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Abstract

Geometrical physics is a relatively young branch of applied mathematics that was initiated by the 60’s
and the 70’s when A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, among many others, began to
study various topics in physics using methods of differential geometry. This “geometrization” provides a
way to analyze the features of the physical systems from a global viewpoint, thus obtaining qualitative
properties that help us in the integration of the equations that describe them. Since then, there has
been a strong development in the intrinsic treatment of a variety of topics in theoretical physics, applied
mathematics and control theory using methods of differential geometry.

Most of the work done in geometrical physics since its first days has been devoted to study first-order
theories, that is, those theories whose physical information depends on (at most) first-order derivatives
of the generalized coordinates of position (velocities). However, there are theories in physics in which
the physical information depends explicitly on accelerations or higher-order derivatives of the general-
ized coordinates of position, and thus more sophisticated geometrical tools are needed to model them
accurately.

In this Ph.D. Thesis we pretend to give a geometrical description of some of these higher-order
theories. In particular, we focus on dynamical systems and field theories whose dynamical information
can be given in terms of a Lagrangian function, or a Hamiltonian that admits Lagrangian counterpart.
More precisely, we will use the Lagrangian-Hamiltonian unified approach in order to develop a geometric
framework for higher-order autonomous and non-autonomous dynamical system, and for second-order
field theories. This geometric framework will be used to study several relevant physical examples and
applications, such as the Hamilton-Jacobi theory for higher-order mechanical systems, relativistic spin
particles and deformation problems in mechanics, and the Korteweg-de Vries equation and other systems
in field theory.

Keywords: Higher-order autonomous and non-autonomous dynamical systems. Higher-order field the-
ory. Hamilton-Jacobi equations. Variational principles. Skinner-Rusk formalism. Lagrangian and Hamil-
tonian formalisms. Symplectic, presymplectic and multisymplectic manifolds.

MSC2010: 70H50, 70H03, 70H05, 70H20, 53D42, 53C15, 53C80, 35A15, 35G99, 37B55, 55R10.
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Introduction

Geometric mechanics: motivation and historical note

Historically, the research in dynamical systems (including mechanical ones) had a major impact on other
areas of mathematics and physics as well as in the development of various engineering technologies. Most
of these advances have been based on applied numerical and analytical methods. However, in the 60’s,
more sophisticated and powerful techniques were introduced in this area when A. Lichnerowicz [105] [106],
J.M. Souriau [142], and W.M. Tulczyjew [143] 144 [145], among many others, began to study various
topics in physics using methods of modern differential geometry.

This process of “geometrization” provides a natural framework where the features of the physical
systems can be analyzed from a global viewpoint. That is, equations, constraints and solutions are
translated to global and intrinsically defined geometric objects, and the particularities of each structure
become well-known properties of the geometric object being considered. This enables us to establish a
correspondence “physics <> geometry”. Some examples of this correspondence are the following:

e Differential equations defining a physical system are vector fields in the phase space of the system.

e Symmetries are identified with actions of Lie groups on the manifold that models the phase space
of the system.

e The regularity or singularity of dynamical systems is characterized by the (non)-degeneracy of a
form in the phase space.

e Constraints arising in the physical system give rise to submanifolds on the phase space of the system.

e Canonical transformations are fiber bundle isomorphisms between two phase spaces that preserve
the geometrical objects (usually, symplectomorphisms).

Because of this, in recent decades, a strong development in the intrinsic study of a wide variety of
topics in theoretical physics, control theory and applied mathematics has been done, using methods of
differential geometry [II, 4, [64]. Thus, the intrinsic formulation of Lagrangian and Hamiltonian formalisms
has been developed for autonomous and non-autonomous systems, as well as field theories. This study has
been carried out mainly for first-order theories; that is, those whose Lagrangian or Hamiltonian functions
depend on the generalized coordinates of position and velocity (or momentum). From the geometric point
of view, this means that the phase space of the system is in most cases a tangent (or cotangent) bundle
for autonomous dynamical systems, or a first-order jet bundle (or the corresponding bundle of forms) for
non-autonomous dynamical systems and field theories.

Higher-order dynamical systems and field theories

Although the geometric study of physical systems has been carried out mainly for first-order theories,
there are a significant number of relevant dynamical systems and field theories in which the dynamics
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have explicit dependence on accelerations or higher-order derivatives of the generalized coordinates of
position. These theories, usually called higher-order dynamical systems and higher-order field theories,
respectively, can be modeled geometrically using higher-order tangent and jet bundles as the main tool
[62, [138]. In recent years, much work has been devoted to the development of geometric formalisms for
these kind of theories (see, for instance, [2, 177, 25 [62, 92, 93] 102] 140], and references therein).

Higher-order dynamical systems play a relevant role in certain branches of theoretical physics, applied
mathematics and numerical analysis. In particular, they appear in theoretical physics, in the mathemat-
ical description of the interaction of relativistic particles with spin, string theories, from Polyakov and
others, Hilbert’s Lagrangian for gravitation, Podolsky’s generalization of electromagnetism and others
[9, 120, 127, 128 154], as well as in some problems of fluid mechanics and classical physics (see, for
instance, the regular example in [I31] taken from [80]), and in numerical models arising from the dis-
cretization of first-order dynamical systems that preserve their inherent geometric structures [58]. In these
kinds of systems, the dynamics have explicit dependence on accelerations or higher-order derivatives of
the generalized coordinates of position.

Nevertheless, although the geometrization of both higher-order Lagrangian and Hamiltonian for-
malisms was already developed for autonomous mechanical systems [17, [62], [92], a complete generalization
to higher-order non-autonomous dynamical systems had yet to be developed.

For field theories, there have been some works giving a geometric formulation of higher-order field
theories [I5] [149] using a Skinner-Rusk approach (which is described in the following). However, ambi-
guities in the definition of the Poincaré-Cartan form arise when dealing with higher-order field theories,
that is, given a Lagrangian density, there are non-equivalent Poincaré-Cartan forms from which we obtain
the same Euler-Lagrange equations. Thus, due to its definition, these ambiguities in the Poincaré-Cartan
form are transferred to the Legendre map, thus obtaining “different” Legendre maps for the same field
theory. Up to our knowledge, the only unambiguous geometric formulations for higher-order field theories
are those of first and second order field theories, and those on which the base manifold has dimension
1 (which corresponds to non-autonomous mechanics), regardless of the order [I5]. Another approach is
dealing with jet bundles of infinite order [149].

Skinner-Rusk formalism

A generalization of the Lagrangian and Hamiltonian formalisms exists that compresses them into a single
formalism. This is the so-called Lagrangian-Hamiltonian unified formalism, or Skinner-Rusk formalism
due to the authors’ names of the original paper. It was originally developed for first-order autonomous
mechanical systems [I41], and later generalized to non-autonomous dynamical systems [7, 39], control
systems [6], first-order classical field theories [49] [70] and, more recently, to higher-order classical field
theories [15] [149).

As we show in Section [2.1.3] in autonomous first-order dynamical systems, this formulation is based
on the use of the Whitney sum of the tangent and cotangent bundles W = TQ x o T*Q (the velocity and
momentum phase spaces of the system). Observe that W has obviously higher dimension than TQ and
T*Q, and it is endowed with canonical projections over each factor and the configuration manifold.

The bundle W is endowed with a canonical presymplectic form €2, which is the pull-back of the
canonical symplectic form in T*Q. Then, given a Lagrangian function £ € C*°(TQ), a Hamiltonian
function H € C*°(W) is determined, and we obtain a presymplectic Hamiltonian system (W,Q, H).
Thus, the standard geometric equation for a presymplectic Hamiltonian system, §(X)Q2 = dH, can be
stated, and the vector field X solution to this equation gives the dynamics of the system.

Some advantages of this unified framework are the following:

1. The equations p; = dL/0v® defining the momenta (and, thus, the Legendre map FL) are obtained
as constraints from the compatibility condition.
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2. The dynamical equation contains the second-order condition v* = dq’/dt for the Lagrangian vector
field without any additional assumption, regardless of the regularity of the Lagrangian function.

3. The first constraint submanifold W, is diffeomorphic to TQ, thus allowing us to recover the La-
grangian formalism (structures, equations and solutions) from the unified one.

4. The Legendre map, obtained from the dynamical equations, and the canonical projection on T*Q
allow us to recover the Hamiltonian formalism, including constraints (if £ is singular).

Accordingly, the Skinner-Rusk formalism provides a suitable framework when dealing with dynamical
systems described by singular Lagrangian functions, and allows us to obtain both the Lagrangian and
Hamiltonian formalisms in a single geometrical equation, recovering each formalism to our convenience.

On the other hand, the main drawback of this formulation is that the Hamiltonian system (W, 2, H)
is always presymplectic, since the 2-form in W is defined as the pull-back of the symplectic form in T*Q
by a submersion with non-zero kernel. Thus, a constraint algorithm is needed in order to obtain the first
constraint submanifold [88], [89, 90] (see also [44l [46] for formulations in jet bundles), and the tangency
condition for the vector field solution to the dynamical equation must be checked at least once, even if
the Lagrangian function is regular.

As we see in Chapter in a more general situation (higher-order systems, non-autonomous dynamical
systems or field theories), TQ and T*Q@ are replaced by the corresponding Lagrangian and Hamiltonian
phase spaces, respectively, and W is the fiber product of those. In addition, the presymplectic form €2 is
the pull-back of the corresponding non-degenerate form in the Hamiltonian phase space (cosymplectic in
non-autonomous mechanics and multisymplectic in field theories). Some technical issues are also needed
in order to obtain the dynamical equations or the field equations.

Geometric Hamilton-Jacobi theory

The Hamilton-Jacobi theory provides an important physical example of the deep connection between
first-order partial differential equations and systems of first-order ordinary differential equations. It is
well-known [98], [T03] that the Hamilton-Jacobi equation for a first-order autonomous Hamiltonian function
H, with n degrees of freedom, can be written as

H <qA, g;:‘) = const .

Its complete solution depends on n arbitrary parameters (and one additive constant), W = W (q¢?,pa) +
c. The function W(g4,p4) can be considered as a generating function of a canonical transformation
U (qAapA) = (qAaﬁA); that iS,
ow 4 ow
o= — 4 ) a4 - ba.
Opa dq
This transformation leads the system to equilibrium (H = 0), and hence the Hamilton equations for the
new coordinates are trivial
dpa 0 - dg*
d 7 dt

From these equations, and using W (q*,5.4), the dynamical solution (¢*(t), pa(t)) is obtained.

=0.

From a more geometrical point of view, the transformation W can be associated with a foliation in
the cotangent bundle T*@Q, which constitutes the phase space of the system. This foliation is transversal
to the fibers of T*Q, is invariant under the dynamical evolution, and is Lagrangian with respect to the
canonical symplectic structure of T*@Q. In some particular situations (for instance, when dealing with
bihamiltonian systems) the second aspect can be ignored (and then we obtain the so-called “generalized
Hamilton-Jacobi problem”). On each leaf Sy of that foliation, the Hamiltonian dynamical vector field X},
defines a vector field Xy , and each of these gives rise to a vector field X on the base ). The integral

3
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curves of X provide the integral curves of X}| sy, While the integral curves of all the set {X} provide
all the integral curves of Xj. All these considerations can be made in the same way for the Lagrangian
formalism.

The geometrical setting for Hamilton-Jacobi theory was pointed out in several works [Il 10} [67, BT,
107, 110], and has been finally established in [23] for first-order autonomous systems, both in the regular
case and in constrained systems. More recently, it has been generalized to nonholonomic dynamical
systems [24} [50] 97, [122], discrete mechanics [121], Lie affgebroids [112] and field theories [56, 66] 148, 150].
Nowadays, a geometrical Hamilton-Jacobi theory for singular systems has been developed using a Skinner-
Rusk approach [60]. However, up to our knowledge, there is not a definitive Hamilton-Jacobi theory for
higher-order systems, not even a non-geometrical one.

Structure of the dissertation

This dissertation is structured in 6 Chapters. The first two Chapters review the mathematical and
physical backgrounds needed, and fix the notation used along the rest of the dissertation. The last four
Chapters contain the main original contributions. A reader which is familiar with the geometric tools and
formulations, and with the notation, can skip the first two Chapters and start with the main contributions
of the thesis, in Chapter

Chapter[1]is devoted to introduce the main mathematical tools needed to give a geometric description
of a physical theory. In particular, the concepts of symplectic, cosymplectic and multisymplectic manifolds
are introduced, as well as jet bundles, higher-order tangent bundles and multivector fields. In addition,
a purely geometric description of the classical constraint algorithm is given.

The second review, now focused on the background in mathematical physics, is found in Chapter
where the geometric formulations of several different theories are reviewed in detail. In particular, we
give the geometric Lagrangian and Hamiltonian formalisms of first-order dynamical systems, both in the
autonomous and non-autonomous cases; higher-order autonomous systems, first-order Hamilton-Jacobi
theory, and first-order field theories. In addition, we also review the Lagrangian-Hamiltonian formalism of
first-order dynamical systems (again, both in the autonomous and non-autonomous cases) and first-order
field theories.

Main contributions of the thesis begin in Chapter [] where we give the Lagrangian-Hamiltonian
formalism for higher-order autonomous dynamical systems. In addition, we recover both the Lagrangian
and Hamiltonian formalisms for higher-order autonomous systems from the unified setting, following the
patterns of the original work [I41] by R. Skinner and R. Rusk, which is reviewed in the previous Chapter.
In this way we prove that our results are consistent with the Lagrangian and Hamiltonian formalisms for
higher-order autonomous systems described by M. de Leén and P.R. Rodrigues in [62], which have been
reviewed in the previous Chapter. Finally, two physical models are analyzed to show the application of
the formalism: the Pais-Uhlenbeck oscillator and a second-order relativistic particle.

Next, Chapter [4|is devoted to generalize the geometric formulation of the Hamilton-Jacobi theory [23]
to higher-order autonomous dynamical systems. More particularly, starting from the Lagrangian and
Hamiltonian formalisms for higher-order dynamical systems [62], we generalize the construction in [23]
to higher-order autonomous systems described by regular Lagrangian functions. In addition, using the
results of Chapter [3] we also establish the unified formulation of the Hamilton-Jacobi problem for these
systems, as a first-step to study the case of singular Lagrangian functions in further research. Finally,
two regular examples are analyzed to illustrate the features of all the three formulations: the end of a
thrown javelin and the shape of a homogeneous deformed elastic cylindrical beam with fixed ends.

In Chapter [f] we combine the geometric Lagrangian-Hamiltonian unified formalism for higher-order
non-autonomous systems [7] with the geometric formulations for higher-order autonomous systems in [62]
and Chapter [3|to state the Lagrangian-Hamiltonian formalism for higher-order non-autonomous systems.
From this unified setting, and following the patterns in Chapter 3| we derive a complete description of
both the Lagrangian and Hamiltonian formalisms for these systems. In addition, two physical models
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are studied using our formulations: the shape of a non-homogeneous deformed elastic cylindrical beam
with fixed ends and a second-order relativistic particle subjected to a time dependent potential.

Finally, Chapter [] focuses on giving an unambiguous geometric formulation of second-order field theo-
ries using a similar approach as in Chapter[5} we first state the Lagrangian-Hamiltonian unified formalism
for these theories, and then we derive both the Lagrangian and Hamiltonian formalisms from the unified
setting. This formulation removes all the usual ambiguities of a second-order field theory introducing a
relation of symmetry among the highest-order multimomentum coordinates. As a consequence of this, a
unique Legendre map is obtained from the constraint algorithm and, therefore, a unique Poincaré-Cartan
is obtained to state the Lagrangian formalism for second-order field theories. In addition, some com-
ments on the general higher-order case are given. Finally, two physical models are studied with these
formulations: the bending of a clamped plate under a uniform load and the classic Korteweg—de Vries
equation.

Observe that, except for Chapter [4) where only the regular case is analyzed, there is a regular and a
singular example in every Chapter.

All the manifolds are connected, second countable and C*°. The maps and the structures are assumed
to be C°°. Summation over crossed repeated indexes is understood, although on some occasions the
symbol of summation is written explicitly in order to avoid confusion.






Chapter 1

Mathematical background

In this first Chapter we review the main mathematical tools used along this dissertation: definitions,
main results and, in some cases, fundamental examples that will be used further. This Chapter will also
be useful to fix the common notation along different Chapters. Since this is a review Chapter, no proofs
are given: several references containing proofs and details are included at the beginning of each Section.
Note that only the results used in further Chapters are given, and therefore this Chapter should not be
considered as a thorough introduction to any of the topics given.

The structure of this Chapter is the following: Section [L.1]introduces the concept of symplectic forms,
that is, nondegenerate closed 2-forms on a manifold, as well as consequences of having such a form on a
manifold, and several geometric structures derived from it. Sections[I:2] and [I.3]introduce generalizations
of the concept of symplectic form to odd-dimensional manifolds and forms of degree greater than 2,
respectively. Sections and generalize the tangent bundle of a manifold to consider derivatives of
higher-order and with respect to more than one independent variable. In Section we introduce the
concept of multivector fields as skew-symmetric contravariant tensors of arbitrary degree on a manifold,
in an analogous way to differential forms of higher degree. Finally, Section [I.7] is devoted to study the
problem of solving a geometric equation of the type i(X)w = a, when the form w is degenerate.

1.1 Symplectic geometry

In this first section we introduce the basic concepts on symplectic manifolds. Many references introduce
the foundations on symplectic manifolds. For details and proofs, see, for example, [T}, 16, 104 15T, 152)
(among others).

Throughout this Section, M will denote a finite-dimensional smooth manifold.

1.1.1 Symplectic forms. Darboux’s Theorem. Symplectomorphisms

Definition 1.1. A symplectic form in M is a closed 2-form w € Q?(M) which is nondegenerate, that
is, for every p € M, i(X,)w, = 0 if, and only if, X, = 0. If w is closed and degenerate, it is called a
presymplectic form. A symplectic manifold (resp., a presymplectic manifold) is a couple (M,w), where
M is a smooth manifold and w is a symplectic form (resp., a presymplectic form).

Remark. If (M,w) is a symplectic manifold, then the nondegeneracy of w implies that M has even

dimension, that is, dim M = 2n. O

The fundamental result in symplectic geometry is Darboux’s Theorem, which gives a local model for
every symplectic manifold.
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Theorem 1.1 (Darboux). Let (M,w) be a 2n-dimensional symplectic manifold. Then for every p € M
there exists a local chart (U; (z%,y;)) on p, with 1 < i < n, such that the coordinate expression of w in
this local chart is

wly =dz' Ady;.

Such a local chart is called Darboux, symplectic or canonical chart, and its coordinates are called Dar-
boux, symplectic or canonical coordinates.

Remark. There is a similar result for presymplectic manifolds. Indeed, if (M,w) is a (2n+k)-dimensional
presymplectic manifold and rank(w) = 2n, then for every p € M there exists a local chart (U; (x*,y;, 27))
on p, with 1 <47 < n and 1 < j <k, such that the coordinate expression of w in this local chart is

wly =da" Ady; .

Finally, we define morphisms between symplectic manifolds.

Definition 1.2. Let (M;y,w1) and (My,ws) be two symplectic manifolds. A symplectic map is a smooth
map ®: My — My such that ®*ws = wy. If, in addition, ® is a diffeomorphism then it is called a
symplectomorphism.

Example 1.1 (The cotangent bundle). Let @ be a n-dimensional smooth manifold, and consider its
cotangent bundle T*Q. We define a 1-form 6 € Q'(T*Q) by

0o (Xa) = a((ToﬂrQ)(Xa)) )

where X, € To(T*Q) and o € T*Q. This 1-form is called the Liouville 1-form, or also canonical or
tautological 1-form in T*Q. We now define on T*Q the canonical 2-form

w=—do, (1.1)

which is nondegenerate, and thus symplectic. It is called the Liouville 2-form, or also the canonical
symplectic form of the cotangent bundle.

In coordinates, if (¢4), 1 < A < n are local coordinates in @, then the induced local coordinates in
T*Q are (¢*,pa). Then the local expression of the tautological form is

0 = padg?, (1.2)
from where the coordinate expression of the canonical symplectic form of T*Q is
w=dg* Adpy. (1.3)
Observe that the natural coordinates of the cotangent bundle coincide with the Darboux coordinates.

Remark. Notice that, from Darboux’s Theorem, every symplectic manifold is locally symplectomorphic
to a cotangent bundle. O

1.1.2 Canonical isomorphism. Hamiltonian vector fields

Given a 2-form w € Q2(M), we can define a linear bundle morphism between the tangent and cotangent
bundles of M as follows
Ww:TM — T'M
(p,vp) — (pyi(vp)wp)
This bundle morphism is extended to the modules of vector fields and 1-forms in a natural way, obtaining
the following morphism of C'°°(M)-modules (which, in an abuse of notation, we also denote by w”)

W X(M) — QY M)
X — i(X)w

Now, given a 2n-dimensional smooth manifold and a closed form w € Q?(M), it is clear that w is
nondegenerate (that is, symplectic) if, and only if, the map w” is an isomorphism.

8
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Remark. If M has infinite dimension, then the map w” can be injective but not bijective. In this case, it
is said that w is weakly nondegenerate (resp., strong nondegenerate) if, and only if, w’ is injective (resp.,
bijective), and therefore we have weak and strong symplectic forms. %

Definition 1.3. If (M,w) is a symplectic manifold, the map w’: X(M) — QY(M) defined above is the
canonical isomorphism, or also musical or flat isomorphism. Its inverse is denoted w: QY (M) — X(M),
and is called sharp isomorphism.

Now, given a symplectic manifold (M,w), every function f € C°°(M) has a unique vector field
X € X(M) associated to it using the map wf o d: C®(M) — X(M), that is, X is defined explicitly by
Xy = wh(df), or implicitly as the solution to the equation

i(Xp)w =df . (1.4)

Remark. Notice that the map wf od is not injective neither surjective. It is clear that it is not injective
since two functions differing in a constant have the same exterior derivative, and therefore the same
associated vector field. On the other hand, it is not surjective since, even if the sharp isomorphism gives
a one-to-one correspondence between 1-forms and vector fields, the 1-form obtained may not be exact (in
general, not even closed). O

As a consequence of this remark, we can give the following definition.

Definition 1.4. Let (M,w) be a symplectic manifold. A vector field X € X(M) is a (global) Hamiltonian
vector field if the 1-form i(X)w is exact. In this case, the function f € C°(M) satisfying i(X)w = df
is the (global) Hamiltonian function of the vector field X .

Remark. Usually, the function f € C*°(M) is given, and we must look for the vector field X € X(M)
solution to ([1.4). In this cases, we refer to Xy as the “Hamiltonian vector field associated to f”. O

Remark. There is a less restrictive definition of Hamiltonian vector fields, which comes from lessening
the condition of §(X)w being an exact 1-form to just a closed 1-form. These vector fields are called local
Hamiltonian vector fields, and the local function f satisfying locally , which exists due to Poincaré’s
Lemma, is the local Hamiltonian function. O

In coordinates, let (U; (%, y;)), 1 < i < n, be a symplectic chart on M. In these coordinates, a generic
vector field and the exterior derivative of any function are given by

B B of . of
B df = g
o Pigy V=T Ty,

Then, the vector field X is a Hamiltonian vector field for f if the following system of 2n equations holds

Lo o

X=A

dyi .

Al = i =5
y; ' ox?

that is, if X is given by
of 0 af o

- Oy; Ozt Oz By;
Finally, if v(t) = (2(t),y:(t)) is an integral curve of X, then its component functions must satisfy the
following system of 2n ordinary differential equations

i Of . of
xr = o ;

(1.5)

= = ——"—0
Dy Y5 Y Oz v

which are called Hamilton equations of the Hamiltonian vector field.

Remark. Observe that if v: R — M is an integral curve of a Hamiltonian vector field X associated to
a function f, that is, we have 4 = X o+, then the curve v must satisfy the following geometric equation

i(V)(woy) =d(fen),
which is the analogous to equation (|1.4)) for curves. O
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1.1.3 Isotropic, coisotropic and Lagrangian submanifolds

The existence of a nondegenerate 2-form on symplectic manifolds enables us to define some particular
submanifolds since, in some sense, the symplectic form may be seen as a skew-symmetric “inner product”
on the tangent bundle of the manifold, in an analogous way to the case of a metric tensor. This allows
us to give the following definition.

Definition 1.5. Let (M,w) be a symplectic manifold, and F C TM a vector subbundle. The w-orthogonal
of F, or symplectic orthogonal, is the subbundle F~ C TM defined as

Ft= {(p,up) € TM | wp(up,vp) =0 for every (p,v,) € F} .

Once the symplectic orthogonal of a subbundle is defined, we can “classify” the subbundles of TM in
three classes, depending whether they contain their symplectic orthogonal, they are contained in it, or
they are exactly the same subbundle.

Definition 1.6. Let (M,w) be a symplectic manifold, and F C TM a vector subbundle of TM.

1. F is an isotropic subbundle if F C F*, that is, wy,(up,vy) = 0 for all (p,uyp), (p,v,) € F.

2. F is a coisotropic subbundle if F O FL, that is, wp(up,vp) = 0 for every (p,v,) € F implies
(p,up) € F.

3. F is a Lagrangian subbundle if F = F'*, that is, if F is both an isotropic and coisotropic subbundle.

Finally, the definition of isotropic, coisotropic and Lagrangian subbundles is generalized to immersed
submanifolds as follows.

Definition 1.7. Let (M,w) be a symplectic manifold, and N — M a submanifold with canonical embed-
ding i: N — M. Let us consider the subbundle Ti(TN) C TM.

1. N is an isotropic immersed submanifold if Ti(TN) is an isotropic subbundle.
2. N is a coisotropic immersed submanifold if Ti(TN) is a coisotropic subbundle.
3. N is a Lagrangian immersed submanifold if Ti(TN) is a Lagrangian subbundle.

Remark. In the following, we will call an isotropic (resp., coisotropic, Lagrangian) immersed submanifold
simply as an isotropic (resp., coisotropic, Lagrangian) submanifold. %

Remark. If the 2-form w is presymplectic (that is, closed and degenerate), we are still able to define
the (pre)symplectic orthogonal with respect to w, exactly in the same way, and the notions of isotropic,
coisotropic and Lagrangian submanifolds are defined analogously. See [86] for details. %

Finally, some characterizations of both isotropic and Lagrangian submanifolds are the following.
Lemma 1.2. A submanifold i: N < M is isotropic if, and only if, i*w = 0.

Proposition 1.3. Let (M,w) be a symplectic manifold, and N — M an embedded submanifold. Then,
the following assertions are equivalent:

1. N is a Lagrangian submanifold of (M,w).
2. N 1is an isotropic submanifold with dim N = %dim M.
3. N is an isotropic submanifold and TN admits an isotropic complement, that is, there exists an

isotropic subbundle E C TM]|, such that TM|y =TN & E.

10
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Example 1.2 (The graph of a closed 1-form). Let @ be a n-dimensional smooth manifold, and let us
consider the cotangent bundle of @, endowed with the canonical symplectic form w € Q?(T*Q), as we
have seen in Example Let a € Q1(Q) be a 1-form on Q. Then, the submanifold Im(a) < T*Q is a
Lagrangian submanifold of (T*Q,w) if, and only if, « is closed.

In order to prove this, first observe that the canonical embedding Im(«) < T*Q may be identified
with the 1-form « itself. Then, from the definition of the Liouville 1-form § € Q'(T*Q), we have a*0 = a,
and therefore

o*w = a*(—=df) = —da*f = —da,

which proves that Im(«) is an isotropic submanifold of T*@ if, and only if, « is closed. However, since
dimIm(a) = n = § dim T*Q, this is equivalent to Im(«) being a Lagrangian submanifold of T*Q.

1.1.4 Poisson bracket

In a symplectic manifold, the symplectic form induces in a natural way some well-known operations in
analytical mechanics.

Definition 1.8. Let (M,w) be a symplectic manifold. The Poisson bracket (induced by w) of two func-
tions f,g € C(M) is the bilinear map defined as
{1 C=(M) x C=(M) — C*(M)
(f.9) — A{f.g}

where {f, g} = w(Xy, Xy) = i(Xy)i(Xy)w, and Xy, X, € X(M) are the Hamiltonian vector fields asso-
ciated to f and g, respectively.

(1.6)

The Poisson bracket satisfies the following properties:

1. Skew-symmetric: {f,g} = —{g, f}.
2. Jacobi identity: {f,{g,h}} +{g,{h, f}} +{h,{f,9}} =0.

3. {f,9} = L(Xy)f = —L(Xy)g-
4. Xis.9y = [Xg, Xy], where [-,-]: X(M) x X(M) — X(M) is the usual Lie bracket of vector fields.
Remarks.

e From properties 1 and 2 we conclude that (C*°(M),{-,-}) is a Lie algebra. On the other hand,
from the fourth property there exists an antihomomorphism of Lie algebras between (X(M),[-,-])
and (COO(M)v{v}) O

e The Poisson bracket can be extended to the set of differential 1-forms using the canonical isomor-
phisms. In particular, the Poisson bracket of 1-forms is the bilinear map

() QUM) x QYM) — QY(M)
(@, 5) +— {a,f}

defined by {a, } = w’([w(a),wt(B)]). 0

In coordinates, let (U; (z%,v;)), 1 < i < n, be a symplectic chart on M. Bearing in mind the local
expression on a Darboux chart ((1.5)) of the Hamiltonian vector field associated to a function f, we have
that the local expression of the Poisson bracket of two functions f and g is

of dg  0f 9y

{f’g}:%aﬂ_a@%' (1~7)

11
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1.2 Cosymplectic geometry

Cosymplectic geometry is the natural extension of symplectic geometry to odd-dimensional manifolds.
For details and proofs, see, for example, [211, 26| 65] [146].

Through this Section, M will denote an odd-dimensional smooth manifold, that is, dim M = 2n + 1.

1.2.1 Cosymplectic structures. Darboux’s Theorem

Definition 1.9. A cosymplectic structure on an odd-dimensional smooth manifold M is a pair (w,n),
where w € Q*(M) and n € QY (M) are both closed forms, such that the exterior product (A"w)An = w"An
is a volume form on M. If this last condition fails, then (w,n) 4s a precosymplectic structure. A
(pre)cosymplectic manifold is an odd-dimensional smooth manifold endowed with a (pre)cosymplectic
structure, that is, a triple (M,w,n) where dim M = 2n+ 1 and (w,n) is a (pre)cosymplectic structure.

As in the symplectic geometry, a fundamental result in cosymplectic geometry is an analogous to
Darboux’s Theorem, which is also called “Darboux’s Theorem”, and that gives a local model for every
cosymplectic manifold.

Theorem 1.4 (Darboux). Let (M,w,n) be a (2n+1)-dimensional cosymplectic manifold. Then for every
p € M there exists a local chart (U; (t,2%,y;)) on p, with 1 <i < n, such that the coordinate expressions
of w and n in this local chart are

w=dzt Ady; ; np=dt.

Such a local chart is called a Darboux, canonical or cosymplectic chart, and its coordinates are called
Darboux, canonical or cosymplectic coordinates.

Example 1.3. Let Q be a n-dimensional smooth manifold, and let us consider its cotangent bundle
T*Q. As we have seen in the example in Section the cotangent bundle is endowed with a canonical
symplectic form w € Q%(T*Q). Now let us consider the product of the real line with the cotangent bundle
of @, that is, R x T*Q. This manifold is endowed with a canonical projection over each factor, namely
pri: R x T*Q — R and pry: R x T*Q — T*Q. Since R is an oriented manifold, let € Q'(R) be the
canonical volume form. Then, the pair (pr}w, pri n) is a cosymplectic structure on R x T*Q.

In coordinates, let (¢) be the global coordinate on R such that 7 = d¢ and (¢, pa) the induced local
coordinates on T*@Q. Then, the induced coordinates in R x T*(Q adapted to the bundle structure are
(t, q*,pa), and they coincide with the Darboux coordinates of the cosymplectic manifold, since the forms
pryw and prin have the following coordinate expression

priw=dg* Adpa ; prin=dt.

1.2.2 Canonical isomorphism. Reeb vector fields

As in the case of symplectic geometry, given a 2-form and a 1-form on a manifold M, we can define a
linear bundle morphism between the tangent and cotangent bundles of M as follows

b: TM — T'M
(p,vp) > (pyi(vp)wp + (1p, vp)p)

where (-,-): T,M x T,M — R is the canonical pairing between elements of the vector space T),M and
its dual T;M . This bundle morphism can be extended to the modules of vector fields and 1-forms in a
natural way, obtaining the following morphism of C'°°(M)-modules (which, in an abuse of notation, we
also denote by b)
b: X(M) — QM)
X — i(Xw+ GX)nn

12
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Now, if M has dim M = 2n + 1 and both w and 7 are closed forms, then it is clear that the pair (w,n) is
a cosymplectic structure on M if, and only if, the map b is an isomorphism of C*°(M)-modules.

Definition 1.10. If (M, w,n) is a cosymplectic manifold, the map b: X(M) — QY (M) defined above is the
canonical isomorphism, or also musical or flat isomorphism. Its inverse is denoted f: Q'(M) — X(M)
and s called sharp isomorphism.

Remark. Even if we denote them differently, we named this canonical isomorphism in the same way as
we did for symplectic manifolds. In most cases, it will be clear to which isomorphism we refer to, but we
will clarify it to avoid confusion in subsequent Chapters. %

Since b is an isomorphism between the modules of vector fields and 1-forms in the cosymplectic
manifold (M,w,n), we can take the pre-image of any 1-form in M to obtain a unique vector field. In
particular, we can take the pre-image of the closed 1-form n. The unique vector field R € X(M) satisfying
R =b71(n) = 4(n) is called the Reeb vector field of the cosymplectic manifold (M,w,n). Note that the
Reeb vector field is characterized by the equations

i(Rw=0 ; {(Rny=1. (1.8)

In coordinates, let (U; (¢, 2%, y;)), 1 < i < n, be a cosymplectic chart on (M, w,n). In these coordinates,
a generic vector field is given by

0 .0 0
X=C—+4+A"— +B;—.
ot + Ox* + Oy
Then, the vector field X is the Reeb vector field of the cosymplectic manifold (M, w,n) if the following

system of 2n + 1 equations holds

that is, if X is given by

Finally, if v(s) = (t(s), 2%(s), y:(s)) is an integral curve of X, then its component functions must satisfy
the following system of 2n + 1 ordinary differential equations

=0 ; 9,=0 ; ft=1.

Remark. From a physical point of view, if we consider the coordinate ¢ on a cosymplectic manifold as
the “time” of a time-dependent dynamical system, then the Reeb vector field is the vector field that fixes
the progression of time to its “standard” value, that is, the Reeb vector field fixes the gauge among all
the reparametrizations of the time coordinate on a time-dependent dynamical system. O

1.3 Multisymplectic geometry

Multisymplectic forms are a natural generalization of the concept of symplectic forms to forms of degree
greater than 2. That is, while a symplectic form is a closed 2-form which is nondegenerate, a multisym-
plectic form will be a closed k-form which is “nondegenerate” in some sense. For details and proofs, we
refer to [19, 20 [69]

Along this section, M will denote a smooth manifold with dim M = m.

Definition 1.11. A multisymplectic k-form in M is a closed k-form w € QF(M) which, in addition,
is 1-nondegenerate, that is, for every p € M, i(Xp)wp, = 0 if, and only if, X, = 0. If w is closed
and 1-degenerate, it is called a premultisymplectic k-form. A manifold endowed with a multisymplectic
k-form (resp., a premultisymplectic k-form) is called a multisymplectic manifold of order k (resp., a
premultisymplectic manifold of order k).

13
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Observe that a necessary condition for a k-form to be 1-nondegenerate is 1 < k < dim M. The
nondegeneracy condition is sometimes written in terms of the analog of the canonical isomorphism for
symplectic manifolds given in Section In particular, given a k-form w € QF(M) we define the
following morphism of C'*° (M )-modules

W X(M) — QFY(M)
X — i(X)w

Then, a closed k-form w € QF(M) is 1-nondegenerate (that is, multisymplectic), and only if, the morphism
w’ defined above is injective.

Remark. Multisymplectic 2-forms are just symplectic forms, as defined in Section O

Example 1.4 (The multicotangent bundle). Let @ be a n-dimensional smooth manifold, and let us
consider the bundle of k-forms on @, which is A¥(T*Q), that is, the kth exterior power of the cotangent
bundle of ). This bundle is called the multicotangent bundle of order k of (), and is sometimes denoted
by AF(Q), for short. Following the patterns in Example we define a k-form 6 € QF(A*(T*Q)) by

Oo(X1(),..., Xi(a)) = a((Tam§) (X1(a)), .., (Tam$)) (Xk(a)))

where X;(a) € To(A*(T*Q)), 1 <i <k, and a € A*(T*Q). This k-form is called the tautological k-form
of A¥(T*Q). Then, taking its exterior derivative, we define the following (k + 1)-form on A*(T*Q)

w=—déf.

which, as we will see in the coordinate expression, is 1-nondegenerate, and thus multisymplectic. This
(k + 1)-form is called the canonical multisymplectic form on A*(T*Q).

In coordinates, if (¢°), 1 < i < n, are local coordinates in @, then the induced natural coordinates
on AFT*Q are (¢"piy.i), 1 < i1 < ... < i < n. In these coordinates, the local expression of the
tautological k-form 6 is

1< < .. <ip<n
from where the coordinate expression of the canonical multisymplectic form of A*T*Q is
w= Z —dpi, i, Adg™t AL Adg . (1.9)
1<ir <...<ip<n

Example 1.5. Let 7: £ — M be a fiber bundle. Let us consider the bundle of k-forms on E which are
annihilated by the action of r 7w-vertical vector fields, that is

AMT*E) = APE = {a e AMT*E) |i(V,)...i(Vi)a=0,YV4,...,V, € %V(”)(E)} .

Then, the restriction of the canonical multisymplectic (k+1)-form of the multicotangent bundle A*(T*E)
to this subbundle A¥(T*E) is also a multisymplectic (k + 1)-form. Note that, if M = E, then we recover
the whole A*(T*E).

1.4 Geometry of higher-order jet bundles

In this Section we generalize the definition of the tangent bundle of a manifold to consider derivatives
with respect to several independent variables x!,...,z™, instead of derivatives with respect to a single
variable ¢, that is, “partial derivatives”. The case of derivatives of higher-order is also introduced.

Along this Section, M will denote a m-dimensional smooth manifold with no additional structure,
m: E— M (or (E,m, M)) will denote a smooth fiber bundle over M with dim E = m + n, and I'(7) the
set of sections of 7, that is, maps ¢: M — E satisfying m o ¢ = Idp,. Finally, £ > 1 will be a fixed, but
arbitrary, integer. We refer to [I38] for details and proofs.
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1.4. GEOMETRY OF HIGHER-ORDER JET BUNDLES

1.4.1 Multi-index notation

(See [13] (Appendix A) and [I38] (§6.1) for details).

Given a function f: R™ — R, it is usual to denote its partial derivatives as

o f

8:1:1-18%2 ce 8xlk '

f’il,i2;~~~’ik

Nevertheless, when smooth functions are considered, their cross derivatives coincide. In particular, the
order in which the derivatives are taken is no longer relevant, but only the number of times with respect
to each variable.

An alternative notation to denote partial derivatives is defined through “symmetric” multi-indexes.
A multi-index I is an m-tuple of non-negative integers. The components of I are I(i), with 1 < ¢ <
m. Addition and subtraction of multi-indexes are defined component-wise (although the result of a
subtraction may not be a multi-index), that is, (I £ J)(i) = I(¢) £ J(i). Given a fixed 1 < k < m, the
symbol “1;” denotes the multi-index defined as I(i) = ¥, 1 < j < m, that is, all of its components are
zero but the kth, which takes the value 1. The length and the factorial of a multi-index I is

=316 ; I
i=1
With these notations, the symbol 9/l /9z! is defined as

oIl m 9 I(i)
gt — 11 <ax) ’

i=1

—
—
~
—~
~.
N
=

where we adopt the convention that if |I| = 0, then we have the identity operator.

As an example, let f: R® — R be a smooth function. Then, the partial derivatives of f with the
multi-index notation are denoted by

a|I|f 81(1)+I(2)+...+I(m)f

7l ax{(l)axéu)...ax%m)
Then, first-order derivatives are denoted by
f(1,0,0) ; f(0,1,0) ; f(0,0,1)7
second-order derivatives are
f(2,0,0) 5 f(0,2,0) 5 f(o,o,z) 5 f(1,1,0) 5 f(1,0,1) ; f(O,l,l)a

and so on.

Along this dissertation we will usually mix both notations. In particular, first-order partial derivatives
of a smooth function f: R™ — R will still be denoted by f;, 1 < i < m, and multi-index notation will be
kept for partial derivatives of order greater than 1.

Finally, sum over repeated multi-indexes will be understood, and expressions of the type “for every
[I| = k” and “}_,;,_,” mean that the expression or the sum is taken for every multi-index of length k.
The same applies for inequalities.

1.4.2 Definition and fiber bundle structures. Natural coordinates

Let € M be a point, and T',(7) the set of sections of 7 defined in a neighborhood of . The first we
need is to define an equivalence relation in the set 'y (), which will be introduced in coordinates. Thus,
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let (z°), 1 < i < m, be a system of coordinates in M, and (z¢,u®), 1 < a < n, local coordinates in
E adapted to the bundle structure. If ¢,1 € I',(7), we denote ¢ = u® o ¢ and ¥ = u® o 1), so that
#(x%) = (2, ¢p%(2%)) and ¥(x?) = (2°,*(2")). With these notations, we have:

Definition 1.12. The local sections ¢, € I',(7) are k-equivalent at = if

1 ¢(x) = ¢(x)
2. In some adapted coordinate system (z%,u®) around ¢(x) (or (z)) we have
oMl gy Al
ozt | Ozl |7

for1<|I|<kandl<a<n.

This relation does not depend on the chosen coordinate system, and then we have a well-defined
relation in the set of local sections I'y (7).

Lemma 1.5. Let x € M be a point. The k-equivalence relation in the set of local sections Ty () is
independent of the chosen coordinate system.

In particular, the k-equivalence relation is a well-defined relation in the whole set I';.(7), and it is easy
to prove that it is an equivalence relation. The equivalence class containing ¢ is called the k-jet of ¢ at
z, and is denoted j¥¢.

Definition 1.13. The k-jet manifold of 7 is the set

Jhr={jki¢p |z e M, pely(n)}.

The k-jet manifold of 7, J*m, has a natural structure of smooth manifold. In addition, it is endowed
with the following natural projections: if r < k, then

keJbr — Jr dbiJPnm — FE o o# gt — M

ik — 4o ’ ik — olx) ik — a

T,

which are called the r-jet, target and source projections, respectively, and all of them are smooth surjective

submersions. Observe that mSor® = 7% 7k = 7% (where JOr is canonically identified with E), 7§ = Id jx,
k

and 7F = 1o 7k,

Proposition 1.6. Let (E, 7, M) be a fibered manifold. Then the triples (J*m, 7k, J'n) and (J*r, 7% E)

» o

are fiber bundles, and (J*n, 7% M) is a fibered manifold. If (E, 7, M) is a fiber bundle, then the triple
(JEm, 7%, M) is also a fiber bundle.

Remark. If z € M, then the fiber (7%)~!(x) < J*7 will be denoted J*m rather than (J*r),. Observe
that J;fﬂ' is a m-codimensional submanifold of J*r. O

In particular, the bundle (J*, 77,’3_1, JF=17) is canonically endowed with additional structure.
Theorem 1.7. The triple (Jk7r,7r’,j_17 Jk=11) is an affine bundle modeled on the vector bundle
(TN (SPT* M) @ jrei e (21 (V (1)),

where S¥T* M is the space of symmetric covariant tensors of order k over M and V(r) is the vertical
bundle of 7.
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1.4. GEOMETRY OF HIGHER-ORDER JET BUNDLES

Local coordinates in J*7 are defined as follows: let (2%), 1 < i < m, be local coordinates in M, and
(z*,u®), 1 < a < n, a set of local coordinates in E adapted to the bundle structure. Let ¢ € T'(w) be a

section with coordinate expression ¢(x?) = (2%, »*(x?)). Then, local coordinates in J*r are (x%, u®, ug),
where

oMl g

ox! ’
with 1 < |I| < k. We usually write u§, with |0] = 0, instead of u®, and so the coordinates in J*7 are
(z*, u?), where now 0 < || < k. Observe that the dimension of JEr s

k
o m+k\ m+r—1
dim J W—m—i—n( 3 )—m—i—ng ( ., .

r=0

u® =% 5 uf =

Using these coordinates, the local expressions of the natural projections are
ﬂf(xivu?) = (xi,uﬁ) ; Wk(xiﬂu?) = (zi’ua) ; ﬁk(xiau?) = (xi)v

where (z,u%), with 0 < |.J| < r < k are the corresponding natural coordinates in J" 7.

1.4.3 Prolongation of sections. Holonomic sections

Definition 1.14. Let ¢ € I'(m) a (local) section of m with domain U C M. The kth prolongation of ¢ is
the (local) section j*¢ € T'(7*) defined by

]k¢( ) - ]x¢7
for every x € M.

Definition 1.15. A section ¢ € T'(7¥) is holonomic of type r, 1 < r < k, if j¥7"¢ = 7k i1 0,

where ¢ = 7 o4p € T'(r); that is, the section 77,’§7H1 o1 is the prolongation of a section ¢ € T'(m) up to
the jet bundle J*—"+1r,

4 Jhw

K
Tho—r+t1
K
Tk — 109

M T Jk—r—i—lﬂ.

\ d P
P

Jk—r—i—lﬂ.

E

In particular, a section 1 is holonomic of type 1 (or simply holonomic) if j*(7* o ¢) = 1; that is, ¢ is
the canonical kth prolongation of a section ¢ = 7% o4p € T'(7).

In coordinates, the kth prolongation of a section ¢(z¢) = (x%, $*(x?)) is locally given by

~ i i Ol
]k¢(x): ($,¢ P ) )

with 1 < |[I| < k. On the other hand, let 1 € T'(7%) be given by ¥(z?) = (2%, %, %), where 1 < |I| <
and let 1 < r < k be a fixed, but arbitrary, integer. Then the condition for ¢ to be holonomic of type r
gives the following system of partial differential equations

ol

oxl 7’

U =

1< |I|<k—r+1,1<a<n, (1.10)

17



CHAPTER 1. MATHEMATICAL BACKGROUND

or, equivalently,
Ny

Dai 0<|I|<k—r,1<i<m, 1<a<n. (1.11)
:Z:Z

w?+17, =

1.4.4 Contact forms. Cartan distribution

Definition 1.16. Let ¢ € T'(7) be a section, © € M a point and u = j¥=1¢ € J*~x. The vertical
differential of ¢ at u € J*~ 17 is the map di¢: TaJ " tm — TaJ* 17 defined as

dip =1dy —Ta(j* tpom* 1),

Observe that Ty 71 odyé = 0, and therefore dY, takes values in Vi (7%71). In the natural coordinates
(2%, ug) of J¥~1xr, the vertical differential has the following coordinate expression

N+1ga
digp = <du? _g e dxz> ®

T, (1.12)

oug’
from where it is clear that d¥¢ depends only on j¥¢.

Definition 1.17. The canonical structure form of J*7 is the 1-form 6 in J*7 with values in V (75~1)
defined by

k6 (0) = (s, O)(Typgmh 1 (0)
where v € Tj;;¢ka.
The contraction of covectors in (V(7%~1))* with 6 defines a “distribution” in T*J*7, which is called

the contact module or Cartan codistribution of order k, and it is denoted C*. The annihilator of C* is
the Cartan distribution of order k.

In the natural coordinates of J*m, and bearing in mind the coordinate expression (1.12)) of the vertical
differential, the canonical structure form is given by

0= (duf —uf,, dz') ® 0<|I|<k—1. (1.13)

oug’
The forms ¢ = du¢ — uy41,dz’ € C* are the coordinate contact forms.

Proposition 1.8. Let (mi,u?) be adapted coordinates in JFmw. A basis of the Cartan codistribution is
given by the coordinate contact forms 0% = du$ — uyyq,dz’.

Contact forms may be distinguished from the rest of 1-forms defined on J*7 by their relation with
prolongations of sections ¢ € I'(), as it is shown in the following result.

Proposition 1.9. Let w € Q' (J*7) be a 1-form. Then, w is a contact form if, and only if, (j¥¢)*w =0
for every ¢ € T'(m).

Finally, the following result relates this Section with the previous one.

Proposition 1.10. Let 1) € I'(7*) be a section. The following assertions are equivalent:

1. v is holonomic.
2. ¥*0 =0, where 0 € T(T*J*7 @ ju, V(7*1)) is the canonical structure form.

3. Y*w =0 for every w € C*.
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1.4.5 The vertical endomorphisms

In this Section we will assume that k& = 1, since the vertical endomorphism cannot be generalized to
higher-order jet bundles in a unique way. In fact, this is the main issue when we want to give a geometric
formulation of higher-order field theories, since both the Cartan m-form and the Legendre map depend
on the vertical endomorphism.

Definition 1.18. The vertical lift is a morphism of vector bundles S: T*M ® ji V(m) — V(n!) over
the identity of J'm defined as follows: given jlé € Jim and B € TEM ® Viy(z) (), we have

d

SjpeB)f) = | flzd+1B), for every f € C*(Jym).
t=0

Observe that Tr! o S = 0, and therefore the image of S is certainly in V(n!). In addition, for every
Ja® € J'm, the vertical lift at j,¢, Sj1y: ThM & Viy(y)(m) = Vjie(m), is a linear isomorphism.

Definition 1.19. The canonical vertical isomorphism V arises from the natural contraction between the
factors in V (m) of the structure canonical form 6 and the factors in (V(m))* of the vertical lift S, that is,

V=iS)0 e (T*J'r @1, TM @1, V(1')).

In the natural coordinates (z*,u®,u?) if Jlm, the vertical lift is given by

9] © d
dzt — Oul

S=du*®

From here, and bearing in mind the coordinate expression ([1.13]) of the canonical structure form 6 (taking
k = 1), the local expression of the vertical endomorphism is

00 00
oxt 7 ouy ozt~ Oul’

V= (du® —ufda’) ® (1.14)

where 0% = du® — u?d:)ﬂ are the coordinate contact forms.

1.4.6 Iterated jet bundles

From Proposition we know that (J*m, 7% M) is a fiber bundle. Hence, we can consider the rth-order
jet bundle of 7%, that is, repeated (or iterated) jet bundles. The r-jet manifold of 7%, which will be
denoted J"7*, will contain 7-jets of all the local sections of 7%, that is, it is the manifold

Jab = {jip |x € M, € To(7")} .

There is a distinguished subset in J"7* containing those elements j7v, where the local section 1) is
holonomic, that is, 1 itself is the kth prolongation j*¢ of a local section ¢ € I'(w). This set is a
submanifold of J"#* which can be identified with the image of a highest-order jet bundle, J"t*7, by the
following embedding.

Definition 1.20. The canonical embedding is the map
b JETT — gk
istre = gn(te)

The elements in the image of ¢, are called holonomic.

(1.15)

Remark. It is important not to confuse this notion of holonomy with the one given in Definition [1.15
The former refers to the holonomy when considering iterated jets, the latter to the holonomy of a jet
section itself. O
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Local coordinates in J"7* are constructed in an analogous way to J*m. Let (2?) be local coordinates
in M, and (z%,u¥), 0 < [I| < k, the induced natural coordinates in Jkm. Let v € T'(7%) be a section
locally given by ¥(x?) = (2 1/11( %)), where we take 1 = u¢ o). Then, local coordinates in J"#* are
(z*,ug,;), where

o1
Uty = oy

with 0 < |J| < r. In these coordinates, the canonical embedding ¢, 1 is given by

* « o«
brpUr g = Upgg -

It follows from this coordinate expression that J**"7 may be identified with the submanifold of J77*
given locally by

JEtrr = {ize € Jrwk | uf,.y, = uf,.;, Whenever Iy + J; = I + Ja } .

1.4.7 Coordinate total derivatives

Definition 1.21. Letx € M, ¢ € T(7), and v € T, M. The kth holonomic lift of v by ¢ is defined as
((7"0)(v). 451 9) € (M) T w

From this definition, observe that we can split (7F+)*(TJ*7) jt+1, to distinguish the vectors which
are kth holonomic lifts of vectors in the base manifold from those Wthh are not.

Theorem 1.11. Let 7: E — M be a fiber bundle, and let j5*'¢ € J*Tlx. Then the vector space
(mF (T Tk )i+, has a canonical decomposition as a direct sum of two subspaces

(g ) (TI* ) oy = () (V@) i1, @ (57 0) (T M)
where (j%¢).(T,M) denotes the set of kth holonomic lifts of tangent vectors in T, M by ¢.

Since Theorem [T.1] gives a pointwise decomposition, we have the following result straightforwardly.

Corollary 1.12. The vector bundle (7F™)*7 . (rp ™) *TJ* 7w — J*7 has a canonical splitting in the
direct sum of two subbundles

7T}e+1 o
(rEF) T = (el L)V (74) @ H (el ) T g
where H(mi ™) is the reunion of the fibers (j*¢).(ToM), for x € M.
In local coordinates, if v € T, M is given by
v=1 0
o oat|,)”’
the kth holonomic lift of v is then given by
Gonw=i | 2]+ wara ] ). (1.16)
Tljke |T|=0 Ur ljkg

Now, if X(7 k'H) denotes the module of vector fields along the projection 7r,C , the submodule corre-

sponding to sections of ( T(]k7r|(ﬂ_k+1)*v(ﬁ_k) is denoted by X" (7 k+1)7 and the submodule correspond-
k
ing to sections of (77’,;+1)*TJIC7T‘H(W;V+1) is denoted by %h(ﬂ,]:+1).
k
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Definition 1.22. An element of the submodule %h(ﬂ",:"’l) is called a total derivative.
Remark. Total derivatives may be defined in the following equivalent way. Since the contact forms are

ﬁ,’j“—semibasic, they may be thought as forms along 7T,l:+1 rather than in J¥*17. Then, a total derivative

is a vector field along 7T]]:+1 which is annihilated by the Cartan codistribution (as forms along 7r,l§+1). %

The splitting given in Corollary induces the following canonical splitting for the module %(WZH):
X(mth) = X" (m ) @ X (mp ).

Definition 1.23. Given a vector field X € X(M), a section ¢ € I'(w) and a point x € M, the kth
holonomic lift of X by ¢, j*X € Xh(ﬂ],jﬂ), is defined as

(ij)j’;+1¢ = (Jk¢)*(Xw)

In local coordinates, if X € ¥(M) is given by

0
oxt’

then, bearing in mind the local expression ([1.16)) of the kth holonomic lift for tangent vectors, the kth
holonomic lift of X is

X =X

9 u )
X=X 9w > T4
|1]=0 I

Finally, the coordinate total derivatives are the holonomic lifts of the local vector fields 9/0x" € X(M),
which are denoted by d/dx® € f{(ﬂf“), and whose coordinate expressions are

k
d 0 0
. = y E T =— (1<i< .
dx?t ox* + m_ou“’l" ou¢ ( ism)

1.4.8 Dual jet bundles

Let us consider the iterated jet bundle J'7*~! and its dual space as an affine bundle over J*~1m, which
we denote by (J'@*~1)*. Since J*r is affinely embedded into J'7*~1, we can restrict the elements of
(J17*F=1)* to the points of J*r.

Definition 1.24. The kth-order extended dual jet bundle of 7, denoted J*7°, is the reunion of the affine
maps from JE7E1 to (A™T* M) zk-1(y), where u € JF=1r, that is,

Jrre= ) AELET (AT M) pee )

ueJk—1x

The kth-order extended dual jet bundle admits a structure of smooth manifold. Furthermore, it may
be endowed with a fiber bundle structure, as shown in the following results.

Proposition 1.13. The kth-order extended dual jet bundle, J*n°, is diffeomorphic to the bundle of
w-semibasic m-forms over J*~lx, ATY(T*J*~1rx), that is, the manifold

AT TP 1) = {a e A™(T*JF17) | i(Va) i(Vi)a = 0, Y V4, Vs € xv<*’“’1>(J’“—17r)} :
Remark. In the following we denote J¥7° by AJ(T*J*~1x), or AJ*(J¥~1x) for short. O
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In addition to Proposition the following result gives the precise structure of the extended dual
jet bundle.

Proposition 1.14. The triple (AJ(J*~17), w1, J*~17) is @ smooth vector bundle.

Now, from Proposition the kth-order extended dual jet bundle is endowed with the following
canonical projections:

g1 AR(JF I — JE i Fac AR(JEF ) — M
(uywy) +— (u,wy) +— T () -

The bundle AZ*(J*~17) is endowed with some canonical structures. First, as we have seen in Examples
and we can define a couple of forms in AJ*(J*~17) as follows.

Definition 1.25. The Liouville m-form, or tautological or canonical m-form, on AJ*(J*~17) is the form
Or_1 € Q™(AR(JF 1)) defined as

@k_l(w)(Xl, e ,Xm) = w(T’/Tkalﬂ.(Xl), ey TT(-Jk—lﬂ.(Xm)) ,

where w € AJ(JF"17), and X1,..., X, € T,AR(J¥~17). The Liouville (m + 1)-form, or canonical
multisymplectic (m + 1)-form, is the form Qi1 € Q™(AT(J*~ 7)) given by

Q1 = —dOg_1 .
The second canonical structure is the pairing due to the duality between J'7*~! and AJ*(JF~'r),
and the fact that J*7 is embedded in the former.

Definition 1.26. The canonical pairing between the elements of J*7 and the elements of A (J*~1x) is
the fibered map over J*~'m defined as follows

C: Jom X geoae AP(JF 1) —  AT(JF1n)
(Eow) — (59w

Local coordinates in AJ*(J*~17) are constructed as follows: let (z°) be a system of coordinates in
M, and (2%, u$) the induced coordinates in J*~!7, with 0 < |I| < k — 1. Then, local coordinates in
AD(JF 1) are (2%, ug,p, pL?), where 1 < i <m, 1 <a <nand0<|I| <k—1. In these coordinates,
the canonical projections have the following local expressions

WJk—lfr(xi’u?vpapé) = (xi7u?) ) ﬁ-Jk—lﬂ'(xivu?zpap(Iy) = (xl)
On the other hand, the Liouville m and (m + 1)-forms have the following local expressions

Ok_1 = pd™x + pi du® A d™ Lz, + plidug¢ Ad™ ey, i
1.17
Q1 =—-dpAd™x — dpiy Adu® Ad™ g — dp” Aduf A dm g, |

(o3

where d™z = da' A ... Ada™ and d™ 'x; = §(0/0x")d™z. Finally, the canonical pairing C has the
following coordinate expression

Cla*,u®,uf,p,ph,pk) = (p+ pliugyy,)d™ . (1.18)

Using Proposition [1.14] we can now give the following definition.

Definition 1.27. The kth-order reduced dual jet bundle of 7, denoted J*~'7*, is the quotient of the
kth-order evtended dual jet bundle, A3 (J*~17), by constant affine transformations along the fibers of 7,
and is diffeomorphic to AT (J*~17) /AT (J*~ 7). The quotient map is p: A (J*~ 1) — JE—1n*.
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It can be proved that J*~'7* may be endowed with the structure of a smooth manifold and, moreover,
(A (JE=1qr), u, J*=17*) is a smooth vector bundle of rank 1. In addition, using the universal property
of the quotient, from the canonical projections of the extended dual jet bundle and he natural quotient
map p: AJ(J*17) — J¥~1x* we obtain the canonical projections of the restricted dual jet bundle

ng,lﬂ:kalﬂ* — Jk1x ] ﬁ}k,lwzJ’“_lﬁ* — M
(w[wu]) — u ’ (u,[wa]) +— T (u)

Finally, adapted coordinates (z¢,u®) in E induce coordinates (z%, u¢,pl?) in J*~17* such that the coor-
dinate expression of the natural quotient map is

w(z' uf,p,pll) = (2, uf, pk),

where (z¢,u¢,p, plt) are the induced coordinates in AJ*(J*~17). In these coordinates, the natural pro-
jections are given by

ngflw(xi’u?’pgj) = (xivu?) ) ﬁgkflﬂ(xivu?’péi) = (ml) .

1.5 Geometry of higher-order tangent bundles

In this Section we generalize the definition of the tangent bundle of a manifold to consider not only
first-order derivatives of the coordinates in the base M, but also derivatives of higher-order.

As we will see, all the canonical structures of the tangent bundle, namely the vertical endomorphism
and the Liouville vector field, can be defined in higher-order tangent bundles, with some minor differences.
In addition, new structures arise when considering derivatives of order greater than 1.

Along this Section, M will denote a m-dimensional smooth manifold with no additional structure,
and k > 1 will be a fixed, but arbitrary, integer. We refer to [62] for details and proofs.

1.5.1 Definition and fiber bundle structures. Natural coordinates

Let p € M be a point, and let C(M, p) be the set of curves on M passing through p at ¢ = 0, that is,
C(M,p) ={¢: R — M [ ¢(0) = p}

We define in C(M,p) the following relation: given ¢1,¢2 € C(M,p), then ¢; ~p ¢o if, and only if,
Dig(0) = Dighy(0) for every i = 0,...,k, where ¢ denotes the local expression of ¢ and D' is the ith
derivative. That is, ¢; and ¢o must pass through p at ¢ = 0, and all of their derivatives up to order k
must coincide in p. It is easy to check that this defines an equivalence relation in C'(M, p).

Definition 1.28. The quotient set T’;M = C(M,p)/ ~ is the kth-order tangent space of M at p, which

has dimension km. The kth-order tangent bundle of M, denoted T*M s the disjoint union, indezed by
p € M, of every kth-order tangent space of M at the point p, that is,

knr k
"M = | | ThM,
peM
which has dimension (k + 1)m.
Remark. Taking k& = 1, we recover one of the usual definitions of the tangent bundle of M. %
Bearing in mind the results stated in the previous Section on higher-order jet bundles, an alternative,
but equivalent, definition of the kth-order tangent bundle of M is the following: the kth-order tangent

bundle of M is the (k + 1)m-dimensional manifold made of k-jets of the trivial bundle 7: R x M — R
with source point 0 € R, that is, T¥M = JEm. Tt is a 1-codimensional submanifold of J*7.
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Remark. Observe that if 7: R x M — R, then J*7 ~ R x T¥M. O

Hence, a point in T* M will be denoted by j&¢, that is, the equivalence class of a curve ¢: R — M
by the k-jet relation at ¢ = 0. In addition, the canonical projections introduced in Section [1.4.2] restrict
to the kth-order tangent bundle, and we have for r < k:

TP M — T"M gE:T" M — M
5o 6 jse = ¢(0)

Observe that ps o pk = pk for every 0 <r < s <k, pk = B¥, and pf = Id k.

From the results in Section the natural projections p’: T"M — T®M are surjective submersions
for every 0 < s < r < k. Furthermore, the triple (T" M, p%, T*M) is a fiber bundle with fiber R(=s)n In
particular, (TkM, pk, T"M) is a fiber bundle with fiber R*=")" for 0 < 7 < k; that is, TF M is canonically
endowed with k + 1 different fiber bundle structures given by the projections p§, p¥, ..., pk. In the sequel,
we refer to this fiber bundle structure as the p¥-bundle structure of T* M.

Remark. Notice that p¥ = Idx,, and hence (TkM ,Idpky, TFM) is nor a relevant, neither interesting,
fiber bundle. In the following, we restrict to the fiber bundle structures of T*M given by the projections
ok, p%, ..., pk_, and consider that T*M is canonically endowed with k different bundle structures. ¢

Remark. The notation is changed with respect to Section to keep in mind that we are considering
the equivalence class in a fixed point of the base manifold (the “autonomous” case), but also to take into
account that higher-order tangent bundles can be defined independently of higher-order jet bundles. ¢

If ¢: R — M is a curve in M, the kth-order lift of ¢ to TFM is the curve o R — T*M defined as
JEa(t) = jFe(0), that is, the kth prolongation of ¢ evaluated in ¢ = 0.

Local coordinates in T* M are constructed in a similar way to the local coordinates in the higher-order
jet bundles. Let (U, ¢) be a local chart of M, with ¢ = (¢*), 1 <i < m, and ¢: R — M a curve in M such
that ¢(0) € U. Then, by writing ¢* = ¢ o ¢, the equivalence class j&¢ of ¢ is given in (8¥)~1(U) = TFU
by (x%, x%,...,2}), where

i i i _ @9
' =¢"(0) and = a |,
with 1 < j < k. Usually we write 2, instead of 2%, and so we have the local chart (8¥)~1(U) in TFM
with local coordinates (zf,z%,... ,2%) = (x;), where 1 < i < m and 0 < j < k. When dealing with
tangent bundles over higher-order tangent bundles, that is, the manifold T (TkM ), we will only consider
the natural coordinates of the tangent bundle structure, which will be denoted (z, ..., 2%, v, ..., vi) =
(%,0%), with 1 <7 <mand 0 < j < k.

Using these coordinates, the local expression of the canonical projections are
PE(h, o sah) = (ahyooal) 5 B ad) = (ah).
Then, their tangent maps are given by

Tok (b, ... ak v, ob) = (b, abi vl 0l) 0 TR (ah, . ak b, k) = (2, vl)

1.5.2 Geometric structures of higher-order tangent bundles

In order to define the canonical structures of the higher-order tangent bundles, we first need an auxiliary
tool: the fundamental sequences. As we will see, every bundle structure of TFM over T"M defines an
exact sequence of vector bundles over TFM.

Let V(p¥_,) be the vertical bundle of the projection p¥_;, that is, V(p*_;) = ker Tp¥_;. In the natural
coordinates of T(T*M) introduced in the previous Section, for every p € M and u, € Vip(pF_y), we have
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that the components of u, are u, = (0,...,0,v,...,v%). Furthermore, if i_,y1: V(pF_;) < T(TFM)
is the canonical embedding, then

Tk—ra1 (:Eé,...,x};,vf;w..,vli) = (:cé,...,x?c,(),...70,1)2,,...,1),’;) . (1.19)

Consider now the induced bundle of 7ipr—1,,: T(T""*M) — T"~* M by the canonical projection pF_,,
denoted by T*M Xr-1,; T(T""*M), which is a vector bundle over T*M. Recall that T*M Xpr-1,,
T(T" "' M) is the set of points (p,u) € T*M x T(T"~'M) such that p¥ | (p) = 7pr—1,,(u). Then we have
the following commutative diagrams

k

k r—1 r—1 k Tpr s r—1
TEM o1y T(T""'M) = — = T(T"~* M) T(T* M) —— = T(T" L M)
|
‘ iTTT'l M \LTTI"'JM lTTTlM
kv pic'*l r—1 k p"’c'*l r—1
™M ™M ™M ™M

where the dashed lines in the first diagram correspond to the canonical projections of the direct product
TFM x T(T" "' M) restricted to T¥M xpr—1,; T(T" ' M). Then, we have the following result.

Proposition 1.15. There exists a unique vector bundle morphism Sg_,41: T(TkM) — TFM Xpr—1yy
T(T" "' M) such that the following diagram is commutative:

Toy_y

T M X1y T(T" M) — — = T(T" ' M)

|
I Tor—1
\ k

T M T 'M .

T(T*M)

Trk M

This vector bundle morphism is defined as follows: if u € T(T*M), we have
Sk—r+1(u) = (TT"’M(U%TPI;LI(U)) . (1.20)
In the natural coordinates of T* M introduced in the previous Section, its coordinate expression is
Sherr1 (Tl vl vh) = (kg vk )
From its coordinate expression, it is clear that s;_,41 is a surjective map. On the other hand, ix_,41 is
an injective map, and in addition we have Imiy_,11 = ker sy_,.11. Therefore, we have constructed the

following exact sequence of vector bundles over TFM:

Th—rt1 Sk—r+1

0— V(s ) (T M)

TEM Xpr—1p T(TT'M) —— 0,
which is called the (k — r + 1)-fundamental exact sequence. In local coordinates, it is given by

Tk —rt1

0—— (xp,...,2},0),...,0}) (xf,...,x},0,...,0,0%,...,0})

. . . - Sk—r+1 . . . . . .
¥ 1 3 3 ¥ 7. 3 ¥ 1 1
(xhs o xh, G, ., 0F) (@b @il ., T, V), ., U ) 0
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Thus, we have k exact sequences of vector bundles given by

Lst: 0—=V(pk_\) —2s T(TFM) —2= TFM Xy T(TF M) ——> 0,

rth: 0 ——=V(pk_.) L T(T*M) —"> T M X pi—ryy T(TF"M) —0 |

kth: 0 V() —% = T(T*M) —> T*M 3 TM —> 0 |

These sequences can be connected by means of the following connecting maps
hi—rgr: TFM Xopierpy T(TV"M) — V(pf ),
locally defined as

. o . . , N 1 o
Pk—rt1 (mé,...,x}v,v(’),...,viT):(m%,...,x%,O,...,QO'vé, T Ul’“"(kr)'vkr)' (1.21)

It can be easily proved that these maps are globally well-defined and are vector bundle isomorphisms
over T M. Then we have the following connection between two fundamental exact sequences:

ir Sr

T(TFM) ———— T*M xpi—rpy T(TF"M) ——0

\%
/

T(T*M) TFM Xepr—1p; T(T"'M) ——0

00— V(pllz—r)

0—— V(Pﬁq)

Th—rt1 Sk—r+1

Remark. The connecting maps hy_,4+1 defined above are just the generalization of the vertical lift of
tangent vectors in higher-order tangent bundles. O

Canonical vector fields. Liouville vector field

The canonical embeddings defined in (1.15)) restrict to the higher-order tangent bundles and enable us to
define the following maps:
Ge: TFM  — T(T"'M)

. e 1.22
e — G5 e) (1.22)
where 1 < r < k. In the natural coordinates of T*M we have

j,«(aré, . ,xz) = (Jcé, . ,zfn_l; xhoah, ,xfﬂ) . (1.23)

Then, the following composition defines a vector field A, € X(T*M)

Id Xjk—rt1 P —ri1 Th—rig1

TF M TEM Xepi—ryy T(TF" M) V(pk ) T(TFM) ,

A’V‘

that is, A, = ig_p11 0 hg—ps1 © (Id X Jr—r11). From the local expressions of ix_,4+1, hg—r+1 and Jr_ri1

given by (1.19), (L.21)) and (1.23]), respectively we obtain that

i i i i i i k! i
A, (mo,...,xk) = (wo,...,xk,o,...,O,T!xl,(r—i—1)!x2,...,M:EkHl) ,
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or, equivalently,

k—r
0 .0 .0 k! ) 0

12t - 1)! . it ——— 18 —_— 1.24

J+1 8$r+ =T ax; <T+ ) x28$;+1 —+ + (k*’f’)' Lh—rt1 8332 ( )

7=0 J

<.

In particular, taking r = 1, we obtain

k—

0 , 0 , 0 ;, 0
A = Z]a;]a; ZZ:OJ—I—l ]'HBZ xla—xi—FQxQ xé—&—...—i—kxkax;c.

(1.25)

Definition 1.29. The vector field A, € X(T*M) is the rth-canonical vector field. In particular, Ay is
called the Liouville vector field in T M.

In the particular case k = 1, we obtain a single vector field A € X(TM) locally given by

.0
A == 17_ 1.2
Y i’ (1.26)

that is, the usual Liouville vector field of the tangent bundle.

Almost-tangent structures. Vertical endomorphisms

Definition 1.30. A kth-order almost-tangent structure on a (k + 1)n-dimensional manifold N is an
endomorphism J: TN — TN satisfying:

1. JH =0.

2. rank(J) = kn.

Observe that a first-order almost-tangent structure is an endomorphism J: TN — TN, where
dim N = 2n, such that J? = 0 and rank(J) = n. In particular, the tangent bundle of every manifold
M is endowed with a canonical first-order almost-tangent structure given by the vertical endomorphism
J: T(TM) — T(TM). This endomorphism is given in coordinates by

0

J =dx ®6vi'

(1.27)

In this Section we show that the kth-order tangent bundle of M is endowed with a canonical kth-order
almost-tangent structure.

Definition 1.31. For 1 < r < k, let ix—rq1, hk—rt1, Sr be the morphisms of the fundamental exact
sequences introduced previously. The map

Jr =ig—pi10hg_ry1 08 T(T*M) — T(TF M),
defined by the composition
lh—r41

Sr Rk —rg1

T(T* M) T*M X pir g T(TH"M) V(pk_y) T(T*M) ,

Jr

is called the rth vertical endomorphism of T(T*M).
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From the local expressions of ix—r41, Sr, hk—rt1 given by (1.19)), (1.20) and (1.21), respectively, we
obtain the coordinate expression of the rth vertical endomorphism, which is

Jr (TG« ooy Ty Vs e, V) = <x0,...,a:k,(),...,(),r!vo,(r—k1)!1)1,..., (k—r)!vk_T) ,
that is,
k—r
r+! 0
JT:Z( l)dj®8i (1.28)
j=0 Trtg
In particular, for » = 1, we have
k—1
. 74 a
J1::§:(j%fndxj@>547—f. (1.29)
j=0 Tjt1

Proposition 1.16. The rth-vertical endomorphism J, has constant rank (k —r + 1)n and satisfies that

s Irs if rs<k
(Jr) = .
0 if rs>k

As a consequence of this last result, the 1lst-vertical endomorphism .J; defines a kth-order almost-
tangent structure in T* M, which is called the canonical almost-tangent structure of TFM. In addition,
every other vertical endomorphism J,. is obtained by composing J; with itself r times. Furthermore, we
have the following result relating the canonical vector fields Ay with the vertical endomorphisms J,..

Proposition 1.17. Let 1 < r,s < k be two integers. Then,

1T oA — Arys if r+s<k
R if T+s>k

—sJpgs—1 if r+s—1<k

2. A, Js] =
[ ] {0 if r+s—1>k

3. [Jpy Js] =0, with 1 <rs < k.

As a consequence, starting from the Liouville vector field and the vertical endomorphisms, we can
recover all the canonical vector fields. However, since all the vertical endomorphisms are obtained from
Ji, we conclude that all the canonical structures in T¥M are obtained from the Liouville vector field and
the canonical almost-tangent structure.

Consider now the dual maps J* of J,., 1 <1 < k; that is, the maps J*: T*(T*M) — T*(T*M), and
their natural extensions to the exterior algebra AT*(T*M) (also denoted by J*). Their action on the set
of differential forms is given by

(Jrw) (X, Xp) = w(r(Xn)s s Jr(Xp))
for w € QP(T*M) and X1, ..., X, € X(T*M), and for every f € C=(T*M) we write J}(f) = f.

Definition 1.32. The endomorphism J*: Q(T*M) — Q(T*M), 1 < r < k, is called the rth vertical
operator, and it is locally given by

. '
, _J pde_ if j>v
JA(f) = [, for every feC®(TEM) ; Jr(dat)={ (G —7)!

0 if j<r
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1.5.3 Tulczyjew’s derivation

In the set @ Q(T*M) we define an equivalence relation as follows: for a € Q(T*M) and 8 € Q(T* M),
k>0

N a=(pp)(B) K <k
“ ﬂ‘:’{ﬁ () (@) K>k

Then we consider the quotient set

n=gartm

k>0

which is a commutative graded algebra. In this set we can define the Tulczyjew’s derivation, denoted by
dr, as follows: for every f € C°(T*M) we construct the function dpf € C°°(T*** M) given by

(drf) o' 0) = (o) (n1 (1 0))

where jg11: TF M — T(TkM) is the canonical injection introduced in , and d k¢f is the exterior
derivative of f in jk¢ € T*M. From the coordinate expression ) for jr4+1, we obtain that

de(mé,...,xz+l ZmJHa 1 A (1.30)

This map dp extends to a derivation of degree 0 in {2 and, as dprd = ddr, it is determined by its action
on functions and by the property dr(dz}) = dj 4

Remark. Bearing in mind the results in Section the Tulczyjew’s derivation can be defined in the
following equivalent way: let us consider the fiber bundle 7: R x M — R, J*7 the kth-order jet bundle
of m, and d/dt € X(w k“) the total time derivative associated to the canonical vector field in R. Let us
consider the following commutative diagram

R x TEHipp — P2 mhtlpyg

Tr]’:+1 p:'H
pI‘
R x TFM 2 T*M

where we have used the identification J*m ~ R x TkM, and pry: R X TFM — TFM is the canonical
projection on the second factor. Then, the total time derivative d/dt induces an operator T' € f{(pi“)

which satisfies
k+1 ¢>

d
Toryibrg) = TP ( dt

In coordinates,

k

.0

T=3) @iy

j=0 J
The derivation corresponding to T is denoted dr and coincides with the Tulczyjew’s derivation. O
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1.5.4 Higher-order semisprays

Definition 1.33. A curve 1: R — T¥M is holonomic of type r, 1 < r < k, if, denoting ¢ = ¥ o1, then
jgfrﬂqb = p’,j_H_l o1, where jé“*rﬂq’) is the canonical lifting of ¢ to T ""TIM. That is, the following
diagram is commutative

¥ T M

k

Pk—r+1
k

Pr—r41°¥

R——m o Tk*’r’+1M

Bk

In particular, a curve 1: R — TFM is holonomic of type 1, or simply holonomic if it is the canonical
lifting of a curve ¢: R — M, that is, jE¢ = .

Definition 1.34. A vector field X € %(TkM) is a semispray of type r, 1 < r < k, if every integral curve
Y of X is holonomic of type r. If r = 1, the vector field is said to be a semispray of type 1, a kth-order
differential equation (k-O.D.E.), or a holonomic vector field.

In coordinates, let ¥(t) = (¥§(t),...,¥L(t)) be a curve in T¥M. Then v is holonomic of type  if its
component functions satisfy the following systems of differential equations

i
w;:d;ﬁo, 1<j<k—r+1,1<i<m,
or, equivalently 4
; di . .
%_HZW, 0<j<g<k—r,1<i<m.
From this, the local expression of a semispray of type r is
; .0 , 0 ; 0 ;0
X=x!—+2tb—+.. ‘2 ——+ X o —— .+ X,
183:6 283311 k T“ax;ﬂ k—r+l 0xj_,. 4 k(‘?x%

and, in particular, the coordinate expression of a semispray of type 1 is

) .9 .
S+ ..t a,— + X]
+1:26$11 + +xk8x}€_1 + Xy

0
83:}; ’

; 0
X:xlazi
0

From this coordinate expressions it is clear that every semispray of type 7 is a semispray of type s,
for s > r. In addition, we can state the following result.

Proposition 1.18. Let X € X(TkM) be a vector field. The following assertions are equivalent:

1. X 1is a semispray of type r.

2. Tpﬁ_r 0 X = jp_rt1, that is, the following diagram commutes

T(T* M)
XT Toj_,
TR M — 2 (TR M)
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3. JroX =A,.

Remark. Taking £ = 1 in the previous Definitions we recover the definitions of holonomic curve in
TM and the S.O.D.E. vector fields. Hence, holonomic curves of type 1 and semisprays of type 1 are the
natural generalization of these concepts to the higher-order tangent bundles. %

Definition 1.35. Let X € %(TkM) be a semispray of type r. A curve ¢: R — M is said to be a path
or solution of X if jk¢: R — T*M is an integral curve of X.

In coordinates, ¢(t) = (¢%(t)) verifies the following system of differential equations of order k + 1

A do " At do d5
W:inr+l (¢,dt,,dtk> N dtkH:X}c(qﬁ’dt”dtk) .

1.6 Multivector fields

In this Section we introduce the analog to differential forms of arbitrary degree for vector fields: the
multivector fields, which are just contravariant skew-symmetric tensors of arbitrary degree on a manifold
M. We will study their relation with distributions. (See [75] for details).

Along this Section, M will denote a m-dimensional smooth manifold.

1.6.1 (Locally) Decomposable multivector fields. Integrability conditions

Definition 1.36. A multivector field of degree k, or k-multivector field, is a section of the bundle A*TM.
The set of all multivector fields of degree k in M is denoted X*(M).

In general, given a k-multivector field X € X*(M), for every p € M there exists an open neighborhood
U, C M and Xj,...,X, € X(U,) such that the multivector field X can be written in U, as

X = S XL ALLAXG, (1.31)

1< < .. <ip<r

with f% € C°(U,) and k < r < dim M. Now, if for every p we have r = k, we have the following
definition.

Definition 1.37. A k-multivector field X € X¥(M) is decomposable if there are X1,...,X) € X(M)
such that X = X1 A ... A Xj. The multivector field X € X*(M) is locally decomposable if for every
p € M there exists an open neighborhood U, C M and X1, ..., X, € X(Up) such that X = X1 A ... AN Xy,
on Up.

Every multivector field X € X*(M) defines an operation ;(X') of degree —k in the algebra of differential
forms Q(M). In particular, if w € Q™ (M) is a n-form in M, then bearing in mind (1.31]) we have

Xw= Y X AL AX  w= Y (G (X w

1< <. <ip<r 1< <. <ip<r
if n > k, and it vanishes if n < k. A n-form w is said to be j-nondegenerate, 1 < j < n — 1, if for every
p€ M and X € X9(M), i(X,)w, = 0 if, and only if, X, = 0.

Let D be a k-dimensional distribution in M, that is, a k-dimensional subbundle of TM. It is clear that
sections of A*D are k-multivector fields in M, and that the existence of a non-vanishing global section of
A*D is equivalent to the orientability of the distribution D. Then, we want to study the relation between
non-vanishing k-multivector fields in M and k-dimensional distributions in TM.
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Definition 1.38. A non-vanishing multivector field X € X*(M) and a k-dimensional distribution D C
TM are locally associated if there exists a connected open set U C M such that X|; is a section of
AFD),.

U

As a consequence of this last Definition we can introduce an equivalence relation on the set of non-
vanishing k-multivector fields in M as follows: two k-multivector fields X, X’ € X¥(M) are related if,
and only if, they are both locally associated, on the same connected open set U C M, with the same
distribution D. In addition, in this case there exists a non-vanishing function f € C*°(U) such that
X' = fX on U. The equivalence classes of this quotient set will be denoted by {X'}y.

Theorem 1.19. There is a bijective correspondence between the set of k-dimensional orientable distribu-
tions D C TM and set of equivalence classes {X}yr of non-vanishing, locally decomposable k-multivector
fields in M.

Remark. If D C TM is a non-orientable k-dimensional distribution, then for every p € M there exists an
open neighborhood U, C M and a non-vanishing k-multivector field X € X*(U) such that Dl = Duy(X).
0

If X € X*(M) is a non-vanishing, locally decomposable k-multivector field and U C M is a connected
open set, then the distribution associated to the equivalence class {X'}y will be denoted by Dy (X). If
U = M, then we write simply D(X).

Definition 1.39. Let X € X*(M) be a multivector field.
o A submanifold N — M with dim N = k s an integral manifold of X if for every p € N, X, spans
AFT,N.

e Given an open subset U C M, X is integrable on U if for every p € U there exists an integral
manifold N — U of X containing p.

e X is integrable if it is integrable in M.
It is clear from the definition that every integrable multivector field is non-vanishing. Now, using
Theorem we can give the following definitions.
Definition 1.40. Let X € X*(M) be a multivector field.
e Given a connected open set U C M, X is involutive on U if it is locally decomposable in U and its
associated distribution Dy (X) is involutive.

e X is locally involutive around p € M if there exists a connected open neighborhood U, > p such
that X is involutive on U,.

e X is involutive if it is involutive on M or, equivalently, if it is locally involutive around every
pe M.

These definitions enable us to reformulate the classical Frobenius’ Theorem in the setting of multi-
vector fields.

Theorem 1.20 (Frobenius). A non-vanishing and locally decomposable multivector field X € X*(M) is
integrable on a connected open set U C M if, and only if, it is involutive on U.

Remark. If a multivector field X € X*(M) is integrable, then so is every other multivector field in it
equivalence class {X'}, and all of them have the same integral manifolds. %

Recall that a k-dimensional distribution D C T'M is integrable if, and only if, it is locally spanned by
a set of vector fields X1, ..., X € X(M) such that [X;, X;] = 0 for every pair X;, X;. Then, a multivector
field X € X*(M) is integrable if, and only if, for every p € M there exists an open neighborhood U, cM
and Xy,..., Xy € X(Up) such that
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1. Xi,..., X span Dy, (X).
2. [X;,X;] = 0 for every pair X;, X;.

Then there exists a non-vanishing function f € C*°(U,) such that X = fX1 A... A X}.

Remark. In many applications we have locally decomposable multivector fields X € X¥(M) which
are not integrable in M, but integrable in a submanifold of M. A (local) algorithm for finding this
submanifold as been developed [75]. O

Definition 1.41. A multivector field X € X*(M) is a dynamical multivector field if

1. X is integrable.

2. For every p € M there exists an open neighborhood U, C M and X1,..., X, € X(M) such that
[X;, X;] =0 for every pair X;, X;, and X = X1 A ... AN X}, on U,.

Proposition 1.21. Let {X} C X¥(M) be a class of integrable k-multivector fields. Then there is a
representative X of the class which is a dynamical multivector field.

1.6.2 Multivector fields in fiber bundles and jet bundles. Holonomy condition

We are interested in the particular situation of a fiber bundle and, more precisely, of jet bundles.

First, let 7: E — M be a fiber bundle, with dim M = m and dim E = m + n. We are interested in
the case where the integral manifolds of multivector fields are sections of the projection 7.

Definition 1.42. A multivector field X € X" (M) is transverse to the projection 7, or m-transverse, if
at every point y € E we have

(i{(X)(m"w))y # 0,
for every w € Q™(M) satisfying w(w(y)) = 0.
Observe that if X € X™(E) is a locally decomposable multivector field, then X is m-transverse if, and
only if, Tym(D(X)) = Tr(,)M for every y € E.

Theorem 1.22. Let X € X™(FE) be an integrable multivector field. Then X is w-transverse if, and only
if, its integral manifolds are local sections of .

In this case, if ¢: U C M — FE is a local section with ¢(x) = y and ¢(U) is the integral manifold of
X, then T, (Im ¢) = D,(X). Now, let us consider the following diagram

AMT(x=1(U)) AT T AMTU
\/
A™Té
x| [Amg A"y
7 (V) \”/ U
¢

where U C M is an open set. Then we have

Proposition 1.23. A multivector field X € X™(E) is integrable and w-transverse if, and only if, for
every y € E there exists a local section ¢ € Ty(w) such that ¢(n(y)) = y and a non-vanishing function
f € C®(E) such that A" T¢ = fX oo A"1y.
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Now, let us consider the kth-order jet bundle of 7, J¥r. We are interested in the case when the
integral sections of the multivector field X € X™(J*n) are the kth prolongations of sections of 7.

Definition 1.43. A multivector field X € X™(J*r) is holonomic of type 7, 1 <7 < k, if

1. X is integrable.
2. X is T -transverse.

3. The integral sections ¢ € T'(7*) of X are holonomic of type r.

In particular, a multivector field X € X™(J*r) is holonomic of type 1 (or simply holonomic) if it
is integrable, ©*-transverse and its integral sections ¢ € T'(7*) are the kth prolongations of sections

¢ € I'(nm).

In natural coordinates, let X € X™(J*7) be a locally decomposable and 7*-transverse multivector
field. From Proposition this multivector field X may be chosen to have the following coordinate
expression

' 0 0 0
x=NANp(ZL s+ 1o 2 ), 1< |I| <k,
NG+ B + Fiagg ) - 1< 1I<0

with f; non-vanishing local functions. Then, the condition for X to be holonomic of type r gives the
following equations:

Fo — @

(3 (3 )

Ffy=ufy,, 1<||<k-r,1<i<m,1<a<n. (1.32)

Hence, the local expression of a locally decomposable holonomic of type r multivector field is

" 0, ad < a L0
X:/i\lfl 81)‘+ 187 Z Z FI,i% )

ur m k—r41

In the particular case r = 1, that is, X’ being a locally decomposable holonomic multivector field, its local
expression is

" B o B B
X:/\fi o T T+Zul+1aa+FK16
i=1 |I|=1

where |K| = k.

Remark. It is important to point out that a locally decomposable and 7*-transverse multivector field
X satisfying the local equations may not be holonomic of type r, since these local equations are
not a sufficient nor necessary condition for the multivector field to be integrable. However, we can assure
that if such a multivector field admits integral sections, then its integral sections are holonomic of type
r. In first-order theories using jet bundles, these equations are equivalent to the so-called semi-holonomy
condition (or S.O.P.D.E condition, from Second Order Partial Differential Equation) [75]. In the general
setting, a locally decomposable and 7*-transverse multivector field satisfying equations is called
semi-holonomic. O

1.7 The constraint algorithm

There are many works devoted to the study of a constraint algorithm for implicit differential equations.
See, for example, [88] [89, 00, 117, 118]. Moreover, this algorithm has been generalized to many different
situations, including time-dependent mechanical systems, both for a trivial bundle and a general bundle
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over R endowed with a cosymplectic structure (see [27] 44, 45]), and field theories in the k-symplectic
and multisymplectic settings (see [46], ©94]).

In this Section we briefly review the constraint algorithm for presymplectic systems, which is a purely
geometric algorithm based on the Dirac—Bergmann algorithm.

Let M be a m-dimensional smooth manifold, w € Q?(M) a closed 2-form on M, and o € Q'(M) a
1-form on M. If w is nondegenerate (that is, symplectic), then the equation

i(X)Q=«a, (1.33)

has a unique solution X € X(M) for every l-form « that we consider. In particular, the vector field
solution to equation ([1.33)) is given by

X = wha) = () (a),

where w”: X(M) — Q'(M) is the canonical isomorphism introduced in Section Nevertheless, if w is
degenerate (that is, presymplectic), then equation may not have a solution defined on the whole
manifold M, but only on some points of M. The triple (M,w, «) is said to be a presymplectic system.
The aim of the constraint algorithm, is to find a submanifold N < M such that the equation
has solutions in N (if such a submanifold exists). More precisely, the constraint algorithm returns the
maximal submanifold N of M such that there exists a vector field X € X(M) satisfying equation
with support on N.

The algorithm proceeds as follows. Since w is degenerate, equation has no solution in general,
or the solutions are not defined everywhere. In the most favorable cases, equation admits a global
(but not unique) solution X € X(M). Otherwise, we consider the subset of points in M where such a
solution exists, that is, we define

M, = {p € M| there exists X, € T, M satisfying (X,)w, = a,}
={pe M| ((Y)a)(p) =0 for every Y € kerw} ,
and we assume that it is a submanifold of M. The submanifold M; — M is the compatibility submanifold,
or the first constraint submanifold, of the system. Then, equation (1.33) admits a solution X defined

everywhere in M7, but X is not necessarily tangent to M7, and thus it does not necessarily induce a
dynamics on M;. So we impose a tangency condition along M7, and we obtain a new submanifold

My = {p € M, | there exists X,, € T,M; satisfying i(X,)w, = ap} .

A solution X to equation ([1.33]) does exist in My but, again, such an X is not necessarily tangent to Mo,
and this condition must be required. Following this process we obtain a sequence of submanifolds

o> My — ... — My — My — M,
where the general description of M; is

M; ={p € M;_1 | there exists X, € T,M,_; satisfying (X, )wp, = a,}

If the algorithm terminates at a nonempty set, in the sense that at some s > 1 we have M;,1 = M;
for every i > s, then we say that M is the final constraint submanifold, which is denoted by M. It may
still happen that dim My = 0, that is, My is a discrete set of points, and in this case the system does not
admit a proper dynamics. But if dim My > 0, by construction, there exists a well-defined solution X of

equation (|1.33)) along M.
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Chapter 2

Mathematical physics background

In this second Chapter we review the geometric formulations of several kinds of physical systems. In
particular, we focus on dynamical systems and field theories whose dynamical information is given in
terms of a Lagrangian function or density. As for Chapter [I} this is a review Chapter. Hence, no
proofs or detailed calculations are given: several references containing proofs, calculations and details are
included within each Section.

The structure of the Chapter is the following. In Section [2.1] we review the Lagrangian, Hamiltonian
and unified formalisms for first-order autonomous dynamical systems. Using this geometric setting,
Section is devoted to introduce the geometric version of the Hamilton-Jacobi problem for these
kinds of systems, both in the Lagrangian and Hamiltonian formulations. Section is devoted to give
the geometric setting of both the Lagrangian and Hamiltonian formalisms for higher-order dynamical
systems. Finally, in Sections and we review the Lagrangian, Hamiltonian and Skinner-Rusk
formulations of non-autonomous first-order dynamical systems and first-order field theories, respectively.

We point out that the reader will find obvious similarities between the different Sections within this
Chapter. In fact, since we assume that all our physical systems are given in terms of a Lagrangian, the
geometrization of these kind of systems gives rise to similar geometric models that may be adapted from
one particular situation to another.

2.1 First-order autonomous dynamical systems

Consider a first-order autonomous Lagrangian dynamical system with n degrees of freedom. Let @) be
a n-dimensional smooth manifold modeling the configuration space of this first-order dynamical system,
and £ € C*°(TQ) a Lagrangian function describing the dynamics of the system.

2.1.1 Lagrangian formalism

(See [] and [411 [118] for details).

Geometric and dynamical structures

From the Lagrangian function £ € C*°(TQ) and the canonical structures of the tangent bundle, namely
the vertical endomorphism J: X(TQ) — XV(7@)(TQ) and the Liouville vector field A € X(TQ), we
construct the following structures.
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Definition 2.1. The Poincaré-Cartan 1-form associated to L € C*°(TQ), or Lagrangian 1-form, is the
form 0. € QY(TQ) defined as
O =4(J)dL=dLo J.
From this, the Poincaré-Cartan 2-form associated to L, or Lagrangian 2-form, is the form we € Q%(TQ)
defined as
We = —d@g .

It is important to point out that, given an arbitrary Lagrangian function £ € C°°(TQ), the 2-form
w, may not have constant rank at every point in TQ. If rankw,(p,v,) = const. for every (p,v,) € TQ,
then £ € C*°(TQ) is said to be a geometrically admissible Lagrangian. We will only consider Lagrangian
functions satisfying this property.

Definition 2.2. The Lagrangian energy associated to L € C*(TQ) is the function Ex € C*(TQ)
defined as

E=AL)-L.
Remark. In some references, the first term of the Lagrangian energy is referred to as Lagrangian action
associated to £, and it is denoted by Az. Then we have Ep = Ay — L. O

It is clear from these definitions that the phase space of a first-order autonomous Lagrangian dynamical
system is the tangent bundle of the configuration manifold Q).

Definition 2.3. A first-order autonomous Lagrangian system is a pair (TQ, L), where Q) represents the
configuration space and L € C*(TQ) is the Lagrangian function.

In coordinates, bearing in mind the local expressions of the vertical endomorphism of the tangent
bundle given by ([1.27) and the Liouville vector field given by (1.26)), the coordinate expression of the

Poincaré-Cartan 1-form is

oL
0 = —— dg 2.1
L 81}‘4 q, ( )
from which the coordinate expression of the Poincaré-Cartan 2-form is
0%L

= ——"_d¢* ANd¢P + —=—=dg* AdE. 2.2
we OvAdgB 1 ¢ duAguE v (22)

On the other hand, the Lagrangian energy has the following coordinate expression

oL
_ A A A

EL—U 81}7147‘6((] , U ) (23)

Remark. From the coordinate expression ([2.1]), it is clear that the Lagrangian 1-form 6, is a semibasic
form on TQ since 6, € Im(J*), where J*: T*TQ — T*TQ is the conjugate of the vertical endomorphism.
O

Observe that, given an arbitrary Lagrangian function £ € C°°(TQ), the Poincaré-Cartan 2-form
we € Q%(TQ) is always closed by definition, but not necessarily nondegenerate. That is, the Lagrangian
2-form is always presymplectic, but not necessarily symplectic. This leads to the following definition.

Definition 2.4. A Lagrangian function L € C*°(TQ) is regular (and thus (TQ, L) is a regular system)
if the Poincaré-Cartan 2-form we € Q?(TQ) associated to L is symplectic. Otherwise, the Lagrangian is
said to be singular (and thus (TQ, L) is a singular system ).

From the coordinate expression ([2.2) of the Poincaré-Cartan 2-form it is clear that the nondegeneracy

of wg is locally equivalent to

OvAovB

That is, a Lagrangian function is regular if, and only if, its Hessian matrix with respect to the velocities
is invertible at every point of TQ.

02L
det (p,vp) # 0, for every (p,v,) € TQ.
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Dynamical vector field

The dynamical trajectories of the system are given by the integral curves of a holonomic vector field
X € X(TQ) satisfying

i(Xﬁ)LUﬁ =dE.. (24)
This equation is the Lagrangian equation, and a vector field X solution to (if such a vector field
exists) is called a Lagrangian vector field. If, in addition, X, is holonomic, then it is called the Euler-
Lagrange vector field, and its integral curves are solutions to the Euler-Lagrange equations.

Remark. Notice that, following the terminology introduced in Section the vector field X, solution
to equation (2.4]) is nothing but the Hamiltonian vector field associated to the Lagrangian energy E.. ¢

In the natural coordinates of TQ, a generic vector field X, € X(TQ) is given by
a0
oA’

Then, bearing in mind the local expression (2.2]) of the Lagrangian 2-form w,, and requiring equation
(2.4) to hold, we obtain the following system of 2n equations for the component functions of X,

0
XﬁZanin‘f'F

A PL o PL PL O\, L o 259
OvAouB OvAdgB  dvBogh OvAdgB  9q¢B’ '
0L
A A _
(f%—wv )81)‘481)3 0. (2.6)

Observe that equations (2.6)) are the local equations for the holonomy condition of the vector field X,
while equations (2.5) are the dynamical equations. Observe that if the condition to be holonomic is
required from the beginning, then equations ([2.6)) are an identity, and equations (2.5) reduce to
2 2
4 0L :8£_UA 0°L . (2.7)
ovAovB  9¢B OqAovB

In all of these equations the Hessian matrix of £ with respect to the velocities appears alongside the
coefficients to be determined. Therefore, we have the following result.

Proposition 2.1. If the Lagrangian function £ € C*>°(TQ) is regular, then there exists a unique vector
field X € X(TQ) solution to the equation (2.4]) which, in addition, is holonomic.

Remark. Notice that the existence and uniqueness of the solution to equation (2.4)) is also a straight-
forward consequence to the fact that £ € C*°(TQ) is regular if, and only if, the 2-form w, € Q?(TQ) is
symplectic. %

If the Lagrangian function provided is not regular, then the 2-form w, is merely presymplectic, so
the existence of solutions to the equation is not assured, except in special cases or requiring some
additional conditions to the Lagrangian function. In general, we must use the constraint algorithm
described in Section and, in the most favorable cases, there exists a submanifold Sy — T(Q where the
equation

[i(Xc)we — dEﬁHSf =0. (2.8)
admits a well-defined solution X, which is tangent to Sy. Nevertheless, these vector fields solution are
not necessarily holonomic on Sy, but only in the points of another submanifold S;} — Sy.

Integral curves

Let X, € X(TQ) be a holonomic vector field solution to the equation (2.4), and let ¢ : R — TQ be an
integral curve of X,. Since X, is a holonomic vector field, there exists a curve ¢.: R — @ such that
¢r = Y. Since ¥y = X o1, the geometric equation for the dynamical trajectories of the system is

() (we 0tpr) =dEg oty
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or, equivalently, . . .
i(pc)(weogr)=dEcog,.

In coordinates, the curve ¢o: R — @ must satisfy the following system of n second-order ordinary
differential equations
oL d 0L
- === =o. (2.9)
Al Al
gt |y, dtovd|, .

These are the Fuler-Lagrange equations for this dynamical system.

2.1.2 Hamiltonian formalism associated to a Lagrangian system

(See [T, 4] for details).

The Legendre map

The Legendre map in first-order dynamical systems can be introduced in several equivalent ways. In this
dissertation we define this transformation using the fact that the Poincaré-Cartan 1-form is semibasic on
TQ, since it will be the easiest way when we generalize it to the higher-order setting in Section For
alternative definitions, see [T}, 4, 16}, [T04].

Definition 2.5. The Legendre map associated to the Lagrangian function £ € C*°(TQ) is the bundle
morphism FL: TQ — T*Q over Q defined as follows: for every u € TTQ,

Oc(u) = (T1g(u) , FL(Trq(u))) -

It is clear from the definition that this map satisfies 7g o FL£ = 7g. Furthermore, if § € Q'(T*Q) and
w = —df € Q*(T*Q) are the canonical 1 and 2 forms of the cotangent bundle, we have that FL*0 = 6,
and FL'w = wp.

In coordinates, bearing in mind the local expressions of the Liouville 1-form § € Q'(T*Q) given by
(1.2) and the Poincaré-Cartan 1-form 6, € Q'(TQ) given by (2.1]), we obtain the coordinate expression

of the Legendre map, which is

. N oL
FLqA =q¢% ;. FL'pa= E (2.10)

Observe that from this coordinate expression, the rank of the tangent map of FL depends only on
the rank of the Hessian matrix of £ with respect to the velocities. Hence, £ € C*(TQ) is a regular
Lagrangian function if, and only if, the Legendre map FL: TQ — T*Q is a local diffeomorphism.

Definition 2.6. A Lagrangian function £ € C*°(TQ) is hyperregular if the Legendre map FL: TQ —
T*Q 1is a global diffeomorphism.

Remark. If the Lagrangian function is hyperregular, then the Legendre map is a symplectomorphism
between the symplectic manifolds (TQ,w,) and (T*Q,w). O

In order to describe the dynamical trajectories in the canonical Hamiltonian formalism of a Lagrangian
system, we distinguish between the regular and non-regular cases. In fact, the only singular kind of
systems that we will consider are the almost-regular ones, since we must require the Lagrangian to
satisfy some minimal regularity conditions in order to give a general description of these systems.

Definition 2.7. A Lagrangian function £ € C*°(TQ) is almost-regular if

1. FL(TQ) < T*Q is a closed submanifold.
2. FL is a surjective submersion onto its image.

3. For every (p,up) € TQ the fibers FL N FL(p, up)) are connected submanifolds of TQ).
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Regular and hyperregular Lagrangian functions

Let us assume that the Lagrangian function £ € C*°(TQ) is hyperregular, since the regular case is
recovered from this one by restriction on the open sets where the Legendre map is a local diffeomorphism.

Since FL: TQ — T*Q is a global diffeomorphism, there exists a unique function h € C*°(T*Q) such
that FL*h = E¢.

Definition 2.8. The canonical Hamiltonian function is the unique function h € C°(T*Q) satisfying
FLh = Ef.

The dynamical trajectories of the system are given by the integral curves of a vector field X}, € X(T*Q)
satisfying
i(Xp)w = dh. (2.11)
This equation is the Hamiltonian equation, and the unique vector field solution to this equation is called
the Hamiltonian vector field.

Remark. This concept of Hamiltonian vector field should not be confused with the one introduced in
Section [1.1.2] although the vector field solution to equation (2.11)) is obviously the Hamiltonian vector
field (in the sense of Definition of the function h € C*°(T*Q). O

Let us compute the coordinate expression of the Hamiltonian function h € C*°(T*Q). Bearing in
mind the local expressions (2.10]) of the Legendre map FL and (2.3 of the Lagrangian energy, we have
h=(FL ) vhpa — (FLTHL.

Now, for the equation (2.11)), let X}, € C*°(T*Q) be a generic vector field given by
0

Bearing in mind the coordinate expression (1.3]) of the canonical symplectic form of T*Q we have that
the equation (2.11)) gives locally the following system of 2n equations

oh oh
A _ . - _ . 2.12
apa A dgqt (212)

Finally, we establish the relation between the vector fields solution to the dynamical equation (2.4)
in the Lagrangian formalism and the vector fields solution to the dynamical equation (2.11)) in the
Hamiltonian formalism associated to a hyperregular Lagrangian system.

Theorem 2.2. Let L € C°(TQ) be a hyperregular Lagrangian function. Then we have:

1. Let X, € X(TQ) be the unique holonomic vector field solution to equation (2.4)). Then the vector
field X, = FL. X, € X(T*Q) is a solution to equation (2.11)).

2. Conversely, let X, € X(T*Q) be the unique vector field solution to equation (2.11)). Then the vector
field Xp = (FL™Y). X, € X(TQ) is holonomic, and is a solution to equation (2.4).

Now, if ¢, : R — T*(Q is an integral curve of X},, the geometric equation for the dynamical trajectories
of the system is

i(Pn)(woy) = dhoy,.

In coordinates, if the curve 1y, is given by ¥, (t) = (¢”(t),pa(t)), then its component functions must
satisfy the following system of 2n first-order ordinary differential equations
A Oh ) Oh

_ oh : _ 2.13
3, Pa 3 (2.13)

4 Ny

These are the Hamilton equations for this dynamical system.
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Singular (almost-regular) Lagrangian functions

In the case of almost-regular Lagrangian systems, the Legendre map is no longer a diffeomorphism, and
therefore the image of FL is a proper submanifold of T*Q. Let P = Im(FL) — T*Q be the image set
of the Legendre map, with natural embedding j: P — T*(Q, and we denote by FL,: TQ — P the map
defined by FL = 30 FL,. With these notations, we have the following result.

Proposition 2.3. The Lagrangian energy Ep € C*(TQ) is FL,-projectable.

As a consequence of this last result, we can define a Hamiltonian function in P as follows.
Definition 2.9. The canonical Hamiltonian function is the unique function h, € C°°(P) such that

FLiho = E.

Then, taking w, = 7*w € Q%(P), we can state the Hamilton equation for this system: we look for a
vector field X, € X(P) satisfying
i(Xn, )wo = dhy .

Since the 2-form w, € Q%(P) is, in general, presymplectic, we must apply the constraint algorithm
described in Section In the most favorable cases, this equation admits a vector field solution only on
the points of some submanifold Py < P — T"Q, and is tangent to it, so the following equation holds

[i(Xh, )wo — dhollp, =0. (2.14)
This vector field is not unique, in general.
In this situation, we have an analogous result to Theorem 2.2

Theorem 2.4. Let L € X(TQ) be an almost-regular Lagrangian function. Then we have:

1. Let X, € X(TQ) be a holonomic vector field solution to equation (2.8]) in the points of a submanifold
Sy — TQ. Then there exists a vector field Xy, € X(P) which is FL,-related to X and is a solution
to equation (2.14), where Py = FLy(Sf) — P.

2. Conversely, let Xy, € X(P) be a vector field solution to equation (2.14) on the points of some
submanifold Py — P. Then there exist vector fields X, € X(TQ) which are FL,-related to Xy,
and are solutions to equation (2.8), where Sy = FL™*(Py).

Observe that the vector fields X, € X(TQ) which are FL,-related to X;,, may not be holonomic,
since this condition can not be assured in the singular case. These FL,-projectable holonomic vector
fields could be defined only on the points of another submanifold My — Sy.

2.1.3 Lagrangian-Hamiltonian unified formalism

(See [141] for details).

Unified phase space. Geometric and dynamical structures

Let us consider the bundle
W= TQ XQ T*Q,

that is, the product over @ of the Lagrangian and Hamiltonian phase spaces. This bundle is endowed
with canonical projections over each factor, namely p;: W — TQ and py: W — T*Q. Using these
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projections, and the canonical projections of the tangent and cotangent bundles of @, we introduce the
following commutative diagram

TQ xq T"Q
TQ T"Q
X\ /
Q
Local coordinates in W are constructed as follows: if (U, ¢) is a local chart of Q with ¢ = (¢%), 1 < A < n,
then the induced local charts in TQ and T*Q are (Tél(U), (g#,v4)) and (ﬂ'él(U), (¢”,pa)), respectively.
Therefore, natural coordinates in the open set (7 o p1) 1 (U) = (7g 0 p2) "1(U) C W are (¢4, v4,pa).

Observe that dim W = 3dim Q) = 3n. Using these coordinates, the above projections have the following

local expressions
A ’UA)

pl(qA7UA7pA) = (q ) ; P2(QA7'UA7PA) = (qupA) .

The bundle W is endowed with some canonical geometric structures. First, let § € Q'(T*Q) be the
Liouville 1-form on the cotangent bundle, and w = —df € Q?(T*Q) the canonical symplectic form on
T*Q. From this we can define a 2-form £ in W as

Q=pyweW).
It is clear that € is a closed 2-form, since
Q=pyw=py(—df) =—dpy 0.

Nevertheless, this form is degenerate, and therefore it is a presymplectic form. Indeed, let X € XV (#2) W).
Then we have

i(X)Q =i(X)pyw = p3(i(Y)w),

where Y € X(T*Q) is a vector field ps-related to X. However, since X is vertical with respect to ps, we
have Y = 0, and therefore

pa(i(Y)w) = p5(i(0)w) = 0.
In particular, {0} ¢ XV 2) (W) C ker Q, and thus (2 is a degenerate 2-form.

In coordinates, bearing in mind the local expression of the canonical symplectic form of the cotangent
bundle given by and the local expression of the projection py given above, the coordinate expression
of the presymplectic form 2 is

Q=dg¢* Adpa. (2.15)

From this local expression it is clear that €2 is closed and that its kernel is locally given by

8 2
ker Q = <31}A> =xVe) (W),

The second relevant geometric structure in W is the following.

Definition 2.10. Let p € Q be a point, v, € T,Q a tangent vector at p and oy, € T;Q a covector on p.
Then we define the coupling function C € C*°(W) as

C(p, vp, ap) = (ap,vp),

where (ap,vp) = ap(vp) is the canonical pairing between the elements of the vector space T,Q and its
dual T:Q).
P
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a0

In local coordinates, if we consider a local chart on p € @ such that o, = padg 90|
T p

> = pAUA}p .
p

Using the coupling function defined above and the given Lagrangian function £ € C*°(TQ), we define
the Hamiltonian function H € C*°(W) by

A| and v, = v
p

then the local expression of the coupling function is

0
C(pv ’Upvap) = <ap7vp> = <pAqu’p7 ’UAain

whose local expression is
H(g* v*, pa) = pav?® — L(g* v?). (2.17)

Dynamical vector fields in W

Hence, we have constructed a presymplectic Hamiltonian system (W, Q, H). The dynamical equation for
this kind of systems is

i(X)Q=dH , X e X(W). (2.18)
Observe that, since the system is presymplectic, the above equation may not admit a global solution
X € X(W), and we have to use the constraint algorithm given in Section From the algorithm given
in the aforementioned Section, we can state the following result.

Proposition 2.5. Given the presymplectic Hamiltonian system (W,Q, H), a solution X € X(W) to
equation (2.18]) exists only on the points of the submanifold W, — W defined by

We={weW|((Y)dH)(w) =0,VY € kerQ},
with natural embedding jr: Wy — W.

We have the following characterization of the first constraint submanifold W,.

Proposition 2.6. The submanifold Wy — W is the graph of the Legendre map defined by L, that is,
W, = graph FL.

Remark. If we denote by Xy, (W) the set of vector fields in W at support on W, then the dynamical
equation for the presymplectic system (W, ), H) can be stated as follows: we look for vector fields
X € Xy, (W) which are solutions to the equation

[i(X)Q — dH]l,,, = 0.

Nevertheless, since we do not have a distinguished system of coordinates in W,, we will stick to the
general setting: we consider a vector field X € X(W) and the equation (2.18)), and at the end we require
the vector field X to be tangent to the submanifold W,. O

In the natural coordinates of W, a generic vector field X € X(W) is given by

0 0 0
X=fA— 4+ F4" — 41 Gy—.
/ Og4 + ov4 + A pa
Then, bearing in mind the local expressions (2.15)) of the presymplectic form Q and (2.17)) of the Hamil-
tonian function H, the equation (2.18)) gives the following system of 3n equations

fA =01, (2.19)
oL
oL
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where 1 < A < n. Then a vector field X € X(WW) solution to equation (2.18) has the following coordinate
expression

XAl ypad 0L 0
OgA ovA  OgA Opy
Observe that equations (2.19) are the holonomy condition for a vector field in the Lagrangian formalism,
as we have seen in Section On the other hand, equations are a compatibility condition that
state that the vector fields X exist only with support on the submanifold defined as the graph of the
Legendre map. So we recover, in coordinates, the result stated in Propositions and Finally,
equations are the dynamical equations of the system.

Remark. It is important to point out that the holonomy of the vector field X € X(W) is obtained
regardless of the regularity of the Lagrangian function £ € C*°(TQ) provided. %

Notice that the component functions F4 of the vector field remain undetermined. This is due to the
fact that these functions are the components of the po-vertical part of the vector field X, and therefore
they are annihilated by the presymplectic form 2. Nevertheless, since X is defined at support on the
submanifold W,, we must study the tangency of X along this submanifold. That is, we must require
that L(X)Elyy,, = X(€)lyy, = 0 for every constraint function ¢ defining W,. From Proposition we
have that the submanifold W, is defined by the n constraints

oL
ngpBT?TB:O’ B=1,...,n,

and therefore the tangency condition for X along W, leads to the following n equations

Ad  ad 0L a)( 8£>_3£ e AL

X (£B) = — = =z e I e _ —
(£7) <v Og4 * ovA + 0q4 Opa B ouB O0qB v OqAovB OvAovB
Notice that these are the Lagrangian equations for the components of a vector field once the holonomy

condition is satisfied, as we have seen in (2.7]). These equations can be compatible or not, and a sufficient
condition to ensure compatibility is the regularity of the Lagrangian function. In particular, we have

Proposition 2.7. If L € C*(TQ) is a reqular Lagrangian function, then there exists a unique vector

field X € X(W) which is a solution to equation (2.18)) and is tangent to Wr.

If the Lagrangian £ is not regular, the above equations can be compatible or not, and new constraints
may arise from them, thus requiring the constraint algorithm to continue. In the most favorable cases,
there exists a submanifold Wy — W, (it could be Wy = W, ) such that there exist vector fields X €
Xy, (W), tangent to Wy, which are solutions to the equation

[i(X)Q — dH]|,y, =0. (2.22)

Lagrangian dynamics

Now we study how to recover the Lagrangian vector fields from the dynamical vector fields in the unified
setting. In fact, we will show that there exists a bijective correspondence between the set of vector fields
solution to the dynamical equation in the unified setting and the set of vector fields solution to the
dynamical equation in the Lagrangian formalism.

The first fundamental result is the following.

Proposition 2.8. The map pt = py ojc: We — TQ is a diffeomorphism.

This result allows us to recover the geometric and dynamical structures of the Lagrangian formalism
from the unified setting. In particular, we have the following results.
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Lemma 2.9. If w € Q3(T*Q) is the canonical symplectic form in T*Q, and wy = FL*w € Q?(TQ) is
the Poincaré—Cartan 2-form, then Q = pjw,.

Lemma 2.10. There exists a unique function Ep € C*(TQ) such that p;E;, = H.

The function obtained in this last result is the Lagrangian energy from Section With all these
results, we can now state the equivalence theorem.

Theorem 2.11. Let X € X(W) be a vector field solution to equation (2.18|) and tangent to Wy (at
least on the points of a submanifold Wy — W ). Then there exists a unique holonomic vector field
Xr € X(TQ) which is a solution to equation (2.4)) (at least on the points of Sy = p¥(Wy)).

Conversely, if X, € X(W) is a holonomic vector field solution to equation (2.4)) (at least on the points
of a submanifold Sy — TQ), then there exists a unique vector field X € X(W) which is a solution to
equation ([2-18)) and tangent to W (at least on the points of the submanifold Wy = (p£)~(Sy)).

Note that Theorem [2.11] states that there is a one-to-one correspondence between vector fields X €
X(W) which are solutions to equation and vector fields Xz € X(TQ) which are solution to (2.4)),
but it does not state the uniqueness of any of them. In fact, the uniqueness can not be assured in the
general case, but only when the Lagrangian function is regular, as it is stated in Proposition

Hamiltonian dynamics

As in the usual formulation of the Hamiltonian formalism described in Section in order to recover
the Hamiltonian dynamics from the unified setting we must distinguish between regular and singular
(almost-regular) Lagrangian functions.

Hyperregular and regular Lagrangians. Assume that the Lagrangian function £ € C*°(TQ) is
hyperregular (the regular case is recovered from this by restriction on the corresponding open sets where
the Legendre map is a local diffeomorphism), and let p5 = ps 0 jo.: Wy — T*Q. Then, we have the
following commutative diagram

In particular, p5 = FL o pf is a diffeomorphism, since both F£ and pf are diffeomorphisms. Therefore,
we can state the following result.

Lemma 2.12. There exists a unique function h € C*°(T*Q) such that p5h = H.
The function obtained in this last result is the Hamiltonian function from Section 2.1.2] Now we can
state the equivalence theorem in this case.

Theorem 2.13. Let X € X(W) be a vector field solution to equation (2.18)) and tangent to W,. Then
there exists a unique vector field Xp, € X(T*Q) which is a solution to equation (2.11)).

Conversely, if Xy, € X(T*Q) is a vector field solution to equation (2.11)), then there exists a unique vector
field X € X(W) which is a solution to equation (2.18]) and tangent to We.
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Singular (almost-regular) Lagrangian functions. If the Lagrangian function is not regular, then
we can not recover the Hamiltonian dynamics straightforwardly from the unified setting, but rather
passing through the Lagrangian formalism.

Remember that, for almost-regular Lagrangian functions, only in the most favorable cases we can
assure the existence of a submanifold Wy < W, and vector fields X € X(W) tangent to Wy which are
solutions to equation (2.22). Thus, we can consider the submanifold Sy = p1(Wy) < TQ and then, using
Theorem [2.11} from the vector fields X € X(W) we obtain the corresponding holonomic vector fields
X, € X(TQ) solutions to . With these elements, we can apply the procedure described in Section
for singular (almost-regular) Lagrangian functions, and recover the Hamiltonian dynamics from the
Lagrangian formalism.

Integral curves

After studying the vector fields which are solutions to the dynamical equations, we analyze their inte-
gral curves, showing how to recover the Lagrangian and Hamiltonian dynamical trajectories from the
dynamical trajectories in the unified formalism.

Let X € X(W) be a vector field tangent to W, which is a solution to the equation (2.18), and let
1: I CR — W be an integral curve of X. Since ¢ = X o 1), the geometric equation for the dynamical
trajectories of the system is

i(Y)(Qoy) =dH oy

In coordinates, if 1(t) = (¢ (t),v*(t),pa(t)), the condition 1) = X o 1) gives the following system of
differential equations for the component functions of

) . oL
') =vroy 5 pa(t)= DA

together with the equations defining locally the Legendre map.

oY,

Now, for the Lagrangian dynamical trajectories we have the following result:

Proposition 2.14. Let ¥: I C R — W be an integral curve of a vector field X solution to equation
(2.18) on We. Then the curve iy = p1otp: I — TQ is holonomic and is an integral curve of X .

Remark. Since ¢, is holonomic, there is a curve ¢,: R — Q such that ¢. = . O

And for the Hamiltonian trajectories, we have:

Proposition 2.15. Let ¥: I C R — W be an integral curve of a vector field X solution to equation
(2.18) on W,. Then the curve ¥ = ps otp: I — T*Q is an integral curve of Xp,.

The relation among all these integral curves is summarized in the following diagram.

Remark. Observe that in Propositions and we make no assumptions on the regularity of the
system. In fact, the only considerations in the almost-regular case are that, in general, the curves lie in
some submanifolds which are determined by the constraint algorithm described in Section [I.7} O
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2.2 Hamilton-Jacobi theory for first-order autonomous systems

(See [1, 4] and [23] for details).

Let us consider a first-order autonomous Lagrangian dynamical system with n degrees of freedom.
Let @ be a n-dimensional smooth manifold modeling the configuration space of this first-order dynamical
system, and £ € C*°(TQ) a Lagrangian function describing the dynamics of the system. Along this
Section, we assume that the Lagrangian function £ is regular (see Definition .

Remark. The geometric Hamilton-Jacobi problem has been established also in the unified Lagrangian-
Hamiltonian formalism in a recent paper [60]. The goal of the paper is to give a geometric formulation
of the Hamilton-Jacobi theory for dynamical systems described by singular Lagrangian functions, and
therefore no distinction between the generalized and standard Hamilton-Jacobi problems is made, but
rather between the cases of regular and singular Lagrangian functions. In this Section we do not review
this paper, which is beyond the scope of this dissertation. %

2.2.1 Lagrangian formulation of the Hamilton-Jacobi problem

Since £ € C*(TQ) is a regular Lagrangian function, the Poincaré-Cartan 2-form w,; € Q?(TQ) is
symplectic, and hence the equation (2.4 admits a unique solution, which in addition is holonomic. Thus,
let Xz € C*°(TQ) be the unique holonomic vector field solution to equation (2.4]).

Generalized Lagrangian Hamilton-Jacobi problem

Definition 2.11. The generalized Lagrangian Hamilton-Jacobi problem consists in finding a vector field
X € X(Q) such that if v: R — @ is an integral curve of X, then its canonical lifting v: R — TQ is an
integral curve of X ; that is,

Xoy=4=Xpoy=%.

X is said to be a solution to the generalized Lagrangian Hamilton-Jacobi problem.

Theorem 2.16. Let X € X(Q). The following assertions are equivalent:

1. X 1s a solution to the generalized Lagrangian Hamilton-Jacobi problem.
2. X and X, are X-related, that is, Xy o X =TX o X.

3. The submanifold Im(X) < TQ is invariant by the Euler-Lagrange vector field X, (that is, X is
tangent to the submanifold X (Q)).

4. X satisfies the equation
i(X)(X we) =d(X"Eg).

In coordinates, let (U; (¢*)), 1 < A < n, be alocal chart in @, and let (¢, v*) be the induced natural
coordinates in 75 YU) € TQ. In these coordinates, a generic vector field X € X(Q) has the following
coordinate expression

0
X =Xx4_"=
dg4’
and the Euler-Lagrange vector field is given locally by
0 0
Xe=v'5 + FA
TV A T B

where the functions F4 are the unique solutions to the system of n equations (2.7). Then, bearing in
mind that the submanifold Im(X) < TQ is locally defined by the constraints v4 — X4 = 0, and the third
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item in Theorem [2.16] the condition for X to be a solution to the generalized Lagrangian Hamilton-Jacobi
problem gives the following system of n partial differential equations for the component functions of X

FA
dq” Im(X)

=0. (2.23)

Lagrangian Hamilton-Jacobi problem

In general, to solve the generalized Lagrangian Hamilton-Jacobi problem is a difficult task, since it
amounts to finding n-codimensional X /-invariant submanifolds of T@Q. Thus, it is convenient to consider
a less general problem.

Definition 2.12. The Lagrangian Hamilton-Jacobi problem consists in finding solutions X € X(Q) to
the generalized Lagrangian Hamilton-Jacobi problem satisfying that X*w, = 0. Such a vector field is
called a solution to the Lagrangian Hamilton-Jacobi problem.

Observe that the condition required to the vector field X is equivalent to require an isotropy condition
to the submanifold Im(X), which in addition satisfies dimIm(X) = n = $2n = dimTQ. Hence, we
have the following result as a straightforward consequence of Theorem [2.16

Theorem 2.17. Let X € X(Q) be a vector field satisfying X*we = 0. Then, the following assertions are
equivalent:

1. X s a solution to the Lagrangian Hamilton-Jacobi problem.
2. d(X*Ez) =0.
3. Im(X) is a Lagrangian submanifold of TQ invariant by X,.

4. The integral curves of X with initial conditions in Im(X) project onto the integral curves of X.

In the induced natural coordinates (¢*,v?) of TQ, bearing in mind the coordinate expression (2.2))

of the Poincaré-Cartan 2-form w, € Q2(TQ), the local expression of equation X *w, = 0 is
0%L n 0’L 0X¢
OvAdgB  dvAdvC O¢B

~0, (2.24)
Im(X)

or, equivalently, bearing in mind the coordinate expression (2.3)) of the Lagrangian energy F, € C*(TQ),
the local expression of equation d(X*E;) = X*(dE;) =0 is

0’L 0XP o %L g 0L

OvAovB 9q° OvA0qB Og4

=0. (2.25)
Im(X)

Therefore, a vector field X € ¥(Q) is a solution to the Lagrangian Hamilton-Jacobi problem if, and only
if, its component functions satisfy the system of partial differential equations given by ([2.23]) and (2.24]),
or, equivalently, the system of partial differential equations given by (2.23)) and (2.25)).

In addition, in this case we can obtain the classical Hamilton-Jacobi equation in the Lagrangian
formalism as follows. Asw, = —df., we have 0 = X*w, = —X*df, = —d(X*0.), that is, X*0, € Q}(Q)
is a closed form. In particular, using Poincaré’s Lemma, we have that every point in () has an open
neighborhood U C @ where there exists a local function W € C*°(U) such that X*0, = dW (in U).
Then, bearing in mind the coordinate expression of the Poincaré-Cartan 1-form, we have

o

X*Gﬁ = qu ’
v Im(X)
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from which the equation X*0, = dW gives the following system of n partial differential equations

ow _ o

e (2.26)

which are the standard Hamilton-Jacobi equations in the Lagrangian formalism.

Complete solutions

Observe that, in the previous Sections, we established the general setting to obtain a particular solution
of the system, since only the integral curves of X, whose initial conditions lie in the submanifold Im(X)
can be recovered. Hence, in order to obtain a complete solution to the problem, it is clear that we need
to foliate T@ with Lagrangian submanifolds invariant by the Euler-Lagrange vector field X, € X(TQ).

Definition 2.13. A complete solution to the Lagrangian Hamilton-Jacobi problem is a local diffeo-
morphism ®: Q x U — TQ, with U C R™ an open set, such that for every A € U, the vector field
Do, \) = X, € X(Q) is a solution to the Lagrangian Hamilton-Jacobi problem.

Remark. Usually, it is the set of vector fields {X, | A € U} which is called a complete solution of the
Lagrangian Hamilton-Jacobi problem, instead of the map ®. Both definitions are clearly equivalent. ¢

It is clear from the definition that a complete solution endows T() with a foliation transverse to the
fibers, and such that every leaf is Lagrangian and invariant by the Euler-Lagrange vector field X.

If {X, | A € U} is a complete solution, the integral curves of X}, for different A € U, will provide
all the integral curves of the Euler-Lagrange vector field X .. That is, if (¢,,v,) € TQ, then there exists
Ao € U such that X (¢o) = (¢o, o), and the integral curves of X, through g, lifted to TQ by X,  give
the integral curves of X, through (g,,v,).

2.2.2 Hamiltonian formulation of the Hamilton-Jacobi problem

Since the Lagrangian function £ € C*°(T(Q) is regular, the associated Legendre map FL: TQ — T*Q is,
at least, a local diffeomorphism. For simplicity, we will assume that the Lagrangian function is hyperreg-
ular, so the associated Legendre map will be a symplectomorphism between (TQ, w,) and (T*Q,w) (see
Section [2.1.2)). In particular, let h € C*°(T*Q) be the canonical Hamiltonian function and X;, € X(T*Q)
the Hamiltonian vector field solution to equation .

(The regular, but not hyperregular case, is recovered by restriction in the open sets where FL is a
local diffeomorphism).

Generalized Hamiltonian Hamilton-Jacobi problem

Definition 2.14. The generalized Hamiltonian Hamilton-Jacobi problem consists in finding a vector field
X € X(Q) and a 1-form o € QY (Q) such that, if v: R — Q is an integral curve of X, then aoy: R — T*Q
s an integral curve of Xy ; that is,

XoyzjiXho(aoy):W, (2.27)

It is clear from the definition that the vector field X € X(Q) and the 1-form a € 2*(Q) can not be
chosen independently. In particular, we have the following result.

Proposition 2.18. The pair (a, X) € QY(Q) x X(Q) satisfies the condition [2.27) if, and only if, X and
Xy, are a-related, that is, X, oa = Tao X.
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Now, from Proposition composing both sides of the equality with Trg, and bearing in mind
that o € Q1(Q) =I'(mg), we obtain the following result.

Corollary 2.19. If the pair (o, X) € QY(Q) x X(Q) satisfies the condition ([2.27), then X = TrgoXpoa.

Hence, X is determined by «. This enables us to introduce the following definition.
Definition 2.15. A solution to the generalized Hamiltonian Hamilton-Jacobi problem is a 1-form « €

QY(Q) such that, if v: R — Q is an integral curve of X = Trg o X oa € X(Q), then aoy: R — T*Q
s an integral curve of Xp; that is,

TrgoXpoaoy=4= X,o(aoy) =acy. (2.28)
The vector field X = Trg o Xp, 0 o € X(Q) s said to be the vector field associated with a.
Theorem 2.20. Let o € QY(Q). The following assertions are equivalent:

1. « is a solution to the generalized Hamiltonian Hamilton-Jacobi problem.

2. The submanifold Im(a) — T*Q is invariant by the Hamiltonian vector field X, (that is, X, is
tangent to the submanifold Im(a)).

3. « satisfies the equation
i(X)da = —d(a’h),

where X = Tmg o X}, o o is the vector field associated with .

In coordinates, let (U;¢?), 1 < A < n, be a local chart in @, and let (¢*,v*) be the induced natural
coordinates in T*Q. In these coordinates, a generic 1-form a € Q'(Q) has the following coordinate
expression

a=axdg”,
and the Hamiltonian vector field is given by

_0Oh 0 oh 0
" Opadgt 0gM Opa
Then, taking into account that the submanifold Im(a) < T*Q is locally defined by the constraints
pa—aa =0, and the second item in Theorem [2.20] the condition for « to be a solution to the generalized
Hamiltonian Hamilton-Jacobi problem gives the following system of n partial differential equations for
the component functions a4 of «
oh Oh Oay

- 4+ — =0. 2.29
9g*  Opp 94 |1, (o) (2.29)

Hamiltonian Hamilton-Jacobi problem

Asin the Lagrangian setting, to solve the generalized Hamiltonian Hamilton-Jacobi problem is, in general,
a difficult task, and thus we require some additional conditions to the 1-form « to consider a less general
problem.

Definition 2.16. The Hamiltonian Hamilton-Jacobi problem consists in finding 1-forms a € QY(Q)
solution to the generalized Hamiltonian Hamilton-Jacobi problem, which are, moreover, closed, that is,
da = 0. Such a 1-form is called a solution to the Hamiltonian Hamilton-Jacobi problem.

Observe that, since § € Q' (T*Q) is the tautological form of the cotangent bundle, we have a*f = «
for every a € 0(Q), and thus
ofw=—a"dd = —d(a’f) = —da.
In particular, « is a closed 1-form if, and only if, a*w = 0, that is, the submanifold Im(a) < T*Q

is a Lagrangian submanifold. Hence, we have the following result as a straightforward consequence of
Theorem [2.20)
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Theorem 2.21. Let a € QY(Q) be a closed 1-form. Then, the following assertions are equivalent:

1. « s a solution to the Hamiltonian Hamilton-Jacobi problem.
2. d(a*h) = 0.
3. Im(a) < T*Q is a Lagrangian submanifold invariant by Xj,.

4. The integral curves of X, with initial conditions in Im(«) project onto the integral curves of X =
Trg o Xy 0.

In the induced natural coordinates (¢?,pa) of T*Q, if the 1-form o € Q'(Q) is locally given by

a = adg?, then its differential is
daa g A
da = —=dg” Ad
= 5,8 q-,
and thus the condition for o to be closed gives the following system of partial differential equations
(90[,4 (3'043

Therefore, a 1-form a € Q(Q) is a solution to the Hamiltonian Hamilton-Jacobi problem if, and only if,
its component functions satisfy the system of partial differential equations given by (2.29)) and ([2.30)).

In addition, in this case we can obtain the classical Hamilton-Jacobi equation. Since o € Q1(Q) is a
closed form, using Poincaré’s Lemma, every point in () admits an open neighborhood U C ) where there
exists a local function W € C*°(U) such that a = dW (in U). Then, we obtain the following system of
partial differential equations

oW
OqA T aa
Finally, taking into account that d(a*h) = 0, then we have that h o dW must be constant, and therefore
ow
h (qA, an> = const. , (2.31)

which is the standard Hamilton-Jacobi equation.

Complete solutions

As in the Lagrangian setting, up to this point we have stated the equation to obtain a particular solution
of the dynamical system, rather than a complete solution, since only the integral curves of Xj, with initial
conditions lying in the submanifold Im(«) can be recovered. In order to obtain a complete solution of
the system, we proceed in an analogous way than we did for the Lagrangian formalism.

Definition 2.17. A complete solution to the Hamiltonian Hamilton-Jacobi problem is a local diffeo-
morphism ®: Q x U — T*Q, with U C R™ an open set, such that for every A\ € U, the 1-form
Do, \) = ay € QY(Q) is a solution to the Hamiltonian Hamilton-Jacobi problem.

Remark. It is usually the set of 1-forms {ax | A € U} which is called a complete solution of the
Hamiltonian Hamilton-Jacobi problem, instead of the map ®. Both definitions are clearly equivalent. ¢

We deduce from the definition that a complete solution provides T*(@Q with a foliation transverse to
the fibers, and such that every leaf is Lagrangian and invariant by the Hamiltonian vector field Xj,.

If {ax | A € U} is a complete solution, the integral curves of the vector fields associated with a,
for different A € U, will provide all the integral curves of the Hamiltonian vector field Xj. That is,
if (go,po) € T*Q, then there exists A\, € U such that ay,(¢,) = (¢0,P0), and the integral curves of
Trg o X, 0 ay, through g, lifted to T*Q by «y, give the integral curves of X}, through (go,po)-
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2.3 Higher-order autonomous dynamical systems

Let us consider a kth-order autonomous Lagrangian dynamical system with n degrees of freedom. Let
@) be a n-dimensional smooth manifold modeling the configuration space of this kth-order dynamical
system, and £ € C* (TkQ) a kth-order Lagrangian function describing the dynamics of the system.

We refer to [9] 17, [62] 83l ©92], 93], 114}, 120] for details and proofs.

2.3.1 Lagrangian formalism
Geometric and dynamical structures

From the Lagrangian function £ € COO(TICQ) and the canonical structures of the kth-order tangent
bundle, namely the vertical endomorphisms J, : X(T*Q) — %V(pf)(TkQ) and the canonical vector fields
A, € X(T*Q), we construct the following structures.

Definition 2.18. The kth-order Poincaré-Cartan 1-form associated to £ € C™(T*Q), or kth-order
Lagrangian 1-form, is the form 0, € QY(T?*71Q) defined as

k
6, — Z(—ni—l% 4 (i()dL) -

i=1
From this, the kth-order Poincaré-Cartan 2-form associated to L € C* (TkQ), or kth-order Lagrangian
2-form, is the form wy € Q2(T**71Q) defined as

We = —d@c .

As in the first-order formalism described in Section [2:1.1] the 2-form w, may not have constant rank
at every point of T?*71Q for an arbitrary kth-order Lagrangian function. If rank(we (jgk_lgb)) = const.
for every jgkfl(b e T?*71Q, then £ € COO(TkQ) is said to be a geometrically admissible kth-order
Lagrangian. Again, we will only consider kth-order Lagrangian functions satisfying this property.

Definition 2.19. The kth-order Lagrangian energy associated to L is the function E, € C’OO(T%_lQ)
defined as

k
i— 1 i — —1\x*
Er = (2(—1) 15 d 1(Ai(ﬁ)))> — (L.
(In an abuse of notation, in the following we write simply L instead of (pzk_l)*ﬁ.)

From these definitions, it is clear that the phase space of a kth-order Lagrangian dynamical system

is the (2k — 1)th-order tangent bundle of the configuration manifold Q.

Definition 2.20. A Lagrangian system of order k is a pair (Tzkle,L), where Q) represents the config-
uration space and L € C* (TkQ) is the kth-order Lagrangian function.

In coordinates, bearing in mind the coordinate expressions ([1.28|) of the vertical endomorphisms and
(1.30) of the Tulczyjew’s derivation, we obtain, after a long but straightforward calculation, the local
expression of the kth-order Lagrangian 1-form, which is

k—r
0, = —1)'d} oL dg? 2.32
L:—Z (=1)'dy 9gA Qr—1> (2.32)

r+1

where the terms dr(e) are not expanded to avoid a long expression involving higher derivatives of the
kth-order Lagrangian function. The coordinate expression of the kth-order Lagrangian 2-form is omitted
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for the same reason. Now, for the kth-order Lagrangian energy, bearing in mind the local expressions
(1.24) of the canonical vector fields and (|1.30) of the Tulczyjew’s derivation, we have

Eﬁ*qu Z )'d; <58§ >£(q5‘,--~7q7§‘)- (2.33)

i=0 r+1

Remark. From the coordinate expression (2.32)) we deduce that the kth-order Lagrangian 1-form is a
pik:ll-semibasic 1-form in T%_lQ7 sinc O, € Im(J}). O

Observe that, given an arbitrary kth-order Lagrangian function £ € C’OO(TkQ), the kth-order La-
grangian 2-form is always closed by definition. In addition, note that dim T?*~1Q = (2k—14+1)n = 2kn,
that is, T?*~1Q has even dimension for every k € N. In particular, wys € Q2 (T2k_1Q) may be nondegen-
erate, and therefore a symplectic form on T?*71Q. This leads to the following definition.

Definition 2.21. A kth-order Lagrangian function £ € C=(T*Q) is regular (and thus (T**7'Q, L)
is a kth-order regular system) if the kth-order Lagrangian 2-form w, € QQ(T%AQ) associated to L
is symplectic. Otherwise, the kth-order Lagrangian is said to be singular (and thus (T%_lQ,L) s a
kth-order singular system ).

After a long and tedious calculation in coordinates, we can prove that the nondegeneracy of the 2-form
wy is locally equivalent to

0%L
det | ——= k 1 0, for ever 2k Lp e T2R71Q.
That is, a kth-order Lagrangian function is regular if, and only if, the Hessian matrix of £ with respect
to the “velocities” of highest order is invertible at every point of T2k-1Q).

Dynamical vector field

The dynamical trajectories of this kth-order system are given by the integral curves of a semispray of
type 1, X € .’7’€(T2’“71Q)7 satisfying
i(X[;)wl; = dE[; . (2.34)

This equation is the kth-order Lagrangian equation, and a vector field X, solution to (if such a
vector field exists) is called a kth-order Lagrangian vector field. If, in addition, X, is a semispray of type
1, then it is called the kth-order Euler-Lagrange vector field, and its integral curves are solutions to the
kth-order Euler-Lagrange equations.

In the natural coordinates of T%_lQ7 let X, € %(TQk_lQ) be a generic vector field locally given by

0
= f = [ A+ foha
! 8 A 8 A 0 é“k 1
Taking into account the coordinate expression (2.33) of the kth-order Lagrangian energy and after a long
and tedious calculation, from equation (2.34]) we obtain the following system of 2kn equations for the
component functions of X,

82
B
(fo q1 ) 5qk aqk
%L
B B B B
_ _ —aBY(...... =0
(f1 D) ) aqfﬁq,‘;‘ (fo q1 ) ( ) (2.35)
o92r 2k—3
(fQEIi 2 — Qo 1)8Baqk Z(f—qﬁﬂ( ...... )=0
1=0
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2k—2

aBaqurZ dl(aL)Z(

=0 1=0

(*1)]6 (f2Bl)c—1 —dr (Qi—l) fiB - ‘JEH) (vreeee ) =0, (2.36)

where the terms in brackets (---- - ) contain relations involving partial derivatives of the kth-order La-
grangian and applications of dr, which for simplicity are not written. These are the local equations
arising from the kth-order Lagrangian equation for X.

Observe that the (2k — 1)n equations ([2.35)) are the local equations for the condition of semispray
of type 1 that we require to the vector field X,. If this condition is required from the beginning, then

equations ([2.35)) are an identity, and equations (2.36]) reduce to

L o )
(1" (s~ (afic) s + D0 (G ) =0, (2.37)

1/:
which are clearly a generalization of equations (2.7) to higher-order systems.
On the other hand, notice that in all of the equations (2.35)) and (2.36) the Hessian matrix of £ with

respect to the highest order “velocities” appears alongside the coefficients to be determined. Therefore,
we have the following result.

Proposition 2.22. If the kth-order Lagrangian function L € COO(TkQ) is reqular, then there exists a
unique vector field X,y € X(TQkle) solution to equation which, in addition, is a semispray of
type 1 in T2F71Q.

Remark. As in the first-order formalism described in Section the existence and uniqueness of the
solution to equation is a direct consequence to the fact that £ € C>(T*Q) is regular if, and only
if, the kth-order Lagrangian 2-form w, € Q2(T?*71Q) is symplectic. %

If the kth-order Lagrangian function £ € C°°(T*Q) is not regular, then the 2-form w, € Q*(T?*71Q)
is degenerate, and hence the existence of solutions to the equation can not be assured in general, but
only in some special cases or requiring some additional conditions to the kth-order Lagrangian function.
In general, we must use the constraint algorithm described in Section[I.7]and, in the most favorable cases,
there exists a submanifold Sy — T2*~1Q where the equation

[i((Xe)we — dEL]|g, =0, (2.38)

admits a well-defined solution X, which is tangent to Sy. Nevertheless, these vector fields solution are
not necessarily semisprays of type 1 on S, but only in the points of another submanifold S ;} — Sy.

Integral curves

Let X, be a semispray of type 1 in T?*~1Q solution to the equation , and let ¢¥z: R — T?*71Q be
an integral curve of X . Since X, is a semispray of type 1, the curve v, is holonomic, and therefore there
exists a curve ¢, : R — @ such that ]2k Yo, = 1pr; that is, ¢ is a path of X, in the sense of Definition
I35l From the condition of being an integral curve, we deduce the following geometric equation for the
curve Y,

i(the)(we 0the) = dEg oy, (2.39)
or, equivalently, the following geometric equation for ¢,

i(go* 1¢L)(wa 0jdf pr) =dEc oo o,

In coordinates, the curve ¢,: R — @ must satisfy the following system of n ordinary differential

equations of order 2k
oL
1
> (g

These are the kth-order Euler-Lagrange equations for thlb dynamical system.

=0. (2.40)

2k 1
br
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2.3.2 Hamiltonian formalism associated to a Lagrangian system
The Legendre-Ostrogradsky map

Definition 2.22. The Legendre-Ostrogradsky map associated to the kth-order Lagrangian function L
is the fiber bundle morphism FL: T**71Q — T*(T*'Q) over TF7'Q defined as follows: for every
ue T(T*1Q),

Oc(u) = <Tpik:11(u), FL(rp2r-1g(u)) . (2.41)

From the definition we have that 715 0 FL = P2t In addition, if 6,1 € QY(T*(T*'Q)) and
wr_1 = —db_, € Q*(T*(T*7'Q)) are the canonical 1 and 2 forms of the cotangent bundle T*(T*'Q),
then FL*0,_1 =0, and FL wp_1 = we.

In the natural coordinates of T?71(Q, we define the following local functions

k—r
AT — [ a‘c
D4 L= Z(—l) dp (W‘) :

i=0 r+1
Observe that we have the following relation between 57 and ;62_1

o oL Ar
PAlz&TA_dT(PA) ; forl<r<k-1. (2.42)

T

Thus, bearing in mind the local expression (2.32)) of the form 6., we can write

k
0= pytdglt (2.43)
r=1

On the other hand, let (¢4), 1 < A < n, be a set of local coordinates in an open set U C @, and (g*),
0 < i < k — 1, the induced natural coordinates in T*7'Q. Then, natural coordinates in T*(TkilQ)
are (qlA,pfA), with 1 < A< nand 0 <i<k-—1. In these coordinates, the canonical 1 and 2 forms of
T*(T*'Q) have the following coordinate expressions

Op_1 = pf4dq,f4 i wp_1 = —dlp_1 = dq;4 A dpiA. (2.44)

Finally, taking into account the local expressions (2.43)) of 8 and ([2.44)) of 6)_1, the coordinate expression
of the Legendre-Ostrogradsky map associated to L is

k—r
* * r— A — i 7 8£
Foah,=qt, i Fou =0 =Y (-1 (an ) , (2.45)
i=0 T+

where 1 < r < k.

From the local expression (2.45), the rank of the tangent map TFL: T(T?*71Q) —» T(T*(TF1Q))
depends only of the rank of the Hessian matrix of £ with respect to the highest order “velocities”.
Therefore, £ € COO(TkQ) is a regular kth-order Lagrangian function if, and only if, the Legendre-
Ostrogradsky map FL: k10 - T*(TkilQ) is a local diffeomorphism. As a consequence of this, we
have that if £ is a kth-order regular Lagrangian then the set (qf,ﬁi\), 0<i<k—1,is a set of local
coordinates in T2k71Q, and (pY) are called the Jacobi-Ostrogradsky momentum coordinates.

Remark. The relation (2.42) means that we can recover all the Jacobi-Ostrogradsky momentum coor-
dinates from the set of highest order momenta (5%71). O

Definition 2.23. A kth-order Lagrangian function £ € C°°(T*Q) is hyperregular if the Legendre-
Ostrogradsky map FL: T*71Q — T*(TkilQ) is a global diffeomorphism.
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Remark. If the kth-order Lagrangian function is hyperregular, then the Legendre-Ostrogradsky map is
a symplectomorphism between the symplectic manifolds (T?*7'Q,w,) and (T*(T*7'Q), wi_1). %

As in the first-order Hamiltonian formalism described in Section [2.1.2] we will distinguish between
the regular and non-regular cases to describe the dynamical trajectories of the system. Nevertheless, as
in the first-order setting, the only singular systems that we will consider are the almost-regular ones.

Definition 2.24. A kth-order Lagrangian function L € C"X’(TkQ) is almost-regular if

1. FL(T*71Q) — T*(T"'Q) is a closed submanifold.
2. FL is a surjective submersion onto its image.

3. For every ja*=1¢ € T2 71Q the fibers FL™ (FL(j2*71¢)) are connected submanifolds of T**71Q.

Regular and hyperregular Lagrangian functions

Suppose that the kth-order Lagrangian function £ € C°°(T*Q) is hyperregular (the regular case is
recovered from this one by restriction on the open sets where the Legendre-Ostrogradsky map is a local
diffeomorphism). Since FL: T2-1Q — T*(TkilQ) is a global diffeomorphism, there exists a unique
function h € C°°(T*(T*7*Q)) such that FL*h = E.

Definition 2.25. The canonical kth-order Hamiltonian function h € C(T*(T*71Q)) is the unique
function satisfying FL*h = E.

The dynamical trajectories of the system are given by the integral curves of a vector field X; €
X(T*(T"1Q)) satisfying
i(Xh)wk,1 =dh. (246)

This equation is the kth-order Hamiltonian equation, and the unique vector field solution to this equation
is called the kth-order Hamiltonian vector field.

In coordinates, bearing in mind the local expressions (2.45|) of the Legendre-Ostrogradsky map FL
and ([2.33)) of the kth-order Lagrangian energy, we have

k—2

h=> qlpha+ (FL)qiph — (i o FLTY) L.

i=0
Now, for the equation (2.46)), let X} € COO(T*(TIFIQ)) be a generic vector field given by

0
8pA

flaA—’_A

Then, bearing in mind the coordinate expression ([2.44]) of the canonical symplectic form of T*(kalQ),
equation ([2.46) gives the following system of 2kn equations

oh . Oh
A . Gy=——. 2.47

7

Finally, as in the first-order setting, we establish the relation between the solutions to the dynamical
equation (2.34) in the Lagrangian formalism and the solutions to the dynamical equation (2.46) in the
Hamiltonian formalism associated to a hyperregular Lagrangian system.

Theorem 2.23. Let L € C’OO(TkQ) be a hyperregular kth-order Lagrangian function. Then we have:

1. Let X, € %(T%_lQ) be the unique semispray of type 1 solution to equation (2.34)). Then the vector
field Xy, = FL. X, € X(T*(T*1Q)) is a solution to equation (2.46)).
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2. Conversely, let X}, € X(T*(T*1Q)) be the unique vector field solution to equation ([2.46)). Then the
vector field X, = (]:Efl)*Xh € %(TQk*lQ) is a semispray of type 1, and is a solution to equation
234).

Now, if ¢p,: R — T*(T*71Q) is an integral curve of X, the geometric equation for the dynamical
trajectories of the system is

i(Yn) (wh—101pp) = dh oy, (2.48)
In coordinates, if the curve vy, is given by ¥y, () = (g (), p%(t)), then its component functions must

satisfy the following system of 2kn first-order differential equations

g o g O
[ i ) A= 9 A .
apA Yn ain Yn

(2.49)

These are the kth-order Hamilton equations for this dynamical system.

Singular (almost-regular) Lagrangian functions

Suppose now that the kth-order Lagrangian function £ € C“(TkQ) is almost-regular. This implies
that the Legendre-Ostrogradsky map FL£: T?*71Q — T*(T*7'Q) is no longer a diffeomorphism, and
therefore its image set is a proper submanifold of T*(T*7'Q). Let P = Im(FL) — T*(T*7'Q) be
the image set of the Legendre-Ostrogradsky map, with natural embedding 7: P — T* (T’c 71Q), and we
denote by FL,: T?*71Q — P the map defined by FL = jo FL,. With these notations, we have the
following result.

Proposition 2.24. Let L € COO(TkQ) be a kth-order almost-regular Lagrangian function. Then the
kth-order Lagrangian energy Ep € C* (T%_lQ) is FL,-projectable.

As a consequence of this last result, we can define a Hamiltonian function in P as follows.
Definition 2.26. The canonical Hamiltonian function is the unique function h, € C*(P) such that

FLihe = Ep.

Then, taking w, = 7*w € Q?(P), we can state the kth-order Hamilton equation for this system: we
look for a vector field X € X(P) satisfying

i(Xho)wo =dh, .

Since the form w, is, in general, presymplectic, we must apply the constraint algorithm described in
Section In the most favorable cases, this equation admits a solution only on the points of some
submanifold Py — P — T*(Tk_lQ), and is tangent to it, so the following equation holds

[i(Xho)Wo - dhoHPf =0. (2.50)
This vector field is not unique, in general.
In this situation, we have an analogous result to Theorem [2.23
Theorem 2.25. Let L € C’OO(TkQ) be an almost-reqular Lagrangian function. Then we have:
1. Let X, € %(TQk_lQ) be a semispray of type 1 solution to equation (2.38|) in the points of a sub-

manifold Sy — T%*lQ. Then there exists a vector field X, € X(P) which is FL,-related to X
and is a solution to equation (2.50), where Py = FLy(Sf) — P

2. Conversely, let X, € X(P) be a vector field solution to equation (2.50) on the points of some
submanifold Py — P. Then there exist vector fields X, € Z{(T%_lQ) which are FL,-related to
Xy, , and are solutions to equation (2.38)), where Sy = FL, ' (Py).
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Observe that the vector fields X, € %(TQk_lQ) which are FL,-related to X}, may not be semisprays
of type 1, since this condition can not be assured in the singular case. These FL,-projectable semisprays
of type 1 could be defined only on the points of another submanifold S ? — Sr. (See [92], 93] for a detailed
exposition of all these topics).

2.4 First-order non-autonomous dynamical systems

Let us consider a first-order non-autonomous Lagrangian dynamical system with n degrees of freedom.

The configuration space for this system is a bundle 7: E — R, with dim F = n 4+ 1. The dynamical

information is given in terms of a Lagrangian density £ € Q(J!m), which is a #'-semibasic 1-form.

Because of this, we usually write £ = L - (71)*n, where n € Q'(R) is the canonical volume form in R and
L € C°(J'7) is the Lagrangian function associated to £ and 7.

2.4.1 Lagrangian formalism

(See [21, 277, [44] [45], [73, 108 for details).

Geometric and dynamical structures

From the Lagrangian density £ and the vertical endomorphism V € T(T*J*7m ® 1, TM ® j1. V(7!)) of
the jet bundle J'm, we construct the following structures.

Definition 2.27. The Poincaré-Cartan 1-form associated to £ € Q' (J'7) and n € QY(R) is the 1-form
O, € QY (J'w) defined as
O =i(V)dL+ L.

From this, the Poincaré-Cartan 2-form associated to L and n is the 2-form Qg € Q*(J'7) defined as

Qr =—-dO,.

As in the autonomous setting, given an arbitrary Lagrangian density £ € Q!(J!w), the Poincaré-
Cartan 2-form may not have constant rank at every point in Jim. If rank(Q.(ji¢)) = const. for every
jte € J'm, then the Lagrangian density £ is said to be a geometrically admissible Lagrangian. We will
only consider Lagrangian densities satisfying this property.

It is clear from the previous definitions that the phase space of a first-order non-autonomous La-
grangian dynamical system is the first-order jet bundle of the configuration bundle 7: £ — R.

Definition 2.28. A first-order non-autonomous Lagrangian system is a pair (J'm, L), where (E,m, R)

is the configuration bundle, and L € Q'(J'7) the Lagrangian density.

In the natural coordinates (, ¢*,v?) of J'7, bearing in mind the local expression (1.14]) of the vertical
endomorphism V), the coordinate expression of the Poincaré-Cartan 1-form is

0L . [ a0L

from which the coordinate expression of the Poincaré-Cartan 2-form is

0’L %L

O, = A B A B
C r)Aandq Adg +781;A81;qu Adv
L OL (2:52)
A B A B
—_— — —— | d dt —d dt.
+<v D0A0P 6q3> qg” Ndt+wv JuAguB vo A
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Remark. As in the autonomous formulation, it is clear from the coordinate expression (2.51)) that the
Poincaré-Cartan 1-form O, is w'-semibasic. O

Notice that, given an arbitrary Lagrangian density £ € Q! (J!r), the Poincaré-Cartan 2-form is always
a closed form.

Definition 2.29. A Lagrangian density £ € Q(J'7) is regular (and thus (J'm, L) is a regular system)
if the pair (Qr, (71)*n) is a cosymplectic structure on Jiw. Otherwise, the Lagrangian density is said to
be singular (and thus (J'm, L) is a singular system ).

Bearing in mind the coordinate expression (2.52)) of the Poincaré-Cartan 2-form, it is clear that the
regularity condition for the Lagrangian density L is locally equivalent to

0%L ) .
det <W) (jig) # 0, for every jio € J'x,

where L € C*°(J'7) is the Lagrangian function associated to £ and n. That is, a Lagrangian density
is regular if, and only it, the Hessian matrix of its associated Lagrangian function with respect to the
velocities is invertible at every point of J'm. Observe also that this condition is equivalent to require €2z
to have maximal rank 2n in J'r.

Dynamical equations for sections

The first-order Lagrangian problem for sections associated with the system (J'm, £) consists in finding
sections ¢ € I'(m) characterized by the condition

(1) i(X)Qe =0, for every X € X(J'n), (2.53)

where j1¢ € T'(7!) is the first prolongation of ¢ to Jlr.

In the natural coordinates of J'm, the section ¢ € I'(m) must satisfy the following system n second-
order differential equations
d OL

©dt ovA

ite

These equations are the non-autonomous Euler-Lagrange equations.

or
Og4

ite

Dynamical equations for vector fields

If we assume that the first prolongations of the sections ¢ € I'(w) which are solutions to the equation
are the integral curves of some vector fields in J'm, then we can state the problem in terms of
vector fields. The first-order Lagrangian problem for vector fields consists in finding holonomic vector
fields X, € X(J'm) satisfying the following equations

i(X)Qe =0 5 i(Xe) (@) #0. (2.54)

Remark. The second equation in is just a transverse condition for the vector field X with respect
to the projection onto the base manifold. This equation is usually considered with a fixed non-zero value,
which is equivalent in physics to fixing the Gauge of the system. In most cases we take 1, which gives
the following equations

i(Xp)Qe=0 ;5 i(Xe)(@)n=1. (2.55)

Observe that, in this case, X is nothing but the Reeb vector field of the (pre)cosymplectic structure
(Qf, (7H)*n) (see Section [1.2.2). O

60



2.4. FIRST-ORDER NON-AUTONOMOUS DYNAMICAL SYSTEMS

In the natural coordinates (¢, ¢*,v?) of J'm, let X, € X(J'7) be a generic vector field given by

a0

0 0
X[l:f&'i‘anin‘FF oA

Then, bearing in mind the coordinate expression (2.52)) of the Poincaré-Cartan 2-form, and requiring
equations ([2.54)) to hold, we obtain the following system of (2n + 1) equations

2 2 2 2 2
pa L L +fA< 9L 9L >—f(vA 9L BL)’ (2.56)

JuAduE — OtowB 90A0qE ~ uBagA dAdgB 9B
9L

f#£0, (2.58)

where equation (2.58]) arises from the second equation in (2.54]). The extra equation alongside the form
dt has been omitted, since it is a combination of the others and gives no additional information. Fixing
the non-zero value to 1 by the equation (2.55)), we obtain the system

(f* = fo)

%L %L %L d*L d*L oL
" 50A08 = " orpen T 1" (81}A5‘q3 - avBan) ~ v gaags T o (2.59)
(A oty 0k g (2.60)
OvAovB ’ ’
f=1. (2.61)

Observe that equations and are exactly equations and (2.6) in the autonomous setting,
and the same comments apply in this case. In particular, equations (2.60) are the local equations for the
holonomy condition required to the vector field X, while equations (2.59)) are the dynamical equations.
Notice that, as in the autonomous case, if the holonomy condition is required from the beginning, then

equations ([2.60)) are an identity, and equations (2.59) reduce to

A

JAGE — 9qB  otovE | dgAouE

(2.62)

Note that in equations (2.59)) and (2.60) the Hessian of the Lagrangian function L associated to the La-
grangian density £ and the volume form 7 appears alongside the coefficients to be determined. Therefore,
we have the following result.

Proposition 2.26. If the Lagrangian density £ € Q' (J'm) is reqular, then there exists a unique vector
field X, solution to the equations (2.55) which, in addition, is holonomic.

If the Lagrangian density is not regular, then the pair (Q, (71)*n) is just a precosymplectic structure
on Jl7, and so the existence of solutions to equations (2.55) (or ) can not be assured in the general
case. Hence, an adapted version of the constraint algorithm described in Section [I.7] for time-dependent
Lagrangian systems or jet bundle formulations must be used (see [27, [44] [45]), and, in the most favorable
cases, there exists a submanifold Sy — J L7 where the equations

[((Xo)Qellg, =0 5 (X E)n—1]]g, =0, (2.63)

admit a well-defined solution X, which is tangent to Sy. Nevertheless, these vector fields solution are
not necessarily holonomic on Sy, but only in the points of another submanifold S;} — Sy.

Remark. Notice that the second equation in (2.63) is redundant, since a vector field which is 7!-
transverse in J1r is also #!-transverse in every submanifold of J!l7. O
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2.4.2 Extended Hamiltonian formalism

In the extended Hamiltonian formalism associated to a Lagrangian system (J'm, £), two phase spaces
are considered: the extended momentum bundle and the restricted momentum bundle. The former is
exactly the extended dual jet bundle A3 (J°m) of J'7 described in Section which in this case reduces
simply to T*E, while the latter is the reduced dual jet bundle A}(J%7)/A}(J%7). To avoid confusion
with the notation, we denote the restricted momentum bundle by J%7*, instead of E*. The quotient map
is denoted by pu: T*E — JOr*. Natural coordinates in T*E are (t,q,p,pa), and the induced natural
coordinates in JO7* are (t,q4,pa).

(See [26, 8, [73) [T0R, [134] for details).

The extended and restricted Legendre maps

As in the autonomous setting described in Section we begin by introducing the Legendre map.
Since the Poincaré-Cartan 1-form ©, € Q! (J17) is wl-semibasic, we can give the following definition.

Definition 2.30. The extended Legendre map associated to the Lagrangian density £ € Q(J'7) is the
bundle morphism FL: J'm — T*E over E defined as follows: for every u € TJ'w,

Oc(u) = (Tw' (u), FL(ryin(u))) -

where Ty, T(J ) — Ji7 is the canonical submersion.

It is clear from the definition that g o FL=n! , where mg: T*E — E is the canonical submersion.
Furthermore, let © € QY(T*E) be the tautologlcal form of T*E, and Q = —d© € Q?(T"E) the canonical
1.1

symplectic form. Then, we have FL o = O, and FLQ = Q. From Example
expression of © in this case is

the coordinate

O = padg? + pdt.

Thus, the canonical symplectic form Q in T*E is given in coordinates by
Q=d¢g* Adpa +dt Adp. (2.64)

Then, bearing in mind the coordinate expression (2.51)) of the Poincaré-Cartan 1-form ©, € Q'(J'n),
the coordinate expression of the extended Legendre map is

ok L
FLp=1L-— 9L (2.65)

—* % —* L
FLit=t : FLqg'=q" . FLpa= 2% T

guA

Now, composing the extended Legendre map with the quotient map u: T*E — JO7*, we can give the
following definition.
Definition 2.31. The restricted Legendre map associated to the Lagrangian density £ € Q(J'x) is the
map FL: Jim — JOn* defined as FL = po FL.
In the natural coordinates of Jo7*, the coordinate expression of the restricted Legendre map is
oL
FLt=t ; FLq=q¢" ; FLpa= e
Ov
A fundamental result relating both Legendre maps is the following.

Proposition 2.27. For every ji¢ € J'm we have that rank(ﬁ(jtl )) = rank(FL(j}¢)).
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We refer to [44] for the proof of this result. As a consequence of Proposition and bearing in
mind the coordinate expressions of both Legendre maps and the results stated in Section [2.4.1] we have
the following result.

Proposition 2.28. Let £ € Q'(J'7) be a Lagrangian density. The following statements are equivalent:

1. Q, has mazimal rank 2n on Jw.
2. The pair (Qz, (71)*n) is a cosymplectic structure on Jiw.

3. In the natural coordinates of J'w, we have
0*L 1
det (W) (Ji¢) # 0,
for every jt¢ € Jim, where L € C*(J'x) is the Lagrangian function associated with £ and 7.

4. The restricted Legendre map FL: J'm — JOn* is a local diffeomorphism.

5. The extended Legendre map FL: J'r — T*E is an immersion.

In this case, L is a regular Lagrangian density.
Definition 2.32. A Lagrangian density L € Q'(J'x) is hyperregular if the restricted Legendre map
FL: J'm — JOn* is a global diffeomorphism.

Now, let P = Im(j-:ﬁ/) — T*FE be the image of the extended Legendre map, with natural embedding
7:P < T'E, and P = Im(FL) — JO7* the image of the restricted Legendre map, with canonical
embedding 7: P < JO7*. Let #p = 7% 0 7: P — R be the canonical projection, and FL,: J'm — P the
map defined by FL = j0 FL,. We can now give the following definition.

Definition 2.33. A Lagrangian density £ € Q'(J'7) is almost-regular if

1. P is a closed submanifold of JOm*.

2. FL is a submersion onto its image.

3. For every jl¢ € J'w, the fibers FL Y (FL(j}¢)) are connected submanifolds of J'r.

Observe that, as a consequence of Proposition we have that P is diffeomorphic to P. This

diffeomorphism is just p restricted on the image set P, and we denote it by g. Then, we have the
following definition.

Definition 2.34. The canonical Hamiltonian section h € T'(fi) is defined as the map h = i': P — P.

Remark. Observe that the Hamiltonian section h € I'(iz) depends only on the Lagrangian density

L € QY (Jlm), since both P and P depend only on the Legendre maps and, more particularly, on the
Lagrangian density. %

From the Hamiltonian section h € T'(j1) we can define the following forms on P.
Definition 2.35. The Hamilton-Cartan forms are the forms ©, € QY(P) and Q, € Q2(P) defined as
@hz (jO h)*@ 5 th (jO h)*Q: —d@}“

where © and § are the canonical Liouville forms of the cotangent bundle T*E.

1The triple (P,Qy,,75n) is called the Hamiltonian system associated with the Lagrangian system
(Jim, L).
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Regular and hyperregular Lagrangian densities

Suppose that the Lagrangian density £ € Q!(J1r) is hyperregular, since the regular case can be recovered
from this by restriction on the open sets where the restricted Legendre map is a local diffeomorphism.

In the hyperregular case we have P = J%7* and that P is a l-codimensional and p-transverse
submanifold of T*E which is diffeomorphic to JO7*. In addition, in this case the Hamiltonian section
may be defined equivalently as h = FL o FL .

In the natural coordinates of J%7*, the Hamiltonian section is specified by a Hamiltonian function
H € C>®(J7*) as
h(t,q* pa) = (t,q*, —H(t, ¢, pa),pa),
with the Hamiltonian function H being locally given by

H(t,q" pa) = pa(FL) v = (FLTY) L(t, ", v?),

where (t,q”,v?) are the natural coordinates in J'z. From this, and bearing in mind the coordinate
expressions of the canonical Liouville forms of the cotangent bundle given in Example the local
expressions of the Hamilton-Cartan forms are

On =padg® — Hdt ; Qp, =dg¢* Adpa +dH AdL. (2.66)

Then, the first-order Hamiltonian problem for sections associated with the system (JO7*, Qp, (75)*n)
consists in finding sections ¢ € I'(77;) satisfying the equation

V*i(X)Q, =0, for every X € X(J7%). (2.67)

In the natural coordinates of JO7*, the section 9 (t) = (t,q(t),pa(t)) € T'(7%) must satisfy the
following system of 2n first-order differential equations
.4 OH . oOH
=5—| i Pa=— 7| -
6pA P an P
These are the non-autonomous Hamilton equations.
Now, if we assume that the sections ¢ € I'(7};) solution to the equation (2.67) are the integral curves of
some vector fields in J7*, we can state the problem in terms of vector fields. The first-order Hamiltonian
problem for vector fields consists in finding vector fields X; € X(J%7*) satisfying the equations

i(Xn) =0 5 i(Xn)(TE)n #0. (2.68)

Remark. As in the Lagrangian formalism, the second equation in (2.68]) is just a transverse condition
for the vector field X, with respect to the projection onto R, and it is usual to take the non-zero value
equal to 1, thus giving the following equations for Xj

i(Xn) =0 5 i(Xn)(7E)'n=1. (2.69)

In this case, X}, is the Reeb vector field of the cosymplectic structure (2, (T5)*n). O

In the natural coordinates (¢,¢?,pa) of JO7*, let X}, in X(J°7*) be a generic vector field given by

0 0 0
Xn=f= A L Ga—.
h f8t+f g7 + oo
Now, bearing in mind the coordinate expression (2.66) of the Hamilton-Cartan 2-form, and requiring
equations ([2.68)) to hold, we obtain the following system of (2n + 1) equations

a_ OH _ _,0H
o= apa Ga= fan, (2.70)
f#0, (2.71)
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where equation (2.71]) arises from the second equation in (2.68)). As in the Lagrangian formalism, the
extra equation alongside the form dt is a combination from the others, and we omit it. Fixing the non-zero
value of f to 1 by the second equation in (2.69)), we obtain the system

OH OH

A _ _— N = ———F
=gy, ¢ Ga Jat (2.72)
f=1, (2.73)

Observe that equations ([2.72)) are exactly equations (2.12)) in the autonomous setting.

Finally, we establish the a one-to-one correspondence between the vector fields solution to equations
(2.54) and the vector fields solution to equations ([2.68]).

Theorem 2.29. Let L € QY(J7) be a hyperregular Lagrangian density. Then we have:

1. Let X € X(J'7) be the unique holonomic vector field solution to equations (2.54). Then the vector
field Xy, = FL. X € X(J°*) is a solution to equations (2.68).

2. Conversely, let X, € X(JO7*) be the unique vector field solution to equations (2.68). Then the
vector field Xp = (FL™ ). X, € X(J'n) is holonomic, and is a solution to equations (2.54).

Remark. There is an analogous result to Theorem [2:29] for sections, which is a straightforward conse-
quence of this last theorem bearing in mind that the sections solution to equations (2.53)) (respectively,
559) (

to equations ([2.67)) are integral curves of the vector fields solution to equations (| respectively, to
equations ([2.68))) O

Singular (almost-regular) Lagrangian densities

For almost-regular Lagrangian densities, the restricted Legendre map is no longer a (local) diffeomor-
phism, and therefore the image of FL is a proper submanifold of J%7*. Nevertheless, we can still state
a Hamiltonian formulation for an almost-regular Lagrangian system (J'm, £).

The first-order Hamiltonian problem for sections in this case consists in finding sections v, € I'(7p)
characterized by the condition

i i(Xo)Qn =0, for every X, € X(P).

On the other hand, the first-order Hamiltonian problem for vector fields consists in finding vector
fields X}, € X(P) satisfying the equations

i(Xn) =0 5 i(Xp)7pn#0. (2.74)

Since the pair (Q,, 7p) is, in general, a precosymplectic structure in P, we must apply an adaptation
of the constraint algorithm given in Section for precosymplectic structures. In the most favorable
cases, equations (2.74)) admit a solution only on the points of some submanifold P; < P, and is tangent
to it. In this case, the following equations hold

X0k, =0 5 (X Tplp, £0. (2.75)
Note that this vector field is not unique, in general.
As in the autonomous setting, we have an analogous result to Theorem [2.29]

Theorem 2.30. Let £ € X(J'x) be an almost-regular Lagrangian density. Then we have:
1. Let X € X(J'7r) be a holonomic vector field solution to equations ([2.63)) in the points of a sub-
manifold Sy — Jir. Then there exists a vector field X;, € X(P) which is FL,-related to X and
is a solution to equations (2.75), where Py = FLy(Sy) — P.
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2. Conversely, let X, € X(P) be a vector field solution to equations (2.75) on the points of some
submanifold Py — P. Then there exist vector fields X, € X(Jt7) which are FL,-related to Xy,
and are solutions to equations ([2.63), where Sy = FL ' (Py).

Notice that the vector fields X, € X(J'7) which are FL,-related to X}, are not necessarily holonomic,
since this condition can not be assured in the singular case. These FL,-projectable holonomic vector
fields could be defined only on the points of another submanifold S’J} — Sy.

2.4.3 Lagrangian-Hamiltonian unified formalism

(See [, 39] for details).

Unified phase spaces. Geometric and dynamical structures

As in the extended Hamiltonian formalism stated in the previous Section, we consider two phase spaces
in this formulation, which are the bundles

W=JrxgT*E ; W, =J7wxgJ7",

known as the extended jet-momentum bundle and the restricted jet-momentum bundle, respectively.
These bundles are endowed with the canonical projections

pW—=Jrn 3 ppW—STE ; pg:W—E ; pr:W—=R,
oW, = T b W = IO p W = E 5 phi W, — R

In addition, the natural quotient map p: T*E — J7* induces a surjective submersion pyy: W — W,..
Hence, we have the following diagram

W

/ \/Tf
\

R

ﬁ \E

Local coordinates in WW and W, are constructed in an analogous way to the autonomous setting. Let
(t, qA), 1 < A < n, be a set of local coordinates in F adapted to the bundle structure and such that the
canonical volume form in R is given locally by n = dt. Then, the induced natural coordinates in J'm, T*E
and JO7* are (t,q%,v?), (t,q*,p,pa) and (t,q?,pa), respectively. Therefore, the natural coordinates in
W and W, are (t,q*,v4,p,pa) and (t,¢*, v, pa), respectively. Observe that dimW = 3n + 2 and
dim W, = 3n + 1. In these coordinates, the above projections have the following coordinate expressions

pl(tan7’UA7papA) = (t’qu’UA) ; pQ(tquaUAapva) = (t7qAapapA) ; pE(tan7’UA7papA) = (tan)7

66



2.4. FIRST-ORDER NON-AUTONOMOUS DYNAMICAL SYSTEMS

Pt gt vt pa) = (gt vh) 5 ps(t g vt pa) = (et pa) 5 pR(tg™ vt pa) = (tgY),
p]R(tquva7papA) =t 3 p&(tanvava) =t.
Let us introduce some canonical structures on the extended jet-momentum bundle W. First, let

0 € QYT*E) and Q = —dO© € Q?(T*E) be the canonical Liouville forms of the cotangent bundle. Then,
we define the following forms in W

Ow =p30 € B'W) 5 Q= p3Q = —dByy € V*(W).

Bearing in mind the coordinate expressions of the Liouville forms of the cotangent bundle given in
Example and the local expression of the projection ps given above, the forms 0,y and , are given
locally by

Ow = padg? +pdt ; O =dg* Adpa —dpAdt.

It is clear from these coordinate expressions that )y is a closed 2-form, and that the 2-form €y is
degenerate, since we have
i(8/0vM)y =0, forevery 1 <A< n.

In particular, a local basis of ker 2y is given by

ker Qyy = <£A> =xVe2) ().

Thus, the pair (Qy, pin) is a precosymplectic structure in W.
The second canonical structure in W is the following.

Definition 2.36. The coupling form in W is the pr-semibasic 1-form Ce QY (W) defined as follows: for
every w = (ji ¢,a) €W (that is, « € T}, E) and v € T,W, then

(C(w),v) = (@, Tw(d 0 p)v).

Since C is a pr-semibasic form, there exists a function C' € C°°(W) such that C = Cpin = Cdt. A
straightforward computation in coordinates gives the following local expression for the coupling form

C= (p +pAvA) dt. (2.76)

Given a Lagrangian density £ € Q!(J'7), we denote L= piL € QY (W). As the Lagrangian density
is a 7l-semibasic form, we have that £ is a pr-semibasic form, and thus we can write L= I:pﬂ’gn, where
L =p5L € (W), L € C>=(J'x) being the Lagrangian function associated to £ and 7. Then we define
a Hamiltonian submanifold

Woz{w€W|ﬁ(w)=é(w)}<ji>W.

Since both C and L are pg-semibasic 1-forms, the submanifold W, is defined by the regular constraint
C — L = 0. In the natural coordinates of W, bearing in mind the local expression (2.76) of C, the
constraint function is locally given by

C—L=p+pav*—Lt,¢*v*) =0.
Proposition 2.31. The submanifold W, — W is 1-codimensional, py-transverse and diffeomorphic to

W, via the map pw © jo: W, — W..

As a consequence of this last Proposition, the submanifold W, induces a section he I'(uyy) defined
as h = Jo o (w0 7o)~ : W, — W. This section is called the Hamiltonian pyy-section, and is specified by
giving the local Hamiltonian function

I:I = —[: +p AUA ,

that is, ﬁ(t,qA,vA,pA) = (t, ¢, v, —ﬁ,pA).
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Remark. If the Lagrangian density £ € Q! (J!7) is, at least, almost-regular, then from the Hamiltonian
[iy-section h € I'(uw) in the unified formalism we can recover the Hamiltonian p-section h € I'(u)
in the extended Hamiltonian formalism. In fact, given [a] € Jo7*, the section h maps every point
(Lo, o)) € (py) " (a]) into p; H(pa(h(jle,[a]))). Hence, the crucial point is the po-projectability of the
local function H. However, since 0/ Ov4 is a local basis for ker Tpy, the local function His pa-projectable
if, and only if, p4 = OL/0v4, and this condition is fulfilled when [a] € P = Im FL — J%7*, which
implies that pa(h((p5)~([a]))) € P = Im FL < T*E. Then, the Hamiltonian section h is defined as
h(la]) = (p2 0 h) ()~ (1([a])) = (o A1) (o)) .

for every [a] € P. O

Finally, we can define the forms
O, =h"Ow e U'W,) : Q. =h" Oy e BPPW,),
with local expressions
0, = padg? + (L —pavM)dt ; Q. =dg* Adpa + d(pav? — L) Adt. (2.77)

Then, the triple (W, Q,, (pk)*n) is a precosymplectic Hamiltonian system.

Dynamical equations for sections

The first-order Lagrangian-Hamiltonian problem for sections associated with the system (W,, Q,, (pR)*n)
consists in finding sections ¢ € I'(pf) characterized by the condition

v i(Y)Q. =0, forevery Y € X(W,). (2.78)
In the natural coordinates of W,, if the section 1 is locally given by 1(t) = (t, ¢ (t), vA(t),pa(t)),

then, bearing in mind the coordinate expression (2.77)) of the 2-form €,., the equation (2.78]) gives the
following system of 3n equations

it =, (2.79)
oL
oL
PAa— 53 = 0. (2.81)

Observe that equations and are differential equations whose solutions are the component
functions of the section 1. More particularly, equations give the holonomy condition for the
section 1) that must be satisfied once it is projected to J', while equations are the real dynamical
equations of the system. On the other hand, equations do not involve any derivative of the
component functions: they are point-wise algebraic equations that must satisfy every section ¢ € I'(pR)
to be a solution to equation . These equations arise from the pi-vertical component of the vector
fields Y. In particular, we have the following result.

Lemma 2.32. IfY € XV(P2)(W),), then i(Y)Q, is a pl-semibasic 1-form.
As a consequence of this result, we can define the submanifold
We = {[w] € Wr | (i(V)2)([w]) = 0 for every ¥ € £V (w,) } 5w,

where every section solution to equation (2.78]) must take values. Locally, the submanifold W, is defined
by the constraint p4 — OL/0v* = 0. Moreover, we have the following characterization of Wp.
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Proposition 2.33. W, < W, is the graph of the restricted Legendre map FL: J'm — JO*.

As a consequence of this result, since W, is the graph of the restricted Legendre map, then it is
diffeomorphic to J'7. In addition, every section ¢ € T'(pk) is of the form ¢ = (¢, ), with ¢, =
pr ot € T(7t) and ¢y, = FLo Y, € T(7%). In this way, every constraint, differential equation, etc., in
the unified formalism can be translated to the Lagrangian and Hamiltonian formalisms by projection to
the first factor of the product bundle or using the Legendre map. Hence, we have the following result.

Theorem 2.34. Let ¢ € T'(pR) be a section solution to equation (2.78]). Then we have

1. The section ¢ = p} o € I'(71) is holonomic, and is a solution to equation (2.53).

2. The section Yy = FLo Y, € T'(Th) is a solution to equation (2.67)).

Dynamical equations for vector fields

As in the Lagrangian and Hamiltonian formalisms, if we assume that the sections ¢ € I'(pf) solutions
to equation are the integral curves of some vector fields in W,., then we can state the problem
in terms of vector fields. The first-order Lagrangian-Hamiltonian problem for vector fields consists in
finding vector fields X € X(W,.) satistying the following equations

i(X) =0 ;5 i(X)(pr)"m #0. (2.82)

Remark. As in previous sections, the second equation in (2.82) is just a transverse condition for the
vector field X with respect to the projection onto R, and the non-zero value is usually fixed to 1, thus
giving the following equations

(X)) =0 5 i(X)(pr)'n=1.
0

Recall that que pair (Q,, (pk)*n) is a precosymplectic structure on W,. Hence, equations (2.82))
may not admit a global solution X € X(W,), and an adapted version of the constraint algorithm to
precosymplectic structures must be used. From the algorithm, we can state the following result.

Proposition 2.35. Given the precosymplectic Hamiltonian system (W, ., (pr)*n), a solution X €
X(W,) to equations (2.82)) exists only on the points of the submanifold Sy — W, defined by

Se = {[w] eW, | G(Y)dH)([w]) = 0 for every Y kerQW} .
As in the autonomous setting described in Section [2.1.3] we have the following characterization of the
submanifold S < W,..

Proposition 2.36. The submanifold Sy is the graph of the restricted Legendre map FL: J'm — JOn*,
and therefore Sp = Wr.

In the natural coordinates of W,., let X € X(W,.) be a generic vector field locally given by

0 0 0 0
X:f§+fA&]7A+FA&}7A+GA8pﬁ~

Then, bearing in mind the coordinate expression (2.77)) of the 2-form .., the equation (2.82)) gives in
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coordinates the following system of 3n + 1 equations for the component functions of X

A= fot, (2.83)

a=f gq—LA ; (2.84)

f (pA - ;}LA) =0, (2.85)
f#0. (2.86)

where equation (2.86)) arises from the second equation in (2.82). Fixing the non-zero value of f to 1, the
above equations become

fA =01, (2.87)
oL
oL
f=1, (2.90)

Note that equations are the holonomy condition for a vector field in the Lagrangian formalism,
as we have seen in Section while equations are the dynamical equations of the system. On
the other hand, equations (2.89)) are a compatibility condition stating that the vector fields solution
to equations exist only with support on the submanifold defined as the graph of the restricted
Legendre map. Thus we recover, in coordinates, the result stated in Propositions and

Remark. As in the autonomous setting, the holonomy of the vector field X € X(W,) is obtained
regardless of the regularity of the Lagrangian density £ € Q!(J'7) provided. O

Therefore, a vector field X € X(W,) solution to equation (2.82)) is locally given by

0, a0  pad 0L 0
ot g ovt  0gA Opa

Observe that the component functions F4 of the vector field X remain undetermined. However, since
the vector field X is defined at support on the submanifold W,, we must study the tangency of X along
this submanifold. That is, we must require that L(X)|,,, = 0 for every constraint function defining
W,. From Proposition [2.36] the submanifold W, is the graph of the restricted Legendre map, and so it
is defined by the n constraints

b= OL _ o B=1

—pB*aviB ) n.

geeey

Therefore, the tangency condition for X along W, gives the following n equations
o 40 L0 0L 9 oL
X)g = = A= T - =
L(X)¢n <8t TV A T auA T oA apA> (pB 81}3)

oL L, 9L 4 0L

-9 _ _F —0.
g8 otowB " 9qrouP duAgeE Y

Observe that these are the Lagrangian equations for a vector field once the holonomy condition is satisfied,
as we have seen in . These equations can be compatible or not, and a sufficient condition to ensure
compatibility is the regularity of the Lagrangian density. In particular, we have the following analogous
result to Proposition 2.7] in Section 2:1.3]
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Proposition 2.37. If £L € Q'(J'7) is a regular Lagrangian density, then there exists a unique vector
field X € XOW,-) which is a solution to equation (2.82) and is tangent to Wr.

If the Lagrangian density L is singular, then the above equations can be compatible or not, and
new constraints may arise from them, thus requiring the constraint algorithm to continue. In the most
favorable cases, there exists a submanifold Wy — W, (it could be Wy = W,) such that there exist
vector fields X € Xyy, (W, ), tangent to Wy, which are solutions to the equation

1)y, = 0.

Now, the equivalence of the unified formalism with the Lagrangian and Hamiltonian formalisms can
be recovered as follows.

Theorem 2.38. Let X € X(W,) be a vector field solution to equations and tangent to Wg
(at least on the points of a submanifold Wy — W, ). Then the vector field Xp € X(J'x) defined by
Xrop] = Tpl o X is holonomic, and is a solution to equations (at least on the points of a
submanifold Sy = pt(Wy) < J'm).

Moreover, every holonomic vector field X, € X' (J'x) solution to equations (2.54) (at least on the points
of a submanifold Sy — J'm) can be recovered in this way from a vector field X € X(W,) solution to
equations (2.82) and tangent to Wy (at least on the points of a submanifold Wy — W, ).

Finally, the Hamiltonian formalism is recovered from the Lagrangian one using Theorem [2.29|in the
regular case and Theorem [2.30]in the singular case.

2.5 First-order classical field theories

Let us consider a first-order classical field theory with n fields depending on m independent variables.
The configuration space for this theory is a bundle 7: E — M, where M is a m-dimensional orientable
smooth manifold with fixed volume form n € Q™ (M), and dim E = m + n. The physical information is
given in terms of a Lagrangian density £ € Q™ (J'7), which is a 7'-semibasic m-form. Because of this,
we can write £ = L - (1)*n, where L € C*°(J'r) is the Lagrangian function associated to £ and 7.

2.5.1 Lagrangian formalism

(See [3, 221 [74], [75, B3, B4, ;85| 124], [135] for details).

Geometrical setting

Using the Lagrangian density £ and the vertical endomorphism V € T(T*J'm @ jip TM ® j1. V(7!))
described in Section we can construct the following forms in J'7.

Definition 2.37. The Poincaré-Cartan m-form associated to £ and 1 is the form O, € Q™(J'7) defined
as

O =iWV)dL+ L.
Then, the Poincaré-Cartan (m + 1)-form associated to L and n is the form Qp € Q™ (Jn) defined as

Qr=—-dO,.

From the previous definitions it is clear that the phase space of a first-order classical field theory
described by a Lagrangian density is the first-order jet bundle of the configuration bundle 7: E — M.
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Definition 2.38. A first-order Lagrangian field theory is a pair (J'm, L), where 7: E — M is the
configuration bundle and £ € Q™ (J'7) the Lagrangian density.

In the natural coordinates (z?,u®, u&) of Jlm, and bearing in mind the local expression (1.14) of the
vertical endomorphism V), the coordinate expression of the Poincaré-Cartan m-form is

O, = %dua Ad™ g, — (aLuq — L) d™z. (2.91)
Uy

From this, the coordinate expression of the Poincaré-Cartan (m + 1)-form is

0L 0?L
Qr = ———du® Adu’ Ad™ o + —3
Oug o

du® A du? A d™ L,
dugou’ Y !

) (2.92)

%L oL 0°L
U —— — — ) du® Ad™x + u——— duf AdTz
* ( ' Oufous Buﬂ> o 8u§"3u§3 !

Remark. As in the autonomous and non-autonomous formulations described in previous Sections, it is

clear from the coordinate expression (2.91)) that the Poincaré-Cartan 1-form O is 7!-semibasic. O

Notice that, given an arbitrary Lagrangian density £ € Q™ (J'7), the Poincaré-Cartan (m + 1)-form
is always a closed form (in fact, it is an exact form). Nevertheless, we can not assure the 1-nondegeneracy
of Q. Hence, we introduce the following definition.

Definition 2.39. A Lagrangian density £L € Q™(Jw) is regular (and thus (J'm, L) is a regular field
theory ) if Q¢ is a multisymplectic (m + 1)-form on Jiw. Otherwise, the Lagrangian density is said to be
singular (and thus (J'm, £) is a singular field theory ).

From the coordinate expression (2.92)) of the Poincaré-Cartan (m + 1)-form, it is clear that the
regularity of the Lagrangian density £ is locally equivalent to

2
det LLB (jlg) # 0, for every jlo € J'x,
OugOu;;

where L € C°°(J!7) is the Lagrangian function associated to £ and 7.

Lagrangian field equations

The Lagrangian problem for first-order field theories consists in finding a distribution D in J'7 satisfying

1. D is m-dimensional.

2. D is 7'-transverse.

3. D is integrable.

4. The integral manifolds of D are the first prolongations of the critical sections of the Hamilton

principle.

As we have seen in Section these kinds of integrable distributions are associated with classes of
integrable (that is, non-vanishing, locally decomposable and involutive) 7!-transverse multivector fields
Xe € X™(J'). In the natural coordinates of Jl7, the local expression of an element of one of these
classes is

N o O o O
Xﬁ—fi:/\l (8zi+fi W‘—i_Fj’i@lL?) 5

where f € C°°(J'7) is a non-vanishing function. If, in addition, the integral sections of the distribution
D are holonomic, then the associated classes of multivector fields are also holonomic (see Section [1.6.2)).
Then, we have the following result.
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Theorem 2.39. Let (J'm, L) be a Lagrangian field theory. The following assertions on a section ¢ € T'()
are equivalent.

1. The section ¢ is a solution to the equation
(1) i(X)Qe =0, for every X € X(J'n). (2.93)

2. In the natural coordinates (z',u®,us) of J'm, the first prolongation of the section ¢ € I'(m),

jro(ah) = (2%, u(z?), ‘?)Zj (x%)), satisfies the Euler-Lagrange equations

oL
ou™

R
dx? Oug

=0. (2.94)
ite

jté
3. jl¢ is an integral section of a class of holonomic multivector fields {X:} C X™(J ) satisfying
i(Xe)Qe =0, forevery Xp € {X}. (2.95)
Semi-holonomic (but not necessarily integrable) multivector fields which are solutions to equation
are called FEuler-Lagrange multivector fields.

Let us compute in coordinates the equation (2.95)). Let Xz € X™(J') be a locally decomposable and
7l transverse multivector field locally given by

N o O o O
Xﬁ—fi:/\l (azi-i-fi W‘—i_Fj’i@u?) 5

where f is a non-vanishing function. Then, taking f = 1 as a representative of the equivalence class, and
bearing in mind the coordinate expression (2.92)) of the Poincaré-Cartan (m + 1)-form Q., the equation
(2.95) gives the following system of n(m + 1) equations

oL 0L 5 L 5 &L 5 s 0L
_ 4 _ P B 9E g 2.96
Juc augaxz i 8u?8uﬂ ]718’“?8“? + (fz U; Bufaua ) ( )
0*L
B B
S —u ) ——= =0. 2.97

Observe that equations (2.96)) and (2.97) correspond exactly to equations (2.59)) and (2.60|) in the for-

mulation of non-autonomous dynamical systems, respectively, and to equations @ and in the
formulation of autonomous dynamical systems, respectively. In particular, equations @ are the local
equations for the semi-holonomy condition required to the multivector field X-. If the holonomy condi-
tion is required from the beginning, then X, is also semi-holonomic, and therefore equations are
an identity. Then, equations become

oL L 5 PL 5 L
_ - —uk - —
Ouv  Oufdx' ' OuFouP P gugou]

=0. (2.98)

From the coordinate expression of equation we observe that if £ € Q™(J'7) is a regular La-
grangian density then Euler-Lagrange multivector fields do exist in J'7, although they are not necessarily
integrable. Otherwise, if the Lagrangian density is singular, in the most favorable cases a semi-holonomic
multivector field solution to equation exists only on the points of a submanifold Sy < J'm, which
can be obtained after applying a suitable adapted version of the constraint algorithm described in Section
[L.7] (see [46]). In these cases, the following equation holds

[i(X)Q]ls, = 0. (2.99)
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2.5.2 Extended Hamiltonian formalism

As in the Hamiltonian formulation for non-autonomous dynamical systems, the extended Hamiltonian
formalism associated to a Lagrangian field theory (J!m, £) makes use of two phase spaces: the extended
multimomentum bundle and the restricted multimomentum bundle. The former is exactly the extended
dual jet bundle AZ*(T*.J%7) = AJ(T*E) of J'7 described in Section while the latter is the reduced
dual jet bundle A7 (JO7) /AT (J%). As in Section we denote the restricted multimomentum bundle
by JO7*, instead of E*, to avoid confusion. The quotient map is denoted by u: AP(T*E) — JO7*.
Natural coordinates in AJ'(T*E) are (x%,u®,p,p}), and the induced natural coordinates in Jo7* are
(@t u®pi), 1<i<m, 1< a<n.

(See [19} [68, [72, [78, [79, &3, 85, [05], (174] for details).

The extended and restricted Legendre maps

As in previous Sections, we begin by introducing the Legendre map that relates the Lagrangian formu-
lation with the Hamiltonian one. Recall that, from the coordinate expression (2.91)), it is clear that the
Poincaré-Cartan m-form ©, € Q™(Jr) is wl-semibasic. Then, we can give the following definition.

Definition 2.40. The extended Legendre map associated with the Lagrangian density £ € Q™(Jx) is
the bundle morphism FL: J'm — A (T*E) over E defined as follows:

(O£(2d)(Yi(39): -+ Yim(j28)) = (FLUz) (Tja6m V1) (@()), - (Tj1om" Vi) (9()))
where Y; € X(J'7), and therefore Trl'Y; € X(E).

It is clear from the definition that mg o FL = 7!, where mg: AJ(T*E) — E is the canonical sub-
mersion. In addition, if © € Q™(AY(T*E)) is the canonical m-form of AY'(T*E) and @ = —d© €

QmHL(AT(T*E)) the canonical multisymplectic (m+1)-form, then we have FLO= O, and FL Q= Q.
From Examples and the coordinate expression of © in this case is
0 =p! du® Ad™ ta; + pd"x,
from where the coordinate expression of the multisymplectic (m + 1)-form is
Q=—dp, Adu* Ad™ oy —dp Ad™z. (2.100)
Hence, bearing in mind the coordinate expression ([2.91)) of the Poincaré-Cartan m-form O, € Q™(J'x),
the coordinate expression of the extended Legendre map is
— . i oL

FL ' =2 ; FLu*=u" | ﬁ*pézw ; ﬁ*P:L*U?

0L
oug

(2.101)

Now, if we compose the extended Legendre map with the natural quotient map p: AJ(T*E) — JOr*,
we obtain a bundle morphism po FL: J'm — Jo7* which leads to the following definition.
Definition 2.41. The restricted Legendre map associated to the Lagrangian density £ € Q™(J'7) is the
bundle morphism FL: J'm — Jon* over E defined as FL = o FL.

In the natural coordinates of J%7*, the local expression of the restricted Legendre map is

oL

—.
ous

FLz'=a' ; FL9 =u® ; FL), =

As in the Hamiltonian formulation for first-order non-autonomous systems, a fundamental result
relating both Legendre maps is the following.
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Proposition 2.40. For every jl¢ € J'm we have that rank(FL(j1¢)) = rank(FL(j14)).

The proof of this result follows the patterns in [44] for non-autonomous dynamical systems. As a
consequence of Proposition [2:40} from the coordinate expressions of both Legendre maps, and bearing in
mind the results of Section [2.5.1] we have the following result.

Proposition 2.41. Let £ € Q™(J'7) be a Lagrangian density. The following statements are equivalent:

1. Qr is 1-nondegenerate, that is, it is a multisymplectic (m + 1)-form in J'7.
2. In the natural coordinates of J'm, we have
0*L
det | —5—— | (4;8) #0,
<6u§ 8uf‘> Uz?)
for every jl¢ € Jim, where L € C*°(J'x) is the Lagrangian function associated with £ and 7.
3. The restricted Legendre map FL: J'm — J°n* is a local diffeomorphism.

4. The extended Legendre map FL: J'm — A(T*E) is an immersion.

In this case, L is a regular Lagrangian density.

Definition 2.42. A Lagrangian density L € Q™(J'7) is hyperregular if the restricted Legendre map
FL: J'n — JOn* is a global diffeomorphism.

Now, let P = Im(fZ) — A'(T*E) be the image of the extended Legendre map, with natural
embedding 7: P < A(T*E), and P = Im(FL) — J7* the image of the restricted Legendre map,
with canonical embedding j: P < Jo7*. Let 7ip = 7% 0 7: P — R be the canonical projection, and
FLy: Jtm — P the map defined by FL = 70 FL,. We can now give the following definition.

Definition 2.43. A Lagrangian density £ € Q™(Jr) is almost-regular if

1. P is a closed submanifold of JOr*.
2. FL is a submersion onto its image.

3. For every jL¢ € J'w, the fibers FL Y (FL(jL¢)) are connected submanifolds of J'r.

As in the Hamiltonian formalism for non-autonomous dynamical systems, from Proposition [2.40] we
have that the map pi: P — P is a diffeomorphism, where g is the restriction of p on the image set P.
Then, we have the following definition.

Definition 2.44. The canonical Hamiltonian section h € T'(fi) is defined as the map h = i™': P — P.

From the Hamiltonian section h € I'(z1) we can define the following forms on P.
Definition 2.45. The Hamilton-Cartan forms 0, € Q™(P) and Q) € Q™F1(P) are defined as
On=(oh)'® ; Q=(joh)Q=—doy,
where © and Q are the canonical m and (m + 1)-forms of Ay (T*E).

The pair (P, ;) is the Hamiltonian field theory associated with the Lagrangian field theory (J7, £).
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Hamiltonian field equations

Let us suppose first that the Lagrangian density £ € Q™(J'x) is hyperregular. The regular, but not
hyperregular, case can be recovered by restriction on the open sets where the restricted Legendre map is
a local diffeomorphism.

In the hyperregular case we have P = J7*, and P is a 1-codimensional and p-transverse submanifold
of AJ*(T*E) which is diffeomorphic to J%7*. In addition, in this case the Hamiltonian section may be

defined equivalently as h = FL o FL .
In the natural coordinates of J°7*, the Hamiltonian section is specified by a Hamiltonian function
H € C>®(J7*) as
h(z' u®, py) = (', u®, —H(z', u®, py,), g
with the Hamiltonian function H being locally given by
H(a',u®, ) = po(FLT) uf = (FLT) L(a', u® ).

From this, and bearing in mind the coordinate expressions of the canonical forms of A5 (T*FE) given in
Section the local expressions of the Hamilton-Cartan forms are

On =p du* Ad™ e, — Hd™x 5 Q= —dpl, Adu® Ad™ ey +dH Ad™ . (2.102)

As in the Lagrangian formalism, the Hamiltonian problem for first-order field theories consists in
finding a distribution D in J%7* such that

1. D is m-dimensional.
2. D is wp-transverse.
3. D is integrable.

4. The integral manifolds of D are the critical sections of the Hamilton-Jacobi principle.

As in the Lagrangian formalism, these kinds of integrable distributions are associated with classes of
integrable and 7%,-transverse multivector fields &), € X™(J%7*). In the natural coordinates of J%7*, the
local expression of an element of one of those classes is

A N R
Xh—fi_/\1<axi+fiaua+(;a,i6pgx>7

where f € C>°(J%7*) is a non-vanishing function. Then, we have the following result.

Theorem 2.42. Let (J'7*, Q) be a Hamiltonian field theory. The following assertions on a section
Y e () are equivalent.

1. The section v is a solution to the equation

V(X)) =0,  for every X € X(J7%). (2.103)

2. In the natural coordinates (z*,u®,pt) of JOm*, the section ¢ € T'(7}) given locally by ¥(z*) =
(zf, u(z?), p’, (x%)), satisfies the Hamilton-De Donder-Weyl equations

ou®
ozt

_ oH

oH OH
b apg

. (2.104)
P 1=1 P
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3. 1 is an integral section of a class of locally decomposable, integrable and Ty -transverse multivector
fields { Xy} C X™(JO*) satisfying

(X)) =0,  for every Xy, € {Xn}. (2.105)

The 7-transverse and locally decomposable multivector fields which are solutions to equation (2.105)),
but are not necessarily integrable, are called Hamilton-De Donder-Weyl multivector fields.

Let us compute in coordinates the equation (2.105). Let & € X™(J%7*) be a locally decomposable
and 7p-transverse multivector field locally given by

N ) .0
Xhzf/\< + == +Gl )
i=1

ox’ Jue Tl gt

where f is a non-vanishing function. Then, taking f = 1 as a representative of the equivalence class, and
bearing in mind the coordinate expression (2.102)) of the Hamilton-Cartan (m + 1)-form Qj,, the equation
(2.105) gives the following system of (m + 1)n equations

. oH . _ OH

a,i - o

From this coordinate expression we can assure the local existence of classes of locally decomposable and
7h-transverse multivector fields &}, € X™(J%7*) solution to equation . The corresponding global
solutions are then obtained using a partition of unity subordinated to a covering of J97* made of local
natural charts.

Finally, we can establish the equivalence between the Lagrangian and Hamiltonian formalisms in the
hyperregular case.

Theorem 2.43. Let (J'm, L) be a hyperreqular Lagrangian field theory, and (J°7*,8Qy,) the associated
Hamiltonian field theory.

1. If € T(m) is a solution to equation (2.93)), then the section » = FLo j'¢ € T'(7%) is a solution to
equation (2.103))

2. Conversely, if € I(7}) is a solution to equation (2.103), then the section ¢ = oy € I'(w) is a
solution to equation (2.93]).

Remark. This last Theorem can be stated also in terms of multivector fields. O

Now, let us assume that the Lagrangian density £ € Q™(J'7) is almost-regular. In this setting, the
Legendre map is no longer a local diffeomorphism and, in particular, P < J%7* is a proper submanifold.
Nevertheless, the Hamiltonian section h € T'(z) and the Hamilton-Cartan forms can still be defined.
Therefore, the field equations can be stated as in Theorem [2.42

If Q, € QmHL(P) is a premultisymplectic form, Hamilton-De Donder-Weyl multivector fields exist
only, in the most favorable cases, in some submanifold Py — P, and they are not necessarily integrable.
As in the Lagrangian formulation, this submanifold Py can be obtained using a suitable adapted version
of the constraint algorithm described in Section [46]. Then, the analogous result to Theorem in
the almost-regular case can be obtained.
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2.5.3 Lagrangian-Hamiltonian unified formalism

(See [70] for details).

Unified phase spaces. Geometric structures

As in the extended Hamiltonian formalism stated in the previous Section and the unified framework for
non-autonomous first-order dynamical systems stated in Section [2.4.3] in the Skinner-Rusk formulation
for first-order classical field theories we consider two phase spaces, which are the bundles

W=J7 xg AJ(T*E) ; W,=J7wxgJ7".

These bundles are called the extended jet-multimomentum bundle and the restricted jet-multimomentum
bundle, respectively. These bundles are endowed with the canonical projections

p1:W = J o por W= AJ(T*E) 3 pe:W—=E 5 puy:W—=M,
P W, = T b W= I o W= E s phy i W — M.

In addition, the natural quotient map p: AJ(T*E) — JO7* induces a projection, that is, a surjective
submersion gy : W — W,.. Hence, we have the same diagram that we have in Section [2.4.3] on page
replacing T*FE by AT*(T*E) and R by M.

Local coordinates in W and W, are constructed in an analogous way to the autonomous and non-
autonomous formulations of dynamical systems. Let (z%,u%), 1 <i < m, 1 < a < n, be a set of local
coordinates in E adapted to the bundle structure and such that the fixed volume form n € Q™ (M)
is given locally by n = d™z. Then, the induced natural coordinates in Jlm, AJ(T*E) and JO7* are
(xf, u™,uf), (t,u®, p,pl) and (2%, u®, p’,), respectively. Therefore, the natural coordinates in W and W,
are (xf,u® u®, p,p’) and (2, u® u®,pl), respectively. Observe that dimW = m + n + 2mn + 1 and
dimW, = m + n + 2mn.

In these coordinates, the above projections have the following coordinate expressions

pr(@', u ', p,ph) = (2, u®,uf) ; pa(a’,u® uf,p,pl) = (', u® p,pl) ; pe(z’,u® uf,p,pl) = (z',u®),

The extended jet-multimomentum bundle is endowed with some canonical structures. First, let © €
Qm(AF(T*E)) and Q = —dO© € Q™ 1(AZ(T*E)) be the canonical forms of AJ*(T*E). Then, we define
the following forms in W

@W — p;@ c Qm(W) ; QW = pzﬂ = —d@w S Qm+1(W) .

Then, bearing in mind the coordinate expressions of the forms © and 2 given in Examples and
and also in (2.100]), and the local expression of the projection p, given above, the forms ©yy and 2y are
given locally by

O = pLdu® Ad™ Yz 4+ pd™x 5 Q= —dp), Adu® Ad™ ey —dp Ad™x.

Tt is clear from these coordinate expressions that Qyy is a closed (m+ 1)-form, and that it is 1-degenerate,
since we have
i(0/0us)hy =0, foreveryl<i<m,l<a<n.

In particular, a local basis of ker 2y is given by

ker Oy = <aaa> = }CV(”)(W) )
us

K2
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Thus, the form Qyy is a premultisymplectic (m + 1)-form in W.
The second canonical structure in W is the following.

Definition 2.46. The coupling form in W is the pyr-semibasic m-form Ce Q™(W) defined as follows:
for every w = (jlo,a) € W (that is, « € AT(T pe)E)) and vy, ... vy € TyW, we have

Clw)(vi, ..y m) = a(Tw(P o prr)vr, ..., Tw(d o par)vm) -

Since C € Q" (W) is par-semibasic, there exists a function C' € € (W) such that € = Cpt,n = Cd™z.
An easy computation in coordinates gives the following local expression for the coupling form

C=(p+phuy)dma. (2.107)

Given a Lagrangian density £ € Q™(J'7), we denote L=piL e Q™(W). Since the Lagrangian
density is 7!-semibasic, then £ is par-semibasic, and hence we can write L= LpMn, where L = psL €
C>®(W), L € C>®(J'xn ) being the Lagrangian functlon associated to £ and 7. Then we define a Hamil-
tonian submanifold

Woz{wewm(w):é(w)}&w.

Since both ¢ and L are py-semibasic forms, the submanifold W, is defined by the regular constraint
function €' — L € C*°(W). In the natural coordinates of W, bearing in mind the local expression (2.107)
of C, the constraint function is locally given by

é - IA/ =D +p?4u? - ‘z—/(l'iauavu(il) :
Proposition 2.44. The submanifold W, — W is 1-codimensional, pyy-transverse and diffeomorphic to

W,.. This diffeomorphism is given by the map pyw o jo: W, — W,..

As a consequence of this last Proposition, the submanifold W, induces a section he () defined
as h = jy, o (w0 jo)~1: W, — W. This section is called the Hamiltonian pyy-section, and is specified by
giving the local Hamiltonian function

I:I((L'i,uo"u?’pg) = _f’(xivuavuia) +plozu(11 )
that is, h(z?,u®, u®, pi) = (%, u®, uf, —H(z", u®,u®, pi,), pi,).

Remark. As in the unified formalism for non-autonomous dynamical systems described in Section
if the Lagrangian density £ € Q™(J!r7) is, at least, almost-regular, then from the Hamiltonian pypy-
section h € T'(uyy) in the unified formalism we can recover the Hamiltonian p-section h € T'(y) in the
extended Hamiltonian formalism. In fact, given [a] € JO7*, the section h maps every point (ilo, [a]) €
(p2) Y([e]) into p3 t(p2(h(jl¢, [a]))). Hence, the crucial pomt is the py-projectability of the local function
H. However, since 0/0u$ is a local basis for ker Tpq, the local function H is pa-projectable if, and only
if, pa = OL/0u®, and this condition is fulfilled when [a] € P = Im FL < JO7*, which implies that
p2(h((p5)~1(ja]))) € P = Im FL < T*E. Then, the Hamiltonian section h is defined as

hla]) = (p2 M) ((05) " () = Go i )([a]) -
for every [a] € P. O
Finally, we can define the forms
0, =h*Opw € Q"W,) : QO =h*Qy € Q"TTW,),
with local expressions
0, = pldu® Ad™ Lo 4+ (L — plu®)d™x ; Q. = —dpi, Adu® Ad™ Lz + d(piud — L) Ad™z. (2.108)

Then, the pair (W, 2,.) is a premultisymplectic Hamiltonian field theory.
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Field equations for sections

The Lagrangian-Hamiltonian problem for sections associated with the field theory (W, {2,.) consists in
finding sections ¢ € I'(p},) characterized by the condition

P i(X)Q, =0, forevery X € X(W,). (2.109)

As in the Lagrangian and Hamiltonian formalisms described in previous Sections, the Lagrangian-
Hamiltonian problem for sections stated above is equivalent to find a distribution D in W, such that

1. D is m-dimensional.

2. D is pl-transverse.

3. D is integrable.

4. The integral manifolds of D are the sections solution to equation (2.109)).

In the natural coordinates of W,., if the section 1 is locally given by ¢ (z%) = (2, u®(z?), u¢(z?), p’, (x?)),

then, taking into account the local expression (2.108) of the (m + 1)-form £, the equation (2.109)) gives
the following system of (2m + 1)n equations

?ﬁi =ud, (2.110)
" opl, 0L
i=1
P — g—La =0 (2.112)
Us

In an analogous way as in the unified formalism for non-autonomous systems described in Section [2.4.3
equations (2.110)) and are partial differential equations whose solutions are the component func-
tions of the section . More particularly, equations give the holonomy condition for the section v
that must be satisfied once it is projected to J'x, while equations ([2.111]) are the actual field equations.
On the other hand, equations do not involve any derivative of the component functions: they are
point-wise algebraic equations that must satisfy every section ¢ € I'(p},) to be a solution to equation
(2.109). These equations arise from the pj-vertical component of the vector fields X. In particular, we
have the following result.

Lemma 2.45. If X € XV(P2)(W),), then i(X)Q, is a ph,-semibasic m-form.
As a consequence of this result, we can define the submanifold
We = {[w] e W, | (X)) ([w]) =0 for every X € %V(pg)(WT)} 25 W,

where every section solution to equation ([2.109) must take values. Locally, the submanifold W is defined
by the constraints p, — L/0u$® = 0. Moreover, we have the following characterization of W;.

Proposition 2.46. W, — W, is the graph of the restricted Legendre map FL: J'm — JOr*.

As a consequence of this result, since W, is the graph of the restricted Legendre map, then it
is diffeomorphic to J'7. In addition, every section ¢ € T'(p%,) is of the form ¢ = (i, vy), with
Ve = ploy € T(7!) and o, = FLoyc € T'(7%). In this way, every constraint, differential equation, etc.,
in the unified formalism can be translated to the Lagrangian and Hamiltonian formalisms by projection
to the first factor of the product bundle or using the Legendre map. Hence, we have the following result.

Theorem 2.47. Let i) € T'(ph,) be a section solution to equation (2.109). Then we have

1. The section ¥ = pf o € I'(71) is holonomic, and is a solution to equation (2.93).
2. The section Yy, = FLo e € T'(Ty) is a solution to equation (2.103]).
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Field equations for multivector fields

As in the Lagrangian and Hamiltonian formalisms, if we assume that the sections i € I'(p},) solutions to
equation are the integral sections of a class of locally decomposable, integrable and p,-transverse
multivector fields, then we can state the problem in terms of multivector fields defined in W,. The
Lagrangian-Hamiltonian problem for multivector fields consists in finding m-vector fields X € X™(W,.)
satisfying the above conditions and the following equation

i(X)Q, =0. (2.113)

Since the (m + 1)-form 2, is premultisymplectic on W,, we must use a suitable adaptation of the
constraint algorithm described in Section in order to find a submanifold of W, where the equation
(2.113) is compatible. From the algorithm, we can state the following result.

Proposition 2.48. Given the premultisymplectic Hamiltonian field theory (W,, ), a m-vector field X
solution to equation (2.113)) exists only on the points of the submanifold Sy — W, defined by

Se = {[w] eW, | GX)AH)([w]) = 0 for every X € kerQW} :

As in the unified formulations for autonomous and non-autonomous dynamical systems described in
previous Sections we have the following characterization of the submanifold Sy — W,.

Proposition 2.49. The submanifold S is the graph of the restricted Legendre map FL: J*m — JOn*,
and therefore Sy = Wr.

In the natural coordinates of W, let X € X™(W,) be a locally decomposable and ph,-transverse
multivector field locally given by

. ) )
X = f/\<al+fZ ”W+G aJ>'

Now, taking f = 1 as a representative of the equivalence class and using the local expression (2.108) of
the (m + 1)-form €., the equation (2.113)) gives rise to the following system of (2m + 1)n equations for
the component functions of X

fo= u'.l, (2.114)

ZGM = a —, (2.115)

. oL
Pa— 5 =0, (2.116)

Note that equations are the holonomy condition for a multivector field in the Lagrangian formal-
ism, as we have seen in Section while equations equations are the field equations of the
system. On the other hand, equations are a compatibility condition stating that the multivector
fields solution to equations exist only with support on the submanifold defined as the graph of
the restricted Legendre map. Thus we recover, in coordinates, the result stated in Propositions [2.48 and

219

Remark. As in the previous unified formulations described in Sections [2.1.3] and [2:4.3] the holonomy
condition is obtained regardless of the regularity of the Lagrangian density E € Q™(Jr) provided. ¢

Therefore, a multivector field X € X" (W,.) solution to equation (2.113)) is locally given by
w0 0 0 ;0
X = -+ uj + F; +GL,— .
fZ:/\l (83}1 8 «@ 7» ou Oz » 8]%)
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Observe that most of the component functions of the multivector field X' remain undetermined, even
if we take into account equations (2.115) relating the component functions Gf” However, since the
multivector field X is defined at support on the submanifold W, we must study the tangency of X along
this submanifold. Since X is locally decomposable, that is, we have X = X; A ... A X,;, on an open
neighborhood around every point, the tangency of X’ is equivalent to the tangency of every X; along W,.
That is, we must require that L(X})¢ |W[, = 0 for every constraint function ¢ defining W, and for every
1 < k < m. From Proposition 2.49] the submanifold W, is the graph of the restricted Legendre map, and
so it is defined by the mn constraints

. OL
¢ =p!

———=0,j5=1....m,8=1,...,n.
o au?

Therefore, the tangency condition for X along W, gives the following n equations

o d d .0 . 0L
IB — « (03 (2
L(Xy)¢; = (63:’“ tuhga T kg T Ga,kapi> (Pf; - Buﬁ>
1 « J
i L . 0°L o 0L

- —u - F— =
hik 8:0’“81@ k 8u‘18uf bk 8u§‘8u§3

This first step enables us to determine the m?n functions Gf;k in terms of the functions Fy’;. Now,
replacing this last expression in (2.115)), we obtain

oL oL, &L 0*L

[e%

_ o — P ———=0.
P dwiou? uedul 7 8u;"6uf

Observe that these are the Lagrangian equations for a multivector field once the holonomy condition is
satisfied, as we have seen in . These equations can be compatible or not, and a sufficient condition
to ensure compatibility is the regularity of the Lagrangian density, as we have seen in Section If the
Lagrangian density £ is singular, then in the most favorable cases, there exists a submanifold Wy — W,
(it could be Wy = W) such that there exist multivector fields X € X0, (W), tangent to Wy, which are
solutions to the equation

{2y, =0.

Now, the equivalence of the unified formalism with the Lagrangian and Hamiltonian formalisms can
be recovered as follows.

Theorem 2.50. Let X € X™(W,.) be a ph,-transverse and integrable multivector field solution to equa-
tions and tangent to W (at least on the points of a submanifold Wy — W ). Then the multi-
vector field Xz € X™(J'7) defined by X o p} = A™Tp} o X is holonomic, and is a solution to equation
(at least on the points of a submanifold Sy = pj(Wy) — J'rm).

Moreover, every holonomic multivector field X, € X*(J'm) solution to equation (at least on the
points of a submanifold Sy — Jim) can be recovered in this way from a ph,-transverse and integrable
multivector field X € X™(W,.) solution to the equation and tangent to Wr. (at least on the points
of a submanifold Wy — W, ).

Finally, the Hamiltonian formalism is recovered from the Lagrangian one using Theorem [2.43
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Chapter 3

Unified formalism for higher-order
autonomous dynamical systems

In this Chapter we state the Lagrangian-Hamiltonian unified formalism for higher-order autonomous
dynamical systems. That is, we generalize the unified formulation described in Section to the
higher-order case described in Section [2.3

The structure of the Chapter is the following. In Section [3.1] we introduce the phase space where
the formulation takes place, we construct the local coordinates in this phase space and we define some
canonical structures used in the formulation. The dynamical equations are then stated and analyzed in
Section both in terms of vector fields and integral curves. Then, Sections and are devoted
to recover the Lagrangian and Hamiltonian formalisms for higher-order autonomous dynamical systems
described in Sections [2.3.1] and respectively. Finally, two physical models are studied using this
formulation in Section the Pais-Uhlenbeck oscillator and a second-order relativistic particle.

3.1 Geometrical setting

Let us consider a kth-order autonomous Lagrangian dynamical system with n degrees of freedom. Let
@ be a n-dimensional smooth manifold modeling the configuration space of this kth-order dynamical
system, and £ € C* (TkQ) a kth-order Lagrangian function describing the dynamics of the system.

3.1.1 Unified phase space and bundle structures. Local coordinates

As we have seen in Section[2.3] the Lagrangian and Hamiltonian phase spaces for a kth-order autonomous
system are T?*71Q and T*(T*71Q), respectively. Hence, following the patterns in Section let us
consider the bundle

W =T*71Q xqpu-r THTH Q)

that is, the fiber product over TkilQ of the Lagrangian and Hamiltonian phase spaces.

Remark. There is an alternative approach to this formulation, which consists in considering the bundle
W' =TFQ Xpkh-10 T* (Tk_lQ) as the phase space of the dynamical system, instead of the bundle WV given
above (see [13| 14} [15] 28, BT, 32] 33, B4] for several formulations on different situations and systems).
The similarities and differences between these two approaches are pointed out along the Chapter. O

The bundle W is endowed with the canonical projections

pr: W= TH71Q o po: W — THTFLQ) .
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With these projections and the canonical projections of T?*71Q and T* (Tk_lQ) over TF71Q, we have

the following commutative diagram
/ X

T2k—1Q T*(Tk:—lQ)

2k—1 Trk—1
fk\ /Q

Tk—lQ

Local coordinates in W are constructed as follows. Let (U, ¢?), 1 < A < n, be a local chart in @, and
((BFH=HU); (¢, ¢")) and ((B* T ompr—1g) M (U); (¢, ), 1 <A<, 0<i<k—1,k<j<2k—1,
the induced natural charts in T%_IQ and T* (Tk_lQ), respectively. Then, the natural coordinates in the
open set (821 o py) N (U) = (Bt ompr-1g 0 p2) 1 (U) C W are (¢, ¢, pYy). Note that dim W = 3kn.

In these coordinates, the above projections have the following local expressions

A A 3 A A A A 3 A i
p1(ai s q;,0a) = (a7 a;) 5 p2(disq;,p%) = (4 P4a) -

3.1.2 Canonical geometric structures

The bundle W is endowed with some canonical geometric structures. In particular, we generalize to the
higher-order setting the definitions of the presymplectic 2-form and the coupling function given in Section
2. 1.0

Let 01 € QY(T*(T*7'Q)) be the tautological form, and wy_1 = —dbp_; € Q*(T*(T*'Q)) the
canonical symplectic form of the cotangent bundle. Then, we define a 2-form Q in W as

Q= piwr_1 € B2(W).
It is clear from the definition that €2 is closed, since we have
Q= pywp—1 = p5 (—dbx—1) = —dp3 Ok—1 .

Nevertheless, this form is degenerate, and therefore it is a presymplectic form. Indeed, let X € XV (»2) W).
Then we have

i(X)Q = i(X)p3 wi—1 = p3(i(Y)wp—1),
where Y € X(T*(T*7'Q)) is a vector field py-related to X. However, since X is vertical with respect to
p2, we have Y = 0, and therefore

pa(i(Y)wr—1) = p3(i(0)wr—1) = 0.
In particular, {0} ¢ XV(¥2)(W) C ker Q, and thus Q is a degenerate 2-form.

Bearing in mind the local expression of the projection p; given in the previous Section and the
coordinate expression (2.44]) of the symplectic form wy_1, we have that the 2-form €2 is given locally by

Q= pywp—1 = p5 (dg* Adply) = dpj (¢*) Adps (p'y) = da* Adply . (3.1)

From this local expression it is clear that a local base for the kernel of €2 is

) )
ker Q={ —,...,——— Yy =xVE2) (W) . 3.2
<aq;s aq;k_1> ) 32
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The second geometric structure in W is the following.

Definition 3.1. Let p = ]Sk o e T?*71Q, ¢ :jo Lo = p2k 1( ) € T1Q, and g € TZ(kalQ). The
kth-order coupling function C € C*°(W) is defined as follows:

C: T?7'Q w1 THTF'Q) — R
(p,ag) V> (g, jk(p)gr—1

where ji: T271Q — T(Tk_lQ) is the map defined in (1.22), ji(p)q € Tq(Tk_lQ) is the corresponding
tangent vector to Tk_lQ mq= j(])“l(b, and (e, e);_1 denotes the canonical pairing between the elements
of the vector space T,(T*7*Q) and the elements of its dual T;(Tk_lQ).

In the natural coordinates of the bundle W, if p = ]Qk ly = (a8, - .,q,?fl,q,?, .. .,q§§<371)7 then
q= pik 11( )= ](’f Yo = (g8, ..., ¢’ |) and, bearing in mind the coordinate expression (1.23) of the map
jx, we have jix(p) = (¢8', ..., qi 1, qi, ..., q). Therefore, if ji(p), and «, are locally given by

)

. A

JP)g =Gy 71
q 1+1 aq’zA .

. b A
P oag=phdgl,

then we obtain the following coordinate expression for the kth-order coupling function C

> = phq. (3.3)
] k—1

Remark. Taking £ = 1, the map j;: TQ — TQ is the identity on the tangent bundle, and hence we
recover the coupling function defined in Section for first-order autonomous systems. %

. - 0
A A A A
Clai a; ,Pa) = <PZA dg; |q7qi+1 DaA

%

From the kth-order coupling function C € C°°(W) and the kth-order Lagrangian function £ €
C>°(T*Q) provided, we define a Hamiltonian function H € C*(W) as

H=C—(pFtom) L. (3.4)

Doing an abuse of notation, in the following we denote (p;*~* o0 p;)*L£ € C>°(W) simply by L. Bearing in
mind the coordinate expression ([3.3)) of the kth-order coupling function C, we deduce that the Hamiltonian
function H is given locally by

H(ql, q}' ply) = paaiy — Llag - aid) - (3.5)

Therefore, we have constructed a presymplectic Hamiltonian system (W, Q, H).

Finally, in order to give a complete description of the dynamics of higher-order Lagrangian systems
in terms of the unified formalism, we need to introduce the following concepts.

Definition 3.2. A curve ¥: I C R — W is holonomic of type r in W, 1 < r < 2k — 1, if the curve
Py =prop: I — T2571Q is holonomic of type r in T2*71Q, in the sense of Definition .

Definition 3.3. A vector field X € X(W) is said to be a semispray of type r in W, 1 <r < 2k —1, if
every integral curve ¥: I CR — W of X is holonomic of type r in W.

In the natural coordinates of W, the local expression of a semispray of type r in W is

2k—1—r 2k—1 a k—
S5 e S e Sa,
i=2k—r Z =0

and, in particular, for a semispray of type 1 in W we have

2k—2 8 a k—1 . a
X = g+ X T Gl T
2 g H Mg+ 2 Gy
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CHAPTER 3. UNIFIED FORMALISM FOR HIGHER-ORDER AUTONOMOUS DYNAMICAL SYSTEMS

3.2 Dynamical equations

In this Section we state the dynamical equations for a kth-order autonomous dynamical system in the
unified formalism, both for vector fields and integral curves.

3.2.1 Dynamical vector fields

Following the patterns given in Section the dynamical equation of the presymplectic Hamiltonian
system (W, Q, H) is geometrically written in terms of vector fields as

i(X)Q=dH , X € XW). (3.6)

As in the first-order formalism described in the aforementioned Section, the form {2 is presymplectic and
thus the equation (3.6) may not admit a global solution X € X(W). From the constraint algorithm
described in Section we have the following result, which gives the first constraint submanifold of the
system.

Proposition 3.1. Given the presymplectic Hamiltonian system (W,Q, H), a solution X € X(W) to
equation (3.6)) exists only on the points of the submanifold W. — W defined by

We={weW|((Y)dH)(w)=0,VY € kerQ} .
In the natural coordinates of W, let us compute the constraint functions defining locally the subman-

ifold W,. Taking into account the coordinate expression (3.5)) of the Hamiltonian function H € C*° (W),
then its differential is locally given by

k—1 k
- or
dH = (g dply + pladglt,) = Y P (3.7)
1=0 i=0

Then, using the local basis for ker Q given in (3.2)), we obtain

p]z_l—a—i ifY:iA

q;; aq;,

i(Y)dH = 9
0 HY =5 j=k+1,...,2k—1

4q;

Therefore, W, < W is a n-codimensional submanifold of W defined locally by the constraints

o1 OL

=0. 3.8

In this setting, we do not have an analogous result to Proposition [2.6] that is, the submanifold W, can
not be characterized as the graph of the Legendre-Ostrogradsky map, since W, is (3k — 1)n-dimensional,
but the graph of the Legendre-Ostrogradsky map has dimension 2kn. Nevertheless, we can state the
following result.

Proposition 3.2. The submanifold W, — W contains a submanifold W, — W, which is the graph of
the Legendre-Ostrogradsky map defined by L; that is, W, = graph FL.

Proof. We proceed in coordinates. Since the submanifold W, < W is defined locally by the constraints
(13.8)), it suffices to prove that these constraints give rise to those defining locally the graph of the Legendre-
Ostrogradsky map associated to L.

Observe that equations ([3.8) relate the highest-order momentum coordinates pi‘l with the Jacobi-
Ostrogradsky functions ﬁz_l = aﬁ/aq;‘f defined in Section and so we obtain the last group of
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equations of the Legendre-Ostrogradsky map. Furthermore, in the aforementioned Section we have seen
that the Jacobi-Ostrogradsky functions satisfy the relations . In particular, from the highest-order
Jacobi-Ostrogradsky functions we can recover the full set of kn functions p',, and therefore we can consider
that W, contains a submanifold W, which can be identified with the graph of a map

F:TQ — THT"'Q)
(¢ ) — (g"P})

which we identify with the Legendre-Ostrogradsky map by making the identification p% = pY. O

Remark. If we use the bundle W = T*Q Xr-19T" (TF=1Q), instead of the bundle W, then Proposition
[B-I] remains the same, but Proposition [3.2] does not hold anymore, due to dimension restrictions. In fact,
dimW' = (k + 1)n + 2kn — kn = (2k + 1)n, and since W, is a n-codimensional submanifold, we have
dim W, = 2kn in this setting, which coincides with the dimension of the submanifold defined by the
graph of the Legendre-Ostrogradsky map. However, it is clear that W, # graph F£. Moreover, the
Legendre-Ostrogradsky map can not be fully recovered in this alternative approach, and this is its main
drawback. O

Remark. It may seem convenient to take the submanifold W, < W as the initial phase space of the
system, instead of the submanifold W, or any other submanifold of W.. As we will see in the analysis
of the dynamical equations, the submanifold W, can be obtained from W, using a constraint algorithm,
and hence it is the natural choice as the initial phase space of the system. O

Let us compute in coordinates the equation (3.6). Let X € X(WV) be a generic vector field locally
given by

0 0
F'— 4+ Gy
fz a A + 8 A + a i
where 0 <+ < k—1and k <5 <2k — 1. Then, bearlng in mind the coordinate expression of the

presymplectlc form €2, the 1- form i(X)Q is locally given by
i(X)Q = fi'dply — Giydaf .

Now, requiring equation (3.6)) to hold, and taking into account the coordinate expression (3.7) of dH, we
obtain the following system of (2k + 1)n equations for the component functions of the vector field X

fr=ay, (3.9)
oL i oL i
G%:% ) GAzaqi_A—pAla (3.10)
_ oL
Pl I_WZO’ (3.11)
k

where 0 <4< k—11in (3.9) and 1 < ¢ < k—1in (3.10). Therefore, the vector field X solution to equation
(3.6) is given in coordinates by

o ., 0 oL D (a,c i_l)a (312)

X = + F* + — — |
qz+1a A J an aqo ap aql —Pa 6p24

Note that equations are part of the system of equations that the vector field X must satisfy to be a
semispray of type 1. In particular, from equations (3.9) we deduce that X is a semispray of type k, but
not necessarily a semispray of type 1. On the other hand, equations are a compatibility condition
stating that the vector fields X solution to equation exist only with support on the submanifold W,
given by Proposition Finally, equations (3.10) are the dynamical equations of the system.

Remark. If we take W = TFQ Xk-10 T*(TkilQ) as the phase space of the formalism, the coordinate
expression of the dynamical equation remains the same. However, in this case equations are
exactly the kn equations that enable us to recover the full holonomy condition for the vector field X.
That is, using this bundle as the phase space of the system implies that the vector field X is always a
semispray of type 1. O
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Observe that from equations we deduce that the vector field X is a semispray of type k in W,
but not necessarily a semispray of type 1 in WW. Therefore, since this condition is not recovered from the
dynamical equations, in contrast to the first-order formalism stated in Section [2.1.3] we can require the
holonomy condition to be fulfilled from the beginning. If we do so, the local expression for a vector
field X € X(W) solution to equation becomes

2k—2

) ) oL o oL )
X = q + Fyh + == + ( —p”) —. (3.13)
; Togh ! 2 0gg Gy 045 8pA dq; 4 P’y

Observe that the component functions F;}C_l, k < j <2k — 1, remain undetermined. Nevertheless, from
Proposition [3.1]and the local equations (3.11)), the vector field X is defined at support on the submanifold
W,. Therefore, we must study the tangency of X along the submanifold W, ; that is, we have to impose
that L(X)& ‘Wc = 0, for every constraint function £ defining W,.. So, bearing in mind that the submanifold
W, is defined locally by the n constraints , we must require

25:2 0 a0 +aca+ oL .\ 0 b LN
qz+la A 2k— 18 éqk . aqo 8PA aq1 pA ap% pA aqi? -

Computing, these conditions lead to the following n equations

1
A= Sy ( S — ) -0,
i=0 Ay — 1+4
which define a new submanifold W; < W,. Then, requiring X to be tangent to this new submanifold
Wi, and iterating this process k — 1 more times, the constraint algorithm delivers the submanifold W, of
Proposition [3.2] the full Legendre-Ostrogradsky map, and the following system of n equations that must
hold for the vector field X to be tangent to the submanifold W,

oL
k FB B E =
( 1) ( 2k—1 dT (qQk 1 a Ban P ( 1 ) 0 °

These are just the Lagrangian equations for the components of X once the condition of being a semispray
of type 1 is satisfied, as we have seen in . These equations can be compatible or not, and a
sufficient condition to ensure compatibility is the regularity of the Lagrangian function, as we have seen
in Proposition [2:22]

An alternative approach to the study of the tangency condition, without requiring the vector field
X to be a semispray of type 1 from the beginning, is the following. From the results in Sections [2.1.3
and we know that the vector field X solution to the dynamical equation in the unified
formalism is defined at support on the submanifold W, = graph(FL), and is tangent to it. Therefore, it
is natural to require the tangency of the vector field X solution to equation along the submanifold
We, without further assumptions. If we do so, bearing in mind the coordinate expression of the
Legendre-Ostrogradsky map F£: T?#71Q — T* (Tk_lQ), the tangency condition leads to

0 a0 0L 0 (0L L) O (e LY
qz+16 A 7 8qA aqo apA (9qu Py ap% Pa 6(]’? — Y

0 o oL 9 oL . ) ! - oL
A _ FAi == = 7—1 _ k) 2 _1 Zdl :O
<ql+13QiA it g i a5 Op)) i (5‘1{'4 P4 ) 5’1’%) (pA ;( S 0414 7
d o oL 9 oL . d 2 o ac
A Y FA It e | _ 1 —1)edE =0
<QZ+1 8(];4 + J an + 8qA 8pA + (ain Pa > 8p7:4> <pA i:o( ) T (3(151_“)) )
d o oL 9 Y a Al oL
A A 3—1 0 i 71
A — + F; + = — - : — 1 =0,
<q Togt T agt T dgft 0pY <8qz“ Pa >5p2 <pA Z:O( Ve Oat'y; )
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and, from here, we obtain the following kn equations

0L
FB_¢B )-2% _o,
( k k+1) 8(]58(],’3

2L 2L
(FkB+1 - QI<B+2) W - (FE - QEH) dr (W> =0,
(3.14)
s L R
(For—2 — dor—1) 9aPoqt Z (Fidei = Gpign) () =0,
i=0
(71)k(FB —d (B d’L a‘c 7k72 FB B ) =0
o1 — dr (42-1)) 9 Ban + Z Z( hori — Qhrigr) () =0,
i=0 af* i=0

where the terms in brackets (---) contain relations involving partial derivatives of the Lagrangian and
applications of dr which for simplicity are not written. These kn equations are exactly the Lagrangian
equations and for a vector field X once the condition of semispray of type k is required.
As in the first approach, these equations can be compatible or not, and a sufficient condition to ensure
compatibility is the regularity of the Lagrangian function. In particular, we have the following result.

Proposition 3.3. If L € C‘X’(TkQ) s a kth-order regular Lagrangian function, then there exists a unique
vector field X € X(W) which is a solution to equation (3.6), it is tangent to W, and is a semispray of
type 1 in W.

Proof. Since the kth-order Lagrangian function £ is regular, the Hessian matrix of £ with respect to
the highest-order “velocities” is regular at every point. This enables us to solve the kn equations (3.14))
determining all the functions F]A uniquely, as follows

Fr=qt, , (k<i<2k-2), (3.15)

(—1)* (F3i_y — dr (931_1)) 5 Ban + Z (ac) =0. (3.16)

Therefore, from the (k— 1)n equation (3.15)) we deduce that the vector field X is a semispray of type 1 in
W. On the other hand, equations e exactly equations , which are compatible and have a
unique solution when the kth-order Lagrangian function is regular. Therefore, X is a semispray of type
1, it is tangent to W, and it is unique. O

If the kth-order Lagrangian function £ is not regular, then equations (3.14)) can be compatible or not.
In the most favorable cases, there is a submanifold Wy < W, (it could be Wy = W) such that there
exist vector fields X € X(W), tangent to Wy, which are solutions to the equation

[(X)Q — dH]|Wf =0. (3.17)
In this case, the equations (3.14) are not compatible, and the compatibility condition gives rise to new
constraints, and the constraint algorithm continues.

Remark. If we take W = TFQ Xpk-10) T (TkilQ) as the phase space of the formalism, there are only
n component functions of the vector field X to be determined, since the coordinate expression of X is

0 o oL o or 9
X=q¢!, — 4 FA 4+ = _~_ i1 _ .
v v - (&zz e ) vy

dqit  dqp' O
Then, requiring X to be tangent to the submanifold W, gives the last n equations in (3.14]), that is,

2 k
(=" (F5i_y — dr (a51,-1)) 9L > (-1)idy (ac) =0.

oqB g pe oq
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In this case, Proposition [3.3] remains almost the same: the only difference is that the vector field X is
already a semispray of type 1, regardless of the regularity of the kth-order Lagrangian function. %

3.2.2 Integral curves

After studying the vector fields which are solutions to the dynamical equations, we analyze their integral
curves, which are the dynamical trajectories of the system.

Let X € X(W) be a semispray of type 1, tangent to W,, which is a solution to equation (3.6)), and
let ¢v: I CR — W be an integral curve of X. Since ¢ = X o), the geometric equation for the dynamical
trajectories of the system is

i(¥) Qo)) =dH o). (3.18)

In local coordinates, if ¢(t) = (g*(t), ¢;*(t),p'4(t)), we have that Y(t) = (¢ (t),4;1(t), 'y (t)). Then
the condition for % to be an integral curve of X gives the following system of 3kn differential equations
G (t) = giha 0,
g;'(t) = F}* o),
oL

o 5 ph(t) = 3 o) —piit(b),

oL
-0 t _

where the functions F jA are solutions to equations (3.14]).

3.3 The Lagrangian formalism

Now we study how to recover the Lagrangian formalism described in Section [2.3.1]from the unified setting.
In order to do this, we proceed in an analogous way to Section we first recover the geometric and
dynamical structures from the unified setting, and then we show how to define a solution of the Lagrangian
formalism from a solution in the unified setting.

3.3.1 Geometric and dynamical structures

The first step to recover the Lagrangian formalism from the unified setting described in previous Sections
is the recover the geometric and dynamical structures of the Lagrangian formalism, namely the kth-order
Poincaré-Cartan forms 6, and w,, and the kth-order Lagrangian energy E.

The first fundamental result is the following.

Proposition 3.4. The map pf = p1oje: Wr — T?%1Q is a diffeomorphism.

Proof. Since W, = graph(FL), it is clear that T?*-1Q is diffeomorphic to W,. On the other hand,
since p; is a surjective submersion by definition, its restriction to the submanifold W, is also a surjective
submersion and, due to the fact that dim W, = dim T%_IQ = 2kn, the map pf is a bijective local
diffeomorphism. In particular, the map p¥ is a global diffeomorphism. O

This result enables us to state a one-to-one correspondence between the solutions of the unified
formalism and the solutions of the Lagrangian formalism in a straightforward way. Now, the following
results enable us to recover the geometric and dynamical structures of the Lagrangian formalism.

Lemma 3.5. Ifwi_1 € Q2(T*(Tk_1Q)) is the canonical symplectic form of the cotangent bundle over
T 1Q, Q = pywi_1 € Q2(W) the presymplectic form in W, and wp € Q2(T2k_1Q) the kth-order
Poincaré-Cartan 2-form, then Q = pj we.
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Proof. A simple calculation leads to this result. In fact,
piwe = pi(FL wg—1) = (FLo p1)* w1 = pywp—1 = Q. 0

Lemma 3.6. There exists a unique function E, € C’OO(T%_lQ) such that piE; = H, and coincides
with the kth-order Lagrangian energy defined in (2.19)).

Proof. Since the map p¥: W, — T2*~1Q is a diffeomorphism, we define the following function in T**~1Q
B =(jeo (pf)™) H € C¥(T%1Q).

This function is unique because the map jz o (p£)~': T2k_1Q — W is an embedding. In addition, E,
verifies that pjEr = H, since we have

piEe = pi((Geo (b)) H) = (projeo(pf) )" H=(pf o (pf)')"H=H.

Finally, in order to prove that E. is the kth-order Lagrangian energy defined in (2.19)), we compute
its coordinate expression. Thus, from ([3.5) we have

* -k -k i A A A
(pD) Er = jiH = ji (Paaits — £(ad' - - ai))

but since W, < W is the graph of the Legendre-Ostrogradsky map, the following relations hold in W,

and then, replacing in the previous equation, we obtain

k—1k—i—1 o 8[:
(pf) Ec = @ (1) (an ) —L(g@s - ai)
i+147

i j=

|
<

ki
Zq;‘(_l)jd% (an > _[’(q(1)477(ﬁc4)

i=1j i+3
Now, as p¥ = j d pr¢? = ¢* btain finall
,as pf = p1oj and pigf = g, we obtain finally
b k—i oar
B~ St () - el
i=1 j=0 iy

which is the local expression (2.33)) of the kth-order Lagrangian energy. O

3.3.2 Dynamical equations

Using the results stated in the previous Section, we can recover an Euler-Lagrange vector field in T?*71Q
starting from a vector field X € X(W) solution to equation (3.6) and tangent to W,. First, let us see
how to define a vector field in T?*71Q from a vector field in W tangent to W,.

Lemma 3.7. Let X € X(W) be a vector field tangent to Wy. Then there exists a unique vector field
X, € X(T*71Q) such that Xz o p1ojr=TproXoje.

Proof. Since X € X(W) is tangent to W,, there exists a vector field X, € X(W,) which is j.-related to
X, that is, Tjz o X, = X o j.. Furthermore, as p¥ is a diffeomorphism, there is a unique vector field
X, € X(T?*71Q) which is pL-related with X,; that is, X o p£ = Tpf o X,. Then

Xeoproje=Xpopf=TpfoX,=TproTjs0X,=TpoXojg. O
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And as a consequence we obtain:

Theorem 3.8. Let X € X(W) be a vector field solution to equation and tangent to Wy (at
least on the points of a submanifold Wy — W ). Then there exists a unique semispray of type k,
X € X(T?*71Q), which is a solution to the equation (at least on the points of Sy = p1(Wy)). In
addition, if L € C'OO(TkQ) s a reqular kth-order Lagrangian function, then X, is a semispray of type 1,
and hence it is the Euler-Lagrange vector field.

Conversely, if X € %(T%_IQ) is a semispray of type k (resp., of type 1), which is a solution to equation
(at least on the points of a submanifold Sy — TZk_lQ), then there exists a unique vector field X €
X(W), tangent to W, which is a solution to equation (at least on Wy = (p£)71(Sy) = We = W),
and it is a semispray of type k in W (resp., of type 1).

Proof. Let Xy € X(T**7'Q) be the unique vector field given by Lemma Then, applying Lemmas
B3] and [B.6] we have

i(X)Q = dH = i(X)piwe — dpiEr = pi [i(Xg)we — dEL]
but, as p; is a surjective submersion, this last equation is equivalent to
[i(Xe)we — dEL]|,, o) = [i(Xg)we — dE]|pon-1g = i(Xg)we — dE,,

since p; (W) = T?*71Q. Hence, we have proved that X € X(W) is vector field tangent to W, and solution
to equation (3.6) if, and only if, the vector field X, € .’{(Tzk*lQ) given by Lemma is a solution to
equation ([2.34)).

In order to prove that X is a semispray of type k, we proceed in coordinates. From the local expression
(13.12) for the vector field X solution to equation (3.6)) (where the functions FjA are the solutions of the
system of equations (3.14)), and using Lemma we obtain the local expression of X, € X(T?*71Q),
which is 9 9

— +F—
gt

J aqu :
Then, composing X, with the kth vertical endomorphism J; : T(T?**71Q) — T(T?*~'Q), and bearing in
mind the coordinate expression of Jy given by (|1.28)), we have

Xc = qﬁ,—l

k—1

k+1)! 0
Jk(Xﬁ):Z( F )Qﬁqu = Ak,
i—=0 : qk+i

<

where Ay € X(T?*71Q) is the kth canonical vector field. Therefore, since Ji,(X,) = Ay, using Proposition
we conclude that X, is a semispray of type k in T?*71Q.

Finally, if £ € C*®(T*Q) is regular, then equations (3.14) become (3.15) and (3.16) and hence the
vector field X is given locally by (3.13). Therefore, the vector field X has the the following coordinate

expression

2k—2 8 a
X, = Qﬁ17+F§c717~
; dq;! 943},

Then, composing X, with the canonical almost-tangent structure J;: T(T?**71Q) — T(T?**7'Q) of
T2k_1Q, and bearing in mind the coordinate expression ([1.29)) of J;, we have

2k—2

. 0
Ji(Xg) = Z (i+ 1)%11@ =Aq,
1+1

=0

where A; € %(T%_lQ) is the Liouville vector field of T?*~1Q. Hence, using again Proposition we
conclude that if £ € C‘X’(TkQ) is a kth-order regular Lagrangian function, then X, is a semispray of
type 1 in T21Q. O
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Observe that Theorem [3.8] states that there is a one-to-one correspondence between vector fields
X € X(W) which are solutions to equation and vector fields X € X(T?*7'Q) solutions to (2:34),
but not uniqueness of any of them. In fact, uniqueness can only be assured if the kth-order Lagrangian
function £ is regular, as we have seen in Propositions and

Remark. It is important to point out that, if £ € COO(TkQ) is not a kth-order regular Lagrangian
function, then X is a semispray of type k in W, but not necessarily a semispray of type 1. This means
that the vector field X, given by Theorem is a Lagrangian vector field, but it is not necessarily an
Euler-Lagrange vector field (it is not a semispray of type 1, but just a semispray of type k). Thus, for
singular Lagrangians, this must be imposed as an additional condition in order that the integral curves of
X verify the Euler-Lagrange equations. This is a different situation from the case of first-order dynamical
systems described in Section [2.1.3] where the holonomy condition is obtained straightforwardly in the
unified formalism. o

Remark. In general, only in the most interesting cases have we assured the existence of a submanifold
Wy — W, and vector fields X € X(W) tangent to Wy which are solutions to equation . Then,
considering the submanifold Sy = p1(Wy) < T?*71Q, in the best cases (see [9, 02, 03] for details), we
have that those Euler-Lagrange vector fields X, exist, perhaps on another submanifold S;} — Sy where
they are tangent, and are solutions to the equation O

Finally, let us recover the dynamical trajectories in the Lagrangian formalism from the dynamical
trajectories in the unified formalism. The following result enables us to project the integral curves of a
vector field in W solution of the dynamical equation in the unified formalism to the integral curves of a
vector field in Tzkle solution to the Lagrangian equation.

Proposition 3.9. Let v: I CR — W be an integral curve of a vector field X € X(W) tangent to W,

and solution to equation (3.6). Then the curve ¥y = protp: I — Tzkle 18 an integral curve of a vector
field solution to equation (2.34))

Proof. Since X € X(W) is tangent to W,, there exists a vector field X, € X(W,) which is j.-related
to X. Moreover, since v is an integral curve of X, every integral of X must lie in W,, and thus we can
write 1) = jz 0 1),, where 1),: I — W, is a integral curve of X,. Then, using Lemma [3.7] we have

Xeoyg=Xgoprop=Xcoprojeotpo=TproXojcor,
=TproXoyp=Tpiot=poth=1.

Therefore, 1, = p1 0 is an integral curve of X .

Finally, from Theorem (3.8} if X is a solution to equation ([3.6]), then the vector field X is a solution

to equation (2.34). O

Remark. In particular, this last Proposition states that if ¢»: I C R — W is a solution to equation
(3:18), then the curve ¢, = py otp: I C R — T?*71Q is a solution to equation (2.39). O

Observe that the curve 1. is not necessarily holonomic, since the vector field X, is not a semispray
of type 1 without further assumptions. This fact leads to the following result.

Corollary 3.10. If L € C’OO(TkQ) is a kth-order reqular Lagrangian function, then the curve ¢y =
pro: I — T25=1Q is holonomic, that is, it is the canomnical lifting of a curve on Q.

Proof. Tt is a straighforward consequence of Proposition [3.9] and Theorem [3.8] O
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3.4 The Hamiltonian formalism

Now we study how to recover the Hamiltonian formalism described in Section 2:3.2] from the unified
setting, and we will proceed as in Section As in the usual formulation of the Hamiltonian formalism
for higher-order autonomous dynamical systems, we distinguish between regular and singular (almost-
regular) Lagrangian functions.

Note that, since the geometric structures in the unified formalism are constructed from the canonical
forms in the Hamiltonian phase space, we only need to define a Hamiltonian function A in the Hamiltonian
phase space using the Hamiltonian function H defined in (3.4]) for the unified formalism.

3.4.1 Hyperregular and regular Lagrangian functions

Let us suppose that the kth-order Lagrangian function £ € C'*° (TkQ) is hyperregular. The regular case
can be obtained from the hyperregular setting by restriction on the corresponding open sets where the
Legendre-Ostrogradsky map is a local diffeomorphism.

As in the case of the Lagrangian formalism, the first fundamental result is the following.

Proposition 3.11. If L € C‘X’(TkQ) is a kth-order hyperreqular Lagrangian function, then the map
p5 = pooje: We — TH(T* Q) is a diffeomorphism.

Proof. As the kth-order Lagrangian function £ € C°°(T*Q) is hyperregular, the Legendre-Ostrogradsky
map FL: T*71Q — T*(T*'Q) is a diffeomorphism. Hence, the have the following commutative
diagram relating the phase spaces of the unified, Lagrangian and Hamiltonian formalisms

w
jcj
P1 P2
We
y p5
T2k—1Q FL T*(Tk—lQ)

In particular, we have p5 = ps 0 jo = FL o p£. Therefore, as pf: W, — T?%71Q is a diffeomorphism
by Proposition and FL is a diffeomorphism by hypothesis, we have that p4 is a composition of
diffeomorphisms, and thus a diffeomorphism itself. O

This last result enables us to recover the Hamiltonian dynamics straightforwardly from the unified
formalism, as we have done for the Lagrangian formalism in the previous Section. In particular, the
following result gives the Hamiltonian function in T* (TkilQ) describing the dynamical information of
the system.

Lemma 3.12. Let L € C* (TkQ) be a kth-order hyperregular Lagrangian function. Then there exists a
unique function h € C=(T*(T*7'Q)) such that psh = H, and it coincides with the canonical kth-order
Hamiltonian function introduced in Definition [2.25,

Proof. This proof follows the same patterns that the proof of Lemma Since by Proposition the
map p5: We — T*(TF"1Q) is a diffeomorphism, we define the following function in T*(T*~1Q)

h=(jc o (p§) ") H € C(T*(T*'Q)).

This function is unique since the map jz o (p£)~1: T*(T*7'Q) — W is the composition of a diffeomor-
phism with an embedding, and thus and embedding itself. Moreover, this function verifies p5h = H,
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since we have
psh = p3((jeo (p5) ") H) = (p20jc o (p5) )"H = (p5o(p5) ")*H=H.

Finally, let us prove that this function h € C°°(T*(T*7'Q)) is the canonical kth-order Hamiltonian
function introduced in Definition 2:25] Using Lemma [3.6] and the commutative diagram in the proof of
Proposition we have

FLh=FL (e o (p§)) H) = (jc o (o) o FL'H = (je o (FLo pf) " o FL)'H
= (jc o (pf) "o FL™ 0 FL)H = (je o (o)) H =

which is the definition of the canonical kth-order Hamiltonian function. O

Now that we have recovered the canonical kth-order Hamiltonian function in T*(T*~'Q), we want
to recover the Hamiltonian vector field from the vector field solution to the dynamical equation in the
unified formalism. First, let us see how to define a vector field in T*(T*7'Q) from a vector field in W
tangent to We.

Lemma 3.13. Let X € X(W) be a vector field tangent to Wr. Then there exists a unique vector field
X, € X(T*(TF1Q)) such that Xp, 0 pyojr =Tpyo X o jp.

Proof. This proof follows the patterns of the proof of Lemma Since X € X(W) is tangent to W,
there exists a vector field X, € X(W,) which is j.-related to X, that is, Tjz0X, = X oj.. Furthermore,
as p5 is a diffeomorphism, there is a unique vector field X, € X(T*(T*7'Q)) which is p§-related with
X,; that is, X} o p5 = Tp& o X,. Then

Xnoproje=Xpnops=Tp50X,=TproTjr0X,=Tpr0Xo0jg. O

Finally, as a consequence, we can state the equivalence between the vector fields which are solutions
to the dynamical equation (3.6]) in the unified formalism and the vector fields solutions to the equation
(2.46) in the Hamiltonian formalism.

Theorem 3.14. Let L € C’D"(TkQ) be a kth-order hyperregular Lagrangian function, and X € X(W)
the unique vector field solution to equation and tangent to W. Then, there exists a unique vector
field X, € X(T*(T*'Q)) which is a solution to equation ([2-46), where h € C(T*(T*7'Q)) s the
Hamiltonian function given by Lemma[3.13

Conversely, if X, € %(T*(Tk_lQ)) is a solution to equation (2.46)), then there exists a unique vector
field X € X(W), tangent to Wr, which is a solution to equation (3.6)), with H = p5h.

Proof. This proof follows the same patterns that the proof of Theorem [3.8 Let X, € X(T*(T*7'Q)) be
the unique vector field given by Lemma [3.13] Then, applying Lemma we have

i(X)Q — dH = i(X)phwr1 — dpsh = pi [i(Xn)wi_1 — dh] ,
but, since ps is a surjective submersion, this last equation is equivalent to
[i(Xn)wr—1 — dhl| ,, ) = [i(Xn)we—1 — db]|pe (pr-1g) = i(Xn)wr—1 — dh,
since po(W) = T*(T*71Q). Hence, we have proved that X € X(W) is vector field tangent to W, and

solution to equation (3.6) if, and only if, the vector field X} € X(T*(T?*7'Q)) given by Lemma is
a solution to equation ([2.46]). O
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The commutative diagram summarizing the statements and proofs of Theorems [3.8] and in the
hyperregular case is the following

™
Tic
Tp1 JA Tp2
W,
Ay i %A\
T(T**7'Q) X T(T*(T*'Q))
Xo
w

Now, let us recover the dynamical trajectories in the Hamiltonian formalism from the dynamical
trajectories in the unified setting. The following result enables us to project the integral curves of a
vector field in W solution of the dynamical equation in the unified formalism to the integral curves of a
vector field in T*(T*'Q) solution to the Hamiltonian equation.

Proposition 3.15. Let ¢: I CR — W be an integral curve of a vector field X € X(W) tangent to W,
and solution to equation (3.6). Then the curve ¥, = paop: I — T*(kalQ) is the integral curve of a

vector field solution to equation (12.46)).

Proof. The proof of this result follows the same patterns that the proof of Proposition Since X €
X(W) is tangent to W, there exists a vector field X, € X(W,) which is jg-related to X. Moreover,
since v is an integral curve of X, every integral of X must lie in W,, and thus we can write ¥ = jz o1,
where ¥,: I — W, is a integral curve of X,. Then, using Lemma [3.13] we have

Xpotyp =Xpoprotp=Xpopgojeoth,=TpyoXojro,
szgoXo¢:Tpgo¢:pgo¢:¢h.

Therefore, 1, = ps 01 is an integral curve of Xj,.

Finally, from Theorem if X is a solution to equation (3.6]), then the vector field X, is a solution
to equation (2.46)). O

Remark. In particular, this last Proposition states that if ¢»: I — W is a solution to equation (3.18]),
then the curve ¢,y = p1 o h: I — T?*71Q is a solution to equation (2.48)). O
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Finally, the commutative diagram summarizing the statements and proofs of Propositions [3.9] and
and of Corollary [3.10] in the hyperregular case is the following

jc
p1 JAJ p2

3.4.2 Singular (almost-regular) Lagrangian functions

Suppose now that the kth-order Lagrangian function £ € C*°(T*Q) is almost-regular. Remember that,
for these kinds of Lagrangian functions, only in the most interesting cases have we assured the exis-
tence of a submanifold Wy — W, and vector fields X € X(W), tangent to Wy, which are solutions
to equation . In this case, the dynamical vector fields in the Hamiltonian formalism cannot be
obtained straightforwardly from the solutions in the unified formalism, but rather by passing through the
Lagrangian formalism and using the Legendre-Ostrogradsky map, which is no longer a (local) diffeomor-
phism.

As in the Hamiltonian formalism for almost-regular Lagrangian functions described in Section [2.3.2
let P = Im(FL) — T*(T*7'Q) be the image set of the Legendre-Ostrogradsky map, with natural
embedding j: P — T*(Tk_lQ), and we denote by FL,: T?**71Q — P the map defined by FL = j0 FL,.
In addition, let pp = FL, 0 p1: W — P the canonical projection. Then, we have the following result.

Proposition 3.16. Let L € C‘X’(TkQ) be a kth-order almost-reqular Lagrangian function. Then the
Hamiltonian function H € C*°(W) is pp-projectable.

Proof. From Lemma the function H € C* (W) is p1-projectable to the kth-order Lagrangian energy
E; e C’OO(T%AQ). Moreover, if the kth-order Lagrangian function is, at least, almost-regular, then
the kth-order Lagrangian energy is FL,-projectable by Proposition [2.24] Therefore, the Hamiltonian
function H € C>°(W) is (FL, o p1)-projectable, that is, pp-projectable. O

As a consequence of this result, we can define a Hamiltonian function in P as follows.

Definition 3.4. The canonical Hamiltonian function is the unique function h, € C°°(P) such that
ppho = H.

Remark. This canonical Hamiltonian function coincides with the canonical Hamiltonian function intro-
duced in Definition [2.26] O

With this canonical Hamiltonian function, and taking w, = j*wx_1 € Q2(P), we can now state the
equivalence Theorem for kth-order almost-regular Lagrangian functions.
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Theorem 3.17. Let L € C* (TkQ) be a kth-order almost-regular Lagrangian function, and X € X(W)
a vector field tangent to Wy which is a solution to equation . Then, there exists a vector field
Xy, € X(P) tangent to Py = pp(Wy) which is a solution to the equation (2.50), where h, € C*(P) is
the canonical Hamiltonian function defined above.

Conversely, if X, € X(P) is a solution to equation (2.50) and tangent to Py, then there exist vector
fields X € X(W), tangent to Wy = p3' (Py), which are solutions to equation ([B.17), with H = plh,.

Proof. From Theorem there is a one-to-one correspondence between the set of vector fields solution
to equation and tangent to Wy, and the set of vector fields solution to equation and tangent
to S¢. From here, using Theorem @, we obtain a non-bijective correspondence, given by the Legendre-
Ostrogradsky map, between these vector fields and the set of vector fields in P, tangent to Py, which are
solutions to equation , thus proving the statement. O

The diagram summarizing the statements and proofs of Theorems and in the almost-regular
case is the following

™
Tp1 J\Tjﬁ Tp2
W,
T(T*7'Q) X T(T*(T"'Q))
Xo T]
W _ TP
AN
Xe P1 ie P2
We
P
/ PP Xno
T2k—1Q FL T* (Tk—1Q>

TR )
\\;73

Wy
gf / \ !

Py

Finally, for the dynamical trajectories of the system, we have the following result, which is the
analogous to Proposition [3.15] in the almost-regular case.

Proposition 3.18. Let ¢: I CR — W be an integral curve of a vector field X € X(W) tangent to Wy
and solution to equation (3.17)). Then the curve ¢y, = pp o: I — P is the integral curve of a vector
field solution to equation (2.50) and tangent to Py = pp(Wy).

Proof. Bearing in mind Proposition [3.9) and the fact that X, and X}, are FL,-related, we have

Xn, o Yn, ZXhoOP’POIﬂ:XhOOF£OP1O¢=T]:£OOXLO¢LZTfﬁoolﬁL:fﬁo'O?ﬁc:T/.}ho-
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Therefore, ¢y, = pp o1 is an integral curve of X, .

Finally, from Theorem if X is a solution to equation (3.17) tangent to Wy, then the vector field
Xr, is a solution to equation (2.50) tangent to Py. O

Finally, the commutative diagram in the almost-regular case is the same that the diagram in page[07]
replacing T**71Q, T*(T*7'Q) and W, by S, Py and Wy, respectively.

3.5 Examples

In this last Section of the Chapter, two physical models are analyzed as examples to show the application
of the formalism. The first example is a regular system, the so-called Pais-Uhlenbeck oscillator, while the
second is a singular one, the second-order relativistic particle.

3.5.1 The Pais-Uhlenbeck oscillator

The Pais-Uhlenbeck oscillator is one of the simplest regular systems that can be used to explore the
features of higher-order dynamical systems, and has been analyzed in detail in many publications (see
[123] for the original statement, and [I16] for a more recent analysis). Here we study it using the unified
formalism.

The configuration space for this system is a 1-dimensional smooth manifold @ with local coordinate
(go). Taking natural coordinates (qo, ¢1,¢2) in the second-order tangent bundle over @, the second-order
Lagrangian function £ € C°°(T2Q) for this system is locally given by

L(q0,q1,9) = = (af —w?a —143) , (3.19)

DN | =

where v € R is a nonzero constant, and w € R is a constant. Observe that £ is regular, since the Hessian
matrix of £ with respect to gz is
()
==,
092092

which has maximum rank, since we assume that 7 is nonzero. Notice that, if we take v = 0, then £
becomes a first-order regular Lagrangian function, and thus it is a nonsense to study this system using
the higher-order unified formalism.

As this is a second-order dynamical system, the phase space that we consider is

W =TQ x1q T*(TQ)
P

TR

T(TQ)
Q

2
T3Q
\; /
TQ

Denoting the canonical symplectic form of T*(TQ) by w; € Q2(T*(TQ)), we define the presymplectic
form Q = piw; € Q?(W) with the local expression

Q =dgo Adp® +dg; Adpt.
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The Hamiltonian function H € C°°(W) in the unified formalism is defined by (3.4)), which in this case is
H =C — (p3 0 p1)*L, where C is the coupling function, whose local expression (3.3)) in this case is

C(qo, 1, 92:93.0%p") = p’q1 +p'go..

Then, bearing in mind the coordinate expression (3.19)) of the Lagrangian function for this system, the
Hamiltonian function can be written locally

1
H(q0,q1. 92,93, 7", ") = p°q1 + p'q2 — 3 (¢ — a5 —va3) - (3.20)

As stated in Section we can describe the dynamics for this system in terms of the integral curves
of vector fields X € X(W) which are solutions to equation (3.6). Let X be a generic vector field in W,

given locally by

0 0 0 0 0
X=fort+fim—t+FP+—+F—+G —+G' —.
fo dqo fi 1 Cdqy g op® op!

Then, from the coordinate expression (3.20) of the Hamiltonian function H, we have
dH = w’qodgo + (1° — 1)dar + (" +7g2)dgz + q1dp° + gadp’ .

Now, requiring the dynamical equation {(X)Q = dH to hold, we obtain the following system of 5 linear
equations for the coefficients of the vector field

fo=a 5 f[i=q, (3.21)
G'=—w’q ; G'=q-1°, (3.22)
Pl +7g2=0. (3.23)

Equations (3.21]) give us the condition of semispray of type 2 for the vector field X. Furthermore, equation

(3.23)) is an algebraic relation stating that the vector field X is defined along the submanifold W,, as we

have seen in Proposition Thus, using equations (3.21]) and (3.22)), the vector field is given locally by
0 0 0 0 0 0

X=qim— 40— +Fh—+F——wq—s+(n—1p") . 3.24

I 9qo e oq 992 Jqs3 a op° (q P ) op1 ( )

As our goal is to recover the Lagrangian and Hamiltonian solutions from the vector field X, we

must require X to be a semispray of type 1. Nevertheless, as £ is a regular Lagrangian function, this

condition is naturally deduced from the formalism when requiring the vector field X to be tangent to the
submanifold W, as we have seen in (3.14)).

Notice that the functions F, and Fj in are not determined until the tangency of the vector
field X on W, is required. Hence, let us compute locally the Legendre-Ostrogradsky map associated
to the Lagrangian function . The Legendre-Ostrogradsky transformation is the bundle morphism
FL: T°Q — T*(TQ) over TQ given in local coordinates by

oL oL oL
—_—— d —_— = N *pl = —_-— = —
oq, 0 ( 8q2> @tngs 5 FLp 9

and, as v # 0, we see that £ is a regular Lagrangian since FL is a (local) diffeomorphism. Then, the
submanifold W, = graph FL is defined by

We ={weW | &(w) =&i(w) =0},
where &, = p" — FL*p", r = 1,2. The diagram for this situation is

fﬁ*po —

w
o1 jﬁj P2
We
/ X\
TSfofffffé 77777 >T*(TQ)
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Now we compute the tangency condition for the vector field X € X(W) given locally by (3.24) along
the submanifold W, — W, by checking if the following identities hold

L(X)&ly, =0 LX)y, =0.

As we have seen in Section [3.2] these equations give the Lagrangian equations for the vector field X; that
is, on the points of W, we obtain

L(X)é = —w’qo — g2 —7F5 =0, (3.25)
L(X)& =~ (F2 —g3) = 0. (3.26)

Equation ([3.26) gives the condition of semispray of type 1 for the vector field X (recall that v # 0),
and equation (3.25) is the Euler-Lagrange equation for the vector field X. Notice that, as v # 0, these

equations have a unique solution for F» and F3. Thus, there is a unique vector field X € X(W) solution
to the dynamical equation which is tangent to the submanifold W, < W, and it is given locally by

0

0 0 1 0 0
X =g — — — — (P — — Wl — —p0) — .
a1 + q2 + g3 5 (w (Io—i-(;{z) 943 w QOapo + ((h p ) o

dqo oq g2

If we require the vector field X to be a semispray of type 1 from the beginning, then the coordinate

expression (3.24) becomes

0 0 0 0
X=qis+dzp—+azs—+ Fyn—
n 0qo © oq o 0qz ® dgs

Then, the tangency condition of X along the submanifold W, defined locally by equation (3.23)) gives the
following equation on W,

e - L
WQoap0+(Q1 p)apl-

LX)(®" +7¢) = a1 —p° + 743 =0,
which gives rise to a new constraint, defining a submanifold W, = graph 7L, as we have seen in Section
B2l Now, if we require X to be tangent to this new submanifold, we obtain

L(X)(q1 —p° +7vg3) = g2 + w?qo +vF3 =0,

which is exactly equation (3.25)).
Now, if ¢: R — W is an integral curve of X locally given by

) = (a0(6), 1 (1), @2 (), 45 (6),2°(0), 9 (1)) (3.27)
then its component functions are solutions to the system
o) =al) 5 alt)=w® ; bl = ), (3.28)
(1) =~ (Palt) + w(®) (3.29)
) = —Palt) ;50 =al) -2 (3.30)

Finally we recover the Lagrangian and Hamiltonian solutions for this system. For the Lagrangian
solutions, as we have shown in Lemma [3.7] and Theorem [3.8] the Euler-Lagrange vector field is the
unique semispray of type 1, X, € }C(TSQ), such that X, o py 0je = Tp; 0 X ojs. Thus this vector field
X is locally given by

X 0 n 0 n 0 1 ( 200 + ) 0
=qi5— — — — —(w —.

£L=q 940 q2 o a3 9gs do T G2 043

For the integral curves of X, we know from Proposition that if ¥»: R — W is an integral curve of

X, then ¢, = p; o) is an integral curve of X,. Thus, if ¢ is given locally by (3.27)), then 1, has the

following local expression

Y (t) = (qo(t), q1(t), q2(t), g3(t)) (3.31)
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and its components satisfy equations (3 and (| - Notice that equations (3.28) state that ¥, is
the canonical lifting of a curve in the ba81s that is, there exists a curve ¢: R — @ such that ji¢ = 9.
Furthermore, equation (|3 is the Euler-Lagrange equation for this system, which can be written in the

standard form
d4(10 1 2 d2q0
—— | =0.
dtt +7< o+ g

Now, for the Hamiltonian solutions, as £ is a regular Lagrangian, Theorem [3.14] states that there
exists a unique vector field X; € X(T*(TQ)) satisfying X, 0 ps 0 jz = Tpa o X 0 jz, and it is a solution
to the Hamiltonian dynamical equation. Hence, it is given locally by

0 0 0 0
Xp=qi—— + oo — o=~ —p°) —.
h=q1 o0 + g2 o0 wqo ap0 + (Q1 p ) o,
For the integral curves of X}, Proposition states that if ¢: R — W is an integral curve of X, then
Yy, = p2 01 is an integral curve of the vector field X;. Therefore, if ¥ is given locally by (3.27)), ¥ can

be locally written
wh(t) = (QQ(t),ql(t),po(t),pl(t)) ’

and its component functions must satisfy the first two equations in (3.28]) and equations (3.30)). Notice
that these equations are the standard Hamilton equations for this system, since the Hamiltonian function
h € C°°(T*(TQ)) of this system is

1 1
h(Qo»QhPO,pl) = pofh 5 <Q% - wgqg + 7(1’1)2) .

3.5.2 The second-order relativistic particle

Let us consider a relativistic particle whose action is proportional to its extrinsic curvature. This system
has been analyzed in several papers [0, 120} 125 [126], and here we study it using the Lagrangian-
Hamiltonian unified formalism.

The configuration space is a n-dimensional smooth manifold @ with local coordinates (g3'), 1 < A < n.
Then, if we take the natural set of coordinates on the second-order tangent bundle over @), the second-
order Lagrangian function for this system, £ € C*°(T?Q), can be written locally as

« 1/2

L(gh, 45, q3) = CAE [(a1)*(g5)* — (dig5)?] '~ = (q?)g g, (3.32)

where o € R is some nonzero constant and g = (¢¢)%(q3)? — (¢t q%)?. This is a singular Lagrangian, as we
can see by computing the Hessian matrix of £ with respect to ¢4', which is

«

W [(((hfb) —2(q ) (‘b) )41BQi4

0°L +Ha) (g (@ ai — alas') — (d)*(d)*dd @] i B#A,
(‘3q2 6q2 N -
N (9 — (6b)%aia + 2(diah)ai a3 — (d))%a5 3] if B=A.

Then, after a long calculation, we obtain that

0L >
det =0
<5q2 P0qs

In particular, the second-order Lagrangian function £ is an almost-regular Lagrangian.

102



3.5. EXAMPLES

As this is a second-order dynamical system, the phase space that we consider is

W = T3Q xro TH(TQ)
/ \
°Q
x /
If w; € Q?(T*(TQ)) denotes the canonical symplectic form, we define the presymplectic form =
pawi € Q%(W), whose local expression is

Q:dqé/\dp?erqi/\dpg.

The Hamiltonian function H € C°(W) is defined by (3.4), which in this case is H = C — (p3 o p1)*L,
where C is the coupling function, whose local expression (3.3 in this case is

C (ab: a1+ 3, 3,17 p}) = Plai + pids -
Then, the Hamiltonian function can be written locally

1/2

H(gh,dk, a5, 45,03, p}) = pYdi + pidl — ( [(a1)*(45)* — (d1a5)?]

q})?

The dynamics for this system are described as the integral curves of vector fields X € X(WW) which
are solutions to equation (3.6]). If we take a generic vector field X € X(W), given locally by

d d d d
+ 3 A 4 QY + G
Aopy, T T apl

anA flaA 2aA+F3aA

taking into account that

- i i i i iN(
dH = i dp’) + ¢3'dply + {pA @ [((6)%(h)? — 2(d}db)?) af + (didb)(a})?ad'] | dag’
1
« . .
+ P4 = = (@)% — (dih)at) | das',
[A s el = (iad)at) o

then, from the dynamical equation we obtain the following linear equations for the coefficients of X

fil=a" 5 =4, (3.33)
Gy=0 ; Gyh=-p)— m [((6)%(dh)? — 2(didb)?) ai + (didb)(d})*ad] (3.34)
Py — m ((6)%a3" — (didb)ai) = 0. (3.35)

Note that from equations (3.33)) we obtain the condition of semispray of type 2 for X. Furthermore,
equations (3.35)) are algebraic relations between the coordinates in W stating that the vector field X is
defined along the submanifold W,, as it is stated in Proposition [3.1] Thus, the vector field X is given
locally by

) 9 9 9 3
X—qlaA—&-quaA—FF{‘an—i-Fg“aA—i-GAa (3.36)
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where the functions Gy are determined by (3.34). As we want to recover the Lagrangian solutions from
the vector field X, we must require X to be a semispray of type 1. This condition reduces the set of
vector fields X € X(W) given by (3.36]) to the following ones

0 8 6 8 (3

Notice that the functions Fj' are not determined until the tangency of the vector field X along W, is
required. Since this example has a Lagrangian function far more complicated than the example ana-
lyzed in the previous Section, in this case we study directly the tangency of the vector field along the
submanifold W, = graph(FL). Hence, we need to compute the coordinate expression of the Legendre-
Ostrogradsky map. From the results in Section the Legendre-Ostrogradsky map is the bundle
morphism FL: T?Q — T*(TQ) over TQ locally given by

FL(pY) = m [((6)°g + (a1)*(dh)* (6 b)) — (3)° (qhah) (dhad)) ai')
+ m [(((6)?)*(dhdh) — (a)?(aidd)(didh) — (aidh)g) @' — (d})%9a5]
FLPY) = ——=— [(¢1)%08 — (digd)af)] -

(41)°vg
From this coordinate expression we can check that the second-order Lagrangian function of this system

is, in fact, almost-regular. Thus, from the expression in local coordinates of the map FL, we obtain the
(primary) constraints that define the closed submanifold P = Im(F L), which are

oV =plgi =0 ; ¢ =(p})? - =0. (3.38)

Let FL,: T3Q — P. Then, the submanifold W, = graph(FL,) is defined by

Wo = {w e W& w) = &'w) = 6" (w) = 9" (w) =0, 1< A<},

where §;f‘ = py — FL*p",. Notice that W, is a submanifold of W, and that W, is the real phase space
of the system, where the dynamics take place.

Next we compute the tangency condition for X € X(W) given locally by (3.37)) on the submanifold
W, — W, — W, by checking if the following identities hold

LX)y, =0 5 LX), =0, (3.39)

LX)’ =0 5 Lxed| =0 (3.40)

) W, W,

As we have seen in Section equations (3.39) give the Lagrangian equations for the vector field X.
However, equations (3.40) do not hold since

0 i i 0 %
L(X)é” = LX) (i) = a5 LX)ey = LEO () —o*/(a)’) = ~2p%d] .
and hence we obtain two first-generation secondary constraints
oV =plgi =0 5 o) =pipl = (3.41)

that define a new submanifold W; < W,. Now, checking the tangency of the vector field X along this
new submanifold, we obtain

LX) =L(X)@01) =0 5 LX) = L(X)@0p}) = —(0?)?,



3.5. EXAMPLES

and a second-generation secondary constraint appears

o = (1) =0, (342

which defines a new submanifold W> < W);. Finally, the tangency of the vector field X along this
submanifold gives no new constraints, since

L(X)$® = L(X)((p))?) = 0.
So we have two primary constraints (3.38]), two first-generation secondary constraints (3.41]), and a single
3.42)

second-generation secondary constraint (| . Notice that these five constraints depend only on ¢i', p%
and pk, and so they are po-projectable. Thus, we have the following diagram

4%

p1 Je p2
U
Wp
c
/ P2

TBQ FL T*(TQ)

Sh Wo

] T~
T~

Sa
Pr={peP|s(p) = 6" (p) =0} = ppM) ; Pa={pePi|6P () =0} =pp(W),

S1=FLAP) =pW1) 5 So=FL (P2) = pp(Wha).

Focusing only on the Legendre-Ostrogradsky map, and ignoring the unified part of the diagram, we have

)\//\}2 —— ,\7))2

T°Q — 25—~ T*(TQ)
J\ FL, ;
5, P
I
52 ,751
FLols,
Py

Notice that we still have to check (3.39). As we have seen in Section we obtain the following
system of equations

L oL oL oL 0L
FP —dr (6F)) —gog + o —d (>+d2 <>+ FP—qf)d ():0, 3.43
(57 = dr (65)) Gopagg + o " \ogn ) T \agg )+ — %) 4 \upagg (343
2L

B_ BY_“~Y*~ _
(5~ %) 5epaq

0. (3.44)
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As we have already required the vector field X to be a semispray of type 1, equations (3.44)) are satisfied
identically and equations (3.43|) become

9L 8£ oL oL
FB —dy (4P — —dy [ == | +d* =0. A4
(F5" = dr (45)) 5om503 0450¢8 | oq T(aqi“) <5 A) 0 (3.45)

A long calculation shows that this equation is compatible and so no new constraints arise. Thus, we have
no Lagrangian constraints appearing from the semispray condition. If some constraint had appeared, it
would not be FL,-projectable.

Thus, the vector fields X € X(W) given locally by (3.37) which are solutions to the equation
[((X)Q - dH]l,y, =0,

are tangent to the submanifold jo: Wo < W,. Therefore, taking the vector fields X, € X(W,) such that
Tjo 0 X, = X 0ja, the form Q, = (jz 0 j2)*, and the canonical Hamiltonian function H, = (jz o jo)*H,
the above equation leads to

i(X5)Q —dH, =0

but a simple calculation in local coordinates shows that H, = 0, and thus the last equation becomes
simply (X,)Q, = 0.

One can easily check that, if the semispray condition is not required at the beginning and we perform
all this procedure with the vector field given by (3.36)), the final result is the same. This means that, in
this case, the semispray condition does not give any additional constraint.

As final results, we recover the Lagrangian and Hamiltonian vector fields from the vector field X €
X(W). For the Lagranglan vector field, by using Lemma E 7| and Theorem |3 - 3.8| we obtain a semispray of
type 2, X, € f{(T Q), tangent to Sy. Thus, requiring the condition of semispray of type 1 to be satisfied
(perhaps on another submanifold S¥ < S5), the local expression for the vector field X is

0 0 0 0

where the functions Fg“ are determined by ([3.45]). For the Hamiltonian vector fields, recall that £ is an
almost-regular Lagrangian function. Thus, we know that there are Euler-Lagrange vector fields which
are FL,-projectable on Py, tangent to P, and solutions to the Hamilton equation.
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Chapter 4

Geometric Hamilton-Jacobi theory
for higher-order autonomous systems

In this Chapter we give the geometric description of the Hamilton-Jacobi problem for higher-order au-
tonomous dynamical systems. That is, we generalize the results in Section [2.2]to the higher-order setting
described in Section In addition, using the results in Chapter [3] we also state the problem in the
Lagrangian-Hamiltonian unified formalism.

The structure of the Chapter is the following. In Sections and we introduce the geometric
formulation of the Hamilton-Jacobi problem in the Lagrangian, Hamiltonian and unified formalisms,
respectively. In particular, following the patterns in [23], we first introduce the generalized version of
the Hamilton-Jacobi problem. Then, the standard Hamilton-Jacobi problem is stated adding an isotropy
condition to the generalized problem. Finally, the concept of complete solutions is defined in these
settings. Relations between these three formulations in terms of the Legendre-Ostrogradsky map and
the natural projections in the unified formalism are also analyzed. Finally, in Section two physical
models are analyzed using this formulation: the end of a thrown javelin and the shape of a homogeneous
deformed elastic cylindrical beam with fixed ends.

Throughout this Chapter we consider a kth-order autonomous Lagrangian dynamical system with
n degrees of freedom. Let ) be a n-dimensional smooth manifold modeling the configuration space of
this system, and £ € C°(T*Q) a kth-order Lagrangian function describing the dynamics of the system.
In addition, we assume that the Lagrangian function is regular (see Definition . Finally, to avoid
confusion, points in the higher-order tangent bundles of ) are denoted by ¥.

4.1 The Lagrangian formalism

Recall that, in the Lagrangian formalism for a kth-order dynamical system, from the kth-order Lagrangian
function £ € C“(TkQ) and using the canonical structures of the kth-order tangent bundle of @, we
construct the kth-order Poincaré-Cartan forms 6, € Q' (T**71Q) and wy = —df, € Q2(T?*71Q), as well
as the kth-order Lagrangian energy E, € C”(TQk*lQ). Then, using these geometric objects, we can
state the geometric equation, which is the search for a semispray of type 1, X, € .’{(T%AQ), satisfying
equation , that is,

i(XL)o.zL = dEL .

Since the Lagrangian function is regular, the kth-order Poincaré-Cartan 2-form w, is symplectic, and then
the above equation has a unique solution X, € Z{(T%_IQ) which is a semispray of type 1 in T?**71Q
without further assumption. See Section and references therein for a detailed description of the
Lagrangian formalism for higher-order dynamical systems.
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4.1.1 The generalized Lagrangian Hamilton-Jacobi problem

Following [I] and [23], and the results in Section we first state a general version of the Hamilton-
Jacobi problem in the Lagrangian setting, which is the so-called generalized Lagrangian Hamilton-Jacobi
problem. As we have seen in Section [2.2.1] in the first-order setting this problem consists in finding vector
fields X € X(Q) such that the lifting of every integral curve of X to TQ by X itself is an integral curve
of the Lagrangian vector field X . For higher-order systems we can state an analogous problem.

Definition 4.1. The generalized kth-order Lagrangian Hamilton-Jacobi problem consists in finding a
section s € I‘(pzk 11) and a vector field X € %(TkilQ) such that, if v: R — T*71Q is an integral curve

of X, then so~: R — T?71Q is an integral curve of X, ; that is,
Xoy=4= Xgo(s0y)=307. (4.1)

Remark. Observe that, since X is a semispray of type 1, then every integral curve of X is the canonical
lifting of a curve in Q to T?*~1Q. In particular, this holds for the curve so+, that is, there exists a curve

¢: R — @ such that
jot e =s07.

2k1 2k—1

Then, composing both sides of the equality with p;“* and bearing in mind that s € I'(p;."7 "), we obtain

_.70 ¢a

that is, the curve « is the (k — 1)-jet lifting of a curve in (). This enables us to restate the problem as
follows: The generalized kth-order Lagrangian Hamilton-Jacobi problem consists in finding a vector field
X, € X(Q) such that, if $: R — Q is an integral curve of X,, then j2k Lp: R — T?*71Q is an integral
curve of X ; that is,

X,06=6= Xco(310) = 6.
Nevertheless, we will stick to the previous statement (Definition in order to give several different

characterizations of the problem. O

It is clear from Definition that the vector field X € %(TkilQ) cannot be chosen independently

from the section s € I'(p7"'). In fact, we have the following result.

Proposition 4.1. The pair (s, X) € I‘(pik T x X(TF1Q) satisfies the condition (1) if, and only if,
X and X are s-related; that is, Xy 0os =Tso X.

Proof. The proof of this result follows the patterns of the proof of Proposition 5 in [23]. In particular, if
(s, X) satisfies the condition (4.1)), then for every integral curve 7 of X, we have

Xro(soy)=5067=Tsoy=TsoXory,
but, since X has integral curves through every point § € T*~1Q, this is equivalent to X, os = Tso X.

Conversely, if X, and X are s-related and v: R — T*~1Q is an integral curve of X, we have

Xros0y=TsoXoy=Tsoy=507. O

Hence, the vector field X € %(Tk_lQ) is related with the Lagrangian vector field X, and with the

section s € F(pik 11) As a consequence of Proposition we have the following result.

Corollary 4.2. If the pair (s, X) satisfies condition ([4.1)), then X = szk YoX,os.

Proof. Tf (s, X) satisfies the condition , then from Proposition E we know that X and X c are
s-related, that is, we have Tso X = X, os. Then, composing both sides of the equality with Tp,c 1 ! and
2%h— 1 2% — 1

oX,os. [

bearing in mind that p;"7" o s = Idrk-14, we obtain X = Tp;™
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Thus, the vector field X is completely determined by the section s € F(pi’:l), and it is called the
vector field associated to s. The following diagram illustrates the situation

2k—1
Top_1

T(T"'Q) T(T**7'Q)
\_/
Ts
X Xr
Tk—lQ ik_ﬁll T2k—1Q

\_/

S

Since the vector field X € %(kalQ) is completely determined by the section s, the search of a
pair (s, X) € T(p2*7") x X(T*'Q) satisfying condition (&1)) is equivalent to the search of a section
s € T(p2"!) such that the pair (s, Tp3";' o X, o s) satisfies the same condition. Thus, we can give the

following definition.

Definition 4.2. A solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem is a section
s € F(pik;_ll) such that, if v: R — TF1Q is an integral curve of Tpili_ll oXros e X(TF1Q), then
sov: R — T?*71Q is an integral curve of Xr, that is,

Tpi* ' o Xposoy=4= Xpo(soy) =507.

Finally, we have the following result, which gives some equivalent conditions for a section to be
a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem. This Proposition is the
analogous to Theorem in the higher-order setting.

Proposition 4.3. The following assertions on a section s € F(pikjll) are equivalent.

1. The section s is a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem.

2. The submanifold Tm(s) < T?**71Q is invariant by the Euler-Lagrange vector field X (that is, X1
is tangent to the submanifold s(Tk_lQ) — T%_lQ).

8. The section s satisfies the equation
i(X)(s"we) =d(s*Er),

where X = T,oi’“:ll o X, ose X(T"1Q) is the vector field associated to s.
Proof. This proof follows the same patterns as the proof of Proposition 2 and Theorem 1 in [23].

(1 < 2) Let s be a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem. Then
by Proposition the Lagrangian vector field X, € .’{(T%_lQ) is s-related to the vector field
X = szkjll oXrose %(Tk_lQ) associated to s, and thus for every § € TF1Q we have

Xe(s(y)) = (X os)(H) = (Ts o X)(7) = Ts(X (7).

Hence, X, (s(7)) = Ts(X (7)) and therefore X is tangent to the submanifold Im(s) < T?*71Q.

Conversely, if the submanifold Im(s) is invariant under the flow of X, then X, (s(7)) € Ty Im(s),
for every § € T*7'Q; that is, there exists an element u; € Ty T 71 Q such that Xz (s(7)) = Tys(uy).
If we define X € X(T*7'Q) as the vector field that satisfies Tys(Xy) = X, (s(7)), then X is a vector
field in T*71Q, since X = Tpikjll o X, os, and it is s-related with X .. Therefore, by Proposition
s is a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem.
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(1 < 3) Let s be a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem. Taking
the pull-back of the Lagrangian dynamical equation (2.34]) by the section s we have

s i(Xp)we = s*(dEg) =d(s*Er),

but since X and X, are s-related by Proposition we have that s* (X )we = i(X)s*we, and
hence we obtain
i(X)s*we =d(s*Er) .

Conversely, consider the following vector field defined along the section s € F(pikjll)

Dr=Xpo0s—TsoX: TF1Q — T(T*71Q).

We want to prove that D = 0, or equivalently, as w, is nondegenerate, (wz)s) (De(¥), Zsy)) =0

for every tangent vector Zy) € Ts(g)TQkle. Taking the pull-back of the Lagrangian dynamical
equation (2.34)), and using the hypothesis, we have

s"(i(Xg)we) = ™ (dE) = d(s"Er) = i(X)(s"we),

and then the form s*(i(X,)wz) — i(X)(s*wz) € QY(TF1Q) vanishes. Therefore, for every § €
TF1Q and ug € Tngle, we have

Therefore, (wr)sg) (De(¥), Asey)) = 0, for every Ay € Ty Im(s). Now recall that every section
defines a canonical splitting of the tangent space of T?*71Q at every point given by

To) T 71Q = Ty Im(s) © Vi) (0p°7") -

Thus, we only need to prove that (wg)s) (D (), Bsy)) = 0, for every vertical tangent vector
By € Vs (pikjll) Equivalently, as w, is annihilated by the contraction of two pik:ll—vertical

vectors, it suffices to prove that D, is vertical with respect to that submersion. Indeed,
Tp* ' oDp =Tp o (Xpos—TsoX)
= Tpik__l1 oXpos— Tpik__l1 oTso X
=Tpp" o Xpos —T(pft os)o X
:Tpik__lloXﬁost:O.
Therefore (we )y (De(¥), Zsy)) = 0, for every Zy ) € Ts(g)T%_lQ, and as w, is nondegenerate,

we have that X, and X are s-related, and, by Proposition s is a solution to the generalized
kth-order Lagrangian Hamilton-Jacobi problem. O

Observe that if s € F(pik__ll) is a solution to the generalized kth-order Lagrangian Hamilton-Jacobi
problem then, taking into account Corollary we can conclude that the integral curves of the La-
grangian vector field X contained in Im(s) project to T" “1Q by pzk:ll to integral curves of Tikjll oX os.
The converse, however, is not true unless we make further assumptions.

Remark. Notice that, except for the third item in Proposition all the results stated in this Section
hold for every vector field Z € X(T?*7'Q), not only for the Lagrangian vector field X,. Indeed, the
assumption for X, being the Lagrangian vector field solution to the equation is only needed to
prove that the section s € T'(p;" ') and its associated vector field X € X(T"1Q) satisfy some kind of

dynamical equation in T*~1Q. O
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Let us compute in coordinates the condition for a section s € F(pik 11) to be a solution to the

generalized kth-order Lagrangian Hamilton-Jacobi problem. Let (gi') be local coordinates in @, and
(¢d,-..,q3. ) the induced natural coordinates in T?%~1Q). Then, local coordinates in T?*71Q adapted

to the pzl’C ! bundle structure are (qf;qu), with 0 < i< k—1and k < j < 2k — 1. Hence, a section

A

5 are local smooth functlons in TF1Q.

s D(pit 11) is given locally by s(¢') = (¢, s s4 4, where s

From Propositionﬁwe know that s € I‘(pik 11) is a solution to the generalized kth-order Lagrangian

Hamilton-Jacobi problem if, and only if, the Euler-Lagrange vector field X, € %(TQk*lQ) is tangent to
the submanifold Im(s) < T?*71Q. As Im(s) is locally defined by the constraints q;‘ — 534 = 0, we must

require L(XL)(q] — 5 4= X[;(qj —5; 4) =0 (on Im(s)), for k < j <2k —1,1 < A < n. From the results
in Section [2.3.1] we know that the Euler-Lagrange vector field X C has the following local expression
0 g 0 0
Xe=q = +@ =5 +...+di + 4 :
! dqp' ? gt 1 0gg 3o 943y,

where F4 are the functions solution to equations (2.37)), that is, to the following system of n equations

k
(*l)k (FB —dr (qi_l) 7 Baqk +Z dl <3£) —0.

=0

Hence, the condition X L(q}4 - = 0 gives the following equations

) |Im(s)

D = Dt D
B 0 A 2k—1 B Y%
E =0 ; F E -8 =0. 4.2
J+1 qlJrl aql Sk 8(],?71 ’Im(s — 1+1 dq B k aquil ( )
This is a system of kn partial differential equations with kn unknown functions s;-‘. Thus, a section

s € I‘(pik 11) solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem must satisfy the
local equations (4.2)).

4.1.2 The Lagrangian Hamilton-Jacobi problem

In general, to solve the generalized kth-order Lagrangian Hamilton-Jacobi problem can be a difficult
task, since it amounts to find kn-codimensional submanifolds of T?*~1(Q) invariant by the Euler-Lagrange
vector field X, or, equivalently, solutions to a large system of partial differential equations with many
unknown functions. Therefore, in order to simplify the problem, it is convenient to impose some additional
conditions to the section s € F(pik 11) thus considering a less general problem.

Definition 4.3. The kth-order Lagrangian Hamilton-Jacobi problem consists in the search of solutions
s € F(pilC 11) to the generalized kth-order Lagrangian Hamilton-Jacobi problem satisfying s*wy = 0. Such
a section is called a solution to the kth-order Lagrangian Hamilton-Jacobi problem.

With the new assumption in Definition a straightforward consequence of Proposition is the
following result.

Proposition 4.4. The following conditions on a section s € I‘(pzk 11) satisfying s*we = 0 are equivalent.

1. The section s is a solution to the kth-order Lagrangian Hamilton-Jacobi problem.
d(s*E.) = 0.

Im(s) is a Lagrangian submanifold of T2*=1Q invariant by X .

™ e

The integral curves of Xp with initial conditions in Im(s) project onto the integral curves of the
vector field X = Tp2’€ YoX,os.
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Let us compute in coordinates the equations for a section s € F(pzk:ll) to be a solution to the kth-

order Lagrangian Hamilton-Jacobi equation. From Proposition [£.4] we know that this is equivalent to
d(s*E¢) = 0, which in turn is equivalent to s*(dE;) = 0, since the pull-back and the exterior derivative
commute. Then, since F; € C* (T%_lQ)7 its exterior derivative is given by

_ O0E. oL,

dE, = —2d¢? + =—=d¢?, 0<i<k—-1, k<j<2k—1.
L= o q; +aqu q; i J

Then, taking the pull-back of this 1-form by the section s(¢;*) = (¢i*, s7'), we obtain
OE; 0OFE 0s?
(B = [ 2Be OB Os7 ) g4

Hence, the condition d(s*Ez) = 0 in Proposition is locally equivalent to the following kn partial
differential equations (on Im(s))
OE, OE, 68]'3

— =0. 4.3
dg7 " 9q Og 3

Therefore, a section s € T'(p;* ') given locally by s(¢f') = (q;“,sf(q{‘)) is a solution to the kth-order

Lagrangian Hamilton-Jacobi problem if, and only if, the local functions 53-4 satisfy the system of 2kn
partial differential equations given by (4.2) and (4.3). Note that these 2kn partial differential equations

may not be C*°(U)-linearly independent.

In addition to the local equations for the section s € F(pzk:ll), we can state the equations for the

characteristic Hamilton-Jacobi function. These equations are a generalization to higher-order systems of
the classical Lagrangian Hamilon-Jacobi equations ([2.26]).

Since wy = —df, it is clear that s*w, = 0 if, and only if, s*(df,) = d(s*0,) = 0; that is, the form
s*0, € Ql(kalQ) is closed. Then, using Poincaré’s Lemma, s*0 is locally exact, and thus there exists
W € C=(U), with U € T""'Q an open set, such that s*0.|y = dIW. In coordinates, bearing in mind
the coordinate expression of the Poincaré-Cartan 1-form, the form s*6, is given locally by

k—1k—i—1
8*95:2 Z (71)lle <a£>

qu
A
i1 o

Im(s)

since 0 is pik:ll-semibasic in T2*71Q. Hence, from the identity s*0, = dW we obtain

P k—i—1 z or
- = D [ —=— , 4.4

=0 Im(s)

which is a system of kn partial differential equations for W that clearly generalizes equations ([2.26)).

4.1.3 Complete solutions

In the above Sections we have stated the kth-order Hamilton-Jacobi problem in the Lagrangian formalism,
and a section s € F(pikjll) solution to this problem gives a particular solution to the dynamical equation
(2.34). Nevertheless, this is not a complete solution to the system, since only the integral curves of
X with initial conditions in Im(s) can be recovered from the solution to the Hamilton-Jacobi problem.
Hence, in order to obtain a complete solution to the problem, we need to foliate the phase space T?*~1Q
in such a way that every leaf is the image set of a section solution to the kth-order Lagrangian Hamilton-

Jacobi problem. The precise definition is the following.

Definition 4.4. A complete solution to the kth-order Lagrangian Hamilton-Jacobi problem is a local
diffeomorphism ®: U x TF1Q — T?71Q, with U C R*™ an open set, such that for every A € U, the map
sx(0) = B(\,e): TF1Q — T?*71Q is a solution to the kth-order Lagrangian Hamilton-Jacobi problem.
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Remark. Usually, it is the set of maps {s) | A € U} which is called a complete solution of the kth-order
Lagrangian Hamilton-Jacobi problem, instead of the map ®. Both definitions are clearly equivalent. ¢

It follows from this last definition that a complete solution provides T?*~1Q with a foliation transverse
to the fibers, and that every leaf of this foliation has dimension kn and is invariant by the Euler-Lagrange
vector field X ..

Let ® be a complete solution, and we consider the family of vector fields
{X,\ =Tp ' oXpo0s, € X(TF1Q) | AeUC Rk"} ,

where sy = ®(\, o). Then, the integral curves of X}, for different A € U, will provide all the integral
curves of the Euler-Lagrange vector field X . That is, if j € T?*71Q, then there exists A, € U such that
if p, = pikjll(gj), then sy, (po) = ¥, and the integral curve of X,  through p,, lifted to T2%-1Q by SAy s

gives the integral curve of X, through 3.

4.2 The Hamiltonian formalism

Recall that, in the Hamiltonian formalism for a kth-order dynamical system, all the geometric structures
are the canonical Liouville forms of the cotangent bundle T*(T*~'Q), namely 6,_, € QY(T*(T*7'Q))
and wp_1 = —df_; € Q2(T*(T*7'Q)), and the dynamics of the system are given by a Hamiltonian
function h € C°°(T*(T*"'Q)). With these elements we can state the dynamical equation for this
Hamiltonian system, which is

Z(Xh) Wp—1 = dh.

Since wy_1 is symplectic regardless of the Hamiltonian function provided, the above equation has always
a unique solution X, € X(T*(T""'Q)). In addition, since the Lagrangian function £ € C>°(T*Q)
is regular, the Legendre-Ostrogradsky map defined in is a local diffeomorphism, and hence we
have locally a one-to-one correspondence between the vector field solution to the Lagrangian dynamical
equation and the vector field solution to the Hamiltonian dynamical equation.

Observe that, as the formalism is developed in the cotangent bundle of a manifold, T*(kalQ),
the statement of the Hamiltonian Hamilton-Jacobi problem for higher-order systems follows the same
patterns as in the first-order case described in Section [2.2.2

4.2.1 The generalized Hamiltonian Hamilton-Jacobi problem

As in Section [2.2.2] and the Lagrangian formalism stated in the previous Section, we first consider the
generalized Hamilton-Jacobi problem in the Hamiltonian formalism. Recall that for first-order dynamical
system, this problem consists in finding 1-forms o € Q'(Q) and vector fields X € X(Q) such that the
lifting of every integral curve of X to T*Q by « is an integral curve of the Hamiltonian vector field. For
higher-order systems, the statement of the problem is almost the same.

Definition 4.5. The generalized kth-order Hamiltonian Hamilton-Jacobi problem consists in finding a
1-form a € QYT Q) and a vector field X € X(TF7'Q) such that, if v: R — T*7'Q is an integral
curve of X, then aoy: R — T*(TkilQ) is an integral curve of Xy ; that is,

Xoy=4= Xpo(aoy)=aoc7y. (4.5)

As in the Lagrangian formalism, it is clear from Deﬁnitionthat the vector field X € X(T*(T*'Q))
and the 1-form a € Ql(T}“lQ) must be related. In particular, we have the following result.
Proposition 4.5. The pair (o, X) € Ql(Tk_lQ) X %(Tk_lQ) safisfies the condition (4.5) if, and only
if, X and X}, are a-related, that is, X oo = Tawo X.
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Proof. The proof of this result follows the same patterns that the proof of Proposition In particular,
if (o, X)) satisfies the condition (4.5)), then for every integral curve v of X, we have

Xpo(aoy)=aoy=Taoy=TaoX oy,
but, since X has integral curves through every point § € Tk_lQ, this is equivalent to X oa = Ta o X.
Conversely, if X, and X are a-related and v: R — TF71Q is an integral curve of X, we have
Xp,oaoy=TaoXoy=Taoy=acy. O
That is, the vector field X € ¥(T*7'Q) is related to the Hamiltonian vector field X}, and the 1-form
a € QYT (Tk_lQ)). Moreover, from Proposition composing both sides of the a-relation equality

Xpoa=TaoX with Trrr-14, and bearing in mind that a € QNTrF Q) = [(mpr-15), we obtain the
following result.

Corollary 4.6. If (o, X) satisfies condition (4.5), then X = Tmpr-15 0 Xp, 0 a.

That is, the vector field X € X(T*7'Q) is completely determined by the 1-form «, and it is called
the vector field associated to «. The following diagram illustrates the situation

Trpe—1
T(T*'Q) - T(T*(T"'Q))
\—/
Ta
X Xn
Trk—1¢

T(THQ)

\/

[e3

kalQ

Since the vector field X is completely determined by the 1-form «, the problem of finding a pair
(o, X) € QYTH1Q) x X(T*71Q) that satisfies the condition is equivalent to the problem of finding
a 1-form o € Q! (Tk_lQ) satisfying the same condition with the associated vector field Trpr-14 0 Xp0a.
Hence, we can give the following definition.

Definition 4.6. A solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem for X,
is a 1-form a € Ql(Tk_lQ) such that if v: R — T*71Q is an integral curve of X = Trre-1g 0 Xp 0 q,
then aoy: R — T*(T*1Q) is an integral curve of Xy, that is,

Trpr-1go Xpoaoy=4= Xpo(aoy) —aoy.
Finally, we have the analogous result to Proposition in the Hamiltonian formalism, and also

analogous to Theorem [2.20] in the higher-order setting, that gives several equivalent conditions for a
1-form « to be a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem.

Proposition 4.7. The following conditions on a 1-form o € Ql(kalQ) are equivalent.

1. The form « is a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem.

2. The submanifold Im(a) — T*(T*'Q) is invariant under the flow of the Hamiltonian vector field
Xy, (that is, X}, is tangent to the submanifold Im(«) ).

3. The form « satisfies the equation
i(X)da = —d(a’h),

where X = Trpr-15 0 Xp 0« is the vector field associated to a.
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Proof. This proof follows exactly the same patterns as the proof of Proposition [4-3] taking into account
the properties of the tautological form 6;_; € Q' (T*(T*71Q)) of the cotangent bundle, that is, we have
a*0,_1 = « for every a € Ql(T}“lQ). Hence, taking the pull-back of the dynamical equation by
a we obtain

i(X)da = —d(a’h),

because we have
w1 = a*(—=dbi_1) = —d(a™0k_1) = —da. (4.6)

In particular, we have:
(1 <= 2) Let a be a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem. Then

by Propositionthe Hamiltonian vector field X;, € X(T*(T*7'Q)) is a-related to the vector field
X =Trpe1goXpoa € X(TF1Q) associated to a, and thus for every § € T*71Q we have

Xn(@(®)) = (Xn o a)(y) = (Tao X)(g) = Ta(X (7)) -

Hence, X}, (o)) = Ta(X (7)) and therefore X, is tangent to the submanifold Im(a) < T*(T*1Q).

Conversely, if the submanifold Im(c) is invariant under the flow of Xp,, then X, (a (7)) € Ty y) Im(a),
for every 7 € T*7'Q; that is, there exists an element u; € Ty T*1Q such that Xj,(a(7)) = Tya(uy).
If we define X € X(T"~ 1Q) as the vector field that satisfies T; g0(X5) = Xn(a(g)), then X is a
vector field in T¥71Q, since X = Trpe-19 0 Xp 0@, and it is a-related with Xj. Therefore, by
Proposition « is a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem.

(1 <= 3) Let a be a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem. Tak-
ing the pull-back of the Hamiltonian dynamical equation (2.46]) by the 1-form « we have

o i(Xp)wi—1 = a*dh = d(a™h),

but since X and X}, are a-related by Proposition we have that o* i(Xp)wr_1 = i(X)a*wp_1.
Then, using relation (4.6)), we obtain

—i(X)da = d(a*h).

Conversely, consider the following vector field along the 1-form o € Q1(T*71Q)
Dy=Xpoa—TaoX: TF'Q - T(TY(T*1Q)).

We want to prove that Dj, = 0, or equivalently, since the Liouville 2-form wy_; is symplectic,
(Wr—1)a@) (Dr(¥), Za)) = 0 for every tangent vector Z,y € TQ(Q)T*(TI“_IQ). Taking the pull-
back of the Hamiltonian dynamical equation (2.46)), and using the hypothesis, we have

o (i((Xp)wi—1) = a*dh = d(a*h) = —i(X)da,

and then the form o (i(Xp, )wr_1) +i(X)da = a* (i(Xp)wr_1) —i(X)oFwr_1 € Q1 (T*'Q) vanishes.
Therefore, for every § € T*71Q and uy € Tng_lQ, we have
0= (" i(Xp)wr—1 —i(X)a wr—1)g(ug)
= (Wr—1)a(m) (Xn(a(@)), Tya(ug)) — (We-1)a(g) (Tya(Xy), Tyaluy))
= (We-1)a@m) (Xn(a(y)) — Tya(Xy), Tya(ug))
= (Wk-1)a y)(Dh( ), Tga(ug)) .

Therefore, (Wi—1)a(g)(Dn(¥), Aay)) = 0, for every Ay € Ty Im(a). Now recall that since
QyTF Q) = ['(mrr-1g), then every 1-form defines a canonical splitting of the tangent space of
T*(TF"1Q) at every point given by

Tap T (TF'Q) = Tagy) Im() @ Vagp) (mre-10) -
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Thus, we only need to prove that (wx—1)a () (Dn(7), Baey)) = 0, for every vertical tangent vector
Bag) € Vo) (mrr-1g). Equivalently, as wy_; is annihilated by the contraction of two mx-14-
vertical vectors, it suffices to prove that Dy, is vertical with respect to that submersion. Indeed,

Trre-1g 0 Dy = Trpe-1g 0 (Xpoa — Tao X)
=Trapr-1go Xpoa—Trpr-19g0Tao X
=Trap-1goXpoa—T(rrr1g0a)o X
=Trre-1go0 Xpoa— X =0.

Therefore (wi—1)a () (Dn(7), Za(y)) = 0, for every Zy ) € Ta(g)T*(Tk_lQ), and as wy_1 is symplec-
tic, we have that X} and X are a-related, and by Proposition [I.5] o is a solution to the generalized
kth-order Lagrangian Hamilton-Jacobi problem. O

Now we give in coordinates the condition for a 1-form a € Ql(Tk_lQ) to be a solution to the
generalized kth-order Hamiltonian Hamilton-Jacobi problem. Let (gg') be local coordinates in @ and
(gf), 0 < < k — 1, the induced natural coordinates in T*1Q. Then, (g2, p'y) are natural coordinates
in T*(TkilQ), which are also the adapted coordinates to the mpr-15-bundle structure. Hence, a 1-form

a € Ql(Tk_lQ) is given locally by a(g¢') = a,dgf, where o, are local smooth functions in TF1Q.

Then, if « € QY(T*71Q) is a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi prob-
lem, then by Propositionthis is equivalent to require the Hamiltonian vector field X; € X(T* (TkilQ))
to be tangent to the submanifold Im(a) < T*(T*~'Q). This submanifold is locally defined by the kn
constraints pi, — a% = 0. Thus, we must require L(X3)(py — o) = Xn(pYy — a%y) = 0 (on Im(a)). From
the geometric description of the Hamiltonian formalism for higher-order systems given in Section [2.3.2
we know that the Hamiltonian vector field solution to equation is locally given by

Hence, the conditions X} (p?y — aﬁ)’lm(a) = 0 give the equations

oh  Oh dai,
—_— + — =0 I . 4.7
505 " oy 0gf =0 (on Imla) (47)

This is a system of kn partial differential equations with kn unknown functions o, which must be verified
by every 1-form a € Ql(Tk_lQ) solution to the generalized kth-order Hamiltonian Hamilton-Jacobi.

4.2.2 The Hamiltonian Hamilton-Jacobi problem

As in the Lagrangian setting, to solve the generalized kth-order Hamiltonian Hamilton-Jacobi problem
is, in general, a difficult task. Hence, it is convenient to consider a less general problem requiring some
additional conditions to the 1-form « € Ql(Tk_lQ). Observe that, from , the isotropic condition
a*wi_1 = 0 is equivalent to da = 0, that is, a is a closed 1-form in T¥~1Q. Therefore, we have the
following definition.

Definition 4.7. The kth-order Hamiltonian Hamilton-Jacobi problem consists in finding closed 1-forms
a € Ql(Tk_lQ) solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem. Such a form
1s called a solution to the kth-order Hamiltonian Hamilton-Jacobi problem.

Then, bearing in mind the additional assumption of being closed, a straightforward consequence of
Proposition [£.7] is the following result, which is the analogous to Proposition [£.4]in this formalism.

Proposition 4.8. Let a € Ql(Tk_lQ) be a closed 1-form. The following assertions are equivalent.
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1. The 1-form « is a solution to the kth-order Hamiltonian Hamilton-Jacobi problem.
2. d(a*h) = 0.
3. Im(a) is a Lagrangian submanifold of T*(T*71Q) invariant by X.

4. The integral curves of Xp, with initial conditions in Im(a) project onto the integral curves of the
vector field X = Trpr-1 0 Xpoa.

Let us compute in the natural coordinates of the cotangent bundle T*(Tk‘le) the local equations
for a 1-form a € Q'(T*'Q) to be a solution to the kth-order Hamiltonian Hamilton-Jacobi problem.
From Definition we must require the form « to be closed, that is, da = 0. Hence, if a = OziAdq;“7 this
condition gives the following kn(kn — 1)/2 equations

daly Doy
——2 =0, withA#Bori#j. 4.8
a7~ 9g) # # (4.8)

Equivalently, from Proposition we know that this condition is equivalent to d(a*h) = a*(dh) = 0.
Then, bearing in mind that the exterior derivative of h is given locally by

_ on
~ Ogf

oh . .

dh
op’y

and taking the pull-back of dh by the 1-form a = a’,dg*, we have

(dh)=| =— + —

Hence, the condition d(a*h) = 0 in Proposition[4.8/holds if, and only if, the following kn partial differential
equations hold on Im(«)

i -

oh  oh aa{B)d ,

oh  Oh Doy

Therefore, a 1-form a € Q(T*7'Q) given locally by o = a’dg;* is a solution to the kth-order
Hamiltonian Hamilton-Jacobi problem if, and only if, the local functions o satisfy the system of partial

differential equations given by (4.7) and (4.8]), or equivalently (4.7)) and (4.9). Observe that these systems
of partial differential equations may not be C°°(U)-linearly independent.

In addition to the local equations for the 1-form a € Ql(Tk_lQ), we can give the equation for the
characteristic Hamilton-Jacobi function. This equation is a generalization to higher-order systems of the
classical Hamiltonian Hamilton-Jacobi equation (2.31)).

Since o € Q' (T"71Q) is closed, by Poincaré’s Lemma there exists a local function W € C>(U), with
U C Tk_lQ an open set, such that a = dW. In coordinates, the condition a = dW gives the following

kn partial differential equations for W
ow

dqf*

Finally, as a*h = h(g{*,ay) = h(g*,0W/q;"), the condition d(a*h) = 0 is equivalent to a*h being
locally constant, and hence we obtain

=aYy.

h (qlA, ;,WA> = const. (4.10)

This equation clearly generalizes the equation (2.31)) to higher-order Hamiltonian systems.
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4.2.3 Complete solutions

As in the Lagrangian formalism, in the above Sections we have stated the kth-order Hamilton-Jacobi
problem in the Hamiltonian formalism, and a 1-form « € Ql(Tk_lQ) solution to this problem gives a
particular solution to the dynamical equation , but not a complete solution, since only some integral
curves of the vector field X} can be recovered from the solution to the Hamilton-Jacobi problem. Hence,
we want to define the concept of complete solution in this formulation, and the way to do so is analogous

to Section A.1.31

Definition 4.8. A complete solution to the kth-order Hamiltonian Hamilton-Jacobi problem is a local
diffeomorphism ®: U x T 1Q — T*(kalQ), where U C RF™ is an open set, such that, for every
A € U, the map ax(e) = ®(\,0): TF1Q — T*(T*1Q) is a solution to the kth-order Hamiltonian
Hamilton-Jacobi problem.

Then, the set {ay = ®(\,0) € QY (T*'Q) | A € U} is also called a complete solution to the kth-order
Hamiltonian Hamilton-Jacobi problem.

It follows from the definition that a complete solution endows T*(T*~1Q) with a foliation transverse
to the fibers, and that the Hamiltonian vector field X}, is tangent to the leaves.

Let {ax | A € U} be a complete solution, and we consider the set of associated vector fields
{XA — Trpigo Xpoan € X(TV'Q) | AeUC R’“”} .

Then, the integral curves of X, for different A € U, will provide all the integral curves of the Hamiltonian
vector field Xj,. That is, if 3 € T*(T*7'Q), then there exists A, € U such that if § = Trr-10(83), then
ay, (g) = B, and the integral curve of X, through g, lifted to T*(kalQ) by ay,, gives the integral curve
of X}, through (.

Let us assume that ®: R¥" x TF"1Q — T*(T*7'Q) is a global diffeomorphism for simplicity. Then,
given A = (M) € R, 0 < i < k—1,1< A< n, we consider the functions f7 € C=(T*(T*'Q)),
0<j<k—-1,1< B <n,given by

fJB = prj}B op; o 71,

where p;: RF? x TF1Q — R is the projection onto the first factor and prf: RE" — R is given by

prf = prP opr;, where pr? and pr; are the natural projections

prj:Rk” — R” ) prB:R* — R
() — (z},...,27) 7 (&h...,2") — 2P

Therefore, ng(aA(Q{q)) = (Pr}B opy 0 &7 o ®)(AF, ‘Z{q)(Pr}B op) (A af) = )‘f

Proposition 4.9. The functions ij, 0<j<k—1,1< B < n are in involution, that is, {ff,ffl’} =0
for every a,b, 1, .

Proof. Since ® is a complete solution, for every 8 € T*(kalQ) there exists a unique A € R*” such that
ax(mpr-19(B)) = ®(\, mre-15(8)) = B. Then we have

fJB(ﬁ) = (fJB oay)(mre-1g(B)) = (pr;B op; 0 @7 o @) (A, mpr-14(8))
= (Plf;3 opy) (A, WTk—lQ(/B)) = )\f )

that is, 7 oax = (f7 0 ®)(\,e): TF=1Q — R is constant for every A € R¥". Therefore, we have
B _
dfj |TIm(a/\) =0.
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Now, since ® is a complete solution, we have that ay = ®(\, e) is a solution to the kth-order Hamil-
tonian Hamilton-Jacobi problem. Therefore, from Proposition Im(®,) is a Lagrangian submanifold
of (T*(T*'Q),wk_1), and then

(TIm(ey))" = TIm(y),

where (T Im(ay))" denotes the wy,_j-orthogonal of TIm(c,) (see Definition for details).

From this, the result follows from the definition of the induced Poisson bracket and the facts that the
form w1 is symplectic, that df € (T Im(ay))* = TIm(ay), and that there exists a unique vector field

X5 € X(T*(T*1Q)) satisfying i(Xpp)wp—1 = dff (see Definition for the definition of the induced
Poisson bracket, Section [I.1.2) for the properties of Hamiltonian vector fields associated to functions, and
Section for the properties of Lagrangian submanifolds). O

4.2.4 Relation with the Lagrangian formulation

Up to this point we have stated both the Lagrangian and Hamiltonian Hamilton-Jacobi problems for a
kth-order autonomous system. Now, we establish a relation between the solutions of the Hamilton-Jacobi
problem in both formulations. In particular, we show that there exists a bijection between the set of
solutions of the (generalized) kth-order Lagrangian Hamilton-Jacobi problem and the set of solutions of
the (generalized) kth-order Hamiltonian Hamilton-Jacobi problem, given by the Legendre-Ostrogradsky

map defined in (2.41]).

Since we assumed from the beginning that the kth-order Lagrangian function £ € C*(T*Q) is regular,
the Legendre-Ostrogradsky map FL: T2kl — T*(TkilQ) is a local diffeomorphism. For the sake of
simplicity, in this Section we assume that the kth-order Lagrangian function is hyperregular, and therefore
the Legendre-Ostrogradsky map is a global diffeomorphism. Obviously, for regular but not hyperregular
Lagrangian functions, all these results hold only in the open sets where FL is a local diffeomorphism.

Remark. Observe that if £ is hyperregular, then F L is a symplectomorphism and therefore the symplec-
tic structures are in correspondence. Therefore, the induced Poisson brackets also are in correspondence
and we have the analogous to Proposition in the Lagrangian formalism, where the Poisson bracket is
determined by the Poincaré-Cartan 2-form we as {f, g} = we (X, X,), X5, X, € X(T**7'Q) being the
Hamiltonian vector fields of f and g, respectively, determined by the symplectic form w,. %

In order to establish the relation between the Lagrangian and Hamiltonian formalism, we first need

the following technical result.

Lemma 4.10. Let By =% M and Es =2 M be two fiber bundles, F': E1 — Es a fiber bundle morphism,
and two F-related vector fields X1 € X(E1) and Xy € X(E2). If 1 € T'(m1) is a section of m1 and we
define a section of ma as so = F osy € I'(mg), then

T7T10X1081:T’/TQOXQOSQEX(M).

Proof. As F: E; — FE5 is a fiber bundle morphism (that is, 7, = 7o o F'), and X; and X5 are F-related
(that is, TF o X; = X3 o F'), we have the following commutative diagram

TE, — ™ TR,

XlT TXQ
\ /52 Fosy
Then we have

TrmpoXi0s =T(mpoF)oXj08 =TmyoTFoXj0s =TmeoXo0Fos; =TmoXg0sy. O
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Now we can state the equivalence theorem.

Theorem 4.11. Let (T?*71Q, L) be a hyperregular Lagrangian system, and (T*(T*71Q),wy_1, h) its as-
sociated Hamiltonian system. Then, if s € T(p3* 1) is a solution to the (generalized) kth-order Lagrangian

Hamilton-Jacobi problem, then the 1-form o = FLos € Ql(Tk_lQ) is a solution to the (generalized)
kth-order Hamiltonian Hamilton-Jacobi problem.

Conversely, if « € Q(TF71Q) is a solution to the (generalized) kth-order Hamiltonian Hamilton-Jacobi

problem, then the section s = FL ‘oo € I‘(pik:ll) is a solution to the (generalized) kth-order Lagrangian

Hamilton-Jacobi problem.

Proof. First, let us prove that a = FL o s is indeed a 1-form, that is, a section of the projection mrr-14.

Computing, we have

Trr-19 0 = k-1 0 FLo s = pi’:l os=Idpr1q,

since FL is a bundle morphism over T*~1Q.

Next, let X = Tpik:ll 0Xro0s8 X = Trre-1go0 Xpoa € X(TF1Q) be the vector fields associated
to s and a = FL o s, respectively. Using Lemma we have X = X, and hence both vector fields are
denoted by X.

Suppose that s is a solution to the generalized kth-order Lagrangian Hamilton-Jacobi problem, and
let v: R — Tk_lQ be an integral curve of X. Then, using Theorem and Proposition we have

Xpo(aoy)=XpoFLosoy=TFLoX o507
=TFLoTsoXoy=T(FLos)o%
=Taoy=ac7.
That is, a o y: R — T*(T*1Q) is an integral curve of X}, and thus « is a solution to the generalized
kth-order Hamiltonian Hamilton-Jacobi problem.

Now, in addition, we require s*w, = 0; that is, s is a solution to the kth-order Lagrangian Hamilton-
Jacobi problem. Then, using (4.6)) and the properties of the Legendre-Ostrogradsky map, we have

da=—a*wp_1 = —(FLo8) wp_1 = —s" (FLwg_1) = —s*we =0,
and hence « is a solution to the kth-order Hamiltonian Hamilton-Jacobi problem.

The converse is proved in an analogous way, but using F£~! instead of F£. In particular, let us first
prove that s = FL ' o« is a section of the projection pikjll. Computing, we obtain

Pik__ll 08 = Pik__ll oFL loa= Tpk—17 OO0 = IdT’“‘—lQ’

since pikjll = Tre-19 o FL, and FL is a diffeomorphism.

Next, let X = Tpik__l1 oXpos,X =Trpe1goXpoa e X(T*71Q) be the vector fields associated to
s =FL ' o and a, respectively. From Lemma we have X = X, and hence both vector fields are
denoted by X.

Assume that « is a solution to the generalized kth-order Hamiltonian Hamilton-Jacobi problem. If
v: R — TF71Q is an integral curve of X, then, using Theorem and condition (4.5)), we have

Xro(soy) =XpoFL toaoy=TFL 'oXpoaoy
=TFL ' oaoy=TFL 'oTaok
=T(FL 'oa)oy=Tsoy=507.
That is, so~y is an integral curve of X, and hence s is a solution to the generalized kth-order Lagrangian

Hamilton-Jacobi problem.
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Now, in addition, we require « to be closed; that is, a is a solution to the kth-order Hamiltonian
Hamilton-Jacobi problem. Then, using the relation and the properties of the Legendre-Ostrogradsky
map, we have

s*we = (FL ' o) we = o (FL T we) = a*wpg = —da =0,

and hence s is a solution to the kth-order Lagrangian Hamilton-Jacobi problem. O

Remark. This result can be extended to complete solutions in a natural way, applying it to every
particular solution given by the local diffeomorphism ®. O

Theorem allows us to show that the vector field associated to a section solution to the (generalized)
Hamilton-Jacobi problem is a semispray of type 1. First, we need the following technical result.

Lemma 4.12. Let X € X(T"Q) be a semispray of type 1 on T"Q, and Y € X(T°Q) (s < r) which is
ph-related with X. Then'Y is a semispray of type 1 on T°Q.

Proof. Let v: R — T"Q be an integral curve of X. Then, as X is a semispray of type 1, there exists a
curve ¢: R — @ such that ji¢ = 7. Furthermore, as X and Y are p’-related, the curve poy: R — T°Q
is an integral curve of Y. Hence, p(j"¢) = j°¢ is an integral curve of Y.

It remains to show that every integral curve of Y is the projection to T*Q via p’, of an integral curve
of X, but this holds due to the fact that the vector fields are pl-related and pf is a surjective submersion.
Therefore, Y is a semispray of type 1 in T°Q. O

Proposition 4.13. Let (T?*71Q, L) be a hyperregular Lagrangian system, and (T*(T*7'Q),wy_1,h) the
associated Hamiltonian system. Then, if a € Ql(kalQ) is a solution to the kth-order Hamiltonian
Hamilton-Jacobi problem, the vector field X = Tmpr-15 0 Xp 0 is a semispray of type 1 on Tk_lQ.

Proof. Let s = FL 'oa e I’(pikjll) be the section associated to a, which is a solution to the kth-order
Lagrangian Hamilton-Jacobi problem by Theorem Ff_fﬂ Then, by Lemma{4.10} if X = T7rpe-190Xpoa

and X = Tpik_’l1 o X, os are the vector fields associated to o and s = FL ! o a respectively, then
X =X =Tp{*' o X os. Hence, as Xz € X(T?*71Q) is the Euler-Lagrange vector field solution to the

equation (2.34) and £ € C°°(T* Q) is a hyperregular Lagrangian function, we have that X is a semispray
13

of type 1 on T?*71Q. In particular, X o s is a semispray of type 1 along pikjl and, by Lemma X
is a semispray of type 1 on T*~1Q. O

As a consequence of Proposition the generalized kth-order Hamilton-Jacobi problem can be
stated in the following way.

Definition 4.9. The generalized kth-order Lagrangian (resp., Hamiltonian) Hamilton-Jacobi problem
consists in finding a section s € F(pik:ll) (resp., a 1-form «a € Ql(Tk_lQ)) such that, if v: R — @
satisfies that j(’)“*lv s an integral curve of X = szk:ll oXgos (resp., X = Trpr-190 Xp o), then

5087y R — T?71Q (resp., a0 j¥ ty: R — T*(TF1Q)) is an integral curve of X (resp., Xp).

4.3 The Lagrangian-Hamiltonian formalism

In this Section we state the geometric Hamilton-Jacobi problem for a kth-order dynamical system in the
Lagrangian-Hamiltonian unified formalism described in Chapter[3] As we have pointed out in the Remark
at the beginning of Section [2.2] the geometric Hamilton-Jacobi problem has been stated in the unified
formalism in a recent work [60] to study the Hamilton-Jacobi theory in dynamical systems given in terms
of singular Lagrangian functions. In this Section we do not follow the patterns of the referred work, since
our goal is not to generalize the results given there, but to give a geometric description of the Hamilton-
Jacobi problem in the Lagrangian-Hamiltonian formalism, combining the results of Sections [£.1] and [42]
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with the results of Chapter [3] Therefore, we stick to the general setting described at the beginning of
this Chapter, and in particular £ € C'*° (Tk Q) denotes a kth-order regular Lagrangian function, although
for simplicity we will assume throughout this Section that £ is hyperregular.

Recall that, in the Lagrangian-Hamiltonian formalism for a kth-order dynamical system, we con-
sider the bundle W = T?*1Q Xrk-10 T*(T*"'Q) with the canonical projections p;: W — T?¢71Q
and po: W — T*(TF1Q). It is clear from the definition that the bundle W fibers over T*71Q. Let
pre-1g: W — T*~1Q be the canonical projection. Obviously, we have pre-1g = pi’i‘ll 0p1 = k-1 0 P2

Hence, we have the following diagram
w

T#1Q  prioig T (TF1Q)
m %‘9
kalQ

We consider in W the presymplectic form Q = pjwyp_; € Q2(W), where wy,_; € Q*(T*(T"7'Q)) is
the canonical symplectic form. In addition, from the kth-order Lagrangian function £, and using the
canonical coupling function C € C*° (W), we construct a Hamiltonian function H € C*(W) as H =C—L.
Thus, the dynamical equation for the system is , that is,

i(Xea)Qt=dH , XpgeX(W).

Following the constraint algorithm described in Section a solution to the equation exists on
the points of a submanifold jz: W,y — W which can be identified with the graph of the Legendre-
Ostrogradsky map FL: T?71Q — T*(TkilQ) associated to L. Since the Lagrangian function is regular,
there exists a unique vector field Xy solution to and tangent to W, (see Chapter [3| for details).

4.3.1 The generalized Lagrangian-Hamiltonian Hamilton-Jacobi problem

We first state the generalized version of the Hamilton-Jacobi problem. Following the same patterns as in
previous Sections and [60] (see also an approach to the problem for higher-order field theories in [I50]),
the natural definition for the generalized Hamilton-Jacobi problem in the unified setting is the following.

Definition 4.10. The generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem (or gen-
eralized kth-order unified Hamilton-Jacobi problem) consists in finding a section s € C(pre-1g) and a

vector field X € X(Tk_lQ) such that the following conditions are satisfied:

1. The submanifold Im(s) — W is contained in Wr.

2. If v: R— kalQ is an integral curve of X, then its lifting to W by s, soy: R — W, is an integral
curve of Xr g, that is,

Xoy:‘y:>XLHo(so’y):s<.>’y. (4.11)

It is clear from Definition m that the vector field X € %(T’“_lQ) cannot be chosen independently
from the section s € T'(ppr-1). Indeed, we can prove the following result.

Proposition 4.14. The pair (s, X) € I'(prr-1g) X X(T*1Q) satisfies the two conditions in Definition
if, and only if, Xrg and X are s-related.
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Proof. The proof of this result follows the same patterns that the proof of Propositions and In
particular, if the pair (s, X) satisfies the two conditions in Definition then for every integral curve
~v of X, we have

Xppo(soy)=507=Tsoy=TsoXor,

but, since X has integral curves through every point y € kalQ7 this is equivalent to Xy os=Tso X.

Conversely, if X,y and X are s-related, and v: R — TF71Q is an integral curve of X, we have
Xigosoy=TsoXoy=Tso4y =507,

which proves condition (4.11]). The first condition in Definition is then satisfied automatically, since
every integral curve of Xy must lie in the submanifold W, < W, as the vector field X,z € X(W) is
tangent to We. O

That is, the vector field X € X(T*'Q) is related to the vector field X7z € ¥(W) and the section
s € F(kale). Moreover, from Proposition composing both sides of the equality X;gos=Tso X
with Tprr-1¢, and bearing in mind that s € I'(ppx-1¢), we obtain the following result.

Corollary 4.15. If s € I'(ppr-1¢g) and X € %(Tk_lQ) satisfy the two conditions in Deﬁnition
then X = Tkale o XLH o S.

Proof. If (s, X) satisfy the two conditions in Definition then from Proposition X and X g are
s-related, that is, we have T's o X = Xy os. Then, composing both sides of the equality with Tpr-14
and bearing in mind that ppr-15 0 s = Idpe-14, we have X = Tpre-150 Xpg os. O

That is, the vector field X € %(Tk_lQ) is completely determined by the section s € I'(ppr-1¢), and
it is called the vector field associated to s. The following diagram illustrates the situation

T(TF1Q) <1y
Ts
X XLH

Prk—1g

Tk—lQ - W

\_/

S

Therefore, the search of a pair (s,X) € I'(prr-1g) X X(T*'Q) satisfying the two conditions in
Definition is equivalent to the search of a section s € I'(prr-14) satisfying the same conditions with
the associated vector field Tppr-15 0 Xy g o s. Thus, we can give the following definition.

Definition 4.11. A solution to the generalized kth-order unified Hamilton-Jacobi problem for Xpg
consists in finding a section s € I'(prr-1) satisfying the following conditions:

1. The submanifold Im(s) < W is contained in Wr.

2. If v: R — TF71Q is an integral curve of Tppr—1goXrmos € %(Tk_lQ), then sovy: R —= W is an
integral curve of Xpg, that is

Tprr-igo Xpgosoy=+4=> Xygo(soy) =507.

Now we can state the following result, which is the analogous to Propositions[f:3]and [£.7]in the unified
formalism.
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Proposition 4.16. The following assertions on a section s € I'(prr-1¢) are equivalent.

1. s is a solution to the generalized kth-order unified Hamilton-Jacobi problem.

2. The submanifold Tm(s) — W is invariant under the flow of the vector field X1 solution to equation
(3.6) (that is, Xru is tangent to the submanifold Im(s)).

3. The section s satisfies the equation
i(X)(s"Q) = d(s"H),

where X = Tpre-15 0 Xy o s is the vector field associated to s.
Proof. This proof follows the same patterns as the proofs of Propositions and In particular,

(1 < 2) Let s be a solution to the generalized kth-order unified Hamilton-Jacobi problem. Then by
Proposition the vector field Xy € X(W) solution to equation (3.6) is s-related to the vector
field X = Tppr-1go Xpmos € %(Tk_lQ) associated to s, and thus for every § € TF1Q we have

Xeu(s(y)) = (Xpu 05)(y) = (Ts 0 X)(g) = Ts(X (7)) -

Hence, X1 (s(7)) = Ts(X (7)), and therefore Xy is tangent to the submanifold Im(s) < W.
Conversely, suppose that the submanifold Im(s) < W is invariant under the flow of X g. Then,
Xru(s(y)) € Ty Im(s), for every § € Tk=1Q; that is, there exists an element uy € TgT’“lQ
such that Xpp(s(g)) = Tys(uy). If we define X € X(T*'Q) as the vector field that satisfies
Tys(Xy) = Xru(s(7)), then X is a vector field in T*7'Q, since X = Tpre-1g 0 Xpm o s, and it
is s-related with Xy g. Therefore, by Proposition s is a solution to the generalized kth-order
unified Hamilton-Jacobi problem.

(1 <= 3) Let s be a solution to the generalized kth-order unified Hamilton-Jacobi problem. Taking the
pull-back of the dynamical equation (3.6]) by the section s we have

s*i(Xpp)Q =s"dH =d(s"H),

but since X and Xy g are s-related by Proposition we have that s* (X g)Q = i(X)s*Q2, and
hence we obtain
i(X)s*Q=d(s"H).

Conversely, consider the following vector field along the section s € I'(ppr-1¢)
Dig=Xrgos—TsoX: Tk_lQ%TW.

We want to prove that Dpg = 0. Equivalently, we can prove that Qg (Dru (), Zs(z)) = 0 for
every tangent vector Zyy € Ty W, thus implying that Dpg(y) € kerQy, and then prove that
Drg = 0 in ker Q (recall that, in the unified formalism, the 2-form Q € Q*(W) is presymplectic).
Taking the pull-back of the dynamical equation , and using the hypothesis, we have

s*( X)) = s*dH = d(s*H) = 4(X)(s*Q),

and then the form s* (i(X 1 5)Q)—i(X)(s*Q) € Q'(T*~1Q) vanishes. Therefore, for every §j € TF71Q
and ug € Tngle, we have
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Therefore, Qg5 (Dru(¥), Asy)) = 0, for every Ay € Ty Im(s). Now recall that every section
defines a canonical splitting of the tangent space of W at every point given by

TsgpW = Ty Im(s) @ Vs(y)(PkalQ) .

Hence, we only need to prove that Qg (Dru(9), Bsy)) = 0, for every vertical tangent vector
By(y) € Vg (pre-1¢). Equivalently, since the canonical symplectic form wy_; € Q*(T* (TF1Q))
vanishes by the contraction of two 7 pk-1¢-vertical vectors, then €2 is annihilated by the contraction
of two ka_lQ—vertical vectors, and therefore it suffices to prove that Dy y is vertical with respect
to pre-1¢. Indeed,

Tprr-1go Dy = Tpre-1go(Xpgos—TsoX)=Tprr-1go Xpgos—Tppr-1g0Ts0o X
=Tprr-1goXrgos—T(ppr-1gos)o X =Tppr-1go Xpgos—X =0.

Therefore Qg5 (Dru(y), Zsy)) = 0, for every Zyz) € Ty W. Therefore, we have proved that
Dru(y) € ker 1y, and it remains to prove that Dyg = 0 in this vector space. Recall that in
Sectionwe proved that ker Q = XV (¥2) (W), and hence what we have just proved is that Dy p
is po-vertical, that is,

TpsoDryg =Tpso(Xpgos—TsoX)=0,

and, in particular, we have
TpsoXpgos=TpyoTso X.

Now, from Lemma and Theorem the vector field Xz € X(W) solution to the dynamical
equation (3.6) is po-related to the Hamiltonian vector field solution to equation (2.46), that is,
Tps 0o X1 = X o po. Hence, the previous relation becomes

Xpopros=TpyoTsoX.

Then, from Theorem the Hamiltonian vector field solution to equation and the La-
grangian vector field solution to equation are FL-related, that is, TFLo Xy = X, o FL.
In particular, since FL is a diffeomorphism, we have Xj, = TFL o X, o FL!. Replacing X} by
TFLo X, oFL ! in the previous equation, we have

TFLoX,oFL Yopyos=TpyoTsoX < XpoFL 'opyos=TFL 'oTpyoTsoX
Then, bearing in mind that FL o p; = ps = p1 = FL ' 0 py, we obtain
Xpopios=TpyoTsoX

Finally, using Lemma and Theorem the vector field X,z € X(W) solution to the dynamical
equation (3.6]) is p1-related to the Lagrangian vector field solution to equation (2.34]), and hence

TproXrgos=TproTso X,

which is equivalent to Tp; o (Xpgos—TsoX)="Tp; o Dy = 0. That is, we have proved that if
Dy is po-vertical, then it is also pj-vertical. And, reversing the reasoning, the converse is obvious.
In particular, this implies that Drg(7) € Vi(g)(p1) N Vi) (p2) but, since Vi, (p1) N Vi (p2) = {0} for
every w € W, we proved that Dy g = 0, that is, X1z and X are s-related, and by Proposition [4.14]
s is a solution to the generalized kth-order unified Hamilton-Jacobi problem. O

Let us compute in coordinates the condition for a section s € I'(ppr-15) to be a solution to the
generalized kth-order unified Hamilton-Jacobi problem. Let (q(;‘) be a set of local coordinates in @), with
1 <A< n, and (qu,qf,pfg), 0<i< k-1, k<j<2k—1 the induced local coordinates in W (see

Section for details). These coordinates are adapted to the prr-1g-bundle structure, and hence a

section s € T'(ppr-14) is given by s(g?) = (¢, sf,ag), where s;‘, oy are local functions in T*~1Q.
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From Proposition an equivalent condition for a section s € I'(prr-1¢) to be a solution to the
generalized kth-order unified Hamilton-Jacobi problem is that the dynamical vector field Xy is tangent
to the submanifold Im(s) < W, which is defined locally by the 2kn constraints q;l — 534 = 0 and
pY — a% = 0. From the results on Section we know that the vector field Xrmz € X(W) solution to

the dynamical equation (3.6)) is given locally by (3.13]), that is,

2k—2

Zq Lpa_d +353+(85_pu>5
”13 A 361% R R )

where the functions F4 are the solutions to equations (3.16). Hence, requiring X7, H(qJ — 55 4) =0 and
Xru(pYy —ay) =0 on Im(s), we obtain the following system of 2kn partial differential equatlons

s s 2 Oss 0si)
A B J B _Y°j A B 2k—1 BY%2k—1
Siuq — —= — 8 =0 ; F° - -5 =0,
Jj+1 ; 9141 66]13 k 5q;§,1 g Q41 aqlB k 56];?,1
(4.12)
9al g 0a’, oL dal da’
B A A B A B A
Q155 — =0 ; - q - =0.
an g I+1 aqlB k} 8qk . 8(]7‘:4 Z l-‘rla B 8qu_1
with 1 <i < k-1, k <j <2k —2. Thisis a system of 2kn partial differential equations with 2kn

34, aA. Hence, a section s € I'(pre-1) is a solution to the generalized kth-order

Lagrangian-Hamiltonian Hamilton-Jacobi problem if, and only if, its component functions satisfy the
local equations (4.12).

unknown functlon s

4.3.2 The Lagrangian-Hamiltonian Hamilton-Jacobi problem

As in the Lagrangian and Hamiltonian formalisms described in previous Sections, to solve the generalized
kth-order unified Hamilton-Jacobi problem is a difficult task in general, since we must find kn-dimensional
submanifolds of W contained in the submanifold W, = graph(FL) and invariant by the dynamical
vector field X . Hence, it is convenient to consider a less general problem and require some additional
conditions to the section s € T'(ppr-14)-

Definition 4.12. The kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem consists in finding
sections s € I'(pre-15) solution to the generalized kth-order unified Hamilton-Jacobi problem such that
s*Q = 0. Such a section is called a solution to the kth-order unified Hamilton-Jacobi problem.

From the definition of Q € Q?(W) given in Section we have
s*Q = s*(pswr—1) = (p2 0 8) wk_1 -

Hence, we have that s*Q = 0 if, and only if, (ps 0 s)*wr—1 = 0. As I'(mpe-15) = QYT*1Q), the section
p20s € (mrr-1) is a 1-form in TH1Q, and from relation (4.6) we have

(p208) wp—1 = (p20s)"(—=dbi—1) = =d((p2 0 5)"0k—1) = —d(p205).

Hence, the condition s*Q = 0 is equivalent to py o s € Q' (TF¥7'Q) being a closed 1-form. Therefore,
Definition £.12] can be rewritten as follows.

Definition 4.13. The kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem consists in finding
sections s € I'(prr-1¢) solution to the generalized kth-order unified Hamilton-Jacobi problem such that
p2 0 s is a closed 1-form in TF71Q.

Taking into account the additional assumption on the section s € I'(prr-14), a straightforward con-
sequence of Proposition is the following result, which is the analogous to Propositions [£.4] and [£.§] in

the unified formalism.
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Proposition 4.17. The following assertions on a section s € I'(ppr-14) such that s*Q = 0 are equivalent.

1. s is a solution to the kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem.
2. d(s*H) =0.
3. Tm(s) is an isotropic submanifold of W invariant by Xpg.

4. The integral curves of Xpg with initial conditions in Im(s) project onto the integral curves of
X = Tka—lQ o XLH O Ss.

Let us compute in the natural coordinates of W the local equations for a section s € T'(ppr-1) to
be a solution to the kth-order unified Hamilton-Jacobi problem. From Definition [£.12] we must require
s*€) = 0 or, equivalently, following Definition we can require the 1-form p; o s to be closed, that is,
d(pz0s) = 0. Locally, if s(¢*) = (¢, sj‘,ai‘% then (p205)(g) = (¢, ay), and the condition d(pgos) = 0
gives equations , that is,

ooty 0o . S,
8qj§ —WEZO, with A# Bori#j.

Equivalently, from Proposition[4.17] we know that this condition is equivalent to d(s*H) = s*(dH) = 0.
Then, bearing in mind the coordinate expression (3.7) of the 1-form dH, the condition d(s*H) = 0 holds
if, and only if, the following kn partial differential equations are satisfied

7

quaosz +SkBaa’;;1 +ak_1askB B ( oL oL as,?>
1 9gg 9t B ogt  \0qg ' 0qP 0qf
Ao okt 9sB ( aL oL asB>
B B B -1 k—1 k k
q; + s +ao, tap — - |\=—+=z5=35)=0,
Togt T ot A TP gt \dgf T 9P g

where 1 <1<k —1.

Therefore, a section s € I'(prx-14) is a solution to the kth-order Lagrangian-Hamiltonian Hamilton-
Jacobi problem if, and only if, the local functions 534, oy satisfy the system of partial differential equations

given by (4.12) and (4.8)), or, equivalently, (4.12)) and (4.13). Observe that the system of partial differential

equations may not be C'*°(U)-linearly independent.

4.3.3 Equivalent formulation

Since the vector field Xz € X(W) solution to the dynamical equation is tangent to the submanifold
Wr <= W, we can state the (generalized) kth-order unified Hamilton-Jacobi problem directly in the
submanifold W, which is the real phase space of the system. Let X, € X(W,) be the unique vector
field in W, which is j.-related to X g, and we consider in W, the 2-form 2, = j7Q € O2(W,) and the
restricted Hamiltonian function H, = jiH € C®(W;).

Observe that (W, €,) is a symplectic manifold, since the map p£ = py o js: Wy — T?*71Q is a
diffeomorphism by Proposition and in addition we have (p¥)*w,; = Q,. That is, pf is a symplecto-
morphism between the symplectic manifolds (T?*7'Q,w,) and (W, Q).

Remark. As the kth-order Lagrangian function is hyperregular, by Proposition we know that the
map p5 = py o jr = FLo pL: W,y — T*(TF1Q) is also a diffeomorphism. In addition, since

(p5)*wi—1 = (FLo pf ) 'wie—1 = (pf) (FL wr—1) = (pT) we = Qo

we deduce that the map p§ is also a symplectomorphism, in this case between the symplectic manifolds
(We,Q,) and (T*(TF1Q), wi_1). O
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Since X, and Xy are jo-related, X, is the unique vector field in W, solution to the equation
i(Xo)Q = dH, . (4.14)

Let p%k_lQ = prr-1g0Jc: We — T*1Q be the canonical submersion, which is the restriction of PTE-10
to W,. Thus, Definition can be reformulated as follows.

Definition 4.14. The generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in W,
(or generalized kth-order unified Hamilton-Jacobi problem in W, ) consists in finding a section s, €
F(pék_lQ) and a vector field X € X(T*71Q) such that if v: R — TF71Q is an integral curve of X, then
So07: R —= W, is an integral curve of X,, that is,

XOVZ"}/:>XOO(SOO’Y)=SO.O’Y- (415)

In this formulation, Proposition and Corollary are stated as follows.
Proposition 4.18. The pair (s,, X) € I‘(pék,lQ) x X(T*'Q) satisfies condition [@.15)) if, and only if,
X, and X are s,-related.
Proof. This proof is analogous to the proofs of Propositions and O
Corollary 4.19. If the pair (s,, X) satisfies condition (4.15)), then X = Tpék_lQ 0X,08,.

Hence, Definition |4.11| now reads as follows.

Definition 4.15. A solution to the generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi prob-
lem in W, is a section s, € F(p‘T:k,lQ) such that, if v: R — T*1Q is an integral curve of the vector field

Tp%k,lQ o X,0s8, € %(Tk_lQ), then s, 0v: R — W, is an integral curve of X,, that is
TprfakleOXoosoov:")/:>X00(sooq/) =5,067.

To close the generalized Hamilton-Jacobi problem, Proposition [£.16] now is stated as follows.

Proposition 4.20. The following assertions on a section s, € F(pék_lQ) are equivalent.

1. s, is a solution to the generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in
We.

2. The submanifold Tm(s,) — W, is invariant under the flow of the vector field X, solution of the
equation (4.14)) (that is, X, is tangent to the submanifold Im(s,)).

3. The section s, satisfies the equation
7;(‘X’)('ST)QO) = d(S:Ho) ) (416)

where X = Tp%k,lQ o X, 08, is the vector field associated to s,.
Proof. The proof of this result follows the patterns in the proofs of Propositions 47 and O

For the kth-order Lagrangian-Hamiltonian Hamilon-Jacobi problem stated in Section [.3.2] Definition
4.12]in this formulation is stated as follows.

Definition 4.16. The kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in W, (or kth-
order unified Hamilton-Jacobi problem in W, ) consists in finding sections s, € F(pék,lQ) solution to
the generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem on Wy such that s3€Q, = 0.
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And Proposition now reads:

Proposition 4.21. Let s, € F(pék,lQ) be a section such that s3$), = 0. Then, the following assertions
are equivalent.

1. s, s a solution to the kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in W, .
2. d(stH,) = 0.
3. Tm(s,) is a Lagrangian submanifold of W, invariant by X,.

4. The integral curves of X, with initial conditions in Im(s,) project onto the integral curves of the
associated vector field X = Tp%k,lQ oX,o0s,.

Finally, the following result ensures the equivalence between the formulation given in the manifold W
in Sections and and the one given in this Section for the submanifold W,.

Proposition 4.22. Let s, € F(pék,lQ) be a solution to the (generalized) kth-order unified Hamilton-

Jacobi problem in Wr. Then, the section s = jr o s, € T'(prr-1g) is a solution to the (generalized)
kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in WV.

Conversely, if s € I'(pre-1) is a solution to the (generalized) kth-order unified Hamilton-Jacobi problem
in W, then there exists a section s, € F(p%k_lQ) which is a solution to the (generalized) kth-order
Lagrangian-Hamiltonian Hamilton-Jacobi problem in Wp.

Proof. Let s, € I‘(prﬁk,1 Q) be a solution to the generalized kth-order unified Hamilton-Jacobi problem
in W,. First, let us prove that s = jsos, € F(ka—lQ), that is, s = jr o s, is a section of the projection
Prk-1Q- In f&Ct,

PrTR-1Q ©8 = Prk-1Q © JL O So = p%k_lQ 08, =Idpr-19,
since s, € F(pék_lQ).

Next, from Lemma 7vve have that if X, X € X(T*"'Q) are the associated vector fields to s and
So, respectively, then X = X. Thus, we denote both vector fields by X. Then, let v: R — Tk_lQ be an
integral curve of X, and we want to prove that so~y: R — W is an integral curve of X 5. Computing,

Xpmo(soy)=Xpuojeos,oy=TijroX,08,0y=Tjro5,07
=TjeoTsyoy=Tsoy=507,
where we have used that Xy and X, are jo-related, and that s, fulfills condition (4.15) with the

associated vector field. Thus, s o~y is an integral curve of X g, that is, s = j, o s, is a solution to the
generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem.

Now we suppose, in addition, that s}, = 0. Then
§T Q= (jr 050)"Q = s5(jz2) = 5500 = 0.
Hence, if s, is a solution to the kth-order unified Hamilton-Jacobi problem in W,, then s = jz o s, is a
solution to the kth-order unified Hamilton-Jacobi problem in W.

Conversely, let s € I'(ppr-15) be a solution to the generalized kth-order Lagrangian-Hamiltonian
Hamilton-Jacobi problem in W. Then, by the first condition in Definition we have Im(s) C W,,
and thus there exists a map s,: Tk_lQ — W, such that jz o s, = s. In addition, composing this last
equality with pék,lQ, we have

Idpr-1g = prr-1 08 = pre-19 © Jo © S0 = Pék—lQ 0 S0,
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and thus s, is a section of the projection pék_lQ. We will prove that this section s, € F(pf,k_lQ) satisfies
condition (4.15). Again, from Lemma we have that if X, X € X(TF7'Q) are the associated vector

fields to s and s,, respectively, then X = X. Hence we denote both vector fields by X.

From Proposition the section s, € I’(pf,k,1 Q) defined in the previous paragraph is a solution to
the generalized kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem in W, if, and only if, the
following equation holds

(X)) (s200) — d(s°H,) = 0.

Computing, we have

i(X)(5580) — d(syHo) = i(X)(s5(32) — d(s5(i2H)) = i(X)((jz 0 50)"Q = d((jiz © 50)"H)
= i(X)(s*Q) —d(s*H) =0,

since by Proposition [£.16] the last equation holds whenever s is a solution to the generalized kth-order
Lagrangian-Hamiltonian Hamilton-Jacobi problem.

Finally, let s be a solution to the kth-order Lagrangian-Hamiltonian Hamilton-Jacobi problem, that
is, we suppose in addition that s*2 = 0. Then,

556 =857 = (Jrose) N =8"Q=0.

Therefore, if s is a solution to the kth-order unified Hamilton-Jacobi problem in W, then the induced
section s, € F(pék,lQ) satisfying s = j, o s, is a solution to the kth-order unified Hamilton-Jacobi
problem in W,. O

Remark. The main drawback of this equivalent formulation of the kth-order Hamilton-Jacobi problem in
the Skinner-Rusk setting is that W, has not a natural set of coordinates. This is due to the identification
W, = graph(F L), which implies that the coordinates in W, depend on the kth-order Lagrangian function
provided. Hence, it is easier to consider the problem in W, where we do have a set of natural induced
coordinates, and drag the condition Im(s) C W, at every step. O

4.3.4 Complete solutions

As in the Lagrangian and Hamiltonian formalisms, we are interested in finding not only a particular
solution to the Hamilton-Jacobi problem, but a complete solution. In order to do so, we generalize the
concept of complete solutions given in Sections and to the unified formalism, bearing in mind
the definition of a particular solution given in Definition

Definition 4.17. A complete solution to the kth-order unified Hamilton-Jacobi problem is an embedding
d: U xTF1Q = W, with U CR*™ an open set, such that the following conditions are satisfied:

1. Im(®) C W, is an open subset, that is, ®: U X TF1Q — W, is a local diffeomorphism.

2. For every A € U, the map sx(e) = ®(A,e): T*=1Q — W is a solution to the kth-order Lagrangian-
Hamiltonian Hamilton-Jacobi problem.

It is clear from this last definition that a complete solution to the kth-order unified Hamilton-Jacobi
problem endows the submanifold W, — W with a foliation transverse to the fibers, and that every leaf
of this foliation is invariant by the vector field X g solution to the dynamical equation (3.6).

Remark. It is important to point out that it is the submanifold W, < W which is endowed with a
foliation by a complete solution, rather than V. This is due to the fact that the real phase space of the
problem is W, and not W. o
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Let ® be a complete solution, and we consider the family of vector fields
{XA = Tkale oXrgosy € x(TkilQ) | AeUC Rkn} ,

where sy = ®(\, o). Then, the integral curves of X}, for different A\ € U, provide all the integral curves
of the vector field X g solution to the dynamical equation . That is, if w € W,, then there exists
Ao € U such that if § = (ppr-1g0jc)(w) then sy, (y) = w, and the integral curve of X, through 7, lifted
by sx, to We — W, gives the integral curve of X g through w.

4.3.5 Relation with the Lagrangian and Hamiltonian formalisms

Finally, we state the relation between the solutions of the Hamilton-Jacobi problem in the unified for-
malism and the solutions of the problem in the Lagrangian and Hamiltonian settings given in Sections
and Observe that, since the kth-order Lagrangian function is hyperregular, the submanifold
W < W is diffeomorphic (actually, symplectomorphic) to both T?*71Q and T*(T*~'Q) via the maps
pt and p%, respectively. It is clear then that this fact enables us to establish a one-to-one correspondence
between the solutions of the Hamilton-Jacobi problem in the three formalisms.

Theorem 4.23. If s € I'(prr-1¢) is a solution to the (generalized) kth-order Lagrangian-Hamiltonian

Hamilton-Jacobi problem, then the sections sp = p10os € F(pi”i—ll) and o = pyos € QYT 1Q) are solu-

tions to the (generalized) kth-order Lagrangian and Hamiltonian Hamilton-Jacobi problems, respectively.
Conversely, if sg € T(pp" 1Y) (resp., a € QYT*'Q)) is a solution to the (generalized) kth-order La-
grangian (resp., Hamiltonian) Hamilton-Jacobi problem, then s = jz o (pf) ™' o sz € T(ppr-1g) (resp.,
s =jeo(pf) toa € L(prr-1g)) is a solution to the (generalized) kth-order Lagrangian-Hamiltonian
Hamilton-Jacobi problem.

Proof. Let us first prove that if s € I'(ppr-1¢), then the maps sz = p1 0 s and @ = py o s are sections of
the projections pi’i‘ll and mpr-1¢, respectively. Computing, we have for s

2k—1 2k—1
Piy ©8c =P, ©p108=pre-1g0s=Idpr1g),

and for «
Tpk—-1Q O O = Tpk—-1Q O P2 0 8 = Prh—1 O 8 = IdT,ﬁlQ .
Therefore, we have sz = p1 o s € D(pp"}") and @ = pp 0 5 € QY(T*1Q).

Next, from Lemmas and and Theorems d the vector field Xpp € X(W)

tangent to W, and solution to the dynamical equation (3.6 is pi-related to the Lagrangian vector
field X, € X(T?**71Q) solution to equation (2.34), and also py-related to the Hamiltonian vector
field X, € X(T*(T"'Q)) solution to equatio. Thus, using Lemma we have that if
X, X, X ¢ %(TkilQ) are the vector fields associated to s, s = p; os and o = pg o s, respectively,

then X = X = X. Hence, all of them are denoted by X.

Now, let s € T'(ppr-1 Q) be a solution to the generalized kth-order unified Hamilton-Jacobi problem.

We want to prove that s = p1os € F(pi’i‘ll) and a = pyos € Q' (TF71Q) are solutions to the generalized

kth-order Lagrangian and Hamiltonian Hamilton-Jacobi problems, respectively. Let v: R — Tk_lQ be
an integral curve of X. Then, for the Lagrangian section,

Xgo(scoy)=Xgoprosoy=TproXygosoy
=Tprosoy=T(pros)oy=Tscoy =507,
and, for the Hamiltonian 1-form,
Xpo(aoy)=Xpoprosoy=TpyoXrgosory
=Tpr0507 =T(ppos)oy=Taoj=a07.
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Now we suppose in addition that s*(2 = 0. Then, for the Lagrangian section s, we have
spwe = (p108)'we = s"(pjwg) = s"Q =0,
since 2 = pjw, by Lemma @ Now, for the Hamiltonian 1-form a we have
da = —a*wi—1 = —(p2 0 ) wk—1 = —s*(Pwr—1) = =" =0,
from the definition of €2 given in Section and relation .

Therefore, if s € I'(pre-1g) is a solution to the (generalized) kth-order Lagrangian-Hamiltonian
Hamilton-Jacobi problem, then sp = pjos € F(pikjll) and o = py 0 s € Q1 (T*1Q) are solutions to the
(generalized) kth-order Lagrangian and Hamiltonian Hamilton-Jacobi problems, respectively.

For the converse, let sp € I‘(pik__ll) be a solution to the generalized kth-order Lagrangian Hamilton-

Jacobi problem. We will first prove that the section s, = (pf)™' o s, € F(pék,1 Q) satisfies condition
[@.15). First, let us prove that the map s, = (p£) "' o s.: T*"'Q — W is a section of the projection
Prr-1g- In fact,

P%k‘*lQ 080 = P%kle o(pf) tose = pi’iﬁl osg =Idpr-1q,
since prr-1 0 jc = pik__ll o p1 o jr implies pik__ll = p%k,lQ o (pf)~1.

Next, note that since pf is a diffeomorphism, it is clear that the Lagrangian vector field X and the
vector field X, € X(W,) solution to the equation are pf-related (or, equivalently, (pf)~!-related).
Thus, from Lemma we have that if X, X € X(T*'Q) are the associated vector fields to s, and
5o = (pF) "t osg, then X = X.

Then, let v: R — TF71Q be an integral curve of X. Computing, we have
Xo0(s007) :Xoo(pf)iloSLO'Y:T(Pf)il oXgosgoy
=T(pf) ' oszoy=T(p7) " oTsc o5
=T((pf) " osc) oy =Tso0q =5,07.

Now, let us suppose, in addition, that s;w,; = 0. Then, since pF: W, Q,) — (T%_lQ,wL) is a
symplectomorphism, we have

500 = ((P¥) " 05£)" Q0 = sZ(((pf) )" Q) = spwe = 0.

Therefore, if s, € F(pik:ll) us a solution to the (generalized) kth-order Lagrangian Hamilton-Jacobi
problem, then the section s, = (pf)~' o sz € I'(prr-1¢) is a solution to the (generalized) kth-order
Lagrangian-Hamiltonian Hamilton-Jacobi problem in W,. Then, using Proposition [{:22] the section
s=jro(pf)toss € F(pék,lQ) is a solution to the (generalized) kth-oder Lagrangian-Hamiltonian
Hamilton-Jacobi problem in W.

As we have pointed out in the remark at the beginning of Sectionm the map p5: W,y — T* (T’“lQ)
is also a symplectomorphism, between the symplectic manifolds (W, Q,) and (T*(T*"'Q),wy_1). There-
fore, the same proof applies for the Hamiltonian 1-form o € Q! (Tk ~1Q) solution to the (generalized)
kth-order Hamiltonian Hamilton-Jacobi problem. O

4.4 Examples

In this last Section of the Chapter, two physical models are analyzed as examples to show the application
of the formalism. Contrary to Chapter |3 in this Chapter both examples are regular systems. The first
example is the end of a thrown javelin, and the second one is the shape of a homogeneous deformed
elastic cylindrical beam with fixed ends.
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4.4.1 The end of a thrown javelin

Let us consider the dynamical system that describes the motion of the end of a thrown javelin. This
gives rise to a 3-dimensional second-order dynamical system, which is a particular case of the problem
of determining the trajectory of a particle rotating about a translating center [36]. Let Q@ = R3 be the

manifold modeling the configuration space for this system with coordinates (g3, 2, 3) = (¢3'). Using the
induced coordinates in T?R®, the Lagrangian function for this system is

2 (- )

This is a regular Lagrangian function since the Hessian matrix of £ with respect to the second-order

velocities is
82
<(“)q 8q2 >

L(g5. qi a3) =

l\D\»—A

o O =
o = O
_ o O

which is a 3 x 3 invertible matrix.

Lagrangian formulation of the Hamilton-Jacobi problem

The Poincaré-Cartan forms 6, and w,, and the Lagrangian energy are locally given by
3 3
= > (o + ¢)dgg — g'dat’) 5 we = Z (dgg' A daf* + dggt A dgg' — dgi* Adgg')
A=1 A=1

3
== (@) +2qia8 — (@8)?).

A=1

l\J\»—A

Thus, the semispray of type 1, X, € X(T?R?), solution to the dynamical equation (2.34) is

9 9 9 9
X¢ qlaA+q§‘aA+q§‘aA qg‘aq

Consider the projection p$: T3R3 — TR3. From Propositionwe know that the generalized second-
order Lagrangian Hamilton-Jacobi problem consists in finding sections s € I'(p}) such that the Lagrangian
vector field X is tangent to the submanifold Im(s) < < TR3. Suppose that the section s is given locally
by s(qd', qi') = (q0 ,qi, 54, s8). As the submanifold Im(s) is defined locally by the constraint functions
¢ — 53 and q3 - 5’34, then the tangency condition gives the following system of 6 partial differential
equations for the component functions of the section

Ds4
dq?

Iq¥

0s4 dsi
A _  BO% B Y53 A
S3 — 8 =0 ; s +q

B
5 TS
16 28qlB 2

:0,

with 1 < A < 3.

In order to obtain the equations of the second-order Lagrangian Hamilton-Jacobi problem, we require
in addition the section s € I'(p}) to satisfy the condition d(s*E.) = 0, or, equivalently, s*w,; = 0. From
the local expression of the Cartan 2-form w, € Q? (T‘SRS) given above, taking the pull-back by the section
s(qd', af') = (g8, qf, 53, s5') we obtain

3

Ds4! 0s 0Os Dss!
=Z[dq5‘Adqf‘ aquoAdqo (a%+ai)dqémqf aBd i A dg?
A=1

133



CHAPTER 4. GEOMETRIC HAMILTON-JACOBI THEORY FOR HIGHER-ORDER AUTONOMOUS SYSTEMS

Hence, the condition s*w, = 0 gives the following partial differential equations

ds4  Osh 853 0s8 Jsy  0sy
=—= = —=0,ifA#B ;
+ , it A# C 9k + 3 9

985 _ _ 1=0.
og¥  0qF  0qF  Oqd *

Hence, the section s € T'(p?) is a solution to the second-order Lagrangian Hamilton-Jacobi problem if the
following system of partial differential equations holds

A 3352 A852 . A353 3853

83 = 183+28AaQ18A+2aB+ 07
ds4  0sP _0 - 3s§4+as§4+120
daf g5 " Ogt Ogf

Finally, we compute the equations for the generating function W. The pull-back of the Cartan 1-form
0, by the section s gives in coordinates

3

50 = > ((gf* + 53)dgg — s3'dgf?) .
A=1

Hence, requiring s*0, = dW for a local function W defined in TQ we obtain

oW A A ow A
— = + s ;. — = —S5 ,
8%4 q1 3 8q{‘ 2

and thus from d(s*Ez) = 0, we have s*E, = const., that is,

AW 1 s (OWNZ))
,;( aA—2<(q1A)+<aqi4> ))-const.

Remark. This equation cannot be stated in the general case, since we need to clear the higher-order
velocities from the previous equations. This calculation is easy for this particular example, but it depends
on the Lagrangian function provided in every system. O

Hamiltonian formulation of the Hamilton-Jacobi problem

Now, to establish the Hamiltonian formalism for the Hamilton-Jacobi problem, we consider natural
coordinates (gg', ¢*, p%,pY4) on the cotangent bundle T*(TR?). Then the Legendre-Ostrogradsky map
FL: T°R? — T*(TR?) associated to the Lagrangian function £ is

FLq =g 5 FLqi=4qf 5 FLYY=¢'+d) ; FLYY=—df,
and the inverse map F£': T*(TR3) — T?R3 is given by
(FLYq = ¢+ (FLY 9t =qf 3 (FLY'@ =-py  (FLY ¢ =p%—df.

From these coordinate expressions it is clear that the Legendre-Ostrogradsky map is a global diffeomor-
phism, that is, £ is a hyperregular Lagrangian function.

The Hamiltonian function h € C°°(T*(TR?)) is
3
h=(FL Z phait — (q1 )? + (ph)?)

Thus, the Hamiltonian vector field X; € X(T*(TQ)) solution to equation (2.46) is

0 0 0
_ A 1 A_ 0
h=q; py pAiaq{l + (g1 p“‘)iapi, :
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Consider the projection mrg: T*(TR?*) — TR3. From Proposition we know that the generalized
second-order Hamiltonian Hamilton-Jacobi problem consists in finding 1-forms o € Q*(TR?) such that
the Hamiltonian vector field X}, is tangent to the submanifold Im(a) < T*(TR?). Suppose that the
I-form « is given locally by a = a%dgg! + aldgf'. As the submanifold Im(«) is defined locally by the
constraint functions pY — a% and ply — o4, then the tangency condition gives the following system of 6
partial differential equations for the component functions of the form

80[ 3040 (90[1 3041

B A A A 0 B A 1 A
+ap—4=0 ; —ay — g —= tap—= =0

a; (9 B BaqlB 9 q1 A g7 8(]68 BaqlB 5

with 1 < A< 3.

In order to obtain the equations of the second-order Hamiltonian Hamilton-Jacobi problem, we require
in addition the 1-form o € Q'(TR3?) to be closed. In coordinates, this condition is

daly  dak
og’  Ogit

Doy ol . 0o 00h o yasp
6‘10 aql 7 7 ’

=0, ifA#B.
8(]03 6(]64 y 1 #

Hence, the 1-form o € Q'(TR?) is a solution to the second-order Hamiltonian Hamilton-Jacobi problem
if the following system of partial differential equations holds

9o a 0 6 ; o

daly  9a 6@0 80403 . 8@ L dak
_ - : 7_7: JifA#B ; —&— =0, if A#B.

oqf  Oqi qf  Oqd dqP  Oqf

Finally, we compute the equations for the generating function W. Requiring o = dW for a local
function W defined in TQ), we obtain

o) = —+ ay = —,
A7 0t T T g

and thus from d(a*h) = 0, we have a*h = const., that is,

AW 1 o (OWNPY)
;( 8A—2<(q14) +<M> >> = const. .

Observe that this equations coincides with the Hamilton-Jacobi equation given previously in the La-
grangian problem.

A particular solution of this Hamilton-Jacobi equation in dimension 1 has been obtained in [36]. This
particular solution is

1
W(qo,q1) = \/ﬁ/dfh\/—fﬁ +coq1 —c1+ceq 5 (c1,c2 €R).

Lagrangian-Hamiltonian formulation of the Hamilton-Jacobi problem

In the induced natural coordinates (¢3', ¢*, ¢3', ¢4', p%, pY) of W, the coordinate expressions of the presym-
plectic form Q = piw; € Q*(W) and the Hamiltonian function H = C — £ € C*°(W) are

1
Q=dgg' Adpl +dai Adph 5 H =il +as'ph — 5 ((a) - (68)?) -
Thus, the semispray of type 1 X € X(W) solution to the dynamical equation (3.6) and tangent to the
submanifold W, = graph(FL) — W has the following coordinate expression
A0 a0 40

0 1, 0
Q18A+q25,4+q38q2 q28A+( pA)%'

X 1
A
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In the generalized second-order Lagrangian Hamiltonian Hamilton-Jacobi problem we look for sections
s € I'(prrs), given locally by s(gs', ¢i') = (¢i', ¢, 54, 54, 9, ay), such that the submanifold Im( ) =W
is invariant under the flow of X7z € X(W). Since the constraints defining locally Im(s) are ¢3' — s3' = 0,

a' — 54 =0, p% — % =0, p}y — @}y =0, then the equations for the section s are

(9 65 85 88
A 52 B 2 B 3 B 3
i R +s =0,
s (’903 B oqP 183 283
B A A 0 B A B A
-|— —a =0 ; -0y — g —5 — S5 —5 =0
a; 9 a q1 A~ 4y 9(]03 2 9(]13

For the second-order Lagrangian-Hamiltonian Hamilton-Jacobi problem, we require the form obtained
by projecting the section, pg 0 s € Q(TR3), to be closed. In coordinates, if s = (¢, g1, s, 84", %, ay),
then the 1-form ps o s is given by pg 0o s = a%dqé“ + akdq{‘. Hence, a section s € I'(prgrs) solution
to the second-order Lagrangian-Hamiltonian Hamilton-Jacobi problem for this system must satisfy the
following system of partial differential equations

s s s s
A BUS) BUSy _ . BUS3 BYS3 _
fh@ 283_0’ +183+283_0’

B@aA BaaA

—q +s =0 ; ¢ —ay—¢f 42 -sF 4 =0,
18q0 283 1 A 1aqOB QaqlB
daly  0aY 9o 0aY , daly  dak ,
gaa G0 _o . 994 9% o seapp . 924 99 g s aup)
dq§ gt dq§ gy dq¢ gt

4.4.2 The shape of a homogeneous deformed elastic cylindrical beam with
fixed ends

Let us consider a deformed elastic cylindrical beam with both ends fixed. The problem is to determinate
its shape, that is, the bending of the axis of the beam. This system has been studied on many occasions,
such as [I1]], where it is applied to the study of xylophones and tubular bells (Chapter 3, §3.9), and [80],
where the Euler-Lagrange equations are derived from a variational principle (Chapter VI, §4).

Let @ be the 1-dimensional smooth manifold modeling the configuration space of the system with
local coordinate (qo). Then, in the natural coordinates of T?Q, the second-order Lagrangian function
L € C=(T?Q) for this system is

1
L(q0,q1,q2) = 5/“15 + pqo 5

where p, p € R are constants that represent physical parameters of the beam: p is the linear density
and p is a non-zero constant involving Young’s modulus of the material, the radius of curvature and
the sectional moment of the beam (see [II] for a detailed description). This is a regular second-order
Lagrangian function, since the Hessian matrix of £ with respect to go is

( 0L >
0q20q2 -

and has maximum rank equal to 1 as pu # 0.

Lagrangian formulation of the Hamilton-Jacobi problem

The local expressions for the Poincaré-Cartan forms 0, € Q(T?Q) and we € Q*(T?Q), and the La-
grangian energy E; € C®(T?Q) are

1
0c = u(—q3dgo + pgadqr) 5 we = p(—dgo Adgz +dg1 Adga) 5 Er = —pqo + 5#615 — [1G1G3 -
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Thus, the semispray of type 1, X, € X(T>Q), solution to equation (2.34)) is given locally by

X — i+ i+
“ Q13QO q25Q1 dq2  pogs

Observe that the Euler-Lagrange equation for this 1-dimensional system is

d*y __r

dtt w’
where v: R — @ is a curve. Therefore, it is straightforward to obtain the general solution, which is a
polynomial with degree 4 on the variable ¢ given by

~(t) = —Et4 + estd + cot? + 1t + co

where cg, c1, co,c3 € R are constants depending on the initial conditions given.

Now, we state the equations of the Lagrangian Hamilton-Jacobi problem for this system. Consider
the projection p?: T3Q — TQ. By Proposition the generalized second-order Lagrangian Hamilton-
Jacobi problem consists in finding sections s € I'(p}), given locally by s(qo,q1) = (qo,q1, 52, 83), such
that the submanifold Im(s) < T3Q is invariant by the Lagrangian vector field X, € ¥(T?Q). Since the
constraints defining locally Im(s) are ga — so = 0, g3 — s3 = 0, then the equations for the section s are

059 0sa ) P 653 0Os3

$3—q15— —S25— = I o —S25—
9qo Iq1 M Bq 8Ch

For the second-order Lagrangian Hamilton-Jacobi problem, we must require, in addition, that the
section s € T'(p}) satisfies d(s*E.) = s*dE; = 0. From the local expression of the Lagrangian energy
Er € C=(T3Q) given above, we have

dE; = —pdgo — pgsdqr + pgadge — pgidgs .
Thus, taking the pull-back of dE, by the section s(qo, ¢1) = (qo, q1, 2, $3), we obtain

Os Os 0s Os
S*dE£:u<—p+ 2—2—(]1 B)dqo+u<—53+$22—q13> dqy .
Iz 9qo 9qo I Iq

Hence, the section s € T'(p3) is a solution to the second-order Lagrangian Hamilton-Jacobi problem if its
component functions satisfy the following system of partial differential equations

g2 092 o . _p_ Os3  Os3
T T T Th Mo Pog
p 0s3 0589 0s3 089
= =@ t+s2a—=0 ; — +s =0.
n Mog o " Mag T P0q,

These 4 partial differential equations are not linearly independent. In particular, the equations obtained
requiring d(s*Ez) = 0 can be reduced to a single one by computing the pull-back of the Poincaré-Cartan

2-form by the section s,
883 882 )
s*wp = — + dgo A dq .
(3(11 9qo
Therefore, requiring s*we = 0 instead of the equivalent condition d(s*FE,) = 0, we have that s is a
solution to the second-order Lagrangian Hamilton-Jacobi problem if its component functions satisfy the
following equivalent system of partial differential equations

089 089 ) P 0s3 083 ~ Os3  Osy

S_qi_sizo I —— — Q15 — 825 = 9 a0 _07
3 15!]0 23!11 H 15'(10 23(11 oq aQO
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CHAPTER 4. GEOMETRIC HAMILTON-JACOBI THEORY FOR HIGHER-ORDER AUTONOMOUS SYSTEMS

where these 3 equations are now linearly independent.

Finally, we compute the equations for the generating function W. The pull-back of 8, by s gives, in
coordinates

5"0, = —pssdqo + ps2dq .
Thus, requiring s*6, = dW, for a local function W in TQ, we obtain

ow o ow
aqo uss 3 aql us2 .

and thus from d(s*E.z) = 0, we have s*E; = const., that is,

e (W oW
Pq0 2’u aql q1 aqo - Op)

which is the Hamilton-Jacobi equation for this problem.

Remark. Observe that, in this particular example, the Hamilton-Jacobi equation is clearly more difficult
to solve than the Euler-Lagrange equation. Therefore, this example shows that it is important to be careful
when applying the Hamilton-Jacobi theory to a system, since the Hamilton-Jacobi equations obtained can
be harder to solve than the usual Euler-Lagrange (or Hamilton’s) equations of the system. Nevertheless,
observe that a solution of the system can be obtained from a solution v: R — @ of the Euler-Lagrange

equations as (see [I50])
t

W(q,q1) = 1L‘(j§7(t))dt.

to

Hamiltonian formulation of the Hamilton-Jacobi problem

Now, to establish the Hamiltonian formalism for the Hamilton-Jacobi problem, we consider natural coor-
dinates on T*TQ. In these coordinates the Legendre-Ostrogradsky map FL£: T3Q — T*TQ associated
to the Lagrangian function L is locally given by

Fl'q=q ; FLa=q ; FLP' =—pgs ;5 FLDP =pg.
Moreover, the inverse map FL ': T*TQ — T3Q is

1 0
_ _ - p - p
(FL Y 'w=q0 ;5 (FLYa=a ; (FL)@= o L gz = o
From these coordinate expressions it is clear that £ is a hyperregular Lagrangian function, since the

Legendre-Ostrogradsky map is a global diffeomorphism.
The Hamiltonian function h € C*°(T*(TQ)) is

—1y* (»')? 0
h=(FL)V Be = —pao+ =5 = +ap".
Thus, the Hamiltonian vector field X, € X(T*(TQ)) solution to equation (2.46]) is

o 1

Xn=q+—+

PO 0 40
9q0  poq  Topt P opt-

Consider the projection mpg: T*(TQ) — TQ. From Proposition we know that the generalized
second-order Hamiltonian Hamilton-Jacobi problem consists in finding 1-forms o € Q!(TQ) such that
the Hamiltonian vector field X}, is tangent to the submanifold Im(«) < T*(TQ). Suppose that the
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1-form « is given locally by a = a’dqg + aldg;. As the submanifold Im(a) is defined locally by the
constraint functions p° — a® and p! — o', then the tangency condition gives the following system of 2
partial differential equations for the component functions of the form

9a® ol 9l 0 oot al dat

pP—hin———5 =0 —a—qa————
dqo p Oq

In order to obtain the equations of the second-order Hamiltonian Hamilton-Jacobi problem, we require
in addition the 1-form a € Q!(TQ) to be closed. In coordinates, this condition is

dal  9al

dq0  Oq1

Hence, the 1-form o € Q}(TQ) is a solution to the second-order Hamiltonian Hamilton-Jacobi problem
if the following system of 3 partial differential equations holds
0a’ ol o 0 0ol ol 0ot dat 0

-gi5————=0,; ' -gg5——-——7—=0; ———-—=0
pon 0qp  p Oqu o Oqo 1 Oq dgo  Oq

Finally, we compute the equations for the generating function W. Requiring o = dW for a local
function W defined in TQ, we obtain

0o OW oW

O == ; o =-——"),
0qo oq

and thus from d(a*h) = 0, we have a*h = const., that is,
1 (oW
=P+ = | 5

—— = const.,
21 \ 9q, +q1 con

which coincides with the Hamilton-Jacobi equation given previously in the Lagrangian problem.

Lagrangian-Hamiltonian formulation of the Hamilton-Jacobi problem

In the induced natural coordinates (qo, q1, g2, q3, p°, p*) of W, the coordinate expressions of the presym-
plectic form Q = pjw; € Q*(W) and the Hamiltonian function H = C — £ € C°(W) are

1
Q=dgo Adp’ +dg Adp' 5 H = aqp” +g2p' = Spd3 — pao-
Thus, the semispray of type 1 X1y € X(WW) solution to the dynamical equation (3.6) and tangent to the
submanifold W, = graph(FL) < W has the following coordinate expression
0 p 0 0 0 0

0
"0 " Poq o0 pogs o0 T ot

Xow =
In the following we state the equations for the (generalized) Lagrangian-Hamilonian Hamilton-Jacobi
problem for this dynamical system.

In the generalized second-order Lagrangian-Hamiltonian Hamilton-Jacobi problem we look for sections
s € I'(prq), given locally by s(qo,q1) = (qo,q1, 52, s3,a°, al), such that the submanifold Im(s) < W is
invariant under the flow of Xz € X(W). Since the constraints defining locally Im(s) are g2 — s2 = 0,
g3 —s3=0,p° —a® =0, p! —a! =0, then the 4 equations for the section s are

059 0s3 p Js3 Os3
53—(116%—5 8(11:0 ; _E_QI&IO_SQ&AZO’

dal dal 0 dalt dal
p—q18q0—82aq120 P _qla(Jo_Sza%:U
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For the unified second-order Hamilton-Jacobi problem, we require in addition the section s € I'(prg)
to satisfy s*Q = 0 or, equivalently, the form py o s € Q}(TQ) to be closed. In coordinates, if s =
(g0, q1, S2,83,a°, al), then the 1-form py o s is given by ps o s = a’dgy + a'dg;. Hence, a section
s € I'(prq) solution to the unified Hamilton-Jacobi problem for this system must satisfy the following
system of 5 partial differential equations

33—q1%—52%:0 ; —B—ql%—s%=0 ; fa’ 0% _ ;
dqo oq I dq0 o0 dq0  Oq
dal dal _0 - 0 dat dal —0
P—(haiqo—szaiql— ;o Ta _qlaiqo_szaiql_ .
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Chapter 5

Higher-order non-autonomous
dynamical systems

Our aim in this Chapter is to introduce the geometric formulation of higher-order non-autonomous
systems, thus generalizing the results of Section to the higher-order case, and the results of Section
2.3] and Chapter [3] to the non-autonomous setting.

Observe that, unlike the autonomous case, for higher-order non-autonomous systems we do not have
a complete description of the Lagrangian and Hamiltonian formalisms (partial studies on this subject can
be found in [0, 47 52, 63], [[01]). Therefore, instead of describing the unified formalism starting from
the Lagrangian and Hamiltonian formulations, in this Chapter we proceed backwards: we first describe
the Skinner-Rusk formalism for higher-order non-autonomous systems, and, from this setting, we derive
both the Lagrangian and Hamiltonian formalisms for this kind of systems.

Taking into account these comments, the structure of the Chapter is the following. In Section
we describe the Lagrangian-Hamiltonian formalism for higher-order non-autonomous systems: phase
space, canonical structures and dynamical equations. Then we describe the Lagrangian and Hamiltonian
formalisms in Sections[5.2]and respectively. Finally, two physical examples are studied in Section [5.4
the shape of a non-homogeneous deformed elastic cylindrical beam with fixed ends, and a second-order
relativistic particle subjected to a time-depending potential.

Along this Chapter, we consider a kth-order non-autonomous Lagrangian dynamical system with n
degrees of freedom. As in the first-order setting described in Section the configuration space for this
system is a bundle 7: F — R, with dim £ = n 4+ 1. The dynamical information is given in terms of a
Lagrangian density which, by analogy with Sections and is a 7¥-semibasic 1-form, £ € Q' (J*7).
As in the first-order case, we write £ = L - (7%)*n, where n € Q!(R) is the canonical volume form in R
and L € C*(J*7) is the Lagrangian function associated to £ and 7.

5.1 Lagrangian-Hamiltonian unified formalism

5.1.1 Geometrical setting
Unified phase space and bundle structures. Local coordinates
According to Sections and let us consider the following bundles
W=J* "t x oo, T 1) 0 W= 0P e x e, TR
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CHAPTER 5. HIGHER-ORDER NON-AUTONOMOUS DYNAMICAL SYSTEMS

where T*(J*~17) and J*~17* are the kth-order extended and reduced dual jet bundles defined in Section
[[-4:8| respectively. The bundles W and W, are called the kth-order extended jet-momentum bundle and
the kth-order restricted jet-momentum bundle, respectively.

Remark. The reason for taking these bundles is that we want to describe the Lagrangian and Hamil-

tonian formalisms from this unified framework, and as we see in Sections [5.2] and [5.3] those formalisms
take place in the bundles J?*~!7 and J*~'7*, respectively. O

The bundles W and W, are endowed with the canonical projections
pr:W = JH e o W TR ppee W T o prt WS R,
oWy = PR e W, g Pre-ip: Wy — J e phi W — R.

In addition, the natural quotient map p: T*(J*~!'7) — J*~I7* induces a surjective submersion
pw: W — W,.. Thus, we have the following commutative diagram

where 7 i1, : T*(J* ') — J¥~17 is the canonical submersion and 7%, : J* '7* — J¥~ 1 is the
map satisfying myx—1, = 77_1 0 p.

Local coordinates in YW and W, are constructed as follows. Let ¢ be the global coordinate in R such
that the canonical volume form 1 € Q'(R) is given locally by n = dt, and (U;(t,¢?)), 1 < A < n, a
local chart of coordinates in F adapted to the bundle structure. Then the induced natural coordinates
in the suitable open sets of J2*~1x, T*(J*1x) and J*~'7* are (t,¢f NE ), (t, ¢, p,pYy) and (t, ¢, pYy),
respectively, where 1 < A < n, 0< i< k-1, k <j < 2k — 1. Therefore, the natural coordinates
in W and W, are (t, ¢ .4 ,p,pA) and (t,qf,qf,pfg), respectively. Note that dimW = 3kn + 2 and
dimW, =dimW — 1 = 3kn + 1.

In these coordinates, the above projections have the following coordinate expressions
pit,q qt pph) = (gl q)) s pa(t g a)t o) = (6a . ph) 5 pas—aa (gl @ o D) = (ta),
pitalt at p) = (gt a)) s ph(tal gt o) = (g ph) 5 P (Bal o) = (6 g
pr(ta, ¢t o, pl) =t PRt at plh) =t.
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Canonical geometric structures

The extended jet-momentum bundle W is endowed with some canonical geometric structures, which are
the generalization to the higher-order setting of the canonical structures introduced in Section [2.4.3

Let O € QYT*(J* 1)) and Qp_; = —dOy_1 € Q%(T*(J* 7)) be the canonical forms of the
cotangent bundle. Then, we define the following forms in W

O =0p30,1€Q'W) ; Q=5 1 =—-dO c Q*(W).

It is clear from the definition that €2 is a closed 2-form. Nevertheless, this form has not maximal rank in
W. Indeed, let X € XV (2)(W). Then we have

i(X)Q = i(X)p3 Q-1 = p3(i(Y) Q1) ,

where Y € X(T*(J*~17)) is a vector field po-related with X. However, since X is vertical with respect
to p2, we have Y = 0, and therefore

pa(i(Y) Q1) = p3(i(0)2-1) = 0.
In particular, {0} ¢ XV(?2)(W) C ker Q, and thus Q has not maximal rank.

Bearing in mind the coordinate expressions of the Liouville forms of the cotangent bundle given in
Example [I.I] which in this case are

O—1 =pidg +pdt ; Q1 =dg Adpy —dpAdt,
and the local expression of the projection py given above, the forms © and 2 are given locally by
© = p3(piydg + pdt) = piydg +pdt 5 Q= ps(dg/* Adp’y —dpAdt) =dg* Adply —dpAdt. (5.1)

It is clear from these coordinate expressions that €2 is closed. Moreover, a local basis for ker €2 is

ker ) = < o 0 > =xVe2 (W), (5.2)

g’ Oagy,

Thus, the pair (9, p§n) is a precosymplectic structure in W.
The second canonical structure in W is the following.

Definition 5.1. The kth-order coupling 1-form in W is the pr-semibasic 1-form C e QY (W) defined
as follows: for every w = (4,a,) € W (that is, u = j2*"*¢ € J** 1 and o, € T;(J* '), where
q = 7" (1) is the projection of @ to J*"'1t) and v € T, W, then

(C(w),v) = {ag, (Tw (5" ¢ 0 pr)) (v)) - (5.3)

C being a pg-semibasic form, there exists a function C' € C°°(W) such that ¢ = Cpin = Cdt. An
easy computation in coordinates gives the following local expression for the coupling 1-form

¢ = (p+piqly) dt. (5.4)

Let us denote £ = (wik_l op1)*L € QY(W). Since the Lagrangian density is a 7*-semibasic form,
we have that £ is a pr-semibasic 1-form, and thus we can write L= Jipﬂ’%n = Ldt, where the function
L= (%10 p1)*L € C=(W) is the pull-back of the Lagrangian function associated with £ and 7. Then,
we define a Hamiltonian submanifold

Woz{w€W|EA(w):CA(w)}CJ—O>W
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Since both C and L are pg-semibasic 1-forms, the submanifold W, is defined by the regular constraint
C — L = 0. In the natural coordinates of W, bearing in mind the local expression (5.4)) of the coupling
form, the constraint function is locally given by

C—L=p+phq, —L=0. (5.5)
Proposition 5.1. The submanifold W, — W is 1-codimensional, pyw-transverse and diffeomorphic to
W,... This diffeomorphism is given by the map pyw o jo: W, — W,..
Proof. W, is obviously 1-codimensional, since it is defined by a single constraint function.

To see that W, is diffeomorphic to W,., we show that the smooth map pyy o j,: W, — W, is one-to-
one. First, observe that for every (i, a) € W,, we have that L(r" (1)) = L(t, o) = C(@, ), and, on
the other hand, that

(kw0 Jo) (U, &) = pw (u, o) = (4, () = (u, [o]) - (5.6)

Now, we first prove that uy o j, is injective. That is, if (@1, 1), (2, a2) € W, are two arbitrary
points in W,, then we want to prove that

(tw © Jo)(T1, 1) = (fw © Jo) (T2, ag) <= (U1, 1) = (U2, 2) <= U1 = Uz and a1 = g .
Using the expression for (py o jo) (4, a), we have
(bw © Jo) (1, 1) = (pw © jo) (U2, a2) <= (tia, [an]) = (g, [a2]) <= 11 = U2 and [a] = [ag].
Hence, by definition of W,, we have L(72¥~!(u,)) = L(z2* " (@) = C(t1, 1) = C(ag,as). Locally,
from the third equality we obtain
plar) + pla(ar)gl (W) = plas) + pla(as)ai (a2),

but [o] = [az] = pYy(a1) = pY4(Jaa]) = piy([a]) = pY4(a2). Then p(ar) = p(az), and a1 = ap; that is,
the map pyy o j, is injective.

Now, let us prove that uyy o j, is surjective. That is, if (4, [@]) € W,., we want to find (@, 8) € jo(W,)
such that [§] = [a]. It suffices to take [§] such that, in local coordinates of W, it satisfies

pa(B) =P8 . p(B) = L(m* (@) — pla([e])aisy (@) -
This B exists as a consequence of the definition of W,,, and therefore the map uyy o j, is surjective.

Hence, since puyy o j, is a one-to-one submersion, then, by equality on the dimensions of W, and W,
it is a one-to-one local diffeomorphism, and thus a global diffeomorphism.

Finally, in order to prove that W, is pyy-transverse, it is necessary to check if L(Y)(§) = Y (€) # 0, for
every Y € kerQT,uW) and every constraint function £ defining W,. Since W, is defined by the constraint
function C' — L = 0 and ker(Tuyy) = {9/0p}, we have

0, » 0 i A Fy
a*p(C*L)fafp(p+pAqi+1 L)y=1,

and thus W, is pyy-transverse. O

As a consequence of Proposition the submanifold W, induces a section h € I'(pyy) defined as
h = jo o (w0 jo)~t: W, — W. This section is specified by giving the local Hamiltonian function

H=-L —l—pqu;}H ) (5.7)

that is, h(t, ¢ q;‘,pf;‘) = (t,q7, qu, —ﬁ,p%). The section h is called a Hamiltonian section of iy, or a

7

Hamiltonian pyy-section.
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Using this Hamiltonian pyy-section, we can define the forms
0, =h*Ow e Q'W,) ; Q. =h*Qpy e BPW,),
with local expressions
O, =pidg + (L —phgl)dt ; Q. =dg Adply +d(plag, — L) Adt, (5.8)
Then, the triple (W, Q,, (pk)*n) is a precosymplectic Hamiltonian system.

Finally, as in the autonomous setting, it is necessary to introduce the following concepts in order to
give a complete description of higher-order Lagrangian systems in terms of the unified formalism.

Definition 5.2. A section ¢ € T'(py) is holonomic of type s in W,, 1 < s < 2k — 1, if the section
¥y = pf otp € D(72F1) is holonomic of type s in J?*~1x

Definition 5.3. A vector field X € X(W,) is said to be a holonomic of type s in W,, 1 < s <2k—1, if
every integral section ¥ of X is holonomic of type s in W,.

In the natural coordinates of W,., the local expression of a semispray of type s in W, is

8 2k—1—s 8 2k—1 —
T T RO SRS 3
i=2k—s % =0

and, in particular, for a semispray of type 1 in W, we have

a 2k—2 a

L

2k1

5.1.2 Dynamical equations

In this Section we analyze the dynamical equations for a kth-order non-autonomous dynamical system
in the unified formalism. First, we state the variational principle from which the equations of motion can
be derived. Then, we state the geometric equation for a kth-order non-autonomous dynamical system in
two different ways: in terms of sections and vector fields. Finally, we prove that the variational principle
is, in fact, equivalent to these geometric equations.

Variational principle

Let I'(pg) be the set of sections of pf, and consider the functional
LH:T(p) — R
v o [ue,
R
where the convergence of the integral is assumed.
Definition 5.4. The kth-order Lagrangian-Hamiltonian variational problem associated to the system
Wr, Q. (pR)*n) is the search for the critical (or stationary) holonomic sections of the functional LH

with respect to the variations of 1 given by ¥, = o501, where {os} is a local one-parameter group of any
compact-supported pg-vertical vector field Z in W,, that is,

a [ vie.=o.
s=0 /R

ds

In the following Subsections we analyze the geometric dynamical equations in terms of sections and
vector fields. Then, we prove in Theorem that the critical sections of the variational problem stated
above are exactly the sections solution to the geometric equations analyzed in the following.
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Dynamical equation for sections

The kth-order Lagrangian-Hamiltonian problem for sections associated with the system (W,, Q,, (pR)*n)
consists in finding holonomic sections ¢ € I'(pg) satisfying

P i(Y)Q, =0, forevery Y € X(W,). (5.9)
In the natural coordinates of W,., let Y € X(W,.) be a generic vector field given by

d d
Y:f +f +FA8qA+GA8pi . (5.10)
A

Then, bearing in mind the coordinate expression (5.8) of €., the contraction §(Y)(, gives the following
1-form on W,

oL

o ol
A —gfy dply — pkdq{il> + g (dp% 5 Adt>

. oL oL
+ £ (deA 9 Adt+pf4 1dt> + R ( 5 A>dt+G’ (4414t = dg?) .

Thus, taking the pull-back by the section ¥ = (¢, ¢{*(¢), q]A(t),pf4 (t)), we obtain

.. oL P o 0L
Vi) = f (anqf — 010 —m%ﬁl) dt + f§! (p% - ) dt

dq4'
aﬁ oL : :
k
Finally, requiring this last expression to vanish, and taking into account that the equation must hold

for every vector field Y € X(W,.) (that is, it must hold for every function f, f, FjA, Gy € C®(W,)) we
obtain the following system of (2k + 1)n + 1 equations

oL

2A % — g 1P — Padi, =0, (5.11)
gt = qftp (5.12)

P = aaqlé , (5.13)

R R (5.14)

Pt = (5(]24. (5.15)

It is easy to check that equation is redundant, since it is a consequence of the others. Equations
(5.12), (5.13) and (5.14) are differential equations whose solutions are the functions defining the section
1. In particular, equations are part of the system of differential equations that the section ¥ must
satisfy to be holonomic, and are automatically satisfied since we assumed the section ¥ to be holonomic
from the beginning. On the other hand, equations and are the dynamical equations of
the system. Finally, equations do not involve any derivative of ¢: they are pointwise algebraic
conditions. These equations arise from the ph-vertical part of the vector fields Y. Moreover, we have the
following result.

Lemma 5.2. If Y € XV(P2)(W,), then i(Y)Q, € Q' (W) is pf-semibasic.

146



5.1. LAGRANGIAN-HAMILTONIAN UNIFIED FORMALISM

Proof. A direct calculation in coordinates leads to this result. Bearing in mind that a local basis for the
ph-vertical vector fields is given by (5.2)), and the local expression (5.8)) of ., we have

L
. i a — <p’21—88q;€4>dt, forj =k,
8qj‘ "

0=0-dt, forj=k+1,...,2k—1.

Thus, in both cases we obtain a pp-semibasic form. O
As a consequence of Lemma we can define the submanifold
We = {[w] € W, | ((V)20)([u]) = 0 for every ¥ € XVUD W)} 5w, (5.16)

where every section v solution to equation (5.9) must take values. It is called the first constraint sub-
manifold of the Hamiltonian precosymplectic system (W,, Q,., (pk)*n)-

Locally, W, is defined in W, by the constraints p{f‘_l — 8ﬁ/ 8q,? = 0, as we have seen in (5.15)) and in
the proof of Lemma In combination with equations (5.14)), we have the following result, which is the
analogous to Proposition in the non-autonomous setting.

Proposition 5.3. The submanifold W, — W contains a submanifold W, — W, which can be identified
with the graph of a map FL: J**~'x — JF~11* defined locally by

k—r i >
: o d OL
FLt=t ; FLq=q ; FLo7i=>(-1)— [ ——|.
r T A — dtt aq?—&-i

K3

Proof. Since W, is defined locally by the constraints (5.15)), it suffices to prove that these constraints,
in combination with equations ([5.14)) give rise to the functions defining the map given in the statement,
and thus to the submanifold W,;. We proceed in coordinates.

The constraint functions defining W,, in combination with equations (5.14)), give rise to the following
n new constraint functions

oL d ! A oL
k—2 E—1 E—2 Z i
< Q-1 t ) i:O( ) ﬁ( qkl“’) ’

which define a new submanifold of W,. Combining these constraint functions again with equations (5.14)),
we obtain the following n additional constraints

A 2 . A~
. oL d - d oL
k—3 k—2 k-3 Z i
4 (8‘1}?2 dt "4 ) 4 izo( ) dt (aql?2+i>

Iterating this process k — 3 more times, we obtain a kn-codimensional submanifold W, < W, defined
locally by the following constraints

k—r ; S
cd oL
r—1 _ § 1) [ ==
pA i=0( )dtZ <aqf+z> 9

with 1 <A <nand 1< r < k. Therefore, we may consider that W, is the graph of a bundle morphism
FL: J¥ g = Jk=1r* over J¥~1r locally given by

. di (0L
FLt=t ; FL¢A=¢ ; FLp7' =) (-1)— | — ] . O
T T A ' dt? aq;q—‘ri
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Bearing in mind that the submanifold W, < W is defined locally by the constraints ([5.5)), that W, is
diffeomorphic to W,,, and that W, is a submanifold of W, and thus a sumbanifold of W,., from the above
Proposition we can state the following result, which is a straightforward consequence of Proposition [5.3

Corollary 5.4. The submanifold W, — W is the graph of a bundle morphism FL: J*=1g T*(JF17)
over J¥~1r defined locally by

FLt=t ; FLq'=q,
— O O )" L ud [ oL
:ﬁfg AE 1| =—— ; N*r_lzg i = | -
FLp dr . ( )dtz (an_> i FL Py : ( )dt’ (an'>
r=1 =0 r+1 i—0 r i
Remark. As in the autonomous setting described in Chapter [3] the submanifold W, can be obtained

from W, using a constraint algorithm. Hence, W, acts as the initial phase space of the system, as we
see in the following, and in next Section. %

Definition 5.5. The maps FL: J2k=1p T*(J*'7) and FL: J?*~tx — JF=1x* given by the above
results are called the extended Legendre-Ostrogradsky map and the restricted Legendre-Ostrogradsky
map associated to the kth-order Lagrangian density L, respectively.

A justification of this terminology will be given in Section [5.3] An important result concerning both
Legendre-Ostrogradsky maps is the following.

Proposition 5.5. For every j2*~'¢ € J?*~11 we have that rank(ﬁ(jfk71¢)) = rank(FL(jZ*1¢)).

We do not prove this result. Following the patterns in [44], the idea is to compute in natural coor-
dinates the local expressions of the Jacobian matrices of F£ and FL. Then, observe that the ranks of
both maps depend on the rank of the Hessian matrix of L with respect to ¢;* at the point jt%_1¢, and

that the additional row in the Jacobian matrix of FL is a linear combination of the others. See [44] for
details in the first-order case.

Now we can give the following definition.

Definition 5.6. A kth-order Lagrangian density L € QY(J*7) is regular if the restricted Legendre-
Ostrogradsky map FL is a local diffeomorphism. If the map FL is a global diffeomorphism, then L is
said to be hyperregular. Otherwise, L is said to be singular.

As a consequence of Proposition a kth-order Lagrangian density £ € Q'(J*7) is regular if, and
only if, the extended Legendre-Ostrogradsky FL is an immersion on T*(J*~1r). Moreover, computing
in natural coordinates the local expression of the tangent map to FL, the regularity condition for L is
equivalent to

0%’L ) ,
det (8(],?8(],‘3) (ko) #0, for every jFp € JFr.

Equivalently, if we denote ﬁz_l = ]-"E*pg_l, then the Lagrangian density £ is regular if, and only if,
the set (t,q#,p%), 0 < i < k—1, is a set of local coordinates in J?*~17. As in the Hamiltonian formalism
for higher-order autonomous systems described in Section the local functions p; are called the
Jacobi-Ostrogradsky momentum coordinates, and they satisfy the relation

oL d
~r—1 AT
== - — 5.17
which are exactly the relations given by (5.14).

Finally, observe that since the section ¢ € I'(p}) must take values in the submanifold W, < W,, it
is natural to consider the restriction of equation ([5.9)) to the submanifold W,; that is, to restrict the set

of vector fields to those tangent to WW,. Nevertheless, the new equation may not be equivalent to the
former. The following result gives a sufficient condition for these two equations to be equivalent.
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Proposition 5.6. If ¢ € I'(p},) is holonomic in W, then the equation (5.9) is equivalent to
P i(Y)Q. =0, foreveryY € X(W,) tangent to W . (5.18)

Proof. We prove this result in coordinates. First of all, let us compute the coordinate expression of a
vector field X € X(W,.) tangent to WL. Let X be a generic vector field locally given by (5.10), that is,

9 ) )
X = A i _
5 1 g T ggr + Gagy,

Thus, since W, is the submanifold of W, defined locally by the kn constraint functions

k—r ; 2
o d oL
r—1 r—1 i
=i =0 (o |
S A <3qf+i>

then the tangency condition of X along W, which is L(X)(¢%) = 0 (on W), gives the following relations
on the component functions of X

L y L 5 0L
otog

Gk—l — f ; + ’
4 dqPoqft " dqf oqp!

G2 L d 9L B 0’L 4 9L B L d P L
AT\ dtagt | dt atdg) "\ 0gPagt | dt 9Pt F \0gPogt | dt 9gPagt

s 0 5 O 0
—(# +F T A I

where the remaining calculations are omitted for simplicity. That is, the tangency condition enables us to
write the component functions G as functions G, depending on the rest of the components f, f/* , F; A

Now, from the previous calculations in this Section, recall that if () = (¢, ¢ (t), 4 A(t),pY4 (1)), then
equation ([5.9) gives in coordinates

.. oL P o 0L
V(X)) = f (anq;“—qﬁlpA—pAqﬁ1> dt+ 2 (p% 5 A>dt

oL ,_ oL .
+ i ( Pl — a—Aﬂ); 1) dt + F (p’; - 5 A) dt + Gy (g, — ¢*) dt.
On the other hanNd_7 if we take a vector field Y tangent to W,, then we must replace the component
functions G* by G in the previous equation, thus obtaining

* . 8‘[,\/ . '74‘ 'L . . aL
Y i(Y)Q = f (an drt = qfy bl pqu‘%) at + f (pA 5 A) dt

s 0oL oL ; ,
+f{4<pA—an+pf41>dt+F,f (pfi,l aA)dH—G (¢f1 —¢)dt.

Finally, if ¢ is holonomic, then equations ([5.12)) are satisfied, and the last two terms of both (X)), and
i(Y)Q, vanish, thus obtaining

P i(X)Q = f <8qu;4 - (J;‘HPA —pAq;}H> dt + f64 (pA P A) dt
. oL oL
+ <p’A ~ 9k +pf41> dt + F{ <p’;, ! 6) dt = *i(Y)Q, .
Hence, we have ¢* {(X)Q, = 0 if and only if v* {(Y)Q, = 0. O
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Remarks.

e Note that if the holonomy condition is not required in the statement of the problem, then the
local component functlons q A(t), k < j < 2k — 1, of the section ¢ remain undetermined, and the
2kn equations ((5.12 , and - ) do not allow us to determinate them at first sight. Hence,
the holonomy condltlon can not be dropped from the statement of the problem, contrary to what
happens in the unified formalism for first-order non-autonomous systems (see Section

In fact, the local functions q;‘( ) can be determined by the equations ([5.13]) and - bearmg in
mind that the section ¢ must lie in the submanifold W, < W,.. It is easy to see that by replacing
the local expression of the restricted Legendre-Ostrogradsky map in the equations (5.13)) and (5.14 -,
these equations lead to the Euler-Lagrange equations and to the remaining (k — 1)n equatlons that
give the full holonomy condition

Jj—1
.B B _ .
(i - dP) =5 aqk aqk ; — ) (- )=0 (k<j<2k-2), (5.19)
oL d 0L d? oL d* oL
_ 4o g 1)* -0 5.20
qs dt ogit dt? dg3' DT G aqk ’ (5.20)

where the terms in brackets (---) contain terms involving partial derivatives of the Lagrangian
function and iterated total time derivatives, and the first sum (for j = k) is empty. However,
observe that these equations may or may not be compatible, and a sufficient condition to ensure
compatibility is the regularity of the Lagrangian density. Thus, for singular Lagrangian densities,
the holonomy condition for the section 1) is required. O

e The requirement of the section 1 to be holonomic is a relevant difference from the first-order case
described in Section [2.4.3] where the holonomy condition is deduced straightforwardly from the
dynamical equations when written in local coordinates. Nevertheless, in the higher-order case, the
equations allow us to recover only the holonomy of type k, as seen in and in the autonomous
case, and the highest-order holonomy condition can only be recovered from the equations if the
Lagrangian density is regular. Hence, this condition is required “ad hoc” in the statement of the
problem. O

e The regularity of the Lagrangian density has no relevant role at first sight. However, as we have
seen in the first remark, equations and give the higher-order Euler-Lagrange equations,
which have a unique solution if the Lagrangian density is regular. For singular Lagrangians, these
equations may give rise to new constraints, and an adaptation of the constraint algorithm described
in Section [1.7] should be used for finding a submanifold where the equations can be solved. %

Dynamical equation for vector fields

As in the ﬁrst order case described in Section 3| if we assume that the sections ¢ € I'(p}) solutions
to equation are the integral curves of some Vector fields in W,., then we can state the problem in
terms of Vector ﬁelds. The kth-order Lagrangian-Hamiltonian problem for vector fields associated with
the system (W, Q,, (pg)*n) consists in finding holonomic vector fields X € X(W,) such that

i(X)Q =0 ;5 i(X)(pr)n#0. (5.21)

Remark. As in the first-order case described in Section the second equation in (5.21)) is just a
transverse condition for the vector field X with respect to the projection onto R, and the non-zero value
is usually fixed to 1, thus giving the following equations

i(X)2 =0 5 i(X)(pp)n=1.
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Recall that OWV;, Q., (pg)*n) is a precosymplectic manifold. Hence, equations may not admit
a solution X € X(W,) defined in the whole manifold, but only on some submanifold of W,. Using an
adapted version of the constraint algorithm described in Section to precosymplectic manifolds, we
can state the following result.

Proposition 5.7. A solution X € X(W,.) to equations (5.21) exists only on the points of the submanifold
S, defined by
S = {lwl € Wy | (((Z)aAf)([w]) = 0 for every Z € ker @} < W, (5.22)

In the natural coordinates of W, let us compute the constraint functions defining locally the sub-
manifold Sc. Taking into account the coordinate expression (5.7) of the local Hamiltonian function
H € C*(W,), then its differential is locally given by

k—1 k

2 i i oL
dH = Z(QﬁrldPA +phdgly,) — Z &Iﬁdqu . (5.23)
=0 = )
Then, using the local basis for ker Q given in (5.2)), we obtain
L
pz_l_aaﬁ7 leZaiA7
(Z)df T gk
0, 7=, j=k+1,...,2k—1.
dq;
Therefore, S, < W, is a n-codimensional submanifold of W, defined locally by the constraints
oL
k—1
Pt - 22 =0, (5.24)
gt

In particular, we have S, = W,., where W, is the first constraint submanifold obtained for sections in the
previous Section.

As in the unified formalism for higher-order autonomous systems described in Chapter in this
setting we do not have a characterization of the submanifold W, as the graph of a bundle morphism.

Let us compute in coordinates the local expression of the equations (5.21). Let X € X(W,) be a
generic vector field given locally by (5.10]). Then, bearing in mind the local expression (5.8) of the 2-form
Q,., the contraction §(X)$, gives the following 1-form on W,

oL . oL
i(X)Q, foaA+fA< —W>+Flf<p’f_‘1 6A>+GAQﬁ11dt
oL oL aﬁ
| g —GY | dad + ( fo — fP0 Wldet + f —pit ) dgit
aqO aql

+ (f* = faiy) dply .

Then, requiring this 1-form to vanish, we obtain the following system of equations

AL . oL

f +fz - +FA pk_l_i +G qz Oa (525)

0 a a. A < ain k A 8%? AYi4+1 —
= faiyy (5.26)

oL ; oL
G%:f@ ; Gfax:f<aq{4_pz41>a (5.27)

oL
k=1 22 ) = 2

f#0, (5.29)
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where 0 < i < k—11in (5.26), and 1 <4 < k— 1 in (5.27)), and equation (5.29)) arises from the second

equation in (5.21)). Fixing the non-zero value of the local function f to 1, the above equations become

oL ., oL
—f& A+fA< —8q_A>+F,;“<p’;1 8A>+G g, =0, (5.30)
A =ay, (5.31)
oL PE)

G%:ﬂ 5 GA:&]j—pAl’ (5~32)

., oL
P 1—&?:0, (5.33)

k
f=1. (5.34)

A simple calculation shows that equation is redundant, since it is a combination of the others.
Note that equations are part of the system of equations that the vector field X must satisfy to be
holonomic. In particular, from these equations we deduce that X is holonomic of type k in W,.. However,
since the holonomy condition is required in the statement of the problem, these equations are an identity.
On the other hand, equations are a compatibility condition stating that the vector fields X solution

to equations ([5.21)) exist only with support on the submanifold W, given by Proposition Finally,
equations ([5.32)) are the dynamical equations of the system.

Therefore, a vector field solution to equations (5.21)) is given in coordinates by

o 4, 0 L0 0L @ oL ) @
= +¢r 4+ F i _ 5.35
ot tlin g M 8qA * o g8 3pA * <6q ~Pa > opYy (5.35)

Moreover, since the holonomy condition is required from the beginning, the coordinate expression of a
holonomic vector field X € X(W,) solution to equations (5.21)) is

2k—2 - -
0 0 oL 0 oL ; 0
X = F3 — =yt — . 5.36
+ Z q1+1a A + L 1ogd @ 8q0 5pA (8(}{‘ Pa >3pf4 (5.36)

Observe that the component function F;}C_l, 1 < A < n, remain undetermined. Nevertheless, since
the vector field X is defined at support on the submanifold W,, we must study the tangency of X along
the submanifold W,. That is, we must require L(X)E|,,, = 0 for every constraint function ¢ defining
locally W,.. Hence, bearing in mind that the submanifold W, is defined locally by the n constraints ,

we must require

g k2 d a oL, o ol d ol
F 7—1 i k‘fl_ :0
<8t + Z qz+18 A + Log— LA @ t 5 el a0, + <8q;4 Pa ) aprx) (PA 8q,f> ;

then we obtain the following n equations

oL

k—2

- i —0,
v Btaqk ;%“a Baqk

 d oL
2N (- () =0
i=0 dt aql?71+i

These equations define a new submanifold W; < W,. Then, requiring X to be tangent to this new
submanifold W, we obtain the following n additional constraints

2 . A
A oL
N e L]
ZZ:; dt' \ 9giy,,

152

which may be rewritten as

M-



5.1. LAGRANGIAN-HAMILTONIAN UNIFIED FORMALISM

which define a new submanifold Wy — W; < W,. Iterating this process k — 3 more times, the constraint
algorithm delivers a kn-codimensional submanifold W, < W, defined locally by the constraints

k—r P 2
Y s
r—1 — _1 17‘ o
Py i:O( ) dt 8(];"4_1_1 )

with 1 < A <nand 1< r <k Moreover, the submanifold W, < W, can be identified with the graph
of a bundle morphism FL: J?*~ 11 — J*=1x* over J*~!7 defined locally by

= .d [ oL
FLt=t 3 FL''=q} ; FLPL'= Z(—l)zﬁ (af;) '
i=0 Urti

Therefore, we recover Proposition and Corollary from the constraint algorithm. Finally, requiring
X to be tangent along the submanifold W, < W,., we obtain the following n equations

d 02L b di [ oL
k( pB B 2 : i _
(=1) < k=1 gt Q%_l) 8q,§8q,‘3 (=1) dt <8q;4> 0. (5.37)

i=0

These are the kth-order FEuler-Lagrange equations for a vector field. These equations may be compatible
or not, and a sufficient condition to ensure compatibility is the regularity of the Lagrangian density. In
particular, we have the following result.

Proposition 5.8. If £ € Q'(J*7) is a regular Lagrangian density, then there exists a unique vector field
X € X(W,) solution to equation (5.21) and tangent to Wr.

Proof. Since the kth-order Lagrangian density £ € Q'(J*7) is regular, then equations have a
unique solution for F’ﬁcfp and therefore the vector field X € X(W,.) solution to equation is
unequivocally determined. In addition, since equations are the necessary and sufficient condition
for X to be tangent along the submanifold W,, this condition holds whenever they the referred equations
are compatible, as it is the case when the kth-order Lagrangian density is regular. O

However, if the kth-order Lagrangian density £ is not regular, then equations may or may not
be compatible, and the compatibility condition may give rise to new constraints. In the most favorable
cases, there exists a submanifold Wy — W, (it could be Wy = W, ) such that there exist vector fields
X € X(W,), tangent to Wy, which are solutions to the equations

i(X)ly, =0+ d(X)(0R) lyy, = 1. (5.38)

In this case, the equations ([5.37) are not compatible, and the compatibility condition gives rise to new
constraints, and the constraint algorithm continues.

Equivalence of the dynamical equations in the unified formalism

In the previous Sections we have stated the dynamical equations in the unified formalism in several ways.
First, we have stated the problem using a variational principle. Then we have stated a geometric equation
for sections of the bundle pi: W, — R, and we have analyzed it in coordinates. Finally, we have stated
a geometric equation for vector fields defined in W,, and we have studied the equation and the tangency
condition in coordinates. In this Section we prove that all these equations are equivalent.

Theorem 5.9. The following assertions on a holonomic section 1 € I'(pR) are equivalent.

1. v is a solution to the Lagrangian-Hamiltonian variational problem.
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2. 4 is a solution to equation (5.9), that is,

P i(Y)Q =0, foreveryY € X(W,) (tangent to W) .

8. If ¢ 1s given locally by '
G(t) = (t, g (1), ¢ (1), P'a (1)) ,

with0 < i< k-1, k<j<2k—1, then the components of ¥ satisfy equations (5.13]) and ( -,
that is, the followmg system of kn dzﬁerentzal equations

oL s oL .,
—_— = — — DY . 5.39
6(]6‘ ;0 Pa an Pa ( )

%

P =

4. % s a solution to equation _
i(¥)(Qroyp) =0, (5.40)
where 7721 R — TW, is the canonical lifting of b to TW,.

5. 9 is an integral curve of a vector field contained in a class of py-transverse and holonomic vector
fields, {X} € X(W,.), satisfying the first equation in (5.21), that is,

i(X)Q, =0.
Proof. (1 <= 2) We prove this equivalence following the patterns in [6§].

Let 7 € %V(p§)(WT) be a compact-supported vector field, and V' C R an open set such that 0V is
a O-dimensional manifold and pf (supp(Z)) C V. Then,

d d d

a4 /dz:@?«: 4 po, = 4 /wo:@r

S s=0JR dS s dS s=0JV
* . o

_/ "

=0JV
/w 2)d6, +di(2)8,)

(hm 2O _@T> :/ Y*L(Z)O
s—0 S v

- /V V(—i(Z2)Q + di(2)8))

_ / G i(Z)0 + /V d(¥* i(2)0,)
/w 20+ [ vtz /w

as a consequence of Stoke’s theorem and the assumptions made on the supports of the vertical
vector fields. Thus, by the fundamental Theorem of the variational calculus, we conclude

2 Jueco = wize-o.
dS s=0 JR

for every compact-supported Z € Z{V(”f%)(WT). However, since the compact-supported vector fields
generate locally the C°° (W, )-module of vector fields in W,, it follows that the last equality holds
for every pp-vertical vector field Z in Wi,.

Now, recall that for every point w € Im(v), we have a canonical splitting of the tangent space of
W, at w in a pp-vertical subspace and a pp-horizontal subspace, that is,
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Thus, if Y € X(W,), then
Yo = (Yo = Tw(® 0 pi)(Ya)) + Tuw (¥ 0 pp) (Vo) = Yy + Y,
with Y,V € Vi, (p%) and Y,¥ € T,,(Im(¢)). Therefore
VT i(Y)Q = ¢ i(YY)Q + 47 i (YV)Q = 0 (YY)D,

since 1* i(YV)Q, = 0, by the conclusion in the above paragraph. Now, as Y,¥ € T, (Im(¢)) for
every w € Im(z), then the vector field Y¥ is tangent to Im(v)), and hence there exists a vector
field X € X(R) such that X is -related with Y¥; that is, 9, X = Y¢|Im(w)' Then *i(Y¥)Q, =

i(X)y*Q,. However, as dim Im(¢)) = dimR = 1 and Q, is a 2-form, we obtain that 1* ;(Y¥)8Q, = 0.
Hence, we conclude that ¢* {(Y)Q, = 0 for every Y € X(W,.).

Taking into account the reasoning of the first paragraph, the converse is obvious since the condition
Y i(Y)Q, = 0, for every Y € X(W,.), holds, in particular, for every Z € XV (=) (W),).

(2 <= 3) As we have seen in previous Sections, in the natural coordinates of W, equation (5.9)) gives

locally the equations (5.11)), (5.12), (5.13)), (5.14) and (5.15)). As stated previously, equation
is redundant, since it is a combination of the others, and from equations we deduce that
the section ¢ € T'(pg) lies in the submanifold W, — W,, and in particular in the submanifold
W, = graph(FL) when we combine these constraints with equations . Hence, equation
is locally equivalent to equations ([5.12)), (5.13]) and (5.14). However, since 1) is assumed to
be holonomic, equations (5.12) hold identically, and thus equation is locally equivalent to

equations (5.13) and (|5.14)), that is, to equations (5.39).

(3 <= 4) If v € T'(pR) is locally given by

U(t) = (g (1), a5 (8), P4 (1)) |

then its canonical lifting to the tangent bundle of W,., ¢ R — TW,, is locally given by
D) = (L6 (1), 45 (1), Pa (1))

and the inner product z(t/})(QT o 1)) gives, in coordinates,

;. 4 0L oL .
i(0)( Qo)) = | Phdiy — 4 s +Pagiy | dt+ | - — 0% | dad
aqr 8(]0

oL ., ., oL , ;
| mg P = ) dgt + (P - o | dat + (6 — gy dply -
0q; oq;,

Now, requiring this last expression to vanish, we obtain the system of (2k + 1)n + 1 equations

, oL oL . 0L
i A - A i A -0 -7 i—1
/ — — 4 / =0 ; =— = — — ,
Pabqiy1 — 4y 6(]}4 Pagitq Pa aqé ba 8(]{4 Pa
oL
k—1 <A A
Py = 78q‘4 o4 =4y
k

Observe that this system of equations is the same given by (5.11)), (5.13), (5.12)), (5.14), (5.15).
The same remarks given in the proof of (2 <= 3) apply in this case. Thus, bearing in mind the
above item, we have proved that equation ([5.40) is locally equivalent to the kn differential equations
(15.39).

(3 <= 5) As we have seen in the previous Section, taking f = 1 as a representative of the class of

holonomic and pj-transverse vector fields {X} C X(W,), a vector field solution to the first equation
in (5.21)) is given locally by (5.36)), that is,

2k—2

) d oL 0 oL B
X=_+ A2 g 9 9B 9 [T i) 9
ot ; 9t T T 0gd L Ol Ol <8q;“ Pa | oy,
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where the functions F{}Wl are the solutions to equations ([5.37)).

Now, let ¢ € I'(pg) be an integral curve of X, that is, ¢ = X o). If ¢ is given locally by
P(t) = (t, ¢ (t), g (), P4 (), then P (t) = (1,¢*(t), ¢;*(t), p4(t)), and the condition for ¢ to be an
integral curve is locally equivalent to the equations

oL . 0L ,
LA A A A . . _
i*=ql i d1=Fs_10v ; Y= i Pl = 9ot —piit

Since the curve is assumed to be holonomic, the first 2kn equations hold identically. Hence, the
condition of ¥ to be an integral curve of a pi-transverse and holonomic vector field, X € X(W,),
satisfying the first equation in ([5.21)) is locally equivalent to equations ([5.39). O

5.2 The Lagrangian formalism

In this Section we state the Lagrangian formalism for higher-order non-autonomous dynamical systems.
Since we have already described the Lagrangian-Hamiltonian unified formalism for this kinds of systems,
we proceed in an analogous way to Section 3.3} we “recover” the Lagrangian structures, equations and
solutions from the ones in the unified formalism.

We do not distinguish between the regular and singular cases, since the results remain the same in
either case, but a few comments on the singular case are given.

5.2.1 Geometric and dynamical structures

As in the autonomous case described in Section the first step to give a Lagrangian formalism for
higher-order non-autonomous dynamical systems is to define the usual geometric structures of the La-
grangian formalism, namely the Poincaré-Cartan forms, in order to state the dynamical equations.

The first fundamental result is the following.

Proposition 5.10. The map pt = p} o jo: Wy — J?k—1

w is a diffeomorphism.

Proof. Since W, = graph(FL), it is clear that J2*~!'r is diffeomorphic to W,. On the other hand,
since p; is a surjective submersion by definition, its restriction to the submanifold W, is also a surjective
submersion and, due to the fact that dim W, = dim J?*~17 = 2kn + 1, the map p¥ is a bijective local
diffeomorphism. In particular, the map pf is a global diffeomorphism. O

This result enables us to state a one-to-one correspondence between the set of solutions to the dy-
namical equations in the unified formalism and the set of solutions to the dynamical equations in the
Lagrangian formalism. Now, let us define the geometric structures in the Lagrangian formalism. Using
the extended Legendre-Ostrogradsky map obtained in Corollary we give the following definition.

Definition 5.7. The Poincaré-Cartan forms are the forms O, € QY(J?**~1x) and Qp € Q*(J*~17)
defined as

Or=FL On1 ; Qr=FLQ1=—-dO,,
where Oy, € QYT*(J* 7)) and Qp._1 = —dOx_1 € Q*(T*(J*~'7)) are the canonical Liouville forms

in T*(J*=17). The pair (J?*~1x, L) is the kth-order non-autonomous Lagrangian system associated with
W, 0, ()™ n).-

Observe that the Poincaré-Cartan forms are defined from the canonical forms in the cotangent bundle
T*(J*¥~17), rather than using the forms © and € in the unified setting. Nevertheless, we have the
following result.
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Lemma 5.11. The Poincaré-Cartan 1-form O € QY (J**~1x) satisfies © = piO, and O, = (p})*O .

Proof. A straightforward calculation leads to this result. Bearing in mind that py, = FLo p1, for the first
statement we have ., -
pf@g = pT(]:AC @/Cfl) = (.7:5 o pl)*@k,1 = p;(“)k,1 =0.

On the other hand, taking into account that p] = p; o fz, for the second statement we have
(p1)"Or = (p1oh)*Or) = h*(piO,) = h*© = O,.. O

Remark. Since the pull-back of a form and the exterior derivative commute, Lemma also holds for
the Poincaré-Cartan 2-form, Q. O
In the natural coordinates of J? =17 bearing in mind the coordinate expression of the extended
Legendre-Ostrogradsky map FL£: J?*~lx — T*(J*~17) given in Corollary the local expression of
the Poincaré-Cartan 1-form is

k k—r i
= Z > (-1 ii < o > (dg;ty — gf'dt) + Lat, (5.41)
r=1i=0

8qr+i

which coincides with the coordinate expression of the Poincaré-Cartan 1-form obtained by D.J. Saunders
in [I37] and [I38] when the base manifold M of the bundle 7: E — M is 1-dimensional. It is clear from
this coordinate expression that ©, is ﬂi’fll-semibasic. Now, taking its exterior derivative and changing

the sign, we obtain the local expression of the Poincaré-Cartan 2-form, which is

0 —zk:k_r(—ni“ di 0L dt + O°L dgB | A (dgt | — gdt)
£ dti \ 9tdgl,, dqP g % -1~

r=1 i%O T+7’ (542)
d [ OL oL

- dgA Adt) — =—=dqgP? Adt.
@ (6;‘;) i ) a7 "

Remark. The Poincaré-Cartan 1-form can be defined alternatively using the canonical structures of the
higher-order jet bundles. In particular, according to [I37] and [I38] (see also [2], [83]), we have

O, = SM(AL) + (1) L e QNI ), (5.43)

where Sf,k) is the generalization to higher-order jet bundles of the operator used in the classical Hamilton-
Cartan formalism for problems in the calculus of variations which involve time explicitly (see [137] and
[138], §6.5, for details). O

From the Poincaré-Cartan forms, the concept of regularity for a kth-order Lagrangian density is a
straightforward generalization of Definition for first-order non-autonomous dynamical systems.

Definition 5.8. A kth-order Lagrangian density L € Q(J*n) is regular if the pair (Qz, (72~1)*n) is a
cosymplectic structure in J?*~'m. Otherwise, L is singular.

Observe that, taking into account Section a kth-order Lagrangian density is regular if, and only
if, the Poincaré-Cartan 2-form Q; € Q2(J*~17) has maximal rank 2n. Moreover, bearing in mind
the coordinate expression of the Poincaré-Cartan 2-form, the regularity condition for £ is locally
equivalent to

det (62[/) (jkp) #0, for every jFo € Jin
aqu aq? Jt ’ Y Jt
Thus, this notion of regularity is equivalent to the one given in Definition [5.6] Moreover, bearing in mind
Proposition we have the following result.
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Proposition 5.12. Given a kth-order Lagrangian density £ € Q'(J*n), the following statements are
equivalent.

1. In every local chart of coordinates (qé“, ceey q,‘;‘) of JF, we have
det 827[/ (jkp) #£0,  for every jE¢ € JFn
aqfaq? Jt ) Y It .

2. Qr has mazimal rank on J**17.
3. The pair (e, (72571)*n) is a cosymplectic structure on J**~1r.
4. FL: J**=1r — JF=1n* is a local diffeomorphism.

5. FL: J*—1p - T*(J*=17) is an immersion.

5.2.2 Dynamical equations

Using the results stated in the previous Section, we can state the dynamical equations in the Lagrangian
formalism, and recover the solutions to these equations from the solutions to the dynamical equations in
the unified formalism.

Variational principle

First of all, let us state the variational problem from which the Lagrangian dynamical equations are
derived. Let T'(7) be the set of sections of 7, and let us consider the functional

L:T(x) — R
o — [u*erec
R

where the convergence of the integral is assumed.

Definition 5.9. The kth-order Lagrangian variational problem (also called generalized Hamilton vari-
ational problem) for the kth-order Lagrangian system (J?*~'m, L) is the search for the critical (or sta-
tionary) sections of the functional L with respect to the variations of ¢ given by ¢s = o5 0 ¢, where {04}
is a local one-parameter group of any compact-supported Z € XV (7) (E); that is,

4
ds

/(j2k71¢s)*@[, =0.
s=0JR

Theorem 5.13. Let ¢ € I'(pk) be a holonomic section which is a solution to the Lagrangian-Hamiltonian
variational problem given by the functional LH. Then, the section 1y = p} o9y € T(7**~1) is holonomic,
and its projection ¢ = w2k~Loap, € T'(n) is a solution to the Lagrangian variational problem given by the
functional L.

Conversely, given a section ¢ € T'(m) which is a solution to the Lagrangian variational problem, the section
Y =jro(pr) Lok "1¢ € T(pk) is a solution to the Lagrangian-Hamiltonian variational problem.

Proof. As 1) € T'(p%) is holonomic, then ¢z = p} o1 € I'(72¢~1) is a holonomic section, by definition.

Now, p] being a submersion, for every compact-supported vector field X € XV(’_T%_l)(J 2k=17) there

exist compact-supported vector fields Y € %V(pf@(Wr) such that X and Y are pj-related. In particular,
this holds if X is the (2k — 1)-jet lifting of a compact-supported m-vertical vector field in FE; that is, if
we have X = j2~17 with Z € V(™ (E). We also denote by {5,} a local one-parameter group for the
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compact-supported vector fields Y € %V(pTg)(W,.). Then, using this particular choice of pf-related vector
fields, we have
4
ds

d
2k—1 * _
5—0/]R(j ¢s) @E = ds

_ / PLG* 1 2)0, = / GEGUP 1 2)a0, + di(* 1 2)0,)
R R

2k— " _ i
s—o/JR(]Qk 1(050(;5)) Oc = ds

/(ij—l¢)*(j2k—las)*®L
s=0JR

- / G () (21 2)d0, + di(j*12)0,) = / G (i(Y)dO, + di(Y)e,)

d d
= [ Y'L(Y)O, = — /w*U:Gr: — /1/):@T=0,
/l\% ( ) ds s=0 /R ds s=0 JR

since 9 is a critical section for the Lagrangian-Hamiltonian variational problem.

Conversely, if we have a section ¢ which is a solution to the Lagrangian variational problem, then

we can construct a section ¢ = jz o (p£) =1 o j2*71¢ of the projection p§ (remember that, in the unified

formalism, the dynamical equations have solutions only on the points of W,, or in a subset of it). Then,
the above reasoning also shows that if ¢ is a solution to the Lagrangian variational problem, then v is a
solution to the Lagrangian-Hamiltonian variational problem. O

Dynamical equations for sections
Using the previous results, we can state the Lagrangian equations for sections, and recover the Lagrangian
sections in J?*~17 from the sections in the unified formalism.

First, the kth-order Lagrangian problem for sections associated with the system (J2*~17 £) consists
in finding sections ¢ € I'(m) satisfying

(G 1) i(Y)Q =0, for every Y € X(J%*~1x). (5.44)
Proposition 5.14. Let ¢ € I'(pR) be a holonomic section solution to equation (5.9). Then the section
e = pl o € T(728~1) is holonomic, and is a solution to equation (5.44).
Proof. Since, by definition, ¢ € I'(pg) is holonomic if p} o1 € T'(72¥~1) is holonomic, it is obvious that
Y = pj o is a holonomic section.

Now, recall that, as p is a submersion, for every Y € X(J?*~17) there exist some Z € X(W,) such
that Y and Z are pj-related. Note that this vector field is not unique, since Z + Z,, with Z, € ker Tpf7,
is also pj-related with Y. Thus, using this particular choice of pj-related vector fields, we have

Pri(V)Qe = (p1 o) i(Y)Qe = 97 ((p1)"i(Y)Qz) = ¢ (i(2) (1) Q) = ¢7i(2)Q .

Since the equality ¢¥* i(Z)$2, = 0 holds for every Z € X(W,), in particular it holds for every Z € X(W,)
which is p}-related with Y € X(J?*~!x). Hence, we obtain

Yri(Y)Qe =¢7i(2)Q2 = 0. O

The diagram for this situation is the following:
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Observe that, from this result, we do not have a one-to-one correspondence between sections ¢ € I'(pR)
solutions to equation and sections 1, € I'(72%~1) solutions to equation (5.44), but only that every
holonomic section % solution to the dynamical equations in the unified formalism can be projected to a
holonomic section v, solution to the Lagrangian equations. Nevertheless, recall that sections v solution
to equation take values in the submanifold W,, which is diffeomorphic to J?*~!x, and thus it is
possible to establish an equivalence using the diffeomorphism p%. In order to establish this equivalence,
we first need the following technical result.

Lemma 5.15. The Poincaré-Cartan 1-form satisfies (p£)* O = j5O,..

Proof. A simple calculation proves this result:
(PF)*Or = (P 0jc)"Or = (prohoje) O = (prohojr) (FL O)-1)
= (FLoprohojc) Or1=(prohojc)Op1=(hoj)©=j:0,. O
Remark. Since the exterior derivative and the pull-back commute, Lemma [5.15] also holds for the

Poincaré-Cartan 2-form. O

Now we can state the remaining part of the equivalence between the solutions of the Lagrangian and
unified formalisms.
Proposition 5.16. Let 1z € T'(725~1) be a holonomic section solution to the dynamical equation ([5.44).
Then the section 1) = jz o (p¥) "L otpr € T(pR) is holonomic and it is a solution to the equation (5.9).

Proof. By definition, a section ¢ € I'(pg) is holonomic if the section p] o1 € I'(#2*~1) is holonomic.
Computing, we have

prov =piojeo(p) ot =pfo(pf) ™ or = ve.
Hence, since 1, is holonomic, the section 1) = j. o (p¥)~! 01/, is holonomic in W;..

Now, since jz: W,y — W, is an embedding, for every vector field X € X(W,) tangent to W, there
exists a unique vector field Y € X(W,) which is j-related with X. Hence, let us assume that X € X(W,)
is tangent to W,. Then we have

U i(X)Q = (e o (pF) 7 o the) " i(X)2 = ((pF)™F 0 vhe) " il(Y )iz
Applying Lemma [5.15] we obtain
(D)~ o e) i(Y)izQ = ((PT) ™ o be)* i(Y) (D) Qe = (pf o (p1) ™" 0 42)™ i(2)Qe = Y7 i(2)0s

where Z € X(J*~1r) is the unique vector field related with Y by the diffeomorphism p%. Hence,
since ¢} i(Z)Qe = 0 for every Z € X(J?~17) by hypothesis, we have proved that the section 1 =
jro (pf) Lot € T(ph) satisfies the equation

P i(X)Q. =0, for every X € X(W,) tangent to W, .

However, from Proposition we know that if ¢ € T'(pg) is holonomic, then this last equation is
equivalent to equation (5.9)), that is,

Y i(X)Q, =0, forevery X € X(W,). O

Finally, let us compute the local expression of the equation for the section ¢, € T'(72*~1). Suppose
that ¢ € T'(pf) is given locally by o (t) = (t,¢*(t), ¢*(t),p4 (1)), 0 < i < k—1, k < j < 2k — 1. Since
1) is holonomic and a solution to equation , it must satisfy equations (5.12)), (5.13) and (5.14). The
first group of equations is automatically satisfied because of the holonomy assumption. Now, bearing in
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mind that the section ¢ takes values in the submanifold W, = graph(FL), equations ([5.13)) and (5.14)

can be pf-projected to J?*~1r thus giving the following equations for the section 1)z = p} o)
OL| oL dor| | dor|
dqg! we oq e dt? 9g3' ve dt* 9g;t e N

Finally, bearing in mind that ¢, is holonomic in J2*~17, there exists a section ¢ € I'(r), whose local
expression is @(t) = (¢, ¢4 (t)), such that j2*~1¢ = 1), and thus the above equations can be rewritten in

the following form

d* oL

oL - oL
dt? 9q3

g

_ 4oL
kg dt gt

oL
dt* 9g;t

+...+(-1)

j2k—1¢

= 0. (5.45)

j2k—1¢

j2k—1¢

Therefore, we obtain the Euler-Lagrange equations for a kth-order non-autonomous system. As stated
before, equations may or may not be compatible, and in this last case a constraint algorithm must
be used in order to obtain a submanifold S; < J?*~1r (if such a submanifold exists) where the equations
can be solved.

Dynamical equations for vector fields

Now, using the results stated at the beginning of the Section, we can state the Lagrangian dynamical
equations for vector fields, and recover a vector field solution to the Lagrangian equations starting from
a vector field solution to the equations in the unified formalism.

The kth-order Lagrangian problem for vector fields associated with the system (J2*~1, £) consists
in finding holonomic vector fields X, € X(J2*~17x) such that

i(Xp)Qe =0 ;X))@ ) #0. (5.46)
Remark. As in the first-order case described in Section [2.4.1} the second equation in (5.46)) is a transver-
sality condition for the vector field X, with respect to the projection onto R, and the non-zero value is
usually fixed to 1, thus giving the following equations

i(X)Qe=0 ; i(X)@E* =1,

O

First we need to state a correspondence between the set of vector fields in W, tangent to W, and the
set of vector fields in J2~ 7.

Lemma 5.17. Let X € X(W,) be a vector field tangent to Wy. Then there exists a unique vector field
X € X(J**717) such that Xz o0 pi ojr =Tpl o X ojp.

Proof. Since X is tangent to W,, there exists a unique X, € X(W,) such that Tjz o X, = X o j.
Furthermore, since pf is a diffeomorphism, there is a unique vector field X, € X(J?*~!7) which is
pF-related with X,; that is, Xz o pf = Tpf o X,. Then we have

Xpopioje=Xpopf =TpfoX,=TpjoTjroX,=TpjoXoj. m

The above result states that for every vector field X € X(W,) tangent to W, there exists a unique
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vector field X, € X(J?*~17) such that the following diagram commutes

W,

Wi
Xe \ ,ng
” W,

JQk—lﬂ

As a consequence of Lemma[5.17] we can establish a bijective correspondence between the set of vector
fields in W, tangent to W, solution to the dynamical equations in the unified formalism and the set of
vector fields in J?*~!7 solution to the Lagrangian dynamical equations stated above. In particular, we
have the following result.

Theorem 5.18. Let X € X(W,) be a holonomic vector field solution to equations (5.46) and tangent to
Wre (at least on the points of a submanifold Wy — W, ). Then there exists a unique holonomic vector
field X € X(J?*~1x) which is a solution to the equations (5.46)) (at least on the points of Sy = pt(Wy)).

Conversely, if Xp € X(J?*~1x) is a holonomic vector field, which is a solution to equations (5.46) (at
least on the points of a submanifold Sy — J¥=171), then there exists a unique holonomic vector field
X € X(W,) tangent to Wy which is a solution to equations (5.21) (at least on the points of Wy =
(P1)~H(Sp) = Wr).

Proof. Applying Lemma and taking X, € X(J?*~!7) as the unique vector field given by Lemma

b.17] we have:

i(X)€h = i(X)(p1)" 2 = (p1)" i(X)S2e .

However, as pj is a surjective submersion, this is equivalent to
i(Xe)Qsl o,y = (X)) Qe j2e1, = i(Xe)Qs

since pf (W,) = J®*~1x. Hence, we have proved that ;(X)2,. = 0 if, and only if, i(X.)Q, = 0. The same
reasoning proves that i(X)(pk)*n # 0 if, and only if (X )(7%%~1)*n #£ 0.

In order to prove that X, is holonomic, we compute its local expression in coordinates. From the
local expression ([5.36) for the vector field X (where the functions Fj; , are the solutions of equations
(5.37)), and using Lemma we obtain that the local expression of the vector field X, € %(J%_lﬂ') is

2k—2

0 0
Xr=—+ A7 4 paA ’
£= 5 ; ql+18q;4 2k Y9ah

which is the local expression for a holonomic vector field in J?*~17. Reversing this reasoning we prove
that if X, is holonomic, then the vector field X € X(W,) is holonomic. O
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Remark. It is important to point out that, if £ is not a regular kth-order Lagrangian density, then X
is holonomic of type k in W,., but not necessarily holonomic of type 1, as it is shown in equations (|5.31)).
When translated to the Lagrangian setting, this means that X may be a solution to the Lagrangian
equations for vector fields, but the trajectories given by its integral sections are not solutions to the
dynamical system (the sections solution to the dynamical problem must be holonomic, but the integral
sections of X, are only holonomic of type k). Therefore, the holonomy condition can not be dropped
from the statement of the problem, since for singular Lagrangians this must be imposed as an additional
condition. This constitutes a relevant difference from the case of first-order dynamical systems, where
this condition (X, being holonomic) is obtained straightforwardly in the unified formalism.

For singular kth-order Lagrangian densities, only in the most interesting cases can we assure the
existence of a submanifold Wy < W, and vector fields X € X(W,) tangent to Wy which are solutions
to equations (5.38). Then, considering the submanifold Sy = p£(Wy) — J?*~!7 in the best cases we
have that those holonomic vector fields X, exist, perhaps on another submanifold S ]}} — Sy where they
are tangent, and are solutions to equations

i(Xe)Qelgn =05 i(Xe) (@)

s =1
0

Notice that Theorem [5.18| states that there is a one-to-one correspondence between vector fields
X € X(W,) solutions to equations and vector fields X, € X(J?*~!7) solutions to , but not
uniqueness. In fact, we cannot assure uniqueness of the vector field X, unless the Lagrangian density is
regular, as we can see in the following result.

Corollary 5.19. If the kth-order Lagrangian density £ € Q' (J*7) is reqular, then there is a unique
holonomic vector field, X, € X(J?*~1x), which is a solution to equations ([5.46]).

Proof. If the Lagrangian density £ € Q!(J*7) is regular, using Proposition there exists a unique
holonomic vector field, X € X(W,.), solution to equations and tangent to W,. Then, using Theorem
related to this unique vector field in W, there is a unique vector field X, € X(J?*~!7), which is
holonomic and is a solution to equations . O

In other words, uniqueness of the vector field X, is a consequence of uniqueness of X.

Equivalence of the dynamical equations in the Lagrangian formalism

Finally, we state the equivalence Theorem in the Lagrangian formalism, which is the analogous to Theorem
This result is a straightforward consequence of Theorems and and of Propositions

and and hence we omit the proof.

Theorem 5.20. The following assertions on a section ¢ € I'(w) are equivalent.

1. ¢ is a solution to the Lagrangian variational problem.

2. j%=1¢ is a solution to equation (5.44)), that is,

G* 1) i(YV)Q =0,  for every Y € X(J**~1x).

3. In natural coordinates, if ¢ = (t,qi\(t)), then j271¢ = (t,q8'(t), ¢ (t), ..., g5y _1(t)) is a solution
to the kth-order Euler-Lagrange equations given by (5.45)), that is,

oL
g

_ 4oL
dt dqi

d?> OL d* oL
_— .. —1)*
dt? aQQA j2k—1¢ + + ( )

— =0.
dtk 6(1;@4 j2k—1¢

j2k—1¢ j2k—1¢
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4. Denoting ¥y = j2*~1¢, then 1, is a solution to the equation
i(the)(Q 0the) =0,
where 1/}5: R — T(J?*~17) is the canonical lifting of 1z to the tangent bundle.

5. 72571% is an integral curve of a vector field contained in a class of w2F~1-transverse holonomic
vector fields, { X} C X(J* 1), satisfying the first equation in (5.46)), that is,

(X)) =0.

5.3 The Hamiltonian formalism

In order to describe the Hamiltonian formalism on the basis of the unified one, we must distinguish
between the regular and non-regular cases. In fact, the only “non-regular” case that we consider is
the almost-regular one, so we first need to generalize the concept of almost-regular Lagrangian density
to the higher-order non-autonomous setting. Moreover, we must introduce the dynamical information
in the Hamiltonian formalism from the dynamics in the unified setting, that is, from the Hamiltonian
pw-section b € T(uw).

5.3.1 Geometrical setting

Let FL: J2~1x — T*(Jk17) and FL: J?*~17r — J¥~1z* be the extended and restricted Legendre-
Ostrogradsky maps given by Proposition and Corollary respectively. Then, let us denote by

P =Im(FL) = FL(J?*17) <y T*(J¥~17) the image of the extended Legendre-Ostrogradsky map; and

by P = Im(FL) = FL(J?**~1x) <y Jh=17* the image of the restricted Legendre-Ostrogradsky map. Let
p = T-1, ©J: P — R be the natural projection, and FL, the map defined by FL = j0 FL,.

Remark. If the Poincaré-Cartan 1-form is defined without using the Legendre-Ostrogradsky map, as we
have seen in ([5.43)), then we can define the extended Legendre-Ostrogradsky map in an alternative, but

equivalent, way. In particular, since O, € Q' (J%*~17) is a Wi’i}l—semibasic form, we can define a bundle

morphism FL: J2*~1x — T*(J*~1x) over J*~x as follows: for every v € T(J2~1x),
(O2,v) = (T (0), FL(mp1(0)) )

where 7j2r-1,: T(J?~17r) — J?~11is the canonical submersion. The map FL is the extended Legendre-
Ostrogradsky map. From this, the restricted Legendre-Ostrogradsky map FL: J?*~1x — JF-1z* is
defined by composition with the canonical quotient map p: T*(J*~17) — J*~17* that is, FL = po FL.
All the remarks and properties for both Legendre-Ostrogradsky maps stated in Section hold, and
in addition we have O, = }\Z*@k,l and Q, = }\Z*Qk,l.

Observe that these are the usual definitions of the Legendre-Ostrogradsky maps, as we have seen in
Sections [2.1.2] 2:3:2] and [2:4:2] thus justifying the notation and terminology adopted in Section[5.1.2] ¢

With the previous notations, we can give the following definition.

Definition 5.10. A kth-order Lagrangian density £ € Q'(J*n) is almost-regular if

1. P is a closed submanifold of J*~1m*.
2. FL is a submersion onto its image.

3. For every j2*"1¢ € J?*~'x, the fibers FL Y (FL(j?*71¢)) are connected submanifolds of J**'x.
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Observe that, in particular, if £ is a kth-order almost-regular Lagrangian density, then FL, is a
surjective submersion, and thus admits global sections on P, that is, maps v: P — J?*~1r satisfying
FLyoy=1Idp. Let I'(FL,) be the set of sections of FL,.

As a consequence of Proposition we have that P is diffeomorphic to P. This diffeomorphism is
[t =poj: P — P. This enables us to state the following result.

Lemma 5.21. If the kth-order Lagrangian density £ € Q' (J*7) is, at least, almost-reqular, the Hamil-
tonian section h € I'(uy) induces a Hamiltonian section h € I'(i) defined by

h([w]) = (p2 0 ) ([(05) " G(WD)]),  for every [w] € P

Proof. Tt is clear that, given [w] € P, the section h maps every point (j2*71¢,[w]) € (p5)~'(Jw]) into
pg Hpa(h(25 ¢, [w]))]. So we have the diagram

P T*(J*1x) w

_ 7
Lﬁ /h -7 i# /‘W‘(; h
D= P 5 Jhe1 12 W,

Thus, the crucial point is the ps-projectability of the local function H. However, since a local base for
ker Tps is given by (5.2), that is,
0 0
kerTpo =( —,...,—— ),
< I3, a5,y >

we have that H is pe-projectable if and only if

oL
k—1
Pit=ox-
A aq?
This condition is fulfilled whenever [w] € P, which implies that ps(h((p5)~([w]))) € P- O

As in the unified setting, the Hamiltonian p-section is specified by the local Hamiltonian function
H € C*(P), that is,
Using the Hamiltonian p-section we define the Hamilton-Cartan forms ©; = h*©;_; € Q(P) and
Q, = h*Qy_1 € Q*(P). Observe that FL;O) = O, and FLQp, = Q. Then, the triple (P,Q,, Tpn) is
the kth-order non-autonomous Hamiltonian system associated with (W, Q., (pR)*n).

Remark. The Hamiltonian u-section can be defined in an equivalent way, without passing through the
unified formalism, as follows: h = jo 1!, %

5.3.2 Regular and hyperregular Lagrangian densities

Now we analyze the case when L is a kth-order regular Lagrangian density, although by simplicity we
focus on the hyperregular case (the regular case is recovered from this by restriction on the corresponding
open sets where the restricted Legendre-Ostrogradsky map is a local diffeomorphism). This means that
the phase space of the system is J*~!7* (or the corresponding open sets).

In this case we have P = J¥~1n*, FL, = FL and Tp = Tju-1,, and the kth-order non-autonomous
Hamiltonian system is now described by the triple (J*~'a*, Qy, (77,1 )*n). In addition, the Hamiltonian
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p-section h can be defined as h = FLoF £, and we can give the explicit coordinate expression for the
local Hamiltonian function H, which is

k-2

H(t, gl ply) = phalty + o5 "(FL) gt — (mF o FLTY) Lit, ). (5.47)
=0

Moreover, in this case we can also give the coordinate expression of the Hamilton-Cartan forms: bearing
in mind the local expression of ©)_1 and Qf_; given in Example the coordinate expression of the
forms Oy, and €, is

0, =pydg — Hdt ; Q, =dg¢* Adply +dH AdL. (5.48)

In this setting, the fundamental result is the following, which is the analogous to Proposition [5.10]in
the Hamiltonian formalism.

Proposition 5.22. If the kth-order Lagrangian density £ € QY(J*7) is hyperregular, then the map
p5 = phojr: We — JFIn* is a diffeomorphism.

Proof. The following diagram is commutative

W,
P1 jC\JA 2
We
/ Pg
_ FL _
J2k 17'(' Jk 177*

that is, we have p5 = pb o jr = FL o pf. Now, by Proposition [5.10) the map p{ is a diffeomorphism.
In addition, as £ is hyperregular, the map FL is also a diffeomorphism, and thus p5 is a composition of
diffeomorphisms, and hence a diffeomorphism itself. O

This last result allows us to recover the Hamiltonian formalism in the same way we recovered the
Lagrangian one in the previus Section: using the diffeomorphism to define a correspondence between the
solutions of both equations.

Variational principle

Given the Hamiltonian system (J*~'7*,Qp, (7%, )*n), let T'(7%,_,_) be the set of sections of 7, ,_.
Consider the functional
H:T(7),_,) — R

Yn / VpOn
R
where the convergence of the integral is assumed.

Definition 5.11. The kth-order Hamiltonian variational problem (or generalized Hamilton-Jacobi varia-
tional problem) for the kth-order Hamiltonian system (J*~'a*, Q,, (7%, )*n) is the search for the criti-
cal (or stationary) sections of the functional H with respect to the variations of ¥y, given by (¢p)s = o5,
where {os} is a local one-parameter group of any compact-supported Z € %V(ﬁ;k—lw)(kalﬂ*); that is

d I
= S_O/R(wh)seh =0. (5.49)
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Theorem 5.23. Let ¢ € T'(p}) be a critical section for the Lagmngian Hamiltonian variational problem
given by the functional LH. Then, the section 1y, = py o € I'(7,_, ) is a critical section for the
Hamiltonian variational problem given by the functional H.

Conversely, given a section ¢y, € T'(7",_, ) solution to the Hamiltonian variational problem, the section
Y =jro(p5)toyy € I'(pR) is a solution to the Lagrangian-Hamiltonian variational problem.
Proof. The proof of this result is analogous to the proof given for Theorem [5.13]

Since pj is a submersion, for every compact-supported vector field X € f{v(ﬁ;k*w)(]k_lw*) there
exist compact-supported vector fields Y € Xv(pﬁg)(Wr) such that X and Y are pj-related. We also denote
by {os} a local one-parameter group for the compact-supported vector fields Y € XV(”TE)(W,.). Then,
using this particular choice of p5-related vector fields, we have

S_O/R(%//h):@h = i . 0/111 T

/'l/]hL @h—/wh d®h+dl( )@h)

4
ds

/]R(ogowh) th —

/1/) X)dO, + di(X)Oy) /w Y)dOe, +di(Y)6,)

/¢ 1" £ /wasgr:dskg_o‘/Rws@r:Oa

since 1) is a critical section for the Lagrangian-Hamiltonian variational problem.

Conversely, if we have a section 1, which is a solution to the Hamiltonian variational problem, then
we can construct a section ¢ = jr o (p5) Loy, € I'(pk). Then, the above reasoning also shows that if ¢,
is a solution to the Hamiltonian variational problem, then v is a solution to the Lagrangian-Hamiltonian
variational problem. O

Dynamical equations for sections

As in Section[5.2] using the results given in previous Sections, we can now state the Hamiltonian equations
for sections in the hyperregular case, and recover the Hamiltonian solutions in J*~!7* from the solutions
in the unified setting.

The kth-order (hyperregular) Hamiltonian problem for sections associated with the cosymplectic
Hamiltonian system (J*~'m*, Q, (7%._1_)*n) consists in finding sections ¢, € T'(7%,_,,) characterized
by the equation

Vri(Y)Qn =0, for every Y € X(JF1n%). (5.50)

Proposition 5.24. Let £ € Q'(J*7) be a hyperreqular kth-order Lagrangian density, and v € T'(p%) a
section solution to equation (5.9)). Then ¥y = py o) € T'(7,_, ) is a solution to equation (5.50)).
Proof. The proof of this result is analogous to the proof given for Proposition

As ph is a submersion, for every Y € X(J*~1x*) there exist some Z € X(W,) which is p}-related with
Y. Observe that this vector field Z is not unique, since Z + Z,, with Z, any ph-vertical vector field, is
also ph-related with Y. Thus, using this particular choice of p5-related vector fields, we have

Un (V) = (pz 0 9)"i(Y)Qn = 97 ()" i(Y)2n) = ©"(i(2)(p3)" ) = ¥7i(Z)S, .

Since the equality ¢¥* i(Z)€2, = 0 holds for every Z € X(W,), in particular it holds for every Z € X(W,)
which is ph-related with Y € X(J*~17*). Hence, we obtain

Y i(Y)Qn =¢*i(2)Q, = 0. L)
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The diagram illustrating this situation is the following:

W,
2
P PR JE—Lg*
ﬁgkflw /4
Ve
-~
RZ — — T¥n=p30¢

Remark. Observe that, for the Hamiltonian sections, the condition of holonomy on the section v is not
required. O

As for the Lagrangian sections given by Proposition this last result does not give an equivalence
between sections ¢ € I'(pf), which are solutions to equation (5.9), and sections ¢, € I'(7.__), which
are solutions to equation , but only that a section solution to the former equation can be projected
to a section solution to the latter. However, recall that sections v which are solutions to the dynamical
equations in the unified formalism take values in W, , and hence we are able to establish the equivalence
using the diffeomorphism p5. As in the Lagrangian formalism, we first need the following technical result
to state the full equivalence, which is the analogous to Lemma [5.15in the Hamiltonian formalism.

Lemma 5.25. The Hamilton-Cartan 1-form satisfies (p5)*Op = 750,

Proof. An easy computation proves this result:

(p5)"On = (Py0jc) On = j;O,. 0
Remark. Since the exterior derivative and the pull-back commute, Lemma also holds for the
Hamilton-Cartan 2-form. O

Now we can state the remaining part of the equivalence between the solutions of the Hamiltonian and
unified formalisms.

Proposition 5.26. Let £ € Q' (J*r) be a hyperreqular Lagrangian density, and 1y, € D(77_1) a section
solution to the dynamical equation (5.50). Then the section 1) = jz o (p§)~L o1by, € T(pk) is holonomic
and a solution to the equation (5.9)).

Proof. The proof of this result is analogous to the proof given for Proposition [5.16]

Since jz: We — W, is an embedding, for every vector field X € X(W,) tangent to W, there exists
a unique vector field Y € X(W,) which is jg-related with X. Hence, let us assume that X € X(W,) is
tangent to YW,. Then we have

(X = (e o (p5) " o vn) i(X)Q = ((p7) o n)* i(Y)2Q .
Applying Lemma [5.25] we obtain
((p5) " o n)* i(Y)jz2 = ((p5) ™" 0 )" i(Y)(05) " = (p5 © (p5) ™" 0 ¥n) " i(2)h = U5, i(Z)

where Z € X(J¥~!7*) is the unique vector field related with Y by the diffeomorphism p%5. Hence,
since ¥} i(Z)Q, = 0 for every Z € X(J*17*) by hypothesis, we have proved that the section ¢ =
jr o (p5) "oy, € T(ph) satisfies the equation

P i(X)Q, =0, for every X € X(W,) tangent to W, .

However, from Proposition we know that if ¢ € T'(pg) is holonomic, then this last equation is
equivalent to equation (5.9), that is,

v i(X)Q, =0, forevery X € X(W,).
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It remains to prove that ¢ is holonomic in W,. By definition, a section ¢ € I'(pg) is holonomic if its
projection pfot € T'(72¢~1) is holonomic in J?*~17. We prove it in coordinates: if 1y, (t) = (¢, ¢{*(t), p’y (1))
is a solution to equation (5.50), then we have just proved that ¢(t) = (¢, ¢{*(¢), qu(t),pfA(t)) is a solution
to equation which, in coordinates, gives the equations (5.12), (5.13) and (5.14), along with the
equations defining the submanifold W, < W,.. Then, bearing in mind that the section v lies in the
submanifold W, = graph(FL), its projection p} o1 must satisfy the equations (5.12), (5.19) and (5.20).
Then, since the kth-order Lagrangian density £ is hyperregular, equations ([5.19) have a unique solution,
thus obtaining the following equations for the section pj o ¢

P —qP,=0, 0<i<2k-2,

in addition to the Euler-Lagrange equations. In particular, these equations are the local equations giving
the holonomy condition for the section p/ o). Hence, p/ o1} is holonomic in J2*~!7, and therefore v is
holonomic in W,.. O

Finally, let us compute the local expression of equation (5.50). If ¢ (t) = (t,¢i*(t), ¢} (t), piy (t)) € T(pR)
is a solution to equation (5.9)), then equations (5.12)), (5.13]) and (5.14) hold. Now, bearing in mind the
local expression (5.47)) for the local Hamiltonian function H, we obtain the following 2kn equations for

the section vy, = pb o = (t, ¢ (t), pY (t))
i = OH = OH
' 9pia Yh 7 ! aqu

. (5.51)
Yh

So we obtain the Hamilton equations for a kth-order non-autonomous system.

Dynamical equations for vector fields

Next, using the results stated at the beginning of this Section, we can now state the Hamiltonian dy-
namical equations for vector fields, and recover the Hamiltonian vector field from the unique vector field
solution to the dynamical equations (5.21]) in the unified formalism.

The kth-order (hyperregular) Hamiltonian problem for vector fields associated with the Hamiltonian
system (JE 17, Q. (77,_1,)*n) consists in finding vector fields X}, € X(J*~7*) such that

(X2 =0 5 i(Xa)(Fr,)'n 0. (5.52)

Remark. As in the first-order case described in Section the second equation in (5.52) is a transver-
sality condition for the vector field X}, with respect to the projection onto R, and the non-zero value is
usually fixed to 1, thus giving the following equations

i(Xn)U =0 ;5 i(Xp)(Thu-1,)n=1.
O
Now that the problem is stated, we recover a vector field solution to equations (5.52)) from a vector

field solution to equations ([5.21). Since p4 is a diffeomorphism by Proposition [5.22] the reasoning we
follow is the same as that for the Lagrangian formalism.

Lemma 5.27. Let £ € QY(J*7) be a kth-order hyperregular Lagrangian density, and X € X(W,.) a vector
field tangent to W;. Then there exists a unique vector field X;, € X(J*~1x*) such that X}, o ph o jr =
TpyoXoje.

Proof. The proof of this result is similar to the proof given for Lemma [5.17]

Since X is tangent to W, there exists a unique X, € X(W,) such that Tjz0X, = Xoj,. Furthermore,
since ph is a diffeomorphism, there is a unique vector field X, € X(J*~!7*) which is p5-related with X,;
that is, X5, o p§ = Tp5 o X,. Then we have

Xnopyoje=Xpops =TpsoX,=TpsoTjoX,=TpyoXojg. O
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This result states that, for every X € X(W,.) tangent to W, we can define implicitly a unique vector
field X}, € X(J*~17*) such that the following diagram commutes

™,

Tpy

™V,

X
m

T(Jk—lﬂ_*)

X,
W,
Jc Xn
j / 2
We
X

As a consequence of Lemma we can give the following result, which states a one-to-one corre-
spondence between the set of vector fields solution to the dynamical equation in the unified formalism
and the set of vector fields solution to the dynamical equation in the Hamiltonian formalism.

Theorem 5.28. Let L € QY(J*7) be a kth-order hyperregular Lagrangian density, and X € X(W,.) the
vector field solution to equations (5.21) and tangent to W,. Then, there exists a unique vector field
Xy, € X(J*11%), which is a solution to the equations (5.52)).

Conversely, if X, € X(J*1n*) is a solution to equations (5.52)), then there ezists a unique holonomic
vector field X € X(W,.), tangent to Wr, which is a solution to equations (5.21).

szfl,n_*

Proof. The proof of this result is analogous to the proof given for Theorem Lemma now being
used to obtain the vector field X} € X(J*~17*) instead of Lemma

Taking X, € X(J*~17*) as the unique vector field given by Lemma we have
(X)) = i(X)(p5)" 2 = (pa)" i(Xn) .,
but, as pj5 is a surjective submersion, this is equivalent to

i(Xn),

sy = UXn) Q] e

since py(W,) = J*~'n*. The converse is immediate, reversing this reasoning. Hence, we have proved
that (X)), = 0 if, and only if, §(X})Q, = 0. The same reasoning proves that §(X)(pg)*n # 0 if, and
only if 4(Xp)(A7x-1,.)"n # 0.

It remains to prove that if X} is a solution to equation , then X is holonomic. In order to prove
this, we compute the coordinate expression of X. In particular, a generic vector field X € X(W,.) is given
locally by , that is,

X:fg+ A0 pad g9
ot Tt ogt T ot T T Aopy
Since we have just proved that X is a solution to equation , its component functions must satisfy
equations and (taking f =1 as a representative of the equivalence class). Hence, the vector
field X is given locally by , that is,

o 4, 0 L0 9L @ oL | 0
X=4aiza+F 5a+t a0 | 7a P -
or Tl g A dqs  dqg Y + (8(1{‘ Pa opY
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In addition, by Lemma the vector field X is tangent to the submanifold W, <+ W,., which is given

locally by the kn constraints
- d [ oL
A = Z dtl <aq;4+i> !

Therefore, requiring X to be tangent to this submanlfold7 we obtain the following system of kn equations

(F,f _QE-H) 3(2:5(],? =0,
(Fid1 = airo) aq?;aL%q (Fe — ‘Zk+1) ! <3Qi23qk ) =0,
527 k-3
(in—z - Qiq) 9aF o] ; (FI<;B+i - qi?+i+1) («+-)=0,
0 (Fa— Sef) 5 +g(—1>ij; (;;) —k_ (B = abyia) () =0,

and, since the kth-order Lagrangian density is hyperregular, the Hessian matrix of L with respect to q,‘;‘
is invertible, and these equations reduce to

Fr=qd, , (k<i<2k-2),
d L b 4 [ i
—1k<FB_ ) > T+ (D)= | = | =0,

from where we deduce the coordinate expression of X, which is
2k—2

a ) 0 oL 0 oL ‘ )
X = ; + F3 +arot g -0 | =
Z qHa i 71 0qg, Gy 0df BTN (8(1{‘ Pa > Ipip

where Fé?c—l are the unique solutions to the previous system of equations. It is clear from this local
expression that the vector field X is holonomic in W,.. O

Observe that, in this setting, the vector field X} € X(J*~17*) solution to equations ([5.52) is unique,
since the kth-order Lagrangian density is hyperregular, and hence the vector field X € X(W,.) solution

to equation (5.21)) is unique by Proposition

In local coordinates, bearing in mind the coordinate expression (|5.48|) of the Hamilton-Cartan 2-form
Q,, the coordinate expression of the vector field X, € X(J¥~1r) solution to equations (5.52) is

Equivalence of the Hamiltonian dynamical equations in the hyperregular case
To close the hyperregular case, we state the equivalence Theorem in the Hamiltonian formalism, which

is the analogous to Theorems [5.9]and [5.20] This result is a direct consequence of Theorems [5.9] [5.23] and
5.28] and of Propositions and and thus we do not prove it.

Theorem 5.29. The following assertions on a section vy, € I'(7",._, ) are equivalent.
1. vy is a solution to the Hamiltonian variational problem.
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2. 4y, is a solution to equation (5.50)), that is,

Vri(Y)Q =0, for every Y € X(JF1a¥).

3. In natural coordinates, if ¥y (t) = (t, ¢ (t),p4(t)), 0 < i < k— 1, then the components of 1y, satisfy
the kth-order non-autonomous Hamilton equations given by (5.51), that is,

. OH OH
q; = 3 v Pa=— 357 .
8pA TS aqu Pn

4. vy, is a solution to the equation
i(Vn)(Qnohn) =0,
where 1/};1: R — T(J*=17%) is the canonical lifting of 1y to the tangent bundle.

5. Yy is an integral curve of a wvector field contained in a class of 7', _-transverse vector fields,
{X},} € X(J*~17%), satisfying the first equation in (5.52)), that is,

i(Xn), =0.

5.3.3 Singular (almost-regular) Lagrangian densities

To close the Hamiltonian formalism of higher-order non-autonomous systems, we analyze the case of
non-regular Lagrangian densities. Nevertheless, in order to give a general framework for singular systems
we must require some minimal regularity conditions to the kth-order Lagrangian density. Therefore,
throughout this Section we assume that the kth-order Lagrangian density is, at least, almost-regular.

In this case, Proposition no longer holds, since the Hamiltonian phase space is P = Im(F L), and
dim P < dim W,. This fact implies that we are not able to recover the Hamiltonian solutions directly from
the unified setting, and we are forced to pass through the Lagrangian formalism and use the Legendre-
Ostrogradsky map to obtain the Hamiltonian solutions to the dynamical equations. Moreover, in this
case the correspondence is not one-to-one, but for every solution in the Hamiltonian formalism there are
several solutions in both the unified and Lagrangian formalisms that project to the given Hamiltonian
solution.

Variational principle

Given the Hamiltonian system (P, Qy, 75n), let I'(7p) be the set of sections of 7p. Consider the functional

Hir(ﬁ'p) — R
on — /R T

where the convergence of the integral is assumed.

Definition 5.12. The kth-order Hamiltonian variational problem (or generalized Hamilton-Jacobi vari-
ational problem) for the kth-order Hamiltonian system (P,SQp,7pn) is the search for the critical (or
stationary) sections of the functional H with respect to the variations of vy, given by (Vn)s = o5 © Uy,
where {os} is a local one-parameter group of any compact-supported Z € %V(f”’)(P); that is

d o
& /R ()10 = 0.
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Theorem 5.30. Let ¢ € T'(pg) be a critical section for the Lagrangian-Hamiltonian variational problem
given by the functional LH. Then, the section ¢, = FLy,0p o) = FL,o € T'(Tp) is a critical section
for the Hamiltonian variational problem given by the functional H.

Conversely, if ¥y, € T'(7p) is a section solution to the Hamiltonian variational problem, then the section
WY =jro (pf)_1 oyoy, € T'(pR) is a solution to the Lagrangian-Hamiltonian variational problem, where
v e T(FL,) is some section of FL,.

Proof. From Theorem [5.13] n we know that if 1/} € I'(pg) is a solution to the Lagrangian-Hamiltonian
variational problem, then the section ¢ = 72~ 0 pl 04y € T'(7) is a solution to the Lagrangian variational
problem. And, conversely, if ¢ € T'(7) is a solution to the Lagrangian variational problem, then the

section ¥ = jz o (p¥)~1 0 j?*71¢ is a solution to the Lagrangian variational problem.

Hence, it suffices to prove that the restricted Legendre-Ostrogradsky map gives a correspondence
between the solution of the Lagrangian and Hamiltonian variational problems. That is, if ¢ € I'(w) is
a solution to the Lagrangian variational problem, then the section ¢y, = FL, 0 j2*71¢ € T'(7p) is a
solution to the Hamiltonian variational problem. And, conversely, if if ¢, € T'(7p) is a solution to the
Hamiltonian variational problem, then ¥, = « o ¢, is holonomic, and its projection is a solution to the
Lagrangian variational problem.

Since FL,: J**~1n — P is a submersion, for every compact-supported vector field Z € XV (™) (P),
there exist compact-supported vector fields Y € XV (™" (J2k=17) such that Z and Y are FL,-related.
In particular, some of these vector fields in J?*~17 are the (2k — 1)-jet lifting of compact-supported
m-vertical vector fields X € XV(™)(E), that is, we have Y = j2*~1X. We denote by {o.} a local one-

parameter group for the compact-supported vector fields X € %V(”)(E). Then, using this particular

choice of FL,-related vector fields, we have
(Yn)sOn = - (05 09n)" Op = — %(Us@h) = [ YyL(Z)On
s=0JR R s=0 R

- / U1(i(2)d0y, + di(2)0n) / Va(FLLG(2)d0n + di(2)0n)

d

ds

:/1/’/; Y)dO, +di(Y)O,) = /llfgL /R( 214y (251 X)0 4
_ 21 k(21 e A PPN

= o S_()/R(J ¢) (Jj 05)"O = Is s_o/JR(j (0509))"O,

— i 2k—1 * o

= s S_O/R(J $5)* 0, =0,

since ¢ is a critical section for the Lagrangian variational problem.

For the converse, if suffices to reverse this reasoning with ¢, = + o 9, and bearing in mind that
FL, o0~ = Idp. It is important to point out that, in general, not every section 7 o v, € I'(72¢1)
is holonomic in J2*~!7. Nevertheless, following the same patterns as in the theory of singular non-
autonomous first-order mechanical systems [45)], it can be proved that some of the sections ¢y = v o vy,
are holonomic. O

Remark. Observe that the sections ¢ € I'(pg) and ¢ € I'(7) obtained from a given ¢, € I'(7p) are not
necessarily unique. O

Dynamical equations for sections

As in the previous Section, we now state the Hamiltonian equations for sections in the almost-regular
case, and we recover the Hamiltonian solutions in P from the solutions in the unified setting.
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The kth-order (almost-regular) Hamiltonian problem for sections associated with the Hamiltonian
system (P, €y, Tpn) consists in finding sections 1y, € I'(7p) characterized by the equation

Yy i(Y)Q, =0, forevery Y € X(P). (5.53)

Proposition 5.31. Let £ € QY(J*7) be a kth-order almost-reqular Lagrangian density, and ¢ € T'(p%) a
section solution to equation (5.9). Then, the section ¢y, = FLyopl o) = FLyope € T'(Tp) is a solution

to equation (5.53)).

Conversely, let 1y, € T'(7p) be a solution to equation (5.53)). Then 1 = jp o (p£)~ Loy oy, € T(pk) is
holonomic and a solution to the equation (5.9) for some v € T'(FL,).

Proof. Since the Lagrangian density is almost-regular, the map FL, is a submersion onto its image, P.
Hence, for every Y € X(P) there exist some Z € X(J?*~17) such that Z is FL,-related with Y. Note
that this vector field Z is not unique in general, since ker TFL, # {0}, and the vector field Z + Z,, with
Z, € XVFL)(J2k=17) i also FL,-related with Y. Using this particular choice of FL,-related vector
fields, we have

Vhi(Y) = (FLo 0 ) i(Y ) = Y (FLSi(Y)Q0) = Y7 i(Z2)FLS W = Y7 i(Z)e
where 1), = p 0 1. Then, using Proposition we have proved

Vi i) =¥ i(Z)Q =0.

The converse is clear reversing the reasoning and using Proposition since FL, oy = Idp and,
in particular, we have 70, = ©Oj. As in the proof of Theorem [5.30] in general not every section
v oty € I'(72~1) is holonomic, but it can be proved that some of the sections ¢, =y o)y, are so.  []

The diagram for this situation is the following;:

W

FL _
_ Jk 171.*

S

— J

R MP
_ 7

P s
e
-
_ “Yyp=FLooYr

RZ—

Dynamical equations for vector fields

Now we state the Hamiltonian dynamical equations for vector fields in the almost-regular case, and we
recover a Hamiltonian vector field from a vector field solution to the dynamical equations (5.38) in the
unified formalism.

The kth-order (almost-regular) Hamiltonian problem for vector fields associated with the Hamiltonian
system (P, €, 75n) consists in finding vector fields X, € X(P) such that

i(Xn) =0 5 i(Xp)7pn #0. (5.54)

Now that the problem is stated, we recover a vector field solution to equations (5.54)) from a vector
field solution to equations (5.21)).

174
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Theorem 5.32. Let £ € QY (J*7) be a kth-order almost-regular Lagrangian density, and X € X(W,)
the vector field solution to equations (5.21)) and tangent to Wy (at least on the points of a submanifold
Wy — W ). Then, there exists a vector field X}, € X(P), which is a solution to the equations (at
least on the points of Py = p5(Wy) — P).

Conversely, if Xp € X(P) is a solution to equations (5.54)) (at least on the points of a submanifold
Py — P), then there exist some holonomic vector fields X € X(W,), tangent to W, which are solutions

to equations (5.21) (at least on the points of Wy = (p5) ™ (Py)).

Proof. From Theorem [5.18 we have a bijective correspondence between holonomic vector fields X, €
X(J*~17) solution to equations (5.46) (at least on the points of a submanifold S; < J*~1x) and
holonomic vector fields X € X(W,.), tangent to W, solution to equations (at least on the points of
a submanifold Wy < W,.). Hence, it suffices to prove that we can establish a correspondence between the
set of vector fields solution to the Lagrangian dynamical equations, and the set of vector fields solution
to the Hamiltonian dynamical equations.

Since the Lagrangian density is almost-regular, the map FL, is a surjective submersion on P. Hence,
for every X, € X(P) there exist some X, € X(J?*~17) (not necessarily unique) such that X, and X are
FL,-related, that is, X}, o FL, = TFL, 0 X-. And, conversely, for every vector field X, € X(J ~1x),
there exists a vector field Xj € X(P) FL,-related with X .. Using this particular choice of FL,-related
vector fields, we have

i(Xe) Qe = i(Xe) LI = FL (X0 = i(X0) 5, (1) = (X0l

since FL, is a surjective submersion on P. The converse is immediate, reversing this reasoning. Hence,
we have proved that (X ,)Qz = 0 is equivalent to §(Xp)2, = 0 whenever X and X}, are FL,-related.
The same reasoning proves that i(X)(72¢~1)*n # 0 is equivalent to §(X;,)75n # 0. Observe that the
reasoning remains the same replacing J2*~ 17 by S + and P by Py.

As in the proof of Proposition not every vector field X, € X(J?*~17) which is FL,-related with
a vector field X}, € X(P) is holonomic. Nevertheless, it can be proved following the patterns in [45] that
those holonomic vector fields FL,-related with X}, exist, maybe on another submanifold S }‘ — Sy, O

The diagram illustrating the statement and proof of Theorem [5.32]is the following:

™,

Tjc
Tpy j\

TWe

We
I
X
_ FL _
J2k 17( Jk: 17‘(’*

J
FL, J\
P
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Equivalence of the Hamiltonian equations in the almost-regular case

To close the Hamiltonian formalism for kth-order non-autonomous dynamical systems, we state the
equivalence Theorem in the almost-regular case, which is the analogous to Theorems and
This result is a direct consequence of Theorems and [5.32] and of Proposition [5.31] Hence, the
proof is omitted.

Theorem 5.33. The following assertions on a section ¥y, € I'(Tp) are equivalent.

1. Yy is a solution to the Hamiltonian variational problem.
2. 4y, is a solution to the equation (5.53), that is,

Yy i(Y)Q =0, for everyY € X(P).

3. Yy is a solution to the equation '
i(Yn)(Qpotn) =0,
where ¥y, : R — TP is the canonical lifting of ¥y, to TP.

4. Yy, s an integral curve of a vector field contained in a class of Tp-transverse vector fields, {Xn} C
X(P), satisfying the first equation in (5.54), that is,

i(Xp)Q =0.

5.4 Examples

In this last Section of the Chapter, two physical models are analyzed as examples to show the application
of the formalism. The first example is a regular system, the shape of a deformed elastic cylindrical beam
with fixed ends, while the second is a singular one, the second-order relativistic particle analyzed in
Section now subjected to a potential depending on time and position.

5.4.1 The shape of a deformed elastic cylindrical beam with fixed ends

Let us consider a deformed elastic cylindrical beam with both ends fixed, as in Section and let
us consider the same problem: to determinate the axis of the beam. Strictly speaking, this is not a
time-dependent mechanical system, but if the beam is not homogeneous, it can be modeled using a
configuration bundle over a compact subset of R, where every point in the base manifold represents the
position of a transverse section of the beam with respect to one of the fixed ends, thus allowing us to
show an application of our formalism. For simplicity, instead of a compact subset, we take the whole real
line as the base manifold.

The configuration bundle for this system is 7: £ — R, where F is a 2-dimensional smooth manifold.
Let us denote by x the global coordinate in R, and the canonical volume form in R by € Q}(R), with
local expression n = da. Natural coordinates in F adapted to the bundle structure are (z,qg), where ¢
represents the bending of the beam. Now, taking natural coordinates in the second-order jet bundle of
7, the second-order Lagrangian density for this system, £ € Q'(J?7), is locally given by

1
L(z,q0,q1,q2) = L - (7%)'n = <2M($)Q§ —+ P(QC)QO) dz,

where p, p € C°°(J?) are functions that only depend on the coordinate z and represent physical param-
eters of the beam: p is the linear density and p is a non-vanishing function involving Young’s modulus
of the material, the radius of curvature and the sectional moment of the cross-section considered (see
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[11] for a detailed description). This is a regular Lagrangian density, since the Hessian matrix of the
Lagrangian function L € C*°(J?r) associated with £ with respect to go is

< 9L >_ ()
0q20q2 - e

and this 1 x 1 matrix has maximum rank, since p is a non-vanishing function.

Remark. If the beam is homogeneous, p and p are constants (with u # 0), and thus the Lagrangian
density is “autonomous”, that is, it does not depend explicitly on the coordinate of the base manifold.
This case is analyzed in [80], and in Section to obtain the Hamilton-Jacobi equations. O

As this is a second-order system, in the unified setting we consider the bundles W = J3m x j1,. T*(J1m)
and W, = J>7 x j1, J'7*, that is, the following diagram

=
2o

_1
7r

R

7T><J1

1 7TXJ1

Natural coordinates in W and W, are (z, qo, q1,q2, g3, ,2°,p*) and (z, qo, q1, g2, g3, p°, p'), respectively.

Now, using the notation and terminology introduced throughout this Chapter, if ©; € QY(T*(J'7))
and ; € Q?(T*(J'7)) are the canonical Liouville forms of the cotangent bundle T*(Jr), we define the
forms © = p30; € QY (W) and Q = p3Q; € Q?(W) whose local expressions are

O =gy +pldgr + pdz ; Q=dgo Adp® +dg Adp! —dpAdz.

The coupling 1-form C € Q! (W), whose local expression is given by (5.4)), has the following local expression
in this case

C=C-pan=p+pr'a +p'e)dr.
Then, denoting £ = (73 o p1)*L£ € Q' (W), we introduce the Hamiltonian submanifold

Wo={wew | £w) =Cw)} Bw,

which is locally defined by the constraint function C — L = 0, whose coordinate expression is
A a 1

C—L=p+ﬁm+#%—§M@£—M@%=0

Finally, we construct the Hamiltonian py-section h € T(uy), which is specified by giving the local
Hamiltonian function H, whose local expression is

N 1
H(xaQO>Q17CI27QS»pOaP1) = Pofh +p1Q2 - iu(x)qg - p(l‘)q(),
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that is, we have h(x 0, q15 G2, 43, P Oopl) = (z, 0, a1, 42, 435 — I:I,po,pl). Using this Hamiltonian section,
we define the forms ©, = h*© € Q'(W,) and Q, = h*Q € Q*(W,), with local expressions

1
O, = pOdQO +p1dQ1 + (#(I)qg + p(*)qo *pofh - PIQQ) dz,

2
Q, =dgo Adp® +dgy Adp' + (—p(x)dgo + p°dqy + (p' — p(x)g2)dgz + q1dp° + godp’) A da .

Notice that we omit the derivative of H with respect to x in the last summand of €2,., since dz A dz = 0,
and thus it is not relevant for the final result.

Now we can derive the dynamical equations of the system. First, let us describe the dynamics of this
system in terms of sections ¢ € I'(pf). In order to do so, let Y € X(W,) be a generic vector field locally
given by

0 0 0 0 0 0 0
Y =f— — F. F3—+G'—+G'
rr +foﬁqo +f16q T T e T a0 T ot
Then, if ¥ (x) = (z,q0(z),q1(x), g2(x), g3(x),p°(x), p*(z)) is a holonomic section of the projection pf,
equation (5.9) leads to the following 5 equations (the redundant equation (5.11)) is omitted)

o=q ; G1=2q2, (5.55)
P’ =p(x) ;5 p'=-p°, (5.56)
p' = qu(x) . (5.57)

Equations give us the condition of holonomy of type 2 for the section, which are also redundant
since we assume that ¢ is holonomic. Equation is a pointwise algebraic condition, which, in
combination with the second equation in , state that the section i must lie in a submanifold W,
defined locally by the constraints

0
P’ = fqzaj —gp ;P =qep.
xXr

Now we compute the local expression of the map FL: J?1 — J'r*; from Proposition we know
the general expression for this map, and we obtain

* 8 *
FLp’ = —qm*g —@u ;. FLP =g (5.58)

From this, the coordinate expression of the extended Legendre-Ostrogradsky map given by Corollary
in this example is

*

P S N
fﬁpo:—qzafg—qsu ; FLp'=q@u ; FLp=

1 o
—2uq2 + QIQ28 + q1q314 + qop -

Therefore, the section 9 € I'(pf) solution to the dynamical equations is a holonomic section of the
projection pg, which lies in the submanifold W, < W, defined by the above constraint functions, and
whose last component functions satisfy the differential equations

Now we state the Lagrangian-Hamiltonian problem for vector fields: we wish to find holonomic vector
fields X € X(W,) solution to equations (5.21)). If X is locally given by

d 9 d d
X =f— F Fs—+G" —~+G'—
f +f0 +f1 + 282+ 3334- ap0 + 317
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then equations ([5.21]) lead to the following system of 6 equations (again, the redundant equation ([5.25))
is omitted)

fo=f-a 5 h=[a, (5.59)

=fplx) ;3 G'=—fp, (5.60)

f#0, (5.61)

f- (0" = qu(x)) =0. (5.62)

Equations (5.59) give us the condition of holonomic of type 2 in W, for the vector field X. In addi-
tion, equation (5.62)) is an algebraic relation from which we obtain, in coordinates, the result stated in
Proposition that is, the vector field X is defined along a submanifold W, < W, defined by

We = {[w] € Wy [ £([w]) = 0},

where ¢ = p' — gou(z). Thus, using (5.59) and (5.60), and taking f = 1 as a representative of the
equivalence class, we have that X is given locally by

0 0 0 0 0 0 0
X=_= F Fy— + p°
O Jr(haq +q28q + 250 + S 9as Pap (’)p

Notice that the functions F» and F3 in (5.63) are not determined yet. However, recall that the statement
of the problem requires the vector field X to be holonomic, from where we can determinate the component
function Fy as Fy = g3, and then the vector field given by (5.63|) becomes

0 ) d ) o) o 40
X=- tag +qza +q36 6—q3+p— —. (5.64)

Moreover, since the vector field X is defined along the submanifold W,., we must require X to be tangent
to W,. This condition is locally equivalent to checking if the following identity holds

L(X)¢ |WC =0.
As we have seen in Section this equation leads to

(5.63)

+ F3

o
L(X)|yy, = —p° + @5+ asn=0.

This is a new constraint defining a submanifold W, < W,. which can be identified with the graph of the
restricted Legendre-Ostrogradsky map, as we have seen in the coordinate expression (5.58)) of F£. Then,
requiring X to be tangent to this new submanifold, we obtain

ou *u ou
X)(p" g — = 2 Fsu=0. 5.65
L( )(p Gy q3u> p+q282+ Q3a + Fyp = (5.65)
Equation (5.65)) is the Euler-Lagrange equation for X. Observe that, since p is a non-vanishing function,
this equation has a unique solution for F5. Hence, there is a unique vector field X € X(W,) solution to
the dynamical equations ([5.21)), which is tangent to the submanifold W, < W,., and is given locally by

0u 8,u> 0 0 0 0

X*éJr 0 l + +2 +p =
q1 57— " p Q28x2 q38 94s 8p 8p1'

O o + G5

+ 35~

oq1 q2

Finally, we recover the Lagrangian and Hamiltonian formalisms. For the Lagrangian solutions, by
Proposition from the holonomic section ¢ € I'(pf) solution to equation we can recover
a holonomic section ¢, = p} ot € I'(73) solution to equation . In particular, if we have
w(x) = (J;,qo(x),ql(a:),qg(x),q3(a:),p0(a:),pl(a:)), then ¢£(9U) = ('raQO(x)7q1(m)7QQ(x)aQ3(x)) is a holo-
nomic section solution to equations , which, bearing in mind the local expression of the
restricted Legendre-Ostrogradsky map in this example, can be written locally as

2
p+ng +qgg 2+q3u+qggﬂ 0, (5.66)

(G2 —q3)p=0. (5.67)
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Equation ([5.67) gives the condition for the section ¥, to be holonomic, and it is redundant since we
required this condition to be fulfilled at the beginning. Now, if ¢(z) = (z,y(x)) is a section of 7 such
that j3¢ = 1., then the Euler-Lagrange equation can be written locally

d2

@(Mﬂ)*‘ﬂzo-

In the case of an homogeneous beam, the Euler-Lagrange equation reduces to uy(™) + p = 0.

For the Lagrangian vector field, from Lemma [5.17| and Theorem [5.18] we can recover, from the
holonomic vector field X € X(W,.), a holonomic vector field X, € X(J3m) which is a solution to equations

(5.46)), and is locally given by

L—ax Q1aqo q28q1 q38q2 " P q28x2 ‘I?’ax 9gs

For the Hamiltonian solutions, since £ is a second-order regular Lagrangian density we can use the
results stated in Section and recover the Hamiltonian solutions directly from the unified formalism.
For the Hamiltonian sections, using Proposition from a section ¢ € I'(pg) fulfilling equation
we can recover a section vy, = ph o1 € I'(7", ) solution to equation . In particular, if we have

U(x) = (2, q90(7), q1(2), g2 (), g3(2), p° (), p' (x)), then Yn(x) = (,q0(x), q1(2), p°(2), p'(2)) is a section
solution to equations (5.55)) and (5.56]), which can be written locally as
0H

. OH o OH L O0H
qo = = — _
apo Yh

S ;D == 5 ;P = ;
ap Yn 8qo¢h aqlwh

where H € C*°(J17*) is the local Hamiltonian function with local expression
()2

2p

H(xaq07qlap0,p1) :p0q1+ — Pqo -

For the Hamiltonian vector field, from Lemma and Theorem the vector field X € X(W,)
gives a vector field X, € X(J17*) solution to equations (5.52]), which is locally given by
0 o pto 0 0 0

Xp=—— 4@+ —o—F p —p’ .
T A

5.4.2 The second-order relativistic particle subjected to a potential

Let us consider a relativistic particle whose action is proportional to its extrinsic curvature. This sys-
tem has been analyzed in several works [9] 120, [125] [126], and in Section using the Lagrangian-
Hamiltonian formalism. Now assume that this system is subjected to the action of a generic potential V'
depending only on the time and the position of the particle, thus obtaining a time-dependent dynamical
system.

The configuration bundle for this system is E = R, where E is a (n+1)-dimensional smooth manifold.
Let t be the global coordinate in R, and 1 € Q*(R) the volume form in R with local expression n = dt.
Natural coordinates in E adapted to the bundle structure are denoted by (¢,q), 1 < i < n. Now, bearing
in mind the natural coordinates in the second-order jet bundle of 7, the second-order Lagrangian density
for this system, £ € Q! (J?r), is locally given by

i i o i i i i\211/2 i _ o i
L(t, 0, q1,95) = ((q)2 [(a1)*(e5)* — (a1 2)?] 7~ + V (¢, qO)) dt = ((q")“@ + V(Mo)) dt, (5.68)
1 1
where « is some nonzero constant and V€ C*°(J?r) is a function depending only on ¢ and ¢j. As we have
seen in Section this is a singular Lagrangian density, since the Hessian matrix of the Lagrangian
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function I € C*°(J%7) associated with £ with respect to g3 is

0’L +(@)*(didh)(dFai — al @) — (6)*(dh)’as )] . i B# A,
8q2 8q2 N

e

and a long calculation shows that

[9— (6b)%ai e + 2(digd)ai' a3 — (d))*a5'a3] . if B=A,

0*L
det < > =0
8q2 56]2
As in the previous example, this is a second-order system, and therefore we consider the bundles
W = I3 x jip T*(Ji7) and W, = J37 x j1 Jin*. Hence, we obtain the following diagram

==
2o

_1
77

R

ﬂ'XJl

1 7TXJ1

Natural coordinates in W and W, are denoted (¢, ¢4, ¢%, g5, ¢%, p,p?, p}) and (¢, 4}, ¢4, 4%, qi, pY, p}), respec-

tively. Now, if ©; € QY(T*(J'7)) and Q; € Q?(T*(J 7)) are the canonical forms of the cotangent bundle

of Ji7, we define

© = p301 = pldgy + pidg) +pdt € Q'(W) Q= p3 = dgy Adp} + dgi Adp; —dp Adt € Q*(W) .

The coupling 1-form Ce QY(W), whose coordinate expression is ([5.4)), in this case is given locally by
C=C-pin=(p+pldi +pigs)dt.

From this, and denoting £ = (73 0 p1)*£ € Q'(W) we can introduce the Hamiltonian submanifold

W, 23 W, which is locally defined by the constraint function C-L= 0, whose coordinate expression is

~ . . e% .
C—L=p+plq +pig— Wﬁ—Wt%)-
1

This allows us to construct the Hamiltonian py-section he T(uw), which is specified by giving the local
Hamiltonian function H, whose local expression is

N S . . « .
H(t,q, 4}, d%. a4, 1Y, p}) = P} + pidh — w\/ﬁ - V(t,q),
1

181



CHAPTER 5. HIGHER-ORDER NON-AUTONOMOUS DYNAMICAL SYSTEMS

that is, we have ﬁ(t, a4, g, a8, Y, ph) = (t, 48, ¢4, 4b, ¢4, —ﬁ,p?,p}). Using this Hamiltonian section, we
define the forms ©, = h*© € Q' (W) and Q, = h*Q € Q?(W,.), with local expressions

) . o . . .
O, = pYdgl + p;dg} + <W\/§+ V(t,q5) — pai p%flé) dt,
1

. . ov .
Q, = dgj Adp) +dg} Adp; + ( dp’) + g3'dply — 94 dg)
0

+[pg+m[((q§)2(q) — 2} dh)?) ¢f! +(qq)(qi>2q§‘]]dqf‘

+ [pix - m ((¢)%a5" — (gigh)at’ } dQQ> Adt.

Now we derive the dynamical equations of the system. In order to state the Lagrangian-Hamiltonian
problem for sections, let Y € X(W,.) be a generic vector field locally given by

o L0 L0 D 9 9
Y=f—+fizs+fizs+Fi—+Fi —5+GiaT -
Tor t oo o oo T ag T o T iopr

Now, if ¥(t) = (t,q}(t), ¢k (1), qb(t), gk (t),p?(t), p}(t)) is a holonomic section of the projection p%, then
equation (5.9) leads to the following 5n equations (the redundant equation (5.11f) is omitted)

@ =qa . i =a, (5.69)
P = 8‘2 Pk = 0% — o [((a])2(65)? - 2(¢iah)?) 4 + (dial)(aD)%ad)] (5.70)
g ((¢1)*)*vg
«o i i
Ph ()@ — (aigh)a) = 0. (5.71)

()2

Equations give the condition of holonomy of type 2 for the section v, which are also redundant
since the holonomy of % is required from the beginning. Equations are an algebraic condition,
from which, in combination with the second group of equations , we conclude that the section
lies in a submanifold W, <— W, defined locally by the constraints

Let us compute the local expression of the restricted Legendre-Ostrogradsky map, FL: J3m — Jin*,
which is obtained from Proposition In this example, the coordinate expression of FL is

FLpY = PN [((8)%g + (4)*(d2)* (a1 a3) — (¢0)° (aidh) (diad)) ai']
1

FL Y =

From this, the local expression of the extended Legendre-Ostrogradsky map FL: J37 — T*(J7) in this
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example is

(ql)gﬁ [(((a1)*)*(a2a3) — (a1)*(d195)(aia3) — (4193)9) @2 — (41) gq3]>q1
- m [(d)%a8 — (didh)ai'] @5 -

Hence, the section 1 € I'(pf) is holonomic and lies in the submanifold W, < W, defined by the constraint
functions given by (5.72)), and its last component functions satisfy the 2n differential equations

b OV o
pA_a

ol Pa=—p% — (CIRENG [((6D)%()? — 2(¢14b)?) ai + (didb)(a})a3'] -

Now we state the Lagrangian-Hamiltonian problem for vector fields, that is, we wish to find a vector
field X € X(W,) solution to equations (5.21f). If the vector field X is locally given by

9] 0 0 0
X = f +f08A+f18A quaA'i_FfaA"’GAao'i'GAa

then equations (5.21)) lead to the following 5n + 1 equations (the redundant equation (5.30) is omitted)
fo=fa s f=fa, 679
oV @ , , o S
0 _ . 1 _ 0 N2/ 1\2 i 1\2 A i1 i\2 A
Ga=Ff i Ga=—f <pA N (PAEENG [((a1)*(62)* — 2(d142)") ai” + (4142)(a1) " @z ]> , (5.75)
f£0, (5.76)
(4 ~ ) ) 0. G7)

e
"
(¢1)*v9g
From equations (5.74)) we obtain the condition of semispray of type 2 for the vector field X. In addition,
equations ([5.77) are algebraic relations between the coordinates of W, which give, in coordinates, the

result stated in Proposition[5.7] Thus, using (5.74)), (5.75) and (5.76)), and taking f = 1 as a representative
of the equivalence class, the vector field X is given locally by
0 ov 0 1 0

0 ) I T
+ F J AR AL e,
aﬁqlaf‘*‘baf‘ 258 T 0qd T agi ot T T AapL

X = (5.78)

where the functions G| are determined by (5.75)). If, in addition, we require the vector field X to be
holonomic, this condition reduces the set of vector fields X € X(W,) given by (5.78) to the following ones

0 0 0 0

0 av 0 0
A
X = 8+qlaA+q28A+q38A+F

- + (5.79)
gt Agt I, AapA

Notice that the functions F§' are not determinated until the tangency of the vector field X along W, is
required. Since this example has a Lagrangian density far more complicated than the previous example,
in this case we study directly the tangency of the vector field along the submanifold W, = graph(FL).
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From the expression in local coordinates (5.72)) of the map F L, we obtain the primary constraints defining
the closed submanifold P = Im(FL) <y Jlz*, which are

2

. (6%
o =plgi=0 5 o = (P2~ 5 =0. (5.80)
(Q1)

Let FL,: J3m — P be the map defined by FL = jo0 FL,. Then, the submanifold W, = graph(FL,) is
defined by

We = {lw] € W, | & (w]) = & ([w]) = 67 ([w]) = 6§ (fw]) = 0} ,
where ¢4 = p’, — FL*D.

Next, we compute the tangency condition for the vector field X € X(W,) given locally by (5.79) along
the submanifold W, <— W,, by checking if the following identities hold

X'y, =0 5 LX), =0, (5.81)
X)fbgO)‘WC:O P L(X)ey| =0. (5.82)

As we have seen in Section equations ([5.81]) give us the Lagrangian equations for the vector field
X. However, equations (5.82)) do not hold, since

L(X)o\” = L(X)(p}a}) = 124} 5 L(X)ey” = LIX)((p})? — a?/(¢})?) = —2p0p}

and hence we obtain two first-generation secondary constraints

oV =plgi =0 ;i oy =plpl =0, (5.83)

that define a new submanifold W; — W,. Now, by checking the tangency of the vector field X along
this new submanifold, we obtain

1 i 1
L(X)éi" = L(X)(@Pai) =0 L(X)ey” = LX) (fp}) = (),
and a second-generation secondary constraint appears,
¢ =) =0, (5.84)

which defines a new submanifold Wy < W;. Finally, the tangency of the vector field X along this
submanifold gives no new constraints, since

L(X)$® = L(X)((#))?) = 0.
So we have two primary constraints (5.80]), two first-generation secondary constraints (5.83]), and a single
.84)

second-generation secondary constraint (5.84). Notice that these five constraints only depend on g, 7%
and pl;, and so they are p5-projectable.

Notice that we still have to check (5.81). As we have seen in Section [5.1.2] we obtain the following
equations

d %L oL d [ oL a2 (oL d [ 0L
FB _ B It Bt - 2= B =0 5.85
( 3 )6(] Foak '~ oqd  di <8q{‘>+dt2 <3q§4>+( 2 oa) g <a B@q2>  (5:85)
821,

FB_¢By == _=0. (586
( 2 q3)anBaq§4 ( )

Since we have already required the vector field X to be holonomic in W,, equations ([5.86) are satisfied
identically and equations ([5.85)) become

d 2L oL d [ oL 2 [ oL
FB _ B g2 2 Y= — | =] =0. 5.87
( ’ ) 0450 | ogi <3Qf‘> T <3q5‘> (587
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5.4. EXAMPLES

Using the results of Section and bearing in mind the coordinate expressions (3.32)) and (5.68) of the
autonomous and non-autonomous Lagrangians, respectively, we deduce that this equation is compatible

if, and only if,

ov

=0, for1<A<n.

Iq5
That is, we have n first-generation secondary constraints arising from the tangency condition of X along
W, thus defining a new submanifold W3 < W, with constraint functions

¢:(311)4£a—‘2:0 forl<A<n.
’ 9q;

Observe that, since V is a function that depends only on ¢ and q()“, these new constraints also depend
only on the coordinates ¢ and q()“, and thus they are ps-projectable. From a physical viewpoint, these
constraints mean that the dynamics of the particle can take place on every level set of the potential with
respect to the position coordinates.

Finally, we recover the Lagrangian and Hamiltonian dynamics from the unified formalism. For the
Lagrangian solutions, using Proposition we know that from the holonomic section ¢ € I'(pf) solution
to equation we can recover a holonomic section ¢y = p7 o) € I'(73) solution to equation .
In particular, if 9 (t) = (t,¢4(t), 41 (t). g5(t), g5 (1), Y (t), p; (1)), then Pz (t) = (¢, q5(t), q1 (1), a3 (t), g5(t)) is
a holonomic section solution to equations . Now, bearing in mind the local expression of
the restricted Legendre-Ostrogradsky map, equations give the last n equations of the holonomy
condition for ¥, which are identically satisfied since the holonomy condition has been already required,
and the classical second-order Euler-Lagrange equations

Lo
dt? dgs'

oL
gt

d oL

et —0.
v, dtog

Ye

Pr

For the Lagrangian vector field, from Lemmal[5.17]and Theorem [5.18] we can recover from a holonomic
vector field X € X(W,) solution to equation ([5.21]) a holonomic vector field, X, € X(J3), solution to
equations (5.46) on the points of a submanifold Sy < J37 given by Sy = pj(Ws)), and this vector field
is locally given by

0 4 0 4 0 4 0 4 0
Xe=—+@ —F+d =5 +6 -5 +F'—,
L ot q1 3(]64 q2 (‘9(]14 q3 8q5‘ 3 8q§4
where F§4 are the solutions of equations (5.87)), and we have taken f = 1 as a representative of the
equivalence class.

One can check that if the holonomy condition is not required at the beginning and we perform all
this procedure with the vector field given by (5.78)), the final result is the same. This means that, in this
case, the holonomy condition does not give any additional constraint.

Now, since £ is an almost-regular Lagrangian density, for the Hamiltonian dynamics we must use
the results stated in Section and recover the Hamiltonian solutions passing through the Lagrangian
formalism. For the Hamiltonian sections, by Proposition from a section 1 € I'(pg) solution to
equation , we can recover a section ¢y, = FL o p] o1 € T'(7p) solution to the equation .

For the Hamiltonian vector fields, we know that there are holonomic vector fields X, € X(J3m),
solutions to equations (5.46)) at support on the submanifold Sy = p7(Ws) which are FL,-projectable on
Pr=FLy(Sy) = p5(Ws), tangent to P; and solutions to the Hamilton equations.
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Chapter 6

Second-order classical field theories

The aim of this Chapter is to state the geometric formulation of second-order field theories, thus gen-
eralizing the results of Section to the second-order case. Observe that, unlike in previous Chapters,
in which we give geometric formulations for dynamical systems of arbitrary order, in this Chapter we
focus on the second-order case. The reason to do so is that our formulation can not be straightforwardly
generalized to field theories of order greater than 2. Some comments on this subject, and higher-order
field theories in general, are given in Section

Observe also that, as in the geometric description of higher-order non-autonomous dynamical systems
given in Chapter[5} for second-order field theories we do not have a complete description of the Lagrangian
and Hamiltonian formalisms. This is due, mainly, to the following two reasons. First, given a kth-order
Lagrangian density for a field theory, the definition of the Poincaré-Cartan forms is not unique, and while
for the second-order case it is proved that all these forms are equivalent [138] [140], this is not true for the
general higher-order case. The second reason, which is closely related with the first one, is the choice of
the Hamiltonian phase space. Since the Poincaré-Cartan forms are not unique, neither is the Legendre
map in higher-order field theories, and therefore we have several different options for the Hamiltonian
phase space of the theory [3], 82] 99, [T00].

Taking into account the above comments, in this Chapter we proceed in an analogous way to Chapter
we first describe the Lagrangian-Hamiltonian unified formalism for second-order field theories, and,
from this setting, we derive both the Lagrangian and Hamiltonian formalisms for this kind of systems.
Therefore, the structure of the Chapter is the following. In Section [6.1] we introduce the space of 2-
symmetric multimomenta, which is the Hamiltonian phase space that we choose to set up our formulation.
Using this Hamiltonian phase space, in Section we describe the unified formalism for second-order
field theories: phase space, canonical structures and field equations, written in terms of sections and
multivector fields. Then we describe the Lagrangian and Hamiltonian formalisms in Sections [6.3| and
[6-4] respectively. Next, two physical examples are studied in Section to illustrate the application of
the formalism: the bending of a clamped plate under a uniform load, and the classic Korteweg—de Vries
equation. Finally, Section is devoted to give some comments on field theories of order greater than 2,
and the main issues that prevent us from generalizing this formulation to field theories of arbitrary order.

Along this Chapter, we consider a second-order Lagrangian field theory with n fields depending on m
independent variables. As in Section the configuration space for this theory is a bundle 7: £ — M,
where M is a m-dimensional orientable smooth manifold with fixed volume form n € Q™(M), and
dimE = m + n. The physical information is given in terms of a second-order Lagrangian density
L € Qm(J?r), which is a 7%-semibasic m-form. Because of this, we can write £ = L - (7%)*n, where
L € C>(J%r) is the second-order Lagrangian function associated to £ and 7. Multi-index notation
introduced in Section [L41]is used.
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CHAPTER 6. SECOND-ORDER CLASSICAL FIELD THEORIES

6.1 The space of 2-symmetric multimomenta

According to [22] [68] [78], and the results stated in Section and Chapter |5, the appropriate choices
of Hamiltonian phase spaces seem to be the extended and restricted dual jet bundles introduced in
Section namely A5 (J'm) and J'7*. Nevertheless, these bundles have too many multimomentum
coordinates in order to establish a correspondence between “velocities” and multimomenta in terms of
derivatives of the second-order Lagrangian function L.

In particular, from the results in Sectionsandwe know that if (z°,u®), 1 <i<m,1<a<n
are local coordinates in E adapted to the bundle structure, then the induced natural coordinates in J27,
A (J'mr) and Jim* are (2%, u®, u$,u), (x,u®, ud, p,pl,p¥) and (2!, u®, u®, pl,p), respectively, with
1<i4,5<m, 1< a<n,|I|] =2 Hence, the dual jet bundles of = have nm + nm?2 multimomentum
coordinates (and an additional one in the extended bundle, which is identified with the local Hamiltonian
function), while the second-order jet bundle J2m has nm + nm(m+1)/2 “velocity” coordinates. That is,
although we have the same number of first-order velocities and multimomentum coordinates (nm), there
are nm(m — 1)/2 more second-order multimomenta than second-order “velocities”. Therefore, we should
consider a Hamiltonian phase space with less second-order multimomentum coordinates.

A way to do so is introducing some relations among the second-order multimomentum coordinates,
thus defining submanifolds of the aforementioned bundles with less second-order multimomenta. Accord-
ing to [I3] and [140], let us consider the submanifold J27! < AZ*(J'7) defined by

It = {w e A(J ) | p¥ = pit for every 1 < i,j < 1<a<n}.

By definition, it is clear that this submanifold is 7 j1,-transverse. Therefore, J?71 fibers over J'm, and
we have the canonical projections

7TJ1 T 7 L G A ; 7?;1 —7r107rJ1 JQT—>M

which are the natural restrictions of the canonical projections of AJ*(J'm) to the submanifold J27T.
From the induced coordinates (z%,u®,ud,p,pl,pid) of A3(J'w) we obtain the natural coordinates in
J27T adapted to the bundle structure, which are (%, u®, u&,p,p ,pl), where |I| = 2. Then, the natural
embedding js: J2r! < AD*(Jln) is given locally by

jirt=at 5 giu®=w® 5 giu =) ;o jiph =D,
T 1, ifi=j (6.1)
i*p = —— plitli  where n(ij) = .
P = gy P W)=Va itiz;

The submanifold J27! < AJ*(J'7) is called the extended 2-symmetric multimomentum bundle, and its
dimension is given by

-1 1
nm(m )=m+n+2mn—|—nm(m+ )

dim J?7t = dim AJ*(J ) — 5 5

+1.

In particular, this submanifold has nm(m + 1)/2 second-order multimomentum coordinates, as we want.

All the geometric structures defined in Section 8| for AZ*(J'm) restrict to J2xf. In particular,
let us denote ©F = j*©; € Q™(J?x') and Qf = jsﬂl = —dO; € Qm+1(J%x") the pull-back of the
Liouville m and (m + 1)-forms to J2xT, which we call the symmetrized Liouville m and (m + 1)-forms.
In addition, from the canonical pairing C: J%m x ji, AT (J'm) — AT (J'm), we can define a pairing
C*: J?m x i J2nt — AT(J'7) as

C*(jzd,w) = C(j7¢, js(w)) = (j1¢)}§c¢ Js(w)

which we call the symmetrized canonical pairing. As in Section since C* takes values in AJ*(J'7),
there exists a function C* € C°°(J?7 X ji, J?r') such that C*(j qb, ) (7rJ1 )'n = (jl(b);lqS Js(w).
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6.1. THE SPACE OF 2-SYMMETRIC MULTIMOMENTA

Let us compute in coordinates the local expressions of the symmetrized Liouville forms and of the
symmetrized canonical pairing. Recall that, in the induced natural coordinates of A§*(J'7), the coordi-
nate expressions of the Liouville forms are given by , and the canonical pairing C is given by .
In the second-order case, the aforementioned local expressions are

01 = pd™z + pidu® Ad™ a4+ pdud Ad™ g
QO = —dpAd™z —dp’, Adu® Ad™ e — dpid Adu® Ad™ e
C(xivuavuiaap7pa7pa) = (p+pauz +pau1i+1j)d Z.

Then, bearing in mind the local expression (6.1)) of the canonical embedding j,: J2n' < AZ(J'7), the
coordinate expressions of ©F and 2§ become

. 1
=pd"z + pldu® Ad™ oy + —— pLiThdu® Ad™ ey

n(iz) e

(6.2)
Q= —dp Ad™z —dp!, Adu® Ad™ ey — dplithi Aduf Ad™ ey,
n(w)
while the local expression of the symmetrized canonical pairing is
Cs(xiv u®,ug, u?,p,pi,pé) =+ pgu? + piu?)dmx . (6.3)

An important fact concerning the pull-back of the multisymplectic (m + 1)-form €, to J?xT is that
it is multisymplectic in J27'. Since Qf = —d©3 is obviously closed, it suffices to show that this form is
I-nondegenerate, that is, ;(X)Q§ = 0 if, and only if, X = 0. In coordinates, let X € X(J?7") be a generic
vector field locally given by

0 13} 0 0
F*— + FY G. GL—.
axﬂL dus T aur Iy T “az+ °Bpl
Then, taking into account the coordinate expression (6.2)) of the (m + 1)-form Qf, the m-form (X )5 is
locally given by

X=f

. 1
i(X)Qs = f* (dp Ad™ gy — dpl, Adu® Ad™ T 2y, — i) dplithi A dug A dm%jk)

1 .
dptitli A dm_lacj —gd™z — G du® Ad™

+ Fodp, Nd™ ey + B ———
n(ij)

1
-a! 5 —duf Ad™
LA =r n(ij) ’
i i=

where d™ 2z, = i(9/02%)d™1x;. From this coordinate expression it is clear that i(X); = 0 if, and
only if, X = 0. Hence Qf is multisymplectic.

Finally, recall that in the extended Hamiltonian formalism described in Section 2.5 we define the
restricted multimomentum bundle as the quotient of the extended multimomentum bundle by constant
affine transformations along the fibers of 7'. Analogously, we define the restricted 2-symmetric multimo-
mentum bundle as the quotient bundle

JArt = J2at AT (T ).
This bundle is endowed with Some canonical prOJectlons the natural quotient map, p: J?xf — J2xt,
and the canonical projections 7rJ1 cJ2nt = Jlz and 7rJ1 2t o M, which satisfy w}lﬂ = wLi,lﬂ ou
and 7TJ17T = ‘le o u.

Since the quotient J2?m* can be defined alternatively as the submanifold of J'7* defined by the
nm(m —1)/2 local constraints p¥¥ — pJ! = 0, natural coordinates (z%, u®, u, p!, p%) in J17* induce local
coordinates (z%,u®,u$, pi,,pL) in J2w*. Observe that
nm(m+ 1)

dim J’rf =dim J?7t —1=m+n+2mn + 5
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CHAPTER 6. SECOND-ORDER CLASSICAL FIELD THEORIES

6.2 Lagrangian-Hamiltonian unified formalism

6.2.1 Geometrical setting
Unified phase space and bundle structures. Local coordinates

According to the results in Section let us consider the following fiber bundles
W=J3n X Pnt 5 W, = I3 x . JPrt,

where J%7t and J27t are the extended and restricted 2-symmetric multimomentum bundles defined in
the previous Section, respectively. The bundles W and W, are called the extended 2-symmetric jet-
multimomentum bundle and the restricted 2-symmetric jet-multimomentum bundle, respectively.

The bundles W and W, are endowed with the canonical projections
W= o ppe W I ppa W J o put W= M,
oW, = Py ph W = PPt W= T ot W = M

In addition, the natural quotient map p: J27" — J27t induces a surjective submersion pyy: W — W,
Thus, we have the following commutative diagram

W
Bw P2
W,
P1
P1 2 J27TT
/ l#
J37T Pm J27Tj;
nt
Jin
-1
M

Let (2, u®) be a set of local coordinates in E adapted to the bundle structure and such that n =
dz! A ... Ada™ = d™z. Then, we denote by (%, u®,u®, u¢,u%) and (z°, u® ul,p,p, pL) the induced
local coordinates in J3m and J27', respectively, with |I| = 2 and |J| = 3. Thus, (2%, u®,u®,p’,,pl) are
the natural coordinates in J?7¥, and the coordinates in W and W, are (z%, u®,u$,ug,u%,p,p’,, pk) and
(2%, u®, ud, ug, ug, pt, pL), respectively. Observe that

nm(m+ 1)(m + 2)
6
In these coordinates, the above projections have the following coordinate expressions

dimW =m+n+2nm+nm(m+1) + +1 ; dmW,=dimW-1.

pu(a’ u® uf uf uG, p v, pe) = PL(at u® uf uf ug, . ) = (28 0, ud uf, ug)
paa’ u® uf ug ug, p,p, ph) = (@, u® ' p, pl. pa)

pg(xi,ua,u?,u?,uﬁ,pi,pi) = (xi7ua7u?7p(ix7pi)z
pJ’“*ITr(xivuavu(il»u?vUg’pvppré) = p}k,lﬂ(xi7ua,u?,u?,uf},pg,pi) = (xi’ua’u?)’

i L, o o o % I T i, o o o 7 I i
PM(QT , U aui au[auj7papaapa) = pM(x , U 7ui auIauJapapoupa) = (J) )
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6.2. LAGRANGIAN-HAMILTONIAN UNIFIED FORMALISM

Canonical geometric structures

The extended 2-symmetric jet-multimomentum bundle W is endowed with some canonical geometric
structures, which are the generalization to the second-order setting of the canonical structures introduced

in Section 2.5.3

Let ©5 € Q™(J%zt) and Q3 € Q™1 (J27t) be the symmetrized Liouville forms. Then we define the
following forms in W
0 =p;0] € Q"W) ; Q=p30] € Q"W).

Bearing in mind the local expressions (6.2)) of the forms ©F and €2, and the coordinate expression of
the projection py given above, we obtain the coordinate expression of the these forms, which are

) 1
0 =pd™z + p'.du® Ad™ z; + —— pLtldu@ Ad™ g,
n(ij)
; 1
Q= —dpAd™z —dp’, Adu® Ad™ a; — w(ij) dpEth A du@ Ad™
n(ij

Observe that, although 5 is multisymplectic, the (m + 1)-form € is premultisymplectic, since it is closed
and 1-degenerate. Indeed, let X € XV (P2)(W). Then we have

i(X)Q =i(X)p3 Q] = p3(i(Y)),

where Y € X(J27T) is a vector field po-related with X. However, since X is vertical with respect to pa,
we have Y = 0, and therefore

pa(i(Y)) = p5(i(0)Q27) = 0.
In particular, {0} & XV(P2)(W) C ker 2, and thus § is 1-degenerate. In coordinates, the C°°(W)-module
xV(P2) (W) is locally given by

xV<P2>(W):< 0 9 > (6.4)

oug’ us
with |I| =2 and |J| = 3.
The second canonical structure in W is the following.

Definition 6.1. The second-order coupling m-form in W is the ppr-semibasic m-form C e Qm™(W)
defined as follows: for every (j3¢,w) € W we have

Clad.w) = C*(m3(j29), w) -
As C is a pa-semibasic m-form, there exists a function C' € C*° (W) such that c=C- P Bearing
in mind the local expression (6.3)) of C*®, the coordinate expression of the second-order coupling form is

C = (p+ phud +pluf)dmz. (6.5)

Let us denote £ = (73 o p1)*L € Q™(W). Since the second-order Lagrangian density is a 7>

semibasic form, we have that £ is a pjps-semibasic m-form, and thus we can write £ = L - p},;n, where
L = (m3 0p1)*L € C(W) is the pull-back of the Lagrangian function associated with £ and 7. Then,
we define a Hamiltonian submanifold

Woz{w6W|ﬁ(w):é(w)}<ji>W.

Since both £ and C are pa-semibasic m-forms, the submanifold W, is defined by the constraint C—L=0.
In local coordinates, bearing in mind the local expression (6.5)) of C, the constraint function is

pH+piud +pluf —L=0, (I|=2).
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CHAPTER 6. SECOND-ORDER CLASSICAL FIELD THEORIES

Proposition 6.1. The submanifold W, — W is 1-codimensional, p-transverse, and the map ® =
Uw © Jo: Wy = W, is a diffeomorphism.
Proof. This proof follows the same patterns as the proof of Proposition

W, is obviously 1-codimensional, since it is defined by a single constraint function.

To see that ® = uyyo0j,: W, — W is a diffeomorphism, we show that it is one-to-one. First, for every

(736, w) € Wo, we have L(n3(33¢)) = L(jié,w) = C(j3¢,w), and
(1w © Jo) (o, w) = pw (o, w) = (G20, m(w)) = (720, [W]) -
First, uw o j, is injective; in fact, let (j3¢1,w1), (j2¢p2,ws) € W, then we wish to prove that
(hw © Jo) (Jad1,w1) = (bw © Jo) (Jot2, wa) <= (jad1,w1) = (J3d2,w2)
= j2p1 = j3ps and wy = ws .
Now, using the previous expression for (uyy o j,)(j3¢,w), we have

(w0 Jo) (j2d1,w1) = (pw © Jo) (Joda, we) <> (j201, [wi]) = (j2d2, [wo])
> j3p1 = j2¢s and [wi] = [wa].

Hence, by definition of W,, we have L(73(j3¢1)) = L(m3(j3¢2)) = C(j3¢1,w1) = C(j3¢a,ws). Locally,
from the third equality we obtain

pwr) + ph(w)ud (52 61) + plh(wi)uf (1) = pw2) + ph(wa)us (j32) + ph(w2)ud (j2¢2) ,
but [wi] = [wo] implies p}(w1) = ph([w1]) = ph([wa]) = ph(we) and pf(wi) = ph([wi]) = pi(lwa]) =
pl (w2). Then p(w;) = p(w2), and w; = wa.

Furthermore, jiyy o j, is surjective. In fact, given (j2¢, [w]) € W,, we wish to find (j3¢,¢) € j,(W,)
such that [¢] = [w]. It suffices to take [(] such that, in local coordinates of W,

Pa(€) = 0o » Pa(Q) =pa(C)) , p(Q)=L(m3(j20)) — palw))uf (72¢) — ph(w)uf (2¢)

This ¢ exists as a consequence of the definition of W,. Now, since pyy o j, is a one-to-one submersion,
then, by equality on the dimensions of W, and W, it is a one-to-one local diffeomorphism, and thus a
global diffeomorphism.

Finally, in order to prove that W, is pu-transversal, it is necessary to check if L(X)(£) = X (&) # 0,
for every X € ker Tyyy and every constraint function § defining W,. Since W, is defined by the constraint
C — L =0 and ker Ty = (3/8p), we have

0

o 9 . .
L) = — o Tud — L) =1
8p(C ) o (p + poui +puut — L) #0,

then W, is pyy-transverse. O

As a consequence of Proposition the submanifold W, induces a section h € T'(uyy) defined as
h = j,o® ': W, — W, which is called a Hamiltonian section of piyy, or a Hamiltonian jyy-section. This
section is specified by giving the local Hamiltonian function

H(xi7u » Ug 7U[7’sz;,pfl,pé) = péu? —l—péu‘}‘ - [A/(:Ei,ua,u?,u?), (6‘6)

that is, iL(:cZ,u Jud,ug, ug, pl, ph) = (@t u®, ud, ug, u, fﬁ,pg,pé). Observe that & satisfies o= oh
and p5 = po pyoh.
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6.2. LAGRANGIAN-HAMILTONIAN UNIFIED FORMALISM

Using this Hamiltonian puyy-section, we define the following forms in W,: ©, = h*e e Q™(W,) and
Q. = h*Q = —dO, € Q™ (W,) with local expressions

. . 1
0, = —Hd™z + p' du* ANd™ oy + —— pEtlidud Ad™ ey,

n(ij) e

Q, =dH Ad™z — dp!, Adu® Ad™ Lz — G )dpl'HJ/\du Ad™ ;.
n(ij

Then, the pair (W, ,.) is a premultisymplectic Hamiltonian system.

Finally, as we have done in Chapters [3] and [5] for higher-order dynamical systems, we generalize the
definition of holonomic sections and multivector fields to the unified setting in order to give a complete
description of second-order Lagrangian field theories in terms of the Lagrangian-Hamiltonian formalism.

Definition 6.2. A section ¢ € I'(ph,) is holonomic of type s in W,., 1 < s < 3, if the projected section
ph o1 € D(73) is holonomic of type s in Jox.

In coordinates, if ¥(x?) = (2%, u®, u®, uf, uf,“,pg,pg), then the condition for 1 to be holonomic of type
s in W, gives the partial differential equations (1.10) with k = 3 (or, equivalently, (1.11]) with & = 3).

Definition 6.3. A multivector field X € X™(W,) is holonomic of type s in W,., 1 < s < 3, if

1. X is integrable.
2. X s phy,-transverse.

3. The integral sections ¢ € T'(ply,) of X are holonomic of type s in W;.

In natural coordinates, let X € X™(W,) be a locally decomposable and (p},)-transverse multivector
field locally given by

0 0 0 0 o . 0 4 0
X = /\fj(axj B *Jaa+FI’Jaa+FJJaa+G’JaZ+G“J%)’

with f; non-vanishing local functions. Then, the condition for X to be holonomic of type s in W, gives
equations (|1.32)) with k¥ = 3. In particular, the local expression for a locally decomposable holonomic of
type 1 multivector field X € X™(W,) is

" O R B, a ., 0 )
=A% ( 36+“1f“-7‘au¢'+u’“-7‘8u?+F“8a+GaﬂaZ+G‘§’j8pl)

6.2.2 Field equations
In this Section we state the field equations for a second-order classical field theory in the unified formalism.
The equations are given in two different ways: first we state the geometric equation for sections, and then

the geometric equation for multivector fields. Both equations are analyzed locally in-depth. Finally, we
prove that these two ways of obtaining the field equations are equivalent.

Field equations for sections

The second-order Lagrangian-Hamiltonian problem for sections associated with the premultisymplectic
system (W, §,.) consists in finding holonomic sections ¢ € I'(p,) satisfying the following condition

v i(X)Q, =0, forevery X € X(W,). (6.8)
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CHAPTER 6. SECOND-ORDER CLASSICAL FIELD THEORIES

In the natural coordinates of W,., let X € X(W,.) be a generic vector field given by

B ) P B 9 B )
| P + F® F& F% G! GI — .
orr T e T gus T e T gug T e T Tagyr

X=7f (6.9)

Then, bearing in mind the local expression (6.2)) of Q,., the m-form (X)$, is given locally by

i(X)Q, = f* (—dpfx Adu® Ad™ 2a — dpbi™hi A du@ Ad™?ajy — uldph, Ad™ oy

n( ij)

. _ _ _ oL -
—phduf Ad™ ey, — ufdpl, Ad™ T ey, — pldud Ad™ Ty + %du'x Ad™

af’ m—1 3f/ e m—1 oY 7 m—1 8i’ m

: oL oL
Fo d 1;+1; Adm 1,.. QM — ——d™ Fe I dm
T <n(m) Par i T Pad ous T Pa oug v
. 1
+ Gy, (u?d’”x —du® A dm_lxi) + Gé urd™x — Z ——duf Ad™
)
Thus, taking the pull-back of this last expression by a section ¢ € I'(p},) with local expression
P(at) = (2, u®(a), uf (), uf (27), u (2"), po (), g (27))

we obtain the following pf-semibasic m-form

_ opi, du®  Opi, du® 1 dpa U ouy 1 9pa TV oug L 9ph Oul
* _ k| Yo a Z q a a i q
YT, = lf (8:}:’“ oz’ * dzt Oxk G n(ij) Ozk 8:13J n(ij) Ox? Ozk Ui gk Pagyk

U ek Pk T un ok T Bus ok T 9w ook 9 dun

= 1 opith . oL o, oL . oue
+Fi 2; . O —|—pa—% +FI pa—@ +Go¢ U, —axi
j:

JOpL L oug 0L oue 0L oue 0L 8u1> L pe ( "ooph, oL )
=1

n(ij) ;
1 ouf
I a 7 m
+G Ur 1.§:I ’rL(Zj) Oz d™x

Finally, requiring this last expression to vanish for every vector field X € X(W,.) (that is, the equality
must hold for every local function fi, F* F® F® Gi GL) we obtain the following system of equations

m ) .
opt oL
a_ = -0 6.10
— Oz’ Ou” ’ (6.10)
m 1 8p(lli+1J ] 8[3
— — 4+ Py — 55 =0, 6.11
= n(ij) Ozl ous (6.11)
oL
T
— =0 6.12
Pa = gz =0 (6.12)
ou® 1 ou?
> — - =0 ; ¢ — L =0. 6.13
'U,z axl ) U[ 1‘+zl.: , n(l]) axj ( )

A long but straightforward calculation shows that the m equations along the coefficients f* are a combi-
nation of the others, and thus we omit them. Observe that equations (6.13) give partially the holonomy
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condition for the section v, but since we required this condition from the beginning, these equations are
automatically satisfied. On the other hand, equations do not involve any partial derivative of the
component functions of ¢: they are point-wise algebraic conditions that must be fulfilled for every section
1 € T'(ph,) solution to the field equation . These equations arise from the pj-vertical part of the
vector fields X € X(W,.), as it is shown in the following result.

Lemma 6.2. If X € XV(P2)(W,), then i(X)Q, € Q™(W,) is ph,-semibasic.

Proof. This result is easy to prove in coordinates. In the natural coordinates of W,., the C'*°(W,.)-module
of p5-vertical vector fields is given by (6.4]), that is,

XV (W, = <(£a> ,
I

with 2 < |I| < 3. Then, bearing in mind the local expression (6.7)) of 2., we have

d ph — oL dmz, for [I| =2,
i(507) 0 - o
ou¢

0=0-d"z, for |I| > 2.

Thus, in both cases we obtain a p},-semibasic m-form. O

As a consequence of this result, we can define the submanifold
We = {w e W, [ (((X)9,)(w) =0 for every X € XV D (W)} 5, (6.14)

where every section ¢ € T'(p},) solution to the equation must take values. This submanifold is
called the first constraint submanifold of the premultisymplectic system (W,., £2,.), and has codimension
nm(m+1)/2.

As we have seen in the proof of Lemma the submanifold W, < W, is locally defined by the
constraints (6.12). In combination with equations (6.11)), we have the following result, which is the
analogous to Propositions [3.2] and [5.3] in second-order field theories.

Proposition 6.3. A solution ¢ € T'(p},) to equation takes values in a nm-codimensional subman-
ifold Wy < W, which is identified with the graph of a bundle map FL: J3n — J?nt over J'm defined
i coordinates by

oL
@ :

0L 1 d 9L
Lrph — 2 - .
FL Pa dug Z n(ij) ded Ouf, yy,

Jj=1

FLpl = (6.15)

Proof. Since W, is defined locally by the constraints (6.12]), it suffices to prove that these contraints,
together with the remaining local equations for the section ¢ € I'(p},) to be a solution to the equation
(6.8), give rise to the local functions defining the map given above, and thus to the submanifold W,.

Replacing p!, by c’)ﬁ/ Jug in equations (6.11)), we obtain

=0.

;0oL i 1 d oL
Do — 575 N 77 9,0

¢ o = n(ij) dad 8u1i+1j
Therefore, these constraints define a submanifold W, < W,, which can be identified with the graph of

amap FL: J3rm — J?rt given by
FLrz'=a" ; FLUY =u® ; FLS,

oL
I

. 0L 1 d dL
Lt = 2 il .
FLPa dug Z n(ij) dzd Ouf yy,

j=1
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Definition 6.4. The bundle map FL: J3m — J?m* over J'm is called the restricted Legendre map
associated with the second-order Lagrangian density L.

Observe that dim W, = dim J3m = m + n +mn + nm(m + 1)/2 + nm(m + 1)(m + 2)/6.

Remark. The terminology “Legendre map” is justified, since FL is a fiber bundle morphism from the
Lagrangian phase space to the Hamiltonian phase space that identifies the multimomenta coordinates
with functions on partial derivatives of the Lagrangian function, and thus generalizes the Legendre map
in first-order field theories (see [68, [79]), and first-order and higher-order mechanics (see [I] for first-order
mechanics and [62] for the higher-order setting). O

According to [I40], we can give the following definition.

Definition 6.5. A second-order Lagrangian density £ € Q™ (J%7) is regular if, for every point j2¢ € J3m,
we have
rank(FL(j2¢)) = dim J?7 + dim J'7 — dim E = dim J?7} .

Otherwise, the Lagrangian density is said to be singular.

Hence, a second-order Lagrangian density £ € Q™(J?r) is regular if, and only if, the restricted
Legendre map FL: J31 — J?rt associated to £ is a submersion onto J27t. This implies that there exist
local sections of FL, that is, maps o: U — J37, with U C J?nt an open set, such that FL oo = Idy. If
FL admits a global section Y: J27* — J37, then the Lagrangian density is said to be hyperregular.

Observe that dim J37 > J2rt, since

1 1 2 1
m+n+nm+ nm(n;—i— ) + nm(m+6)(m+ ) > m+n+2nm+7nm(rg+ ) ,
and the equality holds if, and only if, m = 1. Therefore, unlike in higher-order mechanics (see Chapters
and [p)) or first-order field theories (see Section , the Legendre map in second-order field theories

cannot be a local diffeomorphism due to dimension restrictions.

Computing the local expression of the tangent map to F£ in a natural chart of J37, the regularity
condition for the Lagrangian density £ is equivalent to

2L
det 367 (]i’d)) #0, for every ji’.qzﬁ c Jir,
Oul; Qus;

where |I| = |K| = 2. That is, the Hessian of the Lagrangian function associated with £ and n with
respect to the highest order “velocities” is a regular matrix at every point, which is the usual definition
of regular Lagrangian densities.

Note that since W, is diffeomorphic to the submanifold W, < W by Proposition [6.1, and W, is
defined locally by the constraint p+ pf u® + pl u¢ — L = 0, the restricted Legendre map FL: J3m — J?nt

K3
can be extended in a canonical way to a map FL: J3m — J?xt, defining fﬁ*p as the pull-back of the
local Hamiltonian function —H. This enables us to state the following result, which is a straightforward
consequence of Proposition [6.3] and is the analogous to Corollary on second-order field theories.

Corollary 6.4. The submanifold W, — W is the graph of a bundle map FL: J3n — J2xt over Jir
defined locally by

£, 0 1 d oL —, 0L
FL pa = dug Z n(ij) da <8u1 41 ) ’ Pa = oug’
/=t ! (6.16)
. oL =~ 1 d [ oL oL '
— [ == @ e
FLp Y oug ; n(ij) dz <8u‘fi+1 ) L oug”

and satisfying FL = p o FL.
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The bundle map FL: J31 — J2rT is the extended Legendre map associated with the Lagrangian
density £. An important result concerning both Legendre maps is the following, which is the analogous
to Proposition [5.5 for second-order field theories.

Proposition 6.5. For every j3¢ € J3m we have rank(./F\Z(ji(b)) = rank(FL(j3¢)).

Following the same patterns as in [44] for first-order mechanical systems, the proof of this result
consists in computing in a natural chart of coordinates the local expressions of the Jacobian matrices of
both maps, FL and FL. Then, observe that the ranks of both maps depend on the rank of the Hessian
matrix of the Lagrangian function with respect to the highest order velocities, and that the additional
row in the Jacobian matrix of FL is a combination of the others. Since it is just a long calculation in
coordinates, we omit the proof of this result.

Notice that the component functions u§ with |J| = 3 of the section ¢ € I'(p},) are not yet determined,
since the coordinate expression of the field equation does not give any condition on these functions.
In fact, these functions are determined by the equations (6.10) and . Indeed, since the section
¢ € T'(ph,) must take values in the submanifold W, given by Proposition then by replacing the
local expression of the restricted Legendre map in equations and we obtain the second-order
Euler-Lagrange equations for field theories

o
dz? Ju®

oL
ou®

d®> 9L
+277 =0, (1<a<n). (6.17)
|I|=2

Finally, observe that since the section 9 € I'(p},) must take values in the submanifold Wy — W,,
it is natural to consider the restriction of equation to the submanifold W,; that is, to restrict the
set of vector fields to those tangent to W,. Nevertheless, the new equation may not be equivalent to the
former. The following result gives a sufficient condition for these two equations to be equivalent.

Proposition 6.6. If ¢ € I'(p},) is holonomic in W,., then the equation is equivalent to
P i(Y)Q. =0, foreveryY € X(W,) tangent to W . (6.18)

Proof. We prove this result in coordinates. First of all, let us compute the coordinate expression of a
vector field X € X(W,) tangent to W,. Let X be a generic vector field locally given by , that is,

0 0 0 0 0 .0 0
-+ F— 4+ Ff—— + Ff—— 4+ F}— + G\ — + GL .
ox? + ou® + ou® o ouy Ty ou + *Opi, + > opL
Then, since W, is the submanifold of W, defined locally by the nm + nm(m + 1)/2 constraint functions
¢, ¢l with coordinate expressions

X=Ff

glzpi_ﬁ_i_i 1 i 8i . I:pl_g
«T Juy e n(ij) dud Ouf,yy, 7~ 7% 7% Oug’

then the tangency condition of X along W, which is L(X)¢&, = L(X)&L = 0 (on W), gives the following
relation on the component functions of X

G- L 1 d L P ’L 1 d L
o Ozhou  n(ij) dad xhoug, i, ouPdug  n(ij) dui duPoug .,

5 0L 1 d 9L 5 0L 1 d &L
+Fk B a_ ()dij B o +FI B a_ ()W B e
OQuyOug 1)) ax7 Juy Ouf Qupdug (1)) a7 Qupous
1 0L 0L 0L
- — | F? +F = 4 F =,
n(ij) < ! 6uﬁaui+lj ety 6u£8ui+1j I+ 3u?8ui+1j
Gl — g 0*L 5 O°L 5 O°L 5 O°L

—— + ; —5 -
dridug OuP dug oulous 7 ouSoug
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Hence, the tangency condition enables us to write the component functions G, G as functions é;, ég
depending on the rest of the components f*, F'*, F*, Ff*, F§.

Now, if (z?) = (2%, u®, u®, ug, u%, pt,pl), then the equation gives in coordinates

VX0, = f’“(~--)+F°‘< Op 8L)+F,»“ >

L~ dxt  Ou”
=1

oL [ Ou” 1 oug
e 1 Y 3 = a I a i m o
+Ff <pa 8u7> +Ga( e —&-uz) +GL | ug Z i) o d™z

where the terms (- - - ) contain a long expression with several partial derivatives of the component functions
and the Lagrangian function, which is not relevant in this proof. On the other hand, if we take a vector
field Y tangent to W, then we must replace the component functions G, and G by G?, and G, in the
previous equation, thus obtaining

.. B N . m p; al”; . m 1 . aj;
4 Z(Y)QT_ f()+F (;axi_aua>+ﬂ Zn(zg) oxJ +pa—w

3

L\ i ( Oue ~ 1 Oug
Fo 7 _ Y 3 = a I a i moy
+Ff <pa au?> +Ga< o +ul> + Gl | ug 1.;11 i o || 4

Finally, if ¢ is holonomic, then equations (6.13)) are satisfied, and the last two terms of both (X ), and
i(Y)Q, vanish, thus obtaining

O oph, 0L 1 opa ™ oL
)0 = [y pe (3 Pa Fy — P

J=1
oL
Fopl - 2=
+ I <pa 8'&?)

Hence, we have (X)Q, = 0 if, and only if, (Y), = 0. O

A"z = " (V)R .

Remarks.

e Observe that, contrary to first-order field theories the holonomy condition is not recovered from
the coordinate expression of the field equations (see Section . Moreover, in this case, unlike
in higher-order time-dependent mechanical systems, not even a condition for the holonomy of type
2 can be obtained (see Sections[3.2]and [p.1)). This is due to the constraints p¥ — pi’ = 0 introduced
in Section to define both the extended and restricted 2-symmetric multimomentum bundles.
Hence, the full holonomy condition is necessarily required in this formalism.

It is important to point out that, although the holonomy condition cannot be obtained from the field
equation, a holonomic section ¢ € T'(p},) satisfies the local equations (6.13]). Hence, a holonomic
section can be a solution to the equation . O

e The regularity of the Lagrangian density seems to play a secondary role in this formulation, because
the holonomy of the section solution to the equation is necessarily required, regardless of the
regularity of the Lagrangian density given. Nevertheless, recall that the Euler-Lagrange equations
(6.17) may not be compatible if the second-order Lagrangian density is singular, and thus the
regularity of £ still determines if the section ¢ € I'(p},) solution to the equation lies in W,
or in a submanifold of W,. If L is singular, in the most favorable cases, there exists a submanifold
W — W, where the section i takes values. O
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Field equations for multivector fields

The second-order Lagrangian-Hamiltonian problem for multivector fields associated with the premulti-
symplectic manifold (W, Q,.) consists in finding a class of locally decomposable holonomic multivector
fields {X'} C X™(W,) satisfying the following field equation

i(X)Q. =0, forevery X € {X¥} CX"W,). (6.19)

Since the (m + 1)-form , is premultisymplectic, equation (6.19) may not admit a global solution
X € X™(W,), but only defined on some submanifold of W,. Using an adapted version of the constraint
algorithm described in Section for premultisymplectic manidolds [46], we have the following result.

Proposition 6.7. A solution X € X™(W,) to equation (6.19)) exists only on the points of the submanifold
W, — W, defined by

W, = {w eW, | (i(2)dH)(w) = 0, for every Z € kerQ}

= {w eW,r | ((Y))(w) =0, for every Y € %V(”g)(WT)} .

The submanifold W, < W, is the so-called compatibility submanifold for the premultisymplectic
system (W, Q,.). Observe that we denoted this submanifold by W,, which is the notation used for the
first constraint submanifold defined in . Indeed, both submanifolds are equal. In order to prove
this, recall that the first constraint submanifold is defined locally by the constraints pl, — oL Jug = 0.
Hence, it suffices to prove that the compatibility submanifold given by Proposition [6.7] is defined locally
by the same constraints.

In fact, in natural coordinates, the coordinate expression for the local Hamiltonian function His given
by , and thus we have

~ 8f/ P i a-i/ o 8f/ o a 7 «@
dH = —%du + <;Da - 8u§‘> dug” + (pi - 8“?) duf + ufdpg, + ufdpy, -

Now, bearing in mind that ker (2 is the (nm(m+1)/2+nm(m+1)(m+2)/6)-dimensional C>°(W)-module
locally given by (6.4)), the functions ;(Z)dH for Z € ker £ have the following coordinate expressions

i<a>dﬁ—pé—aL for [I| =2 ; z( 0 )dI:I—O for |J| = 3.
u

[e3 e
oug oug

Therefore, the submanifold W, < W, is locally defined by the nm(m+1)/2 constraints pf, —dL/dug = 0.
In particular, it is equal to the submanifold defined in (6.14)), and we have

m(m+1) nm(m+ 1)(m+ 2)
2 6 ’

dim W, = dimW, —nm(m+1)/2 =m+n+2mn+ n

Now we compute the coordinate expression of the equation (6.19) in a local chart of W,.. From the
results in Section and [75], a representative X of a class of locally decomposable, integrable and
ph-transverse m-vector fields { X} C X™(W,) can be written in coordinates

) 0 0 o o ) 0
X = — b P P 4+ F* 4P 4G L= 2
f j/=\1 (a;w T Gun T s T g T Fhigug T Gaugyr t ey c’)pé> o

where f is a non-vanishing local function. Taking f = 1 as a representative of the equivalence class, the
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contraction (X)), gives locally the following 1-form

, ; ; [Py 1+1 ;
ZXQTZ(GZZ F 4+ Go by + —— G Y +7G TF — uf Gl g — DA FY
) B Ga B+ gy G ) *

o o 0L oL ., oL

Ui Gog = Pl g B+ o B +a°‘F““> (ZGaz—au)d

WA 4, ., oL oL ;
D Gy b 5 du?+<pia?>du1+( — F*)dp),

Then, requiring this 1-form to vanish, we obtain the coordinate expression of equation (6.19)), which is
the following system of equations

1
FO — Fo = 6.21
T 1.-;-12:1 n(ij) "’ A (621

LU oL
> G, = B (6.22)

=1

01 441 O .
—Goj =5 " Pa 6.23
j; n(ij) 7 ous (6.23)

oL

pX =0, |K|=2. (6.24)

The m additional equations alongside the 1-forms dz? are a straightforward consequence of the others
and the tangency condition that follows, and thus we omit them. Therefore, a locally decomposable and
ph-transverse multivector field solution to the field equation (6.19) is given in coordinates by

YD 9 9 o . 0 . 0
X:/\('+“jam+F’Jaa+F’Jaa*FJ’ﬂaajLGaﬂal+G“’j8p{,>’

where the functions Fy;, GY, ; and Gé’j must satisfy the equations (6.21]), (6.22)) and (6.23). Note that
most of the component functions remain undetermined, and that there can be several different functions
satisfying the aforementioned equations. However, recall that the statement of the problem requires
the class of multivector fields to be holonomic. In coordinates, this implies that equations are
satisfied with £k = 3 and r = 1, and, more particularly, equations are satisfied. Thus, a locally
decomposable and holonomic multivector field X solution to the field equation has the following

coordinate expression

N . 0 . 0 . 0 . 0 .0 ;0
te <:c'+“‘u+“1i+1f8u§’+u”“8u?+F‘”am+Gwal+Ga’j3pé>

with Giw- and Gi- satisfying (6.22) and (6.23).

Observe that equations (6 are a compatibility condition for the multivector field X', which state
that the multivector field solution to the field equation (6.19)) exists only at support on the submanifold
W,.. Hence, we recover in coordinates the result stated in Proposition

Let us analyze the tangency of the multivector field X along the submanifold W, < W,.. Recall that,
since X is locally decomposable, that is, we have X = Xj A ... A X,,, on an open neighborhood around
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every point, the tangency of X along the submanifold W, is equivalent to the tangency of every X; along
We. That is, we must require that L(X})¢l,, = 0 for every constraint function § defining W, and for
every 1 < k< m.

Therefore, since the submanifold W, < W, is locally defined by the nm(m+1)/2 constraint functions
X = pK — OL/oug., we must check if the condition L(X;)¢X = X;(¢X) = 0 holds on W, for every

a —

1<j<m,1<a<n,|K| =2 Computing, we obtain

G, 9 ) ) ) 9 | oL
— a_ Y «@ v o Y e = i i r ¥ K _
(61‘3 T Gy T s T UL G T i gs F G o, Ca 8pé> <p°‘ 3U?<> ’
2L 2L 2L 92L
G 03 du, Y ouPoug, it ou’ ous, e Ol dus,
L
— GK d 9 =0

©3 ~ du7 Dug,
Hence, the tangency condition enables us to determinate all the coefficient functions Gfi ;» since we
obtain nm?(m + 1)/2 equations, one for each function. Now, taking into account equations (6.23) and
the coefficients Ggi ; that we have determined, we obtain

1 1,41, OL L 1 d oL
G ' —— =0 << p. — — —_— =0.
2 n(ij) 7 dug Ve Pe ™ Bup t n(ij) da’ Ouf,

=1 ¢ =1
Hence, the tangency condition for the multivector field X along W, gives rise to mn new constraints
defining a submanifold of W, that coincides with the submanifold W, introduced in Proposition [6.3]
Now we must study the tangency of X along the new submanifold W,. After a long but straightforward
calculation, we obtain

idaﬁdildaﬁml(ﬁ dﬁ)a%

- — — . N . - T u . - a .
ok T dgk Que dak < n(ig) " TR dak T Oufous

Therefore, the tangency condition along the submanifold W, enables us to determinate all the functions
G, - Now, taking into account equations (6.22)), we have

R oL

oL d oL @ 0L nm 1 ( 5 d g ) 0L
_ _ = = 4 77—1-5 E —— | F ., — 5=upy,. | —— =0.
ou®  dx? Ou® |IZ_2 dz! ouf == n(ij) Tl g T au?au‘f‘ﬁlj

These n equations are the second-order Euler-Lagrange equations for a locally decomposable holonomic
multivector field. Observe that if £ is a second-order regular Lagrangian density, then the Hessian of L
with respect to the second-order velocities is regular, and we can assure the existence of a local multivector
field X’ solution to the equation , defined at support on W, < W,., and tangent to W,. A global
solution is then obtained using partitions of the unity.

If the Lagrangian density is not regular, then the above equations may or may not be compatible,
and may give rise to new constraints. In the most favorable cases there exists a submanifold Wy — W,
(where we admit Wy = W,) where we have a well-defined holonomic multivector field at support on Wy,
and tangent to Wy, solution to the equation

(X)), =0. (6.25)
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Equivalence of the field equations in the unified formalism

In the previous Sections we have stated the field equations in the unified formalism in several ways. First,
we have stated a geometric equation for sections of the bundle p’,: W, — M, and we have analyzed it
in coordinates. Then, we have stated a geometric equation for multivector fields defined in W,., and we
have studied the equation and the tangency condition in coordinates. In this Section we prove that all
these equations are equivalent.

Theorem 6.8. The following assertions on a holonomic section ¢ € I'(p},) are equivalent.

1. Y is a solution to the equation , that is,
Y i(X)Q- =0, for every X € X(W,).

2. If 4 is given locally by ¢(x?) = (mi,u”‘(xi),u;?‘(a:i),u‘}‘(xi),u?(xi),pgl(xi),pé(:zzi)), then the compo-
nent functions of 1 satisfy equations (6.10)) and (6.11)), that is, the following system of n + nm
partial differential equations

moopt oL mo1 opstth el
Bt~ Buo ; Z — — = — —p,. (6.26)

i=1 j=1

3. 1 is a solution to the equation
i(A™Y") (. 09p) =0, (6.27)
where A™": M — A™TW,. is the canonical lifting of 1.

4. 1 is an integral section of a multivector field contained in a class of locally decomposable holonomic
multivector fields {X} C X™(W,), tangent to We, and satisfying the equation (6.19), that is,

(X)), =0.
Proof. We prove this result following the same patterns as the proof of Theorem [5.9

(1 < 2) From the results in the previous Sections, the field equation gives in coordinates the
equations (6.10]), (6.11), (6.12) and (6.13). As stated there, the equations (6.12]) are the local
constraints defining the first constraint submanifold W, < W,.. In addition, since we assume that

the section ¢ € I'(ph,) is holonomic, the equations (6.13) are satisfied. Therefore, the equation
is locally equivalent to equations (6.10]) and (6.11)), that is, to equations (6.26].

(2 < 3) If Y € T'(p}y) is locally given by
P(a') = (', u®(2"), uf (2), uf («"), uG (2"), ph (2"), pa (27))
then its canonical lifting to A™TW, is locally given by A™¢' =] A ... A, with

d d d d d

;d
/I a @ a a 7 I
7/}]‘* (07"',071703"'703 dl‘ju 7dmjuz,dxjuladxjuJadxjpa,dxjpa> ’

where d/dz7 is the jth coordinate total derivative, and the 1 is at the jth position. Then, the inner
product 3(A™y")(§2, 0 9) gives, in coordinates,

i . oL  dpi oL . &1 dpytY
i(AW)(fzrow)—Z(m)dxw( p“)du“+ ) D dug

P ou®  dx? ou¥ = n(ij) dad !

8ﬁ du® : 1 du*

I a [eY i % e I
—+ ——|duf+ [ — —u | d + - — U d
(pa 9u?> I < Izt U; > Po E n(zy) lzi I Po >

1,41,=I
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where the terms (---) along the forms dz® involve of partial derivatives of the Lagrangian function
and of the rest of component functions. Now, requiring this last expression to vanish, we obtain
equations (6.10)), (6.11), (6.12]) and (6.13)), along with m additional equations which are a combina-
tion of those. Same comments as in the proof of the previous item apply. In particular, equations
6.12|) are the local constraints defining the first constraint submanifold W, < W,., and equations
6.13]) are automatically satisfied because of the holonomy assumption. Therefore, the equation

6.27) is locally equivalent to equations (6.10) and (6.11)), that is, to equations (6.26]).

(2 <= 4) From the results in the previous Section, if X € X™(W,.) is a generic locally decomposable

multivector field locally given by 7 then, taking f = 1 as a representative of the equivalence
class, the field equation is locally equivalent to the equations (6.21)), (6.22)), (6.23]) and ((6.24]).
As already stated, equations give, in coordinates, the compatibility submanifold W, obtained
using the premultisymplectic version of the constraint algorithm in [46]. On the other hand, since
the multivector field X is assumed to be holonomic, then equations (6.21]) are satisfied. Hence, the

field equation (6.19) is locally equivalent to equations (6.22)) and (6.23)).
Let ¢ € I'(ph,) be an integral section of X locally given by ¥(z%) = (2%, u®, u, ug,us, p, pl).
Then, the condition of integral section is locally equivalent to the following system of equations

ou® ous oug oug

w:Fio‘ow ; axzj_:Fﬁjow : @:F[ijo"/’ ; @:Fﬁjo¢7
des ~ Cei®V 1 gy = Cag oV

Replacing these equations in (6.21]), (6.22) and (6.23]), we obtain the following system of partial
differential equations for the component functions of ¢

ou® o ous o ou§ o oug o
ort Ui s Oxi Uti+1; 5 Ori Urya,; Ori Fsi,
N\ oph, 0L z’“: Lokt ol
Pl oxt  oux = n(ij) Ol ou¥ Pa -

Since the multivector field X is holonomic and tangent to W,, the first equations are identically
satisfied. Thus, the condition of ¥ to be an integral section of a locally decomposable holonomic
multivector field X € X™(W,), tangent to W,, and satisfying the equation ([6.19)) is locally equiv-

alent to equations (6.26)). O

6.3 Lagrangian formalism

In this Section we state the Lagrangian formalism for second-order field theories. As in Section [5.2] we
have already stated the unified formalism for second-order field theories, and thus we will “recover” the
Lagrangian structures and solutions from the unified setting.

The results remain the same for both regular and singular second-order Lagrangian densities. Thus,

no distinction will be made in this matter.

6.3.1 Geometrical setting

In order to establish the field equations in the Lagrangian formalism, we must define the Poincaré-Cartan
m and (m + 1)-forms in J37. Since the constraint algorithm delivers a unique extended Legendre map
in the unified framework (see Proposition and Corollary , we can give the following definition.

203
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Definition 6.6. Let ©5 € Q™ (J%7T) and Q5 € QL (J%xT) be the symmetrized Liowville forms in J?r'.
The Poincaré-Cartan forms in J37 are defined as

Op=FL O cQ™(JPr) ; Qp=FL QS =—dO, € QmH(J37).

The Poincaré-Cartan forms can also be recovered directly from the unified formalism. In fact:

Lemma 6.9. Let © = p507 and O, = h*© be the canonical m-forms defined in W and W,., respectively.
Then, the Poincaré-Cartan m-form satisfies © = pi©, and O, = (p])*O.

Proof. A straightforward computation leads to this result. For the first statement we have
piOL = pi(FL ©3) = (FLo p1)" 05 = 305 = O,
and from this the second statement follows
(00)* 0 = (pr o h)*OL = h*(p}Or) = "'© = O, . 0

Remark. As the pull-back of a form by a function and the exterior derivative commute, this result also
holds for the Poincaré-Cartan (m + 1)-form. O

In the natural coordinates (xi,uoﬁu?,u?, ug) of J3m, bearing in mind the local expression (6.2) of
%, and (6.16) of the extended Legendre map, the local expression of the Poincaré-Cartan m-form is

(du® Ad™ oy —ufd™a)

An important fact regarding the Poincaré-Cartan (m + 1)-form Q. is that it is 1-degenerate when
m > 1, regardless of the regularity of the Lagrangian density. Indeed, since the restricted Legendre map
FL: I3 — J%7t is a submersion with dim J37 > dim J?7#, and rank(FL) = rank(FL), there exists a
non-zero vector field X € X(J31) which is FL-related to 0 € X(J2x'), that is, TFLo X = 00 FL. Then,
we have ., .
i(X)Qe =i(X)FL Q] =FL (0)Q; =0.

Finally, the following result enables us to establish a one-to-one correspondence between the solutions
of the unified formalism and the solutions of the Lagrangian equations that we state in the following
Sections.

Proposition 6.10. The map p& = p§ o jpo: W — J37 is a diffeomorphism.
Proof. Since W, = graph(FL), it is clear that J?7 is diffeomorphic to W,. On the other hand, since
p1 is a surjective submersion by definition, its restriction to the submanifold W, is also a surjective

submersion and, due to the fact that dim W, = dim J®7, the map pf is a bijective local diffeomorphism.
In particular, the map pf is a global diffeomorphism. O

6.3.2 Field equations

Using the results stated in the previous Section, we can state the field equations in the Lagrangian
formalism, and recover the solutions to these equations from the solutions to the field equations in the
unified formalism.
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Field equations for sections
Using the previous results, we can state the Lagrangian equations for sections, and recover the Lagrangian
sections in J37 from the sections in the unified formalism.
First, the second-order Lagrangian problem for sections associated with the system (J3, L) consists
in finding sections ¢ € I'(7) satisfying
(736)*i(X)Qe =0, for every X € X(J°n). (6.28)

Proposition 6.11. Let ¢p € T'(p},) be a holonomic section solution to the equation . Then the
section Yy = pi o1p € T'(73) is holonomic, and its projection ¢ = w3 01). is a solution to equation (6.28).

Proof. By definition, a section ¢ € T'(p%,) is holonomic if the section pf ot € T'(7?) is holonomic. Hence,

Y = pj o is clearly a holonomic section.

Now, since p]: W, — J37 is a submersion, for every vector field X € X(J?7) there exist some vector
fields Y € X(W,) such that X and Y are pf-related. Observe that this vector field Y is not unique
because the vector field Y +Y,, with Y, € ker Tp] is also pj-related with X. Thus, using this particular
choice of pj-related vector fields, we have

Yri(X)Qe = (p1 o 9)"i(X)Qe = P ((p1)" (X)) = 97 i(Y)(p1) " = ¢ i(Y) Q.

Since the equality ¥ i(Y)$2, = 0 holds for every Y € X(W,), it holds, in particular, for every Y € X(W,.)
which is pj-related with X € X(J37). Hence we obtain

Vi i(X)Qe = ¢ i(Y)Q, = 0. 0

The following diagram illustrates the situation of the above Proposition

<

=
>
g
<

Observe that Proposition [6.11] states that every section solution to the field equation in the unified
formalism projects to a section solution to the field equation in the Lagrangian formalism, but it does
not establish an equivalence between the solutions. This equivalence does exist, due to the facts that the
map pY: W, — J37 is a diffeomorphism, and that every section ¢ € I'(p},) solution to equation
takes values in the submanifold W, = graph(FL) < W,.. In order to establish this equivalence, we first
need the following technical result.

Lemma 6.12. The Poincaré-Cartan forms satisfy (p£)*Og = j:0, and (p£)* Qe = jiQ,.

Proof. Since the exterior derivative and the pull-back commute, it suffices to prove the statement for the
m-forms. We have

(5) O, = (pf 0jc) Or = (prohoje)©r = (prohoje) (FL ©5)
=(FLopiohojr)*0f = (p2ohojs) 0] = (hojs)*® = jiO,. O
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Now we can state the remaining part of the equivalence between the solutions of the Lagrangian and
unified formalisms.

Proposition 6.13. Let 1. € I'(73) be a holonomic section solution to the field equation (6.28). Then
the section ¢ = jp o (p£) " oabe € T(ph,) is holonomic and it is a solution to the equation (6.8).

Proof. By definition, a section ¢ € T'(p},) is holonomic in W, if the section p7 o9 € T'(#3) is holonomic
in J37. Computing, we have

plow=piojeo(pf) ot =1,
since pjojc = pf & plojeo (pf)_1 = Ids,. Hence, as ¥, is holonomic, the section ¥ = j, o (,of)_1 or
is holonomic in W,.
Now, since jz: Wy — W, is an embedding, for every vector field X € X(W,) tangent to W,, there

exists a unique vector field Y € X(W,) which is j-related with X. Hence, let us assume that X € X(W,)
is tangent to W,. Then we have

P i(X)Q = (e o (pT) ™ o e) " i(X)Q = ((pf) ™ 0 vhe) (V)0 -
Applying Lemma we obtain
((p) " owhe)* i(Y)jz = ((p) " o vhe) i(Y) (1) Qe = (pf 0 (1) H 0 4p2)"i(2)2e = 7 i(Z)Q

where Z € X(J?7) is the unique vector field related with Y € X(W_) by the diffeomorphism p£. Hence, as
Vi i(Z)Qe = 0, for every Z € X(J37) by hypothesis, we just proved that the section 1) = jz o (pf) Lo,
satisfies the equation

P i(X)Q,. =0, for every X € X(W,) tangent to W, .

However, from Proposition [6.6| we know that if ¢ € I'(p},) is a holonomic section, then the last equation
is equivalent to the equation (6.8)), that is,

Y i(X)Q, =0, forevery X € X(W,). O

Let us compute the local equation for the section ¥, = p] o1 € T'(73). Assume that the section
¥ € T(ph,) is given locally by ¢ (z?) = (2%, u®, u&, u$, ug, p’, pl). Since 9 is a holonomic section solution
to equation (6.8), it must satisfy the local equations (6.10), (6.11)) and (6.13). The equations
are automatically satisfied as a consequence of the assumption of 1) being holonomic. Now, taking into
account that ¢ takes values in the submanifold W, & graph(FL), the equations and can be
pt-projected to J3, thus giving the following system of n partial differential equations for the component
functions of the section ¢y = pj o ¢

oL
ou

Lo
pe dat oud

Yoo |I|=2 I

where the section 1. is locally given by 1. (z%) = (2%, u®, u®, u¢,u%). Finally, since ¢, is holonomic in
J3m, there exists a section ¢ € I'(7) with local expression ¢(z?) = (2%, u®(x?)) satisfying j3¢ = 1. Then,
the above equations can be rewritten as follows

oL d 0L d®> OL
— - == — = =0 (I1<a<n). 6.29
I P 12_32 daT Ouf | o, ( ) (6.29)

Therefore, we obtain the Euler-Lagrange equations for a second-order field theory. As stated before,
equations (6.29) may or may not be compatible, and in this last case a constraint algorithm must be used
to obtain a submanifold Sy < J37 (if such a submanifold exists) where the equations can be solved.
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Field equations for multivector fields

Now, using the results stated at the beginning of the Section, we can state the Lagrangian field equation
for multivector fields, and recover a solution to the Lagrangian equation starting from a solution to the
equation in the unified formalism.

The Lagrangian problem for multivector fields associated with the system (J37, £) consists in finding

a class of locally decomposable holonomic multivector fields {X:} C X™(J37) satisfying the following
field equation

i(Xe)Q =0, forevery Xy € {X:} CX™(J7). (6.30)

First we need to state a correspondence between the set of multivector fields in W, tangent to W,
and the set of multivector fields in J3.

Lemma 6.14. Let X € X™(W,.) be a multivector field tangent to We < W,.. Then there exists a unique
multivector field Xp € X™(J37) such that Xz o p} o jz = A™Tp} o X o j.

Conversely, if Xy € X™(J3), then there exists a unique multivector field X € X™(W,.) tangent to W,
such that Xz o plojr=A"TploX ojr.

Proof. As the multivector field X is tangent to W,, there exists a unique multivector field X, € X™(W,)
which is jg-related to X, that is, A™Tj, o X, = X o j,. Furthermore, since pf; W, — J3r is a
diffeomorphism, there is a unique multivector field X, € X™(J?7) which is pf-related to X,; that is,
Xr o pf = A™Tpf o X,. Then we have

Xpoploje=Xro0pE=A"Tpk o X, = A™Tp, o A" Tjr 0 X, = A"Tp! o X o j,.

The converse is proved reversing this reasoning. O

The above result states that there is a one-to-one correspondence between the set of multivector fields
X € X™(W,) tangent to W, and the set of multivector fields Xz € X™(J3), which makes the following
diagram commutative

ATTW,
A™Tp]
A™Tje
AT I3 A"TW,
A™Tpf
X
Xc Xo

J3

Wi
Jc
" ot e

As a consequence of Lemma we can establish a bijective correspondence between the set of
multivector fields in W, tangent to W, solution to the field equation in the unified formalism and the
set of multivector fields in J37 solution to the Lagrangian field equation stated above. In particular, we
have the following result.

Theorem 6.15. Let X € X"™(W,) be a locally decomposable holonomic multivector field solution to the
equation (at least on the points of a submanifold Wy — W) and tangent to Wy (resp. tangent to
Wy ). Then there exists a unique locally decomposable holonomic multivector field Xy € X™(J3m) solution
to the equation (at least on the points of Sy = p£ (W), and tangent to Sy ).
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Conversely, if X € X™(J3) is a locally decomposable holonomic multivector field solution to the equation
(at least on the points of a submanifold Sy — J3m, and tangent to S¢), then there exists a unique
locally decomposable holonomic multivector field X € X™(W,.) which is a solution to the equation
(at least on the points of (p£)~1(Sf) = Wre), and tangent to W, (resp. tangent to Wy).

Proof. Applying Lemmas [6.9] and we have
i(X)Qrlyy, = i(X) (1) Qelyy, = (01)" i(Xe)Qely, = i Xe) Qe o,y = #(Xe) Qs yare -

Hence, X, is a solution to the equation i(X;)Q2z = 0 if, and only if, X' is a solution to the equation
(X)), =0.

Now we must prove that Xz is holonomic if, and only if, X is holonomic. Observe that, following the
same reasoning as above, we have

i) (Phe) i, = i) 09D 0, = (0" i(Xe) (7)),
H(Xe) (7)1 ey = (X)) 0 -

Hence, X is w3-transverse if, and only if, X is p},-transverse.

Now, let us assume that X € X™(W,.) is holonomic, and let ¢ € T'(p},) be an integral section of X.
Then, the section ¥z = p} o) € I'(73) is holonomic by definition, and we have

Xeotyp=Xcopioh=AN"TpjoX oth=A"Tp} o A" = A"},
where A™': M — A™TW, is the canonical lifting of ¢ to A™TW,.. That is, ¢, is an integral section of

X.. Hence, if X is holonomic, then Xz is holonomic.

For the converse, let us assume that Xz € X™(J37) is holonomic, and let 1, € I'(73) be an integral

section of Xz. Then, the section ¢ = jz o (p£) " o1hs € T'(p3,) satisfies
pot=piojeo(pf) ™ ovrr =1,
since pf o jr = pt implies pf o jr o (p¥)~! = Idys,. Therefore, the section ¢ = jr o (p¥)~t o4, is
holonomic. Finally, since the multivector field X" is tangent to W,, there exists a unique multivector field
X, € X™(W,) satisfying A" Tj; o X, = X o js. In addition, since the map pf is a diffeomorphism, X
and X, are (pf)~!-related; that is, X, o (pf)~! = (A™Tpf)~! o Xz. Then we have
Xop=Xojeo(pf) ot =A"TjroX,0(pf) " othe = A"Tjc o (A" Tpf) ' o Xz oty
= A"Tjg o (A" Tpf) ™t o A"y = A" (je o (pF) ' o) =A™y

Hence, 1 is an integral section of X'. Therefore, X is holonomic if, and only if, X, is holonomic. O

Let Xz € X™(J37) be a locally decomposable multivector field. From the results in Section and
in [75] we know that X, admits the following local expression

(A N, L Y,
Xﬂfj/\l<W+Fj+F- +F”au?+F“8ug>'

o 6] 9,0
ou ous ’

Taking f = 1 as a representative of the equivalence class, since X, is required to be holonomic, it must
satisfy the equations ([1.32)) with £ = 3 and r = 1, that is,

a __ o, a _ o . a _ .«
Fii=uy 5 Fij=uiq, 5 Frj=urg,.

In addition, X, is a solution to the equation (6.30). Bearing in mind the local equations (6.22)) and (6.23)
for the multivector field X', and the fact that X is tangent to the submanifold W, = graph(FL), we
obtain that the local equations for the component functions of X, are

oL d OL > 0L = 1 ( s d 4 ) 9’L
OL 4 0L N~ & OL SR {0 " —
ou®  dx?t Ju¥ = dz! Ju¢ ;; n(ij) \" It dpi It au?(‘?u‘f‘iﬂj

which are the second-order Euler-Lagrange equations for a multivector field.
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Equivalence of the field equations in the Lagrangian formalism

Finally, we state the equivalence Theorem in the Lagrangian formalism, which is the analogous to Theorem
in this formulation. This result is a straightforward consequence of Theorems [6.8] and and of
Propositions and and hence we omit the proof.

Theorem 6.16. The following assertions on a section ¢ € I'(w) are equivalent.
1. 736 is a solution to equation (6.28)), that is,

(720)*i(X)Qz =0, for every X € X(J?).

2. In natural coordinates, if ¢ is given by ¢(x') = (z',u®), then j3¢p(x') = (2%, u® u$, uf,ug) is a
solution to the second-order Euler-Lagrange equations given by (6.29)), that is,

oL d oL & IL
o | T dw Bue > Tl gue| =0
e - R A P

3. Yr = j3¢ is a solution to the equation
i(A™Yr)(Qz o) =0,
where Al : M — A™T(J3n) is the canonical lifting of V.

4. 730 is an integral section of a multivector field contained in a class of locally decomposable holonomic
multivector fields {Xz} C X™(J3) satisfying equation (6.30), that is,

i(X2)Qe =0.

6.4 Hamiltonian formalism

In order to describe the Hamiltonian formalism on the basis of the unified one, we must distinguish
between the regular and non-regular cases. In fact, the only “non-regular” case that we consider is the
almost-regular one, so we first need to generalize the concept of almost-regular Lagrangian density to
second-order field theories. On the other hand, recall that the geometric information of the theory is
given by the canonical Liouville forms of the extended 2-symmetric multimomentum bundle. Hence,
we only need to introduce the physical information in the Hamiltonian formalism from the Hamiltonian
piyy-section h € T'(puyy) defined in the unified setting.

6.4.1 Geometrical setting

Let FL: J37m — J2x1 be the extended Legendre map obtained in (6.16) and FL: J3m — J%7t the
restricted Legendre map obtained in (6.15). Let us denote by P = Im(j:\z) = }\Z(J?’ﬂ‘) < g2t

and P = Im(FL) = FL(J3r) < J2xt the image sets of the extended and restricted Legendre maps,
respectively, which we assume to be submanifolds. We denote wp: P — M the natural projection, and
FL, the map defined by FL = 30 FL,. With these notations, we can give the following definition.

Definition 6.7. A second-order Lagrangian density £ € Q™(J?7) is said to be almost-regular if

1. P is a closed submanifold of J?m*.

2. FL is a submersion onto its image.
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3. For every j2¢ € Jw, the fibers FL Y (FL(j3¢)) are connected submanifolds of J>n.

If the second-order Lagrangian density is almost-regular, the Legendre map is a submersion onto its
image, and therefore it admits local sections defined on the submanifold P < J27rf. We denote by
I'p(FL) the set of local sections of FL defined on the submanifold P. Observe that if £ is regular, then
I'p(FL) is exactly the set of local sections of FL.

As a consequence of Proposition we have that P is diffeomorphic to P. This diffeomorphism is
= poj: P — P. This enables us to state the following result.

Lemma 6.17. If the second-order Lagrangian density L € Q™ (J?) is, at least, almost-reqular, then the
Hamiltonian section h € T'(puw) induces a Hamiltonian section h € I'(p) defined by

h([w]) = (p2 0 B)([(p5) " G(W)]),  for every [w] € P

Proof. Tt is clear that, given [w] € J2x?%, the section h maps every point (3¢, [w]) € (p5)~'([w]) into
05 [p2(R(§2¢,[w]))]. So we have the diagram

J P2

P J2rt 14%
!
P ? T2t Pl W,

Thus, the crucial point is the po-projectability of the local function H. However, since a local base for
ker Tpy is given by (6.4), then we have that H is ps-projectable if, and only if,

;  OL
pa = o "
ou
This condition is fulfilled when [w] € P = Im(FL), which implies that ps[h((p})"1([w]))] € P. O

As in the unified setting, this Hamiltonian p-section is specified by a local Hamiltonian function
H € C=(P), that is,
h(x' u® uf,ply,pe) = (0 u®, uf,—H, pi. pg) -
Using the Hamiltonian p-section we define the Hamilton-Cartan forms Oy, = h*©35 € Q™ (P) and Q) =
h*Q5 € QmTL(P). Observe that FL:O, = O, and FL:Q, = Q. Then, the pair (P,Qy) is the
second-order Hamiltonian field theory associated with (W;., ;).

Remark. The Hamiltonian pu-section can be defined in some equivalent ways without passing through
the unified formalism. First, we can define it as h = jo g~*. From this, bearing in mind the definition
of P and P as the image sets of the extended and restricted Legendre maps, respectively, we can also
define the Hamiltonian p-section as h = FL o v, where v € I'p(FL). O

6.4.2 Hyperregular and regular Lagrangian densities

For the sake of simplicity, we assume throughout this Section that the second-order Lagrangian density
L € Q™(J%n) is hyperregular, and that Y: J?7f — J37 is a global section of FL£. All the results stated
also hold for regular Lagrangians, restricting to the corresponding open sets where the Legendre map
admits local sections.

Observe that if the Lagrangian density is hyperregular, then we have P = J?x* and FL, = FL.

In addition, the local Hamiltonian function associated to the Hamiltonian u-section h has the following
coordinate expression

H(:L‘iv uav u?vpfxvpi) = pgu? +péf19 - (ﬂ-g © T)*Lv (631)
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where f&(xf, u® u$,pl,pl) = Y*ug. Therefore, the Hamilton-Cartan m and (m + 1)-forms have the
following coordinate expression

®h — —_Hd™« +p7;1d,uoé A dmflxi 4 p(lli+1jd,u;)é A dmflxj

)

L

n(i7)
) 1

Qp =dH Ad™z —dp,, A du® A dm iy, — ——

n(ij)

dpitl Adu@ Ad™ ey

In addition, since Im(FL£) = J?r¥, then the Hamiltonian sections h and h satisfy h o ph = pao h, that is,
the following diagram commutes

w
AT \
h
W, J2rt
\ Th
P2

In addition to the previous comments, in the hyperregular case we can give the following result on
the 1-nondegeneracy of the Hamilton-Cartan (m + 1)-form.

Proposition 6.18. If the Lagrangian density is hyperregular, then the Hamilton-Cartan (m + 1)-form
Q= h*Q§ € QmH(J%74) ds a multisymplectic form in J%rt.

Proof. A direct computation in coordinates leads to this result. Let T € T'(FL) be a global section of the
restricted Legendre map, and assume that the local Hamiltonian function H is given locally by (6.31)).
Then we have the following local expression for dH

oL ., oL ;, OL o oL o i o
dH:ia,’L‘l dz 7@(1114 + <paau?> dut + (p{yau?> de +uzdpa+f1dp([y,

where

o _OfF i OfF 45, 00T 8 OIT (i, OfF | K
Observe that since H takes values in J2m# = Im(FL), we have p!, — OL/0u$ = 0. Thus, the expression
of dH becomes

OL i OL ya (i OLN\ po . wodpi + fody!

7

and therefore the Hamilton-Cartan (m + 1)-form is locally given by

oL . (. oL
Qh = |:—auad’u + (pa @

> du$ + uldp!, + f}ldpi} Ad™x

—dpl, Adu® Ad™ e — dpi i Adu@ Ad™ ey

n(ij)

Now, since the C>°(J?7#)-module of vector fields X(J?7*) admits the following local base

36(J_QH)<8 o o 0 a>7

Izt u>’ du’ dpi, " Opl,
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then the contraction of 2, with every vector field in the local base of X(.J27) gives the following m-forms

a m— 7 « m— 1 i i e m—
i (W) Q= —dH Ad™ gy — dp;, Adu® Ad 20 — mdp}ll“] Adug Ad ijk ,
0 oL )
S I Q — m 7 m—1,_,.
0 , oL 1
O, = i 27 ) gqm d1i+1j/\dm—1 .
' (ew) " (p“ au?) i) "
0
i ( - > Qp = udd™z — du® A d™ 1y, ,
opl,
0 1 .
opl eyl n(ij)
From this it is clear that §(X)Q;, = 0 if, and only if, X = 0, that is, €y, is multisymplectic. O

As it has been pointed out in Section the Poincaré-Cartan (m + 1)-form can not be multisym-
plectic in J37, due to the fact that the restricted Legendre map is, at the best, a submersion onto J27¥.
Nevertheless, the restriction of the form 2, to some submanifold can be multisymplectic, as we show in
the following result, which is a direct consequence of Proposition

Corollary 6.19. Let £ € Q™(J%5) be a second-order hyperreqular Lagrangian density, Y € T'(FL) a
global section of FL, and Im(Y) < J31 the image set of Y, whose natural embedding is canonically
identified with Y. Then the (m + 1)-form Y*Qz € Q™ Y(Im(Y)) is a multisymplectic form in Im(Y).

Proof. From Definition [6.6] we have
Y*Qp = THFL Q) = (FLo ) QS = h* Q5 = Q..

Then, since L is a second-order hyperregular Lagrangian density, from Proposition [6.18| we have that €2,
is multisymplectic in J27*. Therefore, T*Q is multisymplectic in Im(Y). O

Field equations for sections

As in Section [6.3] using the results given in previous Sections, we can now state the Hamiltonian field
equation for sections in the hyperregular case, and recover the Hamiltonian solutions in J27# from the
solutions in the unified setting.

The second-order (hyperregular) Hamiltonian problem for sections associated with the Hamiltonian
system (J27%, Q) consists in finding sections ¢y, € I‘(ﬁglﬂ) characterized by the equation
V(X)) =0, for every X € X(J?x}). (6.32)

Proposition 6.20. Let i € I'(p},) be a section solution to the equation . Then the section iy, =
pho € F(ﬁglﬂ) is a solution to the equation (6.32)).

Proof. The proof of this result is analogous to the proof of Proposition In particular, since the
map ph: W, — J?rt is a submersion, for every vector field X € X(J2r*) there exist some vector fields
Y € X(W,) such that X and Y are pj-related. Observe that this vector field Y is not unique, as the
vector field Y + Y, with Y, € ker Tp5, is also ph-related with X. Thus, using this particular choice of
ps-related vector fields, we have

Vi i(X) 2 = (p5 0 ¥)"i(X)Q = " ()" i(X)Qn) = ™ i(Y)(p2) "
=% i(Y)(ho py) 0 = " i(Y)(pz 0 h)* Q5 = 9" i(Y)9, .
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Since the equality * §(Y)Q, = 0 holds for every Y € X(W,), in particular it holds for every Y € X(W,.)
which is ph-related with X € X(J%7n%). Hence we obtain

Ui i(X)Qp = ¢ i(Y)Qr = 0. 0

The diagram illustrating the situation of the above Proposition is the following

P P ¢]271'i
= 4
Tl VZ
-
-

M - - Jh:ﬂ;oll)

Observe that, as in the Lagrangian formalism described in Section [6.3] Proposition [6.20] states that
every section solution to the field equation in the unified formalism projects to a section solution to
the field equation in the Hamiltonian formalism, but it does not establish a correspondence between
the solutions. As in the Lagrangian setting, this correspondence does exist, but in this formulation it
is not one-to-one. This is due to the fact that the map p§: W, — J?zt is a submersion, and not
a diffeomorphism, as in the Lagrangian setting. This implies that for every section v solution to the
Hamiltonian field equation there are several sections solution to the field equation in the unified formalism
that project to ¥y,.

Proposition 6.21. Let L € Q™(J?7) be a second-order hyperregular Lagrangian density, and vy €
F(ﬁglﬂ) a section solution to the field equation (6.32). Then the section 1 = ooy € I'(ph,) is a solution
to the equation , where o € T'(ph) is a global section of the projection pj.

Proof. First, let us prove that the global section o € I'(ph) does exist. As the second-order Lagrangian
density is hyperregular, there exists a global section of FL£, which we denote by T € T'(FL). Then, we
define 0 = jz o (pf)~' o Y. This map o: J?xt — W, is a section of the projection pj, since we have

proo=phojco(pf) 0T =pfo(pf) o = FLoT =1 .

Moreover, as T is a global section of FL, p¥ is a diffeomorphism, and j is an embedding, we deduce
that o is a global section of p5.

Now we prove that 1 is a solution to equation . Computing,
PR i(X) e = (00 ¢n)" i(X)Qr = ¢y (V)

where Y € X(J2r%) is a vector field ph-related with X, and we have used that €, = (pb)*Qy, implies
0" = 0" (o)) = (5 0 0)* U = Q. O

Let us compute the local equations for the section ¥y, = p§ o) € F(ﬁﬁlw). If the section ¢ € T'(p},) is
locally given by ¢(z°) = (2%, u®, u$, ug, ug, pi,, pl,), then the section ¢, = p5 o1 is given in coordinates by
() = (2%, u®, ug, pl, pl). Now, bearing in mind that the section ¢ solution to the equation must
satisfy the local equations , and , that the section v takes values in the submanifold
W, = graph(FL), and the local expression (6.31]) of the Hamiltonian function H in the hyperregular
case, we obtain the following system of partial differential equations for the section ¥,

o o7 1 oug  OH | {~Oph,  OH  opa TV 0H
oxt api, 1.§:[ n(ij) Oz - opL ; ori  oue z:: 90 —au?. (6.33)
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Field equations for multivector fields

Next, using the results stated at the beginning of this Section, we can now state the Hamiltonian field
equation for a multivector field, and recover the Hamiltonian solutions from the solutions to the field
equation (6.19) in the unified formalism.

The second-order (hyperregular) Hamiltonian problem for multivector fields associated with the sys-
tem (J27#, Q) consists in finding a class of locally decomposable, integrable and (ﬁﬂlﬂ)—transverse mul-
tivector fields {A},} C X™(J%7%) satisfying the following field equation

i(Xn)Q =0, for every &), € {&X),} C X (J%h). (6.34)

In order to recover the solutions to the field equation for multivector fields, we first need the following
technical result, which is similar to Lemma [6.14]

Lemma 6.22. Let X € X™(W,.) be a multivector field tangent to Wp < W,.. Then there exists a unique
multivector field Xj, € X™(J?7*) such that Xj, o phojr = A™Tpho X o jg.

Conversely, if X, € X™(J%x}), then there exist multivector fields X € X™(W,) tangent to W, such that
Xpopyoje=A"Tpso0X 0.

Proof. The proof of this result is analogous to the proof of Lemma [6.14] bearing in mind that the map
pE = phoje: We — J%rt is a submersion onto J27*. In particular, since the multivector field X is
tangent to W, there exists a unique multivector field X, € X™(W,) which is js-related to X, that
is, A" Tjz o0 X, = X 0 j,. On the other hand, as pQL: W, — J?mt is a submersion, there is a unique
multivector field X;, € X™(J%xt) which is p&-related to X,; that is, &), o p5 = A™Tpf o X,. Then,

computing, we have
Xpophoje=Xpo0ps=AN"Tp50X,=A"TpyoA"Tjso0X,=A"TphoXoj,.
The converse is proved reversing this reasoning, but now the multivector field X, € X™(W,) which is

p&-related with the given A}, € X™(J?7t) is not unique, since p5 is a submersion with ker Tps # {0}. O

As in the Lagrangian formalism, the previous result gives a correspondence between the set of multi-
vector fields X € X™(W,.) tangent to W, and the set of multivector fields X, € X™(J?7%) such that the
following diagram is commutative

A™TW,

A™Tpy
A™ Ty,

A™TW, — A™T( %)
P2

X, X,
W,
Jc
We -

Nevertheless, observe that in the Hamiltonian formalism, the map p§ = pb o jo: Wy — J?xt is a
submersion (instead of a diffeomorphism, as in the Lagrangian setting), and thus the correspondence is
not one-to-one. In particular, for every multivector field X € X¥™(W,.) tangent to W, we can define a

J2rt
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unique multivector field &, € X™(J?mt) such that the previous diagram commutes. But since p5 is a
submersion, for every A, € X™(J2rt) there are several multivector fields X € X™(W,.), tangent to W,
satisfying the same property.

Using Lemma we can now state the (non-bijective) correspondence between the multivector fields
in J27t solution to equation (6.34]) and the multivector fields in W, solution to the field equation ([6.19).

Theorem 6.23. Let X € X™(W,) be a locally decomposable, integrable and ph,-transverse multivec-
tor field solution to the equation (6.19) and tangent to Wy. Then there exists a locally decomposable,
integrable and (7 7y )-transverse multivector field X, € X™(J?n*) solution to the equation (6.34).

Conversely, if X), € xm(ﬂwi) is a locally decomposable, integrable and (7TJ1 )-transverse multivector
field solution to the equation (6.34 , then there exist locally decomposable mtegmble and ph,-transverse
multivector fields X € X™(W, ) tangent to W, solution to the equation

Proof. The proof of this result is analogous to the proof of Theorem In particular, applying Lemma

we have
(X)L, = i(X)(p2) " Unlyy, = (02)" i(Xn)Qnlyy, = i(Xn)

Hence, A}, is a solution to the equation §(AX%), = 0 if, and only if, X is a solution to the equation

i(X)Q, = 0.

Observe that, following the same reasoning as above, we have
= X)) (7 * ‘
; ( ) ( h)( Jin ) n W

= Z'(Xh)(ﬁ?))*mpg(wa) (Xh)(ﬁjl ) n

P5(We) = i(Xh)Qh|J27T1

i) (Ph) = HX) (7, 0 05)"n|

L

J2rt
Hence, X}, is ﬁglw—transverse if, and only if, X is pf,-transverse.

Now, let us assume that X € X" (W, ) is integrable, and let ¢ € I'(p},) be an integral section of X.
Then, the section ¢, = ph ot € I’(irﬁlﬂ) satisfies

Xy oy, = Xy 0 ph oy = A Tph o X oh = A Tph 0 A™¢) = A",

where A™)": M — A™TW, is the canonical lifting of ¢ to A™TW,.. That is, 1)y, is an integral section of
Xp. Hence, if X is integrable, then X}, is integrable.

For the converse, let us assume that &}, € X™(J%x*) is integrable, and let )y, € F(ﬁ'ilw) be an integral
section of Ap. Then, the section ¢ = o o ¢y, € I'(p},), defined as in Proposition satisfies

Xotp=Xooory,=AN"TooXy o, =AN"TooAN™p, = A",

where we have used the fact that if the multivector fields X}, and & are p5-related, then they are also
o-related. Therefore, if A}, is integrable, so is X. O

Let &, € X™(J%7t) be a locally decomposable multivector field. From the results given in Section
and [75], we know that & is given in the natural coordinates of J27# by

0 0 0 0
th/\(JrF“JrFf‘janrngal +G{w.apl> : (6.35)

Taking f = 1 as a representative of the equivalence class, since A}, is a solution to the equation (6.34)),
we obtain that the local equations for the component functions of A}, are

oH 1 oH o oH 1, oH
Fe== e == . Gt = Gl = .
T ol 1;1.::1 n(ij) = opL Z o oue Z Coul
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Equivalence of the Hamiltonian field equations in the hyperregular case

Finally, we state the equivalence Theorem for the Hamiltonian formalism in the hyperregular case. This
result is analogous to Theorems and and is a direct consequence of Theorems and and
of Propositions and and hence we omit the proof.

Theorem 6.24. The following assertions on a section ¥y € F(ﬁ?:]lﬂ) are equivalent.

1. Yy is a solution to equation (6.32)), that is,
Vri(X)Q =0, for every X € X(J*n%).

2. In natural coordinates, if 1y, is given by ¥y (z%) = (mi,uo‘,uf‘,p&,pé), then its component functions
are a solution to the equations (6.33)), that is,

ou*  OH 3 1 oup  OH  \0ph,  0H  \opd Y 0H
ort  opi, W n(ij) 0xd  Opl, = 4 O ou = dzi dug

3. Yy s a solution to the equation
(A1) (R 0 hn) =0,
where A™) : M — A™T(J2m4) is the canonical lifting of vy,

4. by, s an integral section of a multivector field contained in a class of locally decomposable, integrable
and (ﬁilw)—tmnsveme multivector fields {X,} C X™(J%7%) satisfying equation (6.34)), that is,

i(Xh)Qh =0.

6.4.3 Singular (almost-regular) Lagrangian densities

Finally, we study the case of second-order singular Lagrangian densities, although the only non-regular
case that we study is the almost-regular one, since some minimal regularity conditions must be required
to the second-order Lagrangian density in order to give a general framework. Thus, throughout this
Section we assume that the second-order Lagrangian density is, at least, almost-regular.

Recall that, for almost-regular Lagrangian densities, only in the most favorable cases does there exist
a submanifold Wy — W, where the field equations can be solved. In this situation, the solutions in the
Hamiltonian formalism cannot be obtained directly from the projection of the solutions in the unified
setting, but rather by passing through the Lagrangian formalism and using the Legendre map. Recall
that, in this case, the phase space of the system is P = Im(FL) < J%xt.

Field equations for sections
As for the hyperregular case, we now state the Hamiltonian field equation for sections in the almost-
regular case, and we recover the Hamiltonian solutions in P from the solutions in the unified formalism.

The second-order (almost-regular) Hamiltonian problem for sections associated with the Hamiltonian
system (P, Q) consists in finding sections ¢, € I'(7p) characterized by the equation

Uy i(X)Q, =0, for every X € X(P). (6.36)

Proposition 6.25. Let £ € Q™(J?r) be an almost-reqular Lagrangian density. Let 1 € T(ph,) be a
solution to the equation , Then, the section ¥y, = FLyo0pl o) = FLy,0¢e € T(Tp) is a solution to
the equation (6.36]).

Conversely, let 1y, € T(7p) be a solution to equation (6.36). Then 1 = jz o (pf) "L oyorp, € T(ph) is a
solution to the equation , where v € Tp(FL,).
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Proof. Since the Lagrangian density £ is assumed to be almost-regular, then the map F L, is a submersion
onto its image, P. Thus, for every vector field X € X(P) there exist some vector fields Y € X(J37) such
that X and Y are FL,-related. Using this particular choice of FL,-related vector fields, we have

Ui i(X)Q = (FLo o )" i(X)Q = Yp(FL, i(X)Q) = 7 i(Y)FLQ = ¥ i(Y)Qe .

Then we have proved
h i(X) = Yz i(Y)2e =0,

since the last equality holds for every Y € X(J37) and, in particular, for every vector field FL,-related
to a vector field in P. Therefore, using Proposition the result follows.

The converse is proved reversing the reasoning and using Proposition [6.13] since F£L, oy = Idp and,
in particular, we have 7*O, = ©. [

The diagram illustrating this last result is the following.

MZ = “bn=FLooy,

Field equations for multivector fields

Next, we state the Hamiltonian field equation for a multivector field in the almost-regular case, and
recover the Hamiltonian solutions from the solutions to the field equation (6.19)) in the unified formalism.

The second-order (almost-regular) Hamiltonian problem for multivector fields associated with the sys-
tem (P, Q) consists in finding a class of locally decomposable, integrable and Tp-transverse multivector
fields {Xx} C X™(P) satisfying the following field equation

i(Xn)Qp =0, for every X € {X,} C X™(P). (6.37)

Since the second-order Lagrangian density is almost-regular, assume that there exists a submanifold
Wy — W, and a multivector field X € X™(W,), defined at support on Wy and tangent to Wy, which
is a solution to the equation (6.25). Now consider the submanifolds Sy = pf(Wy) < J37 and Py =
FL(Sf) < P < J?zxt. With these notations, we can state the following result, which is the analogous
theorem to Theorem [6.23]in the case of almost-regular Lagrangian densities.

Theorem 6.26. Let X € X™(W,) be a locally decomposable, integrable and ph,-transverse multivector
field, defined at support on Wy and tangent to Wy, which is a solution to the equation . Then
there exists a locally decomposable, integrable and Tp-transverse multivector field X, € X™(P), defined
at support on Py and tangent to Py, which is a solution to the equation .

Conversely, if X, € X™(P) is a locally decomposable, integrable and Tp-transverse multivector field
defined at support on Py and tangent to Py which is a solution to the equation , then there exist
locally decomposable, integrable and ph,-transverse multivector fields X € X™(W,), defined at support on
Wy and tangent to Wy, which are solutions to the equation ([6.25).
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Proof. Using Theorem there is a one-to-one correspondence between holonomic multivector fields
X € X™(J37) solution to the field equation (at least on the points of a submanifold Sy < J3)
and holonomic multivector fields X € X™(W,.), tangent to W,, solution to equations (at least on
the points of a submanifold Wy < W,.). Hence, it suffices to prove that we can establish a correspondence
between multivector fields in J37 solution to the Lagrangian field equation, and multivector fields in P
solution to the Hamiltonian field equation.

Since the Lagrangian density is almost-regular, the map FL, is a surjective submersion on P. Hence,
for every Xj, € X™(P) there exist some X € X™(J3m) (not necessarily unique) such that Xj and
X, are FL,-related, that is, X} o FL, = A™TFL, o Xr. And, conversely, for every multivector field
Xp € X™(J37), there exists a multivector field &, € X™(P) which is FL,-related with X.. Using this
particular choice of FL,-related multivector fields, we have

i(X)Qe = i(Xﬁ)fﬁZQh = fﬁ: (X)) = i(Xh)Qh|f£n(J37r) = i(Xh)Qh‘p ,
since FL, is a surjective submersion on P. The converse is immediate, reversing this reasoning. Hence,
we have proved that i(X,)2z = 0 is equivalent to i(X},)8, = 0 whenever X, and A}, are FL,-related.

The same reasoning proves that ¢(X.)(73)*n # 0 is equivalent to i(X,)7pn # 0. Observe that the
reasoning remains the same replacing .J37 by S + and P by Py.

Now, let us assume that X, € X™(J3) is integrable, and let ¢, € I'(73) be an integral section of
X¢. Then, the section 1, = FL, 0oy € T'(7p) satisfies

Xpothpy =Xy o FLootpy = A"TFLy 0 Xpotpy = NMTFL, 0 A"y = A"y, .

That is, ¥, is an integral section of Xj. Hence, if X, is integrable, then A}, is integrable.

For the converse, let us assume that X, € X™(P) is integrable, and let ¢, € I'(Tp) be an integral
section of A},. Then, the section ¢z =y o1y, € I'(ph,), with v € I'p(FL,) satisfies

XEO"L/)L‘ :XL' O")/O”g[}h = AmT"}/OXhOd)h :AmT’yOAmQ/J;l = Amwlﬁ’
where we have used the fact that if the multivector fields X} and X, are FL,-related, then they are also

~-related. Therefore, if A}, is integrable, so is X. O

The diagram that illustrates the situation of the previous Theorem is the following

W,

§ /Wf\P
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Equivalence of the Hamiltonian field equations in the almost-regular case

Finally, we state the equivalence Theorem for the Hamiltonian formalism in the almost-regular case,
which is the analogous to Theorems and in the almost-regular setting. Since this result is
a straightforward consequence of Theorems and and of Proposition [6.25] we omit the proof.

Theorem 6.27. The following assertions on a section ¥y, € T'(Tp) are equivalent.

1. 9y, is a solution to equation (6.306)), that is,

Vi i(X)Q, =0,  for every X € X(P).

2. Yy s a solution to the equation
(A1) (R 0 9hn) =0,

where Ay 0 M — A™TP is the canonical lifting of ¥p,.

8. 1y, is an integral section of a multivector field contained in a class of locally decomposable, integrable
and Tp-transverse multivector fields {X,} C X™(P) satisfying equation (6.37)), that is,

(X)) =0.

6.5 Examples

In this Section, two physical models are analyzed as examples to show the application of the formalisms.
The first example is a regular field theory, the bending of a loaded and clamped plate, while the second
is a singular one, the well-known Korteweg-de Vries equation.

6.5.1 Loaded and clamped plate

Let us consider a plate with clamped edges. We wish to determine the bending (or deflection) perpen-
dicular to the plane of the plate under the action of an external force given by a uniform load. This
system has been studied using a previous version of the unified formalism in [15], and can be modeled as
a second-order field theory, taking M = R? as the base manifold (the plate) and the “vertical” bending
as a fiber bundle F = R? x R -~ R? (that is, the fibers are 1-dimensional).

We consider in M = R? the canonical coordinates (x,y) of the Euclidean plane, and in £ = R?® we
take the global coordinates (x,y,u) adapted to the bundle structure. Recall that R? admits a canonical
volume form n = dz A dy € Q?(R?).

Remark. Note that this is the “smaller” higher-order field theory that can be considered: dimension 2
in the base manifold, 1-dimensional fibers and second-order. O

In the induced coordinates (z,y,u,u1,uz, (2,0, U(1,1); U(0,2)) Of J?m, the second-order Lagrangian
density £ € Q2(J?r) for this field theory is given by

1
L= §(u%2)0) + Zu?m) + u%o,z) —2qu)dx Ady,
where g € R is a constant modeling the uniform load on the plate.
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Lagrangian-Hamiltonian formalism

Following Section we consider the fiber bundles
W=Tnxpn. Pnt 3 W, = I3 xpn, JPrt,
with the natural coordinates introduced in the aforementioned Section, which are

(7, y,u, ur, ug, U(2,0)5 U(1,1)5 U(0,2)> U(3,0) U(2,1)5 U(1,2)> U(0,3),P7P17P27P(2’0)7]?(1’1)’17(0’2)) ) (6.38)
and

(x7 Y, U, U, U2, U(2,0), U(1,1), U(0,2)s U(3,0), U(2,1), U(1,2), u(o’g)7p1’p27p(2,0)7p(1,1),p(0,2)) ) (6.39)

respectively. Observe that, in this example, we have dim J37 = 12 and dim J?7* = 10, and therefore
dim W = 18 and dim W,. = 17.

The Hamiltonian pyy-section h e T (uyy) is specified by the local Hamiltonian function, whose coor-
dinate expression in this case is

. 1 1
H = pluy + pPug +p(2,o)u(2’0) +p(1,1)u(1’1) +p(0,2)u(0’2) — iué’o) - “%171) - §u%072) +qu,  (6.40)

and the canonical forms in W, are given by

N 1
O, = —Hdz Ady + p'du Ady — p?du Adz + p@Dduy Ady — ip(m)dul Adzx

1
+ = p D duy A dy — pO2dus A d,

2 ) (6.41)
Q, = dH A dz A dy — dptdu A dy + dp?du A dz — dp@Oduy A dy + 3 dp™ Y duy A da

1
~3 dp® P dug A dy + dp®?duy A dx .

Let ¢ € T'(p},) be a holonomic section. Then, taking into account the local expression (6.40) of the
local Hamiltonian function H and (6.41)) of the canonical forms in W,., the field equation gives in
coordinates the following system of 11 equations

opt  Op?

%-Fafy-i-qzo, (642)

Ip20 1 9ptH) 19pth) gpl0:2)

1 2
= ;= = 4
Oz 2 9y Tp=0 2 Oz + Oy =0, (6.43)
p(z,o) — U@ =0 ; p(l,l) —2u =0 ; p(072) — (o2 =0, (6.44)
ou ou
2 =0 —— =0 6.45
Uy Oz ) U2 ay ) ( )
8u1 1 8’11,1 611/2 8U2
U(g’o) — 67 =0 ] u(l,l) — 5 (6y + E =0 3 u(O,Z) — aiy =0. (646)

Equations and are automatically satisfied, since we require the section 1 to be holonomic
at the beginning. On the other hand, combining equations and , we obtain the constraints
defining the submanifold W,, and hence the Legendre map associated to this Lagrangian density, which
is the fiber bundle map FL: J3m — J?7t given locally by

FLpt = —u@o) —u@2 3 FL = —U(2,1) — U(0,3) >
(6.47)
FLpBY =upgy 3 FLPIY =2uqyy 5 FLPOY =ugy).
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Observe that the tangent map of FL at every point j2¢ € J3 is given in coordinates by the 10 x 12 real
matrix

10000O0DO0OOTO O 0 O
01 0000O0O0TO0 O 0 0
001000000 O 0 0
0001000O0TO0 O O O
000010O0O0TO0O O O O

Tigo7L=1"0 0000000 -1 0 -1 0
00000O0O0O0 0 -1 0 -1
000001000 O O 0
00000020 0 0 0 0
00000O0OO0OT1 0 O 0 O

From this it is clear that rank(FL(j2¢)) = 10 = dim J?7¢. Hence, the restricted Legendre map is a
submersion onto J27#, and thus the second-order Lagrangian density £ € Q2(J?7) is regular.

Finally, combining equations (6.42)), (6.43) and (6.44)), we obtain the second-order Euler-Lagrange
equation for this field theory

0*u 0*u 0*u
2 =q < 2——=+—=q. 6.48
Ugao) 200 T loa) = 1 5t 2 5n 5t 5 =4 (6.48)
This is the classical equation for the bending of a clamped plate under a uniform load.

Now, let X € X2(W,.) be a locally decomposable bivector field given locally by (6.20)), that is,

0 0 0 0 0 0
X = (+F1 TP+t o+ Feoaa—— + Fana + Flo2)a
0u(2’0) 8U(171)

) ou Ouq Ous duo,2)
0 0 0
F F — + F F _—
+ 13,01 Bugs0) + 21 Du) +l12)1 Bug) + £(0,3),1 Bugo )

18
161

9 9 9 9
+ G + G + GO +G{Y + a0 )

18 2 3p(2,0) 1 5p(1,1) ap(0,2)

0 0 0 0 0 0
ANl — + E F; F: + F — + F — 4+ F e
<6y + 250 + Fio-— 9u; + Fo, 28u2 (2,0),2 gz o) + £1,1),2 Bun) + I'0,2),2 Bugo2)

) ) )
F 2 4F 2 4F -~ 4F -
+ (3,0),2au(3’0)+ (2,1),28u(2’1)+ (1,2),2au(1’2)+ (o,3>723u(0

. 0 5 O L GO o) eIy 0 + G0 pa )

* G26 L T2 gp2 op0) T2 gptn

+G

Then, taking into account the coordinate expressions (6.40) of the local Hamiltonian function H and
(6.41)) of the 3-form €2, the equation (6.19)) gives in coordinates the following system of 11 equations for
the component functions of the bivector field X

Fl = U1 ; F2 = U2, (649)
1
Fii=u@0 ; 3 (Fio+Foq) =u@a1y 5 Fho =gy, (6.50)
Gl + G2 =—q, (6.51)
1 1
GV oG = pt A e = 2, (6.52)
pZ0) — u(2,0) = 0 pth) — 2u) =0 ; p02) — u(,2) = 0. (6.53)
Moreover, if we assume that X" is holonomic, then we have the following 8 additional equations
Fio= U,y Fh= U,1) 3 F(2,0),1 = U@,0) F(z,o),z = U2,1) (6.54)

Faoni=uey 5 Fane=uaz 5 Foni=uaz 5 Foz2=u03)-
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Observe that equations (6.53|) are the equations defining the first constraint submanifold W, < W,.. As
we have seen in Section [6.2.2] the tangency condition for the bivector field X along W, enables us to
determine all the coefficients G, with i = 1,2 and |I| = 2, in the following way

GgZ’O) =U,0) Ggl’l) =2u(2,1) Ggo,z) =U(,2) >
ngo) =u@2,1) Géu) =2u2) Géw) = U3
Then, replacing these functions in equations (6.52)), we obtain the following 2 additional constraints
P U@ Fua =0 5 PP U +ues =0,

which define a new submanifold W, — W,. Analyzing the tangency of the bivector field X along this
new submanifold W,, we obtain the following 4 equations, which enable us to determinate the coefficients
G? as follows

Gi+ Fzoa+Fa21=0 ; Gi + Fio1y1+ Foza=0,
Gy +Foe+Fi22=0 ; Gi+Foi2+Fos2=0.

Hence, replacing these expressions on equations (6.51]), we obtain the second-order Euler-Lagrange equa-
tion for a bivector field, which is

Fi o)1+ Fa)i+ Feonz+ Fosz)2=q. (6.55)

Observe that if ¢ € T'(p7,) is an integral section of X, then its component functions must satisfy the
second-order Euler-Lagrange equation (6.48]).

Lagrangian formalism

Now we recover the Lagrangian structures and equations from the unified setting. In order to obtain the

Poincaré-Cartan 2-form O, = fﬁ/*@f € Q2(J3), we need the extended Legendre map FL: J3r — J2xt.
From the results in Section and bearing in mind the coordinate expression (6.47) of the restricted
Legendre map in this example, we have that the extended Legendre map is given locally by

-7:2 pl = —U@3,0) — U(1,2) ]/'—2 p2 = —U2,1) — U(0,3) »

7—'\2 P(Z’O) = U2,0) }\Z P(l’l) =2u(1) }\Z P(O’Q) = U(0,2) »

— 1 1
]:£ p= U(gp)U] + U(LQ)U1 + U(2’1)U2 + U(O’g)’UQ — §U%2’O) — “%1,1) — 511/?0’2) —qu.

Therefore, the Poincaré-Cartan 2-form is given locally by

1 1
O = (2%,0) + i 5 %o2) T AU st — U2~ U2 Us “<o,3>u2> do A dy
— (u(s,0) + u(1,2))du A dy + (ugz,1) + u,3))du A dz + uogydur Ady —ug ydu Ade
+u(r,1yduz A dy — u2)duz Adx.
Now, if Q, = —dO,, we recover the Lagrangian solutions for the field equations from the unified
formalism. In particular, if ¢ € I'(p},) is a holonomic section solution to the field equation , then the
section ¢, = pj ot € I'(7?) is holonomic and is a solution to the field equation (6.28) by Proposition

In coordinates, the component functions of the section ¥, = 3¢, for some ¢(x,y) = (x,y,u(z,y)) € I'(n),
are a solution to the second-order Euler-Lagrange equation (6.48]), that is,

Ua,0) + 2u(2,2) + U0,4) = q -
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Finally, if X € X2(W,.) is a locally decomposable holonomic bivector field solution to the field equation
, then, using Theorem there exists a unique locally decomposable holonomic bivector field
X € X2(J37) solution to the equation . In coordinates, a locally decomposable holonomic bivector
field X, is given by

) ) ) 9 o
Xe=|—=—+u—+ U2.0) o + YD G +u(s,0) ) T U@,

ox ou aU(Q 0 8u(171) + U(1,2) 3u<072)

F, Fenag,— + F09 15004
=+ (3’0)’18u(3,0) + (2’1)’18u(2,1) + (1’2)’18u(1,2) + (0,3),1(%(073))

A Q—FUE-FU ﬂ—l—u i—&—u L—Fu 9 +u
8y 2 ou (1,1) ouq 0,2) Oug (2,1) 8u(270) 1,2) 8u(171) 0,3)

F Fonen——+F F '
+ (3,0)728U(3,0)+ (2’1)’28U(2,1)+ (1’2)’25u(1,2)+ (0’3)’25“(0,3))

Then, the component functions of this bivector field must satisfy the equation (6.55)), that is,

Fs0,1 + Faz)1 + Feae + Fos),e =q-

Hamiltonian formalism

Since the Lagrangian density is regular, the Hamiltonian formalism takes place in an open set of J27*. In
fact, £ € Q?(J%n) is a hyperregular Lagrangian density, since the restricted Legendre map admits global
sections. For instance, the map defined locally by

1 1 1 1 1
_ (2,00 -, (1,1) ,(0,2) _~,1 -~ 2 ~ 1 - 2
T (357%%“17112»10 72p » P ) 2p7 2p7 2p7 2p> )

is a section of FL£ defined everywhere in J27¥.

In the natural coordinates of J27¥, using Lemma 6.17, and bearing in mind the coordinate expres-
sion (6.40) of the local Hamiltonian function H, the local Hamiltonian function H that specifies the
Hamiltonian p-section h is given by

1 2 1 2 1 2
o) L0 )
Hence, the Hamilton-Cartan 2-form 0, € Q2(J%xt) is given locally by

1 2 1 (20)2 1 (11)2 1 (02)2 1
O = —pul—PU2—§(p ’ ) —1<p ’ ) —5(]0 ’ ) —qu | dz Ady +pduAdy

1 1
—pduAdx +p(2’0)du1 ANdy — gp(l’l)dul Adx + §p(1’1)du2 Ady — p 02 duy Adz.

Now we recover the Hamiltonian field equations and solutions from the unified setting. First, let
¥ € T'(ph;) be a (holonomic) section solution to the field equation (6.8). Then, as the second-order
Lagrangian density is hyperregular, using Propositionwe know that the section 9, = p5o1) € F(ﬁ'?]lﬂ)
is a solution to the equation . In coordinates, the component functions of v, must satisfy the
following system of 8 partial differential equations

Ou_ o My, M _eo O du_ gy Qo)

Ox " Oy T Ox T Ox Oy T Oy ’
(9p1 8])2 ap(2,0) 1 8]9(1’1) 1 ap(l,l) ap(O,Q)
-t =4 ; +5 =-r ; 5 + =-p.
ox oy Ox 2 Oy 2 Ox dy
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Finally, if X € X2(W,) is a locally decomposable bivector field solution to the equation (6.19)), then, by
Theorem |6.23] there exists a locally decomposable bivector field &}, € X2(J27#) solution to the equation

(6.34). If A}, is locally given by (6.35)), that is,

Xy, = (; +F18a +F11881 +F2168 +G}681 +G§£2
+ Gy 6PZ,O) +GiY apﬁ,l) +Gy" 6pg72))
(aa +an8 JrFlgaa1 +F2288 +G2%+GQ;2
+ 6 apgm +65Y ap?l,n * Géw)apfw) ’

then its component functions must satisfy the following 8 equations

Fi=w ; Fo=uy ; Fi=p20 ; Ei+F,=ptY ; Fy=p0?,

) )

1 1
Gi+Gi=q 5 GV 4saf =t ol e = p

6.5.2 Korteweg—de Vries equation

In the following we derive the Korteweg—de Vries equation, usually denoted as the KdV equation for
short, using the geometric formalism introduced in this Chapter. The KdV equation is a mathematical
model of waves on shallow water surfaces, and has become the prototypical example of a non-linear partial
differential equation whose solutions can be specified exactly. Many papers are devoted to analyzing this
model and, in particular, some previous multisymplectic descriptions of it are available, for instance in
[5L 87, [153]. A further analysis using a different version of the unified formalism is given in [149].

The usual form of the KdV equation is

that is, a non-linear, dispersive partial differential equation for a real function y depending on two real
variables, the space x and the time ¢t. It is known that the KdV equation can be derived from a least
action principle as the Euler-Lagrange equation of the Lagrangian density

Louou 0wyt L2y’
20z ot Oz 022 )
where y = Ju/dz. It is therefore clear that we can use our formulation to derive the Korteweg—de Vries

equation as the field equations of a second-order field theory with a 2-dimensional base manifold and a
1-dimensional fiber over this base.

Hence, let us consider M = R? with global coordinates (z,t), and E = R? xR with natural coordinates
adapted to the bundle structure, (x,t,u). In these coordinates, the canonical volume form in R? is given
by n = dz A dt € Q*(R?).

In the induced coordinates (l‘,t,u,U]_,UQ,U(Q’()),U(LU,’U/(O’Q)) of J?m, the second-order Lagrangian
density £ € Q2(J?7) given above may be written as

1
L= 3 (u1u2 - 2u3 u(2 0)> dz Adt.
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Lagrangian-Hamiltonian formalism

Following Section [6.2.1] consider the fiber bundles
W=Jrxn, Pxt 1 W, =T xpn, JPrt,

with the natural coordinates (6.38]) and (6.39)), respectively. Observe that, as in the previous example,
we have dim J37 = 12 and dim J?#* = 10, and therefore dim W = 18 and dim W, = 17.

The Hamiltonian pyy-section he L (myy) is specified by the local Hamiltonian function, whose coor-
dinate expression in this case is

(2,0)

N 1 1
H = plug + p*us +p U(2.0) +p(1’1)u(171) +p(072)u(072) — jU1us +ud + 7u%2)0) . (6.57)

2
Then, the canonical forms in W, have the coordinate expressions (6.41)), just replacing the local Hamil-

tonian function (6.40) by (6.57)).

Let ¢ € T'(ph,) be a holonomic section. Then, bearing in mind the coordinate expression (6.57)) of
the local Hamiltonian function H and (6.41]) of the canonical forms W, the field equation gives in
coordinates the following system of 11 equations

opt  Op?
— 4+ —=—=0 6.58
o Tor T (6.58)

op*0 1 optH 1 9 1 opth  gp02 1

gr T2 o TP T t3u=0 s o mem Ty rmgu =0, (6.59)
PP fupg =0 ; ptHM=0 ; p©®=o, (6.60)

ou ou
—_— = . —_— = . 1
U1 o 0 N us ot O7 (6 6 )

811,1 1 8u1 8’11,2 8u2
u(Q,O) — % =0 ] u(l,l) — 5 <8t + 835) =0 ; u(0,2) — W =0. (662)

As in the Example analyzed in the previous Section, equations and are automatically satisfied
because we require the section to be holonomic from the beginning. On the other hand, combining
equations and we obtain the constraints defining the submanifold W,, and in particular the
coordinate expression of the restricted Legendre map FL: J3m — J?7nt associated to this second-order
Lagrangian density, which is

1 1
FLP = —ug —3ud +uio 3 FLP = —up,
D) 1T U(3,0) 2 (6.63)

FLrp0) = —Ue2,0) FLoptbh =0 : Fopo2 =o.

The tangent map of FL at every point j2¢ € J3 is given in coordinates by

100 0O 0O 0 00O0OT OO
010 0 0 0 00O0TO0TO0O0
001 0 0 0 00O0GO0TO0O0
000 1 0 0 000000
000 O 1 0 000O0TO0O
TigeFL=10 00 6w 1/2 0 00 1 0 0 0
000 1/2 0 0 00000 0
000 O 0O —-1000000
000 O 0O 0 0O0O0GO0TO0O
000 O O 0 0O0O0TO0UO0O

From this it is clear that rank(FL(j3¢)) = 7 < 10 = dim J2z*. Hence, the second-order Lagrangian
density £ € Q2(J?7) is singular.
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Finally, combining equations (6.58)), (6.59) and (6.60)), we obtain the second-order Euler-Lagrange
equation for this field theory

o on i o

Ot Oz Ox 0z2  Ox*

which, taking y = du/0z, is the usual Korteweg-de Vries equation (6.506)).
Now, let X € X2(W,) be a locally decomposable 2-vector field given locally by (6.20)), that is,

U(1,1) — 6u1U(270) + ug,0) = 0 <= =0, (6.64)

9 9 9 9 ) ) )
X=[(Z4+F F F F, — 4 F ——~ 4 F,
<a Rt g st g -t Fao Duga) TEana Bu T 5021 Bu)
) B, 9
F, F, — 4F F,
RRUCIOR - w0 + F2,1).1 Duon) + (1’2)’18u( . + (0,3),18u(0’3)
20 0 1y 0 02 0
+ Gla 1 + Gla 2 + G a (2’0) + 1 ap(Ll) + 1 ap(0’2)>

1o} 1o} 0 0 0 0
A ( th—+Fao—+Fa—+Fen2s— +tFaonez—+
U2 8u(z,o) 8”(1 1

F -
ot ou duy du ©229u 0.2

0 0 0 0
F — + F — 4+ F — 4+ F —
+ (3,0),2(9“(3’0) + (2,1),26u(2’1) + 1'(1,2),2 Bura) + £'0,3),2 Do)
0 0 0 0 0
1 2 (2,0) (1,1) (0,2)
+ GQB i G28 2 G2 8p(2’0) + G2 ap(lvl) + G2 ap(0’2)> .
Then the field equation (6 gives in coordinates the following system of 11 equations
Fr=u ; FIy=us, (6.65)
1
Fli=ueo 5 3 (Fio+Fo1) =u@yy 5 Fap=1uqppo), (6.66)
Gi+G35=0, (6.67)
1 1
G(2 A G(l - 5 Ug — 3u1 Pt §G§1’1) + GéO’Q) =g -p°, (6.68)
PP fupe =0 ; ptV=0 ; p@I=0. (6.69)
Moreover, if we assume that X" is holonomic, then we have the following 8 additional equations
Fio=uay1 ;5 Fai=uay ;5 Feoi=uzo0 ;5 Feo0.2=1u21, (6.70)

F(1,1),1 =U2,1) F(1,1),2 =U,2) ; F(0,2),1 =U1,2) 3 F(o,z),2 = U(0,3) -

Observe that equations are the equations defining the first constraint submanifold W, <— W,.. As
we have seen in Section [6.2.2] the tangency condition for the 2-vector field X along W, enables us to
determine all the coefficients GI, with i = 1,2 and |I| = 2, as follows

G = —ugg ;G =0 5 G =0,
G5 = —ugy 5 Gy =0 @Y =0
Then, replacing these expressions in equations (6.68]), we obtain the following 2 additional constraints

1 1
p1*§U2+3U%*U(3,0):0 ) pzfiulzoa

which define a new submanifold W, <— W,. Analyzing the tangency of the 2-vector field along this new
submanifold W,, we obtain the following 4 equations, which enable us to determinate the coefficient
functions G} as follows

1

1
G% — zu(1,1) T 6uru,0) — Fiz0,1 =0 ; G% - 5“(2,0) =0,

2
11 o 1
Gy — 5%0.2) +6uru,y — Fzo2=0 ; G5 — Sy = 0.
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Hence, replacing these expressions on equations (6.67]), we obtain the second-order Euler-Lagrange equa-
tion for a 2-vector field, which is

u1,1) — burue0) + Fz),1 =0,
from where we can determinate F(3 ), as
F(370)71 = 6U1U(2,0) - U(LI) . (671)

Observe that if ) € T'(ph,) is an integral section of X, then its component functions must satisfy the
second-order Euler-Lagrange equation (|6.64]).

Remark. Observe that, in this case, the Lagrangian density is singular, but there are no additional
constraints. This implies that the final constraint submanifold is the whole submanifold W, in the
unified formalism. O

Lagrangian formalism

Now we recover the Lagrangian formalism from the unified setting. First, we need the coordlnate ex-
pression of the extended Legendre map F FL: J37 — J?xt. From the results in Section the local
expression of FLis

*

x 1 1
FLp' = U2 —-3uf fu@o ; FLp = kel

]?Z*p@’o) = —up0 ; ﬁ*p(l’l) =0 ; ﬁ*p(o’z) =0,

. 1 L
FL p=—g5uius+2ul — ug oyt + 5Uly)-

Therefore, the Poincaré-Cartan 2-form O, = ﬁ*@f € O2%(J3n) is given locally by
1 s 1, 1 )
O, = Huitz = 2uy + Uz, 0 u1 — 540 dz Ady + U2~ 3ui +u,) | du Ady

1
— iuldu ANdz —ugg0ydur Ady.

Then, let ¢ € I'(p},) be a holonomic section solution to the field equation (6.8). Then, from Propo-
sition we know that the section 1y = pJ ot € ['(#3) is holonomic and is a solution to the La-
grangian field equation . In coordinates, the component functions of the section 1, = j3¢, for some
¢(z,t) = (z,t,u(x,t)) € I'(7), are a solution to the second-order Euler-Lagrange equation

u(l,l) - 6’1,6111,(2)0) + U(4’0) =0.

On the other hand, if X € X2(W,.) is a locally decomposable holonomic 2-vector field solution to the field
equation , then, by Theorem there exists a unique locally decomposable holonomic 2-vector
field X, € X?%(J3n) solution to the equation . In coordinates, a locally decomposable holonomic
2-vector field in J37 is given by

X = 0 +u 0 +u 0 +u i+u 92 +u 92 +u 9
L 9 (20 5y, WD) 5 (3,0) Dtz (2,1) gy (1,2) Bu02)

0 0
F — 4+ F P —
(1,2),1 au(1,2) + £0,3).1 8”(0,3))

N T R I Y R I
ot 2 ou D Sy 8’11/1 ©.2) 8U2 (21 8U(270) (1,2) 8u(1’1) ©0.3) 8U(072)

0 0
F 2 4F A
+ £(3,0).1 Dugs ) + L2, Duian

0 0 0 0
Faneri—+Fones—— +Faper——+ Fopes— | -
T ran2g, s T ren2 g s a2 g, (0’3)’281;(073))
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Then, the component functions of this 2-vector field must satisfy the equation (6.55)), that is,

F3,0),1 = 6urua,0) — v, -

Hamiltonian formalism

Since the Lagrangian density is singular, the Hamiltonian formalism takes place in the submanifold
P = Im(FL) < J?r*. In this case, we can not recover the Hamiltonian solutions directly from the
unified setting, but rather passing through the Lagrangian formulation. Bearing in mind the coordinate
expression of the restricted Legendre map, the submanifold P is defined locally by the constraints

p2—%u1:0 ;=0 5 p®¥=o0.

Observe that dim P = rank(FL) = 7.

A set of natural coordinates (z,t, u, uy, uz, pt, p* ,pZ0) pLh) 50, 2)) in the restricted 2-symmetric mul-
timomentum bundle J?7# induces coordinates (w,t,u, uy, uz, p* ,p 0)) in P, with the natural embedding
9: P < J%xt given locally by

* 1 * *
rp=gu o =05 P =0 (6.72)

In these coordinates, using Lemma and bearing in mind the coordinate expressions ((6.57)) of the
local Hamiltonian function H and (6.72) of the natural embedding P < J?7*, the local Hamiltonian

function specifying the Hamiltonian section h € T'(u) is given by
1 2
H = p1u1 + u‘;’ -3 (p(Q’O))
Therefore, the Hamilton-Cartan 2-form 0 = h*©% € Q?(P) is given locally by

1 2 . 1
O = (2 (p(2’0)> —pluy — u‘f) dz Adt + ptdu A dt — iuldu Adz + p*Oduy Adt.

Now we recover the Hamiltonian field equations. If ¢p € I'(p},) is a (holonomic) section solution to
the field equation (6.8)), then, using Proposition the section ¢, = FLo p] op € I'(7p) is a solution
to the equation In coordinates, the component functions of v, must satisfy the following system
of 4 partial differential equations

8u7 _ 18u _ 8p 18u17 ) auli (2,0)
Ge =W G g TP T3 Grtag =05 g =t

Finally, if X € X2(W,.) is a locally decomposable 2-vector field solution to the equation (6.19)), then, using
Theorem there exists a locally decomposable 2-vector field Aj, € X2(P) solution to the equation

(6.37). If X}, is locally given by

0 0 0 o b 20 0

X, = F F F: Gt Gy
h (8 + 19 + 118 + 21a + 15‘1+ 9p0)
0 0 0 9] 0 20 O
F: F: F: Gh G5
<8t+ 25 + 128 + 228 + 281+ Gp(z’o) ,
then its component functions must satisfy the following 4 equations
1 1 2 1, 1 (2,0)

Fl:Ul 5 §F2 =p +3U1 ; G1—|—§F172:0 ; Fl,lz_p 0)
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6.6 The higher-order case

As we have stated at the beginning of this Chapter, this formulation fails when we try to generalize it
to a classical field theory of order greater or equal than 3. The main obstruction is also the fundamental
tool that we have used to obtain a unique Legendre map from the constraint algorithm in the unified
setting: the space of 2-symmetric multimomenta.

In particular, the relation among the multimomentum coordinates that we have introduced in Section
p = plt for every 1 < i,j < m and every 1 < a < n, can indeed be generalized to higher-order field
theories. In particular, we have the following result, which has been proved in [13], §4.2.6.

Theorem. Let (z,u$,p,pl) be an adapted system of coordinates on AJ*(J*~1x). The relation
n-pli =1 pl" | whenever I+1;, =I' + 1y and [I| = |I'| =k —1,

1s invariant under change of coordinates.

From this result, a straightforward consequence is that the relation I!-pli = I'! - pgil defines a
submanifold of AJ*(J*~1r), that is, the following result, which is also stated in [I3], §4.2.6, holds.

Corollary. The space of k-symmetric multimomenta
Jort = Lwe AP () | 10 plf = 1l Ty = 1 L T = 1| = k= 1}

is an embedded submanifold of AT (J*~1m). A system of adapted coordinates (x',u®) on E induces
coordinates (x*,u$,p,pL ", pK) on JExt, where 0 < |I'| < |I| < k—1 and |K| = k. The natural embedding
is then given in coordinates by jipLt = pl*Yi/(I1(i) + 1), for |I| = k — 1. This manifold is transverse to
Ty, AP (J*1) — JF=Ix, and therefore fibers over J* 7.

That is, we can generalize both the extended and restricted 2-symmetric multimomentum bundles to
higher-order field theories. The main issue, however, is that the previous Theorem only ensures that the
“symmetric” relation among the multimomentum coordinates holds for the highest-order multimomenta.
That is, this relation of symmetry on the multimomenta is not invariant under change of coordinates for
lower orders, and hence we do not obtain a submanifold of AZ*(J*~17).

When translated to the formulation, this implies that the field equations in the unified formalism
enable us to “fix” the highest-order multimomenta as usual, that is,

w OL

— =0
Po T Gua

Nevertheless, when requiring the multivector field X to be tangent to the submanifold defined by these
constraints, there are many more coefficient functions G(I% ; to be determined than equations obtained by
the tangency condition, preventing us to obtain a well-defined submanifold of W, and a univocally defined
Legendre map. For more details and comments, as well as the explicit calculations in the third-order
case, we refer to [13], §4.2.6.

Observe, however, that the key point to obtain a unique restricted Legendre map has been to consider
a Hamiltonian phase space which has the same number of multimomentum coordinates than the number
of “velocities” in which the Lagrangian density depends, that is, we have considered a Hamiltonian
phase space where Definition [6.5] is equivalent to the restricted Legendre map being a submersion. The
aforementioned Definition is a particular case, for k = 2, of the following Definition, stated in [140].

Definition. A kth-order Lagrangian density L € Q™(J*r) is regular if the restricted Legendre map
associated to L satisfies

k—1 k
-1
rank(FL) = dim J¥7 + dim J* ' — dimE=m+n+n» (m” ) 0y (
r=1

r

m—i—r—l)

r
r=1
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Therefore, it may seem natural to consider a Hamiltonian phase space whose dimension coincides
with this number. Note that this Hamiltonian phase space would have anZl (mﬁf*l) multimomenta
coordinates (plus one on the extended bundle), which is exactly the number of generalized coordinates
of “velocities” in which depends a kth-order Lagrangian density. For now, this is still work in progress.
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Conclusions and further research

In this final Chapter of this dissertation we summarize the main contributions of the work. A list of
publications derived from this work, or related to it, is also given. Finally, some further lines of research
are pointed out at the end.

Summary of contributions

The starting point of this work has been the geometric formulations for dynamical systems and field
theories, and, in particular, first-order dynamical systems and field theories. Our work has been devoted
to generalize these geometric formalisms to higher-order theories using a Skinner-Rusk approach.

Among the results stated in this dissertation, I wish to point out the following ones.

e Starting from the Lagrangian and Hamiltonian formalisms for higher-order systems (Section ,
we have generalized the unified formalism originally stated by R. Skinner and R. Rusk in [141]
(Section to higher-order systems. The dynamical equations are stated both for vector fields
and integral curves. These results can be found in Sections and

e Following the patterns in [I41], which have been reviewed in Section we recover both the
Lagrangian and Hamiltonian dynamics for higher-order systems from the dynamics in the unified
formalism. Regular and singular cases are distinguished when necessary, and our results are consis-

tent with the results in the literature [62], which have been reviewed in Section These results
are found in Sections [3.3] and 3.4

e Starting from the geometric description of the Hamilton-Jacobi theory established in [23] (Sec-
tion , and using the geometric Lagrangian and Hamiltonian formulations for higher-order au-
tonomous systems (Section, we give the geometric formulation of the Hamilton-Jacobi problem
for regular higher-order autonomous dynamical systems. Following the patterns in the aforemen-
tioned work, we distinguish between the generalized and standard versions of the Hamilton-Jacobi
problem. These results are given in Sections and

e Using the results obtained in Chapter (3] and following the ideas in [60] (which is not reviewed
in this dissertation), we give the geometric description of the Hamilton-Jacobi problem for higher-
order systems in the Lagrangian-Hamiltonian formalism. Contrary to the aforementioned paper, we
restrict ourselves to the case of dynamical systems given in terms of a regular Lagrangian function,
that is, the singular case is not considered. In addition, both the Lagrangian and Hamiltonian
geometric formulations of the Hamilton-Jacobi problem for higher-order systems are recovered from
the unified setting. Section [£.3]is devoted to give these results.

e We have stated the Lagrangian-Hamiltonian unified formalism for higher-order non-autonomous
dynamical systems, thus generalizing the results in [6] (Section to the higher-order setting, or,
equivalently, generalizing the results in Chapter [3|to the case of time dependent dynamical systems.
Equations are stated in terms of integral sections and vector fields. Moreover, our approach uses
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a general fiber bundle 7: £ — R, instead of the common trivial fiber bundle £ = @ x R found in
the literature [I}, 27, [73] [134]. Observe that, although every fiber bundle over R is trivializable, by
sticking to the general framework we can give more easily the generalization to the case when the
base manifold is not 1-dimensional, that is, to field theories. These results are found in Section [5.1

Starting from the unified formalism obtained in Section [5.1] we derived both the Lagrangian and
Hamiltonian formalisms for higher-order non-autonomous dynamical systems, thus completing pre-
vious partial studies on this subject [40} 47, 52], 63], T0T]. In particular, since the constraint algorithm
in the unified formalism delivers the full Legendre-Ostrogradsky map associated to the Lagrangian
density, we are able to define the Poincaré-Cartan forms, and state the Lagrangian equations. For
the Hamiltonian formalism, we can recover a local Hamiltonian function from the local Hamiltonian
function of the unified formalism, both in the regular and singular (almost-regular) cases. These
results can be found in Sections [5.2] and [5.31

We have given an unambiguous geometric formulation for second-order classical field theories. In
particular, by introducing a relation of symmetry among the second-order multimomentum co-
ordinates, and using a Skinner-Rusk approach, we have been able to obtain a unique Legendre
transformation from the constraint algorithm, which coincides with the known well-defined second-
order Legendre map [139, T40] thus removing the ambiguities in the definition of this geometric
structure. Moreover, the field equation is stated in terms of multivector fields and their integral
sections. These results are stated in Sections 6.1l and 6.2

Bearing in mind that a unique Legendre map is obtained as a consequence of the constraint algo-
rithm in the unified setting, we are able to define a unique Poincaré-Cartan m-form, thus effectively
removing any ambiguity in second-order field theories. Moreover, the Poincaré-Cartan m-form that
we obtain coincides with the one obtained in [I37, [138] [140], which is derived in an alternative way.
This shows that our results are consistent with the results in the literature. Then, a well-defined
geometric Lagrangian formalism for second-order field theories is given following the patterns in
Section Moreover, the 1-nondegeneracy of the Poincaré-Cartan (m + 1)-form is discussed,
and we prove that this form can not be multisymplectic, regardless of the second-order Lagrangian
density provided. All these results are given in Section [6.3}

Since we do have a uniquely well-defined Legendre map, we are able to give a geometric Hamiltonian
formalism for second-order field theories in the space of symmetric multimomenta, and both the
regular and singular (almost-regular) cases are analyzed in Section

Our approach differs from [I5] in that our formulation enables us to obtain a unique Legendre map
from the algorithm, and the tangency condition does not give rise to ambiguities. In addition,
we do state the field equation in several equivalent ways, contrary to the aforementioned work,
where the field equation is stated only in terms of Ehresmann connections. Nevertheless, the field
equations obtained are identical, and the formalism given in [I5] allows the authors to recover the
full holonomy condition from the field equation.

Furthermore, our approach also differs from [I49] in that our formulation makes no use of infinite-
order jet bundles. That is, although in [149] all the ambiguities in higher-order classical field
theories are removed, the phase space of the system has infinite dimension. In our work we do not
use infinite-order jets, and therefore all the manifolds have finite dimension.

The case of classical field theories of order greater than 2 is discussed in Section Some results
are generalized to the higher-order setting, and some further research is pointed out.

Several physical models, in both regular and non-regular cases, have been studied as examples to
show the applications of every geometric formulation given in this dissertation. These examples
are contained in Sections [3.5] 4] [5-4] and [6.5] In particular, the physical models studied are: the
Pais-Uhlenbeck oscillator, a second-order relativistic particle (both free and subjected to a time-
dependent potential), the end of a thrown javelin, the shape of a deformed elastic cylindrical beam
with fixed ends (both homogeneous and non-homogeneous cases), the bending of a clamped plate
under a uniform load, and the classic Korteweg—de Vries equation.
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Since most of the features of the unified formalism for higher-order theories are common to every theory
analyzed in this dissertation, we do give the general conclusions and comments on this formulation in the
following.

e Although the forms in the unified phase spaces are defined straightforwardly from the canonical
forms in the Hamiltonian phase space, this is not the case of the coupling functions. In first-order
theories, the coupling functions are just the canonical pairing that arises naturally from the duality
between the Lagrangian and Hamiltonian phase spaces. For higher-order theories, these spaces are
no longer dual to each other, and thus the generalization is not straightforward. Nevertheless, the
Lagrangian phase space in all these theories can be canonically embedded into a bundle which is
naturally dual to the Hamiltonian phase space, and therefore the coupling function can be defined
as the restriction of the canonical pairing to the submanifold which we identify with the Lagrangian
phase space.

e Contrary to the first-order case (see Sections [2.1.3] [2.4.3| and [2.5.3)), the holonomy condition is not
recovered from the coordinate expression of the dynamical (resp., field) equations, regardless of the
regularity of the Lagrangian function which is considered. That is, this condition must be required
as an extra assumption for higher-order theories. Nevertheless, some partial holonomy conditions
are still recovered from the equations and, although the formulation does not give the full condition,
it is still useful when dealing with singular systems.

— For higher-order dynamical systems, the full holonomy condition can indeed be recovered
from the constraint algorithm when the Lagrangian function is regular. However, to do so we
require that the vector field solution to the dynamical equations is tangent to the submanifold
graph(F L), which is a condition required “ad-hoc”, since no equation requires this condition
to hold. When sticking to the general framework, we must require the full holonomy condition
to hold from the beginning.

— In the case of second-order field theories, only the first level of the holonomy condition can be
recovered, instead of the first and the second. This is due to the symmetry relation defined
among the multimomentum coordinates, which prevents us of obtaining separate equations for
every second-order partial derivative. Nevertheless, a holonomic section or multivector field
still satisfies these equations, and therefore can be solutions to the field equations.

e Again, contrary to first-order theories, the full Legendre map (or Legendre-Ostrogradsky map)
is not obtained from the coordinate expression of the geometric equations or the compatibility
submanifold. In particular, only the highest-order momentum coordinates are fixed in both cases,
and the full transformation is obtained as a consequence of the constraint algorithm when the
solutions are required to lie or be tangent to the compatibility submanifold.

e The regularity of the Lagrangian function seems to play a secondary role on higher-order theories,
since the holonomy condition must be required even in the regular case. Nevertheless, as we
have seen in Sections and after delivering the full Legendre transformation, the
constraint algorithm delivers the Euler-Lagrange equations, which must hold in order to have well-
defined solutions in the whole submanifold graph(FL). For regular Lagrangians, the Euler-Lagrange
equations are compatible, and thus this is the final step of the constraint algorithm: the solutions
to the equations are well-defined in all the points of graph(FL), and induce dynamics in this
submanifold. However, for singular Lagrangians, these equations may not be compatible. In this
case, new constraints may appear, and the algorithm continues.

List of publications

Publications (research papers and conference proceedings) derived from this work are [29] [30, 129] 130,
131], 132, 133] in the Bibliography found on page In addition, there have been 9 contributions to
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national and international congresses and workshops derived from this work, 6 of them being talks and
3 of them posters. In addition, 4 talks based on this work have been given in seminars.

The list of publications ordered by Chapters, but keeping the numeration in the Bibliography, is the
following.

Chapter 3. Unified formalism for higher-order autonomous dynamical systems

[129] P.D. Prieto-Martinez and N. Roman-Roy, “Lagrangian-Hamiltonian unified formalism for autono-
mous higher-order dynamical systems”, J. Phys. A: Math. Teor. 44(38) (2011) 385203.

Chapter 4. Geometric Hamilton-Jacobi theory for higher-order autonomous systems

[29] L. Colombo, M. de Leén, P.D. Prieto-Martinez, and N. Roméan-Roy, “Unified formalism for the
generalized kth-order Hamilton—Jacobi problem”, arXiv:1310.1071 [math-ph], 2013.

(Accepted in Int. J. Geom. Methods Mod. Phys.).

[30] L. Colombo, M. de Leén, P.D. Prieto-Martinez, and N. Romén-Roy, “Geometric Hamilton—Jacobi
theory for higher-order autonomous systems”, J. Phys. A: Math. Teor. 47(23) (2014) 235203.

Chapter 5. Higher-order non-autonomous dynamical systems

[130] P.D. Prieto-Martinez and N. Romén-Roy, “Skinner-Rusk unified formalism for higher-order sys-
tems”, Proceedings of the XX International Fall Workshop on Geometry and Physics. Madrid. AIP
Conference Proceedings 1460 (2012) 216-220.

[131] P.D. Prieto-Martinez and N. Roman-Roy, “Unified formalism for higher-order non-autonomous
dynamical systems”, J. Math. Phys. 53(3) (2012) 032901.

[132] P.D. Prieto-Martinez and N. Romdn-Roy, “Higher-order Mechanics: Variational Principles and
other topics”, J. Geom. Mech. 5(4) (2013) 493-510.

Chapter 6. Second-order classical field theories

[133] P.D. Prieto-Martinez and N. Roman-Roy, “A multisymplectic unified formalism for second-order
classical field theories”, arXiv:1402.4087 [math-ph], 2014.

(Submitted to J. Geom. Mech.).

In addition, there is another work in progress in collaboration with Leonardo Colombo (ICMAT,
Madrid, Spain) which is partially based on the results of Chapter [3| and [28] [33], and involves higher-
order dynamical systems on principal bundles. Some first results have already been published in [35], but
we do not include them in this dissertation, since the study of higher-order systems on Lie groups would
require additional structures and mathematical background which are beyond the scope of this Ph.D.
dissertation.

Further research

Finally, I wish to point out some future lines of research that arise from the geometric formulations stated
in this dissertation.
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Reduction by symmetries in higher-order theories

The problem of reduction of dynamical systems with symmetries has deserved the interest of theoretical
physicists and mathematicians, with the purpose of reducing the number of evolution equations, by
finding integrals of motion. In particular, geometric treatment of this subject has been revealed as a
powerful tool in the study of this question. The pioneering and fundamental work on this topic is [113]
(see also [I, 104, [151]).

The procedure in the aforementioned work has been generalized and extended to many different
situations: presymplectic autonomous Hamiltonian systems [77], non-autonomous mechanical systems
[54] nonholonomic systems [8 I8, T09], higher-order autonomous dynamical systems [51) 52] 53, [61],
optimal control [43, [71] I15] and several formulations first-order classical field theories [59] [76, 119, 1111
136], including k-symplectic, k-cosymplectic and multisymplectic formulations, although reduction and
symmetries in first-order field theories is still an open research line.

Our geometric formulations for higher-order non-autonomous dynamical systems (Chapter [5) and
second-order field theories (Chapter @ may help in the generalization of the concepts of symmetry and
conservation law for these kinds of systems, and may also prove useful on describing a geometric treatment
of the reduction procedure.

Nonholonomic constraints in higher-order systems

Constraints in first-order dynamical systems and field theories can be classified into two large families:
holonomic and nonholonomic constraints, and they are “easily” differentiated. A constraint is holonomic
if it can be written in the form F = 0, with F being a function depending only on the coordinates of
position (or the fields) of the system, or the total derivative of such a function. If a constraint can not be
written in these forms (which mostly implies that it must depend on the velocities and cannot be written
as the total derivative of a function on the basis), then we say that this constraint is nonholonomic.

Nonholonomic constraints appear naturally on a wide variety of systems, and the prototypical example
is the rolling motion of a disk on a horizontal plane [12, [42]. Because of this, many works are devoted to
the study of theories with nonholonomic constraints [18, 24], 37, [38] [55] 57, 68|, OT], 06, [147].

Nevertheless, as we have seen in Section there are several “levels” of holonomy in higher-order
theories. Therefore, keeping the above definitions, a constraint which is nonholonomic could be holonomic
on some levels, in the sense that it could the lift of a function in the basis up to a certain order, and thus
the nonholonomy would come only from the last orders of derivation. Adopting the terminology of the
aforementioned Section, we could refine the classification of constraints in higher-order theories defining
the concepts of holonomic constraints of type r, with 1 < r < k, where k is the order of the tangent
bundle or jet bundle being considered. In this terminology, holonomic constraints would be holonomic
of type 1, and the concept of nonholonmic constraint, as defined above, would correspond to “not being
holonomic of type r for any 1 < r < k7.

We believe that the study of these constraints can be useful to simplify geometric models of constrained
systems in higher-order theories, and can serve as a first step to give a general geometric formulation for
the Hamilton-Jacobi problem of singular higher-order systems.

Hamilton-Jacobi theory

As we have pointed out in the Introduction, the geometric formulation of the Hamilton-Jacobi theory
has been generalized to many different situations. Following this line of research, the results in Chapter
can be generalized to higher-order non-autonomous dynamical systems and multisymplectic second-order
classical field theories using the results in Chapters [f] and [6] respectively.

Another line of research on Hamilton-Jacobi theory is the study of the Hamilton-Jacobi problem for
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higher-order autonomous systems given in terms of a singular Lagrangian function, following the patterns
in [60] and using the results in Section Observe that, in order to achieve this goal, a better knowledge
of nonholonomic constraints in higher-order theories would prove useful.

Higher-order field theories

There are several open problems on higher-order field theories. The first one, which is the most interesting
from a mathematical point of view (although not so interesting from the physical one), has been pointed
out in Section [6.6} to obtain an unambiguous geometric formulation for field theories of order greater or
equal than 3. Bearing in mind the results in Chapter[6] and the comments in Section[6.6] the natural way
to solve this problem should consist in finding the obstruction that prevents us to define the symmetry
relation among every level of multimomentum coordinates. At the present day, we are working on a
generalization of the intrinsic definition given in [I38] 140] of the 2-symmetric multimomentum bundle.
We do believe that generalizing the results of D.J. Saunders and M. Crampin is the first step to obtain the
symmetry relation among all the multimomenta. Observe that, to the best of our knowledge, there are
no “natural” classical field theories of order greater than 2, and therefore this open problem is interesting
only from a purely mathematical point of view.

A second open problem in field theories consists in giving a complete geometric description of real
second-order theories, which could facilitate the comprehension of the classical models. More particularly,
it would be very interesting to obtain a geometric model for general relativity, using the Hilbert-Einstein
second-order Lagrangian density.

Finally, a third open problem on second-order field theory consists on establishing the variational
principles from which the field equations can be derived, following the patterns in [I32], and to prove
the equivalence between solutions to the variational problem and solution to the field equations given in
Chapter [6] This is work in progress at the present time.
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