inspecting

the read- and write-sets (addresses read and written by a transaction) whereas conflict

resolution states what to do when a conflict is detected. In this chapter we focus on version

management, the third key HTM design dimension. Version management handles the way

in which the system stores both old (original) and new (transactional) versions of the same

logical data.

Early TM research suggests that short and non-conflicting transactions are the common

case [23], making the commit process much more critical than the abort process. How-

ever, newer studies that present larger and more representative workloads [18] show that
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aborts can be as common as commits and transactions can be large and execute with a

high conflict rate. Thus, version management implementation is a key aspect to obtain

good performance in HTM systems, in order to provide efficient abort recovery and ac-

cess to two versions (old and new) of the same logical data. However, traditional version

management schemes, eager or lazy, fail to efficiently handle both versions. An efficient

version management scheme should be able to read and modify both versions during trans-

actional execution using a fast hardware mechanism. Furthermore, this hardware mech-

anism should be flexible enough to work with both eager and lazy version management

schemes, allowing it to operate with multiple HTM systems.

In Section 3.2 we introduce such a hardware mechanism: Reconfigurable Data Cache

(RDC). The RDC is a novel L1D cache architecture that provides two execution modes: a

64KB general purpose mode, and a 32KB TM mode that is able to manage efficiently two

versions of the same logical data. The latter mode allows the RDC to keep both old and

new values in the cache; these values can be accessed and modified within the cache access

time using special operations supported by the RDC.

In Section 3.3 we discuss how the inclusion of the RDC affects HTM systems and how

it improves both eager and lazy versioning schemes, and in Section 3.4 we introduce two

new HTM systems, Eager-RDC-HTM and Lazy-RDC-HTM, that use our RDC design. In tra-

ditional eager versioning systems, old values are logged during transactional execution,

and to restore pre-transactional state on abort, the log is accessed by a software handler.

RDC eliminates the need for logging as long as the transactions do not overflow the L1

RDC cache, making the abort process much faster. In lazy versioning systems, aborting

a transaction implies discarding all modified values from the fastest (lowest) level of the

memory hierarchy, forcing the system to re-fetch them once the transaction restarts. More-

over, because speculative values are kept in private caches, a large amount of write-backs

may be needed to make visible these values to the rest of the system. With RDC, old val-

ues are quickly recovered in the L1 data cache, allowing faster re-execution of the aborted

transactions. In addition, most of the write-backs can be eliminated because of the ability

to keep two different versions of the same logical data.

In Section 3.5 we provide an analysis of the RDC. We introduce the methodology that

we use to obtain the access time, area impact, and energy costs for all the RDC opera-

tions. We find that our proposed cache architecture meets the target cache access time

requirements and its area impact is less than 0.3% on modern processors.
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In Section 3.6 we evaluate the performance and energy effects of our proposed HTM

systems that use the RDC. We find that, for the STAMP benchmark suite [18], Eager-RDC-

HTM and Lazy-RDC-HTM achieve average performance speedups of 1.36× and 1.18×,

respectively, over state-of-the-art HTM proposals. We also find that the power impact of

RDC on modern processors is very small, and that RDC improves the energy delay product

of baseline HTM systems, on average by 1.93× and 1.38×, respectively.

3.2 The Reconfigurable Data Cache

We introduce a novel L1 data cache structure: the Reconfigurable Data Cache (RDC). This

cache, depending on the instruction stream, dynamically switches its configuration be-

tween a 64KB general purpose data cache and a 32KB TM mode data cache, which manages

two versions of the same logical data. Seyedi et al. [74] recently proposed the low-level

circuit design details of a dual-versioning cache for managing data in different optimistic

concurrency scenarios. Their design requires a cache to always be split between two ver-

sions of data. We enhance that design to make it dynamically reconfigurable, and we tune

it for specific TM support.

3.2.1 Basic Cell Structure and Operations

Similar to prior work [74], in RDC two bit-cells are used per data bit, instead of one as

in traditional caches. Figure 3.1 shows the structure of the RDC cells, which we name

extended cells (e-cells). An e-cell is formed by two typical standard 6T SRAM cells [67],
which we define as the upper cell and the lower cell. These two cells are connected via two

exchange circuits, that completely isolate the upper and lower cells from each other and

reduce leakage current. To form a cache line (e.g., 64 bytes – 512 bits), 512 e-cells are

placed side by side and are connected to the same word lines (WL).

In Table 3.1 we briefly explain the supported operations for the RDC. URead and

UWrite are typical SRAM read and write operations performed at the upper cells; anal-

ogously, LRead and LWrite operations do the same for the lower cells. The rest of the

operations cover TM version management needs, and enable the system to efficiently han-

dle two versions of the same logical data. We use Store to copy the data from an upper

cell to its corresponding lower cell. Basically, Store turns the left-side exchange circuit on,
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Figure 3.1: Schematic circuit of the e-cell. A typical cell design is extended with an additional cell and
exchange circuits.

Operation Description

UWrite Write to an upper cell cache line by activating WL1

URead Read from an upper cell cache line by activating WL1

LWrite Write to a lower cell cache line by activating WL2

LRead Read from a lower cell cache line by activating WL2

Store ∼Q→P: Store an upper cell to a lower cell cache line

Restore ∼PB→QB: Restore a lower cell to an upper cell cache line

ULWrite Write to both cells simultaneously by activating WL1 and WL2

StoreAll Store all upper cells to their respective lower cells

Table 3.1: Brief descriptions of the RDC operations.
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which acts as an inverter to invert Q to P; the lower cell keeps the value of P when Store is

inactive, and it inverts P to PB, so that PB has the same value as Q. Similarly, to restore data

from a lower cell to its corresponding upper cell, we activate Restore. Finally, ULWrite is

used to write the same data to upper and lower cells simultaneously. All these operations

work at cache line granularity; however, an operation to simultaneously copy (Store) all

the upper cells in the cache to their corresponding lower cells is also necessary, we call

this operation StoreAll. Note that this is an intra–e-cell operation done by activating the

small exchange circuits. Therefore, the power requirements to perform this operation are

acceptable, as we show in our evaluation, because most of the components of the cache

are not involved in this operation.

3.2.2 Reconfigurability: RDC Execution Modes

The reconfigurable L1 data cache provides two different execution modes. The execution

mode is indicated by a signal named Transactional Memory Mode (TMM). If the TMM signal

is not set, the cache behaves as a 64KB general purpose L1D cache; if the signal is set, it

behaves as a 32KB cache with the capabilities to manage two versions of the same logical

data. Figure 3.2 shows an architectural diagram of RDC, the decoder details and its as-

sociated signals, which change depending on the execution mode. The diagram considers

48-bit addresses and a 4-way cache organisation with 64-byte cache lines.

64KB General Purpose Mode

In this mode, the upper and lower bit-cells inside of an e-cell contain data from different

cache lines. Therefore, a cache line stored in the upper cells belongs to cache set i in way j,

while a cache line stored in the corresponding lower cells belongs to set i+1 in way j (i.e.,

consecutive sets in the same way). This mode uses the first four operations described in

Table 3.1, to perform typical read and write operations as in any general purpose cache.

Figure 3.2a shows an architectural diagram of the RDC. As can be seen in the figure, the

most significant bit of the index is also used in the tags to support the 32KB TM mode with

minimal architectural changes, so tags have fixed size for both modes (35 bits). The eight

index bits (A13..6) are used to access the tags (since TMM is not set) and also sent to the

decoder. In Figure 3.2b it can be seen how the seven most significant bits of the index are
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Figure 3.2: (a) RDC architectural diagram. Considering a 4-way RDC, with 64B cache-lines and 48b ad-
dresses — (b) Decoder details and associated signals used for each execution mode. Depending on the TMM
signal, address bits and control signals for a execution mode are generated and passed to the decoder.

used to address the cache entry while the least significant bit (A6) determines if the cache

line is located in the upper or the lower cells, by activating WL1 or WL2 respectively.

32KB TM Mode

In this mode, each data bit has two versions: old and new. Old values are kept in the lower

cells and new values are kept in the upper cells. These values can be accessed, modified,

and moved back and forth between the upper and lower cells within the access time of the

cache using the operations in Table 3.1. To address 32KB of data, only half of the tag entries

that are present in each way are necessary. For this reason, as can be seen in Figure 3.2a,

the most significant bit of the index is set to ’0’ when the TMM signal is active. So, only

the top-half tag entries are used in this mode. Regarding the decoder (Figure 3.2b), in this

mode, the most significant bit of the index is discarded, and the rest of the bits are used to

find the cache entry, while the signals a, b, and c select the appropriate signal(s) depending

on the operation needed.
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Reconfigurability Considerations

Reconfiguration is only accessible in kernel mode. The binary header of a program indi-

cates whether or not a process wants to use a general purpose cache or a TM mode cache.

The OS sets the RDC to the appropriate execution mode when creating a process, and

switches the mode when context switching between processes in different modes. In order

to change the RDC execution mode, the OS sets or clears the TMM signal and flushes the

cache in a similar way the WBINVD (write back and invalidate cache) instruction operates

in the x86 ISA.

3.3 Using the Reconfigurable Data Cache in Hardware Trans-

actional Memory: RDC-HTM

In this section, we describe how our RDC structure can be used in both eager and lazy

version management HTM schemes. For the rest of this section, we consider that the RDC

executes in 32KB TM mode. In HTM systems, we distinguish four different execution

phases when executing a transactional application: (1) non-transactional execution, (2)

transactional execution, (3) commit, and (4) abort. When the RDC is used as L1 data cache

during the non-transactional execution phase, the system follows the rules established by

the underlying coherence protocol, but in the other three phases special considerations are

required, which we detail in the following subsections.

3.3.1 Transactional Execution

One key insight of a RDC-HTM system is to maintain, during the execution of a transaction,

as many valid committed values (non-transactional) as possible in the lower cells of the

RDC. We name these copies of old (non-transactional) values shadow-copies. By providing

such shadow-copies, in case of abort, the system can recover pre-transactional state with

fast hardware Restore operations, partially or completely, performed over transactionally

modified lines.

Figure 3.3 depicts a simple scenario of the state changes in RDC during a transactional

execution that aborts. At the beginning of the transaction, the system issues StoreAll
that creates valid shadow-copies for the entire cache in the lower cells (Figure 3.3a). We
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Figure 3.3: A simple protocol operation example, assuming a 2-entry RDC. Shaded areas indicate state
changes. (a) Creation of the shadow-copies, in the lower cells, at the beginning of a transaction — (b) A
load operation that modifies both the upper and the lower cells in parallel (ULWrite) — (c) A line update,
both old and new values are sharing the same cache entry — (d) Restoring old values in the RDC when the
transaction is aborted.

assume that this operation is triggered as a part of the begin_transaction primitive. In

addition, during the execution of a transaction, shadow-copies need to be created for the

new lines added to the L1 RDC upon a miss. This task does not take extra time, because

the design of the RDC allows for concurrent writing to the upper and lower cells using the

ULWrite operation (Figure 3.3b).

We add a Valid Shadow Copy (VSC) bit per cache-line to indicate whether the shadow-

copy is valid or not for abort recovery. The system prevents creation of shadow-copies if a

line comes from the L2 cache with transactionally modified state. Thus, if a shadow-copy

needs to be created, an ULWrite operation is issued, otherwise an UWrite operation is

issued. The VSC bit is set for a specific cache line if a Store or an ULWrite is issued; but,

if an StoreAll is issued, the VSC bits of all lines are set. The VSC bit does not alter the

state transitions in the coherence protocol.

Note that without VSC bits, in a lazy version management system, the use of more than

one level of transactional caches would allow speculatively modified lines to be fetched

from the L2 to the L1 cache, creating shadow-copies of non-committed data. A similar

problem would occur in eager versioning systems as well, because transactional values are

put in-place. Therefore, in both version management schemes, creating shadow-copies of

non-committed data could lead to consistency problems if data was later used for abort

recovery.

Eager Version Management

In traditional eager versioning systems, to recover pre-transactional state in case of abort,

an entry with the old value is added in the undo log for every store performed during
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transactional execution [57, 90]. In a RDC-HTM implementation, on the other hand, the

system keeps old values in shadow-copies, which are created either at the beginning of

a transaction (Figure 3.3a) or during its execution (Figure 3.3b) with no performance

penalty.

Note that in a RDC-HTM system, logging of old values is still necessary if the write-set

of a transaction overflows the L1 cache. We define the new logging condition as an eviction

of a transactionally modified line with the VSC bit set. When this logging condition is met,

the value stored in the shadow-copy is accessed and logged. As an example, in Figure 3.3c,

if the cache-line with address C was evicted, the system would log the shadow-copy value

(lower cells) to be able to restore pre-transactional state in case of abort. To cover the cost

of detecting the logging condition, we assume that logging process takes one extra cache

operation; however, because the RDC-HTM approach significantly reduces the number of

logged entries, the extra cache operation for logging does not affect performance, see

Section 3.6.2.

Lazy Version Management

Lazy versioning systems, in general, do not write-back committed data to a non-transactional

level of the memory hierarchy at commit time [19, 85], because that incurs significant com-

mit overhead. Instead, only addresses are sent, and the directory maintains the ownership

information and forwards potential data requests. Thus, repeated transactions that modify

the same cache-line require a write-back of the cache-line each transaction. When using

the RDC, however, unlike previous proposals [3, 19, 85], repeated transactions that modify

the same blocks are not required to write-back, resulting in significant performance gains,

see Section 3.6.3, and less pressure for the memory hierarchy.

Cache replacements and data requests from other cores need additional considerations.

If a previously committed line with transactional modifications, i.e., the committed value

in the shadow-copy (lower cells) and the transactional value in the upper cells, is replaced,

the system first writes back the shadow-copy to the closest non-transactional level of the

memory hierarchy. If a data request is forwarded by the directory from another core and if

the VSC bit of the related cache line is set, the requested data will be stored in the shadow-

copy (lower cells), because the shadow-copy always holds the last committed value. Note

that a shadow-copy can be read with an LRead operation.

23



3. EFFICIENT VERSION MANAGEMENT: A RECONFIGURABLE L1 DATA CACHE

3.3.2 Committing Transactions

In eager versioning systems, the commit process is a fast and a per-core local operation,

because transactional values are already stored in-place. Committing releases isolation

by allowing other cores to load lines that are modified by the transaction. In contrast,

lazy systems make transactional updates visible to the rest of the system at commit time,

and conflicting transactions are aborted. A RDC-HTM system needs one additional con-

sideration at commit time, to flush-clear the VSC bits. At the beginning of the succeeding

transaction, all shadow copies are created again, setting the VSC bits, and proceeding with

the transactional execution process.

3.3.3 Aborting Transactions

Eager Version Management

In typical eager version management HTMs, pre-transactional values are stored in an undo

log that is accessed using a software handler. For each entry in the log, a store is performed

with the address and data provided. This way memory is restored to pre-transactional

values.

With our proposal we intend to avoid the overhead of the undo log, either completely

or partially. The abort process in an eager RDC-HTM is two-folded. First, as shown in

Figure 3.3d, transactionally modified lines in the L1 cache, if their VSC bits are set, recover

pre-transactional state using a hardware mechanism, Restore, provided by the RDC. Sec-

ond, if there is any entry in the undo log, it will be unrolled issuing a store for each entry.

By reducing the abort recovery time, the number of aborts decreases and the time spent in

the backoff algorithm is minimised, as we show in our evaluation.

Lazy Version Management

In typical lazy version management HTMs, aborting transactions need to discard transac-

tional data in order to restore pre-transactional state. Lazy systems invalidate the lines,

in transactional caches, that are marked as transactionally modified with a fast opera-

tion that modifies the state bits. Invalidating these lines on abort implies that once the

transaction restarts its execution the lines have to be fetched again. Moreover, current
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Component Description

Cores 16 cores, 2 GHz, single issue, single-threaded

L1D cache 64KB 4-way, 64B lines, write-back, 2-cycle hit

L2 cache 8MB 8-way, 64B lines, write-back, 12-cycle hit

Memory 4GB, 350-cycle latency

Interconnect 2D mesh, 3-cycle link latency

L2 directory full-bit vector sharers list, 6-cycle latency

Signatures perfect signatures

Table 3.2: Base eager systems configuration parameters.

proposals [19, 85] often use multiple levels of the memory hierarchy to track transactional

state, making the re-fetch cost more significant.

Because memory pre-transactional state is kept, partially or completely, in the RDC

shadow-copies, it can be restored within the L1 cache with a Restore operation, see

Figure 3.3d. Fast-restoring of the state in the L1 cache has three advantages: (1) it allows

a faster re-execution of the aborted transaction, because transactional data is already in

L1, (2) it allows more parallelism by reducing pathologies like convoying [14], and (3) it

alleviates pressure in the memory hierarchy.

3.4 RDC-Based HTM Systems

In this section we introduce two new HTM systems, Eager-RDC-HTM and Lazy-RDC-HTM,

that incorporate our RDC design in the L1 data cache. Both of these systems are based on

state-of-the-art HTM proposals.

3.4.1 Eager-RDC-HTM

Eager-RDC-HTM extends LogTM-SE [90], where conflicts are detected eagerly on coher-

ence requests and commits are fast local operations. Eager-RDC-HTM stores transactional

values in-place but saves old values in the RDC, and if necessary, a per-thread memory log

is used to restore pre-transactional state.

Table 3.2 summarises the system parameters that we use. We assume a 16-core CMP
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with private instruction and data L1 caches, where the data cache is implemented follow-

ing our RDC design and with a VSC bit per cache-line. The L2 cache is multi-banked and

distributed among cores with directory information. Cores and cache banks are connected

through a mesh with 64-byte links that use adaptive routing. To track transactional read-

and write-sets, the system uses signatures; because signatures may lead to false positives

and in consequence to unnecessary aborts, to evaluate the actual performance gains intro-

duced by Eager-RDC-HTM, we assume a perfect implementation, i.e., not altered by aborts

due to false positives, of such signatures.

Similar to LogTM-SE, Eager-RDC-HTM uses stall conflict resolution policy. When a

conflict is detected on a coherence message request, the requester receives a NACK (i.e.,

the request cannot be serviced), it stalls and it waits until the other transaction commits.

This is the most common policy in eager systems, because it causes fewer aborts, which

is important when software-based abort recovery is used. By using this policy we are also

being conservative about improvements obtained by Eager-RDC-HTM over LogTM-SE.

The main difference between LogTM-SE and our approach is that we keep old values

in the RDC, providing faster handling of aborts. In addition, although, similar to LogTM-

SE, we have a logging mechanism that stores old values, unlike LogTM-SE, we use this

mechanism only if transactional values are replaced because of space constrains. In our

approach, in case of abort, the state is recovered by a series of fast hardware operations,

and if necessary, at a later stage, by unrolling the software log; the processor checks an

overflow bit, which is set during logging, and it invokes the log software handler if the bit

is set.

Logging Policy Implications

Since an evicted shadow-copy may need to be stored in the log, it is kept in a buffer,

which extends the existing replacement logic, from where it is read and stored in the log

if the logging condition is met, or discarded otherwise. Note that deadlock conditions,

regarding infinite logging, cannot occur if the system does not allow log addresses to be

logged, filtering them by address; because, for every store in the log (L1), the number of

candidates in L1 that can be logged decreases by one.
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Component Description

Cores 32 cores, 2 GHz, single issue, single-threaded

L1D cache 64KB 4-way, 64B lines, write-back, 2-cycle hit

L2 cache 1MB 8-way, 64B lines, write-back, 10-cycle hit

Memory 4GB, 350-cycle latency

Interconnect 2D mesh, 10 cycles per hop

Directory full-bit vector sharers list, 10-cycle hit directory cache

Table 3.3: Base lazy systems configuration parameters.

3.4.2 Lazy-RDC-HTM

Lazy-RDC-HTM is based on a Scalable-TCC-like HTM [19], which is a directory-based,

distributed shared memory system tuned for continuous use of transactions. Lazy-RDC-

HTM has two levels of private caches tracking transactional state, and it has write-back

commit policy to communicate addresses, but not data, between nodes and directories.

Our proposal requires hardware support similar to Scalable-TCC, where two levels of

private caches track transactional state, and a list of sharers is maintained at the directory

level to provide consistency. We replace the L1 data cache with our RDC design, and we

add the VSC bit to indicate whether shadow copies are valid or not. Table 3.3 provides the

system parameters that we use.

We use Scalable-TCC as the baseline for three reasons: (1) to investigate how much

extra power is needed in continuous transactional executions, where the RDC is stressed by

the always-in-transaction approach, (2) to explore the impact of not writing back modified

lines by repeated transactions, and (3) to present the flexibility of our RDC design by

showing that it can be adapted efficiently to significantly different proposals.

Having an always-in-transaction approach can considerably increase the power con-

sumption of the RDC, because at the beginning of every transaction an StoreAll oper-

ation is performed. We modify this policy by taking advantage of the fact that the cache

contents remain unchanged from the end of a transaction until the beginning of the fol-

lowing transaction. Thus, in our policy, at commit time, the system updates, using Store
operation, the shadow-copies of the cache lines that are transactionally modified, i.e., the

write-set.
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Because, at commit time, the system writes back only addresses, committed values are

kept in private caches and they can survive, thanks to the RDC, transactional modifications.

Our approach can save significant amount of write-backs that occur due to modifications

of committed values, evictions, and data requests from other cores.

In lazy systems, the use of multiple levels of private caches for tracking transactional

state is common [19, 85] to minimise the overhead of virtualisation techniques [22, 69].
Although our proposal is compatible with virtualisation mechanisms, we do not implement

them, because we find that using two levels of caches with moderate sizes is sufficient to

hold transactional data for the workloads that we evaluate.

3.5 Reconfigurable Data Cache Analysis

We use CACTI 5 [81] to determine the optimal number and size of the components present

in a way for the L1 data cache configuration that we use in our evaluation (see Table 3.2).

We construct, for one way of the RDC and one way of a typical 64KB SRAM, Hspice tran-

sistor level net-lists that include all the components, such as the complete decoder, control

signal units, drivers, and data cells. We simulate and optimise both structures with Hspice

2003.03 using HP 45nm Predictive Technology Model [2] for VDD=1V, 2GHz processor

clock frequency, and T= 25◦C. We calculate the access time, dynamic energy, and static

energy per access for all operations in RDC and SRAM. Our analysis indicates that our RDC

design meets, as the typical SRAM, the target access time requirement of two clock cycles.

Table 3.4 shows the energy costs for typical SRAM and RDC operations.

In Figure 3.4 we show the layouts [1] of both the typical 64KB SRAM and RDC ways.

Both layouts use an appropriate allocation of the stage drivers, and we calculate the area

increase of the RDC over the typical SRAM as 15.2%. We believe that this area increase is

acceptable considering the relative areas of L1D caches in modern processors. To support

our claim, in Table 3.5 we show the expected area impact of our RDC design on two com-

mercial chips: IBM Power7 [46, 47], which uses the same technology node as our baseline

systems and has large out-of-order cores, and Sun Niagara [48, 72], which includes simple

in-order cores. We find that, for both chips, the sum of all the L1D areas represents a small

percentage of the die, and our RDC proposal increases the overall die area by less than

0.3%.
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Operation Energy (pJ)

SRAM 64KB RDC 64KB

Read/URead 170.7 188.2

Write/UWrite 127.3 159.1

LRead - 190.0

LWrite - 159.9

Store - 175.3

Restore - 180.4

ULWrite - 168.5

StoreAll - 767.8

Static 65.1 90.8

Table 3.4: Typical SRAM and RDC energy consumption per operation.

Figure 3.4: Typical 64KB SRAM (left) and RDC (right) layouts. Showing one sub-bank, address decoders,
wires, drivers, and control signals. The second symmetric sub-banks are omitted for clarity.

IBM Power7 Sun Niagara

Technology node 45nm 90nm
Die size 567mm2 379mm2

Core size (sum of all cores) 163mm2 104mm2

L1 area (I/D) (sum of all cores) 7.04/9.68mm2 8.96/5.12mm2

L1 area (I/D) % of die 1.24/1.71% 2.36/1.35%

Die size increase with RDC 0.26% 0.21%

Table 3.5: Expected area impact of our RDC design on two commercial chips: the RDC increases die size by
less than 0.3%.
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3.6 Evaluation

In this section we evaluate the performance, power, and energy consumption of Eager-

RDC-HTM and Lazy-RDC-HTM using the STAMP benchmark suite [18]. We first describe

the simulation environments that we use, then we present our results. In our evaluation

we try to make a fair comparison with other state-of-the-art HTM systems; however, we do

not intend to compare our systems against each other.

3.6.1 Simulation Environment

For Eager-RDC-HTM and LogTM-SE we use a full-system execution-driven simulator, GEMS,

in conjunction with Simics [53, 55]. The former models the processor pipeline and memory

system, while the latter provides functional correctness in a SPARC ISA environment. For

the evaluation of Lazy-RDC-HTM and Scalable-TCC we use M5 [6], an Alpha 21264 full-

system simulator. We modify M5 to model a directory-based distributed shared memory

system and an interconnection network between the nodes.

We use the STAMP benchmark suite with nine different benchmark configurations:

Genome, Intruder, KMeans-high, KMeans-low, Labyrinth, SSCA2, Vacation-high, Vacation-

low, and Yada. “high” and “low” workloads provide different conflict rates. We use the

input parameters suggested by the developers of STAMP. Note that we exclude Bayes from

our evaluation, because this application spends excessive amount of time in barriers due

to load imbalance between threads, and this causes the results being not representative of

the characteristics of the application.

3.6.2 Performance Results for Eager-RDC-HTM

Figure 3.5 shows the execution time breakdown for LogTM-SE with 64KB L1D, which

serves as our baseline, for Eager-RDC-HTM, and for an Idealised eager versioning HTM.

The Idealised HTM that we simulate is the same as Eager-RDC-HTM except that it has zero

cycle abort and commit costs, it has an infinite RDC L1D cache, and the cache operations

that involve storing and restoring values have no cost. In the figure, execution time is

normalised to a 16-threaded LogTM-SE execution, and it is divided into non-transactional

time (non-tx), barriers time (barrier), useful transactional time (useful tx), wasted work

from aborted transactions (wasted tx), time spent in abort recovery (aborting), time spent
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Figure 3.5: Normalised execution time breakdown for 16 threads, in eager systems.

L – LogTM-SE; RDC – Eager-RDC-HTM; I – Idealised eager HTM

LogTM-SE Eager-RDC-HTM

Benchmark Commits %AB %AB Unrolled %AB %AB Unrolled %HW %TX

Conf. Entries Conf. Entries AB OVF

Genome 5922 34.8 19.7 6996 9.0 0.5 0 100.0 0.0

Intruder 11275 96.0 31.7 329891 86.2 2.1 0 100.0 0.0

KMeans-high 8238 50.7 30.2 6 3.0 0.0 0 100.0 0.0

KMeans-low 10984 4.5 33.8 0 0.6 0.0 0 100.0 0.0

Labyrinth 224 98.9 6.3 37602 98.4 0.1 35 99.8 13.2

SSCA2 47302 0.7 19.6 0 0.3 0.0 0 100.0 0.0

Vacation-high 4096 5.0 0.1 853 0.6 0.0 0 100.0 0.3

Vacation-low 4096 0.1 0.0 14 0.0 0.0 0 100.0 0.2

Yada 5330 69.6 7.7 164594 47.5 0.9 83 98.5 9.3

Table 3.6: Benchmark statistics for LogTM-SE and Eager-RDC-HTM.

Legend: %AB — Percentage of aborts, calculated as aborts/(aborts+commits); %AB Conf. — Percentage

of aborts caused by aborting transactions; Unrolled Entries — Total number of log entries restored due to

software aborts; %HW AB — Percentage of aborts resolved entirely by hardware; %TX OVF — Percentage

of transactions of which write-set overflows L1.
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by a transaction waiting for conflicts to be resolved (stalled), and time spent in the backoff

algorithm executed right after an abort (backoff).

We find that, Figure 3.5, the overall performance of Eager-RDC-HTM is 1.36× bet-

ter than LogTM-SE, and it is very close (within 1%, on average) to the Idealised HTM

for all the workloads that we evaluate. We obtain significant speedups, e.g., 6.3× with

Intruder, in applications which have contention and which are not constrained by large

non-transactional or barrier execution times.

We identify three main reasons for the better performance of Eager-RDC-HTM over

LogTM-SE. First, by providing a mechanism to successfully handle two different versions

of the same logical data, we reduce the time spent in abort recovery process, on average,

from 4.0% to 0.0%. The statistics in Table 3.6 reveal that almost all aborts are resolved

by hardware using the RDC capabilities, and for the majority of the workloads not even a

single entry is unrolled from the log. Second, reducing the aborting time of a transaction

prevents other transactions from aborting, because data owned by an aborting transaction

cannot be accessed by other transactions. Table 3.6 shows that, in Eager-RDC-HTM, the

percentage of transactions that are aborted by another transaction, which executes the

abort recovery phase, %AB Conf., decreases significantly, along with the total percentage of

aborts. Finally, as a consequence of reduced abort rates, the time spent in stall and backoff

phases is also reduced. The backoff and stall execution time in applications with high abort

rates or with large transactions can represent a big percentage of the total execution time

in LogTM-SE, e.g., up to 60% and 50% in Intruder and Yada, respectively. Thus, for this

type of applications Eager-RDC-HTM performs significantly better than LogTM-SE.

Table 3.6 also shows the percentage of transactions of which write-sets overflow the

L1D cache. Note that in Yada, 9.3% of transactions overflow L1D with their write-sets, but

the number of unrolled entries of the log in Eager-RDC-HTM is still much lower than it

is in LogTM-SE, and its performance is close to Ideal. We believe that, even for coarser

transactions, Eager-RDC-HTM can perform similar to the Idealised eager versioning HTM,

because the two-folded abort process is a hybrid solution that minimises the use of the log.

In Figure 3.6, we present the scalability results for LogTM-SE, Eager-RDC-HTM, and

Ideal, each running 16-threaded applications. Applications with low abort rates, such as

SSCA2, KMeans-low, and Vacation, have good scalability for all the evaluated HTM sys-

tems, and consequently Eager-RDC-HTM performs similar to LogTM-SE. In contrast, appli-

cations with coarser transactions and/or with high conflict rates, such as Genome, Intruder,
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Figure 3.6: Speedup of 16-threaded applications compared to single-threaded LogTM-SE.

and Yada, have worse scalability, and in general they fail to scale in LogTM-SE. However,

Eager-RDC-HTM improves the performance of such applications significantly, being closer

to ideal. Labyrinth does not improve substantially, because (1) it has large transactions

with large data-sets, and (2) it has a notable abort rate that is not influenced by additional

aborts due to other aborting transactions, putting pressure in the conflict resolution policy.

3.6.3 Performance Results for Lazy-RDC-HTM

Figure 3.7 shows the execution time breakdown for the lazy HTM systems that we evalu-

ate, namely Scalable-TCC (with 64KB L1D), Lazy-RDC-HTM, and Idealised lazy HTM. The

Idealised lazy HTM extends Lazy-RDC-HTM with instantaneous validation and data write-

back at commit time, keeping a copy in the shared state; it serves as a good upper bound

because it emulates a perfect, with limited hardware resources, lazy version management

policy.

The results in Figure 3.7 are normalised to Scalable-TCC 32-threaded execution, and

they are split into seven parts, namely Barrier, Commit, Useful, StallCache, Wasted, Wasted-

Cache, and Aborting. For committed transactions, we define “Useful” time as one cycle per

instruction plus the number of memory accesses per instruction multiplied by the L1D hit

latency, and we define “StallCache” as the time spent waiting for an L1D cache miss to be

served. Analogously, for aborted transactions we define “Wasted” and “WastedCache”. The

“Aborting” time is the overhead to restore the old values for recovering pre-transactional

state, and it is defined as the number of L1D lines that are in the write-set and have a valid

old value multiplied by the L1D hit latency. Note that because the “Aborting” time is a very
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Figure 3.7: Normalised execution time breakdown for 32 threads, in lazy systems.

S – Scalable-TCC; RDC – Lazy-RDC-HTM; I – Idealised lazy HTM

Scalable-TCC Lazy-RDC-HTM

Benchmark Commits Cycles WB %AB Cycles WB %AB %WB Restore %AB

CTX per CTX CTX per CTX saved ATX time

Genome 11823 9896 5.2 7.7 8925 4.6 8.0 28.7 6.6 0.0

Intruder 20115 2686 21.0 75.6 1652 8.9 73.4 21.3 6.3 0.3

KMeans-high 26708 1717 0.9 33.6 1709 0.8 32.7 0.6 0.1 0.0

KMeans-low 68331 1811 0.4 5.3 1806 0.4 5.3 1.0 0.1 0.0

Labyrinth 1126 103056 277.5 37.5 91121 252.6 26.9 5.2 149.5 0.0

SSCA2 113122 3073 5.0 0.7 3026 4.9 0.7 2.0 1.2 0.0

Vacation-high 9332 10640 20.4 2.4 8364 18.8 3.1 23.1 4.8 0.0

Vacation-low 9261 9206 17.3 1.4 6965 14.7 1.9 27.4 5.1 0.0

Yada 5907 24921 67.9 41.5 20608 48.1 34.6 7.8 53.0 0.1

Table 3.7: Benchmark statistics for the Lazy-RDC-HTM system.

Legend: Cycles CTX — Average number of execution cycles for committed transactions; WB per CTX —

Number of write-backs per committed transaction; %WB saved — Percentage of write-backs saved during

execution; Restore ATX — Number of restores per aborted transaction; %AB time — Percentage of “Aborting”

execution time.
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Figure 3.8: Speedup of 32-threaded applications compared to single-threaded Scalable-TCC.

small fraction of the total time, it is not noticeable in the figure.

Lazy-RDC-HTM reduces the average time spent in “StallCache” from 28.6% to 21.2%

and in “WastedCache” from 13.3% to 6.0%. Because, on an abort we can recover pre-

transactional state in the L1D cache by restoring the old values (shadow-copies) present

in the lower cells, which makes re-execution of aborted transactions faster, as shown in

Table 3.7 (Cycles CTX). Moreover, since the L1D can operate with both old and new values,

it is not necessary to write-back transactionally modified data for consecutive transactions

that write the same set of lines, unless those lines need to be evicted or are requested by

another core.

With Lazy-RDC-HTM, we achieve significant speedups over Scalable-TCC for Intruder,

Labyrinth, Vacation, and Yada. For these benchmarks, the average execution time of com-

mitted transactions is reduced considerably, due to a lower number of write-back opera-

tions and the possibility to recover pre-transactional state at the L1D level. Genome and

SSCA2 are constrained by extensive use of barriers, and KMeans with its small write-set

and few aborts does not have much margin for improvement.

Figure 3.8 shows the scalability results for the 32-threaded executions. We find that

Scalable-TCC achieves 9.6× speedup over single-threaded execution, while Lazy-RDC-HTM

presents about 11.7× speedup. We also observe that the performance advantage of our

approach is much higher for Intruder, Vacation and Yada compared to other applications.

Finally, in Figure 3.9, we present the effects of memory latency for four applications

that achieve high performance improvements with Lazy-RDC-HTM. Notice that even for a

low latency of 150 cycles, Intruder and Vacation workloads maintain good performance.
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Figure 3.9: Speedup variation with respect to main memory latency in lazy systems.

Also, for latencies higher than 350 cycles, all applications obtain better results.

3.6.4 Power and Energy Results

To evaluate the power and energy effects of the RDC-HTM systems, we use the energy costs

for the SRAM and RDC operations that we calculate in our analysis, Table 3.4. We do not

have at our disposal an accurate tool to measure the power consumption of our simulated

HTM systems; therefore, considering the L1D areas shown in Table 3.5, we assume that

the L1D occupies 2% of the processor area, and we make an area-based power estimation.

We consider both dynamic and static power [26], and we present, in Table 3.8, to-

tal power consumption, performance speedup, power increase, and energy delay product

(EDP) effects of the RDC-HTM systems over systems with typical SRAM L1D caches. We

find that the total processor power consumption increase in Eager-RDC-HTM and Lazy-

RDC-HTM systems are 0.59% and 0.73%, respectively. We also find that RDC-based sys-

tems have significantly better EDP results compared to the systems with typical SRAMs:

1.93× and 1.38× better, for Eager-RDC-HTM and Lazy-RDC-HTM systems, respectively.

Note that even with a much more conservative assumption of 5% for the total L1D area

in the processor, total power increase due to the RDC L1D cache is about 1.5%, and the

impact on our EDP results is negligible.
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Eager HTM Systems Lazy HTM Systems

L1D Power (mW) Power EDP L1D Power (mW) Power EDP

Benchmark LogTM-SE RDC Speedup Inc. Ratio STCC RDC Speedup Inc. Ratio

HTM (×) (×) (×) HTM (×) (×) (×)

Genome 85.5 112.0 1.15 1.006 1.32 66.5 92.3 1.05 1.008 1.09

Intruder 73.1 98.7 6.31 1.007 39.48 73.6 110.3 1.93 1.010 3.70

KMe-high 92.2 117.7 1.09 1.006 1.18 78.5 103.6 1.01 1.006 1.02

KMe-low 94.6 118.2 1.00 1.005 1.00 83.7 108.2 1.00 1.006 1.00

Labyrinth 75.2 99.8 1.06 1.007 1.11 92.9 120.4 1.12 1.006 1.24

SSCA2 87.8 112.5 1.00 1.006 0.99 66.5 92.3 1.01 1.008 1.02

Vac-high 84.3 108.8 1.00 1.006 1.00 71.9 99.4 1.26 1.008 1.59

Vac-low 78.2 102.6 1.05 1.006 1.09 71.1 98.8 1.32 1.008 1.72

Yada 80.9 104.1 2.24 1.006 4.99 86.2 115.7 1.14 1.007 1.29

Table 3.8: Power consumption comparison of L1D caches and Energy Delay Product (EDP) comparison of
entire systems.

3.7 Related Work

Ergin et al. [33] proposed a shadow-cell SRAM design for checkpointed register files to

exploit instruction level parallelism. In that novel technique, each bit-cell has a shadow-

copy cell to store a temporal value which can be recovered later. However, their design

was not suitable for larger circuits, such as caches. Seyedi et al. [74] proposed a low-level

circuit design of a dual-versioning L1D cache for different optimistic concurrency scenarios.

In this design, the authors use exchange circuits between the cells, thus isolating both cells

from each other, reducing leakage power. The authors give a complete description of the

internal structure of the cache, with details of all its components, such as buffers, drivers,

address and data interconnect, and additional circuitry. In addition, a brief discussion

of the dual-versioning cache advantages in three optimistic concurrency techniques is also

given. However, the authors do not show how the dual- versioning cache would be actually

used in such scenarios, nor present a complete evaluation. Moreover, their design does not

allow to dynamically reconfigure the cache, which implies a much larger area and power

overhead for non transactional codes.

Herlihy and Moss introduced the first HTM design [40], which uses a separate small

transactional cache to buffer both old and new values. In that novel design, commit and

abort operations are local to the given processor and cache, and after abort, it allows
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transactions to be re-executed without needing to fetch lines back into the cache. However,

the fully-associative transactional cache is orders of magnitude smaller than a L1 cache,

limiting the size of transactions. Moreover, such design does not allow to spill lines to

higher (private) levels of the memory hierarchy in lazy systems, or to use eager version

management.

Transactional Coherence and Consistency (TCC) [37] implements lazy conflict detec-

tion and lazy version management. TCC guarantees forward progress and livelock-free

execution without user-level intervention; however, it uses a common bus between cores,

and transactions have to acquire a global token at commit time, limiting its scalability.

Scalable-TCC [19] enhances TCC proposal by using a directory-based coherence protocol

that supports parallel commits that send addresses but not data. Transactional updates are

stored in private caches until commit time. On abort, updates are discarded from private

caches, forcing re-executed transactions to fetch again these values. Moreover, because

committed data is kept in private caches, it is necessary to write-back this data when a

subsequent transaction wants to modify it.

Eager version management was first used by Ananian et al.’s UTM proposal [3] to

support unbounded transactions. UTM stores new values in-place and old values, for both

loads and stores, in a log. In contrast, LogTM [57] implementation only logs cache-lines

targeted by stores and detects conflicts on coherence requests. LogTM-SE [90] extends

LogTM by tracking transactional information using signatures that can be easily recovered

after an OS intervention. All these HTM systems need to access the log in case of abort,

and the log size is at least as large as the write-set of the aborted transaction.

Lupon et al. proposed FASTM [51] to minimise abort overhead of LogTM-SE by leav-

ing old values in higher levels of the memory hierarchy and discarding new values that

are stored in-place (pinned in L1 caches) in case of abort, behaving similar to a lazy ver-

sion management scheme. However, FASTM has several differences with respect to our

proposal: (1) it modifies the cache coherence protocol with the inclusion of an additional

state, (2) an entry in the log must be added for every transactional store, even if the log

is not used, (3) after abort recovery, data is not present in L1, making re-executed trans-

actions slower, and (4) in case of transactional overflow of L1, the entire log must be

restored.
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3.8 Summary

We introduce a novel hardware solution, reconfigurable data cache (RDC), for version

management in HTM systems. The RDC provides two execution modes: a 64KB general

purpose, and a 32KB TM mode capable of managing two versions of the same logical data

efficiently. We present the architectural details and operation of the RDC, and we intro-

duce two new HTM systems, one eager and one lazy, that utilise this cache design. We

demonstrate that the new HTM systems that we propose solve existing version manage-

ment problems and achieve, with an acceptable area cost, significant performance and

energy delay product improvements over state-of-the-art HTM proposals.

39





4
Transactional Prefetching: Narrowing the

Window of Contention

4.1 Introduction

The ever-widening disparity between the speed at which a processor core can process

data and the speed at which the memory hierarchy can supply it has led to a myriad of

techniques that aim at overlapping data access latency with some form of useful work.

Prefetching is one such technique where, by predicting memory references likely to occur

in the near future, data is fetched into structures close to the core before it is needed. Vari-

ous prediction techniques have been employed, targeting frequently encountered patterns

in memory references. However, Hardware Transactional Memory (HTM) [39] presents

a scenario where a new form of prefetching may be invoked that complements and, in

certain scenarios, allows more effective latency hiding than standard techniques.

Several implementations of HTM use first-level caches to isolate speculative state, pre-

serving a consistent state by pushing clean (old) cache lines to second-level caches and
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beyond [19, 36, 60, 62, 85]. Transactions execute speculatively and any data races de-

tected by the HTM system are typically resolved by forcing one or more of the conflicting

transactions to abort. When a transaction aborts speculative state must be discarded and

the transaction must be re-executed. To do so, all speculatively modified lines in the first-

level cache are invalidated. Subsequent references to such lines during re-execution will

miss in the first-level cache and retrieve a clean version of the line from deeper levels of the

memory hierarchy. Thus, data transfer latencies delay transactional execution. In scenarios

with moderate to high contention this can result in extended transaction execution times,

application slow-down and a higher probability of contention. We observe that while a

technique like runahead execution [32, 58] could be advantageous here, the hardware

requirements for runahead execution and transactional execution are similar (support for

checkpointing and dependency tracking) and thus would need to be duplicated in hard-

ware.

In this chapter we investigate potential gains to be had when lines in the write-set –

the set of speculatively updated cache lines – of a transaction are prefetched when it begins

execution. These lines are highly likely to be referenced again when an aborted trans-

action re-executes. Interestingly, high contention typically implies high locality of refer-

ence. Moreover, in Section 4.2 we show that this locality of reference is not limited to

re-executions of a particular transaction invocation and persists even when a new invoca-

tion of the transaction occurs. These observations have motivated the design of hardware

prefetching mechanisms described in this study. These mechanisms are able to track im-

portant write-set lines and are brought into play upon aborts and new transaction starts to

prefetch lines that would be required by the transaction during its execution.

The benefits from prefetching write-set lines are expected to be most noticeable in

lazy versioning systems like TCC [19, 36]. This is so because, unlike eager versioning

designs, they do not restore clean values when speculation fails, and rely upon deeper

levels of the memory hierarchy to provide consistent data. However, eager versioning

designs like LogTM [90]will benefit from prefetches that are initiated when a new instance

of a transaction first begins. In this case a part of the write-set may not be present in

the cache when the transaction starts execution, particularly when the contention is high.

This effect not only improves execution times but also narrows the window of contention

improving concurrency overall.

The rest of this chapter is organised as follows. Section 4.2 provides strong evidence of
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the locality of reference that exists between multiple invocations of a given transaction for

a variety of transactional workloads. This also motivates the hardware structures which are

described in detail in Section 4.3. Section 4.3 also describes the operation of the prefetch

mechanism. Section 4.4 presents potential performance gains that can be achieved when

such prefetching is enabled. We evaluate several transactional prefetching configurations

based on the design presented in Section 4.3, including an idealised variant. Section 4.5

puts our contributions in perspective of prior work done in prefetching and HTM.

4.2 Motivation

To make a case for prefetching in transactions we have investigated the behaviour of several

workloads in the STAMP benchmark suite [18]. The goal of this analysis was to quantify the

locality of reference that exists in write-sets across different invocations of the same atomic

block or transaction. We recorded all stores issued by each transaction from one thread

of each application, tracking the number of transaction invocations that reference each

distinct cache line address. We then ranked accessed locations on the basis of frequency of

such references for all invocations of each transaction. We choose to concentrate on write-

sets for two reasons – first, such lines are likely to get invalidated due to coherence actions

or aborts and, second, the read-modify-write nature of common transactions results in a

significant overlap with the read-set. The non-overlapping part of the read-set typically

sees less contention and is, therefore, likely to be found in the private cache hierarchy.

Figure 4.1 presents several plots (one for each workload included in the study) that

show the number of distinct addresses that can cover a certain fraction of the total num-

ber of memory references generated by all invocations of a certain transaction over the

duration of the application. For each plot the x-axis is in logarithmic scale and shows the

number of distinct addresses, N . The y-axis plots cumulative reference count, C , (for the N

most frequently referenced addresses) normalised to the total number of references issued.

In other words, if we can track and prefetch a certain number, N , of the most frequently

referenced addresses then we can potentially satisfy a fraction, C , of stores in transactions.

Moreover, it can be inferred from the read-modify-write behaviour of common transac-

tions that these prefetches would also satisfy a significant portion of loads issued by the

transaction.
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Figure 4.1: Locality of reference across transaction invocations.
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Figure 4.2: Narrowing the window of contention: effect on conflict probabilities.

Some transactions have almost no locality of reference, like Tx2 from kernel 1 in SSCA2,

a workload with little contention. The linear rise (note that the x-axis is logarithmic) in

cumulative reference count is indicative of this fact. A similar case occurs in Labyrinth,

where concurrency is limited but the nature of work results in the different invocations of

the same transaction updating very different locations. However, for applications like In-

truder, Genome, KMeans and Yada one notices saturation or very low growth in cumulative

reference count beyond 16 or 20 addresses, indicating strong locality of reference.

The optimistic nature of TM usually provides good performance when workloads have

little contention. However, when contention is high overheads of managing and restoring

speculative state grow and increase application execution times. Therefore, to improve

HTM design one must aim at minimising overheads when running applications with mod-

erate to high contention. Besides direct improvements in transaction execution times,

prefetching data can potentially improve overall concurrency by narrowing the window

of contention for transactions. Figure 4.2 shows a very simplified view of how this might

occur. We view a conflicting access as an event that can occur with equal likelihood at any

point during the lifetime of a thread which might intermittently execute transactions. In

such a case the probability of contention for the transaction can be represented by the time

the thread spends executing the transaction expressed as a fraction of its lifetime. It can be

seen that shortening the duration of a transaction reduces the probability of encountering

a conflict. Moreover (not shown in the figure) this reduced probability also results in fewer

aborts and consequent re-executions (which degrade overall contention even further). This

results in fewer conflicting accesses being generated in the system.

Prior work [59] has found that containing transactional stores in dedicated hardware

buffers can mitigate overheads associated in reading back lines invalidated on an abort.

However, our prefetching technique provides improvements in performance for fresh trans-
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action invocations as well.

As single-thread performance growth stagnates, running applications with inherently

limited parallelism in a multithreaded fashion will be a natural recourse to extract maxi-

mum benefit from core count scaling. For such applications in our study (Genome, KMeans,

Yada, Intruder) we see that significant locality of reference exists. If we track the 16 most

frequently accessed addresses for each transaction we can typically cover more than 60%

of the references issued.

4.3 Design

We subdivide the design into three components – the first which infers locality, the sec-

ond which manages prefetches and the third which trims prefetch lists. The subsections

below describe the structure and behaviour of each component. These components are

instantiated for each core in a chip-multiprocessor.

4.3.1 Inferring Locality

To decide which cache line addresses are most suitable for prefetching one must first get a

measure of the associated locality. The key problem that arises when one attempts to track

locality traits of arbitrary memory locations is that of maintaining a history of memory ref-

erences until there is enough to infer useful behavioural characteristics. While the history

is being recorded there might not be any notion of relative importance of different ad-

dresses, resulting in seemingly very large storage requirements or extremely long delays in

making inferences. A trade-off must be made that keeps the design simple yet responsive.

We choose to do so by employing one or two bloom filters [11] to track memory access

history for one or more invocations in the past. Performance evaluations presented later

will show performance differences between designs with one and two bloom filters. The

single filter design uses a two-step iterative refinement mechanism to learn high-locality

cache line addresses one transaction at a time. The two-filter design (described later in

Section 4.4.3) uses a 3-step mechanism using the bloom filters in a ping pong fashion.

When employing a single-bloom filter, two invocations of a transaction are required to

learn prefetch candidates. Figure 4.3 shows the key elements of the proposed mechanism.

During the first invocation, cache line addresses in the write set are added to the bloom
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Figure 4.3: Transactional Prefetching: Key components.

filter. During the second invocation, cache line addresses targeted by stores are checked

for presence in the bloom filter. If a positive match is found the address is added to one

of the prefetch candidate lists. Either free lists are used or the lists allocated to the least

recently invoked transaction are freed, as explained in Section 4.3.2.

Locality inference is not initiated for transactions as long as they have prefetch re-

sources allocated to them. Training is aborted if two invocations of another transaction

are seen and a watchdog timer has been triggered. This prevents seldom executed transac-

tions from permanently blocking access to locality inference structures. We employ parallel

bloom filters employing high-quality H3 hash functions, which have been found, in prior

work [72], to be suitable for hardware implementation. The evaluation includes results for

both real and perfect bloom filters. Note that the performance (false-positive rate) of these

filters is not as critical to performance as when using such filters for conflict detection.

Training in Parallel

It is conceivable that the bloom filters can be used to train on more than one transaction

simultaneously. This would involve inserting (address, transaction id) tuples instead of just

addresses into the bloom filters. Since it is non-trivial to selectively delete entries from a

bloom filter, such a design must consider the cost of false positives, transaction invocation

frequencies and overall responsiveness. We do not study the concept further.
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4.3.2 Managing Prefetches

Prefetch candidates produced through locality inference are stored in one or more of sev-

eral prefetch lists. For the purposes of this study we have 8 lists, 8 entries each. Thus we

can support 8 distinct transactions or atomic blocks. If there are fewer transactions which

require more than 8 prefetch entries, two or more lists can be chained together. This is

managed by the Transactional Prefetch List Map (TPLM), as shown in Figure 4.3. This is

a structure with 8 entries. Each entry contains a TXID (transaction identifier) field and

an 8-bit map with high bits indicating prefetch lists allocated to the transaction. Chaining

lists together provides flexibility in dealing with transactions of different sizes. When more

than 8 transactions exist or no prefetch lists are available we employ an LRU scheme to

release resources for the least recently invoked transaction. Prefetches are issued when a

transaction begins and has prefetch lists associated with it. In our experiments with lazy

conflict resolution designs, it is safe to not regard prefetches as transactional accesses.

Each entry in the prefetch list contains the cache line address, a PE (prefetch enable)

bit, a PU (Prefetch Useful) bit and a 2-bit counter. The PE bit is set when the corresponding

line is invalidated or evicted from the cache or when a transactional store updates it. Lines

with PE bit set to 0 are not prefetched. Transactional commits reset all PE bits. PE bits

are also reset when a cache line fill occurs and a transactional update to the line has not

yet been issued. All PU bits are reset when a transaction begins. The PU bit is set when

a transactional store targets the corresponding cache line, indicating that the address still

retains locality.

4.3.3 Trimming Prefetch Lists and Transactions

The two bit counter for each prefetch candidate is set to 4 when the entry is first created.

On transaction commits the counter is decremented for all entries in the prefetch list for

which PU bit is not set. If this counter reaches 0 the line is not prefetched any more. If

all entries for a certain transaction have counts set to 0, the resources (prefetch lists and

TPLM) are released for use by other transactions. This is easily achieved by associating

a 3-bit counter with each prefetch list. It tracks the number of active prefetch candidates

in the list. It is incremented when entries are added to the prefetch list after training and

decremented every time a prefetch candidate is trimmed. When the counter is decremented

to zero the corresponding bit in the list allocation bit-map in the TPLM is reset. When all
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Component Description

Cores 32 in-order 2GHz Alpha cores, 1 IPC

L1 Caches 32KB 4-way, 64B lines, 1-cycle hit

Bloom filter 256-bit, parallel H3, 1 hash function

L2 Cache 1MB/bank 8-way, 64B lines, 10-cycle hit

Memory 4GB, 150-cycle latency

Interconnect 2D mesh, 2 cycles per hop

Directory full-bit vector sharers list, 10-cycle directory latency

Table 4.1: Simulation parameters.

bits in the list allocation bit map of a transaction are set to zero, the entry can be reused.

The next invocation of such a trimmed transaction will be eligible for locality inference,

when prefetch lists will be rebuilt.

4.4 Evaluation

In this section we evaluate the performance of transactional prefetching. We use as base-

line Scalable-TCC, a state-of-the-art lazy HTM system. We first describe the simulation

environment that we use, then we present our preliminary results.

4.4.1 Simulation Environment

For the evaluation we use M5 [6], an Alpha 21264 full-system simulator. We modify M5

to faithfully model the Scalable-TCC proposal to operate in a chip multi-processor (CMP)

with private L1 caches and a banked L2 cache. The design is configured to avoid rare

overflows of transactional data from private caches. These are handled using a special

overflow buffer. In our experiments only a few such events are noticed. Scalable-TCC

has an always-in-transaction approach and employs lazy conflict detection and resolution

at commit time, transactional updates are kept in private buffers (caches) to maintain

isolation. Note that the prefetch mechanism is invoked only for transactions defined in

the application source code. Table 4.1 summarises the system parameters that we use,

with one level of private cache and a 2D mesh network connecting the shared L2 banks,

49



4. TRANSACTIONAL PREFETCHING: NARROWING THE WINDOW OF CONTENTION

Benchmark Input parameters

Genome -g4096 -s128 -n524288

Intruder -a10 -l32 -n8192 -s1

KMeans -m15 -n15 -t0.05 -i n32768-d24-c16

Labyrinth -i random-x96-y96-z3-n384.txt

SSCA2 -s13 -i1.0 -u1.0 -l3 -p3

Vacation -n8 -q40 -u90 -r1048576 -t32768

Yada -a20 -i ttimeu10000.2

Table 4.2: Evaluated STAMP benchmarks and input parameters.

resembling the Scalable-TCC proposal. Our proposed transactional prefetching scheme is

implemented on top of the baseline HTM. This detailed simulation model , denoted as

TP (Transactional Prefetching), employs one 256-bit H3 bloom filter. In addition, we also

simulate an idealised model that at the beginning of a transaction prefetches all the lines

that have been speculatively written by that transaction in the past. These prefetches are

considered to be serviced instantaneously. We name this model PA (Prefetch All).

We use the STAMP benchmark suite [18] to evaluate our proposal. Table 4.2 lists

the evaluated workloads and input parameters. We exclude the application Bayes from

our evaluation, because this application has non-deterministic exiting conditions leading

to severe load imbalance between threads, which makes comparison between different

systems inconclusive.

4.4.2 Performance Results

Figure 4.4 shows the execution time breakdown for the HTM systems that we evaluate,

namely Scalable-TCC (S), Transactional Prefetching (TP), and Prefetch All (PA). The re-

sults in Figure 4.4 are normalised to Scalable-TCC 32-threaded executions, and they are

split into six parts, namely Barrier, Commit, Useful, StallCache, Wasted, and WastedCache.

The component Useful is defined as one cycle per instruction plus the number of memory

accesses per instruction multiplied by the L1D hit latency; the component StallCache is

defined as the time spent waiting for an L1D cache miss to be served. Analogously, for

aborted transactions we define Wasted and WastedCache.
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Figure 4.4: Normalised execution time breakdown for 32 threads.

S – Scalable-TCC; TP – Transactional Prefetching; PA – Prefetch All

Intruder shows remarkable improvement when prefetching is enabled (a speedup of

more than 30%). It is a highly contended application exhibiting significant locality across

various transaction invocations. In this scenario prefetching data results in substantial

shortening of transaction lifetimes. The components, StallCache and WastedCache, show

major reductions, as can be seen in Figure 4.4. We highlight this application because in

our opinion it is an important workload that is representative of applications with limited

concurrency. Such multithreaded applications will gain importance as parallelization is

expected to become the only source of performance scaling.

Genome shows moderate contention and a significant amount of locality for most trans-

actions (see Figure 4.1). It shows two distinct phases during execution – a short early high

contention phase followed by a longer phase with low to moderate contention. The benefits

of prefetching accrue in the first phase, yielding an 16% improvement over the baseline.

Yada is another application with moderate contention (see Figure 4.1). Prefetching

lines improves performance, though not by much (3%). One of the reasons for this is

limited tracking resources at the prefetcher. Yada has large transactions, and the number

of prefetched addresses constitutes a small fraction of the memory references generated.

Vacation has large transactions, there is very little contention and transactions are read

dominant. The dominant transaction (shown as Tx1 in Figure 4.1) has good locality of ref-

erence and the TP configuration is able to take advantage of this, yielding an improvement

of about 15% over the baseline (as seen in Figure 4.6).

KMeans exhibits short phases with some degree of locality. This is evident from the

51
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Benchmark %Useful %Trimmed %Cache improvement Prefetches per commit

Genome 92.88 81.36 60.07 0.02

Intruder 99.87 11.11 64.55 4.28

KMeans 41.64 99.54 1.55 0.2

Labyrinth 100.00 0.00 82.74 2.27

SSCA2 0.00 99.49 0.00 0

Vacation 98.04 14.66 14.74 0.03

Yada 98.97 38.64 36.66 2.26

Mean 88.56 40.88 37.19 1.3

Table 4.3: Statistics of Transactional Prefetching for evaluated workloads.

Legend: %Useful — Percentage of useful prefetches compared to issued prefetches; %Trimmed — Percent-

age of trimmed entries compared to added in prefetch lists; %Cache improvement — Percentage improve-

ment of total cache service time compared to Scalable-TCC; Prefetches per commit – Average number of

prefetches issued per committed transaction.

number of trimmed and useful prefetches as shown in Table 4.3. However, transactions do

not appear to have a dominant effect on execution time in this application. We, therefore,

do not notice any appreciable deviation in execution times across various configurations.

SSCA2 is a highly concurrent application with little contention and almost no local-

ity across transactions (see Figure 4.1). Hence, prefetching is not expected to play a role

here, and as shown in Table 4.3 our proposed prefetch mechanism issues just 35 prefetches

spread over more than 100,000 transaction invocations. Moreover, these prefetches get

trimmed from the lists rapidly (as indicated by the high (99.49%) percentage of trimmed

prefetches, see Table 4.3). Though Labyrinth repeatedly accesses a large set of addresses,

it executes a very small number of transactions (less than ten instances of each defined

transaction), leading to negligible performance gains for the TP configuration. Moreover,

due to Labyrinth’s lack of parallelism and sensitivity to transaction interleaving, some con-

figurations exhibit increased contention and therefore more wasted work, as can be seen

in Figure 4.4.

Figure 4.5 shows the scalability chart for the evaluated workloads using 32 threads

on 32 cores. Intruder has a remarkable boost in scalability reaching 15.3× with TP, a

promising result for an application that is known to have difficulties to scale. Noticeable

improvements can be also seen in Genome, Vacation and Yada, while applications like
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Figure 4.5: Scalability for 32 threaded workloads.

SSCA2 and Labyrinth remain flat due to their transactional characteristics.

Overall, as shown in Table 4.3 our transactional prefetching mechanism successfully

infers locality from the evaluated workloads, achieving more than 90% utilisation of issued

prefetches for all applications except KMeans, where locality is high, but appears in short

phases. Moreover, our design is able to detect scenarios where prefetching is not useful,

for example in applications like SSCA2, and does not issue useless prefetches for such

scenarios. In general, as can be observed in Table 4.3, if the usefulness of prefetches is low

then the number of issued prefetches per committed transaction is rather small as well.

Figure 4.6 shows relative cumulative execution times for each transaction defined in

code. Only successful commits have been considered. From these numbers it is possible to

estimate the impact of transactional prefetching. For each transaction, two bars are shown

– the left one corresponds to execution time seen with the baseline design and the right

one corresponds to execution time with prefetching enabled. It is instructive to compare

these numbers to those shown in Figure 4.1. We can see that applications which show high

locality (Genome, Intruder, Yada, Vacation) also see an improvement in execution times.

The improvement moreover is proportional to the degree of locality seen – for example, in

Intruder most transactional accesses target only a few addresses and hence, we see a larger

improvement than that seen in Yada. SSCA2 and KMeans do not show much improvement

since there is little locality.
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Figure 4.6: Impact on transaction execution times.
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Figure 4.7: Impact of the 2-filter 3-step approach.

4.4.3 Two Filter Approach

More accurate learning of prefetch candidates can be performed by employing two bloom

filters in a ping-pong fashion. We test this approach by using a 3-step interative refinement

design. The first step inserts write-set cache line addresses in one (BFx) of the two filters

(BFx and BFy). The next invocation of the transaction triggers the second step wherein

written lines that are found in BFx are inserted in BFy. The third invocation starts the

final step of the learning process, filling prefetch candidate lists based on written lines

that are found in BFy. As before, we train one transaction at a time, releasing training

resources on completion. This approach enables more accurate learning at the cost of

responsiveness (it takes longer to train). Figure 4.7 shows how this approach compares

against the single filter approach in terms of overall performance and the fraction of useful

and trimmed prefetches. Although there is no appreciable difference in performance the

two filter approach generates more accurate prefetches, as indicated by a larger fraction of

useful prefetches and fewer trims.

4.4.4 Sensitivity Analysis

Bloom filter configuration has little impact of performance of transactional workloads. We

varied bloom filter sizes, ranging from 128 bits to 1024 bits and also implemented per-

fect signatures. There is remarkable consistency in execution times across different filter
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Figure 4.8: Impact of bloom filter size on trimmed entries.

configurations. This is because few additional prefetches arising from increased false pos-

itives with small bloom filter sizes have negligible impact on performance and are quickly

trimmed from prefetch lists. Figure 4.8 shows that smaller filters result in more trimmed

entries. However, in the case of Yada, variations in behaviour induced by transaction in-

terleaving cause minor deviation in the number of trimmed entries (with a 2% spread in

execution times).

4.5 Related Work

Although the first proposal by Herlihy and Moss [40] appeared in 1993, research in TM

gained momentum with the introduction of multicore architectures. Two early HTM pro-

posals, TCC [37] and LogTM [90], explore two very different points in the HTM design

space. TCC defines a lazy conflict resolution design where transactions execute specula-

tively until one tries to commit its results and causes the re-execution of any concurrent

conflicting transaction. LogTM describes an eager conflict resolution design that employs

coherence to detect conflicts as soon as they occur and are resolved by asking the re-

quester to retry (with a way to break occasional deadlocks through software intervention).

Since then a lot of work has been done targeting a host of different issues that arise when

transactional applications run on multicores. Bobba et al. [14] categorised pathologies

that can arise in fixed policy HTM designs and degrade scalability and performance. The

paper pointed out performance bottlenecks that can arise out of limited commit band-

width in lazy conflict resolution designs and overheads due to excessive aborts in eager

resolution designs. Several designs since then have targeted improved scalability in lazy
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conflict resolution systems through various means – making write-set commits more fine-

grained [19, 65, 66] and ensuring conflicting transactions do not interfere with an on-going

commit [62, 85]. Others have attempted to reduce abort overheads in both eager and lazy

conflict resolution systems – by allowing eager systems to utilise deeper levels of the mem-

ory hierarchy to buffer old values [51] and by having caches with special SRAM cells that

can store two versions of the same line simultaneously [5]. Yet others have attempted to

incorporate the best of both eager and lazy policies in one design – at the granularity of

application phases [60], at the granularity of transactions [52], and at the granularity of

cache lines [83]. There exist studies that have attempted to insulate the coherent cache

hierarchy from adverse effects of repeated aborts [59]. These varied attempts at reducing

overheads involved in shared data accesses by cooperating threads have motivated the de-

sign effort in this work. This chapter, however, presents a study and design that is largely

orthogonal to the various design approaches discussed above. It uses the fact that transac-

tions show locality of reference which can be utilised to improve the speed at which they

can complete updates to shared data, thereby improving speed and reducing contention.

Several prior studies have developed ideas regarding cache line prefetching [45, 76]
and investigated various prefetching schemes based on detecting cache-miss patterns in

non-transactional workloads. This chapter, unlike prior work, describes a scheme that does

not rely upon the existence of a simple pattern (like a stride) in the memory reference

stream. It can learn arbitrary sets of cache line addresses as long as they show locality of

reference across multiple invocations of the same section of code. Thus, this proposed tech-

nique is expected to be complementary to others. Moreover, with this technique prefetches

can be issued earlier than in other techniques. Chou et al. [20] present epoch-based corre-

lation prefetches which utilise special hardware and software support structures to detect

prefetch trigger events and manage prefetch candidates. Our work presents a simpler,

less expensive interface to manage and trigger prefetches using low complexity per-core

hardware.

4.6 Summary

This chapter highlights the importance of prefetching data in the new context of hardware

transactional memory. Since transactions are used to annotate parts of multithreaded al-
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gorithms where concurrent tasks share information, it is important that they run as fast as

possible to improve overall scalability of the application. Moreover transactions are clearly

demarcated sections of code and thus can be targeted by techniques, such as the one pro-

posed, that attempt to utilise any locality of reference that may exist within such codes.

Our technique, using relatively modest hardware support shows improvements for most

transactional workloads we have analysed, with substantial gains of up to 35% under high

contention (for intruder).

In the future we would like to enhance this technique and apply it to other scenarios to

accelerate generic blocks of code that exhibit high locality of reference across invocations.

We feel that critical sections and synchronisation operations could also benefit from such

prefetching. The observation that high contention is indicative of high locality makes this

technique potentially advantageous in mitigating the impact of data-sharing bottlenecks

in multithreaded applications. We also wish to study interactions when this technique

is combined with other forms of prefetching, using the insights so acquired to develop

synergistic techniques that further improve the design to speed up both transactional and

non-transactional code.
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5
HARP: Hardware Abort Recurrence

Predictor

5.1 Introduction

The problem of extracting thread level parallelism through speculative execution has re-

ceived a lot of attention from both industry and academia [39, 68]. In particular, Hard-

ware Transactional Memory (HTM) [40] offers performance comparable to fine-grained

locks while, simultaneously, enhancing programmer productivity by largely eliminating

the burden of managing access to shared data. Recent usability studies support this the-

sis [18, 71], suggesting that Transactional Memory (TM) can be an important tool for

building parallel applications. For these reasons, HTM is receiving increasing attention

from the industry [24, 25, 29], and IBM has released their first chip with built-in HTM

support, the BlueGene/Q [87]. More recently, Intel has published ISA extensions (TSX)

that provide support for basic HTM and lock elision, with the intention of supporting these

in upcoming products [43].
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An HTM system allows concurrent speculative execution of blocks of code, called trans-

actions, that may access and update shared data. However, in the presence of data conflicts

transactions may abort, i.e., the results of speculative execution are discarded. This results

in wasted work, expensive rollbacks of application state, and inefficient utilisation of com-

putational resources. While conflicts due to concurrent accesses to shared data cannot be

completely eliminated, mechanisms to avoid starting a transaction when it is likely to fail

are necessary for maximising computational throughput. Moreover, in scenarios where

multiple scheduling options are available, having such mechanisms can expose additional

parallelism and improve resource utilisation.

While single application performance is still important, systems where multiple paral-

lel applications coexist are expected to become increasingly common in the near future.

The performance of HTM in scenarios with abundant transactional threads is still an open

question, and solutions that provide efficient utilisation of computational resources and

good performance are required for TM to gain wide acceptance. In the past, considerable

work has been done on contention management, but mostly in the field of Software TM

(STM) [4, 30, 73]. These proposals typically react after aborts happen, without trying to

avoid future conflicts. Conversely, a few HTM proposals exist that try to avoid execution

of possibly conflicting transactions [8, 10, 91]. However, these solutions do not provide

full hardware support and rely on expensive and specialised software runtime routines

and data structures. Moreover, the efficacy of these proposals in scenarios with multiple

concurrently executing applications is unclear.

In this chapter, we introduce Hardware Abort Recurrence Predictor (HARP), a com-

prehensive hardware proposal that identifies groups of transactions that are likely to be

executed concurrently without conflicts. Our proposal allows other threads or applications

to execute when the expected duration of contention is long, providing better throughput

when running several applications, and potentially higher parallelism when several threads

of the same application are available for scheduling. Moreover, HARP dynamically chooses

a contention avoidance mechanism based on expected duration of contention, in order to

maximise resource utilisation, while minimising the amount of wasted work due to trans-

action aborts. HARP avoids software overheads by using simple hardware structures to

record transactional characteristics. More specifically, we notice strong temporal locality in

contended addresses in transactional applications. By detecting when conflicting locations

change, we can identify when contention is likely to dissipate.
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To evaluate HARP, we compare it against “Bloom Filter Guided Transaction Scheduling”

(BFGTS) [8], a state-of-the-art transaction scheduling technique, and LogTM [57], a well

established HTM design. Our evaluation includes single-application setups, comprising a

scenario with the same number of threads as cores, and a scenario with more threads than

cores. We provide insights on when using more threads can extract additional parallelism,

and show that HARP outperforms LogTM and BFGTS on average by 109.7% and 30.5%

respectively. Moreover, we are the first to study the performance implications of a transac-

tional multi-application setup where, again, our technique outperforms the other evaluated

proposals. In addition, we show that HARP is significantly more accurate in terms of pre-

dictions and resource utilisation for all the evaluated setups. Compared to BFGTS, HARP

has on average 42% and 55% lower abort rates for single-application and multi-application

workloads respectively.

5.2 Related Work

Initial efforts on Software TM (STM) contention managers by Scherer and Scott use a

set of heuristics to abort transactions and choose backoff duration when facing a con-

flict [73]. Further developments focused on user-level support to reduce contention, by

either using runtime metrics like commit rate or dynamically discovering pairs of transac-

tions that should not be executed in parallel [4, 30, 79]. More recently, work by Maldonado

et al. [54] explores kernel-level TM scheduling support. They define several scheduling

strategies, ranging from a simple yielding strategy to a more elaborate scheduler based on

queues, each having its advantages but none standing out as a clear winner for the set

of workloads evaluated. All proposals mentioned above are reactive – imposing measures

after conflicts happen without trying to avoid future conflicts.

In the field of HTM there has been less research on this area. Exponential backoff,

as introduced in LogTM [57], is the most common contention management mechanism

adopted in HTM designs. This was later used by Bobba et al. [14] for a thorough analysis

identifying several performance pathologies present in HTM systems, including some that

are closely related to contention management issues. The solutions proposed were not

investigated in depth as it was not the focus of the paper.

Adaptive Transaction Scheduling (ATS) by Yoo and Lee [91] proposes queueing trans-
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actions in a centralised hardware queue if the amount of contention seen surpasses a preset

threshold. A metric named contention intensity is maintained per thread. If this intensity

surpasses a preset threshold, transactions are queued into a centralised hardware queue

and dispatched one at a time serialising their execution. When the contention intensity de-

creases below the threshold, transactions are allowed to bypass the queue and execute in

parallel again. ATS has little impact on performance when contention is low, and ensures

single global lock performance for contended scenarios with small hardware and software

requirements. However, serialising all transactions when contention intensity increases

can be overly pessimistic, as not all transactions have to be highly contended. Moreover,

like backoff-based policies, this mechanism is reactive and takes action after contention is

already present in the system.

Blake et al. were the first to introduce proactive mechanisms to manage contention.

Proactive Transaction Scheduling (PTS) is one such technique [10]. PTS employs a global

software graph structure that maintains the confidences of conflict, with nodes represent-

ing transactions and edges representing the confidence level of a conflict reoccurring in the

future. In addition, per-transaction statistics such as the read- and write-set in the form of

Bloom filters are also kept in software. PTS queries the global graph at the beginning of a

transaction to form a decision whether to serialise against an already running transaction,

and uses the per-transaction statistics to dynamically update the global conflict graph. PTS

can schedule more optimistically than ATS, thus attaining better performance. However,

PTS needs to query a global data structure at the beginning of each transaction and update

it when committing or aborting, incurring significant overheads.

Bloom Filter Guided Transaction Scheduling (BFGTS) [8] outperforms PTS by employ-

ing a hardware accelerator and better Bloom filter manipulations using a metric termed

similarity – a measure of memory locality present throughout different executions of a

transaction. If two transactions with high similarity conflict, the conflict is likely to be

persistent. However, this approach may not be accurate because two transactions could

conflict very infrequently while still having high similarity, especially if they perform a

large number of reads over the same locations. BFGTS is largely implemented using (1)

software data structures that store confidences of conflict, per-transaction Bloom filters,

and similarity values; and (2) runtime routines that execute when the system serialises,

commits, or aborts a transaction. These routines can be larger than the transaction itself,

and may not be compatible with arbitrary transactional codes (e.g., different languages).
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Figure 5.1: Example of efficient use of computational resources.

Per-core hardware support includes a list of transactions running in remote cores, an ad-

ditional 2KB cache, and a Bloom filter to infer memory locality. This hardware performs a

prediction in a few cycles at the beginning of a transaction, but cache misses can increase

prediction latency.

5.3 Overview and Motivation

5.3.1 Overview Example

Figure 5.1 illustrates how abort prediction enables efficient utilisation of computational

resources with a simple example. It shows two cores, each executing two threads from the

same application. Each thread has two transactions, where the first is short (T x0) and the

second is long (T x1).

The example assumes an initial state where software threads Th0 and Th2 are both

allowed to execute T x0 concurrently and eventually transaction T x0 in Th0 aborts, mean-

ing that Core0 mispredicted the conflict. An HTM system without abort prediction support

would now blindly try to re-execute the transaction, possibly leading to more conflicts and

inefficient resource utilisation. However, if the system is aware of contention it can proac-

tively take steps to avoid it. At time 1 , Core0’s predictor decides to stall the transaction

because it predicts a conflict is likely to happen with a short transaction. Thus, in this case,

waiting until the short transaction finishes makes sense. When Core1 commits its trans-

action (T x0), its predictor allows the execution of the next transaction (T x1) of the same

thread Th2, and the stalled execution in Core0 can be resumed with the approval of its
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Figure 5.2: Overheads of evaluated systems at different commit throughputs. Eigenbench with varying
transaction sizes, 128K iterations and 16 cores.

predictor. Core0 can now successfully commit its transaction, but when trying to move on

to the next transaction (T x1), the predictor preempts the thread because a conflict is pre-

dicted using past history (explained in depth later). Now, at time 2 , the conflict is against

a transaction known to be long, so the system decides to yield the thread Th0, and Th1 is

granted permission to start execution. The example ends with both running transactions

committing in parallel. Note that if Th0 had not yielded and T x1 is contended,Core0 would

have probably wasted time or even experienced a series of aborts until Core1’s transaction

commits, whereas with abort prediction support a different transaction has executed and

committed meanwhile.

5.3.2 Why Do We Need a Hardware Solution?

Previous techniques rely on software components in their designs. To understand the over-

heads imposed by such components and the prediction mechanism in general, we perform

an experiment using Eigenbench [42], a flexible exploration tool for TM systems. We con-

figure Eigenbench to have no contention and to maximise total transactional execution

time.

We evaluate LogTM and BFGTS using its best performing configuration. Figure 5.2

shows our experiments on a range of transaction sizes (smaller transactions demand higher

commit throughput). The smallest transaction size evaluated performs one read operation

64



0 1000 2000 3000 4000 5000 6000 7000 8000In
tr

u
d
e
r

0 10000 20000 30000 40000 50000 60000 70000

Y
a
d
a

4000 4050 4100 4150 4200

Conflicting address pattern (chronological)

Z
o
o
m

35500 35550 35600 35650 35700

Conflicting address pattern (chronological)

Z
o
o
m

Figure 5.3: Chronological distribution of conflicting addresses for a transaction of interest in Intruder (left)
and Yada (right). The x axis represents cumulative abort count. Each different grey scale level represents a
different conflicting address.

and a small amount of work with the read data. Since there is no contention, LogTM

scales almost linearly with any transaction size. BFGTS experiences a notable performance

degradation with small and medium size transactions. Even with relatively large transac-

tions (more than 100 reads) the performance gap under no contention is significant. The

hardware accelerator of BFGTS performs a quick decision at the beginning of each trans-

action, however, having to interrupt the normal flow of execution on every commit (and

abort) to execute additional code is the main cause of the slowdown seen in the chart.

With a hardware solution we aim to minimise these overheads and deliver performance

close to LogTM in uncontended scenarios.

5.3.3 Detecting Conflict Recurrence

An efficient abort prediction mechanism needs to track transaction characteristics in or-

der to anticipate when conflicts are going to happen. It must also possess the capability to

detect when conflicts dissipate. To this end, we introduce the use of conflict lists. A transac-

tion’s conflict list contains the last few conflicting addresses that triggered an abort; locality

in such addresses is an indication that contention between two transactions is recurring in

nature. These lists can be of small size, thus suitable for a hardware approach such as

ours where the amount of information that can be kept is limited. To motivate this design

choice, we show a study done using two of the most contended applications of the STAMP

benchmark suite [18]: Intruder, a network packet intrusion detection program, and Yada, a

Delaunay mesh refinement algorithm. For both applications we have looked at the history

of conflicting cacheline addresses that cause an abort. More specifically, we monitored one

transaction of interest (long and contended) for one of the executed threads.

Figure 5.3 shows two bars for each application with the chronological distribution of

conflicting addresses that triggered an abort for the studied transaction. Each upper bar

shows the entire sampling, while the lower bars show a magnified view of a representative
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region. Each address has a different grey scale level associated. The x axis quantifies the

total number of aborts seen so far, each being triggered by a conflicting address. For better

visualisation, ten addresses are considered for Intruder and five for Yada, enough to cover

more than 98% of the total number of aborts. As can be seen, conflicting addresses present

high temporal locality, with a dominant address in both cases. These addresses with high

locality are easy to capture with the proposed conflict lists.

A conflict between two transactions is likely to be persistent if one of the transactions

accesses an address present in the conflict list of the other transaction, and it has likely

dissipated otherwise. For example, in applications where contention is data dependent,

like Yada, two concurrent transactions may conflict when operating over the same subset

of data (addresses), and the conflict will likely dissipate when one of the transactions

starts operating over different data (i.e, the transaction does not access addresses present

in the other transaction’s conflict list). Similarly, if contention is due to accessing a data

structure, like in Intruder, conflicts might be present depending on which sections or nodes

(addresses) of the data structure are accessed by concurrent transactions. We expect this

observation to hold true for most TM use cases, as such conflicts are often unavoidable in

parallel programs.

5.3.4 HARP Versatility

HARP is largely decoupled from specific HTM conflict detection and management pro-

tocols, requiring just the knowledge of conflicting addresses that trigger an abort. This

information is, typically, easy to gather in most designs. Lazy conflict detection has been

found to make a system more robust under high contention [18, 77]. This is because one

transaction aborts only because another transaction has successfully committed. Though

a lazy system as a whole makes progress, individual threads waste substantial computa-

tional resources due to aggressive speculation. Simpler HTM implementations tend to use

eager conflict detection – e.g., implementations based on extensions to traditional cache

coherence protocols.

A mechanism like HARP that aims to (a) prevent concurrent execution of conflicting

transactions, (b) provide low abort rates, and (c) swap potentially conflicting transactions

for useful work; which makes an eager system become robust under high contention. In

addition, eager systems present the following advantages: (a) can benefit from fast lo-
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Figure 5.4: HARP extensions to a TM-aware core. Assuming a 4-core system for the RTV and a 2-way CLT.
The APM, THT, and CLT have the same number of entries.

cal commits, and (b) eager conflict detection lets HARP take informed decisions earlier

regarding the course of execution. For these reasons we frame our study in eager systems.

A hardware approach like HARP transparently provides support for arbitrary transac-

tional codes (i.e., different languages or compilers), which may not be compatible in a

software-based approach with specialised routines. In addition, HARP does not need to

interrupt the normal flow of execution on the core on every commit and abort as previous

techniques require [8, 10]. Finally, HARP’s prediction latency and bookkeeping operations

are not affected by inherent overheads present in software routines, e.g., cache misses.

5.4 HARP Design and Operation

This section first describes the set of per-core hardware structures necessary to implement

HARP, followed by a detailed explanation of its operation. We conclude with a step-by-step

execution example.

5.4.1 HARP Hardware Structures

Figure 5.4 illustrates the necessary per-core hardware structures to implement HARP. These

structures track important information about current and past transactional executions.

The Running Transactions Vector (RTV) has as many entries as cores and tracks a list of

transactions currently running on remote cores. Each entry stores a static identifier (i.e.,

the program counter) of a remote transaction (if any) termed TxID’s. The Abort Prediction

Matrix (APM), Transaction History Table (THT), and Conflict List Table (CLT) are tagless

structures with the same number of entries, which are indexed by TxID. The APM contains

a 2-bit saturating counter in each cell. Each counter indicates the confidence of conflict

between two transactions. The THT and the CLT store past information from previously
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Figure 5.5: Schematic communication overview between HARP hardware structures. A subset of the bits
from the TxID (PC) are used to index the APM, THT, and CLT – denoted as H (hash function) in the figure.

executed instances of the transactions. Each entry of the THT contains the following per-

transaction information: (a) the average size (TxSize) of committed instances, (b) a 4-

bit saturating counter that indicates the contention ratio (CR), and (c) a 4-bit saturating

counter indicating the number of consecutively predicted conflicts (CPC) by HARP. The CLT

contains conflict lists stored in a set associative manner. Each entry of a set stores an

address of the transaction’s conflict list (last few addresses that caused an abort). Finally,

a few additional registers and some glue logic is necessary. These registers, collectively

called Conflicting Transaction Information (CTI), are used to store the TxID and conflict

list of a possibly conflicting transaction upon a predicted conflict.

Figure 5.5 shows a communication overview between HARP structures during transac-

tional operations. At the beginning of a transaction (Figure 5.5a) a prediction is performed.

1 The RTV and APM are used to determine if a remote transaction has a high confidence

of conflict with the transaction starting locally. If a conflict is found to be likely, 2 infor-

mation about the conflicting transaction is gathered from the THT to decide whether to

stall or yield the thread. Additionally, the conflict list is read from the CLT and stored in

the CTI. Otherwise, if no conflict is predicted, 3 a non-blocking message is sent through

the coherent interconnect to inform remote cores to update their RTVs, and the transaction

starts its execution.

On transaction abort (Figure 5.5b), after the speculative state is rolled back, 1 the con-

fidence of future conflict between the two transactions is incremented in the APM, statistics

in the THT and the conflict list in the CLT are updated, and a message is sent to inform

remote cores to update their RTVs. On transaction commit, the previously conflicting TxID

(if any) stored in the CTI is used to update the confidence of future conflict, the average
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Figure 5.6: Flowchart depicting the process of performing a prediction in HARP for a certain transaction
TxID.

transaction size is updated in the THT, and a message is sent to inform remote cores.

5.4.2 HARP Operational Details

Performing a prediction

Figure 5.6 details with a flowchart the process of predicting whether a transaction TxID will

conflict or not. HARP iterates over the RTV until a conflict is found or the end of the RTV

is reached (conflict not predicted). The APM is indexed by T x I D, the corresponding row

of the matrix can be seen as the set of confidences that T x I D might conflict with remote

transactions. To know if a conflict with a remote transaction T x I Dr is likely to happen,

T x I Dr is used to index by column, obtaining the cell with the confidence of conflict. The

confidences are represented using 2-bit saturating counters, where the two upper states

predict conflict and the two lower states predict no conflict. If a conflict is not predicted,

the transaction can start its execution. Otherwise, if a conflict is predicted, HARP uses

the local knowledge stored in the THT and CLT to infer the transactional characteristics of

the remote conflicting transaction. The conflicting transaction identifier and its conflict list

are stored in the CTI to later adjust confidences of conflict at commit time. If the size of

the conflicting transaction exceeds a threshold, an exception is thrown and its handler will

yield the thread in a similar way pthread_yield() does. Otherwise, HARP will stall the

execution until the conflicting transaction is no longer running. Note that the CTI registers

are part of the thread context, i.e., they are saved and restored on a context switch.
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Figure 5.7: Flowchart depicting the process of performing a commit in HARP for a certain transaction TxID.

Identifying persistent conflicts and committing

We can distinguish between two kinds of running transactions: (a) the ones that start

without predicting any conflict, and (b) those that execute after stalling or yielding due

to a prediction (serialised). If the transaction was serialised, it has valid CTI data in the

registers. Throughout the execution of a serialised transaction, the memory requests are

compared against the addresses in the conflict list (CTI registers) of the previously pre-

dicted conflicting transaction. This is a crucial point to learn if a conflict has dissipated

or is still present. If the transaction accesses an address present in the CTI conflict list, it

means that the conflict is potentially persistent, and the transaction had a chance to execute

simply because a potentially conflicting transaction instance was not concurrently running;

in this case, the confidence of conflict is increased at commit time. If the transaction does

not access an address in the CTI conflict list, it means that the conflict between the two

transactions is perhaps no longer present, and the confidence of conflict is decreased. Ad-

ditionally, at commit time the average transaction size and the contention ratio (CR) are

updated, the CTI registers are also cleared. A flowchart describing the process is shown in

Figure 5.7.

Aborting a transaction

When a transaction aborts due to a conflict, the aborting core increases the confidence of

conflict between the two transactions in the APM. The contention ratio (CR) in the THT is

incremented, and the transaction’s conflict list is updated in the CLT with the conflicting

address. Since conflict lists can have repeated elements, the replacement policy is simple.

There is no need to do a look up before replacing; instead, an LRU bit decides which

entry is replaced. The broadcast message sent when a transaction aborts is slightly larger,
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it also contains the core identifier and TxID of the remotely conflicting transaction, and

the conflicting address. In this manner, besides remote cores updating their RTVs, the

remotely conflicting core can also update the confidence of conflict and the conflict list

of the remotely conflicting transaction in its local structures. These remote updates on

abort are important because they make a transaction aware of a potential conflict and a

conflicting address.

Non-blocking communication

When a core starts or exits (commits or aborts) a transaction, communication with remote

cores is necessary to keep the RTVs updated. This communication is done via small broad-

cast messages that include the core identifier, the TxID, and the action being performed

(e.g., committing). These messages are non-blocking, which can lead to outdated informa-

tion in remote cores for a small window of time, but this is not a correctness issue and far

less critical to performance than adding synchronisation. The number of such messages is

small when compared to coherence messages (∼1% on average in our simulations). More-

over, a large number of simultaneous messages implies a high commit rate, where HARP

would not need to interfere. In high contention scenarios, HARP serialises conflicting trans-

actions, which reduces the number of messages. These facts suggest that communication

is not a limiting factor for the design to scale (see Section 5.5.6 for related evaluation).

During the process of predicting a conflict, committing, or aborting, all information is

available locally. Such a distributed approach eliminates synchronisation overheads be-

tween cores and contention when accessing the hardware structures. Note that in order to

predict a conflict there must be at least one transaction running on the system. Hence a

deadlock scenario where all predictors repeatedly predict conflict cannot occur.

ALGORITHM 5.1: Dynamically adaptable decay algorithm.

if THT[TxID].CPC >= THT[TxID].CR then
decProbabilityConflict(TxID, ConflictingTxID);
THT[TxID].CPC = 0;

else
THT[TxID].CPC++;

end
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Dynamically adaptable decay

The decay targets transactions where contention varies with time, allowing them to exe-

cute optimistically faster when contention dissipates. As shown in Figure 5.6, the decay

is applied after a conflict is predicted and implements a simple algorithm as shown in Al-

gorithm 5.1. If the number of consecutively predicted conflicts by HARP is at least equal

to the transaction’s contention ratio, the confidence for the recently predicted conflict is

decremented and the CPC counter is reset. Otherwise, the CPC counter is increased. This

enables transactions that commit often to decrement their confidences of conflict faster,

while contended transactions will need to predict a larger number of consecutive conflicts

in order to see their confidences of conflict decremented by the decay. As contention in-

creases, the chances to apply the decay decrease at a faster rate, since having a large

number of consecutive predicted conflicts is increasingly unlikely.

Execution example

Figure 5.8 presents a self-contained step-by-step example of HARP’s operation.

5.5 Evaluation

In this section, we evaluate HARP by first describing our simulation environment and

methodology. We also include an overview of the hardware costs associated to our de-

sign. Then we present the main experimental evaluation using single-application and

multi-application setups, followed by sensitivity analyses with respect to the most relevant

parameters.

5.5.1 Simulation Environment

To evaluate HARP we compare it to two HTM baselines, LogTM [57], a well established

system; and a state-of-the-art transaction scheduling technique: Bloom Filter Guided Trans-

action Scheduling (BFGTS) [8]. In our experiments, both HARP and BFGTS use the LogTM

architectural framework for basic TM support. We use the M5 full-system simulator [6].
This simulator was made publicly available by the BFGTS authors [9], thus assuring the

BFGTS baseline is faithfully modelled. Queueing delay and resource contention in the
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Figure 5.8: HARP execution diagram for a two core system. The box at the top depicts a sequence of
events for Core0, matching those presented in Figure 5.1. The rest of the figure shows changes in
Core0’s HARP hardware structures at each step (shaded areas), outgoing messages are not shown.
The transaction begin at time 1 triggers the predictor, since no other transactions are running on
the system, it can start normally. At time 2 a remote message from Core1 is received and the RTV
is updated accordingly. At time 3 the transaction aborts due to a conflict with T x0 running on
Core1. At time 4 the transaction tries to restart, but this time the RTV is not empty, a conflict
is predicted and the CTI registers populated. Since the conflict is predicted against a transaction
marked as “short” in the THT, the execution is stalled. Later, at time 5 , a message is received
indicating that the conflicting transaction has finished, allowing Core0 to retry again and start
6 . At time 7 , a message is received indicating Core1 started to execute T x1, updating the RTV.
At time 8 , the running transaction in Core0 commits with valid CTI information because it was
serialised. In this example, we consider that during the execution address A was touched, making
the previously predicted conflict potentially persistent, so the confidence of conflicting again in the
future is increased. At time 9 , Core0 tries to start T x1, but a conflict is predicted with a large
remotely running transaction, yielding the current thread. Note that before yielding, the CTI info is
populated and will be saved as part of the thread context when yielding. At time 10 , a new thread
Th1 is granted execution, restores CTI information (null in this example), and starts executing T x0.
The transaction commits at time 11 , updating local information.
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Component Description

Cores 16 in-order 2GHz Alpha cores, 1 IPC

L1 Caches 64KB 2-way, private, 64B lines, 1-cycle hit

L2 Cache 16MB 16-way, shared, 64B lines, 32-cycle hit

Memory 4GB, 100-cycle latency

Interconnect Shared bus at 2GHz

Linux Kernel Modified v2.6.18

HARP 64 entries for APM, THT, and CLT

Structures 2 addresses per conflict list

BFGTS 2048bit signatures for BFGTS commit routines

Structures 2KB 16-way confidence cache, 64B lines, 1-cycle hit

Table 5.1: Simulation parameters.

memory subsystem and in added structures has been accounted for. The simulation pa-

rameters are detailed in Table 5.1.

We use the best performing BFGTS configuration, which skips most calculations in soft-

ware routines when there is low contention. HARP’s prediction cost is modelled as one

cycle per lookup in the APM, i.e., 15 cycles in the worse case. Lower prediction cost can be

achieved by fetching the entire row of the APM, filtering the columns of interest, and using

a set of comparators in parallel – trading hardware footprint for prediction latency. The

transaction size threshold that decides when to stall or yield is set to half the average time

it takes the kernel to perform a context switch in our system. Note that after stalling, the

transaction is not guaranteed to execute as a new abort could be predicted. This transac-

tion size threshold allows for at least two consecutive stalls before having a penalty larger

than yielding.

We use the STAMP [18] benchmark suite with nine different benchmark configura-

tions. Table 5.2 describes the input parameters used and the number of transactions

defined in each benchmark. The suffixes “-High” and “-Low” provide different conflict

rates. We exclude Bayes from our evaluation because of its non-deterministic exiting con-

ditions, leading to inconclusive results due to high runtime variability, as noted by many

researchers [8, 13, 18]. Labyrinth is modified to do the grid copy outside the transaction,
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Benchmark Input parameters Num Tx

Genome (G) -g4096 -s32 -n524288 5

Intruder (I) -a10 -l32 -n8192 -s1 3

KMeans-High (K) -m15 -n15 -t0.05 -i random50000_12 3

KMeans-Low -m40 -n40 -t0.05 -i random50000_12 3

Labyrinth (L) -i random-x96-y96-z3-n128.txt 3

SSCA2 (S) -s15 -i1.0 -u1.0 -l3 -p3 3

Vacation-High (V) -n8 -q10 -u80 -r65536 -t131072 1

Vacation-Low -n2 -q90 -u98 -r65536 -t131072 1

Yada (Y) -i ttimeu10000.2 6

Table 5.2: STAMP input parameters and number of transactions.

Hardware structure Equation of cost Cost (bytes)

Running Transactions Vector 16 entries × (1 TxID/entry × 48 bits/TxID) 96

Abort Prediction Matrix 64 entries × (64 counters/entry × 2 bits/counter) 1024

Transaction History Table 64 entries × ((1 counter/entry × 16 bits/counter) + (2 counters/entry × 4 bits/counter)) 192

Conflict List Table 64 entries × ((2 addresses/entry × 48 bits/address) + 1 LRU bit/ entry) 776

Conflicting Transaction Information (1 register × 48 bits/register) + (2 registers × 64 bits/register) 18

HARP Total Storage Sum of the above 2.06 KB

BFGTS Total Storage RTV-like structure (96 bytes) + Additional confidence cache (2 KB) + Bloom filter (2048 bits) 2.34 KB

Table 5.3: HARP and BFGTS hardware costs for one core.

as done by other researchers, otherwise any concurrency is effectively precluded.

5.5.2 Comparison of Hardware Costs

Table 5.3 shows the storage requirements for HARP and BFGTS. Implementing HARP re-

quires an additional storage of 2.06KB on each core, roughly 3% of a 64KB L1 cache. HARP

requires less storage than BFGTS. This is because BFGTS uses an additional 2KB cache to

speedup accesses to its software data structures. Moreover, a cache needs additional logic

(e.g, tags), not considered in this comparison.

5.5.3 Evaluation Methodology

Our evaluation includes three different system setups: (a) a setup with a single-application

using the same number of threads as cores, (b) a setup with a single-application where
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four threads are assigned to each core, and (c) a setup with two different applications

where one thread of each application is assigned to each core, i.e., two threads per core

each from a different application (multi-application workloads). While single-application

performance is still critically important, we believe that for TM to be widely accepted, it

also needs to deliver good performance in such multi-application scenarios. In fact, as par-

allel programming becomes ubiquitous, future systems would have several multithreaded

applications running concurrently in the common case. To the best of our knowledge, we

are the first to study multi-application transactional scheduling in an HTM environment.

For the first setup where the same number of threads as cores is used, it is inefficient to

yield threads when aborts are predicted. In order to compare BFGTS and HARP fairly, we

disable the yield option for this particular setup. This can be accomplished by letting the

kernel scheduler notify the hardware when yielding is not useful, as the scheduler would

have the knowledge to make such decision. We expect such operating system support to be

present in an HTM system. For the multi-application setup, we had to modify the design

of BFGTS because the original proposal was not able to deal with multiple applications. In

addition, we allow BFGTS to yield. Originally the library would not yield when the num-

ber of threads is not larger than the number of cores for a particular application; but we

observed that yielding judiciously benefits BFGTS when threads from different applications

are available.

Efficiency ratio =
useful_tx (cycles)

useful_tx+wasted_tx+abort recovery+stall/yield/backoff+BFGTS commit (cycles)
(5.1)

For each setup, our evaluation includes an execution time breakdown, scalability analy-

sis, and statistics for the evaluated workloads. Execution time breakdowns are normalised

to LogTM, and the following components are shown – non-transactional time (non-tx),

barriers time (barrier), useful transactional time (useful-tx), wasted work from aborted

transactions (wasted-tx), time spent in abort recovery (abort recovery), time spent due to

contention management handling (stall/yield/backoff), and time spent by BFGTS in the

software commit routine. Prediction cost was not visible in charts and it is attributed to

other components based on prediction outcome, e.g., to useful-tx if the transaction starts

and commits. The statistics that we show include a metric that captures how effective

contention management is in BFGTS and HARP. This metric, shown in Equation 5.1, is

76



Genome Intruder Kme-hi Kme-low Labyrinth SSCA2 Vac-hi Vac-low Yada Geomean

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

1.43

L L L L L L L L L LB B B B B B B B B BH H H H H H H H H H

non-tx barrier useful-tx wasted-tx abort recovery stall/yield/backoff BFGTS commit

Figure 5.9: Normalised execution time breakdown for 16 threads in single-application workloads.

L – LogTM; B – BFGTS; H – HARP

an efficiency ratio that compares the amount of useful cycles with the inherent design

overheads due to bad predictions and serialisation costs that lead to inefficient resource

utilisation.

5.5.4 Single-Application Results

One thread per core

Figure 5.9 presents the execution time breakdown for the evaluated workloads. Over-

all, the backoff strategy employed by LogTM fails to manage contention and exhibits a

large amount of wasted work and serialisation overheads (backoff time) when compared

to BFGTS or HARP. Dynamically avoiding the execution of transactions that are likely to fail

improves performance and scalability by over 2× on average (see Figure 5.10), while abort

rates diminish by 6×, as shown in Table 5.4. These are clear indicators that proposals like

BFGTS and HARP are likely to have a significant impact when applied to any HTM system.

Performance improvements of HARP when compared to BFGTS are due to (a) compre-

hensive hardware support, yet with a smaller hardware footprint than BFGTS (see Sec-

tion 5.5.2), thus avoiding software data structures and runtime routines; and (b) greater

prediction accuracy by focusing only on addresses that actually cause contention. HARP

performs better than BFGTS for all the evaluated workloads, attaining 30.5% performance

improvement on average.

As can be seen in Figure 5.9, the BFGTS commit routine accounts for a significant
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Figure 5.10: Speedup of 16-threaded executions compared to sequential execution.

amount of the execution time in workloads with small transactions like Intruder (27%)

and KMeans-High (11%). This is because the time spent in the routine, which is used to

adjust confidences of conflict, is constant and cannot be amortised when executing short

transactions. Hence, in general, workloads with small transactions are penalised using

BFGTS. However, HARP use of conflict lists results in a small, fixed maintenance cost that

does not depend on workload characteristics. Having a better transactional scheduling

policy and fewer aborts can also reduce non-transactional and barrier time. By executing

only those transactions that are likely to commit, interactions with non-transactional code

are minimised, e.g., the number of stalls when trying to access transactionally modified

data is reduced. In addition, fewer aborts can reduce overall load imbalance, as it happens

in textitVacation.

Regarding higher prediction accuracy, HARP offers promisingly low abort rates (see Ta-

ble 5.4), obtaining near-linear speedup in KMeans-Low. Moreover, these improvements in

abort rate are not due to overserializing transactions; as our efficiency ratio demonstrates,

HARP is 1.27× more efficient than BFGTS in terms of useful computational cycles. This

indicates that the conflict lists and the dynamically adaptable decay quickly adjust the con-

fidences of conflict in accordance with actual contention levels that are present at any given

time. In fact, in workloads like KMeans and Yada where contention varies with time, the

decay allows to optimistically execute transactions faster when necessary – e.g., in Yada

BFGTS overserializes transactions that could run in parallel (note the large stall time), but

HARP decay logic detects this fact, allowing parallel execution while maintaining a lower

abort rate.

78



Benchmark Abort Rate (%) Efficiency Ratio

LogTM BFGTS HARP BFGTS HARP

Genome 65.3 3.6 3.7 0.64 0.65

Intruder 70.2 14.6 7.3 0.12 0.17

KMeans-H 23.9 9.9 5.3 0.20 0.34

KMeans-L 13.0 3.9 0.5 0.39 0.89

Labyrinth 15.5 7.8 12.7 0.35 0.36

SSCA2 0.0 0.0 0.0 0.83 1.00

Vacation-H 11.6 7.0 2.4 0.79 0.79

Vacation-L 10.0 3.2 1.2 0.87 0.89

Yada 56.8 6.6 5.0 0.13 0.18

Geomean 11.3 3.3 1.9 0.38 0.48

Table 5.4: Benchmark statistics for evaluated systems.

Four threads per core

We execute the benchmarks with 64 threads, pinning 4 threads to each core. Both BFGTS

and HARP present similar execution time breakdowns for all the benchmarks when com-

pared to their 16-threaded executions, as can be seen in Figure 5.11. HARP attains an

average speedup of 25.8% over BFGTS due to no software runtime overheads and less se-

rialisation (stall and yield time) as a result of better predictions, with average abort rates

of 4.1% for BFGTS and 2.8% for HARP.

However, an interesting point is to determine if such an overcommitted system is ben-

eficial by comparing these workloads to their 16 threaded counterparts. Workloads with

few transactions are not likely to benefit from an overcommitted system. This is the case of

Vacation, which only has one transaction defined in the code, hence less room for improve-

ment when switching to a different thread. Also workloads like SSCA2 and KMeans-Low

where contention is minimal cannot scale further, and the overheads of managing addi-

tional threads can hurt scalability – e.g., in SSCA2 there is a significant loss of scalability

from 10× to 3.5× (see Figure 5.12).

Yada exhibits significant benefits for all the evaluated systems when using 64 threads,

as Figure 5.12 shows. Yada has the largest number of transactions (six). Moreover, its

transactions are large with moderate contention. With these characteristics it is easier to
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Figure 5.11: Normalised execution time breakdown for 64 threads in single-application workloads.

L – LogTM; B – BFGTS; H – HARP
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Figure 5.12: Speedup of 64-threaded executions compared to sequential execution.
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Benchmark Abort Rate (%) Efficiency Ratio

LogTM BFGTS HARP BFGTS HARP

Genome 19.0 3.8 3.5 0.62 0.71

Intruder 70.1 14.4 8.7 0.11 0.14

KMeans-H 23.4 9.6 5.2 0.19 0.30

KMeans-L 15.2 3.4 0.5 0.40 0.88

Labyrinth 13.9 11.8 13.0 0.38 0.37

SSCA2 0.0 0.0 0.0 0.82 1.00

Vacation-H 9.0 7.3 6.2 0.77 0.76

Vacation-L 6.3 2.8 3.0 0.88 0.82

Yada 57.3 36.8 25.2 0.24 0.31

Geomean 9.4 4.1 2.8 0.40 0.50

Table 5.5: Benchmark statistics for evaluated systems.

find additional parallelism when switching between different threads, because the chances

of executing a non-conflicting transaction are higher. In addition, large transactions help

amortise yield time costs. Yada is the only benchmark that significantly improves its effi-

ciency ratio when using 64 threads (see Table 5.5), from 0.18 to 0.31 for HARP. Our results

suggest that large transactional codes, with medium or large transactions, may be neces-

sary to benefit from overcommitted setups. This is likely to become a common case as more

transactional applications become available.

5.5.5 Multi-Application Results

In this setup, each core executes two threads from different applications. This scenario

will be increasingly common in the future as parallel programming becomes pervasive.

As in setups evaluated earlier, we use STAMP but only consider the ’-High’ versions of

KMeans and Vacation, and evaluate all the possible combinations of 2 applications out

of the 7 possible, which amounts to 21 different workloads. The workloads are named

with the initials of each application, the legend is in Table 5.2 – e.g., the workload ’GL’

executes Genome and Labyrinth. To make accurate measurements, we synchronise the two

applications at the beginning of their parallel sections. When an application reaches the
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Figure 5.13: Normalised execution time breakdown for multi-application workloads.

L – LogTM; B – BFGTS; H – HARP
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Figure 5.14: Speedup compared to single core execution.

end of its parallel section, that application is no longer considered for execution. Similarly,

when a core finishes all of its threads (applications), that core is considered to be available

for other tasks, and hence does not contribute to the execution time. To measure scalability,

the slowest core is considered.

Figure 5.13 shows the execution time breakdown and Figure 5.14 the scalability results.

We show a representative selection of 9 workloads, plus the geometric mean which consid-

ers the 21 evaluated workloads. LogTM fails to deliver good performance, experiencing a

large number of aborts and high backoff overheads. Thus, policies that cannot dynamically

decide what is the best course of action are not suitable for future systems where parallel

applications might be dominant. However, BFGTS and HARP deliver higher performance

because they can swap potentially wasted computation for potentially useful work.

HARP performs better than BFGTS for all the evaluated workloads, achieving a 29.5%
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Benchmark Abort Rate (%) Efficiency Ratio

LogTM BFGTS HARP BFGTS HARP

GL 90.1 32.4 3.7 0.28 0.46

GS 34.8 2.9 1.1 0.54 0.81

IK 46.9 21.4 15.2 0.09 0.09

IS 43.2 17.9 14.7 0.11 0.10

IV 37.6 25.6 3.1 0.40 0.79

KV 17.1 11.6 2.8 0.57 0.86

KY 23.2 8.3 4.4 0.29 0.54

LS 0.0 0.0 0.0 0.36 0.37

YL 94.2 41.5 3.1 0.39 0.45

Geomean (ALL) 24.1 7.3 3.3 0.38 0.47

Table 5.6: Benchmark statistics for evaluated systems.

improvement on average. This is due to four main reasons. First, BFGTS is overly pes-

simistic in general, leading to a larger serialisation time (stall and yield). We observe a

notably larger number of predicted conflicts in GL, GS, KV, KY, and IV; in the latter BFGTS

predicts 4× more conflicts. Second, HARP makes better predictions than BFGTS; as Ta-

ble 5.6 indicates, even though HARP predicts a lower number of conflicts, it still attains

remarkably better abort rates. Hence, HARP allows for increased parallel execution of

transactions while keeping lower abort rates. Third, BFGTS decides whether to stall or

yield depending on the number of cache lines touched by the transaction, which we find

is less accurate than HARP’s approach that uses actual execution time. Finally, as observed

before, small transactions (Intruder and KMeans) penalise BFGTS performance by increas-

ing the software commit routine time.

Labyrinth and Intruder have lower scalability and significantly larger execution time

than KMeans and SSCA2. Hence, scalability for IK, IS, and LS tends to be close to that seen

in Labyrinth and Intruder for single-application (Figure 5.10). However, for combinations

where the execution time is more evenly distributed, like IV and KY, we can observe how

scalability is significantly higher than the one reported for Intruder and Yada respectively.

YL achieves 6.1× speedup, higher than both Yada and Labyrinth when executed as single

applications.
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5.5.6 Sensitivity Analysis

System parameters

We evaluate our technique changing two major system parameters. First, we modified the

size of HARP hardware structures to have no collisions (i.e., two different TxID’s mapping

to the same entry) for the multi-application setup, since for single-application no collisions

were found. Our results with no collisions did not show any significant changes in the

abort rates of the affected multi-application workloads. This is because very few collisions

were present in the first place, one in GS and one in GY.

Second, we looked into conflict lists size sensitivity. Throughout our evaluation, we

have used conflict lists of size 2. We evaluate single-application workloads with conflict lists

of size 1 and 4. Low contention applications like SSCA2 are not affected by the conflict lists

size, due to their low conflict rates. High contention applications like Labyrinth, Yada, and

Intruder did not experience significant variation either due to a single dominant conflicting

address, as shown in Figure 5.3. However, ’-High’ versions of KMeans and Vacation present

moderate contention and show a significant drop in performance when using conflict lists

of size 1. This is because they have a larger set of conflicting addresses, with no dominant

address, which makes HARP schedule too optimistically. Overall, we find that conflict lists

of size 2 offer the best trade-off between performance and hardware cost.

Communication and prediction overheads

We expect uncontended scenarios demanding high commit throughput to expose commu-

nication and prediction overheads. We repeat the experiment from Section 5.3, adding

HARP and a version of HARP that stores and maintains the THT and CLT structures in soft-

ware (HARP-SW). Eigenbench [42] is configured to have no contention and to maximise

total transactional execution time. Figure 5.15 shows our evaluation on a range of trans-

actional sizes, smaller transactions provide higher commit rates. The smallest transaction

size evaluated performs one read operation and a small amount of work with the read

data. Under such conditions LogTM attains almost perfect speedup since the workload

is fully parallel. HARP experiences a 7% slowdown for the smallest transaction size, due

to communication and prediction latencies not being amortised. However, HARP rapidly

closes the gap in performance with respect to LogTM, confirming that broadcast messages
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Figure 5.15: Communication and prediction overheads of evaluated systems at different commit rates. Using
Eigenbench with varying transaction sizes, 128K iterations and 16 cores.

do not hinder scalability. In contrast, both HARP-SW and BFGTS have a severe performance

drop, mainly due to additional code executed at commit time, which can make executed

transaction several times larger. HARP-SW remains slightly better than BFGTS because its

software operations are simpler.

Multi-application using four applications

We also evaluate a multi-application setup using four applications concurrently, which

amounts to 35 different workloads. HARP again outperforms BFGTS by 20.3% on aver-

age, and attains scalability similar to that seen in the two application setup, 6.5×. In this

scenario collisions did not affect performance either.

5.6 Summary

In spite of much research, HTM performance is susceptible to degradation when con-

tention is present. Moreover, parallel programming is becoming the norm, and systems

with several parallel applications will be increasingly common. Techniques that minimise

the amount of wasted work due to misspeculation and maximise computational resource

utilisation are necessary for TM to gain wide acceptance.

This work proposed HARP, a hardware mechanism that efficiently predicts future con-

flicts and avoids speculation when the probability of contention is high. The resources thus
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freed are, when it is deemed advantageous, utilised to schedule possibly non-conflicting

codes, thereby improving concurrency and throughput. The design provides seamless

support for both single-application and multi-application scenarios. Our investigation has

shown that HARP outperforms, by a substantial margin, both LogTM, a popular HTM pro-

posal, and BFGTS, the state-of-the-art proactive transaction scheduling scheme prior to

this work. This is achieved with modest hardware support comprising three simple tagless

structures in each core. Since HARP does not rely on software runtimes and data structures,

it presents little management overhead, while simultaneously keeping the architecture rel-

atively independent of the software that runs on it. In addition, HARP predictions can be

leveraged to implement aggressive power saving schemes when no useful computation can

be scheduled. We see this area as a potential direction for future work.
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6
Techniques to Improve Performance in

Requester-wins HTM

6.1 Introduction

There is an exigent need for high-productivity approaches that allow control of concurrent

accesses to data in shared memory multithreaded applications without severe performance

penalties. This has led researchers to look seriously at the concept of transactional memory

(TM) [39, 40]. TM allows the programmer to demarcate sections of code – called transac-

tions – which must be executed atomically and in isolation from other concurrent threads

in the system. The TM system detects and resolves conflicts, i.e. circumstances when two

or more transactions access the same shared data and at least one modifies it.

Although Transactional Memory has been an active research topic for almost a decade [3,

13, 37, 44, 52, 78, 90], bare-bones support for hardware transactional memory (HTM) is

only just appearing. Large-scale adoption of software-only approaches has been hindered

for long by severe performance penalties arising out of the need for extensive instrumen-
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tation and book-keeping to track transactional accesses and detect conflicts without hard-

ware support. Intel TSX extensions and IBM BlueGene-Q are now testing the waters with

hardware TM [43, 87]. Restricted Transactional Memory (RTM) as described in Intel TSX

specifications appears to be a requester-wins HTM where transactions abort if a conflicting

remote access is seen while executing a transaction. Transactions may also abort when

hardware resource limitations (e.g. cache capacity) or exceptional hardware events (inter-

rupts) are encountered. In this study we are primarily concerned with the nature of the

“requester-wins” conflict resolution policy and not with conditions arising out of lack of

hardware resources or exceptions. The authors do not have access to implementation de-

tails of Intel RTM and, thus, the results presented must be seen in the more general context

of requester-wins HTM designs.

Requester-wins HTMs are easy to incorporate in existing chip multiprocessors [21, 24].
Conflict detection and resolution mechanisms in such systems do not require any global

communication except that which naturally arises from the need to impose cache coher-

ence. Each core tracks accesses made by transactions that run locally. This could be done

using cache line annotations indicating lines that have been read or written. Some im-

plementations may choose to employ read/write set bloom filters for the purpose. Either

way, the requester-wins policy has no inherent forward progress guarantees since a local

transaction aborts whenever it receives a conflicting coherence request for a line in its read

or write sets. This susceptibility to livelock is well-known [14]. However, the likelihood

of livelocks in such systems and their eventual impact on performance has not been in-

vestigated in depth. Livelocks may persist for a while but eventually get broken due to

varying delays in real-world systems. When this occurs they may manifest themselves as

degradation in application execution times or system throughput.

Figure 6.1a shows how two transactions may livelock. Both transactions read data that

is eventually written by the other. Executions of the two transactions may interleave such

that no progress is made at either thread. However, cyclic dependencies between con-

current transactions are not the only sources of livelock. A potentially more pathological

livelock behaviour exists – Figure 6.1b – where multiple read-modify-write transactions

may continually abort each other (i.e., friendlyfire [14]). The livelock occurs because the

aborted transaction issues a conflicting access upon re-execution which then aborts the

transaction that was allowed to proceed.

The aim of this study is to show that protocols that merely guarantee livelock free-
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(a) (b)

Figure 6.1: Two livelock scenarios in requester-wins HTM

dom may not be the most efficient. The performance impact of livelock mitigation and

avoidance techniques should be looked at in more depth. HTM systems should incorpo-

rate a set of such techniques in a manner which allows resolution of these livelock condi-

tions as soon as possible and with the lowest associated performance cost. This chapter

investigates performance implications of a number of existing strategies like exponential

backoff [57], serial irrevocability as implemented in GCC libitm since version 4.7.0, and

hourglass [50]. Our study shows that there is a substantial cost in terms of performance

imposed by these strategies. With an aim to minimise this cost, we propose some novel

techniques, in hardware and software, which are well suited to requester-wins HTM de-

signs. Four new techniques for mitigation of livelocks are presented – two are implemented

in software, requiring only simple interfaces for reading information provided by the hard-

ware; and two that are implemented in hardware with simple core-local additions.

Our analysis of relative merits of these proposed techniques shows that deficiencies of

requester-wins HTMs can be ameliorated effectively for a variety of transactional work-

loads. One of our aims is to make system programmers using HTM aware of the severity

of livelocks and the performance cost imposed by various mitigation and avoidance tech-

niques. This would help them decide what mitigation techniques to choose. This chapter

also aims to convey to processor architects the importance of simple hardware mechanisms

to mitigate the impact of livelocks. In summary, it sheds light on the following concerns:
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• How severe can livelocks be in requester-wins HTMs?

• What are the performance costs associated with existing livelock mitigation tech-

niques?

• Can new techniques (hardware-only or hybrid) be designed to reduce performance

degradation while retaining the simplicity of requester-wins HTM?

The rest of this chapter is organised as follows. Section 6.2 shows that livelocks fre-

quently block forward-progress in several transactional workloads running on requester-

wins HTMs. It also shows that existing livelock mitigation and avoidance strategies (back-

off, serial irrevocability and hourglass) leave a large performance gap between observed

performance and performance achievable by a livelock-free HTM. In Section 6.3 we de-

scribe in detail four new techniques to improve performance by mitigating livelock con-

ditions. Section 6.4 introduces our experimental methodology, and Section 6.5 provides

experimental evidence that highlights the efficacy of our new techniques. In Section 6.6

we discuss about related work. Finally, in Section 6.7 we conclude with final thoughts and

a summary of insights gathered from this study.

6.2 Motivation

Our experiments with a variety of workloads – which include the STAMP benchmark

suite [18], water and radiosity from SPLASH2 [89] and two microbenchmarks (deque and

btree) – show that most of them consistently livelock when running on requester-wins

HTM without any livelock mitigation strategy. Data in Table 6.1 lists the workloads and

their susceptibility to livelock on a variety of scenarios. The results have been gathered on a

simulated 8-core machine. A suffix ‘-h’ after the workload name indicates high contention

parameters have been used. A suffix ‘+’ indicates larger datasets. These livelocks occur

due to two or more concurrent threads entering a pattern of continuous aborts, eventually

preventing any forward progress as other threads either wait perpetually at a barrier or

enter livelock themselves. We executed each application multiple times with randomised

delays added to the main memory access latency (± 5%), so as to create different thread

interleavings.
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Application Live- Operation where Application Live- Operation where

lock livelock occurs lock livelock occurs

Deque Yes Deque access Water Yes Counter increment

Btree Yes Btree insertion Radiosity Yes Counter increment

Genome Yes Hashtable insertion Genome+ Yes Hashtable insertion

Intruder Yes Task queue access Intruder+ Yes Task queue access

KMeans-h Yes Matrix access KMeans-h+ Yes Matrix access

Labyrinth No – Labyrinth+ Yes Vector access

SSCA2 Yes Vector access SSCA2+ Yes Vector access

Vacation-h Yes Counter increment Vacation-h+ Yes Counter increment

Yada Yes Heap removal Yada+ Yes Heap removal

Table 6.1: Livelocks in applications.

We have also identified the kind of operation that triggers a livelock condition for each

workload. The results in Table 6.1 indicate that livelocks are a serious problem for a variety

of common operations in different data structures. Without appropriate mitigation strate-

gies, in software or hardware, the use of transactions in such a system may be rendered

impractical. This leads us to the next question we attempt to answer: what are the costs of

various existing livelock mitigation strategies?

6.2.1 A Look at Existing Techniques

We now briefly describe existing software techniques for livelock mitigation and avoid-

ance that can improve overall performance in requester-wins HTMs. We will concentrate

on three techniques: exponential backoff, introduced as an HTM contention manager in

LogTM [57]; serial irrevocability, previously used in software TM proposals [34, 88] and

now also used in GCC as the default fallback mechanism upon repeated aborts; and hour-

glass, which provides a more relaxed form of serialisation than serial irrevocability [50].

Serial Irrevocability

This is a fallback mode in case a hardware transaction fails to commit after retrying several

times. This mode could be chosen because of contention or hardware resource limitations.
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ALGORITHM 6.1: Simplified begin and commit transaction function wrappers to implement serial
irrevocability.
void beginTransaction()

while true do
TX_BEGIN(offset to fallback path); /* ISA begin instruction */
if serialLockCanRead() == false then /* adds serial lock to the read set */

abortTransaction(); /* there is another thread in irrevocable mode */
else

return; /* execute transaction */
end

fallback_path: /* fallback path on abort */
if retryCount < MAX_RETRIES then

retryCount++;
if serialLockCanRead() == false then

waitForSerialLockCanRead(); /* wait for irrevocable thread */
end

/* retry transactional execution */
else

break; /* use serial irrevocable mode */
end

end
acquireSerialLockWriter(); /* aborts other transaction */
return; /* execute in serial irrevocable mode */

void commitTransaction()

if serialLockCanRead( ) == false then
releaseSerialLockWriter(); /* this was an irrevocable execution */

else
TX_COMMIT(); /* ISA commit instruction */

end
return; /* successfully executed transaction */
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The number of retries before entering this mode is usually configurable. The mode works

by aborting any concurrent transactions in the system through the acquisition of a global

multiple-reader-single-writer lock as a writer. This also ensures that no other transaction

in the application can begin execution, allowing the irrevocable transaction to be executed

without interference from other threads. The algorithm for starting and committing trans-

actions is shown in Algorithm 6.1. The call to beginTransaction() returns success

after either starting the transaction in serial irrevocable mode or in the usual hardware-

supported TM mode. On a transactional abort the architectural state is restored and execu-

tion is resumed from the fallback code path. The commitTransaction() routine ensures

that the transaction releases the serial lock if it was running irrevocably. Otherwise, it will

execute the supported ISA instruction to commit a transaction. This implementation re-

sembles the one that can be found in the new libitm library in GCC to provide TM support.

Randomised Exponential Backoff

Exponential backoff has been used in other domains as a collision avoidance strategy

wherein backoff duration is chosen randomly from a range of durations that grows ex-

ponentially larger as the number of failures increases. Backoff has the potential to reduce

chances of repetitive conflicting patterns that occur. However, it does not guarantee for-

ward progress. Exponential backoff has been evaluated in the context of contention man-

agement options available in software transactional memory [73]. However, even though

backoff strategies have also been evaluated in HTM designs [14, 57], their impact on per-

formance in HTM systems as prone to livelock as requester-wins remains unclear.

Hourglass Contention Manager

Liu and Spear [50] define toxic transactions as those that have aborted consecutively a

number of times due to conflicts. To deal with these toxic transactions they propose the

hourglass contention manager, where such transactions try to grab a global token, prevent-

ing new or aborted transactions from starting. This gives the toxic transaction a better

chance of committing after acquiring the token, although it is not guaranteed to commit.

This mechanism is less drastic than serial irrevocability as it allows transactions that are

already running in the system to proceed when the token is acquired.
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Figure 6.2: Performance of existing livelock mitigation techniques relative to LogTM

6.2.2 Brief Analysis of Existing Techniques

We now show how these existing techniques perform on a requester-wins HTM with re-

spect to a well-known reference like LogTM [57]. This will allow us to estimate the gap in

performance between such a requester-wins system and a proposal that implements a more

complex strategy. LogTM is a requester-stalls design that uses a scheme for conservative

deadlock avoidance. It introduces a timestamp in all coherence messages (thereby priori-

tising older transactions in the system) and extends the coherence protocol with support

for nacks (negative acknowledgements) that allow transactions to be stalled upon conflict

instead of aborting them. The conservative deadlock avoidance scheme works by keeping a

possible cycle bit in each core, set when a request with an older timestamp is nacked. Once

this bit is set, the transaction must abort as soon as it receives a nack response with an

older timestamp.

We have also included a second HTM design point, a lazy-versioning eager-resolution

HTM based on the EL_T design described Bobba et. al [14]. It uses the L1 caches to buffer

speculative updates and resolves conflicts eagerly using timestamp priorities attached to

coherence messages – aborting if the remote transaction has higher priority or responding

with a nack (negative acknowledgement) otherwise. Note that like LogTM, EL_T also

requires protocol support for nacks and a mechanism to assign priorities to transactions.

Thus, these systems turn out to be more complex than requester-wins designs, where the

coherence protocol is not modified.

Figure 6.2 shows relative performance normalised to LogTM (higher is better), for expo-

nential backoff, serial irrevocability, a scenario where these two techniques are combined,
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and hourglass. The relative performance of the EL_T design is also shown. For reasons

mentioned earlier, the LogTM design is more complex than simpler requester-wins HTMs

that will soon be widely available, and thus should be considered as an upper bound on

performance achievable by requester-wins designs. As seen in Figure 6.2, the EL_T HTM

design, which has been included here primarily to add another relevant HTM design point

for comparison, performs well under most workloads due to its ability to prioritise transac-

tions, but presents significant degradation in performance under high contention. Overall,

it turns out to be around 12% worse than LogTM. Among software techniques, exponential

backoff performs 40% worse than the baseline, being inefficient even under mild con-

tention. Serial irrevocability is a good choice for uncontended applications like SSCA2.

However, when contention is present its performance drops significantly. Overall we see

that the performance offered by these two techniques and their combination is on aver-

age 27% worse than LogTM for this set of applications. On the other hand, the hourglass

contention manager fares much better, particularly when contention is present by reducing

serialisation overheads. Overall, it achieves 20% less performance than LogTM. In general,

we observe that under high contention there is a marked susceptibility to a much greater

degradation in performance. In our opinion, this observed performance gap is large enough

to merit a search for solutions to close it. Our solutions presented in the following section,

therefore, attempt to do so while retaining the simplicity of requester-wins HTMs.

6.3 Proposed Techniques to Improve Requester-wins HTM

Designs

In this section we will describe four novel techniques to improve performance in requester-

wins designs by mitigating pathological scenarios like the ones shown in Figure 6.1. These

techniques attempt to bridge the gap in performance highlighted in the previous section.

We first introduce two software-based techniques that are simple to implement in upcoming

HTM designs. Later we look at two additional techniques that require simple core-local

hardware support, but retain the requester-wins nature of the HTM.
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ALGORITHM 6.2: Simplified begin and commit transaction function wrappers to implement seri-
alise on conflicting address (SoA).
void beginTransaction()

while true do
TX_BEGIN(offset to fallback path); /* ISA begin instruction */
return; /* execute transaction */

fallback_path: /* fallback path on abort */
if thread−>has_lock is valid then /* already holding one lock */

releaseAddressLockWrite(thread−>has_lock); /* avoid cycle */
thread−>has_lock = invalid

end
address = getConflictingAddress(); /* hardware provides the address */
index = hash(address)
if address is invalid then

continue; /* abort not related to a data conflict, retry */
end
acquireAddressLockWrite(index); /* try to grab lock related to address */
thread−>has_lock = index

/* retry */
end

void commitTransaction()

TX_COMMIT(); /* ISA commit instruction */
if thread−>has_lock is valid then /* executed with an acquired lock */

releaseAddressLockWrite(thread−>has_lock); /* release, others can proceed */
thread−>has_lock = invalid

end
return; /* successfully executed transaction */
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6.3.1 Serialise on Conflicting Address (SoA)

It has been shown in prior work [61, 83] that conflicts are usually caused by a small number

of contended addresses with large fractions of data accessed by typical transactions seeing

no contention at all. Thus, a large number of transactions in code are prone to see conflicts

only on a few addresses. Moreover, it is not very complicated in hardware to determine

this address when a conflict occurs, since, in requester-wins HTM designs cores abort when

they receive coherence requests that carry the address. This information could be passed

on to the runtime through interfaces similar to the ones already implemented in production

devices. For example, Intel TSX supplies information about the nature of aborts through

the EAX register, among other things.

Our approach utilises the additional bits from the RAX register to feed the address of the

conflicting cache line onto the runtime. Using this additional information, the runtime is

able to identify potential hotspots of contended cache lines and rely on locks to execute one

transaction after another, with relatively few transactions requiring a fallback to the more

drastic form of serialisation enforced through serial irrevocability. Algorithm 6.2 shows

the necessary steps to implement this proposal. Note that for the sake of clarity, in this

algorithm we do not include the necessary checks to have serial irrevocability (described

in Section 6.2.1).

The approach works by trying to acquire a lock from an array of locks using a hashed

version of the conflicting address as index. If another thread has already acquired the

lock for that address, the current thread waits. This approach allows threads which are

likely not to contend with each other to proceed, while threads that conflict on the same

addresses serialise. We only allow each thread to acquire a single lock to avoid cyclic de-

pendencies. Therefore, the number of locks concurrently in use is small, lower or equal

than the number of executing threads. This approach is able to deal quite effectively with

livelock scenarios produced by common read-modify-write transactions, similar to the one

shown in Figure 6.1b. However, the scenario in Figure 6.1a would still require serial irre-

vocability to ensure forward progress.

6.3.2 Serialise on Killer Transaction (SoK)

Our second proposal is a software technique that stalls restarted transactions until the

offending transaction (i.e. the transaction whose request caused the abort) completes.
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ALGORITHM 6.3: Simplified begin and commit transaction function wrappers to implement seri-
alise on killer transaction (SoK).
void beginTransaction()

acquireLockArrayRead(my_id); /* acquire local lock for reading, blocks writers */
while true do

TX_BEGIN(offset to fallback path); /* ISA begin instruction */
return; /* execute transaction */

fallback_path: /* fallback path on abort */
killer_id = getKillerID(); /* hardware provides conflicting thread id */
if killer_id is invalid then

continue; /* abort not related to a data conflict, retry */
end

clearedForDeadlock = false; /* indicates if has been cleared for deadlock */
while !lockArrayCanWrite(killer_id) do /* wait until killer thread is done */

if !clearedForDeadlock then /* ensure we will not deadlock */
acquireGlobalLock(); /* check a vector of adjacencies atomically */
if isCyclePossible(killer_id, my_id) then /* detects cycles, defined below */

releaseGlobalLock(); /* cannot wait, would deadlock */
break; /* retry */

else
killers_vector[my_id] = killer_id; /* will wait, update vector */
clearedForDeadlock = true; /* do not do the deadlock check again */

end
releaseGlobalLock(); /* deadlock check done */

end
end
acquireGlobalLock();
killers_vector[my_id] = -1; /* my killer has finished, update vector */
releaseGlobalLock();

/* retry */
end

void commitTransaction()

TX_COMMIT(); /* ISA commit instruction */
releaseLockArrayRead(my_id); /* release racers waiting on the lock */
return; /* successfully executed transaction */

bool isCyclePossible(int killer_id, int my_id)

if killers_vector[killer_id] == -1 then return false ; /* killer not waiting, no cycle */
if killers_vector[killer_id] == my_id then return true ; /* killer waiting for me, cycle */
return isCyclePossible(killers_vector[killer_id], my_id); /* recursive call */
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As in the previous solution, this is a hardware-assisted software mechanism that requires

the identity of the conflicting thread (a.k.a. killer) to be passed from the hardware to the

runtime at the time of an abort. This scheme is of special interest in requester-wins systems

because restarted transactions are likely to abort their killers when restarting.

Algorithm 6.3 shows how the idea is implemented. Before a transaction begins its

execution, it reads a multiple-reader-single-writer lock from a vector of locks indexed by

the thread identifier. This read operation stalls writers if they try to write to the lock. When

a transaction aborts, before it is allowed to restart, it checks whether it has permissions

to write to the killer’s lock. Note that the killer only releases write permissions on the

lock after it has committed the transaction. If it does not have permissions to write to the

lock, then the killer is still executing the transaction and the aborted transaction must wait.

Cyclic dependencies may arise causing deadlock. The approach avoids this by ensuring that

the wait is deadlock free through a check for potential cycles using a vector (killers_vector)

that maintains dependencies. Accesses to this vector are protected by a global lock. This

guarantees that only one among a group of conflicting transactions is allowed to proceed.

Since the lock on this structure serialises accesses to it, when cyclic dependencies exist the

design resolves it by allowing the last transaction in a cyclic dependency chain to detect the

condition and avoid a potential deadlock by not waiting on its killer. Other transactions in

the now cycle-free dependency chain wait. This solution has the advantage of guaranteeing

forward progress as long as transactions can execute in hardware, avoiding the use of the

serial irrevocable mode in livelock scenarios.

Note that a potential corner case may arise in which a transaction is waiting for a trans-

action that is not its actual killer, e.g., a transaction (Tx-a) aborts and before checking

whether it has to wait, the killer transaction finishes and a new transaction (Tx-b) starts

execution. This is likely to be an uncommon scenario, and it does not pose any deadlock

or starvation problems. Deadlocks cannot occur because aborted transactions wait on their

killer’s thread identifier, so when the new Tx-b finishes the aborted Tx-a will restart. Star-

vation problems have not been encountered, but could be easily solved by adding fairness

to the lock implementation.
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6.3.3 Delayed Requester-Wins (DRW)

Our first hardware-based design makes conflicting requests wait for a bounded length of

time before applying the requester-wins policy. This technique can be implemented locally

at the core without changing communication protocols or messaging. Basically, it attempts

to capture the benefits of the requester-stall policy (i.e. resolving conflicts through stalls

rather than aborts) while avoiding the complexity introduced by negative acknowledge-

ments (nacks) in the coherence protocol. To this end, LogTM’s protocol introduces nacks as

well as a special kind of unblock message to inform the directory that a coherence transac-

tion has failed due to conflicts and should be cancelled, i.e. the coherence state reverted to

its original state with no updates to the bit-vector of sharers. As opposed to LogTM, coher-

ence requests in our Delayed Requester-Wins (DRW) design always complete successfully

– perhaps with some additional latency – and thus there is no need to extend the protocol

with new messages. Delaying coherence messages has been explored in the past in the

context of memory consistency for scalable shared-memory multiprocessors [35].

DRW allows the exclusive owner of a cache line to buffer conflicting requests and thus

delay responses until a later point in time. On the requester’s side, the cache miss that

resulted in a conflict simply appears to be a longer latency miss, and the execution natu-

rally stalls at this point until the memory reference completes. Delayed conflicting requests

queued at the exclusive owner’s cache are considered either when the transaction ends

(commits or aborts) or when an associated timeout expires. DRW uses timeouts to conser-

vatively break temporary deadlocks situations that may appear when transactions exhibit

circular dependencies. Timeouts are a simple solution to break cycles and they can be

implemented locally at the core level. On the other hand, LogTM’s deadlock avoidance

mechanism requires the addition a global timestamp (which all threads agree upon) to

every coherence request and response, increasing the size of every network message that

traverses the communication fabric.

Transactions with buffered conflicting requests are allowed to execute as long as they

are able to make forward progress. When a transaction with buffered requests experiences

an L1 cache miss, the timer is started. If the cache miss completes within the timeout

latency, the timer is stopped since the transaction has made forward progress while buffer-

ing remote requests, which means that no cycle has been formed yet. The timer is thus

reset to its initial value and will be started again in subsequent misses. Otherwise, if the

100



timer expires while a local miss is still pending, the buffered conflicting requests begin to

be serviced normally in a requester-wins fashion, triggering an abort and thus breaking

any temporary cycle. If the transaction eventually commits, all conflicts are successfully

resolved and the requests are serviced with the new committed data.

An important aspect in DRW is the timeout latency, i.e. the value at which the timer

is started on a cache miss. Ideally, the timer should not expire unless a cyclic dependency

(transient deadlock) has occurred, and similarly it should expire as soon as the cycle has

been formed. In order to set the timer accurately, DRW keeps a table that associates a

different timeout latency to each atomic block of code (indexed by the PC of the begin-tx

instruction). The value used for each atomic block is adaptable, and it moves between a

range of values, in our experiments, from 64 to 1024 cycles. Commits that successfully

resolve conflicting requests by delaying the response do not update the value in the latency

table. On commits without conflicts, the latency is halved in order to keep the reaction

time to potential deadlocks short when contention is low. Upon timeout expiration (i.e.

on abort), the latency is doubled. In this way, if conflicts are encountered again after the

transaction restarts, a larger window of time is given to remote transactions so that they

have a better opportunity to reach commit (i.e. service the buffered conflicting requests)

before the local offending transaction aborts due to the timeout.

6.3.4 WriteBurst: Buffering of Store Misses (WB)

Buffering transactional stores has been shown to be beneficial in both eager and lazy sys-

tems [59, 84]. In the case of a requester-wins HTM, the ability to delay completion of

possibly conflicting transactional stores until close to commit time and then releasing them

into the coherent cache hierarchy in a burst can improve parallelism by reducing the win-

dow of time in which a transactional write to a line may see a conflict. Remote readers can

now access lines in a non-conflicting manner and writers that are close to commit have a

better chance of acquiring ownership over the write-set before being aborted by a remote

reader. If resources are sufficient to buffer all store misses until commit, this technique

allows for a form of lazy conflict detection (committer-wins) [37], which provides stronger

forward progress guarantees and can enhance concurrency by allowing readers to com-

mit before a conflicting writer [77, 82, 85]. However, unlike the latter lazy systems, in

our scheme there is no notion of committer, because it is always possible for a transaction
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to abort after it has reached the commit instruction while it is draining its buffered store

misses; but since transactions generally write only a few cache lines, the time required to

drain the buffers is generally short and the requirements to buffer all store misses are not

excessive.

Our model implements the idea by utilising the L1 miss status holding registers (MSHRs)

to buffer store misses. Stores to exclusively owned lines are store hits and thus can com-

plete as usual in cache. Our scheme is applied upon stores to shared lines – upgrade misses

– which result in a message sent to the directory requesting the invalidation of all other

privately cached copies. Lines that are absent in the L1 are prefetched non-exclusively if

targeted by a speculative store (the L1 cache uses a write-allocate policy). Once the line

is allocated in L1, the store is buffered in the MSHR and henceforth treated as an upgrade

miss.

Our design leverages the L1 cache entry itself to keep the speculative updates, and the

request is buffered in the MSHR. Since the data is present in the L1 cache in shared (S)

state, only a minor behavioural change in the cache controller is needed to allow specula-

tive stores that target S state lines to update the cache entry before write permissions are

actually acquired. Per-byte dirty bits in cache to track dirty words are not needed since no

merging with other versions occurs. An MSHR is allocated for the upgrade miss and the

SM bit is set for the entry, but the request for ownership is not immediately sent to the L2.

The issue of these upgrade messages to the L2 directory is deferred until (a) the transaction

reaches the commit instruction, or (b) all MSHRs are in use. The MSHR keeps track of such

entries by maintaining a special Buffered bit. Subsequent local loads to lines with buffered

MSHR entries simply obtain the data from the cache and add the line to the read set (e.g.

set the speculatively read bit), as usual. Remote load misses get the non-speculative ver-

sion from the L2 cache, since the directory remains unaware of the speculative writes at

the private cache. If an invalidation is received for a line with a buffered MSHR, then the

transaction is aborted and all buffered MSHRs are discarded.

For applications with large write sets, the number of MSHRs is likely to be insufficient

to buffer all store misses. When a new store miss finds all MSHR entries occupied, the de-

sign triggers a draining process which sequentially issues buffered upgrade request for all

entries. To prevent drained speculative writes that have completed in cache to repeatedly

expose the transaction against conflicts with restarted readers, our design incorporates a

simple Bloom filter [11] called conflict set signature. This filter is used to conservatively
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Proposal Name Abbr. Livelock- Requires Hardware Description

free? hardware?

Ex
is

ti
n

g

Exponential Backoff B No* No —

Serial Irrevocability S Yes No —

Hourglass H Yes No —

EL_T T Yes Yes timestamps and nacks in coherence

LogTM L Yes Yes timestamps and nacks in coherence, possible

cycle detection, priority for older writers

Pr
op

os
ed SW

Serialise on Address SoA No* Minor provide conflicting address to runtime

Serialise on Killer SoK Yes Minor provide killer id to runtime

H
W Delayed Req-wins DRW No* Yes (local) timeout counters, buffer for requests

WriteBurst WB No* Yes (local) L1 MSHR buffered bit + logic, conflict set sig.

* Serial irrevocability, Serialise on Killer, or Hourglass must be employed to guarantee forward progress.

Table 6.2: Overview of techniques and their characteristics.

encode write-set addresses that have seen conflicts with remote transactions. Note that

only store hits or drained misses from the MSHRs are added to the write set of the trans-

action (i.e. set the SM bit in cache). Every time a transaction aborts due to a conflict on

a write-set address, the address is added to the conflict set signature. Subsequent restarts

of the transaction will most likely fill up all MSHRs again, though in this case the conflict

set signature will predict those MSHRs entries whose draining should be avoided for as

long as possible. In this way, when MSHRs are insufficient, store misses to thread-local and

non-contended data (contamination misses [86]) are drained first, thus minimising the

aforementioned risk of cross-fire between concurrent writers and readers. The conflict set

signature is always cleared on commit and thus it only records information about previous

restarts of the same dynamic transaction instance.

6.3.5 Overview of Existing and Proposed Techniques

Table 6.2 shows all described techniques with a summary of their properties and required

hardware changes to implement them. Exponential backoff, serial irrevocability, and hour-

glass do not require any kind of hardware additions, our proposed software-based tech-

niques require minor changes to provide core local information to the runtime, while our

proposed hardware-based techniques need simple hardware additions that are core-local
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Benchmark Input parameters Txs.

Small Medium (+)

Genome -g256 -s16 -n16384 -g512 -s32 -n32768 5

Intruder -a10 -l4 -n2048 -s1 -a10 -l16 -n4096 -s1 3

KMeans-h -m15 -n15 -t0.05 -i n2048-d16-c16 -m15 -n15 -t0.05 -i n16384-d24-c16 3

Labyrinth -i random-x32-y32-z3-n96 -i random-x48-y48-z3-n64 3

SSCA2 -s13 -i1.0 -u1.0 -l3 -p3 -s14 -i1.0 -u1.0 -l9 -p9 3

Vacation-h -n4 -q60 -u90 -r16384 -t4096 -n4 -q60 -u90 -r65536 -t4096 1

Yada -a20 -i 633.2 -a10 -i ttimeu10000.2 6

Deque 100K ops., 1K dummy work 1

Btree 100K ops., 20K preloads, 25% ins. 2

Water 64 molecules 7

Radiosity -batch 32

Table 6.3: Workload input parameters and number of transactions defined in the source code.

and retain the requester-wins nature of the HTM. Both LogTM and EL_T require coher-

ence changes that affect communication between cores. Most proposed techniques can

experience livelock conditions due to contention, so they should be executed in conjunc-

tion with a contention livelock-free technique like serial irrevocability, serialise on killer, or

hourglass.

6.4 Simulation Environment and Methodology

6.4.1 Workloads

We use the STAMP benchmark suite as workloads to drive our experiments. These work-

loads provide significant diversity in behaviour and are expected to be good examples of

transactional use cases and programming style. We choose to exclude the application bayes

from our analysis due to large variability in execution times, which are very sensitive to

random interleavings. In addition to STAMP, we include four workloads that have been

used in a number of TM studies in the past, water and radiosity from SPLASH2 [89], and

two microbenchmarks – deque and btree. Table 6.3 lists the command line parameters used

in experiments in this chapter. We simulate both small and medium datasets for STAMP
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Component Description

Cores 8 in-order 2GHz x86 cores, 1 IPC for non-memory instructions

L1 I&D Caches 64KB 8-way, private, 64B lines, 1-cycle hit latency

L2 Cache 8MB 16-way, shared, 64B lines, 12-cycle uncontended hit latency

L2 Directory L2-Directory Full-bit vector sharer list; 6-cycle latency

Memory 4GB, 100-cycle latency DRAM lookup latency

Interconnect 2D Mesh, 64-byte links, 1-cycle link latency

Exponential Backoff Randomized exponential backoff with saturation after n steps.

Backoff range [1..2n] where n is 8; Backoff multiplier factor: 117

Hourglass 4 retries before becoming toxic (best observed results)

Serial Irrevocability 8 maximum number of retries before executing in serial mode

Serialise on Address The rw-lock implementation was stripped from the Linux kernel and is

Serialise on Killer very similar to the one used in GCC to implement serial irrevocability.

Delayed req-wins Timeout latencies (min/max): 64/1024 cycles

WriteBurst Number of MSHR to buffer store miss information: 32

Table 6.4: Architectural and system parameters.

workloads, following the recommended input parameters [18].

6.4.2 Simulation Environment

All experiments in this chapter have been performed using the GEM5 simulator [7]. TM

support that had been stripped from Ruby [55] upon integration into GEM5 has been

plugged back in for the purposes of this study. The setup uses the timing simple processor

model in GEM5. The memory system is modelled using Ruby. A distributed directory co-

herence protocol on a mesh-based network-on-chip is simulated. Each node in the mesh

corresponds to a processing core with private L1 instruction and data caches and a slice of

the shared L2 cache with associated directory entries. Table 6.4 describes key architectural

parameters used in the experiments, as well as parameters used in the evaluated livelock

avoidance mechanisms. For each workload - configuration pair we gathered average statis-

tics over 5 randomised runs designed to produce different interleavings between threads.

For LogTM, we used the hybrid resolution policy that prioritises older writers by allowing
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Benchmark Max. Occupancy Avg. Occupancy %Commits without VC

Btree 1 1.00 99.99

Genome+ 1 1.00 99.99

Labyrinth 32 6.84 66.20

Labyrinth+ 433 378.98 56.00

Vacation-h 1 1.00 99.99

Yada 9 1.58 96.20

Yada+ 19 1.65 95.50

Table 6.5: Victim cache statistics for evaluated workloads on committed transactions. Numbers have been
averaged over 5 simulated runs with 8 cores using the exponential backoff configuration.

their write requests to abort younger transactions [14].

To isolate our study from the effects of aborts caused by hardware resource limitations

(e.g. cache capacity), our design includes an ideal transactional victim cache which is

able to hold any number of speculatively modified cache lines when they are evicted from

the L1 data cache while a transaction is executing. This allows transactions with large

footprints to commit entirely in hardware, without having to resort to software fallback

mechanisms. When a memory reference inside a transaction misses in the L1 cache but

hits in the transactional victim cache, a penalty of only one extra cycle over the L1 hit time

is applied. The transactional victim cache is flushed on abort and its contents drained to

the L2 cache on commit. Evictions of speculatively read lines are also tolerated by our

design, which uses perfect read signatures to track read sets. Such lines are not placed in

the transactional victim cache and so they need to be fetched back from the L2 if need be.

Table 6.5 shows usage of the victim cache (VC) for the simulated workloads. We do not

show data for workloads that do not make use of the victim cache during their execution.

Even though we use an unbounded victim cache, as can be seen in the table, the number of

lines that go into the victim cache is very small for all the workloads, with the exception of

labyrinth. Half of the workloads do not use the victim cache at all, and for those that use it,

the maximum occupancy reached by the victim cache stays below 20 cache lines except in

labyrinth. Moreover, the percentage of transactions that commit without using the victim

cache at all is high. Thus, designs that have replacement policies with some priority for

transactional data, or that incorporate transactional bookkeeping in deeper levels of the
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memory hierarchy (private L2 caches) will likely be able to execute the transactions defined

in these workloads entirely in hardware.

6.4.3 HTM Support in the Coherence Protocol

We have introduced minor changes in one of several coherence protocol implementations

available in GEM5. The primary intent is to make a few simple changes that permit buffer-

ing of speculative updates in the private L1 cache without maintaining an undo-log. This

brings the model as close in function as possible to requester-wins HTM implementations

that may soon be available. We extended a typical MESI directory protocol available in the

GEM5 release to support silent replacements of lines in E (exclusive) state. This is imple-

mented via yield response messages that are sent by a former L1 exclusive owner to the

L2 directory in response to a forwarded request for a line that is no longer present (after

it was silently replaced). Through this feature, the protocol is then able to integrate spec-

ulative data versioning in private L1 caches at no extra cost. When a transaction aborts,

it simply flush-invalidates all speculatively modified lines in its L1 data cache, which will

eventually appear as silent E replacements to the directory. When it commits, it makes

such updates globally visible by clearing the speculatively modified (SM) bits in L1 cache.

To preserve consistent non-speculative values, transactional writes to M-state lines that

find the SM bit not asserted must be written back to the L2 cache. These fresh specula-

tive writes are performed without delay in L1 cache while a consistent copy of the data is

simultaneously kept in the MSHR until the writeback is acknowledged (required in case

of forwarded requests). Furthermore, transactional exclusive coherence requests (TGETX)

must be distinguished from their non-transactional counterparts (GETX) both by L1 cache

and L2 directory controllers. For TGETX, the L1 exclusive owner must send the data to

both the L1 cache requester and the L2 cache (in order to preserve pre-transactional val-

ues), whereas for GETX requests it is sufficient with a cache-to-cache transfer, and in these

cases the L2 directory expects no writeback.

The design also provides support for early release of addresses from the read-set of a

transaction. This allows improved scalability in scenarios where a transaction may read a

global data structure while intending to modify only a small part of it. For example, in the

application labyrinth the global grid structure can be released after a local copy has been

created within the transaction.
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Component Abbrev. Description

Non-transactional non-tx Time spent execution non-transactional code

Barrier barrier Time spent waiting at barriers

Useful-Transactional useful Time spent executing transactions that commit

Wasted-Transactional wasted Time spent executing transactions that abort

Waiting in serial lock wait-serial Time spent waiting for an irrevocable transaction to complete

Waiting in address lock wait-address Time spent waiting for a conflicting transaction on the same

address to complete

Waiting for killer wait-killer Time spent waiting for our killer transaction to complete

Serial irrevocable serial Time spent executing an irrevocable transaction

Token useful token Time spent in useful transactions with the token (hourglass)

Backoff backoff Time spent performing exponential backoff

Stall stall Time spent waiting for a memory request to complete in

LogTM, or by the delayed requester-wins conflict resolution

Table 6.6: Various components in execution time breakdown plots.

6.4.4 Experiments and Metrics

We use execution time breakdowns to identify possible sources of overhead and compare

them across the studied mechanisms. Execution times account for memory system effects

by allowing the cache hierarchy and locality characteristics of the application to affect the

metric. Execution breakdowns are broken down into several components listed in Table 6.6

based on the number of cycles spent performing the corresponding activity in all the cores.

Some components are present only in certain configurations. Tables of results also show

different statistics depending on the evaluated proposal, and include abort rates which in-

dicate the fraction of transaction executions that result in aborts. This metric, when looked

at in conjunction with execution time, provides a better picture of the efficacy of various

contention and livelock mitigation techniques evaluated. Finally, we also use execution

times for different techniques normalised to single-thread execution time to compare their

scalability.
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6.5 Evaluation

We first evaluate existing techniques in depth to identify possible sources of overhead.

Later we evaluate our proposed software-based and hardware-based techniques. Finally,

we conclude with a scalability comparison for the evaluated proposals.

6.5.1 Evaluation of Existing Techniques

Figure 6.3 compares the performance (execution times) of the existing techniques – ex-

ponential backoff (B), serial irrevocability as implemented in GCC (S), a design that com-

bines both exponential backoff and serial irrevocability (BS), and hourglass (H). LogTM

execution times have been used as the basis for normalisation, with the breakdown for the

configuration shown using the bar marked L. In BS, serialisation occurs when a transaction

fails to commit even after having retried 8 times applying an exponential backoff. For a

description of breakdown components see Table 6.6.

Serial irrevocability imposes a performance cost because any parallelism among con-

current transactions is precluded. Frequent entries into this mode may result in severe

performance degradation. Exponential backoff alone performs badly too. From the figure

it is clear that when contention is present (for example in applications like deque, btree,

genome, intruder and yada), just relying on serial irrevocability or exponential backoff can

result in performance degradation ranging from 20% to about 40% in intruder, 2-2.5×
in btree and several times (3-4×) in yada. Even a small portion of time in serial irrevo-

cable mode results in significant time spent by other threads waiting for the irrevocable

execution to finish (wait-serial). This overhead is expected to become worse as thread

count increases. Though the combination of exponential backoff and serial irrevocability

(BS) performs marginally better, all three livelock mitigation techniques perform compa-

rably. Hourglass contention manager shines here being 6.8% better than BS. However,

note that a performance gap of 26.8% can be seen between the baseline (LogTM with con-

servative deadlock avoidance using timestamp priorities) and the best existing technique

(hourglass).

Table 6.7 shows some key metrics for different existing techniques evaluated in this

section. The column %Saturation indicates the percentage of backoff events where backoff

had saturated. Note that we use exponential backoff where the range of possible backoff
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Benchmark %Saturation %Irrevocable/Token %Token aborts %Abort Rate

B S BS H H B S BS H

Deque 0.12 67.71 0.19 43.45 19.7 36.2 95.2 65.7 78.0

Btree 4.74 11.83 0.62 8.38 20.6 14.7 65.9 25.0 44.5

Water 0.00 1.19 0.00 2.08 6.3 2.2 13.9 2.1 16.8

Radiosity 0.47 0.12 0.00 0.05 26.7 0.4 2.4 0.5 1.2

Genome 2.52 1.39 0.15 0.38 44.8 4.6 16.3 6.4 8.3

Genome+ 3.51 0.70 0.06 0.17 34.5 2.5 8.4 3.1 3.5

Intruder 0.61 9.45 0.08 1.31 79.9 14.6 59.8 18.3 44.6

Intruder+ 1.05 9.92 0.07 2.32 53.9 10.6 60.9 14.2 38.1

KMeans-h 0.00 8.59 0.00 3.61 29.3 6.0 53.0 7.1 31.2

KMeans-h+ 0.18 6.29 0.04 4.52 34.9 7.3 43.6 11.3 38.8

Labyrinth 3.65 18.37 1.74 7.88 36.9 34.5 71.9 50.0 61.9

Labyrinth+ 0.95 0.42 2.85 8.89 37.3 30.4 32.0 47.2 63.2

SSCA2 0.00 0.08 0.00 0.12 0.0 0.1 2.2 0.1 1.1

SSCA2+ 0.00 0.03 0.00 0.06 0.3 0.1 0.9 0.1 0.6

Vacation-h 8.04 0.87 0.00 0.46 1.1 2.1 12.3 1.7 5.0

Vacation-h+ 11.83 0.41 0.01 0.17 0.0 0.8 6.8 1.2 1.8

Yada 33.86 46.42 12.26 13.72 34.8 45.3 90.9 71.9 62.8

Yada+ 90.17 29.24 5.40 10.42 32.6 80.9 83.1 52.6 55.7

Table 6.7: Key metrics for existing techniques.

periods stops growing after a certain number of consecutive aborts. We find that yada and

btree experiences this event often, a sign of contention being persistent, and that larger

backoff periods might be beneficial in this particular workloads. The columns under the

head %Irrevocable/Token indicate the percentage of transactions that ran irrevocably (as

a fraction of the total number of committed transactions) when using serial irrevocability

as fallback (configurations S and BS), or the percentage of transactions that acquired the

global token when using hourglass contention management (configuration H). The last

three columns under the head %Abort Rate show the percentage of aborts encountered in

each configuration as a fraction of the total number of transaction starts (including restarts)

– aborts/(aborts+commits). We observe that high-contention workloads running on

configuration S (without backoff) enter in irrevocable mode far more often than when

using it in conjunction with backoff (configuration BS). This is expected since backoff pre-

empts immediate restart of transactions that are likely to abort their killers. Thus the use

of backoff is recommended, specially in contended scenarios. Though hourglass outper-
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Figure 6.4: Relative performance of proposed software-based techniques for 8 core runs.

L – LogTM; A – Serialise on conflicting address (SoA); K – Serialise on killer transaction (SoK)

forms all other techniques, it is susceptible to performance degradation under contention,

particularly if transactions are large. The column %Token aborts indicates the abort rate

for transactions that executed while holding the hourglass token, a large number of aborts

in this mode may cause a penalty similar or even larger than that of serial irrevocability.

6.5.2 Evaluation of Proposed Techniques

Software-based Techniques

Figure 6.4 compares the performance of software based techniques proposed in this chap-

ter. The numbers are again normalised using LogTM as a baseline. This allows us to

compare visually the improvements over techniques discussed in the previous section.

Data has been presented for two configurations – serialise-on-conflicting-address (SoA)

and serialise-on-killer-transaction (SoK).

We notice modest improvement in overall performance using either technique over ex-

isting techniques (shown in Figure 6.3). SoK performs the best, reducing the performance

gap from the baseline to 15.3%, being slightly better than SoA. However, we see that both

these techniques suffer when contention is high and transactions are large. This is evident

from the execution times for btree and yada. In such cases, these techniques turn out to

be substantially slower (1.6× - 2.5×) than LogTM. Note that in the case of btree SoA per-

forms better than SoK, while the opposite trend is seen in the case of yada. In btree there is

some overlap expected among conflicting addresses since a tree is being accessed. This is

however not the case in the mesh-refinement algorithm used by yada. Previous work [61]
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Benchmark %Irrevocable %Aborts cycle %Abort rate

SoA SoK SoA SoK LogTM

Deque 0.00 3.98 44.1 31.2 9.5

Btree 0.29 3.08 20.0 22.2 7.9

Water 0.00 4.38 2.1 3.7 0.6

Radiosity 0.01 8.06 0.9 0.7 0.5

Genome 0.45 2.61 8.8 4.0 3.1

Genome+ 0.15 2.28 3.7 1.7 1.1

Intruder 0.78 6.96 25.7 23.1 15.4

Intruder+ 0.26 6.52 17.5 16.4 11.8

KMeans-h 0.00 11.46 8.7 4.5 0.2

KMeans-h+ 0.04 6.03 16.1 6.1 0.2

Labyrinth 0.77 0.27 32.2 26.4 27.9

Labyrinth+ 0.00 0.90 28.0 23.6 30.2

SSCA2 0.00 2.55 0.2 0.1 0.0

SSCA2+ 0.00 3.39 0.1 0.1 0.0

Vacation-h 0.00 0.00 1.7 0.9 0.6

Vacation-h+ 0.00 0.00 0.9 0.5 0.2

Yada 5.13 1.42 50.4 14.8 32.3

Yada+ 2.86 1.26 36.5 10.3 18.1

Table 6.8: Key metrics for software-based proposed techniques.

has shown that yada typically has a very large number of conflicting addresses that do

not show much repetition. Moreover, contention in yada tends to occur among groups of

threads working on the same region of memory. Hence, SoK with its per-thread locks fits

this case well.

Table 6.8 shows statistics for the evaluated software-based techniques. From the ta-

ble we can see that, in fact, the percentage of transactions executed in serial irrevocable

mode is substantially lower in SoA when compared to existing techniques. The column

labelled %Aborts cycle, shows the percentage of aborted transactions that are allowed to

restart without waiting on the killer transaction because a cyclic dependence would occur

otherwise. Note that this value stays relatively low for all workloads, keeping additional
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Figure 6.5: Relative performance of delayed requester-wins technique for 8 core runs.

L – LogTM; D – Delayed requester-wins with serial irrevocability; DK – Delayed requester-wins with SoK

aborts that might occur due to non serialised transactions low. In fact, the abort rates for

yada in SoK are substantially lower than in LogTM, however, LogTM still performs better

because with large transactions the overheads of serialising grow rapidly.

SoA significantly reduces the number of transactions that run in irrevocable mode when

compared to existing techniques, which translates into lower overheads waiting for the

serial lock. This is evident upon comparing numbers in Table 6.8 to those in Table 6.7.

Time waiting on transactions executing on the same conflicting address is generally small

(wait-address), although this overhead remains visible in intruder and btree since these are

benchmarks with a larger number of read-modify-write transactions that conflict on a small

set of addresses.

Hardware-based Techniques

Figure 6.5 shows relative performance of two new livelock mitigation techniques based on

the delayed-requester-wins (DRW) mechanism. Since DRW does not guarantee forward

progress we must have some form of software fallback to break persistent livelocks. The

first DRW-based scheme (bar D in Figure 6.5) uses serial irrevocability as fallback while

the second scheme uses SoK as fallback (bar DK). A version with hourglass as fallback was

evaluated yielding lower performance (results not included); serial irrevocability and SoK

are more efficient at bypassing short hotspots of high contention.

Performance differences between the two techniques are most noticeable in applica-

tions with large transactions or with moderate to high contention. Notice the large wait

time due to serial irrevocability in yada. The drastic improvement in performance over
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Benchmark %Commits w. timeout %Unexpired timers %Irrevocable %Abort Rate

DRW-S DRW-SoK DRW-S DRW-SoK DRW-S DRW-S DRW-SoK

Deque 32.72 21.49 71.85 74.54 0.09 24.0 13.9

Btree 12.84 9.44 49.67 46.58 0.27 24.7 15.3

Water 0.89 2.67 84.21 91.43 0.00 1.5 0.9

Radiosity 0.30 0.22 96.27 96.71 0.01 0.6 0.4

Genome 1.24 0.71 49.19 47.30 0.28 6.5 3.0

Genome+ 0.57 0.29 52.12 48.56 0.07 2.5 1.3

Intruder 12.70 11.25 69.87 71.41 0.16 16.8 10.8

Intruder+ 9.10 7.89 75.57 76.54 0.09 12.3 8.0

KMeans-h 4.29 2.72 73.34 65.21 0.00 1.7 1.8

KMeans-h+ 4.21 3.66 79.45 78.23 0.00 1.3 1.2

Labyrinth 0.58 0.29 35.29 50.00 1.17 34.7 26.3

Labyrinth+ 0.14 0.00 25.00 0.00 0.28 31.8 24.5

SSCA2 0.17 0.10 98.99 100.00 0.00 0.0 0.0

SSCA2+ 0.07 0.05 99.69 99.07 0.00 0.0 0.0

Vacation-h 0.60 0.20 84.83 90.91 0.00 1.4 0.9

Vacation-h+ 0.22 0.05 72.58 68.75 0.00 0.5 0.3

Yada 11.73 1.71 42.36 26.83 6.12 54.6 13.9

Yada+ 6.34 1.37 39.72 30.80 2.89 38.7 10.0

Table 6.9: Key metrics for delayed requester-wins in conjunction with serial irrevocability and SoK.

serial irrevocability when using SoK is the result of improved parallelism since only those

transactions that actually conflict wait. Other contended applications like intruder and

genome obtain the best results seen so far, being only a few percent behind LogTM. In

yada, DRW helps some transactions to commit that would otherwise have to abort, while

SoK ensures that aborted transactions do not abort their killers upon restart. Btree also ben-

efits substantially from DRW, experiencing a considerable performance boost with respect

to previous evaluated techniques. Table 6.9 shows the percentage of commits that had

active timeouts, which delayed (buffered) conflicting requests from remote cores instead

of aborting the local transaction. Intruder, yada and btree benefit substantially from this

fact. The head %Unexpired timers shows that applied timers tend to be cancelled before

they expire, allowing the transaction to continue execution. Table 6.9 also shows that abort

rates obtained for DRW-SoK, which are considerably lower with respect to other proposals

across all workloads.
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Figure 6.6: Relative performance of the WriteBurst technique for 8 core runs.

L – LogTM; W – WriteBurst with serial irrevocability; WK – WriteBurst with SoK

The use of timestamp priorities and reductions in wasted execution time due to the

possibility to retry conflicting accesses (effectively stalling a lower priority transaction) still

allows LogTM to perform significantly better under contention. However, even though

DRW does not use additional coherence messages or timestamps, it has an average perfor-

mance close to that seen in LogTM. Using SoK as fallback we observe a performance gap

of about 12.1%, which can be largely attributed to the results obtained in yada and btree,

as other workloads perform considerably closer to LogTM.

Figure 6.6 presents an execution time breakdown for the WriteBurst technique. Two

versions have been evaluated: one with serial irrevocability (bar W) and one with SoK (bar

WK) as fallback mechanism to guarantee forward progress. Again, a version with hourglass

as fallback was evaluated (not shown) delivering slower performance.

In workloads where buffering stores can hide conflicts between transactions – by shrink-

ing the window of time in which a transaction is susceptible to abort due to remote readers

– using serial irrevocability proves to be slightly better (btree, genome, and intruder). This

is due to the fact that transactions can restart immediately as long as they do not reach

the threshold to execute in irrevocable mode, and under low contention this is beneficial.

However, if contention is still present, serial irrevocability again imposes a severe perfor-

mance penalty, see yada. When using WriteBurst in conjunction with SoK as a fallback

mechanism, there is a slight penalty in applications where restarted transactions may now

not conflict due to the WriteBurst mechanism. However, it proves to be much more effec-

tive for large transactions with moderate to high contention (yada). Overall, this approach

is only 10.5% slower than LogTM.
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Benchmark Max. Stores Buffered Avg. Stores Buffered %Irrevocable %Abort Rate

WB-S WB-SoK WB-S WB-SoK WB-S WB-S WB-SoK

Deque 3 3 2.89 2.89 0.04 27.3 25.8

Btree 11 12 3.42 3.42 2.40 40.5 24.7

Water 2 2 1.86 1.87 0.00 1.9 1.8

Radiosity 18 15 1.10 1.11 0.00 0.8 0.6

Genome 12 11 1.68 1.72 0.02 4.8 3.0

Genome+ 12 11 1.51 1.52 0.02 2.1 1.3

Intruder 17 17 2.21 2.19 0.02 13.0 12.0

Intruder+ 19 20 1.79 1.78 0.01 10.5 8.5

KMeans-h 2 2 1.69 1.69 0.00 3.9 3.5

KMeans-h+ 2 3 1.73 2.38 0.00 2.9 3.1

Labyrinth 32 32 7.17 7.15 0.58 30.7 27.1

Labyrinth+ 32 32 13.46 13.56 0.14 26.8 26.9

SSCA2 2 2 1.15 1.14 0.00 0.2 0.1

SSCA2+ 2 2 1.10 1.10 0.00 0.1 0.1

Vacation-h 8 8 1.57 1.57 0.00 1.1 0.8

Vacation-h+ 5 5 1.48 1.48 0.00 0.4 0.4

Yada 31 32 6.13 6.84 3.13 42.4 14.9

Yada+ 32 32 6.26 6.66 1.93 31.5 10.4

Table 6.10: Key metrics for the WriteBurst mechanism in conjunction with serial irrevocability and SoK.

Table 6.10 provides information about the maximum and average number of buffered

stores per committed transaction. As can be seen, labyrinth and yada exhausted the buffer

capacity for some transactional executions, and maintain a relatively high average number

of buffered stores. Btree, radiosity, Intruder and genome also have a higher number of

maximum stores buffered when compared to the rest of the workloads, but their average

usage is low. Serial irrevocability, as observed in the breakdown, is only used by btree and

yada, where contention is still an issue.

This high usage of the buffers in labyrinth and yada may imply that these workloads

can benefit from larger buffering capacity, and that they would also be sensitive to a lower

number of MSHRs. We ran experiments using WB-SoK with 16 and 64 MSHRs, and ob-

served that only labyrinth and yada experienced changes in performance compared to the

results gathered using 32 entries. When 16 MSHRs are available, labyrinth and labyrinth+
see performance drops of 7.3% and 5.4%, while yada and yada+ drop by 9.0% and 5.2%
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respectively. On the other hand, when the number of registers is set to 64, yada and yada+
improve by 5.0% and 6.8% respectively, while both labyrinth and labyrinth+ show roughly

the same performance levels of the 32-MSHR configuration. We observed that the substan-

tial improvement seen in yada is due to its maximum usage of 60 MSHR, whereas labyrinth

uses around 40 entries.

6.5.3 Performance Overview of Proposed Techniques

In this section we compare relative performance of the introduced techniques in software

and hardware. Figure 6.7 compares scalability for 8-core runs using a subset of the config-

urations we have discussed earlier.

We show the best performing existing technique, hourglass, which has significant drops

in performance under contended scenarios, but can be a good choice when contention is

low. Overall, the proposed hardware schemes perform better than their software counter-

parts, this is specially noticeable in contended applications like btree, intruder and yada. In

applications where contention is mild like in water, radiosity, SSCA2, or vacation; SoA and

SoK present competitive performance, being on par or even slightly better than hardware

proposals, e.g., SSCA2. LogTM, plotted as the last bar, performs the best; especially under

contention (btree and yada), where timestamp priorities become more useful, though the

proposed schemes can achieve similar performance for most workloads.

This comparison highlights the need for basic livelock mitigation techniques in hard-

ware (specially in contended scenarios), if not full-fledged forward progress guarantees

which may be better implemented in software. As long as hardware techniques can ef-

fectively limit the need for software intervention, the performance cost associated with

providing strong progress guarantees in software would be manageable.

6.6 Related Work

HTM proposals in the literature have typically provided forward progress guarantees us-

ing transaction priorities (through timestamps, for example) [14, 57] or lazy contention

management [37, 62, 85]. However, the simplicity with which requester-wins HTMs [24,

25, 43] can be incorporated in hardware has resulted in such HTMs being the first ones to

be widely accessible. As we have shown in this study, such designs tend to be susceptible
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to performance degradation through transient or persistent livelocks. To the best of our

knowledge, prior work has only noted this fact in passing, without presenting in-depth

analyses of its performance implications or evaluating solutions that enhance forward-

progress properties of requester-wins HTMs.

However, we would like to point out the connection between livelock mitigation and

contention management. Extensive research into management of conflicting transactions

has been undertaken in both HTM and STM. Designs which manage contention better are

also less susceptible to livelock. In the area of STM, a variety of ways in which transactional

conflicts could be handled have been evaluated. STM implementations allow great freedom

in contention management policy design. Scherer and Scott [73] have evaluated a range

of such options – Polite, which employs exponential backoff in a manner similar to our im-

plementation; Karma and Eruption, which prioritise transactions based on the amount of

work they have done; Kindergarten, where transactions accessing an object of contention

take turns; and Polka, where exponential backoff and Karma are used together. Prioritised

contention management policies (like Karma), with appropriate instrumentation in code,

are relatively simple to implement in software. However, hardware implementations ne-

cessitate mechanisms to award and transport such priorities among processing units and,

more importantly, mechanisms to notify and respond to decisions based on their use. The

key attraction of requester-wins HTM in hardware design is the lack of any such require-

ment. The cache hierarchy and protocols do not change, changes local to processing units

being sufficient to determine and rectify conflicts.

Entry into the serial irrevocable mode in GCC aborts all concurrent transactions and

prevents new ones from starting. Toxic transactions [50] present a less drastic way – hour-

glass – to allow transactions that repeatedly abort due to conflicts to complete successfully.

The mechanism requires such transactions to become toxic, i.e. prevent new ones from

being scheduled (or re-executed upon abort) by acquiring a token. This gives a chance

to concurrent non-conflicting transactions to complete successfully. We have included this

strategy in this study, showing that is quite effective – being the best contendant amongst

existing techniques.

Dolev et al. have proposed CAR-STM [30], which provides, in software, two methods

to mitigate the adverse effects of conflicts. It maintains, for each processing core, a queue

of transactions to be serialised on that core. An aborted transaction is rescheduled by

queueing it on the conflicting core. In addition to this mechanism, a predictive scheduling
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approach assigns transactions to cores with which they are likely to conflict. However,

this mechanism views transactions as tasks to be scheduled and thus, imposing scheduling

overheads particularly in high contention scenarios. Another predictive approach is used

in the Shrink contention manager described in [31].

In the context of HTMs, prior work [14] has identified several pathological conditions

that can beset certain contention management policies. Requester-wins systems are inher-

ently eager conflict resolution systems and suffer from pathologies that such systems are

susceptible to. However, the absence of transaction priorities swaps starvation problems for

increased risk of livelocks. For example, the requester-wins design treats reads and writes

at an equal footing, thus avoiding the problem of starving readers/writers. However, the

livelock risk, termed “friendly fire” in Bobba’s paper, is present. Our study aims to estimate

the likelihood of this risk and presents some new techniques to mitigate or avoid it.

Hybrid approaches have also been investigated. In particular, Hybrid-NOrec [27] de-

scribes the implementation of a hybrid TM system on best-effort HTM. The design allows

software and hardware transactions to co-exist, although concurrency among such transac-

tions is restricted rather severely. High-performance variants of this approach require the

ability to issue non-transactional loads from within a transactional context.

Further research in HTM has investigated the use of reactive and proactive scheduling

strategies [10, 91] to enhance parallelism and limit speculation when it is likely to fail.

These proposals track conflicts between transactions and use this information in the future

to predict contention and decide whether or not to stall a transaction when a transaction-

begin primitive is encountered. Dependence-aware TM [70] tracks dependencies between

concurrent transactions, supplying uncommitted data to dependent transactions and en-

suring that commits occur in proper order. Cyclic dependencies are broken by aborting one

of the transactions when a cycle is detected. These proposals tend to rely on HTMs that

are more sophisticated and significantly more complex than a requester-wins design and,

hence, are unlikely to be adopted soon by hardware vendors.

6.7 Summary

In this section we summarize key results and insights gathered during this study. These can

be categorised under two heads:
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6.7.1 For Programmers

Livelocks present a real and rather severe problem in requester-wins best effort HTMs. Even

when cyclic dependencies may not arise among transactions, performance degradation due

to transient livelocks may still occur because of repeated conflicts between an aborter and

a restarted abortee. Exponential backoff is quite effective at mitigating adverse effects

of livelocks. However, it does not guarantee freedom from livelocks. It must be used in

conjunction with serial irrevocability to ensure forward progress. However, the TM runtime

should not be very eager when deciding to enter serial irrevocability as this can potentially

create pathological situations wherein applications with little contention may show severe

performance degradation due to frequent serialisation because of the contention created

by the serialisation mechanism itself. As we show in this study, serialisation should be done

in stages. Initially using less severe techniques like Hourglass, SoA or SoK which permit

much greater levels of parallelism before falling back to serial irrevocability.

6.7.2 For Architects

Bare-bones requester-wins HTM support, while being a good, low-complexity way of in-

troducing practical TM in the real world, is not safe from livelocks even in lightly con-

tended scenarios. While software strategies can prevent livelocks from precluding forward

progress, they can also impose a performance penalty which in several cases is rather

steep. Simple hardware mitigation strategies are quite useful in this context. By delaying

conflict resolution, the architectural simplicity of requester-wins HTM designs can be re-

tained while simultaneously mitigating the possibility of livelock and overheads associated

with it. As we have shown in this study, this can be easily done by deferring processing of

conflicting coherence requests (DRW) or delaying when writes are injected into the mem-

ory hierarchy (by buffering store misses). While such schemes may not guarantee freedom

from livelock, they prove to be quite effective in avoiding them in many transactional use

cases.
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7
Conclusions

During the time frame of this thesis, hardware transactional memory has moved from

a heavily researched topic to initial real-world implementations that are starting to be

widely available in common commodity hardware [16, 43]. Hardware manufacturers are

testing the waters with these initial implementations, which favour simplicity of integration

into existing architectures, offering bare-bones support for transactions. Proposed HTM

implementations by the academic community tend to be more complex in order to obtain

higher performance or to provide additional compelling features that might be missing in

initial real-world implementations. As TM gains awareness from mainstream programmers,

future iterations of hardware support for transactions might progressively incorporate some

of the many contributions described in academic research.

In this thesis, we have particularly focused on techniques to improve concurrency in

HTM systems.

In Chapter 3, we propose a reconfigurable data cache (RDC) architecture able to handle

two versions of the same logical data, with the objective to improve both eager and lazy

version management schemes. The RDC has two execution modes: a 64KB general purpose
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mode and a 32KB TM mode. The latter mode allows the RDC to gracefully manage both

old and new values within the cache. We explain the benefits that the RDC offers in version

management schemes and how these translate in performance improvements and energy

savings.

In Chapter 4, we demonstrate that transactions that experience contention tend to have

high locality of reference. We exploit this fact by proposing a prefetching mechanism tai-

lored to work in the context of hardware transactional memory. We propose a simple

hardware design that successfully identifies prefetch candidates and that quickly adapts to

changing contended addresses. We show that prefetching cache lines with high locality can

improve overall concurrency by speeding up transactions and, thereby, narrow the window

of time in which such transactions persist and can cause contention. This technique pro-

vides improvements for most transactional workloads we have analysed, with substantial

gain in contended applications.

In Chapter 5, we present a hardware abort recurrence predictor (HARP) that proactively

identifies transactions likely to fail. HARP dynamically chooses a contention avoidance

mechanism based on the expected duration of contention, maximising computational re-

source utilisation, while minimising the amount of wasted work due to transaction aborts.

We provide a detailed design description based on simple hardware structures, that yield

a smaller hardware footprint with respect to prior work. The design provides seamless

support for both single-application and multi-application scenarios, and our experimental

results show that HARP outperforms previous state-of-the-art proposals. In terms of future

work, HARP predictions can be leveraged to implement aggressive power saving schemes

when no useful computation can be scheduled.

Finally, in Chapter 6, we study the performance and forward progress issues present in

protocols employed in initial read-world HTM implementations. Hardware vendors have

chosen low complexity approaches, which provide bare-bones support by doing minimal

modifications to existing chip multiprocessors. We study how this protocols behave in

several transactional use cases, and find that persistent and transient livelocks conditions

are likely to occur. Our evaluation of existing livelock mitigation and avoidance techniques

shows that they impose a performance penalty which in several cases is rather steep. We

then propose a set of hardware and software techniques that retain the simplicity of these

initial designs while enhancing their robustness towards livelock conditions, improving

overall HTM performance. Fortunately, future work in this area can now benefit from HTM
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enabled chips, which can greatly simplify future research by freeing researchers from slow

and complex simulation platforms for certain studies.

7.1 Future Work

Some of the contributions described in this thesis may be further extended, more specif-

ically, we believe that transactional prefetching (Chapter 4) and abort prediction (Chap-

ter 5) offer clear future research directions that might be worth exploring.

Regarding transactional prefetching, in this thesis, we have not studied the acceleration

of generic blocks of code that may present high locality of reference, such as critical sections

or synchronisation operations; nor interactions with other forms of prefetching in order

to develop synergistic combinations to speed up both transactional and non-transactional

code. The mechanisms described in this document may be applicable to generic demar-

cated sections of code where locality of reference can be exploited.

We believe that abort prediction is going to play a major role in future implementations

of transactional memory. Our approach proposes a new hardware structure that employs

conflicting addresses to determine if conflicts are likely to happen in the future. However,

implementations that leverage existing branch prediction hardware may be more appealing

to hardware vendors. While transaction conflicting patterns might differ substantially from

branching patterns, simple extensions to branch predictors might be sufficient to provide

a good initial low-complexity approach to transaction abort prediction. In such a scenario,

instructions that start a transaction could be treated as branch instructions and the predic-

tor can determine whether the transaction is allowed to execute or a branch to a fallback

execution path is taken.

An additional line of future work would include the study of interactions present when

combining together some of the proposed techniques. We have not investigated this further

because we see the different proposals as orthogonal techniques that might be employed

depending on the characteristics of the base HTM system. It is important to note that the

initial real-world implementations that we discuss in Chapter 6 are a good target for most

of the contributions of this thesis. For example, the use of lazy version management that

invalidates speculative state upon abort makes these systems good targets for transactional

prefetching, in addition, abort prediction is likely to have a positive impact due to the fact
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that eager conflict detection is employed and conflicts are likely to be common due to the

requester-wins policy. Finally, the techniques that we propose in Chapter 6 have proven to

be effective at ameliorating livelock conditions and improving overall performance.
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