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Summary 

An early, rapid and reliable detection of the presence of biowarfare agents, pathogens, 

viruses and toxins is required in different situations which include civil rescue and security units, 

homeland security, military operations, public transportation securities such as airports, metro and 

railway stations. There is a global argument about the threat of bioterroristic attacks using high risk 

pathogens with significant potential impact on humans, plants and animals. Electrochemical 

biosensors have received important attention for the rapid detection of these pathogens due to 

simplicity, low cost, portability, multiplexing capability and sensitivity. Moreover, their compatibility 

with microfabrication technologies makes them attractive for automated immunological and 

deoxyribonucleic acid (DNA) diagnostics. The first element of the work described in this thesis is 

the development of an electrochemical immunosensor and DNA biosensor array for the detection 

of different virulent species. In the development of the immunosensor, the use of whole antibodies 

and antibody fragments for the detection of Francisella tularensis were compared. In the development 

of the DNA biosensor array, simultaneous detection of eight (8) different virulent species has been 

explored. The developed immunosensor and DNA biosensor were integrated in a microfluidics and 

housed in a tester set-up that facilitated complete automation of the assay. The only end-user 

intervention is sample addition that requires less than one minute hands-on time. The use of the 

automated microfluidic set-up not only required much lower reagent volumes but also the required 

incubation time was considerably reduced and a notable increase of sensitivity was achieved. The 

second element explored was the improvement of biosensor performance by increasing sensitivity 

and to achieve lower limit of detection. The use of a template using lyotropic liquid crystal was 

exploited and an improved analytical performance achieved. 

This thesis is divided in five chapters. A general introduction covering the different topics 

of the thesis is presented in Chapter 1. Chapters 2 to 4 describe the development of electrochemical 
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biosensors for detection of biowarfare agents while chapter 5 covered the developed strategy in 

improving biosensor performance. 

In chapter 2, different surface chemistry using antibody fragments or whole antibodies 

were explored in the development of an immunosensor for the highly sensitive detection of bacterial 

cells. The developed biosensor integrated with microfluidics housed in a tester set-up for automated 

hands-on analysis. Chapter 3, focuses on the development of an immunosensor for the detection of 

anti-Francisella tularensis antibodies in animal serum samples comparing the use of a membrane 

antigen to bacterial cells to capture the antibodies. Optimal conditions for the best assay format 

were explored and real samples of sera from animals known to be infected with tularemia were 

analysed and the results compared to that obtained using ELISA methods, showing an excellent 

degree of correlation. Chapter 4 discussed the simultaneous detection of eight (8) virulent species 

using a sensor array. Different designs of capture probes and assay conditions were thoroughly 

studied in the detection of polymerase chain reaction products. The developed multiplexed 

biosensor array was again integrated with microfluidics housed in a tester set-up device. Chapter 5 

details a nanotemplating method that had the objective of improving probe distribution and an 

enhanced biosensor performance. In this chapter, different phases of lyotropic liquid crystals of the 

surfactant octaethylene glycol monohexadecyl ether (C16EO8) were explored for the creation of 

nanosized pores. Fluorescence and atomic force microscopy as well as electrochemistry were used to 

evaluate the modified surfaces of gold electrode.  

Overall, this work constitutes a complete overview of the development of quantitative 

electrochemical biosensors for the detection of bacterial cells of F. tularensis, anti-F. tularensis 

antibodies as well a highly sensitive and selective multiplexed DNA biosensor array for the detection 

of PCR products from real samples. The search to improve sensitivity and lower limit of detection 

ii 
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of a DNA biosensor was achieved using a nanotemplating method for a better probe distribution 

enhancing hybridisation efficiency. 
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Introduction 

1.1 Brief history of biological weapons                                                                                       

Various types of biological weapons have been known and practiced throughout history, 

including the use of biological agents such as microbes and plants as well as biotoxins and the 

venoms which can be derived from them. In ancient civilisation, the attempt to infect and kill 

enemies by throwing cadavers into water wells made by Emperor Barbarossa during the battle of the 

Italian town, Tortona, in 1155 [1]. Another strategy used by Mongol armies in 1346 was to hurl 

plague-infected cadavers into the besieged Crimean city of Caffa transmitting the disease to the 

inhabitants and the fleeing survivors of the siege spread the plague from Caffa to the Mediterranean 

Basin [2]. In 1495, the Spanish offered wine spiked with the blood of leprosy patients to the French 

near Naples [3]. In 1797, around the plains of Mantua, Italy suffered floods reportedly spread by 

Napoleon to enhance the spread of malaria [1].  

In the late 19th century, scientists introduced the concept of microorganisms as agents of 

infectious diseases. Germany was suspected to be the first one to use weapons of mass destruction 

and sabotage during World War 1 (WW1), both biological and chemical where they employed 

cholera, anthrax and plague. This kind of sabotage was carried out in the USA, Romania, France and 

Spain, and later in Argentina and Norway [4, 5]. Due to the exploitation of chemical weapons in 

WWI and understanding of biowarfare weapon possibilities used by Germany, they were prohibited 

from storing, and importing or using many types of weapons according to Treaty of Versailles. This 

move led to the formation of the Geneva Protocol: “Protocol for the prohibition of the use in war 

of asphyxiating, poisonous or other gases, and of bacteriological methods of warfare” in 1925 and 

entered into force in February 1928. This protocol aimed to prohibit the use of poisoned weapons. 

However, although these protocols, including the past treaties, were all agreed to by the League of 
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Nations, did not guarantee a means of control, and thus failed to prevent interested parties from 

developing and using biological weapons [4].  

Japan and United States of America had (USA) did not ratify the Geneva protocol. Japan 

started their modern biological arm race in 1932 until the end of World War II (WWII) in which 

more than 10,000 prisoners were believed to have died as a result of experimental infection during 

the Japanese program [3]. France ran a similar program in 1936, Canada in 1939 and the United 

Kingdom (UK) in 1940 [6]. The British secretly developed their own biological warfare program in 

Porton Down focused on brucellosis, tularemia, venezuelan equine encephalomyelitis (VEE) and 

vaccinia viruses. Their practical experiments were realized on Gruinard Island near the coast of 

Scotland. The island remained contaminated until 1986 and successful decontamination was 

accomplished using formaldehyde [7]. The German effort for obtaining biological weapons was 

minimal during WW II [5, 8]. 

USA and Soviet Union has continued their protection activities and was even intensified 

after WWII. When the Soviet forces captured and interrogated some Japanese members in 1945, 

they utilized the obtained information in their own biowarfare program and their activities 

accelerated in 1946. Following this, a series of new biowarfare research and production facilities was 

constructed in the 1950s. The Soviet biowarfare program included tularemia, anthrax, brucellosis, 

plague, glanders, marburg virus, smallpox virus, and VEE virus [9]. During the time of the Korean 

War, it was believed that biowarfare agents were used by the USA against Soviet Union. The USA 

began their own program in Fort Detrick (former Camp Detrick) in 1943 and a new production 

facility at Pine Bluff Arsenal in Arkansas was made. USA started producing tons of Brucella suis in 

1954. In the highest peak of their program, they involved about 3,400 people and a number of 

agents like Bacillus anthracis, Francisella tularensis, Brucella suis, Coxiella burnetti, Venezuelan equine 

encephalitis virus, yellow fever, botulin, Staphylococcal enterotoxin, and the anti-crop agents Pyricularia 
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oryzae and Puccinia graminis [5]. Due to public pressure, the late President Nixon declared disarmament 

in 1969 to stop biological weapon projects. The only permitted research was defensive, such as 

diagnostic, vaccines, and chemotherapies tests just like UK where the base in Porton Down was 

converted into a defence institution.  

The most important dates in  biological weapons history was in the year 1972 when 

member nations ratified the biological and toxin weapons convention, that entered into force in 

March 1975: “The United Nations Convention on the prohibition of the development, production, 

and stockpiling of bacteriological and toxin weapons and their destruction” [10]. The convention 

tackled the prohibition of biological weapons after 1975 but the reality was different since Soviet 

Union continued its’ program and taking advantage of the rapid progress in microbiology and 

biotechnology that led to the formation of special secret organizations, which was named 

Biopreparat, to develop biowarfare technology and agents. They were accused of supplying 

mycotoxins to its’ Vietnamese and Laotian communist allies for military use against resistance forces 

in Laos and Cambodia, and of using the same agents in combat operations in Afghanistan in the 

1980s [5]. In parallel, Iraq was one of the countries that successfully built industrial biological 

weapons which was included in their three weapons of mass destruction, i.e nuclear, chemical and 

biological. Their program in biowarfare started in 1975.  They explored and investigated Botulinum 

toxin, Bacillus anthracis and Clostridium perfringens spores, camelpox virus and ricin but their sites were 

then eventually destroyed during the gulf war [11]. South Africa also initiated a biowarfare program 

in 1980, and used anthrax for individual assassinations and cholera for contaminating water supplies 

during attacks against freedom fighters [5]. 

Acts of bioterrorism have not been controlled in the last decades. In September 1984, 

Oregon experienced America’s first community bioterrorism attack led by the followers of Bhagwan 

Shree Rajneesh, who established a commune in the county and intentionally infected restaurant 
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diners in The Dalles as part of a plot to take over county government and at least 750 people 

became ill with a unique strain of Salmonella (https://www.nwpublichealth.org). In Tokyo, Japan, 

the attempt to disseminate anthrax in 1993 by the Aum Shrinikyo cult was not successful but the 

cult was able to recruit many professionals, including those with scientific and medical training and 

were able to obtain Bacillus anthracis through their contacts. Nobody was harmed by the anthrax 

attack because the source was a non-pathogenic strain and the authorities were not even aware of 

the release until later when the cult was investigated for the release of Sarin gas on the Tokyo 

underground [12].  

Recently, the threat of bioterrorism attacks has attracted attention once again and threatens 

the whole world due to the recent chemical attack that has struck Syria [13] which killed hundreds of 

men, women, and children as well as the Bacillus anthracis spore-containing letter attack [14, 15] that 

happened in United States shortly after the 9/11 attack. The presented history on biological warfare 

and bioterroristic attacks would highlights the risks associated with biowarfare agents, and how 

biowarfare could be used for mass destruction in the future, and the associated threats that could 

bring to humankind. 

 

1.1.1 Biological warfare agents 

Considering the general availability of know-how to culture microorganisms in large 

quantities, there is now a global argument about the possibility of using different pathogens with 

high risk not only limited to public health safety but also to plants and animals for bioterrorism 

attacks. There are numerous pathogens, including bacteria, viruses, fungi, toxins among others, 

which are listed by various agencies as potentially dangerous agents [16]. Critical biological agents 

based on several criteria have been classified in three categories by the Centers for Disease Control 

and Prevention (http://www.bt.cdc.gov/agent/agentlist-category.asp). Agents that cause greatest 
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harm are classified as category A and include Bacillus anthracis, Yersinia pestis, Variola major, Francisella 

tularensis, and viral hemorrhagic fevers. These agents pose a high risk to national security because 

they can be easily disseminated or transmitted from person to person or potential delivery through 

weapons which result in high mortality and severe impact on human health, causing public 

disruption and panic. Category B includes agents that are moderately easy to disseminate, and which 

result in moderate morbidity rates and lower mortality rates than agents in category A. Agents in this 

category included Coxiella burnetti , Brucella species, Burkholderia mallei and pseudomallei, Alphaviruses, 

Toxins, Rickettsia prowazekii, Chlamydia psittaci, Salmonella species, Shigella dysenteriae, Escherichia coli, 

Cryptosporidium parvum, and Vibrio cholerae. Category C includes emerging pathogens that are readily 

available and easily disseminated such as  Nipah virus, Hentavirus, Tickborne hemorrhagic fever 

viruses, Tickborne Encephalitis virus, Yellow Fever, and multidrug-resistant tuberculosis [17]. 

Although category C is considered as the lowest risk among the three categories, agents that belong 

to this category should not be neglected as they are also considered to have potential for high 

morbidity, mortality rates and major health impact. The following section discusses in details some 

important high risk pathogens. 

 

1.1.1.1 Bacillus anthracis 

Anthrax is an acute infectious zoonotic disease caused by the spore-forming, aerobic, 

Gram positive, non-motile bacterium, Bacillus anthracis. The bacteria exists in the environment as a 

spore and can remain viable in the soil for decades [18]. Anthrax was a major cause of death for 

animals all over the planet until the end of the 19th century, with occasional, sometimes extensive, 

contamination to humans [19]. Spores that have been ingested by herbivorous animals can 

germinate inside the animal to produce the virulent vegetative forms that replicate and eventually kill 
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the host. Products from infected animals or exposure to dead animals serve as a reservoir for human 

infections [20]. 

There are three major clinical forms of anthrax that affect humans; cutaneous, 

gastrointestinal and inhalational anthrax. Among the three, cutaneous anthrax is globally the most 

prevalent naturally occurring anthrax infection. This results when any broken skin is exposed to the 

spores that form ulcer and black eschar. Fever can also occur during the incubation period. 

Gastrointestinal anthrax is typically related to ingestion of spore contaminated meat and there are 

two forms of gastrointestinal anthrax: oropharyngeal and intestinal. Spores settle in the pharyngeal 

area and produce ulcers in oropharyngeal anthrax. The mean incubation of the spores is about 42 

hours. In intestinal anthrax, spores are deposited and cause ulcerative lesions anywhere from the 

jejunum to the cecum. A patient frequently suffers from nonspecific gastrointestinal symptoms, 

fever and neck swelling. The last form is inhalation or pulmonary anthrax following inhalation of 

thousands of spores. The first symptoms are similar to influenza and after 2 or 3 days of high fever 

with haemorrhage there is a rise in systematic infection. Gastrointestinal and inhalation anthrax are 

fatal when left untreated and undiagnosed and immediate treatment with antibiotics should be 

employed. 

Biological and chemical techniques have been considered in the last decades to be useful in 

identification and detection of anthrax spores. Identification of Bacillus anthracis has been found to be 

difficult because of its similarity with other strains in its genus. Polymerase chain reaction (PCR) and 

immunoassays are the two most employed biological methods to detect anthrax spores. PCR-based 

assays can accurately differentiate pathogenic Bacillus anthracis strains from apathogenic Bacillus 

anthracis from non-anthracis Bacillus species [21] while immunoassay is one of the most currently 

used methods in clinical diagnosis [22]. Recently, specific detection and accurate identification of the 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



8 
 

presence of Bacillus anthracis in any media including foods has been determined by the use of 

pyrosequencing technology [23]. 

 

1.1.1.2 Brucella  species 

Brucellosis is a widespread zoonotic disease caused by Brucella spp. affecting both humans 

and animals [24]. Human brucellosis remains the most common zoonotic disease worldwide [25]. 

Domestic animals like cattle, sheep, goats, swine and even dogs, especially sheppard dogs are the 

natural reservoirs of the organisms. Humans get infected through conjunctiva or skin abrasions 

when exposed to animal fluids infected with the disease, through ingestion and inhalation [26]. After 

infecting the host, the pathogen becomes sequestered within cells of the reticuloendothelial system, 

the mechanism by which brucella enters cells and evades intracellular killing, degrading host’s 

immune system [24]. Brucellosis in human beings is rarely fatal but it can be severely debilitating and 

disabling. It is a multisystemic disease with a broad spectrum of symptoms, although it can be 

asymptomatic as well. It begins as a flu-like disease with symptoms such as fever and generalized 

aches. Gastrointestinal signs, i.e. anorexia, nausea, vomiting, diarrhea, and constipation, coughing, 

and pleuritic chest pain can also be seen. The most common complications are arthritis, spondylitis, 

epididymoorchitis, and chronic fatigue. Endocarditis is one of the most serious complications of 

brucellosis. Some other organs are also affected, resulting in lymphadenopathy, deep vein 

thrombosis, granulomatous hepatitis, osteomyelitis, anemia, thrombocytopenia, and nephritis [25].  

Five species have been recognized in the past, according to relative animal host specificity 

[27] and additional 5 more species has just been recently added [26]. Pathogenicity of five Brucella 

species for humans has been confirmed. Brucella melitensis was isolated in 1887 in Malta (hence called 

Malta fever) by David Bruce from the spleen of a soldier who died from acute brucellosis. It usually 

affects sheep and goats whilst Brucella abortus causes abortions in cattle. Brucella suis, which was also 
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isolated from wild hares, causes the disease mainly in swine which is also pathogenic for humans. 

Brucella canis isolated from dogs, could be also pathogenic to humans. Finally, Brucella marina is found 

in sea mammals (whales, seals) in the Atlantic Ocean [26, 27]. The disease in humans is mainly due 

to Brucella melitensis as the most pathogenic species followed by Brucella suis, while Brucella abortus is 

considered as the mildest type of brucellosis.  

Serological and cell culture techniques are the usual diagnostic methods used for both 

animals and humans. The Wright test or agglutination reaction is still considered the standard 

method [27] and in recent years, methods of molecular biology have been used increasingly often in 

the diagnostics of brucellosis, particularly PCR [26]. 

 

1.1.1.3 Francisella tularensis 

Tularemia, also known as rabbit fever, is a highly infectious zoonotic disease caused by the 

non-motile, non-spore-forming, Gram-negative coccoid rod bacterium, Francisella tularensis. It occurs 

naturally in lagomorphs (rabbits and hares), but many animals have been reported to be infected. 

Transmission to humans is mostly associated with inhalation of aerosolised bacteria, handling of 

infected animals, arthropod bites, and ingestion of contaminated foods and water [28, 29]. The usual 

incubation period is 3-5 days but symptoms can become visible between 1 and 21 days depending 

on the route of infection. Clinical manifestation of the disease in humans can occur in different 

forms ranging from skin ulcers to more severe forms such as life threatening-pneumonia [30].  

Despite the fact that most of tularemia infections can be treated with antibiotics [31], it is 

still considered as life-threatening due to its high virulence, transmission and mortality [32]. 

Identification of Francisella tularensis has been achieved using cultivation and molecular techniques 

including PCR [33] and real time PCR assays [34-36]. Besides the detection of the bacterial cell, the 

detection of specific antibodies in serum is the most widely used serological analysis technique for 
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routine laboratory diagnosis of tularemia [37]. Enzyme-linked immunosorbent assay (ELISA) [38], 

Western blot and other immunological assays can be used to detect seroconversion in patients. 

However, antibodies only appear 2 weeks or more after infection [39]. 

 

1.1.1.4 Yersinia pestis 

It has been believed that the bacterium Yersinia pestis, a nonmotile and slowly growing 

Gram-negative coccobacillus from the family Enterobacteriaceae, is considered  the most likely 

cause of the most devastating disease  outbreaks in human history; the Plague of Justinian and black 

death in the middle ages [40, 41]. Although some authors debate that the Plague of Justinian was 

caused by a different pathogen[42]. The natural reservoir of the plague foci are usually rodents that 

successfully integrate into the host’s innate immunity and then propagates to induce bacteremia that 

is needed in order to constantly circulate and this is then transmitted by infected fleas to a new host 

through bites [43, 44] that result in the bubonic plague. In this disease, the organisms arrive in lymph 

nodes and multiply there, after being introduced by the bite of infected fleas. When bubonic plague 

is left untreated, it progresses to septicemic plague with increasing mortality that may result into 

pneumonic plague. Aside from the fleas, Yersinia pestis infection can also be transmitted by aerosols 

or contaminated food[45]. Following exposure to the agent, the incubation period takes from 2 to 6 

days to appear with some symptoms like fever, malaise, nausea, vomiting and diarrhoea. The flu-like 

illness rapidly changes into bloody sputum within a very short period between 1 to 3 days after 

exposure to the agent. Treatment of human plague can be achieved and has been successful using 

antibiotics like streptomycin, gentamicin, doxycycline, and ciprofloxacin [43]. 

Several techniques have been developed for efficient detection of Yersinia pestis, including 

molecular techniques including PCR, biosensors, and immunoassay techniques[46]. Although 

Yersinia pestis is unstable in aerosol for longer times which impedes utilisation of this agent as a 
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biowarfare, The CDC enlisted it into category A due to the high mortality and high virulence and 

resistance to its’ environment as it can live for a long period of time in its’ dead host, soil and in 

water. 

 

1.1.1.5 Coxiella burnetti 

Coxiella burnetti is an intracellular, Gram-negative pathogenic bacterium which is the 

causative agent of Q fever (query fever) [47]. It is a zoonotic infection that manifests in humans 

primarily as an acute flu-like syndrome with potential complications including pneumonia and 

hepatitis. These signs and symptoms of human Q fever complicate and delay clinical diagnosis. The 

incubation period varies from a few days to weeks depending on the dose of bacteria and the 

immune system of the host [48]. 

The first outbreak of this disease was in Queensland, Australia in 1935. Infection typically 

occurs by inhalation of the bacterium contained in contaminated dust particles. Sources include 

barnyards and facilities housing Coxiella burnetti research programs. Some rare cases of Q fever have 

been reported in which a patient has been infected without direct contact with farm animals where 

the patient came down with Q fever-like symptoms after painting the walls of a science laboratory 

where a newborn lamb had been dissected. In addition, indirect accidental exposures have occurred 

with workers in offices near elevators used to transport pregnant sheep that were unknowingly 

infected with Coxiella burnetti. Due to its hazardous consequence, occupational hazards associated 

with research facilities has largely been eliminated due to implementation of modern biosafety 

equipment and protocols [49]. 

Confirmation of the disease normally involves testing for the presence of Coxiella burnetti - 

specific antibodies, which develop in patients 1–2 weeks after infection. The gold standard 

serological test for Q fever is an indirect immunofluorescence assay (IFA) that relies on serum 
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reactivity. PCR-based technology is sensitive mainly in the early disease state but as the disease 

progresses the test sensitivity decrease [49]. The use of mass spectrometry analysis has also been 

employed for direct detection and identification of the bacterial cells [50].    

 

1.1.1.6 Burkholderia mallei and pseudomallei  

Burkholderia mallei and Burkholderia pseudomallei are facultative intracellular, Gram-negative 

pathogens and the causative agents of glanders and melioidosis respectively [51], which are highly 

infectious via the respiratory route, and can cause severe diseases in humans and animals [52]. 

Glanders is a highly contagious and often fatal zoonotic disease primarily of solipeds such 

as horses, mules, and donkeys. Over the last 100 years, the occurrence of glanders has decreased due 

to the reduced economic reliance of using solipeds in terms of transportation. Eventhough glanders 

has almost been eradicated in most parts of the world, it is still considered as a life-threatening 

disease agent due to its high mortality. Burkholderia mallei was one of the first biological warfare 

agents used during WWI. Glanders can be transmitted through contact with abraded or lacerated 

skin, inhalation by bacterial invasion of the nasal, oral, and conjunctival mucous membranes. 

Depending on the route of infection, symptoms can vary from pulmonary, septicemic, or multi-

tissue infection. The general symptoms can be low-grade fever, malaise, fatigue, headache, 

lymphadenopathy, and chest pain [53]. 

Melioidosis occurs following exposure to contaminated water or soil, usually through cuts 

in the skin or via inhalation [54]. Burkholderia pseudomallei is commonly found in soil and water in 

Southeast Asia and Northern Australia. The increasing cases of melioidosis are a serious global 

threat and clinical manifestations of melioidosis are extremely diverse. Depending on the route of 

infection, symptoms vary from acute sepsis to chronic localised pathology to latent infections which 

can reactivate decades later. The lung is the most commonly affected organ when the bacterium is 
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inhaled resulting in cough and fever that when left untreated and undiagnosed could lead to 

pneumonia, or secondary to septicaemic spread. The overall mortality rate in individuals infected 

with B. pseudomallei range from 30-70% resulting in this agent being categorised as one of the 

biological warfare agents [55].  

Detection and identification of both species can be achieved through molecular 

recognition techniques such as PCR aside from the conventional way of cultures [56]. 

 

1.1.1.7 Bacillus thuringiensis  subsp. kurstaki  

Bacillus thuringiensis subsp. kurstaki is a rod shape and Gram-positive bacterium that 

produces parasporal crystals during sporulation that are commonly found in soil and plants. It is 

used as a biological insecticide to control crop-damaging moths and Lymantria dispar. The gypsy 

moth is a major forest pest that is especially predominant along the eastern seaboard and in the 

Midwestern USA [57]. Although Bacillus thuringiensis subspecies are neither toxic nor pathogenic to 

mammals, including humans, some cases in animal experimentation has shown that intraperitoneal 

injection of Bacillus thuringiensis can cause death in guinea pigs and that pulmonary infection can 

result in the deaths of immunocompromised mice [58]. Reports of human disease are uncommon, 

however, several cases has been reported. An 18-year-old farmer developed corneal cancer after 

being accidentally splashed with a commercial Bacillus thuringiensis product into his eye  [59]. Another 

case was a multiple thigh and knee abscess containing Bacillus thuringiensis found in a previously 

healthy soldier who was severely wounded by a landmine explosion in 1995 [60]. In another case 

study, it was found that Bacillus thuringiensis has been involved in an outbreak of gastroenteritis in 

four persons [61]. 
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1.1.1.8 Bacteriophages 

Bacteriophages were discovered nearly 100 years ago by Frederick Twort (1915) and 

Felix d’Hérelle (1917) [62]. These small viral entities that specifically infect bacteria exist as nucleic 

acids (single or double stranded deoxyribonucleic acid/ribonucleic acid (DNA/RNA), circular or 

linear) wrapped up within a protein capsid protecting the nucleic acids from the environment. After 

injection of their nucleic acids inside the bacteria, the phage induce: a) lysis of the bacterial host with 

the release of newly formed viral particles (lytic phages); or b) release of the progeny viruses by 

extrusion or budding without lysis of the host cell over several generations (filamentous phages); or 

c) reside as a stable element called prophage inside the host cell as a free plasmid molecule or 

integrated into the host chromosome (temperate phages) [63]. 

Bacteriophages are ubiquitous on earth and play a major role in bacterial evolution by 

serving as a genomic reservoir in the environment and by promoting lateral gene transfer among 

bacteria through transduction. Bacteriophages, as well as their recombinant derivatives, are now used 

in a multitude of applications in the biotechnology and medical fields (e.g., as an alternative to 

antibiotics; tools for screening libraries of proteins, peptides or antibodies; vectors for protein and 

DNA vaccines; or as gene therapy delivery vehicles). Most phages do not display any risk for human 

health or the environment, explaining why scientific literature on bacteriophage biosafety is so 

scarce. However, some phages also play an important role in the evolution and virulence of many 

pathogens  through lysogenic conversion by encoding virulence factors that may negatively impact 

human health[64]. Some examples of well-known bacteria, such as Vibrio cholera, Streptococcus pyogenes, 

or Escherichia coli O157:H7, have gained their pathogenicity through the acquisition of phages in their 

genomes [63]. Besides of encoding virulence factors, phages can also encode toxins and enhance 

bacterial resistance to serum and phagocytes (E. coli or Pseudomonas aeruginosa) or alter bacterial 
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susceptibility to antibiotics (Staphylococcus aureus or S. pyogenes) by transferring resistance genes through 

generalized transduction[65]. 

The utilisation of the lysogenic bacteriophages that could encode toxins and containing 

virulence genes and/or broad-spectrum drug-resistance genes could be used as tools to turn non-

pathogenic bacteria into pandrug resistant bacteria which are resistant to all known antimicrobial 

agents. These lysogenic phages are potentials to be used in the manufacture of biological weapons 

that could be spread in an appropriate environment to produce highly pathogenic drug-resistant 

bacterial killers. Bioterrorist attacks using these method would be a secret and to detect or prevent 

dispersal of the biological agents derived from lysogenic bacteriophages would never be easy. 

Moreover, it would be very difficult to distinguish bacterial agents transformed by lysogenic 

bacteriophages from naturally occurring bacteria, and tracing them would be problematic. Thus, 

detection of these organisms is also equally important as a first step to prevent bioterrorist in 

exploiting these phages that would pose an unexpected biosafety risk [66]. 

 

1.2 Antibody: A recognition element in biological assays 

An antibody (Ab) also known as immunoglobulin (Ig) is a large Y-shape protein consisting 

of two heavy chains and two light chains (figure 1) which form a functionally bivalent monomer that 

is produced by B cells receptor used by the immune system to identify and neutralize foreign objects 

such as bacteria and viruses [67]. The widely used rapid detection systems exploit antibodies for 

recognition, identification and quantification of target analytes [68]. Abs played an important role in 

the advancement of diagnostic assays making it indispensable in diagnostic tests that are currently 

used routinely in clinics in classical immunological methods such as ELISA, dot blot 

immunobinding assays, electrochemiluminescence, flow cytometry and several microscopic 

techniques like fluorescence up to the construction of numerous immunosensors. One of the 
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parameters that should always be considered in immunoassay methods is sensitivity. Sensitivity of 

the immunoassay is highly dependent on the affinity of the antibodies involved [69]. However, 

specificity of these antibodies to the target analyte should also be considered. Specificity is 

dependent not only on the binding property of the antibody but also on the composition of the 

sample antigen and its matrix, reagent composition, and immunoassay format. The lack of specificity 

may lead to false positive or negative results. Another parameter that should not be neglected is the 

cross-reactivity because it plays an important role in the quality of immunoassays. The ideal antibody 

exhibits minimal or no cross-reactivity and maximal sensitivity. Cross-reactivity can be defined as an 

interaction between paratope of antibody and similar epitope or identical epitope presented on 

different antigens [70]. 

 

 

Figure 1.1 Typical structure of antibody. 

                                         

1.2.1 Structures and classes of immunoglobulins (Ig) 

There are five primary classes of Igs: They are IgG, IgM, IgA, IgD and IgE. Each class of 

Ig are distinguished by the type of heavy chain found in the molecule. The differences in heavy 

chains polypeptides for each Ig allow them to function differently from each other in specific stages 
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of immune responses [71]. The Polypeptide protein sequences that are responsible for these 

differences are found in Fc region. While there are five different types of heavy chains, there are 

only two main types of light chains: kappa (κ) and lambda (λ) [72]. Antibody classes differ in the 

number of different Y-like units that joins together (figure 2) to form the complete protein that 

differentiates them. 

 

 

Figure 1.2 Typical structures of different antibodies. 

 

Immunoglobulin G (IgG), a monomer, is the predominant Ig class present in human 

serum and is principally responsible for the recognition, neutralization, and elimination of pathogens 

and toxic antigens [73]. Maternal IgG is the only class of Ig that can transport across the placenta in 

humans to protect the newborn during the first months of life [74]. Because of abundance and 

excellent specificity toward antigens, IgG is the principle antibody used in immunological research 

and clinical diagnostics. 

Immunoglobulin M (IgM) usually exists as a pentamer in mammals, which predominates in 

primary immune responses to most antigens and is the most efficient complement fixing 

immunoglobulin and comprises approximately 10% of normal human serum Ig content. IgM is 

mainly produced by the immune system for protection against numerous viral, bacterial, fungal and 

parasitic infections [75]. 
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Immunoglobulin A (IgA) exists as both monomeric and dimeric forms in serum which 

comprises approximately 15% of the total serum Ig. Secretory IgA, a dimer, provides frontline 

defense against pathogens borne in aerosols, the environment, and in the diet because of its 

abundance in mucosal epithelia (e.g., saliva, tears). Although secretory IgA may not destroy totally 

the antigen, its principal function is to prevent passage of foreign substances into the circulatory 

system [76].  

IgD and IgE are found in serum in much smaller quantities than other Igs. Membrane IgD 

is a receptor for antigen found mostly on mature B-lymphocytes. The biological function of IgD is 

still a complete mystery since it has been first discovered in 1965 [77]. IgD molecules do not cross 

the placenta and are not present in body secretions or urine. IgE antibodies are present in external 

secretions and to bind to basophils and mast cells to  primarily defends against parasitic invasion and 

is responsible for allergic reactions [78]. Table 1 summarises the properties of each immunoglobulin 

[72] (http://www.piercenet.com). 

 

Table 1.1 Summary of properties for each immunoglobulin 

Classes 
of Ig 

MW 
(g/mole) 

H-chain 

type, MW 
(g/mole) 

Serum 
concentration 

total 

Ig 
(%) 

Glycosylation 
(%weight) 

Distribution 
(vascular) 

Function 
(response) 

IgG 150,000 gamma, 
50,000 

10 – 16 
mg/mL 75 3 Intra and 

extra 
Protect against 
toxic antigens 

IgM 900,000 mu, 
65,000 

0.5 – 2 
mg/mL 10 12 Intra 

Primary response 
for toxins and 
pathogenic 
species 

IgA 320,000 alpha, 
55,000 

1 – 4 
mg/mL 15 10 Intra protect mucus 

membranes 

IgD 180,000 delta, 
70,000 

0 – 0.4 
mg/mL 0.2 13 lymphocyt

e surface Unknown 

IgE 200,000 epsilon, 
73,000 

10 – 400 
ng/mL 

0.0
02 12 

mast cells 
in salive 
and nasal 
secretions 

against parasites 
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In addition to the five immunoglobulin classes, subclasses of Ig exist in all members of a 

particular animal species. Antibodies are classified into subclasses based on minor differences in the 

heavy chain type of each Ig class. In humans there are four subclasses of IgG: IgG1, IgG2, IgG3 

and IgG4 (numbered in order of decreasing concentration in serum). Variance among different 

subclasses is less than the variance among different classes. For example, IgG1 is more closely 

related to IgG2, 3 or 4 than to IgA, IgM, IgD or IgE. Consequently, antibody-binding proteins (e.g., 

Protein A or Protein G) and most secondary antibodies used in immunodetection methods cross-

react with multiple subclasses but usually not multiple classes of Ig. 

 

1.2.2 Antibody  production                                                                           

Immunological assays rely on the use of antibodies as a capturing and labelling molecule 

for identifying different targets since Ab binds with biological agents with high affinity and 

specificity. Current immunological assays utilises the sensitivity and specificity of polyclonal and 

monoclonal antibodies with respect to their bimolecular antibody–antigen interactions [79]. 

Polyclonal antibodies (PAb) are produced from different B-lymphocyte lines as a mixture of Ig’s. 

Monoclonal antibody (mAb) is the product of one type of B-lymphocyte.  

Polyclonal antibodies are produced by immunization of a host animal such as a rabbit, 

mice, chicken or goat. Several factors have to be considered in the immunization protocol like the 

quantity of antigen, the route of injection, number and distribution of injection sites, the frequency 

of antigen injections, the particular adjuvant which enhance the immune response to an antigen, the 

quantity of adjuvant, and the ratio of antigen to adjuvant. Harvested Igs are always purified from the 

sera before being used for bio-detection [80, 81]. 

Monoclonal antibodies are complex and heteromultimeric glycoproteins. They are used as 

research reagents for diagnosis as well as for therapy for various human diseases and their demand 
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has increased substantially [82]. Köhler and Milstein developed methods for the isolation of mAb’s 

from hybridoma cells in 1975. They demonstrated a cell fusion technique to produce hybrids 

between myeloma cells and antibody producing cells. The resulting hybrid lines were permanently 

adapted to grow in tissue culture and were capable of inducing antibody production in mice using 

Jerne’s hemolytic plaque assay, which allows direct visualization of antibody-producing B cells [83]. 

Monoclonal antibodies that are produced in cultured cells should be in sufficient quantities to allow 

optimization and further refinement of antibody-based assays and development of the 

nonradioactive detection technologies that are currently used [68]. 

 

1.2.3 Labelling of antibodies 

Antibodies are widely used in immunoassays to detect and quantify antigens. The antibody 

that recognizes the antigen is referred to as the ‘primary’ antibody and confers specificity to the 

assay. A ‘label’ is also incorporated into the assay using one of two methods like indirect or direct 

detection method to provide measurability. The label in an immunoassay provides either ‘direct’ or 

‘indirect’ detection of the antigen. With direct detection, the label is attached via a covalent bond to 

the primary antibody. Alternatively, using indirect detection, the label is covalently attached to a 

secondary antibody, which is allowed to bind to the target (either antibody or antigen) during the 

immunoassay forming a sandwich assay format. Some commonly used immunoassay techniques are 

given in Table 2 along with examples of the types of labels that can be employed. 

*Table 1.2 Types of Immuno-experiments and associated labels  

Immunoassay Labels 

Western Blotting Enzymes (usually HRP, or alkaline phosphatase) 
ELISA Enzymes, Biotin/Streptavidin  
Immunofluorescence Fluorescent dyes  
Flow Cytometry Fluorescent proteins or dyes, Tandem dyes 

*From http://www.biomol.de 
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Antibodies like all proteins are composed of amino acids, and the side chain of lysine, 

which terminates in a primary amine (-NH2), is routinely used to link labels covalently to antibody 

molecules. There are two enzymes that are mostly used for labelling antibodies. They are horseradish 

peroxidase (HRP) and alkaline phosphatase (ALP).  

There are four main chemical approaches for antibody labelling: (i) NHS esters, (ii) 

heterobifunctional reagents, (iii) carbodiimide and (iv) sodium periodate. The antibody labeling 

procedure is complicated by the fact that the antibody and label have multiple amines. In this 

situation it is usual to modify some of the lysines on one molecule (e.g. the antibody) to create a new 

reactive group (X) and lysines on the label to create another reactive group (Y). A 

‘heterobifunctional reagent’ is used to introduce the Y groups, which subsequently react with X 

groups when the antibody and label are mixed, thus creating heterodimeric conjugates. A common 

procedure of this method is the use of succinimidyl acetylthioacetate (SATA). The SATA reacts with 

the primary amine of the antibody to form a SATA-modified protein. Formation of thiolated 

protein can be achieved by deprotecting the sulfuhydryl group of the SATA-modified protein. The 

conjugate can now be reacted with the label that has been also modified with maleimide (Y). Figure 

3 summarises the chemical reaction of the conjugation process. 
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a) Reaction of SATA with a primary amine 

 

b) Deprotection with hydroxylamine to generate a sulfhydryl 

 

c) Conjugation with maleimide activated HRP 

Figure 1.3 Conjugation process of Ab with Maleimide activated HRP using SATA. 

 

In the carbodiimide conjugation method, 1-Ethyl-3-[3-imethylaminopropyl]carbodiimide 

hydrochloride (EDC or EDAC) is a common crosslinking agent used to create covalent links 

between amine- and carboxyl-containing molecules. Carbodiimides activate carboxyl groups, and the 

activated intermediate is then attacked by a primary amine present in the antibody or protein as 

depicted in Figure 4. Carbodimides are commonly used to conjugate antibodies to carboxylated 
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particles (e.g. latex particles, magnetic beads), and to other carboxylated surfaces, such as microwell 

plates or chip surfaces. In the case of sodium periodate, this chemical cannot be employed with the 

vast majority of labels but is quite an important reagent in that it is applicable to HRP, which is the 

most popular diagnostic enzyme aside from ALP. Periodate activates carbohydrate chains on the 

HRP molecule to create aldehyde groups, which are capable of reacting with lysines on antibody 

molecules. Since HRP itself has very few lysines it is relatively easy to create antibody-HRP 

conjugates without significant HRP polymerization[84]. 

    

1.2.4 Immobilisation of antibodies 

Numerous methods are available for the immobilisation of macromolecules that are 

suitable for the construction of biosensors.  Some methods will not be described due to large 

number of techniques that exceed the scope of this work and only techniques that bear importance 

to the work presented will be discussed. One of the main issues in the development of an 

immunosensor is maintaining the immunorecognition capability of the antibody after it has been 

immobilized on the sensing surface [85]. There are three well-known available methods for attaching 

antibodies and antigens onto solid surfaces based on interactions [86]: (i) adsorption, i.e physical-

chemical adsorption, (ii) covalent attachment and (iii) affinity binding. Covalent methods improve 

uniformity and reproducibility of the immobilised proteins, i.e antibodies or antigens, onto different 

solid substrate surfaces by using defined linkages or strong gold (Au)-sulfur (S) bonds to form self-

assembled monolayers (SAM) [87]. However, these methods may result in randomly immobilised 

protein and the binding sites might be partially blocked and this could lead to a decreased binding 

activity and selectivity of the antibodies resulting in heterogeneous output and false negatives.  

Much effort has recently been put in the development of more highly efficient antibody 

immobilisation methods with regioselectively in a uniform orientation making it more sensitive than 
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those with random orientations for immunobiosensors [88]. Among the strategies reported is the 

use of immobilised proteins from Staphylococcus aureus (protein A), Streptococcus C40 (protein G), and 

Peptostreptococcus magnus (protein L) to bind with the antibodies to the surface. Proteins A and G bind 

to the Fc region in the heavy chains, while protein L binds to κ-light chains outside of the antigen-

binding site. They bind in a wide variety of antibodies with different affinities as presented in Table 

3. 

 

Table 1.3. Binding characteristics of Protein A, Protein G, and Protein L. 

Species Antibody Class Protein A Protein G *Protein L 

Human 

Total IgG 
IgG1, IgG2 

IgG3 
IgG4 
IgM 
IgD 
IgA 

IgA1, IgA2 
IgE 
Fab 
ScFv 

S 
S 
W 
S 
W 

NB 
W 
W 
M 
W 
W 

S 
S 
S 
S 

NB 
NB 
NB 
NB 
NB 
W 

NB 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

Mouse 

Total IgG 
IgM 
IgG1 

IgG2a, IgG2b, IgG3 

S 
NB 
W 
S 

S 
NB 
M 
S 

S 
S 
S 
S 

Goat 
Total IgG S6 

IgG1 
IgG2 

W 
W 
S 

S 
S 
S 

NB 
NB 
NB 

Rabbit Total IgG S S W 

Rat 

Total IgG 
IgG1 
IgG2a 
IgG2b 
IgG2c 

W 
W 

NB 
NB 
S 

M 
M 
S 
W 
W 

S 
S 
S 
S 
S 

Pig Total IgG S W S 
 

W = weak binding, M = medium binding, S = strong binding, NB = no binding-means 

information not available, *Binding will only occur if the appropriate kappa light chains are present. 
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The binding affinity only refers to species and subclasses with the correct kappa light chains. 

Lambda light chains and some kappa light chains will not bind (From Pierce Biotechnology TECH 

TIP #34 http://www.piercenet.com).  

 

Another method that has gained attention is the direct immobilisation of the antibody 

itself through its fragment region and thiol modified antibodies. The F(ab') fragment , which is 

about 50 kDa, can be produced from the reduction of F(ab')2 fragments by using cysteine[87]. The 

Fab' fragment contains a free sulfhydryl group that may be alkylated or used in conjugation with an 

enzyme. In contrast, F(ab')2 fragment antibodies are generated by pepsin, papain, ficin or bromelain 

digestion of whole IgG antibodies to remove most of the Fc region while leaving intact some of the 

hinge region[89]. F(ab')2 fragments have two antigen-binding F(ab') portions linked together by 

disulfide bonds, and therefore are divalent with a molecular weight of about 110 kDa. 

To date, the use of F(ab') fragment in the field of biosensing has been widely explored 

such as grapheme field-effect transistor immunosensor [90], SPR-based immunosensors for human 

growth hormone detection [91] and bovine leukaemia virus [92] and quartz crystal microbalance for 

the detection of pathogenic Escherichia coli O157:H7 [93]. The antigen-binding activities of 

immobilized F(ab') fragments gained improved sensitivity of developed biosensors as compared to 

conventional use of whole antibody having random orientations when immobilised [87]. 

Figure 4 shows a scheme of typical immobilisation of proteins and antibodies by self-

assembled monoloyer (SAM) of thiolated functional group through carbodiimide conjugation 

chemistry and direct chemisorption of fragments. 
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Figure 1.4 Typical scheme of immobilising immunoglobulins using SAM of a) protein A, G, or L, 

b)  whole Ab and c) fragment Ab (F(ab)). The metal layer was modified by SAM bipodal through 

carbodiimide conjugation chemistry for a and b.  

 

1.3 Biosensors for biowarfare agents 

As has been discussed in section 1.1.1, there is a defined need for an immediate detection 

and identification of the biowarfare agents not only in environmental samples but also in affected 

individuals. Development of detection systems for biowarfare relies on two purposes: (i) detection 

of the agents to treat and allow early detection of the disease or (ii) detection of the agent to protect 

and provide early warning to the site contaminated with dangerous agents to avoid infection [94]. 

Many methods currently available are being used simultaneously for the detection and 

identification of several biowarfare agents. The most conventional and widely used method in 

identifying a certain biowarfare agent is using the biochemical test based assays in which the bacteria 

are cultured and identification is based on biochemical tests [95]. The presence of adenosine 

triphosphate (ATP) in all living cells like viruses and bacteria, ATP interaction with luciferin and 

luciferase, the enzyme, is usually monitored by bioluminescence. The intensity of light produced is 

proportional to the amount of ATP and therefore the degree of contamination in the presence of 

any microorganisms can be established [96]. Although this system is cost effective for real time air 

monitoring to trigger alarm for any unusual rise in the microbial load in the environment, there is 

always a possibility of ATP contamination from non-microbial sources.  
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Immunologic detection of antigens and antibodies is widely used for the detection of 

bacterial and viral biowarfare agents. Enzyme linked immunosorbent assay (ELISA) has been 

developed to detect not only various diseases associated with biowarfare agents but also the 

causative agents. Many different formats have been developed trying to mimic ELISA using 

different substrate labels, like  fluorescent, chemiluminescent, electrochemiluminescent and on 

various platforms like solid support ELISA plates, visual dot and lateral flow formats[97]. Lateral 

flow system has gained popularity due to rapidity and cost effectiveness when compared to 

instrument-based detection systems. These tests are based on single use, disposable tests in the form 

immunochromatographic (ICT) line assays that generate visual lines in the membrane [16], which 

rapid and easy to perform, but there are high false positive results and normally a confirmative lab-

based test is needed. 

Recent development in nucleic acid-based diagnostic assays, in particular quantitative 

polymerase chain reaction (Q-PCR), offers significant advantages over culture-based and 

immunologic methods for the detection and quantification of biowarfare agents. It is the most 

researched and developed detection system and have found the greatest use for biowarfare agent 

analysis because of its’ rapidity, sensitivity, and reproducibility, and the reduced risk of human error 

[98]. In conventional PCR, the bacteria and spores should be disrupted to make the endogenous 

DNA available for amplifying the specific region of the genome before checking on electrophoresis 

for the amplification of correct size of product [99].  In Q-PCR assays, the PCR amplification is 

combined with real time detection based on reporter fluorescence dyes. As the DNA is amplified, 

the dye is intercalated into the product. In non specific Q-PCR, the amplified DNA is detected 

based on DNA intercalating fluorescence dyes (SYBR green) [100]. For specific detection, the 

change in fluorescence relies on the use of dual-labeled fluorogenic probes containing both a 

reporter fluorescent dye and a quencher dye. An increase in fluorescence indicates that the probe has 
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hybridized to the target DNA and the quencher dye is no longer able to mask the signal of the 

fluorescent dye [16]. Q-PCR is used for a variety of applications from quantitative presence or 

absence tests and rapid confirmation tests to monitor gene expression which is the most commonly 

used. 

Although these standard techniques presented are sensitive in the detection and 

identification of biowarfare agents, they are rather time consuming, require expensive 

instrumentation, require trained personnel and the high risk involved in handling samples. The use 

of biosensors is envisaged to be a valid alternative technology that could be rapid, accurate and 

unequivocally confirm the presence of these agents not only giving a very low detection limit added 

to the possibility of detection in varied situations and diverse matrices giving an ideal detection 

system.  

According to the International Union of Pure and Applied Chemistry (IUPAC), a 

biosensor is a self contained integrated device capable of providing quantitative or semi-quantitative 

analytical information using a biological recognition element, which is retained in direct spatial 

contact with a suitable transducer responsible for detecting the biological reaction and converting it 

into a measurable signal [101](figure 5). 

 

 

Figure 1.5 Schematic representation of a biosensor. 
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The biological sensing material or bio-receptor may be a protein such as an enzyme or 

antibody, antibody fragment, a nucleic acid, a whole microbial cell, or even a plant or animal tissue. 

Biosensors can be divided into catalytic (enzyme) and affinity (antibodies, lectins, or DNA) sensors. 

The signal transducer determines the extent of the biorecognition event and converts it into a 

measurable electronic signal, which can be recorded by the end user [94]. Common transducers 

include amperometric electrodes, optical waveguides or mass sensitive piezoelectric crystals. 

 

1.3.1 Electrochemical biosensors 

Electrochemical biosensors are the most commonly used class of biosensors based on a 

bio-interaction process. During the bio-interaction process, an electrochemical species is consumed 

or generated producing an electrochemical signal that is recorded into a measurable signal by an 

electrochemical detector. Electrochemical biosensors have high sensitivity, selectivity, ability to 

operate in turbid solutions and rapid analysis, and are amenable to miniaturization [102]. Depending 

on the electrochemical property to be measured, electrochemical biosensors may be further divided 

into potentiometric, impedimetric and amperometric biosensors. 

 
1.3.1.1 Potentiometric biosensors 

Potentiometric measurement involves the determination of the potential difference 

between an indicator and a reference electrode [103]. They function under equilibrium conditions 

and monitor the accumulation of charge, at zero current, created by selective binding at the 

electrode surface [104]. The electrode surface consists of a perm-selective outer layer and a bioactive 

material, such as an enzyme, where the enzyme-catalysed reaction generates or consumes a species, 

which is detected by an ion selective electrode [105]. As can be seen in figure 6 [106], the transducer 

is an ion-selective electrode (ISE), which is an electrochemical sensor, based on thin films or 
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selective membranes as recognition elements. ISEs can detect ions such as F-, I-, CN-, Na+, K+, Ca2+, 

H+, NH4
-, or gas (CO2, NH3) in complex biological matrices by sensing changes in electrode 

potential when the ions bind to an appropriate ion exchange membrane. The potential difference 

between these indicator and reference electrodes are proportional to the logarithm of the ion activity 

or gas fugacity (or concentration), as described by the Nernst equation [102]. 

 

 

Figure 1.6 Typical schematic diagram of a potentiometric biosensor assays. 

 

Direct potentiometric  immunosensor have been reported where using secondary antibody 

labelled with ALP and addition of substrate p-nitropehnylphosphate to produce corresponding ions 

for detection [107].  Modified ion selective field effect transistors (ISFETs), which utilise the 

semiconductor field-effect is another approach for the detection of biological recognition events 

[108]. ISFETs use an electric field to create regions of excess charge in a semiconductor substrate in 

order to enhance or decrease local conductivity. The application of these devices in the field of 

biosensor is not as attractive like as other electrochemical techniques due to problems related to 

production which include incompatibility of most biomolecule immobilisation methods with the 

ISFET fabrication technology and difficulty in packaging and encapsulation at wafer level, poor 
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biosensor performance such as detection limits, linear range and reproducibility and as well as 

inadequate device stability [109]. 

 

1.3.1.2 Impedimetric biosensors 

Electrochemical impedance spectroscopy (EIS) is a powerful method for analysing the 

complex electrical resistance of a system and is sensitive to surface phenomena and changes in bulk 

properties [110]. It has been demonstrated to be a promising method for pathogenic bacteria 

detection due to its portability, rapidity, sensitivity, and more importantly it could be used for in-situ 

detection [111]. Unlike amperometry or potentiometry, labels are no longer necessary making it 

simpler for sensor preparation. The application of EIS to DNA probe[112] or antibody modified 

electrodes [113]  can be significantly more sensitive than their traditional counterparts such as 

amperometric, voltammetric, and potentiometric. However, its’ detection limits are still poor 

compared to these methods [109]. 

Impedance detection technique is classified into two types depending on the presence or 

absence of specific bio-recognition elements. The first type measures the impedance change caused 

by the binding of targets to the sensing molecules immobilised in the surface of the electrode. The 

binding ability of the target, i.e. antigen, antibody, or DNA, and the sensing molecule is then verified 

through the detection of either a shift in impedance, or change in capacitance or admittance at the 

bulk of the electrode interface due to the insulating properties. The detection principle of the second 

type is based on metabolites produced by bacterial cells as a result of growth.  

 

1.3.1.3 Amperometric biosensors  

Amperometric biosensors are simpler in comparison to the previously discussed 

electrochemical biosensors. Amperometric detection of target analytes, i.e. micro-organisms, 
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antigens, antibodies, or specific complementary target DNA, relies on the measurement of the 

current generated through electrooxidation/reduction catalysed by their enzymes, or by their 

involvement in a bioaffinity reaction at the surface of the working electrode. The potential of the 

working electrode, which could be noble metals, graphite, modified forms of carbon or conducting 

polymers, is maintained with respect to a reference electrode, usually Ag/AgCl, which is at 

equilibrium. The current produced is linearly proportional to the concentration of the electroactive 

product [105, 114]. Figure 7 shows a typical three electrode system in an amperometric biosensor. 

 

Figure 1.7 Schematic diagram of a typical amperometric biosensor. RE: reference electrode, WE: 

working electrode, CE: counter electrode. 

 

Amperometric biosensors have the advantage of being highly sensitive, rapid, and 

inexpensive. The advantage of linear concentration dependence of amperometry makes it well suited 

for detecting pathogenic species. Amperometric sensors aimed at bacteria detection using antibodies 

raised against the cell lysate of the bacteria have been developed where the detection range is 
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normally reported as 'CFU/mL' (colony forming units per mL) or number of 'cells/mL'. Table 4 

summarises the recent works on pathogenic detection for biowarfare based on amperometric 

biosensors with their corresponding obtained limit of detection. 

 

Table 1.4 Immunosensors for pathogen detection 

Pathogen 

detected 
Electrode type, immobilisation 

Detection limit 

(cells/mL) 
Reference 

F. tularensis Screen-printed gold, adsorption of 
capture antibody 100 [115] 

V. cholera Screen-printed carbon, adsorption of 
capture antibody 105 [116] 

B. anthracis Lithographic gold, magnetic beads with 
capture antibody  104 [117] 

S. penumoniae Screen-printed gold, magnetic beads-
protein A-capture antibody 1.5x104 [118] 

S. typhimurium 
 

Screen-printed gold, adsorption of 
capture antibody 20 [119] 

S. aureus Screen-printed gold, magnetic beads-
protein A-capture antibody 1 [120] 

E. coli Graphite, glutaraldehyde-capture 
antibody 1000 [121] 

 

1.4 Nanostructuring of electrodes: Electrochemical biosensor enhancement 

In recent years, there has been an intensive research effort in the field of  electrochemical 

biosensors seeking designs to provide better analytical characteristics in terms of  sensitivity, 

selectivity, reliability, ease of  fabrication and use, and lower limits of  detection [122]. Electrode 

nanostructuring is one of  the avenue that has been pursued and can be achieved by tailoring the 

active surface layers of  the electrodes by means of  advances in nanofabrication providing the 

electrode with unique properties, due to their enhanced surface area, higher capacitance, higher 

spatial resolution of  measurements, and higher sensitivity that leads in providing enhanced 

performance characteristics of  biosensor devices in comparison to planar substrates [123]. 
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Nanostructured electrodes can be regarded as controlling the architecture of  the surface 

of  the electrode at the nanoscale using nanomaterials, templating methods, organic film 

modification or hybrid modification layers which can be organic monolayers with biomolecules or 

nanomaterials [122]. Structuring the surface may be achieved by chemical to nanotechnology 

approaches that involve bottom-up and top down methods to generate nanostructured materials on 

electrode surfaces [124]. A wide range of  electrode surface modification techniques have been 

reported including electrochemical deposition of  metals [125, 126] and polymers [127] or composite 

films [128] and nanofabrication via different approaches including thermal chemical vapor 

deposition [129] and lithographic techniques [130] that have been found to improve sensitivity.  

More recently, the use of  electrochemical methodologies to deposit nanoscale architectures 

from molecular components has been exploited via incorporation of  a template media. The use of  

liquid and colloidal crystals [131] as templates has been extensively used to produce mesoporous and 

macroporous nanostructured materials such as metals [132-135] and polymer films [136] or 

composites [137, 138] resulting in a higher surface area and increased electroactive area that 

facilitates lower detection limits and enhanced sensitivity. 

In addition to electrode surface properties, the orientation of  the biosensing molecules is 

also crucial in the development of  electrochemical biosensors. As an example, the performance of  a 

DNA biosensor is dependent on the overall efficiency of  hybridization between surface immobilised 

nucleic acids and target complementary sequences. The formation of  self  assembled monolayers 

(SAMs) of  short DNA probes on surfaces of  metallic electrodes is one of  the most straightforward 

approaches to immobilize a DNA molecule on a metal surface but the main fallback is the 

formation of  highly packed DNA SAMs that affects the overall efficiency of  the biosensor due to 

high DNA probe density [139] whilst direct chemisorption of  an antibody onto the surface of  the 

electrode has been reported to have an increased immunosensor performance [87] as immobilisation 
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of  antibodies is crucial as a lack of  control of  the orientation of  antigenic site that can lead to 

heterogeneous signals. It is well established that the surface chemistry is a critical factor and different 

immobilisation techniques in immobilising sensing molecules have been explored in the last decade 

to improve sensor performance. Several strategies have been reported to have controlled surface 

probe density, including co-immobilisation [140] and backfilling [141], and nanopatterning strategies 

to ensure a good coverage of  sensing molecules whilst maintaining appropriate spacing [142]  and in 

order to avoid probe cluttering and excessive fouling [125] of  the electrode surface to achieve better 

performance characteristics. 

 

1.5 Thesis objectives 

Current efforts in the development of biosensors focus on new platforms for the accurate 

and sensitive analysis of biowarfare agents and the associated disease caused by these pathogens. 

Considering the general availability of the know-how to culture microorganisms in large quantities, 

there is a fear about the possibility of using hazardous pathogens for bioterrorism attacks and late 

detection and diagnosis could lead to high number of infection or even worst like death. Biosensors 

can play an important role in the early detection of these pathogenic species and early diagnosis of 

associated disease. In this work, we focused our attention on the development of an electrochemical: 

(i) immunosensor and (ii) DNA biosensor for the detection of different biowarfare agents. 

In the development of the immunosensors, detection of F. tularensis bacterial cells and its 

associated anti-Francisella tularensis antibodies has been achieved. Specific objectives for the 

accomplishment of the developed immunosensor for detecting bacterial cells were to: 

- Determine the optimal assay arrangement for the detection of the bacterial cells. 

- Study of the optimum method in surface immobilisation of capture antibodies, i.e. 

using whole and fragment antibodies. 
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- Analysis of the synthesised secondary antibodies labelled with enzyme HRP. 

- Study the incubation time and incubation temperature in the detection of antigens, i.e. 

LPS and whole bacterial cells. 

- Study the specificity of the developed biosensor. 

- Stability studies of the immobilised capture antibodies. 

- Incorporating the developed immunosensor to microfluidics and automated set-up. 

 

In addition to the immunosensor development, detection of anti-Francisella tularensis 

antibodies has also been explored and developed. A study on the optimum capture probe has been 

achieved using ELISA. Optimisation of the coating probe and labelling probe concentration was 

also achieved. Real samples were analysed using the developed immunosensors. 

 Furthermore, a multiplexed DNA biosensor array for the simultaneous detection of eight 

(8) virulent species has been developed. To accomplish this, the specific objectives were to: 

- Determine the optimal immobilisation approach in order to achieve high sensitivity, 

stability and occurrence of non-specific interaction. 

- Determine the optimum hybridisation conditions and detection strategy. 

- Study the cross reactivity of the designed capture probes and the designed labelled 

probes. 

- Study the stability of the biosensor. 

- Incorporating the developed DNA biosensor with microfluidics and automated set-up. 

 

Finally, to improve sensitivity and to lower the limit of detection developed DNA 

biosensor was explored using nanotemplating. The templating system using lyotropic liquid crystals 

was exploited for immobilisation of thiolated capture probes facilitating optimum spaced-
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immobilised probes. To demonstrate an improved surface chemistry, the specific objectives were set 

to: 

- Investigate different phases of lyotropic liquid crystals using the surfactant 

octaethylene glycol monohexadecyl ether (C16EO8). 

- Study the hydrophobic and hydrophilic domains available in the template. 

- Study the probe density immobilised in each immobilisation condition. 

- The use of imaging techniques to directly visualise the orientation of immobilised 

probes in the surface of the electrodes. 

- Compare the biosensor performance of a conventional immobilisation technique (non-

templated) with the templated system. 

 

Overall, this work will contribute in different areas involved in the development of 

electrochemical quantitative and qualitative sensing platforms methods, from fundamental aspects 

such as the choice of a better immobilisation technique of sensing probes to the improvement of 

biosensor performance such as sensitivity and lower limit of detection. 
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ABSTRACT 

Tularemia is a highly infectious zoonotic disease caused by a Gram-negative coccoid rod 

bacterium, Francisella tularensis. Tularemia can be treated with antibiotics, but it is still considered as a 

life-threatening potential biological warfare agent due to its high virulence, transmission, mortality 

and simplicity of cultivation. In the work reported here, different electrochemical immunosensor 

formats for the detection of whole F.tularensis bacteria were developed and their performance 
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compared. An anti-Francisella antibody (FB11) was used for the detection that recognises the 

lipopolysaccharide found in the outer membrane of the bacteria. In the first approach, gold-

supported self-assembled monolayers of a carboxyl terminated bipodal alkanethiol were used to 

covalently cross-link with the FB11 antibody. In an alternative second approach F(ab) fragments of 

the FB11 antibody were generated and directly chemisorbed onto the gold electrode surface. The 

second approach resulted in an increased capture efficiency and higher sensitivity. Detection limits 

of 4.5 ng/mL for the lipopolysaccharide antigen and 31 bacteria/mL for the F.tularensis bacteria were 

achieved. Having demonstrated the functionality of the immunosensor, an electrode array was 

functionalised with the antibody fragment and integrated with microfluidics and housed in a tester 

set-up that facilitated complete automation of the assay. The only end-user intervention is sample 

addition, requiring less than one-minute hands-on time. The use of the automated microfluidic set-

up not only required much lower reagent volumes but also the required incubation time was 

considerably reduced and a notable increase of 3-fold in assay sensitivity was achieved with a total 

assay time from sample addition to read-out of less than 20 min.    

 

Keywords: Electrochemical immunosensors, Francisella tularensis, Self-assembled monolayer (SAM), 

Lab-on-a-chip 
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2.1 INTRODUCTION 

In the last decades, there has been increased interest in developing new methods for the 

rapid detection of microorganisms including toxigenic and pathogenic organisms (Grunow et al. 

2000; Magnarelli et al. 2007; Savitt et al. 2009). Tularemia, also known as rabbit fever, is a highly 

infectious zoonotic disease caused by the non-motile, non-spore-forming, Gram-negative coccoid 

rod bacterium, Francisella tularensis. It occurs naturally in lagomorphs (rabbits and hares), but many 

animals have been reported to be infected. Transmission to humans is mostly associated with 

inhalation of aerosolised bacteria, handling of infected animals, arthropod bites, and ingestion of 

contaminated foods and water (Kleo et al. 2012; Magnarelli et al. 2007). The usual incubation period 

is 3-5 days but symptoms can become visible between 1 and 21 days following exposure  depending 

on the route of infection. Clinical manifestation of the disease in humans can occur in different 

forms ranging from skin ulcers to more severe forms such as life threatening-pneumonia (Penn et al. 

2005). 

Despite the fact that most of tularemia infections can be treated with antibiotics (Dennis et 

al. 2001), it is still considered as life-threatening due to its high virulence, transmission and mortality 

(Su et al. 2007). F. tularensis could be used as a potential biological warfare agent or in terrorist 

attacks. Identification of F. tularensis has been achieved using cultivation and molecular techniques 

including polymerase chain reaction (PCR) (Johansson et al. 2000) and real time PCR assays 

(Bystrom et al. 2005; Simşek et al. 2012 ; Versage et al.  2003). Besides the detection of the bacterial 

cell, the detection of specific antibodies in serum is the most widely used serological analysis 

technique for routine laboratory diagnosis of tularemia (Porsch-Ozcürümez et al. 2004). Enzyme-

linked immunosorbent assay (ELISA) (Pohanka et al. 2008a), Western blot and other immunological 

assays can be used to detect seroconversion in patients. However, antibodies to F.tularensis appear 

only 2 weeks or more after infection (Emanuel et al. 2003). An early identification of the pathogen is 
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important and serological diagnosis is not useful as a rapid diagnostic approach (Grunow et al. 2000). 

Although these standard techniques are sensitive, they are rather time consuming and require 

intensive hands-on-time.  

The detection of F. tularensis is required in different situations which include civil rescue 

and security units, homeland security, military operations, public transportation securities such as 

airports, metro and railway stations due to its harmful effect on the human population (Skládal et al. 

2010). Therefore, there is a need for a specific detection system which could be portable, rapid and 

cost-effective. 

 Electrochemical biosensors are renowned for their excellent sensitivity, selectivity, 

versatility, and simplicity, (Lazcka et al. 2007; Pividori et al. 2009). There is a continual interest in the 

development of these technologies for application in clinical diagnostics, food quality control and 

environmental monitoring (Warsinke et al. 2000), as promising alternatives to traditional methods in 

detecting pathogens (Pohanka et al. 2007). Many of the electrochemical immunosensor format 

architectures try to mimic that found in standard ELISA where different strategies in immobilisation 

of the biocomponent on the transducer’s surface have been developed. The use of self-assembled 

monolayers (SAM) has garnered increased interest due to the possibility of avoiding random 

orientation of the biocomponents (antibody/antigen) on the surface, good surface coverage and the 

possibility of incorporating efficient surface protection moieties to eliminate non-specific binding.  

Specifically targeting F. tularensis, Kleo and co-workers (Kleo et al. 2012) successfully demonstrated 

the immobilisation of an antibody using a carboxy-terminated thiol layer onto a gold surface and F. 

tularensis bacterial cells were directly detected by frequency change using quartz crystal microbalance 

technique, achieving a detection limit of 4 x 103 CFU/mL. Skladal and co-workers (Skladal et al. 

2005) used a sandwich format for the amperometric detection of inactivated F. tularensis bacterial 

cells obtaining a detection limit of 100 CFU/mL in 30 min. 
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In this work, we report a biosensor for the detection of whole inactivated Francisella 

tularensis live vaccine strain (LVS) bacterial cells comparing the use of whole antibodies immobilised 

via chemical cross-linking to a bipodal alkyl thiol self-assembled monolayer (SAM) and a SAM 

formed from the direct chemisorption of F(ab) antibody fragments through their free sulfhydryl 

group which inherently correctly orients the antibody.  The biosensor was housed within a 

microfluidic set-up and the assay was automated via the use of a peristaltic pump, with the only 

required end-user intervention being sample addition. Parameters such as incubation time and 

temperature were optimised and applied to the detection of both the lipopolysaccharide (LPS) 

antigen and whole F. tularensis bacterial cells.   

 

2.2 EXPERIMENTAL 

All the starting materials were obtained from commercial suppliers and used without 

further purification. Monoclonal antibodies (mAb) FB11 and T14 were purchased from Hytest Ltd. 

Company, Finland. Lipopolysaccharide (LPS) from Francisella tularensis was purchased from 

MICROMUN Privates Institut fűr Mikrobiologische Forschung GmbH, Germany. Whole cell 

bacteria of Francisella tularensis LVS subsp. holarctica, F. tularensis subsp. novicida, Yersinia enterocolitica 

subsp. enterocolitica, and Yersinia pseudotuberculosis were kindly provided by the Friedrich-Loeffler-

Institut, Institut für bakterielle Infektionen und Zoonosen, Germany. 1-(mercaptoundec-11-yl)tetra 

(ethyleneglycol) (PEG) was purchased from Sigma-Aldrich Co., sulfuric acid, strontium nitrate, 

phosphate-buffered saline (PBS) (dry powder), PBS-Tween-20, hydrogen peroxide 30% v/v, 

ethanolamine, acetone and ethanol (synthetic grade), N-(3-dimethylaminopropyl) – N – 

ethylcarbodiimide (EDC), N-hydroxysuccinimide (NHS), and acetic acid were purchased from 

Scharlau (Spain); (22-(3,5-bis((6 mercaptohexyl)oxy)phenyl)-3,6,9,12,15,18,21- heptaoxadocosanoic 

acid dithiol PEG-6 carboxylate (DT2) was purchased from SensoPath Technologies (USA) and 
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3,3,5,5-Tetramethylbenzidine (TMB) Liquid Substrate System for ELISA was obtained from Sigma. 

Aqueous solutions were prepared with Milli-Q water Millipore (18mΩ.cm) and all reagents were 

used as received. 

 

2.2.1 Instrumentation 

Electrochemical studies were carried out using an Autolab PGSTAT 10 potentiostat with 

measurements performed using either a conventional three-electrode cell for 3 mm-diameter  

lithographically produced gold electrodes (for developmental work) or 1 mm-diameter electrodes. 

An array of 24 gold electrodes with internal reference and counter electrodes was used for the final 

format with the biosensor integrated within the microfluidic set-up.  The lithographically produced 

gold electrodes were provided by Fraunhofer ICT-IMM (IMM), Germany, and were produced as 

previously reported (Fragoso et al. 2011).  In the developmental work, a standard silver/sliver 

chloride (sat. KCl) was used as a reference electrode (CHI 111 CH Instruments) and platinum gauze 

as the counter electrode. All sonication procedures were conducted with an ultrasonic bath (Branson 

ultrasonic corporation, model 2510E-MT, USA). Enzyme-linked immunosorbent assay (ELISA) 

studies were performed using bioNOVA cientifica, S.L. (Madrid, Spain) and HydroFlex 3-in-1 well 

washer, TECAN (Spain). 

The microfluidic set-up for incubation of analytes and flushing/washing with built in 

peristaltic pump was designed together with and provided by IMM, Germany and the polymeric 

microfluidics were supplied by microfluidic ChipShop GmbH, Germany. 
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2.2.2 Preparation and characterisation of fragment antibodies 

Preparation of (Fab)2 Fragments  

Anti-Francisella tularensis antibodies (FB11 and T14), were purified using YM100 KDa 

microcon and washed four times with 0.15 M NaCl. Fifty microlitres of 0.5 M Tris buffer containing 

50 mM EDTA (pH 7) was added to 500 μL of the purified antibodies (1 mg/mL), followed by 50 

μL (10 mg/mL) of bromelain solution in PBS (pH 7.2, 0.01 M). The mixture was incubated at 37 °C 

overnight. The produced F(ab’)2 fragments were separated with a Sephacryl S-100 column using 0.15 

M NaCl as the eluting agent. The fractions with maximum absorbance at 280 nm were concentrated 

using a YM10 KDa microcon, washed several times with PBS (pH 7.4, 0.01 M), and stored at −20 

°C (Nassef et al. 2009). 

 

Preparation and Characterization of F(ab) Fragments (F(ab)FB11 and F(ab)T14)  

The F(ab) fragments were always prepared freshly from F(ab) 2 fragments before use. 1500 

�L of 10 mM cysteine in PBS (pH 10.3) was added to 60 �L (0.483 mg/mL) of F(ab)2 fragments. 

The mixture was incubated for 2 h at room temperature under gentle shaking and the excess of 

cysteine was removed using a YM10 KDa microcon. The obtained fragments were washed with PBS 

(pH 7.4, 0.01 M) four times and quantified spectrochemically at 280 nm (Nassef et al. 2009). The 

fragments were characterised by non-reducing sodium dodecyl sulphate-polyacryamide gel 

electrophoresis analysis (SDS-PAGE, 12% acrylamide in tris-glycine gel) (Riddles 1983). A precision 

protein standard marker (Bio-Rad, Nazareth Eke, Belgium was used as a molecular weight reference. 

Coomasie brilliant blue R250 (Sigma, Spain) was used to stain the proteins. 
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Preparation of whole-antibody and F(ab)-horseradish peroxidase conjugates 

Whole antibodies (FB11 and T14) were purified prior to conjugation to eliminate any 

preservatives present that would affect the efficiency. The purified whole antibodies were dissolved 

in 0.1 M MES, 0.15 mM NaCl solution at pH 7.2 to a final volume of 1500 μL and subsequently 10 

�L of SATA (N-Succinimidyl S-Acetylthioacetate) in DMSO was added (15:1 Ab:SATA). The 

mixture was then gently stirred in a thermomixer for 30 min at room temperature, protected from 

light. To deprotect the sulphydryl groups formed, 100 �L of 0.5 M hydroxylamine hydrochloride in 

0.15 mM NaCl adjusted to pH to 7.2 was added and were reacted for 2 hours at room temperature, 

again protected from light. Maleimide activated horse radish peroxidase (Maleimide HRP) was then 

added to the previous mixture to a final concentration of 4:1 (Maleimide HRP:Ab ratio) and 

incubated for  90 min at 37 °C, after which 2-mercapto ethanol was added to a final concentration 

of 0.0015 M to stop the reaction. The final products were purified using a YM100 KDa cut-off 

microcon and were washed with buffer and stored at -20°C. 

 

ELISA evaluation of optimum antibody combination for sandwich assay 

Monoclonal Antibody (mAb) FB11 and T14 (10 �g/mL in carbonate buffer, pH 9.5) were 

prepared separately and added to each well of a NUNC immunosorp microtiter plate and incubated 

for 30 min at 37 °C. Following thorough washing with PBS-Tween 20 (pH 7.4, 0.01 M), the plate 

was then blocked by addition of 200 �L of PBS-Tween 20 (pH 7.4, 0.01 M) and incubated for 1 h at 

37 °C, followed by thorough washing of the plate. In the immunorecognition step, 50 �L each of a 

range of concentrations of F. tularensis LPS antigen in PBS-Tween 20 (pH 7.4, 0.01 M) were added 

to each well coated with mAb FB11 or T14. The plate was again incubated, under shaking 

conditions for 30 min at 37 °C, and subsequently thoroughly washed with PBS-Tween 20, prior to 
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exposure to different concentrations of mAb-HRP conjugates as a secondary labelled antibody, i.e. 

FB11-HRP and T14-HRP, and again left to incubate under shaking conditions for 30 min at 37 °C. 

After a final wash, 50 �L of TMB for ELISA substrate was added to each well and product 

formation allowed to proceed for at least 15 min at room temperature. The reaction was finally 

stopped by addition of 1 M H2SO4, and the absorbance read at 450 nm. Analysis was carried out in 

triplicate. 

 

2.2.3 Cultivation and inactivation of Francisella tularensis bacteria suspension 

Francisella tularensis LVS was cultivated on cysteine heart agar (Becton Dickinson GmbH, 

Heidelberg, Germany) supplemented with 10 % chocolatized sheep blood. Incubation was carried 

out for 3 days at 37 °C in an atmosphere with 5 % CO2. Heat assisted inactivation was carried out 

for 10 min at 95 °C (Thermomixer Compact, Eppendorf AG, Hamburg, Germany). To check 

sterility, the suspension was plated on agar plates and incubated for 7 days and no growth was 

observed. 

 

2.2.4 Electrode modification and electrochemical detection 

Prior to modification of the lithographic gold electrodes, a three-step cleaning protocol 

was applied. Initially, in order to remove the protective resist used during storage, the electrodes 

were sonicated for 5 min in acetone (2 times), 5 min in isopropanol (3 times) and rinsed with water 

and dried with compressed air. In a second step, the electrodes were then further treated with cold 

Piranha’s solution (Warning: Piranha’s solution is highly corrosive and violently reacts with organic materials; this 

solution is potentially explosive and must be used with extreme caution) for 30s and subsequently washed with 

Milli-Q water before use. In the last step, electrochemical cleaning was performed in 0.5 M H2SO4 

by application of a constant potential of 1.6 V for 10s followed by 10 voltammetric cycles in the 
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potential range −0.2 to 1.6 V at a scan rate of 0.3 V/s. Finally, the electrodes were rinsed with Milli-

Q water and dried with nitrogen. 

Modification of the cleaned electrodes was carried out in two ways; 1) formation of a SAM 

of the bipodal alkanethiol DT2 followed by covalent linking of whole anti-F. tularensis antibody and 

2) direct chemisorption of F(ab) fragments. In the DT2 immobilisation, electrodes were immersed in 

an ethanolic solution of 1 �M DT2 for 3 hours, then rinsed with ethanol and dried with argon. To 

activate the carboxylic acids of the DT2, the electrodes were then immersed in a mixture 50% (v/v) 

EDC (0.2M) and 50% (v/v) NHS (0.05M) for 30 min and then rinsed with Milli-Q water. 

Subsequently, 100 �g/mL of monoclonal antibody (mAb) FB11 in PBS (pH 7.4, 0.01 M) was added 

to the electrodes modified with the activated DT2 for 30min and then rinsed with Milli-Q water. 

Finally, any unreacted activated carboxylic acid groups remaining were blocked by immersion of the 

electrodes for 15 min in ethanolamine pH 8.5, followed by a final rinse with Milli-Q water.  

For the immobilisation of F(ab) fragments, the fragments were prepared as previously 

reported (Nassef et al. 2009). SAM formation of the F(ab) fragments into gold electrode was carried 

out by overnight immobilisation of 100 �g/mL F(ab) prepared in PBS (pH 7.4, 0.01 M) solution at 

room temperature. Blocking with 1 mM poly(ethylene)glycol (PEG) was carried out for 30 min, and 

the modified surfaces were incubated in PBS-Tween-20 (pH 7.4, 0.05M) for another 30 min to avoid 

non-specific adsorption.  

The electrodes were then exposed to different concentration of LPS or F. tularensis LVS in 

PBS (pH 7.4, 0.01 M) for a specified period of time (2-20 min) and then incubated for a defined 

period of time (2-20 min) with the corresponding horseradish peroxidase labelled monoclonal 

antibody. Amperometric measurement was carried out at 0.15V vs. Ag/AgCl. All the 

electrochemical measurements were performed at room temperature. The overall immobilization 

process and detection mechanism can be seen in Figure 2.1. 
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Figure 2.1 Schematic representation of a) sandwich with whole antibody linked to bipodal alkyl 
thiol (DT2) and whole antibody-HRP conjugate b) sandwich with direct chemisorption of F(ab) 
fragment and whole antibody-HRP conjugate c) sandwich with direct chemisorption of F(ab) 
fragment and F(ab)-HRP conjugate. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1 ELISA optimisation on assay combination 

Monoclonal antibodies (mAb) FB11 and T14 can both recognise and react with the LPS 

antigen of Francisella tularensis and these antibodies were compared in terms of their performance for 

the detection of the bacteria using ELISA technique. Four different assay constructions combining 

both antibodies at different concentration conditions of the secondary labelled antibody were 

evaluated to find the optimum conditions for the best assay format (Supplementary Information 

Figure 2.S1-2.S3). It was observed that FB11-LPS-T14HRP and T14-LPS-T14HRP assay 

combinations gave best results, achieving limits of detection of 10 and 21 ng/mL, respectively. As 

the FB11-LPS-T14HRP assay format was more sensitive (Supplementary Information Figure 2.S3b), 

this format was used for the construction of the electrochemical immunosensor. 

 

2.3.2 Preparation and characterisation of fragment antibodies 

Whole mAbs (FB11 and T14) were first digested with bromelain to obtain their 

corresponding (Fab)2 fragment following chromatographic purification. The fragmentation of whole 

monoclonal antibodies to (Fab)2 fragment and the subsequent chemical reduction using cysteine to 

F(ab) fragments was successfully achieved. The obtained fragments were characterised using non 
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reducing gel electrophoresis. The gel characterisation showed bands confirming for the successful 

generation of fragments from whole antibody (See Supplementary Information Figure 2.S4 for more 

details). 

Both whole antibodies and antibody fragments modified with horseradish peroxidise 

(HRP) were used as secondary labelled antibodies in combination with immobilised F(ab) fragments 

by modification with maleimide activated horseradish peroxidise (HRP) (Hermanson et al. 2008). 

The conjugates were evaluated using ELISA.  

The F(ab)FB11 fragment was used as a capture antibody and F(ab)T14 fragment modified 

with HRP and T14-HRP served as secondary HRP labelled antibody. The results obtained from the 

ELISA demonstrated that the produced fragments were still active after fragmentation and chemical 

reduction, and, in the case of the labelled antibody, after chemical linkage to HRP (Supplementary 

Information Figure 2.S5). The optimum concentrations were elucidated, achieving limits of 

detection of 6.2 and 5.8 �g /mL, for the labelled F(ab)T14 and labelled whole T14 antibody, 

respectively.  

 

2.3.3 Development of Electrochemical immunosensor 

For development and testing of the immunosensor, a conventional three-electrode cell was 

used, where 3 mm-diameter macro lithographically produced gold electrodes were used as working 

electrodes with a Ag/AgCl reference and Pt counter electrode. The electrochemical immunosensor 

was constructed using the FB11 whole antibody/F(ab) fragments as capture antibody and whole 

T14/F(ab) T14 fragments as secondary labelled antibodies. This sensor was used to detect different 

concentrations of the LPS antigen isolated from F. tularensis as well as for the detection of whole 

(inactivated) bacterial cells of F. tularensis LVS.  
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The immunosensor exploiting a F(ab)FB11 fragment SAM was more sensitive, with >2 

times fold higher signal observed for the detection of whole bacterial cells. This can be attributed to 

a better orientation of the fragment on the surface directly exposing the antigen binding site, 

facilitating more efficient antigen binding, combined with the antibody enzyme label being closer to 

the electrode interface, thus giving a better response (Figure 2.2b). The use of labelled antibody 

fragment as secondary antibody was not observed to be significantly different to that of the use of 

the whole labelled antibody.  
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Immunosensor format 

L.O.D  F. tularensis Sensitivity 
LPS 

(ng/mL) RSD (%) LVS 
(bacteria/mL) RSD (%) LPS 

(nA.mL/ng.cm2) 
LVS 

(nA.mL/bacteria.cm2) 
DT2- FB11 T14-HRP 5.3 9.9 37 9.8 62 4 
F(ab)FB11 T14-HRP 4.5 9.5 31 9.4 83 8 
F(ab)T14 F(ab)-HRP 6.5 9.7 42 9.6 79 6 

 
Figure 2.2 Amperometric responses of the whole antibodies immobilised via chemical cross-linking 
to a bipodal alkyl thiol SAM and SAM formed from the direct chemisorption of antibody fragments 
F(ab) to different LPS and LVS of F. tularensis concentrations. Each data point represents the 
average of three independent measurements. 
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2.3.4 Fluidics and set-up   

Following demonstration of the functionality of the developed immunosensor for the 

detection of both the LPS antigen as well as the inactivated bacterial cells, an electrode array was 

functionalised and housed within microfluidics (Figure 2.3), within a tester set-up consisting of 

several reservoirs for analytes and buffers, silicone tubes, waste tanks, fluidics, and controlled by a 

script-based assay programme. The whole set-up enabled complete automation of the 

immunosensor as well as facilitating the use of smaller quantities of reagents. Electrode 

functionalisation with the optimum surface platform, i.e. F(ab)FB11 fragment was carried out 

outside the microfluidics set-up. Following the modification process, the electrode array was housed 

in the microfluidic set-up (Figure 2.3c) using an adhesive gasket which acts as spacer between the 

polycarbonate microfluidic chip and the glass electrode. This generates a flow cell above the 

electrode area with a width of 4.5 mm, a height of 0.1 mm and a total length of 24 mm, housing 24 

individual working electrodes (which could be separately functionalized, allowing multiplex detection 

and/or the incorporation of controls). The flow cell has an inlet resp. outlet with a diameter of 

1 mm that is connected with a feeding channel with a width of 0.8 mm and a height of 0.3 mm 

leading to tube inlets resp. a waste outlet. The silicone tubes connected to the reservoirs were 

connected to the tube inlets of the microfluidic set-up via Mini-Luer adapters (supplied by 

microfluidic ChipShop GmbH), allowing flowing of different liquid samples as required throughout 

the assay. The four reservoirs available were used to store pre-mixed LVS and T14-HRP labelled 

antibody, PBS, TMB substrate, and Milli-Q water for washing. The flowing of liquids over the 

electrode was carried out automatically using the script based assay programme, which was also used 

to process the data obtained. 
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Figure 2.3. The amperometric immunosensor detection set-up. The set-up contains a peristaltic 
pump positioned behind the reservoirs to flow the solutions into electrode array mounted within the 
microfluidics. (a)  the electrode array with microfluidics placed in the platform and connected to the 
potentiostat for amperometric measurement; (b) a sample script-based assay program; (c) the 
electrode array integrated with microfluidics; (d) a full front view of the tester set-up device; (e) 
lithographically produced gold electrode array with internal reference electrode and counter 
electrode. 
 

An optimisation of the incubation time outside and inside the microfluidic set-up was 

carried out. Interestingly, incubation of the target inside the fluidic cell resulted in an increased 

current response, even though smaller electrodes are used. This is due to the fact that incubation of 

antigen sample inside the fluidic cell is more favourable to the formation of the immunocomplex. 

This can be explained by an easy direction of the antigen towards the binding site of the immobilised 

capture antibody sensing probe which is confined to a very small channel and not the large volume 

used outside the microfluidics in the developmental work. Furthermore, the required incubation 
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time was vastly reduced when the immunosensor was housed within the fluidics (Figure 2.4b), and 

just 2 min incubation was required, as compared to a 10 min incubation outside the fluidics (Figure 

2.4a). The microfluidic set-up also allowed a tight control of temperature during the assay and to this 

end, the effect of temperature on sensor performance was evaluated and no great differences were 

observed at the temperatures studied (Figure 2.4c). 

  

 
Figure 2.4. Step and Sweep (SAS) amperometric response of the F(ab) fragment FB11 
functionalised electrochemical immunosensor a) to 10 ng/mL LPS sample outside the fluidics and 
b) to 10 ng/mL LPS sample inside the fluidics at different incubation times of antigen-LPS, c) to 10 
ng/mL LPS sample inside the fluidics at different incubation temperatures and d) different 
incubation times for the secondary labelled antibody T14HRP. Each data point represents the 
average of nine measurements on three separate electrode arrays. 
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The incubation time was also optimised for the detection of the F. tularensis bacterial cells, 

and similar results were obtained and again 2 min exposure was observed to be adequate. A 15 min 

incubation was required for the labelled secondary antibody (Figure 2.4d), and together with the 

automated washing steps after each incubation as well as automated substrate addition and 

measurement, the duration for performance of the overall assay was 22 min. 

In order to further shorten the length of the assay, the target bacterial cells and the labelled 

secondary antibody were mixed together at different pre-incubation times before exposure to the 

immunosensor. A 15 minute pre-incubation of the bacterial cells and HRP-labelled mAb gave 

equivalent response to that obtained when the antigen and labelled antibody were added sequentially 

with an intermittent washing step. The length of exposure of this pre-mixed solution on the 

electrochemical sensor was 2 min, resulting in a total assay time of ca.18 min, with only one required 

washing step, thus simplifying the fluidic requirements.  

 

Figure 2.5. Step and Sweep (SAS) amperometric responses of the direct F(ab) fragment FB11 
immobilised based electrochemical immunosensor to a fixed concentration (150 bacteria/mL ) of  F. 
tularensis (LVS). (a) at different incubation times of pre-mixed LVS target and  secondary labelled 
antibody T14HRP; (b) sequential addition of LVS (2 min) and T14-HRP (15 min) with intermittent 
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washing step. Each data point represents the average of nine measurements on three separate 
microchip array. 

Finally, using the optimised incubation time and temperature, and pre-mixing the bacterial 

cells and the labelled reporter antibody, different concentrations of whole bacterial cells were 

detected using the developed automated set-up with fragment F(ab)FB11 as capture antibody and 

whole mAb T14-HRP as secondary labelled antibody. The instrumentation used for detection was 

fully automated using script-based programming after insertion of the immunosensor array (1mm 

Ø). The buffer solutions for washing and the sample mixed with T14-HRP were stored in each of 

the reservoirs and the solutions the array was exposed to the different solutions through 

microfluidics via the peristaltic pump. The whole F. tularensis LVS bacteria can be detected up to 1 x 

103 bacteria/mL with a very low limit of detection of 38 bacteria/mL. This detection limit is far 

lower compared to previously reported immunosensors (Anderson et al. 2000; Kleo et al. 2012; 

Skladal et al. 2005) and even with reported ELISA results (Pohanka et al. 2008b). In order to evaluate 

the sensitivity of the immunosensor using the whole set-up, the amperometric response was 

normalised taking into consideration the surface active area of the electrodes used, and a 3 fold 

increase in sensitivity as compared to the signal obtained outside the fluidics was observed (Figure 

2.2b). This highlights the important role microfluidics play in improving the sensitivity of the 

biosensor. The analysis time is approximately 18 min, comprising pre-incubation (15 min), 

automated addition of this pre-mixed solution to the housed electrode array and 2 min incubation, 

washing steps with buffer solution (<30s) before automated substrate addition and electrochemical 

detection. The output signal was measured in less than 1 min.  This short analysis time is 

advantageous in real situations such as bioterrorism events, and is far shorter than the analysis time 

required for ELISA (Vivekananda et al. 2006) or PCR (Sjostedt et al. 1997).  Furthermore, the actual 

operator’s hands-on time is less than a minute and simply requires rapid mixing of the sample 
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containing the target with the labelled antibody in a reaction vessel e.g. Eppendorf tube and addition 

to the appropriate reservoir within the tester set-up. 

To demonstrate the specificity of the immunosensor, control measurements were 

performed by exposing the modified electrode array with three different species (Figure 2.6 inset). It 

was observed that F(ab)FB11 modified electrodes only obtained a specific sensor response when 

exposed to F. tularensis LVS subsp. holarctica bacteria. Other bacterial species, i.e. Yersinia enterocolitica 

subsp. enterocolitica and Yersinia pseudotuberculosis, including F. tularensis subsp. novicida did not give any 

response, highlighting the specificity of the developed immunosensor.   
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Figure 2.6. Calibration curve and sensitivity of the electrochemical based-immunosensor detection 
system for the analysis of inactivated F. tularensis LVS subsp. holarctica bacteria. Step and Sweep (SAS) 
amperometric responses are shown for capture antibody on the chip –F. tularensis antibody FB11 
F(ab) to different bacterial solutions which are flushed into the chip electrodes’ surface via 
microfluidic device. Inset: Specificity of the immunosensor to F. tularensis LVS subsp. holarctica (F.t 
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(H)Bact.), F. tularensis subsp. novicida (F.t (N)Bact.), Yersinia enterocolitica subsp. enterocolitica (YeE 
Bact.), Yersinia pseudotuberculosis (YeP Bact.). Each data point represents the average of three 
independent measurements. 
 

In order to show the true application of the immunosensor as an alarm sensor that would 

be integrated within a temperature controlled, automated microsystem linked, for example, to an 

automated air sampler, the stability of the immobilised F(ab) fragments on the gold electrode array 

was evaluated over a 45-day period. Electrode arrays were stored at at 4 °C. As can be seen in Figure 

2.7, the electrodes modified with the Fab fragments showed a practically constant amperometric 

response to fixed concentration of 10 ng/mL of LPS target over 30 days, with only a slight loss of 

antigen recognition activity observed after 45 days, indicating the high stability of the immobilized 

Fab fragments.  It can thus easily be envisaged that the sensor arrays could be replaced on a monthly 

basis from an automated sampling site.   

 

 

Figure 2.7. Stability of stored Fab-modified sensors over a 45-day period.  Sensors were stored at 4 
oC and exposed to 10ng/mL LPS every 15 days for 45 days. (n=3, RSD%= 9.6). 
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2.4. CONCLUSIONS 

 

This report details the development of an electrochemical immunosensor for the 

automated detection of F. tularensis  LVS subsp. holarctica based on F(ab) fragments on Au surfaces as 

it gave better sensitivity compared to chemisorbed self-assembled monolayer cross-linked whole 

antibody.  Antibody-enzyme conjugates were prepared in-house using whole antibody as well as 

antibody fragments, and similar results obtained in both cases.  The immunosensor was used for the 

detection of the lipopolysaccharide antigen as well as F. tularensis LVS bacterial cells. The F(ab) 

fragments retained ~85% of antigen recognition ability after 45 days of storage at 4 °C. The 

developed electrochemical immunosensor was then transferred to an automated microfluidic set-up 

housed within a tester set-up and the assay parameters were optimised and the required incubation 

time within the fluidic set-up was reduced from 10 to 2 min for the target and 15 min for the 

labelled secondary antibody. Washing steps were reduced by mixing the bacterial cells sample with 

the labelled antibody and incubated in one of the reservoirs for 15 minutes before being introduced 

to the electrode array for signal read-out. The specificity of the immunosensor has been clearly 

determined and no cross-reactivity has been found. 

This report is the first stage of development of a platform for the multiplexed detection of 

a range of bioterrorism agents (i. e, Bacillus anthracis, Brucella  abortis and melitensis, Bacteriophage lambda, 

Burkholderia mallei and pseudomallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis) and the 

electrode arrays used in this work has been designed to allow incorporation of multiple antibodies 

immobilised on individual electrodes for the simultaneous detection of the listed bioterrorism agents 
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and work is ongoing to achieve this goal. The applicability of the developed system to real situations 

such as an early detection of bioterrorism events is very promising as the obtained LOD was very 

low and the assay time quite short. This facilitates a rapid alarm based detection of F. tularensis when 

linked e.g. to an air-sampling system. Ongoing and future work will focus on attempting to further 

reduce the sampling time, to increase the stability of the Fab functionalised sensors using stabilising 

agents and to apply to the analysis of real samples within specialised regulatory laboratories. 
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Chapter 2: Supplementary information 
 

Automated microfluidically controlled electrochemical biosensor 
for the rapid and highly sensitive detection of Francisella tularensis 

 
Samuel B. Dulay*, Rainer Gransee, Sandra Julich, Herbert Tomaso, and Ciara K. O’Sullivan* 

 
This supporting information material includes: 
 
1. Materials used in Enzyme Linked Immunosorbent Assay (ELISA) characterisation of the 

prepared monoclonal antibody (mAb)-HRP conjugate and for choosing best assay combination 
2. Results and Figures  
3. References 
 
2.1 MATERIALS AND METHODS  
 
Materials 
All the starting materials were obtained from commercial suppliers and used without further 
purification. NUNC-immunoplates (Thermo scientific) were purchased from Nunc A/S, 
Kamstrupvej 90, Denmark. Monoclonal antibodies FB11 and T14 were purchased from Hytest Ltd. 
Company, Finland. Lipopolysaccharide (LPS) from Francisella tularensis subsp. holarctica was 
purchased from MICROMUN Privates Institut fűr Mikrobiologische Forschung GmbH, Germany. 
Phosphate-buffered saline and Phosphate-buffered saline with Tween 20 were purchased from 
Scharlau (Spain). 3,3',5,5'-Tetramethylbenzidine (TMB) liquid substrate system for ELISA was 
purchased from Sigma. Aqueous solutions were prepared with Milli-Q water Millipore (18mΩ.cm) 
and all reagents were used as received. 
 

Methods 

Conjugation synthesis 
Preparation of horseradish peroxidase – labelled monoclonal antibody (mAb), i.e FB11-HRP, T14-
HRP, and fragment FabT14-HRP were prepared according to the procedure of bioconjugate 
techniques by Hermanson (Hermanson 2008).  
 
1. RESULTS AND FIGURES  

 
Figure 2.S1: Scheme planned for ELISA analysis for the characterization of the prepared 
monoclonal antibody (mAb)-HRP conjugate and for choosing best assay combination 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



72 

 

 

Immobilization of Antibody and detection of antigen 

The concentration of the coating used was 10 �g/mL, which is more than enough to 
completely coat the surface of the plate.  The reporter probe concentration was varied (0-10�g/mL) 
to evaluate and determine the optimum condition of each assay for detection of different 
concentrations of antigen LPS (0-20 �g/mL). 

 FB11-LPS-T14HRP

100 101 102 103 104 105
0

1

2

3

4
10 ug/mL T14HRP
2.5 ug/mL T14HRP
0.625 ug/mL T14HRP
0.16 ug/mL T14HRP
0.04 ug/mL T14HRP
0.01 ug/mL T14HRP

(log) [LPS] 0-20 ug/mL

A
bs

or
ba

nc
e

 
  

T14-LPS-T14HRP

100 101 102 103 104 105
0

1

2

3

4
10 ug/mL T14HRP
2.5 ug/mL T14HRP
0.625 ug/mL T14HRP
0.16 ug/mL T14HRP
0.04 ug/mL T14HRP
0.01 ug/mL T14HRP

(log) [LPS] 0-20 ug/mL

A
bs

or
ba

nc
e

 

T14-LPS-FB11HRP

100 101 102 103 104 105
0

1

2

3
10 ug/mL FB11HRP
2.5 ug/mL FB11HRP
0.625 ug/mL FB11HRP
0.16 ug/mL FB11HRP
0.04 ug/mL FB11HRP
0.01 ug/mL FB11HRP

(log) [LPS] 0-20 ug/mL

A
bs

or
ba

nc
e

 
 

a 

c 

b 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



73 

 

 FB11-LPS-FB11HRP

100 101 102 103 104 105
0

1

2

3
10 ug/mL FB11HRP
2.5 ug/mL FB11HRP
0.625 ug/mL FB11HRP
0.16 ug/mL FB11HRP
0.04 ug/mL FB11HRP
0.01 ug/mL FB11HRP

(log)[LPS] 0-20 ug/mL

A
bs

or
ba

nc
e

 
Figure 2.S2: ELISA responses of different assay schemes; a) coating probe-FB11, Reporter probe-
T14-HRP b) coating probe-T14, Reporter probe-T14-HRP c) coating probe-T14, Reporter probe-
FB11-HRP d) coating probe-FB11, Reporter probe-FB11-HRP to different concentrations of LPS 
varying concentrations of the reporter probes; UV-VIS absorbance at 450 nm. Each data point 
represents the average of three independent measurements. 
 
Table 2.S1: Summary of calculated limit of detection (LOD) of each assay arrangement using prism 
software statistical analysis, OR-out of range 
 

Reporter probe 
[AbHRP] 

��g/mL 

Assay arrangement 
T14-LPS-FB11HRP T14-LPS-T14HRP FB11-LPS-T14HRP FB11LPS-FB11HRP 

LOD (ng/mL) 
10 59 21 10 56 
2.5 57 30 8 24 

0.625 107 49 OR 18 
0.16 19 19 OR 42 
0.04 99 OR OR 82 
0.01 OR OR OR OR 

d 
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Fig. 2.S3. ELISA responses of a) different assay scheme combinations (10 �g/mL of mAb FB11 or 
T14 coating) and b) two best assay scheme combinations: (top) coating probe-FB11, secondary 
labelled antibody-T14-HRP (below) coating antibody-T14, secondary labelled antibody-T14-HRP to 
different concentrations of LPS with their corresponding detection limit. Each data point represents 
the average of three independent measurements. 

 

 
Fig. 2.S4. SDS-PAGE analysis (12% gel; nonreducing conditions) of the full length monoclonal 
antibodies FB11 and T14 antibody and their F(ab)2 and Fab fragments: (a) lane 1, molecular weight 
marker; lane 2, full-length monoclonal antibody T14; lane 3, (Fab’)2 fragments T14 (obtained by 
enzymatic bromelain fragmentation); lane 4, cysteine reduction of (Fab’)2 T14 to (Fab) fragments 
T14; lane 5, full-length monoclonal antibody FB11; lane 6, F(ab)2 fragments FB11 (obtained by 
enzymatic bromelain fragmentation); lane 7, cysteine reduction of (Fab’)2 FB11 to (Fab) fragments 
FB11. 
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Figure 2.S4 illustrates the SDS-PAGE (12%) analysis of the full length monoclonal 

antibodies FB11 and T14 and their corresponding (Fab’)2 and (Fab) fragments under non-reducing 
conditions. Lane 4 and 7 of Figure 2.S4 clearly show bands around 30 kDa indicating that a 
significant amount of Fab fragments was generated from both the T14 and FB11 antibodies. Lane 3 
and 6 presents a major band around 75 kDa which can be attributed to the produced (Fab’)2 
fragments for both mAb. As expected in Lane 3 and 6, few bands were observed around 60 and 30 
kDa respectively, indicating that further reduction of (FAb’)2 fragment to (FAb) fragment was 
achieved. 

 
Fig. 2.S5. ELISA result of different concentration of antigen LPS to varied concentration 
of labelled Fab fragment T14-HRP. On the right side, scheme of the immunoassay. Each 
data point represents the average of three independent measurements. 

 

 
Fig. 2.S6. Typical acid CV (0.5M sulfuric acid) of lithographically produced gold electrodes (3mm 
and 1mm Ø) with 10 CV cycles at 0.3 V/s scan rate vs. Ag/AgCl reference electrode. (Hoogvliet et 
al. 2000). 
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Protocol for assay measurement within microfluidics:  

To avoid build up of bubbles within the microfluidics, the speed of the liquid flow was optimised 
and a 70 rotation per minute (rpm) was found to be the optimum speed to avoid bubble formation. 
Turning valves with minileur connections to 4 inlet ports were used with one outlet and one venting 
port, where simple rotational turning of the valve aligns specific inlet-outlet channels that connect 
individual reservoirs with microchannels for introduction of each of the reagents to the microsystem 
and the electrode array.  A syringe pump was used to drive the fluids, and the rotation and syringe 
pump speed, as well as the incubation times are given in Table 2.S2. 

 
 
Table 2.S2. Assay procedure protocol used in the microfluidic set-up for amperometric 
measurements 

Protocol Rotation (turn) Speed (rpm) Waiting (s) 

1. Incubation of pre-mixed LVS 
target and secondary labelled 
antibody (T14-HRP) 

70 70 900 

2. Venting (vacuum sucking) 150 1000 5 

3. Washing with PBS, pH 7.4 200 100 10 

4. Venting (vacuum sucking) 150 1000 5 

5. Amperometric measurement, 
TMB substrate 

50 20 160 

Total assay time 1080 

 

Table 2.S3. Comparison with other techniques showing the detection limit obtained on the 
methods used 

Techniques Limit of detection 

(CFU/mL) 

References 

Fab - EC sensor in microfluidics  38 Current work 

Electrochemical biosensor 100 (Skladal et al. 2005) 

Piezoelectric immunosensor 105 (Pohanka et al. 2007) 

Quartz crystal microbalance with 4x103 (Kleo et al.2012) 
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dissipation monitoring 

Fiber optic biosensor 5x105 (Anderson et al. 2000) 

ELISA 6.9x106 (Pohanka et al. 2008) 
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Chapter 3 

Development of an immunosensor for the detection of 

Francisella tularensis antibodies 

Analytical and Bioanalytical Chemistry, Manuscript accepted 
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ABSTRACT 

Tularemia, also known as rabbit fever, is a highly infectious zoonotic disease caused by a 

non-motile and non-spore-forming Gram-negative coccoid rod bacterium, Francisella tularensis. It 

occurs naturally in lagomorphs (rabbits and hares), but many animals have been reported to be 

susceptible. Transmission to humans is mostly caused by inhalation of aerosolised bacteria, handling 

of infected animals, arthropod stings, and ingestion of contaminated foods and water. At present, 

pathogenic isolation, molecular detection, and serology are the most commonly used methods to 
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confirm the diagnosis of tularemia. In this work, an electrochemical immunosensor for the detection 

of anti-F. tularensis antibodies was developed, consisting of gold-based self-assembled monolayers of 

a carboxylic group terminated bipodal alkanethiol that is covalently linked to lipopolysacharride 

(LPS) that can be found in the outer membrane of the bacteria F. tularensis. The presence of anti-

F. tularensis antibodies was measured using horseradish peroxidase-labelled protein A (HRP-Protein 

A)  from Staphylococcus aureus, and the developed immunosensor gave a stable quantitative response 

to different anti-F. tularensis FB11 antibodies concentrations after 30 min with a limit of detection of 

15 ng/mL, RSD of 9%, n = 3. The developed immunosensor was tested with serum from animals 

infected with tularemia and was compared to the results obtained using ELISA showing an excellent 

degree of correlation. 

 

Keywords:  Electrochemical immunosensors, Francisella tularensis, Self-assembled monolayer (SAM) 

 

3.1. INTRODUCTION 

Tularemia is a highly contagious and infectious zoonotic disease caused by Francisella 

tularensis. This non-motile and non-spore-forming Gram-negative coccoid rod bacterium occurs 

naturally in lagomorphs (rabbits and hares), but many animals have been reported to be infected. 

Transmission to humans is often associated with inhalation of aerosolised bacteria, handling of 

infected animals, arthropod stings, and ingestion of contaminated foods and water [1, 2]. Clinical 

manifestation of the disease in humans can occur in different forms ranging from skin ulcers to 

more severe forms such as life-threatening pneumonia [3] due to its high virulence, transmission and 

mortality [4]. F. tularensis could be used as a potential biological warfare agent or in terrorist attacks 

and has been classified as category A (http://emergency.cdc.gov/agent/agentlist-category.asp). To 

date, identification of F. tularensis has been achieved using cultivation and molecular techniques 
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including polymerase chain reaction (PCR) [5] and real time PCR assays [6-8]. Besides the detection 

of the bacterial cell, the detection of specific antibodies in serum is the most widely used serological 

analysis technique for routine laboratory diagnosis of tularemia [9]. In veterinary medicine, serology 

is used mainly for tularemia surveillance in rodents, hares, or surrogate animals such as boars or 

predators, including wolves or bears[10]. Detection of antibodies against F. tularensis is also useful to 

confirm successful vaccination after immunization with live or subunit vaccines. It is advantageous 

as well to do serology to detect F. tularensis antibodies, which appears 6-10 days after infection[11], 

when tularemia has not yet been diagnosed since bacterial culture is difficult and poses a high risk of 

laboratory infection. Several techniques like Enzyme-linked immunosorbent assays (ELISA) [12, 13], 

Western blot and other immunological assays can be used to detect the status of seroconversion in 

patients. Although these standard techniques are sensitive, they are inherently laboratory based, 

rather time consuming requiring intensive hands-on-time as well as specialised instrumentation. 

Electrochemical biosensors are an interesting alternative for in situ detection due to their 

excellent sensitivity, selectivity, versatility, and simplicity [14, 15]. The development of these 

technologies has garnered a continual interest for application in clinical diagnostics, food quality 

control and environmental monitoring [16] as promising alternatives to traditional methods in 

detecting pathogens [17]. The architecture of most electrochemical sensors attempt to mimic that 

found in standard ELISA where different strategies for immobilisation of the biocomponent on the 

transducer’s surface have been developed. The use of self-assembled monolayers (SAM) has gained 

increased interest due to the possibility of avoiding random orientation of the biocomponents 

(antibody/antigen) on the surface, good surface coverage and the possibility of incorporating 

efficient surface protection moieties to eliminate non-specific binding. 

In this work, we demonstrate the development of an electrochemical immunosensor for 

rapid detection of anti-F. tularensis antibodies and apply it to the analysis of serum taken from an 
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infected red fox (Vulpes vulpes).  The sensor surface chemistry exploits gold-based self-assembled 

monolayers of a carboxylic group terminated bipodal alkanethiol that is covalently linked to 

lipopolysaccharide (LPS) that can be found in the outer membrane of the bacteria F. tularensis. The 

presence of anti-F. tularensis antibodies was measured using HRP-Protein A from Staphylococcus aureus 

as a reporter molecule. 

 

3.2. MATERIALS AND METHODS 

All the starting materials were used without further purification. Monoclonal antibody 

(mAb) FB11 (isotype IgG2a) was purchased from Hytest Ltd., Finland. Lipopolysaccharide (LPS) 

from Francisella tularensis subsp. holarctica, whole cell bacteria of Francisella tularensis LVS subsp. 

holarctica, red fox serum samples, Brucellosis control serum and three human serum samples-IgG 

positive for Yersinia enterocolotica were kindly provided by the Friedrich-Loeffler-Institut, Institut für 

bakterielle Infektionen und Zoonosen, Germany. NUNC-immunoplates (Thermo scientific) were 

purchased from Nunc A/S, Kamstrupvej 90, Denmark. Sulphuric acid, strontium nitrate, 

phosphate-buffered saline (PBS) (dry powder), PBS-Tween-20, hydrogen peroxide 30%, 

ethanolamine, acetone and ethanol (synthetic grade), Phosphate-buffered saline, Phosphate-buffered 

saline with Tween 20, N-(3-dimethylaminopropyl) – N – ethylcarbodiimide (EDC), N-

hydroxysuccinimide (NHS), and acetic acid were purchased from Scharlau (Spain); (22-(3,5-bis((6 

mercaptohexyl)oxy)phenyl)-3,6,9,12,15,18,21- heptaoxadocosanoic acid dithiol PEG-6 carboxylate 

(DT2) was purchased from SensoPath Technologies (USA) and 3,3,5,5-Tetramethylbenzidine 

(TMB) Liquid Substrate System for ELISA was obtained from Sigma. Aqueous solutions were 

prepared with Milli-Q water Millipore (18 MΩ·cm) and all reagents were used as received. 
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3.2.1 Instrumentation 

Electrochemical studies were carried out using an Autolab PGSTAT 10 potentiostat and 

measurements were performed using a conventional three-electrode cell. 3 mm-diameter 

lithographically produced gold electrodes were used as working electrode, a standard silver/sliver 

chloride (sat. KCl) as a reference electrode (CHI 111 CH Instruments) and a platinum gauze as the 

counter electrode. The lithographically produced gold electrodes were provided by Fraunhofer ICT-

IMM (IMM), Germany, and were produced as previously reported [18]. All sonication procedures 

were conducted with an ultrasonic bath (Branson ultrasonic corporation, model 2510E-MT, USA). 

Enzyme-linked immunosorbent assay (ELISA) studies were performed using a microtitre plate 

reader (bioNOVA cientifica, S.L. Madrid, Spain) and a HydroFlex 3-in-1 well washer, TECAN 

(Spain). 

 

3.2.2 Preparation and characterisation of immunoassay format 

Sample collection  

Previous studies demonstrated, that foxes such as wild boars can be used as indicator 

animals for investigation on the circulation of F. tularensis in the environment [10]. Blood samples 

obtained from red foxes were collected in 2011 in Saxony-Anhalt. Blood cells were separated from 

serum by centrifugation. 

 

Cultivation and inactivation of Francisella tularensis bacteria suspension  

F. tularensis LVS subsp. holarctica was cultivated on cysteine heart agar (Becton Dickinson 

GmbH, Heidelberg, Germany) supplemented with 10 % chocolatized sheep blood. Incubation was 

carried out for 3 days at 37 °C in an atmosphere with 5 % CO2. Heat assisted inactivation was 

carried out for 10 min at 95 °C (Thermomixer Compact, Eppendorf AG, Hamburg, Germany). To 
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check sterility, the suspension was plated on agar plates and incubated for 7 days and no growth was 

observed. 

 

ELISA evaluation of optimum capture probe antigen and labelled reporter molecule for sandwich assay  

F. tularensis LPS and inactivated whole bacterial cells of F. tularensis LVS subsp. holarctica of  

0.02 - 100 �g/mL and 47 – 3000 bacterial cells in carbonate buffer, pH 9.5, respectively were 

prepared separately and were added to each well of a NUNC immunosorp microtiter plate and 

incubated for 30 min at 37 °C. Following thorough washing with PBS-Tween 20 (pH 7.4, 0.01 M), 

the plate was then blocked by addition of 200 �L of PBS-Tween 20 (pH 7.4, 0.01 M) and incubated 

for 1 h at 37 °C, followed by thorough washing of the plate. In the immunorecognition step, 50 �L 

each of a range of concentrations of anti-F. tularensis antibody FB11or 50 �L of animal serum 

samples (diluted 1:1 – 1:1500 ) prepared in PBS-Tween 20 (pH 7.4, 0.01 M) were added to each well 

coated with LPS of F. tularensis subsp. holarctica or inactivated whole bacterial cells of F. tularensis LVS 

subsp. holarctica. The plate was again incubated, under shaking conditions for 30 min at 37 °C, and 

subsequently thoroughly washed with PBS-Tween 20, prior to exposure to different concentrations 

of HRP-Protein A (0-2.5 �g/mL) as reporter molecule and again left to incubate under shaking 

conditions for 30 min at 37 °C. After a final wash, 50 �L of TMB for ELISA substrate was added to 

each well and product formation was allowed to proceed for at least 15 min at room temperature. 

The reaction was finally stopped by addition of 1 M H2SO4, and the absorbance read at 450 nm. 

Analysis was carried out in triplicate. 
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3.2.3 Electrode modification and electrochemical detection 

Prior to modification of the lithographic gold electrodes, a two-step cleaning protocol was 

applied. Initially in order to remove the protective resist used during storage, the electrodes were 

sonicated for 5 min in acetone (2 times), 5 min in isopropanol (3 times) and rinsed with water and 

dried with compressed air. In a second step, electrochemical cleaning was performed in 0.5 M 

H2SO4 by application of a constant potential of 1.6 V for 10s followed by 10 voltammetric cycles in 

the potential range −0.2 to 1.6 V at a scan rate of 0.3 V/s. Finally, the electrodes were rinsed with 

Milli-Q water and dried with nitrogen. 

Modification of the cleaned electrodes was carried by formation of a SAM of the bipodal 

alkanethiol DT2 followed by covalent linking of F. tularensis LPS. In the DT2 immobilisation, 

electrodes were immersed in an ethanolic solution of 1 �M DT2 for 3 hours, then rinsed with 

ethanol and dried with argon. To activate the carboxylic acids of the DT2, the electrodes were then 

immersed in a mixture of 50% (v/v) EDC (0.2M) and 50% (v/v) NHS (0.05M) for 30 min and then 

rinsed with Milli-Q water. Subsequently, 100 �g/mL of F. tularensis LPS in PBS (pH 7.4, 0.01 M) was 

added to the electrodes modified with the activated DT2 for 30 min and then rinsed with Milli-Q 

water. Finally, any unreacted activated carboxylic acid groups remaining were blocked by immersion 

of the electrodes for 15 min in ethanolamine pH 8.5, followed by a final rinse with Milli-Q water.  

The electrodes were then exposed to different concentration of anti-F. tularensis antibody 

FB11 in PBS (pH 7.4, 0.01 M) for 15 min and then incubated for another 15 min with HRP-Protein 

A. Subsequently, the electrodes were gently washed with PBS (pH 7.4, 0.01 M) for 30 sec. 

Amperometric measurement was carried out at 0.15 V vs. Ag/AgCl in an electrochemical cell for 

less than 2 minutes upon addition of TMB solution.  All electrochemical measurements were 

performed at room temperature. The overall immobilization process and detection mechanism is 

depicted in Figure 3.1. 
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Fig. 3.1. Schematic of the electrochemical immunosensor architecture. 

 

3.3. RESULTS AND DISCUSSIONS 

3.3.1 ELISA evaluation of optimum capture probe antigen and labelled reporter molecule for 

sandwich assay   

ELISA was developed to optimise the conditions to be used in the electrochemical 

immunosensor, and to this end two different coating antigens were compared to probe which 

provided better levels of sensitivity for the detection of anti-F. tularensis antibodies. The antigens 

compared were LPS that can be found in the outer membrane of F. tularensis subsp. holarctica and 

inactivated whole bacterial cells of F. tularensis subs. holarctica live vaccine strain (LVS). Using 

checkerboard type assays, different concentrations of coating antigens and HRP-Protein A as 

reporter molecule were evaluated to elucidate the optimum conditions for each assay format at a 

fixed concentration of 150 �g/mL mAb FB11 (Supplementary Information Figure 3.S1-3.S2). mAb 

FB11 has been derived from hybridization of Sp2/0 myeloma cells with spleen cells of Balb/c mice 

immunized with F. tularensis (http://www.hytest.fi). As can be seen in Figure 3.2, it was observed 
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that LPS gave a better limit of detection and sensitivity, presumably due to higher density of binding 

sites attributable to the higher number of LPS immobilised as compared to that of the use of whole 

bacterial cells. The optimum concentrations of LPS coating antigen and HRP-Protein A was found 

to be 15 �g/mL and 0.63 �g/mL respectively, with a detection limit of 27 ng/mL, a linear range 

extending from 0.1 to 25 �g/mL. 
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Fig. 3.2. ELISA measurement of calibration curve for anti-F. tularensis LPS antibody FB11 using a) 

15 �g/mL of F. tularensis LPS and b) 280 bacteria cells/mL of F. tularensis subsp. holarctica as coatings 

respectively at 0.63 �g/mL of HRP labelled protein A as reporter molecule. Each data points 

represent the average of six measurements in a plate. 

 

3.3.2 Development of electrochemical immunosensor 

For development and testing of the immunosensor, a conventional three-electrode cell was 

used, where 3 mm-diameter macro lithographic gold electrodes were used as working electrodes 

with a Ag/AgCl reference and Pt counter electrode. The electrochemical immunosensor was 

constructed using the LPS covalently linked to bipodal alkanethiol DT2 as capture probe antigen 

and HRP-Protein A as reporter molecule. This sensor was used to detect different concentrations of 

mAb FB11 as well as the anti-F. tularensis antibody in infected animal serum samples from red foxes 
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(Vulpes vulpes). The signal of the zero concentration value plus three times its standard deviation was 

used to estimate a limit of detection of 15 ng/mL of the anti-F. tularensis antibody FB11 (Fig. 3.3a) 

slightly better than that obtained with ELISA (Figure 3.2a) and significantly comparable to some 

methods reported that have detected the F. tularensis antibodies qualitatively (see Supplementary 

Information Table 3.S1). The linear range obtained with the immunosensor was smaller than that 

obtainable with ELISA, due to the number of capture-molecules immobilised on the electrode 

surface as they have different surface properties where ELISA plate surfaces directly absorbs more 

antigen probes compared to the immobilised antigens in immunosensor that is controlled by the 

number of immobilised DT2 as an anchor for the antigen capture probe. 

Real animal serum samples were tested using the same electrochemical immunosensor. 

Sera did not affect the performance of the electrodes, due to the presence of the polyethylene glycol 

moiety present in the bipodal dithiol, which effectively eliminates non-specific binding of any sample 

matrix components, whilst its' bipodal structure facilitated optimal spacing on the electrode surface 

and consequently, good electron transfer.  

Different real animal serum samples from red foxes (Vulpes vulpes) were evaluated using the 

developed immunosensor and the currents obtained extrapolated to the calibration plot (Fig. 3.3a) 

As the concentration of the antibodies in the animal samples is unknown, a range of dilutions of the 

samples were tested (Figure 3.3b), and a dilution factor of between 1 in 320 and 1 in 1200 used for 

ELISA and immunosensor respectively.  As can be seen in the table in Figure 3.3, the comparison of 

the results obtained using the electrochemical immunosensor showed an excellent degree of 

correlation with the results obtained using ELISA . 
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c)  Fox serum sample 

ELISA Immunosensor 
(D.F. 1:320) (D.F. 1:1200) 

mAb FB11, ng/mL i (nA) mAb FB11, ng/mL 

Fox serum 1 300±26 454±25 287±20 
Fox serum 2 200±18 299±20 165±15 
Fox serum 3 380±27 589±26 394±20 

 

Fig. 3.3. a) Amperometric response of the electrochemical immunosensor to different mAb 

FB11concentrations, b) typical amperometric detection of FB11 antibodies present in animal serum 

samples in red foxes (Vulpes vulpes) in different dilution factor using the developed electrochemical 

sensor and c) summarised table for the calculated concentration of antibodies for ELISA and 

immunosensor method. Each data point represents the average of three measurements in different 

separate sensors.  

 

To demonstrate the specificity of the immunosensor, control measurements were 

performed by exposing the modified electrode array with two different antibodies (Figure 3.4). It 

was observed that LPS modified electrodes only obtained a specific sensor response when exposed 

to anti-F. tularensis antibodies present in animal serum samples in red foxes. Other types of 
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antibodies, i.e antibodies against Brucellosis and anti-Y. enterocolotica antibodies, did not give any 

response, highlighting the specificity of the developed immunosensor. 
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Fig. 3.4. Specificity of the immunosensor to anti-F. tularensis antibodies (anti-F. t) from red fox 

(Vulpes vulpes) sera, Brucellosis antibody, and three samples from human serum IgG-positive for Y. 

enterocolotica (anti-Y.e). Sample preparations: D.F 1:1200. Blank – no antibody target. 

 

3.4 CONCLUSIONS 

This report details the development of an electrochemical immunosensor for the detection 

of anti-F. tularensis  antibodies.  Using ELISA, the use of whole Francisella tularensis cells and the 

liopolysaccharide antigen found on the cell membrane were compared as coating antigens, and the 

latter found to result in much higher sensitivity.  The cross-linking of LPS from F. tularensis to a 

chemisorbed self-assembled monolayer of bipodal alkane thiol was thus used as the biocomponent 

capture layer in the electrochemical immunosenosr. HRP-Protein A from Staphylococcus aureus was 

exploited as a reporter molecule, facilitating the sensitive quantification of anti-F. tularensis 
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antibodies, achieving a lower limit of detection than that obtained using ELISA. The immunosensor 

was applied to real serum samples and an excellent correlation in the results obatined with the more 

laborious and time-consuming ELISA procedure was observed. The specificity of the 

immunosensor has been clearly determined and no cross-reactivity has been found. The developed 

platform is a promising alternative for the rapid, reliable, portable and low cost detection of 

antibodies related to bacterial infections such as tularemia. 

 

ACKNOWLEDGEMENT 

The research leading to these results has received funding from the European Union’s 

Seventh Programme for research, technological development and demonstration under grant 

agreement number FP7/2007-2013-Multisense Chip: “The lab-free CBRN detection device for the 

identification of biological pathogens on nucleic acid and immunological level as lab-on-a-chip 

system applying multisensor technologies”. Blood samples from foxes were kindly provided by Dr. 

Anette Schliephake from the State Office of Consumer Protection in Saxony-Anhalt. 

 

APPENDIX A. SUPPLEMENTARY DATA  

REFERENCES 

1. Magnarelli, L., Levy, S., and Koski, R. (2007) Detection of antibodies to Francisella tularensis in 
cats. Research in vetenerary science 82:22-26. 

2. Kleo, K., Schafer, D., Klar, S., Jacob, D., Grunow, R., and Lisdat, F. (2012) Immunodetection of 
inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation 
monitoring. Analytical Bioanalytical Chemistry 404:843-851. 

3. Sharma, N., Hotta, A., Yamamoto, Y., Fujita, O., Uda, A., Morikawa, S., Yamada, A., and 
Tanabayashi, K. (2013) Detection of Francisella tularensis-specific antibodies in patients with 
tularemia by a novel competitive enzyme-linked immunosorbent assay. Clinical and vaccine 
immunology 20(1):9-16. 

4. Su, J., Yang, J., Zhao, D., Kawula, T. H., Banas, J. A., and Zhang, JR. (2007) Genome-wide 
identification of Francisella tularensis virulence determinants. Infection and immunity 75(6):3089-
3101. 

5. Johansson, A., Ibrahim, A., Göransson, I., Eriksson, U., Gurycova, D., Clarridge, J. E, and 
Sjöstedt, A. (2000) Evaluation of PCR-based methods for discrimination of Francisella species 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



92 
 

and subspecies and development of a specific PCR that distinguishes the two major subspecies 
of Francisella tularensis. Journal of clinical microbiology 38(11):4180-4185. 

6. Bystrom, M., Bocher, S., Magnusson, A., Prag, J., Johansson, A. (2005) Tularemia in Denmark: 
identification of a Francisella tularensis subsp. holarctica strain by real-time PCR and high-
resolution typing by multiple-locus variable-number tandem repeat analysis. Journal of clinical 
microbiology 43(10):5355–5358. 

7. Simşek, H., Taner, M., Karadenizli, A., Ertek, M., and Vahaboğlu, H. (2012) Identification of 
Francisella tularensis by both culture and real-time TaqMan PCR methods from environmental 
water specimens in outbreak areas where tularemia cases were not previously reported. 
European journal of clinical microbiology and infectious diseases 31(9):2353-2357. 

8. Versage JL, S.D., Chu M. C. and Petersen J. M. (2003) Development of a multitarget real-time 
TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. Journal 
of clinical microbiology 41:5492–5499. 

9. Porsch-Ozcürümez, M., Kischel, N., Priebe, H., Splettstösser, W., Finke, E. J. and Grunow, R. 
(2004) Comparison of enzyme-linked immunosorbent assay, Western blotting, 
microagglutination, indirect immunofluorescence assay, and flow cytometry for serological 
diagnosis of tularemia. Clinical and diagnostic laboratory immunology 11(6):1008-1015. 

10. Otto P., Valerie, C., Klimpel D., Diller R., Melzer F., Müller W. and Tomaso H. (2014) 
Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator 
animals for circulation of Francisella tularensis in Germany. Vector borne and zoonotic diseases 
14(1):46-51. 

11. Splettstoesser, W., Guglielmo-Viret, V., Seibold, E. and Thullier, P. (2010) Evaluation of an 
immunochromatographic test for rapid and reliable serodiagnosis of human tularemia and 
detection of Francisella tularensis-specific antibodies in sera from different mammalian species. 
Journal of clinical microbiology 48(5):1629–1634. 

12. Pohanka, M., and Skládal, P. (2008) Electrochemical biosensors – principles and applications. 
Journal of applied biomedicine 6:57-64. 

13. Dahouk, S.A., Nockler, K. N., Tomaso, H., Splettstoesser, W. D., Jungersen, G., Riber, U., 
Petry, T., Hoffmann, D., Scholz, H. C., Hensel, A., and  Neubauer, H. (2005) Seroprevalence of 
brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. 
Journal of veterinary medicine B. Infectious diseases and veterinary public health 52(10):444-
455. 

14. Lazcka, O., Javier Del Campo, F., Xavier Munoz, F. (2007) Pathogen detection: A perspective of 
traditional methods and biosensors. Biosensors and Bioelectronics 22:1205-1217. 

15. Pividori, M.I., Lermo, A., Bonanni, A., Alegret, S., del Valle, M. (2009) Electrochemical 
immunosensor for the diagnosis of celiac disease. Analytical Biochemistry 388:229 - 234. 

16. Warsinke, A., Benkert, A., Scheller, F. W. (2000) Electrochemical immunoassays. Fresenius 
Journal o fAnalytical Chemistry 366(6-7):622-634. 

17. Pohanka, M., Skládal, P., and Kroèa, M. (2007) Biosensors for Biological Warfare Agent 
Detection. Defence Science Journal 57(3):185-193. 

18. Fragoso, A., Latta, D., Laboria, N., von Germar, F., Hansen-Hagge, T. E, Kemmner, W, 
Gartner, C., Klemm, R., Dreseb, K. S., and O’Sullivan, C. K. (2011)Integrated microfluidic 
platform for the electrochemical detection of breast cancer markers in patient serum samples. 
Lab on a Chip 11:625-631. 

 
 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



93 

 

Chapter 3: Supplementary information 
 

Development of an immunosensor for the detection of Francisella 
tularensis antibodies 

 

Samuel B. Dulay*, Sandra Julich, Herbert Tomaso, and Ciara K. O’Sullivan* 
 

This supporting information material includes figures: 
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Figure 3.S1: ELISA evaluation of the immunoassay format for the optimum concentration of a) 
coating label (LPS) at 150 �g/mL of FB11 antibody, b) HRP-Protein A reporter probes at 150 
�g/mL of FB11 antibody, c) 6.25 �g/mL of LPS as coating and 2.5 and 0.63 �g/mL of HRP-
Protein A reporter probes, d) 15 �g/mL of LPS as coating and 2.5 and 0.63 �g/mL of HRP-Protein 
A reporter probes and e) typical quantification of concentration of serum sample from red fox 
(Vulpes vulpes) at different dilution factor at 15 �g/mL of LPS as capture antigen and 0.63 �g/mL of 
HRP-labelled protein A reporter probe. 
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Figure 3.S2: ELISA evaluation of the immunoassay format for the optimum concentration of a) 
coating label (LVS) at 0.63 �g/mL of HRP-Protein A, b) HRP-Protein A reporter probes at 0.63 
�g/mL of HRP-Protein A, and c) re-evaluation of the optimum LVS coating concentrations of 188, 
375, and 750 Bacteria/mL and d) 280 Bacteria/mL of LVS as coating concentration at 0.63 �g/mL 
of HRP-Protein A. 
 
 

Table 3.S1. Comparison with other techniques showing the analytical performance obtained on the 
methods used 

Techniques/Methods 
Total assay time, 

min 

Detection limit 

characteristics 
References 

Microtiter plate-based 
immunofluorescence assays 75 10 ng/mL [1] 

Piezoelectric  

and  

Amperometric immunosensor 

15 

Qualitative 

(real time 
observation after 
immunisation) 

[2] 

 

ELISA 

 

135  

Qualitative 

4.2% (33/774) 
[3] 
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Western blotting 90  3.1% (24/774) 

 

Indirect Fluorescent antibody 
(IFA) 

Microagglutination 

 

60  

 

120 

Qualitative 

24% (22/91) 

 

12% (11/91) 

[4] 

Immunochromatographic test 120 100% (22/22) [5] 
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Abstract 

An early, rapid and definite detection for the presence of biowarfare agents, pathogens, 

viruses and toxins is required in different situations which include civil rescue and security units, 

homeland security, military operations, public transportation securities such as airports, metro and 

railway stations due to its harmful effect to human population. In this work, an electrochemical 

genosensor array that allows simultaneous detection of different biowarfare agents with integrated 

microsystem that provides an easy handling of the technology which combines with microtube 
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fluidics setup has been developed and optimised for the following specific genoassay: Bacillus 

anthracis, Brucella  melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei, Coxiella burnetii, 

Yersinia pestis, and Bacillus thuringiensis var. kurstaki. The chip electrodes arrays were modified via co-

immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and a polyethyleneglycol-

terminated bipodal thiol. PCR products from these relevant biowarfare agents were detected 

reproducibly through a sandwich assay format with the target hybridised between a surface 

immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter 

probe, which provided an enzyme based electrochemical signal. The potential of the designed 

microsystem for multiplexed genosensor detection and cross-reactivity studies over potential 

interfering DNA sequences has demonstrated high selectivity using the developed platform 

producing high-throughput. 

 

Keywrods: Electrochemical DNA biosensor, Biowarfare agent, Multiplex detection, Self-assembled monolayer (SAM) 

 

4.1. Introduction 

Considering the general availability of know-how to culture microorganisms in large 

quantities, there is now a global argument about the possibility of using different pathogens with 

high risk not only limited to public health safety but also in plants and animals for bioterroristic 

attacks. The threat on bioterrorism attacks has attracted attention due to the recent event that has 

struck Syria [1] which killed hundreds men, women, and children aside from the anthrax spore-

containing letter attack [2] that happened in United States which threatened the whole world. There 

are numerous pathogens which include bacteria, viruses, fungi, toxins and among others, are listed 

by various agencies that are potentially dangerous agents[3]. Thus, immediate detection of these 

potential biowarfare agents is required in different situations which include civil rescue and security 
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units, homeland security, military operations, public transportation securities such as airports, metro 

and railway stations due to its harmful effect on the human population [4] as well as to environment. 

Therefore, there is a need to develop analytical screening tools which could be portable, rapid, cost-

effective and simple detection for the responders as well as specialised laboratories. 

To date, plenty of techniques to detect and identify biowarfare agents like cell culture [6], 

molecular techniques including polymerase chain reaction (PCR) [7] as well as recombinase 

polymerase amplification, real time PCR [6, 8, 9], or, alternatively using enzyme-linked 

immunosorbent assay (ELISA) [10] have been developed. Nucleic acid-based detection systems have 

been widely explored and it is more sensitive than antibody-based detection systems[3]. Recent 

advances have taken place for multiple analyte detection using microarrays for pathogenic species 

detection that involves nucleic acid-based detection system [11-13]. Although these standard 

techniques are sensitive, the use of microarrays involves many manual handling steps that rather 

time consuming due to long hybridisation times, requires intensive handling of the infectious agent 

and has no direct combination with an automated biosensor system. 

Multiplexed assays can screen multiple analytes in a single assay which is significantly 

simpler, more rapid and requires less sample and reagent consumption in comparison to multiple 

single target. Several studies have been explored for the multiplex detection of target analytes 

through electrochemical measurement system [14-17]. Electrochemical biosensors are popular for 

their excellent sensitivity, selectivity, versatility, simplicity [18, 19] and are capable of detecting low 

concentrations of target agents without interference from background materials[20]. The 

development of these technologies has garnered a continual interest for application in clinical 

diagnostics[14], food quality control[21] and environmental monitoring [22], as promising 

alternatives to traditional methods in detecting pathogens. 
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Overall, biowarfare agents’ threat has created a rapidly rising demand for new emerging 

sensor technologies to speed up testing. Here we describe an electrochemical sensor array for the 

simultaneous recognition of PCR amplified gene segments of Bacillus anthracis, Brucella  melitensis, 

Bacteriophage lambda, Francisella tularensis, Burkholderia mallei, Coxiella burnetii, Yersinia pestis, and Bacillus 

thuringiensis var. kurstaki. These eight pathogens are among the biowarfare agents of the highest threat 

potential listed[23, 24]. The biosensor array was housed within a microfluidic set-up and the assay 

was automated via the use of a peristaltic pump, with the only required end-user intervention being 

sample addition.  Parameters such as incubation time and temperature were optimised and applied 

to the detection of complementary target for each biothreats agents. 

4.2. Experimental Details 

4.2.1 Materials 

All the starting materials were obtained from commercial suppliers and used without 

further purification. Eight thiolated ssDNA probes designed specifically for eight specific synthetic 

ssDNA complementary target and eight ssDNA as secondary reporter probes were purchased from 

biomers, Germany, ( see Supplementary Information Table 4.S1). Biotynilated PCR products of 

Bacillus anthracis, Brucella  melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei, Coxiella 

burnetii, Yersinia pestis, and Bacillus thuringiensis var. kurstaki were kindly provided by the Friedrich-

Loeffler-Institut, Institut für bakterielle Infektionen und Zoonosen, Germany. Dithiol 16-(3,5-bis((6-

mercaptohexyl)oxy)phenyl)-3,6,9,12,15-pentaoxahexa-decane) (DT1) was purchased from SensoPath 

Technologies (USA), sulfuric acid, potassium dihydrogen phosphate, phosphate-buffered saline 

(PBS) (dry powder), PBS-Tween-20, hydrogen peroxide 30%, acetone and ethanol (synthetic grade), 

0.1 M hydrochloric acid, and acetic acid were purchased from Scharlau (Spain); 

Tris(hydroxymethyl)aminomethane, Sodium Hydroxide, Sodium Chloride and 3,3,5,5-
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Tetramethylbenzidine (TMB) Liquid Substrate System for ELISA was obtained from Sigma. 

Aqueous solutions were prepared with Milli-Q water Millipore (18mΩ.cm) and all reagents were 

used as received. 

 

4.2.2 Instrumentation 

Electrochemical studies were carried out using an Autolab PGSTAT 10 potentiostat with 

measurements performed using an array of 24 gold electrodes (1 mm-diameter) with internal 

reference and counter electrodes. The final format of the biosensor assay has been integrated within 

the microfluidic set-up.  The lithographically produced gold electrodes were provided by Fraunhofer 

ICT-IMM (IMM), Germany, and were produced as previously reported [25].  All sonication 

procedures were conducted with an ultrasonic bath (Branson ultrasonic corporation, model 2510E-

MT, USA). Enzyme-linked oligonucleotide assay (ELONA) studies were performed using 

bioNOVA cientifica, S.L. (Madrid, Spain) and HydroFlex 3-in-1 well washer, TECAN (Spain). 

The microfluidic set-up for incubation of analytes and flushing/washing with built in 

peristaltic pump was provided by IMM, Germany and the polymeric microfluidics were supplied by 

microfluidic ChipShop GmbH, Germany. 

 

4.2.3 Cultivation and inactivation of raw bacterial cells for DNA preparation  

Bacterial cells were cultivated on cysteine heart agar (Becton Dickinson GmbH, 

Heidelberg, Germany) supplemented with 10 % chocolatized sheep blood. Incubation was carried 

out for 3 days at 37 °C in an atmosphere with 5 % CO2. Heat assisted inactivation was carried out 

for 10 min at 95 °C (Thermomixer Compact, Eppendorf AG, Hamburg, Germany). 

To check sterility, the suspension was plated on agar plates and incubated for 7 days and 

no growth was observed. 
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Preparation of DNA from bacteria suspension 

2 mL of each bacteria suspension were centrifuged for 10 min at 13400 rpm (MiniSpin, 

Eppendorf Ag, Hamburg, Germany). The supernatant was removed and the pellet was washed with 

1x PBS (Carl Roth GmbH, Karlsruhe, Germany) and 1x TE (Carl Roth GmbH, Karlsruhe, 

Germany) using centrifugation steps with 11400 rpm and removing the supernatant again. For lysis, 

the pellet was mixed with 10 μl 1x TE 1 ml 1 % SDS (Carl Roth GmbH, Karlsruhe, Germany) and 

12,5 μl RNAse A and incubated in a thermoblock (TMix, Analytik Jena AG, Jena, Germany) for 30 

min at 37 °C followed by addition of 12,5 μl Proteinase K and an additional incubation step for 10 

min at 72 °C. 100 μl 5 M potassium acetate were added, the solution was mixed and incubated on ice 

for 30 min. Centrifugation was again carried out for 10 min at 114000 rpm and the supernatant was 

transferred into a clean reaction vessel. One volume of phenol was added, and centrifugation was 

repeated for 5 min. Again, the upper phase was transferred into a clean reaction vessel and one 

volume of chloroform/isoamylalcohol (24:1) was added, mixed and centrifuged for 5 min. Upper 

phase was separated again and mixed with two volumes of ethanol. Nucleic acid precipitation was 

carried out for 20 min at -20 °C. Final centrifugation was carried out for 10 min and the supernatant 

was removed. Remaining DNA was dried, finally diluted in aqua bidest and stored at -20 °C. 

 

4.2.4 Preparation and characterisation of complementary PCR products 

PCR protocol 

PCR was performed using 1 x MasterMix (Jena Bioscience, Jena, Germany), 1 μM primers 

(TIB MOLBIOL Syntheselabor GmbH, Berlin, Germany), 0.2 % BSA (Hersteller, Ort, Land), 10 μl 

DNA were added including 450 GE/μl. Reverse primers were applied with 5´-biotin-labelling 

including a 15 atomar spacer TEG. An overview about the applied templates and primer sequences 

is given in Supplementary Information Table 4.S2. Previously to amplification, an initial 
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denaturation step with 95 °C for 10 min was carried out. PCR was performed with 41 cycles of 15 s 

at 95 °C and 60 s 60 °C for most of the targets using a Mastercycler nexus thermocycler (Eppendorf 

AG, Hamburg, Germany). For amplification of the bcsp31 target from Brucella melitensis the 

temperature for annealing and elongation was set to 57 °C and for amplification of the fliC target 

from Burkholderia mallei a three step protocol was applied consisting of 15 s 95 °C, 30 s 50 °C and 15 

s 72 °C. Amplicons were verified via electrophoresis using 2 % agarose Gel in 1x TBE for 60 min at 

200 V. 

 

Preparation of ssDNA PCR product 

Capture of the biotinylated PCR product (biotinylated forward primer) using the 

SiMAGstreptavidin-coated magnetic beads by chemicellTM was carried out according to the 

manufacturer’s instructions. Firstly, 150 �L of magnetic beads was washed to remove any 

preservatives by 3 consecutive washings with 1X B&W buffer (5 mM Tris-HCl pH 7.5, 0.5 mM 

EDTA and 2 M NaCl). Between each washing step, Eppendorf tubes containing the solution with 

the magnetic beads were placed in contact with a magnet for 2 min and the supernatant was 

removed by aspiration with a micro-pipette. The isolated magnetic beads were subsequently re-

suspended with 100 μl of biotinylated PCR product and the same volume of 2X B&W buffer and 

incubated for 30 min at room temperature with gentle rotation. Following immobilisation of the 

biotinylated PCR product on the streptavidin magnetic beads, the Eppendorf tubes were again 

placed in contact with a magnet for 3 mins in order to discard the supernatant and the isolated beads 

were washed three times with 1X B&W buffer. Separation of ssDNA was performed by alkaline 

denaturation[26]. This procedure has been done to eight biotinylated PCR products separately. The 

single-stranded DNA amplicons generated were characterised using gel electrophoresis. 
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Preparation of ssDNA labelled with horseradish peroxidase as reporter probe 

Eight different designed thiolated reporter probes were purified prior to conjugation 

experiment to eliminate any preservatives present that would affect the efficiency of conjugation. 

The purified thiolated reporter probes were added separately to Maleimide activated horseradish 

peroxidase (Maleimide HRP) to form a final concentration of 24:1 (Maleimide HRP:DNA ratio) and 

incubated for  90 min at 37 °C, after which 2-mercapto ethanol was added to a final concentration 

of 0.0015 M to stop the reaction. The final products were purified using a YM10 KDa cut-off 

microcon and were washed with buffer and were stored at -20°C at 50% glycerol.  

 

Enzyme linked oligonucleotide assay (ELONA) evaluation on cross-reactivity and specificity of designed probes 

Eight (8) different designed thiolated capture probes (1 �M in carbonate buffer) were 

prepared separately and were added to each well of a NUNC maleimide plate and incubated for 30 

min at 37 °C. Following thorough washing with PBS-Tween 20 (pH 7.4, 0.01 M), the plate was then 

blocked by addition of 200 �L of 1mM mercaptohexanol (MCH) in PBS-Tween 20 (pH 7.4, 0.01 M) 

and incubated for 1 h at 37 °C, followed by thorough washing of the plate. Genorecognition step 

was carried in three ways: 1) individual assay detection, 2) mixed complementary target where 50 �L 

each at 5nM of each synthetic complementary target and 3) mixed HRP-labelled ssDNA reporter 

probe that has been prepared in PBS-Tween 20 (pH 7.4, 0.01 M) were added to each well coated 

with capture probes. The plate was again incubated, under shaking conditions for 30 min at 37 °C, 

and subsequently thoroughly washed with PBS-Tween 20, prior to exposure to 50 nM of DNA-

HRP conjugates as a secondary labelled ssDNA in individual assay detection and mixed reporter 

probes and again left to incubate under shaking conditions for 30 min at 37 °C. After a final wash, 

50 �L of TMB for ELISA substrate was added to each well and product formation were allowed to 
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proceed for at least 15 min at room temperature. The reaction was finally stopped by addition of 1 

M H2SO4, and the absorbance read at 450 nm. Analysis was carried out in triplicate. 

 

4.2. 5 Probe immobilisation on electrode array 

Prior to modification of the electrode arrays, a two-step cleaning protocol was applied. 

Initially in order to remove the protective resist used during storage, the arrays were sonicated for 5 

min in acetone, 5 min in iso-propanol (3 times) and rinsed with water. In a second step, 

electrochemical cleaning was performed in 0.5 M H2SO4 by application of a constant potential of 1.6 

V for 10 s followed by 40 voltammetric cycles in the potential range −0.2 to 1.6 V at a scan rate of 

0.3 V.s−1. Finally, the electrodes were rinsed with Milli-Q water and dried with nitrogen. 

Modification of the cleaned electrode arrays was carried out via co-immobilization of the specific 

thiolated probe (1 �M) and DT1 (100 �M) in 1 M KH2PO4 aqueous solution (pH 3.5) by deposition 

of 1 �L of the mixture over the working electrodes for 3 h at room temperature in a humid (>90%) 

environment. Dithiol DT1 was co-immobilized with the thiolated probe in order to eliminate non-

specific binding of the labelled reporter probe, whilst also spacing out and orientating the probe to 

facilitate efficient hybridization of the target. In order to remove the non-attached molecules, the 

electrode arrays were washed in a stirring solution of 0.1 M PBS–Tween for 20 min, rinsed with 

water and dried with nitrogen. 

 

4.2.6 Electrochemical DNA detection 

DNA detection of both synthetic oligonucleotides and PCR product from bacterial cell 

samples were performed in a sandwich hybridization format. In the developmental work, 

construction of a typical calibration curve of the genosensor as a model system has been done using 

the synthetic complementary target. A typical target of various concentrations of F. tularensis ranging 
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from 0 to 10 nM (in triplicate) in 0.1 M hybridisation buffer (0.1 M Trizma buffer in 0.15 M NaCl, 

pH 7.4)  were deposited on the oligonucleotide modified gold electrodes and incubated for 20 min 

at room temperature. The sensors were subsequently washed for 15 min, under stirring conditions, 

in 0.1 M PBS–Tween and then dried with nitrogen. A second hybridisation was performed by 

spotting 0.5 �L of 10 nM labelled reporter in hybridisation buffer and incubating for another 20 min 

at room temperature with both hybridisations carried out in a humid environment. The hybridized 

microarray was subsequently washed with 0.1 M PBS–Tween for 15 min and dried in nitrogen. For 

real sample analysis, the modified electrodes were then exposed to known  concentration of the 

ssDNA generated from PCR product quantified using NanodropTM, in hybridisation buffer, and 

incubated for (2-20 min) and then incubated for a defined period of time (2-20 min) with the 

corresponding horseradish peroxidase labelled secondary ssDNA. 

The detection process was carried out in the microfluidic channels in the presence of TMB 

substrate where the HRP-catalysed reduction of TMB [27, 28] and was detected by steps and sweeps 

technique by applying two consecutive potential steps of 0 V for 1 ms and −0.2 V for 0.5 s. All the 

electrochemical measurements were performed at room temperature. The overall immobilization 

process and detection mechanism can be seen in figure 4.1. 
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Figure 4.1 Schematic representation on the immobilization of thiolated ssDNA and its hybridization 

process to complete the sandwich assay format illustrating how the electroactive species detected 

into electrode surface. 

 

4.3. Results and Discussion 

4.3.1 Characterisation of complementary PCR products 

The extracted DNA’s from bacterial cells were amplified by Friedrich-Loeffler-Institut, 

Institut für bakterielle Infektionen und Zoonosen, Germany. The generated dsDNA PCR products 

of the eight species were characterised through gel electrophoresis as shown in figure 4.2 confirming 

the number of bases in each amplicons (see Supplementary Information Table 4.S2) and the 

separation of ssDNA by alkaline denaturation. The obtained ssDNA were quantified using 

NanodropTM instrument. 
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Figure 4.2. Gel characterisation of dsDNA and ssDNA PCR products produced. 1. Bacillus anthracis 

(BA), 2. Brucella  melitensis (Bram), 3. Bacteriophage lambda (BL), 4. Francisella tularensis (FrT), 5. Burkholderia mallei 

(Brum), 6. Coxiella burnetii (CB), 7. Yersinia pestis(YeP) and 8. Bacillus thuringiensis var. kurstaki(BaT). 

 

4.3.2 Evaluation of in-house prepared ssDNA labelled with horseradish peroxidase (HRP) 

as reporter probe and surface chemistry optimisation 

The conjugation of Maleimide HRP to the thiolated reporter probe has been thoroughly 

optimised in terms of incubation time for conjugation and the ratio concentration of each molecule 

to achieve an optimum ratio in order to obtain a good signal response when used for sandwich assay 

analysis. The concentration of the conjugates were determined by using Quant-iT™ OliGreen® 

ssDNA reagent which has an ultra-sensitive fluorescent nucleic acid stain for quantitating 

oligonucleotides and single-stranded DNA (ssDNA) in solution and through the standard 

calibration curve for each reporter probe obtained in UV-VIS spectrofluorometer. It has been 

observed that 3 hr incubation and a ratio of 24:1 (DNA:HRP) gave the best condition for the 

conjugation (see Supplementary Information Figure 4.S1-4.S2). It can also be clearly observed that 

the prepared conjugates gave similar performance when used in electrochemical measurement as 

shown in figure 4.3. Furthermore, the use of bipodal dithiol (DT1) as a backfiller has proven to be 
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effective in eliminating non-specific adsorption due to the presence of the polyethylene glycol 

moiety, which effectively eliminates non-specific binding of any sample matrix components, whilst 

its' bipodal structure facilitated optimal spacing on the electrode surface and consequently, good 

electron transfer when compared to conventional sequential backfilling with short single alkyl thiol 

(MCH). 
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Figure 4.3. Optimum condition for assay development using commercial conjugates and the 

prepared in-house made conjugates. Each data point represents the average of three measurements 

on three separate electrode sensors. 

 

4.3.3 Enzyme linked oligonucleotide assay (ELONA) evaluation on cross-reactivity and 

specificity of designed probes 

The designed probes for the detection of eight different species were evaluated through 

ELONA techniques to ensure the specificity of each probe towards their respective complementary 

target.  Figure 4 clearly shows that there is no apparent cross-reactivity reaction between designed 
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probes when mixtures of complementary target and reporter probes were introduced to microarrays 

as compared to its baseline individual assay measurement. 
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Figure 4.4. ELONA cross-reactivity and specificity characterisation of designed capture thiolated 

DNA probes and DNA-HRP labelled reporter probes hybridised with produced PCR products 

from bacterial cells. Concentrations: capture probe-200nM, target-10nM synthetic target, reporter 

probe-20nM. 

 

4.3.4 Fluidics and set-up 

After ELONA characterisation of the designed probe, electrochemical detection of PCR 

products from real samples were done using an electrode array that has been functionalised with 

thiolated capture probes and housed within a microfluidic set-up developed together with IMM 

(Figure 4.5). The device consists of several reservoirs for analytes and buffers, silicone tubes, waste 

tanks, fluidics, and script-based assay programmer. The whole set-up enabled complete automation 
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of the immunosensor as well as allowing for the use of smaller quantities of reagents. Electrode 

functionalisation with the optimum surface platform, i.e. co-immobilised thiolated ssDNA and 

bipodal dithiol (DT1), was carried out outside the microfluidics set-up (figure 4.3).  

Following the modification process, the electrode array was housed in the microfluidic set-

up (Figure 4.5c) using an adhesive gasket which acts as spacer between the polycarbonate 

microfluidic chip and the glass electrode. This generates an actual flow cell above the electrode area 

with a width of 4.5 mm, a height of 0.1 mm and a total length of 24 mm, housing 24 individual 

working electrodes (which could be separately functionalized, allowing multiplex detection or the 

incorporation of controls). The flow cell has an inlet resp. outlet with a diameter of 1 mm that is 

connected with a feeding channel with a width of 0.8 mm and a height of 0.3 mm leading to tube 

inlets resp. a waste outlet. The silicone tubes connected to the reservoirs containing all reagents 

required were connected to the tube inlets of the microfluidic set-up via Mini-Luer adapters 

(supplied by microfluidic ChipShop GmbH), allowing flowing of different liquid samples as required 

throughout the assay. The four reservoirs available were used to store mixed/unmixed 

complementary PCR products target in hybridisation buffer solution, mixed/unmixed labelled 

reporter probes in hybridisation solution, TMB substrate, and PBS (pH 7.4) solution for washing. 

The flowing of liquids over the electrode was carried out automatically using an assay programmer 

directly, which was also used to process the data obtained (see Supplementary Information Table 

4.S3 for a detailed protocol for assay measurement within microfluidics). 
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Figure 4.5. The amperometric immunosensor detection set-up. The set-up contains a peristaltic 

pump positioned behind the reservoirs to flow the solutions into electrode array mounted within the 

microfluidics. (a)  the electrode array with microfluidics placed in the platform and connected to the 

potentiostat for amperometric measurement; (b) a sample script-based assay program; (c) the 

electrode array integrated with microfluidics; (d) a full front view of the tester set-up device; (e) 

lithographically produced gold electrode array with internal reference electrode and counter 

electrode. 

 

Construction of a typical linear calibration curve for the DNA biosensor and optimisation 

of the incubation temperature inside the microfluidics set-up was carried out as shown in figure 4.6. 

The typical limit of detection of the DNA biosensor was 0.35 nM and an increased signal 
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measurement was better when hybridisation for both complementary target and reporter probes is 

done at 37 °C. Moreover, stability of the modified electrodes was done. The prepared electrodes 

were assessed after a month and no significant decrease in amperometric response (<7%)  observed. 

This further indicates that the immobilised probes do not lose their recognition ability upon storage 

in PBS, pH 7.4, at 4 °C. 
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Figure 4.6. a) Typical dynamic linear range in the calibration curve obtained for the developed 

genosensor, b) optimum incubation time of the developed DNA biosensor. Each data point 

represents the average of three measurements on three separate electrode sensors and c) stability of 

the immobilised probes into the electrodes. 
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Finally, using the optimised surface chemistry condition and incubation time, detection of 

known concentration of PCR products from different pathogenic species were done. The individual 

complementary target detection has been done first with respect to their corresponding reporter 

probes (Figure 4.7a). To demonstrate the specificity of DNA biosensor with respect to the designed 

probes, i.e. capture probes and reporter probes, the electrode array modified with eight different 

capture probes was exposed with a single PCR product (ssDNA). It was observed that the ssDNA 

PCR product reacts only to the electrode modified with its specific capture probe and did not give 

any sensor response to the rest of electrodes modified with other seven thiolated probes as shown in 

figure 4.7b, highlighting the specificity of each designed probes. Multiplex detection of eight PCR 

products were done by simply mixing the ssDNA PCR products and introducing them to the 

modified electrode array and incubated for 30 min at 37 °C and subsequent addition of mixtures of 

reporter probes (20 nM each) were done following with in between washing steps. Interestingly, the 

results obtained for the multiplex detection were of similar range of sensor response as obtained in 

figure 4.7a showing reproducible responses. 
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Figure 4.7. Electrochemical based measurement of a) typical single probe co-immobilised with DT1 

1:100 (mol/mol)  individual assay detection of ssDNA PCR product and b) typical single probe co-

immobilised with DT1 1:100 (mol/mol)  with only one fixed concentration (5 nM) of 

complementary target PCR product from real sample specific to one surface thiolated DNA capture 

probe and label probe. Each data point represents the average of three measurements on three 

separate electrode array sensors. 

 

 

4.4 CONCLUSIONS 

This report details the development of DNA biosensor for the automated simultaneous 

detection of a range of biowarfare agents (Bacillus anthracis, Brucella melitensis, Francisella tularensis, 

Bacteriophage lambda, Burkholderia mallei, Coxiella burnetii, Yersinia pestis and Bacillus thuringiensis var. 

kurstaki). Oligonucleotide-enzyme conjugates were prepared in-house using thiolated ssDNA and 
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covalently linked to Maleimide activated HRP and similar results were obtained when compared to 

commercially obtained conjugates. PCR product samples did not affect the performance of the 

electrodes due to the presence of the co-immobilised DT1 backfiller which contains polyethylene 

glycol moiety and due to its hydrophilicity effectively eliminates non-specific binding of any sample 

matrix components, whilst its structure facilitated good electron transfer giving a good level of 

sensitivity and detection limit. The developed electrochemical multiplex DNA biosensor was then 

transferred to an automated microfluidic set-up housed within a tester set-up and the assay 

parameters were optimised. The specificity of the genosensor has been clearly determined and no 

cross-reactivity has been found. 

This is the first stage of further development of a platform for the multiplexed detection 

of a more range of bioterrorism agents. The applicability of the developed system to real situations 

such as an early detection of bioterrorism events is very promising as the obtained LOD was very 

low and the assay time quite short when compared to conventional system ELONA. This facilitates 

a rapid alarm based detection of different biowarfare agents when linked e.g. to an air-sampling 

system. Ongoing and future work will focus on attempting the use of a common reporter probes 

that would not only decrease the cost for the use of different designed reporter probes but this 

would also eliminates the complex procedure of mixing all together the reporter probes for labelling 

the complementary targets, further reduce the incubation and sampling time, to increase the stability 

of the thiolated ssDNA functionalised sensors using stabilising agents. 
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MATERIALS AND METHODS 
 

DNA Sequences 
 
Table 4.S1: ssDNA sequences 

Specie Capture probe, (5’-
3’) 

Complementary target,  
(5’-3’) 

Reporter probe, (5’-
3’) 

Francisella 
tulrensis spp. 
Holarctica 

CTTAGTAATTGGG

AAGCTTGTATCAT
GGCACTTAGAA 

AAGGAAGTGTAAGATTACAATGGCAGGCTCCA
GAAGGTTCTAAGTGCCATGATACAAGCTTCCC
AATTACTAAGTATGCTGAGAAGAACGATAAAA
CTTGGGCAACTGTAACAGTT 

TCTGGAGCCTGCCATT
GTAAT 

Bacillus 
thuringiensis 
berliner var. 
Kurstaki 

AGCGGAAACGTGA
ATTCTGG 

AGGGCATCAAATAATGGCTTCTCCTGTCGGTTTT
TCGGGGCCAGAATTCACGTTTCCGCTATATGG
AACCATGGGAAATGCAGCTCCACAACAACGTAT
TGTTGCTCAACTAGGTC 

GAAAAACCGACAGG
AGAAGCCAT 

Yersinia pestis ACTGGCCTGCAAG

TCCAATATATGGC
AT 

CCCGAAAGGAGTGCGGGTAATAGGTTATAACC
AGCGCTTTTCTATGCCATATATTGGACTTGCAG
GCCAGTATCGCATTAATGATTTTGAGTTAAATG
CATTATTTAAATTCAGCGACTGGGTTCGGGCAC
ATGATAATGATGAGCACTATATGAGAGATCTTA
CTTTCCGTGAGAAGACATCCGGCTCACGTTATT
ATGGTACCGTAATTAACGCTGGATATTATGTCA
CACCTAATGCCAAAGTCTTTGCGGAATTTACAT
ACAGTAAATATGATGAGGGCAAAGGAGGTACT
C 

AAGCGCTGGTTATAA
CCTATTAC 

Bacteriophage 
Lambda 

TTATAAATCTGCT

CTTTCGCGGT 

CCCCATTAAAGGGGCATCCGTCTACGGAAAGC
CGGTGGCCAGCATGCCACGTAAGCGAAACAAA
AACGGGGTTTACCTTACCGAAATCGGTACGGA
TACCGCGAAAGAGCAGATTTATAACCGCTTCAC
ACTGACGCCGGAAGGGGATGAACCGCTTCCCG
GTGCCGTTCACTTCCCGAATAACCCGGATATTT
TTGATCTGACCGAAGCGCAGCAGCTGACTGCT
GAAGAGCAGGTCGAAAAATGGGTGGATGGCA
GGAAAAAAATACTGTGGGACAGCAAAAAGCGA
CGCAATGAGGCACTCGACTGCTTCGTTTATGCG

TGTTTCGCTTACGTGG
CAT 
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CTGGCGGCGCTGCGCATCAGTATTTCCCGCTG
GC 

Coxiella 
burnetii 

AACGTCCGATACC
AATGGTTCGCT 

GCTCAGTATGTATCCACCGTAGCCAGTCTTAAG
GTGGGCTGCGTGGTGATGGAAGCGTGTGGAGG
AGCGAACCATTGGTATCGGACGTTTATGGGGA
TGGGTATCCCAACGCAGTTGATCAGTCCGCAG
CACGTCAAACCGTATGTCAAAAGTAACAAGAAT
GATCGTAACGATGCGCAGGCGATAGCTGAAGC
GGCTTCCCGCGCCTCGATGCGGTTTGTGCAGG
GTAAAACGGTGGAACAACAAGACGTTCAAGCG
CTGTTAAAGATACGCGATCGTTTAGTCAAAAGC
CGCACGGCGCTGATCAATGAGATTCGGGGGTT
GTTGCAAGAATACGGACTCACGATGGCGCGTG
G 

CACGCAGCCCACCTT
AAGAC 

Bacillus 
anthracis 

ATTTGCGGTAACA
CTTCACTCCAGTT

CGAG 

CAATTAAGATTAGATACGGATCAAGTATATGG
GAATATAGCAACATACAATTTTGAAAATGGAA
GAGTGAGGGTGGATACAGGCTCGAACTGGAG
TGAAGTGTTACCGCAAATTCAAGAAACAACTG
CACGTATCATTTTTAATGGAAAAGATTTAAATC
TGGTAGAAAGGCGGATAGCGGCGGTTAATCCT
AGTGATCCATTAGAAACGACTAAACCGGATAT
GACATTAAAAGA 

TTGCTATATTCCCATA
TACTTGATCCG 

Burkholderia 
mallei 

GCCGTCGACGACA
GCGCCTGGTT 

TGTCGGACGGCAAGGGCGGCTTCACGTTCACC
GATCAGAACAACCAGGCGCTGTCGTCGACGGC

CGTGACCGCCGTGTTCGGCTCGTCGACCGCCG
GCACGGGCACGGCGGCCTCGCCGTCGTTCCAG
ACGCTGGCGCTGTCGACTTCGGCAACCAGCGC
GCTGTCCGCGACGGACCAGGCGAACGCCACGG
CGATGGTTGCGCAGATCAACGCGGTCAACAAG
CCGCAAACGGTCTCGAACCTCGACATCAGCACG
CAGACGGGCGCGTACCAGGCGATGGTATCGAT
CGACAAC 

TGAACGTGAAGCCGC
CCTT 

Brucella 
melitensis 

AAATCTTCCACCT
TGCCCTTGCCATC

A 

GTCTCGTCGCGACGGCCGTTTCGTCGAATGGCT
CGGTTGCCAATATCAATGCGATCAAGTCGGGC
GCTCTGGAGTCCGGCTTTACGCAGTCAGACGT
TGCCTATTGGGCCTATAACGGCACCGGCCTTTA
TGATGGCAAGGGCAAGGTGGAAGATTTGCGCC
TTCTGGCGACGCTTTACCCGGAAACGATCCATA
TCGTTGCGCGTAAGGATGCAAACATCAAATCG
GTCGCAGAC 

GCATTGATATTGGCA
ACCGAGC 

 

Table 4.S2: Overview about applied bacteria strains and PCR assays 

Specie Target Primers (5´-3´) forward, reverse Amplicon 
size 

Reference 

Francisella 
tulrensis spp. 
Holarctica 

Tul4 ATTACAATGGCAGGCTCCAGA 
 
TGCCCAAGTTTTATCGTTCTTCT 

101 bp Versage et al 
2003[1] 

Bacillus 
thuringiensis 
berliner var. 
Kurstaki 

cryT ATGGCTTCTCCTGTAGGGTTTTC 
 
GCTGCATTTCCCATGGTTCCA 

71 bp Matero et al. 
2011[2] 

Yersinia pestis pla GTAATAGGTTATAACCAGCGCTT 
 
AGACTTTGGCATTAGGTGTG 
 

232 bp Riehm et al. 
2011[3] 

Bacteriophage 
Lambda 

gp17 ATGCCACGTAAGCGAAACA 
 
GCATAAACGAAGCAGTCGAGT 

278 bp Riehm et al. 
2011[3] 
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Coxiella burnetii IS1111 GTCTTAAGGTGGGCTGCGTG 
 
CCCCGAATCTCATTGATCAGC 

295 bp Klee et al. 
2006[4] 

Bacillus anthracis pag CGGATCAAGTATATGGGAATATAGCAA 
 
CCGGTTTAGTCGTTTCTAATGGAT 

204 bp Ellerbrok et 
al. 2002[5] 

Burkholderia 
mallei 

fliC AAGGGCGGCTTCACGTTCA 
 
GTGCTGATGTCGAGGTTCGAGA 

141 bp Tomaso et al. 
2004[6] 

Brucella melitensis bcsp31 GCTCGGTTGCCAATATCAATGC 
 
GGGTAAAGCGTCGCCAGAAG 

151 bp Probert et al. 
2004[7] 

 
 

FIGURES 

 

 

Figure 4.S1 Calibration curve of known concentration of the thiolated ssDNA used for conjugation. Inset 
graph is a typical absorbance of unknown concentration of inhouse conjugated ssDNA with HRP at different 
dilution factor  

  
 

y = 0.0555x + 0.5736 
R² = 0.9954 

0 

5 

10 

15 

20 

25 

30 

0 100 200 300 400 500 600 

a.
u 

(5
20

 n
m

) 

[ssDNA] 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



123 
 

 
Figure 4.S2 Comparison of DNA-biotin/strep-HRP, commercial DNA-HRP conjugate, and inhouse made 
DNA-HRP conjugate as a label 
 
Size of thiolated DNA: ~6KDa 
Size of StrepHRP: ~40KDa  
Total size of the DNA-HRP conjugates: ~46KDA 
 

Thiolated ssDNA probe (200 nM in PBS, pH 7.4) were prepared and added to each well of 
a maleimide plate and incubated for 120 min. at 37 °C. Following thorough washing with PBS-
Tween 20 (pH 7.4, 0.01M), the plate was then blocked by addition of 200 �L of aqueous 100 �M 
mercaptohexanol (MCH) incubated for 1 h at 37 °C, followed by thorough washing of the plate. In 
the complementary target recognition step, 50 �L of 2.5 nM ssDNA in PBS (pH 7.4, 0.01 M) was 
added in each well coated with thiolated ssDNA. The plate was again incubated, under shaking 
conditions for 30 min at 37 °C, and subsequently thoroughly washed with PBS-Tween 20, prior to 
exposure to 50 nM reporter probe (in-house conjugates and commercially obtained), and again left 
to incubate under shaking conditions for 30 min at 37 °C. After a final wash, 50 �L of TMB for 
ELISA substrate was added to each well and product formation was allowed to proceed for at least 
15 min at room temperature. The reaction was finally stopped by addition of 1 M H2SO4, and the 
absorbance read at 450 nm. Analysis was carried out in triplicate. 
 

Protocol for assay measurement within microfluidics:  

To avoid build up of bubbles within the microfluidics, the speed of the liquid flow was 
optimised and a 70 rotation per minute (rpm) was found to be the optimum speed to avoid bubble 
formation. Turning valves with minileur connections to 4 inlet ports were used with one outlet and 
one venting port, where simple rotational turning of the valve aligns specific inlet-outlet channels 
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that connect individual reservoirs with microchannels for introduction of each of the reagents to the 
microsystem and the electrode array.  A syringe pump was used to drive the fluids, and the rotation 
and syringe pump speed, as well as the incubation times are given in Table 4.S2. 

Table 4.S2. Assay procedure protocol used in the microfluidic set-up for amperometric 
measurements. 

Protocol Rotation (turn) Speed (rpm) Waiting (s) 

1. Incubation of mixed/unmixed 
ssDNA PCR target 

70 70 1800 

2. Venting (vacuum sucking) 150 1000 5 

3. Washing with PBS, pH 7.4 200 100 10 

4. Incubation of mixed/unmixed 
reporter probe 

70 70 1800 

5. Venting (vacuum sucking) 150 1000 5 

6. Washing with PBS, pH 7.4 200 100 10 

7. Amperometric measurement, 
TMB substrate 

50 20 160 

Total assay time 3780 
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Abstract 

Ensuring good coverage of  DNA probes on the transducer’s surface maintaining an 

appropriate spacing and ordering among them to avoid probe cluttering and excessive fouling of  the 

electrode surface to achieve maximal target binding efficiency and detection is a very important 

factor for DNA sensor. Herein we report the use of  lyotropic liquid crystalline (LLC) phases as a 

templating strategy to immobilize thiolated DNA molecule in a gold electrode surface. Thiolated 

single strand DNA (ssDNA) is mixed with the liquid crystal template before immobilization. The 

mixture has then been washed off  and subsequent alkanethiol backfilling is applied before simple 

complementary target and labeled DNA sequences have been incubated in a classical sandwich 

format to record the amperometric detection. The result for the templated immobilization of  
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thiolated DNA molecules gave better performance characteristics compared to non-templated 

system; obtaining a 0.10 nM limit of  detection with very low non-specific adsorption signals. 

 

Keywords: Lyotropic liquid crystals, DNA biosensors, Self-assembled monolayers (SAM) 

 

5.1. Introduction 

In recent years, there has been an intensive research effort in the field of DNA 

electrochemical biosensors seeking designs to provide better analytical characteristics in terms of 

sensitivity, selectivity, reliability, ease of fabrication and use, and lower limits of detection[1]. The 

performance of a DNA biosensor is dependent on the overall efficiency of hybridization between 

surface immobilized nucleic acids and target complementary sequences and it is well established that 

the surface chemistry is a critical factor. Formation of self assembled monolayers (SAM) of short 

DNA probes modified with a thiol moiety on surfaces of electrodes is one of the most 

straightforward approaches to immobilize a DNA molecule on a metal surface but the main fallback 

is the formation of highly packed DNA SAMs that affect the overall efficiency of the biosensor due 

to high DNA probe density. One issue on the highly packed system is the steric or electrostatic 

interactions between probe molecules that prevent target binding. 

Immobilized probe interactions can be reduced by lowering the overall probe density of 

molecule in the surface. On the other hand, lowering the density of probe molecules may inhibit 

detection of target molecules especially for detecting low concentrations. Therefore, it is important 

to consider optimizing the density of probe molecules immobilized on the surface.  

To date, several strategies have been reported to have controlled surface probe density, 

including space controlled SAM using dendrons[2, 3], co-immobilization of DNA probes and 

thiolated backfiller[4], sequential backfilling[5] and nanopatterning strategies to ensure a good 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



128 
 

coverage of DNA whilst maintaining appropriate spacing[6] and order to avoid probe cluttering and 

excessive fouling[7] of the electrode surface to achieve maximal target binding and detection. 

However, mixed monolayers has found to be likely forming island-like features when immobilized in 

the surface[8]. Hence, lowering the density of probe molecules for SAM does not plainly guarantee 

to generate optimal surface for probe binding. An effective method in forming SAM surface of 

probe molecules allows organizing spaces between immobilized molecules. This would not only 

reduce immobilized probe interactions but also facilitates optimal target binding and detection, 

attributes that are useful for applications that demands higher sensitivity for biosensing especially for 

arrayed interfaces. 

A rich polymorphism of nanostructures can be achieved using lyotropic liquid crystals 

(LLC) where different crystalline phases of amphiphiles are formed dependant on the ratio of 

surfactant to solvent[9-11]. LLC’s have long range periodicities and orientational order characteristic 

repeat distances range from 2 to 15 nanometers[9, 12] and have been used as a template to produce 

mesoporous materials such as films of metals[9, 13-17], non-metals [18], and polymers [19, 20].   

In this paper, we exploit the use of LLC’s to act as a template to produce spaces between 

immobilized DNA probes whilst rendering more of the electrode surface available for electron 

transfer as depicted in figure 5.1. A thiolated ssDNA molecule is mixed in different phases of 

surfactant octaethylene glycol monohexadecyl ether (C16EO8) and the hydrophobic and hydrophilic 

domains imposed on the surface of the electrode by the amphiphilic nature of the surfactant 

molecules act as the driving force to achieve a homogenous, and even ordered distribution of probes 

on the surface. 
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Figure 5.1 Schematic representation on the immobilization of thiolated ssDNA in hexagonal phase 

(HI) of C16EO8 and its hybridization process to complete the sandwich assay format illustrating how 

the electroactive species diffuses to be detected into electrode surface. 

 

5.2. Experimental Details 

5.2.1 Materials 

All the starting materials were obtained from commercial suppliers and used without 

further purification. Sulfuric acid, potassium dihydrogen phosphate, phosphate-buffered saline 

(PBS) (dry powder), PBS-Tween-20, hydrogen peroxide 30%, acetone and ethanol (synthetic grade), 

0.1 M hydrochloric acid, and acetic acid were purchased from Scharlau (Spain); Octaethylene glycol 

monohexadecyl ether, Ferrocyanide, Ferricyanide, Strontium nitrate, Hexane, 

Tris(hydroxymethyl)aminomethane, Sodium Hydroxide, Sodium Chloride, 6-mercaptohexanol 

(MCH)  and 3,3,5,5-Tetramethylbenzidine (TMB) Liquid Substrate System for ELISA was obtained 

from Sigma. Aqueous solutions were prepared with Milli-Q water Millipore (18mΩ.cm) and all 

reagents were used as received. 

The following oligonucleotides sequences were purchased from ATDbio, England, U.K: 

Capture probe thiolated ssDNA: 5’ modified with C3thiol 

 5'-CTTAGTAATTGGGAAGCTTGTATCATGGCACTTAGAA-3'  

Complementary target ssDNA: 5’ either modified with or without Cy3 fluorophore 
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5'-ATTACAATGGCAGGCTCCAGAAGGTTCTAAGTGCCATGATACAAGCTT 

CCCAATTACTAAGTATGCTGAGAAGAACGATAAAACTTGGGC A-3' 

Reporter probe labeled with horseradish peroxidase (HRP) was purchased from Biomers, Germany: 

5’ modified with HRP 

5'-TCT GGA GCC TGC CAT TGT AAT-3' 

 

5.2.2 Instrumentation 

Electrochemical studies were carried out using an Autolab PGSTAT 10 potentiostat and 

measurements were performed using a conventional three-electrode cell. 3 mm-diameter 

lithographically produced gold electrodes were used as working electrode, a standard silver/sliver 

chloride (sat. KCl) as a reference electrode (CHI 111 CH Instruments) and a platinum gauze as the 

counter electrode. The lithographically produced gold electrodes were provided by Fraunhofer ICT-

IMM (IMM), Germany, and were produced as previously reported[21].  All sonication procedures 

were conducted with an ultrasonic bath (Branson ultrasonic corporation, model 2510E-MT, USA). 

Atomic force microscopy imaging was done using Nanoscope IIIA. Fluorescence microscopy 

imaging was done using Nikon Instruments Inc. Optical polarizing microscope imaging were done 

using an inverted microscope, Brand-Hund, Germany. 

 

5.2.3 Preparation of lyotropic liquid crystals (LLCs) 

5.2.3.1 Mixture of 5mM of [FeII(CN)6]4-/[FeIII(CN)6]3- couple with 0.1 M Sr(NO3)2 solution in LLCs 

To obtain different phases of the lyotropic liquid crystals, 5mM of [FeII(CN)6]4-

/[FeIII(CN)6]3- couple with 0.1 M Sr(NO3)2 solution has been added to the surfactant at certain ratio 

by weight, i.e. L1 (80:20), H1 (60:40), and Lα (30:70) of Solvent:C16EO8 % by weight. Mixing time of 
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about 5 minutes was required to obtain a homogenous mixture for each phase using a small glass 

rod in an eppendorf vial. 

5.2.3.2 Addition of hexane to HI template 

Different mole fraction of hexane, i.e. 0.15, 0.25 and 0.34, has been added to H1 containing 

5mM of [FeII(CN)6]4-/[FeIII(CN)6]3- couple with 0.1 M Sr(NO3)2 solution. In the preparation of the 

mixtures, different mole fractions of hexane were prepared separately in an eppendorf vial and 

mixed manually to H1 containing the redox couple using a glass rod. Mixing time of about 5 minutes 

was required to obtain a homogenous mixture for each phase. The prepared mixtures were 

immediately used for electrochemical analysis. 

 

5.2.4 Electrode modification and electrochemical detection 

Prior to modification of the lithographic gold electrodes, a three-step cleaning protocol 

was applied. Initially, in order to remove the protective resist used during storage, the electrodes 

were sonicated for 5 min in acetone (2 times), 5 min in isopropanol (3 times) and rinsed with water 

and dried with compressed air. In a second step, the electrodes were then further treated with cold 

Piranha’s solution (Warning: Piranha’s solution is highly corrosive and violently reacts with organic materials; this 

solution is potentially explosive and must be used with extreme caution) for 30s and subsequently washed with 

Milli-Q water before use. In the last step, electrochemical cleaning was performed in 0.5 M H2SO4 

by application of a constant potential of 1.6 V for 10s followed by 10 voltammetric cycles in the 

potential range −0.2 to 1.6 V at a scan rate of 0.3 V/s. Finally, the electrodes were rinsed with Milli-

Q water and dried with nitrogen. 

 

5.2.4.1 Non templated immobilization 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



132 
 

Immobilization of thiolated ssDNA without the presence of a template was done in three 

ways: (i) non-backfilled immobilized thiolated ssDNA, (ii) sequential backfilling after thiolated 

ssDNA immobilization and (iii) co-immobilization of thiolated ssDNA and backfiller. In the 

immobilization of thiolated ssDNA without backfiller, electrodes were exposed to 1 �M of thiolated 

ssDNA in 0.4 M KH2PO4 (pH 3.5) overnight then the modified electrode was washed with MilliQ 

water for 15 minutes under gentle stirring and dried with Nitrogen gas. The electrodes were then 

immersed in 1mM aqueous solution of MCH for 60 minutes as a backfiller to prevent further non-

specific adsorption and to help the immobilized thiolated ssDNA probes to stand still[22] then 

rinsed with Milli-Q water. In the case of co-immobilization method, a ratio of 1:100 thiolated 

ssDNA and MCH respectively in 0.4 M KH2PO4 (pH 3.5) has been prepared and were exposed to 

electrodes for an overnight incubation. The electrode were then washed with MilliQ water under 

gentle stirring condition and dried with Nitrogen gas. All incubation was done in a humidity 

chamber to avoid evaporation of the solution. 

 

 5.2.4.2 Templated immobilization 

1 �M of thiolated ssDNA in 0.4 M KH2PO4 (pH 3.5) was mixed to the surfactant at 

certain ratio by weight to form different phases, i.e. L1 (80:20), H1 (60:40), and Lα (30:70) of Aqueous 

ssDNA:C16EO8 % by weight. In the preparation of the mixtures, each phase of surfactants used was 

prepared separately in an eppendorf vial and mixed manually using a glass rod upon addition of the 

aqueous thiolated DNA probe to the weighed amount of C16EO8. Mixing time of about 5 minutes 

was required to obtain a homogenous mixture for each phase. The prepared mixtures were 

deposited on gold electrode and were incubated overnight. The electrodes were then washed in a 

stirring solution of Milli-Q water for 15 minutes until no more traces of surfactant pastes can be 

observed on the surfaces of the electrodes and then dried with nitrogen. The electrodes were then 
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immersed in 1mM aqueous solution of MCH for 60 minutes as a backfiller then rinsed with Milli-Q 

water.   

 

5.2.4.3 Electrochemical DNA detection 

The modified electrodes, i.e. Non templated and templated immobilization, were then 

incubated for 15 min in different concentrations of ssDNA target and then for another 15 min with 

the corresponding horseradish peroxidase labeled ssDNA both prepared in hybridization buffer (pH 

adjusted to 7.4) at 37 °C. Amperometric measurement was carried out at 0.15 V vs. Ag/AgCl. All 

electrochemical measurements were performed at room temperature.  

 

5.3. Results and Discussion 

5.3.1 Electrochemical surface characterization 

Prior to the immobilization of thiolated ssDNA mixed with the template to the electrode 

surface, evaluation of the mixtures has been done to ensure the type of phase being used. At room 

temperature, the mixtures have a characteristic optical texture of liquid crystalline phase when 

viewed under a polarizing light microscope. In the case of micellar phase, it is isotropic and does not 

have any characteristics under the polarizing microscope (see Supplementary Information Figure 

5.S1).  

 

5.3.1.1 Calculating available active areas and the number of immobilized thiol molecules 

Firstly, the transport of electroactive species through the hydrophilic domains of the 

various liquid crystal phases, revealing the available active area of the electrode was investigated. The 

different phases investigated were micellar (L1), hexagonal (HI), and lamellar (Lα) which were formed 

with 20, 40, and 70% C16EO8 respectively in aqueous 5 mM of [FeII(CN)6]4-/[FeIII(CN)6]3- couple 
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with 0.1 M Sr(NO3)2 solution. Each of the prepared electrodes was immersed in different phases 

prepared and aqueous solution (A, no surfactant added). Cyclic voltammetry was carried out at 

different sweep rates from 0.150 to 0.01 V/s in the potential range of -0.2 to 0.7V. As expected, a 

diffusion controlled mechanism was observed with increasing surfactant concentrations changing 

the lyotropic crystalline phases from L1�HI�Lα and resulting in decreasing available 

electrochemically active area as the surfactant acts an effective insulator (Figure 5.2a).  

After accounting the available active area where thiolated molecules could be immobilized 

for each templates, thiolated ssDNA (1�M) was mixed with each of the crystalline phases and added 

to gold electrode surface. Immobilization of thiolated ssDNA has also been done without the 

presence of surfactant as a control. After overnight immobilization, the electrodes were then 

thoroughly washed with MilliQ-water with gentle stirring until no more traces of surfactant that can 

be seen. Subsequently, the electrodes were exposed to a potential scan between -0.2 and -1 V in 

0.05M KOH to facilitate reductive desorption of any immobilized thiol molecules [23]. The 

calculated probe density for each immobilization method has shown decreasing density when 

templated (Figure 5.2d-table). The values obtained were all in agreement to the reported typical 

surface coverage of probe DNA that can be immobilized in an electrode surface [24] confirming 

further the results obtained in reductive desorption (Figure 5.2c). Further confirmation has been 

done by immobilizing mercaptohexanol (1mM) instead of thiolated ssDNA. The obtained  probe 

density in the absence of any templating was found to be 4.06 x 10-10 moles/cm2 which is in 

agreement with previously reported data [25] (see Supplementary Information Figure 5.S2). The 

results clearly demonstrating that the templating with the different crystalline phases does result in a 

patterning of hydrophobic and hydrophilic domains. It also shows no significant difference in the 

ratio between available active area for each template used and the number of thiolated moles, i.e. 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



135 
 

thiolated ssDNA and MCH, adsorbed using each template considering for the total area of the gold 

electrode giving a good degree of correlation as predicted in equation 1.  

 

Equation 1 

 

The reductive desorption process further accounts how much thiolated probes could be 

immobilized in different immobilization condition. 
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Figure 5.2. a) Typical cyclic voltammograms of 5mM Fe+3/+2 and their b) corresponding oxidation 

peak current in different mixture conditions, c) Cyclic voltammograms for the reductive desorption 

of immobilized thiolated DNA in different immobilization condition from the gold electrodes in 

50mM of KOH at a scan rate of 0.05 V/s and d) summarized calculated available active area for a 

and surface coverage of thiols per area cm2 for c. 

 

5.3.1.2 Expanding the diameter of HI template characterization 

The swelling effect of hexane to HI template further support the results obtained in the 

CV of [FeII(CN)6]4-/[FeIII(CN)6]3 in different phases proving the existence of hydrophilic domains in 

which it can host the electroactive redox domains or thiolated molecules to pass through reaching 

the active surface area of the electrode. Figure 5.3 shows two possible orientation of C16EO8 

cylinders formed in HI phase with respect to their arrangement when in contact in electrode’s 

surface by simply increasing the diameter of the cylinders. Hexane molecules at different mole 

fraction had been added to the HI phase containing [FeII(CN)6]4-/[FeIII(CN)6]3 and CV has been done 

to determine the electrochemically accessible active area(see Supplementary Information Figure 

5.S3).  

The mathematical model revealed the likeness of the cylinder orientation by comparing the 

relative electrochemically accessible surface area for each model systems to the actual experimental 

data. Figure 5.3c suggests that the experimental data values obtained is closer to the predicted values 
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based on the calculated theoretical data (Figure 5.3a) which signifies that the cylinders were oriented 

vertically to the electrodes’ surface rather than horizontally positioned. Calculated and experimental 

values has been summarised in the Supplementary information table 5.S1. 
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Figure 5.3. Schematic model of possible orientation of HI C16EO8 a) vertically and b) horizontally 

positioned to electrode’s surface and obtained graphical representation of relative electrochemically 

accessible surface area of c) vertically and d) horizontally positioned HI C16EO8 in the surface of 

electrode.*Values are based on previous studies [9, 26]. 
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5.3.2 Electrochemical DNA detection  

The assembly of whole assay was then explored in thiolated ssDNA probes immobilized in 

different phases of C16EO8 at fixed concentration of DNA target. The spacing concept of 

immobilized thiolated ssDNA probes through templating with LLC that led to the improved 

response of the biosensor has been confirmed. As can be seen in figure 5.4, the net amperometric 

response has improved after the thiolated ssDNA probes has been immobilized with a template 

especially the HI template and it can be observed that a value of ≥12 hours was enough to reach in 

all cases the maximum response before each sensor starts to saturate. It is apparent as well that even 

at <5 hours there was already an improved amperometric response. The diffusion of the thiolated 

ssDNA probes was still possible through the hydrophilic zones imposed by the LLC’s and the 

electrochemical response has improved. 
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Figure 5.4. Amperometric detection of  complementary target DNA hybridized at 5 nM to the 

immobilized thiolated ssDNA in templated and non templated system at different immobilization 

time. 

 

After confirmation of the improved response, the assembly of whole assay was then 

repeatedly explored varying the concentration of DNA target to form a calibration curve. The best 

signal response was shown by the templated system most especially for the HI template which gave a 

huge increase in sensitivity of 4.5 �A/cm2.nM seven times fold higher compared to non templated 

immobilization of thiolated ssDNA probe and even better to the co-immobilization strategy that has 

been reported to be the optimum condition for thiolated SAM capture probes [4]. The immobilized 

thiolated ssDNA in H1 template also gave the lowest limit of detection (LOD) which is 0.1 nM as 

compared to non templated system (Figure 5.5). 
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Immobilization  

Condition 

LOD  

(nM) 

Sensitivity  

(��A/nM.cm2) 

Hexagonal 0.1 4.5 
Micellar 0.3 3.7 
Co-immobilized 0.4 2.4 
Lamellar 1.3 1.6 
No template (Aqueous) 2.6 0.6 

Figure 5.5. Amperometric responses of  the templated and non templated electrochemical DNA 

biosensor to different complementary target DNA concentrations. Each data point represents the 

average of  three measurements on three separate sensors. 

 

5.3.3 Imaging characterization 

Thiolated DNA were immobilized overnight to ensure enough DNA’s will be 

chemisorbed in Au surface in four different conditions to evaluate hybridization efficiency when 

exposed to the complementary ssDNA target modified with Cy3 fluorophore. Figure 5.6 shows the 

differences in the intensity of fluoresced light emitted by the target ssDNA with Cy3 fluorophore 

hybridized with its complementary thiolated capture. Co-immobilized thiolated ssDNA and MCH 

backfiller has shown the highest intensity in terms of integrated density of fluoresced light emitted. 

The integrated density of unhybridized surface as a control has been subtracted to the integrated 

density of the hybridized surface area to estimate the total number of immobilized molecules that 

has been hybridized in each condition. The non-templated immobilized thiolated ssDNA (figure 5.6 

a and b), i.e. no backfiller and subsequent backfilling, has shown almost similar integrated density 

which is supposedly expected to give more hybridized capture probes than co-immobilization 

method since they contain more thiolated capture probes. This phenomena can be due to fully 

packed self assembled monolayers of thiolated DNA that results to strong intermolecular 

electrostatic repulsion [22, 24] between neighboring thiolated DNA as well as complementary targets 

that led to inefficiency of hybridization giving less target detection via fluoresced light emitted. 
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However, thiolated ssDNA molecules immobilized in aqueous media alone with sequential 

backfilling with mercaptohexanol (MCH) gave a little increase in the integrated density value 

signifying improvement in the hybridization efficiency (figure 5.6b). The purpose of MCH is not 

only to prevent nonspecifically adsorbed DNA off the surface but the net negative dipole of the 

alcohol terminus repelled the negatively charged DNA backbone, thus helping to project the probe 

strand out into solution being exposed better for hybridization[24]. Further increased in 

hybridization efficiency has been observed when co-immobilization of thiolated DNA with 

backfiller (mercaptohexanol) that accounts for better probe distribution giving a better hybridization 

efficiency of the target DNA [4]. Although co-immobilization process exhibited the most number of 

molecules hybridized per area than thiolated DNA’s immobilized in the presence of HI phase 

template, the efficiency in the detection of the target through amperometry via HRP-labeled DNA 

would still be dependent on the efficiency of hybridization between the target DNA molecule and 

HRP-labeled DNA in completing the sandwich assay for final measurement of analyte target in 

which a well spaced immobilized capture probes would favor more efficient hybridization due to 

less intermolecular electrostatic repulsion between neighboring probes for complementary target and 

the HRP-labeled DNA for sandwich assay format. This further confirms why sensitivity is far better 

for thiolated DNA immobilized in the presence of HI phase template than the co-immobilized 

condition (Figure 5.5).  
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e) 
 
DNA Immobilization condition  

Fluorescence imaging 

*Total 
integrated 
density 
2.5x10-5 cm2 

106 

total no. of molecules 
hybridized/total area image (2.5x10-5 

cm2) 
1010 

a) Aqueous only (no MCH) 1.95±0.05 7.8±0.3 
b) Sequential backfilling 2.25±0.07 9.0±0.1 
c)Co-immobilization (ssDNA:MCH) 3.80±0.09 15.2±0.5 
d) HI phase  2.22±0.05 8.89±0.02 
 

Figure 5.6. Fluorescence microscopy imaging for immobilized thiolated DNA hybridized with its 

complementary target modified with Cy3 in a) aqueous media only (no MCH), b) Sequential 

backfilling with MCH, c) co-immobilization of SDNA and MCH (1:100 ratio), d) HI phase of 

C16EO8 and e) summary table on the estimated total number of molecules hybridized in each 
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conditions.*The total integrated density was calculated by subtracting the integrated density of the 

unhybridized surface as control. 

 

Further imaging characterization have been done through atomic force microscopy. 

Thiolated ssDNA were immobilised in mica surface in the presence and absence of a template. The 

cross sectional analysis further tells us the chemical information present in the surface of the 

substrate confirming the immobilization of ssDNA’s in the presence of HI template. It can be 

visually observed as well how the ssDNA were immobilised creating spaces between probes when 

compared to non templated system where a fully packed surface can be observed. This further 

confirms why surfaces with uncontrolled full packing of probe density gave lower biosensor 

performance in terms of sensitivity and detection limit. 

 Through the images obtained, we were able to estimate how much thiolated molecules has 

been immobilised in each condition. In order to obtain a rough estimate on the amount of 

molecules immobilised, the integrated densities of the fluoresced light has been evaluated. The 

integrated density correlates the number of DNA molecules immobilised in different conditions and 

were compared to the obtained values in the reductive desorption. Although the total calculated 

amount of molecules per area absorbed obtained in the reductive desorption are higher than in the 

fluorescence imaging integrated density analysis, they are still in agreement in terms of typical surface 

coverage of probe DNA that can be immobilised in an electrode surface which is in the order of 

1011-1013 molecules/cm2 [24] confirming further the results obtained in reductive desorption.  

The 37 base ssDNAs in mica surface immobilised through non-templated and templated system 

(Figure 5.7 b and c) had globular conformations with mean measured diameters of 35-37 nm and 

19-23 nm respectively. Although the obtained diameter of the immobilised 37 base ssDNAs is too 

big from its approximated actual length size (10 nm) [27], we have to take into account that short 
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ssDNAs tend to form aggregations and coiling leading to its larger mean measured diameter [28]. 

The results obtained is in agreement with the image that has been reported elsewhere for 25-50 base 

ssDNAs having a height of ~1 nm (figure 5.3e and 5.3f) [29, 30] that differs only in the diameter 

size of the globular formed ssDNAs. This could be due to longer incubation time of immobilisation 

allowing more ssDNAs to form conglomeration.  

Immobilised ssDNAs without a template formed bigger aggregations than the templated 

system because ssDNAs in non-templated immobilisation were not confined or restricted in the 

solution unlike for the templated system where the ssDNAs were restricted within the hydrophilic 

zones formed in the HI phase of C16EO8. Aggregation of ssDNAs in templated system could be 

formed after the surfactant has been washed off and dried with nitrogen gas. 

Eventhough there is no eminent pattern obtained in the templated DNA, the presented AFM result 

gave us at least more information, which supports the fluorescence microscopy imaging results, 

about the ability of a template to have a controlled probe density avoiding a fully packed dense 

surface. 
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f) 
 
DNA 
Immobilization 
condition  

Reductive desorption Fluorescence imaging AFM imaging 

total no. of 
moles of 
ssDNA 
absorbed 
10-11 

total no. 
of ssDNA 
molecules 
absorbed 
1013 

total no. Of 
thiol ssDNA 
molecules  
absorbed/total 
area (0.09cm2) 
1013 

*Integrat
ed 
density 
50x50 
�m 
105 

total no. of 
molecules 
absorbed/total 
area image 
(2.5x10-5 cm2) 
1013 

Total counted 
dots 
(molecules) 
in 1x1�m 

total no. of thiol 
ssDNA  
molecules  
absorbed/total 
area image (1x10-

8 cm2) 1013 
Aqueous only  2.03 ±0.30 1.22 13.6 28±1.0 0.012±0.001 435±36 0.00435±0.002 
HI phase  0.81 ±0.20 0.49 5.4 14.1±0.9 0.006±0.001 45±1 0.00045±0.0001 
 

Figure 5.7. Atomic Force Microscopy (AFM) imaging for immobilised ssDNA in mica surface a) 

control, clean mica, b) in HEPES buffer with Ni+ salt only, c) HEPES buffer with Ni+ salt in the 

presence of HI template (graph image: cross sectional surface analysis for each surfaces) and 

fluorescence microscopy imaging for immobilised thiolated DNA modified with Cy3 in: d) aqueous 

media only, e) HI phase of C16EO8 (inset: enlarged area-50x50 �m) in Au electrode surface and f) 

calculated number of molecules for each immobilization method done. *The total integrated density 

was calculated by subtracting the integrated density of the unhybridized surface as control.  

 

5.4. Conclusion 

The improved performance of  the biosensor when template has been used can be credited to better 

probe distribution which gives the following advantages: (i) less intermolecular electrostatic 

repulsion between immobilized probes and complementary targets for having enough spaces giving 

better hybridization efficiency and (ii) less steric hindrance in the electrode surface by having more 

electroactive spaces allowing electroactive species to freely diffuse in the electrode surface for a 

better current response and improved detection limit. 
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Figures 
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MATERIALS AND METHODS 
 

Materials 
 
All the starting materials were obtained from commercial suppliers and used without further 
purification. Octaethylene glycol monohexadecyl ether, C16EO8, was purchased from Sigma-Aldrich. 
Oligonucleotides were purchased from ATDbio, England.HEPES buffer, Nickel Chloride, 
Mercaptohexanol, Potasium Hydroxide, Sulfuric acid, Potassium dihydrogen phosphate, Trizma 
buffer, and Phospate buffer saline (PBS) were all purchased from Sigma-Aldrich.  
 
General Methods 
 

Preparation of HI phase mixture with thiolated ssDNA in HEPES buffer were prepared in 60:40 
ratio of Aqueous ssDNA in HEPES buffer:C16EO8 % by weight. Aqueous solutions were prepared 
with Milli-Q water (Millipore). 
 
DNA Sequences 
  
Capture probe thiolated ssDNA: 5’ modified with C3thiol and 3’ modified with Cy3 fluorophore 
 
 5'-CTTAGTAATTGGGAAGCTTGTATCATGGCACTTAGAA-3'  
 
Buffers  
 
HEPES buffer in NiCl2: 10 mM HEPES in 5mM NiC l2 aqueous solution 
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Figures: 
 

 
Figure 5.S1 Optical polarizing microscopy (OPM) Images of different phases of C16EO8 explored 
in a) different concentration of salt used at HI C16EO8 b) increasing concentration of C16EO8 at fixed 
concentration of 0.4 M KH2PO4. 
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Figure 5.S2. Cyclic voltammograms for the reductive desorption of immobilised MCH monolayers 
from the gold electrodes in 50mM KOH and their calculated surface coverage (Q=mnF) of thiols 
per square cm. 
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c)               

Electrode condition 
 

Available surface 
active area (cm2) 

% surface active 
area 

5mM Fe+3/Fe+2 aqueous solution only 0.090±0.002 100 
5mM Fe+3/Fe+2  + HI 0.023±0.002 25.6 
5mM Fe+3/Fe+2 + HI + hexane xi=0.15  0.018±0.001 20.0 
5mM Fe+3/Fe+2 + HI + hexane xi=0.25 0.017±0.001 18.9 
5mM Fe+3/Fe+2 + HI + hexane xi=0.34 0.016±0.001 17.8 

 
Figure 5.S3. a) Typical CV scans of the 5mM Fe+3/Fe+2 in aqueous solution only and HI of C16EO8 
in different concentration of hexane added at 50mV/s scan rate and its b) Oxidation peak current 
Inset: oxidation peak current of aqueous 5mM Fe+3/Fe+2 only. c) Calculated surface active area of 
the electrode in different conditions. 
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Table 5.S1. Summary of calculated values based on the mathematical model and the data based on actual 
experiment. 
 
Theoretical data:  
Area of total rectangular electrode (AT): 4.77 x10 -18 m2 

 
Area of total triangular electrode(AT): 8.77 x10 -18 m2 

mole 
fraction 
of 
hexane 

number 
of hexane 
molecules 

Total area of 
rectangle/ 
m2 

Electroche
mically 
accesible 
area/ m2 

Control 
(hexane 
only)  

mole 
fraction 
of 
hexane 

number 
of hexane 
molecules 

Total area 
of 
circle/m2 

Electroche
mically 
accesible 
area/ m2 

Control 
(hexane 
only)  

x nhexane 
AR 
(10-18) 

AE=AT-AR 
(10-18) AE/AE *AE/AT x nhexane 

AC 
(10-18) 

AE=AT-AC 
(10-18) AE/AE *AE/AT 

0.00  0.00 2.65  2.12 1.00 0.72  0.00 0.00  2.45 6.31 1.00 0.72  

0.10 0.72  3.02 1.75 0.82  0.64  0.10 0.72  3.19 5.57 0.88  0.64  

0.20 1.62  3.49 1.28 0.60 0.51  0.20 1.62  4.25 4.51 0.71  0.51  

0.23  1.93  3.65 1.12 0.53  0.47  0.23  1.93  4.66 4.11 0.65  0.47  

0.24  2.04  3.71 1.06 0.50 0.45  0.24  2.04  4.81 3.96 0.63  0.45  

0.25  2.15  3.77 1.00 0.47  0.43  0.25  2.15  4.96 3.80 0.60 0.43  

0.30 2.77  4.09 0.68 0.32  0.33  0.30 2.77  5.84 2.93 0.46  0.33  

0.35  3.48  4.46 0.31 0.15  0.21  0.35  3.48  6.94 1.82 0.29  0.21  

 

Experimental data  

 

Experimental data  
Total active area of electrode(AT): 
0.090±0.002cm2 

Total active area of electrode(AT): 
0.090±0.002cm2 

 xhexane  AE,cm2  *AE/AT   xhexane AE,cm2  *AE/AT  

Control: no 
C16EO8  

0.00 0.090±0.002 1.00 
Control: 
no 
C16EO8  

0.00 0.090±0.002  1.00 

0 .00 0.023±0.002  0.26 0.00 0.023±0.002  0.26  
0.15  0.018±0.001  0.20 0.15  0.018±0.001  0.20 
0.25  0.017±0.001  0.19  0.25  0.017±0.001  0.19  
0.34  0.016±0.001  0.18  0.34  0.016±0.001  0.18  

* Relative electrochemically accessible surface area 
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General conclusions 

 

This thesis overviews the development of electrochemical immunosensor and DNA 

biosensors for the multiple detection of biowarfare agents, and nanostructuring probe distribution 

of thiolated ssDNA molecules based on nanotemplating strategies for improved biosensor 

performance. Fundamental aspects such as the surface chemistry for electrochemical platforms for 

the immunosensor and DNA biosensor were done such as evaluation of best assay format, 

preparation of fragment antibodies F(ab') for direct chemisorptions, antibody-enzyme or 

oligonucleotide-enzyme conjugates  as labels and  optimisation of DNA immobilisation. 

Complementary target ssDNA PCR products and bacterial cells were also prepared for its 

quantification and detection and the analytical performance of the electrochemical immunosensor 

and DNA biosensor were evaluated respectively. Finally, the use of a template to immobilise 

thiolated ssDNA molecules was explored. The nanotemplating strategies gave a better probe 

distribution that led to an increased sensitivity and lower limit of detection for the developed DNA 

biosensor. 

In chapter 2, a comparative study on the use of whole antibodies immobilised via chemical 

cross-linking to a bipodal alkyl thiol self-assembled monolayer (SAM) and a SAM formed from the 

direct chemisorption of F(ab') antibody fragments for the detection of Francisella tularensis live 

vaccine strain (LVS) bacterial cells is presented. F(ab') fragments on Au surfaces gave better 

sensitivity compared to chemisorbed self-assembled monolayer cross-linked whole antibody. 

Antibody-enzyme conjugates were prepared in-house using whole antibody as well as antibody 

fragments, and similar results obtained in both cases. The immunosensor was used for the detection 

of the lipopolysaccharide antigen as well as F. tularensis LVS bacterial cells. The F(ab') fragments 

retained ~85% of antigen recognition ability after 45 days of storage at 4 °C. The developed 
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electrochemical immunosensor was then transferred to an automated microfluidic set-up housed 

within a tester set-up and the assay parameters were optimised. Microfluidics also highlights its role 

in improving the sensitivity of the biosensor as compared to the results obtained when detection 

were done outside fluidics. The specificity of the immunosensor has been clearly determined and no 

cross-reactivity has been found.  

In Table C1, the developed immunosensor is compared to other techniques reported for the 

detection of F. tularensis LVS. 

 

Table C1. Comparison with other techniques showing the detection limit obtained on the 
methods used 

Techniques Limit of detection 

(CFU/mL) 

References 

Fab - EC sensor in microfluidics  38 This work 

Electrochemical biosensor 100 [1] 

Piezoelectric immunosensor 105 [2] 

Quartz crystal microbalance with 
dissipation monitoring 

4x103 [3] 

Fiber optic biosensor 5x105 [4] 

ELISA 6.9x106 [5] 

 

One of the advantages of our developed immunosensor is the facile integration of the biosensor in 

an electrochemical portable instrument which makes it very attractive for point-of-care applications. 

Following this obtained result on the detection of F. tularensis bacterial cells, another 

immunosensor surface platform was developed for the detection of anti-F. tularensis antibodies present in the 

serum taken from an infected red fox (Vulpes vulpes) as presented in chapter 3. The sensor surface 

chemistry exploits gold-based self-assembled monolayers of a carboxylic group terminated bipodal 
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alkanethiol that is covalently linked to lipopolysaccharide (LPS) that can be found in the outer 

membrane of the bacteria F. tularensis. The presence of anti-F. tularensis antibodies was measured 

using HRP-Protein A from Staphylococcus aureus as a reporter molecule. The detection limit obtained 

is comparable to previously reported techniques in detecting antibodies against F. tularensis [6-9].  

In the DNA sensing level, an electrochemical sensor array for the simultaneous recognition 

of PCR amplified gene segments of Bacillus anthracis, Brucella  melitensis, Bacteriophage lambda, Francisella 

tularensis, Burkholderia mallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis var. Kurstaki is 

discussed in chapter 4. These eight pathogens are among the biowarfare agents of the highest threat 

potential listed[10, 11]. In the developmental work, surface chemistry of the DNA biosensor was optimised 

such as immobilisation of thiolated ssDNA, the use of backfiller and incubation temperature. 

Oligonucleotide-enzyme conjugates were also prepared in-house using thiolated ssDNA and 

covalently linked to Maleimide activated HRP and similar results were obtained when compared to 

commercially obtained conjugates. The developed electrochemical multiplex DNA biosensor was 

then transferred to an automated microfluidic set-up housed within a tester set-up and the assay 

parameters were optimised. No cross-reactivity found and the specificity of the immunosensor has 

been clearly determined. 

Finally, in chapter 5, the use of lyotropic liquid crystals (LLC) to act as a template to produce 

spaces between immobilized DNA probes was exploited. Thiolated ssDNA molecules were mixed 

in different phases of surfactant octaethylene glycol monohexadecyl ether (C16EO8) and were 

evaluated. The spacing concept of immobilized thiolated ssDNA probes through templating with 

LLC that led to the improved response of the biosensor was confirmed. The best signal response 

and lowest detection limit was shown by the templated system most especially for the HI template 

which gave a huge increase in sensitivity of seven times fold higher compared to non templated 

immobilization of thiolated ssDNA probe and even better to the co-immobilization strategy that has 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS FOR THE DETECTION OF BIOLOGICAL WARFARE AGENTS 
Samuel Bacena Dulay 
DL:T 1237-2014 



157 
 

been previously reported to be the optimum condition for thiolated SAM capture probes [12]. To 

support the claim of improved biosensor performance especially using HI template, several 

characterisation techniques was employed. Electrochemical characterisation such as cycling a redox 

specie in the presence of the templates revealed how much available active areas can be occupied by 

thiolated molecule DNA’s. In the case of swollen HI template where hexane was added, a 

mathematical model was derived and suggested how does the cylinders of HI template is being 

orientated with respect to electrode’s surface. It also further suggests that the presence of 

hydrophobic and hydrophilic domains imposed on the surface of the electrode by the amphiphilic 

nature of the surfactant molecules act as the driving force to achieve a homogenous, and even 

ordered distribution of probes on the surface. Imaging characterisation through fluorescence 

microscopy and atomic force microscopy further confirmed these claims. The non templated system 

have showed a fully packed immobilised probe whilst the HI templated system showed a more 

spaced immobilised probe that favours better hybridisation with corresponding complementary 

targets which led to a much more improved sensitivity and better detection limit of the developed 

DNA biosensor. 
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Outlook 

The presented results and conclusions from this thesis serve to guide future researches that would 

improve the present knowledge obtained in the field of electrochemical detection of pathogenic species based 

on immunosensing and genosensing level. 

An immunosensor and DNA biosensor array for the detection of F. tularensis bacterial cells 

and eight different virulent species has been developed and an excellent analytical performance of 

these sensors was accomplished respectively.  

The report on the development of immunosensor is the first stage of development of a 

platform for the multiplexed detection of a range of bioterrorism agents (i. e, Bacillus anthracis, 

Brucella  abortis and melitensis, Bacteriophage lambda, Burkholderia mallei and pseudomallei, Coxiella burnetii, 

Yersinia pestis, and Bacillus thuringiensis) and the electrode arrays used in this work has been designed to 

allow incorporation of multiple antibodies immobilised on individual electrodes for the simultaneous 

detection of the listed bioterrorism agents and work is ongoing to achieve this goal. The applicability 

of the developed system to real situations such as an early detection of bioterrorism events is very 

promising as the obtained LOD was very low and the assay time quite short. This facilitates a rapid 

alarm based detection of F. tularensis when linked e.g. to an air-sampling system. Ongoing and future 

work will focus on attempting to further reduce the sampling time, to increase the stability of the 

Fab functionalised sensors using stabilising agents and to apply to the analysis of real samples within 

specialised regulatory laboratories.  

Moreover, the developed multiplexed genosensor detection of a range of biowarfare agents 

has shown potential in its applicability to real situations such as an early detection of bioterrorism 

events as the developed system obtained very low detection limit and the assay time quite short 

when compared to conventional systems like ELONA or ELISA. Ongoing and future work will 

focus on attempting the use of a common reporter probes that would not only decrease the cost for 
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the use of different designed reporter probes but this would also eliminates the complex procedure 

of mixing all together the reporter probes for labelling the complementary targets, further reduce the 

incubation and sampling time, to increase the stability of the thiolated ssDNA functionalised sensors 

using stabilising agents.  

Finally, the use of a template to immobilise sensing probes for the enhancement of 

biosensor performance will be explored as well in the developed multiplexed genosensor for real-

time application. 
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