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Tell me your secrets and ask me your questions 

Oh, let’s go back to the start. 

Running in circles, coming up tails 

Heads on a science apart 

 

Nobody said it was easy 

It’s such a shame for us to part 

Nobody said it was easy 

No one ever said it would be this hard 

 

Oh, take me back to the start… 

 

The Scientist. COLDPLAY 
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1.1. Glycolipids: Structure and Classification 
 

Oligosacharide moieties in glycoconjugates usually contain biological 

information codified in their structure. Such structures offer specific biological 

properties to the proteins or lipid attached to them. Moreover, their presence can 

be crucial for cellular functions when such glycoconjugates belong to a 

plasmatic membrane as it will be discussed in the following sections.  

 

In particular, glycolipids are composed by a carbohydrate unit attached to a 

hydrophobic aglycone. A part of the cell glycocalix they are present on the 

surface of eukaryote organisms and they can be classified in three main families 

depending on how the carbohydrate and the lipid moieties are assembled: 

glycosphingolipids, glycoglycerolipids and lipopolysacarides (Figure 1.1.). As 

part of the cell glycocalix they are present on the surface of eukaryote 

organisms. In deep, glycosphigolipids are present mainly on animal cell while 

glycoglycerolipids and lipopolysacarides are abundant on bacterial and plant 

cells.
1
  

 
Figure 1.1. Exemples of families of glycolipids 

                                                 
1  (a) Ernst, B.; Hart, G.; Sinaÿ, P. Carbohydrates in Chemistry and Biology. Part II: Biology of 

Saccharides, Vol. 3, 4; Wiley-VCH, Weinheim, 2000. 
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In the context of our research, glycosphingolipids (GSL’s) deserve special 

interest because of their biological relevance. Each GSL carries a hydrophobic 

ceramide (Cer) moiety and a hydrophilic extracellular oligosaccharide chain or 

monosaccharide unit which emerges from the membrane surface (Figure 1.2.). 

 

 
Figure 1.2. Tipical structure of a GSL 

 

Ceramide in turn, is formed by a long chain amino alcohol (sphingoid base) 

commonly with 18-20 carbon atoms, N-linked to a fatty acid. The sphingoid 

base may be hydroxylated, and the most frequently occurring contains a C4-C5 

double bound in the trans-D-erythro family. Less frequent are sphinganines, that 

lack the double bond or phytosphingosine that carries an hydroxyl group on C4 

(Figure 1.3.). 

 

 
 

Figure 1.3. Sphingoid bases 

  

The saccharide moiety is represented by a single saccharide unit, as in the case 

of cerebrosides (β-Galcer 1.1, Figure 1.4.); sulphated mono- or di-saccharides, 

as in the case of sulphatides (Sulfatide β-Galcer 1.7, Figure 1.4.); and as linear 
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or branched oligosaccharide chain (iGB3 1.8 or GM3 1.9, Figure 1.4.). The 

saccharide units present in glycosphingolipids can be galactose, glucose, N-

acetylglucosamine, N-acetylgalactosamine, fucose, sialic acid and glucuronic 

acid. The mono- or multi-sialosylated glycosphingolipids are named 

gangliosides that, together with sulphatides, constitute the group of acidic 

glycosphingolipids. The remainder glycosphingolipids are neutral 

glycosphingolipids. Thus, glycosphingolipids are generally classified as follows: 

 

• Cerebrosides, which contain one sugar residue (β-GalCer 1.1)  
• Sulfatides, whose structure contain one sugar residue with a sulphate 

group (Sulfatide β-GalCer 1.7 ) 
• Neutral Glycosphingolipids (iGB3 1.8) 

• Gangliosides (GM3 1.9) 

 

 
 

Figure 1.4. Examples of naturally occurring GSLs 
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1.2. Glycosphingolipids as mamalian membrane 

receptors  

 

1.2.1. Subcelular distribution and supramolecular organization 

 

Organization of membrane glycosphingolipids and proteins into non-uniform 

domains has been an area of research interest leading to the concept of cell 

membrane ‘lipid rafts’
2
 (Figure 1.5.). These domains are defined as nano-

assemblies of sphingolipid, cholesterol and glycosylphosphatidylinositol 

anchored proteins that fluctuate on a subsecond time scale.
3
 However, this 

concept has suffered through a period of controversy,
4
 but it is now considered 

as a valid paradigm of physiological membrane structure
5
 of increasing 

relevance, particularly in signalling
6
 and intracellular traffic.

7
  

 

 
Figure 1.5. Schematic representation of a cell membrane 

                                                 
2  (a) Simons, K.; Ikonen, E. Nature 1997, 387, 569-572. (b) Simons, K.; Ehehalt, R. J. Clin. 

Invest. 2002, 110, 597-603. 
3   Lingwood, D.; Kaiser, H. J.; Levental, I.; Simons, K. Biochem. Soc. Trans. 2009, 37, 955-
960. 

4  (a) Munro, S. Cell 2003, 115, 377-388. (b) Hancock, J. F. Nat. Rev. Mol. Cell Biol. 2006, 7, 
456-462. 

5 (a) Lenne, P.F.; Wawrezinieck, L.; Conchonaud, F; Wurtz, O.; Boned, A,; Guo, X. J.; 
Rigneault, H; He, H.-T.; Marget, D. EMBO J. 2006, 25, 3245-3256. (b) Baumgart, T.; 
Hammond, A. T.; Sengupta, P.; Hess, S. T.; Holowka, D. A.; Baird, B. A.; Webb, W. W.  
Proc. Natl. Acad. Sci. USA 2007, 104, 3165-3170. (c) Lasserre, R.; Guo, X.-J.; Conchonaud, 
F.; Hamon, Y.; Hawchar, O.; Bernard, A.-M.; M'Homa Soudja, S.; Lenne, P.-F.; Rigneault, 
H.; Olive, D.; Bismuth, G.; Nunès, J. A.; Payrastre, B.; Marguet, D.; He, H-T. Nat. Chem. 

Biol. 2008, 4, 538-547. 
6  Zech, T.; Ejsing, C.S.; Gaus, K.; de Wet, B.; Shevchenko, A.; Simons, K.; Harder, T. EMBO 

J. 2009, 28, 466-476. 
7  Jackson, C.L. J. Cell Sci. 2009, 122, 443-452. 
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Membrane heterogeneity by rafts is believed to rely on the selective lipid–lipid 

interaction. For in vitro model membrane systems, this is illustrated by the 

sterol-dependent phase separation of sphingolipids from the more unsaturated 

glycerophospholipids
8
 (Figure 1.6.). However, model membranes do not 

resemble to normal cell membrane physiology. Moreover, it has not been fully 

established that the cellular membranes correlate to a liquid ordered phase (raft, 

Lo) and a liquid-crystal fluid phase (Lc) completely. Very recent work 

suggested that lipid-based phase segregation principles cooperate with other 

lateral specificities, possibly chemical interactions involving proteins, to 

laterally organize function.
9
  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Simplified model of organization of GSL’s in microdomains 

 

In this context, primarily glycolipid receptors have been shown to function in 

bacterial/host interactions
10
 and speculated to provide the basis and specificity 

for the initial attachment of the parasite to the host mucosal cell surface, for 

exemple. Such interactions have been described essentially limited to 

                                                 
8 (a) Ahmed, S. N.; Brown, D. A.; London, E. Biochemistry 1997, 36, 10944-10953. (b) 
Tokumasu, F.; Jin, A. J.; Dvorak, J. A. J. Electron Microsc. 2002, 51, 1-9. 

9 Kaiser, H. J.; Lingwood, D.; Levental, I.; Sampaio, J. L.; Kalvodova, L.; Rajendran, L.; 
Simons, K.; Proc. Natl. Acad. Sci. USA 2009, 106, 16645-16650. 

10 (a) Karlsson, K. Chem Phys Lipids 1986, 42, 153-172. (b) Strömberg, N.; Deal, C.; Nyberg, 
G.; Normark, S.; So, M.; Karlsson, K.-A. Proc. Natl. Acad. Sci. USA 1988, 85, 4902-4906. (c) 
Strömberg, N.; Ryd, N.; Lindberg,  A. A.; Karlsson K.-A. FEBS Lett. 1988, 232, 193-198. 
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recognition of the carbohydrate moiety such as  galacto,
11
 sulfatide,

12
 ganglio

13
 

series and globo
14
 series core glycolipids. However, several studies have shown 

that the lipidic moiety of glycolipid also modulates the recognition process. 

Such phenomenon is commented below.   

 

The term ‘aglycone modulation’ of GSL receptor function has been used to 

describe this effect, which relies not only on the composition of the ceramide 

moiety itself, but also on the composition of the surrounding lipid membrane 

microenvironment.
15
 Thus membrane lipid organization in terms of lipid 

microdomains or lipid rafts may regulate the bioavailability of GSLs for 

interaction.  

 

Further studies of microbial interaction with target cell glycolipids often showed 

that the binding specificity is dependent not only the carbohydrate sequence but 

also on the character of the lipid moiety itself
10c,16

 (most often hydroxylation is 

required). These studies show that the regulation of lipid bounded to 

carbohydrate for recognition by exogenous ligands is more complex than for 

glycoconjugate carbohydrate sequences, for example, on proteins. 

 

The question is not only about crypticity whereby cell membrane glycolipids 

can be masked by larger or other cell surface carbohydrates
17
 or proteins, since 

                                                 
11 (a) Schneiders, F. L.; Scheper, R. J.; von Blomberg, B. M. E.; Woltman, A. M.; Janssen, H. L. 
A.; van den Eertwegh, A. J. M.; Verheul, H. M. W.; de Gruijl, T. D.; van der Vliet, H. J.  Clin. 

Immunol. 2011,  140,  130-141. (b) Hayakawa, Y.; Godfrey, D. I.; Smyth, M. J. Curr. Med. 

Chem. 2004, 11, 241-252. 
12 (a) Halder, R. C.; Jahng, A.; Maricic, I.; Kumar, V. Neurochem. Res.  2007, 32, 257-262. (b) 
Arrenberg, P.; Halder, R.; Kumar, V. J. Cell. Physiol. 2009, 218, 246-250. 

13 Houliston, R. S.; Yuki, N.; Hirama, T.; Khieu, N. H.; Brisson, J.-R.; Gilbert, M.; Jarrell, H. C. 
Biochemistry 2007,  46,  36-44. 

14 (a) Chatterjee, S.; Khutlar, M.; Shi, W. Glycobiology 1995, 5, 327-333. (b) Brown, K. E.; 
Anderson, S. M.; Young, N. S. Science, 1993, 262, 114-117. 

15 (a) Lingwood, C. A. Can. J. Biochem. 1979, 57, 1138-1143. (b) Kannagi, R.; Stroup, R.; 
Cochran, N.A.; Urdal, D.L.; Young, W.W. Jr.; Hakomori, S.-I. Cancer Res. 1983, 43, 4997-
5005. (c) Stewart, R. J.; Boggs, J. Biochemistry 1990, 29, 3644-3653. 

16 (a) Strömberg, N.; Karlsson, K. A. J. Biol. Chem. 1990, 265, 11251-11258. (b) Ångström, J.; 
Tenenberg, S.; Milh, M. A.; Larsson, T.; Leonardsson, I.; Olsson, B.-M.; Ölwegård 
Halvarsson, M.; Danielsson, D.; Näslund, I.; Ljungh, Å.; Wadström, T.; Karlsson, K.-A. 
Glycobiology 1998, 8, 297-309. 

17 Wiels, J.; Holmes, E. H.; Cochran, N.; Tursz, T.; Hakomori, S.-I. J. Biol. Chem. 1984, 259, 
14783-14787. 
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these binding effects can be demonstrated in simple GSL/cholesterol model 

membranes, but rather one of some ‘allosteric’ mechanism where changes in 

the structure in a distal part of the molecule result in alteration of the 

conformation of the carbohydrate, to allow or restrict ligand binding.  

 

1.2.2. Fisiological functions of GSL’s on membranes and their on diseases 

 

In the case of GSL’s, the active mechanism of recognition can be classified in 

two main groups: interactions of GLS’s with membrane receptors (trans 

recognition) and activity modulation of the proteins of the same membrane (cis 

recognition). Consequently, the fisiological functions of the GLS’s on mammals 

are summarized next:
1a,18 

 

Cell adhesion and recognition: it takes place through two different kinds of 

mechanisms, recognition of equivalent proteins
19
 or lectins,

18b
 or carbohydrate-

carbohydrate interaction with other GLS’s.
20
 Hence, GLS’s play an important 

role in the initial stages of the embryogenesis, adhesion of neuronal cells and 

molecular adhesion to leukocytes. 

 

Modulation of transmembrane signalization: GSL’s function on the transduction 

of signals depens on the oligosaccharides embedded on the cellular external 

surface and the ceramide moiety.
21
   

 

Immunomodulating propierties of glycolipids: modulation response of 

lymphocytes to antigens has suggested that GSL’s can act as 

immunomodulating agents in vivo.
22
 It is believed that some exogenous 

gangliosides can suppress or activate some immunologic responses depending 

on the structure and concentration of the gangliosides and the structure of the 

target cells. 

                                                 
18 (a) Fraser Reid, B.; Tatsuta, K.; Thiem, J.; Fraser-Reid, B. O. Glycoscience: Chemistry and 

Chemical Biology, vol. 3; Springer-Verlag, Berlin, 2001, pp: 2183-2249. (b) Simanek, E. E.; 
McGarvey, G. J.; Jablonowski, J. A.; Wong, C.-H. Chem. Rev. 1998, 98, 833-862.  

19 Fritsch, M.; Geilen, C. C.; Heidrich, C.; Reutter, W. FEBS Lett. 1995, 376, 159-163. 
20 Hakomori, S. Pure & Appl Chem. 1991, 63, 473-482. 
21 Testi, R. Trends Biochem. Sci. 1996, 21, 468-471. 
22 Bergelson, L. D. Immunol. Today 1995, 16, 483-486. 
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Modulators of growth factor receptor function: Several experimental evidences 

suggested that gangliosides are neuroregulatory factors in vitro and in vivo.
23
 

Disturbance of GSL expression and metabolism affects brain function, resulting 

in a variety of diseases. 

 

As it has been commented previously, the interaction of pathogens to the 

membrane host is the first stage of an infectious process which is followed by 

the membrane penetration and the invasion of the tissues. For this reason, in the 

past few years, the field of GSLs research has been addressed as a strategy for 

preventing different diseases promoted by microbial infections such as the case 

of verotoxines,
24
 cholera toxin,

25
 HIV;

24c,26
 as well to other processes in which 

they are involved, such as multi-system disorders of metabolism,
27
 cancer,

28
 

lupus,
29
 diabetes,

30
 Alzheimer

31
 and Parkinson.

32
  

 

To increase the activity of glycosphingolipid compounds against diseases, two 

main strategies have been developed. The first approach consists of anchoring 

the oligosaccharide unit on a chemical matrix to obtain a multivalent 

neoglyconjugate.
33
 The other approach consists of tuning the structure of the 

                                                 
23 (a) Yu, R. K.; Nakatani, Y.; Yanagisawa, M. J. Lipid Res. 2009, 50, S440-S445. (b) Hakomori 
S. J. Biol. Chem. 1990, 265, 18713-18716. 

24 (a) Lingwood, C. A. Biochim. Biophys. Acta 1999, 1455, 375-386. (b) Abul-Milh, M.; Barnett 
Foster, D.; Lingwood, C. A. Glycoconjugate J. 2001, 18, 253-260. (c) Lingwood, C. A.; 
Binnington, B.; Manis, A.; Branch, D. R. FEBS Letters 2010, 584, 1879-1886. 

25 (a) Pacuszka, T.; Bradley, R. M.; Fishman, P. H. Biochemistry 1991, 30, 2565-2570. (b) 
McCann, J. A.; Mertz, J. A.; Czworkowski, J.; Picking, W. D. Biochemistry 1997, 36, 9169-
9178. (c) Arosio, D.; Baretti, S.; Cattaldo, S.; Potenza, D.; Bernardi, A. Bioorg. Med. Chem. 

Lett. 2003, 13, 3831-3834.(d) Fujinaga, Y. Toxin Rev. 2006, 25, 47-59. 
26 (a) Viard, M.; Parolini, I.; Rawat, S. S.; Fecchi, K.; Sargiacomo, M.; Puri, A. Glycoconjugate 

J. 2004, 20, 213-222. (b) McReynolds, K. D.; Gervay-Hague, J. Chem. Rev. 2007, 107, 1533-
1552. 

27 Xu, Y.-H.; Barnes, S.; Sun, Y.; Grabowski, G. A. J. Lipid Res. 2010, 51, 1643-1675. 
28 (a) Igarashi, Y.; Kannagi, R. J. Biochem. 2010, 147, 3-8. (b) Bieberich, E. Glycoconjugate J. 
2004, 21, 315-327. 

29 Jury, E. C.; Kabouridis, P. S.; Flores-Borja, F.; Mageed, R. A.; Isenberg, D. A. J. Clin. Invest. 
2004, 113, 1176-1187. 

30  Langeveld, M.; Aerts, J. M. F. G. Prog. Lipid Res. 2009,  48, 196-205. 
31 Mutoh, T.; Hirabayashi, Y.; Mihara, T.; Ueda, M.; Koga, H.; Ueda, A.; Kokura, T.; 
Yamamoto, H.  CNS Neurol. Disord. Drug Targets 2006, 5, 375-380. 

32 Matsuoka, Y.; Saito, M.; LaFrancois, J.; Saito, M.; Gaynor, K.; Olm, V.; Wang, L.; Casey, E.; 
Lu, Y.; Shiratori, C.; Lemere, C.; Duff, K. J. Neurosci. 2003, 23, 29-33. 

33 Rojo, J.; Delgado, R. Anti-Infect. Agents Med. Chem. 2007, 6, 151-174. 
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natural GSL in order to find new mimetics with potencial biological activity
34
 or 

to modify the hydrophobic part of GSLs, with the goal of obtaining water-

soluble analogues
35
 in which the conformation of the binding domain of the 

analogue is similar to GSLs. Several of these ideas will be discussed in the 

following sections. 

 

1.3. Synthesis of glycosphingolipids 

 

Since the isolation of a group of marine galactosylsphingolipids in the 1990’s 

from Agelas mauritianus
36
 to the posterior the synthesis of analogues,

37
 a great 

interest has been aroused for this family of glycosphingolipids due to the potent 

antitumor activity found in vivo. Therefore, important contributions have been 

reported in last decades concerning the synthesis of such remarkable 

compounds.
38
 Herein a brief description of the biosynthesis and the chemical 

synthesis of the glycosphingolipids is introduced. 

 

1.3.1. Biosynthesis of glycosphingolipids 

 

The formation of ceramide is carried out by membrane bound enzymes on the 

cytosolic leaflet of the endoplasmic reticulum (ER).
39
 Starting from the amino 

acid L-serine 1.10  and two equivalents of the palmitoyl-coenzyme A 1.11, 

dihydroceramide 1.14 is formed in three steps (Scheme 1.1.). This N-acyl-2-

                                                 
34 Banchet-Cadeddu, A.; Hénon, E.; Dauchez, M.; Renault, J.-H.; Monneaux, F.; Haudrechya, A. 

Org. Biomol. Chem. 2011, 9, 3080-3104. 
35 (a) De Rosa, M.; Park, H.-J.; Mylvaganum, M.; Binnington, B.; Lund, N.; Branch, D.R.; 
Lingwood, C.A. Biochim. Biophys. Acta  2008, 1780, 347-352. (b) Fantini, J.; Hammache, D.; 
Delézay, O.; Yahi, N.; André-Barrès, C.; Rico-Lattes, I.; Lattes, A. J. Biol. Chem. 1997, 272, 
7245-7252.  

36 (a) Natori, T.; Koezuka, Y.; Higa, T. Tetrahedron Lett. 1993, 34, 5591-5592. (b)  Akimoto, 
K.; Natori, T.; Morita, M. Tetrahedron Lett. 1993, 34, 5593-5596. (c) Natori, T.; Morita, M.; 
Akimoto, K.; Koezuka, Y. Tetrahedron 1994, 50, 2771-2784. 

37 Franck, R.W.; Tsuji, M. Acc. Chem. Res. 2006, 39, 692-701. 
38 (a) Maccioni, H. J. F.; Quiroga, R.; Ferrari, M.L. J. Neurochem. 2011, 117, 589-602. (b) 
Morales-Serna, J.A.; Llaveria, J.; Díaz, Y.; Matheu, M.I.; Castillón, S. Curr. Org. Chem. 
2010, 14, 2483-2521. (c) Morales-Serna, J.A.; Boutureira, O.; Díaz, Y.; Matheu, M.I.; 
Castillón, S. Carbohydr Res. 2007, 342, 1595-1612.     

39 Merrill Jr., A. H. J. Biol. Chem. 2002, 277, 25843-25846. 
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aminoalkyl-1,3-diol (N-acylsphinganine) 1.14 is dehydrogenated to ceramide 

1.15 with a 4,5-trans-double bond by a dihydroceramide desaturase. 

 

 
 

Scheme 1.1. Biochemical synthesis of ceramide 1.15 

 

Then, at the membranes of the Golgi apparatus, carbohydrate moieties are 

attached to ceramide leading to galactosylceramide, glucosylceramide, 

sphingomyelin and higher glycosphingolipids, which are synthesised by the 

stepwise addition of monosaccharides to glucosylceramide (Figure 1.7.). 

 

 

 

 

Figure 1.7. Biosynthesis of GSL’s by metabolizing enzymes  
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1.3.2. Design of glycosphingolipids 

 

Due to the great interest of glycoconjugates for modern glycobiology, several 

chemical methodologies have provided suitable strategies to design 

glycosphigolipids
1c,38c,40

 as depicted in Scheme 1.2. 

 
 

Scheme 1.2. General retrosynthetic plan for the preparation of GSLs 

 

The first route (Scheme 1.2., I) consists of a sequential addition of conveniently 

protected monosaccharides which are covalent bonded to a growing fragment of 

the glycolipid. Generally, oligosaccharides are complex and the strategy of 

synthesis requires several sequences of protection-deprotection-activation 

reactions. It is necessary that the glycosyl acceptor was stable enough under 

glycosylation conditions but reactive enough at the same time to allow the 

oligosaccharide chain elongation. This synthetic route results too much lineal 

and for this reason is not employed very often. 

 

The second approach (Scheme, 1.2., II) consists of growing the aglycone when 

it is already installed in the carbohydrate moiety. However, there are few 

                                                 
40 Khan, S. H.; O’Neill, R. A. Modern Methods in Carbohydrate Synthesis, Vol. 1; Harwood 
cademic Publishers, Amsterdam 1996.  
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examples of using this methodology in the literature
41
 and they depend on the 

stability of the oligosaccharide residue on the condition reactions to construct 

the aglycone. 

 

Finally, the third approach (Scheme 1.2., III) is a convergent synthesis, in which 

the oligosaccharide and the aglycone are synthesized independently and then 

they are joined by glycosylation reaction to obtain the desired GSL. This is the 

most employed strategy to obtain glycoconjugates and it will be discussed 

below. 

 

As it is depicted in Scheme 1.3., the synthesis of the oligosaccharide residue 

may be prepared though two different ways. The first strategy (Scheme 1.3., I) 

consists of the classical glycosylation reaction between the convenient protected 

pyranoses.
1,40

 Using this methodology, one of the carbohydrates participates as 

glycosyl donor whereas the other acts as glycosyl acceptor when it is activated 

by a promoter (Scheme 1.3., III). However, this strategy relies on the suitable 

choice of the different protecting groups to afford good yields and selectivities.
42
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Scheme 1.3. Retrosynthetic analysis for the preparation of the oligosaccharide 

 

Another variant of this classical strategy (Scheme 1.3., IV) employes glycals as 

precursors of glycosyl donors and glycosyl acceptors. Typical reactions to afford 

                                                 
41 (a) Matto, P.; Modica, E.; Franchini, L.; Facciotti, F.; Mori, L.; De Libero, G.; Lombardi, G.; 
Fallarini, S.; Panza, L.i; Compostella, F.; Ronchetti, F. J. Org. Chem.  2007, 72, 7757-7760.  
(b) Rai, A. N.; Basu, A.  J. Org. Chem.  2005, 70,  8228-8230. (c) Barrett, A. G. M.; Beall, J. 
C.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Salter, M. M. J. Org. Chem. 2000, 65, 6508-
6514.  

42 (a) Wong, C.-H.; Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A. Chem Rev. 1998, 98, 
833-862. (b) Bernardi, A.; Cheshev, P. Chem. Eur. J. 2008, 14, 7434-7441. 
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these transformations are epoxydation, azidonitration and 

sulphonamidoglycosylation.
43
 

 

The group of Danishefsky developed an alternative to the classic synthesis of 

oligosaccharides (Scheme 1.3., II) called ‘glycal assembly method’.
1,40

 This 

methodology allows a reiterative assembly of the carbohydrated residues 

because glycal can participate as glycosyl donor and/or glycosyl acceptor. This 

methodology is often more simply and avoids tedious manipulation of 

protecting groups.   

 

Sphingolipids are formed by an aminoalcohol moiety (sphingoid base), a polar 

head and a fatty acid tail. The common structural unit for sphingolipids in 

eukaryotic cells is the sphingoid base D-erythro-sphingosine [(2S, 3R, 4E)-2-

amino-3-hydroxyoctadeca-4-en-1-ol].
18a
 Moreover, other similar structures such 

as phytosphingosine and sphingofungin are of wide interest
44
 (Figure 1.8.). 

 

HO
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Figure 1.8. Examples of naturally occurring sphingoid bases 

 

 

                                                 
43 (a) Seeberger, P. H.; Bilodeau, M. T.; Danishefsky, S. J. Aldrichimica Acta 1997, 30, 75-92. 
(b) Guo, Z.  Carbohydrate Chemistry, Biology and Medical Applications, Elsevier, Oxford, 
2008. 

44 (a) Costantino, V.; Fattorusso, E.; Mangoni, A.; Di Rosa, M.; Ianaro, A.; Maffia, P. 
Tetrahedron 1996, 52, 1573-1578.  (b) He, L.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2000, 
65, 7618-7626.  (c) Ndakala, A. J.; Hashemzadeh, M.; So, R. C.; Howell, A. R. Org. Lett. 
2002, 4, 1719-1722.  (d) Chiu, H.-Y.; Tzou, D.-L. M.; Patkar, L. N.; Lin, C.-C. J. Org. Chem. 
2003, 68, 5788-5791. 
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Scheme 1.4. General synthons for the preparation of sphingosine derivatives from quiral pool 

 

Synthesis of sphingosine and its derivates has been revised in our group 

recently.
38b,45

 The main important retrosynthetic strategies are depicted in 

Scheme 1.4. The quiral pool offers an attractive source of non racemic starting 

materials (Scheme 1.4., I, II, III and IV). Amino acids like L-Serine
46
 and 

derivates like Garner’s aldehyde
47
 have been broadly employed for the synthesis 

of natural product that contain 1,2-aminoalcohol or a 1,3-diol moiety.
48
 

Carbohydrates have also been chosen as starting materials because of its high 

versatility. In this sense, sphingosine has been successfully obtained from D-

xylose, D-arabinose, D-galactose, glycals, glucosamines derivatives among 

others.
49
 Tartaric acid and its derivatives have been also employed as a chiral 

starting material in the synthesis of natural products such as D-erythro-

sphingosine.
50
 Moreover, commercially available D-ribo-phytosphingosine can 

                                                 
45 Llaveria, J. Doctoral Thesis, Universitat Rovira i Virgili, Tarragona, 2011. 
46 Herold, P. Helv. Chim. Acta 1988, 71, 354-362. 
47 Garner, P.; Park, J. M.; Malecki, E.  J. Org. Chem. 1988, 53, 4395-4398. 
48 Koskinen, A. M. P.; Koskinen, P. M. Synthesis 1998, 1075-1091. 
49 (a) Duclos Jr., R. I. Chem. Phys. Lipids 2001, 111, 111-138. (b) Milne, J. E.; Jarowicki, K.; 
Kocienski, P.J.; Alonso, J. Chem. Commun. 2002, 426-427.(c) Reist, E. J.; Christie, P. H. J. 
Org. Chem. 1970, 35, 4127-4130. (b) Schmidt, R. R.; Zimmermann, P. Tetrahedron Lett. 
1986, 27, 481-484. (d) Schmidt, R. R.; Bär, T.; Wild, R. Synthesis 1995, 868-876. (e) 
Costantino, V.; Fattorusso, E.; Imperatore, C.; Mangoni, A. Tetrahedron 2002, 58, 369-376.   

50 Lu, X.; Bittman, R. Tetrahedron Lett. 2005, 46, 1873-1875. 
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be transformed into D-erythro-sphingosine employing different 

methodologies.
38b,45

 

 

On the other hand, several approaches that rely on asymmetric synthesis have 

afforded tools to create quiral compound from racemic starting materials in 

order to obtain the sphingosine scafold and their derivatives (Scheme 1.5., A-D). 

These strategies employ chiral reagents and auxiliaries or they are based on 

enantioselective catalytic procedures to generate the sphingoid amino alcohol 

moiety. 

 

Among the approaches reported based on the use of chiral reagents and 

auxiliaries the must significative are summarized below: 

 

a) The construction of the main functionalities in sphingosine from 

glycine-derived silicon enolate 1.20 using a zirconium-catalized 

asymmetric aldol reaction.
51
  

b) The synthesis of the asymmetric vicinal amino alcohols for D-erythro-

sphingosine has been also obtained from a highly diasteroselective anti-

aminohydroxylation of an α,β-unsaturated ester 1.25, via conjugate 
addition of lithium (S)-N-benzyl-N-(α-methylbenzyl)amide 1.26 and 

subsequent in situ enolate oxidation with (+)-

(camphorsulfonyl)oxaziridine ((+)-CSO) as key steps.
52
 

c) The addition reaction of chiral a guanidinium ylide 1.29 to α,β-
insaturated aldehyde 1.28. The corresponding aziridines 1.30 and 1.31 

formed can be derived into α-amino-β-hydroxy acid units in route D-
erythro-sphingosine synthesis.

53
 

d) The asymmetric synthesis of β-amino carbonyl derivatives 1.36 and 

1.37 through stereoselective nucleophilic addition of enolates 1.35 to 

imines 1.34. This Mannich-type reaction can be stereocontrolled to 

provide efficient routes to enantiomerically pure polyhydroxy-β-amino 

                                                 
51 Kobayashi, J.; Nakamura, M.; Mori, Y.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 
2004, 126, 9192-9193.   

52 Abraham, E.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. 
Org. Biomol. Chem. 2008, 6, 1655-1664. 

53 (a) Disadee, W.; Ishikawa, T. J. Org. Chem. 2005, 56, 781-790. (b) Hu, X. E. Tetrahedron 
2004, 60, 2701-2743. 
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acids, which have been applied in the enantiodivergent synthesis of L- 

and D-erythro-sphingosine.
54
 

 

 
 

Scheme 1.5. Key steps in representative synthesis of 1.4 employing chiral reagents and 

auxiliaries. 

 

 

Alternatively, the use of enantioselective catalytic procedures has been also 

studied as a key step to afford the sphingoid moiety with high selectivity in the 

D-erythro-sphingosine synthesis. The most representative approaches are 

summarized as follows (Scheme 1.6., A-E): 

 

 

 

                                                 
54 Merino, P.; Jimenez, P.; Tejero, T. J. Org. Chem. 2006, 71, 4685-4688. 
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a) The use a tin (II)-catalized asymmetric aldol reaction between 

trimethylsilylpropanal (1.38) with silylenol 1.39 in presence of chiral 

diamine 1.40.
55
 

b) The use of Sharpless asymmetric dihydroxylation of enyne ester 1.42 

with AD-mix-β.56
 

c) An enantioselective epoxidation of diene 1.44 under Shi’s asymmetric 

epoxidation conditions to afford a mixture of vinyl epoxides.
57
  

d) The use of asymmetric Sharpless epoxydation to afford the desired 

sphingoid moiety and later a cross-metathesis reaction to elong the 

aliphatic chain in the presence of a phosphine-free Grubbs catalyst 

(Scheme 1.6., D).
58
 

e) The use of palladium catalyzed dynamic asymmetric transformation 

(DYKAT) on a racemic butadiene monoepoxide 1.52 and later a cross-

metathesis reaction to elong the aliphatic chain in presence of a Grubbs 

catalyst.
59
 

 

                                                 
55 Kobayashi, S.; Furuta, T. Tetrahedron 1998, 54, 10275-10294. 
56 He, L.; Byun, H. S.; Bittman, R. J. Org. Chem. 2000, 65, 7627-7633. 
57 Olofson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574-8583. 
58 Torsell, S.; Somfai, P. Org. Biomol. Chem. 2004, 2, 1643-1646. 
59 Llaveria, J.; Díaz, Y.; Matheu, M. I.; Castillón, S. Org. Lett. 2009, 11, 205-208.  
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Scheme 1.6. Key steps in representative synthesis of 1.4 employing enantiomeric catalytic 

procedures. 

 

1.3.2.3. Glycosylation reaction 

 

In order to complete the synthesis of glycosphingolipids according to a 

covergent strategy (Scheme 1.2, III), it is necessary to attach the oligosaccharide 

moiety to the corresponding ceramide. Recently, our group has reviewed the 

recent contributions to the synthesis of GSL’s, highlighting the improvements in 

glycosylation reactions leading to α and β glycosylsphingosines and ceramides 

as well as related compounds.
38c
  

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 21 

One of the main drawbacks of this convergent methodology is the direct 

glycosylation of N-acylsphingosine as a glycosyl acceptor. In general, rigorous 

conditions are required and yields and α/β selectivity are poor. This low 
reactivity is caused by the hindrance of the lipid chains and the existence of a 

disfavouring hydrogen bond that decreases the nucleophility of the glycosyl 

acceptor (Scheme 1.9.).
60
 Therefore, the amino moiety of sphingosine 

derivatives is usually proctected as azide or imine groups to avoid the 

disfavouring hydrongen bond interaction in classical procedures. However, 

these routes require more synthetic steps and become more lineal. 

 

 
 

Figure 1.9. Proposed hydrogen bond models to explain the different reactivity of sphingoid 

bases 

 

To solve this drawback, our group has proposed the activation of ceramides via 

the corresponding stannyl ether.
61
 Such an idea permitted increasing the 

nucleophilicity of oxygen without significantly modifying the basicity of the 

glycosyl acceptor. Although the corresponding ortoester is obtained instead of 

the glycosylated product when the carbohydrate is protected with acetyl groups, 

ortoester may be rearranged to β-glycoside (90%) when it is treated with a 

Lewis acid (Scheme 1.7.). 

 

                                                 
60 (a) Schmidt, R. R.; Zimmermann, P. Angew. Chem. Int. Ed. Engl. 1986, 25, 725-726. (b) Polt, 
R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V. J. J. Am. Chem. Soc. 1992, 114, 10249-10258. 

61 Morales-Serna, J. A.; Boutureira, O.; Díaz, Y.; Matheu, M. I.; Castillón, S. Org. Biomol. 

Chem. 2008, 6, 443-446. 
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Scheme 1.7. Glycosylation procedure of stannylceramides. 

 

Table 1.1. Examples of direct glycosylation of ceramides. 

 
Entry Donor Acceptor Conditions Product 

(Yield)
a 

162 1.61 1.63 BF3·OEt2, CH2Cl2, -20 to 0 ºC. 1.65  

(72%) 

 

263 1.62 1.63 Sn(OTf)2, 1,1,3,3-tetramethylurea,  

4 Å MS, r.t., 12 h. 

1.65  

(47%) 

 

364 1.62 1.63 Hg(CN)2, CH3NO2, 80 ºC, 2 h. 1.65  

(43%) 

 

465 1.62 1.64 Hg(CN)2, CH3NO2/benzene, 35-40 ºC, 

8-10 h. 

1.66  

(50-70%) 
a Yield over two steps. First the β-glycoside was obtained as a mixture of the α-glycoside and 
the corresponding orthoesters. Then the mixture was treated with TMSOTf to isomerize the 

orthoester to the β-glycoside which was isolated. 

 

Although this strategy required two steps to afford the corresponding β-
glycoside 1.60, it made a remarkable improve in the direct glycosylation of 

ceramide (90% yield, Scheme 1.7.) compared to other reported procedures in 

                                                 
62 Murakami, T.; Minamikawa, H.; Hato, M. J. Chem. Soc. Perkin Trans. 1 1992, 1875-1876. 
63 Ohashi, K.; Kosai, S.; Arizuka, M.; Watanabe, T.; Fukunaga, M.; Monden, K.; Uchikoda, T.; 
Yamagiwa, Y.; Kamikawa, T. Tetrahedron Lett. 1988, 29, 1189-1192. 

64 Ohashi, K.; Kosai, S.; Arizuka, M.; Watanabe, T.; Yamagiwa, Y.; Kamikawa, T. Tetrahedron 
1989, 45, 2557-2570. 

65 Shapiro, D.; Flowers, H. M. J. Am. Chem. Soc. 1961, 83, 3327-3332. 
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which the ceramide was not activated. In those cases, only modest to good 

yields (42-72%) were afforded.  

 

In this context, contributions of the present work to the synthesis of 

glycosphingolipidic derivates employing new glycosylation methodologies will 

be introduced in the following chapters. 

 

1.4. Strategies to increase binding properties: 

Multivalent Presentation. 

 

Although protein-carbohydrate interactions are essential to many biological 

processes, individual interactions usually exhibit weak binding affinities as well 

as relatively low selectivities between similar carbohydrate ligands.
66
 Nature’s 

solution to this problem is to use multivalency.
67
 Hence, multiple copies of the 

carbohydrate ligands are arranged on glycoprotein scaffolds or in patches of 

glycolipids on the surface of one cell, and multiple copies of lectins (or 

individial lectins with multiple binding sites) are displayed at the surface of 

another cell. When these two surfaces come together, the individual interactions 

reinforce one another to give overall a high avidity. 

 

Importantly, multivalency should be differentiated from cooperativity. 

Cooperativity arises when the binding of one ligand influence the receptor’s 

affinity towards subsequent ligands.
68
 The interplay of individual interactions 

can lead to positive or negative cooperativity depending on whether one 

interaction favors or disfavors another. 

 

1.4.1. Modes of multivalency 

 

Multivalency is observed if the binding potency value recorded with a 

multivalent architecture having “x” epitopes is more than “x” times greater than 

that of the corresponding monovalent ligand. If this value (relative potency per 

                                                 
66 Lee, Y.C.; Lee, R.T. Acc. Chem. Res. 1995, 28, 321-327. 
67 Mammen, M.; Choi, S.-K.; Whitesides, G.M. Angew. Chem. Int. Ed. 1998, 37, 2754-2794. 
68 Hunter, C. A.; Anderson, H. L. Angew. Chem., Int. Ed. 2009, 48, 7488-7499. 
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ligand) is identical to the monomeric reference, the effect occurring is purely 

statistical and no real affinity gain is observed.
69
 

 

In multivalent interactions such as glycocluster effect, the receptor binding 

mechanisms depicted in Fig. 1.10. may happen independently or simultaneously, 

depending on the nature of the membrane receptor and structural features of the 

glycoconjugates.
70
 

 

A) Statistical multivalent binding: Epitopes of a multivalent ligand may bind at a 

single site of its receptor, sliding and recapture of a second epitope increases the 

residence time and the binding affinity (Fig. 1.10., A). The proximity of 

additional epitopes promotes the recapture mechanism. This process is 

associated with a moderate gain of affinity with generally less than two orders of 

magnitude compared to the monovalent reference.
71
 For polymeric 

glycoconjugates, however, the bind and slide process due to internal diffusion of 

the membrane receptor along the polymeric chain can lead to much higher 

affinity systems (Fig. 1.10., B).
72
  

 

B) Chelate multivalent binding: This mode may operate if the distance between 

binding epitopes can span the distance between recognition sites of the 

membrane receptor. Thus, the multivalent ligand cross-links binding sites either 

in adjacent receptors  or in a single multivalent receptor. (Fig 1.10, C and 

D).This process is associated with an over million-fold affinity enhancement in 

the case of pentameric toxins.
73
 

 

                                                 
69 Mulder, A.; Huskens, J.; Reinhoudt, D. N. Org. Biomol. Chem. 2004, 2, 3409-3424. 
70 Pohl, N.L.; Kiessling, L.L. Synthesis, 1999, 1515-1519. 
71  (a) Quesenberry, M. S.; Lee, R. T.; Lee, Y. C. Biochemistry, 1997, 36, 2724-2732. (b) Benito, 
J. M.; Gómez-García, M.; Ortiz Mellet, C.; Baussanne, I.; Defaye, J.; García Fernandez, J. M. 
J. Am. Chem. Soc. 2004, 126, 10355-10363. 

72 Dam, T. K.; Gerken, T. A.; Kavada, B. S.; Nascimento, K. S.; Moura, T.R.; Brewer, F. C. J. 
Biol. Chem. 2007, 282, 28256-28263. 

73 (a) Kitov, P.I.; Sadowska, J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.; Pannu, N. S.; Read, 
R. J.;  Bundle, D. R. Nature, 2000, 403, 669-672. (b) Fan, E.; Zhang, Z.; Minke, W. E.; Hou, 
Z.; Verlinde, C. L. M. J.; Hol, W. G. J. J. Am. Chem. Soc. 2000, 122, 2663-2664. (c) Zhang, 
Z.; Merritt, E. A.; Ahn, M.; Roach, C.; Hou, Z.; Verlinde, C. L. M. J.; Hol, W. G. J.; Fan, E. J. 
Am. Chem. Soc. 2002, 124, 12991-12998. 
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Figure 1.10. Modes of multivalency74

  

 

1.4.2. Structure of multivalent glycoconjugates 

 

A large number of multivalent glycoconjugates with diverse scaffolds have been 

synthesized in the last decade. Such glycoconjugates can be classified in three 

distinct families according to disperty and core presentation.  

 

A) Glycoclusters: A multivalent central scaffold (core) connected to the 

carbohydrate epitopes displayed directly at their periphery (Figure 1.11.). 

 

 
Figure 1.11. Schematic representation of a glycocluster 

 

B) Glycodendrimers: This scaffolds are characterized by highly branched 

‘dendrons’ or ‘wedges’ that emanate from a central multifunctional core unit. 

These well-defined polymers can be synthesized in a stepwise and controlled 

manner, providing increasing ‘generations’ of structures which are 

homogeneous or at least have very low polydispersities (Figure 1.12.). 

 

                                                 
74 Deniaud, D.; Julienne, K; Gouin, S. G. Org. Biomol. Chem. 2011, 9, 966-979. 
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Figure 1.12. Schematic representation of a glycodendrimer 

 

There are two main strategies for constructing dendrimers: divergent and 

convergent (Scheme 1.8.):
75
 

 

In the divergent approach, the dendrimer is grown outwards from the core, with 

an increasing of the number of reactive functionalities being introduced with 

each new generation. Unfortunately, it carries the disadvantage that increasing 

numbers of reactions is necessary to be performed on each individual 

compound. Unavoidable side reactions lead consequently to mixtures of closely 

related compounds whose separation is quite difficult.
76
 

 

In the convergent approach, many of the synthetic problems inherent at the 

divergent strategy are avoided. This methodology involves: the synthesis of 

carbohydrated dendrons as one of the structural components followed by the 

linking of these wedges to further branching components and then finally the 

attachment of these dendrons to the core.
77
 This synthetic strategy also affords 

compounds with the highest possible structural homogeneities and 

monodispersities. However, this protocol typically requires larger quantities of 

the carbohydrate and these peripheral carbohydrates usually must be protected 

during the synthesis, resulting in further steric crowding that may block 

coupling efficiencies and necessitate subsequent deprotection steps. 

 

                                                 
75 Matthews, O. A.; Shipway, A. N.; Stoddart, J. F. Prog. Polym. Sci. 1998, 23, 1-56. 
76 Hummelen, J.C.; van Dongen, J. L. J.;  Meier, E. W. Chem. Eur. J. 1997, 3, 1489-1493. 
77 Ashton, P. R.; Boyd, S. E.; Brown, C. L.; Jayaraman, N.; Nepogodiev, S. A.; Stoddart, J. F. 

Chem. Eur. J. 1996, 2, 1115-1128. 
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Scheme 1.8. a) Divergent synthesis of dendrimers, b) Convergent synthesis of dendrimers 

 

C) Hyperbranched glycoconjugates: In this case the multivalent scaffold could 

be a polymer, a nanoparticle, a nanotube, etc. usually highly branched to 

emulate the dendritic disposition (Figure 1.13.). The main advantage of these 

macromolecules over dendrimers is the ease of their synthesis, although their 

structure is not as perfect as that of their dendritic counterparts. These structures 

are however receiving a growing interest, for instance, for their potential 

biomedical applications as drug carrier.
78
 

 

 
Figure 1.13. Schematic representation of a hyperbranched polymer 

 

1.4.3. Remarks in the design of multivalent glycoconjugates 

 

Direct evidence the importance of framework used to display the carbohydrates 

comes from early studies of Knowles, Wiley and coworkers,
79
 who investigated 

three different classes of templates as inhibitors of influenza virus 

hemagglutinin. More recent works also explored the topology of 

                                                 
78 (a) Fox, M. E.; Szoka, F. C.; Fréchet, J. M. J. Acc. Chem. Res. 2009, 42, 1141-1151. (b) 
Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M. Chem. Soc. Rev. 2009, 38, 352-362. (c) Liu, 
M.; Fréchet, J. M. J. Pharm. Sci. Technol. Today 1999, 2, 393-401. 

79 Glick, G. D.; Toogood, P. L.; Wiley, D.C.; Skehel, J. J.; and Knowles, J. R. J. Biol. Chem. 
1991, 266, 23660-23669. 
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glyconconjugates to increase the binding for lectins.
80
 Generally, the 

conformational preferences of the linker residues profoundly affect the capacity 

of the derivatives to act as multivalent ligands. No single framework for 

presentation of multiple ligands can guarantee success.
81
 Hence, some 

interesting features in the design of glycoconjugates are introduced bellow: 

 

 Shape of the multivalent glycoconjugate: Several works have exemplified how 

the topology of the multivalent glycoconjugates enhances their affinity for the 

receptor
80,82

 (Figure 1.14.). Hence, to improve the complementary character 

between them, the multivant glyconjugate could be presented as a globular 

structure like those found in dendrimers,
83
 liposomes,

84
 nanoparticles,

85
 

fullerenes,
86
; and other structutures such as a linear structure as polymers,

87
 

peptoids,
80
; conical structure like calix[n]arenes,

80
 cyclodextrins,

88
; square-

planar structures like porphyrines;
80
 among others.  

 

                                                 
80 Cecioni, S.; Faure, S.; Darbost, U.; Bonnamour, I.; Parrot-Lopez, H.; Roy, O.; Taillefumier, 
C.; Wimmerová, M.; Praly, J.-P.; Imberty, A.; Vidal, S. Chem. Eur. J. 2011, 17, 2146-2159. 

81 Kiessling, L.L.; Pohl, N.L. Chem. Biol. 1996, 3, 71-77. 
82 (a)André, S.; Sansone, F.; Kaltner, H.; Casnati, A.; Kopitz, J.; Gabius, H. J.; Ungaro, R.; 

ChemBioChem 2008, 9, 1649-1661. (b) Cecioni, S.; Lalor, R.; Blanchard, B.; Praly, J.-P.; 
Imberty, A.; Matthews, S. E.; Vidal, S. Chem. Eur. J. 2009, 15, 13232 -13240. 

83 Clayton, R.; Hardman, J.; LaBranche, C.C.; McReynolds, K. D. Bioconj. Chem. 2011,  22,  
2186-2197.   

84 (a) Kingery-Wood, I. E.; Williams, K.W.; Sigal, G.B.; Whitesides, G. M. J. Am. Chem. Soc. 
1992, 114, 7303-7305.  (b) Spevak, W.; Nagy, J.O.; Charych, D. H.; Schaefer, M. E.; Gilbert, 
J. H.; Bednarski, M. D. J. Am. Chem. Soc. 1993 115, 1146-l 147. 

85 Martínez-Ávila, O.; Hijazi, K.; Marradi, M.; Clavel, C.; Campion, C.; Kelly, C.; Penadés, S. 
Chem. Eur. J. 2009, 15, 9874-9888. 

86 Isobe, H.; Mashima, H.; Yorimitsu, H. Nakamura, E. Org. Lett. 2003, 5, 4461-4463. 
87 Disney, M. D.; Zheng, J.; Swager T. M.; Seeberger, P. H. J. Am. Chem. Soc. 2004, 126, 
13343-13346. 

88 Mendez-Ardoy, A.; Guilloteau, N.; Di Giorgio, C.; Vierling, P.; Santoyo-Gonzalez, F.; Ortiz 
Mellet, C.; García Fernandez, J. M. J. Org. Chem.  2011, 76, 5882-5894. 
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Fig. 1.14. Examples of multivalent structures and topologies: A) Fullerene pentavalent 

glycocluster.86 B) Tetravalent mannoside dendrimer.89 C) Glycosyl bis-porphyrin conjugates.90 

D) Cyclodextrin-centered glycocluster91. E) Carbohydrate-functionalized fluorescent polymer.87 

F) Gold manno-glyconanoparticles85  

                                                 
89 Heidecke, C. D.; Lindhorst, T. K. Chem. Eur. J. 2007, 13, 9056-9067. 
90 Sol, V.; Chaleix, V.; Champavier, Y.; Granet, R.; Huang Y.-M.; Krausz, P. Bioorg. Med. 

Chem. 2006, 14, 7745-7760. 
91 Gómez-García, M.; Benito, J. M.; Rodríguez-Lucena, D.; Yu, J.-X.; Chmurski, K.; Ortiz 
Mellet, C.; Gutiérrez Gallego, R.; Maestre, A.; Defaye, J.;  García Fernández, J. M. J. Am. 

Chem. Soc. 2005, 127, 7970-7971. 
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 Rigidity of the core: In general, rigid architectures are disadvantageous for 

optimized lectin binding, due to the restricted spatial presentation adopted by 

ligands that are unable to match the specific topology of the receptors and 

spatial distances required. However, when the ligand geometry is appropriate, 

large benefits in term of affinity may happen.
92
 Topological presentation of the 

sugar moieties can be fine-tuned when rigid scaffolds (such as calixarenes) and 

linkers are used.
80 

Interestingly, several studies reported that glycoconjugates 

tethering conformationnaly constrained sugars can act as potencial selective 

inhibitors, able to discriminate between lectins with closely related sequences.
93
 

 

 The length of the spacer in the binding mode:Spatial distances between binding 

epitopes of a multivalent glycoconjugate can be fine-tuned with an appropriate 

selection of linker arm length.
94
 For instance, this consideration may be critical 

for lectin affinity, specially if a chelate binding mode is participing. In general, 

rigid linkers should be much more effective than flexible ones because of the 

theoretical loss in conformational entropy upon binding. However, flexible 

linkers have been also used with success to design glycoconjugates able to 

chelate proteins binding sites, with some of the largest affinity enhancements 

described so far.
95
 On the contrary, ligands attached to rigid spacers remain 

uncommon due to synthetic hurdles and the necessity to exactly match their size 

with the distance separating the receptor binding domains.
96
 

 

 

 

 

                                                 
92 (a) Vrasidas, I.; André, S.;  Valentini, P.; Böck, C.; Lensch, M.; Kaltner, H.; Liskamp, R. M. 
J.; Gabius, H-J.; Pieters, R. J. Org. Biomol. Chem. 2003, 1, 803-810. (b) André, S.; Liu, B.; 
Gabius, H-J.; Roy, R. Org. Biomol. Chem. 2003, 1, 3909-3916. 

93 Sakai, S.; Shigemasa, Y.; Sasaki, T. Tetrahedron Lett. 1997, 47, 8145-8148. 
94 (a) Kitov, P. A.; Shimizu, H.; Homans, S. W.; Bundle, D. R. J. Am.Chem. Soc. 2003, 125, 
3284-3294. (b) Yung, A.; Turnbull, W. B.; Kalverda, A. P.; Thompson, G. S.; Homans, S. W.; 
Kitov, P.; Bundle, D. R. J. Am. Chem. Soc. 2003, 125, 13058-13062. 

95 Krishnamurthy, V. M.; Semetey, V.; Bracher, P. J.; Shen, N.; Whitesides, G. M. J. Am. Chem. 

Soc 2007, 129, 1312-1320. 
96 Fan, E. K.; Zhang, Z. S.; Minke, W. E.; Hou, Z.; Verlinde, C. L. M. J.; Hol, W. G. J. J. Am. 

Chem. Soc. 2000, 122, 2663-2664. 
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The length of the spacer in intrinsic affinities and cross-linking events: The 

importance of the length of the linker is less intuitive when a multivalent ligand 

interacts at a single receptor binding site (Fig. 1.10, A) or when an aggregative 

process is occuring (Fig. 1.10, D). A careful selection of the binding assay can 

provide insights on particular binding events. For instance, binding affinities of 

multimeric lactosides based on carbohydrate scaffolds with different valencies 

and different linker lengths were measured toward biologically relevant 

galectins. Nearly identical binding affinities were recorded for derivatives 

differing in the length of the linkers when Enzyme Linked Lectin Assay (ELLA) 

was employed. In contrast, two-site “sandwich” ELLA revealed that multivalent 

derivatives bearing the longest spacers were more efficient for cross-linking 

lectins. Hence, intrinsic affinities, devoid of aggregation effects, and cross-

linking capabilities are, therefore, not directly related phenomena that must be 

taking into consideration in neoglycoconjugate design for specific 

applications.
97
  

 

Number of epitopes: Nowadays, it is well established that a higher number of 

epitopes doesn’t necessary lead to a higher binding potency of the resulting 

glycoclusters. This is because a plateau of inhibition could be observed for 

glycoconjugates with valency in the middle of the series.
98
 Moreover, several 

efforts have been made to predict enhancement expected from the multivalent 

presentation of binding epitopes taking into account if:  

 

• A multivalent ligand is interacting intramolecularly with a multimeric 

receptor;
99
 

• Chelating binding modes opperate as affinity enhancements;
100

  

                                                 
97 Gouin, S. G.; García Fernández, J. M.; Vanquelef, E.; Dupradeau, F-Y.; Salomonsson, E.; 
Leffler, H.; Ortega-Muñoz, F. M.; Nilsson, U. J.; Kovensky, J. ChemBioChem. 2010, 11, 
1430-1442. 

98 (a) Ashton, P. R.; Hounsell, E. F.; Jayaraman, N.; Nilsen, T. M.; Spencer, N.; Stoddart, J. F.; 
Young, M. J. Org. Chem. 1998, 63, 3429-3437. (b) Pagé, D.; Roy, R. Bioconjugate Chem. 
1997, 8, 714-723. 

99 Gargano, J. M.; Ngo, T.; Kim, J. Y.; Acheson, D. W. K.; Lees, W. J. J. Am. Chem. Soc. 2001, 
123, 12909-12910. 

100 Kitov, P. L.; Bundle, D. R. J. Am. Chem. Soc. 2003, 125, 16271-16284. 
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• Diferent percentages of families of glycosides are grafted onto the same 

dendrimeric backbone.
101

  

 

Such assumptions, however, may be still limited to ideal models, and that would 

be a misleading interpretation to consider these observations as general rules to 

predict the binding affinity of a neoglycoconjugate in a complex biological 

system. 

 

1. 5. Objectives 

 

With this background, the general objective of this work is to develop new 

methods for obtaining glycolipid analogues to β-GalCer of potential biological 
interest through chemical synthesis, focusing in the modification of the 

carbohydrate and lipid structure, and in the study of glycosylation reaction. This 

would afford new libraries of glycolipids which were not only tunned in the 

carbohydrate moiety but also in the ceramide part. Moreover, due to the fact that 

the availability of natural glycolipids in multigram scale is often limited and 

expensitive for their studies against diseases, we hypothesize that anchoring 

synthetically more accessible β-GalCer analogues in a multivalent system could 

compensate its expected affinity loss due to its simplicity by increasing the 

number of copies of glycolipid moiety by the phenomenon so-called cluster 

effect. In this context, the specific objectives of the present work are the 

following: 

 

1. To study the direct β-glycosylation reaction of long chain stannylated 
amido-alcohols in order to avoid the in situ formation of ortho-ester 

derivative. To achieve this purpose, the disarming protecting group 2,6-

difluorobenzoyl will be tested because of the reported ability of such 

family of protecting groups to afford direct β-glycosides when they are 
placed on C-2 carbon at galactosyl donors. Moreover, monitoring of the 

glycosylation reaction and the identification of the glycosylation 

                                                 
101 Wolfenden, M. L.; Cloninger, M. J. J. Am. Chem. Soc., 2005, 127, 12168-12169. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 33 

intermediates will be carried out through NRM spectroscopy (Scheme 

1.9., Chapter 2).  

 

Scheme 1.9. Study of the direct β-glycosylation reaction of long chain stannylated amido-

alcohols 

 

2. To study the direct β- and α-glycosylation of stannylated ceramide 

derivatives of sphingosine and phytosphingosine with 2-deoxy-2-iodo-

glycosyl donors. This study will check the generality of the glycosylation 

methodology developed by our group based on stannylated ceramides as 

effective glycosyl acceptors; and on the other hand, this methodology 

could afford new 2-deoxy-analogues of remarkable glycosphingolipids 

as β-GalCer and KRN7000 (Scheme 1.10., Chapter 3). 
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Scheme 1.10. Retrosynthetic analysis for the preparation of 2-deoxyglicolipids 

 

3. To study modifications at C-2 on carbohydrate derivatives through cross 

coupling reactions. In this case, remarkable glycosyl precursors such as 

2-iodoglycals of different configurations and with different protecting 

groups will be coupled with different boronic acids under phosphine free 

Suzuki-Miyaura reaction conditions in aqueous media in order to obtain 

2-C-arylglycals. Once the generality of this reaction will be proved, the 

reactivity of 2-C-arylglycals will be studied in order to obtain 2-C-

arylglycosides (Scheme 1.11., Chapter 4). 
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Scheme 1.11. Preparation of 2-C--arylglycosides 

 

4. To synthetize multivalent systems based on β-GalCer derivates of 
different size, polarity and number of the aglycone chains. In order to 

achieve this objective, copper-catalized azide-alkyne cycloaddition 

(CuAAC) reaction will be studied on β-GalCer derivates modified with 

an azide moiety in the ω-carbon of the fatty acid chain, and scaffolds 
such as benzyl ethers and hyperbranched polymers (Boltorn H30) 

modified with acetylene groups. These materials will be employed in 

inhibition studies against the Cholera Toxin (Figure 1.15., Chaper 5). 
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Figure 1.15. Representation of β-GalCer derivative supported on a hyperbranched polymer 
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Chapter 2 

Synthesis of ββββ-Galceramide analogues: Glycosylation of 

amidoalcohols using 2,6-diFBz-glycosyl donors
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2.1. Introduction 

 

 

As mentioned in chapter 1, glycosphingolipids (GSLs) are ubiquitous 

components of eukaryotic cell membranes.1 Distributed mainly at the surface of 

the cell, they serve as distinguishing markers for cells and mediate cell-to-cell 

recognition and communication. Thus, GSLs have been known for many years 

to function in animal cells as antigens,2 and receptors for microbial toxins, 

viruses and bacteria3 as well as mediators of cell adhesion and modulators of 

signal transduction.4 In recent years, these compounds have been studied as a 

strategy for pharmacological prevention of microbial infections (HIV),5 cancer 

chemotherapy,6 modifying the activity of receptors for insulin,7 epidermal 

growth factor8
 and nerve growth factor9

 which may have potential effects in 

Alzheimer’s10
 and Parkinson’s11 diseases. 

 

GSLs consist of two structural elements (Figure 2.1.): a lipophilic membrane 

anchor, the ceramide portion, which is formed by a long chain aminoalcohol and 

a fatty acid, and a hydrophilic carbohydrate moiety, which protrudes from the 

cell surface. 

 

                                                 
1 Hakomori, S. Biochim. Biophys. Acta 2008, 1780, 325-346. 
2 Hakomori, S. Acta Anat. 1998, 161, 79-90. 
3 Varki, A. Glycobiology 1993, 3, 97-130. 
4 (a) Hakomori, S. Glycoconjugate J. 2000, 17, 143-151. (b) Todeschini, A. R.; Hakomori, S. 
Biochim. Biophys. Acta 2008, 1780, 421-433. 

5 Svensson, M.; Frendeus, B.; Butters, T.; Platt, F.; Dwek, D.; Svanborg, C. Mol. Microbiol. 
2003, 47, 453-461. 

6 Radin, N.S. Eur. J. Biochem. 2001, 268, 193-204. 
7 Allende, M.L.; Proia, R.L. Curr. Opin. Struct. Biol. 2002, 12, 587-592. 
8 Zhou, G.; Hakomori, S.; Kitamura, K.; Igarashi, Y. J. Biol. Chem. 1994, 269, 1959-1965. 
9 Mutoh, T.; Toluda, A.; Miyadai, T.; Hamaguchi, M.; Fujiki, N. Proc. Natl. Acad. Sci. U. S. A. 
1995, 92, 5087-5091. 

10 Svennerholm, L.; Brane, G.; Karlsson, I.; Lekman, A.; Ramstorm, I.; Wikkelso, C.  Dementia 
Geriatr. Cognit. Disord. 2002, 14, 128–136. 

11 Matsuoka, Y.; Saito, M.; LaFrancois, J.; Saito, M.; K. Gaynor, K.; Olm, V.; Wang, L.; Casey, 
E.; Lu, Y.; Shiratori, C.; Lemere, C.; Duff, K. J. Neurosci. 2003, 23, 29-33. 
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Figure 2.1. Some naturally occurring β-glycosphingolipids 

 

Because of the biological importance of these compounds significant work has 

been devoted for preparing natural GSLs and analogues, with the goals of 

improving these properties and understanding the interactions responsible for 

biological activity.  

 

A key step in the synthesis of GSLs is the formation of the glycosidic bond 

between a properly protected carbohydrate and ceramide or sphingosine.12,13 To 

accomplish this key synthetic step, a variety of glycosyl donors have been 

utilized including glycosyl trichloroacetamidates, fluorides, phosphates and 

sulfides.14 Regardless, the glycosylation reaction is still one of the main 

determining factors in the synthesis, because the yields in the direct 

glycosylation of ceramides are low. This problem has been attributed to the low 

nucleophilicity of ceramides,12,15 as a result of head-group hydrogen bonding, 

and it is usually circumvented by using azidosphingosine derivate instead of the 

ceramide (Scheme 2.1.). However, further reduction of the azido group and 

acylation is therefore required.15b,16 

                                                 
12 Vankar, Y. D.; Schmidt, R. R. Chem. Soc. Rev. 2000, 29, 201–216. 
13 Gigg, J.; Gigg, R. Top. Curr. Chem. 1990, 154, 77–139. 
14 For a review about the O-glycosylation of sphingosines and ceramides see: Morales-Serna, J. 
A.; Boutureira, O.; Díaz, Y.; Matheu, M. I.; Castillón, S. Carbohydr. Res. 2007, 342, 1595–
1612. 

15 (a) Polt, R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V.J. J. Am. Chem. Soc. 1992, 114, 10249-
10258. (b) Schmidt, R.R.; Zimmermann, P. Angew. Chem., Int. Ed. Engl. 1986, 25, 725-726. 

16 Schmidt, R.R.; Zimmermann, P. Tetrahedron Lett. 1986, 27, 481-484. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 39 

 
 

Scheme 2.1. Usual convergent retrosynthetic analysis of β-galactosylceramide 

 

Our group has recently reported a new and highly efficient protocol for the 

direct glycosylation of ceramides which involves the reaction of stannyl ethers17 

with α-iodogalactose derivatives in the presence of TBAI as an activator. This 
approach allows increasing the nucleophilicity of ceramide oxygen without 

significantly modifying the basicity and provided a direct acces to both α-18 and 

β-glycolipids19 (Scheme 2.2.) starting from per-O-silylated (via a) or per-O-

acetylated (via b) galactosyl iodides respectively. 

 

                                                 
17 (a) Kaji, E.; Shibayama, K.; In, K. Tetrahedron Lett. 2003, 44, 4881-4885. (b) Kartha, R. K. 
P.; Kiso, M.; Hasegawa, A.; Jennings, H. J.  J. Chem. Soc., Perkin Trans. 1, 1995, 3023-3026. 
(c) Garegg, P. J.; Malvisel, J.L.; Oscarson, S. Synthesis, 1995, 409-414. (d) Danishefsky, S. J.; 
Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K.; Griffith, D. A.; Oriyama, T.; 
Marsden, S.P. J. Am. Chem. Soc. 1995, 117, 1940-1953. (e) Vogel, K.; Sterling, J.; Herzig, Y.; 
Nudelman, A. Tetrahedron, 1996, 52, 3049–3056. (f) David, S.; Hanessian, S.  Tetrahedron, 
1985, 41, 643-663. (g) Yamago, S.; Yamada, T.; Hara, O.; Ito, H.; Mino, Y.;Yoshida, J.-I. 
Org. Lett. 2001, 3, 3867-3870. (h) Yamago, S.; Yamada, T.; Ito, H.; Hara, O.; Mino, Y.; 
Yoshida, J.-I. Chem. Eur. J. 2005, 11, 6159-6174. 

18 Boutureira, O.; Morales-Serna, J. A.; Díaz, Y.; Matheu, M.I.; Castillón, S. Eur. J. Org. Chem. 
2008, 1851-1854. 

19 (a) Morales-Serna, J.A.; Boutureira, O.; Díaz, Y.; Matheu, M.I.; Castillón, S. Org. Biomol. 
Chem. 2008, 6, 443-446. (b) Morales-Serna, J. A.; Díaz, Y.; Matheu, M. I.; Castillón, S. Org. 
Biomol. Chem. 2008, 6, 3831-3836. 
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Scheme 2.2. Reported glycosylation of ceramides for the obtention of α- and β-glycolipids18,19
 

 

However, when the glycosylation is performed by using an acetylated glycosyl 

donor (Scheme 2.2., via b), the obtention of β-glycolipids is not direct and the 
corresponding orthoester is previously formed, a fact usually observed in the 

coupling of sterically hindered alcohols.20 For this reason, a further treatment 

with BF3·OEt2 is necessary to rearrange the obtained orthoesters
21 to the 

corresponding β-anomers. The obtention of orthoester derivatives has been also 

decribed starting from 2-O-chloroacetylglycosyl donors.22 

 

Often orthoester formation is obviated by using pivaloyl protecting group at 

O2.23
 However, in our hands, when starting from pivaloyl protected donor, a 

                                                 
20 (a) Fürstner, A.; Jeanjean, F.; Razon, P.; Wirtz, C.; Mynott, R. Chem. Eur. J. 2003, 9, 320-
326. (b) Gung, B. W.; Fox, R. M. Tetrahedron 2004, 60, 9405-9415. (c) Nicolaou, K. C.; 
Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc. 1988, 110, 4696-4705. (d) 
Kuszmann, J.; Medgyes, G.; Boros, S. Carbohydr. Res. 2004, 339, 2407-1414. (e) Plante, O. 
J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc. 2001, 123, 9545-9554. 

21 Some examples of isomerization of orthoesters to β-glycosides are: (a) Wang, W.; Kong, F. J. 
Org. Chem. 1998, 63, 5744-5745. (b) Sznaidman, M.L.; Johnson, S.C.; Crasto, C.; Hecht, 
S.M. J. Org. Chem. 1995, 60, 3942-3943. (c) Gass, J.; Strobl, M.; Kosma, P. Carbohydr. Res. 
1993, 244, 69-84. 

22 (a) Wang, G.; Zhang, W.; Lu, Z.; Wang, P.; Zhang, X.; Li, Y. J. Org. Chem. 2009, 74, 2508-
2515. (b) Hanashima, S.; Manabe, S.; Ito, S. Angew. Chem. Int. Ed. 2005, 44, 4218-4224. (c) 
Orgueira, H.A.; Bartolozzi, A.; Schell, P.; Litjens, R.E.J.N.; Palmacci, E.R.; Seeberger, P.H. 
Chem. Eur. J. 2003, 9, 140-169. (d) Fürstner, A.; Jeanjean, F.; Razon, P. Angew. Chem. Int. 
Ed. 2002, 41, 2097-2101; e) Ye, X.-S.; Wong, Ch.-H. J. Org. Chem. 2000, 65, 2410-2431. (e) 
Zegelaar-Jaarsveld, K.; Duynstee, H.I.; van der Marel, G.A.; van Boom, J.H. Tetrahedron 
1996, 52, 3575-3592. 

23 (a) Harreus, A.; Kunz, H. Liebigs Ann. Chem. 1986, 717-721. (b) Garegg, P. J.; Olsson, L.; 
Oscarson, S. J. Org. Chem. 1995, 60, 2200-2204. (c) Perrie, J.A.; Harding, J.R.; King, C.; 
Sinnott, D.; Stachulski, A.V. Org. Lett. 2003, 5, 4545-4548. 
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mixture of orthoester and β-glycoside was obtained, similar to that reported for 

related glycosyl donors.24 Replacing a 2-O-acetyl by a 2-O-benzoyl is another 

common way to avoid orthoester formation, but more severe basic conditions 

are required for the removal of O-benzoates and in particular a 2-O-benzoate of 

galactose.25  

 

Other recently reported bulky groups proposed in β-glycosylation reactions for 
avoiding orthoester formation are 2-chloro-2-methylpropanoic ester26 or 4-

acetoxy-2,2-dimethylbutanoic ester.27 All these protecting groups have been 

proposed with the aim of affording a sterically demanding dioxolenium ion 

intermediate that prevents orthoester formation (Scheme 2.3., via a) to favour 

the obtention of the corresponding β-glycosides (Scheme 2.3., via b). 

 

 
 

Scheme 2.3. Orthoester versus glycoside formation 

 

In this context we envisage in a different approach to avoid orthoester formation 

during ceramide glycosylation: that is, to use a protecting group with a higher 

electron-withdrawing nature in order to destabilize the dioxolenium ion 

intermediate I (Scheme 2.3.) in the orthoester formation. In this sense, 

                                                 
24 Vaughan, M. D.; Johnson, K.; DeFrees, S.; Tang, X.; Warren, R. A. J.; Withers, S. G. J. Am. 
Chem. Soc. 2006, 128, 6300-6301. 

25 Cato, D.; Buskas, T.; Boons, G.-J. J. Carbohydr. Chem. 2005, 24, 503-516. 
26 Szpilman, A.M.; Carreira, E.M. Org. Lett. 2009, 11, 1305-1307. 
27 (a) David, W.; Harry, E.; Yu, H. PCT Int. Appl. 2006 WO 2006/042200 A3. (b) Yu, H.; 
Williams, D.L.; Ensley, H.E. Tetrahedron Lett. 2005, 46, 3417-3421. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 42 

fluorobenzoyl groups have been described recently as alternatives to acetyl and 

benzoyl protective groups in glycopeptide synthesis.28 Specifically, 2,6-

difluorobenzoyl group combines the advantages of the benzoyl group in 

formation of glycosidic bonds with the ease of removal characteristic of the 

acetyl group.  

 

In an effort to improve the direct glycosylation of ceramides applying our 

experience with stannyl ethers we show herein the use of highly disarmed 

glycosyl donors for direct accessing β-glycolipids without orthoester formation. 

 

2.2. Results and Discussion 

 

In general, easily accessible fully difluorobenzoylated galactosyl bromides have 

been found to be low reactive in the synthesis glycopeptides28 (Scheme 2.4., A). 

Moreover, when other perfluorobenzoylated galactosyl sulfides were employed 

as glycosyl donors for the glycosylation of ceramides, good β-selectivities were 
obtained although yields were moderate to good 50-60%29 (Scheme 2.4., B). 

However, no orthoester and better results in terms of yield to β-glycoside (63-
74%) were obtained when only C-2 was functionalized with a 

difluorobenzoylated group on the glycosyl donor for the glycosylation of 

disaccharides25 (Scheme 2.4., C).  

 

With such precedents in mind, we decided to study the glycosylation reaction 

using less disarmed glycosyl donors, carrying only a difluorobenzoyl group at 

C-2 while acetyl esters were present at C-3, C-4 and C-6 position, and activating 

ceramide derivates as a stannyl ethers in order to achieve β-galactosides in just 
one glycosylation step.  

 

                                                 
28 Sjolin, P.; Kihlberg, J. J. Org. Chem. 2001, 66, 2957-2965. 
29 Wallner, F. K.; Norberg, H. A.; Johansson, A. I.; Mogemark, M.; Elofsson, M. Org. Biomol. 
Chem. 2005, 3, 309-315. 
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Scheme 2.4. Literature examples of glycosylation reactions employing fluorobenzoyl glycosyl 

donors
25,28,29

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 44 

2.2.1. Synthesis of the glycosylation starting materials 

 

The preparation 2-difluorobenzoylated glycosyl donors at C-2 position can be 

easily afforded from commercial fully acetyl protected β-galactopyranose 2.24 
(Scheme 2.5.). Selective deprotection of the acetyl group at C-2 of pentaacetyl-

galactopyranoses in presence of aqueous trifluoroacetic acid (TFA/H2O 10:1) 

was described by Chittenden.30  This procedure afforded the alcohol 2.25 with a 

83% yield after 5 h reaction. Then, the alcohol 2.25 was acylated with 2,6-

difluorobenzoyl chloride in presence of DMAP and pyridine at 0 ºC for 5 h to 

afford 2.27 quantitatively. 

 

O

AcO OAc

AcO

AcO
OAc

O

AcO OAc

AcO

HO
OAc

TFA/H2O (10:1)

2.24 2. 25

5h 83 % OAc

O

OAcAcO

AcO
O

O

F

F

2.27

O

F

F
Cl

2.26

DCM, DMAP, Py,
5 h, 0 ºC, 99%

 
Scheme 2.5. Preparation of glycosyl donor 2.27 

 

On the other hand, the synthesis of amidoalcohols bering one (2.32) and two 

(2.34) long aliphatic chain was envisioned as a mimic of ceramide derivatives 

and to explore the direct β glycosylation of ceramides. Initial efforts were 

directed toward the synthesis of ceramide 2.34 (Scheme 2.6.) from 16-

bromohexadecanoic acid 2.28. Thus, 16-bromohexadecanoic acid 2.28 was 

transformed into the corresponding azide derivative 2.29 in 90% yield by 

treatment with NaN3 in DMF at 90 °C.  

 

2-Aminoethanol 2.30 was acylated with the stearoyl chloride 2.31 in CH2Cl2 to 

give the amide 2.3231 in 88% yield as is depicted in Scheme 2.6. Reduction of 

amide 2.32 with LiAlH4 and acylation with 2.29 using coupling reagents
32 

(HOBt and EDC) afforded the ceramide 2.34.  

 

                                                 
30 Chittenden, G. J. F. Carbohydr. Res. 1988, 183, 140-143. 
31 Guan, L.-P.; Zhao, D.-H.; Xiu, J.-H.; Sui, X.; Piao, H.-R.; Quan, Z.-S. Arch. Pharm. Chem. 
Life Sci. 2009, 342, 34-40.  

32 Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606-631. 
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Scheme 2.6. Synthesis of amido alcohols 2.32 and 2.34 

 

2.2.2. Glycosylation of stannylamidoalchohols under strongly acidic 

conditions 

 

Initially, we explored the reaction of 1-O-acetylgalactosyl donor 2.27 with a 

simple ceramide model, which was activated as the corresponding stannyl ether 

(2.35). The glycosylation reaction was studied by using different acidic 

conditions. In this sense, the use of Lewis acids in glycosylation of ceramides 

starting from penta-O-acetyl-β-D-galactose has been reported previously by 
Fantini et al.33 Direct glycosylation of 1-O-acetylglycosyl donors is usually 

appreciated because the preparation of  more activated glycosyl donors is 

avoided,  thus decreasing the number of steps of the synthesis.  

 

The first assay was performed using 6 equivalents of freshly distilled BF3·OEt2 

added to an ice-cooled mixture of glycosyl donor and acceptor in dry CH2Cl2 

under argon atmosphere. The reaction was warmed to room temperature but 

after 3 h of reaction the 1H NMR spectrum from the crude only showed the 

presence of starting materials and the product that results of the hydrolysis of 

glycosyl donor (2.40). After crude purification, this product was obtained in a 

80%  yield and  1:4  β/α ratio (Table 2.1., entry 1).  

                                                 
33 Villard, R.; Hammache, D.; Delapierre, G.; Fotiadu, F.; Buono, G.; Fantini, J. ChemBioChem 
2002, 3, 517-525. 
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In order to reduce the hydrolysis process, the reaction was performed using only 

3 equivalents of BF3·OEt2 in the presence of activated 4Å MS but similar results 

were obtained after 4 h of reaction (Table 2.1., entry 2). 

 

Other assays with Brönsted acids were also carried out. When a catalytic amount 

of TfOH (0.3 eq) was used, no evolution was observed during 3h of reaction 

(Table 2.1., entry 3). Nevertheless, the desired glycosylated product 2.37 was 

obtained by using an excess of TfOH (6 eq) (Table 2.1., entry 4). It is worth to 

note that only the β-glycoside was obtained and as we expected, no evidences of 
orthoester formation were found. In this case, the yield (48%) was not very high 

because products resulting from partial desprotection of galactose were also 

formed. 

 

To improve the yield on glycosylation, promoter concentration was optimized. 

When 1 eq of TfOH was used no evolution was observed after 15 min. A second 

equivalent of acid was added without formation of glycosylated product either 

after 1 h of reaction (Table 2.1., entries 5 and 6). However, when 3 eq of TfOH 

were added, a complete conversion was achieved in 0.5 h. Regrettably, several 

purifications were needed to remove decomposition by-products and reactant 

2.35 in excess, as a consequence, the desired β-glycoside was obtained in a 60% 

yield (Table 2.1., entry 7). Alternatively, dry toluene was tested as solvent but 
reaction became more complex so yield was lower (Table 2.1., entry 8). 

 

In order to simplify the purification step, we considered not to use an excess of 

amide 2.35. Moreover, the deprotection of glycosylated product 2.37 was 

carried out prior to purification in order to increase the difference of Rf between 

2.38 and by-products. This methodology was applied under the optimized 

conditions of promoter concentration, obtaining the deprotected β-glycoside 
2.38 in a good yield (85%) over the two steps (Table 2.1., entry 9). 
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Table 2.1. Glycosylation of lipids 2.35 and 2.36 with O-acetylglycosyl donors 2.24 and 2.27  

promoted by Lewis and Brönsted acids 

 

O

AcO OAc

AcO
R1O

OAc
O

R4O OR4

OR1

O
N

O

R3

R2

O

R4O OR4

R4O
OR1

OH+

2.27 R1=2,6-di-F-Bz

2.24 R1=Ac

2.37 R1= 2,6-di-F-Bz, R2=H, R3 = (CH2)16CH3, R4= Ac

2.38 R1= R2= R4= H, R3 = (CH2)16CH3

2.39 R1= R4= Ac, R2=H, R3 = (CH2)16CH3

NaOMe/
MeOH

+Bu3SnO
N

O

R3

R2

2.35 R2=H,

R3 = (CH2)16CH3

2.36 R2= (CH2)17CH3,

R3 = (CH2)14CH2N3

2.40 R1=2,6-di-F-Bz

R4=Ac

2.41 R1= R4=Ac

2.42 R1= 2,6-di-F-Bz,R2= (CH2)17CH3, R3 = (CH2)14CH2N3, R4= Ac

2.43 R1= R4= H, R2= (CH2)17CH3, R3 = (CH2)14CH2N3

NaOMe/
MeOH

R4O

 

Entry
a
 Donor 

(eq) 

Acceptor (eq)
 b
 Promoter

 

(equiv.) 

t (h) Reaction 

product 

Yield
 c
 

(%) 

1 2.27 (1) 2.35 (1.1) BF3·OEt2 (6)
  3 2.40 80 

2 2.27 (1) 2.35 (1.1) BF3·OEt2 (3)
  4 2.40 78 

3 2.27 (1) 2.35 (1.1) TfOH (0.3) 3 -- N.R. 

4 2.27 (1) 2.35 (1.2) TfOH (6) 0.25 2.37 48d 

5 2.27 (1) 2.35 (1.1) TfOH (1) 0.25 -- N.R. 

6 2.27 (1) 2.35 (1.1) TfOH (2) 1 -- N.R. 

7 2.27 (1) 2.35 (1.2) TfOH (3) 0.5 2.37 60d 

8f 
2.27 (1) 2.35 (1.2) TfOH (3) 1 2.37 20 

9 2.27 (1.2) 2.35 (1) TfOH (3) 2 2.38 85e 

10 2.24 (1.2) 2.35 (1) TfOH (3) 2 2.39 18e 

11 2.27 (1.2) 2.36 (1) TfOH (3) 2 2.43 40e 

a General conditions: Promoter was added to a mixture of donor, tributylstannyl acceptor, and 4 

Å MS in the CH2Cl2 solvent unless otherwise indicated. 
b In situ tributylstannyl alkoxyde 

preparation prior to glycosylation reaction. c Isolated yield. d  Yield of isolated product after two 

consecutive chromatographic purifications. f  Toluene as a solvent. e Overall yield for the two 

steps. N.R.: no reaction. 

 

To compare the advantages of using the 2,6-difluorobenzoyl group at position 

C-2 of glycosyl donor, the same methodology was applied to fully acetylated 

galactose 2.24 (Table 2.1, entry 10). In this case, the 1H NMR spectrum of the 

crude reaction showed the presence of a mixture of products which results from 

the glycosyl donor hydrolysis with α configuration (2.41αααα), the glycosylated 
product  2.39 and the corresponding orthoester in a relation (0.5:1:3) 
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respectively. After acetyl deprotection and purification, glycosylated product 

2.38 was obtained in very low yield (18%, Table 2.1, entry 10). This result 

demonstrates the importance of the presence of a difluorobenzoyl protecting 

group at O-2 in order to avoid the formation of the undesired orthoester. 

 

In order to expand this methodology, glycosyl donor 2.37 was used in the 

glycosylation of more complex amidoalcohols such as ceramide 2.36. Thus, 

under the optimized glycosylation conditions (Table 2.1., entry 9) and after 

subsequent acetyl deprotection, product 2.43 was isolated in a overall 40% yield 

(Table 2.1., entry 11). 

 

Once we demonstrated that β-glycosylation of ceramide derivates was possible 

in presence of a strong protic acid and no traces of orthoester were observed, we 

decided to explore the glycosylation of lipids 2.35 and 2.36 in milder conditions. 

 

 

2.2.3. Glycosylation of stannylamidoalchohols under milder conditions 

 

The previous glycosylation study starting from 1-O-acetyl glycosyl derivatives 

demonstrated the convenience of using disarmed glycosyl donors but also 

showed the necessity of exploring other activation methods and different leaving 

groups for the glycosylation of low reactive ceramides. In this sense and, in an 

attempt to further broaden the scope of such disarmed glycosyl donors, we 

proceeded to study the glycosylation reaction using different leaving groups. 

 

Glycosyl iodides are well known as excellent glycosyl donors34 due to their 

superior reactivity compared to other glycosyl halides, and they have been used 

effectively in previous works in our group.18,19 Thus, the conditions for the 

glycosylation of ceramides  developed by us were tested with disarmed 

iodoglycoside 2.44 and stannyl amide 2.35, using TBAI as a promoter and 

toluene as a solvent and heating to reflux (Table 2.2, entry 1). Unfortunately, a 

mixture of hydrolyzed glycoside 2.40 (89%) and the corresponding 

                                                 
34 (a) Gervay-Hague, J.; Hadd, M. J. J. Org. Chem. 1997, 62, 6961-6967. (b) Gervay-Hague, J.; 
Hadd, M. J. Carbohydr. Res. 1999, 320, 61-69. (c) Lam, S. N.; Gervay-Hague, J. Org. Lett. 
2002, 4, 2039-2042. 
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amidoalcohol 2.35 were recovered instead of the glycosylated product. By using 

AgOTf as a promoter and CH2Cl2 as a solvent at room temperature similar 

results were found (Table 2.2., entry 2). These results are consistent with the fact 

that iodoglycoside 2.44 is more reactive than the 1-O-acetyl donor 2.27 and 

therefore, product 2.44 might hydrolize before reacting with stannyl derivative 

2.35. 

 

Consequently, the use of a less reactive glycosyl donor such as glycosyl bromide 

2.45 was studied. Initially, the use of TBAI as a promoter was unsuccessful and 

a mixture of hydrolyzed donor 2.40αααα and ceramide 2.35 was obtained again 

(Table 2.2., entry 3). Nevertheless, triflate salts such as AgOTf or Hg(OTf)2 

allowed to obtain glycosylated derivative 2.37 (Table 2.2., entries 4 and 5). 

However, conversions (30-35%) were not satisfactory enough because 

orthoester was detected as a by-product (characteristic signal:19b δ 5.71 ppm 1H, 

d, J = 4.7 Hz, 1H, H-1), and hydrolized glycosyl donor was also obtained. These 

results showed that under the less acidic conditions used for the activation of 1-

haloglycosides the formation of orthoester products may be favoured after long 

reaction times. Nevertheless, the putative 2,6-difluorobenzoyl orthoester 

derivative should be easier to rearrange to the glycosylated product than the 

corresponding acetate orthoester in presence of acid promoter.35 For this reason, 

the use of a as acid like Sn(OTf)2 together with AgOTf was also studied. Thus, 

when a mixture of AgOTf/Sn(OTf)2 was applied, quantitative formation of the 

glycosylated product 2.37 was observed in the reaction crude. Unfortunately, the 

yield obtained was not excellent because of the difficulties of purification (Table 

2.2., entry 6). However, when the purification was performed after deprotection 

of the reaction crude, an excellent yield 90% for compound 2.38 was achieved 

over two steps (Table 2.2., entry 7).  

 

 

 

 

 

 

 

                                                 
35 Kong, F. Carbohydr. Res. 2007, 342, 345-373. 
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Table 2.2. Glycosylation of lipids 2.35 and 2.36 with glycosyl halydes 2.44-2.46 

 

  

Entry
a
 Donor 

(eq)  

Acceptor
 b
 

(eq) 

Promoter 

(eq) 

T 

(ºC) 

t 

(h) 

Reaction 

product 

Yield
 c
 

(%) 

1d 
2.44 (1) 2.35 (1.1) TBAI (0.3) reflux 15 2.40 89 

2 2.44 (1) 2.35 (1.1) AgOTf (3) rt 24 2.40  87 

3d 
2.45 (1) 2.35 (1.2) TBAI (0.3) 80 24 2.40αααα 80 

4 2.45 (1) 2.35 (1.2) AgOTf (3) rt 24 2.37  

2.40αααα 

35e,f 

54 

5 2.45 (1) 2.35 (1.2) Hg(OTf)2 (3) rt 24 2.37 

2.40αααα 

30e,f 

57 

6 2.45 

(1.2) 

2.35  (1) AgOTf/Sn(OTf)2 

(3:3) 

rt 24 2.37 53 

7 2.45 

(1.2) 

2.35  (1) AgOTf/Sn(OTf)2 

(3:3) 

rt 24 2.38  90g 

8 2.46 

(1.2) 

2.35  (1) AgOTf/Sn(OTf)2 

(3:3) 

rt 24 2.38  42g 

9 

 

2.45 

(1.2) 

2.36  (1) AgOTf/Sn(OTf)2 

(3:3) 

rt 40 2.43  8g 

10 

 

2.45 

(1.2) 

2.36  (1) AgOTf/Sn(OTf)2 

(3:3) 

40 24 2.43  63g 

a General conditions: Promoter was added to a mixture of donor, tributylstannyl acceptor, and 4 

Å MS in CH2Cl2 the solvent unless otherwise indicated. 
b In situ tributylstannyl alkoxide 

formation prior to glycosylation reaction.c Isolated yield. d Toluene as a solvent. e Total 

conversion. f Orthoester formation. g Overall yield for the two steps. 
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Alternatively, fully acetylated glycosyl bromide 2.46 was also used. In this case, 

the obtained yield 42% after deprotection of glycosylated product (Table 2.2., 

entry 8) was not as good as that by using 2,6-difluorobenzoate at position 2 

(90%, Table 2.2., entry 7), showing again the effectiveness of using this 

disarmed glycosyl donor in the glycosylation reaction of stannylamide 

derivative 2.35. 

 

In order to test our methology to glycosylate more complex ceramides, the 

mixture Ag(OTf)/Sn(OTf)2 was used starting from glycosyl bromide 2.45 and 

stannyl ether 2.36. A low b 8% yield was obtained when the reaction was 

performed at room temperature during 40 h of reaction (Table 2.2., entry 9). 

However, the yield was improved by heating at 40 ºC during 24 h, although 

tedious purification of the deprotected product 2.43 hampered the achievement 

of a remarkable isolated yield (63% over two steps). 

 

 

2.2.4. NMR studies on the glycosylation of stannylceramides promoted by 

TfOH 

 

In the context of our study of stannylceramide glycosylation using 2,6-

difluorobenzoyl glycosyl donors, one of our objectives was the possible 

detection of intermediates during the course of the reaction in such acidic 

conditions. In this sense, low-temperature NMR has been shown to be a 

powerful tool for monitor glycosylation process.36 In particular, the logical use 

of 19F NMR for the detection of anomeric triflates has been traditionally 

hampered by problems associated to the overlapping of such signals with those 

of the corresponding promoters (tipically AgOTf, TfOH, etc.) which avoids a 

reliable assignment of the triflate resonances and may lead to a wrong analysis. 

                                                 
36 (a) Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. J. Am. Chem. Soc. 2005, 127, 12090-12097. 
(b) Callam, C. S.; Gadikota, R. R.; Krein, D. M.; Lowary, T. L. J. Am. Chem. Soc. 2003, 125, 
13112-13119. (c) Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers, A. A.; Crich, D.; 
Yoshida, J. J. Am. Chem. Soc. 2007, 129, 10922-10928. (d) Honda, E.; Gin, D. Y. J. Am. 
Chem. Soc. 2002, 124, 7343-7352. (e) Liu, J.; Gin, D. Y. J. Am. Chem. Soc. 2002, 124, 9789-
9797. (f) Garcia, B.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269-4279. (g) Gildersleeve, J.; 
Pascal, R. A., Jr.; Kahne, D. J. Am. Chem. Soc. 1998, 120, 5961-5969. (h) Crich, D.; Sun, S. J. 
Am. Chem. Soc. 1997, 119, 11217-11223. (i) Zeng, Y.; Wang, Z.; Whitfield, Huang, X. J. 
Org. Chem. 2008, 73, 7952-7962. 
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Therefore, 19F NMR technique was chosen to perform this study because we 

anticipate that the presence of a fluorinated protecting group on glycosyl donor 

2.27 may offer the possibility of exploiting the new 19F NMR ressonaces in 2,6-

di-F-Bz (-89 to -110 ppm for 2,6-di-F-Bz versus -74 to  -78 ppm for triflates and 

triflic acid)  of such intermediates and  following its changes during the course 

of the reaction. 

 

2.2.4.1. 
19
F NMR monitoring of glycosylation reaction 

 

In order to perform the study, the reaction was cooled immediately to -78º C 

upon addition of TfOH (3 eq.) to the mixture of products 2.27 and 2.35 in 

CDCl3. 
19F NMR spectrum was recorded at that temperature but the signal 

associated to glycosyl donor 2.27 at δ -110.32 ppm did not suffer any change in 

chemical shift after 5 minutes of reaction. The sample was warmed to 20º C but 

neither change was detected after 5 minutes (Scheme 2.7.). This lack of 

reactivity at low temperature is reasonable taking into account that O-acetyl 

group is not usually a good leaving group in glycosylation reactions. 
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Scheme 2.7. Glycosylation of lipid 2.35 with glycosyl donor 2.27 with TfOH    

 
19F NMR experiment was repeated next at 25º C (Scheme 2.8.). After 5 minutes, 

the fluorine signal of the 2,6-difluorobenzoate group at δ -110.32 ppm 

disappeared, and two new peaks at δ -89.20 and -89.45 ppm started to appear. 

Those picks were tentatively attributed to the triflates 2.27a and 2.27b, 

respectively.  However, the intensity of the signal at δ -89.20 was increasing, 

while the signal at δ -89.45 was reducing after 10 min of reaction. After 30 

minutes of reaction, the signal at δ -89.45 disappeared completely and the signal 
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at δ -89.20 reached its maximum intensity. No signal at δ -112.0 corresponding 

to glycosylated compound 2.37 was observed during the experiment. 

Consequently, it was reasoned that the signal at δ -89.20 ppm could come from 

glycosylated compound protonated under the strong acid conditions of reaction 

(Scheme 2.8., product 2.37a). To test this hypothesis, the reaction mixture was 

submitted to a basic work up. After that, the formation of the glycosylated 

compound was confirmed by means of the appearance of the known signal at δ -

112.0 ppm in the 19F NMR (Scheme 2.8., product 2.37). Thus, on the basis of 

this NMR experiment, it is reasonable to think that the signal at δ -89.20 may be 

associated to glycosylated compound in acid conditions but the nature of the 

intermediate which fluorine signal appears at δ -89.45 ppm should be 

determined. 

 

Regrettably, 1H NMR and 13C NMR experiments resulted not suitable to follow 

the course of the glycosylation reaction because TfOH environment not only 

decreased the sensibility of signals in the complex spectra obtained but it was 

also responsible for the decomposition during the same time frame (30 min). 
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Scheme 2.8. Observation of anomeric triflates in acidic medium 

 

 

Crich and Sun36h discovered that a mixture of an α/β glycosyl triflate (2.48 and 

2.49), instead of dioxocarbenium ion, was formed during preactivation of 

peracetylglucosyl sulfoxide (2.47) in presence of Tf2O and DTBMP in CD2Cl2 

at low temperature (Scheme 2.9., A). In this case the two triflate species showed 

only one signal in the 19F NMR spectrum but eight resonance signals 

corresponding to carbonyl carbons were detected at 13C NMR. No evidence was 

found for dioxolenium carbons. On the other hand, the group of Huang36i 

observed the formation of α-glycosyl triflate (2.48)  and dioxolenium ion (2.50) 

intermediates from glycosyl donors like peracetylglucosyl sulfides using the 
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promoter system p-TolSCl/AgOTf but when the glycosyl donor contained 

multiple electro-withdrawing groups such perbenzoylgalactosyl sulphide (2.51), 

the triflate (2.52) was observed as a major product under the same conditions. 

Interestingly, the dioxolenium ion (2.54) was the major intermediate with a 

donor bearing electron-donating protective groups such as 2-O-benzoyl-3,4,6-

tri-O-benzyl derivatives under the same reaction conditions (Scheme 2.9., B) 

 

Taking into account these precedents and according to the deactivating 

properties of our glycosyl donor, and the strong TfOH acid conditions37 which 

may avoid the orthoester stabilization, the formation of glycosyl triflate 

intermediates may be reasonable in our case. 

 

 
 

Scheme 2.9. Identification of triflate and dioxolenium intermediates by Crich (A)
36h and Huang 

(B)
36i 

 

 

 

 

 

                                                 
37 Banoub, J.; Bundle, D. R. Can. J. Chem. 1979, 57, 2091-2097.  
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2.2.4.2. Elucidation of glycosylation intermediates in presence of  TfOH  

 

To confirm the formation of the triflate species, the donor 2.27 in presence of 

TfOH in dry CD2Cl2 was studied by 
19F NMR spectroscopy. The 19F NMR 

spectrum (Scheme 2.10.) showed two signals at the same chemical shift than 

those observed in the first experiment (compare Scheme 2.10. and Scheme 2.8. 

after 5 min) and a signal at -1.2 ppm corresponding to the fluorine atoms of the 

bonded triflate group (data not showed) 

 

 
 

 

 

Scheme 2.10. Observation of anomeric triflates in acidic medium  

 

This result suggested that during the glycosylation reaction (Scheme 2.8.) an α/β 

glycosyl triflate mixture is formed, showing two signals at δ -89.20 and -89.45 

ppm in the 19F NMR spectrum. This mixture rearranged to the more stable α-

glycosyl triflate during the data experiment accumulation, with concomitant 

formation of protonated glycosylated product. The signals corresponding to 

fluorine atoms of difluorobenzoyl protecting group for the protonated product 

(2.37a) and the α-glycosyl triflate (2.27a) are overlapped (Scheme 2.9.). 

 

It would be desirable to characterize the intermediates by 1H and 13C NMR to 

confirm their existence as triflates. Thus, we decided to carry out the addition of 

TfOH (3 eq.) to the solution of 2.27 in dry CDCl2 at room temperature for 5 min 

to ensure the formation of the triflates and immediately freezing them at -78º C 

to start the acquisition. Moreover, the following NMR experiments were done in 

a 600 MHz NMR instrument in order to increase the sensitivity and to improve 

the resolution of the signals because the acid conditions make bands broader.  
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Initially, the sample was cooled to -78 ºC after TfOH activation. However, no 
1H NMR signal of the carbohydrate was observed because of the low solubility 

of the compounds in the cooled CD2Cl2. Several attempts to record a 1H NMR 

spectra were carried out at higher temperatures (-40 ºC and -20 ºC) but it was 

only possible at 0 ºC. Fortunately, the mixture of triflates was stable enough to 

permit most of routine NMR experiments: 1H, 13C, COSY, HSQC, decoupled 

HMQC and HBMC.  

 

Figure 2.2. shows the 1H NMR spectra recorded at 0 ºC after 5 min to 4, 8, 12 

and 20 h of addition of TfOH. It is appreciable the initial formation of triflates 

and a progressive decomposition through the pass of time.   

 

 

 
Figure 2.2. Monitorization of triflate mixture at 0º C for 20h by 1H NRM. Diagnostic signals are 

highlighted to appreciate the relative stability of the intermediates 

  

Acidic conditions dramatically influence the proton chemical shift and in the 

resolution of the signals because most of the signals are downfield around 1 ppm 

respect to the starting material 2.27 at neutral conditions and signals are quite 

broad. Thus, 2-D experiments are indispensable to establish a confident 

correlation of the signals. Figures 2.3. and 2.4. show 1H and 13C NMR spectra of  

diagnostic signals of triflates 2.27a and 2.27b. Figures 2.5 to 2.7 show COSY, 

HSQC, HMBC spectra for the intermediates. Signals in the 1H and 13C NMR 
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spectra assigned taking into account the structural information from these 

bidimensional spectra.  

 

 

 
 

 

 
Figure 2.3. Selected signals from 1H NMR experiment of intermediates 2.27a and 2.27b 

 

 

 
Figure 2.4. Selected signals from 13C NMR experiment of intermediates 2.27a and 2.27b 
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Figure 2.5. COSY NMR experiment of intermediates 2.27a and 2.27b 
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Figure 2.6. HSQC NMR experiment of intermediates 2.27a and 2.27b 
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Figure 2.7. HMBC NMR experiment of intermediates 2.27a and 2.27b 

 

 

Although both anomeric protons (δ 6.89 ppm for isomer 2.27a and 6.80 ppm for 

isomer 2.27b, Figure 2.3.) appear at higher chemical shifts than described for 

some analogues in the literature (δ 6.40 ppm and 5.30 ppm of the anomeric 

protons for a α/β mixture tetraacetylglucopyranosyl triflate),36h The HSQC 

experiment (Figure 2.6.) showed that they correlate with carbons at 90.5 and 

90.0 ppm, which clearly indicated that those signals correspond to anomeric 

protons. Their higher chemical shift must be caused by the low pH.  

 

In general, values of 1H chemical shift (δ)  and coupling constants 3J1,2 (3.6 Hz) 

and 3J2,3 (10.8 Hz) for intermediate 2.27a are in agreement with an α-glycosyl 
donor in 4C1 chair conformation (Compare Table 2.3., Entries 1, 2 and 3). 

However, the small value of 3J1,2  for 2.27b did not fit with the expected for a β-
glycosyl derivative which would be expected  to be of 8-10 Hz instead of 2.0 Hz 

(Table 2.3., Entry 4).  
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Table 2.3. Comparison of selected data from 1H NMR for glycosyl donors 2.27a, 2.27b, 2.55 

and 2.56 

 

Entry
a 

Compound  H-1 H-2 H-3 H-4 H-5 H-6/H-6’ 

δ 6.74 

(d) 

5.70-5.55 

(m) 

4.51 

(t) 

4.24-4.08 

(m) 

1b 

 

3
J 2.2 n.d. 6.6 n.d. 

δ 6.80 

(d) 

5.30 

(dd) 

5.60-5.55 

(m) 

4.54 

(t) 

4.25-4.09 

(m) 

2b 

 

3
J 3.8 2.2 

9.6 

n.d. 6.6 n.d. 

δ 6.89 

(d) 

5.71 

(dd) 

5.68-

5.66 

(m) 

5.68-5.66 

(m) 

4.64 

(t) 

4.46-4.38 

(m) 

3 

 

3
J 3.6 

 

3.6 

10.8 

n.d. n.d. 6.6 n.d. 

δ 6.80 

(d) 

5.58 

(d) 

5.92 

(s) 

5.76 

(s) 

4.81 

(t) 

4.54-4.45 

(m) 

4 

 

3
J 2.4 1.8 - - 6.0 n.d. 

a 
Chemical shifts are expressed in ppm and coupling constants are expressed in Hz. b Data 

extracted from reference 25. n. d.: not determinable. 

 

In the interpretation of the 13C NMR spectra (Figure 2.4.), anomeric carbon 

signals were identified at δ 90.5 ppm for 2.27a and 90.0 ppm for 2.27b by 

HSQC NMR experiment (Figure 2.6.) as was commented previouly. 

Interestingly, The comparison of our intermediates with other galactosyl donors 

showed values of chemical shift at C-1 and C-2 by 13C NMR, similar to those 

observed for intermediate 2.27a (Table 2.4., Entry 3). In the case of 2.27b, their 

δ values for C-2, C-3 and C-4 suffer a strong deviation compared to those of 

other glycosyl donors (Table 2.4., Entry 4).  

 

Non-decoupled HMQC experiment was carried out to study the 1
JH1C1 for both 

isomers. In both cases 1JH1C1 was higher than 180 Hz (
1
JH1C1 = 184 Hz for 2.27a 
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and 1JH1C1 = 189 Hz for 2.27b) which was indicative that the H1 was adopting an 

equatorial disposition towards the anomeric carbon. This observation was also in 

agreement with the 3
J1,2 on 

1H NMR for both compounds showed before in 

Table 2.3. 

 

Table 2.4. Comparision of chemical shift of glycosyl donor by 13C NMR 

Entry
a 

Donor C-1 C-2 C-3 C-4 C-5 C-6 

1b 

 

93.6 68.2 67.7 67.8 69.5 61.5 

2b 

 

87.8 68.2 71.5 69.0 67.3 61.0 

3 

 

90.5 68.0 69.6 69.5 68.9 65.6 

4 

 

90.0 79.5 58.7 83.0 70.8 63.1 

a Chemical shifts are expressed in ppm. b  Data extracted from reference 25 

 

According to the observations by Crich and coworkers,36h we considered 

reasonable that a change of the chair conformation could explain why α and β 
mixture of anomers can be associated to the high values of both 1

JC1H1. 

According to the other spectroscopic data, structure 2.27a could be attributed to 

the more stable α isomer in a 4C1 chair conformation, whereas structure 2.27b 

could be attributed to the less stable β isomer in which conformation has 

changed adopting the anomeric proton an equatorial disposition via a 1C4 chair 

conformation or a skew or boat (2.27b’) in a similar way as observed by of 

Crich. However, it could be also attributed to the corresponding α-dioxolenium 
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intermediate in a conventional 4C1 chair (2.27b’’). In order to test this 

possibility, we analysed the coupling constant patern. The small 3J2,3  of 2.27b 

(2.4 Hz) supports better a β-triflate with a 1C4 conformation (2.27b’) than a 

dioxocarbenium intermediate (2.27b’’) (Scheme 2.11.).  

 

 
 

Scheme 2.11. Possible structures for a better description of 2.27b 

 

In order to support 2.27b’ structure, the coupling constants afforded by 1H NMR 

were compared to the coupling constants simulated for a β triflate with 1C4 

configuration. Such structure was represented with the software ChemBio3D 

Ultra 11.0 and it was optimized employing molecular dynamics MM2 (Figure 

2.8.).  

 
 

Figure 2.8. Optimized structure of 2.27b’ employing molecular dynamics MM2 

 

These calculations provided the dihedral angles of all the hydrogen in the 

molecule which were exported to the software MestreJ.38 This program 

displayed the teorical 3JHH according to the dihedral angle observed for the two 

hydrogen studied. The software offered different approximations like traditional 
                                                 
38 Navarro-Vazquez, A.; Cobas, J. C.; Sardina, F. J.; Casanueva, J.; Díez, E. J. Chem. Inf. 

Comput. Sci. 2004, 44, 1680-1685. 
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Karplus equation and newer approximations that consider the stereoelectronic 

effects of the closest substituents. Table 2.5. collects the 3
JH,H according the 

Karplus equation and the Haasnoot-Altona-de Leeuw which considers the effect 

of electronegativity of the subtituents.   

 

Table 2.5. Comparison of  experimental and simulated 3
JH,H for 2.27b’ in a 

1C4 chair 

conformation 

Entry JHx-Hy Dihedral angle  
3
J Karplus 

3
J HLA

 3
J 

experimental 

1 JH1-H2 67.83º 2.09 2.20 2.40 

2 JH2-H3 -76.29º 1.58 1.83 1.80 

3 JH3-H4 -49.50º 3.96 3.63 - 

4 JH4-H5 61.39º 2.65 2.77 - 

5 JH5-H6 -114.32º 3.17 1.16 6.0 

6 JH5-H6’ 121.42º 4.08 3.47 n.d. 

n.c.: not determinable. 

 

Experimental 3J1,2 and 
3
J2,3 fitted well with the corresponding J calculated with 

both Karplus and HLA methods (Table 2.5., Entries 1 and 2). However, in the 

case of 3J3,4 and 
3
J4,5, the calculated J were slightly higher than the observed for 

2.27b’ which were actually zero because the signals of H3 and H4 were actually 

singlets (Table 2.5., Entry 3 and 4). This observation could be explained if 

2.27b’ behaved as a distorted 1C4 chair. This idea would be in agreement with 

Crich’s group observation for their β-tetraacetylglucosyl triflate with equatorial 
configuration of H-1.36h They proposed a 1S5 twist boat conformation in which 

the triflate group assume a (pseudo)axial position as a consequence of the 

strongly electronegative nature of the triflate group and the anomeric effect36h,39 

(Scheme 2.12.). This conformation would also permit explaining other small 

coupling constants.  

 
 

Scheme 2.12. Postulation of 1S5
 conformation for the β-triflate III’ proposed by Crich 

                                                 
39 Hall, L. D. Can. J. Chem. 1969, 47, 1-17. 
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In order to refine our proposal of a distorted 1C4
 chair conformation for 2.27b’, 

NOESY experiment was also performed. Unfortunately, the long time 

acquisition of this experiment was not compatible with the inherent time-

dependent decomposition of the glycosyl triflates along time, even though the 

experiment was performed a 0 ºC. Hence, the noise of the experiment interfered 

with a confident interpretation of the picks.  

 

The obtention of the mixture of α-glycosyl triflate with a chair conformation 4C1 

(2.27a) and β-glycosyl triflate with a distort chair 1C4 (2.27b’) explains the 

spectroscopic data commented previously for the activation of the disarmed 

galactosyl donor 2.27 (Scheme 2.13.).  

 

 
 

Scheme 2.13.  Triflate intermediates proposed after activating 2.27 

 

To the best of our knowledge, this is the first evidence of the formation of 

glycosyl triflates intermediates under proton acid mediated glycosylations with 

disarmed glycosyl donors with a 2,6-diFBz group at C-2. On the other hand, the 

obtained results point out that the exclusive formation of β-glycosylated 

products using a highly disarmed glycosyl donor such as 2.27 when activated 

with TfOH may be in accord with a SN2-like mechanism. 

 

In conclusion, the use of highly disarmed glycosyl donors (2.27 and 2.45) allows  

for a direct glycosylation of stannylceramides (2.35 and 2.36) reducing the 

overall number of synthetic steps and providing access to β-glycolipids in a 

good yield and with complete chemo- and stereoselectivity. 

 

The time-course of the reaction studied by 19F NMR between highly disarmed 

glycosyl donor 2.27 and tributylstannyl acceptor 2.35 provides the first evidence 
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for the formation of glycosyl triflates as reaction intermediates in acidic 

medium. Moreover, 1H, 13C and bidimensional NMR spectroscopy at 0 ºC 

afforded more information about their configurations, which allowed to propose 

a 4C1 conformation for the α-triflate 2.27a and a distorted chair for the β-triflate 
2.27b’. 

 

 

2.3. Experimental Section 

 

General Remarks: All reactions were conducted under a dried argon stream. 

CH2Cl2 (99.9%) was purchased in capped Pure Solv System-4® bottles and used 

without further purification and stored under argon. Toluene was purchased as a 

synthesis grade reagent from Scharlab®. It was fleshly distilled over sodium and 

benzophenone under argon atmosphere every time it was required. Yields refer 

to the chromatographically and spectroscopically (1H and 13C) homogeneous 

materials. All other solvents and reagents were used without further purification. 

All glassware utilized was flame-dried before use. Reactions were monitored by 

TLC carried out on 0.25-mm E. Merck silica gel plates. Developed TLC plates 

were visualized under a short-wave UV lamp and by heating them after dipping 

in ethanol/H2SO4 (15:1). Flash column chromatography (FCC) was performed 

using flash silica gel (32-63 µm) and employed a solvent polarity correlated with 

TLC mobility. Optical rotations were measured at 598 nm on a Jasco DIP-370 

digital polarimeter using a 100 mm cell. NMR experiments were conducted on a 

Varian 400 MHz instrument using CDCl3 (99.9% D) as the solvent, with 

chemical shifts (δ) reference to internal standards CDCl3 (7.26 ppm 1H, 77.23 

ppm 13C) or Me4Si as an internal reference (0.00 ppm). Chemical shifts are 

relative to the deuterated solvent peak and are in parts per million (ppm). 

 

Activation of MSAW3000: Molecular sieves AW-300 (MSAW300) purchased 

from Aldrich (lot no. 04024CI) were ground and activated by heating over 200 

°C under reduced pressure 12 h. 
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General glycosylation procedure for 1-O-acetylglycosides 

 

The following protocol was followed prior to the glycosylation reaction. The 

glycosyl acceptor and the glycosyl donor were azeotroped  out with dry toluene 

(3 x 5 mL) each one in independent dried flasks. After that, they were placed 

under vacuum for 1h.  

 

To a stirred mixture of amidoalcohol (0.11 mmol), and 4-Å molecular sieves (36 

mg) in dry CH2Cl2 (440 µL) under argon atmosphere at room temperature 

allyltributyltin (0.14 mmol) and TfOH (0.03 mmol) were added. 

 

After stirring for 2 h, glycosyl donor (0.14 mmol) and more TfOH (0.30 mmol) 

were added to the mixture which was stirred for 0.5 h. The mixture was diluted 

with AcOEt (15 mL) and then washed with a sat. aq. NaHCO3 (2 x 5 mL). The 

aqueous layer was extracted with AcOEt (3 x 15 mL), and the combined organic 

layers were washed with brine (7 mL). The organic extract was dried (MgSO4) 

and concentrated in vacuo to yield a crude oil which was purified by column 

chromatography or submitted to subsequent hydrolysis. 

 

General deprotection procedure  

 

The hydrolysis of the glycosylation crude was carried out by addition of a 7% 

solution of MeONa in MeOH/CH2Cl2 (3:1, 5 mL/mmol glycosyl donor) at room 

temperature for 5 h. The solvent was removed under vacuo, and the resulting 

residue was purified by silica gel chromatography. 

 

General glycosylation procedure for glycosyl halides 

 

The following protocol was followed prior to the glycosylation reaction: 

glycosyl acceptor and glycosyl donor were separately dried by co-destillation 

with toluene (3 x 5 mL) with activated 4 Å molecular sieves in dried flasks. 

Then, they were placed under vacuum for 1 h, and after that, the flasks were 

placed in a dessicator under vacuum for 1 h. Complete water exclusion is crucial 

to achieve good yields. 
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A mixture of the corresponding amidoalcohol (0.11 mmol) and bis-(tri-n-

butyltin) oxide  (0.152 mmol) in 20 ml of dry toluene, was heated to reflux and 

was subjected to azeotropic dehydration using a Dean-Stark system or 4 Å 

molecular sieves overnight. Removal of solvent under reduced pressure afforded 

the stannyl ether, which was used for the glycosylation without further 

purification. 

 

The promoter in a dried flask with a magnetic stirring bar and protected from the 

light was azeotroped with dry toluene (2 x 5 mL). Activated 4 Å molecular 

sieves (330 mg/mmol glycosyl donor o acceptor) were added to the flask, and 

the mixture was azeotroped with toluene once more (5mL) before placed under 

vacuum for 1 h. 

 

A solution of stannyl ether (0.11 mmol) in dry CH2Cl2 (4 mL) and a solution of 

glycosyl halide (0.14 mmol) in dry CH2Cl2 (4 mL) were added to the promoter-

molecular sieves mixture via syringe under argon atmosphere at room 

temperature. The mixture was stirred in the dark until no changes were observed 

by TLC. The mixture was diluted with AcOEt (12 mL), filtered through a pad of 

Celite, and rinsed with AcOEt (10 mL). Removal of the solvent under reduced 

pressure afforded the reaction crude wich was purified by column 

chromatography or submitted to subsequent hydrolysis. 

 

1,3,4,6-Tetra-O-acetyl-2-O-(2,6-difluorobenzoyl)-αααα-D-galactopyranose 
(2.27) 

 

 

To a solution of 1,3,4,6-tetra-O-acetyl-α-D-galactopyranose (2.25)30 (700 mg, 

2.01 mmol) in dry pyridine (8 mL), 4-(dimethylamino)pyridine (49 mg, 0.402 

mmol) was added and the solution was stirred at r.t for 30 min. 2,6-

Difluorobenzoyl chloride (2.26) (0.5mL, 4.02 mmol) was added dropwise over a 

10 min period and the stirring was continued for 18 h. The reaction was 

quenched by addition of methanol (4 mL) and after stirring for 1 h, the solution 
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was diluted with CH2Cl2 (120 mL) and washed with water (150 mL). The 

aqueous phase was extracted with CH2Cl2 (50 mL) and the combined organic 

phases were dried (MgSO4) and evaporated to dryness. After purification by 

silica gel chromatography (AcOEt/hexanes 1:8), 2.27 was obtained as white 

solid (971 mg, 99%). Rf (AcOEt/hexane 1:1): 0.70; mp: 69-70 ºC; [α]D
25 = 

+106.9º, (c = 1.01, CH2Cl2); 
1H-{19F} NMR (400 MHz, CDCl3) δ in ppm:  7.44 

(at, JAr3,Ar4 = 8.4 Hz, 1H, H-Ar4), 6.90 (t, JAr3,Ar4 = 8.4 Hz, 2H, H-Ar3), 6.50 (d, 

J1,2 3.6 Hz, 1H, H-1), 5.52 (dd, J3,2 = 10.4 Hz, J3,4 = 2.4 Hz, 1H, H-3), 5.48 (d, 

J4,3 = 2.4 Hz, 1H, H-4), 5.40 (dd, J2,3 = 10.4 Hz, J2,1 3.6 Hz, 1H, H-2), 4.33 (t, 

J5,6 = 6.8 Hz, 1H, H-5), 4.11-4.02 (m, 2H, H-6a, H-6b), 2.13, 2.07, 1.97, 1.94 (s, 

12H, 4CH3CO); 
13C NMR (100.6 MHz, CDCl3) δ in ppm: 170.3 (CO), 170.1 

(CO), 170.1(2·CO), 168.9 (CO), 160.8 (dd, JC,F
 = 257.0 Hz, 2C, C-Ar2), 160.4 

(C-Ar1), 133.7 (t, JC,F
 = 10.6 Hz, 1C, C-Ar4), 112.2 (dd, JC,F =  22.0 Hz, JC,F = 

3.0 Hz, 2C, C-Ar3), 89.0 (C-1), 68.6 (C-2), 67.8 (C-4), 67.5 (C-3), 67.2 (C-5), 

61.1 (C-6), 20.7, 20.6, 20.5, 20.4 (CH3); FT-IR (ATR) ν in cm
-1: 2916, 2848, 

1739, 1626, 1592, 1471, 1369, 1287, 1249, 1213, 1142, 1104, 1060, 1008, 933, 

795; HR ESI-TOF MS for [M + Na]+ calc for C21H22F2NaO11: 511.3788; found 

511.3795 [M +Na]+. 

 

16-azidohexadecanoic acid (2.29) 

 

 
 

To a solution of 16-bromohexadecanoic acid 2.28 (1 g, 2.99 mmol) in freshly 

distilled DMF (50 mL) was added NaN3 (1.94 g, 29.9 mmol) and a catalytic 

amount of 18-crown-6 (197 mg, 0.74 mmol), and the mixture was stirred at 90 

°C for 72 h. The reaction mixture was poured into AcOEt-water (1:1, 80 mL) 

and the aqueous phase was extracted with AcOEt (3 x 20 mL). The organic 

phases were combined, washed with brine (3 x 20 mL), dried over MgSO4 and 

concentrated in vacuo. The residue was purified by flash column 

chromatography on silica gel using hexane/AcOEt (95:5) as the eluent to give 

2.29 (799 mg, 90 %): Rf (Hexane/AcOEt 90:10): 0.70; mp: 45-46 ºC; 1H NMR 

(400 MHz, CDCl3): δ in ppm 3.27 (t, J16,15 = 7.2 Hz, 2H, H-16), 2.37 (t, J2,3 =7.5 

Hz, 2H, H-2), 1.62 (m, 4H, CH2), 1.40-1.20 (m, 22H, CH2 ); 
13C NMR (100.6 
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MHz, CDCl3): δ 177.0 (CO), 51.4 (CH2-N3), 34.0 (C-2), 29.6 (CH2), 29.5 (CH2), 

29.4 (CH2), 29.2 (CH2), 29.1 (CH2), 29.0 (CH2), 26.7 (CH2), 24.6 (CH2); FT-IR 

(ATR) ν in cm-1: 3040, 2913, 2847, 2112, 1698, 1470, 1429, 1411, 1349, 1291, 

1250, 943,  727; Anal. Calcd. for C16H31N3O2: C, 64.61; H, 10.51; N, 14.13. 

Found: C, 64.68; H, 10.52, N, 14.10. 

 

Synthesis of N-(2-hydroxyethyl)stearamide (2.32) 

 

 

 

A solution of stearoyl chloride 2.31 (50 g 0.165 mol) in 250 mL of dry CH2Cl2 

was cooled to 0°C. To this solution 2-amino ethanol 2.30 (100.78 g, 1.65 mol) 

was added in a slow drop-wise manner over a period of 30 min, resulting in the 

precipitation of a white solid. The reaction was stirred for 4 h at room 

temperature and then the mixture was filtered. The solid was washed with 

hexane and diethyl ether and dried in vacuo. The resulting crystalline material 

was recrystallized from CH2Cl2 to give 51.26 g of pure N-(2-

hydroxyethyl)stearamide 2.32 (95%) as a white solid that was homogeneous: Rf 

(Hexane-AcOEt-MeOH 60:30:10) = 0.25; m.p. 53-55 °C; 1H NMR (400 MHz, 

CDCl3): δ in ppm 5.94 (br s, 1H, OH), 3.72 (t,  J2’,1’ = 5.2 Hz, 2H, H-2’), 3.42 

(td, J1’,2’ = 5.2, 1.0 Hz, 2H, H-1’), 2.18 (t, J2,3 = 7.2 Hz, 2H, H-2), 1.62 (quint, 

J3,2 = 7.2 Hz, J3,4 = 6.5 Hz, 2H, H-3), 1.28 (m, 28H, CH2), 0.87 (t, J18,17 = 6.8 

Hz, 3H, H-18); 13C NMR (100.6 MHz, CDCl3): δ 172.6 (CO), 61.0 (C-2’), 41.6 
(C-1’), 36.5 (C-2), 31.8 (CH2), 29.5 (CH2), 28.6 (CH2), 25.6 (CH2), 22.7 (CH2), 

14.1(C-18); FT-IR (ATR) ν in cm-1: 3370, 3291, 3086, 2954, 2916, 2847, 1636, 

1551, 1470, 1383, 1275, 1055, 720; Anal. Calcd. for C20H41NO2: C, 73.34; H, 

12.62; N, 4.28. Found: C, 73.30; H, 12.69; N, 4.20. 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 71 

Synthesis of N-(2-hydroxyethyl)-N-octadecylstearamide (2.34)  

 

 

 

A 250 mL, three-necked, roundbottomed flask with a mechanical stirrer was 

fitted with a reflux condenser with drying tube, and a stoppered pressure-

equalizing dropping funnel. The system was flushed with nitrogen or argon, and 

the flask was charged with 75 mL of dry THF and LiAlH4 (1.45 g, 38.22 mmol). 

A mixture of 75 mL of THF and N-(2-hydroxyethyl)stearamide 2.32 (10 g, 

30.58 mmol) was added, with stirring, at a rate sufficient to reach and maintain 

refluxing. After the addition was completed, the reaction mixture was kept 

boiling for 18 h. The flask was immersed in an ice bath, and 30 mL of water, 15 

mL of 10% aqueous potassium hydroxide, and again 30 mL of water were added 

cautiously with very vigorous stirring. The reaction mixture was stirred for an 

additional 1h, filtered with suction, and the solid was washed with several 100-

mL portions of ethyl acetate. The two layers were separated, and the aqueous 

phase was extracted with ethyl acetate (3 x 100 mL). The combined organic 

layers were dried over anhydrous sodium sulphate and concentrated in vacuo to 

get crude residue of 2-(ocatadecylamino) ethanol 2.33 as a white solid (6.7 g). 

 

A solution of 2-(octadecylamino) ethanol 2.33 (1 g, 3.194 mmol), HOBt (586 

mg, 3.832 mmol), EDC (734 mg, 3.832 mmol) and DIPEA (494 mg, 3.832 

mmol) in 30 mL of dry CH2Cl2 was cooled to 0 
°C. Stearic acid (908 mg, 3.194 

mmol) in 20 mL of dry CH2Cl2 was added drop wise over 6 h at 0 
°C and then 

the reaction was stirred under argon for 18 h at room temperature. The mixture 

was diluted with ethyl acetate (75 mL) and washed successively with HCl (10 % 

aqueous, 2 x 30 mL), NaHCO3 (7 % aqueous, 2 x 30 mL), K2CO3 (7% aqueous, 

2 x 30 mL) and brine (3 x 30 mL). The organic layer was dried over MgSO4 and 

concentrated in vacuo. The residue was purified by flash column 

chromatography on silica gel using hexane/AcOEt/MeOH (85:10:5) as the 

eluent to give 1.67 g of pure N-(2-hydroxyethyl)-N-octadecylstearamide 2.34 as 

a waxy solid (80 % over two steps): Rf (Hexane/AcOEt/MeOH 60:30:10): 0.70; 

m.p. 50-52 °C; 1H NMR (400 MHz, CDCl3): δ in ppm 3.75 (t, J2’,1’ = 5.2 Hz, 2H, 
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H-2’), 3.52 (t, J1’,2’ = 5.2 Hz, 2H, H-1’), 3.26 (t, J1’’,2’’ =7.6 Hz, 2H, H-1’’), 2.32 

(t, J16,15 =7.6 Hz, 2H, H-16), 1.62-1.54 (m, 4H, CH2), 1.25 (m, 58H, CH2), 0.87 

(t, 6H, J18’’,17’’ = 6.5 Hz, H-18’’); 
13C NMR (100.6 MHz, CDCl3): δ 173.0 (CO), 

58.9 (C-2’), 50.2 (CH2N3), 50.2 (C-1’’),  47.3 (C-1’), 34.3 (C-2), 31.8 (CH2), 

30.4 (CH2), 29.6 (CH2), 29.3 (CH2), 28.9 (CH2), 28.6 (CH2), 27.7 (CH2), 22.7 

(CH2), 14.1 (C-18’’); FT-IR (ATR) ν in cm
-1: 3397, 2915, 2847, 2090, 1609, 

1469, 1424, 1363, 1312, 1211, 1075, 718; Anal. Calcd. for C38H77NO2: C, 

78.69; H, 13.38; N, 2.41. Found: C, 78.73; H, 12.98, N, 2.45. 

 

1-(ββββ-D-galactopyranosyl)-N-octadecanoyl-2-amino-ethanol (2.38) 

 

 

 

Departing from N-(2-hydroxyethyl)stearamide (2.32) (36 mg, 0.110 mmol), the 

glycoside 2.38 was obtained as a syrup according to the gereral procedure for 

glycosylation (46 mg, 0.094 mmol, 85% according to glycosylation procedure 

from O-acetylglycosides or 48 mg, 0.099 mmol, 90 % according to 

glycosylation procedure from halo-glycosides): Rf (CH2Cl2/MeOH 9:1): 0.16; 

[α]D
25 = +118.6º (c =0.0045, pyridine); 1H NMR (CDCl3:MeOD, 1:2, 400 MHz) 

δ in ppm: 4.21 (d, J1’’,2’’ = 7.6 Hz, 1H, H1’’), 3.96 (m, 1H, H-2a’), 3.84 (d, J4’’,3’’ 

= 2.0 Hz, 1H, H-4’’), 3.76-3.73 (m, 2H, H6a’’, H6b’’), 3.61 (m, 1H, H-2b’), 

3.56-3.48 (m, 4H, H-2’’, H-3’’, H-5’’, H-1a’), 3.35 (m, 1H, H-1b’), 2.17 (t, J2,3 

= 6.8 Hz, 2H, H-2), 1.57 (t, J3,2 = 6.8 Hz, 2H, H-3), 1.40-1.25 (m, 26H, CH2), 

0.86 (t, J18,17 = 6.8 Hz, 3H, H-18); 
13C NMR (CDCl3:MeOD, 1:2, 100.6 MHz) δ 

in ppm:176.1 (CO), 104.5 (C-1’’), 76.1 (C-5’’), 74.3 (C-3’’), 72.2 (C-2’’), 69.9 

(C-4’’), 69.5 (C-2’), 62.5 (C-6’’), 40.3 (C-1’), 37.0 (C-2), 32.8-26.8 (14 CH2), 

23.5 (C-17), 14.5 (C-18); FT-IR (ATR) ν in cm-1: 3486, 2918, 2848, 1603, 1466, 

1259, 1232, 1171, 1034, 630; ESI TOF for [M + Na]+ calc for C26H51 NNaO7 

512.3563, found 512.3551. 
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1-(ββββ-D-galactopyranosyl)-N-(16-azidohexadecanoyl)-N-octadecanyl-2-
amino-ethanol (2.43) 

 

  
 

Departing from N-(2-hydroxyethyl)-N-octadecylstearamide (2.34) (65 mg, 0.110 

mmmol), the glycoside 2.43 was obtained as a syrup according to the gereral 

procedure (33 mg, 0.043 mmol, 40 % according to glycosylation procedure from 

O-acetylglycosides or 52 mg, 0.069 mmol, 63 % according to glycosylation 

procedure from halo-glycosides): Rf (AcOEt/MeOH 9:1) 0.22; [α]D
25 = -5.8º, (c 

= 0.0065, pyridine); 1H NMR (CDCl3:MeOD, 1:2, 400 MHz) δ in ppm: 4.20 (t, 

J1’’’,2’’’ = 7.6 Hz, 1H, H-1’’’), 3.96 (m, 1H, H-2a’), 3.84 (dd, J4’’’,3’’’ = 2.0 Hz, 

J4’’’,5’’’ = 1.8 Hz, 1H, H-4’’’), 3.78-3.61 (m, 4H, H-6a’’’, H-6b’’’, H-2b’, H-1a’), 

3.56-3.33 (m, 6H, H-2’’’, H-5’’’, H-3’’’, H-1b’, H-1’’), 3.25 (t, J16,15 = 6.8 Hz, 

2H, H-16), 2.42 (t, J2,3 = 8.0 Hz, 2H, H-2), 2.34 (dt, J2,3= 8.0 Hz, 2H, H-2),
40 

1.61-1.50 (m, 8H, H-3, CH2, H-2’’, H-16), 1.40-1.25 (m, 46H, 23CH2), 0.86 (t, 

J18’’,17’’ = 6.8 Hz, 3H, H-18’’), ppm; 13C NMR (CDCl3:MeOD, 1:2, 400 MHz) δ 

in ppm: 175.7 (CO), 105.2 (C-1’’’), 76.7 (C-2’’’), 75.0 (C-4’’’), 72,4 (C-5’’’), 

70.2 (C-3’’’), 68.5 (C-2’), 62.5 (C-6’’’), 52.4 (C-16), 50.2 (C-1’’), 47.0 (C-1’), 

34.2 (C-2’’), 33.9 (C-2), 33.1-30.0, 28.5, 28.0, 27.9, 27.8, 26.8, 26.2, 23.8 

(CH2), 14.5 (C-18), ppm; FT-IR (ATR) ν in cm-1: 3330, 2917, 2848, 2812, 2776, 

2682, 2099, 1614, 1466, 1350, 766; MALDI TOF for [M + Na]+ calc for C42H82 

N4NaO7 777.6081, found 777.6901. 

 

3,4,6-tri-O-acetyl-2-O-(2,6-difluorobenzoyl)-αααα-D-galactopyranosyl iodide 

(2.44) 

 

A solution of 1,2,3,4,6-penta-O-acetyl-β-D-galactopyranose (2.24) (286 mg, 

0.733 mmol) in CH2Cl2 (3 mL) was cooled to 0 ºC under argon in the dark, and 

TMSI (176 mg, 0.879 mmol) was added to the stirred mixture. The reaction was 

stirred for 20 min at 0 ºC. The reaction was stopped by adding 3 mL of dry 

                                                 
40 Signal associated to H-2 is doubled at room temperature due to the tertiary amide-imino 
alcoholate equilibrium. The signal coalesces once temperature is increased over 50 ºC. 
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toluene and azeotropically distilled three times with dry toluene. The slightly 

yellow oil 2.44 was dissolved in CH2Cl2 (5 mL) and was used immediately in 

the glycosylation reaction.  

 

Low temperature NMR experiments 

 

Identification of intermediates 2.27a and 2.27b  

 

 
 

The donor 2.27 (69 mg, 0.141 mmol) was co-evaporated with dry toluene (2x), 

dissolved in CD2Cl2 (0.6 mL) fleshly distilled over P2O5 and transferred to an 

NMR tube under argon atmosphere. TfOH was also dried over 4 Å MS for 24 h. 

Then, the sample was treated with dried TfOH (50 µL, 0.565 mmol), shaken for 

5 min and placed back in the NMR magnet at room temperature. The first 19F 

NMR spectrum was immediately recorded to check if all the starting material 

was consumed. After that, the sample was ejected from the NMR magnet and 

cooled to 0º C in an ice bath meanwhile the NMR magnet was cooled at same 

temperature. Then, the sample was placed again in the NMR magnet to record 
1H, 13C and bidimensional NMR experiments. 

 

Selected signals for 2.27a: 
1H NMR (CD2Cl2, 600 MHz) δ in ppm: 6.89 (d, J1,2 = 3.6 Hz, 1H, H-1), 5.71 

(dd, J2,3 = 10.8 Hz, J2,1 = 3.6 Hz, 1H, H-2), 5.68-5.66 (m, 2H, H-3, H-4), 4.46 (t, 

J5,6 = 6.6 Hz, 1H, H-5), 4.46-4.38 (m, 2H, H-6, H-6’);13C NMR (CD2Cl2, 151 

MHz) δ in ppm: 179.9, 176.5, 175.3, 172.2, (CO), 163.7-160.3 (C-Ar), 138.8-

135.1 (C-Ar), 113.7-112.7 (C-Ar), 90.5 (C-1), 69.6 (C-3), 69.4 (C-4), 68.9 (C-

5), 68.0 (C-2), 65.6 (C-6), 20.8-20.5 (CH3); 
19F NMR (CD2Cl2, 376 MHz) δ in 

ppm: -89.2. 
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Selected signals for 2.27b: 
1H NMR (CD2Cl2, 600 MHz) δ in ppm: 6.80 (d, J1,2 = 2.4 Hz, 1H, H-1), 5.92 (s, 

1H, H-3), 5.76 (s, 1H, H-4), 5.58 (d, J2,3 = 1.8 Hz, 1H, H-2), 4.81 (t, J5,6 = 6.0 

Hz, 1H, H-5), 4.54-4.45 (m, 2H, H-6, H-6’); 13C NMR (CD2Cl2, 151 MHz) δ in 

ppm: 191.3, 190.4, 178.5, 169.9 (CO), 163.7-160.3 (C-Ar), 138.8-135.1 (C-Ar), 

113.7-112.7 (C-Ar), 90.0 (C-1), 83.0 (C-4), 79.5 (C-2), 70.5 (C-5), 63.1 (C-6), 

58.7 (C-3), 20.8-20.5 (CH3); 
19F NMR (CD2Cl2, 376 MHz) δ in ppm: -89.4. 
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Chapter 3 

Synthesis of 2-deoxygalactosyl ceramides 
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3. 1. Introduction 

 

2-Deoxy-carbohydrates and 2,6-dideoxy-carbohydrates are structurally relevant 

components of numerous biologically important natural products1 including 

antitumor drugs (anthracyclines, aureolic acids, calicheamicin, esperamicin), 

antibiotics active against Gram-positive bacteria (erythromycins, 

orthosomycins), antibiotics inhibiting platelet aggregation (angucyclines), 

cardiac glycosides (digitoxine) and antiparasitic agents (avermectins).2 Due to 

their biological importance, efforts to develop chemical methods for the 

stereoselective synthesis of 2-deoxy-sugars relevant agents such as antibiotics 

and anti-cancer drugs have increased in the last years.1, 2 However, if C-2 

position of a glycosyl donor is deoxygenated, the construction of the glycosidic 

bonds with a complete stereocontrol of the reaction does not result trivial since 

the lack of a C-2 directing group usually leads to obtain 2-deoxyglycosides as 

mixture of anomers. Furthermore, the manipulation of 2-deoxyglycosides can be 

more difficult compared to their C-2 hydroxylated counterparts because of their 

susceptibility to hydrolysis.3 

 

The formation of glycosidic bond is often controlled by the anomeric effect, 

which promotes axial (usually α- for 4C1 chairs) glycoside formation.
4 The 

anomeric effect usually explains why the orientation of electronegative 

substituents, for example halides, O-aryl, O-alkyl, S-alkyl, S-aryl derivatives 

etc., bonded to the anomeric carbon of a pyranose ring tend to be axial.5 It has 

been widely accepted that the electronwithdrawing character of the axial 

substituent (the α-anomer for D-sugars in the 4C1 conformation) is stabilized by 

hyperconjugation between the non-bonding electron pair on O-5 and anti-

bonding (σ*) orbital of the exocyclic axial C-X bond (Figure 3.1.). 
                                                           

1
  (a) Kirsching, A; Bechthold, A. F.-W.; Rohr, J. Top. Curr. Chem. 1997, 188, 1-84. (c) He, X. 

M.; Liu, H. W. Curr. Opin. Chem. Biol. 2002, 6, 590–597.  
2
 (a) Kennedy, J. F.; White, C. A. Bioactive Carbohydrates in Chemistry, Biochemistry, and 

Biology, Chichester, Ellis Horwood, 1983. (b) Williams, N.; Wander, J. The Carbohydrates: 

Chemistry and Biochemistry, Vol. 1B; Pigman, W.; Horton, D. Eds., Academic Press, New 

York, 1980. 
3
  Overend, W. G. ; Rees, C. W.; Sequeira, J. S. J. Chem. Soc. 1962, 3429-3440. 

4
  Carmona, A. T.; Moreno-Vargas, A. J.; Robina, I. Curr. Org. Synth. 2008, 5, 33-60. 

5
  Juaristi, E.; Cuevas, G. The Anomeric Effect; CRC Press: Boca Raton, 1994. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 80

 

X

O

n

 
Figure 3.1. Anomeric effect stabilization of axial C–X bond at the anomeric center on a 

pyranose ring 

 

However, a more detailed discussion of glycosidic bond formation in 2-deoxy-

sugars can be contemplated when the protecting groups of the ring are 

considered. Scheme 3.1. depicts the reaction pathways available to an 

oxocarbenium ion (3.3) if the substituent at C-2 cannot stabilize the positive 

charge by participation. The oxocarbenium ion can be formed from a glycosyl 

donor like 3.1 if the departure of the leaving group is activated by a promoter or 

can be formed from a glycal like 3.2 if it is activated by the addition of a proton.  

 

Then, the positive charge at C-1 in 3.3’ is stabilized by O-5. If the oxocarbenium 

ion adopts a half-chair conformation, the two faces of the ring can be attacked 

by the nucleophile. When the attack takes place axially, hyperconjugation 

between a non-bonding orbital of the ring oxygen and the anti-bonding orbital of 

the C-1 stabilizes the transition state that resemble a chair conformer.5 On the 

other hand, when the attack takes place equatorially, the transition state must 

adopt a boat-like conformation to arise a proper orbital overlapping.  
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Scheme 3.1. Glycosylation with a non-particing group at C-2 

 

However, this boat-like transition state is of higher energy than the chair-like 

transition state so the axial linkage is favoured (Scheme 3.1.) and therefore 

complete selectivity for these reactions is often difficult because factors such as 

protecting groups, promoter, solvent, temperature and the leaving group 

condition glycosylation yield and stereoselectivity. 

 

With such observations in mind, the stereocontrolled formation of equatorial 

glycosides by this approach is complicated. However, there are indirect 

methodologies to achieve this target. It is possible to control the glycosylation if 

a participating neighboring group has been introduced previously at C-2 

position. The neighboring group Y must have non-bonding electron pairs and it 

should be easy to remove in order to afford 2-deoxy glycosides. Hence, halogen, 

sulphur and selenium moieties are the most employed. (Scheme 3.2.). 
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Scheme 3.2. Glycosylation with a particing group at C-2 
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Another strategy to enhance the preference for the glycosylated product with a 

equatorial configuration is forcing the oxocarbenium ion to adopt the boat-like 

conformation. In the case of the 2-deoxy-2-halo-galactosyl donors, Roush and 

co-workers observed that the β-selectivity of glycosylation reactions were 
considerably improved when the 3,4-hydroxyl moieties were protected with 

groups which can restrict the conformations of the chair such as 3,4-carbonate  

or 3,4-acetonide groups.6 Therefore, such cis-fused cyclic 3,4-protecting group 

encourages the transition state to adopt the mentioned boatlike conformation 

with the C(2)-Y substituent in a pseudoaxial position, which should direct the 

glycosylation in a β-selective manner (Scheme 3.3.).7 
 

 
Scheme 3.3. Stereochemical consideration of the key boatlike oxocarbenium ion. 

 

  

Glycolipids with a β-glycosidic linkage are also biologically active molecules. It 
is know that β-GalCer is able to induce apoptosis on human U937 leukemic 
cells and it is an agonist C6 glioma cells.8 Although an extensive study in the 

ceramide moiety has been investigated,8 to the best of our knowledge  

modifications on the polar part of glycolipids to include a 2-deoxy region have 

been less studied.  

 

Due to the fact that the most efficient methodologies to obtain 2-deoxy-

glycosides employ 2-deoxy-2-iodo glycosyl donor as a key intermediate for 

glycosylation, we envisioned the synthesis of a new precursor of 2-deoxy-α- and 
β-GalCer using this methodology. Moreover, the presence of a handle at C-2 
with potential to be substituted (with azide group, thiol group, etc) will broaden 

the 2-substituted glycolipid analogues for biological evaluations. Indeed, this 
                                                           

6
  Durham, T. B.; Roush, W. R. Org. Lett. 2003, 5, 1871-1874.  

7
  Abdel-Rahman, A. A.-H.; Jonke, S.; El Ashry, E. S. H.; Schmidt, R. R. Angew. Chem. Int. Ed. 

2002, 41, 2972-2974. 
8
 Chang, Y.-T.; Choi, J.; Ding, S.; Prieschl, E. E.; Baumruker, T.; Lee, J.-M.; Chung, S.-K.; 

Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 1856-1857.  
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new anchoring point will allow the introduction of appropriate tags for different 

imaging modalities. 

 

 
 

Figure 3.2. 2-deoxy derivatives of GalCer 

 

The retrosynthetic scheme for the synthesis of 2-deoxy-β-GalCer is showed in 
Scheme 3.4. The stereoselectivity of the glycosylation reaction requires an 

iodine equatorial at position 2, which will be obtained from galactal protected at 

positions 3,4 as a carbonate, as mentioned before. 

 

 

 

Scheme 3.4. Retrosynthetic analysis of 2-deoxy-β-GalCer   
 

Scheme 3.5. shows the retrosynthetic analysis for 2-deoxy-α-GalCer. In this 
case, an iodine at position axial is needed in order to obtain the α-glycoside. For 
this purpose galactal must be protected as its peracetylated derivative. 

Glycosylation must give the 2-iodo-derivative, which after removal of 

protecting groups should afford the 2-deoxy-2-iodo-α-TalCer. Reduction of C-I 
bond should afford the 2-deoxy-α-GalCer. 
 

 

 

Scheme 3.5. Retrosynthetic analysis for 2-deoxy-α-GalCer and 2-deoxy-2-iodo-α-TalCer 
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3.2. Results and Discussion 

 

3.2.1. Synthesis of 2-deoxy-ββββ-GalCer analogue 

 

As it has been mentioned before, the preparation of appropriate 2-deoxy-2-iodo-

galactosyl donor for selective β-glycosylation bearing a 3,4-cis-fused cyclic 

protecting group6 was carried out following the synthetic sequence depicted in 

Scheme 3.6. 

 

 
 

Scheme 3.6. Synthesis of glycosyl donor 3.16 

 

Thus, using D-galactal (3.13) as starting material, primary alcohol was protected 

by reaction with tert-butyldiphenylsilyl chloride (TBDPSCl) to give 3.14 in 61% 

yield. Then, the positions 3 and 4 of galactal 3.14 were protected by reaction 

with carbonyldiimidazole to provide the cis-fused cyclic carbonate 3.15 in 70% 

yield. The treatment of 3.15 with NIS/H2O afforded an α/β mixture of 2-deoxy-
2-iodoglactose derivatives as a major product, which was then treated with 

Cl3CCN/CH2Cl2 and DBU to afford imidate 3.16 in 48% overall yieldafter 1 h at 

0 ºC. Afterwards, the imidate 3.16 was employed in the glycosylation step 

without further purification to avoid a possible decomposition.9   

 

Ceramides are poor nucleophiles because they are able to self assemble in 

hexagonal and orthorhombic phases as a result of their head group hydrogen 

bonding and van der Waals interactions.10 To solve this drawback, stannyl ether 

                                                           

9
  Boons, G-J.; Hale, K.  Organic Synthesis with Carbohydrates Blackwell Science, Inc, Malden, 

Massachusetts, 2000. 
10
 (a) Schmidt, R. R.; Zimmermann, P. Angew. Chem. Int. Ed. Engl. 1986, 25, 725–726. (b) Polt, 

R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V. J. J. Am. Chem. Soc. 1992, 114, 10249-10258. 
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derived from ceramides is known to be a suitable strategy to increase the 

nucleophilicity of oxygen without significantly modifying the basicity.11,12 

  
Table 3.1. Glycosylation assays of imidate 3.16 with stannyl ceramide 3.17 

 

 

 

Entry Promoter/Donor 

(mmol)/(mmol) 

T ( ºC) t (h) Product
a 

1 0.3 -78 24 (1:10) 3.15/3.16 

 

2 0.3 0 24 (2:1) 3.15/3.16 

 

3 0.6 r.t. 48 3.15 

 

4
b
 0.3 -78 24 3.15 

 
a 
Conversion of 95% observed by 

1
H NMR. 

b 
Starting material 3.16 was purified  by flash 

chromatography before use. 

 

Stannyl ceramide 3.17 was prepared in situ by refluxing a solution of ceramide 

1.15 in toluene with tributyltin oxide in a Dean-Stark system for 12 h.12 Then, 

3.17 was treated with a solution of trichloroacetimidate 3.16 in dry DCM 

prepared in situ in the presence of 4 Å MS (Table 3.1.). When the reaction was 

performed at -78 ºC, tricloroacetimidate 3.16 and trace amounts of glycal 3.15 

                                                           

11
 (a) Kaji, E.; Shibayama, K.; In, K. Tetrahedron Lett. 2003, 44, 4881-4885. (b) Kartha, R. K. 

P.; Kiso, M.; Hasegawa, A.; Jennings, H. J. J. Chem. Soc., Perkin Trans. 1 1995, 3023-3026. 

(c) Garegg, P. J.; Malvisel, J. L.; Oscarson, S. Synthesis 1995, 409-414; (d) Danishefsky, S. J.; 

Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K.; Griffith, D. A.; Oriyama, T.; 

Marsden, S. P.; J. Am. Chem. Soc. 1995, 117, 1940-1953; (e) Vogel, K.; Sterling, J.; Herzig, 

Y.; Nudelman, A. Tetrahedron 1996, 52, 3049-3056; (f) David, S.; Hanessian, S. Tetrahedron 

1985, 41, 643-663. 
12
 (a) Morales-Serna, J. A.; Díaz, Y.; Matheu, M. I.; Castillón, S. Eur. J. Org. Chem. 2009, 

3849-3852. (b) Morales-Serna, J. A.; Díaz, Y.; Matheu, M. I.; Castillón, Org. Biomol. Chem. 

2008, 6, 3831-3836. (c) Boutureira, O.; Morales-Serna, J. A.; Díaz, Y.; Matheu, M. I.; 

Castillón, Eur. J. Org. Chem. 2008, 1851-1854. (d) Morales-Serna, J. A.; Boutureira, O.; 

Díaz, Y.; Matheu, M. I.; Castillón, S. Org. Biomol. Chem. 2008, 6, 443-446. 
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were obtained instead of the desired glycosylated product or the corresponding 

hydrolysed glycosyl donor (Table 3.1., Entry 1). Temperature was increased to 

force the glycosylation reaction but only the elimination product 3.15 was 

obtained even when ane excess of TBSOTf was added or longer reaction times 

were employed (Table 3.1., Entries 2 and 3). 

 

The product distribution observed under the glycosylation conditions (Table 

3.1.) and the formation of glycal 3.15 can be explained based in a previous work 

developed in our group.13 It was found that 2-deoxy-2-iodo-galactosyl derivative 

3.18 protected as 3,4-di-O-isopropilidene acetal underwent elimination at 

position 2 when a N-containing base 3.20 was present giving 2-iodo-galactals 

due to an elimination process as is described in Scheme 3.7.  

 

 
 

Scheme 3.7. Exemple of elimination pathway in 2-deoxy-2-iodo-glycosyl donors. 

 

In our case, however, once the oxocarbenium ion is formed from substrate 3.16, 

iodine adopts an axial configuration. This intermediate could be stabilised by 

hyperconjugative interactions between σ (C-I) and π* (C-O) of the 
oxocarbenium.14 Moreover, during the E1 elimination reaction, the new double 

bond can only be formed if the vacant p orbital of the carbocation and the 

breaking C-H or C-I bond are aligned in parallel. Therefore, the group to be 

eliminated must be in the axial position (Scheme 3.8.). 

 

 

 

                                                           

13
 Rodríguez, M. A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S.; Seeberger, P. H. J. 

Org. Chem. 2007, 72, 8998-9001.  
14
 Billings, S. B.; Woerpel, K. A. J. Org. Chem. 2006, 71, 5171-5178. 
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Scheme 3.8. Iodine elimination of the oxocarbeminum ion 3.18 

  

In the present study, it was reasonable to asume that the DBU present as a 

byproduct in the trichloroacetimidate 3.16 crude could be the base responsible 

of the elimination reaction. Hence, the formation of the more 

thermodynamically stable product 3.15 is favoured when the temperature was 

increased (Table 3.1., Entry 1 to 3). 

 

To avoid the presence of base in the glycosylation reaction, the 

trichloroacetimidate 3.16 was purified by flash chromatography, taking into 

account their proven stability (Table 3.1., Entry 1). However, glycal 3.15 was 

recovered again when the reaction was carried out at -78 ºC (Table 3.1., Entry 

4).  

 

The lack of a base in the system and the formation of glycal at low temperatures 

indicated the stannyl ceramide was not a suitable glycosyl acceptor. The stannyl 

ceramide is not nucleophilic enough to avoid the inherent tendency of 3.16 to 

undergo elimination. Moreover, the presence of tin species may contribute to the 

stabilization of hypervalent iodine likely due to the formation of stable SnI2 

although the exact mechanism has not been stablished. However, some 

examples of stabilization of hypervalent iodine by tin (IV) had been identified in 

literature.15   

 

At this point, another kind of glycosyl acceptor had to be chosen to avoid the 

low nucleophilicity of ceramides and the use of tin reagents to make the 

glycosylation successful. It has been broadly reported that convenient protected 

                                                           

15
 (a) Davies, A. G.; Harrison, P. G. J. Chem. Soc. C, 1967, 298-300. (b) Cox, P. J.; Doidge-

Harrison, S. M. S. V.; Howie, R. A.; Nowell, I. W.; Taylor, O. J.; Wardell, James L. J Chem. 

Soc., Perkin Trans 1 1989, 11, 2017-2022. 
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azidosphingosines had been good glycosyl acceptors for glycosylation en route 

to the synthesis of glycolipids.16  

 

For instance, (2R,3S)-2-azido-3-benzoylsphingosine (3.22), which had been 

prepared in our group according the procedure reported by Bittmann,17 was 

chosen because its proctecting groups could be compatible with our 

glycosylation conditions. Thus, when 3.22 was treated with pure 

trichloroacetimidate 3.16 in presence of TBSOTf at -78 ºC under anhydrous 

conditions, glycoside 3.23 was obtained after 18 h with complete β selectivity in 
excellent yield (90%) (Scheme 3.9.). Moreover, the hypothesis that tin derivates 

assist the elimination of 3.16 was supported because byproducts of elimination 

such as glycal 3.15 were not isolated during the purification step. 

 

 
Scheme 3.9. Glycosylation of azidosphingosine 3.22 

 

To illustrate the potential of 2-iodo-glucosylazidosphingosine as a flexible 

precursor for the preparation of several 2-sunstituted and 2-deoxygenated 

analogues, 3.23 was treated with Bu3SnH/Et3B to remove the iodine moiety via 

a radical reaction (Scheme 3.10.). The reaction was monitorized by 1H NMR 

and HSQC spectroscopy. Although identification of H-2 was difficult because of 

                                                           

16
 (a) Xia, C.; Yao, Q.; Schuemann, J.; Rossy, E.; Chen, W.; Zhu, L.; Zhang, W.; De Libero, G.; 

Wang, P. G.  Bioorg. Medicinal Chem. Lett.  2006,  16,  2195-2199. (b)  Franchini, L.; 

Compostella, F.; Donda, A.; Mori, L.; Colombo, D.; De Libero, G.; M., P.; Ronchetti, F.; 

Panza, L. Eur J. Org. Chem.  2004,  23, 4755-4761. (c) Compostella, F.; Franchini, L.; De 

Libero, G.; Palmisano, G.; Ronchetti, F.; Panza, L. Tetrahedron  2002,  58,  8703-8708. (d) 

Castro-Palomino, J. C.; Simon, B.; Speer, O.; Leist, M.; Schmidt, R. R.  Chem. Eur. J.  2001,  

7,  2178-2184. (e) Hansen, H. C.; Magnusson, G. Carbohydr. Res.  1999,  322,  190-200. (f) 

Wilstermann, M.; Magnusson, G.  J. Org. Chem. 1997,  62,  7961-7971. (g) Plewe, M.; 

Sandhoff, K.; Schmidt, R. R. Carbohydr. Res.  1992,  235,  151-161. (h) Zimmermann, P.; 

Greilich, U.; Schmidt, R. R. Tetrahedron Lett. 1990,  31,  1849-1852. (i) Singh, N. P.; 

Schmidt, R. R. J. Carbohydr. Chem. 1989,  8,  199-216. (k) Zimmermann, P.; Bommer, R.; 

Bare, T.; Schmidt, R. R. J. Carbohydr. Chem.  1988,  7,  435-452. 
17
 Liu, Y.; Bittman, R. Chem. Phys. Lipids 2006, 142, 58-69. 
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its overlapping with other signals, the disappearance of the methyne signal at δ 

19.1 ppm attributed to C-2 and the appearance of a new C-2 signal as a 

methylene at δ 32.1 ppm in the 13C NMR spectrum indicated that the reduction 

was completed. After purification, the reduced glycoazidosphingolipid 3.24 was 

obtained with a 65% yield. 

 

 
 

Scheme 3.10. Reduction of glycoside 3.23 
 

To reduce the azide moiety, the glycoazidosphingosine 3.24 was treated with 

triphenylphosfine18 via Staudinger reaction for preserving other functionalities 

sensitive to a more severe reduction conditions. Without further purification, the 

corresponding amine was treated with stearic acid in presence of DMF, DIPEA 

and HATU at room temperature. However, the amine was not acylated after 18 

h, and increasing the reactions neither forced the reaction to proceed (Table 3.2., 

Entries 1 and 2). The acylation reaction was also assayed with EDC, HOBt and 

DIPEA but no glycolipid was recovered (Table 3.2., Entry 3). We considered 

that the coupling reagents could have problems to access the amine group due to 

steric hindrance of the neighbouring protecting groups. Therefore, the stearic 

acid was activated as N-succinimidyl octadecanoate and the reaction was 

performed at 60 ºC in THF in a similar way as it was reported by Kim and co-

workers19 (Table 3.2., Entry 4). Under these conditions, the glycolipid 3.25 was 

recovered after in a 43% yield over two steps 18 h. 

 

 

 

 

 

 

 

                                                           

18
 (a) Tian, W. Q.; Wang, Y. A.  J. Org. Chem. 2004, 69, 4299-4308. (b)  Lin, F. L.; Hoyt, H. 

M.; Halbeek, H. V.; Bergman, R. G.; Bertozzi, C. R. J. Am. Chem. Soc. 2005, 127, 2686-2695. 
19
 Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Synthesis 2004, 6, 847-850. 
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Table 3.2.  Study of the acylation reactions to obtaing glycolipid 3.25 

 

 
Entry Fatty acid Reagents Solvent Temperature 

(ºC) 

Time 

(h) 

Yield 

 

1 Stearic acid HATU 

DIPEA 

 

DMF r.t. 18h - 

2 Stearic acid HATU 

DIPEA 

 

DMF r.t 48h - 

3 Stearic acid EDC 

HOBt 

DIPEA 

 

DMF r.t. 18h - 

4 N-succinimidyl 

octadecanoate 

TEA THF 60 18h 43% 

 

Although it remains to remove the protecting groups, to the best of our 

knowledge, this work represents the first example of synthesis of 2-deoxy-β-
GalCer analogue (3.25) with complete β-stereoselectivity. The key step was the 
synthesis of 2-deoxy-2-iodo-glycosyl donor with galacto configuration which 

was achieved by the appropriate selection of the protecting groups. 

 

3.2.2. Synthesis of 2-deoxy-2-iodo-αααα-TalCer analogue 
 

As it was mentioned before, 2-deoxy-2-iodo-talopyranoses may be excellent 

glycosyl donors to direct the glycosylation with α stereoselectivity. Hence, the 
synthesis of 2-iodopyranose 3.27 was necessary. Iodoacetoxylation of galactal 

3.26 in presence of cerium (IV) ammonium nitrate (CAN), NaI and acetic acid 

(AcOH) in acetonitrile afforded 3.27 with the desired talo configuration in 

excellent yield (93%) (Scheme 3.11.).  
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Scheme 3.11. Formation of 2-iodo-deoxy-glycosyl donor 3.27 

 

Although the mechanism is still unclear, the group of Roush20 argued that the 

reaction could proceed by the addition of a iodine radical (I·) to the C-2 of the 

glycal like in the azidonitration reaction promoted by CAN21. In the case of the 

azidonitration reaction, it is known that ceric salts oxidize metallic azides to 

nitrogen quantitatively, and an azido radical has been suggested as intermediate 

which could be trapped by carrying out the reaction in the presence of olefins 

(Scheme 3.12., Equations 1 and 2). Then, if a radical intermediate is formed, it 

could be converted to the corresponding nitrate (3.28), by one of the pathways 

suggested for other radical nitrate conversions in CAN reactions such as an 

electron transfer reaction (Scheme 3.12., Equation 3), a ligand transfer reaction 

(Scheme 3.12., Equation 4), and reaction of the radical with nitrate to form a 

radical anion which is subsequently oxidized by a cerium(IV) to the neutral 

alkyl nitrate (Scheme 3.12., Equation 5). 

 

 

 

Scheme 3.12. Proposed mechanism for azidonitration of acenaphthene 

 

To demonstrate that iodoacetoxylation of glycals proceed in a similar way as the 

azidonitration, the group of Roush treated cyclohexene under iodoacetoxylation  

conditions (CAN-NaI, AcOH). Under these conditions, 1-iodo-2-

                                                           

20
 Roush, R. W.; Narayan, S.; Bennett, C. E.; Briner, K. Org. Lett. 1999, 6, 895-887. 

21
 (a) Trahanovsky, W. S.; Robbins, M. D. J. Am. Chem. Soc. 1971, 93, 5256-5258. (b) 

Trahanovsky, W. S.; Cramer, J. J. Org. Chem. 1971, 36, 1890-1893. 
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nitratocyclohexane (3.32) could be obtained (Scheme 3.13.). Therefore, they 

concluded that 2-iodo-1α-nitrates are intermediates in the CAN-NaI reactions of 
glycals and are converted to the iodo acetates after a final nitrate-acetate 

substitution reaction. 

 

 

 

Scheme 3.13. Iodonitration of cyclohexene using CAN-NaI-AcOH 

 

About the stereochemistry adopted by iodine group in a iodoacetylation of 

glycals, Roush and co-workers discussed that although it is known that the 

carbon based radicals generally add at the position C-2 of glycals with a trans 

configuration to the C-3 substituent,22 they were unable to explain why the 

iodine radical adopts the configuration cis to C-3 subtituent for the examples 

that they studied on glycals. 

 

 
 

Scheme 3.14. Formation of azidophytosphingosine 3.36 

 

On the other hand, Scheme 3.14. depicts the synthetic route utilized for the 

preparation of azidophytosphingosine 3.26 from available phytosphingosine 1.6. 

The amine moiety of phytosphingosine 1.6 was converted to azide employing 

the diazotransfer reaction to provide 3.33 in quantitative yield (99%). 
                                                           

22
 (a) Linker, T.; Sommermann, T.; Kahlenberg, F. J. Am. Chem. Soc. 1997, 119, 9377-9384. (b) 

Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244-1251. (c) Briner, K.; Vasella, 

A. Helv. Chim. Acta 1987, 70, 1341-1356. 
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Although the mechanism of diazotransfer reaction remains unclear, interesting 

contributions were reported by the group of Wong to explain this 

transformation.23 They observed that divalent metal ions such as Cu (II) or Zn 

(II) were able to improve the reaction rate considerably. Hence, they proposed 

that the reaction could be promoted by the coordination of the amine to the 

metal catalyst under basic conditions to form 3.37 (Scheme 3.15.). Then a 

nucleophilic attack of 3.37 on the highly electrophilic triflyl azide followed by 

deprotonation, might form a metal-stabilized mixed tetrazene, 3.39. The 

breakdown of 3.39, via a reverse [3+2] dipolar cycloaddition, could afford the 

desired azide product and metal-triflyl imido complex 3.40. Then, to be in 

agreement with the computational work by Brandt,24 they assumed that complex 

3.40 could be in equilibrium with 3.41. At this point, they found reasonable that 

complexes 3.40 and 3.41 could derive from complex 3.42. On the one hand, 

3.42 may undergo amine complexation and then the proton transfer to provide 

3.40 (with triflyl amide as one of the ligands). On the other hand, the 

transimination of 3.41 yield the transient metal-imido complex 3.42. They found 

that this explanation was similar to the azide metathesis reaction reported by 

Bergman et al. with zirconium complexes.25 Moreover, the imido-metal 3.42 

complex could be engaged with triflyl azide in a [3+2] dipolar cycloaddition to 

alternatively provide 3.39. 

 

                                                           

23
 Nyffeler, P. T.; Liang, C.-H.; Koeller, K. M.; Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 

10773-10778. 
24
 Brandt, P.; Söergren, M. J.; Andersson, P. G.; Norrby, P.-O. J. Am. Chem.Soc. 2000, 122, 

8013-8020. 
25
 Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 974-985. 
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Scheme 3.15. Proposed mechanism for diazotransfer reaction. 

 

Once azidophytosphingosine 3.33 was obtained, it was treated with trityl 

choride in a mixture of pyridine/dichloromethane for 18 h to selectively protect 

the primary alcohol. The resulting azidophytosphingosine 3.34 was isolated in 

good 76% yield (Scheme 3.20.). Later, 3.34 was acylated by reaction with 

benzoyl chloride in pyridine from 0 ºC to room temperature for 1.5 h to yield the 

fully protected azidophytosphingosine 3.35. Finally, 3.35 was treated with 

BF3·OEt for 5 h to selectively cleave the trityl group. Alcohol 3.36 was obtained 

in excellent yield (93 %) and was ready to be used as a glycosyl acceptor for 

glycosylation. 

 

It is well known that certain 1-O-acetylated-2-deoxy-2-iodo glycosides can 

undergo glycosylation when a strong Lewis acid such as TMSOTf is employed.  

Moreover, a similar Lewis acid promoter (TBSOTf) was successfully employed 

for the preparation of 2-deoxy-2-iodo-β-D-galactosyl ceramide, see previous 
section (Scheme 3.9.). Hence, the peracetylated 2-deoxy-2-iodogalactose 3.27 

was treated with 3.36 in presence of TMSOTf at -78 ºC under anhydrous 

conditions for 18 h. To our delight, glycoside 3.43 was obtained in excellent  

90% yield with complete α selectivity (Scheme 3.16.). 
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Scheme 3.16. Glycosylation of azidophytosphingosine 3.36 

 

Next, glycoazidophytosphingosine 3.43 was reduced with triphenylphosfine26 

(Scheme 3.17.) similarly to glycoazidosphigosine 3.24, to afford the 

corresponding amine (Table 3.2.) which was treated without further purification, 

with hexacosanoic acid and HATU in a (55:15:30) mixture of 

DMF/CH2Cl2/Et2O in presence of DIPEA as a base. After stirring at room 

temperature for 18 h the desired glycolipid 3.44 was isolated in 64% yield 

(Scheme 3.17.). The stereochemistry of iodine is appropriate for introduction of 

different substituents at C-2 by an SN2 process, which will be tackled in the 

future. Moreover, reduction of C-I bond with HSnBu3 under radical conditions 

and removal of protecting groups should afford the 2-deoxy-α-GalCer 
derivative. 

 

 
 

Scheme 3.17. Synthesis of glycolipid 3.45 from glycoside 3.44 

 

In summary, the use of the 2-deoxy-2-iodo-glycosyl donors (3.16 and 3.27) has 

been studied for the glycosylation reaction of stannyl ceramide 3.18 and 

azidosphingosine 3.22 and azidophitosphingosine 3.36 derivatives. The direct 

glycosylation of stannyl ceramide 3.18 was unsuccessful because of the side-

reactions occurring between Sn (IV) species and iodine present in the glycosyl 

                                                           

26
 (a) Tian, W. Q.; Wang, Y. A.  J. Org. Chem. 2004, 69, 4299-4308. (b)  Lin, F. L.; Hoyt, H. 

M.; Halbeek, H. V.; Bergman, R. G.; Bertozzi, C. R. J. Am. Chem. Soc. 2005, 127, 2686-2695. 
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donor (3.16). However, direct glycosylation of azidosphingosine 3.22 and 

azidophytosphingosine 3.36 derivatives without tin activation afforded the 

corresponding glycosides 3.23 and 3.43 respectively in high yield. In both cases 

complete stereoselectivities were obtained due to the presence of both the 3,4-

cyclic protecting group and the iodine configuration in the glycosyl donors. 

After several transformations, the corresponding derivatives of 2-deoxy-β-

GalCer 3.25 and 2-deoxy-2-iodo-α-TalCer 3.44 were obtained. Further efforts to 

scale these products for their convenient deprotection in order to study its 

potencial biological activity are currently under investigation in our group.   

 

 

3. 3. Experimental section 

 

N-stearoyl-D-erythro-sphingosine (1.15) 

 

OH OH

HN

O

(CH2)16CH3

(CH2)12CH3

1

2-17 18

1'
2'

3'

4'
5' 6'-17'

18'

 
 

Stearic acid (3.17) (94 mg, 0.320 mmol), D-erythro-sphingosine (1.4) (115 mg, 

0.384 mmol) and HATU (152 mg, 0.400 mmol) were dissolved in dry 

dimethylformamide (10.6 mL). DIPEA (195 µL, 1.120 mmol) was added to 
mixture that was stirred at room temperature for 13 h. The reaction was 

quenched by adding ethyl acetate and extracting with water. After concentration, 

the crude was purified by flash chromatography using a gradient 5:95 to 1:9 

isopropanol/CHCl3 as eluent to afford 1.15 as white solid (160 mg, 88% yield): 

Rf (1:9 isopropanol/CH3Cl): 0.20; mp: 105-106 ºC; [α]D20: -5.0º (c = 0.5, 

CHCl3); 
1H NMR (400 MHz, 1:4 CDCl3/CD3OD) δ in ppm: 5.66 (dt, J5’,4’ = 

15.2 Hz, J5’,6a’ = J5’,6b’ =  6.4 Hz, 1H, H-5’), 5.40 (dd, J4’,5’ = 15.2 Hz, J4’,3’ = 6.8 

Hz, 1H, H-4’), 4.09 (appt, J3’,2’ = J3’,4’ = 6.8 Hz, 1H, H-3’), 3.76 (m, 2H, H-1a’, 

H-2’), 3.55 (dd, J1b’,1a’ = 13.2 Hz, J1b’,2’ = 5.2 Hz, 1H, H-1b’), 2.13 (t, J1,2 = 7.2 

Hz, 2H, H-1), 1.98 (m, 2H, H-6’), 1.53 (m, 2H, H-2), 1.21 (m, 50H, H-alk), 0.80 
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(m. 6H, H-CH3); 
13C NMR (100.6 MHz, 1:4 CDCl3/CD3OD) δ in ppm: 174.7 

(CO), 134.0 (C-5’), 128.9 (C-4’), 73.4 (C-3’), 61.7 (C-1’), 54.8 (C-2’), 36.7 (C-

1), 32.4 (C-6’), 31.9 (C-Alk), 29.7 (C-Alk), 29.6 (C-Alk), 29.5 (C-Alk), 29.4 (C-

Alk), 29.4 (C-Alk), 29.3 (C-Alk), 29.2 (C-Alk), 25.8 (C-Alk), 22.7 (C-Alk), 

14.1 (CH3); FT-IR (neat) υ in cm
-1: 3309, 2917, 2849, 1642, 1548, 1467, 780, 

628; HRMS (TOF ES+) for: C36H71NNaO3
+ (m/z): calc. 588.5326; found: 

588.5296. 

 

1,5-Anhydro-6-O-(tert-butyldiphenylsilyl)-2-deoxy-D-lyxo-hex-1-

enopyranose (3.14)
27
 

 
 

D-Galactal (3.13) (570 mg, 3.900 mmol) was diluted in DMF (1.7 mL). 

Triethylamine (1.6 µL, 11.70 mmol) and t-butyldiphenylsilyl chloride (1.2 µL, 

4.290 mmol) were added. The reaction was stirred at room temperature for 3 h 

and then quenched by adding ethyl acetate and washing with water. After 

concentration of the organic layer, the crude was purified by flash 

chromatography using 3:7 ethyl acetate/hexanes as eluent to afford 3.14 as a 

colorless oil (910 mg, 61% yield): Rf (3:7 ethyl acetate/hexanes): 0.20; [α]D20: 

+1.60º (c = 2.2, CHCl3); 
1H NMR (400 MHz, CDCl3) δ in ppm: 7.75-7.69 (m, 

4H, HAr), 7.48-7.40 (m, 6H, HAr), 6.37 (d, J2,1 = 6.4 Hz, 1H, H-1), 4.72 (dd, J1,2 

= 6.4 Hz, J2,3 = 1.6 Hz, 1H, H-2), 4.37 (brs, 1H, H-3), 4.15 (appt, J3,4 = J4,5 = 3.6 

Hz, 1H, H-4), 4.01 (dd, J6a,6b = 12.4 Hz, J6a,5 = 7.6 Hz, 1H, H-6a), 3.94-3.91 (m, 

2H, H-5, H-6b), 3.15 (d, J = 5.2 Hz, 1H, H-OH), 2.89 (d, J = 10.0 Hz, 1H, H-

OH), 1.10 (s, 9H, H-CH3); 
13C NMR (100.6 MHz, CDCl3) δ in ppm: 144.5 (C-

1), 135.8 (C-Ar), 132.7 (C-Ar), 130.1 (C-Ar), 128.0 (C-Ar), 103.4 (C-2), 76.2 

(C-5), 65.8 (C-3), 64.6 (C-4), 63.8 (C-6), 27.0 (CH3), 19.3 (C(CH3)3); FT-IR 

(neat) υ in cm-1: 3995, 3070, 2930, 2856, 1646, 1471, 1427, 1245, 1112, 745, 

690; HRMS (TOF ES+) for C22H28NaO4Si
+ (m/z): calc. 407.1649; found: 

407.1636. 

 

                                                           

27
 Gervay, J.; Peterson, J. M.; Oriyama, T.; Danishefsky, S. J. J. Org. Chem.1993, 58, 5465-

5468. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 98

1,5-Anhydro-6-O-(tert-butyldiphenylsilyl)-2-deoxy-D-lyxo-hex-1-

enopyranose 3,4-carbonate (3.15)
27  

 

 
 

6-O-(tert-butyldiphenylsilyl)galactal (3.14) (900 mg, 2.340 mmol) was treated 

with carbonyldiimidazole (552 mg, 3.065 mmol) in dry THF at room 

temperature for 9.5h. The crude was concentrated in vacuo and it was purified 

by flash chromatography using 1:3 ethyl acetate/hexanes as eluent. The 

protected product 3.15 was isolatated as syrup (675 mg, 70% yield): Rf (1:3 

ethyl acetate/hexanes): 0.36; [α]D20: -38.6º (c = 0.98, CHCl3); 
1H NMR (400 

MHz, CDCl3) δ in ppm: 7.70-7.67 (m, 4H, H-Ar), 7.49-7.40 (m, 6H, HAr), 6.64 

(d, J1,2 = 6.4 Hz, 1H, H-1), 5.21 (dd, J3,4 = 8.0 Hz, J3,2 = 3.2 Hz, 1H, H-3), 5.05 

(appdt, 1H, H-4), 4.95 (ddd, J2,1 = 6.4 Hz, J2,3 = 3.2 Hz, J1,4 = 1.2 Hz, 1H, H-2), 

4.02-3.95 (m, 3H, H-5, H-6a, H-6b), 1.10 (s, 9H, H-CH3); 
13C NMR (100.6 

MHz, CDCl3) δ in ppm: 154.3 (CO), 149.3 (C-1), 135.7 (C-Ar), 132.9 (C-Ar), 

130.2 (C-Ar), 128.1 (C-Ar), 98.2 (C-2), 74.0 (C-5), 73.1 (C-4), 69.1 (C-3), 62.0 

(C-6), 27.0 (CH3), 19.4 (C(CH3)3); FT-IR (neat) υ in cm
-1: 3067, 2936, 2857, 

2361, 1801, 1647, 1428, 1369, 1244, 1110, 1012, 785, 703; HRMS (TOF ES+) 

for C23H26NaO5Si
+ (m/z): calc. 433.1442; found: 433.1434. 

 

 

6-O-(tert-butyldiphenylsilyl)-3,4-di-O-(carbonyl)-2-deoxy-2-iodo-αααα-D-
galactopyranosyl trichloroacetimidate (3.16)

6
 

 

O

O

OTBDPSO

O

I

O

C

NH

CCl3  
 

Galactal derivate 3.15 (675 mg, 1.640 mmol) was dissolved in 

tetrahydrofurane/water 1:1 (32 mL). To the resulting solution was added N-

iodosuccinimide  (443 mg, 1.968 mmol) at room temperature. After 5h of 

stirring, the starting galactal was consumed and the reaction was quenched by 
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the addition of 10 % Na2S2O3 (20 mL) and the resulting mixture was stirred for 

5 min. The mixture was extracted with three portions of ethyl acetate (20 mL 

each). The organic phase was washed with saturated NaCl solution, dried over 

MgSO4, filtered and concentrated. The residue was purified by flash 

chromatography using 1:2 ethyl acetate/hexanes as eluent to afford the 

hemiacetal (816 mg) as syrup. This material was used directly in the next 

reaction. 

 

The hemiacetal (816 mg, 1.476 mmol) was dissolved in dry CH2Cl2 (7.5 mL) 

under argon atmosphere and cooled to 0 ºC. Cl3CCN (7.5 mL) was added and 

the solution was allowed to cool for 10 min. DBU (66 µL, 0.443 mmol) was 
added and the solution became yellow. The solution was stirred for 1.5h and 

then concentrated. The residue was quickly chromatographed on a short column 

of silica gel using 1:8 ethyl acetate/hexanes as eluent to obtain the imidate 3.16 

(555 mg, 48% yield over two steps) as syrup: Rf (1:4 ethyl acetate/hexanes): 

0.43; [α]D20: + 26.6º (c = 4.4, CH3Cl); 
1H NMR (400 MHz, CDCl3) δ in ppm: 

8.81 (s, 1H, H-CNH), 7.67-7.61 (m, 4H, H-Ar), 7.75-7.36 (m, 6H, H-Ar), 6.32 

(d, J1,2 = 4.0 Hz, 1H, H-1), 5.26 (dd, J3,2 = 7.6 Hz, J3,4 = 6.4 Hz, 1H, H-3), 4.87 

(dd, J4,3  = 6.4 Hz, J4,5 = 2.4 Hz, 1H, H-4), 4.51 (ddt, J5,6a = 7.6 Hz, J5,6b = 6.0 

Hz, J5,4 = 2.4 Hz, 1H, H-5), 4.32 (dd, J2,3 = 7.6 Hz, J2,1 = 4.0 Hz, 1H, H-2) 3.95 

(dd, J6a,6b = 10.8 Hz, J6a,5 = 7.6 Hz, 1H, H-6a), 3.88 (dd, J6a,6b = 10.8 Hz, J6b,5 = 

6.0 Hz, 1H. H-6b), 1.06 (s, 9H, H-CH3); 
13C NMR (100.6 MHz, CDCl3) δ in 

ppm: 160.1 (CNH), 153.1 (CO), 135.7 (C-Ar), 132.8 (C-Ar), 130.2 (C-Ar), 

128.0 (C-Ar), 94.1 (C-1), 78.3 (C-3), 74.3 (C-4), 68.7 (C-5), 62.0 (C-6), 27.0 

(CH3), 19.4 (C(CH3)3), 19.1 (C-2); FT-IR (neat) υ in cm
-1: 3337, 3070, 2930, 

2857, 1818, 1675, 1471, 1427, 1361, 1274, 1176, 1138, 1105, 1051, 997, 851, 

739, 701, 643; HRMS (TOF ES+) for C25H27Cl3IKNO6Si
+ (m/z): calc. 735.9349; 

found: 735.9359. 
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(2S,3R,4E)-2-azido-3-(benzoyloxy)-1-{[6-O-(tert-butyldiphenylsilyl)-3,4-di-

O-(carbonyl)-2-deoxy-2-iodo-ββββ-D-galactopyranosyl]oxy}-octadec-4-ene 

(3.23)
6
 

 

 
 

(2R,3S)-2-azido-3-benzoylsphingosine (3.22)17
 (30 mg, 0.068 mmol) and 

imidate 3.16 (73 mg, 0.103 mmol) were codistilled three times with dry toluene 

in separated flasks. Activated 4 Å MS (50 mg) were added to the sphingosine 

derivate 3.22 containg flask under argon atmosphere. The mixture was dissolved 

in dry dichloromethane (1.5 mL) under argon atmosphere and cooled to -78 ºC. 

Imidate 3.16 was dissolved in dry dichloromethane (2 mL) and then was added 

via cannula to the sphingosine 3.22 solution. After the mixture was cooled for 

10 min to -78 ºC, TBSOTf (8 µL, 0.034 mmol) was added. The reaction was 
stirred for 18 h at that temperature under argon atmosphere. Then, it was 

quenched with TEA and warmed to 23 °C. The resulting mixture was diluted 

with EtOAc and washed with saturated sodium hydrogencarbonate solution, 

saturated NaCl solution, dried over Na2SO4, filtered, and concentrated on a 

rotary evaporator. The crude was purified by flash chromatography using 1:8 

ethyl acetate/hexane as eluent to afford 3.23 as syrup (60 mg, 90% yield): Rf 

(1:4 ethylacetate/hexane): 0.48; [α]D20: -19.3º (c = 0.51, CH3Cl); 
1H NMR (400 

MHz, CDCl3) δ in ppm: 8.04 (d, J = 8.4 Hz, 2H, H-Ar), 7.68-7.64 (m, 4H, H-

Ar), 7.47-7.39 (m, 9H, H-Ar), 5.96 (dt, J5,4 = 14.8 Hz, J5,6a = J5,6b = 6.4 Hz, 1H, 

H-5), 5.62 (dd, J3,4 = 8.4 Hz, J3,2 = 4.0 Hz, 1H, H-3), 5.54 (dd, J4,5 = 14.8 Hz, 

J4,3 = 8.4 Hz, 1H, H-4), 5.13 (dd, J3’,4’ = 7.2 Hz, J3’,2’  = 6.4, 1H, H-3’), 4.74 (dd, 

J4’,3’ = 7.2 Hz, J4’.5’ = 2.0 Hz, 1H, H-4’), 4.69 (d, J1’,2’ = 6.8 Hz, 1H, H-1’), 4.09 

(m, 1H, H-5’), 3.93 (m, 4H, H-2, H-2’, H-6a’, H-6b’), 3.80 (dd, J1a,1b = 10.0 Hz, 

J1a,2 = 6.8 Hz, 1H, H-1a), 3.48 (dd, J1b,1a = 10.0 Hz, J1b,2 = 6.0 Hz, 1H, H-1b), 

2.06 (m, 2H, H-6), 1.30 (m, 22H, CH2), 1.06 (s, 9H, tBu), 0.88 (t, J18,17 = 6.4 

Hz, 3H, H-18); 13C NMR (100.6 MHz, CDCl3) δ in ppm: 165.4 (COPh), 153.1 

(CO), 139.6 (C-5), 135.7 (C-Ar), 133.4 (C-Ar),  132.8 (C-Ar), 130.2 (C-Ar), 

130.1 (C-Ar), 128.6 (C-Ar), 128.0 (C-Ar), 122.8 (C-4), 101.3 (C-1’), 80.3 (C-

3’), 75.1 (C-3), 73.5 (C-4’), 72.3 (C-5’), 68.2 (C-1), 63.4 (C-2), 62.1 (C-6’), 
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32.4 (CH2), 31.9 (CH2), 29.7 (CH2), 29.6 (CH2), 29.43 (CH2), 29.37 (CH2), 

29.2(CH2), 28.7(CH2), 27.0 (CH3), 22.7 (CH2), 19.4 (C(CH3)3), 19.1 (C-2’), 14.1 

(C-18);    FT-IR (neat) υ in cm-1: 2926, 2854, 2102, 1818, 1723, 1265, 1112, 

786, 710; HRMS (TOF ES+) for: C48H64IN3NaO8Si
 + (m/z): calc. 988.3400; 

found: 988.3363. 

 

 

(2S,3R,4E)-2-azido-3-(benzoyloxy)-1-{[6-O-(tert-butyldiphenylsilyl)-3,4-di-

O-(carbonyl)-2-deoxy-ββββ-D-galactopyranosyl]oxy}-octadec-4-ene (3.24)
28
 

 

 
 

A solution of the glycoside 3.23 (33 mg, 0.034 mmol), Bu3SnH (23 µL, 0.084 
mmol) and Et3B (8 µL, 1M in hexanes, 0.008 mmol) in 0.4 mL of toluene was 
stirred at room temperature. An aliquot of the reaction mixture was taken after 

30 min and analyzed by 1H NMR and HSQC spectroscopy, showing that the 

reduction was complete. The reaction mixture was diluted with EtOAc (5 mL) 

and washed with an aqueous solution of NaHCO3. The organic extracts were 

dried with MgSO4, filtered and concentrated. The crude product was purified by 

flash column chromatography using 1:4 ethyl acetate/hexanes as the eluent to 

afford the product 3.24 (18 mg, 65%) as a syrup: Rf (1:2 ethylacetate/hexane): 

0.45; [α]D20: -13.9º (c = 1.04, CH3Cl); 
1H NMR (400 MHz, CDCl3) δ in ppm: 

8.04 (d, J = 8.4 Hz, 2H, H-Ar), 7.68-7.64 (m, 4H, H-Ar), 7.47-7.39 (m, 9H, H-

Ar), 5.91 (dt, J5,4 = 14.4 Hz, J5,6a = J5,6b = 6.8 Hz, 1H, H-5), 5.59 (dd, J3,4 = 8.4 

Hz, J3,2 = 4.0 Hz, 1H, H-3), 5.54 (dd, J4,5 = 14.4 Hz, J4,3 = 8.4 Hz, 1H, H-4), 

4.97-4.92 (m, 2H, H-3’,H-4’), 4.82 (t, J1’,2a’ = J1’,2b’ = 3.6 Hz, 1H, H-1’), 3.96-

3.76 (m, 5H, H-5’, H-6a’, H-6b’, H-2, H-1a), 3.41 (dd, J1b,1a = 10.0 Hz, J1b,2 = 

6.0 Hz, 1H, H-1b), 2.13-2.02 (m, 4H, H-2a’, H-2b’, H-6a, H-6b), 1.30 (m, 22H, 

CH2), 1.06 (s, 9H, tBu), 0.88 (t, J18,17 = 6.4 Hz, 3H, H-18); 
13C NMR (100.6 

MHz, CDCl3) δ in ppm:  165.4 (COPh), 154.4 (CO), 139.0 (C-5), 135.7 (C-Ar), 

133.4 (C-Ar),  132.8 (C-Ar), 130.2 (C-Ar), 130.1 (C-Ar), 128.6 (C-Ar), 128.0 

                                                           

28
 Roush, W. R.; Narayan, S.; Org. Lett. 1999, 1, 899-902. 
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(C-Ar), 123.0 (C-4), 96.7 (C-1’), 75.5 (C-3), 72.4 (C-4’), 71.4 (C-5’), 70.8 (C-

3’), 67.2 (C-1), 63.5 (C-2), 62.6 (C-6’), 32.4 (CH2), 32.1 (C-2’), 31.9 (CH2), 

29.7 (CH2), 29.6 (CH2), 29.43 (CH2), 29.37 (CH2), 29.2(CH2), 28.9(CH2), 27.0 

(CH3), 22.9 (CH2), 19.4 (C(CH3)3), 14.1 (C-18); FT-IR (neat) υ in cm
-1: 3567, 

2926, 2104, 1805, 1718, 1267, 1113, 766, 629; HRMS (TOF ES+) for: 

C48H65N3NaO8Si
 + (m/z): calc. 862.4433; found: 862.4441. 

 

(2S,3R,4E)-2-N-stearoyl-3-(benzoyloxy)-1-{[6-O-(tert-butyldiphenylsilyl)-

3,4-di-O-(carbonyl)-2-deoxy-ββββ-D-galactopyranosyl]oxy}-4-octadecene (3.25) 
 

 

 

On the one hand, to a solution of stearic acid (3.17) (71.7 mg, 0.252 mmol) in 

CH2Cl2 (3 mL) were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (53.4 mg, 0.272 mmol) and N-hydroxysuccinimide (34.8 mg, 

0.302 mmol). The mixture was heated at 40 ºC for 3h, and then the mixture was 

poured into water (20 mL) and extracted with Et2O (60 mL). The organic layer 

was washed with brine (20 mL), dried over MgSO4 and filtered. The solvent was 

removed under reduced pressure and the corresponding N-succinimidyl 

octadecanoate crude29 (89 mg) was employed without further purification. 

 

On the other hand, PPh3 (12 mg, 0.045 mmol) and water (6 µL) were added to a 
stirred solution of azide derivative 3.24 (12.8 mg, 0.015 mmol) in THF (1 mL), 

and the mixture was stirred at 45ºC until TLC indicated the complete 

transformation of the starting azide into corresponding amine (about 12 h). After 

rotary evaporation, the amine residue, the N-succinimidyl octadecanoate (12 mg, 

0.030 mmol) were redissolved in dry THF (2 mL). Then DIPEA (42 µL, 0.300 
mmol) was added and the mixture was stirred at 60 ºC for 18 h. The solution 

was concentrated under vacuum, and the residue was purified by column 

chromatography on silica gel using 1:2:8 methanol/ethyl acetate/hexane as 

                                                           

29
 Howarth, N. M.; Lindsell, W. E.; Murray, E.; Preston, P. N. Tetrahedron 2005, 61, 8875-

8887. 
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eluent to afford 3.25 as syrup (7 mg, 43 % yield over two steps): Rf (1:4 

ethylacetate/hexane): 0.28; [α]D20: -16.1º (c = 0.13, CH3Cl); 
1H NMR (400 

MHz, CDCl3) δ in ppm: 7.94 (d, J = 7.5 Hz, 2H, H-Ar), 7.76 (t, J = 7.5 Hz, 4H, 

H-Ar), 7.51-7.38 (m, 9H, H-Ar), 5.81 (dt, J5’,4’ = 14.4 Hz, J5’,6a’ = J5,6b’ = 6.8 Hz, 

1H, H-5’), 5.68 (dd, J4’,5’ = 14.4 Hz, J4’,3’ = 8.4 Hz, 1H, H-4’), 5.17 (t, J3’,4’ = 

J3’,2’ = 8.4 Hz, 1H, H-3’), 4.94-4.84 (m, 2H, H-3’’,H-4’’), 4.80 (t, J1’’,2a’’ = 

J1’’,2b’’ = 3.5 Hz, 1H, H-1’), 4.42-4.36 (m, 1H, H-2’), 4.03-3.60 (m, 3H, H-1a’, 

H-6a’’, H-6b’’, H-5’’),  3.53 (dd, J1b,1a = 10.0 Hz, J1b,2 = 6.0 Hz, 1H, H-1b), 

2.16-2.02 (m, 6H, H-2, H-2a’’, H-2b’’, H-6a’, H-6b’), 1.65-1.10 (m, 52H, CH2), 

1.06 (s, 9H, tBu), 0.88 (m, 6H, H-18, H-18’);13C NMR (100.6 MHz, CDCl3) δ in 

ppm: 173.8 (NCO), 164.5 (COPh), 154.6 (CO), 136.4 (C-5’), 135.7 (C-Ar), 

135.7 (C-Ar), 135.4 (C-Ar), 133.3 (C-Ar), 133.0 (C-Ar), 131.6 (C-Ar), 130.2 

(C-Ar), 130.1 (C-Ar), 128.5 (C-Ar), 128.4 (C-Ar), 128.1 (C-Ar), 128.1 (C-Ar), 

127.1 (C-Ar), 125.2 (C-Ar), 124.4 (C-4’), 97.3 (C-1’’), 83.4 (C-3’), 72.5 (C-4’’), 

71.3 (C-5’’), 71.0 (C-3’’), 68.9 (C-2’), 67.3 (C-1’), 62.6 (C-6’’), 32.4 (CH2), 

32.1 (C-2’), 31.9 (CH2), 29.7 (CH2), 29.6 (CH2), 29.4 (CH2), 29.3 (CH2), 

29.2(CH2), 28.9(CH2), 27.0 (CH3), 22.9 (CH2), 19.4 (C(CH3)3), 14.1 (C-18, C-

18’); FT-IR (neat) υ in cm-1: 2923, 2853, 1807, 1738, 1461, 1114, 701, 631; 

HRMS (TOF ES+) for: C66H102NO9Si
 + (m/z): calc. 1080.7318; found: 

1080.7323. 

 

1,3,4,6-tetra-O-acetyl-2-deoxy-2-iodo-α-D-talose (3.27)
20
 

 

OAc

O

OAc
AcO

AcO

I

 
 

3,4,6-Tri-O-acetyl-D-galactal (3.26, 690 mg, 2.458 mmol) was dissolved in 

CH3CN (17 mL) and cooled to -15 °C. CAN (3503 mg, 6.391 mmol) and glacial 

acetic acid (1.4 mL) were added to the stirring mixture. Next NaI (479 mg, 

3.115 mmol) in CH3CN (8 mL) was added dropwise over approximately 30 min. 

The solution was then allowed to gradually warm to room temperature. After 3 h 

the reaction was complete, and the mixture was washed with 10% Na2S2O3, 

saturated aqueous NaHCO3, and brine. The organic layer was then dried over 

anhydrous Na2SO4, concentrated and purified by column chromatography using 
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1:2 ethyl acetate/hexanes as the eluent to afford the product 3.27 (539 mg, 93%) 

as a syrup: Rf (1:1 ethylacetate/hexane): 0.25; [α]D20: +43.2º (c = 0.9, CH3Cl); 
1H NMR (400 MHz, CDCl3) δ in ppm: 6.44 (d, J1,2 = 1.2 Hz, 1H, H-1), 5.37 (t, 

J4,3 = J4,5 = 2.8 Hz, 1H, H-4), 4.83 (dd, J3,2 = 4.8 Hz, J3,4 = 2.8 Hz, 1H, H-3), 

4.35 (ddd, J5,6a = 8.4 Hz, J5,6b = 6.4 Hz, J5,4 = 2.8 Hz, 1H, H-5), 4.23 (dd, J2,3 = 

4.8 Hz, J2,1 = 1.2 Hz, 1H, H-2), 4.13-4.11 (m, 2H, H-6a, H-6b), 2.13 (s, 3H, 

CH3), 2.09 (s, 3H, CH3), 2.03 (s, 3H, CH3), 1.99 (s, 3H, CH3); 
13C NMR (100.6 

MHz, CDCl3) δ in ppm: 170.5 (CO), 170.0 (CO), 169.5 (CO), 168.3 (CO), 96.0 

(C-1), 69.1 (C-5), 64.9 (2C, C-3, C-4), 61.5 (C-6), 21.0 (CH3), 20.9 (2C, CH3), 

20.7 (CH3), 19.0 (C-2); FT-IR (neat) υ in cm
-1: 1749, 1434, 1372, 1218, 1133, 

1073, 1051, 994, 939; HRMS (TOF ES+) for: C14H19INaO9
 + (m/z): calc. 

480.9966; found: 480.9957. 

 

2-azido-phytosphingosine (3.33)
30
 

 

 
 

TfN3 was freshly prepared prior to the reaction as follows: NaN3 (4592 g, 15 

mmol) was dissolved in H2O (11 mL), and the obtained solution was cooled to 0 

ºC. CH2Cl2 (11 mL) was added, followed by dropwise addition of Tf2O over 15 

min (795 µL, 4.710 mmol) with vigorous stirring of the solution at 0 ºC. After 2 
h, an aqueous saturated solution of NaHCO3 (10 mL) was carefully added, while 

stirring was continued until gas evolution had ceased. The reaction contents 

were then transferred to a separating funnel, and the phases were separated. The 

aqueous phase was washed with CH2Cl2 (2 x 15 mL). The combined organic 

phases were washed with NaHCO3 solution (1 x 20 mL). The resulting solution 

of TfN3 in CH2Cl2 was concentrated in vacuo until a volum of 5 mL and was 

used in the azidation step without further purification as follows: Amine 1.6 

(500 mg, 1.570 mmol) and CuSO4·5H2O (4 mg, 0.015 mmol) were dissolved in 

H2O (5 mL). The CH2Cl2 solution of TfN3 was then added with vigorous 

stirring. CH3OH (20 mL) was then added over 5 min. After 18 h, the reaction 

                                                           

30
 (a) Garcia Diaz, Y. R.; Wojno, J.; Cox, L. R.; Besra, G. S. Tetrahedron: Asymmetry 2009, 20, 

747-753. (b) Alper, P. B.; Hung, S-C.; Wong, C-H. Tetrahedron Lett. 1996, 37, 6029-6032. 
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mixture was diluted with H2O (25 mL) and extracted with ethyl acetate (3 x 25 

mL). The combined organic phases were dried over anhydrous Na2SO4, 

concentrated and purified by a silica plug and washed with ethyl acetate until 

complete elution of the product. Removal of the solvent under reduced pressure 

afforded azide 3.33 as a white solid (538 mg, 99%): Rf (5:20:75 

NH4OH/CH3OH/CH2Cl2): 0.52; mp: 92-93 ºC; [α]D20: +16.2º (c = 0.5, 1:1 

CH3OH/CHCl3); 
1H NMR (400 MHz, 1:2 CD3OD/CDCl3) δ in ppm: 3.82 (dd, 

J1a,1b = 12.0 Hz, J1a,2 = 4.8 Hz, 1H, H-1a), 3.69 (dd, J1a,1b = 12.0 Hz, J1a,2 = 4.8 

Hz, 1H, H-1b), 3.55-3.52 (m, 2H, H-3, H-4), 3.45-3.42 (m, 1H, H-2), 1.48-1.43 

(m, 26H, H-Alk), 0.76 (t, J18,17 = 6.0 Hz, H-18); 
13C NMR (100.6 MHz, 1:2 

CD3OD/CDCl3) δ in ppm: 74.4 (C-3), 72.2 (C-4), 63.7 (C-2), 61.4 (C-1), 32.0 

(C-Alk), 31.9 (C-Alk), 29.6 (C-Alk), 29.6 (C-Alk), 29.3 (C-Alk), 25.8 (C-Alk), 

22.6 (C-Alk), 13.9 (C-18); FT-IR (neat) υ in cm-1: 3319, 2915, 2847, 2116, 

1463, 1247, 1152, 1070, 1008, 981, 880; HRMS (TOF ES+) for: C18H37N3NaO3
 

+ (m/z): calc. 366.2727; found: 366.2723. 

 

 

(2S, 3S, 4R)-2-Azido-1-O-trityl-3,4-octadecanetriol (3.34)
31
 

 

 

 

To a solution of phytosphigosine 3.33 (538 mg, 1.570 mmol) in dry CH2Cl2 (5 

mL) and dry pyridine (3.2 mL) was added chlorotriphenylmethane (525 mg, 

1.884 mmol) and the mixture was stirred for 18h under argon atmosphere at 

room temperature. The resulting mixture was diluted in ethyl acetate (150 mL) 

and washed with a saturated aqueous CuSO4·5H2O solution (2 x 25 mL), 

saturated aqueous ammonium chloride solution (2 x 25 mL) and brine (25 mL). 

The organic extracts were dried with MgSO4, filtered and concentrated. The 

crude product was purified by flash column chromatography using 1:4 ethyl 

acetate/hexanes as the eluent to afford the product 3.34 (699 mg, 76%) as a 

syrup: Rf (1:4 ethyl acetate/hexanes): 0.31; [α]D20: +9.0º (c = 1, CHCl3); 
1H 

                                                           

31
 Du, W.; Gervay-Hague, J. Org. Lett. 2005, 7, 2063-2065.  
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NMR (400 MHz, CDCl3) δ in ppm: 7.49-7.46 (m, 6H, H-Ar3, H-Ar5), 7.33-7.29 

(m, 6H, H-Ar2, H-Ar6), 7.26-7.22 (m, 3H, H-Ar4), 3.64 (dd, J1a,1b = 10.0 Hz, 

J1a,2 = 3.6 Hz, H-1a), 3.60 (t, J2,3 = J3,4 = 4.4 Hz, 1H, H-3), 3.56-3.52 (m, 2H, H-

2, H-4), 3.42 (dd, J1b,1a = 10.0 Hz, J1b,2 = 3.6 Hz, H-1b), 2.54 (d, J = 5.2 Hz, 1H, 

OH), 2.00 (d, J = 4.8 Hz, 1H, H-OH), 1.53-1.24 (m, 26H, H-Alk), 0.89 (t, J18,17 

= 6.4 Hz, H-18); 13C NMR (100.6 MHz, CDCl3) δ in ppm: 143.6 (C-Ar1), 128.7 

(C-Ar2, C-Ar6), 128.2 (C-Ar3, C-Ar5), 127.4 (C-Ar4), 87.9 (C(Ph)3), 74.3 (C-

3), 72.4 (C-4), 63.7 (C-1), 62.6 (C-2), 32.1 (C-Alk), 31.9 (C-Alk), 29.8 (C-Alk), 

29.5 (C-Alk), 29.3 (C-Alk), 25.8 (C-Alk), 22.8 (C-Alk), 14.3 (C-18); FT-IR 

(neat) υ in cm-1: 3434, 3058, 2922, 2852, 2096, 1490, 1449, 1268, 1071, 1031, 

764, 744, 704, 633; HRMS (TOF ES+) for: C37H51N3NaO3
+ (m/z): calc. 

608.3823; found: 608.3895. 

 

(2S,3S,4R)-2-azido-3,4-di-O-benzoyl-1-O-trityl-1,3,4-octadecanetriol (3.35) 

 

 
 

Phytosphigosine 3.34 (585 mg, 1.190 mmol) was dissolved in dry pyridine (4.6 

mL) and cooled to 0 ºC. Benzoyl chloride (552 µg, 4.760 mmol) was added 
dropwise to the stirring mixture under argon atmosphere. After 30 min, the 

reaction was let warm to room temperature for 1 h. The resulting mixture was 

diluted in ethyl acetate (150 mL) and washed with a saturated aqueous 

CuSO4·5H2O solution (2 x 25 mL), saturated aqueous ammonium chloride 

solution (2 x 25 mL) and brine (25 mL). The organic extracts were dried over 

MgSO4, filtered and concentrated. The crude product was purified by flash 

column chromatography using 1:9 ethyl acetate/hexanes as the eluent to afford 

the product 3.35 (866 mg, 92%) as an oil: Rf (1:4 ethyl acetate/hexanes): 0.45; 

[α]D20: -6.9º (c = 1.0, CHCl3); 
1H NMR (400 MHz, CDCl3) δ in ppm: 7.97-7.94 

(m, 2H, H-Ar), 7.88 (m, 3H, H-Ar), 7.64-7.58 (m, 3H, H-Ar), 7.48-7.42 (m, 9H, 

H-Ar), 7.29-7.19 (m, 8H, H-Ar), 5.58-5.54 (m, 1H, H-4), 5.50 (dd, J3,4 = 6.8 Hz, 

J2,3 = 3.2 Hz, 1H, H-3), 3.98 (dt, J2,1b = 8.0 Hz, J2,1a = J2,3 = 3.2 Hz, 1H, H-2), 

3.58 (dd, J1a,1b = 10.0 Hz, J1a,2 = 3.2 Hz, 1H, H-1a), 3.45 (dd, J1b,1a = 10.0 Hz, 

J1b,2 = 8.0 Hz, 1H, H-1b), 1.86-1.77 (m, 2H, H-5), 1.46-1.21 (m, 24H, H-Alk), 
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0.90 (t, J18,17 = 6.9 Hz, 3H, H-18); 
13C NMR (100.6 MHz, CDCl3) δ in ppm: 

165.7 (CO), 165.1 (CO), 143.5 (C-Ar), 133.4 (C-Ar), 133.2 (C-Ar), 130.1 (C-

Ar), 129.7 (C-Ar), 129.5 (C-Ar), 128.8 (C-Ar), 128.4 (C-Ar), 128.0 (C-Ar), 

127.27 (C-Ar), 87.7 (C(Ph)3), 73.1 (C-4), 72.8 (C-3), 63.7 (C-1), 62.0 (C-2), 

32.1 (C-Alk), 31.9 (C-Alk), 29.8 (C-Alk), 29.5 (C-Alk), 29.3 (C-Alk), 25.8 (C-

Alk), 22.8 (C-Alk), 14.3 (C-18); FT-IR (neat) υ in cm-1: 3060, 2923, 2852, 2097, 

1723, 1601, 1490, 1449, 1260, 1092, 1025, 705, 632; HRMS (TOF ES+) for: 

C37H51N3NaO5
+ (m/z): calc. 816.4347; found: 816.4340. 

 

 (2S,3S,4R)-2-Azido-3,4-di-O-benzoyloctadecan-1,3,4-triol (3.36)
31
 

 

 
 

To a solution of phytosphigosine 3.35 (831 mg, 1.053 mmol) in dry toluene (4.5 

mL) and dry CH3OH (1.5 mL) was added BF3·Et2O (160 µg, 1.264 mmol) 
dropwise over 5 min under argon atmosphere. The mixture was stirred for 5 h at 

room temperature. The resulting mixture was quenched with TEA (0.5 mL), 

diluted in ethyl acetate (150 mL) and washed with a saturated aqueous NaHCO3 

solution (2 x 25 mL) and brine (25 mL). The organic extracts were dried over 

MgSO4, filtered and concentrated. The crude product was purified by flash 

column chromatography using 1:4 ethyl acetate/hexanes as the eluent to afford 

the product 3.36 (539 mg, 93%) as a syrup: Rf (1:4 ethyl acetate/hexanes): 0.13; 

[α]D20: +21.2º (c = 0.8, CHCl3); 
1H NMR (400 MHz, CDCl3) δ in ppm: 8.11-

7.99 (m, 4H, H-Ar), 7.64-7.51 (m, 2H, H-Ar), 7.43 (m, 4H, H-Ar), 5.60 (m, 2H, 

H-3, H-4), 4.09-3.91 (m, 1H, H-1a), 3.95-3.72 (m, 2H, H-1b, H-2), 3.06 (t, 

JOH,1a = JOH,1b = 5.8 Hz, 1H, OH), 2.09-1.74 (m, 2H, H-5), 1.61-1.09 (m, 24H, 

H-Alk), 0.91 (t, J18,17 = 6.9 Hz, 3H, H-18); 
13C NMR (100.6 MHz, CDCl3) δ in 

ppm: 166.17 (CO), 165.8 (CO), 133.7 (C-Ar), 133.3 (C-Ar), 130.0 (C-Ar), 129.8 

(C-Ar), 129.2 (C-Ar), 128.7 (C-Ar), 128.5 (C-Ar), 73.40 (C-4), 72.97 (C-3), 

63.3 (C-2), 62.3 (C-1), 32.0 (C-Alk), 29.8 (C-Alk), 29.7 (C-Alk), 29.7 (C-Alk), 

29.6 (C-Alk), 29.5 (C-Alk), 29.4 (C-Alk), 25.6 (C-Alk), 22.8 (C-Alk), 14.21 (C-

18). FT-IR (neat) υ in cm-1: 3496, 2924, 2853, 2103, 1724, 1451, 1262, 1177, 
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1069, 1025, 710; HRMS (TOF ES+) for: C32H45N3NaO5
+ (m/z): calc. 574.3251; 

found: 574.3250. 

 

(2S,3S,4R)-2-azido-3,4-di-O-benzoyl-1-O-(3,4,6-tri-O-acetyl-2-deoxy-2-iodo-

α-D-talopyranosyl)-1,3,4-octadecantriol (3.43) 

 

 
 

Phytosphingosine derivative (3.36) (250 mg, 0.452 mmol) and glycosyl donor 

3.27 (270 mg, 0.591 mmol) were codistilled three times with dry toluene in 

separated flasks. Activated 4 Å MS (200 mg) were added to the 

phytosphingosine derivate 3.36 containg flask under argon atmosphere. The 

mixture was dissolved in dry dichloromethane (2.5 mL) under argon atmosphere 

and cooled to -78 ºC. Glycosyl donor 3.27 was dissolved in dry dichloromethane 

(2.5 mL) and then was added via cannula to the phytosphingosine 3.36 solution. 

After the mixture was cooled for 10 min to -78 ºC, TMSOTf (26 µL, 0.145 
mmol) was added. The reaction was stirred for 18 h at that temperature under 

argon atmosphere. Then, it was quenched with TEA and warmed to 23 °C. The 

resulting mixture was diluted with EtOAc and washed with saturated sodium 

hydrogencarbonate solution, saturated NaCl solution, dried over Na2SO4, 

filtered and concentrated on a rotary evaporator. The crude was purified by flash 

chromatography using 1:4 ethyl acetate/hexane as eluent to afford 3.43 as syrup 

(386 mg, 90% yield): Rf (1:4 ethyl acetate/hexanes): 0.13; [α]D20: +21.1º (c = 

0.7, CHCl3); 
1H NMR (400 MHz, CDCl3) δ in ppm: 8.06-7.97 (m, 4H, H-Ar), 

7.64-7.55 (m, 2H, H-Ar), 7.51-7.41 (m, 4H, H-Ar), 5.56-5.47 (m, 2H, H-3, H4), 

5.40-5.35 (m, 1H, H-4’), 5.32 (s, 1H, H-1’), 4.89 (appt, J3’,2’ = J3’,4’ = 4.9 Hz, 

1H, H-3’), 4.29 (d, J2’,3’ = 4.9 Hz, 1H, H-2’), 4.27 (td, J5’,6a’ = J5’,6b’ = 6.5 Hz, 

J5’,4’ = 1.8 Hz, 1H, H-5’), 4.19-4.08 (m, 3H, H-6a’, H-6b’, H-1a), 3.99 (ddd, J2,1b 

= 8.0 Hz, J2,1a = 5.8 Hz, J2,3 = 2.8 Hz, 1H, H-2), 3.70 (dd, J1b,1a = 10.6, J1b,2 = 

8.0 Hz, 1H, H-1b), 2.17 (s, 3H, CH3), 2.06 (s, 3H, CH3), 1.93 (s, 3H, CH3), 1.85 

(m, 2H, H-5), 1.50-1.17 (m, 24H, H-Alk), 0.87 (t, J18,17 = 6.9 Hz, 1H, H-18); 
13C 

NMR (100.6 MHz, CDCl3) δ in ppm: 170.54 (COCH3), 170.0 (COCH3), 169.5 
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(COCH3), 165.8 (COPh), 165.2 (COPh), 133.8 (C-Ar), 133.5 (C-Ar), 130.0 (C-

Ar), 129.9 (C-Ar), 129.8 (C-Ar), 129.6 (C-Ar), 129.18 (C-Ar), 128.81 (C-Ar), 

128.66 (C-Ar), 102.6 (C-1’), 72.9 (C-4), 72.7 (C-3), 68.5 (C-1), 67.4 (C-5’), 

65.3 (C-4’), 65.1 (C-3’), 62.2 (C-6’), 61.0 (C-2), 32.0 (C-Alk), 30.2 (C-Alk), 

29.8 (C-Alk), 29.6 (C-Alk), 29.4 (C-Alk), 25.4 (C-Alk), 22.8 (C-Alk), 21.1 

(CH3), 21.0 (CH3), 20.7 (CH3), 20.2 (C-2’), 14.2 (C-18); FT-IR (neat) υ in cm
-1: 

2925, 2851, 2097, 1752, 1704, 1264, 984, 711; HRMS (TOF ES+) for: 

C44H60IN3NaO12
+ (m/z): calc. 972.3114; found: 972.3080. 

 

(2S,3S,4R)-3,4-di-O-benzoyl-2-N-hexacosanoyl-1-O-(1,3,4,6-tetra-O-acetyl-

2-deoxy-2-iodo-α-D-talopyranosyl)-1,3,4-octadecanetriol (3.44) 

 

 
 

PPh3 (23 mg, 0.088 mmol) and water (10 µL) were added to a stirred solution of 
azide derivative 3.43 (27.8 mg, 0.029 mmol) in THF (2 mL), and the mixture 

was stirred at room temperature until TLC indicated the complete 

transformation of the starting azide into corresponding amine (about 12 h). After 

rotary evaporation, the amine residue, the hexacosanoic acid (12.6 mg, 0.032 

mmol) and HATU (13.7 mg, 0.036 mmol) were redissolved in dry mixture 

55:15:30 DMF/CH2Cl2/Et2O (2.75 mL). Then DIPEA (17 µL, 0.102 mmol) was 
added and the mixture was stirred for 18 h at room temperature. The solution 

was concentrated under vacuum, and the residue was purified by column 

chromatography on silica gel using 1:2:8 methanol/ethyl acetate/hexane as 

eluent to afford 3.44 as syrup (24 mg, 64 % yield over two steps): Rf (1:4:5 

methanol/ethyl acetate/hexanes): 0.61; [α]D20: +38.8º (c = 0.47, CHCl3); 
1H 

NMR (400 MHz, CDCl3) δ in ppm: 8.13-8.00 (m, 2H, H-Ar), 8.02-7.90 (m, 2H, 

H-Ar), 7.64-7.35 (m, 6H, H-Ar), 5.62 (dd, J2’-3’ = 8.7 Hz, J3’-4’ = 3.0 Hz, 1H, H-

3’), 5.47-5.42 (m, 1H, H-4’), 5.31 (d, J3-4 = 2.0 Hz, 1H, H-4’’), 5.23 (d, JNH,2’ = 

9.1 Hz, 1H, NH), 5.08 (s, 1H, H-1’’), 4.85 (dd, J3’’,2’’ = 4.4 Hz,  J3’’,4’’ = 2.0 ,1H, 

H-3’’), 4.54 (tt, J2’-3’ = 8.7 Hz, J2’,1a’ = 3.4 Hz, J2’,1b’ = 2.9 Hz, 1H, H-2’), 4.22-

4.03 (m, 4H, H-2’’, H-5’’, H-6a’’, H-6b’’), 3.85 (dd, J1a’-1b’ = 10.5 Hz, J1a’-2’ = 
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3.4 Hz, 1H, H-1a’), 3.58 (dd, J1b’,1a’ = 10.5 Hz, J1b’-2’ = 2.9 Hz, 1H, H-1b’), 3.47-

3.23 (m, 2H. H-2), 2.17-2.11 (m, 4H, CH2), 2.11 (s, 3H, H-Ac), 2.03 (s, 3H, H-

Ac), 1.96 (s, 3H, H-Ac), 1.68 (d, 8H, CH2), 1.52-1.08 (m, 52H, CH2), 0.94-0.83 

(m, 6H, CH3); 
13C NMR (100.6 MHz, CDCl3) δ in ppm: 170.6 (MeCO), 170.3 

(MeCO), 169.7 (MeCO), 166.7 (PhCO), 165.8 (PhCO), 156.3 (NCO), 133.8 (C-

Ar1), 133.3 (C-Ar1), 130.2 (C-Ar), 130.0 (C-Ar), 129.9 (C-Ar), 129.6 (C-Ar), 

128.9 (C-Ar), 128.6 (C-Ar), 103.3 (C-1’’), 74.2 (C-4’), 73. 7 (C-3’), 68.1 (C-1’), 

67.5 (C-5’’), 65.5 (C-4’’), 65.4 (C-3’’), 62.1 (C-6’’), 50.0 (C-2’), 41.7 (C-2), 

32.1 (CH2), 29.9 (CH2), 29.9 (CH2), 29.8 (CH2), 29.8 (CH2), 29.8 (CH2), 29.8 

(CH2), 29.8 (CH2), 29.7 (CH2), 29.6 (CH2), 29.6 (CH2), 29.5 (CH2), 28.7(CH2), 

25.8 (CH2), 22.9 (CH2), 21.1 (C-Me), 21.0 (C-Me), 20.8 (C-Me), 20.5 (C-2’’), 

14.3, 14.1 (C-18’, C-26); FT-IR (neat) υ in cm-1: 2924, 2850, 1751, 1719, 1653, 

1522, 1456, 1276, 1233, 1120, 779, 632; HRMS (TOF ES+) for: 

C70H112ILiNO13
+ (m/z): calc. 1308.7333; found: 1308.7354. 
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Chapter 4 

Phosphine-Free Suzuki-Miyaura Cross-Coupling in 

Aqueous Media Enables Acces to 2-C-Arylglycosides 
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4.1. Introduction 

 

In the previous chapters, we focused our efforts to develop new glycosylation 

procedures to obtain glycolipids of potencial biological interest. In the way to 

achieve this target, we paid attention to some byproducts obtained during the 

glycosylation procedures studied in our group due to their high versatility.1,2 

Those compounds were glycals and 2-iodo-glycals. Glycals are not only 

employed as glycosyl donors3 but they are also used as a precursors of other 

compounds of interest because of its polyvalent reactivity4 (Scheme 4.1.). 
 

 
Scheme 4.1. Summary of reactivity of glycals 

 

However, 2-iodo-glycals deserve a special attention because they has been 

scarcely studied and they could be a new family of versatile starting materials 

for obtaining branched carbohydrate derivatives through C-C cross-coupling 

reactions. 

                                                           

1  See glycosylation reaction of 2-deoxy-2-iodo-glycosyl donors with stannyl ceramides.  
2  Rodríguez, M. A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S.; Seeberger, P. H. J. 
Org. Chem. 2007, 72, 8998-9001. 

3  Davis, B. G.; Chambers, D.; Cumpstey, I.; France, R.; Gamblin, D. “Synthesis and Activation 
of Carbohydrate Donors: Acetates, Halides, Phenyl selenides and Glycals” Carbohydrates, 
Academic Press, New York, 2003. 

4  (a) McDonald, F. E.; Gleason, M. M. J. Am. Chem. Soc. 1996, 118, 6648-6659. (b) 
McDonald, F. E.; Bowman, J. L. Tetrahedron Lett. 1996, 37, 4675-4678. (c) McDonald, F. E.; 
Zhu, H. Y. H. Tetrahedron 1997, 53, 11061-11068. (d) McDonald, F. E. Chem. Eur. J. 1999, 
5, 3103-3106.  (e) McDonald, F. E.; Reddy, K. S.; Diaz, Y. J. Am. Chem. Soc. 2000, 122, 
4304-4309. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 114

C-Arylglycosides are members of the C-glycosides5 family of carbohydrate 

mimetics and their synthesis has attracted considerable interest due to the 

presence of such motifs in several naturally occurring bioactive products.6  

Many methods have been developed for the synthesis of 1-C-arylglycosides, 

where a carbon atom substitutes the anomeric glycosidic oxygen.7  The most 

common method for 1-C-arylglycoside synthesis involves the use of catalytic 

transition metal-catalyzed reactions, in particular the addition of organometallic 

species to the sp2-hybridized anomeric center of glycals.8  Regioselectivity may 

be efficiently controlled using a directing halogen atom at the anomeric 

position9 (e.g. 1-haloglycals). However, and when this regiocontrol element is 

missing, reactions often lead to the formation of Ferrier and other 2,3-

unsaturated products due to β-elimination processes.8 

 

Although the high demand for functionalized 1-C-arylglycosides stimulated 

extensive studies on metal-catalyzed C-C bond-forming reactions,10 the 

development of more efficient methods that involve arylation at other positions 

is highly desirable.  

                                                           

5 (a) Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729-6764. (b) Yuan, 
X.; Linhardt, R. J. Curr. Top. Med. Chem. 2005, 5, 1393-1430. (c) Du, Y.; Linhardt, R. J.; 
Vlahov, I. R. Tetrahedron 1998, 54, 9913-9959. (d) Beau, J.-M.; Gallagher, T.; Top. Curr. 
Chem. 1997, 187, 1-54. (e) Sinaÿ, P. Pure Appl. Chem. 1997, 69, 459-464. (f) Postema, M. H. 
D. Tetrahedron 1992, 48, 8545-8599. 

6  (a) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742-760. (b) Hultin, P. 
G. Curr. Top. Med. Chem. 2005, 5, 1299-1331. (c) Zou, W. Curr. Top. Med. Chem. 2005, 5, 
1363-1391. (d) Moose, E. V.; Ben, R. N. Curr. Top. Med. Chem. 2005, 5, 1351-1361. (e) 
Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077-3092. (f) Nicotra, F. Top. Curr. 
Chem. 1997, 187, 55-83. 

7  (a) Subrahmanyam, A. V.; Palanichamy, K.; Kaliappan, K. P. Chem. Eur. J. 2010, 16, 8545-
8556 and references therein. (b) Lee, D. Y. W.; He, M. Curr. Top. Med. Chem. 2005, 5, 1333-
1350. (c) Martin, S. F. Pure Appl. Chem. 2003, 75, 63-70. 

8  (a) Xiang, S.; Cai, S.; Zeng, J.; Liu, X.-W. Org. Lett. 2011, 13, 4608-4611. (b) Bai, Y.; Leow, 
M.; Zeng, J.; Liu, X.-W. Org. Lett. 2011, 13, 5648-5651. (c) Xiong, D.-C.; Zhang, L.-H.; Ye, 
X.-S. Org. Lett. 2009, 11, 1709-1712. (d) Li, H.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 
3855-3861. (e) de la Figuera, N.; Forns, P.; Fernández, J.-C.; Fiol, S.; Fernández-Forner, D.; 
Albericio, F. Tetrahedron Lett. 2005, 46, 7271-7274. (f) Ramnauth, J.; Poulin, O.; Rakhit, S.; 
Maddaford, S. P. Org. Lett. 2001, 3, 2013-2015. 

9  (a) Koester, D. C.; Liebeling, M.; Neufeld, R.; Werz, D. B. Org. Lett. 2010, 12, 3934-3937. 
(b) Potuzak, J. S.; Tan, D. S. Tetrahedron Lett. 2004, 45, 1797-1801. (c) Somsák, L. Chem. 
Rev. 2001, 101, 81-136. (d) Jeanneret, V.; Meerpoel, L.; Vogel, P. Tetrahedron Lett. 1997, 38, 
543-546. 

10 Gong, H.; Gagné, M. R. J. Am. Chem. Soc. 2008, 130, 12177-12183. 
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C-Functionalizations at other positions of the sugar ring leading to C-branched 

sugars are by far less explored because they usually require many steps,11 the 

use of strongly basic organolithium and Grignard reagents,12  or the use of toxic 

reagents such as tin or mercury.13  Particularly, the synthesis of 2-C-aryl-

carbohydrate moieties14 is rare even though they can be of potential interest for 

the development of new biologically active carbohydrate mimetics.  

 

As part of our continuous interest in developing new catalytic tools for the 

efficient and fast access to carbohydrate derivatives,15 we envisaged a general 

strategy for accessing 2-C-aryl-glycals (Scheme 4.2) as key intermediates for 

synthesizing 2-C-arylglycosides. We anticipated that this could be achieved 

through the use of 2-haloglycals as privileged starting materials for this 

                                                           

11 (a) Koester, D. C.; Holkenbrink, A.; Werz, D. B. Synthesis 2010, 3217-3242. (b) Yin, J.; 
Linker, T.; Org. Biomol. Chem. 2009, 7, 4829-4831. (c) Sridhar, P. R.; Kumar, P. V.; 
Seshadri, K.; Satyavathi, R. Chem. Eur. J. 2009, 15, 7526-7529. (d) Elamparuthi, E.; Kim, B. 
G.; Yin, J.; Maurer, M.; Linker, T. Tetrahedron 2008, 64, 11925-11937. (e) Bouisset, T.; 
Gosselin, G.; Griffe, L.; Meillon, J.-C.; Storer, R. Tetrahedron 2008, 64, 6657-6661. (f) 
Xavier, N. M.; Rauter, A. P. Carbohydr. Res. 2008, 343, 1523-1539. 

12 Cleator, E.; McCusker, C. F.; Steltzer, F.; Ley, S. V. Tetrahedron Lett. 2004, 45, 3077-3080. 
13 Giese, B.; González-Gómez, J. A.; Witzel, T. Angew. Chem. Int. Ed. Engl. 1984, 23, 69-70. 
14 (a) Robinson, T. V.; Pedersen, D. S.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 
2009, 74, 5093-5096. (b) Maurya, S. K.; Hotha, S. Tetrahedron Lett. 2006, 47, 3307-3310. (c) 
Willson, M.; Perie, J. Spectrochim. Acta Part A 1999, 55, 911-917. (d) Sugimura, H.; Osumi, 
K.; Koyama, T. Chem. Lett. 1991, 20, 1379-1382. (e) Augé, C.; Gautheron, C.; David, S.; 
Malleron, A.; Cavayé, B.; Bouxom, B. Tetrahedron, 1990, 46, 201-214. (f) Lee, J.B.; Scalon, 
B. J. Chem. Soc. D, Chem. Comun. 1969, 17, 955-956. 

15 (a) Boutureira, O.; Rodríguez, M. A.; Díaz, Y.; Matheu, M. I.; Castillón, S. Carbohydr. Res. 
2010, 345, 1041-1045. (b) Boutureira, O.; Rodríguez, M. A.; Benito, D.; Matheu, M. I.; Díaz, 
Y.; Castillón, S. Eur. J. Org. Chem. 2007, 3564-3572. (c) Rodríguez, M. A.; Boutureira, O.; 
Matheu, M. I.; Díaz, Y.; Castillón, S. Eur. J. Org. Chem. 2007, 2470-2476. (d) Boutureira, O.; 
Matheu, M. I.; Díaz, Y.; Castillón, S. Carbohydr. Res. 2007, 342, 736-743. (e) Kövér, A.; 
Matheu, M. I.; Díaz, Y.; Castillón, S. Arkivoc 2007, 364-379. (f) Boutureira, O.; Rodríguez, 
M. A.; Matheu, M. I.; Díaz, Y.; Castillón, S. Org. Lett. 2006, 8, 673-675. (g) Rodríguez, M. 
A.; Boutureira, O.; Arnés, X.; Díaz, Y.; Matheu, M. I.; Castillón, S. J. Org. Chem. 2005, 70, 
10297-10310. (h) Arnés, X.; Díaz, Y.; Castillón, S. Synlett 2003, 2143-2145. 
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transformation,  featuring a regiocontrol element at the desired C-2 position16 

for posterior Suzuki-Miyaura cross coupling. Although iodo-derivates are 

preferable over chlorine or bromine for these reactions17 they have not been 

used, probably due to the lack of a general method for their preparation.2  

 

 
Scheme 4.2. General strategy towards the preparation of 2-aryl-glycals 4.9 

 

 

 

 

                                                           

16 (a) Hayashi, M.; Tsukada, K.; Kawabata, H.; Lamberth, C. Tetrahedron, 1999, 55, 12287-
12294. (b) Hayashi, M.; Amano, K.; Tsukada, K.; Lamberth, C. J. Chem. Soc., Perkin Trans. 
1, 1999, 239-240. (c) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org. Lett. 2001, 3, 2949-
2951. (d) Leibeling, M.; Milde, B.; Kratzert, D.; Stalke, D.; Werz, D. B. Chem. Eur. J. 2011, 
17, 9888-9892. (e) Leibeling, M.; Koester, D. C.; Pawliczek, M.; Schild, S. C.; Werz, D. B. 
Nat. Chem. Biol. 2010, 6, 199-201. (e) Leibeling, M.; Koester, D. C.; Pawliczek, M.; Kratzert, 
D; Dittrich, B.; Werz, D.B. Bioorg. Med. Chem. 2010, 18, 3656-3667. 

17 (a) Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. Tetrahedron Lett. 2003, 44, 
6111-6116. (b) Gómez, A. M.; Danelón, G. O.; Pedregosa, A.; Valverde, S.; López, J. C. 
Chem. Commun. 2002, 2024-2025. 
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4.2. Results and Discussion 

 

4.2.1. Preparation of 2-I-glycals from 2-I-lactols 

 

Starting 2-iodoglycals2 were prepared by treating alkenyl sulfanyl derivatives 

4.1 or commercial available glycals 4.2 with iodonium reagents in aqueous 

media to provide the corresponding 2-deoxy-2-iodo-pyranoses 4.3 (Scheme 4.2.) 

which were eliminated with Ph2SO/Tf2O and TTBP temperatures (-40 ºC or -60 

ºC). Under these conditions, mixtures of 2-I-glycals (or glycals) or 1,1’-

disacharides (trehaloses) were principally obtained (Scheme 4.2.).  

 

Table 4.1. Selected experiments of dehydratation of 2-iodo-2-deoxy-pyranoses carried out in 

our group 

 

 

Entry 2-iodo-lactol Conditions Product Yield 

1  

 

 

 

 

 

-50 ºC, 3h 
 

 

 

 

22% 

 

 

 

44% 

2 

 

 

-60 ºC, 6h 

 

 

73% 

3 

 

 

-40 ºC, 5h 

 

 

54% 

4 

 

 

-40 ºC, 5h O
BnO

BnO

O

I
OBn

2

4.4d  

 

84% 

 

Thus, the examples 4.7 (22 % yield) and 4.8 (73 % yield) were obtained when 

dehydration of the corresponding 2-deoxy-2-iodo-pyranoses 4.3a and 4.3b was 
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performed respectively at low temperature (-50 ºC or -60 ºC)2 (Table 4.1., 

Entries 1 and 2). However, it was observed that under this kinetic control2,18 2-

deoxy-2-iodo-pyranoses 4.3c and 4.3d afforded principally the corresponding 

trehaloses instead of the desired 2-iodoglycals (Table 4.1., Entries 3 and 4). 

 

Hence, an optimization of the original reaction conditions was necessary to 

promote the formation of the 2-iodoglycals 4.5 and 4.6. We speculated that a 

termodynamical control of the reaction could drive the formation of the 2-iodo-

glycals instead of the trehalose derivatives in the case of 4.3c and 4.3d. For this 

reason, once the corresponding 2-deoxy-2-iodo-pyranoses were treated under 

Ph2SO/Tf2O and TTBP promoters at low temperature, we warmed immediately 

the flask of the reaction to room temperature. For our delight, 2-iodo-glycal 4.5 

and 4.6 were isolated in a 74 % and 64 % yield respectively after 5 h of reaction 

(Scheme 4.3.).  

 

 
Scheme 4.3. Synthesis of 2-iodo-glycals 4.5 and 4.6 

 

With 2-iodo-glycals (4.5, 4.6, 4.7 and 4.8) in hand, the feasibility of the Suzuki-

Miyaura coupling was examinated below.  

 

 

 

 

                                                           

18 Backus, K. M.; Boshoff, H. I.; Barry, C. S.; Boutureira, O.; Patel, M. K.; D’Hooge, F.; Lee, S. 
S.; Via, L. E.; Tahlan, K.; Barry, C. E.; Davis, B. G. Nat. Chem. Biol. 2011, 7, 228-235. 
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4.2.2. Generalities of Suzuki-Miyaura cross coupling and microwave 

assisted organic chemistry   

 

It is well known that palladium can catalyze carbon-carbon bond formation 

between aryl or vinyl halides and sulfonates in presence of wide range of 

organometallic reagents in cross-coupling reactions.19 The organometallic 

reagents used include organolithium, organomagnesium, and organozinc 

reagents, as well as cuprates, stannanes and organoboron compounds. This 

reaction is quite general for the formation of sp
2-sp

2 and sp
2-sp bonds in biaryls, 

dienes, polyenes and enynes. 

 

In particular, the Suzuki-Miyaura reaction is the palladium-catalized cross 

coupling process in which a boron organometallic compound is employed.20 The 

organoboron reagents that can undergo coupling include boronic acids,21 

boronate esters22 and boranes.23 One of the potencial advantages of the Suzuki-

Miyaura reaction, especially when boronic acids are used, is that the resulting 

boronate derivatives are more innocuous by-products than the tin-derivated by-

products generated in Stille-type couplings. 

 

The mechanism for the Suzuki-Miyaura reaction is closely related to other 

cross-coupling methods (Scheme 4.4.). In general, the aryl halide or triflate 

reacts initially with the Pd(0) catalyst by oxidative addition. Then, the 

organoboron compound works as the source of the second organic group by 

transmetallation, and the disubstituted Pd(II) intermediate then undergoes 

reductive elimination. It appears that either the oxidative addition or the 

                                                           

19 Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, New 
York, 1998. 

20 Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513-519. 
21 (a) Roush, W.R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990, 31, 6509-6512. (b) 

Roush, W. R.; Warmus, J. S.; Works, A. B. Tetrahedron Lett. 1993, 34, 4427-4430. (c) de 
Lera, A. R.; Torrado, A.; Iglesias, B.; Lopez, S. Tetrahedron Lett. 1992, 33, 6205-6208. 

22 (a) Ohe, T.; Miyaura, N.; Suzuki, A. Synlett 1990, 221-223. (b) Fu, J.; Zhao, B.; Sharp, M. J.; 
Sniekus, V. J. Org. Chem. 1991, 56, 1683-1685. 

23 (a) Ohe, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-2208. (b) Kobayashi, Y.; 
Shimazaki, H.; Taguchi, H.; Sato, F. J. Org. Chem. 1990, 55, 5324-5335. 
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transmetallation can be rate determining, depending on reaction conditions.24 In 

the cases in which boronic acids are used as reactants, base catalysis is normally 

required and is believed that the mechanism involves the formation of the more 

reactive boronate anion in the transmetallation step.25 In general, the choice of 

the base depens on the specific requirements of each reaction. For instance, 

specific bases as Cs2CO3
26 or TlOH27 have been found preferable than NaOH.  

 

Pd(0)L2

Ar-Pd(II)L2-OH

Ar-Pd(II)L2-IAr-Pd(II)L2-Ar

OH- M+

Ar-B(OH)2 + OH-

Ar-B(OH)3
-

M+ B(OH)4
-

Ar-IAr-Ar

I- M+

Oxidative
Addition

Transmetallation

Reductive
Elimination

 
 

Scheme 4.4. General mechanism for the Suzuki-Miyaura cross-coupling using aryl iodides 

reagents 

 

In the past decade, driving chemical reactions by microwave energy has become 

increasingly popular. The use of metal catalysts in conjunction with microwaves 

may have significant advantages over traditional heating methods since the 

inverted temperature gradient under microwave conditions may lead to an 

increased lifetime of catalyst through elimination of wall effects.28 The first 

microwave-promoted Suzuki-Miyaura couplings were reported in 1996,29 and 

since then a large number of investigations have been reviewed on this subject.30 

 

                                                           

24 Smith, G. B.; Dezeny, G. C.; Hughes, D. L.; King, A. D.; Verhoeven, T. R. J. Org. Chem. 
1994, 59, 8151-8156. 

25 Matos, K.; Soderquist, J. B. J. Org. Chem. 1998, 63, 461-470. 
26 Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. Engl. 1998, 37, 3387-3388. 
27 Anderson, J. C.; Namli, H.; Roberts, C. A. Tetrahedron 1997, 53, 15123-15134. 
28 Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250. 
29 Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582-9584. 
30 Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. Chem. Sus. Chem. 2010, 3, 502-522. 
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Microwave irradiation is the electromagnetic irradiation in the frequency range 

of 0.3 to 300 GHz. The energy of the microwave photon in this frequency region 

(0.0016 eV) is too low to break chemical bonds and is also lower than the 

energy of Brownian motion. Therefore microwaves can not induce chemical 

reactions.31  

 

Microwave-enhanced chemistry is based on the efficient heating of materials by 

“microwave dielectric heating” effects.32 This phenomenon is dependent on the 

ability of a specific solvent or reagent to absorb microwave energy and convert 

it into heat. The electric component of an electromagnetic field causes heating 

by two main ways: dipolar polarization and ionic conduction. 

 

According to dipolar polarization mechanism, when a sample is irradiated at 

microwave frequencies, the dipoles or ions start aligning in the applied electric 

field. As the applied field oscillates, the dipole or ion field attempts to realign 

itself with the alternating electric field (Figure 4.1.). In the process, energy is 

lost in the form of heat through molecular friction and dielectric loss. The 

generation of heat is related to the ability of the matrix to align itself with the 

frequency of the applied field. If the dipole does not have enough time to 

realign, or reorients too quickly with the applied field, no heating occurs. 

 

 
 

Figure 4.1. Dipolar molecules that try to align with an oscillating electric field 

 

According to ionic conduction mechanism, if a sample contains ions, they will 

move through the solution under the influence of an electric field, resulting in 

expenditure of energy due to an increased collition rate, converting the kinetic 

                                                           

31 (a) Stuerga, D.; Delmotte, M. Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 
2002. (b) M. D. P. Mingos Microwave-Assisted Organic Synthes, Blackwell, Oxford, 2004 

32 Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 9225-9283. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 122

energy to heat (Figure 4.2.). In general, this interaction results much stronger 

than the dipolar mechanism. 

 

 
Figure 4.2. Charged compounds in a solution will follow the applied electric field 

 

The ability of a substance to transform electromagnetic energy into heat at a 

given frequency and temperature is determined by the loss factor tanδ. This loss 
factor is expressed as the quotient tanδ = ε’’/ε’, where ε’’ is the dielectric loss, 
which is the efficiency with which electromagnetic radiation is converted into 

heat, and ε’ is the dielectric constant describing the ability of molecules to be 

polarized by the electric field. A reaction medium with a high tanδ value is more 

effitient for absorption and, consequently, for rapid heating. In general, solvents 

can be classified as high (tanδ>0.5), medium (tanδ 0.1-0.5), and low microwave 

absorbing (tanδ<0.1). Values of tanδ for solvent have been reported at 
literature.33  Importantly, it has to be considered that a low tanδ value does not 
discart a particular solvent from being used in a microwave-heated since the 

overall dielectric properties of the reaction medium will in most cases allow 

sufficient heating by microwaves. 

 

The observed rate accelerations and sometimes altered product distributions 

compared to conventional oil-bath experiments have led to speculation on the 

existence of so-called “specific” or “nonthermal” microwave effects.34 

                                                           

33 Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light CEM Publishing, 
Matthews NC, 2002. 

34 (a) Westaway, K. C.; Gedye, R. J. Microwave Power 1995, 30, 219-230. (b) Langa, F.; de la 
Cruz, P.; de la Hoz, A.; Díaz-Ortiz, A;  Díez-Barra, E. Contemp. Org. Synth. 1997, 4, 373-
386. (c) Perreux, L.;  Loupy, A. Tetrahedron 2001, 57, 9199-9223. (d) Kuhnert, N. Angew. 
Chem. Int. Ed. 2002, 41, 1863-1866. (e) Strauss, C. R. Angew. Chem. Int. Ed. 2002, 41, 3589-
3590. 
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However, most of scientists agree that in the majority of cases the reason for the 

observed rate enhancements is a thermal/kinetic effect as a consequence of the 

high reaction temperatures that can rapidly be attained when irradiating polar 

materials in a microwave field.28 

 

4.2.3. Studing the scope of the microwave assisted phosphine-free Suzuki-

Miyaura coupling on 2-iodo-glycals  

 

A significant advance in Suzuki-Miyaura chemistry has been the observation 

that these couplings can be carried out using water as the solvent in conjunction 

with microwave heating.35 Water is a nonexpensitive, readily available, non-

toxic, and non-flammable solvent so it has clear advantages in organic synthesis. 

With its comparatively medium loss factor (tanδ) of 0.123, water is also a 
potentially very useful solvent for microwave-mediated synthesis, especially in 

the high-temperature region accessible by using sealed vessel technology. 

Moreover, although palladium catalyst usually employes phosphine ligands to 

stabilize Pd(II) intermediates, efforts for effecting Suzuki-Miyaura coupling in 

absence of phosphine ligands have been alredy reported.36 In particular, Davis 

and co-workers reported the sodium salt of 2-amino-4,6-dihydroxypyrimidine 

ligand forms a complex with Pd(OAc)2 that is freely soluble in water (Figure 

4.3.).  

 

This phosphine free catalyst is active enough to mediate hindered, ortho-

substituted biaryl couplings but mild enough for using on peptides and proteins 

under Suzuki-Miyaura conditions.37 In a collaboration work with Prof. B.G. 

Davis group, we have acces to such Pd catalyst which let us to design a Suzuki-

Miyaura methodology to afford 2-C-arylglycals from 2-iodoglycals. 

 

 
                                                           

35 (a) Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973-2976. (b) Leadbeater, N. E.; Marco, 
M. J. Org. Chem. 2003, 68, 888-892. (c) Bai, L.; Wang, J.-X.; Zhang, Y. Green Chem. 2003, 
5, 615-617. (d) Leadbeater, N. E.; Marco, M. Angew. Chem. Int. Ed. 2003, 42, 1407-1409. (e) 
Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68, 5660-5667. 

36 (a) Wallow, T. L.; Novak, B. M. J.Org. Chem. 1994, 59, 5034-5037. (b) Badone, D.; 
Cardamone, M. B. R.; Ielmini, A.; Guzzi, U. J. Org. Chem. 1997, 62, 7170-7173. 

37 Chalker, J.M.; Wood, C.S.C.; Davis, B.G. J. Am. Chem. Soc. 2009, 131, 16346-16347. 
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Figure 4.3. Phospine free Pd catalyst employed by Davis and co-workers in Suzuki-Miyaura 

cross-coupling 

 
Table 4.2. Optimization of the reaction conditions of microwave-mediated palladium- catalyzed 

cross-coupling of iodogalactal 4.5 with  PhB(OH)2.
a 

 

L2Pd(OAc)2, PhB(OH)2 4.10a

Na2HPO4, CH3CN/H2O
wave

O

OBnBnO

I

BnO
O

OBnBnO

Ph

BnO

L =

N

N

NaO

NaO

NH2

4.5 4.11a  
Entry L2Pd(OAc)2 

(mol %) 

CH3CN/H2O 

(v/v) 

T 

(ºC) 

t 

(min) 

Yield 

(%)
b
 

1 2 1:3 100 300 82 

 

2 0.1 1:3 100 30 NRc 

 

3 2 1:1 100 30 90 

 

4 5 1:1 80 190 84 

 

5 2 1:1 40 720 NRc 

 

6d 2 1:1 125 5 95 

 
a Reactions were performed in a sealed vessel under single-mode microwave irradiation (65 

W) with 2-iodo-glycal (1 equiv), PhB(OH)2 (1.5 equiv), L2Pd(OAc)2 (up to 5 mol %), and 

Na2HPO4 (5 equiv) in solvent (0.02 M) unless otherwise indicated. b Isolated yield. c >98% 

starting material was recovered. d Microwave power (300 W). NR: No reaction 

 

Initially, the Suzuki-Miyaura cross-coupling reaction was carried out starting 

from 2-iodo-tri-O-benzylgalactal (4.5) and phenylboronic acid (4.10a) in 

CH3CN/H2O 1:3 as the solvent, Na2HPO4 as base and 2% mol of L2Pd(OAc)2, 

were L= 2-amino-4,6-dihydroxypyrimidine (Table 4.2.).. After 4 h at 100 ºC 

under microwave irradiation compound 4.11a was isolated in 82% yield (Table 
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4.2., Entry 1). Attempts to decrease the catalyst loading were (Table 4.2., Entry 

2). Changing the solvent ratio from 1:3 to 1:1 CH3CN/H2O increase the 

solubility of the starting material, improved the yield of 4.11a to 90% after only 

30 min at 100 ºC (Table 4.2., Entry 3). Decreasing the temperature had a 

negative effect in the yield. Thus, when the reaction was carried out at 80 ºC, 

190 minutes were required to achieve 84% yield and at 40 ºC no reaction was 

observed after 12 hours (Table 4.2., Entries 4 and 5). However, an increase of 

the temperature to 125 °C allowed to obtain the coupling product 4.11a with an 

excellent yield (95 %) after only 5 min of reaction (Table 4.2., Entry 6). 

 

Globally, the use of this cheap and environmentally friendly catalyst provides 

several advantages. First, carrying out the reaction under aqueous conditions is 

key since the use of nonpolar solvents accelerates competing elimination 

reactions.38 Secondly, the use of degassed solvents combined with expensive, 

easily oxidizable phosphines, that are particularly detrimental for the success of 

this reaction, is avoided. For example, we have observed 40% 

hydrodehalogenation of 2-iodogalactal 4.5 when reacted with PBu3 under similar 

conditions to the optimized for the cross-coupling reaction (Scheme 4.5.). 

 

 
 

Scheme 4.5. Hydrodehalogenation of 2-iodogalactal 4.5 with PBu3 

  

The optimized reaction conditions (Table 4.2., Entry 6) were applied to benzyl 

protected 2-iodoglycals 4.6 and 4.7 and isopropylidene protected 2-iodoglycal 

(4.8) (Table 4.3.). In all cases, and independently of the sugar configuration and 

protecting groups present, the 2-phenyl-C-glycals 4.12, 4.13 and 4.14 were 

obtained in excellent yields from the correspondent 2-iodoglycals. Only during 

the cross-coupling of 4.6 (Table 4.3., Entry 1), traces of tri-O-benzyl-D-glucal 

                                                           

38 Gong, H.; Sinisi, R.; Gagné, M. R. J. Am. Chem. Soc. 2007, 129, 1908-1909. 
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were formed as by-product. Such kind of dehalogenated products are common 

in typical Suzuki-Miyaura reactions.39 

 

 

 

Table 4.3. Microwave-mediated palladium-catalyzed cross-coupling of iodoglycals 4.6-4.8 and 

ArB(OH)2.
a 

L2Pd(OAc)2, PhB(OH)2

Na2HPO4, 1:1 CH3CN/H2O
wave (125 ºC, 300 W), 5min

O

OBn

I

O

OBn

Ph

L =

N

N

NaO

NaO

NH2

RO RO

 

 

Entry 2-I-glycal Product Yield (%)
b 

1c 

  

 

95 

 

2 

  

 

95 

 

3 

O

O

O

O

I

O

4.8   

 

96 

 

a Conditions: 2-I-glycal (1 equiv), PhB(OH)2 (1.5 equiv), L2Pd(OAc)2 (2 mol %), and 

Na2HPO4 (5 equiv), in 1:1 CH3CN/H2O (0.02 M), single-mode microwave irradiation (125º 

C, 300 W). b Isolated yield. c Traces of  tri-O-benzyl-D-glucal were also formed. d No acid 

work up was performed. 

 

Encouraged by these results, a variety of arylboronic acids containing 

representative groups with potential in different imaging modalities (e.g. PET, 

MRI and fluorescence) were examinated to expand the scope of the Suzuki-

Miyaura cross-coupling with 2-iodoglycal 4.5 (Table 4.4.). Phenylboronic acids 

                                                           

39 (a) Demchuk, O. M.; Yoruk, B.; Blackburn, T.; Snieckus, V. Synlett 2006, 2908-2913. (b) 
Potuzak, J. S.; Tan, D. S. Tetrahedron Lett. 2004, 45, 1797-1801. (c) Navarro, O.; Marion, N.; 
Oonishi, Y.; Kelly III, R. A.; Nolan, S. P. J. Org. Chem. 2006, 71, 685-692. (d) Navarro, O.; 
Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69, 3173-3180. (e) Urawa, Y.; Naka, 
H.; Miyazawa, M.; Souda, S.; Ogura, K. J. Organomet. Chem. 2002, 653, 269-278. 
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with electron-withdrawing groups (Entries 1, 3 and 7) or electron-donating 

groups (Entry 2) both afforded excellent results. Similarly, the use sterically 

hindered boronic acids (Entries 4, and 6), or hetereocyclic derivatives (Entry 7) 

also afforded excellent results although longer reaction times were required. 

 

 

Table 4.4. Microwave-mediated palladium catalyzed cross-coupling of 2-iodogalactal 4.5 with 

arylboronicacids 4.10b-h.a  

 
Entry boronic acid Ar Product t (min) Yield (%)

b 

 

1 4.10b 4-CN-Ph 4.11b 5 95 

 

2 4.10c 4-MeO-Ph 4.11c 5 95 

 

3 4.10d 4-F-Ph 4.11d 5 90c 

 

4 4.10e 2-Me-Ph 4.11e 40 90 

 

5 4.10f 

 

3-Py 4.11f 40 89 

6 4.10g 1-Naph 4.11g 5 94 

 

7 4.10h 3,5-(CF3)2-Ph 4.11h 5 95 

 
a Conditions: 2-I-glycal (1 equiv), ArB(OH)2 (1.5 equiv), L2Pd(OAc)2 (2 mol %), and Na2HPO4 

(5 equiv.) in 1:1 CH3CN/H2O (0.02 M), single-mode microwave irradiation (125 ºC, 300 W) 

with. b Isolated yield. c  The arylglycal was recovered with traces of the corresponding glycal. 

 

This effect could be explained because hindered boronic acids or boronic acids 

with coordinating hetereoatoms could make the transmetallation step slower.24 

Moreover, traces of tri-O-benzylgalactal were detected in the reactions with 

4.10d (Table 4.4., Entries 3). In order to better understand the origin of the 

dehalogenated glycal as a byproduct, some aspects of the Sukuki-Miyaura 

mechanism were revised for our catalytic system bellow.   
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4.2.4. Mechanistic considerations and phosphine-free hydrodehalogenation 

 

The general Suzuki-Miyaura cross-coupling mechanism with 2-iodoglycals is 

depicted in Scheme 4.6. The main steps that operate in the transformation of the 

2-iodoglycal into a 2-C-arylglycal are: a) the oxidative addition of the 2-

iodoglycal to the Pd(0); b) participation of the base (Na2HPO4) to activate the 

arylboronic acid and to exchange an hydroxyl group by halogen in the Pd(II) 

system; c) transmetalation of the aryl group from the activated boronic acid to 

the Pd(II) system and d) reductive elimination of Pd(II) to Pd(0) which affords 

the 2-C-aryl glycal. 

 

However, an hydrodehalogenation step may occur between the oxidative 

addition (Scheme 4.6., Step a)  and the transmetallation step (Scheme 4.6., Step 

b) although several reports describe this hydrodehalogenation when using 

phosphine ligands39a,b in Suzuki-Miyaura cross-coupling reactions, there are also 

a few precedents in which reaction also occurs with other ligands different than 

phosphines.39c-e This side reaction is tentatively attributed to the formation of 

palladium hydride complexes likely by the reaction of the corresponding Pd-I 

species with the solvent system, typically water (or hydroxide) and several 

alcohols bearing α-protons (e.g. EtOH). In our case, this proton can potentially 

come either from water or CH3CN. 

 

 
 

Scheme 4.6. Catalytic cycle for the Suzuki-Miyaura cross-coupling with 2-iodoglycals and 

putative origin of phosphine-free hydrodehalogenation 
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In order to confirm that H-2 from hydrodehalogenation comes from water and 

not from CH3CN and thus gain insight into the mechanism for the formation of 

glycals, we treated 2-iodoglycal 4.5 under Suzuki-Miyaura cross-coupling 

conditions in the absence of phenylboronic acid and using mixtures of either 

D2O or CD3CN with their non-deuterated counterparts as a solvent system 

(Scheme 4.7.). These reactions were performed at 125 ºC under microwave 

irradiation for 3 h due to the hydrodehalogention of 2-iodoglycals is not a highly 

favoured process. Moreover, the initial catalyst load (2 mol%) was increased 

(gradually up to 15 mol%).  

 

 

 
Scheme 4.7. Deuteration experiments with 2-iodoglycal 4.5 

 

Analysis of the crude reaction mixtures by TLC and HRMS revealed the high 

stability of 2-iodoglycal 4.5 toward the Suzuki-Miyaura conditions in the 

absence of boronic acid, detecting only traces of both dehalogenated products. 

Interestingly, these experiments strongly suggest that H-2 comes from water as 

evidenced by the traces of 2-d-glycal detected only when D2O was used as a 

deuterium source. Figure 4.4. depicts the high resolution mass spectra for 2-d-

3,4,6-tri-O-benzyl-D-galactal (4.15) from the crude of the reaction performed in 

D2O. The isotopic pick distribution for the molecular formula C27H27DNaO4
+ 

(m/z) corresponding to the (M +Na)+ ion was 440.1930 (I = 100 %), 441.1976 (I 

= 30%) and 442.8450 (I = 5%) which fits well with the stimation of theoretical 

isotope distribution. The pick corresponding to 439.1870 can be associated to 

the principal isotopic mass pick of the ion (M+Na)+ of 3,4,6-tri-O-benzyl-D-

galactal (4.15) (calc. 439.1880 for C27H28NaO4
+). Hence, some non-deuterated 

galactal may be formed because of the exchange of D2O with a labile H
+ in the 

system or by the inherent presence of amounts of H2O in commercial D2O. On 

the other hand, no 2-d-glycal 4.15 was detected when CD3CN was employed 

instead; rather this reaction afforded traces of non-deuterated glycal.  
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Figure 4.4. High resolution mass spectra for 2-d-3,4,6-tri-O-benzyl-D-galactal from the crude of 

the reaction performed in D2O 

 

 

4.2.5. Synthetic applications of 2-C-aryl-glycals: formation of alditols, 

epoxides and 2-C-aryl-glycosides 

 

Having studied the Suzuki-Miyaura cross-coupling reaction with 2-iodoglycals, 

the potential of resulting 2-C-arylglycals as intermediates for the preparation of 

2-C-arylglycoconjugates was investigated.  

 

For instance, 1,5-anhydro-alditols are rarely occurring sugar derivative, being 

most of them biologically active compounds. For this reason, several methods 

for their syntheses are known.40 However, to the best of our knowledge no 

examples for the synthesis of 2-deoxy-2-C-aryl-1,5-anhydro-alditol mimetics 

are reported. Hence, we decided to start the study of the chemical reactivity 2-C-

aryl-glycals employing the hydrogenation reaction to obtain the first examples 

of 2-deoxy-2-C-aryl-1,5-anhydro-alditols. 

 

Thus, 2-C-phenyl-2-deoxy-3,4,5-tri-O-benzyl-D-glucal (4.12) was efficiently 

hydrogenated with of Pd/C catalyst in methanol for 12 h to provide 2-C-phenyl-

2-deoxy-1,5-anhydro-alditols in a 95 % yield with manno 4.16   and  gluco 4.17  

configuration and a diasteroisomeric ratio 10:1 (Scheme 4.8.). These 
                                                           

40 Nagarajan, M.; Murali, R. Carbohydr. Res. 1996, 280, 351-355. 
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configurations were evidencied by the analysis of diagnostic coupling constants 

between protons H-2 and H-3. In the case of 4.17, the value of 3J2,3 (6.0 Hz) 

indicates that the phenyl group has an axial configuration whereas the value of 
3
J2,3 of  4.17 (12.0 Hz) indicates that the phenyl group is in a equatorial 

configuration. These observations were also confirmed by the key NOE 

correlations. For example, correlation between H-4 and protons of phenyl group 

and also between H-2 and H-3 was observed in the case of 4.16 whereas 

correlation between H-3 and protons group of phenyl and between H-2 and H-4 

was observed in the case of 4.17 (Scheme 4.8.).  

 

 

Pd/C, H2
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O
HO Ph

HO
HO O
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HO
HO
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Scheme 4.8. Hydrogenation of 2-C-phenyl-2-deoxy-3,4,5-tri-O-benzyl-D-glucal (4.12) 

 

In order to expand our studies on the synthetic applications of the 2-C-aryl 

glycals in organic chemistry, we attracted our attention in the preparation of 

challenging quaternary 2-C-aryl moieties. It is well known that glycals are 

useful synthons for the preparation of 2-hydroxy pyranosides via the 

corresponding 1,2-anhydropyranosides.41 Several methods in direct oxidative 

glycosylation of simple glycals have been studied by Gin and co-workers.41b-d 

They have observed that the reaction pathway involved the enol ether moiety of 

the glycal which was activated with a triflyl sulfoxide, followed by oxygen 

transfer to the pyranose ring from the excess of sulfoxide reagent. Then, the 

presence of a nitrogenated base and MeOH promoted the formation of the 

oxirane moiety. It is worthy to note that these steps were carried out at low 

temperatures (-78 ºC) in order to preserve the stability of the intermediates that 
                                                           

41 (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380-1419. (b) 
Di Bussolo, V.; Kim, Y.-J.; Gin, D.Y. J. Am. Chem. Soc. 1998, 120, 13515-13516. (c) Kim, J.-
Y.; Di Bussolo, V.; Gin. D.Y. Org. Lett. 2001, 3, 303-306. (d) Honda, E.; Gin, D.Y. J. Am. 
Chem. Soc. 2002, 124, 7343-7352.  

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 132

promote the formation of the oxirane ring. Once the ring is formed, the 

temperature can be increased slightly. Then, the epoxide is activated in presence 

of a Lewis acid in order to allow its ring-opening by a nucleophile. In this way, 

the glycoside is afforded in a one-pot manner. Moreover, depending on the 

nature of the sulphoxide specie employed (DBTO or Ph2SO) is possible to 

control the stereochemistry of the epoxide ring to obtain the glycoside with 1,2-

trans or 1,2-cis relative configuration (Scheme 4.9.). Thus, the reaction of tri-O-

benzylglucal (4.18) with DBTO as sulphoxide agent, Tf2O, 
iPr2NEt, MeOH, 

LiClO4 and NaN3 as glycosyl acceptor at afforded the α-manno-glycosyl azide 

4.23 via oxirane 4.22 in a 73% yield. However, when the same substract was 

treated under similar conditions but using Ph2SO as the sulphoxide agent and 

TEA as a base, the β-gluco-glycosyl azide 4.25 was excusively obtained in a 

79% yield via oxirane 4.24.41d 

 

 
Scheme 4.9. Direct oxidative glycosylation pathway postulated by the group of Gin 
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In our case, when direct oxidative glycosylation methods41b-d where applied to 2-

C-phenyl-2-deoxy-3,4,5-tri-O-benzyl-D-glucal (4.12) using Ph2SO or DBTO, 

Tf2O and DTBMP, and glycosylation promoters (MeOH, TEA, H2O, ZnCl2) at 

low temperatures (-80 °C or -40 °C), only the starting material was recovered. 

Other attemps to carry out the reaction at higher temperatures (e.g. 0 ºC) only 

yielded complex sugar mixtures due to the decomposition of the epoxidation 

agents.41d  

 

At this point, we considered that an epoxidation procedure which could be 

carried out at higher temperatures, such as Shi epoxidation, may be more 

suitable for our system. Using Shi’s protocol,42 the epoxidizing species are 

believed to be dioxiranes, which are powerful epoxidation reagents (Scheme 

4.10.). These are not indefinitely stable, but can be generated in situ by 

oxidation of a ketone with potassium peroxymonosulfate (Oxone®). The 

intermediate sulphate formed, as a good leaving group, facilitates the ring 

closure to the dioxiranes. Taking into account that the ketone is regenerated, 

only catalytic amounts are needed. Reactions are conducted in buffered, often 

biphasic mixtures with phase transfer catalysts. Addition of K2CO3 to the 

reaction mixture increases the rate of formation of the dioxirane but also lowers 

the stability of Oxone®. However, at higher pH the Bayer-Villiger Oxidation as 

a side reaction is disfavoured, so the catalysts remain more active. Therefore the 

selfdecomposition of Oxone® at high pH can be avoided if the ketone is reactive 

enough. The enhancements in reaction rate can also be explained by a higher 

nucleophility of Oxone® under more basic conditions. In any case, a careful use 

of buffered media is often needed. Once the dioxirane is formed, the epoxidation 

of the alkene occurs by a concerted mechanism (Scheme 4.10.).42 

 

                                                           

42 Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry. Part B: Reactions and Synthesis, 
Springer, New York, 2007. 
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Scheme 4.10. Epoxidation of alkenes with a dioxirane agent 

 

When 2-C-phenyl-2-deoxy-3,4,5-tri-O-benzyl-D-glucal (4.12) was treated with 

Oxone® and acetone43 in a biphasic DCM-aqueous NaHCO3 mixture from 0 °C 

to room temperature (Scheme 4.11.) compound 4.26 was quantitatively isolated 

after 9 h of reaction.  

 

 
Scheme 4.11. Epoxidation of 2-C-arylglycal 4.12 under dioxyrane conditions 

 

The formation of epoxide 4.26 under Shi’s conditions instead was evidenced by 

comparison of δ 13C-1 and δ 
13C-2 NMR data of those 4.26 with reported 2-aryl-

C-oxiranes.44 We noticed that 4.26 has chemical shifts for 13C-1 (83.5 ppm) and 
13C-2 (62.4 ppm) (Table 4.6., Entry 1) more similar to 2-C-branched epoxides 

4.27 and 4.28 (Table 4.6., Entries 2 and 3) rather than to corresponding 2-C-

branched diols (Table. 4.6., Entries 4 and 5). Furthermore, although epoxides are 

sensitive to mass spectroscopy conditions and usually decomposes, the structure 

                                                           

43 Cheshev, P.; Marra, A.; Dondoni, A. Carbohydr. Res. 2006, 341, 2714-2716. 
44 See equivalent 2-C-aryl-oxiranic compounds: (a) Bernini, R.; Mincione, E.; Coratti, A.; 

Fabrizi, G.; Battistuzzi, G. Tetrahedron, 2004, 60, 967-971. (b) Adam, W.; Sauter, M. 
Tetrahedron, 1994, 50, 11441-11446. See equivalent 2-C-aryl-dihydroxylated compounds: 
(c)Varga, M.; Batori, S.; Kovari-Radkai, M.; Prohaszka-Nemet, I.; Vitanyi-Morvai, M.; 
Bocskey, Z.; Bokotey, S.; Simon, K.; Hermecz, I. Eur. J. Org Chem. 2001, 3911-3920. (d) 
Robinson, T.V.; Pedersen, D.S.; Taylor, D.K.; Tiekink, E.R.T. J. Org. Chem. 2009, 74, 5093-
5096. 
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of 4.26 could be also confirmed by high resolution mass spectroscopy in which 

the value (M+Na)+ for the ion C33H32NaO5
+ (m/z) was 531.2147 (calc 531.2142).  

 
Table 4.5. Comparison of δ 13C-1 and δ 

13C-2 NMR signals of 4.27 with reported 2-aryl-C-

oxiranes. 

Entry Compound δδδδ C-1 (ppm) δδδδ C-2 (ppm) Reference 

1 

 

83.5 62.4 - 

2 

 

82.9 63.0 44a 

3 

 

88.7 63.7 44b 

4 

 

99.9 (Maj) 

102.1(Min) 

78.0 (Maj) 

77.1 (Min) 

44c 

5 O

HO OH

HO

4.30  

101.9 (Maj) 

102.9 (Min) 

78.6 (Maj) 

81.2 (Min) 

44d 

 

However, the stereochemistry of the epoxide ring was not unequivocally 

stablished because NOE correlation did not offer any diagnostic evidence.  

Hence, we decided to open the epoxide ring under glycosylating conditions. It 

would be expected that if the phenyl group adquires an axial configuration, it 

would be a consequence of the opening of an equatorial epoxide ring in 4.26 

whereas if the phenyl group acquires an equatorial  configuration, it would be a 

consequence of the ring opening of an axially oriented epoxide ring in 4.26. 

 

Lewis acids had been reported as a suitable promotors for the glycosylation of 

1,2- anhydrosugars.45 In order to obtain 2-C-aryl-glycosides, compound 4.26 

was dissolved in dichloromethane and treated with H2O/ZnCl2 or NaN3/LiClO4 

at room temperature for 12 h, but only starting material was recovered. 

                                                           

45 Li, Y.; Tang, P.; Chen, Y., Yu, B. J. Org. Chem., 2008, 73, 4323-4325. 
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However, in presence of catalytic of para toluene sulfonic acid (PTSA),46  

corresponding 2-C-phenyl-glycosides 4.31 and 4.32 were obtained in good 

yields (85-90 %) with exclusive α-selectivity after refluxing epoxide 4.26 in 
1,2-dichloroethane for 12 h in the presence of EtOH or BnOH (Scheme 4.12.).  

 

 

 

Scheme 4.12. Glycosidation of epoxide 4.26 

 

The stereochemistry of compounds 4.31 and 4.32 was initially deduced by 

analysis of diagnostic 3J3,4 = 9.5 Hz coupling constants that account for a 
4C1 

conformation. Moreover, the anomeric 1JC1-H1 = 174.8 Hz coupling constant 

higher than 170 Hz is indicative of an α-configuration.47 Finally, selective NOE 

irradiation of the aromatic protons at C-2 caused an enhancement of signals 

corresponding to H-1 and H-4, which confirmed the axial disposition of the Ph 

group at C-2 in both 4.31 and 4.32 (Scheme 4.12.). This evidende also permit 

deducing that the epoxide ring in 4.26 has α configuration. 
 

More interestingly, when epoxide 4.26 was treated with the appropiately 

protected mannoside derivatives 4.33 or 4.34 with traces of PTSA in 1,2-

dichloroethane for 12 h, disaccharides 4.35 and 4.36 were obtained (Scheme 

4.13.). However, the yield obtained for these compounds was still low (35-42 

%) so the optimization of reaction conditions would be further investigated in 

our group in order to afford new architectures for 1,2-manosides and 1,6-

manosides.   

                                                           

46 Donnelly, J.A.; Keegan, J.R.; Quigley, K. Tetrahedron, 1980, 36, 1671-1680. 
47 Tvaroska, I.; Taravel, F. R. Adv. Carbohydr. Chem. Biochem. 1995, 51, 15-61. 
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Scheme 4.13. Glycosylation of 4.26 to afford dissacarides 4.35 and 4.36 

 

 

In conclusion, we have developed a general catalytic strategy for the efficient 

synthesis of 2-C-arylglycals by phosphine-free Suzuki-Miyaura cross-coupling 

of 2-iodoglycals in aqueous media using an inexpensive Pd catalyst. To the best 

of our knowledge this transformation represents the first transition metal 

catalyzed 2-C-arylation of 2-haloglycals. The simplicity and relative mildness of 

this method allows the regioselective preparation of various 2-C-arylglycals 

with different configurations in excellent yields with no Ferrier or 2,3-

unsaturated by-products detected. Notably the 2-iodoglycal substrates proved 

unstable in the presence of phosphine, necessiting systems that avoid their use. 

The elaboration of the 2-C-arylglycal moiety gives access to both 2-C-aryl-2-

deoxy-1,5-anhydroalditols and challenging quaternary 2-C-aryl-α-glycosides 

which will broaden the plethora of C-arylglycosides at positions different than 

C-1. Further application of this methodology to the synthesis of more complex 

2-C-aryl branched glycosides is currently under investigation 
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4.3. Experimental Section 

 

Melting points (m.p.) were recorded on a Leica Galen III hot stage microscope 

equipped with a Testo 720 thermocouple probe and are uncorrected. Proton 

nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker 

AVII500 (500 MHz) or a Varian Mercury VX 400 (400 MHz) spectrometer, as 

indicated. Carbon nuclear magnetic resonance (13C NMR) spectra were recorded 

on a Bruker AVII500 (125.8 MHz) or a Varian Mercury VX 400 (100.6 MHz) 

spectrometer, as indicated. Fluorine nuclear magnetic resonance (19F NMR) 

spectra were recorded on a Bruker AVII500 (470.4 MHz) spectrometer. NMR 

Spectra were fully assigned using COSY, HSQC, HMBC and NOESY. All 

chemical shifts are quoted on the δ scale in ppm using residual solvent as the 

internal standard (1H NMR: CDCl3 = 7.26, CD3OD = 4.87; DMSO-d6 = 2.50 

and 13C NMR: CDCl3 = 77.0; CD3OD = 49.0; DMSO-d6 = 39.5) and CFCl3 as 

external standard for 19F NMR. Coupling constants (J) are reported in Hz with 

the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = 

quartet, quin = quintet and app = apparent. 

 

Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier Transform 

spectrophotometer using thin films on NaCl plates for liquids and oils and KBr 

discs for solids and crystals. Absorption maxima (υmax) are reported in 

wavenumbers (cm–1). 

 

Low resolution mass spectra (LRMS) were recorded on a Waters Micromass 

LCT Premier TOF spectrometer using electrospray ionization (ESI) and high 

resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI 

mass spectrometer. Nominal and exact m/z values are reported in Daltons. Other 

methods of ionization (EI, FI and FAB) are used where indicated and were 

recorded by the University of Oxford Mass Spectrometry Service in the 

Department of Chemistry. 
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Optical rotations were measured on a Perkin–Elmer 241 polarimeter with a path 

length of 1.0 dm and are reported with implied units of 10–1 deg cm2 g–1. 

Concentrations (c) are given in g/100 ml. 

 

Thin layer chromatography (TLC) was carried out using Merck aluminium 

backed sheets coated with 60F254 silica gel. Visualization of the silica plates 

was achieved using a UV lamp (λmax = 254 nm) and/or ammonium molybdate 

(5% in 2 M H2SO4) and/or potassium permanganate (5% KMnO4 in 1 M NaOH 

with 5% potassium carbonate). Flash column chromatography was carried out 

using BDH 40–63 µm silica gel (VWR). Mobile phases are reported in relative 

composition (e.g. 1:1 EtOAc/petrol v/v). 

 

Anhydrous solvents were purchased from Fluka or Acros. Triethylamine was 

stored over NaOH pellets. All other solvents were used as supplied (Analytical 

or HPLC grade), without prior purification. Distilled water was used for 

chemical reactions and Milli–QR purified water for protein manipulations. 

Reagents were purchased from Aldrich and used as supplied, unless otherwise 

indicated. ‘Petrol’ refers to the fraction of light petroleum ether boiling in the 

range 40–60 ºC. All reactions using anhydrous conditions were performed using 

flame-dried apparatus under an atmosphere of argon or nitrogen. Brine refers to 

a saturated solution of sodium chloride. Anhydrous magnesium sulfate (MgSO4) 

was used as drying agents after reaction workup, as indicated. 

  

Preparation of Pd-pyrimidine catalyst 

 

 

 

 

 

2-Amino-4,6-dihydroxypyrimidine (13 mg, 0.10 mmol) was added to a 0.1 M 

NaOH solution (2 mL). The pyrimidine ligand was dissolved by stirring for 2 

minutes in a water bath preheated to 65 ºC. Pd(OAc)2 (11.0 mg, 0.05 mmol) was 

added to the resulting solution. The mixture was stirred vigorously at 65 ºC for 

30 minutes to give a homogenous yellow-orange solution. After cooling to room 
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temperature, the solution was diluted to 5 mL with distilled water to give a 

catalyst solution 0.01 M in Pd(II). 

 

 

General procedure for the synthesis of 2-iodoglycals from glycals 

 

NIS (1.5 mmol) was added to a solution of the corresponding 3,4,6-tri-O-

benzyl-D-glycal (1 mmol) in 10:1 (v/v) CH3CN/H2O (20 mL) at room 

temperature. The reaction mixture was stirred at the same temperature for 3.5 h 

and the solvent evaporated. The crude was then diluted with EtOAc and washed 

with saturated aqueous Na2S2O3, saturated aqueous NaHCO3 and brine. The 

combined organic layers were dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was used in the next step without further 

purification. The crude was treated with a mixture of Ph2SO (2 mmol), TTBP (3 

mmol) and 4Å molecular sieves (0.4 g) in dry CH2Cl2 (25 mL) at –78 ºC for 30 

min. Tf2O (1 mmol) was then added and the reaction gradually warmed up to 

room temperature and stirred for 5 h. The reaction mixture was quenched with 

Et3N and the solvent evaporated. The residue was purified by chromatographic 

techniques. 

 

 

General procedure for the Suzuki-Miyaura cross-coupling with 2-

iodoglycals 

 

An aliquot of 0.01 M Pd-pyrimidine catalyst solution (2 mol%) was added to a 

mixture of the corresponding 2-iodoglycal (1 mmol), boronic acid (1.5 mmol) 

and Na2HPO4 (5 mmol) in 1:1 (v/v) CH3CN/H2O (50 mL) at room temperature. 

The reaction mixture was microwave irradiated in a sealed tube at 125 ºC for 5 

min using a CEM-Discover™ single-mode synthesizer (temperature control, 

fixed hold time off, normal absorption mode, 300 W). The crude was then 

diluted with EtOAc and washed with 5% aqueous HCl and brine. The combined 

organic layers were dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by chromatographic techniques. 
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General procedure for the 1,2-anhydro-2-C-phenylglucopyranose ring-

opening 

 

A mixture of 4.26 (1 mmol), dry alcohol (3 mmol) and dry 4-toluenesulfonic 

acid (0.6–1 mol) in dry 1,2-dichloroethane (27 mL) was heated under reflux for 

12 h. The crude was then concentrated under reduced pressure and the residue 

was purified by chromatographic techniques. 

 

 

1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) 

 

 

 

 

The title compound was prepared following the general procedure for the 

synthesis of 2-iodoglycals, starting from 3,4,6-tri-O-benzyl-D-galactal (737 mg, 

1.8 mmol) and NIS (607 mg, 2.7 mmol) in 10:1 (v/v) CH3CN/H2O (36 mL). 

After standard workup the crude reaction was treated with Ph2SO (746 mg, 3.5 

mmol), TTBP (1.36 g, 5.3 mmol), 4Å molecular sieves (0.72 g) and Tf2O (304 

µL, 1.8 mmol) in dry CH2Cl2 (45 mL). After standard workup the crude was 

purified by column chromatography (1:8 EtOAc/petrol) to afford 4.5 (712 mg, 

74%) as a yellowish solid. Rf (1:8 EtOAc/petrol): 0.24; m.p: 57–58 ºC; [α]D
20: 

+6.7 (c = 0.135, CH2Cl2);
 1H NMR (CDCl3, 400 MHz) δ in ppm: 7.33–7.25 (m, 

15H, Ar), 6.61 (s, 1H, H-1), 4.80–4.37 (m, 6H, 3CH2Ph), 4.33 (m, 1H, H-5), 

4.08 (d, J3,4 = 4.4 Hz, 1H, H-3), 4.03 (dd, J4,3 = 4.4 Hz, J4,5 = 3.6 Hz, 1H, H-4), 

3.78 (dd, J6a,6b = 10.4 Hz, J6a,5 = 8.0 Hz, 1H, H-6a), 3.68 (dd, J6b,6a = 10.4 Hz, 

J6b,5 = 4.4 Hz, 1H, H-6b); 
13C NMR (CDCl3, 100.6 MHz) δ in ppm: 147.7 (C-1), 

138.1, 138.0, 137.9 (C, Ar), 128.6, 128.5, 128.2, 128.2, 128.2, 128.1, 128.0, 

127.6 (CH, Ar), 76.0 (C-3), 75.9 (C-5), 74.1, 73.6 (2CH2Ph), 73.6 (C-4), 73.4 

(CH2Ph), 73.1 (C-2), 68.0 (C-6); FT–IR (KBr) ν in cm
–1: 3063, 3030, 2852, 

1730, 1624, 1495, 1455, 1184, 1067, 734; HRMS (TOF ES+) for (M+Na)+ 

C27H27INaO4
+ (m/z): calc. 565.0846; found 565.0861. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-arabino-hex-1-enitol (4.6) 

 

 

 

The title compound was prepared following the general procedure for the 

synthesis of 2-ioglycals, starting from 3,4,6-tri-O-benzyl-D-glucal (2.5 g, 6.0 

mmol) and NIS (2.03 g, 9.0 mmol) in 10:1 (v/v) CH3CN/H2O (60 mL). After 

standard workup the crude reaction was treated with Ph2SO (2.53 mg, 12.5 

mmol), TTBP (4.61 g, 18.5 mmol), 4Å molecular sieves (2.4 g) and Tf2O (1.0 

mL, 6.1 mmol) in dry CH2Cl2 (150 mL). After standard workup the crude was 

purified by column chromatography (1:8 EtOAc/petrol) to afford 4.6 (2.08 g, 

64%) as a yellowish solid. Rf (1:8 EtOAc/petrol): 0.23; m.p: 44-45 ºC; [α]D
20: 

+25.4 (c = 0.20, CHCl3);
 1H NMR (CDCl3, 400 MHz) δ in ppm: 7.37-7.25 (m, 

15H, Ar), 6.74 (s, 1H, H-1), 4.71-4.54 (m, 6H, 3CH2Ph), 4.30 (m, 1H, H-5), 

4.08 (d, J3,4 = 5.0 Hz, 1H, H-3), 3.99 (dd, J4,5 = 6.6 Hz, J4,3 = 5.0 Hz, 1H, H-4), 

3.80 (dd, J6a,6b = 10.7 Hz, J6a,5 = 5.3 Hz, 1H, H-6a), 3.72 (dd, J6b,6a = 10.7 Hz, 

J6b,5 = 3.8 Hz, 1H, H-6b); 
13C NMR (CDCl3, 100.6 MHz) δ in ppm: 148.4 (C-1), 

137.8, 137.7, 137.6 (C, Ar), 128.5, 128.4, 128.1, 128.0, 127.9, 127.7 (CH, Ar), 

78.9 (C-3), 76.5 (C-5), 74.0 (C-4), 73.4, 73.1, 72.3 (3CH2Ph), 70.3 (C-2), 67.8 

(C-6); FT–IR (KBr) ν in cm–1: 3062, 3029, 2864, 1624, 1496, 1453, 1165, 1090, 

733; HRMS (TOF ES+) for (M+Na)+ C27H27INaO4
+ (m/z): calc. 565.0846; 

found 565.0847. 

 

 

Hydrodehalogenation of 2-iodoglycal 4.5 with PBu3 

 

 
 

PBu3 (14 µL, 0.056 mmol) was added to a solution of 1,5-anhydro-3,4,6-tri-O-

benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (15 mg, 0.028 mmol) and 

Na2HPO4 (19.9 mg, 0.140 mmol) in 1:1 (v/v) CH3CN/H2O (1.4 mL) at room 

temperature. The reaction mixture was microwave irradiated in a sealed tube at 

125 ºC for 1.5 h using a CEM-Discover™ single-mode synthesizer (temperature 

O
BnO

BnO
BnO

I
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control, fixed hold time off, normal absorption mode, 300 W). The crude was 

then diluted with EtOAc and washed with 5% aqueous HCl and brine. The 

combined organic layers were dried over MgSO4, filtered and concentrated 

under reduced pressure. 1H and 13C NMR analysis of the crude mixture revealed 

the formation of tri-O-benzyl-D-galactal in 40% conversion. HRMS (TOF ES+) 

for (M+Na)+ C27H28NaO4
+ (m/z): calc. 439.1880; found 439.1870; spectroscopic 

data was identical to that previously reported.48 

 

  

1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-phenyl-D-lyxo-hex-1-enitol 

(4.11a) 

 

 

 

 

 

The title compound was prepared following the general procedure above, 

starting from 1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-

enitol (4.5) (20 mg, 0.037 mmol), phenylboronic acid 4.10a (6.7 mg, 0.056 

mmol), Na2HPO4 (26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst 

solution (74 µL, 0.74 µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard 

workup the crude was purified by column chromatography (1:8 EtOAc/petrol) 

to afford 4.11a (17.3 mg, 95%) as a yellowish syrup. Rf (1:8 EtOAc/petrol): 

0.23; [α]D
20: -12.4 (c = 0.45, CHCl3);

 1H NMR (CDCl3, 500 MHz) δ in ppm: 

7.45-7.11 (m, 20H, Ar), 6.65 (s, 1H, H-1), 4.81-4.49 (m, 8H, 3CH2Ph, H-3, H-

5), 4.13 (appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.12-3.88 (m, 2H, H-6a, H-6b); 13C 

NMR (CDCl3, 125.8 MHz) δ in ppm: 141.9 (C-1), 138.4 , 138.2, 137.9, 137.4 

(C, Ar), 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.4, 126.3, 125.9 

(CH, Ar), 113.9 (C-2), 75.3 (C-5), 74.6 (C-4), 73.5, 73.4, 72.3 (3CH2Ph), 71.1 

(C-3), 68.1 (C-6); FT–IR (neat) ν in cm–1: 3456, 2063, 1642, 545; HRMS (TOF 

ES+) for (M+Na)+ C233H32NaO4
+ (m/z): calc. 515.2193; found 515.2195. 

 

                                                           

48 Capozzi, G.; Falciani, C.; Menichetti, S.; Nativi, C.; Raffaelli, B. Chem. Eur. J. 1999, 5, 1748-
1754. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(4-cyanophenyl)-D-lyxo-hex-1-

enitol (4.11b) 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from  1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 4-cyanophenylboronic acid 4.10b (8.2 mg, 0.056 mmol), Na2HPO4 (26.3 

mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard workup the crude was 

purified by column chromatography (from 1:8 to 1:4 EtOAc/petrol) to afford 

4.11b (18.2 mg, 95%) as a yellowish syrup. Rf (1:4 EtOAc/petrol): 0.25; [α]D
20: 

+9.8 (c = 0.36, CHCl3);
 1H NMR (CDCl3, 500 MHz) δ in ppm: 7.50-7.16 (m, 

19H, Ar), 6.77 (s, 1H, H-1), 4.86-4.56 (m, 8H, 3CH2Ph, H-3, H-5), 4.13 (appt, 

J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.02 (dd, J6a,6b = 11.0 Hz, J6a,5 = 8.0 Hz, 1H, H-

6a), 3.89 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 Hz, 1H, H-6b); 
13C NMR (CDCl3, 

125.8 MHz) δ in ppm: 144.5 (C-1), 142.2 (C-1, ArCN), 138.1, 137.9, 137.4 (C, 

Ar), 132.3, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8, 126.3 (CH, 

Ar), 119.5 (CN), 113.1 (C-2), 109.5 (C-4, ArCN), 75.9 (C-5), 74.0 (CH2Ph), 

73.6 (C-4), 73.6, 72.9 (2CH2Ph), 70.7 (C-3), 68.1 (C-6); FT–IR (neat) ν in cm
–1: 

3064, 3031, 2924, 2870, 2226, 1726, 1632, 1602, 1496, 1454, 1270, 1027; 

HRMS (TOF ES+) for (M+Na)+ C33H32NaO4
+ (m/z): calc. 540.2145; found 

540.2136. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(4-methoxyphenyl)-D-lyxo-hex-

1-enitol (4.11c) 

 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 4-methoxyphenylboronic acid 4.10c (8.4 mg, 0.056 mmol), Na2HPO4 

(26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard workup the crude was 

purified by column chromatography (1:8 EtOAc/petrol) to afford 4.11c (18.3 

mg, 95%) as a yellowish syrup. Rf (1:8 EtOAc/petrol): 0.19; [α]D
20: –27.2 (c = 

0.48, CHCl3);
 1H NMR (CDCl3, 500 MHz) δ in ppm: 7.37-6.82 (m, 19H, Ar), 

6.55 (s, 1H, H-1), 4.79-4.56 (m, 6H, 3CH2Ph), 4.51-4.49 (m, 2H, H-3, H-5), 

4.12 (appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.08 (dd, J6a,6b = 11.0 Hz, J6a,5 = 8.0 

Hz, 1H, H-6a), 3.88 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 Hz, 1H, H-6b), 3.72 (s, 3H, 

OCH3); 
13C NMR (CDCl3, 125.8 MHz) δ in ppm: 158.4 (C-4, ArOMe), 141.1 

(C-1), 138.6, 138.4, 138.1 (C, Ar), 130.1 (C-1, ArOMe), 128.6, 128.5, 128.3, 

128.0, 128.0, 127.9, 127.9, 127.7, 127.5, 127.4, 113.9 (CH, Ar), 113.9 (C-2), 

75.3 (C-5), 74.8 (C-4), 73.7, 73.5, 72.7 (3CH2Ph), 71.5 (C-3), 68.2 (C-6), 55.5 

(OCH3); FT–IR (neat) ν in cm
–1: 3062, 3030, 3004, 2866, 1572, 1512, 1454, 

1246, 1169, 1092, 1063, 866, 827, 800, 735, 697, 415; HRMS (TOF ES+) for 

(M+Na)+ C34H34NaO5
+ (m/z): calc. 545.2298; found 545.2292. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(4-fluorophenyl)-D-lyxo-hex-1-

enitol (4.11d) 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 4-fluorophenylboronic acid 4.10d (7.7 mg, 0.056 mmol), Na2HPO4 

(26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard workup the crude was 

purified by column chromatography (1:9 EtOAc/petrol) to afford a yellowish 

syrup (18.8 mg) corresponding mainly to 4.11d (ca 90 %) together with traces of 

the corresponding galactal which could not be separed of the mixture: Rf (1:9 

EtOAc/petrol): 0.22; 1H NMR (CDCl3, 500 MHz) δ in ppm, selected signals: 

7.38-6.92 (m, 19H, Ar), 6.57 (s, 1H, H-1), 4.81-4.49 (m, 8H, 3CH2Ph, H-3, H-

5), 4.13 (appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.06 (dd, J6a,6b = 11.0 Hz, J6a,5 = 8.0 

Hz, 1H, H-6a), 3.88 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 Hz, 1H, H-6b); 
13C NMR 

(CDCl3, 125.8 MHz) δ in ppm, selected signals: 161.8 (d, JC,F = 245.3 Hz, C-4, 

ArF), 141.9 (C-1), 138.4, 138.3, 138.1 (C, Ar), 133.5 (C-1, ArF), 128.6, 128.5, 

128.4, 128.3, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5 (CH, Ar), 115.2 (d, 

JC,F = 21.4 Hz, C-2, C-3, ArF), 113.4 (C-2), 75.4 (C-5), 74.4 (C-4), 73.6, 73.5, 

72.7 (3CH2Ph), 71.5 (C-3), 68.1 (C-6); 
19F NMR (CDCl3, 470.4 MHz) δ in ppm: 

-116.7 (m, 1F, ArF); HRMS (TOF ES+) for (M+Na)+ C33H31FNaO4
+ (m/z): calc. 

533.2199; found 533.2096. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(2-methylphenyl)-D-lyxo-hex-

1-enitol (4.11e) 

 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 2-methylphenylboronic acid 4.10e (7.5 mg, 0.056 mmol), Na2HPO4 

(26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). The resulting mixture was microwave 

irradiated in a sealed tube at 125 ºC for 40 min. After standard workup the crude 

was purified by column chromatography (from petrol to 1:8 EtOAc/petrol) to 

afford 4.11e (16.8 mg, 90%) as a yellowish syrup. Rf (1:4 EtOAc/petrol): 0.60; 

[α]D
20: -38.3 (c = 0.29, CHCl3);

 1H NMR (CDCl3, 500 MHz) δ in ppm: 7.36-6.94 

(m, 19H, Ar), 6.24 (s, 1H, H-1), 4.85-4.27 (m, 8H, 3CH2Ph, H-3, H-5), 4.11 

(appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.02 (dd, J6a,6b = 11.0 Hz, J6a,5 = 8.0 Hz, 1H, 

H-6a), 3.80 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 Hz, 1H, H-6b), 2.23 (s, 3H, CH3); 
13C NMR (CDCl3, 125.8 MHz) δ in ppm: 141.9 (C-1), 138.6, 138.4, 138.3, 

137.9 (C, Ar), 136.9, 131.1, 130.0, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8, 

127.5, 127.4, 127.3, 125.5 (CH, Ar), 114.2 (C-2), 75.6 (C-5), 73.6 (C-3), 73.1, 

73.0, 73.0 (3CH2Ph), 73.0 (C-4), 68.4 (C-6), 20.2 (CH3); FT–IR (neat) ν in cm
–1: 

3062, 3029, 2961, 2919, 2864 2063, 1637, 1607, 1496, 1260, 1169, 1091, 1062, 

1027, 867, 800, 734; HRMS (TOF ES+) for (M+Na)+ C34H34NaO4
+ (m/z): calc. 

529.2369; found 529.2349. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(3-pyridinyl)-D-lyxo-hex-1-

enitol (4.11f) 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 3-pyridinylphenylboronic acid 4.10f (6.8 mg, 0.056 mmol), Na2HPO4 

(26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). The resulting mixture was microwave 

irradiated in a sealed tube at 125 ºC for 40 min. After standard workup the crude 

was purified by column chromatography (from 1:4 to 1:1 EtOAc/petrol) to 

afford 4.11f (16.2 mg, 89%) as a yellowish syrup. Rf (1:1 EtOAc/petrol): 0.49; 

[α]D
20: -6.0 (c = 0.23, CHCl3);

 1H NMR (CDCl3, 500 MHz) δ in ppm: 8.52 (brs, 

1H, Py), 8.44 (brs, 1H, Py), 7.51-7.15 (m, 17H, Ar), 6.66 (s, 1H, H-1), 4.83-4.49 

(m, 8H, 3CH2Ph, H-3, H-5), 4.23 (appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 4.07 (dd, 

J6a,6b = 11.0 Hz, J6a,5 = 8.0 Hz, 1H, H-6a), 3.87 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 

Hz, 1H, H-6b); 13C NMR (CDCl3, 125.8 MHz) δ in ppm: 147.2 (CH, Py), 143.3 

(C-1), 138.2, 138.0, 137.9 (C, Ar), 134.1 (C, Py), 128.7, 128.5, 128.5, 128.1, 

128.1, 128.1, 127.9, 127.9, 127.8 (CH, Ar), 123.4 (CH, Py), 111.2 (C-2), 75.8 

(C-5), 73.7 (C-4), 73.6, 73.6, 73.0 (3CH2Ph), 71.3 (C-3), 68.1 (C-6); FT–IR 

(neat) ν in cm–1: 3030, 2960, 2924, 2854, 1635, 1541, 1511, 1496, 1455, 1259, 

1169, 1092, 1027, 800, 735, 668; HRMS (TOF ES+) for (M+Na)+ 

C32H31NNaO4
+ (m/z): calc. 516.2145; found 516.2145. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(1-naphthyl)-D-lyxo-hex-1-

enitol (4.11g) 

 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from  1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 1-naphthylboronic acid 4.10g (9.5 mg, 0.056 mmol), Na2HPO4 (26.3 

mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 

µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard workup the crude was 

purified by column chromatography (from 1:20 to 1:9 EtOAc/petrol) to afford 

4.11g (18.8 mg, 94%) as a yellowish syrup: Rf (1:8 EtOAc/petrol): 0.22; [α]D
20: 

-3.4 (c = 0.44, CHCl3);
 1H NMR (CDCl3, 500 MHz) δ in ppm: 8.04-6.75 (m, 

22H, Ar), 6.40 (s, 1H, H-1), 4.81-4.55 (m, 4H, 2CH2Ph), 4.52 (m, 1H, H-5), 

4.49 (d, J3,4 = 3.5 Hz, 1H, H-3), 4.31 (d, JAB = 11.5 Hz, 1H, CH2Ph), 4.22 (appt, 

J4,3 = J4,5 = 3.5 Hz, 1H, H-4), 4.10 (m, 2H, CH2Ph, H-6a), 3.87 (dd, J6b,6a = 11.0 

Hz, J6b,5 = 4.0 Hz, 1H, H-6b); 
13C NMR (CDCl3, 125.8 MHz) δ in ppm: 142.8 

(C-1), 138.4, 138.4, 138.3 (C, Ar), 135.1 (C-1, naph), 133.8, 133.7, 128.6, 

128.5, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.2, 126.3, 125.9, 

125.7, 125.4 (CH, Ar), 113.0 (C-2), 75.8 (C-5), 74.1 (C-3), 73.5, 73.1 (2CH2Ph), 

73.1 (C-4), 72.9 (CH2Ph), 68.5 (C-6); FT–IR (neat) ν in cm
–1: 3087, 3061, 2920, 

1726, 1589, 1548, 1174, 1094, 861, 801, 778, 735, 697; HRMS (TOF ES+) for 

(M+Na)+ C37H34NaO4
+ (m/z): calc. 565.2349; found 565.2336. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-(3,5-

bis(trifluoromethyl)phenyl)-D-lyxo-hex-1-enitol (4.11h) 

 

 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-lyxo-hex-1-enitol (4.5) (20 mg, 0.037 

mmol), 3,5-bis(trifluoromethyl)phenyl  boronic acid 4.10h (14.2 mg, 0.056 

mmol), Na2HPO4 (26.3 mg, 0.185 mmol) and 0.01 M Pd-pyrimidine catalyst 

solution (74 µL, 0.74 µmol) in 1:1 (v/v) CH3CN/H2O (1.9 mL). After standard 

workup the crude was purified by column chromatography (1:9 EtOAc/petrol) 

to afford 4.11h (22.0 mg, 95%) as a yellowish syrup: Rf (1:9 EtOAc/petrol): 

0.27; [α]D
20: -6.6 (c = 0.66, CHCl3);

 1H NMR (CDCl3, 500 MHz) δ in ppm: 

7.69-7.15 (m, 18H, Ar), 6.72 (s, 1H, H-1), 4.88-4.50 (m, 8H, 3CH2Ph, H-3, H-

5), 4.18 (appt, J4,3 = J4,5 = 3.5 Hz, 1H, H-4), 4.00 (dd, J6a,6b = 11.0 Hz, J6a,5 = 8.0 

Hz, 1H, H-6a), 3.89 (dd, J6b,6a = 11.0 Hz, J6b,5 = 3.0 Hz, 1H, H-6b); 
13C NMR 

(CDCl3, 125.8 MHz) δ in ppm: 144.4 (C-1), 139.7 (C-1, Ar(CF3)2), 138.1, 

137.8, 137.5 (C, Ar), 131.6 (q, JC,F = 32.7 Hz, C-3, C-5, Ar(CF3)2), 128.7, 128.6, 

128.5, 128.2, 128.1, 127.8, 128.0, 127.4 (CH, Ar), 126.2 (C-2, C-6, Ar(CF3)2), 

123.5 (q, JC,F = 273.0 Hz, 2CF3), 120.0 (q, JC,F = 3.7 Hz, C-4, Ar(CF3)2), 112.4 

(C-2), 75.9 (C-3), 73.8 (CH2Ph), 73.6 (C-4), 73.4, 72.3 (2CH2Ph), 71.5 (C-5), 

68.0 (C-6); 19F NMR (CDCl3, 470.4 MHz) δ in ppm: -68.8 (s, 6F, Ar(CF3)2); 

FT–IR (neat) ν in cm–1: 3089, 3064, 3032, 2922, 2868, 1636, 1614, 1496, 1454, 

1389, 1364, 1343, 1278, 1179, 888, 844, 800, 736, 697, 682; HRMS (TOF ES+) 

for (M+Na)+ C35H30F6NaO4
+ (m/z): calc. 651.1940; found 651.1945. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-phenyl-D-arabino-hex-1-enitol 

(4.12) 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-arabino-hex-1-enitol (4.6) (20 mg, 0.037 

mmol), phenylboronic acid 4.10a (6.7 mg, 0.056 mmol), Na2HPO4 (26.3 mg, 

0.185 mmol) and 0.01 M Pd-pyrimidine catalyst solution (74 µL, 0.74 µmol) in 

1:1 (v/v) CH3CN/H2O (1.9 mL). After standard workup the crude was purified 

by column chromatography (1:8 EtOAc/petrol) to afford a yellowish syrup (17.3 

mg) corresponding mainly to 4.12 (ca 95%) together with traces of the 

corresponding glucal which could not be separated of the mixture: Rf (1:8 

EtOAc/petrol): 0.23; 1H NMR (CDCl3, 500 MHz) δ in ppm, selected signals: 

7.34-7.02 (m, 20H, Ar), 6.84 (s, 1H, H-1), 4.73-4.40 (m, 8H, 3CH2Ph, H-3, H-

5), 4.08 (appt, J4,3 = J4,5 = 4.0 Hz, 1H, H-4), 3.88 (dd, J6a,6b = 10.5 Hz, J6a,5 = 8.0 

Hz, 1H, H-6a), 3.75 (dd, J6b,6a = 10.5 Hz, J6b,5 = 4.0 Hz, 1H, H-6b); 
13C NMR 

(CDCl3, 125.8 MHz) δ in ppm, selected signals: 143.1 (C-1), 138.1, 138.0, 

137.9, 137.4 (C, Ar), 128.7, 128.5, 128.4, 128.1, 127.9, 127.9, 127.8, 127.8, 

126.5, 126.1 (CH, Ar), 113.4 (C-2), 74.5 (C-5), 73.5 (CH2Ph), 72.5 (C-3), 72.1, 

70.1 (2CH2Ph), 70.6 (C-4), 68.4 (C-6); HRMS (TOF ES+) for (M+Na)+ 

C33H32NaO4
+ (m/z): calc. 515.2193; found 515.2193. 
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1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-phenyl-D-ribo-hex-1-enitol 

(4.13) 

 

 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-iodo-D-ribo-hex-1-enitol (4.7)2 (17 mg, 0.031 

mmol), phenylboronic acid 4.10a (5.7 mg, 0.047 mmol), Na2HPO4 (22.0 mg, 

0.155 mmol) and 0.01 M Pd-pyrimidine catalyst solution (62 µL, 0.62 µmol) in 

1:1 (v/v) CH3CN/H2O (1.6 mL). After standard workup the crude was purified 

by column chromatography (1:8 EtOAc/petrol) to afford 4.13 (14.5 mg, 95%) as 

a yellowish syrup: Rf (1:1 EtOAc/petrol): 0.40; [α]D
20: +153.4 (c = 0.55, 

CHCl3);
 1H NMR (CDCl3, 500 MHz) δ in ppm: 7.38-7.15 (m, 20H, Ar), 6.78 (s, 

1H, H-1), 4.81–4.45 (m, 7H, 3CH2Ph, H-3), 4.46 (dt, J5,4 = 10.7 Hz, J5,6a = J5,6b = 

2.8 Hz, 1H, H-5), 4.13 (dd, J4,5 = 10.7 Hz, J4,3 = 3.5 Hz, 1H, H-4), 3.92 (d, J6a,b 

= J6a,5 = 2.8 Hz, 2H, H-6a, H-6b); 
13C NMR (CDCl3, 125.8 MHz) δ in ppm: 

144.2 (C-1), 138.6, 138.0, 137.9, 137.8 (C, Ar), 128.5, 128.4, 128.3, 128.2, 

128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 126.2, 125.8, 125.6, 125.4 (CH, 

Ar), 113.9 (C-2), 75.2 (C-4), 73.6, 72.9 (2CH2Ph), 72.6 (C-5), 72.1 (CH2Ph), 

69.6 (C-3), 68.7 (C-6); FT–IR (neat) ν in cm–1: 3443, 1637, 1495, 1453, 1261, 

1195, 1026, 800, 733. 695, 412; HRMS (TOF ES+) for (M+Na)+ C33H32NaO4
+ 

(m/z): calc. 515.2193; found 515.2195. 
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1,5-Anhydro-2-deoxy-2-C-phenyl-3,4:6,7-di-O-isopropylidene-D-glycero-D-

talo-hept-1-enitol (4.14) 

 

 

The title compound was prepared following the general procedure for the 

Suzuki-Miyaura cross-coupling with 2-iodoglycals, starting from 1,5-anhydro-2-

deoxy-3,4:6,7-di-O-isopropylidene-2-iodo-D-glycero-D-talo-hept-1-enitol (4.8)2 

(20 mg, 0.052 mmol), phenylboronic acid 4.10a (9.5 mg, 0.078 mmol), 

Na2HPO4 (36.7 mg, 0.260 mmol) and 0.01 M Pd-pyrimidine catalyst solution 

(105 µL, 1.05 µmol) in 1:1 (v/v) CH3CN/H2O (2.6 mL). After standard workup 

the crude was purified by column chromatography (1:9 EtOAc/petrol) to afford 

4.14 (16.5 mg, 96%) as a yellowish syrup: Rf (1:9 EtOAc/petrol): 0.33; [α]D
20: 

+128.6 (c = 0.72, CHCl3);
 1H NMR (CDCl3, 500 MHz) δ in ppm: 7.45-7.23 (m, 

5H, Ar), 6.82 (s, 1H, H-1), 5.10 (d, J3,4 = 6.6 Hz, 1H, H-3), 4.61 (d, J4,3 = 6.6 

Hz, 1H, H-4), 4.46 (m, 1H, H-6), 4.16 (m, 2H, H-7a, H-7b), 3.84 (d, J5,6 = 7.8 

Hz, 1H, H-5), 1.37, 1.34, 1.32, 1.31 (s, 12H, 4CH3); 
13C NMR (CDCl3, 125.8 

MHz) δ in ppm: 142.8 (C-1), 136.8 (C, Ar), 128.7, 126.6, 125.6 (CH, Ar), 115.9 

(C-2), 109.4, 103.0 (Cketal), 75.8 (C-5), 74.1 (C-6), 72.8 (C-4), 70.7 (C-3), 66.7 

(C-7), 26.8, 25.3, 22.7 (4CH3); FT–IR (neat) ν in cm
–1: 3427, 2986, 2934, 2093, 

1637; HRMS (TOF ES+) for (M+Na)+ C33H32NaO4
+ (m/z): calc. 355.1516; 

found 355.1519. 
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 1,5-Anhydro-2-deoxy-2-C-phenyl-D-mannitol (4.16) and 1,5-Anhydro-2-

deoxy-2-C-phenyl-D-glucitol (4.17) 

 

 
 

10% Pd/C (11.2 mg, 0.01 mmol Pd) was added to a solution of 1,5-anhydro-

3,4,6-tri-O-benzyl-2-deoxy-2-C-phenyl-D-arabino-hex-1-enitol 4.12 (26 mg, 

0.053 mmol) in dry and deoxygenated methanol (1mL) at room temperature. 

The mixture was stirred under H2 (1 atm) at the same temperature for 12 h, 

filtered through a short path of Celite 545 and concentrated under reduced 

pressure. The crude material was purified by column chromatography (17:2:1 

EtOAc/MeOH/H2O) to afford an inseparable 10:1 mixture of 1,5-anhydro-2-

deoxy-2-C-phenyl-D-alditols 4.16 and 4.17 (11.2 mg, 95%) as a colorless syrup: 

Rf (17:2:1 EtOAc/MeOH/H2O): 0.58; HRMS (TOF ES+) for (M+Na)+ 

C12H16NaO4
+ (m/z): calc. 247.0941; found 247.0939; Data for 4.16: 1H NMR 

(D2O, 500 MHz) δ in ppm: 7.52-7.33 (m, 5H, Ar), 4.19-4.17 (m, 1H, H-1a), 

4.02-3.94 (m, 3H, H-1b, H-3, H-6a), 3.84 (dd, J6b,6a = 12.0 Hz, J6b,5 = 6.0 Hz, 

1H, H-6b), 3.63 (appt, J4,5 = J4,3 = 9.5 Hz, 1H, H-4), 3.54-3.42 (m, 1H, H-5), 

3.27 (dd, J2,3 = 6.0 Hz, J2,1b = 1.5 Hz, 1H, H-2); 
13C NMR (D2O, 125.8 MHz) δ 

in ppm: 139.7 (C, Ar), 130.1, 128.7, 127.1 (CH, Ar), 80.8 (C-4), 73.7 (C-3), 

69.5 (C-1), 67.2 (C-5), 61.1 (C-6), 46.6 (C-2); Data for 4.17: 1H NMR (D2O, 

500 MHz) δ in ppm: 7.49-7.33 (m, 5H, Ar), 4.19-4.17 (m, 1H, H-6a), 4.02-3.94 

(m, 1H, H-1a), 3.77 (dd, J6b,6a = 12.5 Hz, J6b,5 = 6.0 Hz, 1H, H-6b), 3.63-3.60 (m, 

2H, H-1b, H-3), 3.53-3.45 (m, 2H, H-4, H-5), 2.93 (ddd, J2,3 = 16.0 Hz, J2,1a = 

11.0 Hz, J2,1b = 4.5 Hz, 1H, H-2); 
13C NMR (D2O, 125.8 MHz) δ in ppm: 137.1 

(C, Ar), 128.9, 128.7, 127.6 (CH, Ar), 80.6 (C-4), 75.8 (C-3), 71.8 (C-1), 70.6 

(C-5), 61.7 (C-6), 49.8 (C-2). 
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1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-D-glucopyranose (4.26) 

 

 
 

A mixture of 1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-C-phenyl-D-arabino-

hex-1-enitol (4.12) (92 mg, 0.187 mmol), acetone (77 µL), saturated aqueous 

NaHCO3 (1.25 mL) and CH2Cl2 (770 µL) was cooled to 0 ºC. A freshly 0.4 M 

aqueous solution of Oxone (93 µL, 0.372 mmol) was added dropwise and the 

resulting mixture was vigorously stirred at the same temperature for 30 min. The 

reaction was allowed to warm to room temperature for 9 h. The crude was then 

diluted with CH2Cl2 and washed with brine. The combined organic layers were 

dried over MgSO4, filtered and concentrated under reduced pressure to afford 

1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-α-D-glucopyranose 4.26 (94 mg, 

99%) as a yellowish syrup: Rf (1:8 EtOAc/petrol): 0.23; [α]D
20: +19.9 (c = 0.50, 

CHCl3);
 1H NMR (CDCl3, 400 MHz) δ in ppm: 7.50-6.84 (m, 20H, Ar), 8.85 

(m, 2H, CH2Ph, H-1), 4.68-4.22 (m, 4H, 2CH2Ph), 4.09 (d, J3,4 = 8.2 Hz, 1H, H-

3), 3.99-3.95 (m, 1H, H-5), 3.92 (d, JAB = 11.5 Hz, 1H, CH2Ph), 3.87-3.71 (m, 

3H, H-4, H-6a, H-6b); 13C NMR (CDCl3, 100.6 MHz) δ in ppm: 138.2, 137.8, 

137.0, 135.3 (C, Ar), 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.7, 

127.4 (CH, Ar), 83.3 (C-1), 82.1 (C-3), 74.9 (CH2Ph), 74.9 (C-4), 74.6, 73.6 

(2CH2Ph), 70.3 (C-5), 68.2 (C-6), 62.2 (C-2); FT-IR (neat) ν in cm
–1: 3584, 

3088, 3063, 3030, 2922, 2868, 1730, 1496, 1454, 1265, 1156, 1096, 1045, 666, 

573, 550, 537; HRMS (TOF ES+) for (M+Na)+ C33H32NaO5
+ (m/z): calc. 

531.2142; found 531.2147. 
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Ethyl 3,4,6-tri-O-benzyl-2-C-phenyl-α-D-glucopyranoside (4.31) 

 

 

 

 

The title compound was prepared following the general procedure for oxirane 

ring opening, starting from 1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-D-

glucopyranose (4.26) (6.0 mg, 0.011 mmol), EtOH (2 µL, 0.033 mmol) and 4-

toluenesulfonic acid (2 mg, 0.011 mmol) in dry 1,2-dichloroethane (300 µL). 

After concentration under reduced pressure the crude was purified by column 

chromatography (1:9 EtOAc/petrol) to afford 4.31 (5.5 mg, 90%) as a yellowish 

syrup: Rf (1:4 EtOAc/petrol): 0.23; [α]D
20: +26.6 (c = 0.04, CHCl3);

 1H NMR 

(CDCl3, 500 MHz) δ in ppm: 7.90-7.07 (m, 20H, Ar), 5.12 (d, JAB = 11.5 Hz, 

1H, CH2Ph), 4.90 (s, 1H, H-1), 4.81 (d, JAB = 11.5 Hz, 1H, CH2Ph), 4.68 (d, JAB 

= 11.5 Hz, 1H, CH2Ph), 4.64 (d, JAB = 11.5 Hz, 1H, CH2Ph), 4.54 (d, JAB = 11.5 

Hz, 1H, CH2Ph), 4.30 (d, JAB = 11.5 Hz, 1H, CH2Ph), 4.01 (d, J3,4 = 9.5 Hz, 1H, 

H-3), 3.94 (m, 1H, H-5), 3.86 (m, 2H, CH2CH3, H-6a), 3.79 (dd, J6b,6a = 10.5 Hz, 

J6b,5 = 2.0 Hz, 1H, H-6b), 3.70 (appt, J4,3 = J4,5 = 10.0 Hz, 1H, H-4), 3.59 (dq, J 

= 9.5 Hz, J = 7.0 Hz, 1H, CH2CH3), 3.20 (s, 1H, OH), 1.28 (t, J = 9.5 Hz, 3H, 

CH2CH3); 
13C NMR (CDCl3, 125.8 MHz) δ in ppm: 139.4, 138.8, 138.3 (C, Ar), 

128.3, 128.2, 127.9, 127.6, 127.5, 127.4, 127.3 (CH, Ar), 101.5 (C-1), 86.0 (C-

3), 77.5 (C-2), 75.8 (CH2Ph), 75.5 (C-4), 75.0, 73.2 (2CH2Ph), 71.5 (C-5), 68.8 

(C-6), 63.8 (CH2CH3), 15.2 (CH2CH3); FT–IR (neat) ν in cm–1: 3356, 2920, 

2850, 1608, 1453, 1166, 1051, 699; HRMS (TOF ES+) for (M+Na)+ 

C35H38NaO6
+ (m/z): calc. 577.2561; found 577.2558. 

 

Benzyl 3,4,6-tri-O-benzyl-2-C-phenyl-α-D-glucopyranoside (4.32) 

 

 

 

 

 The title compound was prepared following the general procedure for ring 

oxirane opening, starting from 1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-D-

glucopyranose (4.26) (10. mg, 0.020 mmol), BnOH (6 µL, 0.060 mmol) and 4-

toluenesulfonic acid (2 mg, 0.011 mmol) in dry 1,2-dichloroethane (500 µL). 
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After concentration under reduced pressure the crude was purified by column 

chromatography (1:9 EtOAc/petrol) to afford 4.32 (10.5 mg, 85%) as a 

yellowish syrup: Rf (1:4 EtOAc/petrol): 0.38; [α]D
20: +22.2 (c = 0.13, CHCl3);

 

1H NMR (CDCl3, 500 MHz) δ in ppm: 7.82-7.00 (m, 25H, Ar), 5.03 (d, JAB = 

11.0 Hz, 1H, CH2Ph), 4.95 (s, 1H, H-1), 4.74 (d, JAB = 11.0 Hz, 1H, CH2Ph), 

4.71 (d, JAB = 11.0 Hz, 1H, CH2Ph), 4.61 (d, JAB = 11.0 Hz, 1H, CH2Ph), 4.56 

(d, JAB = 11.0 Hz, 1H, CH2Ph), 4.51 (d, JAB = 11.0 Hz, 1H, CH2Ph), 4.47 (d, JAB 

= 11.0 Hz, 1H, CH2Ph), 4.23 (d, JAB = 11.0 Hz, 1H, CH2Ph), 3.96 (d, J3,4 = 10.0 

Hz, 1H, H-3), 3.93 (m, 1H, H-5), 3.75 (dd, J6a,6b = 10.5 Hz, J6a,5 = 3.5 Hz, 1H, 

H-6a), 3.70 (dd, J6b,6a = 10.5 Hz, J6b,5 = 2.0 Hz, 1H, H-6b), 3.65 (appt, J4,3 = J4,5 

= 10.0 Hz, 1H, H-4), 3.09 (s, 1H, OH); 13C NMR (CDCl3, 125.8 MHz) δ in 

ppm: 139.4, 138.9, 138.3, 138.4, 136.8 (C, Ar), 133.43, 130.0, 129.1, 128.8, 

128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8 , 127.7, 127.6, 127.5 (CH, Ar), 

101.4 (C-1), 86.2 (C-3), 77.8 (C-2), 76.0 (CH2Ph), 75.8 (C-4), 75.2, 73.4 

(2CH2Ph), 72.0 (C-5), 70.1 (CH2Ph), 68.9 (C-6); FT–IR (neat) ν in cm
–1: 3584, 

2921, 1607, 1453, 1166, 1050, 666; HRMS (TOF ES+) for (M+Na)+ 

C40H40NaO6
+ (m/z): calc. 639.2717; found 639.2708. 

 

Benzyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-benzyl-2-C-phenyl-α-D- 

glucopyranosyl)-αααα-D-mannopyranose (4.35) 
 

  

 

 

 

 

The title compound was prepared following the general procedure for ring 

opening, starting from 1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-D-

glucopyranose (4.26) (21.5 mg, 0.042 mmol), 1,2,3,4-tetra-O-benzyl-α-D-

mannopyranoside (68.6 mg, 0.127 mmol) and 4-toluenesulfonic acid (2 mg, 

0.011 mmol) in 1,2-dichloroethane (500 µL). After concentration under reduced 

pressure the crude was purified by column chromatography (1:8 EtOAc/petrol) 

to afford 4.35 (17.6 mg, 42 %) as a yellowish syrup: Rf (EtOAc/ petrol ether 

1:4): 0.28; [α]D

20: +37.3 (c = 0.32, CHCl3); 
1H NMR (CDCl3, 500 MHz) δ in 

ppm: 7.90 (dd, J = 10.0 Hz, J = 2.5 Hz, 2H, Ar), 7.38-7.15 (m, 36H, Ar), 7.06 
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(dd, J = 9.0 Hz, J = 3.0 Hz, 2H, Ar), 5.05-4.93 (m, 3H, H-1a, CH2Ph), 4.86 (d, 

J1b-2b = 0.5 Hz, 1H, H-1b), 4.73-4.59 (m, 10H, CH2Ph), 4.48 (d, JAB = 15.0 Hz, 

1H, CH2Ph), 4.39 (d, JAB = 15.0 Hz, 1H, CH2Ph), 4.28 (d, JAB = 15.0 Hz, 1H, 

CH2Ph), 4.15-4.08 (m, 3H, H-4b, H-6b, H-6b’), 4.04 (d, J3a-4a = 9.3 Hz, H-3a), 

3.99-3.96 (m, 2H, H-3b, H-5b), 3.85-3.64 (m, 6H, H-5a, CH2Ph, H-2b, H-6a, H-

6a', H-4a);  13C NMR (CDCl3, 125.8 MHz) δ in ppm: 140.0, 139.0, 138.7, 138.5, 

138.4, 138.1, 137.3, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 

127.9, 127.9, 127.8, 127.8, 127.7, 127.6, 127.5, 127.4 (C-Ar), 103.2 (C-1a), 97.2 

(C-1b), 85.6 (C-3a), 80.1 (C-3b), 78.1 (C-2a), 75.8 (C-4a), 75.5 (CH2Ph), 75.5 

(CH2Ph), 75.1 (CH2Ph), 74.8 (C-4b), 74.7 (C-5b), 73.3 (CH2Ph), 73.0 (CH2Ph), 

72.3 (CH2Ph), 71.9 (C-5a), 71.4 (C-2b), 69.2 (CH2Ph), 68.9 (C-6a), 67.8 (C-6b); 

FT-IR (KBr) ν in cm-1: 3583, 3062, 3030, 2923, 1496, 1454, 1055, 1028, 698, 

666, 608; HRMS (TOF ES+) for (M+Na) C67H68NaO11
+ (m/z): calc.1071.4654 ; 

found 1071.4632. 

 

 

Benzyl 3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-2-C-phenyl-α-D- 

glucopyranosyl)-αααα-D-mannopyranose (4.36) 
 

 

 

 

 

 

The title compound was prepared following the general procedure for ring 

opening, starting from 1,2-anhydro-2-C-phenyl-3,4,6-tri-O-benzyl-D-

glucopyranose (4.26) (20.5 mg, 0.040 mmol), 1,3,4,6-tetra-O-benzyl-α-D-

mannopyranoside (64.9 mg, 0.120 mmol) and dry 4-toluenesulfonic acid (2 mg, 

0.011 mmol) in dry 1,2-dichloroethane (1 mL). After concentration under 

reduced pressure the crude was purified by column chromatography (1:8 

EtOAc/petrol) to afford 4.36 (14.7 mg, 35 %) as a yellowish syrup: Rf (EtOAc/ 

petrol ether 1:4): 0.36; [α]D

20: +25.6 (c = 0.08, CHCl3); 
1H NMR (CDCl3, 500 

MHz) δ in ppm: 7.90 (dd, J = 8.0 Hz, J = 1.5 Hz, 2H, Ar), 7.40-7.17 (m, 36H, 

Ar), 7.06 (dd, J = 6.0 Hz, J = 2.5 Hz, 2H, Ar), 5.10-5.08 (m, 2H, H-1b, CH2Ph), 

4.93 (s, 1H, H-1a), 4.81 (d, JAB = 10.5, 1H, CH2Ph), 4.67-4.53 (m, 8H, CH2Ph), 

O
BnO

BnO

Ph
OBn

HO
O

BnO
BnO

O

OBn

BnO
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4.46 (d, JAB = 12.0 Hz, 1H, CH2Ph), 4.36 (d, JAB = 12.0 Hz, 1H, CH2Ph), 4.30 

(d, JAB = 11.0 Hz, 1H, CH2Ph), 4.28 (d, JAB = 15.0 Hz, 1H, CH2Ph), 4.17 (d, 1H, 

H-5b), 4.02 (d, J3a-4a = 9.5Hz, H-3a), 4.00 (m, 1H, H-5a), 3.88 (t, J2b,1b = J2b-3b = 

3.8 Hz, 1H, H-2b), 3.87-3.78 (m, 4H, H-3b, H-4b, H-6a, H-6a’), 3.73-3.66 (m, 

3H, H-6b, H-6b’, H-4a); 13C NMR (CDCl3, 125.8 MHz) δ in ppm: 140.0, 138.6, 

138.7, 138.5, 138.2, 137.7, 137.3, 128.5, 128.5, 128.5, 128.5, 128.4, 128.4, 

128.2, 128.2, 128.1, 128.0, 127.8, 127.8, 127.8, 127.7, 127.6, 127.5, 127.4 (C-

Ar), 105.5 (C-1a), 98.1 (C-1b), 85.9 (C-3a), 79.7 (C-5a), 79.0 (C-2b), 78.4 (C-

2a), 75.9 (C-4a), 75.5 (CH2Ph), 75.5 (CH2Ph), 75.2 (CH2Ph), 75.0 (C-3b), 73.4 

(CH2Ph), 73.3 (CH2Ph), 73.1 (CH2Ph), 72.1 (C-5b), 71.8 (C-4b), 69.4 (CH2Ph), 

69.2 (C-6a), 69.1 (C-6b); FT-IR (KBr) ν in cm-1:3583, 3062, 3030, 2962, 2921, 

2853, 1454, 1208, 1052, 665, 608, 573, 537; HRMS (TOF ES+) for (M+Na) 

C67H68NaO11
+ (m/z): calc.1071.4654 ; found 1071.4634. 
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Chapter 5 

Strong Inhibition of Cholera Toxin Binding by 

Hyperbranched Multivalent β-Galceramide Ligands 
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5.1. Introduction  

 

Cholera is a disease caused by the gram-negative bacillus Vibrio cholerae and 

remains a major public health problem in Africa, Asia and Oceania, with 

200,000-500,000 reported new cases each year.
1
 In those regions, where sanitary 

provisions are poor, cholera is often endemic, and symptomless carriers usually 

induce epidemic outbreaks mostly among people with an impaired immune 

system such as young children, the elderly or travelers. Cholera is transmitted 

through contaminated food and water and, when untreated, leads to severe 

dehydration and shock. Without medical treatment, mortality associated with 

cholera infection is 20-50%.
2
 

 

V. cholerae belongs to a family of infectious agents that enter cells via lipid 

rafts
3
 and the endothelium reticulum (ER), it colonizes the small bowel using 

toxin-co-regulated pilus (TCP) and interacts with receptors on the intestinal 

epithelium.
4
 Once attached, the bacterium secretes its toxin which is 

accompanied by the release of hemagglutinin/protease (HA/protease). This 

extracellular HA/protease is responsible for nicking the Cholera Toxin A 

subunit (CTA) at Arg192, yielding discrete CTA1 and CTA2 subunits which are 

solely connected by a single disulfide bond. This post-translational modification 

is critical for full activity of the toxin, leading to an increase in cyclic adenosine 

monophosphate (cAMP) production.
5
 This causes massive secretion of 

electrolytes and water into the intestinal lumen, paralleled by excretion of the 

bacteria.
6
 

 

                                                 
1  WHO Weekly Epidemiological Record 2010, 85, 293−308. 
2  Sack, D.A.; Sack, R.B.; Nair, G. B.; Siddique, A. K. Lancet, 2004, 363, 223−233. 
3  (a) DeMarco, M.L.; Woods, R. J. Glycobiology, 2009, 19, 344-355; (b) Sonnino, S.; Mauri, L.; 

Chigorno, V.; Prinetti, A. Glycobiology, 2007, 17, 1R-13R; c) Lingwood, C.A.; Biochim. 
Biophys. Acta, 1999, 1455, 375−386; (d) Lingwood, C. A. Glycoconjugate J. 1996, 13, 495-
503; (e) Lingwood, C. A. Curr. Opin. Struct. Biol. 1992, 2, 693-700. 

4  Fujinaga, Y. Toxin Rev. 2006, 25, 47−59. 
5  Spangler, B. D. Microbiol. Rev. 1992, 56, 622-647. 
6  (a) Broeck, D. V.; Horvath, C.; De Wolf, M. J. S. Int. J. Biochem. Cell Biol. 2007, 39, 1771-

1775; (b) Lencer, W. I.; Saslowsky, D. Biochim. Biophys. Acta, 2005, 1746, 314-321. 
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Current methods for prevention and control of cholera disease include vaccines 

based on either killed whole-cell bacteria or live attenuated bacteria consisting 

of the recombinant strain CVD 103 HgR, which lacks the gene encoding the A 

subunit.
1, 7 

 

Antibiotic treatment with tetracycline and furazolidane is also used and 

recommended to reduce severe diarrhea in Cholera patients. However, the use of 

antibiotics is not a viable solution because of the rapid increase in antibiotic 

resistance, particularly in endemic areas.
1,8 

Alternatively, inhibition of toxin 

binding by targeting the Cholera Toxin B subunit-receptor (CTB-receptor) 

interaction is a particularly attractive approach with therapeutic potential for the 

treatment of cholera disease.  

 

Cholera toxin consists of a single enzymatically active subunit A and five 

identical binding domains B which form a highly stable ringlike assembly. The 

infection mechanism is initiated by binding of each B subunit to up to five 

molecules of the soluble, monovalent oligosaccharide moiety (GM1os) of the 

cell surface glycolipid monosialoganglioside GM1 (5.1) (Figure 5.1.). This 

complex glycolipid is presented in the plasma membrane of vertebrate cells with 

the oligosaccharide chain exposed to the external environment.
9
 The X-ray 

structure of CTB-GM1os shows a “two-fingered grip” of the sugar on the toxin 

comprising a sialic acid thumb and a Galβ(1→3)GalNAc forefinger. 

Interestingly, these two binding elements are connected through a 3,4-galactose 

residue which preorganize the motif to allow a highly efficient interaction with 

CTB. 

 

                                                 
7  (a) Silva, A. J.; Eko, F. O.; Benitez, J. A. Biotechnol. Lett. 2008, 30, 571−579; (b) Ryan, E. T.; 

Calderwood, S. B. Clin. Infect. Dis. 2000, 31, 561-565. 
8  Garg, P.; Chakraborty, S.; Basu, I.; Datta, S.; Rajendran, K.; Bhattacharya, T.; Yamasaki, S.; 

Bhattacharya, S. K.; Takeda, Y.; Balakrish Nair, G.; Ramamurthy, T. Epidemiol. Infect. 2000, 
124, 393-399. 

9  Merritt, E. A.; Sarfaty, S.; van den Akker, F.; L’Hoir, C.; Martial, J. A.; Hol, W. G. Protein 
Sci. 1994, 3, 166-175. 
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Based on this analysis, most of the small
10
 and multivalent

11
 CTB-inhibitors that 

have been designed to date mimic the perfectly locked conformation of the two 

terminal key sugar elements, galactose and sialic acid, in GM1os. However, the 

specificity of the lipid portion of GM1 has received little attention in 

comparison with that of the carbohydrate moiety. As previously noted, GM1 is 

typically embedded in lipid membranes. Although the conformation of the 

carbohydrate head group of this ganglioside may be only weakly influenced by 

the membrane environment, the accessibility of its protein-binding epitope 

(GM1os) relies on head-group presentation (relative to the membrane surface). 

Early studies concluded that although the lipophilic moiety of the ganglioside is 

not essential for binding, it is important to preserve the structural integrity of 

lipid domains as key elements for the aforementioned carbohydrate head group 

presentation towards the CTB receptor.
12
 Moreover, GM1 is also important for 

the internalization and activation of the toxin.
13
 Consequently, and since the 

infection occurs via a lipid raft mediated process, it is reasonable to think that 

                                                 
10 (a) Cheshev, P.; Morelli, L.; Marchesi, M.; Podlipnik, Č.; Bergström, M.; Bernardi, A. Chem. 
Eur. J. 2010, 16, 1951-1967; b) Bernardi, A.; Cheshev, P. Chem. Eur. J. 2008, 14, 7434-7441 
and references cited therein; (c) Podlipnik, Č.; Velter, I.; La Ferla, B.; Marcou, G.; Belvisi, L.; 
Nicotra, F.; Bernardi, A. Carbohydr. Res. 2007, 342, 1651−1660; (d) Pickens, J. C.; Merritt, 
E. A.; Ahn, M.; Verlinde, C. L. M. J.; Hol, W. G. J.; Fan, E. K. Chem. Biol. 2002, 9, 215-224. 

11 (a) Pieters, R. J. Org. Biomol. Chem. 2009, 7, 2013-2025; (b) Sisu, C.; Baron, A. J.; 
Branderhorst, H. M.; Connell, S. D.; Weijers, C. A. G. M.; de Vries, R.; Hayes, E. D.; Pukin, 
A. V.; Gilbert, M.; Pieters, R. J.; Zuilhof, H.; Visser, G. M.; Turnbull, W. B. ChemBioChem, 
2009, 10, 329-337; (c) Liu, S.; Kiick, K. L. Macromolecules, 2008, 41, 764-772; d) Pukin, A. 
V.; Branderhorst, H. M.; Sisu, C.; Weijers, C. A. G. M.; Gilbert, M.; Liskamp, R. M. J.; 
Visser, G. M.; Zuilhof, H.; Pieters, R. J. ChemBioChem, 2007, 13, 1500-1503; (e) 
Branderhorst, H. M.; Liskamp, R. M. J.; Visser, G. M.; Pieters, R. J. Chem. Commun. 2007, 
5043-5045; (f) Rojo, J.; Delgado, R. Anti-Infect. Agents Med. Chem. 2007, 6, 151-174; (g) 
Arosio, D.; Fontanella, M.; Baldini, L.; Mauri, L.; Bernardi, A.; Casnati, A.; Sansone, F.; 
Ungaro, R. J. Am. Chem. Soc. 2005, 127, 3660-3661; (h) Pickens, J. C.; Mitchell, D. D.; Liu, 
J.; Tan, X.; Zhang, Z.; Verlinde, C. L. M. J.; Hol, W. G. J.; Fan, E. Chem. Biol. 2004, 11, 
1205-1215; (i) Arosio, D.; Vrasidas, I.; Valentini, P.; Liskamp, R. M. J.; Pieters, R. J.; 
Bernardi, A. Org. Biomol. Chem. 2004, 2, 2113-2124; (j) Zhang, Z.; Pickens, J. C.; Hol, W. G. 
J.; Fan, E. Org. Lett. 2004, 6, 1377-1380; (k) Zhang, Z.; Merritt, E. A.; Ahn, M.; Roach, C.; 
Hou, Z.; Verlinde, C. L. M. J.; Hol, W. G. J.; Fan, E. J. Am. Chem. Soc. 2002, 124, 12991-
12998; l) Vrasidas, I.; de Mol, N. J.; Liskamp, R. M. J.; Pieters, R. J. Eur. J. Org. Chem. 2001, 
4685-4692; (m) Thomson, J. P.; Schengrund, C. -L. Biochem. Pharmacol. 1998, 56, 591-597; 
(n) Thompson, J. P.; Schengrund, C. -L. Glycoconjugate J. 1997, 14, 837-845.  

12 Masserini, M.; Palestini, P.; Pitto, M.; Chigorno, V.; Tomasi, M.; Tettamanti, G. Biochem. J. 
1990, 271, 107-111. 

13 (a) Miller, C. E.; Majewski, J.; Watkins, E. B.; Kuhl, T. L.; Biophys. J. 2008, 95, 629-640; (b) 
Wolf, Y. Fujinaga, A. A.; Lencer, W. I. J. Biol. Chem. 2002, 18, 16249-16256; (c) McCann, J. 
A.; Mertz, J. A.; Czworkowski, J.; Picking, W. D.; Biochemistry, 1997, 36, 9169-9178. 
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any change in the lipid composition or its molecular environment that might 

alter the lipid raft integrity will affect the oligosaccharide (GM1os) display 

toward the CTB receptor and hence, the overall infection process (although not 

the binding event). 

 

Based on these findings, and considering the importance of both the sugar and 

lipid portion in the GM1 receptor, we envisioned an “artificial lipid raft” 

approach to designing cholera toxin inhibitors. In particular, we propose a 

systematic study aimed to develop multivalent (dendritic) water soluble mimics 

of GM1 receptors (with cross-linked lipid units) as new biomaterials which 

simulate the effect of the lipid moiety and membrane presentation of the 

carbohydrate head group (GM1os) in lipid rafts. 

 

Although availability of gram quantities of GM1 is limited,
14
 binding studies of 

GM1 have previously shown that its terminal galactose residue contributes a 

large portion of the binding energy.
15
 Therefore, our approach will maintain this 

galactose residue together with the lipid portion in the design of a minimalist, 

synthetically more accessible version of GM1 glycolipid 5.1. Thus, we 

postulated that clusters of naturally occurring β-galactosylceramide derivative 

5.2 will behave similarly to GM1 (5.1) (Figure 5.1.). Hence the expected affinity 

loss due to the lack of the sialic acid unit in 5.1 would be compensated by 

increasing the number of copies of β-galceramide 5.2 by the phenomenon so-

called glycoside cluster effect.
16
 Additionally, the simplified model  2.43 that 

uses cheap, readily available building blocks has also been explored (Figure 

5.1.).  

                                                 
14 Avanti Polar lipids, Inc. price list (updated June 2010): 93 US$/mg of Ganglioside GM1 from 

Ovine Brain. 
15 Turnbull, W. B.; Precious, B. L.; Homans, S. W. J. Am. Chem. Soc. 2004, 126, 1047-1054. 
16 Lundqist, J. J.; Toone, E. J. Chem. Rev. 2002, 102, 555-578. 
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Figure 5.1. Structure of GM1 ligand 5.1 and β-Galcer analogues 5.2 and 2.43 mimicking key 

features (terminal β-Gal unit and lipid portion) in GM1 (5.1) 

 

In this context, we designed multivalent clusters and hyperbranched dendritic 

polymers containing glycolipids analogues from 5.2 and/or 2.43 as a promising 

new class of biomimetic materials that fulfill the requirements mentioned above. 

Moreover, this study will let us compare if the glycolipid presentation of these 

multimeric materials is relevant for the interaction against the colera toxin. 

 

5. 2. Results and Discussion 

 

5.2.1. Anchoring glycolipids into multivalent clusters 

 

As it was mentioned in the Chapter 1, glycoclusters are a multivalent central 

scaffold connected to carbohydrate moieties displayed directly at their periphery 

directly. Although they can not increase their generation as in the case of 

dendrimers, they constitute an easy way to obtain multivalent systems with a 

well-known number of epitopes. If the increase of the affinity promoted by the 
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multimeric system is widely superior than the associated to its valency, 

glycocluster effect could be operating. 

 

Multivalent display of neoglycoconjugates, to mimic natural presentation of 

carbohydrate structures, attracts increasing applications of azide-alkyne 

cycloaddition chemistry. Due to the importance of this reaction in the context of 

this chapter, some of the more important features of its reactivity will be 

commented bellow: 

 

5.2.1.1. Reactivity of catalyzed  azide-alkyne cycloaddition 

 

1,3-Dipolar cycloaddition reactions have been notably studied by Rolf 

Huisgen’s group, whose work led to the formulation of the general concepts of 

these reactions.
17
  

 

Although the reaction is highly exothermic its high activation barrier results in 

exceedingly low reaction rates for unactivated reactants even at elevated 

temperature.
18
 

 

Moreover, since the differences in HOMO–LUMO energy levels for both azides 

and alkynes are of similar magnitude, both dipole-HOMO- and dipole-LUMO-

controlled pathways operate in these cycloadditions. As a result, a mixture of 

regioisomeric 1,2,3-triazole products 5.5 and 5.6 is usually formed when an 

alkyne is unsymmetrically substituted (Scheme 5.1.). 

 

 
 

Scheme 5.1. The uncatalyzed termal cycloaddition of azide to alkynes results in mixtures of 1,4- 

and 1,5-disubstituted regioisomers 

 

                                                 
17 Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598.  
18 Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, 

V. V. J. Am. Chem. Soc. 2005, 127, 210-216. 
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However, the reaction of azides with terminal alkynes (5.7) catalyzed by copper 

(I) catalysis, it is very fast accelerated and yield exclusively the corresponding 

1,4-regioisomer (5.8) of the triazole products
19
 (Scheme 5.2.). Moreover, 

Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) exhibits several 

features that makes this reaction unique among other block-ligation reactions as 

it was reported by the group of Fokin:
20
 

 

• Generally, the reaction is not significantly affected by the electronic and 

steric properties of the groups attached to the alkyne and azide reactive 

centers.  

• The CuAAC can be carried out in water and is not affected by most 

organic and inorganic functional groups; so protecting-group chemistry 

can be avoided for this kind of reactions. 

• The rate of Cu(I)-catalyzed process is accelerated over 10
7
 times that the 

uncatalyzed version.
18
 

• The formation of the 1,2,3-triazole moiety offers: a high chemical 

stability, a strong dipole moment, an aromatic character and a good 

hydrogen-bond-accepting ability. These features make this unit a good 

replacement for the amide linkage in some cases. 

 

 
Scheme 5.2. Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC)  

 

Catalytic cycle for CuAAC was reported by Fokin and co-workers based on 

DFT calculations
20
 (Scheme 5.3.): The formation of copper acetylide 5.9 (Step 

a) probably occurs through the intermediacy of a π alkyne-copper complex. The 

π coordination of an alkyne to copper was calculated to move the pKa of the 

alkyne terminal proton down, bringing it into the proper range to be 

deprotonated in an aqueous medium. Then, the azide is activated by 

                                                 
19 (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 

2002, 41, 2596-2599. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 
3057-3064. 

20 Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302-1315. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 170 

coordination to copper (step b), forming the intermediate 5.10. The key bond-

forming event takes place in the next step (step c), when 5.10 is converted to the 

unusual 6-membered copper metallacycle 5.11. This step is endothermic by 12.6 

kcal/mol with a calculated barrier of 18.7 kcal/mol, which is considerably lower 

than the barrier for the uncatalyzed reaction (approximately 26.0 kcal/mol), thus 

accounting for the enormous rate acceleration accomplished by Cu(I). 

Alternatively, the CuAAC mechanism was investigated by DFT calculations 

taking into account the possibility of the involvement of dinuclear copper(I) 

acetylides
21
 (Scheme 5.3., B). In the transition state 5.14, a second copper(I) 

atom, Cu
B
, strongly interacts with the proximal acetylide carbon (C

1
). A 

computational study reported by Straub compared dinuclear complexes with 

higher order aggregates and concluded that dinuclear intermediates were favored 

over the tetranuclear complexes.
21b

  

 

 
 

Scheme 5.3. Proposed catalytic cycles for CuAAC by Fokin and co-workers based on DFT 

calculations 

 

The CuAAC reaction is not a true concerted cycloaddition, and its 

regiospecificity is explained by the binding of both azide and alkyne to copper 

prior to the formation of the C–C bond. Due to the energy barrier for the ring 

                                                 
21 (a) Ahlquist, M.; Fokin, V. V. Organometallics, 2007, 26, 4389-4391. (b) Straub, B. F. Chem. 
Commun. 2007, 3868-3870. 
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contraction of 5.11 is quite low, it evolves to the triazolyl–copper derivative 

5.12. Then, protolysis of 5.12 affords the triazole product 5.8, thereby 

completing the catalytic cycle. 

 

Due to thermodynamical unstabilitiy of Cu(I), it is common to generate it in situ 

through comproportionation of Cu(II) and Cu(0)  salts in presence of a sacrifical 

reducing agent such as sodium ascorbate in aqueous alcohols as solvents. 

However,  a wide number of different copper(I) sources can be utilized in the 

reaction such as copper(I) salts (CuI, CuBr) and coordination complexes 

([Cu(CH3CN)4]PF6,
19a (EtO)3P•CuI,

22 [Cu(PPh3)3]Br
23) depending on the 

solubility of the system; although exclusion of oxygen may be required. 

Interestingly, addition of ligands such as tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine (TBTA) are able to accelerate the CuAAC reaction and 

stabilize the Cu(I) catalysts.24 In addition, it appears to sequester copper(I) ions, 

so preventing damage to biological compounds. 

 

Ideally, CuAAC work at room temperature, reaching full conversion within a 

few minutes, and providing quantitative isolated product yields but, in some 

cases, synthetically relevant click processes require high temperatures to 

proceed within a reasonable timeframe. Controlled microwave heating under 

sealed vessel conditions has been shown to reduce reaction times, increase 

product yields and to enhance product purities by reducing side reactions 

compared to conventional thermal methods.25,26 As it was commented on the 

previous chapter, microwave chemistry generally relies on the ability of the 

reaction mixture to efficiently absorb microwave energy, taking advantage of 

‘‘microwave dielectric heating’’ phenomena such as the dipolar polarization or 

                                                 
22 Perez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernandez-Mateo, F.; Calvo-

Flores, F. G.; Calvo-Asin, J. A.; Isac-García, J.; Santoyo-Gonzalez, F. Org. Lett. 2003, 5, 
1951-1954. 

23 (a) Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; 
Fokin, V. V. Macromolecules 2005, 38, 3663-3678. (b) Wu, P.; Feldman, A. K.; Nugent, A. 
K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. 
V. Angew. Chem., Int. Ed. 2004, 43, 3928-3932. 

24 Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853-2855. 
25 Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127-1139. 
26 (a) Caddick, S.; Fitzmaurice, R. Tetrahedron, 2009, 65, 3325-3355, and references therein; (b) 

P. Appukkuttan, P.; Van der Eycken, E. Eur. J. Org. Chem. 2008, 1133-1155, and references 
therein. 
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ionic conduction mechanisms.25 Thus, very efficient internal heat transfer 

decreases side effects which may lead to for example diminished catalyst 

deactivation.25 For these reasons, many subsequent examples of 1,3-dipolar 

cycloaddition reactions applying this alternative energy transfer technique have 

been reported.27 

 

To date, copper stands out as the only metal for the reliable, facile, and 1,4-

regiospecific catalysis of the azide-alkyne system. However, ruthenium 

cyclopentadienyl complexes were found to catalyze the formation of the 

complementary 1,5-disubstituted triazole (5.8) from azides and terminal alkynes 

and also to engage internal alkynes in the cycloaddition28 (Scheme 5.4.). While 

the scope and functional group compatibility of Ruthenium-catalized Azide-

Alkyne Cycloaddtion (RuAAC) are excellent,29 the reaction is more dependent 

on the solvents and the steric requirements of the azide substituents than 

CuAAC so applications of RuAAC are only beginning to appear. 

 

 
Scheme 5.4.  Ruthenium-catalyzed Azide-Alkyne Cycloaddition (RuAAC)  

 

Finally, new efforts in developing copper-free azide-alkyne cycloaddition under 

mild conditions have been reported recently.30 They are based on the enhanced 

reactivity of cyclooctynes 5.15 with azides 5.3 to afford 1,2,3-triazoles 5.16 and 

5.17 (Scheme 5.5.). This reaction has been employed to solve many problems 

associated with the toxicity of metallic catalyst when the coupling strategy is 

used in chemical biology and materials science, and it may have additional 

applications in these and other areas in the future. 

 

                                                 
27 Kappe, C.O.; Van der Eycken, E. Chem. Soc. Rev. 2009, 39, 1280-1290. 
28 Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; 

Jia, G. J. Am. Chem. Soc. 2005, 127, 15998-15999. 
29 (a) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, 

V. V. J. Am. Chem. Soc. 2008, 130, 8923-8930. (b) Rasmussen, L. K.; Boren, B. C.; Fokin, V. 
V. Org. Lett. 2007, 9, 5337-5339. (c) Majireck, M. M.; Weinreb, S. M. J. Org. Chem. 2006, 
71, 8680-8683. 

30 Baskin, J. M; Bertozzi, C. R. Aldrichimica Acta 2010, 43, 15-23. 
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Scheme 5.5. Copper free cyclooctyne-azide cycloaddtion 

 

With this background in mind, the synthesis of a family of new multimeric 

clusters of glycolipids will be discussed in the following section.  

 

5.2.1.2. Synthesis of  glycolipid-clusters 

 

Initially a family of scaffolds based on benzyl bromide derivates was selected as 

starting materials for the synthesis of multimeric cores. Scheme 5.6. depicts the 

formation of the propargyl benzyl ethers 5.20, 5.22 and 5.24 resulting from the 

nucleophilic substitution of propargyl alcohol over the corresponding benzyl 

bromides 5.19, 5.21 and 5.23 respectively under Williamson conditions. In all 

cases the propargyl alcoholate was preformed by treatment of the corresponding 

alcohol with NaH. Then, the nucleophilic substitution of all the arms of the 

benzyl bromides with the propargyl alcoholate was performed in presence of 

TBAI at 70 ºC. The reactions were monitored by TLC and 1H NMR to ensure 

complete substitution and yields 73-97% were good (Scheme 5.6.). 

 

 

 

Scheme 5.6. Synthesis of the propargylic cores 
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Glycolipid 2.43 was prepared according the methodology developed in Chapter 

2. The preparation of glycolipids with an azide group incorporated in the 

ceramide moiety was envisioned to be employed in the CuAAC reaction with 

the presented propargyl cores. Initially, the catalytic system employed consisted 

of generating Cu(I) in situ when CuSO4·5H2O was reduced in presence of 

sodium ascorbate. Moreover, to accelerate the process, glycolipid 2.43 and the 

monomeric core 5.20 dissolved in a mixture of tBuOH-H2O (1:1) were heated at 

100 ºC under microwave assistant irradiation. As a result, triazole 5.25 was 

obtained in 90% yield (Table 5.1., Entry 1). Consequently, the same conditions 

were tested for glycolipid 2.43 and the trimeric scaffold 5.22, but in this case the 

reaction was not completed after 1 h. We considered reasonable that the steric 

hindrance exerted by the first glycolipid that underwent the cycloaddition may 

interference with the complete functionalization of all the arms on the core. 

Thus, the reaction under microwave irradiation was continued for further 2.5 h 

but the forced conditions only conducted to the partial decomposition of cluster 

5.26 (Table 5.1., Entry 2). At this point, [Cu(CH3CN)4]OTf was selected as a 

Cu(I) catalyst because of its solubility in aqueous alcohols. Since long reaction 

times were expected to complete the reaction, the ligand TBTA was employed 

due to its reported ability to avoid Cu(I) disproportionation.24 With this 

precaution in mind, the CuAAC reaction between propargyl 5.20 and glycolipid 

2.43 at the room temperature for 24 h afforded the triazole 5.25 with a 93% 

(Table 5.1., Entry 3). Then, the cyclooaddition between 2.43 and core 5.22 was 

assayed under similar conditions (Table 5.1., Entry 4). After 48 h of reaction, 

the cluster 5.26 was obtained in good yield (70%). Motivated for that succeed, 

cluster 5.24 and glycolipid 2.43 were treated under the same catalytic system 

(Table 5.1., Entry 5). Although the cluster 5.27 was also isolated, long reaction 

time (72 h) was needed. Moreover, the yield was not so good as in the other 

cases (only 25%) so we considered that high steric hindrance exerted by the 

lipid chains in a so small core may be responsible of this lowering yield.  
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Table 5.1. Synthesis of glycolipid clusters employing CuAAC reaction 

 
 

Entry
a 

Core Glycolipid 

(eq) 

Catalytic system T t Product
b 

1 5.20 2.43 (1.1) CuSO4·5H2O 

Sodium ascorbate 

100º C MWc 1 h 5.25 

(90%) 

 

2 5.22 2.43 (3.3) CuSO4·5H2O 

Sodium ascorbate 

100º C MWc 2.5 h -d 

 

 

3 5.20 2.43 (1.1) [Cu(CH3CN)4]OTf 

TBTA 

r.t. 24 h 5.25 

(93%) 

 

4 5.22 2.43 (3.3) [Cu(CH3CN)4]OTf 

TBTA 

r.t. 48 h 5.26 

(70%) 

 

5 5.24 2.43 (4.4) [Cu(CH3CN)4]OTf 

TBTA 

r.t. 72 h 5.27 

(25%) 

 
a General conditions: Glycolipid 2.43 and the corresponding core (1 eq.) were dissolved in a 

mixture of t-BuOH-H2O (1:1). After that, the copper salt and the other promoters were added to 

the solution (1 mol% respect to the core). b Isolated yield. c Temperature achieved through 

microwave irradiation (Power = 300 W). d A complex mixture of decomposition products was 

recovered. 

 

Apart from the glycolipid-cluster prepared to the date (Figure 5.2.), it would be 

convenient for our future studies of glycolipid presentation on multimeric 

compounds against the cholera toxin, the preparation of other compounds with 

different ceramide architectures. However, this synthetic approach was 
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abandoned because the glycolipid-clusters prepared were poorly solubles in 

water, even in the presence of 5% DMSO as co-solvent, and consequently they 

could not be employed for the cholera toxin inhibition studies. 

 

For this reason, we planned to employ another platform such as hyperbranched 

polymers (Boltorn H30) because this scaffold was expected to increase the 

valency of our multimeric system and consequently, increasing the number of 

polar group heads without congesting too much the surface of the core.  Thus, 

the final products may be water soluble enough to develop inhibition studies 

against cholera toxin. The discussion about anchoring glycolipids into 

hyperbranched polymers is presented below. 
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Figure 5.2. Glycolipid clusters 5.25, 5.26 and 5.27 
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5.2.2. Anchoring glycolipids to hyperbranched polymers 

 

Hyperbranched polymers represent an important part of the family of dendritic 

and multibranched polymers.31 While dendrimers have perfect, monodisperse 

structures built around a core moiety with a branching point in every repeating 

unit, hyperbranched polymers are polydisperse and include some linear units in 

their molecular structure,32 features that allow for mimicry the multivalent 

displaying of natural glycolipid receptors. Unlike dendrimers, randomly 

branched hyperbranched polymers with similar properties can be easily 

synthesized via one-step reactions providing access to valuable products for 

both small-scale and large-scale industrial applications. Their size and structure 

can be controlled by synthetic means and further modifications can ensure 

biocompatibility and biodegradability.18 Thus, it seems certain that 

hyperbranched polymers will play a significant role in the future development of 

new biomedical devices for the treatment of human diseases.33  

 

                                                 
31 (a) Twyman, L. J.; King, A. S. H.; Burnett, J.; Martin, I. K. Tetrahedron Lett. 2004, 45, 433-

435; (b) Haag, R. Angew. Chem. Int. Ed. 2004, 43, 278-282; (c) Gao, C.; Xu, Y.; Yan, D.; 
Chen, W. Biomacromolecules 2003, 4, 704-712; (d) Kolhe, P.; Misra, E.; Kannan, R. M.; 
Kannan, S.; Lieh-Lai, M. Int. J. Pharm. 2003, 259, 143-160; (e) Moorefield, C. N.; Newkome, 
G. R.  C. R. Chimie 2003, 6, 715-724; (f) Ooya, T.; Lee, J.; Park, K. J. Control. Release 2003, 
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As depicted in Figure 5.3., the goal of this work was to prepare different 

hyperbranched glycopolymers as a promising new class of biomimetic materials 

that fulfill the requirements mentioned above. Such compounds have been 

selected to study if a minimalist carbohydrate moiety replicated around the 

polymer is able to emulate the strong affinity of GM1 (5.1) and if the ceramide 

chain display is important for the inhibition of Cholera Toxin binding by 

hyperbranched multivalent β-Galceramide ligands. 
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Figure 5.3. Hyperbranched polymers of β-Galcer 5.28 and β-Galcer analogues 5.29, 5.30, 5.31 

and 5.32 
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Hyperbranched polymers 5.28 and 5.29 (Figure 5.3.) were previously prepared 

in our group34 from glycosides 5.28’ and 2.43 (Figure 5.4.). Such polymers were 

water soluble and they resulted promising materials when they were studied in 

the inhibition of HIV-1 rgp 12035 and the recognition of lectin RCA120.36 On 

the other hand, the synthesis of the other hyperbranched polymers 5.30, 5.31 and 

5.32 as well as their corresponding glycolipid starting material was carried out 

in the present work and it will be discussed in the following sections. 

 

5.2.2.1. Preparation of β-GalCer analogues 
 

Initially, it was necessary to prepare different glycolipid structures bearing an 

azide group to be employed in a CuAAC coupling. Moreover such glycolipidic 

structures (5.33 and 5.34) possessed an 2-azidoethanol spacer to study the effect 

of lack of long ceramide chain on the polymer, or 16-azidohexadecanoic acid to 

study the effect of a single chain ceramide on the polymer. 1-O-(2-

azidoethyl)heptaethylene glycol was also considered to study the effect of a 

polar chain on the polymer (5.35), since PEG spacers confer a remarkable lower 

toxicity and immunogenicity, as well as a better biodistribution, to any 

molecule, polymer, or surface to which they are covalently bonded37 (Figure 

5.4.). 

                                                 
34 Morales-Serna, J. A., Doctoral Thesis, URV, 2010. 
35 Morales-Serna, J. A.; Boutureira, O.; Serra, A.; Matheu, M. I.; Díaz, Y.; Castillón, S. Eur. J. 
Org. Chem. 2010, 2657-2660. 

36 Manuscript under preparation. 
37 (a) Monfardini, C.; Veronese, F. M. Bioconjugate Chem. 1998, 9, 418-450. (b) Greenwald, R. 

B.; Choe, Y. H.; McGuire, J.; Conover, C. D. Adv. Drug Delivery Rev. 2003, 55, 217-250. 
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Figure 5.4. β-GalCel analogues with terminal azide group  

 

In order to obtain the glycoside 5.33, it was necessary to study previously the 

reaction conditions for glycosylation since mixtures of α and β anomers were 
inially obtainded (Table 5.2.). When the reaction was run at room temperature 

for long reaction time under strong Lewis acid conditions a mixture of  α and β 
anomers were obtained. The β anomer could be isolated independently from the 

mixture by using 2-azidoethanol 5.36 or 2-chloroethanol 5.37 as a glycosyl 

acceptor (Table 5.2., Entries 1 and 2). The diasteroselectivity decreased when 

temperature was increased; even when a milder promoter such as AgOTf was 

employed (Table 5.2., Entry 3) and a complex mixture was obtained together 

with the desired product. However, better diasteroselectivities were obtained 

when lower temperatures and shorter reaction times were employed. Finally, 

glycoside 5.38 was obtained with complete β selectivity when toluene was 

employed as a solvent under similar reaction conditions (Table 5.1., Entry 4 and 

5). 
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Table 5.2. Study of the β-glycosilation of ethanol derivates 

 

 
 

Entry Donor (X) Acceptor (Y) Promoter Solvent T t Product 

1   OAc (β)  N3 BF3·OEt2 DCM 0 ºC to 

r.t 

16 h 53% 

β/α = 

8:1 

 

2   OAc (β) Cl BF3·OEt2 DCM 0 ºC to 

r.t 

16 h 65% 

β/α = 

3.5:1 

 

3 Br (α) N3 AgOTf DCM 0 ºC to 

35 ºC 

17 h 22% 

complex 

mixture 

 

4 Br (α) N3 AgOTf DCM -20 ºC to 

0 ºC 

5 h 44% 

β/α = 

10:1 

 

5 Br (α) N3 AgOTf toluene -20 ºC to 

0 ºC 

3 h 67% β 
 

 

Once 5.38 was obtained, deprotection in basic conditions (MeONa 1M in 

MeOH) afforded glycoside 5.33 in good yields 95% (Scheme 5.7.).  

 

 
 

Scheme 5.7. Deprotection of glycoside 5.38 
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In order to obtain 5.34, glycoside 5.38 was employed as a precursor. Thus, 5.38 

was submitted to hydrogenation conditions catalyzed by Pd/C in THF for 18 h 

(Scheme 5.8.). The formation of the corresponding amine was confirmed by 13C 

NMR analysis after the disappearance of the signal of the carbon adjacent to 

azide (δ 50.7 ppm) and the appearance of a new signal at δ 41.6 ppm 
corresponding to the carbon adjacent to amine. 

 

 
 

Scheme 5.8. Reduction of glycoside 5.38 

 

Amine 5.42 was acylated with lipid 2.29 employing coupling reagents (EDC, 

HOBt and DIPEA) to give the glycolipid 5.43 (56%) after 24 h at room 

temperature. Then, the deprotection of 5.43 under 1 M  MeONa MeOH 

conditions for 20 min a room temperature (Scheme 5.9.) provided the desired 

glycolipid 5.34  in 95 % yield. 

 

 
 

Scheme 5.9. Synthesis of glycolipid 5.34  

 

Verez-Bencomo38 et al. reported the glycosylation of 5-azido-3-oxapentanol 

employing glycosyl donor 2.46 in good yield (83%) using Hg(CN)2 as a 

promoter and  acetonitrile as solvent. In our case, we respected their 

glycosylation conditions but we replaced the harmful Hg(CN)2 by AgOTf. As a 

                                                 
38 González Nuñez, F.; Campos Valdés, M. T.; Aruca, E.; Schmidt, R. R.; Verez Bencomo, V. J. 
Carbohydr. Chem. 2003, 22, 395-406.  
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result, the ethylene glycol glycoside 5.45 was obtained in good yield (76%) 

(Scheme 5.10.). After that, 5.45 was deprotected under basic conditions (1M 

MeONa in MeOH, 20 min, r.t.) and the desired glycoside 5.35 was recovered in 

good yield (85%) after purification by a short C-18 column using a gradient of 

H2O to H2O/MeOH (1:1) as a eluent.  

 

 
 

Scheme 5.10. Synthesis of glycolipid 5.35  

 

 

5.2.2.2. Synthesis of hyperbranched polymers based on β-GalCer analogues 
 

Once the β-Galceramide ligand analogues were synthesized, we focused our 

efforts on the functionalization of comercially Boltorn H30 (5.46) to complete 

our library of glyco hyperbranched polymers. Boltorn H30 from Prestorp had 

already been characterized by Žagar and collaborators.39
 A good knowledge of 

the chemical structure of Boltorn H30 (5.46) was particularly important to 

understand how it could be influenced by its chemical modification. To illustrate 

the possible defects in the molecular architecture, a typical chemical structure of 

a third-generation is shown in Figure 5.5. To the commercial Boltorn H30 

(5.46), Dendritic D, Linear L, and terminal T units can be distinguished both by 
1H NMR using the methyl signal at 1.4-1.0 ppm and 13C NMR using either the 

carbonyl peaks at 175-171 ppm or that of the quaternary carbons at 50.2-46.2 

ppm.  

 

In order to introduce alkynyl moieties to the polymer, a partial modification of 

the hydroxylic groups of Boltorn H30 (5.46) was carried out with 5-hexynoic 

                                                 
39 Žagar, E.; Žigon, M.; Podzimek, S. Polymer, 2006, 47, 166-175. 
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acid (5.47) employing EDC, HOBt and DIPEA (Scheme 5.11.) according to the 

procedure previously reported in our group.35 New pseudo-dendritic and 

pseudo-linear units are generated and 1H NMR and 13C NMR techniques are 

both useful in detecting these units in the case of the commercial Boltorn H30. 

All the units that can be found in a partially modified Boltorn H30 are depicted 

in Scheme 5.11. Di, Li and Ti are the initial dendritic, linear and terminal units, 

respectively; whereas Lu is a new linear unit created by the reaction of a Ti unit 

with one hexynoic acid; D1u and D2u arise from the reaction of one hexynoic acid 

with Li, or of two hexynoic acid with Ti, respectively (Scheme 5.11.). 
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Figure 5.5. Typical structure of commercially Boltorn H30 

 

 

The 1H NMR spectrum of 5.48 indicated the presence of methyl groups at 1.26 

ppm, acetylenic protons at 1.99 ppm, and methylene groups at 1.82, 2.24, and 

2.48 ppm, which corresponds to protons β, α and γ to the acetylene moiety, 

respectively. The methylenic protons of Boltorn shell appeared at 3.68 ppm for 

alcohol and 4.24 ppm for the ester moieties. The 13C NMR spectrum of the 

modified Boltorn displays C=O signals between 175-172 ppm than can be 

attributed to ester groups. Those signals corresponding to acetylenic carbons 

appear at 84.6 ppm and 71.3 ppm, whereas the methylene groups signals from 

Boltorn core can be found at 66-63 ppm and the methyl group can be found at 
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17 ppm. The signals at 34.9, 23.6, and 20.7 ppm correspond to methylene γ, β 

and α to triple bond, respectively. The chemical modification of Boltorn H30 

induces a change in the peaks associated with quaternary carbons; this evolution 

is visible with a decrease in the intensity of T signals at 50.25 ppm, as well as 

the appearance of news peaks in the L and D areas between 46.2 ppm and 48.5 

ppm.  
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Scheme 5.11. Modification of Boltorn H30 with 5-hexynoyl ester units 

 

 

Boltorn H30 is known to possess an average of 32 hydroxyl units.39 It is possible 

to determinate the average number of hydroxyl modified with 5-hexynoic acid 

attending the modifications of the intensity of quaternary carbon areas. 
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However, this procedure requires of long time of accumulation at 13C NMR 

experiment.35  

 

Férnandez-Francos and co-workers reported recently a procedure to determinate 

the percentage of modification of Boltorn H30 through 1H NMR spectroscopy.40 

According to their notation (Figure 5.6.), signals A, B and C correspond to the 

Boltorn H30 shell whereas the A’ and B’ correspond to the core (ethoxylated 

pentaerythriol). From the intensities of C and A+A’ signals the intensity of 

signal B can be calculated according to the equations: 

)(
3

4
'' CBBAACore

IIII −+= ++  

CoreB
II

14

10

'
=  

'' BBBB
III −= +  

 

When the modification takes place, B is transformed to A but B’ remains 

constant. If the modification is total no B signals are left, so the ratio of 

methylene ester signals at 4.24 ppm and the signal of methylene bonded to ether 

groups (B’) that appear around 3.3-3.7 ppm can be calculated according to the 

following equation: 

 

100·

'

'

%100

B

BAA

I

II
R

+= +  

 

In order to calculate R for product 5.48 (R5.48), the intensity of the signals A+A’, 

obtained from 1H NMR spectrum of hyperbranched polymer 5.48, was divided 

by B+B’. Finally, R548 was compared with the theorical R100% to find out the 

degree of esterification obtained. 

 

100·(%)
%100

548

R

R
onModificati =  

 

                                                 
40 Fernández-Francos, X.; Foix, D.; Serra, A.; Salla, J. M.; Ramis, X. Reac. Funct. Polym. 2010, 
70, 798-806. 
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According to this procedure, the degree of modification of hyperbranched 

polymer 5.48 was about 51% that means that an average of sixteen 5-hexynoate 

esters groups had been incorporated into the structure. With this information and 

the theoretical molecular mass (Mtheo) of Boltorn H30 (3604 g/mol) reported by 

Žagar and co-workers, it is possible to calculate the Mtheo for compoud 5.48 as 

5110 g/mol. With this value, the yield estimated for the synthesis of 

hyperbranched polymer was 71%. 

 

 

    

 
Entry Compound I(A+A’) I(B+B’) I(C+C’) 

1a Boltorn H30 (5.46) 33.44 60.89 52.95 

2  5.48 2.34 1.00 1.69 
a Experimental value extracted from Žagar and co-workers39 

 

Figure 5.3. 
1H NMR spectra of Boltorn H30 (5.46) (II) and the 5-hexynoic modified polymer 

5.48 (I) with proton assignments and signal intensities. 

 

 

Next, the hyperbranched polymer 5.48 was treated with glycoside 5.33 for 72 h 

in the presence of sodium ascorbate and CuSO4·5H2O in tBuOH/H2O (Scheme 

5.12.).19a,35 After dialysis the corresponding glycohyperbranched polymer 5.32 
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was obtained. The isolated product had a greenish color instead of being white. 

In case that 5.32 could be impurified by traces of Cu(II), the mixture was 

dialysed against in presence of 10 mM EDTA solution to complex any possible 

trace of free Cu(II). Although color intensity decreased, the color remained. 

Other methodologies for precipitate Cu(II) salts to CuO such as Benedict 

reaction41 were tried but polyester structure of the Boltorn core did not stand the 

basic conditions of this reaction. Alternatively, metal scavenger QuadraSil MP® 

was employed to sequestrate Cu(II). This product consist of a mesoporus silica 

functionalised with a mercaptopropyl group compatible to aqueous and organic 

solvent and it is able to remove metals such as Cu(II), Cu(I), Pd(II), Pt(0), 

Rh(II), Ag(I), Ru(I) and Ni(II) in an 99-98% between minutes to hours 

according to the manufacturer’s instructions. In our case, the hyperbranched 

polymer 5.32 was solved in water and stirred with the insoluble silica until the 

colour of the solution disappeared. Finally, the solution was filtered and freeze-

dryed.  

 

 
Scheme 5.12. CuAAC reaction between 5.48 and 5.33 

 

 

The analysis of the 1H NMR spectra of glycohyperbranched polymer 5.32 

revealed the presence of triazole protons at 8.90-8.60 ppm, and complete 

disappearance of the acetylenic signal at 1.95 ppm. That data demonstrated that 

the cycloadition process worked quantitatively on the surface of the polymer. 

Moreover, 1H NMR spectroscopic data also showed the protons of galactose and 

Boltorn core as broad and overlapped peaks between 4.57 ppm and 3.25 ppm. In 
13C NMR spectra, signals of carbonyl groups can be detected between 175 and 

172 ppm, methylene groups between 66 and 63 ppm and quaternary carbons 

between 49 and 46 ppm. Unfortunately signals of the 1,2,3-triazol moiety did 

                                                 
41 Benedict, S. R. J. Biol. Chem. 1908, 5, 485-487. 
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not appeared because of relaxation problems, although it is possible to observe 

their projection on bidimesional experiments (HSQC, HMBC). Indeed, 

characteristic carbon of both the carbohydrate and  the spacer were present. 

 

A similar procedure was carried out to couple glycoside 5.34 to the 

hyperbranched polymer through CuAAC (Scheme 5.13.). In this case, the 

complete solubility was key to the success of the coupling. When the reaction 

was carried out with t-BuOH/H2O/DCM (0.45:0.45:0.1) as solvent, it did not 

work. However, the product 5.30 was recovered satisfactory when the solvent 

was t-BuOH/H2O/THF (0.45:0.45:0.1). Similarly, 5.30 was also dialysed agaisnt 

10 mM EDTA and stirred in presence of QuadraSil MP to remove remaining 

traces of Cu(II).  

 

 
 

Scheme 5.13. CuAAC reaction between 5.43 and 5.48 

 

Similarly, the analysis of the 1H NMR spectra of glycohyperbranched polymer 

5.30 revealed the presence of the triazole protons at 7.8 ppm, and complete 

disappearance of the acetylenic signal at 1.95 ppm. That data demonstrated that 

the cycloadition process also worked quantitatively on the surface of this 

polymer. Moreover, 1H NMR spectroscopic data also showed the protons of 

galactose and Boltorn core as broad and overlapped peaks between 4.57 ppm 

and 3.25 ppm and the protons corresponding to the aliphatic chain (1.40 ppm). 

In the 13C NMR spectra, signals related to carbonyl groups can be observed 

between 175 and 172 ppm, methylene groups between 66 and 63 ppm and 

quaternary carbons between 49 and 46 ppm. Fortunately, the signals of the 

1,2,3-triazol appeared in this case at 147.7 ppm (C-5) and 122.6 ppm (C-6). 

Moreover, characteristic carbons of carbohydrate moiety and spacer were also 

present. 
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Finally, the CuAAC reaction was carried out again to couple the glycoside 5.35 

to hyperbranched polymer 5.31. In this case, it was necessary to solubilise the 

system in t-BuOH/H2O/THF (1:1:1) to obtain the glycohyperbranched polymer 

5.31 satisfactory after a similar purification procedure (Scheme 5.14.).  
 

 

 
Scheme 5.14. CuAAC reaction between 5.35 and 5.48 

 

 

Similarly, the analysis of the 1H NMR spectra of glycohyperbranched polymer 

5.31 revealed the presence of the triazole protons at 7.80-7.68 ppm, and the 

complete disappearance of the acetylenic signal at 1.95 ppm was also observed. 

These data demonstrated that the cycloadition process worked quantitatively on 

the surface of the polymer. Moreover, 1H NMR spectroscopic data also showed 

the protons of galactose, ethylene glycol and Boltorn core as broad and 

overlapped peaks between 4.57 ppm and 3.25 ppm. In the 13C NMR spectra 

signals of carbonyl groups between 175 and 172 ppm, of methylene groups 

between 66 and 63 ppm and of quaternary carbons between 49 and 46 ppm were 

also observed. Unfortunately, signals of the 1,2,3-triazol did not appeared again 

because of relaxation problems, although it is also possible to observe their 

projection on bidimesional experiments (HSQC, HMBC). Characteristic carbon 

of carbohydrate moiety and spacer were also present. 

 

In order to determine the molecular mass for hyperbranched polymers, MALDI-

TOF spectrometry was employed for the determination of the experimental 

molecular weigh of the hyperbranched polymer 5.48 and commercial Boltorn 

H30. Experimental conditions applied on previous works35 which consist of 

using IAA as matrix were unsuccessful.  
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Other matrix conditions were studied to crystallize Boltorn H30 and 5.48. 

Boltorn H30 was able to produce a MALDI spectrum when HCCA was 

employed as a matrix while 5.48 needed dithranol as a matrix and AgTFA as a 

doping agent to produce the spectra. Unfortunately, the mass registered was 

always lower than the expected. Although Boltorn H30 has Mtheo = 3604 g/mol, 

only a molecular weigh of 1315 g/mol was found (Figure 5.7.). Similarly to the 

hyperbranched polymer 5.48 which was expected to have a molecular weight of 

5110 g/mol, and only a molecular pick around 2250 g/mol was detected (Figure 

5.8.). 

 

 

 
Figure 5.7. MALDI TOF of Boltorn H30 
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Figure 5.8. MALDI TOF of hyperbranched polymer 5.48 

 

 

The explanation for this unsastifactory results in MALDI-TOF spectrometry 

could be attributed to the inherent polydispersion associated to our 

hyperbranched polymers. It has been reported42 that MALDI-TOF is suitable for 

hyperbranched polymers when molar masses are monodisperse.42 The limitation 

is due to the fact that, in broadly distributed samples, the lower molar mass 

species are preferably activated for desorption and, hence, the higher molar 

masses are not detectable or their intensity is so low that they are ignored. 

Therefore information about the complete polydispersity of the hyperbranched 

sample cannot be achieved.  

 

Other methods to determinate the molecular mass in polymers such as Size 

Exclusion Chromatography (SEC) were considered. However, this technique is 

limited because of the densely branched structure of the polymer. Their overall 

molecular density is increased compared to their linear analogues in a good 

solvent, and the well-known method for the determination of the full molar mass 

distribution of polymers, size-exclusion chromatography (SEC) with differential 

refractive index detection (DRI) or UV-detection and subsequent calibration 

with a linear polymer standard, can lead to strong deviations from the actual 

values of molar mass. 

                                                 
42 Voit, B. I.; Lederer, A. Chem. Rev. 2009, 109, 5924-5973. 
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In spite of this, molecular mass for our hyperbranched polymers 5.30, 5.31, 5.32 

and 5.48   was measured by GPC/SEC analysis employing 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) as a common solvent and poly(methyl 

methacrylate) PMMA as calibration patrons. These analyses were provided by 

the group of Prof. Muñoz-Guerra from Universitat Politècnica de Catalunya 

(UPC) (Table 5.3.). Although the restrictions of this technique for a 

hyperbranched structures, Mn and Mw obtained for our polymers were reasonable 

according to the calculated (Mtheo) degree of functionalization observed by 
1H 

NMR (Table 5.3., Entries 2-5). Differences between Mn and Mw are in agreement 

with the high polydispersity index (PDI) observed (Table 5.4., Entries 2-5) 

because of the inherent polydispesity of starting Boltorn H30 (546) (Table 5.3., 

Entry 1). This also confirmed why a proper MALDI-TOF characterization was 

not obtained.42 

 
Table 5.3. Comparison of the molecular mass measured by GPC with the calculed by 1H NMR 

 

Entry Compound Mn
 a,b 

Mw 
a,b
 PDI Mtheo 

a,c 

1d 
5.46 1410 3370 2.38 3604 

2 5.48 2478 6801 2.78 5110 

3 5.32 7302 15963 2.19 9097 

4 5.30 8596 19446 2.26 13152 

5 5.31 9937 24548 2.47 14031 
a Molecular weight are expressed in g/mol. b Measured through GPC. c Calculated through 1H 

NMR. d Data extracted from Žagar’s group39 

 

Finally, this family of hyperbranched polymers based on glycolipids was studied 

to determine its binding properties against cholera toxin. The results of its 

evaluation by ELISA-type assay are presented bellow. 
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5.2.3. Study of inhibition Cholera Toxin Binding by Hyperbranched 

Multivalent β-Galceramide Ligands 

 

Enzime linked immunosorbent assay (ELISA) is based on the detection of 

binding of the antibody to an antigen by using an enzyme label. These antigen-

antibody complexes are physically separated from free antigen and antibody 

using some type of solid phase system. Then, the enzyme acts on the colourless 

substrate to provide a coloured product which is detected (Scheme 5.15.).43 

ELISA has proven to be one of the most powerful tools available for probing 

recognition processes involving protein/protein, protein/glycoprotein, 

protein/glycolipid and glycoprotein/glycolipid interactions.44 

 

 
Scheme 5.15. Schematic basis of ELISA assay 

 

In particular, studies of inhibition of antigen-antibody complexes by ELISA, the 

antigen immobilized first to the wells of ELISA plates, and then it is treated with 

samples containing the inhibitor and the enzyme-labeled antibody. Competition 

will occur between the immobilized antigen and the inhibitor with the enzyme-

labeled antibody. The greater inhibition of the competitive agent, the greater the 

degree it will bind to the labeled antibody and, therefore, less labeled antibody 

will be available for binding to the immobilized antigen. After washing the 

plates only the enzyme-labeled antibody binding to the antigen coated on the 

wells will be available for detection. Consequently, the signal provided by the 

experiment can be correlated to the concentration of this competing agent.43,45 In 

general, the strength of inhibition trend is expressed in terms of IC50 (M) of the 

                                                 
43 O’Kenedy, R.; Byrne, M.; O’Fagain, C.; Berns, G. Biochem. Educ. 1990, 18, 136-140. 
44 Gervay, J.; McReynolds, K. D. Curr. Med. Chem. 1999, 6, 129-153. 
45 Dawson, R. M. J. Appl. Toxicol. 2005, 25, 30-38. 
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competitive agent. Lower concentrations of the competing agent indicate greater 

inhibitor strength. 

 
Scheme 5.16. Illustration of the competition between an immobilized antigen and a free 

multivalent antigen with an enzim labelled-antibody  

 

 

Herein, it is shown the studies of Cholera toxin inhibition by hyperbranched 

multivalent β-Galceramide Ligands that was carried out in collaboration with 
Dr. Morales-Serna, who was responsible of the biological assay. In this assay, a 

GM1 ganglioside-coated 96 well plate was incubated with horseradish 

peroxidase labeled CTB5 (CTB5-HRP) and binding was inhibited with a range of 

different concentrations of hyperbranched polymers (Table 5.4.). In order to test 

if the hydroxylic surface of the Boltorn H30 platform affect to the inhibition, 

commercial Boltorn H30 (5.46) and alkyne functionalized Boltorn (5.48) were 

included in the assay but no significative inhibition was detected (Table 5.4., 

Entries 3 and 4). The monovalent β-Galcer analogues (Table 5.4., Entries 5, 6, 7, 

8 and 9) exhibited a weak inhibitory potency with IC50 values between 20 and 

95 mM. This slight decrease when compared with simple galactose (entry 1, 

IC50 = 240 mM) might be attributed to the oligovalency of these ligands, due to 

the formation of micellar or submicellar structures that increase the binding 
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affinities; a phenomenon previously described for GM1.46 Next, hyperbranched 

structures with higher valency (16 epitopes: 5.33, 5.34 and 5.35) (20 epitopes: 

5.28 and 5.29), exhibited IC50 values (ca. 4.4 µM) in the same range as the 
GM1os derivative (Table 5.5., Entries 10, 11, 12, 13 and 15). The multivalency 

effect, as expressed by the relative potency per sugar, still increased in 

approximately 103 magnitud order when each hyperbranched polymer is 

compared with their respective monovalent ligand. 

 

It is reasonable to assume that the strong binding was attributed to the combined 

use of β-Galcer ligands and their multivalent presentation on an hyperbranched 

polymer with long spacer arms. On the one hand, the more similar size of spacer 

arm to the natural GM1-Os, the better relative potencies were obtained (compare 

entries 10-12). This may be explained due to a better internalization of 

multivalent epitopes into the binding pocket of CTB5-HRP. It is remarkable that 

hyperbranched polymer 5.31, which contains an hydrophilic of the PEG spacer, 

gave the best result for one-chain based β-GalCer derivates. Possibly better 
solubility of PEG chain in polar solvents may facilitate a better accommodation 

of the epitopes on the solvent environment that make them more accessible to 

the CTB5-HRP. 

 

To explain the highest inhibition results obtained for the two-chain based β-
GalCer hyperbranched polymers (5.28 and 5.29), it is not discarded the 

existence of an extra positive hydrophobic interaction between the known 

lipophilic patch47 in the CTB binding region and the lipid moiety of β-GalCer 
residue on the polymers due to the relative proximity of the carbohydrate 

binding epitope and the lipid free moiety of these structures when compared to 

GM1.48 Therefore, the complete β-GalCer architecture or its minimalist 
analogue on the Boltorn H30 is important to obtain the most competitive 

inhibiton results against cholera toxin. 

                                                 
46 Schwarzmann, G.; Mraz, W.; Sattler, J.; Schindler, R.; Wiegandt, H.  Hoppe Seylers Z 
Physiol. Chem. 1978, 359, 1277-1286. 

47 (a) Bernardi, A.; Arosio, D.; Potenza, D.; Sánchez-Medina, I.; Mari, S.; Cañada, F. J.; 
Jiménez-Barbero, J. Chem. Eur. J. 2004, 10, 4395-4406; (b) Arosio, D.; Baretti, S.; Cattaldo, 
S.; Potenza, D.; Bernardi, A. Bioorg. Med. Chem. Lett. 2003, 13, 3831-3834. 

48 Hydrophobic spacers and/or thiourea linkers in lactose dendrimers contributed to the CTB-
ligand binding affinity, see: ref. 11l. 
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Table 5.4. Inhibition studies using CTB5 and multivalent ligandsa 

 

Entry Compound Valency IC50 (M) Rel. Potency 

(per sugar) 

 

1b Galactose 1 2.4 (±0.5) x 10–1 1 (1) 

 

2b GM1os-C11H21 1 1.9 (±0.6) x 10–5 12632 (12632) 

 

3 Boltorn H30 5.46 - No inhibition - 

 

4 Boltorn-alkyne 5.48 - No inhibition - 

 

5 β-Galcer 5.33 1 2.0 (±0.5) x 10-1 1.2  (1.2) 

 

6 β-Galcer 5.34 1 9.5 (±0.5) x 10-2 2.5  (2.5) 

 

7 β-Galcer 5.35 1 9.0 (±0.5) x 10-2 2.6  (2.6) 

 

8 β-Galcer 5.28’ 1 9.0 (±0.4) x 10-2 2.6 (2.6) 

 

9 β-Galcer 2.43 1 8.5 (±0.5) x 10-2 2.8 (2.8) 

 

10 Hyperbranched 5.32 16 1.0 (±0.2) x 10-5 24000 (1500) 

 

11 Hyperbranched 5.30 16 8.0 (±0.2) x 10-6 30000 (1875) 

 

12 Hyperbranched 5.31 16 6.5 (±0.2) x 10-6 36923 (2308) 

 

13 Hyperbranched 5.28 20 4.4 (±0.3) x 10–6 54545 (2727) 

 

14 Hyperbranched 5.29 20 4.5 (±0.2) x 10–6 53333 (2666) 

 
a Determined in an ELISA experiment with 0.43 nM CTB5-HRP and wells coated with 0.2 µg 

GM1. b See reference.49 

 

 

                                                 
49 Pickens, J. C.; Mitchell, D. D.; Liu, J.; Tan, X.; Zhang, Z.; Verlinde, C. L. M. J.; Hol, W. G. 
J.; Fan, E. Chem. Biol. 2004, 11, 1205-1215. 
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In summary, data from this study indicate that hyperbranched polymers can be 

efficiently used as multivalent glyco(lipid) systems able to block toxin binding 

with potential applications to other surface receptor-mediated diseases. The best 

multivalent compounds here studied (5.28 and 5.29) exhibited >50,000-fold 

greater potency than monovalent galactose, providing a platform that mimic the 

natural GM1-enriched lipid domains. Therefore, advantages of the present 

method include: 

 

• Operationally simple and robust method for accessing gram quantities of 

complex hyperbranched multivalent glycolipid ligands;  

• The concentration-dependent micelle formation of simple glycolipid 

inhibitors is suppressed; hence avoiding different binding affinities due 

to different micelle sizes;  

• And importantly, this method allows the use of whole glycolipids that 

normally are not employed as inhibitors since it has been shown that 

exogenous glycosphingolipids are integrated in cell membranes, 

therefore making nonsusceptible cells in susceptible to the toxic agent.50  

 

5.3. Experimental Section 

 

General Remarks: All reactions were conducted under a dried argon stream. 

Solvents (CH2Cl2 99.9%, toluene 99.9%, acetonitrile 99.9 %) were purchased in 

capped Pure Solv System-4® bottles and used without further purification and 

stored under argon. Yields refer to chromatographically and spectroscopically 

(1H and 13C) homogeneous materials, unless otherwise stated. All other solvents 

and reagents were used without further purification and purchased from Sigma-

Aldrich. Boltorn H30 was supplied by Perstorp Company. All glassware utilized 

was flamedried before use. Reactions were monitored by TLC carried out on 

0.25 mm E. Merck silica gel plates. Developed TLC plates were visualized 

under a short-wave UV lamp and by heating plates that were dipped in 

ethanol/H2SO4 (15:1). Flash column chromatography (FCC) was performed 

using flash silica gel or C-18 silica gel (32–63 µm) and employed a solvent 

                                                 
50 Moss, J.; Fishman, P. H.; Manganiello, V.C.; Vaughan, M.; Brady, R. O. Proc. Natl. Acad. 
Sci. U. S. A. 1976, 73, 1034-1037. 
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polarity correlated with TLC mobility. Melting points, determined with Reichert 

apparatus, are uncorrected. Optical rotations were measured at 598 nm on a 

Jasco DIP-370 digital polarimeter using a 100 mm cell. FT IR spectroscopy was 

performed on Jasco FT/IR-600 Plus ATR Specac Golden Gate.  

 

NMR experiments were conducted on a Varian 400 MHz instrument using 

CDCl3 and D2O (99.9% D) as the solvents. Chemical shifts are in ppm with 

respect to TMS (Tetramethylsilane).  

 

Exact Mass was measured on Agilent G3250AA LC-MSTOF. Mass 

Spectrometry MALDI–TOF MS was performed on a Perseptive Biosystems 

Voyager DE-PRO spectrometer. Gel  permeation chromatography (GPC) for 

determination of polymer molecular weights and their distributions was 

performed in a Waters equipment provided with RI and UV detectors using 

1,1,1,3,3,3-hexafluoroisopropanol (HFIP, 99% Apollo Scientific Lim.) 

containing sodium trifluoroacetate (98%, Sigma-Aldrich Co.; 6.8 g/L) as mobile 

phase. A total of 10 µL of 0.1% (w/v) sample solution was injected and 

chromatographed with a flow of 0.5 mL/min. HR5E Waters linear Styragel 

columns (7.8 × 300 mm, pore size 103-104 Å) packed with cross-linked 

polystyrene and protected with a precolumn (VanGuard, 1.8 µm, 2.1 × 5 mm) 

were used. Molecular weight averages and distributions were evaluated against 

poly(methyl methacrylate) standards. 

 

General procedure for CTB5 inhibition assay (ELISA) 

A 96-well plate was coated with a solution of GM1 (100 µL, 2 µg mL−1) in 

phosphate buffered saline (PBS buffer). Unattached ganglioside was removed 

by washing with PBS and the remaining binding sites of the surface were 

blocked with Bovine Serum Albumin (BSA) (1%); this was followed by 

washing with PBS. Samples of toxin–peroxidase conjugate (CTB–HRP; Sigma) 

and inhibitor in PBS with BSA (0.1%) and Tween-20 (0.05%) were incubated at 

room temperature for 2 h and were then transferred to the GM1-coated plate. 

After 30 min of incubation the solution was removed and the wells were washed 

with BSA (0.1 %)/Tween-20 (0.05%) in PBS. To identify toxin binding to 

surface-bound GM1 the wells were treated with a freshly prepared solution of o-
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phenylenediamine/H2O2 in citrate buffer (100 µL) for 15 min. After being 
quenched with H2SO4 absorbance in each well was measured at 490 nm. 

 

Benzylpropargylether (5.20) 

 

 

Propargylic alcohol (5.18) (3.4 mL, 58.5 mmol) was treated with NaH (2.34 g, 

58.5 mmol) under argon atmosphere for 10 min to form the corresponding 

alcoholate. After that, benzyl bromide (5.19) (1.4 mL, 11.7 mmol) and TBAI 

(864 mg, 2.34 mmol) were added to the alcoholate suspension. Then, the 

mixture was stirred at 70 ºC for 16 h. The residue was purified by column 

chromatography (silica gel, ethyl acetate/ hexane  5: 95) to give 5.20 as syrup  

(1650 mg, 97%): Rf (EtOAc/Hexane 5:95): 0.29; 1H NMR (CDCl3, 400 MHz) δ 

in ppm: 7.37 (m, 5H, H-Ar), 4.63 (s, 2H, H-1), 4.19 (s, 2H, H-1’), 2.49 (t, J3’-1’ = 

2.4 Hz, 1H, H-3’); 13C NMR (CDCl3, 100.3 MHz) δ in ppm: 137.4 (CAr-1), 

128.8, 128.4, 128.2 (C-Ar), 79.6 (C-2’), 74.8 (C-3’), 71.8 (C-1), 57.3 (C-1’); 

FT-IR (ATR) ν in cm-1: 2854, 1494, 1449, 1350, 1260, 1202, 1085, 1022, 937, 

740; HRMS (TOF ES+) for (M+Na) C10H10ONa (m/z): calc. 169.0624. Found: 

169.0689. 

 

1,3,5-trimethyl-2,4,6-tris((prop-2-ynyloxy)methyl)benzene (5.22) 

 

 
 

Propargylic alcohol (5.18) (4.9 mL, 84.0 mmol) was treated with NaH (3.36 g, 

84.0 mmol) under argon atmosphere for 10 min to form the corresponding 

alcoholate. After that, commercial 1,3,5-tris (bromomethyl)-2,4,6-

trimethylbenzene (5.21) (2000 mg, 5.60 mmol) and TBAI (414 mg, 1.12 mmol) 

were added to the alcoholate suspension. Then, the mixture was stirred at 70 ºC 
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for 24 h. The residue was purified by column chromatography (silica gel, ethyl 

acetate/ hexane 1:9) to give 5.22 as a white solid  (1678 mg, 92%): Rf 

(EtOAc/Hexane 1:9): 0.28; mp: 107-108 ºC; 1H NMR (CDCl3, 400 MHz) δ in 

ppm: 4.63 (s, 6H, H-1), 4.20 (d, J1’-3’ = 2.4 Hz, 6H, H-1’), 2.49 (t, J3’-1’ = 2.4 Hz, 

3H, H-3’), 2.46 (s, 9H, H-Me); 13C NMR (CDCl3, 100.3 MHz) δ in ppm: 132.4 

(CAr-1), 126.4 (C-Ar2), 78.6 (C-2’), 74.7 (C-3’), 66.7 (C-1), 57.3 (C-1’), 15.9 

(C-Me); FT-IR (ATR) ν in cm-1: 3287, 3249, 2927, 2898, 2850, 2107, 1575, 

1496, 1458, 1433, 1345, 1264, 1240, 1089, 1050, 984, 925, 902, 827, 659; 

HRMS (TOF ES+) for (M+Na) C21H24NaO3 (m/z): calc. 347.1618. Found: 

347.1631. 

 

1,2,4,5-tetrakis((prop-2-ynyloxy)methyl)benzene (5.24) 

 

 
 

Propargylic alcohol (5.18) (5.2 mL, 88.9 mmol) was treated with NaH (3.56 g, 

88.9 mmol) under argon atmosphere for 10 min to form the corresponding 

alcoholate. After that, 1,2,4,5-tetrakis((prop-2-ynyloxy)methyl)benzene (5.23) 

(2000 mg, 4.40 mmol) and TBAI (1310 mg, 3.55 mmol) were added to the 

alcoholate suspension. Then, the mixture was stirred at 70 ºC for 22 h. The 

residue was purified by column chromatography (silica gel, ethyl acetate/ 

hexane 15:85) to give 5.24 as a yellowish solid (1136 mg, 73%): Rf 

(EtOAc/Hexane 15:85): 0.32; mp: 53-55 ºC; 1H NMR (CDCl3, 400 MHz) δ in 

ppm: 7.47 (s, 2H, H-Ar), 4.69 (s, 6H, H-1), 4.20 (d, J1’-3’ = 2.4 Hz, 6H, H-1’), 

2.53 (t, J3’-1’ = 2.4 Hz, 3H, H-3’); 
13C NMR (CDCl3, 100.3 MHz) δ in ppm: 

135.7 (CAr-1), 130.3 (C-Ar2), 79.7 (C-2’), 75.0 (C-3’), 68.7 (C-1), 57.3 (C-1’); 

FT-IR (ATR) ν in cm-1: 3272, 2916, 2876, 2855, 2792, 2124, 1720, 1457, 1390, 

1340, 1310, 1258, 1242, 1193, 1075, 1011, 994, 894, 696, 652; HRMS (TOF 

ES+) for (M+Na) C22H22NaO4 (m/z): calc. 347.1410. Found: 373.1430. 
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Cluster 5.25 
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To a solution of propargilic core 5.20 (13 mg, 0.088 mmol) and glicolipid 2.43 

(74 mg, 0.080 mmol) in a mixture of t-BuOH/H2O (4 mL) was added TBTA 

(0.5 mg, 0.88 µmol) and [Cu(CH3CN)4]OTf (0.3 mg, 0.88 µmol). The reaction 

mixture was stirred at room temperature for 24 h. After evaporation, the crude 

product was azeotroped with toluene (3 x 5 mL). This residue was purified by 

silica gel chromatography (ethyl acetate/MeOH 9:1) to afford 5.25 as waxy solid 

(74 mg, 93%): Rf (EtOAc/Hexane 1:9): 0.28; [α]D
25 = -6.1º, (c = 0.70, 

CHCl3/MeOH 1:1); 
1H NMR (CDCl3/MeOD 1:2, 400 MHz) δ in ppm: 7.97 (s, 

1H, H-17), 7.34-7.29 (m, 5H, HAr), 4.63 (s, 2H, H-19), 4.57 (s, 2H, H-20), 4.38 

(t, 2H, J16-15 = 7.20 Hz, H-16), 4.22 (at, 1H, J1’’’-2’’’ = 7.6 Hz, H-1’’’), 3.97 (m, 

1H, H-2a’), 3.83 (t, 1H, J4’’’-3’’’ = J4’’’-5’’’ = 2.0 Hz, H-4’’’), 3.78-3.61 (m, 4H, H-

6a’’’, H-6b’’’, H-2b’, H-1a’), 3.56 (m, 1H, H-2’’’), 3.52-3.33 (m, 5H, H-5’’’, H-

3’’’, H-1b’, H-1’’), 2.44 (t, 2H, J2-3 = 7.2 Hz, H-2), 2.35 (t, 2H, J2-3 = 7.2 Hz, H-

2),51 1.89 (tt, 2H, J = 7.2 Hz, J = 6.8 Hz,  H-15), 1.59-1.57 (m, 4H, H-2’’, H-3), 

1.39-1.20 (m, 52H, H3’’-H17’’, H-4-H-14), 0.89 (t, 3H, J18’’-17’’ = 6.4 Hz, H-

18’’); 13C NMR (CDCl3/MeOD 1:2, 100.3 MHz) δ in ppm: 175.3  (CO), 138.0 

(C-18) 137.6, 129.4, 129.0, 128.8, 125.0 (C-Ar), 105.2 (C-1’’’), 76.7 (C-2’’’), 

74.4 (C-4’’’), 72.4 (C-5’’’), 70.3 (C-3’’’), 68.5 (C-2’), 67.4 (C-20), 64.0 (C-

6’’’), 62.0 (C-19), 51.3 (C-1’’), 49.6 (C-1’), 34.0 (C-2’’), 33.9 (C-2), 33.1, 31.3, 

30.8, 30.7, 30.6, 30.5, 30.1, 28.0, 27.8, 27.45, 26.8, 26.6, 23.8 (CH2), 14.5 (C-

18’’); FT-IR (ATR) ν in cm-1: 3364, 2921, 2852, 1730, 1625, 1462, 1368, 1091, 

765; 630; MALDI-TOF for [M + Na]+ C52H92 N4NaO8  (m/z) calc. 923.7; found 

923.2. 

 

 

 

                                                 
51 Signal associated to H-2 is doubled at room temperature due to the tertiary amide-imino 
alcoholate equilibrium. The signal coalesces once temperature is increased over 50 ºC. 
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Cluster 5.26 

 

 

 

 

To a solution of propargilic core 5.22 (5 mg, 0.016 mmol) and glicolipid 2.43 

(40 mg, 0.053 mmol) in a mixture of t-BuOH/H2O (4 mL) was added TBTA 

(0.3 mg, 0.53 µmol) and [Cu(CH3CN)4]OTf (0.2 mg, 0.53 µmol). The reaction 

mixture was stirred at room temperature for 2 days. After evaporation, the crude 

product azeotroped with toluene (3 x 5 mL). This residue was purified by silica 

gel chromatography (CH2Cl2/MeOH 3:1) to afford 5.26 as waxy solid (28 mg, 

70%): Rf (NH4OH/MeOH/DCM 2:13:85) = 0.18; [α]D
25 = +0.35º (c = 2.0, 

CHCl3/MeOH 1:1); 
1H NMR (CDCl3-MeOD (1:2), 400 MHz): δ in ppm: 7.83 

(s, 3H, H-17), 4.66 (s, 6H, H-19), 4.60 (s, 6H, H-20), 4.36 (t, 6H, J16-15 = 6.4 Hz, 

H-16), 4.21 (at, 3H, J1’’’-2’’’ = 7.2 Hz, H-1’’’), 3.96 (m, 3H, H-2a’), 3.84 (t, 3H, 

J4’’’-3’’’ = J4’’’-5’’’ = 2.0 Hz, H-4’’’), 3.78-3.61 (m, 12H, H-6a’’’, H-6b’’’, H-2b’, 

H-1a’), 3.56 (m, 3H, H-2’’’), 3.52-3.33 (m, 15H, H-5’’’, H-3’’’, H-1b’, H-1’’), 

2.42 (t, 6H, J2-3 = 8.0 Hz, H-2), 2.35 (t, 6H, J2-3 = 8.0 Hz, H-2),
51 2.29 (s, 9H, 

CH3), 1.89 (tt, 6H, J = 7.2 Hz, J = 6.8 Hz, H-15), 1.59-1.57 (m, 12H, H-2’’, H-

3), 1.39-1.20 (m, 156H, H3’’-H17’’, H-4-H-14), 0.86 (t, 9H, J18’’-17’’ = 6.4 Hz, 

H-18’’); 13C NMR (CDCl3/MeOD 1:2, 100.3 MHz) δ in ppm: 175.7 (CO), 138.0 

(C-18) 132.4 (CAr-1), 131.7 (C-17) 126.4 (C-Ar2), 103.3 (C-1’’’), 76.7 (C-2’’’), 

75.0 (C-4’’’), 72,4 (C-5’’’), 70.2 (C-3’’’), 68.2 (C-2’), 66.5 (C-20), 62.5 (C-

6’’’), 60.3 (C-19), 49.8 (C-1’’), 45.2 (C-1’), 34.2 (C-2’’), 32.6 (C-2), 32.4, 31.1-

29.1, 28.9, 28.8, 28.4, 28.2, 26.8, 26.3, 26.1, 25.8, 24.8, 22.6 (CH2), 14.6 (Ar-

CH3), 13.1 (C-18’’); FT-IR (ATR) ν in cm
-1: 3370, 2922, 2853, 1737, 1623, 

1459, 1375, 1284, 1092, 785, 628; MALDI-TOF for [M + Na]+ 

C147H270N12NaO24  (m/z) calc. 2611.0; found 2613.2. 
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Cluster 5.27 

 

 

 

To a solution of propargilic core 5.24 (4 mg, 0.012 mmol) and glicolipid 2.43 

(41 mg, 0.054 mmol) in a mixture of t-BuOH/H2O (2 mL) was added TBTA 

(0.3 mg, 0.53 µmol) and [Cu(CH3CN)4]OTf (0.2 mg, 0.53 µmol). The reaction 

mixture was stirred at room temperature for 72 h. After evaporation, the crude 

product azeotroped with toluene (3 x 5 mL). This residue was purified by silica 

gel chromatography (from CH2Cl2/MeOH 3:1 to CH2Cl2/MeOH/H2O 1:1:0.1) to 

afford 5.27 as waxy solid (10 mg, 25 %): Rf (NH4OH/MeOH/DCM 2:23:75) = 

0.15; [α]D
25 =  +0.41º (c = 0.97, CHCl3/MeOH 1:1); 

1H NMR (CDCl3-MeOD 

(2:1), 400 MHz): δ, 7.72 (s, 4H, H-17), 7.47 (s, 2H, H-Ar), 4.65 (s, 8H, H-19), 

4.64 (s, 8H, H-20), 4.36 (t, 8H, J16-15 = 7.2 Hz, H-16), 4.22 (at, 4H, J1’’’-2’’’ = 7.6 

Hz, H1’’’), 3.99 (m, 4H, H2a’), 3.87 (t, 4H, J4’’’-3’’’ = J4’’’-5’’’ = 2.0 Hz, H4’’’), 

3.78-3.61 (m, 16H, H6a’’’, H6b’’’, H2b’, H1a’), 3.56 (m, 4H, H2’’’), 3.52-3.33 

(m, 20H, H5’’’, H3’’’, H1b’, H-1’’), 2.39 (t, 8H, J2-3 = 8.0 Hz, H-2), 2.35 (t, 8H, 

J2-3 = 8.0 Hz, H-2),
51 1.90 (bs, 8H, H-15), 1.59-1.57 (m, 16H, H-2’’, H-3), 1.39-

1.20 (m, 208H, H3’’-H17’’, H4-H-14), 0.86 (bs, 12H, H-18’’); 13C NMR 

(CDCl3:MeOD, 1:2, 100.3 MHz) δ in ppm: 175.7 (CO), 138.0 (C-18) 135.6 

(CAr-1), 131.7 (C-17) 130.4 (C-Ar2), 104.6 (C-1’’’), 75.9 (C-2’’’), 74.4 (C-

4’’’), 71,9 (C-5’’’), 70.3 (C-3’’’), 69.5 (C-2’), 67.9 (C-20), 64.0 (C-6’’’), 62.0 

(C-19), 51.1 (C-1’’), 46.6 (C-1’), 34.0 (C-2’’), 33.8 (C-2), 32.6, 30.7-30.0, 29.9, 

29.5, 29.5, 27.6, 27.3, 26.1, 25.8, 24.8, 22.6 (CH2), 13.2 (C-18’’) ppm; FT-IR 

(ATR) ν in cm-1: 3365, 2924, 2853, 1737, 1623, 1461, 1282, 780, 630; MALDI-

TOF for [M + Na]+ calc for C190H350 N16NaO32 3391.6; found 3394.3. 
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Glycohyperbranched polymer (5.30) 

 

 

 
 

To a solution of dendritic polymer 5.48 (21 mg, 0.004 mmol) in THF (0.2 mL) 

was added a solution of glycoside 5.34 (100 mg, 0.200 mmol) in t-BuOH/H2O 

1:1 (2 mL) and a freshly prepared solution of CuSO4·5H2O (6 mg , 0.024 mmol) 

and sodium ascorbate (5 mg, 0.025 mmol) in t-BuOH/H2O 1:1 (0.2 mL). The 

reaction mixture was stirred at room temperature for 72 h and then purified by 

dialysis (benzoylated tube flat width 32 mm (1.27’’), from t-BuOH/H2O/THF 

0.45:0.45:0.1 to aquose EDTA [10 mM] to H2O) for 3 days changing the solvent 

each 8h. After that, the sample was gently agitated with QuadraSil MP (150 mg) 

for 1 h. Then, the mixture was filtered and the solution was freeze dried to 

obtain 5.30 as lyophilised (50 mg, 96 %): 1H NMR (CD2Cl-MeOD (1:1), 400 

MHz) δ in ppm: 7.80 (s, 16H, H-6), 4.57-4.37 (m, 126H, H-25, H-1’, H-1’’), 

4.21-4.13 (m, 48H, H-7a, CH2OH), 4.07 (bs, 16H, H-4’’),  4.01-3.97 (bs, 32H, 

H-6’’a, H-6’’b), 3.86 (bs, 16H, H-7b), 3.77-3.53 (m, 80H, H-8, H-3’’, H-2’’, H-

5’’), 2.95 (bs, 32H, H-4), 2.63 (bs, 32H, H-2) 2.43 (bs, 32H, H-10), 2.18 (bs, 

32H, H-3), 2.11 (bs, 32H, H-24), 1.83 (bs, 32H, H-11), 1.50 (bs, 55H, H-3’) 

1.40 (s, 352H, H-aliphatic);13C NMR (D2O, 100.6 MHz) δ in ppm: 175.9 (N-

CO), 173.7-173.1 (CO, C-1), 147.7 (C-5), 122.6 (C-6), 104.4 (C-1’’), 75.9 (C-

2’’), 74.3, 72.2 (C-3’’ o C-5’’), 69.7 (C-4’’), 69.5 (C-7), 67.5-66.2 (C-1’, 

CH2OH), 62.1 (C-6’’), 51.1 (C-25), 48.5-48.3 (C-2’), 40.2 (C-8), 37.0 (C-10), 

33.9 (C-2), 31.0 (C-24), 30.4-30.1, 29.8 (CH2), 26.7 (C-11), 25.4-25.3 (C-3, C-

4), 18.2 (C-3’); FT-IR (ATR) ν in cm-1: 3320, 2919, 2850, 1736, 1646, 1555, 

1465, 1131; GPC MS: Mn = 8596 g/mol, Mw = 19446 g/mol, PDI = 2.26. 
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Glycohyperbranched polymer (5.31) 

 

 

 
 

To a solution of dendritic polymer 5.48 (26 mg, 0.004mmol) in  t-

BuOH/H2O/THF 1:1:1 (2 mL) was added a solution of glycoside 5.35 (111.4 

mg, 0.200 mmol) in t-BuOH/H2O/THF 1:1:1 (3 mL) and a freshly prepared 

solution of CuSO4·5H2O (6 mg , 0.024 mmol) and sodium ascorbate (5 mg, 

0.025 mmol) in t-BuOH/H2O 1:1 (0.2 mL). The reaction mixture was stirred at 

room temperature for 72 h and then purified by dialysis (benzoylated tube flat 

width 32 mm (1.27’’), from tert-BuOH/H2O/THF 1:1:1 to aquose EDTA [10 

mM] to H2O) for 3 days changing the solvent each 8h. After that, the sample 

was gently agitated with QuadraSil MP (150 mg) for 1 h. Then, the mixture was 

filtered and the solution was freeze dried to obtain 5.31 as lyophilised (52 mg, 

93 %): 1H NMR (D2O, 400 MHz) δ in ppm: 7.80-7.68 (bs, 16H, H-6), 4.45-4.38 

(bs, 75H, H-1’), 4.26 (d, J1’’-2’’ = 8.0 Hz, 16H, H-1’’), 4.19-4.00 (m, 54H, 

CH2O), 3.92 (m, 16H, H-4’’), 3.76 (bs, 72H, CH2O), 3.68-3.36 (m, 466H, H-

6’’a, H-6’’b, H-5’’, CH2O, H-3’’, H-2’’), 2.53 (bs, 32H, H-4), 2.08 (bs, 32H, H-

2), 1.75 (bs, 32H, H-3), 1.08-1.02 (m, 55H, H-3’); 13C NMR (D2O, 100.6 MHz) 

δ in ppm: 174.6-170.2 (C(O)-O, C-1), 140.0 (C-5), 102.8 (C-1’’), 75.1 (C-5’’), 

72.6 (C-3’’), 70.7 (C-2’’), 69.6-69.5 (CH2O), 68.7-68.6 (CH2OH), 68.5 (C-4’’, 

C-1’, CH2O), 60.9 (C-6’’), 57.7, 51.4 (C-25), 46.4 (C-2’), 32.9 (C-2), 24.0 (C-3, 

C-4), 17.0 (C-3’); FT-IR (ATR) ν in cm-1: 3427, 2880, 1737, 1620, 1397, 1245, 

1121, 785; GPC-MS: Mn = 9937 g/mol, Mw = 24548 g/mol, PDI = 2.47. 
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Glycohyperbranched polymer (5.32) 

 

          
 

To a solution of dendritic polymer 5.48 (22 mg, 0.004mmol) in  t-BuOH/H2O 

1:1 (1 mL) was added a solution of glycoside 5.33 (52 mg, 0.104 mmol) in t-

BuOH/H2O 1:1 (1 mL) and a freshly prepared solution of CuSO4·5H2O (7 mg ,  

0.028 mmol) and sodium ascorbate (6 mg, 0.031 mmol) in t-BuOH/H2O 1:1 (0.1 

mL). The reaction mixture was  stirred at room temperature for 72 h and then 

purified by dialysis (benzoylated tube flat width 32 mm (1.27’’), from t-

BuOH/H2O 1:1 to aquose EDTA [10 mM] to H2O) for 3 days changing the 

solvent each 8h. After that, the sample was gently agitated with QuadraSil MP 

(150 mg) for 1 h. Then, the mixture was filtered and the solution was freeze 

dried to obtain 5.32 as lyophilised (34 mg, 94 %): 1H NMR (D2O, 400 MHz) δ 

in ppm: 8.90-8.60 (bs, 16H, H-6), 4.50 (bs, 32H, H-8), 4.34-4.15 (bs, 16H, H-

1’’), 4.22-4.05 (bs, 109H, H-1’, H-7, CH2OH), 3.88-3.81 (bs, 16H, H-4’’), 3.75 

(bs, 16H, H-6’’a), 3.65-3.52 (bs, 32H, H-2’’, H-6’’b), 3.60-3.34 (bs, 32H, H-3’’, 

H-5’’), 2.70 (bs, 32H, H-4), 2.35-2.26 (bs, 32H, H-2), 2.05-1.80 (bs, 32H, H-3), 

1.44 (bs, 55H, H-3’);13C NMR (D2O, 100.6 MHz) δ in ppm: 174.6-173.2 (CO, 

C-1), 102.9 (C-1’’), 75.0 (C-2’’), 72.5, 70.4 (C-5’’or C-3’’), 68.4 (C-4’’), 67.6 

(C-7), 65.5-63.9 (C-1’, CH2OH), 60.8 (C-6’’), 50.8 (C-8), 48.5-46.4 (C-2’), 32.9 

(C-2), 23.4 (C-3, C-4), 17.0 (C-3’); FT-IR (ATR) ν in cm-1: 3385, 2941, 1734, 

1608, 1390 1237, 1132, 1058; GPC-MS: Mn = 7302 g/mol, Mw = 15963 g/mol, 

PDI = 2.19. 
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1-O-(2-Azidoethyl)-β-D-galactopyranoside (5.33) 

 

 
 

The glycoside 5.38 (306 mg, 0.73 mmol) was dried azeotropically with 

anhydrous toluene and kept at high vacuum for 2h. After that, it was dissolved 

in anhydrous MeOH (4 mL) and a freshly prepared solution of MeONa in 

anhydrous methanol was added (0.5 mL, 1 M). The mixture was stirred under 

argon pressure at room temperature for 20 min. The reaction was quenched by 

adding dry ice until pH 7 was reached. After removing the solvent, the crude 

was purified by column chromatography (silica gel, MeOH/DCM 1:9 v/v) to 

yield 5.33 as a syrup (173 mg, 95%): Rf (MeOH/DCM 1:9): 0.20; [α]D
20: +43.4º 

(0.38, DCM/MeOH 1:1);1H NMR (MeOD, 400 MHz) δ in ppm: 4.28 (d, J1’-2’ = 

7.2 Hz, 1H, H-1’), 4.05-4.00 (m, 2H, H-1a, H-1b), 4.09 (d, J4’-3’ = 3.2 Hz, J4’-5’ = 

0.8 Hz, 1H, H-4’), 3.76-3.71 (m, 2H, H-6a’, H-6b’), 3.57-3.47 (m, 5H, H-2’, H-

3’, H-5’, H-2a, H-2b); 13C NMR (MeOD, 100.3 MHz) δ in ppm: 104.9 (C-1’), 

76.6 (C-2’), 74.8, 72.4 (C-3’, C-5’), 70.2 (C-4’), 69.2 (C-1), 62.4 (C-6’), 52.1 

(C-2); FT-IR (ATR) ν in cm-1: 3385, 2941, 1731, 1731, 1468, 1378, 1232, 1131, 

1064, 998; HRMS (TOF ES+) for (M+Na) C8H15N3NaO6 (m/z): calc. 272.0853; 

found 272.0847. 
 

1-O-(2-(16-azidohexadecanamido)ethyl)-β-D-galactopyranoside (5.34) 
 

 

 

 

The glycoside 5.43 (302 mg, 0.45 mmol) was dried azeotropically with 

anhydrous toluene and kept at high vacuum for 2h. After that, it was dissolved 

in anhydrous MeOH (4 mL) and a freshly prepared solution of MeONa in 

anhydrous methanol was added (0.2 mL, 1 M). The mixture was stirred under 

argon pressure at room temperature for 20 min. The reaction was quenched by 

adding dry ice until pH 7 was reached. After removing the solvent, the crude 
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was purified by short column chromatography (silica gel, MeOH/DCM 1:9 v/v) 

to yield 5.34 as syrup (214 mg, 95%): Rf (MeOH/DCM 1:9): 0.17; [α]D
20: 

+43.4º (0.38, DCM/MeOH 1:1);1H NMR (CDCl3/MeOD 3:1, 400 MHz) δ in 

ppm: 4.05 (d, J1’’-2’’ = 7.2 Hz, 1H, H-1’’), 3.78-3.74 (m, 1H, H-2a’), 3.72 (d, J4``-

3’’ = 2.4 Hz, 1H, H-4’’), 3.66-3.56 (m, 2H, H-6a’’, H-6b’’), 3.50-344 (m, 1H, H-

2b’), 3.41-3.31 (m, 4H, H-2’’, H-3’’, H-5’’, H-1a’), 3.21-3.18 (m, 1H, H-1b’), 

3.10 (t, J16-15 = 6.8 Hz, 2H, H-16), 2.01 (t, J2-3 = 7.2 Hz, 2H, H-2), 1.43 (q, J = 

7.2 Hz, 2H, H-3), 1.21-1.07 (m, 26H, CH2);
13C NMR (CDCl3/MeOD 3:1, 100.3 

MHz) δ in ppm: 103.4 (C-1’’), 74.8 (C-2’’), 73.3, 71.2 (C-3’’, C-5’’), 68.7 (C-

4’’), 68.6 (C-2’), 61.2 (C-6’’), 51.4 (C-16), 39.2 (C-1’), 36.2 (C-2), 29.5-28.7, 

26.7 (CH2), 25.6 (C-3); FT-IR (ATR) ν in cm
-1: 3303, 2918, 2849, 2097, 1736, 

1643, 1553, 1467, 1248, 1128, 1075, 722; HRMS (TOF ES+) for (M+Na) 

C24H46N4NaO7 (m/z): calc. 525.3259; found 525.3248. 

 

1-O-(O-(2-azidoethyl)heptaethylene glycolyl)-β-D-galactopyranoside (5.35) 

 

 
 

The glycoside 5.45 (438 mg, 0.603 mmol) was dried azeotropically with 

anhydrous toluene and kept at high vacuum for 2h. After that, it was dissolved 

in anhydrous MeOH (5 mL) and a freshly prepared solution of MeONa in 

anhydrous methanol was added (0.5 mL, 1 M). The mixture was stirred under 

argon pressure at room temperature for 20 min. The reaction was quenched by 

adding dry ice until pH 7 was reached. After removing the solvent, the crude 

was purified by column chromatography (C-18, H2O to H2O/MeOH 1:1 v/v) to 

yield 5.35 (287 mg, 85%): Rf (MeOH/EtOAc 3:7): 0.16; [α]D
20: +8.2º (c = 1.2, 

MeOH); 1H NMR (D2O, 400 MHz) δ in ppm: 4.37 (d, J1’-2’ = 7.6 Hz, 1H, H-1’), 

4.04 (dt, J = 8.4 Hz, J = 4.0 Hz, 1H, H-CH2O), 3.87 (d, J4’-3’ = 3.2 Hz, 1H, H-

4’), 3.80-3.62 (m, 32H, CH2O, H-6a’’, H-6b’’, H-5’’), 3.60 (dd, J3’-2’ = 9.6 Hz, 

J3’-4’ = 3.2 Hz, 1H, H-3’), 3.51-3.45 (m, 3H, H-2’, CH2N3); 
13C NMR (D2O, 

100.3 MHz) δ in ppm: 102.7 (C-1’), 75.0 (C-5’), 72.5 (C-3’), 70.6 (C-2’), 69.6-

69.4 (CH2O), 69.1 (C-4’), 68.5 (CH2O), 60.8 (C-6’), 50.0 (CH2N3); FT-IR 
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(ATR) ν in cm-1: 3420, 2855, 2104, 1299, 1119, 780; HRMS (TOF ES+) for 

(M+Na) C22H43N3NaO13 (m/z): calc. 580.2684; found 580.2650. 

 

2-azidoethanol (5.36) 

 

 
 

A mixture of 2-chloroethanol (4.1 mL, 60.5 mmol), NaN3 (7.9 g, 121 mmol), 

and n-Bu4NBr (487 mg, 1.5 mmol) was stirred vigorously for 18 h at 110 ºC. 

After cooling the mixture, the crude was purified by a short column 

chromatography (silica gel, Et2O) to give 5.36 as a colorless liquid (4990 mg, 

96%):52 Rf (Et2O): 0.77; 
1H NMR (CDCl3, 400 MHz) δ in ppm: 3.80 (t, J = 5.2 

Hz, 2H, CH2OH), 3.47 (t, J = 5.2 Hz, 2H, CH2N3), 2.09 (bs, 1H, OH);
13C NMR 

(CDCl3, 100.3 MHz) δ in ppm: 61.7 (CH2OH), 53.7 (CH2N3); FT-IR (ATR) ν in 

cm-1: 3356, 2934, 2877, 2092, 1441, 1347, 1286, 1061, 879, 629; HRMS (TOF 

ES+) for (M+H) C2H6N3O (m/z): calc. 88.0505; found 88.0530. 

 

1-O-(2-Azidoethyl)-(2,3,4,6-tetra-O-acetyl)-β-D-galactopyranoside (5.38) 

 

 
 

The 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide 2.46 (950 mg, 2.31 
mmol) was prepared as it is reported by the literature53 and then it was dried 

azeotropically with anhydrous toluene and kept at high vacuum for 2h. The 

promoter AgOTf (972 mg, 3.74 mmol) was dried azeotropically with anhydrous 

toluene and kept at high vacuum for 2h. After that, activated 4Å MS (950 mg) 

was added to the promoter and such mixture was stirred with a solution of 

ethanolazide (573 µL, 7.48 mmol) in anhydrous toluene (1 mL) under argon 

pressure at -20º C for 5 min. After that, a solution of 9 in anhydrous toluene (2.8 

mL) was added to the mixture which was stirred under argon pressure at 0º C for 

                                                 
52 Xu, L.; Bittman R. J. Org. Chem, 2005, 70, 4746-4750. 
53 Bernardes, G. J. L.; Thompson, S.; Chalker, J. M.; Errey, J. C.; El Oualid, F.; Claridge, T. D. 
W.; Davis, B. G.; Grayson, E. J., Angew. Chem. Int. Ed. 2008, 47, 2244-2247. 
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3 h. The reaction was quenched by adding TEA (0.3 mL) and it was filtered 

through a pad of Celite. The residue was purified by column chromatography 

(silica gel, ethyl acetate/ hexane from 3:7 to 1:2 v/v) to give 5.38 (646 mg, 

67%): Rf (EtOAc/Hexane 1:1): 0.39; [α]D
20: -12.0º (c = 1.7, CHCl3);

1H NMR 

(CDCl3, 400 MHz) δ in ppm: 5.39 (d, J4’-3’ = 3.2 Hz, 1H, H-4’), 5.24 (dd, J2’-3’ = 

10.4 Hz, J2’-1’ = 8.0 Hz, 1H, H-2’), 5.02 (dd, J3’-2’ = 10.4 Hz, J3’-4’ = 3.2 Hz, 1H, 

H-3’), 4.55 (d, J1’-2’ = 8.0 Hz, 1H, H-1’), 4.20-4.10 (m, 2H, H-6a’, H-6b’), 4.04 

(ddd, J1a-1b = 10.8 Hz, J1a-2b = 4.4 Hz, J1a-2a = 3.6 Hz, 1H, H-1a), 3.92 (dd, J5’-6a’ 

= 7.2 Hz,  J5’-6b’ = 6.4 Hz, 1H, H-5’), 3.69 (ddd, J1b-1a = 10.8 Hz, J1b-2a = 8.8 Hz, 

J1b-2b = 3.2 Hz, 1H, H-1b), 3.50 (ddd, J2a-2b = 13.2 Hz, J2a-1b = 8.8 Hz, J2a-1a = 3.6 

Hz, 1H, H-2a), 3.28 (ddd, J2b-2a = 13.2 Hz, J2b-1a = 4.4 Hz, J2b-1b = 3.2 Hz, 1H, H-

2b), 2.15 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.04 (s, 3H, CH3), 1.98  (s, 3H, 

CH3);
13C NMR (CDCl3, 100.3 MHz) δ in ppm: 170.6 (C=O), 170.4 (C=O), 

170.3 (C=O), 169.7 (C=O), 101.3 (C-1’), 71.1 (C-3’), 71.0 (C-5’), 68.7 (C-2’), 

68.6 (C-1), 67.2 (C-4’), 61.4 (C-6’), 50.7 (C-2), 21.0 (CH3), 20.9 (CH3), 20.8 

(CH3), 20.7 (CH3); FT-IR (ATR) ν in cm
-1: 2915, 1741, 1469, 1372, 1224, 1135, 

1087, 1057, 630; HRMS (TOF ES+) for (M+Na) C16H23N3NaO10 (m/z): calc. 

440.1276; found 440.1267. 

 

1-O-(2-Aminoethyl)-(2,3,4,6-tetra-O-acetyl)-β-D-galactopyranoside (5.42) 

 

 
 

A suspension of Pd 10 % over C (85 mg) and the glycoside 5.38 (337 mg, 0.806 

mmol) was prepared in anhydrous degassed THF (10 mL). The suspension was 

introduced to a low pressured reactor and the reaction was stirred under H2 

pressure (5 bar) at room temperature for 18 h. The crude was filtered though a 

pad of Celite to yield 5.42 as a syrup (315 mg, 99%) without further 

purification: Rf (MeOH/EtOAc/ 1:9): 0.11; [α]D
20: +13.0º (0.59, CH2Cl2);

1H 

NMR (CDCl3, 400 MHz) δ in ppm: 5.31 (d, J4’-3’ = 2.4 Hz, 1H, H-4’), 5.12 (dd, 

J2’-3’ = 10.4 Hz, J2’-1’ = 8.0 Hz, 1H, H-2’), 4.94 (dd, J3’-2’ = 10.4 Hz, J3’-4’ = 3.2 

Hz, 1H, H-3’), 4.43 (d, J1’-2’ = 8.0 Hz, 1H, H-1’), 4.10-4.00 (m, 2H, H-6a’, H-

6b’), 3.88 (m, 2H, H-5’, H-1a), 3.54-3.49 (ddd, J1b-1a = 10.4 Hz, J1b-2a = 7.2 Hz, 
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J 1b,2b= 4.0 Hz, 1H, H-1b), 2.87-2.73 (m, 2H, H-2a, H-2b), 2.37 (bs, 2H, NH2), 

2.10 (s, 3H, CH3), 2.01 (s, 3H, CH3), 1.98 (s, 3H, CH3), 1.92  (s, 3H, CH3);
13C 

NMR (CDCl3, 100.3 MHz) δ in ppm: 170.4 (C=O), 170.2 (C=O), 170.1 (C=O), 

169.5 (C=O), 101.5 (C-1’), 70.8 (C-3’), 70.6 (C-5’), 68.7 (C-2’), 68.6 (C-1), 

67.0 (C-4’), 61.3 (C-6’), 41.6 (C-2), 20.8 (CH3), 20.7 (2CH3), 20.6 (CH3); FT-IR 

(ATR) ν in cm-1: 3386, 1744, 1657, 1244, 1134, 1054, 760, 629; HRMS (TOF 

ES+) for (M+H) C16H26NO10 (m/z): calc. 392.1551; found 392.1554. 

 

1-O-(2-(16-azidohexadecanamido)ethyl)-(2,3,4,6-tetra-O-acetyl)-β-D-

galactopyranoside (5.43) 

 

 
 

To a solution of 16-azidohexadecanoic acid35 2.29 (240 mg, 0.806 mmol) and 

glycoside 5.42 (315 mg, 0.806 mmol) in anhydrous DCM (5 mL) was added 

HOBt (131 mg, 0.967 mmol), EDC (185.4 mg, 0.967 mmol), and DIPEA (313 

µL, 1.818 mmol). The reaction mixture was stirred at room temperature for 24h 

and then concentrated in vacuo. The residue was purified by column 

chromatography (silica gel, MeOH/EtOAc/hexane 1:2:7 v/v) to give 5.43 as 

syrup (305 mg, 56%): Rf (MeOH/EtOAc/Hexane 1:3:6): 0.20; [α]D
20: +2.1º 

(0.24, CHCl3);
1H NMR (CDCl3, 400 MHz) δ in ppm: 5.37 (dd, J4’’-3’’ = 3.6 Hz, 

J4’’-5’’ = 1.2 Hz, 1H, H-4’’), 5.16 (dd, J2’’-3’’ = 10.4 Hz, J2’’-1’’ = 8.0 Hz, 1H, H-

2’’), 4.99 (dd, J3’’-2’’ = 10.4 Hz, J3’’-4’’ = 3.6 Hz, 1H, H-3’’), 4.44 (d, J1’’-2’’ = 8.0, 

1H, H-1’’), 4.18-4.07 (m, 2H, H-6a’’, H-6b’’), 3.90 (ddd, J5’’-6a’’ = 7.6 Hz, J5’’-

6b’’ = 6.4 Hz, J5’’-4’’ = 1.2 Hz, 1H, H-5’’), 3.86-3.82 (m, 1H, H-2a’), 3.68-3.63 

(m, 1H, H-2b’), 3.50-3.38 (m, 2H, H-1a’, H-1b’), 3.22 (t, J16-15 = 7.2 Hz, 2H, H-

16), 2.15-2.11 (m, 5H, H-2, CH3), 2.04 (s, 3H, CH3), 2.02 (s, 3H, CH3), 1.96 (s, 

3H, CH3), 1.60-1.54 (m, 4H, CH2), 1.33-1.22 (m, 22H, CH2);
13C NMR (CDCl3, 

100.3 MHz) δ in ppm:173.3 (HN-C=O), 170.5 (O-C=O), 170.3 (O-C=O), 170.2 

(O-C=O), 169.7 (O-C=O), 101.5 (C-1’’), 70.9 (C-5’’), 70.8 (C-3’’), 69.3 (C-2’), 

69.0 (C-2’’), 67.1 (C-4’’), 61.4 (C-6’’), 51.6 (C-16), 39.2 (C-1’), 36.8 (C-2), 

29.7-28.9 (CH2), 26.8 (CH2), 25.8 (CH2), 21.0 (CH3), 20.8 (CH3), 20.8 (CH3), 

20.7 (CH3); FT-IR (ATR) ν in cm
-1: 2922, 2853, 2096, 1754, 1651, 1248, 1059, 
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784; HRMS (TOF ES+) for (M+Na) C32H54N4NaO11 (m/z): calc. 693.3681; 

found 693.3676. 

 

1-O-(O-(2-azidoethyl)heptaethylene glycolyl)-(2,3,4,6-tetra-O-acetyl)-β-D-

galactopyranoside (5.45) 

 

O

AcO

AcO

AcO

OAc

O
N3

7

O

 
 

The 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide 2.46 (285.8 mg, 0.695 
mmol) was prepared as it is reported at the literature38 and then it was dried 

azeotropically with anhydrous toluene and kept at high vacuum for 2h. The 

promoter AgOTf (197 mg, 0.76 mmol) was dried azeotropically with anhydrous 

toluene and kept at high vacuum for 2h. After that, activated 4Å MS (285 mg) 

was added to the promoter and such mixture was stirred with a solution of O-(2-

azidoethyl)heptaethylene glycol 5.44 (250 mg, 0.632 mmol) in anhydrous 

acetonitrile (1 mL) under argon pressure at room temperature for 5 min. After 

that, a solution of 2.46 in anhydrous acetonitrile (1.5 mL) was added to the 

mixture which was stirred under argon pressure at room temperature for 24 h. 

The reaction was filtered though a pad of Celite and concentred. The residue 

was purified by column chromatography (silica gel, MeOH/AcOEt/hexane from 

1:3:6 to 1:6:3 v/v) to give 5.45 as syrup (348 mg, 76%): Rf 

(MeOH/EtOAc/Hexane 1:6:3): 0.17; [α]D
20: +31.0º (c = 0.9, CHCl3); 

1H NMR 

(CDCl3, 400 MHz) δ in ppm: 5.36 (dd, J4’-3’ = 3.6 Hz, J4’-5’ = 1.2 Hz, 1H, H-4’), 

5.15 (dd, J2’-3’ = 10.4 Hz,  J2’-1’ = 8.0 Hz, 1H, H-2’), 4.99 (dd, J3’-2’ = 10.4 Hz,  

J3’-4’ = 3.6 Hz, 1H, H-3’), 4.53 (dd, J1’-2’ = 8.0 Hz, 1H, H-1’), 4.13-4.06 (m, 2H, 

H-6a’, H6b’), 3.93-3.88 (m, 2H, H-5’, CH2O), 3.73-3.56 (m, 29H, H-CH2O), 

3.34 (t, J = 5.2 Hz, 2H, CH2N3), 2.12 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.03 (s, 

3H, CH3), 1.96 (s, 3H, CH3);
13C NMR (CDCl3, 100.3 MHz) δ in ppm: 170.6 

(C=O), 170.3 (C=O), 170.2 (C=O), 169.9 (C=O), 101.5 (C-1’), 70.9 (CH2O), 

70.7 (C-3’), 70.5 (C-5’), 70.4 (CH2O), 70.2 (CH2O), 70.1 (CH2O), 70.0 (CH2O), 

69.9 (CH2O), 69.2 (CH2O), 68.9 (C-2’), 67.1 (C-4’), 61.3 (C-6’), 50.7 (CH2N3), 

20.9 (CH3), 20.8 (CH3), 20.8 (CH3), 20.7 (CH3); FT-IR (ATR) ν in cm
-1: 2828, 
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2108, 1749, 1677, 1605, 1456, 1420, 1367, 1294, 1218, 1181, 915; HRMS (TOF 

ES+) for (M+Na) C30H51N3NaO17 (m/z): calc. 748.3111; found 748.3104. 

 

 

Hyperbranched polymer (5.48) 
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To a solution of 5-hexynoic acid 5.47 (2276 µL, 20.01 mmol) and dialysed 

Boltorn H30 5.46 (1060 mg, 0.294 mmol) in anhydrous DCM/DMF 1:1 (100 

mL) was added HOBt (2703 mg, 20.01 mmol), EDC (3835 mg, 20.01 mmol), 

and DIPEA (3335 µL, 20.01 mmol). The reaction mixture was stirred at room 

temperature for 5 days and then concentrated in vacuo. The reaction was 

purified by dialysis (benzoylated tube flat width 32 mm (1.27’’), DMF) for 3 

days changing the solvent each 8h to give 5.48 as a syrup (1069 mg, 71 %). The 

amount of the 5-hexynoate groups added to Boltorn H30 surface corresponded 

to an average valency of 16, which represented a functionalization 51% of OH 

surface, estimated by integration of signals at 1H NMR according to Fernández-

Francos and co-workers methodology:40 1H NMR (CDCl3, 400 MHz) δ in ppm: 

4.21-4.12 (m, 75H, H-1’), 3.65-3.35 (m, 32H, H-CH2OH), 2.41 (t, J = 6.8Hz, 

32H, H-2), 2.19 (td, J = 7.2Hz, J = 2.8 Hz, 32H, H-4), 1.95 (s, 16H, H-6), 1.77 

(at, J = 7.2 Hz, 32H, H-3), 1.22-1.18 (m, 55 H, H-3’);13C NMR (CDCl3, 100.6 

MHz) δ in ppm: 173.1, 172.6, 172.4, 172.2, 171.9, 83.2 (C-5), 69.7 (C-6), 66.0-

64.0 (C-1’), 48.7 (C-2’), 46.6-46.5 (C-2’), 32.7-32.6 (C-2), 23.6-23.5 (C-3), 

17.9-17.5 (C-3’, C-4); FT-IR (ATR) ν in cm-1: 3529, 3285, 2942, 1730, 1468, 

1380, 1237, 1130, 1053, 1011, 631; GPC-MS: Mn = 2478 g/mol, Mw = 6801 

g/mol, PDI = 2.78. 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Conclusions 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
GLYCOLIPIDS: SYNTHESIS AND MULTIVALENT SYSTEMS. 
Isidro Felipe Cobo Cardenete 
Dipòsit Legal: T 1662-2014



 217 

6.1. Conclusions 

 

After the discussion of the results presented along this work, we may conclude 

that:  

 

 

1. The use of highly disarmed glycosyl donors (2.27 and 2.45) permits a 

direct glycosylation of stannylceramides (2.35 and 2.36) reducing the 

overall number of synthetic steps by avoiding the orthoester formation 

and providing access to β-glycolipids in a good yield and with complete 

chemo- and stereoselectivity (Chaper 2). 

 

2. The time-course 
19
F NMR study for the reaction of highly disarmed 

glycosyl donor 2.27 with tributylstannyl acceptor 2.35 provided the first 

evidence for the formation of glycosyl triflates as reaction intermediates 

in protic acid medium (Chapter 2). 
1
H, 

13
C and bidimensional NMR 

spectroscopy at low temperature provided information about the 

configurations of glycosyl triflates identified by 
19
F NMR. The obtained 

data indicate that α-glycosyl triflate has a chair conformation 
4
C1 (2.27a) 

and β-glycosyl triflate adopts a distort chair 1C4 (2.27b’) (Chapter 2). 

 

3. The direct glycosylation of stannyl ceramide 3.17 with the 2-deoxy-2-

iodo glycosyl donor (3.16) was unsuccessful because of the side-

reactions occurring between Sn (IV) species with iodine moiety present 

on the glycosyl donor (3.16). However, direct glycosylation of 

azidosphingosine 3.22 with 2-deoxy-2-iodo glycosyl donor (3.16) and 

azidophytosphingosine 3.36 with 2-deoxy-2-iodo glycosyl donor (3.27) 

afforded the corresponding glycosides 3.23 and 3.43 respectively in high 

yield. In both cases complete stereoselectivities were obtained. After 

several transformations, the corresponding derivatives of 2-deoxy-β-
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GalCer 3.25 and 2-deoxy-2-iodo-α-TalCer 3.44 were obtained. (Chapter 

3).   

 

4. 2-Iodoglycals were efficiently obtained by elimination of the 

corresponding 2-deoxy-2-iodopyranoses with Ph2SO/Tf2O and TTBP 

under thermodynamic conditions (Chapter 4). 

 

5. A general catalytic strategy for the efficient synthesis of 2-C-arylglycals 

(4.11a-h, 4.12, 4.13 and 4.14) by phosphine-free Suzuki-Miyaura cross-

coupling of 2-iodoglycals in aqueous media using an inexpensive Pd 

catalyst has been developed. To the best of our knowledge this 

transformation represents the first transition metal catalized 2-C-

arylation of 2-haloglycals. The simplicity and relative mildness of this 

method allows the regioselective preparation of various 2-C-arylglycals 

with different configurations in excellent yields with no Ferrier or 2,3-

unsaturated by-products detected (Chapter 4). 

 

6. The elaboration of the 2-C-arylglycal moiety gives access to 2-C-aryl-2-

deoxy-1,5-anhydroalditols (4.16 and 4.17) and challenging quaternary 2-

C-aryl-α-glycosides (4.31, 4.32, 4.35 and 4.36) which will broaden the 

plethora of C-arylglycosides at positions different than C-1. (Chapter 4). 

 

7. A family of glycolipidic clusters (5.20, 5.22 and 5.54) was prepared by 

employing CuAAC reaction in order to test them as cholera toxin 

inhibitors. It was found that [Cu(CH3CN)4]OTf and TBTA catalytic 

system was more suitable than CuSO4·5H2O/Sodium ascorbate; the 

CuAAC reaction was enhanced by microwave heating due to relative 

stability of such compounds.  
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8. Hyperbranched polymers can be efficiently used as multivalent 

glyco(lipid) systems able to block cholera toxin binding with potential 

applications to other surface receptor-mediated diseases. The best 

multivalent compounds here studied (5.28 and 5.29) exhibited >50,000-

fold greater potency than monovalent galactose, providing a platform 

that mimic the natural GM1-enriched lipid domains. Furthermore, a 

systematic study on the effect of the length, number of lipophilic chains 

and polarity was carried out, being those conjugates possessing two long 

spacers superior inhibitors of the cholera toxin binding. 
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