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Abstract

In this thesis we develop and analyse mathematical models describing phase change phenom-
ena linked with novel technological applications. The models are based on modifications to
standard phase change theory. The mathematical tools used to analyse such models include
asymptotic analysis, similarity solutions, the Heat Balance Integral Method and standard

numerical techniques such as finite differences.

In chapters 2 and Bl we study the melting of nanoparticles. The Gibbs-Thomson relation,
accounting for melting point depression, is coupled to the heat equations for the solid and
liquid and the associated Stefan condition. A perturbation approach, valid for large Stefan
numbers, is used to reduce the governing system of partial differential equations to a less
complex one involving two ordinary differential equations. Comparison between the reduced
system and the numerical solution shows good agreement. Our results reproduce interesting
behaviour observed experimentally such as the abrupt melting of nanoparticles. Standard
analyses of the Stefan problem impose constant physical properties, such as density or specific
heat. We formulate the Stefan problem to allow for variation at the phase change and show
that this can lead to significantly different melting times when compared to the standard

formulation.

In chapter Ml we study a mathematical model describing the solidification of supercooled
liquids. For Stefan numbers, 3, larger than unity the classical Neumann solution provides
an analytical expression to describe the solidification. For 8 < 1, the Neumann solution is
no longer valid. Instead, a linear relationship between the phase change temperature and

the front velocity is often used. This allows solutions for all values of 3. However, the

vii



viii ABSTRACT

linear relation is only valid for small amounts of supercooling and is an approximation to
a more complex, nonlinear relationship. We look for solutions using the nonlinear relation
and demonstrate the inaccuracy of the linear relation for large supercooling. Further, we
show how the classical Neumann solution significantly over-predicts the solidification rate
for values of the Stefan number near unity.

The Stefan problem is often reduced to a ’one-phase’ problem (where one of the phases is
neglected) in order to simplify the analysis. When the phase change temperature is variable
it has been claimed that the standard reduction loses energy. In chaptersBland[6 we examine
the one-phase reduction of the Stefan problem when the phase change temperature is time-
dependent. In chapter bl we derive a one-phase reduction of the supercooled Stefan problem,
and test its performance against the solution of the two-phase model. Our model conserves
energy and is based on consistent physical assumptions, unlike one-phase reductions from
previous studies. In chapter [0l we study the problem from a general perspective, and identify
the main erroneous assumptions of previous studies leading to one-phase reductions that
do not conserve energy or, alternatively, are based on non-physical assumptions. We also
provide a general one-phase model of the Stefan problem with a generic variable phase change

temperature, valid for spherical, cylindrical and planar geometries.



ix

Resum

En aquesta tesi construirem i analitzarem models matematics que descriuen processos
de transicié de fase vinculats a noves tecnologies. Els models es basen en modificacions de
la teoria estandard de canvis de fase. Les tecniques matematiques per resoldre els models es
basen en l’analisi asimptotic, solucions autosimilars, el metode de la integral del balang de
la calor i metodes numerics estandards com ara el metode de les diferencies finites.

En els capitols 2] i B] estudiarem la transicié solid-liquid d’una nanoparticula, acoblant
la relacié de Gibbs-Thomson, que descriu la depressiéo de la temperatura de fusié en una
superficie corba, amb ’equaci6 de la calor per la fase solida i liquida, i la condicié de Stefan.
Mitjancant el metode de pertorbacions, per a valors grans del nombre de Stefan, el problema
d’equacions en derivades parcials inicial és reduit a un sistema més senzill de dues equacions
diferencials ordinaries. La solucié del sistema reduit concorda perfectament amb la solucié
numerica del sistema inicial d’equacions en derivades parcials. Els resultats confirmen la
transicié ultra rapida de solid a liquid observada en experiments amb nanoparticules. Els
analisis estandards del problema de Stefan consideren propietats fisiques com la densitat
i el calor especific constants en la fase solida i liquida. En aquesta tesi, formularem el
problema de Stefan relaxant la condicié de densitat constant, el que portara a diferencies
molt significatives en els temps totals de fusié al comparar-los amb els temps obtinguts
mitjancant la formulacié habitual del problema de Stefan.

En el capitol M estudiarem un model matematic que descriu la solidificacié de liquids sota-
refredats. Per nombres de Stefan, 3, més grans que la unitat la solucié classica de Neumann
dona una expressié analitica que descriu el procés. Per valors 8 < 1, la solucié de Neumann
no es valida i, habitualment, per tal de trobar solucions en aquest regim, s’estableix una
relacié lineal entre la temperatura de canvi de fase i la velocitat del front de solidificacié.
Aquesta relacié lineal pero, és una aproximacié per sota-refredaments moderats d’una relacié
no lineal més complexa. En aquest capitol, buscarem solucions del problema incorporant la
relacié no lineal al model, i demostrarem la poca precisié a 'utilitzar ’aproximacié lineal.
A més a més, veurem com la solucié de Neumann sobre estima de manera significativa la

velocitat del procés per valors propers a la unitat.
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Habitualment, el problema de Stefan, que te en compte les fases solida i liquida de la
transicié, és simplificat a un problema d’una fase (on una de les fases és omesa) per tal de
reduir la dificultat de 'analisi. En casos on la temperatura de transicié de fase és variable
s’ha manifestat que la simplificacié d’una fase no conserva l’energia. En els capitols Bl i
[6] examinarem les diferents reduccions d’una fase del problema de Stefan en el cas on la
temperatura de transicié depen del temps. En el capitol [l derivarem el problema de Stefan
d’una fase associat a la solidificacié de liquids sota-refredats, i compararem la solucié del
sistema resultant amb la soluci6 del problema de Stefan estandard de dues fases. A diferencia
dels models d’una fase descrits en estudis previs, el nostre model reduit conserva ’energia
i esta basat en suposicions fisiques consistents. En el capitol [0 estudiarem el problema des
d’una perspectiva més general i identificarem les suposicions erronies d’estudis previs que
porten a la no conservacié de I'energia o que, alternativament, estan basades en suposicions
fisiques poc consistents. A més a més, derivarem un model d’una fase amb temperatura de

canvi de fase variable, valid per geometries esferiques, cilindriques i planes.
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Chapter 1

Introduction

The phenomena of melting and solidification occurs in a multitude of natural and industrial
situations, from the melting of the polar ice caps or the solidification of lava from a volcano
to the manufacture of ice cream or the production of steel. For a material to undergo a solid-
liquid phase change, thermal energy has to be delivered to the solid to break the bonds that
maintain its molecules or atoms in an organized lattice structure. For the opposite process,
energy must be taken from the liquid phase to slow down the motion of its molecules and
organize them back into a stable lattice structure. The mathematical formulation describing
this intuitively simple physical process is known as the Stefan problem, named after the

Slovene physicist Josef Stefan.

Scientific discoveries are being made every day that are changing the world we live in.
New observations and experiments lead to established scientific theories being revisited,
updated and possibly started from scratch. Following the philosophy of the pioneers of the
Stefan problem this thesis provides a mathematical description and analysis of new observed
physical phenomena, introducing appropriate modifications to classical phase change theory.
The mathematical models discussed in this thesis are linked with industrial processes on
materials manufacturing and the working mechanisms of new technological applications. In
particular, we develop mathematical models describing the melting process of nanoparticles

and the solidification of supercooled liquids. In addition, more fundamental questions, for
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example concerning the energy conservation of such systems, arose during the development

of the models and led to a revision of the standard formulation of Stefan problems.

Note, this thesis is built from five published papers, each of which contain an introduction
and literature survey. Consequently in this chapter we will not go into great detail on the

literature, all the relevant sources will be cited in the introduction section of each chapter.

In chapters 2 and B] we present mathematical models describing the melting process of
nanoparticles. In these models the characteristic melting point depression of nanoparticles
is described by the Gibbs-Thomson relation. In we present a generalized version
of the Gibbs-Thomson relation that shows good agreement with experimental data down
to a few nanometers. Then, the relation is coupled with the heat equations for the solid
and liquid phase, and the Stefan condition. The standard perturbation method for large
Stefan number is utilized to reduce the system to a pair of easily solvable ordinary differen-
tial equations (ODE). We highlight the strong effect of the melting point depression when
compared to the equivalent classical Stefan problem solution. The solutions found show
interesting features observed experimentally, such as the ultra-fast melting velocity as the
radius of the nanoparticle tends to zero. In the model studied in is
extended, allowing for the densities of the solid and liquid phases to take different values.
This seemingly inoffensive assumption leads to a remarkably different model formulation;
requiring an advection term in the heat equation for the liquid, an extra cubic term for the
velocity in the Stefan condition and a second moving boundary tracking the expansion of the
liquid phase. The solution methodology is analogous to that in The introduction
of the density jump between phases has a profound effect on the solution, showing more than

a 50% difference in the melting times with the equivalent model assuming equal densities.

In we study the solidification process of a supercooled liquid. Again the phase
change temperature is variable but now it is related to the reduced mobility of the supercooled
liquid molecules. The interface temperature, which is lower than the ideal freezing point,
depends nonlinearly on the velocity of the solidification front. Previous studies have focused
on the standard problem with a constant phase change temperature or on the case of very

small supercooling, where the relation between the velocity of the solidification front and the



phase change temperature is approximately linear. We analyse the problem in three possible
scenarios; with the full nonlinear relation, the linearized approximation and the standard
case, with constant interface temperature. Asymptotic solutions for small and large times
are provided and compared with numerical and approximate solutions by the Heat Balance
Integral Method. The introduction of the characteristic nonlinear behaviour of the phase
change temperature shows the unsuitability of the classical Neumann solution to describe

the solidification of supercooled melts.

In general, finding a solution to the Stefan problem requires solving heat equations for
the solid and liquid phases subject to a condition in the solid-liquid interface describing the
evolution of the phase change front. Sometimes, it is convenient to reduce the problem by
assuming the solid or the liquid to be at the phase change temperature and only solve the
heat equation for the remaining phase. This simplified model is commonly referred to as
the one-phase Stefan problem. In chapters 2 [l and [] we propose models where the phase
change temperature varies, meaning that a truly one-phase problem will never exist (since
the melting or freezing temperature is a function of time). Hence, the one-phase reduction
based on assuming one of the phases at the constant phase change temperature does not
hold. This leads us to look for consistent ways to formulate the one-phase Stefan problem for
cases where the phase change temperature is variable. In we specifically deal with
the derivation of an accurate one-phase reduction of the Stefan problem for the solidification
of supercooled melts. Previous formulations of the one-phase reduction have appeared not
to conserve energy or relied on non-physical assumptions. In we derive an energy
conserving formulation for the one-phase supercooled Stefan problem. Numerical solutions
for the proposed one-phase model are tested against solutions for the full two-phase problem.
The results show excellent agreement and improve considerably on the accuracy of previous

one-phase formulations.

The study of the one-phase reduction of the Stefan problem with linear supercooling
carried out in opens the door to tackle the problem from a more general point
of view. With the advent of new technologies, phase change processes where solid-liquid

interface temperature differ from the bulk phase change temperature are becoming more
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frequent. This serves as the motivation for where the derivation of the one-phase
reduction of the Stefan problem is examined in detail via energy arguments. A general one-
phase model of the Stefan problem with a generic variable phase change temperature, valid
for spherical, cylindrical and planar geometries, is provided. Finally, the model is solved
numerically for the case where the phase change temperature depends on the inverse of the
melting front (which is related to the melting process of nanoparticles studied in chapters
and [3]). Asin the results are compared to the two-phase model and show excellent
accuracy.

In the following section of this introduction we briefly describe the historical roots of
the Stefan problem. In the second section we introduce the formulation of the problem and
summarize some of the standard analytical techniques used to tackle Stefan problems. Then,
we present the extensions that have to be introduced to the standard problem to account
for the variable phase change temperature of nanoparticles and supercooled liquids, and the

appropriate way to formulate the one-phase Stefan problem for such situations.

1.1 Historical roots of the Stefan problem

The Stefan problem, named after the Slovene physicist Jozef Stefan (1835-1893), is a particu-
lar kind of moving boundary value problem that originally aimed to describe the solid-liquid
phase change process [53, 194, 107, [117]. Stefan problems, are characterized by having a
boundary of the domain which is moving and, therefore, its position is unknown “a priori”.
The position of the moving boundary is a function of time (and sometimes space) and must
be determined as part of the solution. The differential equations in a Stefan problem are
generally, but not restricted to, of parabolic type. The most common example of a Ste-
fan problem is that describing the ice-water phase transition. This requires solving heat
equations for the ice and water phases, while the position of the front separating the two
states, the moving boundary, is determined from an energy balance, referred to as the Stefan
condition.

Stefan carried out extensive analytical and experimental work on physical situations

involving a moving boundary: solid-liquid phase change [102, 104, 105, 107], chemical reac-



1.1. HISTORICAL ROOTS OF THE STEFAN PROBLEM 5

tions [101] and liquid-vapor phase change [100,(103,|106]. Indeed, his most popular and cited
work in the field is [107] (a reprinted version of [102] for the journal Annalen der Physics
und Chemie) where he studied ice formation in the polar Arctic seas. His model described
the seawater initially at the freezing temperature and the air in contact with the water to
be at a constant temperature below the freezing point, thus, triggering ice formation at the
air-water interface [115]. The resulting growing ice layer was found to be proportional to the
square root of time. However, Stefan’s major contribution to science was the experimental
finding that states the thermal energy radiated by an object is proportional to the fourth
power of its temperature, the law of Stefan-Boltzmann. The second name is due to the Aus-
trian physicist Ludwig Boltzmann (1844-1906), Stefan’s pupil, who derived the relationship
from first principles. Above all, Stefan was a brilliant experimentalist who is also known for

being the first to accurately measure the thermal conductivity of gases |17].

Although Stefan carried out wide ranging research concerning phase change, from exper-
imental to theoretical work, and the Stefan problem was named after him, he was not the

8" century, the Scottish medical doctor

first to formalize and solve the problem. In the 1
Joseph Black (1728-1799) introduced for the first time the concept of latent heat, a key in-
gredient to understanding the physical mechanism of phase change. Later on, Jean Baptiste
Joseph Fourier (1768-1830), a French mathematician and physicist, provided the necessary

physics and mathematics to the theory of heat conduction. In the 19"

century, the physicist
Gabriel Lamé (1795-1850) and the mechanical engineer Emile Clapeyron (1799-1864) were
the first to mathematically couple the concept of latent heat with the heat conduction equa-
tion, whilst extending Fourier’s work on the estimate of the time elapsed since the Earth
began to solidify from its initial molten state [53,194]. They initially assumed the Earth to
be in a liquid phase at the melting temperature (a one-phase problem). Due to an abrupt
temperature drop at the surface the freezing process was initiated. They found the solid
crust to grow proportional to the square root of time (just as Stefan later found in his work
[102,1107]). Unlike Stefan, Lamé and Clapeyron did not determine the value of the constant

of proportionality. In a series of lectures in the early 1860s, Franz Ernst Neumann (1798-

1895), a German physicist and mathematician, solved in detail a problem similar to the one
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of Lamé and Clapeyron [53], with the initial temperature above the melting point [17, 94]
(so dealing with a two-phase problem). However, his work was not published until 1901 by
Heinrich Weber in [117]. Today, the solution to the classical Stefan problem receives the
name of Neumann solution in honor of the German scientist.

The motivation of the Stefan problem was the need to mathematically formulate and
describe observed natural physical phenomena, such as the melting, solidification or evapo-
ration of a substance. Nowadays, it is well known that Stefan problems arise in numerous
industrial and technological applications, such as the manufacture of steel, ablation of heat
shields, contact melting in thermal storage systems, ice accretion on aircraft, evaporation
of water, and a long etcetera [3, [16, 27, 40, 43, [108]. The fact that the Stefan problem has
been studied and applied in a wide variety of situations is evident by simply looking at the
review on the subject from 1988 [108], where around 2500 references were given. Over 20
years later, the number of references has exponentially increased. A quick search in Google
Scholar gives around 422K references in the period 1999-2014. Hence, it is clearly impossible
to establish here a complete list of references of papers on the subject. However, there are
some reference books on Stefan problems and its applications that have been particularly
important for the elaboration of this thesis that the interested reader may wish to consult

3, 116, 119, 138, 40].

1.2 Formulation and standard mathematical techniques

The Stefan problem is a mathematical model describing the process of a material undergoing
a phase change. The mathematical formulation of the problem involves heat equations for
the solid and liquid phases and a condition at the solid-liquid interface, the Stefan condition,
that describes the position of the phase change front. At the moving phase change boundary,
x = s(t), the temperature is fixed at the constant bulk phase change temperature, T,. The
most basic form of Stefan problem arises when considering the melting of a semi-infinite,
one-dimensional slab occupying x > 0, where the phase change is driven by a heat source at

the boundary z = 0. A configuration of the model is shown in figure [T
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i
Ty | Liquid e Solid
l
x=0 x = s(t)

Figure 1.1: Semi-infinite slab melting from x = 0 due to the high temperature Tx. Dashed
line depicts the liquid-solid interface, s(t), and the arrow the direction of motion of the phase
change front.

The governing equations of the model are

or o*T
CLp1 E = kl W on O<zx< S(t) y (11)
00 0%
sPs &, — s s 1.2
CsPs 5, k 52 on s(t) <z < o0 (1.2)

where T represents the temperature in the liquid, 6 the temperature in the solid, s = s(t)
the position of the moving boundary, k the thermal conductivity, p the density, ¢ the specific
heat and subscripts s and [ indicate solid and liquid, respectively. The position of the moving

front s(t) is determined by the Stefan condition

ds 00 or
plea = ks% - kl% on x=s(t), (1.3)

where L,, is the latent heat. At the interface x = s(t) we have T'(s,t) = 0(s(t),t) = T%, and,

defining the heat source driving the melting as a constant temperature Ty > 1)y, at x = 0
we have T'(0,t) = Ty. Obviously, at ¢t = 0 the liquid phase does not exist, so s(0) = 0. From
a formal point of view we still need to define a boundary and an initial condition for 6 but

for the following argument this is unnecessary.

A very common simplification of the Stefan problem consists of assuming one of the
phases to be initially at the phase change temperature [40]. This removes one of the two
heat equations and provides a simpler form of the Stefan condition by eliminating one of
the temperature gradients. In this way, one of the two phases is effectively omitted and the

resulting system is referred to as the one-phase Stefan problem. For instance, by assuming
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the solid region initially at the melting temperature in the system ([I)-(L3]) the problem

reduces to

or O°T
a5y Ky ) on 0<z<s(t), (1.4)
T(0,t) = Ty . (15)
T(s,t) = T, (1.6)
ple% fklg—z on x = s(t). (1.7)

Only one practically useful exact solution exists for problems of the form (4)-(L7),
which is expressed in terms of the error function [38, 40, 153, [107]. Several analytical, ap-
proximate and numerical methods have been employed in the past to analyse Stefan problems
when no analytical solution exists [3, 10, |40, 43, 155, 164, 166, [113]. In this thesis we mainly
focus on analytical and approximate techniques. Numerical solutions are generally provided
to verify approximate solutions. Now, we provide a quick overview of some standard math-

ematical techniques for Stefan problems that will be used later in this thesis.

1.2.1 Similarity variables

The order of a partial differential equation can often be reduced by rewriting the equation in
terms of a similarity variable, grouping in the new variable two or several former independent
variables, and thus reducing the order of the equation. For instance, if we have a partial
differential equation whose independent variables are x and ¢t we may look for a similarity

variable of the form & = ct”x7 [16, 40]. Assuming the nondimensional version of (L4)—(L1)

2
68% = 271; on 0<z<s(t), (1.8)
T0,8) = 1, (1.9)
T(S,t) — O , (1.10)

dt Ox
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where 8 = L/c(Ty — T} is the Stefan number, and applying the similarity transformation

¢ = x/v/t to (L), the PDE is reduced to

S
Fee=—5 I, (1.12)

where F'(§) = T'(x,t). This has the general solution

F(&) =C) + Cyexf <§> . (1.13)

This may be solved in terms of the error function. Imposing the boundary conditions and

rewritting in terms of the original variables, the solution to the problem (L8)—(TTII]) is

T(z,t)=1-— Lf <2i\/i)

() s(t) = 20Vt (1.14)

where the constant A is the solution of
Bvmre™ erf(A) = 1. (1.15)

Expressions ([L.I4)-(LI0) receive the name of Neumann solution.
Although similarity transformations can only provide exact solutions to a very small num-

ber of Stefan problems, they represent the basis for analytical progress to other formulations

when combined with other techniques such as perturbation methods, as in

1.2.2 Boundary—fixing transformations

Another useful tool to simplify problems like (L4)—(L7) is the boundary—fixing transfor-
mation [16, 41, 40]. This is of particular interest when looking for numerical solutions,
where working with a moving boundary is always troublesome. For example, the boundary
immobilising coordinate n = x/s(t) applied to (L)1) yields

OF?  ,0F  dsdF
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and boundary conditions

ds OF
On=1. Fan=0, a5 (17

where F(n,t) = T(x,t). This fixes the problem of a moving domain, since the original
domain z € [0, s(¢)] is now mapped on to n € [0,1]. However, with the standard Stefan
problem we find s ~ v/t and so s; ~ 1/4/t (which appears in (I.I6)) is singular at ¢ = 0.

This difficulty may be removed by working in terms of z = s2, so

OF? _ OF ndz0F Bdz _ _OF (1.18)
a2~ "ot 2dt oy’ 2dt oyl '

In this form the equations are amenable to standard finite difference techniques.

The variable n = z/s(t) transforms the domain [0, s(¢)] into [0, 1]. However, the one-
phase reduction of the Stefan problem can be such that the heat equation lies in the region
s(t) < < oo instead of 0 < x < s(t). If this is the case, then the boundary fixing variable
that we use is n = = — s(t), which transforms the domain from [s(t), 0] into [0,00]. In
the case of solving the two-phase problem we could use both transformations, one for each
phase, i.e., 11 = x/s(t) and 72 = = — s(t). Indeed, other transformations arise depending
on the nature of each problem, as in chapters 2] and Bl where the geometry of the domain is

spherical.

1.2.3 Perturbation method

The aim of this method is to find an approximate solution to a problem, which cannot be
solved analytically, by means of a power series solution in terms of a small parameter [42].
For instance, we will now describe what is known as the large Stefan number expansion,
see [40]. Consider the problem (L&)-(LIIl). For large values of 8 we can define the small

parameter € = 1/ < 1 and the Stefan condition may be written as

ds oT

s
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From ([.19) we see that at leading order s; = 0 and, after applying the initial condition,
s = 0, meaning that the front is approximately stationary. This indicates that a large Stefan
number corresponds to slow melting (as can be seen from f o« 1/(Ty — 1)), so large
implies small heating). In order for the front to move (at leading order) we need to rescale

time ¢t = 7/e. This leads to

or  0°T ds oT
— = — = ) 1.2
“or ~ 922 dr ox | ,_g (1.20)
Hence, we try the expansion
T=To+ el +ETo+ ..., (1.21)
and find
O(e) - A S NP (1.22)
' o Qa2 0= S '
oT, 0*Ty sy [x°
O(e! 770 _ T =1 | = — 1.23
(<) or 0x? - =% (27 (1.23)
o, 0°Th
O(e? — = 1.24
(%) or Ox? ( )
If we substitute these solutions into the Stefan condition we find
ds 1 1lds
@ _ _(_2 -2 1.2
dr ( s + 63 d7'> ’ (1.25)
which gives
67T €
- NG (1—7 ) 1.26
i 3+e ’ 6 * (1.26)
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Figure 1.2: Exact (solid), leading order perturbation (dotted) and first order perturbation
(dashed) solution for the one-phase Stefan problem (L.8)-([I1]) for 8 = 2. Left: temperature
of the liquid at ¢ = 10. Right: evolution of the melting front.

In figure we compare the exact solution, the leading order perturbation solution and
the perturbation solution to O(e) . We observe that the correction introduced by the O(e)
term from (L23) has a strong effect, and even for the relatively large value of the small

parameter used, € = 0.5, the solution converges very quickly to the exact solution.

We note that after the O(e) solution, equation (L23]), we cannot take the perturbation
solution further. We stopped the series in 75 since it depends on % and so involves a term
Srr. Since we only have a single initial condition we cannot deal with this extra term that
makes the Stefan condition second order in time. We may overcome this problem by defining

the boundary—fixing transformation n = z/s and a new time variable 7(¢) = s(t), so that

T(z,t) = F(n,7) [40]. Then the problem (L8)—(LII) becomes

F7777 =TT (TF’T - nFn)v /BTTt = _Fn| F<077) = 17 F(17T) =0 ) (127)

n=1"

and for a large Stefan number we have

T = —ebFyl,_, . (1.28)
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Since ([L27h) contains 77 we substitute (L2§]) into it and perform the following expansion

F(n,7)=Fy+eF + R+ ..., (1.29)

to give
O(e%) - 0= a;?) — Fo=1-n (1.30)
Oy —C) R k) =t R=ST oy sy
O(é%) : ~C(7) (TF1r — nFyy,) = 8;;2 — , (1.32)

where C(1) = FU’nzl' An important point is that we could take this expansion as far as we
like as there is no issue with derivatives of 7, and the only reason to stop is that the algebra
becomes tedious. Once, we have enough terms in the expansion we replace F' in the Stefan

condition and solve the equation for 7.

1.2.4 The Heat Balance Integral Method

The heat balance integral method (HBIM) introduced by Goodman [32] is a well-known
approximate method for solving Stefan problems |3, [10, 64, 73, [71]. The basic idea behind
the method is to approximate the temperature profile, usually with a polynomial, over some
distance 0(t) known as the heat penetration depth. This is a fictitious measure of the point
where the thermal boundary layer ends. The heat equation is then integrated to determine
a ordinary differential equation for 6(¢). The solution of this equation, coupled with the
Stefan condition then determines the temperature and position s(¢). In chapter [ we apply
the HBIM to a one-phase Stefan problem related to the solidification of a supercooled melt.

We will now use this physical situation to illustrate the HBIM.

Consider the solidification of a supercooled liquid which initially occupies the semi-infinite

space [0, 00] and starts to solidify from the edge x = 0. The nondimensional version of the
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one-phase Stefan problem describing this situation may be written as

T 0*T
%:g? on s<x <00, (1.33)
T(s,t) =0, T(cot)=-1,  T(z,0)=-1, (1.34)

where T represents the temperature of the supercooled liquid, the temperature T = 0 rep-
resents the freezing temperature and T' = —1 is the far field and initial temperature of the

liquid. The Stefan and the initial condition at the solidification front s(t) are

ds or
5& I ) s(0) =0. (1.35)

s

The system ([33)-([L35) can be solved analytically by means, for instance, of similarity

variables and has the exact solution

T:—1+W, s=2M\t, (1.36)

where the value of A is obtained by solving the transcendental equation
BV erfe(A)eN =1 . (1.37)

The solution (I36)-(L37) represents the particular form of the classical Neumann solution
for the one-phase supercooled Stefan problem (L.33))-(L35).

The first step when using the HBIM consists in defining the heat penetration depth §(t),
the point after which we consider the temperature gradient to be negligible. In our model,
x = J(t) represents the point where the temperature of the liquid is sufficiently close to
the far field temperature T = —1. Note, this means we work over the domain [s(t),d(t)].
The second step consists in assuming a temperature profile describing the thermal response
of the material. This involves typically polynomials, although logarithmic, exponential and
error functions have been also utilized in the literature [15, 165, [69]. The profile will include

a number of parameters that will be chosen to match the boundary conditions. For the
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current problem, we propose

d—x §—z\"
T(w,t)—a1+a2<5_s>+a3<6_8> . (1.38)

The final step, is the integration of the heat equation over the spatial variable x to produce

the heat balance integral.

In summary, using the HBIM, the problem (L33)—(L34]) translates into

) 4 2
oT 0T
/s de: " wd:ﬂ on s<x <0, (1.39)
T(s,t) =0, T(0,t) = —1, T:(6,t) =0 (1.40)

It is straightforward to see that the parameters aj, ao and as from the assumed profile
(L3]) are readily found from the boundary conditions (L40). Hence, the temperature profile

becomes

zxm¢)=-47+<§:§>n. (1.41)

Equation (I.39) may be rearranged by means of the Leibniz integral rule to give

d 1
a s Tde - T|$:65t + T}:c:sst = Tm|:c:5 B Tx‘z:s : (1'42)

Then, assuming the polynomial to be quadratic, n = 2, and replacing (L41]) into (8.6) and

(L33) results in two ordinary differential equations

do ds

o = B2 0)=0, (1.43)

d 2

@ = Femy C0=0 .
with solutions

5= (38-2)s,  s=,|—t (1.45)

B ’ S\ 28(B-1)° '

Substituting the expressions ([L40) in (L4I) the temperature profile is completely deter-

mined.
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Figure 1.3: Exact (solid) and HBIM (dashed) solution for the one-phase supercooled Stefan
problem for § = 2. Left: temperature of the liquid at ¢ = 1. Right: time evolution of the
solidification front.

The main advantage of the HBIM is that it reduces a difficult problem such as (I33])—
(L33)) into a pair of easily solvable ODEs. In this case it may not seem of great use, since an
exact solution exists, but for more complex problems such as the ones developed in this thesis,
the HBIM is sometimes of incalculable help. In figure we compare the exact solution
(L36]) and the HBIM solution with n = 2. It is clear that even for n = 2, the simplest realistic
choice, the HBIM captures satisfactorily the behaviour of the exact solution. However, we
note that even though Goodman’s original choice was n = 2 the method may be improved
by assuming n as an unknown in the problem and determining it as part of the solution.
One option, known as the Optimal HBIM [70, [71], consists in choosing an exponent n that
minimizes the least squares error

or 9T

é
E, = / f(z,t)%dx where flz,t) = 5 92 (1.46)

This method significantly improves the accuracy of the HBIM and provides an error measure
that does not require knowledge of an exact or numerical solution. For certain problems,
for example when the boundary conditions are time—dependent, n may vary with time.

Sometimes, to keep the method simple n is then given its initial value since this is where the
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largest value of F, usually occurs. Other extensions of the HBIM based on determining n
as part of the solution exist. This is the case of the Refined Integral Method (RIM) [64, 91],
that integrates the heat equation twice to obtain an extra equation for n, or the Combined

Integral Method [65, [73], a combination of the Optimal HBIM and the RIM.

1.3 Extensions to the standard problem

To understand phase change in a more general situation several modifications must be intro-
duced in the formulation of the standard Stefan problem, for example to include phenomena
such as the melting point depression of nanoparticles, the velocity dependent freezing temper-
ature in supercooled liquids or the expansion upon melting of the liquid phase of a material.
Such modifications require us to review the derivation of the governing equations of the
Stefan problem, so, we briefly describe how to derive the heat equation from the energy
conservation equation and the Stefan condition from an energy balance at the solid-liquid
interface. This will provide general mathematical expressions that will be easily adapted for
modeling each physical problem dealt with within this thesis.

Bird, Stewart and Lightfoot [7] write down an energy balance, stating that the gain
of energy per unit volume equals the energy input by convection and conduction and the
work done by gravity, pressure and viscous forces. Assuming the effects of gravity, viscous
dissipation and pressure are negligible an appropriately simplified version of their energy

conservation equation is

gt |:p <I+ U;)] =-V. [pv <I+v22> +q} : (1.47)

where p is the density, I the internal energy per unit mass, v the velocity, v = |v|, and the
conductive heat flux q = —kVT. The quadratic term in the velocity is the kinetic energy

component. The internal energy is defined by

I=q(T-T))+ Ln in the liquid , (1.48)

I=c,(0-T)) in the solid , (1.49)
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where T represents the temperature in the liquid and 6 that in the solid. Again neglecting
the work done by gravity, pressure and viscosity conservation of mechanical energy for a

flowing liquid is

0 (1 1
n <2pﬂ)2) =-V. <2plv2v> . (1.50)

Noting that
V-(pIv)=v -V(pl)+pIV -v=v-V(pl), (1.51)

for an incompressible fluid, then equations (L47) and (L50) may be combined to give

0

a[p[]:—V~[va+q]:—v-V(pI)—V~q. (1.52)

All versions of the heat equation analysed in the thesis can be deduced from expression
(L52). For example, in the one-dimensional case, V = 9/0x, substituting (L48)-(L49) in
(L52) and assuming that none of the phases is moving, v = 0, yields (LI)-(L2), the most

basic form of the heat equation for the Stefan problem.

By means of ([L47)) we have specified energy conservation in the solid and liquid phases.
The study of the energy conservation across the solid-liquid interface will lead to the Stefan
condition. To examine the energy conservation at the phase change boundary, s(t), requires

the Rankine-Hugoniot condition

Vivg=0 = [Fs=lgn), (1.53)

where n is the unit normal and f, g are functions evaluated on either side of s(t) [3] (for
a derivation of (L53]) in the one-dimensional case, see Appendix). Applying (L53]) to the
energy balance (L47) in the one-dimensional case, where

2 2
f:p<1+”2> : g.n:pu<1+”2>+q, (1.54)
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and ¢ = —ks00/0x or ¢ = —k; 9T /Ox (for solid and liquid, respectively), and assuming that

the solid is stationary, gives the Stefan condition

{Pl [<cl<T<s, 0= T) + Lo + ;)} ~ pacs(Bs,1) — T,m} N

1)2
= pv [c;(T(s, t)—=Tp)+ Lm +2] (1.55)

T
T

ks
ox +

z=s(t) Ox

z=s(t) ‘

Equivalent to (L52) for the heat equations, equation (L55]) serves as starting point to obtain
all the Stefan conditions used throughout the thesis. For example, if the liquid does not move
(v =0) and the temperature at s(t) is the bulk phase change temperature, T'(s,t) = 0(s,t) =

T, then the standard form of the Stefan condition, (L3)), is retrieved.

In the following sections we will use (I.52]) and (L.55) to obtain heat equations and Stefan
conditions that will be used later in subsequent chapters. In section [[L3.1] we introduce
the specific form of the Stefan condition for cases where the interface temperature differs
from the standard phase change temperature. Then, we specify the particular expressions
describing the interface temperature for the phase change processes of nanoparticles and
supercooled melts. In section we present the changes in the governing equations and
boundary conditions induced by considering a density jump between the solid and liquid
phases. Finally, in section we discuss the effect of a variable phase change temperature
when reducing the two-phase Stefan problem to a one-phase problem. In addition, we show

how to derive an accurate one-phase model based on consistent physical assumptions.

1.3.1 Variable phase change temperature

There are many practical situations where the phase change temperature cannot be consid-
ered constant, e.g. when the phase change occurs in the presence of a curved interface or in
supercooled conditions [3, 4, 19, 38]. In both cases the interface temperature is a function of
time. With the standard Stefan problem, T'(s(t),t) = 0(s(t),t) = 1, where T}, is the bulk

phase change temperature. With a time-dependent phase change temperature this condition



20 CHAPTER 1. INTRODUCTION

is replaced by
T(s(t),t) =0(s(t),t) =T(t) (1.56)

where the form of T7(¢) will depend on the physical problem. Substituting (L56]) in (53],
assuming the liquid is stationary and phases with the same density, the Stefan condition

becomes

. 00 orT B
p1[Lm — (g —cs) (T, —T7)] s¢ = ks% - kl% on x = s(t). (1.57)

The difference between ([L57) and the standard Stefan condition (L3)) is the term (¢ —
cs)(Tr, — T7). Inspection of (LET) reveals that, if 77 = T, the standard form is retrieved.
One way to reduce (L57)) to its standard form, but keeping (I.50]) in the model, is by assuming
the specific heat for the liquid and solid phase are equal, i.e. ¢; = ¢s. However, as shown in
chapter 2] in the context of nanoparticle melting, this assumption leads to inaccurate results.

In the two subsequent sections, we introduce the concept of a nanoparticle and pro-
vide motivation for the study of its phase change process. We present the Gibbs-Thomson
equation, the mathematical expression for 77 describing the melting point depression of
nanoparticles. Then, we discuss supercooled liquids and the interest in their solidification
process. Further, we provide a nonlinear expression for 77 modeling the dynamics of the

molecules at the solid-liquid interface.

Nanoparticles

According to the International Union for Pure and Applied Chemistry, a nanoparticle is a
particle of any shape with dimensions in the range 107°-10~"m [110]. Nanoparticles have
fascinated the scientific community since the second half of the last century, due to their
remarkable physical properties, which are not obseerved at the bulk scale [35, 136, 87]. Despite
the reduced size of nanoparticles, continuum theory describing phase change processes is
considered to be valid for particles with radii larger than 2nm [36]. Kofman et al [48] state
that at scales smaller than 5nm the melting process is discontinuous and dominated by

fluctuations. Kuo et al [50] observed structural changes and a quasi-molten state in their
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study of nanoparticle melting between 2-5nm.

From a practical point of view, nanoparticles are very interesting because they are cur-
rently being used for new and revolutionary technological applications such as phase change
memories [22,199], phase change materials [46], nanofluids [116] and in biological applications
such as drug carriers [6, 131, 57, 188] or thermal agents for hyperthemia treatments of tumours
[44]. Some of the aforementioned applications work directly in the phase change regime or
occur at very high temperatures, indicating the importance of understanding the thermal

response and likely phase change behaviour of nanoparticles.

An interesting property directly affecting the melting process of nanoparticles is the
melting point depression or Gibbs-Thomson effect [3, I8, 18, 98], which is a well-known
physical phenomena that occurs on surfaces with a high curvature. A nanoparticle can be
imagined as a cluster of atoms. The surface atoms are more weakly bound to the cluster
than the bulk atoms and melting proceeds by exciting the surface atoms and separating them
from the bulk. For a sufficiently large cluster the energy required is relatively constant since
each surface atom is affected by the same quantity of bulk atoms. However, as the cluster
decreases in size the surface atoms are surrounded by an inferior number of bulk atoms and,
so feel less attraction to the bulk. Consequently, less energy is required for separation. This
translates into a decrease of the melting temperature at the surface of nanoparticles. The

most general form of the Gibbs-Thomson equation is given by

1 1 Ty Tr « 204K
— —— ) (pr—pa) =L <—1)—|— cq—c [Tﬂn()—i—T —T[}—I— , (1.58
<pz ps> ( o) = Lm Ty, (er=ec) Ty, " Ps (1.58)

where p is the density, L,, the latent heat, ¢ the specific heat, p the pressure and o the
surface tension [3]. The subscripts s and [ indicate solid and liquid, respectively. The mean

curvature « is given by
1/1 1
e 1.59
"5 (31 * RQ) ’ (1.59)
where Ry and Ry are the two principal radii of curvature. If R is the radius of a sphere or
cylinder, then k = 1/R or k = 1/2R, respectively.

In chapter ] the spherical Stefan problem with a variable phase change temperature,
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described by (L58]), is analysed. Pressure differences are not considered and thus the left
hand side of (L58]) is set to zero. In the presence of a high curvature, as on the nanoparticle
surface, even if the pressure variation is relatively high, the term is small compared to the
rest, as will be discussed in Under the assumption that the specific heat remains
constant throughout the liquid and solid phase (¢; = ¢5), expression (L58]) yields the classical

form of the Gibbs-Thomson relation

2
Tr =T (1 - p“g”) . (1.60)
Ss+H=m

In we study the effect of a density change between the solid and liquid phase in the
nanoparticle melting process. In this case, to obtain a more tractable mathematical model

we consider ¢; = ¢ and use (L60) instead of (L5S]).

In chapters 2] and Bl we consider models with a spherical geometry. In these models,
melting begins due to a high temperature at the surface of the nanoparticle. As the liquid
phase grows at the nanoparticle surface, the solid phase is reduced in turn. The solid-
liquid interface, which also defines the radius of the solid portion, is denoted by R = R(t).
As melting proceeds the curvature of the interface R(t) increases rapidly. Therefore, the
melting point depression due to the Gibbs-Thomson effect at R(t) is larger as the process
continues leading to a remarkable increase in the velocity of the nanoparticle melting process.

High curvature induces a variable phase change temperature on the surface. In super-
cooling conditions the molecular attaching mode at the solid-liquid interface plays a role and

leads to a decrease of the phase change temperature, which we now introduce.

Supercooled melts

Supercooling is the action of cooling down a liquid below its standard freezing point. These
liquids are trapped in a metastable state and are ready to solidify as soon as the opportunity
arises. The supercooled state of a liquid can be achieved, for instance, by applying very high
cooling rates, cooling down a liquid adjacent to a material surface with a particular molecular

arrangement or cooling the liquid down while it is being levitated [34, 156, 196, [121]. Clouds
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at high altitude are a good example of this as they contain tiny droplets of water that in
the absence of seed crystals do not form ice despite the low temperatures. Freezing rain
is caused by the precipitation of these drops that, upon impact with any surface, instantly
freeze, and sometimes accumulate to a thickness of several centimeters. In fact, when an
aircraft flies through a cloud of supercooled droplets it provides a large nucleation site. As a
consequence there can be significant ice accretion, which can have a detrimental effect on the
plane’s performance [72]. However, materials formed from supercooled melts have desirable
properties for many technological applications, such as metallic glass [109]. The interest in
these kind of materials lies in the fact that they lack a crystalline structure, which provides
them with increased strength, durability and elasticity [109]. Furthermore, phase change
techniques in supercooled conditions are also being examined for the cryopreservation of

human ovarian cortex tissues and food storage |54, 68].

As a liquid is cooled down below its freezing point, the energy of the molecules and hence
their motion is decreased. As the solidification of a supercooled liquid begins the reduced
molecular motion in the liquid phase affects the ability of the molecules to move onto the
solid interface [4, [19]. In this situation the temperature at which the liquid solidifies is not
constant and depends on the velocity of the solidification front, s;. The relationship between

the velocity and the temperature at the solid-liquid interface, 17, is given by

dAh _—_a_
St = 6hT;1€ M (Tm - TI) ’ (1'61)

where d is the molecular diameter, h Planck’s constant, ¢ the activation energy and k
the Boltzmann constant [4]. The parameter Ah is the product of the latent heat and the
molecular weight divided by Avogadro’s number. If the degree of supercooling, (T, — T7),

is small (L.6]]) can be approximated in the linear form
Ti(t) =Ty, — st (1.62)

where ¢ = 6h7T, e T /(dAR). We note that (LGI)), as with the generalized Gibbs-Thomson

equation (58], represents an extra equation in the Stefan problem that has to be solved
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in combination with the heat equations and the Stefan condition. The role of the linear
approximation ([L62) in the Stefan problem is the same as that of the classical Gibbs-
Thomson relation (L60); they can be directly incorporated as time-dependent boundary

conditions in the model.

In[chapter 4] we study the solidification of supercooled melts by introducing (L61]) into the
one-phase Stefan problem. In previous studies of the supercooled Stefan problem the linear
approximation ([.62]) has been used extensively, regardless of the degree of supercooling.
Hence, we analyse the problem with the linear approximation and we test its performance
against the solution using the nonlinear form (LE1]). In addition, we show how the Neumann
solution (30 remarkably overestimates the velocity of propagation of the freezing front in

contrast with the solutions obtained using (L61]) and (L62).

1.3.2 The effect of density change

One of the basic assumptions in standard analyses of Stefan problems is that of constant
density, p; = ps. However, in reality, melting and solidification processes are always affected
by changes in the density, which translate physically to the shrinkage or expansion of one
of the phases. For instance, in countries with cold climates, pipe bursting is a recurrent
problem. As water freezes, the molecules crystallize into a hexagonal form, which takes up

more space than molecules in the liquid form, thus, causing the pipe to burst.

The changes in the mathematical model when the density jump between phases is intro-
duced are significant. To demonstrate this we will now focus on the case where the liquid
phase moves due to expansion upon melting. Then, expression ([L52]) combined with (48]

and the heat flux q = —k; VT, yields the heat equation
oT
PICl (815 + VT - V) = leQT s (1.63)

where v is the velocity of the fluid |3, [7]. The solid does not move and the standard heat

equation (L2)) holds. For one-dimensional Cartesian problems the velocity due to expansion
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of the fluid takes the form

v = (1 - ps) st . (1.64)

P
Expression (L64) can be easily derived from mass conservation arguments [3]. In chapter Bl

we derive an analogous form of (I.64]) for a one-dimensional spherically symmetric problem.

In addition to the heat equation, the kinetic energy due to the moving fluid also affects
the energy balance at the solid-liquid interface. Equation (L55]) in combination with (L.G64]),

for the general case T'(s,t) = 0(s,t) = T7(t) # T, leads to the Stefan condition

ps[Ly+ (cr = o) (Tr = Ty) T st

1.65
A or (1.65)
Pofp P} @—p, &) &
2 2 o |,_, or |,
A complete derivation of ([L65) for the case ¢; = ¢s can be found in [3]. The expression

(C65) contains a new term proportional to the third power of the front velocity s;. The
cubic term in (L63]) impedes one from finding an exact solution to the problem, and this is
one reason why the assumption ps = p; is used so extensively in the literature. However,
as will be shown in this reduction leads to significant inaccuracies. Obviously, if
we set p; = p, in (L6D) we retrieve the Stefan condition (L57). If we also set Ty = T}, we

obtain the standard Stefan condition (L.3]).

In we study the influence of a density change between phases in the melting
process of nanoparticles. In this case, the Stefan problem consists of the heat equation (65
for the liquid and the standard heat equation (I.2)) for the solid phase. Given that we focus
on the effect of p; # ps, we assume the specific heats between phases to be equal, ¢; = ¢, to
reduce the complexity of the model. This enables us to neglect the term (¢; —¢,)(Tr —T)) in
(L65) and use the classical Gibbs-Thomson relation (LG0) instead of the generalized version
(L58). The effect of density change combined with melting point depression leads, in some
cases, to an increase in the melting times of more than 50% when compared to the solution

assuming ps = pj.

In the next section we briefly introduce the problems induced by having a variable phase

change temperature when reducing the two—phase Stefan problem to a one—phase problem.
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1.3.3 One—phase reductions and energy conservation

The two—phase Stefan problem is typically difficult to solve, given that it involves solving
two partial differential equations on an a priori unknown, moving domain. The associated
one—phase problem is a significantly less challenging prospect. The key to obtaining the one—
phase reduction of the standard two-phase Stefan problem is by assuming that the phase
change temperature is constant. For example, in section we transformed the two—phase
problem describing the melting of a semi-infinite slab (II)-(L3]) into the associated one—
phase problem (L4)-(L7) by assuming the temperature of the solid phase to be at the phase
change temperature, 0(z,t) = T)5. This was sufficient to avoid the heat equation for the
solid and remove a temperature gradient term in the Stefan condition.

In this thesis we deal with Stefan problems where, for physical reasons, the phase change
temperature is time-dependent. With a phase change temperature that depends on time,
assuming the solid at 0(x,s) = 1,5 is not consistent with the boundary condition at the
phase change boundary where 0(s,t) = T'(s,t) = T7(t). An a priori sensible assumption is
to consider 0(x,t) = Tr(t), which allows one to neglect the solid temperature gradient from
the Stefan condition. However, the heat equation for the solid then reduces to 8, = 0, which
is inconsistent with the temperature in the solid being a function of time. The question is
how can we obtain a one-phase reduction in such a situation? The key to answering this
question lies in the energy conservation principle and this will be dealt with in chapters
and [0

In chapter Bl we formulate a one-phase reduction of the two-phase Stefan problem with
supercooling based on energy conservation arguments. In chapter [0l we discuss the problem
from a more general perspective, identifying the main erroneous assumptions of previous
studies leading to one-phase reductions that do not conserve energy or, alternatively, are
based in non-physical assumptions. Finally, we provide a general one—phase formulation of
the Stefan problem with a generic variable phase change temperature, valid for spherical,

cylindrical and planar geometries.
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Abstract

In this chapter we analyse the melting of a spherically symmetric nanoparticle, using
a continuum model which is valid down to a few nanometres. Melting point depression is
accounted for by a generalised Gibbs-Thomson relation. The system of governing equations
involves heat equations in the liquid and solid, a Stefan condition to determine the position
of the melt boundary and the Gibbs-Thomson equation. This system is simplified systemat-
ically to a pair of first-order ordinary differential equations. Comparison with the solution
of the full system shows excellent agreement. The reduced system highlights the effects that
dominate the melting process and specifically that rapid melting is expected in the final
stages, as the radius tends to zero. The results agree qualitatively with limited available

experimental data.

27
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2.1 Introduction

Nanomaterials are currently the subject of intense investigation due to their unique proper-
ties and a wide range of novel applications such as in optical, electronic, catalytic and biomed-
ical applications, single electron tunneling devices, nanolithography etc. [2, 45,192, 98]. One
reason for their interesting behaviour is that they have a very large ratio of surface to vol-
ume atoms which can have a significant effect on the material properties [36]. A particular
example of this is the well-documented decrease in phase change temperature as the material
dimensions decrease [98]. The experiments of Buffat and Borel [§] show a decrease of around
500K for gold particles with radius slightly greater than 1nm. The molecular dynamics
simulations of Shim et al [98] show a 60% decrease (more than 800 K) below the bulk melt
temperature for gold nanoparticles with a radius around 0.8 nm. Experiments on tin and
lead have shown decreases of the order 70K and 200 K respectively [18]. Drugs with poor
water solubility may be administered as nanoparticles to improve their uptake. Bergese et al
[6] and Liu et al |57] study antibiotic and antianginal drugs, which exhibit a melting point
depression of around 30 K (a 10% decrease from the bulk value). Since gold has low toxicity,

gold nanoparticles also make good carriers for drug and gene delivery [31, 88].

Given the diversity of applications of nanoparticles and that many occur at high tempera-
tures it is important to understand their thermal response and likely phase change behaviour
[98]. The present study is undertaken with this purpose in mind. In the following we will
analyse the melting of a nanoparticle using continuum theory. The analysis will be based
on standard phase change theory, with appropriate modification to account for the variation
in the phase change temperature. We will present results primarily for the melting of gold,
since much data is available for this material, however the theory is general and may be

applied to other materials by using the appropriate parameter values.

Continuum theory may be applied when there is a sufficiently large sample size to ensure
that statistical variation of material quantities, such as density, is small. For fluids the varia-
tion is often quoted as 1% [1]. Assuming a spherical sample Nguyen and Werely [81] suggest

this level of variation requires a minimum of 10* atoms and so deduce a critical dimension of
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the order 10 and 90 nm for liquids and gases respectively. By comparing molecular dynamics
simulations to computations based on the Navier-Stokes equations Travis et al [112] show
that continuum theory may be applied to water flow down to around 3nm. In the field of
heat transfer and phase change it has been suggested that continuum theory requires particle
radii greater than 2nm [36] (this is based on assuming a relative temperature variation of
3%). Kofman et al [48] state that at scales smaller than 5nm the melting process is dis-
continuous and dominated by fluctuations, Kuo et al [50] observed structural changes and a
"quasi-molten’ state in their study of nanoparticle melting between 2-5nm. Indeed for very
small particles it may be necessary to modify the model for heat flow, one method is to
augment the heat equation with an inertia term, see [114] for example. At the end of §2.3 we
discuss the effect of this extra term on the solutions for various particle sizes. We conclude
that care should be taken when modelling the phase change of very small particles and also

that the continuum limit will vary depending on the material.

The standard continuum model for phase change is known as the Stefan problem. The
simplest example involves solving a one-dimensional heat equation in Cartesian co-ordinates
subject to constant temperature boundary conditions over a time-dependent domain whose
extent is unknown ‘a priori’. At the phase change boundary, » = R(t), the temperature
is fixed at the constant bulk phase change temperature T'(R(t),t) = T,;,. The material
properties remain constant throughout the process. This problem has a well-known exact
solution, for more details see [3, 19, 40]. However, in reality material properties vary and
there is often a jump in property values when the phase change occurs. With high curvature
(such as occurs in the nano context) the phase change temperature may vary significantly:
this leads to a coupling between the phase change temperature and the standard governing

equations for the Stefan problem and prevents an analytical solution.

In this chapter we will begin by discussing the generalised Gibbs-Thomson equation
which describes the melt temperature variation. We will then describe the mathematical
model appropriate for the melting of a nanosphere, subject to a fixed boundary temperature
(greater than the phase change temperature). Noting that the Stefan number, the ratio

of latent heat to sensible heat, is generally large for practical situations in §2.4] we seek
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approximate solutions which exploit this feature. This is first carried out for a simple one-
phase reduction, where the temperature of the solid is neglected, and then for the two-
phase model where both solid and liquid regions are analysed. Results are presented in §2.5]
comparing the numerical and approximate solutions. The relation between the results and

limited experimental observations is also discussed.

2.2 Generalised Gibbs-Thomson relation

The vast majority of analyses on phase change assume that the melt temperature remains
constant throughout the process. In situations where the melt temperature is variable and
the density and specific heat remain approximately constant in each phase the melt temper-

ature may be estimated from the following generalised Gibbs-Thomson relation

1 1 T T 204K
- = — =Ln|=—-1 Ac |TmIn | — T —1T, 2.1
<Pz Ps) (b1 = Pa) = L (Tﬁz ) i C[ m (T* > T m] " ps @1)
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where T}, is the temperature at which the phase change occurs, 7% the bulk phase change
temperature, c is the specific heat, Ac = ¢;—cs, p the pressure (and p, the ambient pressure),
o the surface tension and x the mean curvature, subscripts s, [ indicate solid and liquid. A
complete derivation of this equation from thermodynamical principles can be found in [3].
Various limits of equation (2.I)) produce familiar relations. For example, with constant

parameter values Ap = Ac = 0 the standard Gibbs-Thomson equation is retrieved

2
Ty =T, <1 - p?”) . (2.2)
s+Hm

This demonstrates how the melt temperature decreases as the curvature at the interface in-
creases. If ok < psLy, then T,, =~ T is the standard constant melt temperature boundary
condition.

The use of equation (Z2) rather than 7,, = 7)) may appear to be a rather simple
modification, however it significantly complicates the system. If we consider the problem

of melting a spherical particle the mean curvature will be related to the position of the
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phase change front k = 1/R(t) and so the boundary condition T'(R(t),t) = T, (t) is time-
dependent where T,,(t) must be calculated as part of the solution process. Further, the
standard reduction of the two-phase to a one-phase problem ceases to make physical sense.
It T,,, = T};, is constant we may define a one-phase problem by setting the solid temperature
to Ty for all time. If T}, is a function of time then the one-phase problem requires the solid
temperature to equilibrate instantaneously to the boundary temperature. Evans and King
[25] show that the standard one-phase reduction loses energy. Myers et al [74] present a
one-phase reduction that conserves energy and matches closely to numerical solutions of the

two-phase formulation.

The relative size of the terms in (2.]]) indicate their importance in the melting process. If
the melting temperature deviates significantly from the bulk value due to curvature effects
then the first term on the right hand side must have a similar magnitude to the final term.
For a gold nanoparticle with radius 6 nm we find using expression (Z.1]) that 7, ~ 7% —100 K.

Taking p; — pa = 10° Pa and using the parameter values from Table 2] gives

I, Ps
Tm .
Ac [Tm In (T*> + 1T, — Tm} = 0(130) > (2.3)

(pll — pls> (Pt = pa) = 0(0.6) ,

Obviously in such a situation it is the pressure term that should be neglected first (this is
achieved by setting p; = ps in equation (2.1])). Of course there are physical situations where
the pressure variation is much higher and so may be the driving mechanism for the melt
temperature variation, see [21], however this will not be the focus in the following work.

Therefore, the version of the Gibbs-Thomson equation that will be used here is

T T P
0=L, (Tm - 1) T Ac [Tm In (Tm) Y Tm] i O;j’”. (2.4)
m m S

In Figure[2Ilwe show a comparison of the experimentally measured melt temperature against

particle radius for gold and the prediction of (2Z.4]). The parameter values used in the figures
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are given in Table 2l The diamonds represent the experimental points, solid lines come
from (24) (i.e. with Ac # 0) and dashed lines from (22) (i.e. Ac = 0). The agreement
between equation (2.4]) and experiment is excellent. The curves for Ac # 0 and Ac = 0 may
appear close, but there is a significant difference in the prediction of melt temperatures. At
2nm the two models differ by approximately 35K. In the results section we will see that
this can have a large effect on the melt rate. For radii below approximately 1nm, where
T, =~ 329K, equation (2.4]) becomes multi-valued, this is shown in the inset. So we may
assume that the generalised Gibbs-Thomson relation should not be applied below this value.
Of course, since continuum theory is invalid for such small particles this does not place any
extra restrictions on the mathematical model. In §2.5] we will cut-off solutions at R =1 nm.
In fact there are a number of different expressions for the melting point depression derived
from distinct hypotheses, all of them agreeing in T,,, — T o« x when the parameter values
are constant [8, 48, 152, [78]. The main difference between them lies in the dependence on
the interfacial energy between phases oy 26, [78]. We show one example, the dash-dot curve
which represents Pawlow’s formula|37, eq. 1], [118] (Pawlow’s formula is a form of Gibbs-
Thomson relation, equation (2.2 where the solid-liquid surface tension oy is replaced by
2/3

Osv — 0(ps/p1)*’? and the subscript v denotes vapour). Obviously this does not accurately

capture the current data set.

Nanda [78] points out that different research groups have found different dependences of
T, on the system parameters, even when examining the same material. This is attributed
to different types of melting, such as liquid skin melting or homogeneous melting. Another
cause for deviation at very small radius may be explained by considering the particle as a
cluster of atoms. The particle is made up of bulk and surface atoms: the surface atoms are
more weakly bound to the cluster than the bulk atoms and melting proceeds by the surface
atoms separating from the bulk. Obviously this separation is paid for with energy (the
latent heat). With a sufficiently large cluster the energy required is relatively constant since
each surface molecule is affected by the same quantity of bulk molecules. However, as the
cluster decreases in size the surface molecules feel less attraction to the bulk, consequently

less energy is required for separation. The change in the ratio of surface to bulk energy
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may also lead to a structural transition and a reduction in surface tension. Kofman et al
[48] suggest that around 5nm there is a surface induced transition in the melting process.
The molecular dynamic simulations of Koga et al [49] indicate that for gold nanoparticles a
structural transition occurs between 3 and 14nm. The new particle configuration will then
have a different value for the interfacial free energy. Samsonov et al [93] state that for metal
melt nanodroplets when R < 4nm the surface tension takes the form o4 o R and their MD
simulations also indicate a structural transition around this value. Sheng et al [97] specify a
decrease in latent heat proportional to 1/R. This leads us to the simple conclusion that the
present mathematical model should not be applied down to R = 0 and as already mentioned

we cannot apply Gibbs-Thomson below 1nm for gold.
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Figure 2.1: Size dependence of the melting temperature of gold nanoparticles. Solid line
represents T, from (2.4]), dashed line corresponds to (2.2]) and dash-dotted line to Pawlow
model. Diamonds are experimental data from [8]. The subplot shows T}, from (2.2]) and
[24)) for radius below 2nm.
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Table 2.1: Approximate thermo%namical parameter values for water, gold, and lead. The

values for oy are taken from ﬂé, ,@]
Substance || T}, L, cl, Cs Py Ps ky, ks o
(K) | (J/Kg) | (J/KgK) (kg/m?) (W/mK) | (N/m)
Water 273 | 3.34x10° | 4181/2050 | 1.00x10%/0.92x10% | 0.55/2.20 | 0.03
Gold 1337 | 6.37x10* | 163/129 | 1.73x10%*/1.93x10* | 106/317 0.27
Lead 600 | 2.30x10* | 148/128 | 1.07x10%/1.13x10% 16/35 0.05

2.3 Mathematical model

Tw Ro

Figure 2.2: Sketch of the problem configuration.

The practical situation motivating the present study is the melting of nanoparticles,
consequently the mathematical model is formulated as spherically symmetric. A typical
configuration of the problem is illustrated in Figure This depicts an initially solid,
spherical nanoparticle which is heated at the surface to a temperature Ty > T,;,. The outer

region of the particle starts to melt, and the new liquid phase grows inwards until the whole
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solid is melted. The location of the solid-liquid interface is represented by R = R(t). The

governing equations for the two-phase problem may be written as

aT 19 [ ,0T

CZPIE = k ﬁa (7’ 87’) s R <r< R() , (25)
90 10 [ ,00

Cspsa = sﬁg <T ar>, 0<7’<R, (26)

where T represents the temperature in the liquid, # the temperature in the solid, Ry the
initial radius of the particle and k the thermal conductivity. These equations are subject to

the following boundary conditions

T(Ro,t) =Ty  T(Rt)=0R,t)=T,  6.(0,t)=0, (2.7)

and the Stefan condition

T
T
r=R or

dR 90

Ly, +Ac(Ty, —T5)] — = ks—
pu [Lim + Ac( 5

R , (23)

r=R

where R(0) = Ry and T, is specified by (Z4). No initial condition is imposed on the
temperature in the liquid, since it does not exist at ¢ = 0. In the solid we set 6(r,0) =
T:»(0), which allows us to compare the one and two phase solutions analysed in the following
sections. Mathematical analyses typically invoke numerous simplifications, such as applying
a single value for the thermal properties irrespective of phase or a constant phase change
temperature. In the following we will only impose constant density (in line with neglecting
pressure variation in the Gibbs-Thomson relation). This significantly simplifies the analysis
and it is the material property which has the least variation (from Table 2] we see that p

increases by approximately 10% when ice melts whilst ¢ doubles and k decreases by a factor

4).
Introducing the dimensionless variables
A T-T; A 0—-T: - ~ k
T = ™ b= m P L f=—"L ¢, (29

Ty — T’ Ty —Tp Ry Ry’ pici R%
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in (2.5)-(2.8) and dropping the hats the following nondimensional formulation is obtained

oT 10 [ ,0T

— = == —_— 1 2.1

ot 7“287“<T 87“)’ E<r<i, (2.10)
00 k10 [ ,00

- = X~ - 2.11
ot C7“2a7“(r 0r>’ O<r<i, (2.11)

with boundary conditions T'(1,¢) =1, T(R,t) = (R, t) = T),(t), 6,(0,t) = 0 and the Stefan

condition
dR k@ﬁ oT

B+ (1—c)Ty]

r=R
The nondimensional melting temperature T}, is scaling in the same manner as T" and deter-

mined from

0:5@%+2)+“&9[@%+£&m@hw4n—ﬂ4. (2.13)
The dimensionless parameters are defined by
c=cs/a, k=ks/ki,  B=Ln/cAT,
0T = AT/T,, I'=204T,, /Ropi Lin AT

where AT =Ty — T},

McCue et al [60] carry out a mathematical analysis of a similar system using the standard
Gibbs-Thomson relation, equation (2.:2). Their expression for interfacial energy makes this
equivalent to Pawlow’s formula. This choice corresponds to setting ¢ = 1 in equation (ZI3)
and changing the value of I'. In the Stefan condition they apply ¢ # 1. They go on to analyse
small time and large Stefan number solutions and discuss the system behaviour as R — 0.
In the following we will focus more on the physical problem, which requires large Stefan
number. Accepting that continuum theory does not hold as R — 0 we do not analyse that
limit. We retain all terms in equation (2.I3]) and show that setting ¢ = 1 is only valid for
large particles. In [120] the one-phase limit with ¢ = 1 is analysed for inward solidification,

so the phase change temperature increases as the solidification front moves inwards.
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Note, as the particle size decreases the heat equations may require some adjustment. One
such method is to include an additional inertia term 7, /7 Ty, see [114] for example, where
7, is a relaxation time (of the order 1ps) and 7 = p;c;L?/k; is the diffusive time-scale. For a
100 nm gold nanoparticle, neglecting this term will lead to errors of the order 0.3% however,
due to the L? term, with a 10 nm particle the error may be as much as 30%. Consequently,
as pointed out in the introduction the present theory will lose accuracy as the particle size

decreases.

2.4 Solution method

To clarify the analytical methods used in the following section, we will begin by analysing
the one-phase problem. There is a long history of studies of one-phase solidification typically
neglecting melting point depression, see [59, [89] for example. This approximation involves
setting the solid to the melt temperature § = T,,(¢t). It may also be viewed as a large
k/c approximation (for gold k/c ~ 3.8). Evans and King [25] point out that in this limit
a thermal boundary layer will exist and the one-phase formulation loses energy. However,
their proposed solution to the problem is not valid for physically realistic systems and, whilst
conserving energy, is less accurate than the standard reduction. An accurate one-phase
formulation which conserves energy is derived in [74], this adds an acceleration term Ry to
the Stefan condition. However, in §2.4.1] we will use the standard reduction since it is simple
to formulate and leads to relatively small errors (when compared to those introduced by
using continuum theory on very small particles). In §24.21 we extend the one-phase solution
to the more physically realistic two-phase case and in §2.5] we show that the one-phase

approximation of §2.4.1]is accurate for large particles.

2.4.1 One-phase reduction

Assuming k/c > 1 in (2I1]) at leading order we may neglect the 6; term and find 6 = T}, (¢)

is the solution satisfying the reduced equation and boundary conditions. This permits us to



38 CHAPTER 2. THE MELTING OF SPHERICAL NANOPARTICLES

eliminate the term k6, from (2ZI2]) and the problem reduces to

oT 18(28T

E - ﬁ% " 87”) ’ T(Lt) =1, T(R7 t) =Tm , (214)

where T is the temperature of the liquid phase, Ty is the temperature at the surface of the

particle and T, is the melting temperature specified by (2.13)), with the Stefan condition

B+ —on,) BT

=— — . 2.1
dt or|,—_p (2.15)

The system requires no initial condition on the temperature, since at ¢ = 0 there is no
liquid, however we must then apply a condition on the domain, R(0) = 1. The Stefan
number, 5 = L,/ AT, is a characteristic nondimensional parameter of our system that
provides a measure of the importance of the latent heat released in the phase change, L,
relative to the heat required to increase the temperature of the material by AT (that is
AT). For example, for a temperature increase of AT = 10K we have § ~ 8, 40, 12 for
water, gold and lead, respectively. Obviously, the smaller the increase AT the larger the
value of 8. Due to the small volume of the nanoparticles the energy required to melt them is
also small: any increase above the melting temperature, AT, on the nanoparticle surface is
enough to almost instantaneously melt it. Hence, working in a large Stefan number regime,

where 8 > 1, is a sensible assumption.

The standard large 8 reduction of the Stefan problem involves re-scaling time, t = 57,

so that equations (ZI4)—(2I5]) become

10T 10 [ ,0T B _
Bor  r2or (r 3r> , T(r)=1,  T(R7)="Tn, (2.16)
(1-¢). 1dR  OT
[1+ e i (2.17)

Assuming 1/ < 1, it may be used as the small parameter for a perturbation solution
of the form T = Ty + Ty /8 + O(1/5?) [42]. Substituting this series into ([ZI6) and equating

like powers of 1/ yields a sequence of differential equations. If the sequence is cut at the
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first order, we obtain

O(1) : 0 :%% <7~2%TT°> . To(lL,m)=1, To(R,7) =Ty, (2.18)
O(1/8) : % :%2% (ﬂm;l) (L) =0, Ti(R,r) =0 (2.19)
with respective solutions
T0:1+(Tm—1)§ (11__;) , (2.20)
T, = (3Rg(11t7]’%2— D { [(3 —r)r— z] - g (f:;) [(3 — R)R— ]2%] } % ;o (2.21)
where
" i1 - R) (2.22)

3R> [1+ U In (1,07 + 1)|

At this point, we already have an approximate solution for the temperature, T =~ Ty +
Ty /5. However, this solution contains the variables R and T, which are still unknown. We

obtain an equation for R(7) by substituting for 7" in the Stefan condition (Z.I7])

dR (T, —1) 1 1 1 -1

— =1+ -9 (l—c— = |Th+ == — . 2.23

dr R(l—R)[ +B{( ‘ 3R) "3R ‘“H (2.23)
We obtain an equation for T}, by taking the time derivative of ([2I3]). This is,

dTm_ 3#1 dj
dr 1—Rdr’

(2.24)

The equations (2.23)) and ([2:24]) form a pair of coupled ordinary differential equations. This
is a much simpler system to solve than the initial partial and ordinary differential equation
system which applied over an unknown domain. Note that the initial condition for R is
R(0) = 1 and the initial condition for 7T}, is obtained by substituting R = 1 in (2.13)) and
solving the subsequent nonlinear equation. We could make some analytical progress on the
solution for R by using an expansion of the form R ~ Ry+ R1// on equation (2.:23]), but this

turns out to be rather complex whilst using any standard numerical tool, such as Matlab
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routine odel5s, on ([2:23)-([2:24) is straightforward.

Equations (2.23] 2.24])) have two obvious singularities at R = 0, 1, where the velocity R, =
0o. The initial singularity, when R = 1, is unphysical and a result of the boundary condition.
The Stefan condition states that the velocity R, is proportional to the temperature gradient
T,. The temperature gradient T} = (T,,,(t)—T(1,t))/(1—R) and since T}, (0) # T(1,0) it will
be infinite at 7 = ¢ = 0, when R = 1. This singularity is typical for Stefan problems where
the boundary temperature is fixed and could be avoided by applying a different condition,
such as a heat flux or kinetic undercooling [25]. The second singularity, at R = 0 is a
result of the physical system and not related to the initial or boundary conditions. The
existence of a single singularity in the system may be inferred from Figure 1] the gradient
Ty — —o0 as R — 0 (but nowhere else). Note, this singularity could cause a problem with
our perturbation solution, which requires the O(1//) term to be much smaller than the
leading order, hence our solution may break down as R — 0. However, we have also made
it clear that our solution must break down due to the failure of the Gibbs-Thomson relation

and continuum theory in this limit so this issue is not a great mathematical concern.

The governing equations contain various parameters which control the behaviour to dif-
fering extents: the largest effect will be due to leading order terms. Equation (2.24]) is simply
the derivative of the Gibbs-Thomson relation (ZI3]) which, after neglecting O(1/3) terms,
shows that T}, ~ —I'/R. The leading order of equation (223 shows the R variation is
proportional to T, — 1 = —1 — I'/R. The rate of decrease of the solid radius is therefore
controlled primarily by I' = 2047} /(Ropi Ly AT), that is, a particle will melt rapidly if it
has high surface tension or bulk melt temperature or low density and latent heat. For any
given material these parameters are fixed so the actual melting can only be controlled by

the initial particle radius Ry and the temperature change AT

The one phase model is sometimes reduced by making assumptions on the parameter
values. A common reduction involves equating the specific heats in each phase, ¢; = ¢;
(or ¢ = 1 in our nondimensional notation) |[120]. This assumption is convenient because it
removes 1, from the Stefan condition (Z.I5]) and reduces the generalized Gibbs-Thomson

equation (ZI3)) to the standard, simpler version where T, < 1/R. Wu et al [119] take ¢ = 1
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in the Gibbs-Thomson relation but ¢ # 1 in the Stefan condition. In our case, setting ¢ = 1

leads to T, = —T'/R and equation (2.23]) becomes

dR R+T (14+0)77"
—_— = . 2.2
dt ﬁmafmk 3R } (225)
This may be integrated to
I'+1
—B(1 - R? 1 - R?) —b(1— Win ( —— | = 2.2
B(1—R’)+a(l—R*) —b(1—R)+ H<F+R> 3t (2.26)

where a = (I' +1)(38 — 1)/2 and b =T?(33 — 1) + I'(33 — 2) — 1. In the results section we
will show calculations with Ry = 10,100 nm, which changes the value of I', for sufficiently

large Ry the curves with ¢ # 1, ¢ = 1 coincide.

A further reduction can be made by removing the Gibbs-Thomson effect from the model.

In other words, considering a constant melt temperature T;, = 0, this is equivalent to setting

I' =0 in (226). Then,

—BQ—R%+@a;DG—R%—R+1:&. (2.27)

This will also be examined in the results section.

In summary, we provide three different solution forms to the one-phase model ([Z.14)—
[2I5). The solutions correspond to three levels of approximation: (i) The first and most
general one is obtained by integrating (2.23)—(2.24)) numerically, this takes into account the
difference between the specific heats (¢ # 1) in the Stefan condition and the full expression
for the Gibbs-Thomson equation; (ii) the second solution comes from (2.26) where we take
c=1,T # 05 (iii) the third is (Z27) where we have assumed ¢ = 1 and I = 0. This last one,
in fact, corresponds to the solution of the classical one—phase Stefan problem in the sphere,

analysed by previous authors |3, 40].
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2.4.2 Two—phase formulation

In the previous section we presented the one—phase solution that neglects the solid temper-

ature. We now build on this solution to model the two—phase process specified by equations

2.10)-@.I3).

The same rescaling of the time variable, t = 87, can be applied to the equation for the

temperature in the solid, equation (2I1]), and 6 expanded in terms of 1/5. This, leads to

‘ 1.9 (5,06 90| B
0(1) : 0="55" <7“ B > ; |~ 0, Oo(R,7)=Tp (2.28)
. 9% k10 (500 00 _ _
O(1/p) : 5 o2y <r o > , |, 0, 01(R,7) =0 (2.29)

with solution

M2 p2 9 AR
= Ty, = -2 (m - 2.
6o 01 2kR(R r )dT (2.30)
where
c T
Lo = v = (2.31)
[1+ o7 1 (TindT + 1)

Note, since the leading order heat equation for 6y does not have a time derivative no initial
condition is required. However, the one-phase reduction involves the assumption 6(r,t) =
T (t), so if we wish to compare with the one-phase problem we require 6(r,0) = T,,(0) and

indeed this is consistent with the boundary conditions given in (2.:28]).

The Stefan condition now leads to

LS

The introduction of the solid temperature has modified equation (2.23)) at first order by the
term po, which comes from the 6, expression. Since s > 0 this term acts to speed up the
melting process. In the following section we will see that the temperature in the solid does

indeed contribute towards faster melting.
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2.5 Results and Discussion

We now present a set of results corresponding to the solutions found in the previous sec-
tion. First, we show the different solutions obtained for the one—phase model and compare
them with numerical solutions using a method similar to that described in [66]. This is a
semi—implicit finite difference scheme that discretizes implicitly for the temperature and ex-
plicitly for the moving front. The heat equation is converted into a planar equation with the
transformation 7' = u/r and the moving boundary is immobilized by means of the change
of variable £ = (r — R)/(1 — R), to fix the domain. Second, we show the solution of the full
two—phase model and compare it with that for the one—phase problem. Finally, we use the
one and two—phase models to calculate the melting times for different initial particle sizes
and external temperatures. We also show the temperature distribution in both phases as

the melting proceeds.

The plots in Figure 2.3l show the position of the solid-liquid interface as a function of
time for the one-phase problem with an inital dimensional radius Ry = 10nm and two
different values of the Stefan number 5 = 100 and 8 = 10. The dimensional values may be
retrieved by multiplying R by Ry and ¢ by the time-scale p; CZR% /ky = 2.66x 10~ '2s. The solid
and dashed lines represent the perturbation and numerical results respectively. Curve (i)
corresponds to the solution of (2:23))—(2.24]), curve (ii) corresponds to the solution of (2.:20))
resulting from setting ¢; = ¢s (hence ¢ = 1) and curve (iii) is the solution (Z.27)) obtained by
setting ¢ = 1, I' = 0 (hence T,,,(t) is constant). As discussed earlier, the plots are cut-off at
R = 0.1 which corresponds to a dimensional value 0.1Ry, where Ry = 10nm. Beyond this
both the numerical and perturbation solutions of equations ([223)—(224)) break down due
to the failure of the Gibbs-Thomson relation (as seen on the inset in Figure 2] there is no
real value of T, for R < 1Inm). For large Stefan number it is clear that the asymptotics and
numerics agree very well, with only a slight difference showing as R — 0. Curves (i) and (ii)
exhibit high velocities R; — oo both initially and as R — 0. This behaviour is obvious from
the factor 1/(R(1 — R)) in equation (2.23]). The rapid melting as R — 0 has been predicted

experimentally and depicted schematically in [48, Fig.1b] and also noted in [60]. Curve (ii),
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Figure 2.3: Position of the non—dimensional melting front R(¢) for a nanoparticle with initial
dimensional radius Ry = 10nm, (a): 8 = 100 (b) 5 = 10. Curve (i) is the solution of (Z23])-

224), (ii) the solution of (226 and (iii) the solution of (2.27]).
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with ¢ = 1, shows a melt time approximately 11% slower than that of curve (i). This is
significantly greater than the error introduced by the perturbation (since we neglect terms
of O(1/8?%) and 8 = 100, the perturbation errors are of O(1072)%).

In Figure 24 we show the evolution of R(t) for a nanoparticle with an initial radius of
Ry = 100nm for 8 = 100 and 3 = 10, the time-scale p;c;R3/k; ~ 2.66 x 10710, In this case,
the solution breaks down when R ~ 1nm/100 nm=0.01. In contrast to the previous figure we
observe that the solutions (i) and (ii) are almost identical for most of the process, indicating
the change in specific heat is not important (at least for the melting of gold) for sufficiently
large particles. The difference between Figures 2.3l and 241 is the value of Ry which changes
from 10 to 100 nm. Earlier we pointed out that I' is the main controlling parameter where
I' < 1/Ry. From the figures we can see that a large change in I" does indeed result in a large

change in melting times.
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Figure 2.4: Position of the non—dimensional melting front R(t) for a nanoparticle with initial
radius Ry = 100nm, (a): 8 =100 (b) 8 = 10. Curve (i) is the solution of ([Z23)-[2.24), (ii)
the solution of (2.26]) and (iii) the solution of (2:27]).
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Figure 2.5: Comparison between one and two-phase solutions for § = 100, (a) Ry = 10nm

(b) Ry = 100 nm.
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Table 2.2: Melting times computed with the one—phase model.

Melting times (s)

Ry=10nm Ry=100nm Rp=500nm
B=100 (Tyg ~ 1341 K) 1.56-10"2  1.20 1077 7.35-107%
=10 (Tyg ~ 1376 K) 1.25-107'2  0.39-107 1.25-1078
B =5 (Ty ~ 1415 K) 1.05-107'2  0.24-107° 0.71-1078

Table 2.3: Melting times computed with the two—phase model.

Melting times (s)

Rp=10nm Ry=100nm Ry=500nm
B=100 (Ty ~ 1341 K) 1.44-107'2 1.19-107° 7.33-1078
B=10 (Ty ~ 1376 K) 1.15-107'2  0.39-107° 1.25-1078
B =5 (Ty ~ 1415 K) 097-107'2  0.24-107%  0.70-1078

Figure displays a comparison of the one and two-phase formulations when 5 = 100.
The difference between the formulations lies in the po term of the Stefan condition (2.32]).
Since pp x I' o« 1/Rp we expect the greatest variation for small values of Ry. Figure
2.5k shows a comparison of results for Ry = 10 nm and it is clear that there is a significant
difference in the curves. However, in Figure2.5b, where Ry = 100 nm the curves are virtually
identical (the blow-up shows the small percentage difference for small R). Consequently we
may conclude that for a given material the variation in specific heat and the use of one or
two phase formulations is only important for very small nanoparticles (large values of T').
This conclusion on the one and two-phase formulation may be verified through Tables
and 23] which show melting times for multiple particle sizes and Stefan numbers. In all
cases the melting times are relatively close, with the largest differences occurring with the

smallest particles.

The results agree well with limited available experimental data. Our calculations show
that when Ry = 10nm the melting time lies in the picosecond range, with Ry = 100 nm
the melting times go from a few to several hundred picoseconds, with Ry = 500 nm melting
times are well above the nanosecond scale. Pech et al [84] track the melting process of gold

nanoparticles when they are heated by a laser beam with power 30 mW. They find that the
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Figure 2.6: Blue is the solid phase, red the liquid phase and dashed the melting temperature.
For g =100 and Ry = 10 nm.

melting process is faster than 100 ps for particles with Ry = 50 nm. By assuming the same
power and a regular spot laser beam of 4 um diameter we obtain a power per unit area of
2.39 x10° W/cm?. Using this value in |33, Fig.1] the temperature increase at the nanoparticle
surface is about AT ~ 40 K. In our model, this temperature increase corresponds to 5 = 10
and our predicted time to complete melting for a particle of this size is 73.3ps. In [90]
experimental observation of nanoparticle melting is carried out for particles with Ry = 2

and 20 nm with melting times in the picosecond range.

Finally, in Figure 2.6, we present temperature distributions throughout the melting pro-
cess for the problem of Figure 2.3h. Plots for different conditions all take a similar form,
so we only present this single result and in this case we show the dimensional values. The
dashed line represents the temperature in the solid phase (0 < r < R(t)), the solid line
the temperature in the liquid phase (R(t) < r < Rp), they meet on the dotted line which
represents the melt temperature 7,,(¢). The final set of curves occur at ¢ = 1.36ps. As

R — 0 the speed of melting increases and so the melting should be complete shortly after
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this time. An interesting feature of this graph is that the temperature within the solid is
greater than the melt temperature and this becomes more apparent as time increases. This
presumably occurs because the melt temperature decreases faster than the solid can dif-
fuse the temperature change at the boundary. So, unlike in standard Stefan problems, the
temperature in the solid phase acts to speed up the melting. This high temperature was
pointed out in [60] and attributed to superheating, where the solid is everywhere above the
(variable) melt temperature. However other authors define superheating as a surface effect
that refers to heating a solid above its bulk melting temperature [124, 197]. If we think of
the melt temperature depression as representing the decrease in energy required for the solid
particles to move to the liquid phase then it is clear that the bulk particles are not affected

and so should not be described as superheated.

2.6 Conclusions

In this chapter we have presented a mathematical model for the melting of a spherical
nanoparticle. The initial system of two partial differential equations coupled to the Gibbs-
Thomson relation for the melt temperature and a Stefan condition to determine the domain
was reduced to the solution of two first order ordinary differential equations. The approxi-
mate solution showed excellent agreement with the numerical solution of the full system.

The beauty of the reduced system is that it makes clear which parameters control the
melting process. In this case the dominant parameter turned out to be I' = 2041} / Rop; Lin AT
From this we see the obvious feature that changing the particle size or the temperature driv-
ing the melting has a controlling influence. The non-dimensional grouping also indicates
that, for example, increasing surface tension by a given factor is equivalent to decreasing the
initial radius by the same factor.

The one-phase formulation and the system with ¢; = ¢; was also examined, since these
are standard simplifications. It was shown that for large values of I' these formulations are
inaccurate. However, as I decreased (from 6 to 0.6) the differences decreased and the simpler
formulations proved sufficiently accurate.

An interesting feature of the two-phase solution is that the solid temperature is higher
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than the melt temperature. This is not a feature of standard melting problems and presum-
ably occurs because the melt temperature decreases faster than diffusion occurs in the solid.
So, in contrast to melting on the macroscale, on the nanoscale the solid acts to speed up the
melting process. This feature, coupled to the melting point depression leads to the abrupt
melting that is observed experimentally.

All analysis was based on continuum theory, which obviously breaks down for sufficiently
small particles. The generalised Gibbs-Thomson relation was also shown to break down, for
gold this occurred around 1nm. Hence all our results were cut off at this limit. For smaller
particles, or to follow the melting process to its completion a non-continuum theory must

be applied.
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Chapter 3

The melting of nanoparticles with a

density jump

F. Font, T.G. Myers, S.L. Mitchell. A mathematical model for nanoparticle melting with density change
Microfluidics and Nanofluidics, DOI:10.1007 /s10404-014-1423-x (May 2014)
Impact factor: 3.218

Abstract

The melting process of a spherical nanoparticle is analysed using a mathematical model
derived from continuum theory. The standard model for macro-scale melting is modified
to include melting point depression using the Gibbs-Thomson equation. The key difference
between the current and previous work in the melting of nanoparticles is that the difference
in densities between the solid and liquid phases is accounted for. This modifies the energy
balance at the phase change interface to include a kinetic energy term, which then changes
the form of the equation, it also requires an advection term in the heat equation for the
liquid phase. Approximate analytical and numerical solutions are presented for the melting
of particles in the range 10-100nm. It is shown that when the density difference is included in
the model melting is significantly slower than when density is assumed constant throughout

the process. This is attributed to the flowing liquid providing a sink term, namely kinetic

53
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energy, in the energy balance. The difference in results is greatest for small particles, however,
it is concluded that the varying density model will never reduce to the constant density model

resulting in a difference of around 15% even at the macro-scale.

3.1 Introduction

There exists a large body of work concerning the mathematical modelling of phase change,
which is often termed a Stefan problem. The original Stefan problem concerned the for-
mation of sea ice. Since then the model has been applied to many different forms of phase
change and geometries as well as topics in porous media flow and finance [82]. An analogous
problem occurs in the growth of material from a saturated liquid, where concentration rather
than temperature gradients drive the growth [19]. In the context of phase change, the vast
majority of studies incorporate a number of restrictive assumptions, which are often made
for mathematical convenience and limit the applicability of the results to highly idealised
situations. Alexiades and Solomon |3, Chap. 1] provide a list of standard assumptions
including constant latent heat, constant phase change temperature, a sharp phase change
interface, constant thermal properties in each phase and a constant density which is equal in
both phases. They state that this final assumption is perhaps the most unreasonable, indeed
anyone with experience of burst water pipes will be aware of the true importance of density
change. Consequently, in this chapter we will focus on the effect of density change. Our work
is motivated by the melting of spherical nanoparticles however the model could be applied to
more general situations of practical interest, such as pipe bursting, cryopreservation, phase
change microvalves and metal casting, see [3, 128, [76, |77, [80].

In [3] freezing and melting with the incorporation of a density change is discussed. They
state that most physical properties vary to some extent with temperature, but that at the
phase change temperature there is often a sudden change. Although the value of the density
may not change as much as other variables, its variation may lead to the most pronounced
effects. They subsequently analyse phase change in Cartesian co-ordinates to show that the
density jump introduces a non-standard term, proportional to the cube of the phase change

velocity, into the Stefan condition. They discuss how neglecting this term can lead to over
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or under estimation of the front velocity depending on the physical situation. However, they
later neglect this term to permit exact similarity solutions. In [80] a similar approach is
taken, again to find similarity solutions. In [13] the cubic term is neglected altogether and
seek small time and similarity solutions for the freezing of a liquid layer and phase change in
a porous half-space. In the following work we will demonstrate the importance of the cubic
term, particularly near the beginning and end of the process.

At the nano-scale an important effect is that of melting point depression, which can
lead to rapid melting as the particle size tends to zero. This may explain the sudden
disappearance of particles discussed in [48]. The variation of the melt temperature with
size is often represented by the Gibbs-Thomson equation, although there exist a number
of other forms with the common feature that the temperature change is proportional to
curvature [, 48, 52, [78]. In the following work we will employ the classical Gibbs-Thomson

relation

« 2051R>
T =T*[1= , (3.1
" m< Pst )

where T} is the bulk melting temperature, o4 the surface energy between the solid and the
liquid, Ly the latent heat and ps the density. The curvature of a sphere is x = 1/R, where
R is the particle radius. Note, if we take parameter values for gold, as given in Table B.1],
we find T,, > 0 when R > 0.44nm. Assuming our results only hold for R > 2nm we do not
expect mathematical problems to arise due to using the above form of the Gibbs-Thomson
relation.

In [60] small time and large Stefan number solutions are sought for a two-phase problem
describing the melting of spherical nanoparticles subject to (I]). In [29] the authors focus
on the situation where the specific heats vary through the phase change. To account for
this they apply a more general form of the Gibbs-Thomson relation. Their results show that
melting point depression is extremely important in predicting the melt time of nanoparticles.
They also investigate the effect of using the generalised Gibbs-Thomson relation as opposed
to the above classical version. [119] had previously concluded that melting point depression
could explain the rapid melting of nanoparticles. To simplify the mathematics their work

used an approximation where the variation of specific heat was neglected in the generalised
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Gibbs-Thomson relation (meaning (3.I]) was valid) but retained in the remaining governing
equations. In [29] it was shown that, when compared to using the generalised Gibbs-Thomson
relation, this approach leads to differences on the order of 10% in melt times for 10 nm
particles, whilst for 100 nm particles the difference is around 1%. In the following study
we will see that allowing the density to vary can more than double the melt time of a 10
nm particle. Thus, in order to keep the analysis simple and focus on the density variation,
we will assume the specific heats to be equal for both phases and model the melting point
depression with (3.1)).

The mathematical model to be developed in the following section will be based on con-
tinuum theory. Since our focus is on nanoscale phase change it is worth considering the
validity of this theory. This issue is discussed in detail in [29]. To summarise, they state
that comparison of molecular dynamics simulations, experiment and continuum theory have
led to the conclusion that for fluid flow continuum theory may be accurate down to around
3 nm, for heat transfer and phase change 2 nm appears to be the lower limit, see [36, 112].
Consequently, we only expect our model to be valid for particles greater than 2nm. Note,
the Gibbs-Thomson relation ([B.1) requires R > 204 /(psLs)(~ 0.4nm for gold). So we may
assume equation (B]) to be accurate for physically realistic values of the continuum model.

In section of this chapter we present a mathematical model that describes the melting
of spherical nanoparticles including melting point depression and density change between
phases. In section B.3] we seek approximate solutions by means of a perturbation method.
Then, we pinpoint the small time behaviour of the system and use it later on to initialize the
numerical scheme described in section[3.4l Results are presented in section 3.5 comparing the
numerical and approximate solutions. Finally, in section [3.6] we present the main conclusions

of this study.

3.2 Mathematical model

We consider a solid sphere with radius Ry, initially at the melting temperature T,,(Rp),
which is given by the Gibbs-Thomson equation (B.I]). The surface of the sphere is suddenly

raised to temperature Ty > T,,(Rp) which starts the melting process: a liquid phase grows
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inwards from the surface of the particle until the solid disappears. We denote the moving
solid-liquid interface by R(t). Due to the density change the outer surface also moves, and
it is designated as Ry(t), where R;(0) = Ro. A sketch of the model is presented in Figure
B.1

To describe the melting process of the nanoparticle requires solving heat equations in
the solid and liquid phases over the moving domains 0 < r < R(t) and R(t) < r < Ry(t),
respectively. The heat equation in the liquid is given by

oT
picy (875 +VT- v) =k V2T, (3.2)

where T is the temperature, v is the velocity of the fluid caused by the density change, k;
the thermal conductivity and ¢; the specific heat. Since the geometry is spherical and the
temperature applied on the surface Ry(t) is constant we may assume spherical symmetry.
The velocity may be written as v = (v(r),0,0) and the heat equation becomes

or or\ 10 [ ,0T
picl ((% + U(%) =k i <r 87") on R(t) <1 < Rp(t). (3.3)

This is the standard heat equation with advection see [3, 80, [122] for example.

Under the assumption of incompressible flow the velocity v can be determined from the

continuity equation V - v = 0. In the present case,

10
1"725 (TQ’U) = 0 s (34)
leading to
Co
v = ﬁ ; (3.5)

where ¢g is a constant of integration. Mass conservation requires

d 4 4
pr Psgﬂ'RB + Plgﬂ'(Rg’ - R’)| =0, (3.6)
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this provides an equation for the velocity of the outer surface

- (3.7)

dR,  R? (ps 1) dR

dt T R? dt”

Noting that v(Rp) = dRy/dt provides an expression for ¢g in (3.0 and so the velocity

R? [ ps dR

The temperature in the solid phase, 6, is given by the one dimensional heat equation
r —) on 0<r<R(). (3.9)

To avoid having to solve a thermal problem before the melting begins we will take the initial

solid temperature to be 6(r,0) = T,,(0). The appropriate boundary conditions for equations

B3) and ([B.9) are

T(Rp,t) = T, T(R,t) = O(R, 1) = Ton(1), % —0, (3.10)
r=0

Figure 3.1: Sketch of the model, showing a solid sphere of radius R(t) surrounded by a liquid
layer with radius Rp(t).
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where T,,,(t) is given by equation (3.1]).

Energy conservation across the surface R(t) gives the Stefan condition

o1 AR
ps[Ly+ (a—cs) (T —Tp,) ] E"‘
Ps ps\2 [ dR\® 00 oT (3.11)
—=l1-= — ) =ks — —k — .
2 p1 dt or|._p or|,_p

A detailed derivation of the Cartesian version of this equation, with Ac = 0, is given in [3],

we have simply generalised this to the spherical form.

Equation (8I1]) contains a term that generally does not appear in the Stefan condition,
namely the one involving R}. This appears due to the kinetic energy which is a result of
the density change forcing the fluid to move. Equation (B.8) shows the fluid velocity to
be proportional to Ry, hence the kinetic energy is proportional to R?, the rate of change
of mass is also proportional to R;, hence the cubic dependence. In general this term may
appear to be of less importance than the standard first term on the left hand side, since
the first term appears to be of order Ly greater than the cubic term (for fluids typically
Ly ~ 10%). However, it is well-known that the standard Stefan problem, with a fixed
temperature boundary condition will have R, — —oo as ¢ — 0 and so the cubic term will
dominate for at least a short period. The spherical Stefan problem has also been shown to

have R; — —oo as the melting reaches completion |29, 60].

Equation (31, with k = 1/R(t), and equation (B.II) provide relations for the two
unknowns 7),(t), R(t). The temperature gradients in (BI1]) come from the solution of the
liquid and solid heat equations. The radius is subject to the initial condition R(0) = Ry,

while 7},,(0) is determined by setting R = Ry in equation (B.1I).
The above governing equations may be nondimensionalized by introducing the variables

T-T A .

T=_ "
Ty — T’ Ty — T’ Ry’ pici R2

t. (3.12)

The nondimensional moving boundaries are R = R /Ry and Ry =Ry /Ry. Dropping the hats,
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the governing equations (8:3) and (3.9) become

or R*dROT 1 0 [ ,0T

Y PR e G (P 1

ot (p )7’2 dt or  r?or <T 87’)’ R<r<B, (3.13)
0 k10 [ 5,00
T2 (2Z . 14
ot~ prior <r 87“)’ 0<r<R (3.14)

The Stefan condition is

dR dR\® 90 oT
pB+ (1= )Ty 7 (dt> = ka R (3.15)
and the boundary conditions (B.I0) are
r o6
T(Ry,t) =1, T(R,t)=0(R,t)=——=, — =0, T(r,0)=-T, (3.16)
R Or|,_,

and the initial condition for the melt front is R(0) = 1. The dimensionless parameters are

defined by
Ps ks Ly Cs
20 T* 3 o
7ol m P (p-1)?, (3.18)

T RopsL AT T 2R AT

where AT = Ty — T and oy = k;/pic; is the liquid thermal diffusivity. Note that R, and R

are related by
Ri=p—(p—1) R, (3.19)

which is obtained by integrating equation ([B.7) and applying the condition R = R, = 1 at
t=0.

The problem parameters indicate the importance of the various terms. The density
variation is represented by p, which also appears in «. Setting p = 1 removes the advection
term from the heat equation and the kinetic energy term from the Stefan condition. The

importance of kinetic energy is indicated by ~. As well as depending on p, v o 1 /Rg,
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that is the importance of the kinetic energy term increases quadratically as the particle
size decreases. In [3] it is stated that, in general, the cubic term in the Stefan condition is
expected to be negligible compared to the linear term. In the present study we will show that
the kinetic energy term is dominant for particles below 100 nm radius. Further, due to the
singularity in R; at the beginning and end of the melt process the cubic term is important

even for much larger particles.

The vast majority of studies of phase change neglect the density difference between
phases, this is achieved by setting p = 1 (and hence v = 0). In this limit the advection
term disappears from (BI3]) and the kinetic energy term disappears from equation (315,
to provide the common form of Stefan problem. For a given material we may also look
at the limit v — 0 by choosing a large particle, Ry — oo or a large temperature difference
AT — oo. In this situation the results do not converge to the results from the Stefan problem
with p = 1, since firstly the advection term remains in the liquid heat equation and also
multiplies Ry, so even though v — 0 the limit vR; may not tend to zero when R; — co and

kinetic energy still has some small effect.

The ratio of specific heats is denoted ¢ = ¢s/¢;. In Table Bl we see that ¢ ~ 0.79 for
gold. A common assumption, at least in the mathematical community, is to set ¢ = 1, which
then permits the use of the classical Gibbs-Thomson equation (3) instead of the extended
nonlinear form given in [29]. The effect of this approximation on nanoparticle melting has
been investigated previously in [29,160] and in particular it was shown that for large particles,
with Ry = 100 nm, setting ¢ = 1 made a negligible difference to melt times, whereas for
smaller particles, Ry = 10 nm, a difference of the order 10% was observed. Since our present
focus is on the effect of density change we will set ¢ = 1 from now on, since this permits
the use of the simpler version of the Gibbs-Thomson relation and considerably simplifies the

analysis.

The ratio of conductivities is denoted k = ks/k;. This is also often set to unity, but
leaving it as its correct value does not affect the solution process. However, it does play an
important role when reducing the two-phase model to one-phase (i.e. neglecting the solid

temperature) as is carried out in |29, [L118]. The fact that ks > k; is key to the energy
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Table 3.1: Approximate thermodynamical parameter values for gold. The value of oy is
taken from [g].

Substance || T, Ly l, Cs Pl Ps ki, ks Ol
(K) | (J/Kg) | (J/KgK) (kg/m?) (W/m-K) | (N/m)
| Gold [ 1337 ] 6.37x10" | 163/129 [ 1.73x107/1.93x10" | 106/317 | 0.27 |

conserving model of [74].

The parameter I' indicates the effect of melting point depression. If I' = 0 then the melt
temperature is fixed. In general I o< 1/Ry so as the radius decreases I increases and melting
point depression is more significant.

The Stefan number is denoted by 3, for a specific material this varies due to the tem-
perature scale of the process. For a small temperature variation the Stefan number is large
and the melting process is slow. For a large temperature variation the melt process is fast
(although slow and fast are rather relative on the nanoscale). Note, particularly within the
engineering community, the Stefan number may be referred to as the inverse of our value,
ie. f=¢AT/Ls. With nanoparticles, any small increase above the melt temperature will
be sufficient to completely melt the particle (once melting starts melting point depression
begins and the process speeds up). Consequently it makes sense to work in the large
regime, which then allows us to use a perturbation solution method. This will be detailed in
the following section, we will then compare the approximate solution with a full numerical

solution which is described in section

3.3 Perturbation solution

Analytical solutions allow us to understand the important factors within a physical process
in a way that numerical solutions cannot. For this reason we now seek an approximate
analytical solution, based on a large Stefan number.

The mathematical description of the problem is given by equations (B.I3])-(B.15) with
boundary conditions (8.16). Equation (3.1)) relates the melt temperature to the radius R(¢).

To make analytical progress we make use of a standard perturbation technique. Asin [29], we
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consider 3 to be large for our system (for gold heated 10 K above the bulk melt temperature
B ~40) and define a new time scale t = 7. This permits us to assume expansions for the
temperatures 6 = 0y + 61/8 + O(1/8%) and T = Ty + T1/B + O(1/8?). Then, equations
BI3) and (BI4]) can be expressed as a sequence of simpler problems. For example, the
leading order problem (where all terms with a factor 1/8", where n > 1, are neglected) is

represented by the steady-state equations

_ 10 (50T _ 19 (2090
0_r28r <T 81")’ 0_7“287“ (r 81") ’ (3.20)

with boundary conditions Ty(Rp, 7) = 1, To(R,7) = 6p(R,7) = —I'/R, and 6y,.(0,7) = 0.

The solution to this system is

r I' Ry(r—R) [/ R+T
O — — — Th— —— + -2 ) 21
0T TR L A (Rb - R) (3:21)
The first order correction, which includes terms with a factor 1/3, is described by

Ty R?dROT, 1 0 [ ,0Ty
0 (po) el 2 (2L 22
or (p=1) 2 dr or  r2or\| or )’ (3:22)

00y k1 0 [ 5061
_ k1 2

or  pr2or <r or ) ’ (3:23)

with boundary conditions T (Ry, 7) = T1(R,7) = 61(R,7) = 01,(0,7) = 0. The appropriate

solutions are

_(CHR)Ry—r)(r—R) [3(p— DRI + R)(R, — R)
B =5k, - R)r { T + Ry)r (3:24)
(p—1)R(I + R)[3 — R(Ry + r + R)]
+ R T Ry —r+ 2Ry — R} R, (3.25)
__rT
0]_ - — @ﬁ(RQ - T2)RT. (326)

Now, substituting § ~ 6y + 01/5 and T ~ Ty + 11/ into the Stefan condition (BI5]) with
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the new time scale, we obtain the following equation

573 <dR>3+{ o' (R+T) [(p—l)(SRb—RQRb—2R3)

ar P~ B3R BoR (Ry— R)
2(F+Rb)}}dR+Rb (R+T) 0
(T + R) o

(3.27)

dr ' R?(R,—R)

which is subject to the initial condition R(0) = 1. Note, since Ry can be expressed in terms of
R via equation (B.19)) this is a single ordinary differential equation for the unknown position
R(t). It is possible to also expand R and Ry, however this makes the calculation more complex
and so we do not follow this route. So, the perturbation method has reduced the original
problem, specified by two partial differential equations, a first order ordinary differential
equation and an algebraic equation, to a single cubic first order ordinary differential equation.
To solve this equation we may set z = dR/d7 so that it can be expressed as a cubic polynomial
of the form 23 + k12 + ko = 0. In all cases that we tested this equation had only one real

root, z; < 0, we then integrated dR/dr = z; numerically.

For comparison, in the results section we will show solutions with no density jump be-
tween phases. This solution may be found by setting p = 1 in ([3.27)). This also determines

~v =0 and Ry = 1. In this case equation (3.27)) reduces to

1\ dR I+R
( * 36R> ar R2(1 — R) 0. RO ’ (3.28)
with solution
—B(1—=R*) +a(l —R?) —b(1—-R)+T'n I+l =337 (3.29)
I'+RrR) ’ '

where a = [38(I' +1) —1]/2 and b = (I' + 1)(38I' — 1). In section we will compare the
solutions of (B.27) with (8:29) for different parameter values and see how the melting times

are affected by neglecting the density jump between phases.

A classical difficulty with the numerical solution of Stefan problems occurs because at
t = 0 one of the phases may not exist, thus the initial conditions are problematic, see [66]

(this issue occurs for any value of ). For this reason it is often beneficial to carry out a
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small time analysis of the system to determine the initial behaviour. To achieve this we
rescale time as ¢t = 07, where § < 1. It is also useful to rescale the space variable r as
n=(r—R)/(Ry—R)on R<r < Ryandas { =r/Ron 0 <r < R. This transforms (B8.15])
into

(Ry—R) 06| 0T
A P

(Ry — R)

(3.30)

o0 <d7f>) o <d7§>>3

The initial condition, R(0) = 1, indicates that for small times R should take the form

n=0

R=1- A7), (3.31)

where p, A are constant. Equation (3.19]) indicates (R — R) ~ A(d7)? and equation (B.30])

may now be written as

, 9 or

= MY [pBAP07) A () 07 = kNG G| -
£=1

(3.32)

n=0

The difficulty now lies in choosing the appropriate value of p. From a physical standpoint we
know that the melting is driven by the temperature gradient in the liquid, 7;,. This causes
the motion R; and so one, or both of the terms on the left hand side must balance the T;,
term. Since § < 1 this requires one of the powers 2p — 1 or 4p — 3 to be zero (and hence
the ¢ term is unity). In other words p = 1/2 or p = 3/4. In the case of no density jump,
« = 0, then there is only one possibility, namely p = 1/2. However, when 7 # 0 the second
term is largest and so we must choose p = 3/4. This means that for small times the radius

decreases as

L—Mt34 ify#£0,
R~ (3.33)

1—Xt2 ify=0.
The corresponding velocities take the form Ry ~ t=1/4 t=1/2 for v # 0 and v = 0 respectively.
Both solution forms indicate an infinite velocity as ¢ — 0 , but the decrease in radius is
faster with no density change (which then results in faster melting). Note, we have not yet

determined the constants A1, Ao, this will be dealt with in the following section.
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3.4 Numerical solution method

The full problem requires the solution of the heat equations in the liquid and solid over an a
priori unknown domain which is determined by the Stefan condition. The solution may be
achieved via a finite difference scheme after applying a number of transformations.

Firstly, the temperature variables are changed to v = rf and u = rI'. This is a standard
transformation which converts the spherical heat equation into the planar equivalent. The
variables n = (r — R)/(Ry, — R) and £ = r/R which were defined earlier to obtain the
perturbation solution may be used to immobilize the boundaries of v and v, respectively.

This leads to the following governing equations

ov Ry Ov 1 0%

5~ Rse TFpam oM 0<€<l (3.34)
and

du 9*u  (p—1)(R,— R)*R?

ot o2 [R+n(Ry— R) (3.35)

w1 +(pn<_R1b)]—%2R>1 o] R o f G

on 0 < n < 1. These two equations are subject to the boundary conditions v(0,t) = 0,

v(1,t) = u(0,t) = —I' and u(Ryp,t) = Rp. The initial conditions will be discussed below. The

Stefan condition may now be written as

R ou

m% o + (k — 1)F s (336)

pﬁRQdR R <dR) Lo

dt ey

where R(0) =

A semi-implicit scheme may now be employed on the system, discretizing implicitly for
u, v and explicitly for R, R; in (3.34)-(3.35). The discrete forms of the partial derivatives

are

v vn+1 _n o ,UTL+1 _ ,UTL+1 82 ,Un+1 _ 2U7L+1 + ,UTL+1

ov _ Y% i ov _ Vil i—1 ov _ Yit1 i i—1
of At o€ TN AE? » o (337)
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wherei=1,...,Tandn =1,..., N, and analogously for u. Using these derivative definitions
equations (B.34)-([3.38) can be expressed as a matrix system which are solved at each time
step n. The position of the melt front is obtained from (B.36) using the time derivative

dR _ R™"' - R"

w - A (3.38)

and a three point backward difference for the partial derivatives.

As mentioned earlier, the initial condition can be problematic. There are two reasons for
this: firstly the liquid phase does not even exist at ¢ = 0, secondly there is a discontinuity
between the imposed boundary condition w(1,¢) = 1 and the initial condition u(r,0) = —T
which results in an infinite velocity at ¢ = 0. So, in order to specify a numerical scheme that
does not immediately blow up conditions must be determined for some small time ¢t > 0,
where a liquid phase exists and the velocity may be large, but not infinite. This may be
achieved utilising the limiting cases discussed in the previous section. Substituting (B.33))
into (335) and (B.36]) and allowing ¢ — 0 leads to the following boundary value problem for

temperature in the liquid when ~ # 0

d*u <3>3 4 du
— =0, u(0)=-I, wu(l)=1, - Ajp= — 3.39
o 0) 1) 1) M=l (3:39)
This has the solution
AN/ 74\ VA
u=T+1n-T, I\ = () <+) : (3.40)
3 p
Note, the above expression determines \; for equation (3.33).
In the case v = 0 we obtain
d>u N2 du A du
A" T I L =T 1)=1 22 = . 41
dn2 9 ( 77) dn 07 ’LL(O) ’ U( ) ) ﬁ 2 dn =0 (3 )

Although more complex than the previous case, this is a standard thermal problem with
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solution
erf (A2(1 —1n)/2)
=1-(1+T 3.42
! D= foer2) (342)
where Ao satisfies the transcendental equation
1
VB e/ erf (Ay/2) =1+T. (3.43)

The numerical scheme may now be started at some small time ¢ > 0 using equations (3.40)
and (3.42)-([B.43) to provide the appropriate temperatures and so avoiding the possible sin-

gular behaviour at ¢ = 0.

3.5 Results and discussion

In this section we present a set of results for the melting of a spherical nanoparticle. We use
data appropriate for gold (as shown in Table B1]) since this is a very common material for
nanoparticles. The density change between solid and liquid gold is within the range of many

materials, so it provides typical results.

In Figure we plot the evolution of the solid-liquid interface, R(t), for a nanoparticle
with initial dimensional radius 100 nm and 8 = 100 (which corresponds to relatively slow
melting). Two pairs of curves are shown, one for the case p = 1, the other using the correct
value for gold, p &~ 1.116. The solid lines represent the solution of the equations derived from
the perturbation analysis, i.e. the solution for p = 1 given by ([B.29]), the other for p = 1.116
given by (B3:27), the dashed line is the numerical solution. In both cases the perturbation
solution is very close to the numerical solution, indicating a full numerical analysis is not
necessary. It is quite clear that the two sets of solutions lead to very different melt times.
When p = 1 the melt process lasts until ¢ =~ 4 , with the correct change in density the
process lasts until ¢ &~ 4.7, an approximately 15% increase. Note, we define the melt time
as being the time when our calculation stops (in this case R = 0.004, below this value
the Gibbs-Thomson relation ([B.]) predicts a negative melt temperature). As stated in the

introduction, the continuum model only holds down to around R = 2nm. In fact we expect
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Figure 3.2: Evolution of the nondimensional melting front R(t) for the two cases of study

p = 1116 and p = 1, for § = 100 and Ry = 100 nm. Solid line represents perturbation
solution, dashed lines the numerical solution.
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Figure 3.3: Dimensional temperature profiles for curves of Figure The solid line rep-
resents temperature for p = 1.116, the dashed line p = 1 and dotted line shows the melt

temperature variation.
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Figure 3.4: Evolution of the nondimensional melting front R(¢) for p = 1 and p = 1.116, for
8 =10 and Ry = 100 nm.

complete melting (or dissipation of the particle) to occur somewhere between 2 and 0 nm
but given that as R — 0 the melt velocity Ry — —oo an estimate based on our final value
will be very accurate. (If we actually stop the calculation at R = 2/100 we find a melt
time 0.05% below that predicted by stopping at R = 0.004.) Both sets of curves show a
melt velocity R; — —oo in the final stages of melting. We associate this with the sudden
melting of nanoparticles as R — 0, observed experimentally in |48] and already discussed
and analyzed in previous theoretical studies [5, 29, |60].

In Figure 3.3l we present the dimensional temperature profiles corresponding to the curves
in Fig. We choose the dimensional form to better show the temperature variation and
typical times. The curves all come from the numerical solution: the solid line represents the
case where p =~ 1.116 while the dashed line is p = 1. The dotted line shows the evolution of
the melt temperature as the radius decreases. Temperature profiles are shown for two times,
t =770.59,1037.6ps. The dashed lines range between 0 and 100nm while the solid lines have
a moving right hand boundary (R, = Ry(t)) and so end at Ry > Ry.

In Figure [3.4] we present two sets of results for the same initial radius, but now g = 10.

Since 8 o 1/AT we expect faster melting than in the previous example and this is obviously



3.5. RESULTS AND DISCUSSION 71

Figure 3.5: Evolution of the nondimensional melting front R(t) for p = 1.116 and p = 1,
for B = 100 and Ry = 10 nm. Solid line represents perturbation solution, dashed lines the
numerical solution.

the case. Since the perturbation expansion is based on 1/ it is no surprise that the dashed
line is slightly further from the solid line than in Figure 3.2 however the accuracy is still
good. Again there is a rapid decrease in radius during the final moments and so we expect
the final melting time to be very accurate, whether measured at R = 2/100 or closer to

R=0.

Figures show results for a particle with initial radius Ry = 10nm. All features
are qualitatively similar to those of the 100nm particle figures, with an obvious reduction in
melt times. In the case of Fig. BHl where 8 = 100, ending the calculation close to R = 0
or at R = 2/10 results in a 7% difference in melt times. Choosing p = 1 rather than the
true value will give a more than 55% decrease in melt time. In Fig. B, where g = 10, the
decrease is greater than 60%. Fig. shows the temperature profiles corresponding to Fig
An interesting feature is that it is clear the temperature in the solid is greater than the
melt temperature and so the solid acts to increase the melt rate (this is also the case in Fig.
B3 but less obvious). In standard situations, where T, is constant, the solid acts to slow

down melting.
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Figure 3.7: Evolution of the nondimensional melting front R(t) for p = 1.116 and p = 1,

for § = 10 and Ry = 10 nm. Solid line represents perturbation solution, dashed lines the
numerical solution.
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In Tables and we present dimensional melting times for particle radii 10, 50, 100
nm and § = 5,10,100 for p = 1 and p = 1.116 respectively. The dimensional times are
obtained by multiplying the nondimensional melting time by the time scale plcle /ki. By
comparing the two tables we see that for a particle with Ry = 10 nm, the computed melting
times for the case p = 1 are between 56% (for § = 100) and 65% (for 5 = 5) faster than
for the ones corresponding to p = 1.116. In the second column (Ry = 50 nm), the melting
times for the case p = 1 are between the 16% and 23% faster than those for p = 1.116.
Finally, the third column (Ry = 100 nm) shows differences between the two cases of 15%
and 16%. Results for larger particles show that the difference settles at approximately 15%.
This difference in melt times carries through to the macro-scale, indicating the importance

of incorporating density variation within more standard Stefan problems.
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Table 3.2: Melting times for the case p = 1. Results for gold.

Melting times (s)

Rp=10nm Ry=50nm Ry=100nm
B =100 (Tyg ~ 1341 K) 1.38.107'2  1.55-10~10 1.07-107Y
=10 (Tyg ~ 1376 K)  1.08-107'2  0.69-1071° 0.34-107°
B =5 (Ty ~ 1415 K) 0.89-107'2  0.45.10710 0.21-107°

Table 3.3: Melting times for the case p = 1.116. Results for gold.

Melting times (s)

Ry=10nm Ry=50nm Ry= 100 nm
B =100 (Ty ~ 1341 K) 3.12.1072  1.84.1071° 1.26:107Y
B=10 (Tyg ~ 1376 K)  2.75:107'2  0.85-10710 0.41-107°
B =5 (Tg ~ 1415 K) 24910712 0.58.10°1° 0.25-107°

The physical mechanism behind the slower melting when p = 1.116 is easily explained
by considering the energy in the system. Melting occurs due to heat being input at the
boundary Rp. When p = 1 this energy goes to heating up the material and driving the
phase change. However, when p = 1.116 the fluid must move due to the expansion (or
contraction depending on the material) caused by the phase change. This provides another
energy sink, namely kinetic energy, which then results in less energy available to melt the

material. Mathematically we can see from equation (B.33]) that when p = 1 the initial melt

1/2 1/4

rate Ry oc t7*/¢ is much greater than when p = 1.116, R; oc t~

In Figure B.8 we demonstrate the relative strength of the two terms constituting the left
hand side of equation (B.I5]), which represent latent heat release and kinetic energy, for the
cases where Ry = 10,100 nm and 8 = 10. The dashed line shows the result for Ry = 10 nm.
Since its value is close to or greater than unity throughout the melt process this signifies the
cubic term is generally dominant. When Ry = 100 nm the cubic term is negligible for most
of the process, but the peaks at the beginning and end mean that it still plays an important
role there. Decreasing « further will push the position of the peaks towards the initial and

final times, but will never remove them. Consequently kinetic energy will always play some

role in the energy balance provided v # 0.
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Figure 3.8: Relative importance of the term yR? against pSR; for 8 = 10, for nanoparticles
with radius Ry = 100 nm (solid line) and Ry = 10 nm (dashed line).

With no experimental results which exactly describe our theoretical models we must rely
on similar studies to provide estimates and at least quantitative agreement. For instance,
in [84] the melting of gold nanoparticles is studied experimentally by time resolved x-ray
scattering when heated up by a laser beam. They find that the time to complete melting
is less than 100 ps for nanoparticles with Ry = 50 nm. In [90] the melting of 2 and 20 nm
gold nanoparticles is studied, finding melting times on the picosecond scale. Our results
show indeed the right order of magnitude, however we are not aware of the existence of any

experimental studies that could further validate the accuracy of our results.

3.6 Conclusions

The main aim of this chapter was to determine whether the standard modelling assumption,
that the density remains constant throughout the phase change, is valid in the context of
nanoparticle melting. Our results clearly show that as the particle radius decreases the effect

of the density change becomes increasingly important. We presented results for the melting
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of gold and found that melt times for a particle with initial radius 10 nm were more than
doubled when the density ratio was changed from p = 1 to p =~ 1.116. This increase in melt
time may be attributed to the fact that with p = 1 the liquid phase remains stationary so all
energy input into the system is converted to heat or to drive the phase change. If p = 1.116
then the liquid is forced to move which requires kinetic energy and means less energy is
available for the phase change.

We therefore conclude that any mathematical model of nanoparticle melting should in-
corporate density variation. In fact our results show an even stronger conclusion, namely
that in general the density variation should be included in phase change models regardless
of size. In the case studied in the present chapter the difference in melt times (neglecting
or including density variation) tended to a limit of approximately 15% as the particle size

increased.
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Abstract

In this chapter a one-phase supercooled Stefan problem, with a nonlinear relation between
the phase change temperature and front velocity, is analysed. The model with the standard
linear approximation, valid for small supercooling, is first examined asymptotically. The
nonlinear case is more difficult to analyse and only two simple asymptotic results are found.
Then, we apply an accurate Heat Balance Integral Method to make further progress. Finally,
we compare the results found against numerical solutions. The results show that for large
supercooling the linear model may be highly inaccurate and even qualitatively incorrect.
Similarly as the Stefan number 3 — 17 the classic Neumann solution which exists down
to B = 1 is far from the linear and nonlinear supercooled solutions and can significantly

overpredict the solidification rate.
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4.1 Introduction

Supercooled liquids can solidify much more rapidly than a non-supercooled liquid and when
rapid solidification occurs the liquid may not have time to form its usual crystalline struc-
ture. Materials made from supercooled melts can therefore have markedly different prop-
erties to the standard form of the material. A material formed from a supercooled liquid,
usually called a glassy or amorphous solid, can present greater corrosion resistance, tough-
ness, strength, hardness and elasticity than common materials: amorphous metal alloys can
be twice as strong and three times more elastic than steel. Such materials are currently used
in medicine, defence and aerospace equipment, electronics and sports [109, 95, [111]. Recent
advances in the production and use of amorphous solids provides the motivation for this

theoretical study on the solidification of a supercooled liquid.

Theoretical investigations of Stefan problems have focussed primarily on the situation
where the phase change temperature is constant. However, there are various applications
where this temperature changes from its standard value (the heterogenoeus nucleation tem-
perature) and may even vary with time. One method to reduce the freezing point is to
increase the ambient pressure. This method is exploited in the food industry, whereby the
sample is cooled well below the normal freezing temperature by applying a high pressure.
The pressure is then released and almost instantaneous freezing occurs. This permits the
freezing of certain products that normally spoil when frozen more slowly. The technique is
also used in cryopreservation [54]. Pressure may also vary due to surface tension effects at
a curved interface. Hence freezing fronts with high curvature may exhibit a variable phase
change temperature. Another mechanism for varying the phase change temperature occurs
when a liquid is supercooled or undercooled (we will use both terms in the following work),
that is, the liquid is cooled below the heterogeneous nucleation temperature. In this sit-
uation the liquid molecules have little energy which affects their mobility and hence their

ability to move to the solid interface [4, [19].

In this chapter we focus on the final mechanism, where the liquid is supercooled. In

the standard Stefan problem the phase change temperature is specified as a constant, say
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T, and the speed of the phase change front is related to the temperature gradient in the
surrounding phases. When modelling the solidification of a supercooled liquid, the phase
change temperature is unknown and so a further equation is required, which relates the speed
of the front to the degree of supercooling. If we denote the temperature at which the phase
change occurs as Ty and s(t) as the position of the front then a typical form for the relation
between the front velocity, s, and the degree of supercooling is shown in Figure[Z.Il The left
hand plot represents the copper solidification process, the right hand plot represents salol
(which occurs at a slow rate and so provides relatively simple experiments). Both curves have
the same qualitative form. For a small degree of supercooling, i.e. for copper T,, — 17 < 250

K, the speed of the front increases as the supercooling increases. This behaviour seems

physically sensible, the cooler the sample the more rapid the freezing. However, for larger
supercooling the process slows down as the molecules become more ’sluggish’ due to a lack of
energy. The maximum solidification rate for copper is around 2.9m/s, for salol it is around

4.4 x10™°m/s (making salol a more popular choice for experimental studies).
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Figure 4.1: Representation of the solidification speed of copper (left) and salol (right) as a
function of the supercooling. The solid line represents the full expression for s, the dashed