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Abstract
In the current environment, various branches of science are in need of auxiliary high-

performance computing to obtain relatively short-term results. This is mainly due to the

high volume of information that needs to be processed and the computational cost de-

manded by these calculations. The benefit to performing this processing using distributed

and parallel programming mechanisms is that it achieves shorter waiting times in obtain-

ing the results. To support this, there are basically two widespread programming models:

the model of message passing based on the standard libraries MPI and the shared memory

model with the use of OpenMP. Hybrid applications are those that combine both models

in order to take the specific potential of parallelism of each one in each case. Unfortu-

nately, experience has shown that using this combination of models does not necessarily

guarantee an improvement in the behavior of applications. There are several parameters

that must be considered to determine the configuration of the application that provides the

best execution time. The number of process that must be used,the number of threads on

each node, the data distribution among processes and threads, and so on, are parameters

that seriously affect the performance of the application. On the one hand, the appropriate

value of such parameters depends on the architectural features of the system (communica-

tion latency, communication bandwidth, cache memory size and architecture, computing

capabilities, etc.), and, on the other hand, on the features of the application.

The main contribution of this thesis is a novel technique for predicting the performance

and efficiency of parallel hybrid Master/Worker applications. This technique is known as

model-based regression trees into the field of machine learning. The experimental results

obtained allow us to be optimistic about the use of this algorithm for predicting both

metrics and to select the best application execution parameters.

Keywords
MPI, OpenMP, hybrid applications, Master/worker, performance prediction,

Model-based regression tree.





Resumen
En el entorno actual, diversas ramas de las ciencias, tienen la necesidad de auxiliarse de la

computación de altas prestaciones para la obtención de resultados a relativamente corto

plazo. Ello es debido fundamentalmente, al alto volumen de información que necesita ser

procesada y también al costo computacional que demandan dichos cálculos. El beneficio

al realizar este procesamiento de manera distribuida y paralela, logra acortar de manera

notable los tiempos de espera en la obtención de los resultados. Para soportar ello, existen

fundamentalmente dos modelos de programación ampliamente extendidos: el modelo de

paso de mensajes a través de libreŕıas basadas en el estándar MPI, y el de memoria com-

partida con la utilización de OpenMP. Las aplicaciones h́ıbridas son aquellas que combinan

ambos modelos con el fin de aprovechar en cada caso, las potencialidades espećıficas del

paralelismo en cada uno. Lamentablemente, la práctica ha demostrado que la utilización

de esta combinación de modelos, no garantiza necesariamente una mejoŕıa en el compor-

tamiento de las aplicaciones. Existen varios parámetros que deben ser considerados a

determinar la configuración de la aplicación que proporciona el mejor tiempo de ejecución.

El número de proceso que se debe utilizar, el número de hilos en cada nodo, la distribución

de datos entre procesos e hilos, y aśı sucesivamente, son parámetros que afectan seriamente

el rendimiento de la aplicación. El valor apropiado de tales parámetros depende, por una

parte, de las caracteŕısticas de arquitectura del sistema (latencia de las comunicaciones,

el ancho de banda de comunicación, el tamaño y la distribución de los niveles de memoria

cache, la capacidad de cómputo, etc.) y, por otro lado, de la caracteŕısticas propias del

comportamiento de la aplicación.

La contribución fundamental de esta tesis radica en la utilización de una técnica nove-

dosa para la predicción del rendimiento y la eficiencia de aplicaciones h́ıbridas de tipo Mas-

ter/Worker. En particular, dentro del mundo del aprendizaje automatizado, este método

de predicción es conocido como arboles de regresión basados en modelos análiticos. Los

resultados experimentales obtenidos permiten ser optimista en cuanto al uso de este algo-

ritmo para la predicción de ambas métricas o para la selección de la mejor configuración

de parámetros de ejecución de la aplicación.

Palabras clave
MPI, OpenMP, aplicaciones h��bridas, Master/worker, predicci�on de rendimiento,

Arboles de regresi�on basados en modelos anal��ticos.





Resum
A l’entorn actual, diverses branques de la ciència tenen la necessitat d’auxiliar-se en la

computació d’altes prestacions per obtenir resultats en un termini relativament curt. Això

és degut fonamentalment, a l’alt volum d’informació que necessita ser processada i també

al cost computacional que requereixen aquests càlculs. El benefici al realitzar aquest pro-

cessament de forma distribüıda i paral·lela, aconsegueix escurçar notablement els temps

d’espera en la obtenció de resultats. Per suportar això, existeixen fonamentalment dos

models de programació àmpliament extesos: el model de pas de missatges mitjançant lli-

breries basades en l’estàndard MPI, i el de memòria compartida amb l’ús d’OpenMP. Les

aplicacions h́ıbrides són aquelles que combinen ambdós models per tal d’aprofitar en cada

cas, les potencialitats espećıfiques del paral·lelisme en cadascun d’ells. Lamentablement,

la pràctica ha demostrat que l’utilització d’aquesta combinació de models, no garantitza

necessàriament una millora en el comportament de les aplicacions. Existeixen diversos

paràmetres que han de ser considerats per determinar la configuració de l’aplicació que

proporciona el millor temps d’execució. El número de procés que s’ha d’utilitzar, la quan-

titat de fils a cada node, la distribució de dades entre processos i fils, i aix́ı successiva-

ment, són paràmetres que afecten sèriament al rendiment de l’aplicació. El valor apropiat

d’aquests paràmetres depèn, per una banda, de les caracteŕıstiques de l’arquitectura del

sistema (latència de les comunicacions, l’ample de banda de comunicació, el tamany i la

distribució dels nivells de memòria cache, la capacitat de còmput, etc.) i, per altra banda,

de les caracteŕıstiques pròpies del comportament de l’aplicació.

La contribució fonamental d’aquesta tesi rau en l’ús d’una tècnica novedosa per la

predicció del rendiment i l’eficiència d’aplicacions h́ıbrides de tipus Master/Worker. En

particular, dins del món de l’aprenentatge automatitzat, aquest mètode de predicció es

conegut com a arbres de regressió basats en models anaĺıtics. Els resultats experimentals

obtinguts permeten èsser obtimista en quant a l’us d’aquest algoritme per la predicció

d’ambdues mètriques o per la selecció de la millor configuració de paràmetres d’execució

de l’aplicació.

Paraules clau
MPI, OpenMP, aplicacions h��brides, Master/worker, predicci�o de rendiment,

Arbres de regressi�o basats en models anal��tics.
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Chapter 1

Introduction

Nowadays, the interaction between di�erent �elds of study has become a fact

for scientists in areas such as physics, biology, mechanics and so on. But all

of them have also been a�ected by the emergence of computational science.

These research �elds are highly a�ected by the possibilities to solve di�cult

problems of di�erent nature that came with the introduction of High Perfor-

mance Computing (HPC) . As the application becomes more complex and

performs more sophisticated computations, the increasing demand for com-

puting resources marks the need for the massive parallelization of systems

and applications.

These parallel systems are computer environments formed by a set of

processing units that work in conjunction to solve a problem. Just now, one

way to increase the power of those systems is to have more cores embeded

inside a processor. Although such systems have performance limits, they

are more powerful than the ordinary desktop PC that we can �nd in any

home. That is the reason why multicore processors are widely used around

the world and are integrated in most computing nodes, from personal com-

puters to supercomputer processing nodes. In this context, every computing

node in a parallel/distributed system includes several cores that can be ex-

ploited to reduce the execution time of parallel applications. One way of

exploiting such features is to distribute application processes to many nodes

1



2 CHAPTER 1. INTRODUCTION

of the system and execute di�erent numbers of threads at the core level in

each node. But even though it is the most popular way to increase the com-

putational demands, there are a variety of architectures of parallel systems.

These architectures can be clasi�ed based on the Flynn taxonomy [1] but the

result do not clearly express the result of the signi�cant di�erences of each

one. The best way to clasi�ed the actual variety of parallel achitectures must

be based on the programming paradigms that are most used in these systems.

The shared memory architecture (SMA) refers to a multiprocessing

design where several processors access the globally shared memory. They

can be divided into two main groups: the symmetric multiprocessor (SMP)

also known as uniform memory access (UMA) and the non-uniform memory

access (NUMA) [2]. The SMP architecture uses a central bus that connects

all the processors with the main memory. This design guarantees that the

cost of accessing this shared memory will be equal for all the processors,

regardless of the memory address accessed. The contention problems on the

bus caused by concurrent access to the bus by the processing units will be

the main cause for degradation of the applications�s scalability. On the con-

trary, the NUMA architecture�s memory distribution is not symmetric. The

latency of accessing the main memory will depend on the distance between

the processor and the memory slot where the data is accessed. In this case,

each proccesor has its own part of the global memory. The global memory

will be the sum of all these parts. If one processor tries to access a memory

adress located close to another proccesor, it has to be done through the inter-

connection network between processors. The memory accesses generated in

one processor to its associated memory will have a lower latency than those

accesses to memory associated with other processors.

The parallel distributed architectures feature a system composed of

several independent nodes connected through an interconnection network. In

these systems, each node has its own memory, which is not shared among

all of them. If there is an access to data located in the local memory of

another node, there should be explicit communication between those two
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nodes. These systems are highly scalable, and they allow to teh introduction

new architectures on each node without too much e�ort. For these reasons,

they have become one on the most popular architectures in HPC. In general,

parallel distributed systems can be split into three groups: clusters, constel-

lations and massively parallel processors (MPPs) [3].

A cluster can be understood as a parallel system formed by independent

nodes connected through an interconnection dedicated network. Dongarre

et al. limit the scope of the de�nition of a cluster to a parallel computer

system comprised of an integrated collection of independent \nodes", each of

which is a system in its own right capable of independent operation and de-

rived from products developed and marketed for other standalone purposes.

Moreover, a commodity cluster is a cluster in which the network(s) as well as

the compute nodes are commercial products available to the market for pro-

curement and independent application by organizations (either end users or

separate vendors) other than the original equipment manufacturer. A special

case of a commodity cluster is the Beowulf-class PC clusters that contains

mass-market components for both hardware and software to achieve the best

performance without any limited dependence on any single vendor. Beowulf-

class clusters and clusters of workstations were at one time distinct system

types, but, with the blurring or elimination of any meaningful di�erences

between PCs and workstations in capability, the di�erentiation between the

two types of clusters has also largely lost any meaning. Nowadays, it is quite

common for these systems to be formed by multiprocessors (SMP or NUMA).

A constellation is a cluster of large SMP nodes scaled such that the

number of processors per node is greater than the number of nodes. Using

this de�nition, a constellation becomes a cluster when the number of nodes

equals or exceeds the number of cores per node. In this case, the dominant

parallelism level is located inside the node. Today, the eight core node is

standard, which implies that you need eight nodes (or more) to be called a

cluster. Therefore, a modern day cluster should have 64 or more cores. There

was a time when 64 processors (single core) was considered a large cluster.
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Unlike clusters, massively parallel systems (Massively Parallel Process-

ing, MPPs) are arranged with a very high level of coupling systems. In the

MPP systems nodes, are independent (that is, they contain their own mem-

ory and copy of the operating system) and are connected via a high speed

network, but are managed as a single system similar to a multiprocessor. In

general, the performance of these systems is better than the clusters, because

some components are often designed specifically for these systems (e.g. the

interconnection network).

Nowadays, Cluster and MPPs monopolize the list of most parallel archi-

tectures according to the TOP500 [4].

Figure 1.1: Architecture distribution in the TOP500 list.

Figure 1.1 shows a statistic about the most popular HPC architectures

used by the most important research center in the world. The percentage

values are rounded, which is why there is not another architecture included in

the graph. It is clear that there is a high popularity of these two architectures,

while the rest tend to disappear.

There are several alternatives of programming models for programming

the applications that will be executed in such environments. Each one has ad-

vantages and disadvantages in terms of simplicity and ability to leverage the

benefits of the underlying hardware and portability. One of the most com-
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monly used programming models is the hybrid approach, with MPI [5] pro-

cesses communicated processes using message passing and OpenMP threads

exploited inside each node [6] and [7]. This combination of parallel program-

ming models is usually called hybrid programming. In the literature, we can

�nd the same term used to reference programming models that combine MPI

with other programming model like CUDA [8] for accelerators or StarSs [9]

itself, but, so far, the hybrid MPI+OpenMP hybrid combination remains one

of the most popular ways to join these two levels of parallelism. The main

reason that explains why programmers from di�erent �elds of science are still

using it now is its inherent simplicity and the rapid growth of the learning

curve to assimilate it. A well coding MPI+OpenMP program tries to bene�t

from the advantages of parallelism at both levels. But, even when we have

several applications developed based on these models, there are several di�er-

ences in the way these two logics combine in the �nal application. The next

sections will cover the di�erent kinds of hybrid MPI+OpenMP applications.

1.1 Hybrid MPI+OpenMP applications clasi-

fication

Figure 1.2 shows a general overview for the di�erent kinds of hybrid applica-

tions based on the �rst conceptual proposal by R. Rabenseifner et al. [10].

The conceptual relationship between the di�erent traditional programming

models to develop a parallel application can be seen. On the one hand, we

have the pure MPI applications, which are those where the implicit paral-

lelism is expressed using a message passing model between all the processes

involved in the execution. On the other hand, there are the pure OpenMP

applications where the parallelism is implemented inside each computational

node. In this case, there is no message passing communication between the

threads, because all of them share a common memory space. The responsi-

bility for the creation, destruction and synchronization all these threads is

done by the library at the beginning and end of each parallel section that is

speci�ed by the programmer.
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Figure 1.2: Hybrid MPI+OpenMP classification hierarchy.

An even more detailed description of such applications should consider

the location of communications within the logic of our program and whether

these communication functions overlap with the computational region of the

application. Accordingly, we would have hybrid Masteronly applications,

Masteronly-single overlap applications and applications with multiple overlap

between computation and communication.

In the first case, the Masteronly applications the communication function

calls are made outside the parallel region, so the overlap between regions

of computation and communication i only observed between the different

processes involved. In contrast, the Masteronly single overlap applications

maintain communication function outside the parallel regions, but, in this

case, these communication functions are asynchronous, so there will be an

overlap between this function and the parallel region of OpenMP code that

is between the send call and the wait call. The applications with multiple

computation-communication overlap are those where communication func-

tion is called inside the OpenMP region. In this case, the overlapcan be seen

between different processes and threads.
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1.2 Performance factors

Even when a expert programmer in HPC knows the logic of its applications

and the details of the architecture where these application will be executed

very well, it is very di�cult to launch them ensuring that their running times

will be close to the minimum or that their e�ciency will enrich the maxi-

mum value. The applications usually have several parameters that in
uence

their behavior, as well as the fact that the workload of these applications can

change over the course of their execution. This problem must necessarily be

addressed from an automatic selection of the best parameters of execution.

Trying to tackle the challenge consists of being able to develop applications

that can enrich a good performance and e�ciency and must start to identify

the most important factors that in
uence the behavior of parallel applica-

tions. It will allow us to focus all our the e�ort on improving the application

performance by tuning these factors at runtime.

The most important performance factors for parallel hybrid application

are the following:

Load balancing: if the workload of each process involved in the execution of

the application is quite dissimilar it will cause performance degradation

in these applications because processes that �nish the jobs early will

have to wait for the rest. Thanks to the existence of the two levels

of parallelism in the hybrid applications, the imbalance e�ect will be

lower than pure MPI application, but the degradation will be not small

enough to ignore the importance of this factor.

Number of MPI processes: Based on the number of MPI processes used

in the execution, the general workload will be divided into smaller

fragments. In an ideal case, in the same way we increase the number

of MPI process, we expect to reduce the processing time on each MPI

process.

Number of threads per process MPI: De�ne the number of threads to

be used in the parallel OpenMP region in each MPI process. Similar
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to the number of processes, an increment in this value will decrease

the workload for each thread. If this e�ect does not occurs, the per-

formance degradation must be explained by the architecture limitation

bandwidth produced when several threads are concurrently accessing

the main memory. Another cause could be the time penalty generated

by data misses on the di�erent levels of cache memory when a thread

tries to access this data.

Affinity: Describe the allocation policy for the MPI processes or threads.

The MPI processes can be placed on di�erent nodes that do not share

a common memory, or they can be placed on the same node. At the

same time, the threads can share cache memory level based on a spe-

ci�c allocation or not. Here, we can have a lot of combinations for

a�nity, but, in the general, the applications can bene�t mainly from

two types of a�nity: the close and far a�nity. A close a�nity means

that the processes or threads are allocated trying to sharethe di�erent

levels of cache memory as much as possible, and the far a�nity is just

the opposite. The applications that have a regular pattern to access

the data and frequently reuse this data usually bene�t from the close

a�nity policy.

Communication pattern: In the SPMD applications, we can usually �nd

a regular pattern in the communication between the MPI processes

involved in the execution. In �gure 1.3, there are a few examples of

di�erent patterns in one, two or three dimensions. The number of MPI

messages sent and received will increase in proportion to the number

of process neighbors for each MPI process. Usually, when the com-

munication pattern becomes more complex, the size of each individual

message will decrease. Depending on the characteristics of the applica-

tion, this increase could bene�t or harm the general performance of the

whole application. In the Master/Worker and Pipeline parallel applica-

tions, it makes no sense to consider this performance factor because the

pattern in this case is determined by the number of processes involved.
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Figure 1.3: Communication patterns examples for SPMD applications.

OpenMP parallelism quality: It is the only factor we identify that can-

not be changed at runtime. It describes how much influence there is

of the parallelism in these regions on the final performance. There is a

chance to improve the source code of this region based on the charac-

teristics of the hardware on which the application is executed. Unfor-

tunately, an improvement in the performance of these parallel regions

caused by modifying the code is not a trivial task, as it requires extra

effort from the developer to seek the best modification that effectively

contributes to this purpose.

Figure 1.4: Imbalance between threads in hybrid applications with multiple
overlapping.

Workload in the communication threads: It is only present in hybrid

applications with multiple overlapping factors. For a fine adjustment

of this factor, we must decrease the workload of the threads that per-

form communication and computation relative to those threads that
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only perform computation. In this manner, we will ensure that all the

threads will �nish their task at the same time (Fig. 1.4). There is pre-

vious research [11] using parallelism implemented with pthreads that

shows a dramatic improvement in the performance of parallel applica-

tions with the logic adapted to allow for the multiple overlap.

In short, for those hybrid applications on which this thesis is focused (the

Master/Worker applications with blocking MPI communications), the per-

formance factors to consider are: number of MPI process, number of threads

per process, a�nity policy for the threads and processes, application work-

load and other particular application parameters that will have an impact

on the performance.

1.3 Motivation

Nowadays, the steady increase in demand for more computing power in HPC

is a reality. This come from the community of scientists that has to deal

with complex problems comming from di�erent �elds. It is now common to

see supercomputers with tens or hundreds of thousands of processors. The

parallel applications running on these supercomputers are able to calculate

the solution for a problem in a relatively short time but, unfortunately, the

performance achieved in several cases is not as good as expected. Even when

the execution time of these applications is acceptable, it does not mean that

the resources have been used in the right way. Depending on the kind of

application, we can achieve a similar performance or e�ciency, signi�cantly

reducing the number of resources involved in the computation. However,

this decision is not �xed on the execution time of those applications. If the

workload varies at runtime, the best application parameters have to be dy-

namically tuned as a consequence of these changes.

That is the reason why, if it is possible to predict the performance and

e�ciency of applications, we can then automatically search for a best con�g-

uration of application parameters that allow us to adjust them at runtime.
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1.4 Objectives

The primary goal of this thesis is to design and validate a technique

for selecting the configuration of application parameters that al-

low us to reach the best performance or efficiency for a given

workload in parallel hybrid MPI+OpenMP Master/Worker ap-

plications . We plan to explain the general methodology that allow us to

reach this goal through an incremental improvement process.

In order to accomplish these objectives, there are some intermediate goals

that have to be ful�lled in order to guarantee the success of our proposal:

• De�ne a technique to predict the performance of hybrid applications

for any combination of application parameters .

• Evaluate whether global results are precise enough to ensure a proper

selection of the con�guration parameters of the application.

• Evaluate the techniques for predicting the e�ciency index.

• Validate the accuracy of searching for the best parameters of the ap-

plication that guarantee proximity to the optimal e�ciency.

This proposal study is limited to the following conditions:

• The applications selected to validate our work must have a regular

computation region that does not depend on the data values.

• The workload of the application should be able to be characterized.

• The application has to be previously well-balanced to guarantee that

the processing execution time is similar amoung all workers.

• The communication behavior must be regular. This means that the

latency and bandwith of MPI communications should be stable even

when the message size or the number of worker changes.
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• The validation of our proposal will be bounded to the search space

de�ned by the limits of the training set of observations.

Throughout this thesis, two di�erent approaches are presented. The �rst

attempt to predict the performance is based on de�ning an analytical model.

Thanks to the experience of working on this aproach, we detect the most

important limitations of this technique, which led us to change the strategy

of prediction to a technique based on regression trees.

1.5 Thesis outline

Chapter 2: Backgrounds. This chapter will cover the most important

tools for performance analysis as presented nowadays. Additionally, an ex-

haustive review of the di�erent techniques for predicting performance will

be covered. These techniques are basically joined in three groups: proposals

that used simulation, analytical models to predict the performance of both

the computation and communication time or even the total execution time.

Chapter 3: Analytic Model for Master/Worker hybrid applica-

tions. In this chapter we �nd a detailed explanation of the performance

model we proposed. Tt explains the parts of the model and the methodology

for its construction in detail. The chapter also covers the main problem the

model has and why it cannot be generalized to predict performance for any

workload.

Chapter 4: Model-based regression tree. This chapter will detail

the most important contribution of this thesis. Here, the model-based re-

gression tree is introduced as a technique for predicting the performance and

e�ciency in hybrid application. Details of its parameters and construction

will also be cover. In addition, the general methodology is explained to get

a better version of the prediction tree based on an iterative and incremental

process of analysis of partial results.
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Chapter 5: Experimental evaluation. This chapter details the ex-

perimental validation of the model-based regression technique, as well as

explaining the full description of how the experiments were designed. To val-

idate our proposal, we used three applications in two di�erent architectures.

Chapter 6: Conclusions and Open Lines. Finally, in this chapter,

we review the principal conclusion presented in this work and conclude this

thesis. This is followed by an outline of open lines and discussion of future

works.
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Chapter 2

Background

This chapter will cover the most important tools for performance analysis

as presented nowadays. Additionally, an exhaustive review of the di�erent

techniques for predicting performance or other metrics will be covered. These

techniques are basically joined in four groups: proposals that used simulation,

analytic models, heuristic and machine learning methods.

2.1 Performance Analysis and Tuning

The develop of e�cient parallel hybrid applications is a challenging task that

requires a high degree of expertise. Usually, when running parallel appli-

cation, performance problems appear that limit e�ciency, especially as the

number of tasks involved increases. To reduce the e�ect of the performance

problems during the execution of the application, it is often necessary for the

programmer to carry out a performance improvement process the develop-

ment of the application. First, a gathering phase is needed to collect the most

important behavioral information about the execution. Then, through the

analysis of the collected information, performance problems can be detected

and possible action to avoid them are determined. Finally, we can change

the di�erent application parameters with the goal of resolving the problems

and trying to increase performance as much as possible.

15
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In the last decade, di�erent tools and techniques have been proposed to

tackle these performance issues and to help developers during the perfor-

mance improvement phase. The next section will cover some of the most

popular tools used by the scienti�c community.

2.1.1 TAU

The TAU (Tuning and Analysis Utilities) performance system is a integrated

toolkit that allows for the instrumentation, o�ine analysis and visualization

of parallel applications [12, 13]. This product can be executed in the major-

ity of the current HPC platforms and can be used to analyze applications

written in C, C++, Fortran, Java or Python. It has support to di�erent stan-

dard libraries for message passing (e.g MPI or MPICH) and multi-threading

(e.g Pthreads or OpenMP). The 
exible instrumentation layer provided by

TAU allows for the used of di�erent instrumentation techniques, including

dynamic instrumentation using the DynInst API [14] or automatically us-

ing PDT (Program Database Toolkit) [15]. The instrumentation of the MPI

function can be done by using PMPI [16] while the OpenMP directives can

be instrumented with Opari [17]. Additionally, this tool allows us to take

hardware counters from the processor using di�erent libraries [18].

The parallel pro�le analysis environment of TAU is composed of sevaral

tools. To pro�le information visualizing, we must use ParaProf. This is a

powerful tool that provides several graphics and report styles with the option

of �ltering part of the information collected. The reports can be generated

using the real metrics of using derived metric calculated using this tool. The

trace �les generated by TAU can be transformed to other formats like SLOG-

2 [19], OTF [20] or EPILOG [21]. This is quite helpful because this tool does

not force the user to use its own environment; on the contrary, it is posible to

see these trace �les with an alternative software (e.g JumpShot [22]). Finally,

the PerfDMF tool is a laboratory that allow us to manage the results obtained

from several experiments. With all this information collected in a database,

the user can creat groups by experiment categories or application parameter

values and so on. Beyond this advantage, using this tool it is possible to
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apply correlation studies and clustering techniques over all the data.

2.1.2 Scalasca

Scalasca [23, 24] is a post-mortem performance analysis tool. This program

proposed an incremental performance analysis procedure adopting a strategy

of successively re�ned measurement con�gurations. The more distinctive

features that distinguish it from other tools are its ability to detect wait states

and the bottleneck in the applications with a very large number of processors

and its ability to combine these with summarized local measurements. With

this information, it is easier to identify problems, particularly those related

to communication and synchronization. The pro�ling information and the

analysis results can be visualized with a tool itegrated into the Scalasca

environment. The two tools, Scalasca and TAU have much in common. In

fact, it is possible to transform the pro�ling and trace output �les from one

to the other quite simply.

2.1.3 Paraver

Paraver is a 
exible tool developed in the Barcelona Supercomputing Center

[25] for the analysis and visualization of parallel application performance [26].

This tool generates a 
exible trace �le that allows us to perform di�erent

kinds of analysis. This trace can be obtained from the source code of parallel

application coded using MPI or OpenMP. In addition, it has an option to

show the selected events from the execution in a picture, and it includes a

module to make a quantitative analysis of the di�erent metrics or the analysis

of several concurrent traces. Additionally, we can get an output text �le with

detailed information on the application behavior.

2.1.4 Active Harmony

Auto tuning refers to the automated search for values to improve the perfor-

mance of a target application. In this case, performance is an abstract term

used to represent a measurable quantity. A common example of performance
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for auto tuning is time, where the goal is to minimize execution time. Other

possible examples include minimizing power or maximizing 
oating point op-

erations per second. In general, the Active Harmony framework [27] seeks to

minimize performance values and handles maximization via negation.

This project is focused on the dynamic accommodation of the parallel

application to the network and resources capacities of the execution envi-

ronment. This is achieved by automatically testing the di�erent algorithms

and tuning actions of application parameters. The architecture they provide

is based on a client-server model. Using the collected information from the

application previously instrumented, the server carries out the tuning action.

The lastest update to this tool is focused on the �eld of online tuning of au-

tomatically generated code [28]. The goal is discover the best con�guration

of tuning parameters to improve the performance of the application. In an

early version of Harmony [29], a greedy algorithm to handle automatic se-

lection of parameters was used. Cristian et al. [30] introduce the use of the

Nelder-Mead method for parameter selection that guarantees getting closer

to the optimal. This search strategy uses a simplex-based method to esti-

mate the relative slope of a search space without calculating gradients, but,

similar to our proposal, this strategy is fed by several execution observations

that are collected at runtime.

2.1.5 Periscope

Periscope is a distributed performance analysis tool [31]. under development

at Technische Universitaet Muenchen in the ISAR and SILC projects. It

consists of a frontend and a hierarchy of communication and analysis agents.

Each of the analysis agents, i.e., the nodes of the agent hierarchy, searches

autonomously for ine�ciencies in a subset of the application processes. The

application processes are linked to a monitoring system that provides the

Monitoring Request Interface (MRI). The agents attach to the monitor via

sockets. The MRI allows the agent to con�gure the measurements: to start,

halt, and resume the execution, and to retrieve the performance data. The
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monitor currently only supports summary information. The application and

the agent network are started through the frontend process. It analyzes

the set of processors available, determines the mapping of application and

analysis agent processes, and then starts the application and the agent hier-

archy. After startup, a command is propagated down to the analysis agents

to start the search. The search is performed according to a search strategy

selected when the frontend is started. At the end of the local search, the

detected performance properties are reported back via the agent hierarchy

to the frontend. Periscope starts its analysis from the formal speci�cation

of performance properties as C++ classes. The speci�cation determines the

condition, the con�dence value and the severity of performance properties.

Recently, an extension of Periscope (Periscope Tunning Framework) has

been exposed under the AutoTune project [32]. This extension aims to help

developers in the process of tuning a parallel application. The framework

identi�es tuning alternatives based on expert knowledge and evaluates them

within the same run of the application. In the end, PTF produces a report

on how to improve the code.

2.1.6 HPCToolkit

HPCToolkit [33] is an integrated suite of tools for measurement and analysis

of program performance on computers ranging from multicore desktop sys-

tems to the nation's largest supercomputers. By using statistical sampling

of timers and hardware performance counters, HPCToolkit collects accurate

measurements of a program's work, resource consumption, and ine�ciency

and attributes them to the full calling context in which they occur. HPC-

Toolkit works with multilingual, fully optimized applications that are stati-

cally or dynamically linked. Since HPCToolkit uses sampling, measurement

has low overhead (1-5%) and scales to large parallel systems. HPCToolkit�s

presentation tools enable rapid analysis of a program's execution costs, in-

e�ciency, and scaling characteristics, both within and across the nodes of a

parallel system. HPCToolkit supports the measurement and analysis of se-

rial codes, threaded codes (e.g. pthreads, OpenMP), MPI, and hybrid (MP-
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Ithreads) parallel codes. The analysis performed by HPCToolkit is based on

trying to correlate di�erent performance metrics with the logic structure of

the application. In addition, it allows for the creation of a description of the

application that is independent from the hardware where it was executed.

With this information, HPCToolkit can predict the behavior of applications

in other architectures [34].

2.1.7 Elastic

Elastic (Large Scale Dynamic Tuning Environment) is a tool that performs

dynamic and automatic tuning of pure MPI applications [35]. Its objective

is to improve the performance of parallel applications at runtime by adapt-

ing them to the variable conditions of the system. Through di�erent stages

(instrumentation, information gathering, analysis and tuning), this tool dy-

namically modi�ed the application by applying given solutions. By using

dynamic libraries for instrumentation, the actions of recompiling or restart-

ing the application are not needed. ELASTIC operates following the closed

tuning loop of automatic and continuous monitoring and the analysis and

tuning of a parallel application without stopping, recompiling or rerunning

it. In the monitoring phase, ELASTIC uses event tracing to collect informa-

tion about the application at the task level. This information is sent to the

nodes of the tuning network where automatic performance analysis is con-

ducted. After detecting a performance problem, tuning orders are inserted

into the application tasks at runtime with the aim of improving its perfor-

mance.

The lastest contribution to this product is the viability of using ELASTIC

for dynamic tuning in the large-scale computing area. The scalability of this

product arises from its architecture, structured as a hierarchical tree of nodes

(the tuning network), whose topology can be adapted to accommodate the

size of the parallel application.



2.2. BEHAVIOR PREDICTION PROPOSALS 21

2.1.8 ATLAS

The ATLAS [36] libraries provide a di�erent approach. In this case, they

develop a methodology for the automatic generation of e�cient linear al-

gebra routine based on the architecture that will be used. Basically, this

methodology is based on generating optimized code to determine the correct

blocking reduce the penalty for data cache misses and loop unrolling factors

in order to perform an optimized on-chip operation. This is an automatic

tuning strategy for shared-memory parallelism, but it is focused on a speci�c

library and cannot be generalized to other applications or libraries.

2.2 Behavior prediction proposals

There are several approaches to tackling the goal of predicting performance,

e�ciency or other measurements that express the degradation of a paral-

lel behaviour. In general, all the proposals can be grouped into four main

groups: the analytical models, prediction support by simulation, the use of a

heuristic algoritm and the prediction based on machine learning techniques.

In addition, there are some solutions that are formed by combining of some

of these techniques [37, 38] and can be used intelligently, considering the con-

straints of each proposal and the application environment in which they can

be applied. From now on, the most important ideas provided in the recent

years will be described.

2.2.1 LogP models for communication

The Hockney model [39] is a simple model that assumes that the time to

send a message between two nodes with size m has a linear behaviour. It

says that:

T = a+ bm (2.1)

where a is commonly known as latency. This is the interval between the

start of the communication and when the receiver process catches the �rst
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byte of the message. The b argument means the ratio of time per byte sent

and which is equivalent to the reciprocal bandwidth of the communication

channel. This model does not consider some aspects from the real applica-

tions that will cause inaccurate predictions like the congestion of network

interconnection or the overlap between di�erent messages sent from many

processes.

The LogP model [40] is a trade-o� proposal created to be a realistic

abstraction of the real behaviour of communication in homogeneous environ-

ments. At the same time, it is a simple model, not too sophisticated, that

does not asume an in�nite bandwith in the interconnection network or a zero

time delay. Basically, it is formed by four parameters:

Communication latency (L): Upper limit of the communication delay to

send a wordsized message between two nodes assuming that there will

be no con
icts on the network.

Overhead (o): It is the time spent by one process doing a communication

task (sending or receiving a message) During this time, the process

cannot do any computation tasks.

Gap (g): The minimum time interval between the transmission and the

reception of two consecutive messages sent by the same process. The

inverse of this value determines the e�ective bandwith.

Number of process (P): Number of processes involved in the execution

of the application.

The �rst three parameters will be measured in time units. They will

characterize the performance of point-to-point communications on the par-

allel system. One important assumption is that the eviroment is considered

as a asynchronous machine where there is no synchronization throughout all

the processes, so that every task performed by each proccess is independent

from the others. In addition, the interconnection network must have a �nite

bandwith de�ned by the maximum number of mesages per time unit. This
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model is only de�ned in those cases where the size of the messages sent is

remarkably small.

The fact that LogP model parameters are independent of the system

favors the development and the analysis of portable algorithms. At the same

time, it allows us to avoid the need for speci�c details of the di�erent machines

that will be used. The reduced number of parameters presented in this

family of models has been crucial its becoming one of the most popular for

modeling di�erent situations. Based on its simplicity and accuracy, there are

some derived models [41] that cover the identi�ed shortcomings in the original

LogP model. One of the most simple updates to this model is the substitution

of the network parameters (L,o y g) for functions that depend on the size of

the message. The main disadvantage of this proposal is that it increases the

complexity of the result model. That is why other extensions like P-logP [42]

or LogGP [43] are more popular. The LoPC [44] and LogGPC [45] models

are extensions of LogP and LogGP respectively adding the parameter C to

characterize the congestion of the interconnection network. The LogGPS

[46] model considers the cost of introducing the synchronization libraries of

high-level communication to send large messages.

2.2.2 Analytical models for performance

If we look for those proposal that try to model the time consumed for one

entire iteration of the application, the analytic model for Master/Worker

applications developed by Cesar et al. [47] is a good starting point. This

proposal divides the analytic model into two di�erent formulas. There is one

approach for those applications with blocking communication and another for

those that use non-blocking communication. Additionally, this model consid-

ers that the processing time of each worker is proportional to the di�erence

in computation volume of each worker when the number of workers is incre-

mented or decreased. This is a strong restriction that cannot be assumed

in the current context. By the time this model was proposed, the multicore

architecture did not have the popularity that it now possess. That is why

these models do not consider the problem of performance prediction using
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multicore nodes. Applying this model for predicting performance on multi-

core environments will signi�cantly increase the prediction error because the

model does not take into account the typical problems of memory contention

e�ect and data cache sharing. But, even when this contribution is not ap-

plicable in our context without having been adapted, there is a performance

index proposal to evaluate the trade-o� between e�ciency and performance

that can be applied with some small adjustments. Next, in section 4.4.5, we

will explain each term of the Master/Worker performance index expression

in greater depth.

Andreu et al. [48] present an adaptation of a factoring load balancing

algorithm of parallel-loops to Master/Worker applications. They developed

a completely new set of expressions using the task processing rate as a ran-

dom variable instead of the task processing time used for parallel-loops. In

order to test many di�erent cases, the assessment of the new algorithm has

been done through simulations but was also validated through real execution

of synthetic programs. The new algorithm has proven to lead to signi�-

cantly better results than other policies, such as Fixed Size Chunking, Static

Scheduling and Factoring with factor two (the most used version of factor-

ing), but the expression proposed is developed for MPI pure applications and

does not consider the existence of parallel regions within the MPI process.

This proposal can be used to guarantee a dynamic load balancing behavior

in hybrid applications, but has to �rst be adapted to this new reality.

Guevara et al. [49] take advantage of the knowledge of the Master/Worker

and Pipeline models and combine them with a resource management policy

for obtaining a global model. This contribution can be applied to those

complex applications that combine the di�erent patterns mentioned above,

but, still similar to the previous models, it was developed to be applied to

single processor architecture. So it cannot be applied to hybrid applications

without being modi�ed. In general, these three approaches have the same

problem in being adopted into the hybrid application environment, but the

variability inherent to multicore processing time is not covered in an analytic
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model, and it is very di�cult for a single mathematical expression to be ca-

pable of modeling this such complex behavior. We face this reality when we

test the �rst approach presented in this thesis. The results will be covered

in future chapters.

Cesar Allande et al. [50] proposed a characterization of the performance

of parallel regions to estimate cache misses and execution time. The model

exposed is used to select the number of threads and the a�nity distribution

for each parallel region in OpenMP pure application. The model is applied

for SP and MG benchmarks from the NAS Parallel Benchmark Suite using

di�erent workloads on two di�erent multicore, multisocket systems. It is

evaluated using runtime measurements on a partial execution of the appli-

cation in order to extract the application characteristics. The authors de�ne

the a�nity as a vector of the number of threads per socket. A similar idea

will be used in our �nal proposal (Chapter 4) of this thesis in order to de�ne

the training information of our prediction technique. The main disadvantage

of this idea is that for each execution of the application, some partial iter-

ation need to be sacri�ced in order to estimate the best number of threads

and a�nity. On the other hand, this technique is only accurate for those

memory bound applications and is not generalizable to other cases. Our

proposal tries to face the problem in more generally by using the concept of

a�nity as one of the variables for the training information and several his-

torical execution observations as the database to model the general behavior.

Diego Rodr��guez propose a refreshing approach in [51]. The main objec-

tive of this study is the development of a performance analysis environment

that allows us to obtain, highly accurate analytical models of application

parallel systems. In particular, the modeling procedure was developed by

model selection techniques based on the Akaike information criterion [52],

wich is an objective tool to quantify the suitability of a particular model re-

garding a �nite set of models. In order to implement these techniques, there

are some libraries that facilitate the generation of analytic model variations

from the linear relationship between its components (usually known as multi
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linear regression models) [53].

The methodology proposed by Diego provides an automatic mechanism

generation for analytical models constructed from the performance informa-

tion that can be obtained after the execution of applications on a particular

system. Basically, the generated models are validated to �t the performance

of the Whetstone serial benchmark, the collective communication behavior

in the MPI library, the performance of NPB-NAS and HLP parallel bench-

marks and the result of a task scheduling algorithm in a cluster. The main

objection that could be made to using this method is that the results do not

show how accurate it is for prediction using con�guration not included in

the training example. That is why the predictive ability of this proposal is

not validated. Based on our experience, even when we have a linear model

that �ts very well with the behaviour of some outcome variables from par-

allel applications, it is quite di�cult for this model to be generalizable for

all prediction spaces. Usually, the arguments of this model will su�er a high

variation according to the combination of parameters of the application we

use.

2.2.3 Prediction based on simulation

A simulator is a complete environment that emulates the behavior of the

di�erent elements that characterize a real system. Therefore, simulation

techniques provide a controlled environment of the system for experiments

without disturbing the actual system. This technique is particularly suitable

for developing new architectures because it allow us to estimate the behavior

of applications systems which have not been physically implemented. On

the one hand , it is necessary for the system to be su�ciently faithful to

the original system for the results to be realistic. However, the simulation

environment must be simple enough to avoid a large resource consumption

and high cost of development, as well as obtaining relatively small simulation

times. In fact, one of the main disadvantages of this approach lies in the high

cost of evaluation, which proibits its use in certain situations.
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[54] [55] and [56] are contributions that try to predict the e�ect of cache

on the performance of parallel applications. Basically, all of them need a

simulation tool of the progression of the cache state over time. The sim-

ulator input is the stack distance pro�le recorded for each thread. With

the results provided by the simulator, two techniques for predicting cache

misses are proposed. Both are based on a deep correlation study to iden-

tify application parameters with higher impacts on performance. The �rst

one uses a piece-wise polynomial regression, and the second uses a neural

network. Neither proposal covers the problem of predicting when the pro�le

does not represent all the execution for a particular workload. The third

proposal introduces the use of the Markov model to generate an arbitrary

length memory access trace with given workload characteristics. This model

is generated using the real memory access trace �le to con�gure all the prob-

ability distribution functions for each transition on the model. Simulation

of a variety of application traces from the SPEC2000 benchmark has been

used to demostrate that the synthetic memory reference stream is generally

similar to its original form. In all these cases, the research focuses on the

prediction behavior for a memory access pattern. Even when these results

are accurated, this approach is restricted to predicting the memory missed

ratio so it can be extended in order to predict performance or e�ciency.

Dimemas [57] is a performance analysis tool for message-passing pro-

grams. It enables the user to develop and tune parallel applications on a

workstation, while providing an accurate prediction of their performance on

the parallel target machine. The Dimemas simulator reconstructs the time

behavior of a parallel application on a machine modeled by a set of perfor-

mance parameters. Thus, performance experiments can be done easily. The

supported target architecture classes include networks of workstations, sin-

gle and clustered SMPs, distributed memory parallel computers, and even

heterogeneous systems. The analysis module performs critical path analysis

reporting the total CPU usage of di�erent code blocks, as well as their im-

portance to the program execution time. Based on a statistical evaluation
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of synthetically perturbed traces and architectural parameters, the impor-

tance of di�erent performance parameters and the bene�ts of particular code

optimization can be analyzed.

2.2.4 Prediction based on heuristics

In recent studies, the last-level cache miss rate was used as a heuristic to

predict whether threads or processes sharing a multicore CPU are su�ering

performance degradation [58, 59, 60, 61]. In those works, the last level cache

(LLC) miss rate was used to decide when the threads should be scheduled on

separate chips to avoid cache contention. While suitable for coarse-grained

scheduling decisions, the miss rate is not su�cient to estimate performance

degradation with greater precision.

Furthermore, relying on a single indicator of performance (the miss-rate)

to estimate the e�ect of sharing multiple resources is a fragile strategy. It

may work as long as memory controllers and prefetch bandwidth are key

contended resources on multicore systems, but if the hardware bottlenecks

change, the heuristic will stop working. Furthermore, this method does not

easily allow the integration of other shared resources into the model. Machine

learning can adjust to changes in hardware and can be extended to model

any new resources that emerge as important for contention.

2.2.5 Machine learning methods

Lee et al. [62] introduced methods of inference and learning for performance

modeling of parallel applications. They applied statistical techniques such

as clustering, association, and correlation analysis to understand the appli-

cation parameter space. After that, two techniques (piece-wise polynomial

regression and arti�cial neural networks) were developed for predicting per-

formance. The most important disadvantage of both proposals is the huge

amount of work and extensive knowledge required for selecting the subset of

application parameters necessary for training the neural network or for gen-

erating the piece-wise polynomial regression. Dealing with large data sets



2.2. BEHAVIOR PREDICTION PROPOSALS 29

of training observation is the major disadvantage to using machine learning

techniques. In our proposal, we have also had to accept it. The prediction

made in this proposal is limited to the performance prediction with a �xed

workload, but varies the application parameter con�gurations. In adidition,

the results presented are limited to performance prediction accuracy. They

do not cover other important aspects like e�ciency.

A practical method for estimating performance degradation on multicore

processors [63] was presented by Tyler et al. In this case they used an early

version of the regression tree (REPTree) included in the Weka package [64].

By testing several attribute selection algorithms included in this product,

the CfsSubset it is �nally selected as the one that achieved the lowest error.

To reduce the error rate and to avoid over-�tting, an evaluation of di�erent

accuracy-improving techniques is also included. The results are divided into

two kind of prediction, the performance �delity and power e�ciency. The

results pruve that machine learning can indeed be used to build reasonably

accurate models which estimate degradation within 16% of the true value on

average; however, inacurate estimetes can occur if the test is very di�erent

from the applications in the training set.

Our �nal approach will be based on the same machine learning technique

but using a di�erent regression tree algorithm. Unlike a previous case in

which we used this as our method for prediction using any value of workload

accordingly, our data set of sampling measurements from short execution

of the application is ten times bigger than the data set used in this pro-

posal. Using a version of the model-based regression tree that included an

instability test as the primary partition criterion, we reduce the prediction

error by using a less sophisticated general regression function that can be

used for Master/Worker applications. This general function does not su�er

from any major changes when applied to the prediction for the real appli-

cations included in this thesis. On the contrary, it allows for the inclusion

of candidate variables for splitting, even when they are not included in the

general regression model. This is an important improvement to the classic
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method, because it allows us to used a more general regression function with-

out sicri�ying the prediction accuracy. handIn addition, we extend the study

to search for the best parameter con�guration to maximize e�ciency with

the best performance limited to this restriction.



Chapter 3

Analytical Model for

Master/Worker hybrid

applications

In this chapter, an analytical model approach is proposed in order to predict

the performance of Master/Worker hybrid applications. The model is formed

of two main parts. The �rst one predicts the behavior of performance when

there is no time penalty caused by access to the main memory. The second

part use a regression function to estimate this penalty. The most important

disadvantages and problems in prediction will also be covered.

3.1 Introduction

The Master/Worker paradigm is a well-known parallel programming struc-

ture because it enables us to express, in a natural way, the complexity in-

herent to the behavioral characteristics of a wide range of high-level parallel

application patterns. In this kind of parallel applications, the Master process

is responsible for distributing the data to a set of Worker processes, then each

worker makes some kind of computation with the received data and sends

the results back to the Master. This logic is repeated for each iteration of

the application. Depending on the nature of the problem, the Master pro-

31
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cess might have to wait for the results from all of the Workers before sending

them new data. This behavior forces the complete application execution to

be organized in iterations. That is the reason why trying to predict the ex-

ecution time of one iteration will guide us to predicting the total execution

time. Moreover, if the prediction of one iteration is accurate enough, it al-

lows us to search for the best con�guration of parameters in order to obtain

the best possible performance. In consequence, the total execution time for

the application will be reduced in proportion to how reduced it is for one

iteration.

3.2 General performance model

Any model designed to predict the performance of hybrid Master/Worker

applications has to deal with two kinds of predictions corresponding to the

two levels of parallelism involved. The �rst is the Master/Worker message

passing paradigm, which must consider the communication from the master

to the workers, the worker processing time and the communication from the

last worker to the master. The second one is related to the OpenMP region

according to the number of threads used.

If it is assumed that the load is balanced among the Worker processes, the

performance of the application mainly depends on two factors: the number

of Workers in the system and the number of cores dedicated to each Worker

process. Taking into account that the workload might change over time, the

model can be applied during the execution of a Master/Worker application

to determine dynamically the adequate con�guration of the system and/or

the application to obtain the best possible performance.

So, the �rst goal is to develop a performance model that determines the

execution time of one iteration of the Master/Worker application. The model

can be used to tune these two parameters to improve the performance and

the e�ciency of the applications at runtime.

One iteration of the Master/Worker applications involves the following

steps:
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• The Master process makes some processing before distributing the data

to the Workers.

• The Master process distributes the data to the Workers.

• All the Workers receive the corresponding data.

• The threads of each Worker compute the result data.

• The Workers send the results back to the Master process.

The new performance model we present here takes all of these issues into

account and is based on a previously proposed methodology for developing

performance models for hybrid applications [65]. Our proposal extends a

previous model [47] considering the complexity of multicore architectures.

A general expression to estimate the execution time of one iteration of a

Master/Worker hybrid application can be derived as follows:

Titer = µm(W ) + λm−w(W,Workers)+

µw(W,Workers, Thr) + λw−m(W,Workers)

(3.1)

where W is the workload. If the workload is too complex to be character-

ized with a single value, W must be de�ned as a vector W = (w1, w2, ..., wn).

The Workers parameter is the number of MPI processes acting as workers.

Depending on how the applications split the workload among all the work-

ers, it must be expressed as a vector of number of the workers by dimension

Workers = (wk1, wk2, ..., wkn). Finally, Thr is the number of threads per

worker.

This equation includes the terms representing the steps mentioned above:

• µm is de�ned as the processing time spent by the master on the prepa-

ration of a new set of tasks.

• µw is the processing time spent by the last worker to �nish its task.
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• λm−w is the sum of all communication time from master to every worker.

• λw−m is the time spent by the last worker to send back the result data

to the master.

Additionally, processing time spent by the last worker is expressed in the

following equation:

µw =
CPIideal ∗ Instdat ∗Datout

Freccpu(Thr) ∗Workers ∗ Thr
+ (3.2)

MissLL(W,Workers, Thr) ∗ Latmem ∗Ovrlpcache+

T lb(W,Workers, Thr) ∗ Lattlb ∗Ovrlptlb+

�(W,Workers, Thr)

(3.3)

Where

• CPIideal is the ideal average cycle per instruction of the parallel OpenMP

code assuming that the program does not access the main memory.

• Instdat is the amount of instructions needed to process a single result

data.

• Datout is the volume of global result data as results from the execution

of single iteration of all the workers.

• Freccpu(Thr) is a function that returns cpu frequency in Hertz based

on the number of threads that have been used.

• MissLL is a function that returns the number of last level data cache

misses.

• Latmem Latency of reading a data from main memory.
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• Ovrlpcache is the percentage of overlap between instruction spent time

and data cache miss time penalty.

• T lb is a function that returns the number of data translation lookaside

bu�er misses.

• Lattlb is the main memory latency when the lookaside bu�er generates

page fails.

• Ovrlptlb Overlap percentage between instruction spent time and data

translation lookaside bu�er misses time penalty.

• � is a function that estimates the overhead caused by the OpenMP re-

gion in the creation, synchronization and destruction of all the threads.

The ideal CPIideal is a constant value that is usually hard to calculate.

CPU architecture and the kind of instructions used in the parallel region are

factors that a�ect the accuracy of this value. Besides, this value is a�ected

by data cache misses, data dependency, etc. For complex applications, this

value can be estimated by taking measurements of cycles and instructions at

runtime for small workloads that �t on cache.

There are some constant parameters of the model that need to be set

based on the information obtained from a previous characterization of the

system. Basically, the constants that are related to the architecture of node

will be estimated using di�erent benchmarks. For those terms concerning

data cache misses penalty and data translation lookaside bu�er misses, a

di�erent strategy has been applied. In this case, runtime measurements

(hardware counters and execution time) will be taken from some previous

iteration of the application as input for applying a regression technique. A

thorough description of the measurement phase is presented in the following

sections.

3.3 Communication time prediction

In this proposal, we estimate communication time in Master/Worker appli-

cations by sacri�cing the simplicity of the previous model [47] in order to
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represent more complex relations between message size and the total com-

munication time. However, this new estimation does not consider the cost

of communication per byte as a constant. In fact, there are studies in the

literature like [66] that justify the use of benchmarks [67] to reach a more

accurate characterization of MPI communication. So, for the evaluation of

the communication time, MPIBench [68] has been used.

This benchmark allows us to measure the latency average for each kind

of communication de�ned in the MPI library based on a speci�c number of

measurements for each communication. The main parameters for a valid

execution of this program are summarized as:

1. min size: is the start message size for each single communication.

2. max size: is the end message size for each single communication.

3. iteration: number of repetitive communications made to calculate

the average.

4. step: de�nes the value for increasing the message size between itera-

tion of the benchmark.

The results obtained are the basic information used to evaluate the func-

tions λm−w(W,Workers) and λw−m(W,Workers). For the �rst expression,

the result is the addition of all individual communications from the master

to a particular worker λim−w. Stated formally, the communication time spent

by the Master process is modeled as follows:

λm−w(W,Workers) =
Workers∑
i=0

λim−w(W,Workers) (3.4)

Figure 3.1 shows the latency achieved from point-to-point blocking com-

munication between two process, with varying message sizes. Depending on

the architecture used to execute this benchmark, the results will show more

clearly that there is not a linear relationship between the latency and the size

of the message. In order to achieve enough information to construct these
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Figure 3.1: Characterization of blocking communications

two functions, the MPIBench needs to be executed for all the types of com-

munication functions provided in the MPI library. This leads us to evaluate

the communication behavior for blocking, non-blocking communication and

single communication with package message.

This behavior might be a�ected by the number of communications that

are involved at the same time in the execution of the application. Bearing

in mind that if the application has to be well-balanced previously, each com-

munication will be carried out in turns because the worker processes must

�nish their task in the same order the master sent it to each one of them.

That is the reason why this approach must give back good prediction results

if the variance of the communications is not high.

If applications are planned to be executed on di�erent network archi-

tectures or using a di�erent message passing library such as MPICH [69] or

even if the libraries are compiled with a di�erent tool, a new characterization

has to be made. It will guarantee a speci�c characterization based on the

combination previously mentioned.
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3.4 OpenMP overhead

The parallel region implemented using OpenMP pragmas might be negligi-

ble for some architectures, but this penalty does not have to be the same for

others. Indeed, multicore architectures with a considerable number of cores

show signi�cant overhead in the parallel region depending on how complex

the logic of the parallel region is. So, a function �(W,Thr) to calculate this

time is needed in order to take this overhead into account.

The main causes for OpenMP overhead are described as follows:

• OpenMP Barriers

• Critical sections

• Reduction functions (+,-,*,Max,Min,etc)

• Creation, synchronization, scheduling and destroying threads

The time spent on the creation and destruction of threads depends on

the amount of threads. However, the cost of the scheduling, synchronization

and the rest of OpenMP pragmas also depends on the number of iterations

executed by each thread on the outermost parallel for clause. In order to

obtain all these overheads, we use the EPCC OpenMP Microbenchmark [70]

to evaluate the overhead for all these pragmas. The benchmark has to be

evaluated by varying the number of iterations and threads to get fragmented

linear function for each case.

Finally, function � internally calculates the number of iterations for a

speci�c number of threads and uses an interpolation to estimate the over-

head for every OpenMP clause. The result is the addition of all of these

overheads. The following image shows a typical output from this benchmark.
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1 Running OpenMP benchmarks on 1 thread ( s )

2 Computing PARALLEL FOR time

3

4 Sample s i ze Average Min Max S .D. O u t l i e r s

5 20 0 .9755 0 .8500 1 .2780 0.196065 0

6

7 PARALLEL FOR time = 0.975500 microseconds +/− 0.384287

8 PARALLEL FOR overhead = 0.206895 microseconds +/− 0.396885

Listing 3.1: Output example using EPCC OpenMP Benchmark.

If we use the benchmark to evaluate the overhead for each of the previous

pragmas, it is easy to get a prediction for any value of iterations of the parallel

region. Figure 3.2 shows the overhead prediction results for di�erent numbers

of threads and iterations of the parallel region. As expected, the overhead

penalty becomes greater as soon as the number of threads increases.
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Figure 3.2: Overhead time for PARALLEL OMP FOR scheduling varying
the number of iterations per thread.

3.5 Computation time estimation

The computation time of each worker is part of the performance expression

where the largest prediction errors of the proposed model are concentrated.
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The complexity inherent to current processor architectures makes the predic-

tion harder. Cache size, number of cache lines, data dependency on the code

that will be executed, replacement latency and so on, are some examples of

the features that have large impact on the model accuracy.

For this reason, the use of some measurements in the initial iterations of

the applications is necessary. The number of iterations for taking sampling

measurements is not decided arbitrarily, but rather depends mainly on the

computational complexity of the parallel OpenMP region. In the case of

the microbenchmark of matrix multiplication, the complexity of the parallel

region is O(N3). We propose using at least the �rst four iterations as a start-

up database for applying regression techniques because this is the minimum

number allowed to calculated the arguments of the regression function.

This allows us to predict the behavior of data cache misses and data

translation lookaside bu�er misses varying the number of workers, threads

per worker and workload. On each of these four iterations, a high workload

imbalance is generated among all workers. Additionally, di�erent number of

workers and threads are used on each parallel region for each worker. To

generate all these variations in the application con�guration, dynamic in-

strumentation libraries [14] can be used in order to change the behavior of

the application. Once all these measurements have been taken, it is not nec-

essary to keep changing the number of workers, threads or imbalance. If the

number of iterations for taking measurements is increased, the performance

model prediction will be more accurate.

At this point, measurements of hardware counters can be maintained

since they do not generate too much overhead (about 1% of the execution

time). These measurements generate additional information that would be

useful in the prediction process at runtime.

To set up the constant Latmem and Lattlb included on the model, lmbench

[71] is used. This tool is a microbenchmark that allows us to estimate the

di�erent access latency to each memory level. As our model does not consider

the e�ect of data cache misses on the �rst levels of cache memory hierarchy,

only main memory and disk average latency values have been included in the

model.
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3.5.1 Sampling measurements using PAPI library

As part of the model, information relatives to hardware counter measure-

ments of the parallel region execution is needed. We explained the di�erent

tools developed by the scienti�c community to allow this possibility in the

previous chapter. All these tools allow the use of di�erent measurement li-

braries, but not all of them are supported on all the architectures. One of

the most popular libraries with support for several architectures is PAPI [72].

That is the reason why we included it as the central part of our measuring

library. In this case, we need to develop a custom library for instrumenting

the application code because the PAPI library restricts the use of multiple

hardware counters. Furthermore, there are some counters that are mutually

exclusive depending on the limitation of the architecture in taking hardware

samples.

1 Sample In i t ( ) ;

2 #pragma omp p a r a l l e l num threads ( threads ) shared ( matrixA ,

matrixB )

3 {
4 unsigned long tID ;

5

6 tID=omp get thread num ( ) ;

7 Sample SetCPU ( tID ) ;

8 Sample ON ( type o f meassure , tID ) ;

9

10 #pragma omp f o r p r i v a t e ( i , j , k , r e s u l t )

11 f o r ( i = 0 ; i < rows a ; i++)

12 {
13 . . .

14 }
15 Sample OFF ( tID ) ;

16 }
17 Sample End ( hw counters ) ;

18

19 Sample Close ( ) ;

Listing 3.2: Code example with function calls to the custom library.
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This problem is mainly caused by hardware limitation that does not allow

samples from speci�c couples of counter to be taken together. For example,

on several AMD architectures and/or operating systems, it is not possible

to measure last level cache misses and T lb at the same time. The following

code 3.2 shows an example of a code instrumented with our library.

This custom library allows several counters to be measured by sampling

them at random in the di�erent iteration of each thread. The functions

that start with Sample pre�x are basically the code inserted to allow the

measuring of the hardware counters. Once all iterations of the threads are

�nished, the Sample End function calculates each hardware counter value

in proportion to the number of OpenMP For-clause iterations in each thread.

The �nal result is returned in the hw counters structure. The number of

counters that will be measured simultaneously and the number of them that

must be measured alternatively must be de�ned in the con�guration �le. If

the number of measures is reduced, this sampling technique will be more

accurate, but, in the same way, we can not take samples of counters that are

mutually exclusive in the same experiment.

3.5.2 Setting up the overlaps

As expressed in the model 3.3, MissLL and T lb are two functions for pre-

dicting latest level data cache misses and main memory data access lookaside

bu�er misses. Both functions are built using the same technique. A function

for choosing between di�erent kinds of regression is applied using a sample

data set as input data. In this function, the outcome variable is the time

penalty, and the independent variables are the workload, the number of work-

ers and the number of threads. At this point, the nonlinear regression with

the smallest sum of square error is selected as the best candidate for predic-

tion. For example, in the case of a matrix multiplication application, the best

regression function selected by its smallest error is given by the expression:

β3W
3 + β2W

2 + β1W + β0
Workers ∗ Thr

(3.5)

In this function, each term of the polynomial on the fraction's numerator
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has its corresponding coe�cient. If the workload does not change drasti-

cally, the Ovrlpcache and Ovrlptlb values must be �xed during the prediction

phase. To calculate these constants, real measurements of last level data

cache misses(LL), main memory data access lookaside bu�er misses(TLB)

and execution time for the OpenMP region will be used. Subtracting the

predicted time spent only for the instructions that have been executed (3.2)

to the time spent in the parallel region, it will give back an estimated time

penalty for data access misses (3.6). Using this time as an output variable

and real LL and TLB measurements as independent variables, we apply a

linear regression technique in order to estimate both parameters (formula

3.7).

Tpenalty = µrealw(W,Workers, Thr)− CPIideal ∗ Instdat ∗Datout
Freccpu(Thr) ∗Workers ∗ Thr

(3.6)

The regression expression to estimate the LL and TLB overlap factor

must be:

Tpenalty ∼ β2 ∗ LLreal ∗ Latmem + β1 ∗ TLBreal ∗ Lattlb + β0 (3.7)

Where LLreal and TLBreal are the real measurements taken in the sam-

pling phase and µrealw(W,Workers, Thr) in the measure execution time for

the parallel region on the worker. The two values of latency are taken from

the result of the memory benchmark. At this point, the most important dis-

advantage of this analytical model appears. The calculated values of overlap

do not remain �xed for all the possible combinations of parameters and work-

load.

3.6 Prediction results

To validate the performance model developed in the previous section, an ex-

perimental study has been carried out. Basically, two applications have been
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used in order to test the model. The architecture where both applications

were executed is the cluster IBM. The details of this architecture are covered

in depth in chapter 5.

The �rst application is a matrix block multiplication. It calculates the re-

sult of an expression expressed in post�x notation. For example, A(5, 5)B(5, 5)∗
represents a multiplication operation between matrices A and B where both

have 5 rows per 5 columns. The master process is responsible for creating all

matrices with random values to be multiplied, transposing the second and

sending the appropriate blocks from the �rst and the second matrix to each

worker. In turn, each worker calculates its matrix block and then sends the

resulting matrix block back to the master which updates the global result ma-

trix with all the data received. The master process uses a single core for the

transpose operation. The Workers use 4 cores for the matrix multiplication

operation.

The second application is a Master/Worker version of the Jacobi method

from numerical linear algebra. The Jacobi method is an algorithm for de-

termining the solutions of a system of linear equations. The matrix involved

in the parallel calculation is split by the Master process into similar blocks

and, the Master then sends each block to each worker consequently. Once

each worker �nishes its task, it sends back the error that has been computed

and the �rst and last rows of its block. The master process sums up all the

errors into the global error and once again sends each worker the �rst and

last row from its neighboring workers.

Figure 3.3 shows the real execution time of the matrix multiplication

application and the execution time predicted by the performance model for

the case of multiplying matrices of 3500 x 3500 using di�erent numbers of

workers (from 2 to 30). For this experiment, in order to have enough sampling

information for the regression techniques that must be applied, four previous

executions have been used in the sampling phase. These samples have been

taken using 2, 8, 20 and 28 workers varying for all of them, the number of

threads and the workload from 2250 to 3250. In Figure 3.3, the solid line

marked with triangles represents the prediction returned by the performance

model varying the number of workers. The dotted line with the plus symbols
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is the real execution time. As can be seen, the prediction curve does not

exactly �t the real one. The errors generated by the regression function

for cache misses and tlb misses are the fundamental part of this behavior.

Moreover, the most signi�cant point to be considered is that the real and

predicted execution times exhibit the same tendency.

0
20

40
60

Real vs Pred (workload:3500 threads:4)

workers

T
im

e(
s)

2 4 6 8 12 16 20 24 28

real
pred

Figure 3.3: Matrix multiplication prediction.

Figure 3.4 shows the error obtained when the performance model is eval-

uated varying the number of threads and the number of workers. The error

is calculated based on the di�erence between real execution time and pre-

dicted execution divided by the �rst one. The prediction errors are grouped

by the number of threads, and the di�erent bar textures represent the result

varying the number of workers. The error has been normalized in the range

from -1 to 1, where positive values mean an overestimated prediction, and

the negative values are just the opposite. For all of the cases, the errors

are less than 20%, except in the case with 30 workers with a single thread.

Taking into account that the previous workload and the real one have a 16%

of variation leads us to conclude that using the prediction value to determine

the adequate number of Workers is quite a successful approach.

The performance model is evaluated using the values shown in table 3.1.
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Figure 3.4: Matrix-mult prediction error grouped by number of threads.

These are the main constants used in the model. As previously explained,

Latmem and Lattlb are obtained by applying a memory access benchmark.

Ovrlpcache and Ovrlptlb are calculated based on measurements results from

the previous execution with a workload of 3250. The negative overlap val-

ues shown in the table can be understood as the result of the compensation

effect produced by the regression technique. CPIideal is calculated based on

previous executions, but, if it is not accurate enough, it will cause negative

values in the overlap constants. Increasing the number of previous execution

measurements is one strategy to avoid this situation.

Table 3.2 shows the arguments of the best regression function for the pre-

Table 3.1: Matrix-mult model constant parameters
Ovrlpcache Ovrlptlb Latmem Lattlb CPIideal

0.17597 -0.44831 7.5e-08 1.2e-07 0.93
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Table 3.2: Matrix-mult (Last cache & Tlb) regression arguments

Function β3 β2 β1

OpenMP region 1 MissLL 9.9927e-01 1.7959e+01 -2.9014e+04

T lb 1.0596e-01 1.0523e+02 -1.5111e+05

diction of data cache misses and tlb misses. Unlike the previous application,

Jacobi has two OpenMP parallel regions. Consequently, the performance

model for this application is extended to have two expressions to predict the

behavior of each parallel region. The �rst region includes the main part of

the Jacobi method while the second region is just a logic to make a copy of

the result matrix used by the worker.

The results obtained from the evaluation of the performance model us-

ing the Jacobi Master/Worker application are shown in Figure 3.5. Once

again, the dotted line represents the real execution and the solid one is the

prediction of the model. This experiment was executed to predict the be-

havior using a workload of 44000 using two threads and varying the number

of workers from 4 to 30. The measurement phase used information relative

to iteration with 2, 4, 8, 16 and 24 workers using in each case 32000, 34000,

36000, 40000 and 42000 values for the workload.

In this case, we achieved errors in the results smaller than in the previous

Matrix-mult application. The prediction curve �ts the real one very well, and

the error has also decreased. Figure 3.6 shows the prediction error grouped

by number of threads. For 1 thread and 2 threads the errors are even lower

than 10%. It is only the prediction for 4 threads that reaches around 17%

error. The values of Ovrlpcache and Ovrlptlb were estimated in the previous

iteration, where the workload was 42000. So, the prediction was made using

information about execution with a 9% lower workload. In order to predict

data cache misses and tlb misses, the function that searches for the best

regression function returned only one expression for each case.

The expression β2W 2+β1W
Workers∗Thr , is the best regression selected for its smallest

error for both parallel regions of this application. Obviously, the parameters
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Table 3.3: Jacobi model constant parameters
Ovrlpcache Ovrlptlb CPIideal

OpenMP region 1 0.30934 -13.94077 1.13237

OpenMP region 2 -1.117e-07 3.982e+01 0.79694

Table 3.4: Jacobi (Last cache & Tlb) regression arguments

Function β2 β1

OpenMP region 1 MissLL 179.36e-03 -609.1023

T lb 46.03e-04 -68.4915

OpenMP region 2 MissLL 100.21e-03 -0.24

T lb 12.245e-04 766.17e-04

of each term of the polynomial are di�erent for each case.

The constant parameters generated by the model for each parallel region

as well as the arguments of the regression function for predicting MissLL

and T lb are summarized in the table 3.3 and 3.4. As the application has two

very di�erent parallel regions, it is advisable to calculate each one separately,

because the values obtained in each one might be signi�cantly di�erent.
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Figure 3.5: Jacobi Model prediction vs real time with workload size of 44000.
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Figure 3.6: Jacobi prediction error grouped by number of threads.

3.7 Prediction model limitations

There is an error involved in the prediction when we used both values of

overlap to predict the performance for a new workload. This error will be

small if the difference between the previous workload, when overlap values

were calculated, and the new one is under 10%. The main cause that explains

this behavior is that the values of Ovrlpcache and Ovrlptlb are suffering from

a very high level of variation when the workload changes drastically from

one iteration to the next. Even if the MissLL and TLB functions achieved a

good accuracy in the prediction, the influence of the overlap variables in the

final result is significant. Figures 3.7 and 3.8 show the values of these two

variables for the Matrix multiplication and NBody applications. These values

were calculated using the real measurements of execution varying the number

of workers, threads and workload. Both graphs clearly shows that there is no

regularity in the distribution, but the huge range of variance of both values

is even more important. In the Matrix multiplication benchmark, the range
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Figure 3.7: Ovrlpcache and Ovrlptlb 
uctuation behavior in Matrix mult
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of Ovrlpcache goes from 1e− 103 to more than 1e− 10. In the case of Jacobi,

the range is from 1e− 105 to more than 1e+ 103. A similar behavior can be

seen for Ovrlptlb variable distribution in each application. This problem is

clearly the most important weakness of the performance model presented in

this chapter, because trying to model this behavior becomes an intractable

problem even though both values are calculated repeatedly at each iteration

in order to reduce error.

3.8 Conclusion

In this chapter, a performance model has been presented. The model is com-

posed of an analytical part and two regression functions for predicting the

latest level cache misses and TLB misses. To validate the prediction results,

two applications have been used. The expression can be used to predict the

performance for small changes in the workload between iterations, but it is

not generalizable to any prediction basically because the prediction regres-

sion functions to estimated last level cache misses and tlb are calculated with

a small sample of observations.

However, the prediction curve for any workload in both applications is

remarkably similar to the result that can be �tted with general polynomial

with equal grade to the complexity of the application. Even when we reduce

the prediction error for the last level data cache misses and TLB misses

using a multi regression model, the main focus of prediction error is located

in the prediction of the overlap variables. In general, this behavior cannot

be modeled with a single regression function because the arguments of this

function do not remain �xed if we try to achieve a good accuracy. This led us

to propose a di�erent approach, where splitting the prediction into di�erent

regions and applying regression to each part is the central part of a new

algorithm.
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Chapter 4

Model-based regression tree

This chapter will cover a semi-analytic technique for application performance

prediction. It is known as the model-based regression tree. Basically, this

algorithm is a supervised learning method based on recursively partitioning

the training space of observation and generating a binary tree with di�erent

regression model on the leaf. A particular version of this algorithm is also

covered as well as an explanation of the methodology to create a well-accurate

prediction tree. Finally, there is a review of how the experiments platform is

designed.

4.1 Introduction

Regression models predict the value of a dependent numeric variable from

the values of independent variables, also referred to as predictors (in statis-

tics, predictors are also referred to as regressors). The regression task is the

problem of inducing or learning a regression model from a table of measured

values of the dependent and independent variables. The simplest approach

to the regression task is linear regression, where the dependent variable is

modeled as a linear combination of the predictors. But, using regression to

model the behavior of performance of parallel application guided us to the

the problem of variability in the arguments when a single prediction func-

tion were used. The performance or a�nity behavior can be understood as

53
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couple of functions with several application parameters that will not have,

necessarily, the same trend for di�erent application variables (parameters).

An interesting strategy could start by using several regression functions to

model di�erent regions of the behavior. This will guide us to good results

if the performance of e�ciency can be modeled based on the same function

prototype with di�erent parameters for each prediction region. At the same

time, this approach introduces two additional problems: how many regres-

sion functions we need to �t the whole prediction space and where are the

boundaries of those functions for predicting their respective region. If it is

possible to use automatic method that split the prediction space based on

some criteria and then calculates for each resulting regions the best regres-

sion function we have the chance to accomplish a good challenge. These

regression function will have di�erent arguments for each variable involved,

even when they match an unique prototype of regression function. On the

other hand, the resulting set of regression functions must guarantee that the

prediction error will be accurate enough to be be use, later, for prediction

using new values of application parameters.

In the last decade, the incorporation of (simple) parametric models into

trees has been receiving increased interest. Local regression trees are based

on the assumption that using smoother models in the tree leaves can bring

about gains in accuracy. Research in this direction was mainly motivated by

the fact that constant �ts in each node tend to produce large and thus hard

to interpret trees. Several algorithms have been suggested both in the sta-

tistical and machine learning communities that attach parametric models to

terminal nodes or employ linear combinations to obtain splits in inner nodes.

These techniques, usually called tree-based regression models or model-based

regression trees (MBRT), are known for their simplicity and e�ciency in deal-

ing with domains with large numbers of variables and cases. The regression

models obtained with this methodology can be represented in the form of

a tree. This tree consists of a hierarchy of nodes, starting with a top node

known as the root node. Each node of the tree contains logical tests on the

variables, with the exception of the bottom nodes of the hierarchy. These

latter are usually known as the leaves of the tree. The leaves contain the
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predictions of the tree-based model. Each path from the root node to a leaf

can be seen as a conjunction of logical tests on the variables. These con-

junctions are logical representations of \subareas" of the overall regression

surface being approximated.
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Figure 4.1: Prediction result for sin(x) function using model-based regression
tree.

Figure 4.1 shows a simple example where this technique has been used.

In this case, the MBRT �t the curve of the sin function, assuming that this

behavior is unknown at the starting point. The sin function is plotted in

blue and the �tted dotted curve in red is the result from applying the MBRT

using the samples as input into the model. The points under and over the

curve are the samples generated with a random error. The algorithm divides

the observations into two parts trying to minimize the sum of least square

error of both regions. For each part, a two-grade polynomial regression is

applied. The results also show very well �tted functions with a split point

between both predictions at approximately 3.2. Both regression functions

have di�erent arguments that was calculated based on the information in each

partition. In real problems, the algorithm has to deal with more predictor
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variables like number of workers, number of threads per worker, process

a�nity and so on.

4.2 Model-based regression tree

The model-based regression tree (MBRT) approach is a particular variation

of regression trees [73]. The main di�erence from the classical regression trees

is basically that the outcome is a tree where each node is associated with a

�tted parametric model instead of a tree with �xed real value on the leaf.

The goal of applying this technique is to predict the iteration computation

time of a Worker for a given workload and a number of workers and threads.

The implementation used was developed by Zeileis at al. [74] in a package of

partition methods developed for R [75].

The algorithm is fed with a data set of several observations of the ap-

plication iterations. This data set is formed by measurements of iteration

execution time for di�erent values for the number of workers, the number of

threads in each worker, workload and other application features that in
u-

ence the performance. It is advisable to add secondary variables calculated

from the primary variables that express the interaction e�ect between them

on the �nal prediction. This data set is commonly known as a training data

set. To validate the accuracy of prediction, a smaller data set is used. This

validation data set is composed of observations using workloads that are

not included in the training set. Once we have identi�ed the most relevant

parameters, the algorithm works based on the following steps:

• Feed a regression model with a data set of training observations.

• Test for instability over a set of candidate splitting variables.

• If there is some overall instability, split the model with respect to the

variable associated with the highest instability selecting the value that

minimizes the global prediction error.



4.2. MODEL-BASED REGRESSION TREE 57

• Repeat the procedure in each of the child nodes until some stopping

conditions are met.

The basic idea of this technique is to recursively split the application

variable space into two parts by selecting a speci�c value of one of the vari-

ables that minimizes the sum of the square error. The algorithm calculates

the instability p-value for each application variable. The M-
uctuation tests

applied were described by Zeileis et al. [76]. This will give back the variable

with the highest instability. This value is considered statistically signi�cant

if the result of this test returns a p-value lower than 0.05 by default. For

example, we have di�erent combinations of the number of workers and the

number of threads. First, the algorithm selects the number of threads since,

this is the variable that generates the most instability in the performance

of the application. Once it is identi�ed, the algorithm divides the training

set into two parts (e.g. the �rst part is lower than or equal to two threads,

and the second is the rest) and calculates the regression function that best

�ts each part. With these two functions already generated, the sum of the

square error for each prediction is calculated and added into the �nal error

for this partition. The lowest result will indicate which partition value is the

best at minimizing the overall error for this node of the tree.

Before continuing with the explanations of the implementation of this

method, some overall concepts have to be de�ned:

1. internal node: will be those nodes where the split action of the

training data set of observations occurs.

2. leaf node: nodes in the �nal level of the tree where the regression

functions for prediction were calculated and stored for future predic-

tions.

3. candidate splitting variable: Are the previously identi�ed vari-

ables of the application that might have an impact on the performance

of the application. These variables can be application parameters or

derived variables from a formula that involves the basic application

parameters.
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4. splitting variable: are those candidate splitting variables that, once

the tree is built, are included as split action on the internal nodes.

5. training data set: is the tabular information with observations from

the executions of the application used to construct the MBRT. Each ob-

servation included communication time, computation time and waiting

time for each process, as well as all the values of the candidate splitting

variables in each case.

6. validation data set: similar to the training data set but only used

to validate the accuracy of the MBRT, using observations that were

not included in the construction of the tree.

7. general expression: Is a general prototype function composed of

linear combinations of candidate splitting variables. The arguments

for this function will be di�erent in each leaf node of the tree.

At this point, one important restriction for using this method is that the

parametric model must be expressed as a linear combination of variables.

The algorithm stops the generating child nodes on the tree when one of the

following two conditions are not met. The �rst one is related to the size of

the subset from the primary data set. We can de�ne the minimum size for

the data set on the leaf of the tree. This restriction is useful because this size

has to be large enough for the regression can be applied. Additionally, it is

advisable not to use a fairly small value in order to avoid over-�tting. This

behavior can be observed when a statistical model describes random error or

noise instead of the underlying relationship. The second condition refers to

how signi�cant the split action is. When M-
uctuation tests do not return a

high signi�cance for any of the variables, the algorithm stops at this node of

the tree.

Figure 4.2 shows a simple example of the tree generated using this algo-

rithm. The tree is composed of 11 internal nodes, 12 terminal nodes, three

parameters for the regression functions and �ve candidate splitting variables

were used. The plots in the terminal nodes give partial scatter plots for each
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Figure 4.2: An example of the model-based regression tree.
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argument in the regression expression. In the �rst and second level of the

tree, the split action is done by the number of threads. This means that, at

these levels, the greater instability in regression prediction is generated by

the variation of the number of threads. This result suggests that applica-

tion performance signi�cantly changes if the number of threads increases or

decreases.

4.3 Defining the general expression.

There are two important inputs for generating the recursive partitioning tree:

the general regression model and the candidate splitting variables. In a �rst

approach, the behavior could be modeled using a general regression function

for µw in the following way [77] (where β2, β1 and β0 are now from the

parameters, and W , Workers and Thr are the variables):

µw =
β2 ∗W 2 + β1 ∗W + β0

Workers ∗ Thr
(4.1)

This equation can be expressed as:

µw = β2 ∗ x2 + β1 ∗ x1 + β0 (4.2)

Where x2 = W 2

Workers∗Thr and x1 = W
Workers∗Thr . In this way, the expression

is a linear expression that could be approximated by regression.

In this way, the execution time of one iteration of a Master/Worker hybrid

application is estimated as the addition of several terms. Each term involves

an error that is propagated to the iteration execution time resulting in a poor

iteration time estimation.

To overcome this di�culty, a new approach, is proposed. In this new

approach the iteration execution time (Titer) is modeled as a single function

that includes all the features of the application and the architecture. This

function could be expressed as:

Titer = β3 ∗X2 + β2 ∗X1 + β1 ∗Workers+ β0 (4.3)
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The communication time spent will depend on the number of processes

involved in the execution of the application, but it also depends on the work-

load. The master process sends process− 1 messages to all the worker pro-

cesses and the workers then respond to the master, but only the last worker is

considered because the rest of this communication overlaps. That is the rea-

son why the iteration will again depend on the number of process Workers.

However, the values of βi parameters obtained from regression methods

do not represent the complete W , Workers and Thr variable space and the

prediction error achieved was considerably high if a single function with �xed

βi parameters was used for the whole variable space. For example, increasing

the number of threads in a Worker process implies a cache sharing among

these threads, and the number of cache misses can then increase, which can

degrade the application performance. So, developing a unique model that

takes into account all the platform and applications features is not feasible,

and some heuristic must be introduced to create a model that reproduces

the observed behavior of the system instead of trying to estimate the e�ect

of each particular feature globally.

For those regular applications where the size of the MPI messages is not

constant, the message size is usually proportional to the workload of the

application. As the MBRT essentially divides the tree using this variable, in

each terminal node, the β0 parameter will vary according to the size of the

message.

4.4 Party package in R.

R is a functional language for statistical computation and graphics [75]. It

can be seen as a dialect of the S language (developed at AT&T), for which

John Chambers was awarded the 1998 Association for Computing Machinery

(ACM) Software award, which mentioned that this language \forever altered

how people analyze, visualize and manipulate data". R can be quite useful

just by using it interactively. Still more advanced uses of the system will
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lead the user to developing his own functions to systematize repetitive tasks,

or even to adding or changing some functionalities of the existing add-on

packages, taking advantage of their being open source.

There are several examples of these packages for recursion partition and

regression. In particular, The community developers in R provide three of

them: the rpart [78], partykit [79] and party package [80]. We used the last

one basically because it allows us to build a tree where the outcome is a

continuous variable, but, furthermore, it allows us to use di�erent group of

variables for regression and for creating a partition in each internal node

of the tree. Additionally, this library assembled various high- and low-level

tools for building tree-based regression and classi�cation models. It includes

conditional inference trees (ctree), conditional inference forests (cforest) and

parametric model trees (mob). At the core of the package is ctree, an im-

plementation of conditional inference trees which embeds tree-structured re-

gression models into a well-de�ned theory of conditional inference procedures.

This non-parametric class of regression trees is applicable to all kinds of re-

gression problems, including nominal, ordinal, numeric and censored, as well

as multivariate response variables and arbitrary measurement scales of the

covariates.

Taking a look at how MBRT methods must be used in the R library the

two lines of code can be seen. The �rst line is only for creating the object

with all the information needed to execute the MBRT algorithm.

1 data $wght <− sapply ( data $t , f unc t i on ( x ) get weight (x , 2 ) )

2

3 c t r l <− mob c o n t r o l ( alpha =0.05 , b on f e r r on i=TRUE, min sp l i t =25,

obj fun=deviance , verbose = FALSE)

4

5 model <− mob( t ˜w2+w1+workers | w2+w1+workers+workld+l o c a l

workld+thrs , data=data , c o n t r o l=c t r l , model=l inearModel ,

weights=data $wght )

Listing 4.1: R code example for created the model-based regression tree.

The alpha parameter is related to the signi�cance p-value that must be
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Table 4.1: Main parameters for mob control class in R.
mob control function

Parameter Description
bonferroni logical. Should p values be Bonferroni corrected?
minsplits integer. The minimum number of observations

(sum of the weights) in a node.
objfun function. A function for extracting the minimized

value of the objective function from a �tted model
in a node.

verbose logical. Should information about the �tting
process of mob be printed to the screen?

used to consider a signi�cant instability on each candidate splitting variable.

The rest of the arguments for both functions are summarized in Table 4.1.

The second function (mob) builds the MRBT based on the information

in the training data. In this case, the data is a data frame that contains all

the variables involved in the process. The weight parameter must be a vector

of integer values to de�ne the importance of one sample with respect to the

others Table 4.2). It is important to highlight that the variables involved in

the regression function do not have to be the same as the candidate splitting

variables. This gives us the option to split the tree using some variables even

if we do not have su�cient information to include them in the regression

model. Adding more variables as candidates for splitting the tree does not

necessarily produce a more complex tree, but it will increase the computa-

tional time of this method to create the �nal tree. Because our analysis is

not performed at runtime of the application, the generation time of the tree

can be considered negligible.

4.4.1 Objective functions

As explained in the previous section, minimizing the sum of result values from

the objective function is the basic goal of this technique. That is why the

objective must be a function that preserves the addition operation (f(x+y) =

f(x)+f(y)). By default, the mob library in R provides two di�erent objective
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Table 4.2: Main parameters for the mob function in R.
mob function

Parameter Description
t ∼ x2 + x1 + workers General linear regression expression.
w2 + w1 + workers+ workld+ Candidates splitting variables
local workld+ thrs
data Tranning data set of observations.
model LinearModel or gLinearModel.
weight Is a vector of weight for each sample on

the training data set.

Table 4.3: Objective functions for MBRT.
Function Name∑n

i=1(yi − ŷi) ∗ wi residuals∑n
i=1(yi − ŷi)2 ∗ wi deviance∑n
i=1

|yi−ŷi|
yi
∗ wi relative error

function for lineal regression (deviance and residual). We added a new one

(relative error) in order to evaluate the bene�ts of each one in the �nal

prediction. In the table, yi is the real execution time, and yi is the prediction

time of the regression model. The wi is the weight assigned to each training

sample. We have discarded, in principle, the residual objective function as

a good candidate for constructing the tree. The main reason for doing so

is related to the compensation e�ect produced when negative and positive

values are all added together. This will hide the real error in the prediction

generated in the branches of the tree.

By default, the regression arguments in each node of the tree are generated

to minimize the weighted sum of the square error objective function (
n∑
i=1

(yi−

ŷi)
2 ∗ wi). This is basically the way the multiple linear regression is applied.

Unfortunately, the library does not allow for changes to this logic. It may be

interesting to evaluate the results of prediction using the relative error as the

minimizing function to the regression algorithm. Consequently, if relative

error is selected as the objective function, it will be used in the splitting

action decision, but not in the regression function internally.
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4.4.2 Adding weight to training data set

Optimizing the weighted �tting criterion to �nd the parameter estimates al-

lows the weights to determine the contribution of each observation to the

�nal parameter estimates in the regression. It is important to note that

the weight for each observation is given relative to the weights of the other

observations so that di�erent sets of absolute weights can have identical ef-

fects. This method also shares the ability to provide di�erent types of easily

interpretable statistical intervals for estimation, prediction, calibration and

optimization.

The biggest disadvantage of weighted least squares, which many people

are not aware of, is the fact that the theory behind this method is based on the

assumption that the weights are known exactly. This is almost never the case

in real applications, of course, so estimated weights must be used instead.

The e�ect of using estimated weights is di�cult to assess, but experience

indicates that small variations in the weights due to estimation do not often

a�ect a regression analysis or its interpretation. However, when the weights

are estimated from small numbers of observations, the results of an analysis

can be very badly and unpredictably a�ected.

The Optimal results, which minimize the uncertainty in the parameter

estimators, are obtained when the weights, wi, used to estimate the values of

the unknown parameters are inversely proportional to the variances at each

combination of predictor variable values:

wi ∼
1

σ2
i

(4.4)

Unfortunately, however, these optimal weights, which are based on the

true variances of each data point, are never known. Estimated weights have

to be used instead. When estimated weights are used, the optimality proper-

ties associated with known weights no longer strictly apply. However, if the

weights can be estimated with high enough precision, their use can signi�-

cantly improve the parameter estimates compared to the results that would

be obtained if all of the data points were equally weighted. In the literature,

there are di�erent algorithms to calculate the weights in linear least square
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regression [81], but all of them return real values of weight. As the party

library does not allow the de�nition of integer values of weights, we can-not

use these algorithms in our work. This is the reason why we whre forced to

de�ne a new weight function.

First, we need to de�ne a function to calculate the top weight value for

all the observations:

Maxweight =
i≤Obs
max

1
(log2(yi ∗ 104)) (4.5)

and then, the function to assign the weight to each observation must be:

wi = Maxweight − log2(yi ∗ 104) + 1 (4.6)

The main idea of this expression is to try to penalize large values of

performance time. Taking into account that experiments with high execution

time are a minority within the training set, the di�erences in prediction of

these cases will be larger in magnitude even when they are not in relative

error. That is why the weight function is designed to assign a greater weight

to the cases with small execution times. First of all, the function normalized

all the execution time to start at one. This is the reason why all values are

multiplied by 104. As the second transformation, the weight is assigned using

the logarithmic function with base two. The second expression used the top

weight of all the observations to re-assign the weights in reverse order.

4.4.3 Setting the minsplits argument

To avoid over-�tting, this implementation does not have the possibility to

apply a �nal step of pruning the tree. Recursive partition trees usually

allow for this possibility. Therefore, the parameter minsplits can be used

to restrict the number of nodes in the tree to a speci�c range. A value of

25 means that the smaller size of the training partition in any leaf node has

to be equal to or greater than this value. So, previously, the parent internal

node of this leaf did not take this restriction into account when dividing the

data set.This is clearly a method to control the size and depth of the tree
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generated and, consequently, to control the over-�tting. But selecting the

best value is not trivial, because,as the minsplits argument increases, the

prediction accuracy will also increase. This is a typical example of a trade-

o� between good accuracy with generalization in prediction vs. over-�tting.

The best way to deal with this kind of phenomenon is to do an iterative

study of prediction error results varying the value minsplits argument.

4.4.4 M-fluctuation test

Structural change is of central interest in many �elds of research and data

analysis: to learn if, when and how the structure of the mechanism underlying

a set of observations changes. In parametric models, structural change is typ-

ically described by parameter instability. If this instability is ignored, param-

eter estimates are generally not meaningful, inference is severely biased and

predictions lose accuracy. Therefore, a lot of literature on tests for structural

change or parameter instability emerged, in particular in the econometrics

community, using the tests as tools for diagnostic checking against misspec-

i�cation [82]. But, more generally, such tests can also be used as explorative

tools that can help to understand the structure in the data. The general-

ized 
uctuation tests �t a parametric model to the data via ordinary least

squares (OLS) or equivalently via maximum likelihood (ML), using a normal

approximation and deriving a process which captures the 
uctuation of the

recursive or OLS residuals [83] or the recursive or rolling-moving estimates

and rejects them if this 
uctuation is improbably large.

The resulting class of tests for parameter instability, which are based on

M-estimation scores, contains many of the tests mentioned above as special

cases and uni�es the approaches with the construction of test statistics. If

we assume n possible vector independent observations

yi ∼ F (θi) (i = 1, ..., n) (4.7)

distributed according to some distribution F with k-dimensional param-

eters θi. We also assume that the index i = 1, ..., n stems from the ordering
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with respect to some external variable. The method is interested in testing

the null hypothesis

H0 : θi = θ0 (i = 1, ..., n) (4.8)

against the alternative that at least one component of θi varies over some

variable. It is based on functional central limit theorems for these 
uctuation

processes; both under the hypothesis and local alternatives it is shown how

structural changes in parametric models, with a special emphasis on regres-

sion models, can be discovered by test statistics that capture the 
uctuation

in the M-score processes. The statistical p-value will describe how unstable

the response variable is with respect to the predictor variable in each case.

The lower p-value indicates what the predictor variable associated with the

highest parameter instability is.
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Figure 4.3: M-
uctuation test example.

Figure 4.3 shows a hypothetical example of the power of this test. Let us

say we have a lineal regression with several variables, and the values of the

arguments for two of them are plotted. The M-
uctuation test has the ability

to detect the variable predictor β1 as the one with more statistical signi�cance

for generating instability. The variable β0 has a similar variability, but, in this

case, there is more stability. The variable β1 su�ers a remarkable variation
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in its tendency in the region between 200 and 250. This example shows

that applying a split action in the tree using β1 will generate three lineal

regressions that must �t the real behavior better.

4.4.5 Searching for the best application parameter

Let say we obtain a very accurate prediction results. The main idea to search

for the best execution parameters with a given workload goes to evaluating

all the leaf node of the tree that match with the workload. Once we have

this subset of predictions, the next step is to �nd The minimum output value

from all the regression functions evaluated using the given workload. The

regression selected will give us the �nal parameters with which the applica-

tion should be executed. This algorithm can be used for both, the selection

of the best performance settings, and the selection for the best parameters

con�guration of e�ciency. This thesis validates both proposals.

In order to predict the e�ciency for a particular combination of parame-

ters, the �rst step is de�ning the expression for evaluated the e�ciency. Our

approach is based on an extension of the e�ciency expression for Master/-

Workers application de�ned by Cesar [47]. More formally, the e�ciency index

E(W,Workers, Thrs) is de�ne as Tc
Workers∗Tavail(W,Workers,Thrs)

, where Tavail is
Workers∑
i=0

tavaili, and tavaili is the time worker i has been available for doing

useful work, which for those applications we are working with, will be the

whole iteration time Titer. Consequently, the e�ciency index will be de�ned

as Tc
Workers∗Titer(W,Workers,Thrs)

, and �nally, the e�ciency index as:

Eindex(W,Workers, Thrs) =
Titer(W,Workers, Thrs)

E(W,Workers, Thrs)
=
Workers ∗ Titer(W,Workers, Thrs)2

Tc
(4.9)

where

Tc =
Workers∑

i=0

µiw(W,Workers, Thrs) (4.10)

Tc is the sum of all the computation time spent on each worker, so µiw

will be the computation time spent for the worker i. The original de�nition
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of e�ciency index was performance index but have changed the terminology

to avoid being ambiguous. In order to searching for the best e�ciency index,

this work subjects to applying the �rst derivate of the expression to �nd

the minimum value that will be the best con�guration but in our context,

as we have multiple regression functions, the result is not continuous over

the parameters space. So, selecting the best con�guration must be done

using an exhaustive search. The e�ciency index is not a classic measure

e�ciency. It is based on the time relationship between communication and

the computation time spent by the parallel application.

4.5 Methodology to generate the prediction

tree

Once we present the main concepts that are involved in the algorithm for

constructing the MBRT, the following explanation will cover the methodol-

ogy that allow us to have a well-accurate MBRT. Figure 4.4 shows a diagram

with the general overview of the methodology proposed and the process com-

posed of six steps that has to be followed to enrich the goal. In the �rst step,

we have to de�ne the general regression function based on the knowledge

previously achieved from the behavior of the application. At this point, the

number of parallel regions, the complexity of each one of them and the func-

tions for MPI communication have to be taken into account to de�ne the

regression expression.

In the second step, the application parameters that might in
uence the

performance of the application need to be considered as candidate splitting

variables. Once these two steps are completed, we create the training and

validation data set, varying for each case the workload and the values of

application parameters. For all these combinations,the architecture selected

for the experimental validation will be executed. At this point, taking mea-

surements of the whole execution is not needed. We only take the �rst ten

iterations, assuming that, if the application is regular, these measurements
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will be representative of the complete execution.

Once we record all the performance measurements, the next step will be

the tree generation using the selected training data set, followed by the step

where boxplot for error distribution using training data takes place. At this

step, it is important to check for similar error distribution for each splitting

variable value.

Define the regression function prototype

Indentify candidate splitting variables

Execute the application for each configuration
on the training and validation data set

Generate the tree using the training data set
and the performance measurements

Check for valid error distribution

Validate the prediction accuracy
using the validation data set

Final Model

Increase the number 
of samples for both
data sets in regions
with highest error

Improve the general 
regression function 

prototype

Figure 4.4: Methodology to create the Model-based regression tree.

Figure 4.5 shows two examples of similar and not similar error distribution

for a variable in the range of one to �ve. These graphs can be understood

in the following way. The bottom and top of the box indicate the end of the

�rst and third distribution quartiles respectively, and the line inside the box

is always the median value. The lowest datum is still within 1.5 interquartile
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range (IQR) of the lower quartile, and the highest datum is still within

1.5 ∗ IQR of the upper quartile where IQR = Q3 − Q1. The small circles

represent outlier error predictions, which are those values outside the highest

datum. The boxplot with similar results shows slight di�erences between the

error distributions for di�erent values. This is a typical case that we can �nd

in real values. It is very uncommon to achieve exactly the same distribution.

As in the graphs, we can consider two distributions to be similar if there is

not a big di�erence in the median and the values of quartiles respectively.

In this case, the di�erence is not bigger than �ve. In the second case, there

are big di�erences in means and dispersion for the error for each value. This

is the kind of results that shows us the probability of making a mistake in

the further best application parameters prediction. If some distributions are

remarkably higher than others, the probability of not selecting a con�guration

that returns this error in prediction will also increase.

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

Similar results

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Worst results

Figure 4.5: Basic examples of error distribution.

In this step of the methodology, we have to check for similar distribution

among all the splitting variables. If the results do not guarantee that, we

need to go back to the second step in order to increase the training samples

by adding more experiments to the region where higher error distribution

is identi�ed. This iterative process will prove whether or not the accuracy

prediction problem in a region is because the training sample is too small to
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be representative of all the behavior. In cases of where better results are not

achieved when the size of the training data set is increased, we ry to better

rethink the general regression function prototype.

The �nal step is composed of the task of validating the MBRT with the

validation data set. Once it is sure that the error distribution between all

the splitting variables are similar, the predictive capacity must tested. The

most important aspect to keep in mind is that the error for the new values

of workload must be, in general, around 5%, and the dispersion must be not

higher than 20%. It will be perfect if the outliers prediction is under 5% for

all predictions made with the validation sample. If we consider that all these

conditions are ful�lled, this is the step to take a look at the prediction table

for the best con�guration of parameters.

4.6 Experiments platform design

As we explain below, the MBRT technique is fed with several observations

of performance behavior, varying in each case the application con�guration

parameters and the workload. Dealing with this huge amount of information

can be tedious and can demand many hours studying the results for the

di�erent con�gurations of the prediction tree. In order to assist in this task

being performed more comfortably, we explain in detail how the experiment

platform for creating the prediction model is designed.

First, a custom library is created to generate tabular information (.CSV

�le) related to the measurements that must be taken in each important region

on the application. The typical regions that must be instrumented are each

OpenMP region in the worker, the MPI send function used in the master and

the worker and the Wait and Receive function. Once we have the output

from all the executions, a library implemented in R will automatically read

all the �les in the output folder. The library splits the information into two

parts, one for training and the other for validation, and uses the �rst one to

construct the MBRT based on some �xed arguments for this algorithm that

are de�ned in the con�guration �le. Once the tree is generated, the library
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saves this predictor tree in a binary �le in order to have historical information

about the di�erent versions of trees. In a second step, this library generates

the bar plot pictures for the error distribution of each splitting variable. To

do this task, the library at �rst checks if each variables was used to split the

tree.

At this point, the expert must check if the results are acceptable. If indeed

they are, the expert can request the error distribution for the validation data

set. At this point, the library reloads the binary serialization of the tree and

evaluates the prediction for each case and, �nally, generates the boxplot error

distribution and the prediction table for the best application con�guration

parameters. Thanks to the design of this structure for analyzing the data, we

save a lot of time in a tedious iterative process. Figure 4.6 shows a general

overview of the platform we described.

4.7 Conclusion

The principal objective of this chapter is to present the model-based regres-

sion tree techniques as a technique for predicting performance or e�ciency in

hybrid applications. The MBRT is a machine learning algorithm that allows

us to �t a behavior using several regression functions. We used a version of

this algorithm developed in R. The main reason for doing this is because this

version includes a test for evaluating the variable's instability among all that

is included as the candidate splitting variable. In the next chapter we plan

to evaluate the MBRT trying for predicting performance and e�ciency. If

the results are su�ciently accurate, we can additionally use this technique

for the selection of the best parameters to run the application in each case.

Additionally, the methodology proposed to generate a good accurate pre-

diction tree is covered, as well as including a full description of the experi-

ment's library design to reduce the time to process all the information that

came from the experiment's results.
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Figure 4.6: Experiments platform design.
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Chapter 5

Experimental evaluation

5.1 Introduction

To validate the accuracy of our proposal, an experimental study has been car-

ried out. Three applications have been selected in order to test the MBRT

technique for predicting performance and e�ciency index. Based on the

methodology proposed, the results present here are the best ones we were

able to achieve by repeatedly re�ning the tree parameters in each case. The

�rst application is the Kmeans clustering algorithm. The second one is the

classical Nbody problem, and the third one is a Heat transfer. All the ap-

plications were modi�ed to adjust their logic to the Master/Worker commu-

nication pattern. Basically, all collective communications were transformed

into a single communication from the Master process to each Worker and the

return from each Worker to the Master. Additionally, a logic to process each

message from the Workers into the global result was added into the logic of

the Master process. In all the cases, the training and validation data sets of

observations were collected from several executions, varying the application

parameters and the workload. Each run was halted at the tenth iteration

in order to reduce the time spent on this phase of the methodology. The

three applications involved in this study have parallel regions with quadratic

complexity O(N2). First, the results achieved using the IBM cluster will

be presented and, next, the prediction results on the NUMA node. In each

77
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case, the performance prediction and e�ciency prediction will be predicted

using the MBRT technique. The prediction result error is calculated by the

following expression:

Error =
|pred− real|

real
(5.1)

5.2 Applications

5.2.1 Kmeans

The Kmeans [84] clustering is a method of vector quantization, originally

from signal processing, that is popular for cluster analysis in data mining.

This algorithm aims to partition n observations into k clusters, in which

each observation belongs to the cluster with the nearest mean, serving as a

prototype of the cluster. The results we present here were achieved using 125

di�erent attributes for each data object. The data objects to be clustered are

evenly partitioned among all processes while the cluster centers are replicated

using the master process as the global result collector. Additionally, the

global-sum reduction for all cluster centers is performed at the end of each

iteration by the master process in order to generate the new cluster centers.

In all the experiments, the algorithm is executed to calculate the value of 10

clusters, varying the number of data object.

5.2.2 Nbody

The classical N-body problem [85] simulates the evolution of a system of N

bodies, where the force exerted on each body arises from its interaction with

all the other bodies in the system. Nbody algorithms have numerous applica-

tions in areas such as astrophysics, molecular dynamics and plasma physics.

The simulation proceeds over time steps, each time computing the net force

on every body and thereby updating its position and other attributes. If all

pairwise forces are computed directly, this requires operations at each time

step. In this version of the algorithm, the master process �rst sends the
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initial state of all the bodies to all the workers and the range of bodies that

each worker has to process. Once this initialization phase is concluded, the

workers compute the resulting force for its range of bodies and sends the

�nal state of its bodies back to the master. The master process collects all

the information and sends the updated state of each body to all the workers

processes.

Figure 5.1: Surface heat state at �rst iteration and last for heat transfer.

5.2.3 Heat transfer

Many computational problems in geosciences involve �nite di�erence approx-

imations of partial di�erential equations [86]. Here, the goal is to learn to

write a straight-forward �nite di�erence model in parallel. Time-transient

heat conduction in 2D is used as an example. Finite di�erence approxima-

tions excel as solutions to heat transfer through bodies of reasonably complex

geometry and variable bulk thermal conductivity. The solution given here is

simpli�ed. The computational grid is rectangular and grid points are evenly

spaced. Thermal di�usivity is held constant in the x and y directions over

the entire grid. The initial temperature is high in the middle of the domain

and zero at the boundaries. The boundaries are held at zero throughout the

simulation.
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The basic features of this �nite di�erence model are illustrated by Figure

5.1, were we can see the evolution of the surface temperature at the beginning

of the simulation and at the end. In this application, the master process

partitions the �nite di�erence grid among the nodes by rows. Each worker

process solves a fraction of the grid and send to the Master the row on the

upper and lower border in a single MPI message. The master then joins all

the rows received and sends the respective borders back to each worker. This

is a summary of an iteration of the application.

5.3 Experimental platforms

The experiments have been carried out on two di�erent platforms. The �rst

one is an IBM homogeneous cluster with 32 Nodes with 2 x Dual-Core In-

tel(R) Xeon(R) CPU 5160 at 3.00GHz with 4MB L2 cache (2x2) and 12 GB

Fully Bu�ered DIMM 667 MHz of memory per node. The second computing

platform used to test the proposed method is a NUMA architecture that con-

sists of one PowerEdge C6145 node. This node has 4 AMD OpteronTM6376

of 16 cores with 128GB of DDR3 1600 MHz. Figures 5.2 and 5.3 show a

general overview of the memory hierarchy in each case.

Taking a look at the IBM architecture we can see that each node is

composed of four cores without hyper-therading sharing the level two of

cache memory in groups of two cores. Level one of cache is split into two

parts, one for the data cache and the other for instruction cache and it is

associated with only one core respectively. In all the experiments executed

on this architecture, there are two additional split variables as input to the

MBRT algorithm l2 0 and l2 1. Each one will count the number of threads

that share level two of cache memory. If the application used three threads,

l2 0 must be equal to two and l2 1 must be one. The NUMA structure

architecture is more complex. It is built of 64 cores without hyper-threading

organized in groups of 16 cores in each socket. Each couple of cores shares

the second level of cache memory. The third cache memory level in this case

is shared by 16 cores in the same NUMA domain, while each socket consists
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Figure 5.2: (a) IBM Node architecture.

Figure 5.3: Catwoman Node architecture (NUMA).
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of two NUMA domains.

Table 5.1: Kmeans application variables for training and validation data sets
Parameter Training Validating

Threads 1,2,3,4 1,2,3,4

Workers 2-28 in steps of 2 2-28 in steps of 2

Workload 200,400,600,800,1000,1200,1600 300,500,700,900,1100,1500,1800

2000,2200,2800,3100,3500,4000 2100,2500,3000,3200,3800,4100

4200,4600,4900,6000,10000,14000 4500,4800,5000,8000,12000,15000

16000,20000,24000,26000,30000 18000,22000,25000,28000,50000

70000,1e+05,3e+05,5e+05,7e+05 90000,2e+05,4e+05,6e+05,8e+05

9e+05,1.2e+06,1.8e+06,2.2e+06 1e+06,1.5e+06,2e+06,2.5e+06

2.8e+06,3.2e+06,3.8e+06,4.2e+06 3e+06,3.5e+06,4e+06,4.5e+06

4.8e+06,5.2e+06,5.8e+06,6.2e+06 5e+06,5.5e+06,6e+06,6.5e+06

6.8e+06,7.2e+06,7.8e+06,8.2e+06 7e+06,7.5e+06,8e+06,8.5e+06

8.8e+06,9.2e+06,9.8e+06 9e+06,9.5e+06,1e+07

Table 5.2: NBody application variables for training and validation data sets
Parameter Training Validating

Threads 1,2,3,4 1,2,3,4

Workers 2-28 in steps of 2 2-28 in steps of 2

Workload 25,70,130,200,300,400,550,650,750 50,100,150,250,350,500,600,700,800

850,950,1100,1300,1500,1750,1900 900,1000,1250,1400,1600,1800,1950

2000,2200,2400,2600,2800,3000 2100, 2300, 2500, 2700, 2900, 3100

ccion 3200,3400,3600,3800,4000,4200 3300, 3500, 3750, 3900, 4100, 4300

4400,4600,4750,4900,5100,5300 4500, 4700, 4800, 5000,5250, 5400

5500,5780,5900,6300,6800,7300 5600, 5800, 6000, 6500, 7000, 7500

7800,8300,8800,9200,9750,12000 8000, 8500, 9000, 9500,10000,14000

15000,19000,22000,25000,29000 17000,20000,24000,27000, 30000

32000,35000,39000,42000,45000 34000,37000,40000,43500,50000

55000,65000,75000,85000 60000,70000,80000,90000

5.4 Prediction on homogeneous cluster

The experiments using this architecture were designed to study the prediction

accuracy for performance and e�ciency index restricting the use of only

one MPI process per node of the cluster. The training set is the input for

constructing the model-based regression tree. The validating set was done

using di�erent values for the workload that were not included in the training
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Table 5.3: Heat transfer application variables for training and validation data
sets

Parameter Training Validating

Threads 1,2,3,4 1,2,3,4

Workers 2-28 in steps of 2 2-28 in steps of 2

Workload 50,100,180,300,500,900,1250,1800, 80,150,250,400,750,1000,1500,

2100,2300,2700,2900,3100,3300,3700,3900, 2000,2200,2500,2800,3000,3200,3500,

4100,4300,4700,4900,5100,5300,5700,5900, 3800,40004200,4500,4800,5000,5200,

6100,6300,6700,6900,7100,7300,7700,7900, 5500,5800,6000,6200,6500,6800,7000,

8100,8300,8700,8900,9100,9300,9700,9900, 7200,7500,7800,80008200,8500,8800,

10500,28000,11500,12500,13500,15000, 9000,9200,9500,9800,1000011000,

17000,20000,23000,33000,44000,37000, 12000,13000,14000,16000,18000,

39000,42000,50000,60000,70000,80000, 21000,25000,30000,35000,38000,

90000 40000,43500,45000,55000,65000,

75000,85000

set. Both sets are similar in dimension. A complete description of both sets

is speci�ed in Tables 5.1, 5.2 and 5.3.

Based on the speci�c characteristics of each application, the general re-

gression function prototype su�ered some variations for each case (See Table

5.4).

Table 5.4: Functions and parameters for MBRT (Performance predition).
Application Regression function prototype Candidate splitting variables

Kmeans Titer ∼ β3w2 + β2w1 + β1workers+ β0 w2,w1,workers,workload,

local workld,threads,l2 0,l2 1

Nbody Titer ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1local workld+ β0 local workld,threads,l2 0,l2 1

Heat transfer Titer ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1workload+ β0 local workld,threads,l2 0,l2 1

The communication time for all applications is proportional to the num-

ber of workers where the application is executed. That is the reason why

the workers variable is included in all the functions. As the application

Kmeans has a constant message size based on partial information of the

cluster provided by each worker, the communication spent time in this case

only depends on the number of workers. In the Nbody, the communication

time depends on the local workload. The message is formed of the state

information about all the particles processed by the worker. Heat transfer
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is an application where the message sent is the top and bottom boundaries

for the 2D surface calculated in each worker. In this case, the size of each

individual message will be proportional to the workload.
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Figure 5.4: Relative error distribution for validation data set grouped by
workload (Kmean).
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Figure 5.5: Relative error distribution for validation data set grouped by
workload (Nbody).

5.4.1 Performance prediction

Taking a look at the performance execution time prediction results for the

validation data set presented in the Figure 5.4 gives us an idea of the accuracy

of these techniques for predicting performance using new values of workloads.
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Figure 5.6: Relative error distribution using validation data set grouped by
workload (Heat transfers).

The graph shows the error distribution grouped by di�erent workloads for

Kmeans application using the min split partition value of 25. The median

error in the prediction is under 10% for all the di�erent workloads, but addi-

tionally, the error dispersion for most validation samples is less than 5%. The

outlier prediction errors still represent only 3 % of the validating set. These

results can be considered as a typical example of well accurate performance

prediction results because all the error distribution attributes are bound in

an acceptable range.

The prediction results achieved with the NBody applications are shown in

Figure 5.5. The model-based regression tree was generated with the default

p-value and the same minimum split size for the leaf, but the results are

slightly di�erent compared with the previous application. The median error

in prediction is under the 5% for all the cases, but the error distribution is not

as accurate as Kmeans. The error distribution is clearly not homogeneously

distributed, and there is a region where the error dispersion is signi�cantly

high. On this region, the upper part of the error distribution is usually bigger

than the lower part. For those predictions with workloads from 900 to 1400,

the error dispersion is greater than 60%. In the case of prediction from 1600
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to 5000, the error dispersion can reach up to 30%. These two regions are

clearly the main instability prediction sources where performance prediction

errors and the best con�guration of application parameter prediction error

were mostly located. In the next section, the e�ect of those regions on the

selection of the best application parameter con�guration will be explained in

depth. The outlier predictions represent 9%.

Looking into the prediction error results for the Heat transfer application

(Fig. 5.6), we can see a general small error for all the workloads. In the

range between 3900 and 17000, the biggest errors are found, but the median

error is under the 5% for all the cases. The top 75% values of all of the

distribution for any workload are under 15% error in prediction. There are

only four results with the top over 20% in the range of 7700 to 8700. The

outlier predictions are 7% of all the results for the validation data set, but

many of them reach 60% error. On the one hand, the existence of several

outlier predictions with a big error directly a�ects the ability to select the

most appropriate parameters for the application, but, on the other hand, at

least the prediction error is relatively low.

One reason that explains the appearance of outlier predictions is that we

are testing the MBRT technique using experiments with really small iteration

times. Given this as a fact, the noise introduced by the operating system

becomes signi�cant for the �nal accuracy.

5.4.2 Best performance configuration

Table 5.5 shows the di�erences between the con�guration parameters for the

best execution recorded in the validation data set and the best con�guration

predicted by the MBRT. The �rst four columns are the real values of Work-

ers, Threads and best execution times for a particular workload. The last

three columns are the parameters predicted and the real execution time using

this con�guration. The worst prediction selections of application parameters

are highlighted in red, and the rows in yellow are those that do not match

the con�guration prediction where the iteration time mismatch is close to

the real one. It can be observed that, in most cases, the predicted best con-
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�guration is the con�guration that provides the best execution time, and,

in some cases, there are other con�gurations that achieve better execution

times, but the execution time provided by the proposed con�guration is very

close. There are only a few cases where the execution time is signi�cantly

di�erent from the one reached by the proposed con�guration.

The con�guration prediction for workload 300 di�ers from the best in

one thread (10 workers with 4 threads vs. 10 workers with 3 threads). It

means that the di�erence in the number of computational resources is 11

cores. Usually, a small error in the number of threads using this architec-

ture will generate a higher error in the number of computational resources

used. Even when it is a bad prediction, the di�erence between the best time

and the predicted time is small, so the prediction is almost guaranteed to

be closer to the global minimum performance. Similar results can be seen in

the prediction for workloads with values of 1800, 2100, 3000, 3200 , 4500 and

1800 where the di�erence between prediction and the best con�guration is

found in the number of workers. For all of these cases, the di�erence is 2 or

3 workers, but the best performance times compared with the performance

for all the con�guration predicted are quite similar. In these results, only

one con�guration prediction is very far from the best one. This happens for

a workload of 900 using 18 workers with 2 threads. The prediction suggests

using 10 workers with 4 threads. This large error can be explained because

the prediction result matches one of the outlier predictions that can be seen

in Picture 5.4.

Table 5.6 summarizes the best con�guration prediction results for the

Nbody application. The results are not as successful as the Kmeans applica-

tion. In this case, the predictions for workloads 900, 1250, 1600, 1950, 2100,

2300 and 2500 are distinctly di�erent with respect to the best execution for

each one. The causes behind the appearance of these large errors can be

seen in the prediction error distribution for the training data set 5.5. As

the performance prediction error in the range of 900 to 5400 is higher than

the rest, the probability of predicting an improper con�guration of applica-
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tion parameters using this workloads will also increase. This problem can

be avoided by increasing the training observations in this region. In fact,

the results presented have been obtained using this methodology. The pre-

dictions using workloads 1000 and 1950 do not match exactly with the best

con�guration of parameters, but, in this case, the real performance time for

the predictions is close to the real best one. For the rest of the workloads,

the parameter selection is highly accurate.

The best con�guration for performance predictions using the Heat trans-

fer application are shown in Table 5.7. In summary, 13% of all the parameters

suggested by the prediction using MBRT are wrong choices. There is only 2%

of the predicted con�gurations that are not similar to the best one, but, in

these cases, the di�erence in execution time is quite similar. The rest of the

parameter predictions match the best one in each case exactly. The wrong

prediction for workloads 2700, 2900, 3100 and 3700 are caused by the outlier

performance predictions recorded in the previous barplot. There are several

outliers with over 50% of error, which is one of the causes that can lead to

problems in the prediction. The outlier appearance will be not a problem if

all of them are under 20% error or they are very few compared with the size

of the validation sample. The predictions for 9700, 10500 and 12500 su�er

from the same problems with the outliers.
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Table 5.5: Real vs Prediction best con�guration (Kmean).
Real Prediction

Workload Workers Threads Best time Workers Threads Time
300 10 4 0.0006168 10 3 0.0006429
500 12 4 0.0007251 12 4 0.0007251
700 12 4 0.0008287 12 4 0.0008287
900 18 2 0.0008989 10 4 0.0009318
1100 16 2 0.0009360 16 2 0.0009360
1500 20 2 0.0010431 20 2 0.0010431
1800 18 4 0.0011265 20 4 0.0011617
2100 20 2 0.0011657 18 2 0.0012151
2500 20 2 0.0012628 20 2 0.0012628
3000 24 2 0.0013854 26 2 0.0014197
3200 20 2 0.0013988 24 2 0.0014831
3800 26 2 0.0015206 26 2 0.0015206
4100 26 2 0.0015549 26 2 0.0015549
4500 24 2 0.0016370 22 2 0.0016543
4800 24 2 0.0017144 24 2 0.0017164
5000 24 2 0.0017389 24 2 0.0018181
8000 24 2 0.0022768 24 2 0.0022831
12000 24 4 0.0029913 24 4 0.0029913
15000 28 4 0.003457 24 4 0.0046466
18000 24 4 0.0041204 28 4 0.0042806
22000 28 4 0.0045482 28 4 0.0045482
25000 28 4 0.0050322 28 4 0.0050322
28000 28 4 0.0055912 28 4 0.0060161
50000 28 3 0.011702 28 3 0.011702
90000 26 4 0.0188799 24 4 0.020413
2e+05 28 4 0.038121 28 4 0.038121
4e+05 28 4 0.0779791 28 4 0.0779791
6e+05 28 4 0.1188076 28 4 0.1188076
8e+05 28 4 0.1558503 28 4 0.1558503
1e+06 28 4 0.1881112 28 4 0.1881112

1.5e+06 28 4 0.2807814 28 4 0.2807814
2e+06 28 4 0.3738786 28 4 0.3738786

2.5e+06 28 4 0.4632191 28 4 0.4632191
3e+06 28 4 0.5542924 28 4 0.5542924

3.5e+06 28 4 0.6501051 28 4 0.6501051
4e+06 28 4 0.738608 28 4 0.738608

4.5e+06 28 4 0.830799 28 4 0.830799
5e+06 28 4 0.919348 28 4 0.919348

5.5e+06 28 4 1.0110899 28 4 1.0110899
6e+06 28 4 1.1046614 28 4 1.1046614

6.5e+06 28 4 1.1890828 28 4 1.1890828
7e+06 28 4 1.2842709 28 4 1.2842709

7.5e+06 28 4 1.3798037 28 4 1.3798037
8e+06 28 4 1.4589468 28 4 1.4589468

8.5e+06 28 4 1.557233 28 4 1.557233
9e+06 28 4 1.648762 28 4 1.648762

9.5e+06 28 4 1.7448824 28 4 1.7448824
1e+07 28 4 1.8314853 28 4 1.8314853
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Table 5.6: Real vs Prediction best con�guration (Nbody).
Real Prediction

Workload Workers Threads Best time Workers Threads Time
50 2 3 0.0002731 2 3 0.0002731
100 2 4 0.0003131 2 4 0.0003131
150 4 3 0.000467 4 3 0.000467
250 2 4 0.0006306 2 4 0.0006306
350 6 4 0.0008699 6 4 0.0008699
500 6 4 0.0012411 6 4 0.0012411
600 6 4 0.0014872 6 4 0.0014872
700 8 4 0.0018249 8 4 0.0018249
800 10 4 0.0020739 10 4 0.0020739
900 8 4 0.002439 20 2 0.0030912
1000 10 4 0.002757 8 4 0.0029204
1250 6 4 0.0043443 4 4 0.0056199
1400 4 4 0.0061357 4 4 0.0061357
1600 6 4 0.0067109 4 3 0.0104806
1800 4 4 0.0091444 4 4 0.0091444
1950 8 3 0.0097078 4 4 0.0105328
2100 6 4 0.0108928 4 3 0.015389
2300 6 4 0.0115614 4 3 0.0191191
2500 8 4 0.0122368 4 4 0.0163447
2700 6 4 0.0168237 6 3 0.0203117
2900 6 4 0.016433 6 4 0.016433
3100 6 3 0.0258621 6 3 0.0294567
3300 6 4 0.0235467 6 4 0.0235467
3500 8 3 0.0261408 8 3 0.0261408
3750 4 3 0.0546644 4 3 0.0558362
3900 8 3 0.0304743 8 3 0.0304743
4100 6 4 0.0305986 6 3 0.03637
4300 10 3 0.030979 10 3 0.03097901
4500 8 3 0.0366514 8 3 0.0366514
4700 12 4 0.0283032 12 4 0.0283032
4800 10 4 0.0308126 10 4 0.0308126
5000 8 4 0.0433158 8 4 0.0433158
5250 6 4 0.1053822 6 3 0.1060726
5400 6 4 0.0537166 4 4 0.0638894
5600 24 4 0.0294887 24 4 0.0294887
5800 24 4 0.0308569 24 4 0.0308569
6000 24 4 0.0310106 24 4 0.0310106
6500 24 4 0.0342993 24 4 0.0342993
7000 20 4 0.0370362 20 4 0.0370362
7500 28 4 0.0392284 28 4 0.0392284
8000 26 4 0.0425798 26 4 0.0425798
8500 24 4 0.0452163 24 4 0.0452163
9000 28 4 0.0495081 28 4 0.0495081
9500 26 4 0.0506968 26 4 0.0506968
10000 28 4 0.0562127 26 4 0.0564312
14000 28 4 0.0909772 28 4 0.0909772
17000 28 4 0.1232944 28 4 0.1232944
20000 28 4 0.1554981 28 4 0.1554981
24000 28 4 0.220228 24 4 0.2349681
27000 24 4 0.2923574 28 4 0.3003843
30000 26 4 0.3338369 26 4 0.3338369
34000 26 4 0.4097942 26 4 0.4097942
37000 28 4 0.4596396 26 4 0.4909842
40000 28 4 0.5342135 28 4 0.5342135
43500 28 4 0.6194289 28 4 0.6194289
50000 28 4 0.7997748 26 4 0.8424526
60000 28 4 1.1100477 28 4 1.1100477
70000 28 4 1.5817435 26 4 1.5817435
80000 28 4 1.9203103 28 4 1.9203103
90000 26 4 2.5653735 28 4 2.3234218
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Table 5.7: Real vs Prediction best con�guration (Heat transfer).
Real Prediction

Workload Workers Threads Best time Workers Threads Time
50 3 2 0.00013 3 2 0.00013
100 3 4 0.00016 3 4 0.00016
180 3 3 0.00020 3 3 0.00020
300 3 4 0.00028 3 4 0.00028
500 5 4 0.00041 5 4 0.00041
900 8 4 0.00067 8 4 0.00067
1250 11 4 0.00098 11 4 0.00098
1800 11 4 0.00146 11 4 0.00147
2100 8 4 0.00179 8 4 0.00171
2300 8 4 0.00222 8 4 0.00249
2700 13 4 0.00252 11 1 0.00491
2900 9 4 0.00286 21 2 0.00339
3100 11 4 0.00305 9 2 0.00445
3300 11 4 0.00347 11 4 0.00346
3700 13 4 0.00396 13 2 0.00498
3900 9 4 0.00457 9 4 0.00459
4100 13 4 0.00497 13 4 0.00497
4300 19 4 0.00515 19 4 0.00515
4700 9 4 0.00676 9 4 0.00678
4900 9 4 0.00695 9 4 0.00695
5100 9 4 0.00743 9 4 0.00741
5300 9 4 0.00811 9 4 0.00811
5700 11 3 0.00963 8 4 0.01072
5900 8 4 0.01148 8 4 0.01148
6100 11 4 0.01001 11 4 0.01002
6300 8 4 0.01324 8 4 0.01324
6700 8 4 0.01452 8 4 0.01456
6900 9 4 0.01280 8 2 0.06214
7100 11 4 0.01256 11 4 0.01260
7300 9 2 0.02212 5 4 0.02404
7700 7 3 0.02327 7 3 0.02327
7900 8 4 0.01901 8 4 0.01901
8100 8 4 0.01983 8 4 0.01983
8300 9 3 0.02418 9 3 0.02418
8700 9 3 0.02605 9 3 0.02605
8900 11 4 0.02424 11 4 0.02421
9100 8 3 0.02843 8 3 0.02843
9300 8 2 0.03922 8 2 0.03922
9700 11 4 0.022576 5 4 0.04111
9900 7 4 0.03027 7 4 0.03027
10500 11 2 0.03811 8 2 0.05003
11500 5 4 0.05715 5 4 0.05715
12500 11 2 0.05105 5 4 0.07002
13500 8 2 0.08249 8 2 0.082492
15000 11 2 0.07244 11 2 0.07244
17000 21 4 0.04980 21 4 0.04980
20000 23 4 0.06074 23 4 0.06074
23000 23 4 0.07027 23 4 0.07027
28000 29 4 0.09244 29 4 0.09256
33000 31 4 0.11583 31 4 0.11607
38000 31 4 0.14249 31 4 0.14249
44000 31 4 0.17777 31 4 0.17780
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5.4.3 Efficiency index prediction

Once the MBRT is validated to predict the performance of parallel appli-

cations, one important subject is the evaluation of this technique to predict

the behavior of the e�ciency. In order to accomplish this task, we �rst take

the e�ciency index expression explained previously in Chapter 4. The �rst

step, is to evaluate this response variable for all the observations from the

training data set in order to construct the �nal prediction tree. Once this is

done, the Eindex can be included as the output prediction for the MBRT. The

regression expression prototype for each application will be the same as that

used for the performance prediction because the behavior follows a similar

trend. Thus, the summary of the arguments for applying the technique is

presented in the following table:

Table 5.8: Functions and parameters for MBRT (E�ciency index prediction).
Application Regression function prototype Candidate splitting variables

Kmeans Eindex ∼ β3w2 + β2w1 + β1workers+ β0 w2,w1,workers,workload,

local workld,threads,l2 0,l2 1

Nbody Eindex ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1local workld+ β0 local workld,threads,l2 0,l2 1

Heat transfer Eindex ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1workload+ β0 local workld,threads,l2 0,l2 1

In the future, if we want to search for the best application con�guration

with highest level of e�ciency, the prediction with the smallest value indi-

cates the best selection.

Picture 5.7 shows the prediction results for the e�ciency index using the

same training set to construct the tree and validation set for generating this

bar plot. The �nal tree is formed of several internal nodes in the following

proportion: 8.4% of all the internal nodes use local workld for the splitting

action, around 4.2% of these nodes split the tree by the number of threads,

16.6% of the internal nodes use the number of workers, 17.1% of the split

actions were done by w1 and 41% by the the derived variable w2. Finally,

12% of all the splits were done using the application workload. Like the

trees obtained for predicting the performance, the a�nity variables were not
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taken into account in the partitioning. This is a clear sign that the informa-

tion provided by adding these variables is not signi�cant. The applications

involved in this study do not su�er much variation in their behavior with

respect to a change in their values. In the barplot, the number of outliers is

around only 3% of all the predictions. They are concentrated in the range

between 300 and 200000. The rest of the outliers are under 20% prediction

error. The tops of all the distributions are under 20% error. Based on this

result, we expect a high accuracy when we search for the best con�guration

for this application. It is quite interesting that the importance of the num-

ber of workers is similar to the importance of the relationship Workload
Workers∗Thrs

de�ned in w1.
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Figure 5.7: Relative error of e�ciency index using the validation data set
grouped by workload (Kmeans).

The prediction boxplot results using the Nbody are presented in Picture

5.8. In this case, the results are even more accurate than the those we have

seen with Kmean. The tops of the boxplot distribution of error for most of

the cases are close to 2%, except for workloads 1400 and 1600. In this case,

the outliers predictions reached 5% of all the predictions, but many of them

are under 20% error. To reach these results, the �nal tree is composed of
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Figure 5.8: Relative error of e�ciency index using the validation data set
grouped by workload (Nbody).
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Figure 5.9: Relative error of e�ciency index using the validation data set
grouped by workload (Heat transfer).
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10% of internal nodes that use local workld as the split variable, 2.8% of all

the splits were done by using the number of threads per MPI process, 16%

of the internal nodes use w0, 18.1% of split actions used w1 and 44.7% used

the number of workers. The split actions using the global workload of the

application represent 7.2% of the whole. The local workload of each worker

and the a�nity variables were not considered for splitting the tree. Looking

at these numbers, the most important variable that generates instability in

the behavior is the number of workers. This conclusion is not surprising; we

must expect it, considering that this is the application parameter with the

largest range of possible values that divides the workload in each term of w2

and w1. In this application, the importance of using the number of threads is

even lower than in Kmeans. This means that the application does not su�er

too much degradation in its behavior from the contribution of the variable

number of thread.

The errors achieved for predicting the e�ciency index using the Heat

transfer application are summarized in Picture 5.9. The resulting tree is

formed by 13.5% of internal nodes that use the local workload for splitting,

4.1% divide the tree by the number of threads, 32.5% of the internal nodes

performed a partitioning action using w2, 18% for w1 and 19% of these nodes

divide the tree by the number of workers. The global workload has been

used in 12.21% of all the nodes and only 0.02% of the splitting actions were

done by the a�nity variable l20. The outlier prediction in this case reaches

up to 8% of all the predictions. The higher outliers are concentrated in the

range between 2500 and 18000 of the workloads, but the rest are under 15%

error. In the error distribution, The upper quartile is under the 20% error

for all the cases. In the case of these results, the most important cause that

could provoke errors in the selection of the parameters of the application is

the relatively high value achieved in the number of outliers.

To summarize, the results presented here are better when compared with

those obtained for the prediction performance. The behavior of the e�ciency

index su�ers less instability in predicting their behavior. In the next section,

we take a look at the results achieved when we try to select the best appli-

cation con�guration.
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5.4.4 Best efficiency index configuration

The application parameter prediction using the Kmeans application (see Ta-

ble 5.9) shows highly accurate results. Similar to previous results, the yellow

rows represent the predictions that do not match with the best one but where

the value of the e�ciency index is close to it. The red rows are the worst

predictions. In this case, only 2% of all the predictions are consider far from

the best one. 12% are close to the best one, even when they are predictions

where the best con�guration and the prediction do not match exactly. The

rest of the predictions match exactly. The errors are found in the range of

workloads between 300 and 90000. If we look at the bar plot of the error

distribution, we can see that this is the region where the highest values of the

distribution of outliers are found. This correlation is evidence of the strong

relationship that exists between these two results.

The results achieved using NBody are shown in Table 5.10. The pre-

dictions were the parameters do not match even when the e�ciency index is

close to the best one are the 15%. They are found in using the workloads 250,

350, 5250, 1400, 3700, 40000 and so on. The worst predictions are 5% in this

case. For this results, the source of error are the several outliers presented

in the range between 1250 to 5400 and between 9500 to 90000. Thanks to

outliers does not exceed 5 %, the e�ect caused by them does not generate

more errors in this table. The worst predictions are located using 17000,

20000 and 43500 for the value of the global workload of the application.

Table 5.11 summarizes the results of the comparison of the best applica-

tion con�guration parameters with the predicted con�guration for reaching

the best e�ciency index using the Heat transfer. In summary, the results

achieved for Kmeans show that 11.7% of all predictions are close to the best

e�ciency index, but the application parameters are di�erent from the best

one. The 9% of the predictions are a combination of application parameters

where the error achieved in the e�ciency index is above 40%. The rest of

the predictions match the best con�guration of parameters exactly.
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Table 5.9: Real vs Prediction best e�ciency index con�guration (Kmean).
Real Prediction

Workload Workers Threads Best pindex Workers Threads Pred pindex
300 3 2 0.00013 5 4 0.00014
500 5 4 0.00016 5 4 0.00016
700 7 4 0.00016 7 4 0.00016
900 7 4 0.00018 7 4 0.00018
1100 11 4 0.00018 11 4 0.00018
1500 11 4 0.00019 13 4 0.0002
1800 13 3 0.00021 11 4 0.00023
2100 11 4 0.00021 11 4 0.00021
2500 15 2 0.00023 15 3 0.00023
3000 15 3 0.00024 15 3 0.00024
3200 15 2 0.00024 15 2 0.00024
3800 17 2 0.00026 17 2 0.00026
4100 15 2 0.00026 15 2 0.00026
4500 15 2 0.00028 15 2 0.00028
4800 19 2 0.00028 19 2 0.00028
5000 15 2 0.0003 21 4 0.0003
8000 25 2 0.00034 25 1 0.00046
12000 25 4 0.00041 25 4 0.00041
15000 25 2 0.00048 25 2 0.00048
18000 25 4 0.00053 25 4 0.00053
22000 27 4 0.0006 29 4 0.0006
25000 29 4 0.00063 29 4 0.00063
28000 29 4 0.00069 29 4 0.00069
50000 29 3 0.00141 29 3 0.00141
90000 27 4 0.00207 27 4 0.00207
2e+05 29 4 0.00402 29 4 0.00402
4e+05 29 4 0.00836 29 4 0.00836
6e+05 29 4 0.01295 29 4 0.01295
8e+05 29 4 0.01684 29 4 0.01684
1e+06 29 4 0.01981 29 4 0.01981
1500000 29 4 0.0295 29 4 0.0295
2e+06 29 4 0.03888 29 4 0.03888
2500000 29 4 0.04837 29 4 0.04837
3e+06 29 4 0.05691 29 4 0.05691
3500000 29 4 0.06747 29 4 0.06747
4e+06 29 4 0.07653 29 4 0.07653
4500000 29 4 0.0851 29 4 0.0851
5e+06 29 4 0.09589 29 4 0.09589
5500000 29 4 0.10427 29 4 0.10427
6e+06 29 4 0.11295 29 4 0.11295
6500000 29 4 0.12367 29 4 0.12367
7e+06 29 4 0.13083 29 4 0.13083
7500000 29 4 0.14128 29 4 0.14128
8e+06 29 4 0.15226 29 4 0.15226
8500000 29 4 0.15867 29 4 0.15867
9e+06 29 4 0.16987 29 4 0.16987
9500000 29 4 0.18015 29 4 0.18015
1e+07 29 4 0.18697 29 4 0.18697
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Table 5.10: Real vs Prediction best e�ciency index con�guration (Nbody).
Real Prediction

Workload Workers Threads Best pindex Workers Threads Pred pindex
50 3 1 0.00041 3 1 0.00041
100 3 3 0.00013 3 3 0.00013
150 3 2 0.0003 3 2 0.0003
250 3 3 0.00015 3 4 0.00015
350 3 4 0.00045 3 3 0.00049
500 3 4 0.00028 3 4 0.00028
600 5 3 0.00079 5 3 0.00079
700 5 4 0.00085 5 4 0.00085
800 7 4 0.001 7 4 0.001
900 7 4 0.00115 7 4 0.00115
1000 3 4 0.00065 3 4 0.00065
1250 7 4 0.00183 7 4 0.00183
1400 5 4 0.00215 5 4 0.00215
1600 7 4 0.00254 7 4 0.00254
1800 5 4 0.00314 5 4 0.00314
1950 5 4 0.00333 5 4 0.00333
2100 7 4 0.00373 7 4 0.00373
2300 7 4 0.00402 7 4 0.00402
2500 3 4 0.00297 3 4 0.00297
2700 7 4 0.00595 7 4 0.00595
2900 7 4 0.00547 7 4 0.00547
3100 7 3 0.00841 7 3 0.00841
3300 7 4 0.0077 7 4 0.0077
3500 3 4 0.0056 3 4 0.0056
3750 3 4 0.01453 3 4 0.01453
3900 9 3 0.00991 9 3 0.00991
4100 7 4 0.00965 7 4 0.00965
4300 11 3 0.01056 11 3 0.01056
4500 9 3 0.01133 9 3 0.01133
4700 13 4 0.01099 13 4 0.01099
4800 11 4 0.01081 11 4 0.01081
5000 9 4 0.01596 9 4 0.01596
5250 5 2 0.02834 3 4 0.0315
5400 5 4 0.01731 5 4 0.01731
5600 11 4 0.01105 11 4 0.01105
5800 17 4 0.01176 17 4 0.01176
6000 13 4 0.01149 13 4 0.01149
6500 15 4 0.01285 15 4 0.01285
7000 17 4 0.0137 17 4 0.0137
7500 15 4 0.01481 15 4 0.01481
8000 21 4 0.01688 21 4 0.01688
8500 21 4 0.01767 21 4 0.01767
9000 17 4 0.01893 17 4 0.01893
9500 17 4 0.01955 17 4 0.01955
10000 17 4 0.02137 17 4 0.02137
14000 23 4 0.03371 29 4 0.03562

iter 17000 25 4 0.04309 3 4 0.27957
20000 29 4 0.05369 3 4 0.17037
24000 27 4 0.07004 27 4 0.07004
27000 25 4 0.09105 25 4 0.09105
30000 27 4 0.10418 27 4 0.10418
34000 27 4 0.12277 27 4 0.12277
37000 29 4 0.14029 27 4 0.14911
40000 29 4 0.16243 27 4 0.16547
43500 29 4 0.18494 19 4 0.23923
50000 29 4 0.23319 27 4 0.24054
60000 29 4 0.3132 25 4 0.34728
70000 27 4 0.4339 27 4 0.4339
80000 29 4 0.52667 27 4 0.55206
90000 27 4 0.68957 27 4 0.68957
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Table 5.11: Real vs Prediction best e�ciency index con�guration (Heat trans-
fer).

Real Prediction
Workload Workers Threads Best pindex Workers Threads Pred pindex

80 3 1 0.00016 3 1 0.00016
150 3 1 0.00011 3 1 0.00011
250 3 1 0.00012 3 1 0.00012
400 3 3 0.00014 3 3 0.00014
750 3 3 0.00024 3 3 0.00024
1000 5 4 0.00027 5 4 0.00027
1500 7 4 0.00038 7 4 0.00038
2000 8 4 0.00054 8 4 0.00054
2200 7 4 0.0006 7 4 0.0006
2500 7 4 0.00069 7 4 0.00069
2800 8 4 0.00077 8 4 0.00077
3000 7 4 0.00083 7 4 0.00083
3200 7 4 0.00089 7 4 0.00089
3500 8 4 0.00109 8 4 0.00109
3800 7 4 0.00115 7 4 0.00115
4000 7 4 0.00129 7 4 0.00129
4200 7 4 0.0014 7 4 0.0014
4500 7 4 0.00145 7 4 0.00145
4800 7 4 0.00165 8 1 0.00356
5000 7 4 0.00179 7 4 0.00179
5200 7 4 0.0019 7 4 0.0019
5500 9 4 0.00197 7 4 0.00201
5800 9 4 0.00215 8 4 0.00249
6000 9 4 0.00222 5 3 0.00357
6200 11 4 0.00242 11 4 0.00242
6500 7 4 0.00268 5 4 0.00351
6800 9 4 0.00275 8 4 0.00331
7000 9 4 0.0029 9 4 0.0029
7200 8 3 0.00365 8 3 0.00365
7500 9 4 0.00322 8 2 0.00476
7800 8 4 0.00418 8 4 0.00418
8000 9 2 0.0053 9 2 0.0053
8200 7 4 0.00418 7 4 0.00418
8500 9 2 0.00576 9 2 0.00576
8800 8 2 0.00663 8 2 0.00663
9000 11 2 0.00553 5 4 0.00644
9200 9 2 0.00677 8 2 0.00737
9500 7 3 0.00646 7 3 0.00646
9800 7 3 0.00677 7 3 0.00677
10000 7 3 0.00758 7 4 0.00781
11000 9 2 0.00949 8 2 0.0105
12000 9 2 0.01056 5 4 0.01096
13000 7 3 0.01192 7 3 0.01192
14000 8 2 0.02976 8 2 0.02971
16000 11 3 0.03307 11 3 0.03311
18000 11 4 0.01413 11 4 0.01413
21000 11 4 0.01713 11 4 0.01713
25000 21 4 0.0211 21 4 0.0211
30000 21 4 0.0265 21 4 0.0265
35000 23 4 0.0322 23 4 0.0322
40000 23 4 0.03937 23 4 0.03937
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5.5 Prediction on NUMA architecture

The experiments using this architecture are designed to study the prediction

accuracy for the e�ciency index metric. The training and validation data

sets are similar in dimension, and they are composed of several combinations

of processes, threads and a�nity settings for di�erent workloads. A complete

description of both sets is speci�ed in Tables 5.12, 5.13 and 5.14. In these

tables, each row of possible values of processes is related to a similar row for

the number of threads, so we can only have one thread per MPI process if we

have 63 workers. We have not included the study of performance prediction

even when the results were really good. The main reason is because that

the best parameter settings usually match the largest possible amount of

computing resources. On the other hand, the di�erences in execution time

using the same number of resources for any con�guration is under 10%.

Table 5.12: Kmeans application variables for training and validation data
sets (NUMA).

Parameter Training Validating

Threads 1-16 1-16

1-8 1-8

1-4 1-4

1-2 1-2

1 1

Workers 2 and 3 2 and 3

2,3-7 in steps of 2 2,3-7 in steps of 2

2,3-15 in steps of 2 2,3-15 in steps of 2

2,3-31 in steps of 2 2,3-31 in steps of 2

2,3-63 in steps of 2 2,3-63 in steps of 2

Workload 200,400,600,800,1000,1200,1600 300,500,700,900,1100,1500,1800

2000,2200,2800,3100,3500,4000 2100,2500,3000,3200,3800,4100

4200,4600,4900,6000,10000,14000 4500,4800,5000,8000,12000,15000

16000,20000,24000,26000,30000 18000,22000,25000,28000,50000

70000,1e+05,3e+05,5e+05,7e+05 90000,2e+05,4e+05,6e+05,8e+05

9e+05,1.2e+06,1.8e+06,2.2e+06 1e+06,1.5e+06,2e+06,2.5e+06

2.8e+06,3.2e+06,3.8e+06,4.2e+06 3e+06,3.5e+06,4e+06,4.5e+06

4.8e+06,5.2e+06,5.8e+06,6.2e+06 5e+06,5.5e+06,6e+06,6.5e+06

6.8e+06,7.2e+06,7.8e+06,8.2e+06 7e+06,7.5e+06,8e+06,8.5e+06

8.8e+06,9.2e+06,9.8e+06 9e+06,9.5e+06,1e+07

The experiment group that can use a number of workers from 2 to 63 can

use only one thread per MPI process. Those experiment groups in the class

of 2 to 31 workers can only have one or two threads per MPI process. In this

case, the couple of threads per process always share all the di�erent cache

memory levels. In the class of experiments where the number of processes is
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Table 5.13: NBody application variables for training and validation data sets
(NUMA).

Parameter Training Validating

Threads 1-16 1-16

1-8 1-8

1-4 1-4

1-2 1-2

1 1

Workers 2 and 3 2 and 3

2,3-7 in steps of 2 2,3-7 in steps of 2

2,3-15 in steps of 2 2,3-15 in steps of 2

2,3-31 in steps of 2 2,3-31 in steps of 2

2,3-63 in steps of 2 2,3-63 in steps of 2

Workload 25,70,130,200,300,400,550,650,750 50,100,150,250,350,500,600,700,800

850,950,1100,1300,1500,1750,1900 900,1000,1250,1400,1600,1800,1950

2000,2200,2400,2600,2800,3000 2100, 2300, 2500, 2700, 2900, 3100

3200,3400,3600,3800,4000,4200 3300, 3500, 3750, 3900, 4100, 4300

4400,4600,4750,4900,5100,5300 4500, 4700, 4800, 5000,5250, 5400

5500,5780,5900,6300,6800,7300 5600, 5800, 6000, 6500, 7000, 7500

7800,8300,8800,9200,9750,12000 8000, 8500, 9000, 9500,10000,14000

15000,19000,22000,25000,29000 17000,20000,24000,27000, 30000

32000,35000,39000,42000,45000 34000,37000,40000,43500,50000

55000,65000,75000,85000 60000,70000,80000,90000

Table 5.14: Heat transfer application variables for training and validation
data sets (NUMA).

Parameter Training Validating

Threads 1-16 1-16

1-8 1-8

1-4 1-4

1-2 1-2

1 1

Workers 2 and 3 2 and 3

2,3-7 in steps of 2 2,3-7 in steps of 2

2,3-15 in steps of 2 2,3-15 in steps of 2

2,3-31 in steps of 2 2,3-31 in steps of 2

2,3-63 in steps of 2 2,3-63 in steps of 2

Workload 50,100,180,300,500,900,1250,1800, 80,150,250,400,750,1000,1500,

2100,2300,2700,2900,3100,3300,3700,3900, 2000,2200,2500,2800,3000,3200,3500,

4100,4300,4700,4900,5100,5300,5700,5900, 3800,40004200,4500,4800,5000,5200,

6100,6300,6700,6900,7100,7300,7700,7900, 5500,5800,6000,6200,6500,6800,7000,

8100,8300,8700,8900,9100,9300,9700,9900, 7200,7500,7800,80008200,8500,8800,

10500,28000,11500,12500,13500,15000, 9000,9200,9500,9800,1000011000,

17000,20000,23000,33000,44000,37000, 12000,13000,14000,16000,18000,

39000,42000,50000,60000,70000,80000, 21000,25000,30000,35000,38000,

90000 40000,43500,45000,55000,65000,

75000,85000

limited to the range of 2 to 15, the range of threads each process can have

in its parallel OpenMP region is between the range of 1 and 4 threads. De-

pending on the number of threads used, they have to share the level L2 cache

or not with the others, but they always share the L3 cache memory. The

experiments that are grouped in the category of 2 to 7 workers have the use
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of threads limited to the range of 1 to 8. In this case, each process reserves

all the cores that share the L3 cache memory and can use them depending

on the amount of threads de�ned for each experiment. Finally, the experi-

ment group that uses 2 or 3 workers can between 1 and 16 threads. All these

threads will be located on the same socket and will share L3 cache memory.

There are other possible con�gurations of a�nity that can be covered, but,

in these experiments, they are restricted to those that use the close a�nity

between threads.

The regression function prototype de�ned for each MBRT and the can-

didate splitting parameters are summarized in Table 5.15. The regression

functions are the same as those used bellow, but there are three groups of

parameters for de�ning the a�nity. In this architecture, the variables added

as splitting candidates for MBRT are related to the number of MPI processes

on the same socket (from s0 to s3), the number of MPI processes that share

each L3 cache (from pl3 0 to pl3 7) and the number of threads that shares

the same L3 cache (from tl3 0 to tl3 7).

Table 5.15: Functions and parameters for MBRT (E�ciency index predition)
on NUMA.

Application Regression function prototype Candidate splitting variables

Kmeans Eindex ∼ β3w2 + β2w1 + β1workers+ β0 w2,w1,workers,workload,

local workld,threads,s0-s3,

pl3 0-pl3 7, tl3 0-tl3 7

Nbody Eindex ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1local workld+ β0 local workld,threads,s0-s3,

pl3 0-pl3 7, tl3 0-tl3 7

Heat transfer Eindex ∼ β4w2 + β3w1 + β2workers+ w2,w1,workers,workload,

β1workload+ β0 local workld,threads,s0-s3,

pl3 0-pl3 7, tl3 0-tl3 7

5.5.1 Efficiency index prediction

The results presented in Table 5.10 show the accuracy achieved using the

MBRT to predict the e�ciency index in Kmeans application. 75% of the

quartiles for all the errors distribution are below 10% error for all the work-
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loads except in the �rst three cases. The upper quartile is below 20% in

prediction error. There are only upper quartiles above 30% for the work-

loads 100, 200, 300 and 500. The number of outlier prediction is around 3%

of all done for the validation data set. In this case, the results were achieved

using a min split value of 120. Even with the high parameters in this case, the

prediction results become very accurate. We recommend using the largest

possible value for the mini split because this action decreases the possibility

of outlier occurrence and also allows us to avoid over-�tting.
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Figure 5.10: Relative error of e�ciency index using the validation data set
grouped by workload (Kmeans) on NUMA.

The tree that generates these results is structured by 13.6% of all splitting

nodes that use w2 for applying this action. 9% of the splitting actions were

done by w1 and 20% by the number of workers. The Kmeans application is

also sensitive to the local workload of each worker. There are 15.9% of all

the internal nodes that use this variable. The a�nity con�guration for the

MPI process becomes relevant in this architecture. This is why we can see

that 17% of all the splitting was done using one of the s variables, and 5.45%

of all the actions are based on any of the pl3 process a�nity variables. Even

when this is a small percentage, the split actions that involve process a�nity

variables are located at the top of the MBRT because the most important

variation in e�ciency index using these variables, is detected globally and

not in particular cases.
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Figure 5.11: Distribution of internal nodes in the MBRT using Kmeans on
NUMA.

A similar situation occurs with the number of threads and their a�nity.

The number of threads is important in the e�ciency index behavior, with

10.9% of internal nodes that split the tree using this variable. The percent-

age of internal nodes that use any thread a�nity variables is over 7%, and

most are located at the top of the tree.

The distribution of error for predicting the e�ciency index using Nbody

is shown in Picture 5.12. In this case, the result was achieved using a mini-

mum split value of 20. The number of outlier prediction is around 10%, but,

fortunately, these values do not exceed 20% error. The 75 percent quartile

is around 10% of prediction error. Taking a look at how the �nal MBRT

was constructed 5.13, we can see similar behavior when compared with the

Kmeans application. For Nbody application, 35.9% of all split actions were

done using the derived variable w2. 18.1% used w1. The percent of inter-

nal nodes using the number of workers as the partition variable is 13.9%.

The speci�c workload of all the workers was used in 9.7% of all the cases.
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Additionally, the a�nity associated with the MPI processes is relevant infor-

mation that is also included as partitioning criteria. This information was

used in 3.49% of the internal nodes, mostly on the top level of the �nal tree.
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Figure 5.12: Relative error of e�ciency index using the validation data set
grouped by workload (Nbody) on NUMA.
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Figure 5.13: Distribution of internal nodes in the MBRT using Nbody on
NUMA.

The number of threads was used in 6.9% of all the split actions and the

thread a�nity variables in 3% of all the internal nodes. In summary, in this

application, the a�nity variables have less importance in the �nal structure
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of the tree. Taking into account that, for the same number of computational

resources, the di�erence in performance time between two con�gurations is

no more than 20% of time, the low importance of a�nity variables should be

an expected result.

The bar plot for Heat transfer application shows a very regular behavior.

The top quartiles of all the distributions is around 20% and the 75% of all

predictions error is under 10%. The number of outliers is limited to 3%.

Even when these distributions are slightly higher than previous applications,

the median and upper quartiles are quite similar for all the workloads.
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Figure 5.14: Relative error of e�ciency index using the validation data set
grouped by workload (Heat transfer) on NUMA.

The internal node structure of the tree that generates these predictive

results is shown in Picture 5.15. There are 9.6% of the internal nodes using

the local workload as the splitting variable. The derived variables w2 and

w1 were used in 30.8% and 21% of all the cases, respectively. The number

of workers used was 16.6%. The split actions using the process a�nity vari-

ables are 10.4% of the internal nodes, while 3% are based on the number of

processes sharing L3 of cache memory. Finally, the thread a�nity de�ned by

the tl3 variables were used in the 3.2% of the cases. Both groups of variables

are located in the top region of the tree. Keeping all these results in mind,
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the next section will cover the results of these experiments when the best

and predicted application con�gurations for e�ciency index are compared.
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Figure 5.15: Distribution of internal nodes in the MBRT using Heat transfer
on NUMA.

5.5.2 Best efficiency index configuration

Table 5.16 summarizes the results obtained by comparing the value of the

minimum e�ciency index for a given workload with the value predicted by

the MBRT. The results for Kmeans applications show 6% of all the e�ciency

index predictions with a really high gap between them. 25% of all minimum

e�ciency index predictions are close to the real one, but suggest a di�er-

ent con�guration of workers, threads and a�nity. The worst predictions are

caused by the outliers present in the error graph distribution. In these cases,

the a�nity suggested by the MBRT does not match the real best one. For

workloads 700 and 900, the best con�guration and the predicted one are the

same: four processes per socket except in the last socket and the third level of

cache memory shared by only two processes. The results of a�nity in thread

subjects the use of two threads per socket to sharing the cache memory L2.

For predictions in the range of 1500 to 2100, the predictions subject four

processes to use per NUMA socket with two threads per MPI process. The

a�nity selected in these cases subjects to use two processes sharing L3 but
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not L2 and two threads per process that do not share the cache at level two.

For the range of 4100 to 4800, the a�nity suggested is quite peculiar. The

best highest level of e�ciency is achieved using 26 processes with two threads

per process. The MPI processes must have eight processes per socket, except

the last socket that only has two, sharing the L3 in this case. Accordingly,

the two threads per process have to share cache L2. In the other cases, the

more e�cient con�guration parameters are mostly four processes sharing L3

with two threads sharing L2 or eight processes sharing L3, with only one

thread per process. In summary, for this application using the NUMA ar-

chitecture as described, there is a general tendency to achieve the highest

e�ciency using more MPI processes than threads. This is evidence that the

communication penalty is less than the overhead of the parallel OpenMP

regions. If we consider that, in this application, the size of MPI messages

sent is very small, this behavior should not be surprising.

The prediction results using Nbody application are summarized in Table

5.17. The results are more accurate in this case. There are 10.4% predictions

where the best application con�guration do not match with the best con�g-

uration predicted. Even with these cases, the e�ciency predicted value and

the real one are very similar. There is only one prediction for the workload

of 80000 that is very di�erent from the best one. In the workload range from

250 to 1400, the real and the predicted best con�guration are the same. The

application parameters in this range have to be four workers per socket with

16 threads associated with each one. The MPI processes do not share L3

cache memory level, but the 8 thread will. The L2 cache is shared with a

pair of threads. In the range of the workload between 1600 and 4700, the

most common a�nity is suggested in the one that used eight processes with

eight threads per process. Each process has a complete L3 cache for its op-

eration and does not share it with the others. The threads are mapped to

each core in the range of eight assigned to each process. In this case, they

share L2 in pairs and L3 cache is shared by all eight threads. There are only

two cases in this range of workloads where the application parameters are

di�erent. For 2300, the best con�guration is four workers with 16 threads,
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and, for a workload of 4100, the best con�guration is 16 workers with four

threads. In the �rst case, the workers do not share L3, and, the second case,

the processes share L3 in groups of four processes. A similar situation can be

detected in the range of workloads between 4800 and 7000. The most com-

mon con�guration selected by the MBRT using a workload range between

7500 and 90000 is 32 workers with two threads. Only the L2 level of cache

memory is not shared by the other processes for this con�guration. In this

application, we �nd a tendency to use more processes than threads in some

cases, but, in other cases, it is just the contrary. The communication impact

is greater in this application since messages are proportional to the workload.

This is the reason why there are several best con�guration selections with

higher numbers of threads than workers.

The results achieved using the Heat transfer application are really accu-

rate 5.18. There is only one suggested con�guration that does not match

the best e�ciency exactly. This is the case of using a value of workload of

150. There are essentially four di�erent con�gurations of a�nity suggested

in these results. In the range from 2500 to 9300, the output of the MBRT

selects eight processes with eight threads per process as the best e�ciency

con�guration. In this con�guration, there are two process per socket and

16 threads per socket. The processes do not share the L3 cache, but the

eight threads associated with each process share this memory level. Using

workloads from 9600 to 23000, the best con�guration is the one that uses

16 processes with four threads. The processes share L3 with only one other

process, and the threads share L2 in twos. Using 32 workers with two threads

for workloads for those workloads between 2800 to 44000 implies the use of

eight processes per socket and two threads sharing the L2 cache memory.

Discarding this prediction, the rest of the suggested con�gurations in the

validation data set match the best e�ciency con�guration exactly.
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Table 5.16: Real vs Prediction best e�ciency index con�guration (Kmeans)
on NUMA.

Real Prediction
Workload Workers Threads Best pindex Workers Threads Pred pindex

100 4 4 0.00002 8 1 0.00003
200 6 4 0.00003 8 2 0.00003
300 6 4 0.00004 8 2 0.00004
500 10 2 0.00005 6 4 0.00006
700 12 2 0.00006 12 2 0.00006
900 12 2 0.00006 12 2 0.00006
1100 16 4 0.00007 12 2 0.00007
1500 16 2 0.00008 16 2 0.00008
1800 16 2 0.00009 16 2 0.00009
2100 16 2 0.0001 16 2 0.0001
2500 18 2 0.00011 16 2 0.00012
3000 20 2 0.00012 20 2 0.00012
3200 26 2 0.00012 14 4 0.00015
3800 32 2 0.00015 26 2 0.00016
4100 26 2 0.00014 26 2 0.00014
4500 26 2 0.00014 26 2 0.00014
4800 26 2 0.00015 26 2 0.00015
5000 24 2 0.00017 24 2 0.00017
7000 28 2 0.00019 28 2 0.00019
9000 30 2 0.00022 30 2 0.00022
12000 32 2 0.00028 32 2 0.00028
18000 32 2 0.00035 32 2 0.00035
20000 32 2 0.00042 32 2 0.00042
25000 32 2 0.00046 32 2 0.00046
28000 32 2 0.00051 32 2 0.00051
50000 32 2 0.00087 32 2 0.00087
90000 32 2 0.00154 32 2 0.00154
2e+05 64 1 0.00336 32 2 0.00339
4e+05 32 2 0.00666 64 1 0.00713
6e+05 64 1 0.00972 64 1 0.00972
8e+05 64 1 0.01325 64 1 0.01325
1e+06 64 1 0.01663 64 1 0.01663
1500000 64 1 0.02463 64 1 0.02463
2e+06 64 1 0.03269 64 1 0.03269
2500000 32 2 0.04095 32 2 0.04095
3e+06 64 1 0.04866 32 2 0.05438
3500000 32 2 0.05758 64 1 0.05968
4e+06 64 1 0.06616 32 2 0.06661
5500000 64 1 0.09064 64 1 0.09064
6e+06 64 1 0.10038 64 1 0.10038
6500000 32 2 0.10811 64 1 0.10854
7e+06 62 1 0.11942 64 1 0.12014
7500000 32 2 0.12393 64 1 0.12583
8e+06 64 1 0.1323 64 1 0.1323
8500000 62 1 0.1415 64 1 0.14263
9e+06 64 1 0.14771 64 1 0.14771
9500000 64 1 0.15504 64 1 0.15504
1e+07 64 1 0.16384 32 2 0.16564
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Table 5.17: Real vs Prediction best e�ciency index con�guration (Nbody)
on NUMA.

Real Prediction
Workload Workers Threads Best pindex Workers Threads Pred pindex

100 3 6 0.00003 3 10 0.00003
150 3 14 0.00003 3 14 0.00003
250 4 14 0.00005 4 14 0.00005
350 4 16 0.00008 4 16 0.00008
500 4 14 0.00013 4 14 0.00013
600 4 16 0.00013 4 16 0.00013
700 4 16 0.00016 4 16 0.00016
800 4 16 0.00022 4 16 0.00022
900 4 16 0.00027 4 16 0.00027
1000 4 16 0.0003 4 16 0.0003
1250 4 16 0.00043 4 16 0.00043
1400 4 16 0.00057 4 16 0.00057
1600 8 8 0.00067 8 8 0.00067
1800 8 8 0.00083 8 8 0.00083
1950 8 8 0.00097 8 8 0.00097
2100 8 8 0.0011 8 8 0.0011
2300 4 16 0.00133 4 16 0.00133
2500 8 8 0.00148 4 16 0.00164
2700 8 8 0.0017 8 8 0.0017
2900 8 8 0.00188 8 8 0.00188
3100 8 8 0.00217 8 8 0.00217
3300 8 8 0.0024 8 8 0.0024
3500 8 8 0.0027 8 8 0.0027
3750 8 8 0.00303 8 8 0.00303
3900 8 8 0.00328 8 8 0.00328
4100 16 4 0.00363 16 4 0.00363
4300 8 8 0.00398 8 8 0.00398
4500 8 8 0.00429 8 8 0.00429
4700 8 8 0.00463 8 8 0.00463
4800 16 4 0.00477 16 4 0.00477
5000 16 4 0.00518 8 8 0.00522
5250 16 4 0.00567 16 4 0.00567
5400 16 4 0.00596 16 4 0.00596
5600 16 4 0.00641 16 4 0.00641
5800 16 4 0.00686 32 2 0.00717
6000 16 4 0.00729 16 4 0.00729
6500 16 4 0.00843 16 4 0.00843
7000 16 4 0.00967 16 4 0.00967
7500 32 2 0.01123 16 4 0.01203
8000 32 2 0.01267 32 2 0.01267
8500 32 2 0.0142 32 2 0.0142
9000 16 4 0.01555 16 4 0.01555
9500 32 2 0.0175 8 8 0.01791
10000 16 4 0.01911 16 4 0.01911
14000 32 2 0.03641 32 2 0.03641
17000 32 2 0.05297 32 2 0.05297
20000 32 2 0.07277 32 2 0.07277
24000 32 2 0.10377 32 2 0.10377
27000 32 2 0.13052 32 2 0.13052
30000 32 2 0.16063 32 2 0.16063
34000 32 2 0.20678 32 2 0.20678
37000 32 2 0.24436 32 2 0.24436
40000 16 4 0.293 16 4 0.293
43500 32 2 0.3365 16 4 0.3583
50000 32 2 0.44602 32 2 0.44602
60000 32 2 0.64369 30 2 0.68689
70000 32 2 0.89041 32 2 0.89041
80000 16 4 1.17575 14 4 1.36039
90000 32 2 1.46538 16 4 1.49009
1e+05 8 8 1.93545 8 8 1.93545
2e+05 8 8 2.72845 8 8 2.72845
3e+05 8 8 3.47865 8 8 3.47865
6e+05 4 16 4.04516 4 16 4.04516
7e+05 4 16 5.15 4 16 5.15
8e+05 4 16 6.4225 4 16 6.4225
9e+05 4 16 7.9944 4 16 7.9944
1e+06 4 16 9.5179 4 16 9.5179
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Table 5.18: Real vs Prediction best e�ciency index con�guration (Heat trans-
fer) on NUMA.

Real Prediction
Workload Workers Threads Best pindex Workers Threads Pred pindex

80 3 4 0.00001 3 4 0.00001
150 3 14 0.00001 3 8 0.00001
250 3 16 0.00002 3 16 0.00002
500 4 16 0.00003 4 16 0.00003
900 4 16 0.00008 4 16 0.00008
1250 4 16 0.00015 4 16 0.00015
1800 4 16 0.00029 4 16 0.00029
2100 4 16 0.00038 4 16 0.00038
2250 4 16 0.00044 4 16 0.00044
2500 8 8 0.00053 8 8 0.00053
2800 8 8 0.00064 8 8 0.00064
3000 8 8 0.00073 8 8 0.00073
3200 8 8 0.00082 8 8 0.00082
3300 8 8 0.00088 8 8 0.00088
3600 8 8 0.00104 8 8 0.00104
3800 8 8 0.00113 8 8 0.00113
4000 8 8 0.00126 8 8 0.00126
4200 8 8 0.00135 8 8 0.00135
4300 8 8 0.00142 8 8 0.00142
4600 8 8 0.00161 8 8 0.00161
4800 8 8 0.00175 8 8 0.00175
5000 8 8 0.00189 8 8 0.00189
5200 8 8 0.00203 8 8 0.00203
5300 8 8 0.00211 8 8 0.00211
5600 8 8 0.0023 8 8 0.0023
5800 8 8 0.00248 8 8 0.00248
6000 8 8 0.00265 8 8 0.00265
6200 8 8 0.00281 8 8 0.00281
6300 8 8 0.0029 8 8 0.0029
6600 8 8 0.00318 8 8 0.00318
6800 8 8 0.00336 8 8 0.00336
7000 8 8 0.00353 8 8 0.00353
7200 8 8 0.00375 8 8 0.00375
7300 8 8 0.00384 8 8 0.00384
7600 8 8 0.00414 8 8 0.00414
7800 8 8 0.00437 8 8 0.00437
8000 8 8 0.00461 8 8 0.00461
8200 8 8 0.00484 8 8 0.00484
8300 8 8 0.00493 8 8 0.00493
8600 8 8 0.00527 8 8 0.00527
8800 8 8 0.00551 8 8 0.00551
9000 8 8 0.00576 8 8 0.00576
9200 8 8 0.00601 8 8 0.00601
9300 8 8 0.00611 8 8 0.00611
9600 16 4 0.0065 16 4 0.0065
9800 16 4 0.00676 16 4 0.00676
10000 8 8 0.00706 8 8 0.00706
12000 16 4 0.00978 16 4 0.00978
14000 16 4 0.01307 16 4 0.01307
16000 16 4 0.01703 16 4 0.01703
18000 16 4 0.02123 16 4 0.02123
23000 16 4 0.03408 16 4 0.03408
28000 32 2 0.05002 32 2 0.05002
33000 32 2 0.06886 32 2 0.06886
38000 32 2 0.09046 32 2 0.09046
44000 32 2 0.12059 32 2 0.12059
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5.6 Discussions

In this section, we present the experimental results achieved for three Mas-

ter/Worker applications using two di�erent architectures. First, the predic-

tion for performance and the best con�guration for this goal were presented

using a homogeneous cluster. The second group of results shows the pre-

diction e�ciency accuracy and the results achieved, trying to suggest the

best application parameters to reach the optimal value of e�ciency index.

In summary, there is a strong correlation between the error distribution and

the selection of the best con�guration that suggests that, if it is possible to

reduce the error performance and the amount of outlier predictions by in-

creasing the training data set with more samples on the critical region, the

application parameters prediction will not be far from the best con�gurations.

Additionally, the results show that even when the predictions for perfor-

mance are well accurate, the results achieved for predicting e�ciency index

are even better. This is an encouraging result because we could achieve

maximum e�ciency without sacri�cing too much performance using the con-

�guration predicted by the MBRT.
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Chapter 6

Conclusions and Open Lines

6.1 Conclusions

We began our work by studying the di�erent proposals for performance pre-

dictions on hybrid MPI/OpenMP applications. An important aspect of this

study was to identify the main advantages and drawbacks of each method

and the particular scope that each has. In general, the main disadvantage

that we detected is that they are not generalized to prediction for any work-

load (in some cases) and do not go further in trying to evaluate each method

to suggest a suitable parameter con�guration of the application. There are

some proposals where the prediction is based on simulation using the mem-

ory access pattern trace �le, but, in this case, it is more appropriate to be

used for predicting performance on architecture that we do not have. The

cost of this simulation is really high, which is why it is not applicable for

application tuning at runtime.

As a �rst approach, we develop a performance model using an analytic

expression. The model tries to model the communication time and the over-

head of OpenMP regions using the information provided by two benchmarks.

To predict the data cache miss penalty, time on the last level and the tlb miss

time, the model applies two regression functions using performance behavior

observations. This model can be accurate for performance prediction where
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the workload is around 15% di�erent from the previous one, but, if the gap is

higher, the prediction error will not be small enough to be used in the search

for the best con�guration parameters of the application. The main weakness

of this model is the assumption that there are unique values for each param-

eter of the two regression functions. The actual behavior suggests that these

parameters change according to the parameters the application executed.

The most important approach we present is the use of the model-based re-

gression tree to predict the execution time and the e�ciency for an iteration

of Master/Worker applications. The study is also extended to predicting

the best con�guration parameters of the application. The model is tested

using three applications on two di�erent architectures, obtaining for all the

cases a globally mean error lower than �ve percent. As we achieve a small

error in the performance prediction, we can determine dynamically the ad-

equate number of Workers and threads in order to reach the best possible

performance. There are a few restrictions prior to applying this method:

applications used must have a regular computation region that does not de-

pend on the data values. As this proposal tries to model the iteration time

in fragments for the di�erent performance behavior zones of the application

parameter space, it can be applied to those applications without too much

variability in the behavior of communications. In other words, the disper-

sion of the communication time has to be not too far from the mean in order

to achieve good prediction accuracy. Additionally, there is another strong

restriction: the application has to be well-balanced previously to guarantee

that the processing execution time is similar among all the workers. This

is an important topic because, if it is not guaranteed, the worker does not

�nish its task in the same order as they received it. As the workload is being

used on each regression function as an input variable, this method can only

be applied for those applications where the workload can be characterized.

The method returns good global results without investing too much e�ort

in identifying the general regression function and splitting parameters, but

it does not guarantee always the best prediction. There are two main causes
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that explain that result: �rst, the errors are located mainly in regions where

the prediction errors are higher using the training set, and, second, the �nal

prediction was an outlier from the MBRT. This suggests that, if it is possible

to reduce the performance error and the amount of outlier predictions by

increasing the training data set with more samples on the critical region, the

application parameter prediction will not be far from the best con�guration.

6.2 Open Lines

The work presented in this thesis will allow for further investigation in sev-

eral directions. First, it would be nice to validate the technique in a bigger

homogeneous cluster with more cores embedded inside each node. This will

give an idea of how powerful this technique is for prediction in large-scale

systems. In addition, it will allow us to evaluate the prediction accuracy us-

ing more computational resources. In this architectures, the communication

time will penalize the performance of the application even more and behavior

will allow us to increase the study to higher values of the application work-

load. Further studies about the in
uence in the �nal prediction of the min

split arguments will bene�t the �nal results. In this case,

This research can be extended to the prediction of SPMD applications.

In these cases, the general regression prototype has to be modi�ed in order to

model the collective communications that are typically used by this kind of

applications. There is a lot of bibliography covering how to model collective

communication, so adjusting this technique to this case will not require not

much e�ort.

The library selected for applying the MBRT has some important disad-

vantages in its implementations. First, it does not allow the inclusion of

other kinds of objective functions like relative error as the objective func-

tion within regression algorithm. A second problem is related to information

that is lost when the tree is constructed. In a few terminal nodes, there are

some arguments βi for the regression function with unde�ned values. Any
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prediction that used this nodes will generate also an unde�ned output. The

algorithm discards these results because they do not o�er any valuable infor-

mation. A great future work will be to recode this module of the library to

�x these two bugs. During our work, we stay in touch with the authors to

suggest all of these potential improvements to them.

At the end, it will be important to include a pruning logic for the result

tree. Even when we can control the over-�tting problem by using an ap-

propriate value of minsplit argument, it is important to cut some terminal

nodes based on the idea that the e�ect of this operation does not increase

the general error distribution.

6.3 List of publications

The work and results for this thesis have been published or have been under

revision in the following papers:

1. A. Castellanos, A. Moreno, J Sorribes, T. Margalef. Factores

de rendimiento en aplicaciones h́ıbridas (MPI+OpenMP) in

XXIII Jornadas de Paralelismo SARTECO 2012. [87]

This paper was the starting point for this research. First, we study the

impact of all possible performance factors on hybrid applications and

try to �nd those which are candidates to be included in performance

model or other modelation techniques. Basically, this study was a

revision of all the publications about this topic with experimentals

results that validate each performance factor proposal.

2. A. Castellanos, A. Moreno, J Sorribes, T. Margalef. Perfor-

mance model for Master/Worker hybrid applications in Pro-

ceedings The 2013 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA

2013). pp. 210-217. [88]

In this paper, we present a naive performance model for hybrid Mas-

ter/Worker application. The model de�nes the computation part of the

analytic expression as a fraction of the serial execution time divided by
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the number of computational resources. This was the main weakness

of this proposal. It does not include

3. A. Castellanos, A. Moreno, J Sorribes, T. Margalef. Perfor-

mance model for Master/Worker hybrid applications on mul-

ticore clusters in Proceedings IEEE 15th International Con-

ference on High Performance Computing and Communication

(HPCC 2013). 2013. [77]

This proposal was an extension of the previous performance model. In

this version, we modify the expression to add the time penalty of data

cache misses and TLB misses produced by recurrent access to the main

memory in parallel OpenMP regions. In order to calculate the argu-

ments of each regression function, we propose using some iteration of

the application to take measurements of hardware counters. The model

can predict the performance very accurately if the workload that we are

predicting is close to the workloads that have been used to calculate the

arguments in the regression functions and the overlap variables. Un-

fortunately, this approach can-not be generalized to predictions that

use workloads signi�cantly di�erent from the previous one, because we

detect high variation in the parameters of the model when the workload

varies drastically.

4. A. Castellanos, A. Moreno, J Sorribes, T. Margalef. Predict-

ing performance of hybrid Master/Worker applications using

model-based regression trees in Proceedings IEEE 16th In-

ternational Conference on High Performance Computing and

Communication (HPCC 2014). 2014. (to be published) [89]

This work presents the results we achieved using the model-based re-

gression techniques on homogeneous cluster. We test the proposal using

two hybrid applications. As an extension to our work, we evaluated

the precision of this technique to searching for the best performance

parameter con�guration.
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5. A. Castellanos, A. Moreno, J Sorribes, T. Margalef. Effi-

cient execution of hybrid Master/Workers applications us-

ing model-based regression trees in Proceedings 26th Interna-

tional Symposium on Computer Architecture and High Per-

formance Computing (SBAC-PAD 2014). 2014. (Submit-

ted) [90]

This work presents the result we achieve using the Model-based re-

gression techniques for predicting e�ciency on parallel Master/Worker

applications. In addition, the results for searching the best applica-

tion parameters were presented. The proposal is validated using three

applications.
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