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General information 

Motivation 

The advancement of new energy technologies is crucial for climate 

stability and global security. Solar energy resources are vast: more energy 

reaches our planet in one hour than humankind consumes in an entire year. The 

need for clean, inexpensive and renewable energy has increasingly turned 

research attention towards polymer photovoltaic cells. Organic solar cells offer 

a potential route to large-scale solar deployment because of the possibility of 

large cost reductions if earth-abundant materials and inexpensive production 

technologies are used. However, these devices still cannot perform as efficiently 

as silicon-based devices. The recent introduction of new materials and 

processing techniques has resulted in a remarkable increase in power-

conversion efficiency of above 12%. Controlling the interpenetrating network 

morphology is a key factor in obtaining devices with improved performance. 

Among the structures that are being studied and used for photovoltaic 

applications the most promising are bulk heterojunction and nanostructured 

architectures. The electrical properties and physical mechanisms must be 

understood in the photovoltaic structures and which they can be improvement in 

the design processes, the fabrication, the characterization and the technology 

used. 
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Aims 

The objectives of the present thesis are the following: 

i. To fabricate, characterize and optimize organic solar cells using blend 

layers such as P3HT:PCBM, P3HT:PC70BM and PTB1:PCBM 

ii. To obtain structures such as bilayer, conventional, and nanostructured 

organic solar cells that enable us to understand not only the origin of the 

governed mechanisms in its operation but also the relationship between 

the characteristics of the blend used and the parameters of the final 

device.  

 

To attain these objectives, we 

1. made a literature review of the state-of-the-art of solar cell architectures 

2. studied and characterized the polymers that make up the blends. 

3. studied methods for preparing the blends used to manufacture the solar 

cells. 

4. electrically and optically characterized the different techniques used to 

understand the physical parameters of the photovoltaic cell. 

5. applied protocols to follow the degradation process of the organic solar 

cells under different environments. 
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Thesis structure 

Chapter 1 explains how the photovoltaic effect is generated in 

semiconductor polymer solar cells and different architectures. 

Chapter 2 presents and discusses the criteria for selecting materials for 

solar cells, and justifies the choice of the various polymer and fullerene 

materials used in this thesis. The most important performance parameters that 

define the solar cell are presented.  

Chapter 3 analyses the degradation of the organic solar cells based on 

poly (3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester, 

P3HT:PCBM blends prepared under different conditions. The model used aims 

to provide greater insight into the mechanisms involved in the behavior of the 

device and its degradation after working in ambient conditions.  

Chapter 4 focuses on the relation between variations in the 

characteristics of the poly (3-hexylthiophene-2,5-diyl) (P3HT) chains and the 

resulting solar cell short circuit current density when the blend layers are 

prepared at different concentration ratios. To vary the lamellar structure in the 

blend layers μ-XRD analysis was used.  

Chapter 5 studies the degradation process in solar cells under nitrogen 

and air environment and with encapsulation in accordance with established 

ISOS-D1 protocols. The solar cells were prepared with PTB1:PCBM materials. 

The evolution of the electrical measurements under light and dark conditions is 

used to analyze the degradation process over 5300 h and the relationship it has 

with the physical mechanisms. An exponential function was used to model PCE 

decay over time in order to understand the degradation mechanisms. 

Chapter 6 discusses the fabrication, characterization and analysis of 

nanostructured organic solar cells by nanoimprinting using P3HT and PC70BM 

as donor and acceptor materials, respectively. The nanostructured organic solar 
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cell was characterized by J-V, CE and TPV, and then compared with the bulk 

heterojunction and bilayer structures. 

Chapter 7 presents the conclusions drawn from the results of the 

research carried out during the thesis. 
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Chapter 1 

Generation of the photovoltaic effect in 

organic solar cells 

 

This chapter explains how the photovoltaic effect is generated in 

organic solar cells in semiconductor polymers. Different types of architectures 

are presented as well as their advantages and disadvantages. The physical 

parameters of organic and inorganic materials are compared as photovoltaic 

devices. Finally, the structures that will be used in this thesis are briefly 

described. 
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1.1. A brief history of organic solar cells 

The origin of organic solar cells (OSC) can be traced back to between 

1970 and 1975, but they really gathered momentum as from 1986. Interest in 

OSC was mainly due to two factors: first, to reduce the CO2 pollution of the 

planet caused by the continued accelerated burning of fossil fuels; and second, 

to make them more cheaply than silicon cells, the manufacture of which 

requires large amounts of energy. [1, 2] 

The efficiency of organic solar cells (OSC) has increased over time: 

0.001% in 1975 [3], 1% in 1986 [4], 4.8% in 2006 [5], 5% in 2006 [6], PCE > 

6% in 2009 [7], 8.3% in 2010 [8], 9.1% in 2011 [9], and over 12% in 2013 [10]. 

Fig. 1.1 compares the efficiencies of OSC using different technologies. 

Research into OSC has increased significantly because of their 

considerable potential in terms of: 

1. Semi-transparency 

2. Flexibility and light weight  

3. Low-cost of manufacture 

4. Manufacture at low temperatures 

5. Integration as a photovoltaic device for large areas 

6. Modulation to change properties of the organic semiconductor material 

7. New structures and morphologies, among others 
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Fig. 1.1. Best recorded efficiencies reported in solar cells using different technologies. 

Most research focuses primarily on understanding the physical 

mechanisms of how they work, stability problems and how their efficiency can 

be increased so that they can be used in applications. Once these obstacles have 

been overcome, they are expected to be commercialized. Whether they are 

viable for commercialization depends on the efficiency of amorphous silicon 

solar cells. This value must be equal to or greater than 13%, a target that is 

expected to be reached before 2020. [10] 

Laboratories, research centres and private companies around the world 

have been working to improve the efficiency of OSC. Currently, the companies 

interested in working with these devices and setting the trend are: Konarka 

(US), Plextronics (US), Solarmer (US) Heliatek (Germany), Mitsubishi (Japan), 

Teijin DuPont Fims (Japan) Toray (Japan), Sumitomo Chemicals (Japan), 

Kolon (Korea), KNP Energy (Korea), GIST (Korea), KRICT (Korea), KIST 

(Korea) and Kimm (Korea), among others. 
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Table 1.1 shows some important milestones in the development of solar 

cells with polymeric materials. The information shown includes the materials, 

the blends, the structure, the technique used to deposit the active material, the 

additives used to improve the efficiency, and the substrate types used to allow 

for mechanical flexibility on the device structures. 

1.2. Operation principles 

Most organic solar cells consist of one or more active layers between 

two electrodes of different materials. [28] One of these electrodes must be 

transparent or semi-transparent, and indium tin oxide (ITO) is used frequently. 

The other electrode is a metal whose work function must be smaller to form an 

ohmic contact with the n-type material of the blend prepared. [29, 30] 

Organic solar cells operate on the following principle (see Fig. 1.2): 

1. - Photons are incident on the active layer, therefore giving the photo-

excitation. This organic layer, in its simplest form, consists of a single layer of 

semiconducting polymer, although it is most often composed of a mixture of 

two or more semiconducting polymers. The first of these polymers is a p-type 

material, which acts as an electron donor (D) and the second is an n-type 

material and acts as an electron acceptor (A). 
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Table 1.1. Milestones in the development of organic solar cells between 1986 and 2013. 

2. - The incident photons create excitons in the active layer, where the exciton is 

formed by an electron and hole polaron that are linked. 

3. - In order to dissociate the exciton in the electron and hole polaron 

(hereinafter only electron and hole), an energy of 250 meV or more is required, 
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so the exciton must diffuse until the heterojunction is formed between the D and 

A materials. Generally, this process takes an ultra-short time interval of around 

45 fs, and depends on the type of semiconductor polymers used. The exciton 

diffusion length is very short (between 10 and 20 nm).  

4. - Once separated into electron and hole, these charge carriers must be 

transported through by the n-type (acceptor) and p-type (donor) materials, 

respectively, until they reach the electrodes where they must be collected. If the 

active layer is formed by a single semiconductor material, the separation 

process of the charge requires energies be provided by the asymmetry of the 

work functions of the electrodes. 

5. - The charge carriers are collected at the electrodes; the holes at the anode 

and electrons at the cathode. 

 

Fig. 1.2. Photovoltaic effect generated at the interface of the organic solar cells.   

 

The next section classifies and explains the organic photovoltaic 

structures developed and studied in this thesis. The advantages and 

disadvantages of each one of them are also discussed. 
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1.3. Architecture of the organic solar cells 

1.3.1.  Classification 

The structures for solar cells can be classified in a variety of ways. For 

example:   

1. Single layer 

2. Bilayer (BL) 

3. Tandem  

4. Bulk heterojunction (BHJ) 

5. Inverted (INV) 

6. Nanostructured (NS) 

o Hybrids (organic-inorganic) in the shape of nanopillars  

o Interdigitated (organic-organic)  

o Other types: nano-helical walls, nano-points, nano-tubes, nano-

capsules, nano-cables, nano-dots (under development) 

7. Hybrid solar cells 

o Dye 

o Dots 

o Nano-wires, etc. 

Fig. 1.3 shows the various architectures manufactured and reported in 

this thesis. The references [31-37] describe the characteristics of each 

photovoltaic cell in greater detail. 
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The main reason to have different architectures in organic solar cells is 

to find the most optimal, stable and maximum performance parameters. To 

determine these characteristics, it is necessary to investigate the generation 

process, separation, transport and collection of the charge carriers, according to 

the basic operation principles (as described in section 1.2). They will also 

depend of the characteristics of the materials that are used, type of technology 

and the way in which they are managed and fabricated. 

 

 

Fig. 1.3. Organic solar cells manufactured and analyzed in this thesis.  

The next section below discusses the bilayer, bulk heterojunction and 

nanostructured organic solar cells that will be studied in this thesis.  

1.3.2.  Bilayer (BL) solar cell  

Bilayer cell contains two layers between the conductive electrodes (see 

Fig 1.4). The two layers have different electron affinities and ionization 
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energies, so electrostatic forces are generated at the interface between the two 

layers. The materials are chosen to form a large enough local electric fields to 

split the excitons. The layer with the highest electron affinity and ionization 

potential is the electron acceptor, and the other layer is the electron donor. This 

structure is also called a planar donor-acceptor heterojunction. 

 

Fig. 1.4. Energy band diagram of BL organic solar cell shows the charge carriers 

collection direction. 

The diffusion length of excitons in organic electronic materials is on the 

order of 10 nm as was explained above. In order to generate more excitons to 

diffuse to the layer interface and split into carriers, the layer thickness should be 

in the same range of diffusion length. However, the polymer layers typically 

need a thickness of at least 100 nm to absorb enough sun light. At such a large 

thickness, only a small fraction of the excitons can reach the heterojunction 

interface. Although the bilayer structure can improve the charge separation at 

the interfaces between donor and acceptor organic semiconducting layers, the 
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limitation is that the excitons created beyond of the 10 nm from the interface of 

D/A, they will not create free charge carriers, so that they  cannot contribute in 

the performance for the photovoltaic cell. [38] 

 

1.3.3.  Bulk heterojunction (BHJ) solar cell  

Bulk heterojunction (BHJ) organic solar cells are formed by a mixture 

of two or more polymeric materials with different electronic affinities and 

ionization potential. The polymeric materials should be diluted in a common 

solvent. The resulting mixture is deposited by spin coating to obtain a thin film 

with dominions of both materials in nanometric scale. The interpenetrated 

regions must be continues to transport the charge carriers towards electrodes as 

is shown in Fig. 1.5.  

The active area between the in the bulk heterojunction of the cell is 

greater than in the device with bilayer structure. Inside the active layer phase 

segregations leads to the formation of the interpenetrated network, this depends 

on the conditions of the manufacturing process such as the temperature, 

annealing vapour, solvents, additives, etc.   

A variety of BHJ solar cells with different kinds of polymer donors and 

fullerene acceptors (see Fig. 1.6), and some of their efficiencies have been 

reported. [39, 40] 
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Fig. 1.5. (a) Structure of device; (b) Energy band diagram on BHJ organic solar cell 

shows the collection direction of the charge carriers. In the structure are added hole and 

electron transport layers (HTL and ETL). 

 

1.3.4.  Nanostructured (NS) solar cell 

Nanostructured photovoltaic solar cells are considered to be ideal 

because they have a well ordered donor/acceptor interface in the nanometer 

scale between 10 and 20 nm, which is equivalent to the diffusion length of the 

exciton. The well-defined interfaces (D/A) in the solar cell are like small 

highways along which the charge carriers can travel easily to reach their 

respective metal contacts. [41, 42]  
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Fig. 1.6. (a) Schematic view of the energy gaps and energy levels of some organic 

materials used to fabricate photovoltaic devices. It shows the type of transparent 

electrodes, the hole selective materials, the polymer donors, the fullerene acceptors, 

electron selective materials and the metal electrodes. The dotted lines correspond to the 

a) 

b) 
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work functions of the materials. (b) Best efficiencies reported over time by some BHJ 

organic solar cells. [39, 40] 

 

The solar cells with this interdigitated structure increase their interfacial 

area and also help to reduce charge carrier recombination. The result is an 

increase in cell efficiency.  Fig. 1.7 shows this interdigitated structure. The 

process by which this architecture is will be described in chapter 6. 

 

Fig. 1.7. (a) Nanostructured organic solar cell shows the cross section; (b) Energy band 

diagram of the nanostructured solar cell and shows the collection direction of the charge 

carriers (holes and electrons).   

 

1.3.5.  Inverted (INV) solar cell 

Since their initial application in 2006, inverted organic solar cells (INV) 

have increasingly attracted attention due to their improved stability and 

compatibility with the roll-to-roll processes. The polarity of INV organic solar 

cells is reversed compared to that of conventional structures. The performance 

of inverted structures is critically dependent on the choice of the interfacial 
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layers, the combination of organic semiconductors choose to form the BHJ layer 

and the corresponding metallic contacts to collect the charge carriers. The most 

common electron conductor layers used for this structure are polyfluorene 

(PFN), titanium oxide (TixO), zinc oxide (ZnO) and holes conductor layers are 

molybdenum oxide (MoO3), vanadium oxide (V2O5) and tungsten oxide (WO3) 

among others. [43-45] Fig. 1.8 shows the typical structure and the energy band 

diagram. 

 

 

Fig. 1.8. (a) Inverted organic solar cell shows the structure; (b) Energy band diagram of 

an inverted organic solar cell which shows the collection direction of the charge 

carriers. 
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1.4. Differences between physical and chemical 

properties of the organic and inorganic materials 

The mechanisms involved in the photovoltaic processes of organic cells 

are different from those in inorganic cells occur. Nevertheless, on the basis of 

the well-known operation principles of inorganic cells, we seek to provide a 

theoretical description that optimizes organic solar cells. Organic and inorganic 

semiconducting materials differ in the following aspects [46, 47]: 

1. Inorganic semiconductor materials have a balance band and conduction 

band, whereas organic semiconducting refer to the same concept as 

highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO). 

2. The binding energies are weaker in inorganic cells. For example, in 

silicon it is about E= 25 meV, whereas in organic cells it is E= 250 

meV, so exciton dissociation in the inorganic materials occur at room 

temperature. Polymer materials require additional energy to be 

supplied. This is why dissociation occurs primarily at the interface 

between the materials (heterojunction), using the built-in potential. 

3. Charge separation is difficult in organic semiconductors due to the 

relatively low dielectric constant (k), the value of which is between 3 

and 4. This value reaches higher values in inorganic semiconductors 

(for example, about 11). 

4. Therefore, the exciton must travel from the point at which it is 

generated to the point it will dissociate. This diffusion length is about 

10 nm for polymers. 
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5. Hole diffusion length in amorphous silicon is around 0.1 to 2 m, while 

in polymers it is around of 80 nm. It is the same occurs for the 

electrons. 

6. Charge carrier mobility in polymers is reported to be between 10
-5

 and 1 

cm
2
 / V-s, while in amorphous silicon it is in the order of 1 cm

2
 / V-s. 

7. The absorption coefficient (α) in organic semiconductors is relatively 

high, so that a layer of 100 nm or less can be sufficient to absorb of the 

incident solar energy. For inorganic materials, thicker layers of tens of 

microns are necessary to absorb enough photons and generate the 

charge carriers required. 

8. Organic semiconductors degrade in the presence of oxygen and water, 

and so are unstable in air. Inorganic semiconductors, on the other hand, 

are highly stable under air. 

 

1.5. Advantages of organic solar cells 

To date, the technological processing of organic solar cells is less 

complex and the manufacturing process less expensive, even in comparison 

with amorphous silicon. The use of such techniques as deposit by spin drop, ink 

injection and roll-to-roll processing will probably make manufacture in line 

possible. 

The mechanical properties of polymeric films allow them to be 

deposited on large areas and flexible substrates using methods such as roll-to–

roll. So solar cell panels can be installed on the surfaces of buildings or complex 

geometric surfaces without their electrical performance being affected. 
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As has been mentioned above, optical properties can be semi-

transparent or have a high absorption coefficient inside the visible spectrum. 

Also, polymers can be designed with the band gap required for a specific 

structure and any other necessary properties. 

The commercialization of organic solar cells will depend on factors 

such as their efficiency, lifetime and price per peak watt (Wp). At the moment, 

these parameters are still far below those obtained in amorphous silicon solar 

cells, so there is still a great deal of work to do in research if the expected 

results are to be obtained. 
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Chapter 2 

Organic semiconductor materials and 

photovoltaic parameters 

The present chapter examines the criteria for selecting the 

semiconductor materials to be used for manufacturing organic solar cells. The 

photovoltaic parameters are described in order to provide insight the physical 

mechanisms involved when solar cells are exposed to light and dark conditions. 

An electrical circuit model is shown which represents the organic solar cell.  

The data extracted from the model will be used to correlate the physical 

parameters with the performance of photovoltaic devices. 
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2.1. General characteristics of organic materials 

Organic compounds are chemical substances based on carbon and 

hydrogen that can also contain oxygen, nitrogen, sulphurs, phosphorus, boron, 

and halogens. These molecules appear in a wide variety of structures: chains, 

branches, rings, and even three-dimensional adjustments, all of which depend 

on the precursors and the conditions to fabricate and synthesize the materials 

and after they can be deposited by some technique. [1, 2] 

The semiconducting properties of the organic compounds depend on the 

addition of small amounts of donors and acceptors to the material. The property 

of organic layers has been used to manufacture photovoltaic devices, diodes, 

transistors, etc. 

As has been mentioned above, nowadays, numerous classes of 

semiconductor materials have been discovered with various structures. All these 

semiconductor structures share one characteristic: they all contain conjugated π 

bonds, in which the presence of highly polarizable mobile electrons plays an 

important role in the electrical performance of the material. Sigma bonds are 

non-conjugated and play different role.  

The key to understanding the formation of these conjugated compounds 

is carbon chemistry. Carbon has an atomic number of 6 and a mass number of 

12; its nucleus contains 6 protons and 6 neutrons and it is surrounded by 6 

electrons, distributed in the following way: two in level 1s, two in level 2s and 

two in level 2p. 

Its electronic configuration in the ground state is: 1s ² 2s ² 2px ¹ 2py ¹ 

2pz. It is, however, tetravalent that is to say, it can form 4 bonds. When it 

receives external excitation, one of the electrons in orbital 2s moves to orbital 

2pz, giving rise to the following electron distribution in the atom: 
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1s² 2s¹ 2px¹ 2py¹ 2pz¹ 

This transfer of one of the electrons (orbital s) to the p orbital of the 

same energy level makes the tetravalent carbon and is known as promotion. 

Once the electron has been promoted from the 2s orbital to the 2p orbital, the 

electron from the 2s orbital can combine with one or more 2p orbitals. This 

process is known as hybridization. There are three types of hybridization: 

sp3 hybridization: the 2s electron combines with three 2p orbitals to 

form four hybrid sp3 bonds. As shown in Fig. 2.1a the angle between each bond 

is 109.5°. This type of hybridization produces tight bonds that are known as 

sigma-type bonds, with well localized electrons, resulting in excellent insulating 

materials that are not very reactive in the presence of air (see Fig. 2.1 b).  

 

Fig. 2.1. a) Carbon hybridization is represented by its suborbital sp3; b) sigma-type 

bond is shown when two carbons interact with this hybridization. 

sp2 hybridization: the 2s electron combines with two 2p orbitals to give 

3sp2, leaving a one orbital 2p without hybridization. The three hybrid orbitals 

are arranged symmetrically in a plane with an angle of 120
o
 between them, 

while the p orbital without hybridization is left in a perpendicular plane.  

 
a) b) 
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(a)      (b) 

Fig. 2.2. a) Hybridization of carbon is represented by its suborbital sp2; b) type bond 

between two p orbitals.  

Two carbons with sp2 hybridization give rise to a weaker π-type bond, 

which is formed by the interaction, or lateral superposition, of both orbitals 

without hybridization see Fig. 2.2b. This bond is the one that gives rise to 

delocalized electrons and most organic semiconductors have this characteristic. 

sp 1 hybridization: the 2s electron combines with one 2p orbital to give 

two sp1 bonds locate in the plane X at 180
o
 and two p orbitals. Y and Z axis are 

located two p orbitals without hybridization see Fig. 2.3.  These p orbitals can 

give rise to two -type bonds, as in the previous above.  

 

Fig. 2.3. Hybridization of carbon is represented by their sp1suborbital.  
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2.2. Organic semiconductors for photovoltaic 

applications 

The great diversity of organic semiconductor materials for photovoltaic 

applications was one of the major technological developments that 

revolutionized the organic electronics industry. 

The first applications appeared in 1970, with phthalocyanine and 

merocyanine molecules. [3] Ten years later, such polymeric materials as poly-

acetylene polymers were created and applied to solar cells. 

2.2.1.  Characteristics of organic semiconductors 

If they are to be applied in solar cells, organic semiconductors must 

have an optical band gap that can be efficiently excited by solar radiation in the 

visible and infrared region at wavelengths longer than 450 nm, (equivalent 

corresponding values lower than 2.75 eV). Donor and acceptor materials are 

needed to manufacture the photovoltaic cell. The combination of donors and 

acceptors must allow for correct displacement between its HOMOs and 

LUMOs. The polymers selected must also be able to be dissolved in reliable 

solvents and subsequently deposited. [4] 

The main problems in organic semiconductor materials that must be 

resolved are listed below:  

a) High band-gaps are of 2 - 3 eV. 

b) Absorption takes place in a small fraction of the solar spectrum. 

c) Incompatible solubility means that some organic semiconductor 

cannot be dissolved with others. 

d) The way in which they are deposited.  
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e) The organization of their molecules.  

f) Stability and the degradation. 

g) The technology is not suitable, etc.  

Generally, the parameter used to measure the performance in organic 

solar cells is efficiency. The reason for the low yield obtained when the 

semiconductor materials are used to manufacture organic solar cells is that 

photoexcitation does not form enough free charge carriers in the active layer of 

the material. [5] 

Numerous investigations are now being carried out to solve the 

problems of organic semiconductors among them the synthesis of new 

molecules of low molecular weight. This new synthesis of organic 

semiconductors has intensified the study of organic solar cells. 

Organic semiconductor materials are dividing into two different classes 

depending on the size of the molecules: 

1. Materials of low molecular weight or small molecules (oligomers).  

2. Materials of high molecular weight or large molecules (polymers). 

Oligomers and polymers are made up of monomers, which are simple 

chemical molecules that connect to each other to form larger molecules. The 

combination of few monomers, generally fewer than 10, form oligomers and 

many repeated units are regarded polymers. Small molecule materials are 

deposited by evaporation or sublimation in the gaseous phase, whereas 

polymers are deposited by centrifugation and ink injection among other low 

cost, and low temperature techniques. 
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2.2.2.  Semiconductor donor molecules 

In polymers, donor material is that which allows the conduction of 

holes in the material but in the heterojunction it provides or donates the 

electrons to the layer. Fig. 2.4 shows some donor polymer molecules, which 

have such molecules as nitrogen, oxygen and sulphur in their structure. [4, 6] 

 

 

Fig. 2.4. Donor polymer semiconductors (p-type) were reported in [4, 6]. 
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2.2.3.  Semiconductor acceptor molecules 

Acceptor material is that in which electrons are transported and which 

receives electrons from donor material. Examples of this kind of material are 

small molecule polymers to whose structure have been added CN and thiazole 

groups. In general fullerene families such as C60, PCBM PC70BM, etc., are 

used, which have high electron affinity. [7] Donor and acceptor materials must 

meet some requirements if they are to be applied in organic solar cells. Fig. 2.5 

shows the representative acceptor materials. [8] 
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Fig. 2.5. Acceptor semiconductors (n-type) were reported in [7, 8]. 

2.3. Selection of semiconductor materials for 

organic solar cells 

The material for this thesis was selected on the bases of a previous 

study of the chemical, physical and optical properties described in the literature 

as well as the benefits obtained by different researchers and provided by the 

infrastructure and technology in our laboratories. 

The semiconductor materials selected for manufacturing the organic 

solar cell configurations presented in the thesis were poly (3-hexilthiophene) 
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(P3HT), poly[[4,8-bis (octyloxy) benzo [1,2-b:4,5-b'] dithiophene-2,6-diyl] [2-[ 

(dodecyloxy) carbonyl] thieno[3,4-b]thiophenediyl]] (PTB1) was used as p-type 

semiconductor material and the fullerene [6,6]-phenyl C61-butyric acid methyl 

ester (PCBM) and fullerene [6,6]-phenyl C71-butyric acid methyl ester 

(PC70BM) as n-type semiconductor material. [7, 9] The structures chosen were 

bulk heterojunction (BHJ), bilayer (BL), nanostructured (NS). These structures 

will be presented in the following chapters of this thesis. 

In this section, we will present the chemical and physical properties of 

the semiconductor materials used to manufacture the organic solar cells. 

2.3.1.  Properties of PEDOT:PSS 

Poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) (PEDOT : 

PSS) is a mixture of two monomers. Poly (3,4-ethylenedioxythiophene) or 

PEDOT is a conjugated polymer with a high conductivity of 750 S/cm [10], but 

which is highly insoluble. 

The other component is a colloid in an aqueous solution of sodium 

polystyrene sulfonate, an insulator which dilutes the PEDOT. Islands of 

PEDOT form inside the PSS matrix, and the product can be diluted in water. 

The product is used as a synthetic metal, and can be deposited by spin-coating, 

ink printing and other techniques. 

As was seen Fig. 2.6, its chemical structure is complex. It is optically 

transparent to visible light of 80% and although a relatively good conductor, its 

conductivity is five times lower than that of ITO and is another transparent 

synthetic metal. Some modifications have been made so that its conductivity is 

about 160 S / cm [10, 11]. 
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Fig. 2.6. Chemical structure of PEDOT:PSS.  

 

2.3.2.  Properties of P3HT 

P3HT is formed by the thiophene and an alkyl functional group. The 

hexyl group is at third carbon of the thiophene (see Fig. 2.7). 

 

Fig. 2.7. Chemical structure of P3HT.  

The hexyl radical makes the polymer soluble, processable and stable.  

Polymers whose functional groups are alkyls are known as poly (3-

alkylthiophenes). Other examples of these compounds are the poly (3-

octylthiophene) (P3OT), poly (3-decylthiophene) (P3DT) and poly (3-

hexadecylthiophene) (P3HDT). [11] 

UNIVERSITAT ROVIRA I VIRGILI 
FABRICATION OF BULK AND INTERDIGITATED ORGANIC SOLAR CELLS AND ANALYSIS 
OF DEGRADATION MECHANISMS. 
Victor Samuel Balderrama Vázquez 
Dipòsit Legal: T 1921-2014



2. Organic semiconductor materials and photovoltaic parameters 

 

40 

 

The P3HT presents a low optical Eg of about 1.7 and 1.8 eV, and 

achieves a degree of regioregularity in which the hole mobility, according 

Sirringhaus, is 1 cm
2
 / V-s when deposited on SiO2. [12] Even when it is 

deposited on polymers the mobility values are around 1x10
-2

 cm
2
 / V-s. 

Mobility is an important factor that determines the efficiency of the solar cell.  

Regioregularity (RR) is defined as the degree of order of the polymer 

chain (structural ordering). There are two types: head-tail and tail-tail. Head-tail 

regioregularity is preferred because it improves the polymer conjugation 

structure and it allows the interchange of charge carriers, while the tail-tail 

regioregularity configuration does the opposite. 

Higher RR in P3HT improves the mobility of the charge carriers and 

also reduces the optical band-gap. [13] A smaller optical band-gap in P3HT 

means that more photons can be absorbed from the solar spectrum.  

P3HT is unstable in the presence of oxygen or water vapour, and its 

conductivity can increase when reacting with them, so it needs to be handled 

under inert environments (i.e. glove box under nitrogen) or encapsulation to 

prevent the polymer from degrading. P3HT polymer can be diluted using di-

chlorobenzene, chlorobenzene and chloroform where the solubility values are 

20.5, 19.4 and 18.7 respectively. 

 

2.3.3.  Properties of PTB1 

The PTB1 polymer is synthesized via Stille polycondensation using an 

ester substituted 2,5-dibromothieno[3,4- b] thiophene and dialkoxyl 

benzodithiophene distannane monomers. The complete name of this polymer is 

poly [[4,8-bis (octyloxy) benzo (1,2-b:4,5-b') dithiophene-2,6-diyl) (2-

((dodecyloxy) carbonyl) thieno(3,4-b) thiophenediyl]]. Molecule PTB1 is 

shown in Fig. 2.8. Quinoidal structure in PTB1 is stabilized by the 
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incorporation of thieno[3,4-b]thiophene units in backbone, as results PTB1 

shows a low band gap. 

Thieno[3,4- b]thiophene makes the polymer soluble and oxidative 

stable. Molecular weight is 22.9 kg/mol with a polydispersity of 1.25. The 

polymer solution in o-dichlorobenzene is reported with an absorption maximum 

at 682 nm with the onset at 774 nm. In solid film, the polymer exhibits slightly 

red-shifted absorption around 690 nm with the onset at 784 nm, which coincides 

with the corresponding maximum photon flux region in solar spectrum ∼700 

nm. The absorption coefficient in polymer film at 690 nm is 7.5 × 10
-3

 nm
-1

. 

Optical band gap reported ∼1.62 eV. Energy levels of highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) were reported of -4.90 and -3.20 eV, respectively. [14, 15] 

 

Fig. 2.8. Chemical structure of PTB1.  

 

2.3.4.  Properties of PCBM and PC70BM 

The PC70BM and PCBM the molecule of which has a diameter ~ 0.7 

nm, is a derivative of fullerene. Fullerenes are soluble in some organic solvents 

and insoluble in polar solvents or hydrogen bonds (water). Their density is 
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about 1.68 g / cm
3
. They have a high electron affinity. [16] The alkyl chain of 

fullerene makes it soluble enough to mix with the polymers. [17] The diluents 

used for the fullerenes are anisole, chlorobenzene and chloroform because 

solubility values were around of 20 for the PCBM and 19.46, 19.4 and 18.7, 

respectively, for the diluents. The structure of the molecule was represented in 

Fig. 2.5. 

 

2.3.5.  Selection of materials for electrical contacts  

The materials selected as electrical contacts for the final device were 

calcium and silver because good ohmic contact is necessary to collect charge 

carriers after they have been generated. More detail will be shown in the 

chapters below.  

2.4. Photovoltaic parameters 

The characterization of solar cells is important not only for controlling 

the manufacturing process but also for the development of new technologies. A 

wide range of characterization techniques are used for photovoltaic devices. 

Generally, they extract the parameters of solar cell and study its structure and 

the materials of which it is made up. [18] In this thesis we will use electrical and 

optical characterization to characterize first the layers and then the structures.  

The main cell parameters are obtained by applying J-V curves in light 

and dark conditions, see Fig. 2.11. 
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2.4.1.  Ideal solar cell  

The current through an ideal solar cell can be expressed by: 














 1* nkT

qV

oL eIII    (2.1) 

where IL is the photocurrent, Io is saturation current, n is the ideality factor and k 

is the Boltzmann constant. 

The saturation current reflects the behavior of the charges that can 

overcome the energy barrier in reverse bias at the junction and depends on the 

height of the barrier formed, the density of minority charge carriers in the 

vicinity of the barrier and the temperature. In general, saturation current is 

extracted from Eq. 2.1, in which the values must fit with the J-V experimental 

curve. If Io is constant for a specific temperature (T) the charge transport is by 

diffusion which dominates over the recombination transport, as is the case of 

Germanium diodes. In polymers recombination dominates over diffusion, so 

this parameter is not constant but varies with voltage. The higher the diode 

recombination, the greater I0 will be. [19, 20] 

Therefore, Eq. (2.1) can be rewritten as: 

)1()(  nkT

qV

eTII o      (2.2) 

where I0 can be represented as: 

kT

E
II a

ooo


 exp      (2.3) 

q is the electron charge, V is the applied voltage, n is the ideality factor, k is 

Boltzmann constant, T is the temperature, Ioo is a constant and Ea is the 

activation energy of the saturation current. 
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In real solar cells, the presence of parasitic resistances reduces their 

efficiency. The most common parasitic resistances are series resistance (RS) and 

shunt resistance (Rsh). [21, 22] 

The series resistance in a solar cell may be due to the resistance of the 

active layer or resistance between the metal contacts. In the first case, the 

resistance depends on the resistivity and thickness of the active layer, and the 

presence or absence of a space charge. The Rs will be extracted from J-V curve.   

Shunt resistance, on the other hand, is caused by leakage currents in the 

peripheral device or by localized defects that may have occurred in the 

manufacturing process or short circuits in the metallization of the contacts near 

the junction.  

The ideality factor n reflects the dominant transport mechanism on the 

diode and is obtained by determining the slope of log (J) versus V. In general 

the curve can show one or several slopes in regions other than that of the 

voltage applied, which indicates that the dominant transport mechanism can 

vary with the voltage. If n = 1, the transport mechanism into the active layer is 

by diffusion or metal-semiconductor junction is formed. If n = 2, the transport 

mechanism is by recombination. If n > 2 can be associated with the presence of 

deep and shallow traps in the bulk of the active layer. [23] In some cases, the J-

V curve cannot show linear regions or too high values of n. These can be re-

analyzed by applying other models the structure and using other elements. 

2.4.2.  Electrical equivalent circuit diagrams  

The simplest equivalent circuit for representing the various elements of 

the solar cell is shown in Fig. 2.9. [24] 
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Fig. 2.9. Equivalent circuit used in typical organic solar cells. 

Other models may involve some loss mechanism during charge 

transport inside the solar cells. For instance, the effects of space-charge limited 

current (ISCLC) can be incorporated as is shown in Fig. 2.10. In this case a 

second diode is added with its respective shunt resistance.  

 

Fig. 2.10. Equivalent circuit which incorporates the ISCLC and one additional diode in 

parallel to represent other phenomena that may occur in the structure of the cell. 
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2.5. Main performance parameters of organic 

solar cells  

The basic parameters of organic solar cells are obtained from the J-V 

characteristic under light and dark conditions. Typical J-V curves are shown in 

Fig. 2.11.  
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Fig. 2.11. J-V characteristic under dark and light at 1 sun (100 mW/cm
2
).  

2.5.1.  Open circuit voltage (Voc) 

The open circuit voltage (Voc) is the maximum voltage available in the 

solar cell under standard illumination when the current does not flow. The value 

is determined when the J-V obeys the following condition (see Fig. 2.11).  

J(Voc) = 0       (2.4) 
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2.5.2.  Short circuit current density (JSC) 

Short circuit current density (Jsc) is the current through the solar cell 

when the voltage across its terminals is zero: that is, when the cell is in short 

circuit. [25] This parameter is determined in Fig. 2.11 by the condition: 

Jsc = |J(V = 0)|     (2.9) 

Jsc is caused by the generation and collection of light-generated carriers. 

For an ideal solar cell is not considered the loss of charge carriers. Jsc and the 

current caused by all the light-generated carriers JL, can be considered identical. 

[26] Therefore Jsc is the largest current that can be extracted from the solar cell. 

[27]  

Jsc depends on such factors as [27-29]: 

1. The area of the solar cell 

2. The number and energy of the incident photons 

3. The thickness of the active layer, since some of the light energy can 

traverse the active layer without being absorbed 

4. The spectrum of the incident light 

5. The optical properties of the layers on which light is incident, that is, 

reflection and absorption 

6. The probability of charge collection in the solar cell that include the 

carrier recombination, layer morphology, type of structure used, 

properties of the metal contact, among others. 

If the short circuit current of the organic solar cell is to be compared 

with other similar structures the areas need to be standardised. The short circuit 

current density (Jsc, A/cm
2
) is obtained by dividing Isc by the area For most 

solar cell measurements the spectrum is normalized to AM 1.5G.  
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2.5.3.  Maximum power Pmax (Imax & Vmax)  

The power produced by the cell is calculated as: 

P = I(V)*V      (2.5) 

The point of maximum power (Pmax) is determined by searching for the 

maximum value of I (V) x V, as is shown in Fig. 2.12. The line formed by the 

filled rectangles represents the power curve where this peak is observed. Once 

Pmax has been located, it is possible to determine the maximum current Imax and 

the maximum voltage Vmax. [19] 

 

2.5.4.  Fill factor (FF)  

The Jsc and Voc are the current and voltage peak of the solar cell, 

respectively. At these points power is zero. The fill factor (FF) is, together with 

the Voc and Jsc, a basic parameter of the characteristics of the solar cell. The FF 

is defined as: 

2

1

*

.*. maxmax

A

A

VJ

VJ
FF

ocsc

     (2.6) 

Graphically FF is the ratio between the A1 and A2 areas shown in Fig. 

2.12. If the ratio of these two areas is close to 1, the power delivered by the 

solar cell is almost ideal. The theoretical maximum of FF can be determined 

from condition [19]: 

0
)*(


dV

IVd
      (2.7) 
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Fig. 2.12. Graphic representation obtained for FF in a typical J-V characteristic. 

 

2.5.5.  Power conversion efficiency (PCE)  

The efficiency is the parameter used to evaluate the performance of the 

organic solar cell. It is defined as the ratio between the output power and the 

incident light supplied to the solar cell. The PCE depends on the intensity of the 

incident sunlight (wavelength λ) and temperature (T). Therefore, the conditions 

under which the solar cell is measured must be carefully controlled so that the 

performance parameter can be compared with that of the other devices. Solar 

cells are measured under standard AM1.5 G conditions and at a room 

temperature of 24 °C. The PCE is determined using the formula:  

 

LightLight

máx

P

VI

P

P
PCE maxmax *

     (2.8) 
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Solving to Pmax from 2.5 and substituting in 2.8 we get:  

Light

ocsc

P

FFVJ
PCE

**
      (2.9) 

Fig. 2.13 shows the effect of Rs and Rp on J-V curves.  

The main effect of Rs is to reduce the FF, although excessive values 

also affect the Jsc. [22] If Rp is low, the current through the heterojunction is 

reduced, which causes a loss in output power and a reduction in FF and PCE.  
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Fig. 2.13. Effect of series and shunt resistances on organic solar cells under light 

conditions. 

2.5.6.  Rectification ratio (RR)  

The rectification ratio is the ratio of the current at a particular direct 

voltage to the same voltage and reverse bias. 
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Chapter 3 

Degradation analysis of P3HT:PCBM 

blend layers in combination with 

electrical model  

Polymeric solar cells have attracted much attention during the last years 

due to their lower fabrication cost and possibility of using flexible substrates. 

The efficiency reported until now is less than 12%. Among factors affecting 

polymeric solar cells efficiency, the active layer morphology related to blend 

preparation and annealing, is one of the most important. In this chapter we 

analyze the behavior of solar cells based on poly (3-hexylthiophene:[6,6]-

phenyl-C61-butyric acid methyl ester, P3HT:PCBM blends prepared under 

different conditions. Basic parameters are extracted from measured 

characteristics in dark and under illumination, while modeling is used to 

understand the mechanisms involved in the device behavior. 
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3.1. Introduction 

Polymeric solar cells during the last years have been fabricated where is 

tried to improve their efficiency, and maintaining the low cost fabrication. 

Many factors have been reported to affect solar cells parameters, among which 

the active layer morphology, related to blend preparation and annealing, is very 

important. [1-4] From another point of view, modeling of solar cells has also 

attracted much attention trying to predict the device behavior, as well as 

variations of its electrical parameters with device processing. Equivalent circuits 

(EC) that are generally used to describe solar cells can consider 1, 2 or more 

junctions, plus series and shunt resistances, where elements can be associated to 

physical mechanisms. [5, 6] 

Several polymers, methanofullerenes and their blends have been studied 

as the active layer of polymeric solar cells. [7-12] Among them, blends of poly 

(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester ( 

PCBM) are providing among highest reported efficiencies, in the order of 5 %. 

Cell parameters are very sensitive to small variations in blend preparation, as 

for example, ratio of P3HT to PCBM, solvent, temperature during preparation, 

film thickness, time during the stirring and annealing. [4] For these reason, 

characterizing the active layer morphology is of much importance to device 

improvement.   

In this chapter we have analyzed the behavior of solar cells based on 

P3HT:PCBM blends prepared under different conditions. Basic parameters are 

extracted from measured characteristics in dark and under illumination. 

Modeling is used to understand mechanisms involved in the device behavior 

and its degradation, after been left in ambient conditions for several days. Cells 

are compared regarding the mechanisms involved in the dissociation of charges, 
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as well as regarding their series resistance, shunt resistance, open circuit voltage 

Voc and short circuit current Isc, as prepared and after several days working in 

ambient conditions. 

3.2. Materials and methods 

This section is shown how was the preparation of different solutions 

that were used to manufacture the different photovoltaic devices. After, the 

solar cells are electrically characterized under dark and under illumination. The 

conditions to do these studies are described below.   

3.2.1.  Experimental 

Solar cells were prepared by spin-coating a poly(3,4-

ethylenedioxythiophene) poly(styrenesulfonate), PEDOT:PSS, layer on top of 

an indium tin oxide (ITO) substrate, over which the active layer of a 

P3HT:PCBM blend was spin-coated, followed by annealing and thermal 

evaporation of aluminium. The active layer blend was prepared in 2 ways.  

Blend 1.-- 4.8 mg of PCBM were diluted in 0.6 ml of chlorobenzene, 

stirring during 2 hours at room temperature, after which, 6 mg of P3HT were 

added to prepare a (1:0.8) wt% blend. The solution was left stirring for 18 hours 

at room temperature. Before spin coating, the solution was heated to 60 
o
C for 5 

min. 

Blend 2.-- 8 mg of P3HT were dissolved in 0.85 ml of chlorobenzene, 

stirring for 3 hours at 60 
o
C, alter which 8 mg of PCBM were added and the 

solution was left stirring at 60 
o
C for 18 hours, to obtain a (1:1) wt% 

P3HT:PCBM blend.  
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The solar cells were prepared as follows: 

A photolithography was done to the glass substrates with a previous 

deposited ITO layer, in order to define ITO regions. The next step was to 

deposit by spin-coating a PEDOT:PSS Baytron-P layer of less than 50 nm and 

annealed it at 110 
o
C during 5 min. The P3HT:PCBM blend, prepared using one 

of the indicated above procedures, is then spin coated to provide a layer 

thickness around 100 nm. Both layers are eliminated from the borders of the 

substrate before metal deposition. Finally, aluminium contacts are deposited 

through a shadow mask to form the final structure. A final annealing is done at 

150 
o
C for 2 min.  The cell area is a square of 3 mm by 3 mm. Two substrates, 

with 4 cells on each one were fabricated with each blend. 

3.2.2.  Conditions and electrical characterization 

Dark and under illumination at 1 sun I-V characteristics were measured 

in N2 just after fabrication. Samples were left 3 days in ambient conditions 

without encapsulation and measured again in N2. 

To understand the mechanisms involved in device behavior right after 

fabrication and after its degradation, dark and illuminated I-V curves were 

modeled using an equivalent circuit. Extracted parameters were got and they are 

shown in next paragraph.  

3.3. Results and discussion 

In this section, we have demonstrated that the preparation of different 

blend solutions have an important influence on the performance parameters of 

the devices. Depending of the environment exposed the devices in this case 
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under nitrogen and air environment with a short period of time, the devices 

presented a degradation ratio. 

3.3.1.  I-V characterization under light and dark 

Fig. 3.1 shows the electrical equivalent circuit used to describe dark and 

illuminated I-V characteristics, where D2 represents the P3HT:PCBM 

heterojunction, D1 represents a Schottky diode associated to regions of P3HT in 

contact with aluminium, where a rectifying contact is formed and charge 

dissociation can also occur. Rs1 and Rs2 are series resistance associated to 

diode D1 and D2 respectively and Rsh2 is the overall shunt resistance. The 

element SCLC incorporates the effect of space charge limited current which has 

to be considered as bias is increased. 

 

 

Fig. 3.1. Equivalent circuit for modeling cells I-V characteristics. D1 and D2 are diodes 

to represent two rectifying mechanism; Rs1 and Rs2 are the series resistance associated 

to D1 and D2 respectively; Rsh2 the shunt resistance resultant for the overall cell 

structure; the element SCLC incorporates the effect of space charge limited current and 

IL represents the effect of light. 

The SCLC current is expressed as usual [4]:  
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where V is normalized to Vo=1 V,  and VD is the voltage across the 

diode, while k and m are fitting parameters. IL represents the current due to 

illumination. 

Fig. 3.2 shows measured and modeled dark I-V curves, while the Fig. 

3.3 shows the I-V curves under illumination for cells fabricated with the two 

blends. The effects of degradation after three days working in ambient 

conditions are also shown. 
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Fig. 3.2. Measured and modeled cells I-V characteristics in dark conditions; curves (1) 

and (2) correspond to devices just after preparation; curves (3) and (4), after 3 days 

working in ambient conditions. 
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Fig. 3.3. Measured and modeled characteristic I-V curves under illumination for the 

same devices shown in Fig 3.2; curves (1) and (2) correspond to devices just after 

preparation; curves (3) and (4), after 3 days working in ambient conditions. 

Table 3.1 shows extracted model parameters for a representative cell 

prepared with each blend working in dark conditions, right after preparation and 

after 3 days in ambient conditions. Table 3.2 shows extracted model parameters 

of the same cells in Table 3.1, working under illumination.  

First of all, it was noticed that I-V curves of cells prepared with blend 2 

can be modeled using only diode D2, obtaining the ideality factor around n2=2 

which suggests the presence of a recombination process associated to the 

heterojunction at the interface of P3HT and PCBM regions. I-V curves of cells 

fabricated with blend 1, required two diodes, D1 and D2, in order to obtain 

precise modeling. The ideality factor of D1 was around n1=1 and for D2 again 

around n2=2, which suggests the presence of a metal semiconductor junction in 

addition to the heterojunction, for dissociating the excitons. 
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Table 3.1. Model parameters for all blends, as prepared and after degradation, measured 

under dark conditions. n1 and n2 are the ideality factors; I01 and I02 are the saturation 

currents for diodes D1 a D2. RS1 and RS2 are the series resistance associated to D1 and 

D2 respectively; RSH2 the shunt resistance resultant for the overall cell structure; k and m 

are fitting parameters associated to each diode. 

 

 

Table 3.2. Model parameters for all blends, as prepared and after degradation, measured 

under illumination conditions. VOC is the open circuit voltage and ISC is the short circuit 

current. The rest of the parameters in which the sub index il was added,  have the same 

meaning as in Table 3.1 but correspond to the cell working under illumination. 

3.3.2.  Analysis of behavior of the blend layers with the 

model 

The different behaviors on the devices fabricated with both blend 

solutions used can be explained considering that the phase separation of the 
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constituents of the blend can give rise to different regions in the active layer, 

among which we can distinguish the following situations: 

1) PCBM regions that contact the Al electrode and P3HT; 2) PCBM 

Regions that contact PEDOT:PSS electrode and P3HT; 3) PCBM regions 

surrounded only by P3HT, which do not contact any of the two electrodes; 4) 

PCBM regions that contact P3HT and both electrodes. A schematic 

representation of these regions is shown in Fig. 3.4 a.  

 

 

                   

Fig. 3.4. a) Schematic representation of some possible distributions of PCBM regions 

inside the active blend: colored regions correspond to P3HT where photons are 

absorbed and holes (open circles), are transported to the transparent electrode. Non-

colored regions correspond to PCBM, where electrons (black circles) are transported 

toward the cathode Al electrode. Generated excitons are dissociated at the distributed 

heterojunctions or at the Schottky junctions formed between Al and P3HT. Arrows 

indicate the direction of charge transport for recollection at the electrodes; b) Schematic 

a

) 

b

) 

a) 

b) 
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representation to show the increase in pass length of holes dissociated at the Schottky 

diode in a more interpenetrated morphology of the blend. 

The PCBM in the first type of regions will provide the path for 

electrons injected from the P3HT regions, to be collected at the Al electrode. 

The holes will travel across the P3HT region to be collected at the PEDOT:PSS 

electrode. Excitons generated by the incident light within the P3HT layer at less 

then 10 nm from these PCBM regions, will be capable of reaching the interface 

between P3HT and PCBM, dissociate at the heterojunction and travel through 

the respective paths toward the corresponding electrode.  

As these regions extend more toward the surface, they will be able to 

receive and dissociate more of the excitons generated across the complete width 

of the active layer. If they contact both electrodes, as in case 4, they will provide 

complete recollection of excitons generated within 10 nm and along the depth of 

the active layer, effect that can be described by diode D2. 

Regions described in cases 2 and 3, will not provide a path for electrons 

toward the Al electrode, even if the excitons reach the heterojunction.  

Excitons generated in the P3HT layer, within 10 nm along the Al 

electrode, may be dissociated at this metal-semiconductor junction, after which 

the electrons will be collected at the Al and the holes, after traveling across the 

P3HT region, at the anode and contribute to the diode current. This effect is 

described by diode D1. The different regions can be also formed by the overlap 

or near-by location of small sphere-like regions of the same material as 

observed in SEM cross sections shown in [1, 13] and represented in Fig. 3.4b 

where PCBM regions are the white spheres. The interface between the two 

phases can present an interpenetrated surface or not. In the first case the path of 

holes from the Al-P3HT contact to the top electrode will be larger producing 

larger series resistance.  
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In addition, pinholes and non-uniformities in the active layer may 

produce additional conduction between electrodes, giving rise to a shunt 

resistance, represented in the EC as RSH2. 

According to this representation, the active layer of blend 1 cells seems 

to contain less interpenetrated regions of PCBM that reaches both electrodes, or 

at least cover most of the active layer depth. Dissociation at the heterojunction 

is efficient, and the length of the corresponding material that charge carriers 

dissociated at the heterojunction have to travel to reach the electrodes is smaller 

and so RS is smaller. At the same time, holes dissociated at the Al-P3HT contact 

will also have a shorter distance to travel to the upper contact. The distribution 

of regions with Schottky contact provides that the effect of charge separation at 

the Al electrode, although not predominant, can be detected. 

For cells from blend 2, series resistance is almost one order higher and 

the effect of the Schottky diode is practically not observed. These results 

suggest that the morphology of the active layer for blend 2 contains a more 

interpenetrated distribution of P3HT and PCBM, providing more heterojunction 

surface, but longer path for carriers to reach the electrodes. The separation of 

carriers is also efficient, but the path to travel is longer, resulting in higher 

values of RS2. In this case, although regions with Al-P3HT contact are present, 

the current due to the dissociation at the heterojunction is more important that 

the one due to the Schottky diode and its contribution is not observed in the I-V 

curve. After staying 3 days in ambient conditions, the increase in RS2 for blend 

2 cells was around five times greater than for blend 1 cells, which is in 

agreement with having a more interpenetrated morphology. The increase in 

series resistance observed when the devices are left in ambient conditions has 

been attributed to several factors as reduction of mobility, metal corrosion at the 

contact or changes in the contact barrier and charge space regions [14, 15].  
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The effect of the reduction of series resistance observed under 

illumination was more important in the longer path device, around 20% and 

40% for blend 1 and blend 2 cells respectively just after fabrication and around 

10% and 50% respectively after degradation. 

The shunt resistance behaves in a similar way. Right after fabrication, in 

dark conditions, its value is similar for blends 1 and 2 cells reducing only 

slightly when working under illumination. After degradation, in a similar way 

as the series resistance, its value increases. The increase was again more 

significant in blend 2 than in blend 1 cells and it was interesting to observe that 

when illuminated, Rsh2il, returned to its value in dark before degradation, while 

series resistance only presented a maximum reduction of nearly 50 %.  

The increase in both series and shunt resistance can be caused by the 

reduction in the mobile charge density and mobility probably associated to 

creation of traps due to the interaction of oxygen and water with the polymer. 

When left in ambient conditions without encapsulation, water and oxygen 

molecules can enter through the outer cell electrode, especially through pinholes 

or grains in the electrode and diffuse inside the polymeric material reacting with 

polymer molecules. [12] The interaction of O2 and water with the polymers is 

well known as one of the causes of modification of their properties. [12] 

Illumination produces an increase in mobile charge density that compensates the 

previous charge density reduction during degradation. Experimental work must 

be done to confirm this hypothesis.  

The increase of series resistance is responsible for the reduction of the 

short circuit current ISC observed in all cells, as well as for the more significant 

reduction for blend 2 cells corresponding to longer charge paths, see curve (3) 

and (4) in Fig. 3.3 and Table 3.2. The average efficiency of blend 1 and blend 2 

cells reduced from around 2.0% and 2.7 %, respectively to around 0.14% and 
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1%. VOC remained the same for blend 1 cells. For blend 2 cells, VOC seems to 

have reduced more than 0.2 V, however, what really occurs is that the I-V under 

illumination is deformed, showing an inflection point, that has been interpreted 

as a counter diode appearing at the Al electrode due to corrosion or other type 

of degradation at the electrode [12] or due to the presence of slow charge 

transfer. [16] In general, although not much different in cell parameters, blend 1 

cells show better stability. 

In all cases, when cells remain sufficiently long in ambient conditions, 

series resistance continues increasing until the photovoltaic effect disappears.  

  

3.4. Conclusions 

Combining measured I-V characteristics with modeling under dark and 

illuminated conditions, it is possible to relate variations in device behavior with 

the morphology of the active layer, as well as possible causes of degradation. It 

was observed that relatively small variations in the active layer preparation 

procedure can produce significant variations in the cell series resistance. For 

cells from both blends, the ideality factor of I-V characteristics under dark and 

illuminated for V>0.5 V, was around 2 indicating that the dissociation process 

is associated to the bulk heterojunction. For blend 1 cells, the effect of the 

Schottky diode at the interface of P3HT with Al in addition to the 

heterojunction is observed, suggesting that Schottky diode regions contribute 

more to the current than in blend 2 cells. The lower series resistance observed in 

blend 1 cells is also consistent with less interpenetrated regions. The increase in 

both series and shunt resistance can be caused by the reduction in the mobile 

charge density and mobility associated to creation of traps produced by the 

UNIVERSITAT ROVIRA I VIRGILI 
FABRICATION OF BULK AND INTERDIGITATED ORGANIC SOLAR CELLS AND ANALYSIS 
OF DEGRADATION MECHANISMS. 
Victor Samuel Balderrama Vázquez 
Dipòsit Legal: T 1921-2014



3. Degradation analysis of P3HT:PCBM blend layers in combination with electrical 

model  

 

70 

 

interaction of oxygen and water with the polymer. This effect is more 

significant for cells where charges have longer paths to travel toward the 

electrode. 
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Chapter 4 

Relation between inter-chain structure 

and the Jsc in P3HT:PC70BM solar cells 

In this chapter, we have analyzed the relation between variations in the 

characteristics of the Poly (3-hexylthiophene-2,5-diyl) (P3HT) chains and the 

resultant solar cell short circuit current density. We show that the lattice 

constant between two lamellar structure of P3HT inside of the P3HT:Phenyl C70 

Butyric Acid Methyl Ester (PC70BM) blend reduced as the PC70BM percent in 

weight was reduced in the analyzed range. The presence of nanodomains, which 

can be related to the intensity of the peak, also affects the short circuit current 

density. In this study the optimum value of the percent in weight of PC70BM, to 

obtain high short circuit current density was obtained for 1:0.5 ratio in the 

blend. The distance constant between the lamellar structures of P3HT for each 

blend made was directly extracted from the Bragg's law in combination with the 

μ-XRD analysis. The results were correlated with the electrical characterization 
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for each blend and we found that when decreases the distance between two 

lamellar structures of P3HT there is a better performance on photovoltaic 

devices. 

4.1. Introduction 

Most bulk heterojunction (BHJ) organic solar cells use as active layer, a 

blend of a conjugated polymer and a fullerene. Currently, this kind of organic 

solar cell is the most promising for the accomplishment of a low-cost, light-

weight, large area, flexible, easily processed, and renewable energy source. [1] 

The main progress in bulk heterojunction organic solar cells has been achieved 

by introducing new materials with low band gap, process and new technologies. 

[2-5] Power conversion efficiencies (PCE) above 12 % were first reported in 

2013. [6] The PCE of such devices is predominantly influenced by the optical 

and electronic properties of the donor and acceptor materials and the 

morphology of the blend controlling the domain size. [7-9]  

Having domain sizes well defined in the bulk of the active layer helps to 

have a good performance on the charge carrier transport across of their 

respective materials (i.e. holes in donor material and electrons in acceptor 

material) and finally be collected in their respective metal contacts. Result of 

the foregoing is a reduction of the charge carrier recombination during the 

transport, situation that is desirable in the photovoltaic devices. 

Although blends of poly (3-hexylthiophene-2,5-diyl) (P3HT):Phenyl 

C70 Butyric Acid Methyl Ester (PC70BM) have been much studied, not enough 

attention has been paid to the study of P3HT inter-chains with the PC70BM and 

to the relation between the short circuit current density (Jsc) and the 

morphology, since the process of the charge generation and separation should 
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strongly depend on the interface properties, while the charge carrier transport 

will be determined by the bulk properties of the components of the active layer 

as was describe above.  

In this chapter we will show that the quantity of fullerene in the blend 

modifies the interchain distance-spacing (d100) in P3HT associated with the 

interdigitated alkyl chains, which affects the Jsc. The crystalline structures of the 

active layers were analyzed using micro-X-ray diffraction. This information in 

combination with the Braggs' law was used to calculate the distance-spacing in 

P3HT. The findings in distance-spacing in all blends together with 

complementary electrical characterization were subsequently correlated with the 

performance of the organic solar cells.  

 

4.2. Materials and methods 

This section is shown how was the preparation of different solutions 

that were used to manufacture the different photovoltaic devices. After, the 

solar cells are electrically characterized under dark and light. The conditions to 

do these studies are described below. 

4.2.1.  Device preparation 

Indium tin oxide (ITO) coated glass substrates (with nominal sheet 

resistance of 15 ohm/square and the thickness of 120 nm) were purchased from 

PsiOTec Ltd. Poly-(ethylene dioxythiophene) doped with poly-(styrene 

sulphonic acid) (PEDOT:PSS) FHC was acquired from Ossila Ltd., P3HT 

(melting point 238 ºC, Mw 17500 g mol
-1

, 99.995 % region-regularity) and 

PC70BM (Mw 1030.99 g mol
-1

) were purchased from Sigma-Aldrich. High-
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purity (99.99 %) silver (Ag) pellets were obtained from Testbourne Ltd., and 

calcium (Ca) pellets with high-purity (99.99 %) was purchased from Kurt J. 

Lesker. 

Photovoltaic (PV) devices were fabricated on pre-cleaned patterned ITO 

glass substrates. A 30 nm PEDOT:PSS was applied onto the substrates by spin 

coating at 3500 rpm for 45 s. The PEDOT:PSS film was annealed at 110 ºC for 

20 min. On top of the PEDOT:PSS the P3HT:PC70BM blend layer was 

deposited. 

The P3HT:PC70BM blends at different ratios S1 (1:0.5), S2 (1:0.8), S3 

(1:1.0) S4 (1:1.2) and S5 (1:1.5) corresponding at weight percent (wt%) of 

PC70BM at 33%, 45%, 50%, 54% and 60%, respectively. The weighing of 

semiconductor materials for each mixture was made strictly for any variations 

that may affect our study. All the blends solutions were prepared in o-

dichlorobenzene:chlorobenzene (ODCB:CB) solution at a volume ratio of 6:4 

(v/v) and left stirring over 17 h at 50 ºC. The active film was deposited by spin 

coating at 600 rpm for 45 s to obtain 80 nm of thickness. The cathode layer was 

deposited by thermal evaporation in an ultra-high vacuum chamber (1 x 10
-6

 

mbar). Metals were evaporated through a shadow mask leading to devices with 

an active area of 0.09 cm
2
. Ca (20 nm) and Ag (100 nm) were deposited at a 

rate of 0.15 Å s
-1

 and 0.5–0.8 Å s
-1

, respectively. Each substrate contained four 

organic solar cells, which structure is shown in Fig. 4.1. 

Final thermal annealing was done on a hot plate at 135 ºC for 20 min. 

All processing was done in a glove box under nitrogen atmosphere. 
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Fig. 4.1. Schematic structure of organic bulk heterojunction solar cell with the structure 

ITO/PEDOT:PSS/P3HT:PC70BM/Ca/Ag. 

 

4.2.2.  Electrical and optical characterization 

The crystalline structure of the active layer was analyzed using micro-X-

ray diffraction (μ-XRD) measurements from a Bruker-AXS D8-Discover 

diffractometer equipped with a parallel incident beam (i.e. Göbel mirror), a 

vertical θ-θ goniometer, a XYZ motorized stage and with a general area 

diffraction system (GADDS). Samples were placed directly on the sample holder 

for reflection mode. An X-ray collimator system close to the sample allows to 

analyze areas of 500 m. Diffraction patterns were recorded over an angular 2 

range of 3
o
 to 40

o
. The data were collected with an angular step of 0.05

o
 at 10 s 

per step. The X-ray diffractometer was operated at 40 kV and 30 mA to generate 

Cuk radiation. The wavelength used was 0.154 nm. 

The current density-voltage (J-V) characteristics of the devices were 

measured with a Keithley 2400 source measurement unit in combination with a 

solar simulator (Abet Technologies model 11000 class type A). The appropriate 

filters were utilized to faithfully simulate the AM 1.5G irradiation solar 

spectrum under standard specifications. [10] A light intensity of 100 mW/cm
2
 

equivalent at 1 sun illumination was used to test the organic solar cell devices. 

The light intensity of the solar simulator was calibrated with a silicon photodiode 

(NREL). 
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4.3. Results and discussion 

In this section, we have demonstrated that the preparations of different 

blend solutions at different ratios have an important influence on the 

performance parameters of the devices and these are correlated with the 

interchains of the polymer in the blend. An optimum ratio of the polymer and 

fullerene to manufacture the blend layer is possible to get a high density current 

in the photovoltaic devices. 

 

4.3.1.  Electrical characterization by J-V under light 

The J–V characteristics of the devices were measured in a sealed capsule 

under inert nitrogen atmosphere immediately after removing from the vacuum 

system. The short circuit current density, open circuit voltage (Voc), fill factor 

(FF) and power conversion efficiency (PCE of the fabricated devices are 

summarized in Table 4.1. The extracted parameters of each device under 

illumination were done using an electrical circuit to model the measured J-V 

characteristics. [11-13] 

Fig. 4.2 shows the J-V curves under illumination of the devices 

prepared with blend compositions S1, S2, S3, S4 and S5 and measured at 300 

K. Devices made with the S1 blend shows the best performance with a Jsc of 

7.77 mA/cm
2
, Voc of 0.64 V, FF of 61% and PCE of 3.01%. These results agree 

with other reports made in a similar manner of fabrication having the power 

conversion efficiency with values around of 3%. [14, 15] The total of devices 

that were made with each blend solutions was sixteen. 
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Table 4.1 Performance parameters and parameters extracted from the model used for all 

the blend films under standard light conditions (100 mW/cm
2
) 1 sun at 300 K. Jsc is the 

short circuit current density, Voc is the open circuit voltage, FF is the fill factor, PCE is 

the power conversion efficiency, Io is the saturation current for the diode D, n the 

ideality factor, finally Rs and Rsh are the series and shunt resistance for the overall cell 

structure. [11-13] 

 

Fig. 4.2. J-V characteristics are shown for the different blend layers manufactured with 

P3HT:PC70BM.  
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Cells using S2, S3, S4 and S5 blends presented an average Jsc of 9.90%, 

19.9%, 43% and 0.77% less than that S1 blend. The effect of reduction of Jsc as 

the PC70BM in the blend was increased has been reported before [16, 17] and is 

attributed to the disorder induced in the structure when the amount of fullerene in 

the blend is increased. To confirm this assumption we show the -XRD for 

different blend solutions. 

 

4.3.2.  Analysis by -XRD in the different blend layers 

Results from μ-XRD analysis are shown in Fig. 4.3 a), b) and Table 

4.2. In Table 4.2 it is seen the relation of Jsc with the strong first and second 

order reflections at 2 angles for layer blends S1, S2, S3, S4 and S5.  

For all the samples, the first peak in the diffractogram due to reflections 

of 2(100) angle is around 5 degrees. The peak in this region corresponds to the 

plane (100) and the value of 2(100) angle is related to the alkyl interchain 

distance-spacing (d100) in P3HT, also known as the lattice constant. [18] The 

intensity of the peak is related to the presence of nanodomains. [19] 

The peak intensity was the highest for S1, followed by S5. However, 

the values of the peak intensities of S2, S3 and S4 were 15.2%, 35.7% and 

44.3% less than that S1 layer. The alkyl interchain distance-spacing d100 in 

P3HT was calculated using Bragg’s law [19]: 

2 d sin n       

where 2 is the angle between the incident and scattered X-rays wave vectors, 

is the wavelength incident beam ( = 0.154 nm) and n is the interference 

order. 
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Fig. 4.3. Diffractogram of -XRD of P3HT:PC70BM for film blends S1, S2, S3, S4 and 

S5: a) Range values of 2 from 3
o
 to 40

o
. b) Zoom of the first order reflections angle in 

the plane (100), corresponding to the interchain distance spacing in P3HT represented 

as is shown in c) the edge-on. d) Represent the other form of in face-on orientation for 

P3HT for the plane (010). 

 

Using the Eq. 1, it is calculated the distance-spacing d100 in P3HT for 

S1, S2, S3, S4 and S5 and are shown the values in Fig. 4.4. For this reason, the 

interdigitated alkyl chains distance in S1 blend are packed closer in the lamellar 

structure with edge-on see Fig. 4.3 c) and are reported in ref. [19-22]. This more 
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packed chains perpendicular to the substrates will improve transport of charge 

carriers, increasing Jsc. 

 

Table 4.2 Values obtained from -X-ray diffractions diffractograms of the different 

P3HT:PC70BM blends S1, S2, S3, S4 and S5. 2 and 2 are the angle between 

the incident and scattered X-ray wave vectors for the first and second order reflections, 

respectively.  

 

The presence of more nanodomains correctly oriented between the 

electrodes will also enhanced carrier transport. According to results in Fig. 4.4, 

the increase of wt% of PC70BM in the blend increases the separation between 

main chains. However, the peak intensity related to the presence of 

nanodomains first reduces with the increase of wt% but starts to increase again 

for sample S5. Since the values of Jsc for S1 and S5 are similar, it confirms that, 

as expected, both the presence of the nanodomains and the interchain distance 

affect the transport properties. 

The second peak localized at 2(010) angle around 24 degrees, 

corresponds to the plane at (010) and is related to the face-to-face packing ring 

d010 of P3HT in the blend, see its representation in Fig. 4.3 d) and are reported 

in ref. [19, 23]. The smaller the separation the better transport properties, which 

in this case will correspond again to S1. 
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The less interchain spacing d100 and d010 in both planes (100) and (010) 

for P3HT was observed for the blend P3HT:PC70BM with a ratio of 1:0.5 wt % 

as shown in Fig. 4.4. 

 

Fig. 4.4. The graph shows the distance-spacing of distribution for d100 and d010 that there 

between two lamellar structure of P3HT inside of the blend layer P3HT:PC70BM in the 

plane (100) and (010) with a ratio at 1:0.5, 1:0.8, 1:1.0, 1:1.2 and 1:1.5 wt %.  

 

As the continuum percolation paths in the layer of the blend are 

reduced, the charge mobility reduces and less charge carriers are collected at the 

contacts, which turns into a reduction of the Jsc of the device. In this same 

experiment, it is seen that as the wt% of PC70BM increase, Voc reduces, which a 

behavior is reported before. [14] The excess of the PC70BM can alter the 

distribution of regions corresponding to the constituent of the blend, affecting 

the transport of charge carrier between the electrodes and increase the charge 

carrier recombination in the photovoltaic device. [9] 
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4.4. Conclusions 

In this chapter, we have presented that the lattice constant between two 

lamellar structures of P3HT inside of the blend P3HT:PC70BM of bulk 

heterojunction composites is affected by the PC70BM amount in the blend. 

Increasing the amount of PC70BM increases the disorder of the interchains of 

the polymer in the blend and there is an increase in the charge carrier 

recombination. The micro-X-ray diffraction showed that the less interchain 

distance-spacing d100 in P3HT of 1.64 nm, corresponded to the blend S1 (1:0.5 

wt%), which showed highest Jsc, since this condition helps to have a better 

charge carrier transport through the active layer. The μ-XRD analysis also 

confirms the presence of nanodomains in the polymer active layer. The 

information of μ-XRD analysis was correlated with the values of the electrical 

characterization in order to understand how the parameters of the organic solar 

cells are affected.  
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Chapter 5 

Analysis of degradation mechanisms in 

PTB1:PCBM solar cells under different 

environments 

The degradation on the organic solar cells is one of many issues that are 

not yet understood so that it is necessary to do some investigations. In this 

chapter we investigate the degradation of bulk heterojunction solar cells based 

on the polymer poly [[4,8-bis (octyloxy) benzo (1,2-b:4,5-b') dithiophene-2,6-

diyl) (2-((dodecyloxy) carbonyl) thieno(3,4-b) thiophenediyl]] (PTB1) and the 

fullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) under different 

environments: dry nitrogen atmosphere (H2O < 0.1 ppm, O2 < 0.1 ppm), air (60 

± 5% relative humidity) and under encapsulation in accordance with established 

ISOS-D1 protocols. The evolution of the electrical measurements under dark 

and illumination conditions is used to analyze the degradation process during 
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5300 h and its relationship with the physical mechanisms. The degradation in 

the efficiency of the solar cells is mainly due to a reduction of short circuit 

current density (JSC) and fill factor (FF) while open circuit voltage (VOC) is the 

most stable parameter in all studied conditions. The TS80 lifetimes for power 

conversion efficiency (PCE) of samples exposed to nitrogen and air 

environments and under encapsulation were 990 h, 4 h and 48 h, respectively. 

The analysis of the PCE decay permits to identify and evaluate the intensity of 

different degradation mechanisms (intrinsic polymer chemical reactions or by 

diffused environmental oxygen or water) in the different conditions. 

5.1. Introduction 

During the last years, it can be seen a rapid and significant advance in 

the field of organic solar cells, where devices with efficiencies of 12% have 

already been reported. [1] The use of polymeric organic semiconductor 

materials mixed with fullerene to fabricate bulk heterojunction (BHJ) cells has 

been one of the most important discoveries to improve the characteristics of 

organic photovoltaic devices. [2] Among advantages of these organic 

semiconducting materials with respect to inorganic materials are of low-cost, 

light-weight, possibility to deposit on large areas and on flexible substrates, as 

well as simpler processing techniques allowing the fabrication of devices for 

different applications, which sometimes are not possible to obtain for inorganic 

materials. [3, 4] Inside solar energy harvesting, in order to make an effective use 

of the photovoltaic effect in organic materials, it is necessary to develop 

appropriate architectures, semiconducting materials that reach or cover up as 

much as possible the solar spectrum, as well as good control of the molecular 

ordering inside the active layers. [5] In spite of the important advances obtained 
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at present, the reliability of the cells is still low and their lifetime short and not 

many studies are devoted to understanding the degradation processes and to 

solve them. [6]  

The main progress in bulk heterojunction organic solar cells (BHJ-

OSC) has been achieved by introducing new materials with low-band gap, new 

processes and new technologies. [7-10] The efficiency in polymer-blend BHJ 

devices has been steadily improved, but their practical application is limited by 

the relatively short lifetime of the devices. During the last years, much effort is 

being made to understand the causes of the degradation process in organic 

photovoltaic devices [11-13] and how to overcome them. However, it is a 

complex problem that depends on many factors, such as the device structure, the 

active material layer and the device fabrication process, among others. [14-18]  

The poly [[4,8-bis (octyloxy) benzo (1,2-b:4,5-b') dithiophene-2,6-diyl) 

(2-((dodecyloxy) carbonyl) thieno(3,4-b) thiophenediyl]] (PTB1)  has been used 

as a promising donor in junction-type solar cells, due to its low-band gap, 

relatively high molecular weight, solubility in halogenated solvents, high carrier 

mobility, long exciton diffusion length and strong absorption in the visible 

region. [19-21] The energy levels of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) are reported to 

be -4.90 eV and -3.20 eV, respectively. [19, 22] A power conversion efficiency 

of 4.76% has been reported for devices fabricated from blends of PTB1 with 

[6,6]-phenyl C61-butyric acid methyl ester (PCBM) [21], however, an analysis 

of the degradation behavior for this type of BHJ-OSC when the devices are 

operated in air, nitrogen and under encapsulation has not yet been reported.  

Most studies regarding the lifetime and degradation of OSC have 

focused on P3HT polymer and the main factor responsible for the degradation is 

related to the permeation of oxygen and water molecules into the active layer or 
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the metal electrode. [8, 10, 12, 17] Oxygen and water can react with the 

polymeric or organic materials, as well as with the metal at the contact 

electrode, changing their properties. Other cases of degradation observed are 

associated with the illumination when the oxidation of the active layer is 

accelerated in combination with the presence of molecular oxygen and water. 

[23, 24]  

In this chapter, we present a long-term stability study of BHJ-OSC 

based on low-band gap PTB1 polymer done under ISOS-D1 protocols. [25] 

Several samples were analyzed under different environments such as in dry 

nitrogen, air and under encapsulated (adhesive applied) with UV curing. The 

observed degradation of the OSC electrical parameters over a time interval up to 

5300 h are studied and related to the physical mechanisms taking place in the 

device. The study is done by modelling the evolution of power conversion 

efficiency parameter as the sum of two different exponential decays and 

obtaining characteristic decay times that are then related to the possible 

predominant degradation mechanisms. 

5.2. Materials and methods 

This section describes the preparation and the exposition under different 

environments the solar cells. Protocols ISOS-D1 was applied on all the devices 

under analysis. The solar cells were electrically characterized under light and 

dark conditions. The parameters and conditions to do these studies are described 

below. 
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5.2.1.  Device preparation and characterization 

Indium tin oxide (ITO) coated glass substrates of 15 /square and 120 

nm of thickness were purchased from PsiOTec Ltd. PEDOT:PSS FHC was 

acquired from Ossila Ltd.; PTB1 (Mw 22900 g mol
-1

) and PCBM (Mw 910.88 

g mol
-1

) were purchased from One-material and Sigma-Aldrich, respectively. 

High-purity (99.99%) Ag wire was obtained from Testbourne Ltd., and Ca 

pellets with high-purity (99.99%) were purchased from Kurt J. Lesker.  

Photovoltaic (PV) devices were fabricated on pre-cleaned, patterned 

ITO glass substrates. 30 nm of PEDOT:PSS was deposited on the substrates by 

spin coating at 3500 rpm for 45 s and annealed at 110 ºC during 20 min. The 

PTB1:PCBM active blend with a weight ratio of 1:1 was dissolved in 15 mg/ml 

of o-dichlorobenzene (ODCB) solution and left stirring around 24 h at 40 ºC. 

The active film was deposited on top of the PEDOT:PSS layer by spin coating 

at 1000 rpm for 30 s, obtaining 100 nm of thickness. Afterwards, the cathode 

layer, consisting of 25 nm of Ca and 100 nm of Ag, was deposited by thermal 

evaporation in an ultra-high vacuum chamber (9 x 10
-7

 mbar), at a rate of 0.04 

nm/s and 0.05-0.08 nm/s respectively, on top of the active layer. Appendix A is 

depicted the process fabrication of the organic solar cell. 
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Fig. 5.1 Schematic structure of organic bulk heterojunction solar cell with the structure 

ITO/PEDOT:PSS/PTB1:PCBM/Ca/Ag. The inset shows molecular structures of the 

PTB1 and fullerene derivatives.  

The active area of the devices was 0.09 cm
2
 as defined by the geometric 

overlap between ITO and Ag. No further annealing was done on the solar cells 

after the evaporation of metallic contacts. Fig. 5.1 shows the device structure 

used for this analysis. In the same figure, the molecular structure of PTB1 and 

PCBM is shown. All process steps were done in a glove box under nitrogen 

atmosphere. Several OSC were prepared on the same substrate to check the 

reproducibility of the electrical characteristics of devices fabricated at the same 

time and their further degradation behavior.  

 

5.2.2.  Degradation testing conditions and protocols 

The stability testing used in this analysis was in accordance with ISOS-

D1 protocols. [25] Three groups of devices were prepared to study the 

UNIVERSITAT ROVIRA I VIRGILI 
FABRICATION OF BULK AND INTERDIGITATED ORGANIC SOLAR CELLS AND ANALYSIS 
OF DEGRADATION MECHANISMS. 
Victor Samuel Balderrama Vázquez 
Dipòsit Legal: T 1921-2014



5. Analysis of degradation mechanisms in PTB1:PCBM solar cells under 

different environments 

 

97 

 

degradation process of their electrical characteristics under 3 different 

environments: a) in electronic grade 99.999% N2 (H2O < 0.1 ppm, O2 < 0.1 

ppm), b) in ambient conditions (60 ± 5% RH) and c) encapsulated. The 

photovoltaic cell characteristics, namely the open circuit voltage (VOC), short 

circuit current density (JSC), fill factor (FF) and power conversion efficiency 

(PCE) of the devices were measured with a Keithley 2400 source measurement 

unit in combination with a solar simulator (Abet Technologies model 11000 

class type A, Xenon arc), automatically controlled with a computer. Appropriate 

filters were used to reproduce the AM 1.5G spectrum. A light intensity of 100 

mW/cm
2
 was used to test the organic solar cell devices under illumination. In 

addition J–V dark curves were collected for all the photovoltaic devices.  

During the first 288 hours, all sample groups were stored in N2 at 23 
o
C. 

In this time the devices were measured under light at 1sun and after the samples 

were stored under darkness. The photovoltaic solar cells in this period of time 

did not show any substantial change in their PCE. So, the group of devices was 

divided into three subgroups.  The first group named S1 remained in a dry N2 

environment, in the dark and at 23 ºC for the rest of the experiment. The second 

group of devices, named S2, was transferred to ambient conditions, exposed in 

air and kept in an open chamber in the dark with storage temperature at 23 
o
C, 

while the third group of devices, named S3, was encapsulated using a top glass 

sealed to the bottom glass with the glue adhesive [3-(2,3-

epoxypropoxy)propyl]-trimethoxysilane, hydroxypropyl methacrylate (EPT-

HM)). The encapsulated cells were exposed to UV radiation (ELC-410 light 

curing system) for not more than 20 s to cure the glue. The process was done 

under nitrogen atmosphere. After encapsulation, the S3 group was transferred to 

ambient conditions and kept in an open chamber in the dark with storage 

temperature of 23 
o
C. The current density–voltage (J–V) curves under 

illumination and dark were measured for the three groups of cells.  
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5.2.3.  ISOS-D1 protocols 

Appendix B is depicted in general the ISOS-D1 protocols applied to the 

organic solar cell. The ISOS protocols require to report four pairs of values to 

accurately describe the pattern of the decay of a given solar cell performance 

metrics (Efficiency, or alternatively VOC, JSC, FF). The first measurement point, 

E0 is the initial testing measurement immediately after the device fabrication, 

and its corresponding time T0 is considered as the origin. A second 

measurement pair (ES, TS) corresponds to an efficiency value and a time after a 

first stabilization of the device, before subjecting it to further ageing conditions. 

This time can be arbitrarily defined in order to describe accurately this 

stabilization process. The third and fourth pairs of parameters, (E80, T80) and 

(ES80, TS80) represent the performance of the device after it has decayed 20% 

from its initial or second testing measurement, respectively. [25, 26, 27] 

Furthermore, lifetimes of photovoltaic cells at TS50, TS30 and TS10 were obtained, 

analyzed and compared between them and with the different groups of devices 

(S1, S2 and S3). Four devices of each group were taken to follow the 

degradation. 

The optical microscope ZEISS AXIO Imager was used to obtain images 

from the surfaces of the metallic contact of the devices to correlate to them with 

the process of degradation exposed in the different environments.  
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5.3. Results and discussion  

The analyses of the degradation over time in the solar cells exposed 

under different environments were analyzed by J-V curves. The predominant 

degradation mechanisms were correlated with the performance parameters of 

the cells. The PCE decay obtained over time was modelled by the superposition 

of two exponential functions. The parameters extracted from the exponential 

function were interpreted as the degradation ratio that experiment each group of 

devices exposed under different environments.     

 

5.3.1.  J-V characterization of devices under N2 

environment 

Table 5.1 shows the average parameters of the organic solar cells just 

after fabrication. The variation from sample to sample is due to small variations 

in the thickness or quality of the Ca/Ag top electrodes and/or modifications in 

film morphology. The champion OSC of our process presented a PCE of 5.2%. 

For this study, we analyzed cells with efficiency of 4.4±0.2%. During 288 h, the 

degradation process was nominally identical for all devices presenting similar 

qualitative behavior. The VOC, JSC, FF and PCE fell 2.9%, 19%, 1.9% and 22%, 

respectively regarding cells just after fabrication. This time was chosen as the 

second measurement time, TS = 288 h.  The analysis of degradation began after 

the three groups were formed, and exposed under different environments as was 

mentioned above. The study is presented in relative values with respect to this TS 

and following the ISOS-D1 protocols.  
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Table 5.1 Champion and average performance parameters of PTB1:PCBM solar cells 

just after fabrication.  

 

Fig. 5.2a shows typical degradation of J–V curves under illumination, 

for samples kept in N2. The samples were only exposed to light during the J–V 

measurement (for less than 1 min per measurement) and afterwards were 

returned to glove box.  

 

Fig. 5.2 (a) Illuminated J–V curves of PTB1:PCBM solar cells of S1 group for different 

degradation times under nitrogen environment during 5300 h. All of the devices were 

measured under AM 1.5G spectrum condition (100 mW/cm
2
). (b) Normalized 

performance parameters of devices regarding to their initial values as a function of time. 

VOC is open circuit voltage, JSC is the short circuit current density, FF is fill factor and 

PCE is power conversion efficiency. 

The normalized behaviors with the new initial time of cell average 

parameters are presented in Fig. 5.2b. Following the ISOS-D1 protocol, the 
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lifetimes of the studied devices are summarized in Table 5.2. The table displays 

the values of ES (the initial PCE after the stabilization phase) and the times TS80, 

TS50, TS30 and TS10, as defined in the protocols [25] for all the studied devices. The 

reported PCE value corresponds to the median of the measured values, while the 

TS are taken from the most stable device. The lifetimes reached up for the S1 

group of devices under nitrogen environment at TS80, TS50, and TS10 are presented 

in Table 5.2. The performance parameters such as VOC, JSC, FF and PCE 

decreased slowly until TS96 reached in less than 80 hours and falling down at 

0%, 0.5%, 1.5% and 4.3% respectively. The performance loss of solar cells in 

this time period is negligible. After, PCE presented an exponential decay until 

TS30 in 5300 h. A TS30 the VOC, JSC, FF and PCE fell 1.0%, 65.2%, 7.7% and 

69.4% respectively. The variation of PCE with time is mainly due to the 

variation of JSC.  

 

Table 5.2 Summary lifetime data for device under N2 environment conditions given in 

hours. 

The decay on the PCE is modeled by the superposition of two 

exponential functions with different time constants, as was previously done in 

ref. [28, 29].  

PCE(t) / PCE(0) = A1 e 
(-t / T1)

 + A2 e 
(-t / T2)

    (1)  

where PCE(0) is the relative initial power conversion efficiency (t = 0 h). The 

time constants of degradation (T1, T2) and the weighing (A1, A2) as the 
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degradation power factor of the individual exponential functions are obtained via 

a least-square fit. 

For the cells left in N2, Fig. 5.3 shows measured and modeled curve 

using Eq. (1). The value of T1 and T2 was 4800 h for both of them, while A1 = 

A2 = 0.5. The high degradation time constant and slow degradation can be 

attributed to that main degradation mechanism by chemical reaction between the 

polymeric and metallic materials and not being important by the effect of very 

low content of both water and oxygen in the N2 gas, (< 0.1 ppm). These results 

are in good agreement with previous works that report long lifetimes of devices 

fabricated with other materials exposed only under nitrogen environment. [30, 

31] These works indicate that the dominant process is the degradation of the 

electrode-organic material interface due to water and oxygen diffusion. 

Furthermore, the polymer can be doped by the diffusion of calcium ions from 

the electrode, causing additional polymer degradation. 

 

Fig. 5.3 Fit of the PCE normalized versus time using Eq. (1) for the S1 group of solar 

cells. The filled symbols are the experimental data and the line is the fitting curve. 

Fig. 5.4a shows J–V curves under dark for S1 devices initial and 

degraded as a function of exposure time in nitrogen environment. It is well 

known that, at high voltage / high forward bias current, J is dominated by the 
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overall series resistance (RS) that includes the bulk and the contact resistance of 

the device. This resistance RS is related to the transport properties of the 

semiconductor material and to the properties of the contacts [32] and its value 

per unit area, RS0, can be calculated by the inversed slope of the J–V curve at the 

highest operating voltage range where the curve becomes linear: RS0 = (J /V)
−1

. 

At low voltage / low current, near JSC, J is dominated by the shunt 

resistance, RSH, which is related to the recombination of charge carriers near the 

dissociation site (e.g. Donor/Acceptor interface of both organic materials 

PTB1:PCBM in this case), that is, it also depends on the transport properties of 

the semiconductor. The value of shunt resistance per unit area, RSH0, can be 

calculated by calculating the inverse slope around 0 V of the J–V curve, RSH0 = 

(J / V)
−1

.  

RS0 and RSH0 for S1 devices, extracted from dark J–V curves, are shown 

in Fig. 5.4b. It is observed that, RS0 in S1 photovoltaic devices, increases from 

1.35 -cm
2
 reaching 3.66 -cm

2
 after 5300 h. RSH0 started from a value of 1.46 x 

10
6
 -cm

2
, and after falling until reach 8.16 x 10

2 
-cm

2
 at 5300 h.  

The small increase of RS0 can be attributed to several factors such as the 

degradation of the active layer of the solar cells due to small reaction with water 

or oxygen, the electro-chemical reaction within the PEDOT:PSS layer or at its 

interface with the active and ITO layers, the reaction of calcium with silver 

electrode. Some of these possibilities were analyzed in detail as in [28].  
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Fig. 5.4 (a) Dark J–V curves for S1 group of devices under nitrogen environment and its 

degradation process through time by 5300 h. (b) Variation of shunt resistance per unit 

area, RSH0 and series resistance per unit area, RS0 over time.  

 

 

5.3.2.  J-V characterization of devices under air 

environment 

Fig. 5.5a shows illuminated J–V curves as a function of time of devices 

named S2, left in ambient conditions, while Fig. 5.5b shows the variation with 

time in ambient conditions of the performance parameters. Parameters were 

normalized to their initial values before exposure to air. In this case, a rapid 

degradation was observed similarly as in [33]. The lifetimes reached up by S2 

group of devices under air environment are shown in Table 5.3. The 

performance parameters such as VOC, JSC, FF and PCE decreased rapidly in TS10 

by 80 hours being of 5.3%, 83.8%, 30.9% and 90.1% respectively. Finally with 

TS1 for 384 h under air the VOC, JSC, FF and PCE fell 60.3%, 99.7%, 94.1% and 

99.9%, respectively.  
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Fig. 5.5 (a) Illuminated J–V curves of PTB1:PCBM solar cells of S2 group for different 

degradation times under air environment during 384 h. All of the devices were 

measured under AM 1.5G spectrum condition (100 mW/cm
2
). (b) Normalized 

performance parameters of devices regarding to their initial values as a function of time. 

VOC is open circuit voltage, JSC is the short circuit current density, FF is fill factor and 

PCE is power conversion efficiency. 

Applying Eq. (1) to PCE, the experimental curve was modeled with T1 

and T2 equal to 10 h and 80 h respectively, while A1 = 0.76 and A2 = 0.30, as it 

is shown in Fig. 5.6 . We can suggest that the degradation mechanism present in 

the devices for the first and second time constant of degradation T1 and T2 is 

due to by water and oxygen, respectively as was observed similarly in [28].  

 

Table 5.3 Summary lifetime data for device under air environment conditions given in 

hours. 
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Fig. 5.6 Fit of the PCE normalized versus time using Eq. (1) for the S2 group of solar 

cells under air environment. The filled symbols are the experimental data and the line is 

the fitting curve. 

For devices with normal geometric (no inverted), manufactured with 

PEDOT:PSS as hole transport layer and under air environment, the degradation 

process has been observed that the effect of water in the degradation process is 

significantly more important than the effect of molecular oxygen, [14, 31, 34], 

probably because the PEDOT:PSS accelerates the oxidation process due to its 

hygroscopic nature. The degradation we observed in air shows a similar behavior 

in the sense that, if water is present, its effect will be predominant. [29, 35] 

 Degradation of the J–V curves under dark for S2 devices is shown in 

Fig. 5.7a as a function of exposure time in air, from which the values of RS0 and 

RSH0 were extracted. Fig. 5.7b shows the variation with time of RS0 and RSH0. RS0 

had a rapid increase from 1.37 -cm
2
 to 1.38 k-cm

2
 regarding of its initial time 

to 384 h, respectively, probably caused by the reduction in the mobile charge 

density and mobility associated to creation of deep and shallow tramps due to the 

interaction of oxygen and water with the polymer, as was reported in [36] or due 

to the creation of an isolation layer between the blend active layer and the 

metallic contact, hindering the carrier charges to be collected. This is consistent 

with the strong reduction in FF observed in Fig. 4b. RSH0 started with a value of 
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1.27 x 10
6
 -cm

2
 before exposure in air. Afterwards, it falls, reaching 6 x 10

3 
-

cm
2
 at 384 h.  

 

Fig. 5.7 (a) Dark J–V curves for S2 group of devices under air environment and its 

degradation process through time for 384 h. (b) Variation of shunt resistance per unit 

area, RSH0 and series resistance per unit area, RS0, over time.  

 

5.3.3.  J-V characterization of devices under encapsulation 

In order to create robust devices capable of sustained operation in 

ambient working conditions it is necessary a package. Among materials used to 

encapsulate are glass, polyethylene terephthalate (PET), polyethylene 

naphthalate (PEN). [13, 23, 26, 37, 38] We choose glass substrate as transparent 

and airtight barrier in combination with the UV thermosetting epoxy glue EPT-

HM material to encapsulate the group of devices named S3. Fig. 5.8a shows 

illuminated J–V curves of S3 samples as a function of time, while Fig. 5.8b 

shows the evolution of performance parameters normalized to their relative 

initial values after encapsulation. The lifetimes reached up by the S3 group of 

devices under encapsulation at TS80, TS50, and TS10 are presented in Table 5.4. 

The VOC, JSC, FF and PCE start to reduce moderately in TS70 by 80 hours being of 
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0.1%, 24.9%, 0.8% and 29.1% respectively. Finally with TS15 by 5300 h under 

encapsulation the VOC, JSC, FF and PCE fell 3.4%, 76.1%, 34.8% and 85.1%, 

respectively.  

 

 

Fig. 5.8 (a) Illuminated J–V curves of PTB1:PCBM solar cells of S3 group for different 

degradation times under encapsulation during 5300 h. All of the devices were measured 

under AM 1.5G spectrum condition (100 mW/cm
2
). (b) Normalized performance 

parameters of devices regarding to their initial values as a function of time. VOC is open 

circuit voltage, JSC is the short circuit current density, FF is fill factor and PCE is power 

conversion efficiency. 

 

 

Table 5.4 Summary lifetime data for device under encapsulation environment conditions 

given in hours. 
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Applying Eq. (1) to PCE, the experimental curve was modeled with T1 

and T2 equal to 4800 h and 80 h respectively, while A1 = 0.47 and A2 = 0.53, as 

it is shown in Fig. 5.9. We can observe that the PCE of the devices shows a time 

constant of degradation similar to the samples held in N2 and air.  

 

Fig. 5.9 Fit of the PCE normalized versus time using Eq. (1) for the S3 group of solar 

cells. The filled symbols are the experimental data and the line is the fitting curve. 

We can suggest that the degradation mechanism present in the devices 

for the first and second T1 and T2 is due to chemical reaction of the materials 

and oxygen, respectively. After a certain amount of time, the oxygen present in 

the glue material can become active and reach the device, making the 

degradation process to occur faster being with more influence in this analysis. In 

the molecular structure of glue material used for encapsulation has oxygen as is 

shown in Fig. 5.10. The adhesive material to encapsulate the PTB1:PCBM solar 

cells was [3-(2,3-Epoxypropoxy)propyl]-trimethoxysilane, hydroxypropyl 

methacrylate (EPT-HM) in combination with UV curing. The EPT-HM was 

bought at Henkel Company. To support the above indicated, we made a micro-

analysis of X-ray of this epoxy glue material that was used for the encapsulation 

of devices and the results are presented in Appendix C.  
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Fig. 5.10 Molecular structure is shown for EPT-HM material.  

Despite being protected by the glue, it seems quite inevitable that after a 

sufficiently long time, water and other oxidizing agents present in the external 

ambient conditions, diffuse across the glue or enters though the edges of the seal, 

reaching the device and contributing also to its degradation, although this is 

expected to take longer times. Some reports affirm that the degradation of the 

adhesive used to seal the devices may induce the release of some by-products 

which can induce the decay of the cell. [37] At the end of its lifetime is possible 

that other oxidizing agents can also contribute to accelerate the process of 

degradation.  

Fig. 5.11a shows dark J–V curves of initial and degraded S3 devices as a 

function of time under encapsulation. Fig. 5.11b shows the trend of RS0 and RSH0 

for the same samples. RS0 shows a moderate increase from 1.76 -cm
2
 to 16.42 

-cm
2
 in the interval from initial time to 5300 h, respectively.  RSH0 started from 

a value of 1.9 x 10
6
 -cm

2
 just before of being encapsulated, after it has a small 

fall reaching a value of 5.1 x 10
4
 -cm

2
 at 144 h and again it has a little increase 

until 4.2 x 10
5 
-cm

2
 at 5300 h.  

Appendix D is depicted the possible degradation processes involved in 

the organic solar cell. 
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Fig. 5.11 (a) Dark J–V curves for S3 group of devices under encapsulation and its 

degradation process through time by 5300 h. (b) Variation of shunt resistance per unit 

area, RSH0 and series resistance per unit area, RS0, over time.  

From the Table 5.2, Table 5.3 and Table 5.4 we can analyze that at T80 

for devices under encapsulation the lifetime is 12 times more than that air 

devices. Although degradation is higher for encapsulated devices in 21 times 

more than for devices stored in nitrogen environment, results show that both 

approaches protect the device from degradation compared to leaving them in 

air, remarking the importance of finding an efficient encapsulation procedure 

and material in order to extend the lifetime of the solar cells.  

Table 5.5 shows the summary of values extracted from Eq. (1) (i.e. T1, 

T2, A1 and A2) for each group of cells analyzed under different environments. 

The result of divide A1/A2 was called as r. The calculated values of r when the 

samples were left in nitrogen, air and encapsulated environment presented and 

followed a behavior to be r = 1, r > 1 of 2.53 and r < 1 of 0.88, respectively. 
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Table 5.5 Parameters obtained from fit of the normalized PCE by Eq. (1) for each group 

of cells analyzed under different environments. T1 and T2 are the time constants, A1 and 

A2 are the degradation power factors and r is the ratio of A1/A2.  

 

5.3.4.  Optical microscopic images 

Fig. 5.12 shows the optical microscope images of the superficial area of 

Ca/Ag metallic contact to observe the effect of degradation in different ambient 

for the analyzed devices. Fig. 5.12 a) and b) show the clean surface of the 

metallic contact for the samples right after fabrication. Fig. 5.12 c) and d) show 

the same surface after 5300 h in N2 ambient, where small protrusions around of 

500 nm are observed. Fig. 5.12 e) and f) show the contact surfaces in devices 

after 384 hours in air. The corrosion is more evident showing protrusions up to 

1500 nm size. Ca is highly reactive with water and oxygen at room temperature, 

although the reaction with oxygen is less. [39] The enhanced degradation in air 

can be explained by this situation, since the presence of water in the air is 

relatively high, compared to the encapsulated devices, where the presence of 

oxygen is predominant in one period of its lifetime, or to the devices kept in N2 

only is predominant by the effects of chemical degradation between the materials 

of the layers. In all cases, the oxidized material causes an expansion in all 

directions resulting in the formation of protrusions on the outer electrode surface 

centered on the microscopic pinholes. [31, 40]  

Other effects that can occur are the diffusion of Ag and Ca in 

combination with H2O and O2 continues into the active layer (PTB1:PCBM) 

causing a degradation everywhere.  
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Fig. 5.12 Optical microscopic images of the metallic contact surface of PTB1:PCBM 

solar cells from all groups exposed in their different environments and degraded over 

time. Images a), c), e) and g) were obtained at 25 X of magnification and the images b), 

d), f) and h) were obtained at 500 X. The images a) and b) represent the metallic contact 

surface free of protrusions right after manufacture. Images c) and d) represent the 

metallic contact surface of S1 devices under nitrogen environment obtained at 5300 h; 

e) and f) are the images of S3 devices exposed in air environment obtained at 384 h; g) 

and h) are the images of S3 devices under encapsulation obtained at 5300 h.  

This degradation could cause the loss of conjugation in the polymer, a 

decrease in the interface area between polymer/acceptor materials and the 

formation of organo-calcium, organo-silver and oxides compounds with the 

polymer. [41] Also, when the ITO and PEDOT:PSS interface is exposed to H2O 

and O2 the hygroscopic nature of PSS has the absorption of water in it can cause 

the etching of the ITO layer as already mentioned. [11] The distinctive S-shaped 

J–V curve measured under illumination that was observed in samples left in air 

can be attributed also to the formation of an insulating layer at the Ag/Ca 

electrode after reacting with water or oxygen, as reported in [42-44]. All these 

effects will be enhanced when devices are left in ambient conditions.  

Fig. 5.12 g) and h) show contact surfaces in encapsulated devices, where 

the average size of protrusions was less than 300 nm after 5300 h. Although the 

size of the protrusion is smaller the damaged area is bigger, which it is consistent 

with the more pronounced degradation observed with respect to samples left in 

N2.  

In summary, the principal contribution to the decreases in the efficiency 

is the degradation of the polymer and the calcium electrode-polymer interface. 

The calcium is highly reactive with the water and oxygen due to low work 

function. Furthermore, the chemical interaction between the calcium electrode 

and the polymer may lead to polymer degradation, lowering device lifetimes. 
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Also there is good evidence from works on LEDs where the calcium can dope 

conjugated polymers affecting their lifetimes. [41, 45] Depending on the 

environment that is exposed the organic solar cells these presented a slow or fast 

time degradation ratio, as it was shown above. The values of time degradation 

ratio for devices under air compared to the values of devices stored in a nitrogen 

environment demonstrate that further research in encapsulation should lead to 

devices that function over extended periods of time. 

5.4. Conclusions 

In this contribution, we reported the lifetime and degradation of 

ITO/PEDOT:PSS/PTB1:PCBM/Ca/Ag solar cells in nitrogen and air 

environments and under encapsulation by the analysis of the time evolution of 

current-voltage characteristics both under illumination and dark applied ISOS-

D1 protocols. In a nitrogen atmosphere the lifetime (TS80) was 990 hours, in a 

ambient atmosphere the lifetime was 4 hours, and under encapsulation the 

lifetime was 48 hours. It has been shown that the evolution of the power 

conversion efficiency can be modelled by the sum of two decaying exponentials 

with time constants T1 and T2. The values extracted from the model were 

related with the degradation mechanism predominant, according the 

environment. The solar cells under N2 environment to TS96 by 80 h and TS30 by 

5300 h, the PCE decreased 4.3% and 69.4%, respectively. The time constant of 

degradation extracted from the model of PCE was T1 = T2 = 4800 h showing 

that only one degradation mechanism is acting in these conditions. Due to low 

quantity of water and oxygen in N2 (<0.1 ppm), the mechanism responsible for 

the slow degradation was identified to the intrinsic chemical reactions of the 

polymeric materials. The solar cells under air conditions to TS10 by 80 h and TS1 
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by 384 h, the PCE decreased 90.1% and 99.9%, respectively. The time 

constants of degradation extracted from the model of PCE were T1 = 10 h and 

T2 = 80 h showing two degradation mechanisms and dominating at different 

operation time during its life. The mechanisms responsible for the extremely 

rapid degradation were associated to chemical reaction of the active layer and/or 

electrodes with water and oxygen that diffuse into devices. Water was the 

dominant degradation mechanism observed in this environment having the lower 

time constant of degradation (T1). Finally solar cells under encapsulation to TS70 

by 80 h and TS15 by 5300 h, the PCE decreased 29.1% and 85.1%, respectively. 

The time constants of degradation extracted from model of PCE were T1 = 

4800 h and T2 = 80 h showing two degradation mechanisms too. The order of 

magnitude of the first time constant suggests that it corresponds with the same 

mechanism as observed under N2 environment. On the other hand, the second 

time constant, similar to that observed under air environment, indicates that 

oxygen degradation is taking place under encapsulation. The main source of 

oxygen in these conditions might be the encapsulating/sealing material (EPT-

HM), as it contains oxygen in its molecular structure.  

These results show that the procedure followed in this work under 

ISOS-D1 protocols has permitted to gain knowledge of the main degradation 

mechanisms of the PTB1 donor polymer in the solar cells and thus to improve 

their reliability and durability. 
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Chapter 6 

Design, manufacture and analysis of 

interfacial charge recombination in 

interdigitated P3HT/PC70BM solar cells 

In this chapter interdigitated heterojunction photovoltaic devices were 

manufactured. The donor layer of P3HT nanopillars was fabricated by soft 

nanoimprinting using nanoporous anodic alumina templates. Subsequently, the 

PC70BM acceptor layer was deposited by spin coating on top of the P3HT 

nanopillars using a solvent that would not dissolve any of the previous material.  

Anisole solvent was used because it does not dissolve the bottom donor layer of 

nanopillars and provides a good wettability between the two materials. Charge 

extraction was used to determine the charge carrier densities n on the 

interdigitated heterojunction under operating conditions. Moreover, transient 

photovoltage measurements were used to find the recombination rate constant in 
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combination with the charge carrier density. At the same time, the interdigitated 

structure was also compared with the bulk heterojunction and bilayer solar cells 

manufactured with the same polymeric and fullerene materials in order to 

understand the recombination loss mechanisms in the ordered and disordered 

nanomorphology of the active layers.  

6.1. Introduction 

In recent years intense efforts has been put into developing organic 

solar cells (OSC) that are at least as profitable as inorganic ones. The 

advantages of their low cost, light-weight, large area, flexibility and ease of 

processing  make organic materials an attractive medium.[1, 2] The power 

conversion efficiency of photovoltaic devices has been improved by designing 

and synthesizing new materials with low band-gaps, changing the structure of 

devices [3], controlling the nanoscale morphology with additives, applying 

thermal or solvent annealing, controlling evaporation with solvents [4, 5] to 

increase the interfacial area between donor and acceptor [6], and making 

nanostructure morphologies such as nanogratings, nanopillars, nanorods and 

nanodots. [3, 7-10]. In order to improve the performance parameters, 

nanostructured morphologies were fabricated with poly (3-hexylthiophene) 

(P3HT)/[6,6]-phenyl-C61-butyric acid methyl (PCBM), and P3HT/C60.  Power 

conversion efficiency was reported to be around 1.1-3.25%. [9-15] 

It is well known that power conversion efficiency is limited, among 

other factors by the diffusion length of excitons in the photoactive layer after 

they have been generated (typically this length is in the range of tens of 

nanometers in most organic semiconductors). [16-18] To prevent the loss of  

excitons before dissociation the morphology must be bi-continuous donor-
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acceptor if the free electrons and holes are to be transported and collected at 

their respective metal electrodes, (e.g. bulk heterojunctions (BHJ) present this 

morphology).[19-21]  

One promising way to increase the power conversion efficiency of 

polymer photovoltaic cells is to fabricate well-controllable ordered 

interdigitated heterojunction nanomorphology (IHJN) by soft nanoimprinting. 

The advantage of IHJN is that almost all the excitons formed are close enough 

to the interface to be dissociated into electrons and holes and nearly all the free 

charge carriers can travel along the uninterrupted pathway of the material until 

they reach their respective electrodes. The vertical IHJN allows the domains in 

the p-type donor material and the n-type acceptor material to be aligned normal 

to the electrode surfaces, thus increasing their crystallinity and charge carrier 

mobility and reducing recombination rates inside the device. [17, 22] The main 

progress in IHJN has been achieved by new fabrication techniques and 

technologies. The interdigitated nanostructures (INS) can be manufactured by 

nanoimprint lithography (NIL) [23], solvent-assisted nanoimprinting 

lithography (SANIL) [10], electron-beam lithography (EBL) [15], spin-coating 

and nanoimprinting template-based methods [11, 14, 24], among many 

others.[3, 7, 25-29] The various methods of nanoimprint lithography use silicon 

wafers and are usually expensive. The process involves thermal imprinting at 

high temperature and a considerable amount of time for appropriate heating and 

cooling. [30] Here we report the use of the nanoimprinting method in which 

nanoporous anodic alumina templates (NAATs) are used to fabricate INS in a 

cost effective and straightforward fashion. [24] NAATs are widely used as 

template material because they are porous have a good hexagonal order and the 

geometric characteristics can be easily controlled. [31-33] NAATs and soft 

nanoimprinting can be combined to provide the vertical nanostructured polymer 
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and the temperature, pressure, and time of the imprint can be precisely 

controlled. [13, 25, 34]  

In order to get the complete IHJN structure for OSC application after 

the polymer nanostructure has been manufactured, a method must be chosen for 

depositing and infiltrating the acceptor material (i.e. derivative fullerene) on the 

nanopatterned layer. Some of the best known methods are: thermal evaporation 

deposition (generally used for small molecules such as C60, C70 because of their 

low solubility in organic solvents [35]), double nanoimprinting and spin-

coating. [9, 11, 22] Here, we report the use of spin-coating to deposit the 

acceptor material onto the interdigitated polymer layer, because it has proven to 

be an effective, simple, and low-cost process. Two requirements must be 

satisfied: first the acceptor solution needs to be orthogonal so that it dissolves 

the acceptor material but not the donor; second the solvent must wet the donor 

material so that the acceptor material can spread uniformly over and into the 

nanostructure. Orthogonal solvents reported with these requirements are 

dichloromethane and 2-butanone. [22, 36-38]   

In this chapter, we used the combination of spin coating and soft 

nanoimprinting by NAATs to obtain conformal thin films of nanopillars (NP) as 

donor layer, which made it possible to fabricate several P3HT/PC70BM solar 

cell devices after the P3HT–NP had been infiltrated with PC70BM. Anisole 

(C7H8O) solvent was used to dissolve the fullerene without destroying the donor 

layer. Bulk heterojunction (BHJ) and bilayer (BL) organic solar cells were 

fabricated for purpose of comparison with interdigitated solar cells. The 

fabrication process and conditions were very similar to those of the 

interdigitated cells. 

Once the photovoltaic device with IHJN had been obtained, we then 

need to understand the physical processes involved in device operation. Such 

typical electrical characterization as current–voltage (J–V) is not enough to 
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understand the dynamics or how the device will perform. Some key parameters 

for better understanding the factors that limit the power conversion efficiency 

are the charge density distribution and the recombination dynamics. Typical 

techniques used to measure the previous parameters above mentioned are: 

charge extraction by linear increasing voltage (CELIV), double injection current 

(DoI), charge extraction (CE), integral mode of flight (Q-TOF), transient 

photovoltage (TPV),  transient absorption spectra (TAS), etc. [39, 40]  

Therefore, in the second part of this contribution we apply the CE and 

TPV measurements to the IHJN solar cell under steady state operating 

conditions with the aim of analyzing and determining the charge densities, the 

carrier recombination dynamics and carrier lifetime dependency on voltage. 

These measurements are often used in research on BHJ solar cells [41-43] and 

dyes sensitized solar cells [44], but have not previously been applied to 

interdigitated structures. Indeed, all the results obtained from the optoelectronic 

techniques used in this study (CE and TPV) reveal that its interdigitated device 

nanomorphology is a determining geometric factor that directly affects the 

charge carrier density, recombination losses and FF during device operation. 

6.2. Materials and methods 

This section discusses the fabrication process and the preparation of 

nanoporous alumina anodic templates. The printing process was combined with 

NAAT to generate an interdigitated morphology structure on polymeric flat 

film. Then, the fullerene material was deposited on the top surface of the 

interdigitated morphology manufactured to get the bi-continuous active layer. 

Finally, the interdigitated heterojunction organic solar cells were characterized 

electrically and optically so that we could understand the recombination process 
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that takes place inside the device structures. Bulk heterojunction and bilayer 

organic solar cells were manufactured as control devices. 

 

6.2.1.  Materials and fabrication  

Materials. ITO-coated glass substrates (with a nominal sheet resistance 

of 15 ohm/square and a thickness of 120 nm) were purchased from PsiOTec 

Ltd. PEDOT:PSS FHC was acquired from Ossila Ltd., P3HT (melting point 238 

ºC, Mw = 17500 g mol
-1

, 99.995% regio-regularity) and PC70BM (Mw = 1031.0 

g mol
-1

) were purchased from Sigma-Aldrich and Solenne BV, respectively. 

High-purity (99.99%) silver wire was obtained from Testbourne Ltd., and 

calcium pellets with high-purity (99.99%) were purchased from Kurt J. Lesker. 

 

Fabrication of NAAT. The NAAT samples were fabricated by the two-

step anodization process. Before anodizing, aluminium (Al) substrates were 

electropolished in a mixture of ethanol (EtOH) and perchloric acid (HClO4) 4:1 

(v:v) at 20 V for 3 min. After this, the first anodization step was performed in an 

aqueous solution of oxalic acid (H2C2O4) 0.3 M at 40 V and 5ºC for 24 h. 

Subsequently, the alumina film was selectively dissolved by wet chemical 

etching in a mixture of phosphoric acid (H3PO4) 0.4 M and chromic acid 

(H2CrO7) 0.2 M at 70ºC. Then, the second anodization step was conducted 

under the same anodization conditions as the first step. The anodization time 

during this step was adjusted to 60 seconds in order to modify the pore length. 

Finally, the pore diameter was enlarged by a wet chemical etching procedure in 

an aqueous solution of H3PO4 5 wt%. Subsequently, the NAAT were modified  

by DPMS (DMS-T22) to reduce the surface energy of the templates, and the 

reaction mechanism was explained by Krumpfer and co-autors.[53] The NAAT 
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were immersed in DPMS at 120
o
C for 24 h, and then rinsed with toluene, and 

then acetone, ethanol, and DI water. Finally the substrates were dried with 

nitrogen.  

 

Device fabrication. Appendix E is depicted the process fabrication. 

Photovoltaic IHJN–OSC devices were fabricated on pre-cleaned patterned ITO 

glass substrates. 40 nm PEDOT:PSS was applied to the substrates by spin 

coating at 3500 rpm for 45 s. The PEDOT:PSS film was annealed at 110 ºC for 

20 min. The P3HT solution was prepared in chlorobenzene (C6H5Cl) and was 

then spin-coated onto the PEDOT:PSS / ITO glass under nitrogen and a thin 

film of P3HT was obtained. Afterwards, the nanoimprinting was optimized and 

carried out with the NAATs by applying 2 MPa at 60 ºC for 5 min to the 

previous P3HT layer fabricated to get P3HT–NP. The PC70BM solution was 

prepared in anisole solvent (C7H8O) at 10 mg/ml and was deposited on top of 

P3HT–NP by spin coating at 3000 rpm to backfill the spaces between the 

nanopillar arrays and form a continuous PC70BM thin film on top. This process 

was conducted as rapidly as possible to avoid any possible interfacial mixing.  

BHJ–OSC and planar bilayer (BL)–OSC were manufactured for 

purposes of comparison with the IHJN-OSC. BL–OSCs were fabricated under 

the same conditions as the IHJN–OSC, but without the nanoimprinting process.  

BHJ-OSCs were manufactured using the same ITO substrates and 

PEDOT:PSS layer as for the IHJN. A blend of P3HT:PC[70]BM (ratio 1:1) was 

prepared in chlorobenzene (CB) solution and then stirred for 18 h at 40 ºC. The 

active layer was deposited by spin coating at 600 rpm for 45 s. Afterwards, all 

the structures (i.e. IHJN–OSC, BHJ–OSC and BL–OSC) deposited the metal 

contact by evaporation through a shadow to give devices with an active area of 

0.09 cm
2
. Ca (20 nm) and Ag (100nm) were deposited at a rate of 0.15 Å s

-1
 and 
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0.5–0.8 Å s
-1

 respectively. Then, a post-processing annealing was carried out by 

heating at 130
o
C for 20 min.  

6.2.2.  Optical and electrical characterization  

NAAT and structures characterization. The NAAT samples and 

IHJN–OSC, BHJ–OSC and BL–OSC structures were characterized by 

environmental scanning electron microscopy (ESEM FEI Quanta 600). The 

standard image processing package (ImageJ, a public domain program 

developed at the RSB of the NIH, USA) was used to carry out the ESEM image 

analysis. Photoluminescence (PL) was measured in a fluorescence 

spectrophotometer from Photon Technology International Inc. for the three 

kinds of structures. A Xe lamp was used as the excitation light source at room 

temperature with an excitation wavelength (ex) of 510 nm and an emission 

spectrum at an angle of 20º. The absorption spectrum was measured for the 

three sets of IHJN, BHJ and BL structures at room temperature with a Perkin 

Elmer Lambda 950 UV/VIS/NIR spectrometer. Atomic force microscopy (AFM 

Agilent 6400) was used to make several characterizations of the surface 

morphology of IHJN, BHJ and BL layer structures in the tapping mode.  

Device testing. The current density-voltage (J–V) characteristics of the 

devices were measured at room temperature using a Keithley 2400 source 

measurement unit in combination with a solar simulator (Abet Technologies 

model 11000 class type A, Xenon arc), automatically controlled with a 

computer. Appropriate filters were used to reproduce the AM 1.5G spectrum. A 

light intensity of 100 mW/cm
2
 was applied to test the organic solar cell devices 

under illumination. The light intensity was calibrated with an NREL certified 

monocrystalline silicon photodiode. Film thicknesses were measured by a 

Dektak 150 surface profilometer.  In addition, J–V dark curves were recorded 

for all the photovoltaic devices.  
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The CE was used to determine the distribution of charge carrier 

densities (n) in devices under different conditions of light and voltage. The 

general CE procedure is to leave the device in open circuit conditions while 

illuminated at different intensities. Then, the device is shorted while 

simultaneously turning off the light, and the resulting discharging current 

transient through a small external load resistor is measured. The desired 

illumination intensity is achieved with a white light LED ring from LUXEON® 

Lumileds connected to a DC power supply and a TGP110 function generator 

that allows the LEDs to reach a background illumination up to 1 sun on the ITO 

side of the device. The LEDs were typically turned on for approximately 100 

ms so that they could reach steady state conditions. The LEDs have a rise/fall 

time of <100 ns. After the light is switched off and the circuit is temporally 

closed, while charges are forced to pass through a TDS 2022 oscilloscope from 

Tektronix© that records the drop in voltage across a resistance of 50 . 

In TPV measurements, devices are connected to the 1M input 

terminal of a Tektronix© TDS2022 oscilloscope and the background 

illumination was obtained from a ring of 6 white LEDs from LUXEON®. The 

small perturbation (5mV) was applied through a light pulse (N2 laser nominal 

wavelength, 50 ns pulses). The charge recombination rate was calculated for 

illumination intensities ranging from 0.1 sun to 1 sun. 

6.3. Results and discussion  

6.3.1.  ESEM characterization of NAAT and IHJN 

The NAATs were prepared by the two-step anodization process as is 

shown in Table 6.1. [31-33]  
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Table 6.1 Fabrication conditions of nanoporous anodic alumina template. a
 Vanod is 

anodization voltage. 
b
 tanod is anodization time. 

c
 tpw is pore-widening time.   

 

The pore length was controlled by the anodization time and the pore 

diameter was enlarged by a wet chemical etching procedure after anodization. 

The pore diameter (p), pore length (Hp) and interpore distance (dint) are shown 

in Table 6.2. The fabrication conditions of the NAAT sample are summarized in 

Table 6.2 and shown in Fig. 6.1.  

 

 

Table 6.2. Average geometric characteristics obtained from NAAT.   
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Fig. 6.1 NAAT shows all its geometric characteristics. 

The NAATs were modified by dimethylpolysiloxane (DPMS) to reduce 

the surface energy of the templates as was described in the experimental 

section. The results showed that they became more hydrophobic, as is reported 

in [14]. Fig. 6.2 A, B and C show the top-view, tilt-view and cross section-view 

provided by environmental scanning electron microscopy (ESEM) images of 

the NAATs after fabrication with oxalic acid electrolyte (H2Cr2O7).  

 

Fig. 6.2 ESEM images of NAAT. (A) Top-view, (B) tilt-view and (C) cross section-

view of NAAT. The geometrical characteristics were: pore = 60 ± 4 nm, Hpore = 80 ± 5 

nm and dinter = 100 ± 4 nm.  
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The preparation of IHJN–OSC based on P3HT–NP arrays is shown in 

Fig. 6.3 (A-G).  

 

Fig. 6.3 The procedure for obtaining the interdigitated OSC. (A) Spin coating of the 

P3HT layer on PEDOT:PSS/ITO/Glass. (B) Patterning of P3HT–NP structure done by 

soft nanoimprinting combining with NAAT templates. The geometrical characteristics 

of the P3HT–NP can be seen. pillar is the diameter of the nanopillar, Hpillar is the height 

of nanopillar, Spillar is the distance between nanopillars and R-L is the residual layer of 
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the structure. (C) Top-view of P3HT–NP with excellent replication by soft NAAT 

applied with pillar = 60 ± 4 nm. (D) Tilt view and (E) cross section of P3HT–NP with 

Hpillar = 80 ± 3 nm, Spillar = 100 ± 5 nm, R-L = 45 ± 3 nm. (F) Deposition by spin coating 

of PC70BM using anisole solvent on the P3HT–NP. (G) Deposition of calcium and 

silver by thermal evaporation on the previous layers to obtain the IHJN–OSC. 

The fabrication process of the IHJN–OSC first required P3HT to be 

deposited on a structure prepared from poly-(ethylene dioxythiophene) doped 

with poly-(styrene sulphonic acid) (PEDOT:PSS) / indium tin oxide (ITO) as is 

shown in Fig. 6.3A.  The thickness of the P3HT layer was measured by 

profilometry to be of 130 nm. Then, a soft nanoimprinting process was applied 

to the prepared NAATs with an antiadhesion layer to imprint the polymer. 

Hydraulic charge pressure was applied in combination with temperature to 

produce nanopillars on the P3HT layer. Finally, the mold is released from the 

sample, and polymer nanoimprinting with negative replication of the mold is 

obtained (see Fig. 6.3B). We optimized the soft nanoimprinting conditions (i.e. 

time, pressure and temperature) to ensure the fidelity of the nanoporous patterns 

from the NAAT for the P3HT nanopillars as was described in the experimental 

section. The geometric parameters that define P3HT–NP are the pillar diameter 

(pillar), pillar height (Hpillar), interpillar distance (Spillar) and residual layer (R-L). 

Fig. 6.3C, D and E show top-view, tilt-view and cross section-view ESEM 

images of the P3HT–NP, respectively. The P3HT–NP has an average pillar= 

60±4 nm, Hpillar= 80±3 nm, Spillar= 100±5 nm and R-L = 40±3 nm with an aspect 

ratio of 1.3. Subsequently, the PC70BM fullerene material was deposited by spin 

coating directly on top of the P3HT–NP layer using anisole solution (2 wt %) as 

is shown in Fig. 6.3F. In this study, we chose PC70BM for two reasons. First, 

the material has relatively strong and broad absorption in the visible range from 

400 nm to 700 nm and gives better results in photon harvesting in the active 

layer than when such other fullerenes as C60, C70 and PCBM are used. [45] The 
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literature only reports the interdigitated nanostructures OSC fabricated with C60 

and PCBM, not with PC70BM. Second, PC70BM can be dissolved in anisole 

solvent and deposited by spin coating onto the P3HT–NP. The spaces between 

the P3HT nanopillars were filled with the PC70BM mixture and the anisole 

solvent. The nanoimprinting polymer layer was not destroyed when the mixture 

was deposited.[37, 38] Dichloromethane (CH2Cl2) has sometimes been used to 

dissolve the PCBM and fabricate the nanostructured OSC. [9, 14, 15] Anisole is 

another solvent that may potentially be used for the fabrication of 

nanostructured cells but, to date, it has not been reported in the literature. 

Anisole solvent has been used to fabricate organic thin film transistors (OTFT) 

where the various polymer layers have to be deposited using orthogonal 

solvents. [36, 37]  In this study, it is worth noting that PC70BM is used in 

combination with anisole solvent. It is the first time that this method has been 

used to deposit PC70BM into the gaps in the P3HT–NP and get the IHJN–OSC. 

Subsequently, the samples were placed inside the evaporation chamber, where a 

thin layer of calcium (Ca) and silver (Ag) were evaporated as a top contact 

(parameters and condition are given in the Experimental Section) as is shown 

in Fig. 6.3G.  

Fig. 6.4A shows the cross section-view of the IHJN–OSC structure 

captured by ESEM. On some samples infiltrated with the fullerene material 

(P3HT–NP/PC70BM) Ca (20nm) and one thin layer of Ag (10 nm) were 

deposited so that the stack material covered the top surface of the previous 

active layer, (see Fig. 6.4B). Finally, Fig. 6.4C shows the top view of the top 

surface of the Ag metal contact with a thickness of 100 nm.  
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Fig. 6.4 (A) ESEM images from the cross section of IHJN–OSC with the stack 

ITO/PEDOT:PSS/P3HT–nanopillar/PC70BM/Ca/Ag. (B) Top view after the evaporation 

of Ca (20 nm) and Ag (20 nm) onto the surface of PC70BM/P3HT–nanopillars, (C) Top 

view of the Ca/Ag metal contact with a thickness of 20 nm/100 nm, respectively. 

Two types of control cell based on BHJ–OSC standard blend films (by 

spin coating from a mixture solution) and planar bilayer BL–OSC (by non-

patterned imprinting) were fabricated for purposes of comparison (parameters 

and conditions are given in the Experimental Section). The BHJ–OSC has the 

architecture ITO/PEDOT:PSS/P3HT:PC70BM/Ca/Ag and BL–OSC has the 

stack ITO/PEDOT:PSS/P3HT/PC70BM/Ca/Ag (see Fig. 6.5). 

  

Fig. 6.5 Additional organic photovoltaic structures manufactured for purposes of 

comparison with the IHJN structure. 
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6.3.2.  AFM characterization  

Atomic force microscopy (AFM) in tapping mode was applied to 

P3HT–NP, P3HT:PC70BM–BHJ and P3HT–single layers after thermal 

annealing, in order to get further insight into their respective surface areas (see 

Fig. 6.6). Fig. 6.6 A, D and G show the topography images of P3HT–NP 

revealing a periodically structured top surface with an average nanopillar height 

of ~ 80 nm and interpillar distance ~100 nm as was seen in the ESEM images. 

P3HT:PC70BM–BHJ has an average surface height of 13.39 nm and the P3HT–

single layer has an average surface height of 23 nm, respectively. Fig. 6.6 B, E 

and H show the phase image and Fig. 6.6 C, F and I the tilt view of the P3HT–

NP, P3HT:PC70BM–BHJ and P3HT–single layer, respectively. 

 

6.3.3.  UV-vis and PL characterization  

Pristine P3HT–NP, P3HT flat film and P3HT/PC70BM–IHJN, 

P3HT:PC70BM–BHJ and P3HT/PC70BM–BL films were studied by UV-vis 

spectroscopy as shown in Fig. 6.7A. In the UV-vis spectrum, we see that the 

absorbance of P3HT nanopillar films is 13% higher than that of P3HT flat film 

at 510 nm, which is consistent with previous reports. [10, 11]  A small red-shift 

was observed for the imprinted film compared to the flat film. Moreover, 

imprinted P3HT–NP showed a pronounced increase in the shoulder centered at 

∼ 605 nm, the intensity of which is correlated with the degree of P3HT 

crystallinity. This is attributed to the fact that P3HT has a greater conjugation 

length and more ordered structure than the P3HT flat film because of the self -

organization of the mobile chains is done during the heating and imprinting of 

the film compared to P3HT flat film. [22] 
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Fig. 6.6 (A, B, C) AFM morphology, phase and tilt view images of the P3HT–NP layer 

after soft nanoimprinting by NAAT. (D, E, F) AFM morphology, phase and tilt view 

images of the P3HT:PC70BM–BHJ layer after spin coating deposition. (G, H, I)  AFM 

morphology, phase and tilt view images of the P3HT–single layer after spin coating 

deposition. All the layers underwent thermal annealing at T = 130
o
C for t = 20 min. 

Thermal annealing was applied during and after imprinting and mainly 

helped to remove residual solvent and reduce the free volume, which led to 

closer packing of the polymer chains and improved holes mobility. [46] To 

enhance the absorbance when nanopillars were used, the geometry had to be 
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optimum (i.e. pillar diameter, pillar height and interpillar distance) so that the 

light trapping ability inside the structure was also optimum as some simulations 

have shown [47]. The UV-vis spectrum also shows P3HT/PC70BM–IHJN, 

P3HT:PC70BM–BHJ and P3HT/PC70BM–BL films with the infiltrated fullerene 

material and absorption are observed to be stronger at 490 nm and 380 nm 

corresponding to the P3HT and PC70BM materials, respectively. 

P3HT:PC70BM–BHJ showed the highest absorption while P3HT/PC70BM–BL 

presented the lowest. This was due to the fact that active layer of BHJ presented 

a film thickness ~ 200 nm, while the active layer of IHJN and BL were 160 nm 

and 170 nm approx., respectively. The absorbance peak intensity of 

P3HT/PC70BM–IHJN film was 9% greater than that of P3HT/PC70BM–BL film. 

Moreover, P3HT/PC70BM–IHJN showed a considerably higher absorbance (at 

600 nm) than that for P3HT:PC70BM–BHJ film. 

The PL measurements of P3HT–NP in Fig. 6.7B show a 16% greater 

intensity than P3HT–flat film at 695 nm (the measurement conditions are 

explained in the Experimental Section). On the other hand, after PL quenching 

the intensity of P3HT–NP/PC70BM–IHJN film was 94.8% lower than that of 

pure of P3HT–NP at 695 nm. For P3HT:PC70BM–BHJ film and 

P3HT/PC70BM–BL film the PL quenching was observed to be 85.3% and 

92.7% that of P3HT–flat film at 695 nm, respectively. The best PL quenching 

of the three structures was for P3HT/PC70BM–IHJN film. The total quenching 

of PL emission between the interfaces of polymer-fullerene might indicate that 

there is an efficient photoinduced and charge transfer at the interfaces of 

P3HT/PC70BM materials. [10, 11] Therefore, on the P3HT–NP 

nanomorphology the interpillar distance between two nanopillar walls was 40 

nm (maximum distance to D/A interface: 20 nm).This geometry may help the 

excitons to diffuse more easily at the polymer/fullerene composite interface (as 
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it is well known that the exciton diffusion length is ∼10 nm in P3HT [16, 17]), 

which improves the performance parameters of the cells. 

 

Fig. 6.7 (A) UV/Visible absorbance of P3HT nanopillars (red open circles) and P3HT– 

film (green open square). The absorbance spectrum of IHJN–[P3HT/PC70BM] (red 

dashed line), BHJ–[P3HT:PC70BM] (green continuous line) and BL–[P3HT/PC70BM] 

(blue dotted line is also shown). (B) Photoluminescence spectra were obtained from 

P3HT nanopillars (red open circles) and P3HT– film (green open squares). Also shown 

is the PL spectrum from IHJN–[P3HT/PC70BM] (red dashed line), BHJ–

[P3HT:PC70BM] (green continuous line) and BL–[P3HT/PC70BM] (blue dotted line). 

The excitation wavelength was applied at 510 nm. 

By integrating the area below the PL spectra the electron injection yield 

from P3HT to PC70BM can be estimated. In P3HT/PC70BM–IHJN film, 

P3HT:PC70BM–BHJ film and P3HT/PC70BM–BL film these yields were 95%, 

86% and 92%, respectively.  

6.3.4.  J-V and IPCE characterization 

Fig. 6.8A shows the current–voltage (J–V) characteristics of 

P3HT/PC70BM–IHJN imprinted solar cells in comparison to P3HT:PC70BM–

BHJ and P3HT/PC70BM–BL controls OSC under solar illumination at 1 sun 

(100 mW/cm
2
).  
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Fig. 6.8 (A) J–V curves to IHJN–OSC (red dashed line), BHJ–OSC (green continuous 

line) and BL–OSC (blue dotted line) under light (1 sun = 100 mW/cm
2
). (B) Semi-log 

J–V curve under darkness for the three structures.   

Fig. 6.9 compares the incident photon to current efficiency (IPCE) 

spectra for the devices with P3HT/PC70BM–IHJN, P3HT:PC70BM–BHJ and 

P3HT/PC70BM–BL OSC. For each structure there is a strong correlation of the 

D/A interface area with IPCE and power conversion efficiency (PCE), short 

circuit current density (JSC) and fill factor (FF).  

 

Fig. 6.9 IPCE spectrum of IHJN–OSC, BHJ–OSC and BL–OSC.  

 

Table 6.3 summarizes the best and average performance parameters 

(i.e. open circuit voltage (VOC), JSC, FF and PCE) of IHJN–OSC (twenty 
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devices), BHJ–OSC (fifteen devices) and BL–OSC (fifteen devices) after 

fabrication. The best results of the three structures were analyzed. It is evident 

that the trend of the IPCE spectra is identical to that of absorption spectra 

throughout the range but particularly between 400 nm and 700 nm. The IPCE of 

P3HT/PC70BM–IHJN, P3HT:PC70BM–BHJ and P3HT/PC70BM–BL organic 

solar cells at 550 nm were 50%, 57% and 45%, and with the integrating JSC they 

were of 6.99 mA/cm
2
, 7.67 mA/cm

2
 and 6.7 mA/cm

2
, respectively which are 

strongly supported by J–V characteristics. 

 

Table 6.3. 
a
 Open circuit voltage. 

b
 Short circuit current. 

c
 Fill factor. 

d
 Power conversion 

efficiency.
 
The illumination intensity equivalent applied was 100 mW/cm

2
 after spectral 

mismatch correction using AM 1.5G solar simulator. 
e
 Series resistance per unit area 

under illumination. 
f
 Shunt resistance per unit area under illumination. 

g
 Series resistance 

per unit area under dark. 
h
 Shunt resistance per unit area under dark.      

IHJN–OSC, BHJ–OSC and BL–OSC showed a PCE of 2.6%, 2.4% and 

2.1%, respectively. The VOC, FF and PCE of the IHJN–OSC were 3.5%, 19.3% 

and 8.3% higher than BHJ–OSC, respectively. On the other hand, the JSC of 

IHJN–OSC was 7.8% less than that of BHJ–OSC. The PCE of the BHJ–OSCs 

was a little less than that of IHJN–OSC because the active layer was thicker, so 

that it could be compared with the others. Moreover, the VOC, JSC, FF and PCE 

of the IHJN–OSC were 1%, 5%, 23% and 24% higher than BL–OSC, 

respectively. 
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In this study, we have observed that the enhancement in the PCE of 

IHJN–OSC was principally originated by the improvements in FF. While that 

the FF for BHJ–OSC and BL–OSC were low the values.  

The increase in the performance yield of the Jsc of IHJN–OSC we can 

argue for two aspects: First, it was attributed to the well-controlled 

interdigitated heterojunction morphology of both materials (P3HT–NP and 

PC70BM) which increased their interfacial area and the contact between them, 

and made the exciton dissociation more efficient (to get free electrons and 

holes). Then, the electrons and holes travel through their respective materials to 

be collected in the metal contact. [12, 14] Second, another reason for the 

increase in JSC is that the π-π stacking in the P3HT polymer is better oriented 

and the crystals better formed throughout the nanopillar. This is due to the 

induction that the polymer undergoes when it is introduced into the nanopore of 

the template during the soft imprinting step. Therefore, the charge carriers 

(holes) will move through the P3HT structure and the nanopillar with less 

difficulty. [22] The improvement of the crystallinity which favors the charge-

mobility of holes and the charge transport along the P3HT–NP pathways and 

reduces the recombination of charge carriers on the pathways. This hypothesis 

was confirmed by analyzing the orientations of the nanopillar morphology of 

molecular P3HT with micro-X-ray diffraction. [24] It should be point out that 

although the absolute thickness of IHJN–OSC was 10 nm less than that BL–

OSC the JSC was slightly greater. Moreover, the JSC in the P3HT:PC70BM–BHJ 

solar cell was highest because the active layer was thicker and so able to absorb 

more photons. [10]  

The increase of superficial area of the P3HT–NP layer with respect to 

the P3HT flat film is known as the interface enhancement factor (IEF) which 

was calculated by applying the Eq. 1 [9, 11, 22]: 
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where rpillar is the radius of the nanopillar, Hpillar is the height of the nanopillar 

and So is the distance between adjacent nanopillars (also called the nanopillar 

pitch). The P3HT–NP layer had an IEF of 2.5, which means that the surface 

area increased with respect to that of the P3HT–flat film. 

FF was highest for IHJN–OSC (~61.3%) in comparison with BHJ–OSC 

(~51.4%) and BL–OSC (~49.0%). This increase in FF for IHJN–OSC can be 

attributed to the nanoimprinted pattern – in which the interface area between the 

polymer/fullerene material was greater –, the good quality of the cathode-

fullerene and anode-polymer interfaces and the decrease in the series resistance 

(RS) in the interdigitated heterojunction nanomorphology, all of which suggests 

that the charge transport properties are substantially improved, as has been 

observed in [8, 40, 41]. 

Fig. 8B shows the J–V characteristic in dark conditions for the three 

organic solar cells. It is well known that RS can be related to the resistance and 

thickness of the active layer, the contact resistance between the metal and active 

layers, the transport properties of the semiconductor material and the properties 

of the selective contacts. Its value per unit area, RS0, can be calculated by the 

inversed slope of the J–V curve at the highest operating voltage where the curve 

becomes linear: RS0 = (J /V)
−1

, as has been reported in [48]. In this study, the 

series resistances RS0-il and RS0-dk were obtained from the J–V characteristic 

under illumination and darkness, respectively, and the values for each organic 

solar cell structure are shown in Table 6.3. In general, RS0-il and RS0-dk on IHJN–

OSC presented the best values, in which where 70% and 75% lower than for 

BHJ–OSC and 18% and 15% lower than for BL–OSC, respectively. 

UNIVERSITAT ROVIRA I VIRGILI 
FABRICATION OF BULK AND INTERDIGITATED ORGANIC SOLAR CELLS AND ANALYSIS 
OF DEGRADATION MECHANISMS. 
Victor Samuel Balderrama Vázquez 
Dipòsit Legal: T 1921-2014



6. Design, manufacture and analysis of interfacial charge recombination in 

interdigitated P3HT/PC70BM solar cells  

 

148 

 

The shunt resistance, RSH, which is related to the recombination of 

charge carriers near the dissociation site (e.g. the donor/acceptor interface of the 

interdigitated organic materials P3HT–NP/PC70BM in this case) also depends 

on the transport properties of the semiconductor. The value of shunt resistance 

per unit area, RSH0, can be determined by calculating the inverse slope around 0 

V of the J–V curve, RSH0 = (J / V)
−1

. In the dark, this parallel shunt resistance is 

expected to reflect the intrinsic conductivity of the materials. Under 

illumination, light induced charge generation (photodoping), caused by the 

charge transfer between the donor and the acceptor, is expected to reduce the 

shunt dramatically as was observed in our results. [49] In this study, the shunt 

resistances RSH0-il and RSH0-dk were obtained from the J–V characteristic under 

illumination and darkness, respectively and their values are shown in Table 6.3. 

Continuing with the analysis, in general, the RSH0-il and RSH0-dk of IHJN–OSC 

were 21% and 76% lower than those of BHJ–OSC, but were 1.23 times and 167 

times higher than those of BL–OSC, respectively. 

The VOC of IHJN–OSC was 3.5% and 1.1% greater than that of BHJ–

OSC and BL–OSC, respectively. The improvement in VOC with respect to the 

blend devices might be attributed to a reduction in shunt losses, because the 

wetting layers were correctly arranged in the imprinted devices as reported [10]. 

It is also reported in the literature that VOC can be attributed to differences in 

electrical contact work functions and to the difference between the HOMO of 

the donor and the LUMO of the acceptor. [3, 19] However, when there are 

recombination losses, the real VOC value depends on the inverse saturation 

current of the junction in the dark. [49] The VOC value for the IHJN and BL 

organic solar cells are almost identical. On the other hand, the VOC value for the 

BHJ-OSC is 6% less than for the IHJN and BL organic solar cells at 1 sun. This 

must be because in the IHJN and BL cells, the PEDOT:PSS selective electrode 

is only in contact with the donor material while the calcium selective electrode 
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is in contact with the acceptor material. The donor and acceptor materials of the 

BHJ cells, however, are in close contact at the same time with both selective 

contacts. 

Table 6.4 summarizes the method for fabricating nanostructured 

organic solar cells and compares their geometric characteristics reported in 

literature with our results.   

 

Table 6.4. Summary of the method for fabricating nanostructured organic solar cells and 

their geometric characteristics reported in literature.
 a

 Open circuit voltage. 
b
 Solvents 

used to dissolve the fullerene material: CH2Cl2 is dichloromethane, CHCl3 is chloroform, 

and C7H8O is anisole. 
c
 MW is melt welting, EV is evaporation, NI is nanoimprinting, SC 

is spin coating, SANIL is solvent assisted nanoimprint lithography, EBL is electron-

beam lithography. 
d
 W is the width of nanograting morphology and  is the diameter for 

dot, rod and nanopillar morpholgy, H is the height and S is the distance between adjacent 

nanopillars (also called the nanopillar pitch). 
e
 A/A0 is the D/A ratio of the interface 

areas of the patterned to the planar-interface photovoltaic devices calculated using eq. 

(1). 
f
 Residual layer that is under the nanostructure. * Results from this contribution.  

 

Likewise, Table 6.5 summarizes the performance parameters of the 

structures shown in Table 6.4. It is worth noting that our IHJN–OSC is one of 
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the first to be manufactured by spin coating using PC70BM and anisole solvent 

and deposited on P3HT–NP. Another characteristic was the use of Ca and Ag as 

the cathode for collecting the charge carriers, about which no reports have been 

published to date. The fill factor obtained here of 61.3% is higher than all others 

report in the literature. The PCE of IHJN–OSC was 2.6%, which is comparable 

with such other standard methods and technologies as standard NIL mold, 

NAAT and double imprinting. The manufacturing method presented here using 

orthogonal solvent with the fullerene PC70BM is a simpler low-cost method, and 

facilitates deposit by spin coating. However, cells need to be optimized if 

performance is to be improved using this technology. 

 

Table 6.5. Summary of the performance of nanostructured photovoltaic devices reported 

in the literature. 
a
 Open circuit voltage. 

b
 Short circuit current. 

c
 Fill factor. 

d
 Power 

conversion efficiency.
 
The illumination intensity equivalent applied was at 100 mW/cm

2
 

after spectral mismatch correction using AM 1.5G solar simulator. * Results from this 

contribution.  
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6.3.5.  CE and TPV characterization 

In the second part of this study, the IHJN–OSC was analyzed using CE 

and TPV to show that at open circuit voltage the P3HT/PC70BM–IHJN 

photovoltaic devices are primarily controlled by bimolecular recombination. 

The two types of control cells manufactured were also analyzed by CE and TPV 

for purposes comparison. 

Fig. 6.10A shows typical CE transients for the devices at 1 sun and in 

VOC conditions, an extraction half-time of ~2 s for BHJ–OSC as reported in 

the literature. [39] For IHJN–OSC and BL–OSC, on the other hand, the half-

time was ~6 s approx. CE was used to measure the average charge carrier 

density (n) in the device at various white light intensities while holding the 

device at VOC and after switching off the light. The light intensities go from 

dark to 1 sun. These measurements of n against voltage are shown in Fig. 

6.10B. Note that this experiment collects charges stored in both the photoactive 

layer and the electrodes. The extracted charge n at 1 sun on IHJN–OSC, BHJ–

OSC and BL–OSC with VOC was ~630 mV, 598 mV and 612 mV where n 

values were 5.5 x10
16

 cm
-3

, 1.3 x10
17

 cm
-3

 and 3.8 x10
16

 cm
-3

, respectively. 

These values have a stronger correlation with the JSC of the J–V characteristic 

obtained for each structure analyzed. As have been explained before [39], the 

charge carrier density in BHJ-OSC manufactured with P3HT:PC70BM can be 

produced in the bulk of the active layer and at the selective electrodes of the 

device. Generally, the volumetric charge density in the P3HT:fullerene active 

layer is more predominant than at the selective electrodes, as was observed in 

this study. 
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Fig. 6.10 (A) CE transient acquired to compare IHJN–OSC, BHJ–OSC and BL–OSC 

under 1 sun steady state background irradiation. For the CE transient, the background 

irradiation was turned off rapidly, and the device simultaneously switched from open to 

short circuit. (B) Charge carrier density (n) as a function of the applied bias (the 

maximum point of each curve is 1 sun of light incident on the PV structure during the 

measurement). In the IHJN–OSC, BHJ–OSC and BL–OSC the charge carrier density 

undergoes an exponential increase. (C) Log n–light intensity, variation in charge carrier 

density measured under different light intensities for each structure manufactured. 

Our devices with the structure BHJ–OSC, IHJN–OSC and BL–OSC 

seem to have the same predominant charge accumulation dynamics. [39, 42, 43, 

48] Fig. 6.10B shows that the charge carrier density in open circuit conditions 
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for different light intensities exponentially depends on the VOC obtained by 

changing the light intensity according to the following formula [40] 

n = n0 e
voc

          (2) 

n0 is the initial charge carrier and γ is a factor related to the presence of 

energetic disorder in the intrinsic properties of the semiconductor materials. The 

values of γ < 19 V
-1

 when p≈n, or γ ~38 V
-1

 when n>>p or p>>n. Eq. (2) was 

applied to IHJN–OSC, BHJ–OSC and BL–OSC. n0 and γ presented values for 

IHJN–OSC, BHJ–OSC and BL–OSC of 3.58 x 10
14

 cm
-3

 and 9.73 V
-1

, 4.63 x 

10
14

 cm
-3

 and 7.42 V
-1

 and 1.52 x 10
15

 cm
-3

 and 5.29 V
-1

, respectively. The γ 

values obtained in this study are similar to the ones obtained in others an in all 

cases they are less than half of the value expected for an ideal band-gap. [41, 

42] This suggests that gamma values present a non-ideal behavior and is due to 

the presence of an exponential tail of density of trap states extending into the 

band-gap of the photoactive layer. In other words these traps correspond to the 

presence of energetic disorder in the active layer, which influences the transport 

and recombination processes. [40, 50] So, we suggest that the structure with 

most energetic disorder in the active layer was BL–OSC and the structure with 

the least was IHJN–OSC. BHJ–OSC presented disorder values in the active 

layer that were between the other two because the high values of RS0 were 

caused by the thick active layer. 

The TPV measurements were performed on BHJ–OSC, IHJN–OSC and 

BL–OSC. The charge carrier density obtained from CE measurements for 

different light intensities (from 0.3 to 1.0 sun) was used to get the carrier 

lifetime from TPV measurements. The decay dynamics for all devices agrees 

with previous measurements on P3HT:PCBM blends: namely, that single-

exponential fits apply for a wide range of illumination intensities. [40-43, 48, 

51, 52] Fig. 6.11A shows carrier lifetimes as a function of carrier density for 
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varying illumination intensities. At one sun, the IHJN–OSC, BHJ–OSC and 

BL–OSC have carrier lifetimes of ~3.9s, ~5.8 s and 4.2 s, respectively. The 

recombination lifetime decreases when the light intensity is increasing until 

achieve to 1 sun and the charge carriers are also increasing. 

 

Fig. 6.11 (A) TPV measurements were performed under open circuit conditions and 

different illumination (VOC) for IHJN–OSC, BHJ–OSC and BL–OSC structures. (B) 

Bimolecular recombination rate constant krec, extracted from carrier  and n, as a 

function of n. The pulse excitation wavelength was 470 nm. The pulsed source power 

was set so that the V of the TPV measurement did not exceed 3% of the VOC measured 

at 0.1 sun. 

The charge density has an inverse square relationship with the 

recombination lifetime (Eq. 3) with. IHJN–OSC, BHJ–OSC and BL–

OSC show  values of 2.4, 2 and 1.8, respectively.  

n = n0 (n0/n)

      

All the values of  indicate there are bimolecular recombinations as 

similar values were reported in the literature. [41, 43, 48] Fig. 6.11B shows  the 

bimolecular recombination rate constants krec and were calculated from the 

carrier lifetimes and densities according to the following equation [39]:  

krec = 1/(n       (4) 
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The devices with the lowest bimolecular recombination rate were BHJ–

OSC. Reduced recombination constants are considered critical for efficient solar 

cells. BHJ–OSC had the longest carrier lifetimes and smallest krec values 

whereas BL–OSC had the shortest carrier lifetimes and largest krec. IHJN–OSC 

presented values in between (see Fig. 6.11B).    

All the electrical characterization used in this study provides insight 

into the working mechanisms of the various organic solar cells that were 

fabricated and analyzed. The critical parameter(s) required to improve the 

synthesis, design and fabrication on interdigitated organic solar cells and 

enhance the performance parameters have been identified.  

6.4. Conclusions 

In this chapter IHJN–OSC were manufactured by soft nanoimprinting in 

combination with nanoporous anodic alumina templates to produce P3HT–NP 

and they were filled by spin coating of PC70BM on the top of NP in 

combination with anisole orthogonal solvent. The fabrication method, using this 

orthogonal solvent, on IHJN–OSC has been reported for the first time. The 

P3HT–NP presented good replication and a well-ordered array of NAAT with 

an average diameter of 60 nm, pillar height of 80 nm and interpillar distance of 

100 nm. IHJN–OSC was compared with BHJ–OSC and BL-OSC as controls 

and they were fabricated under the same conditions. The surface area of the 

P3HT–NP theoretically increased 2.5 times more than that of BL-OSC. 

Current–voltage characteristics and optical measurement were applied for all 

photovoltaic devices. The results provide direct evidence that the imprinting 

layer gives FF ~ 61.3% and PCE ~2.6%. This due to the larger interface 

between the donor and acceptor materials, resulting in more efficient 
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photogeneration, exciton dissociation and charge transport on extended 

interfaces made up of a finely controlled morphology. CE and TPV 

measurement were applied on IHJN–OSC. Bimolecular recombination was 

found to be the main mechanism by which charge carriers were lost. For the 

interdigitated the recombination losses were lower than for BL–OSC. The 

gamma values for the IHJN–OSC, presented an exponential tail of density of 

trap states that extended into the band-gap of the photoactive layer. These 

values were lower for IHJN–OSC than for BHJ–OSC and BL–OSC. In other 

words, the structure with the lowest energetic disorder in the active layer was 

IHJN–OSC where the recombination process is reduced. The study of the three 

structures at the same time provides important information about how such 

physical properties as the charge density, charge carrier lifetime and mechanism 

are governed inside the device. 

We conclude that interdigitated morphology has a favorable influence 

on photogeneration and charge transport but they also depend on factors such as 

the quality of the materials, the fabrication process (e.g. the use of orthogonal 

solvents, quality of materials, etc.), technology and even how the solar cells are 

characterized. The use of orthogonal solvents to fabricate solar cells offers a 

simple, potentially low-cost fabrication route and opens up new possibilities for 

using new polymers for manufacturing interdigitated OSC. 
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Chapter 7 

Summary and conclusions 

The work presented in this thesis concern the following subjects: 

fabrication of bulk heterojunction organic solar cells using the P3HT and PTB1 

as the p-type donor materials and the PC70BM and PCBM as the n-type acceptor 

materials. The analysis of degradation process in the photovoltaic devices was 

carried out, which aspects as the active blend preparations, the morphology 

control, the annealing process and the environment conditions exposed the 

organic solar cells were taken. Current-voltage characteristic was used to 

monitor the performance parameters of the photovoltaic devices during the 

operation under light and dark conditions. An electrical model was used to 

correlate the physical mechanisms with the performance parameters of the 

organic solar cells. 

The interdigitated heterojunction organic solar cells were designed, 

manufactured and characterized to investigate the electrical and optical 

characteristics and then compared with the bulk heterojunction and bilayer 
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structures. The charge extraction and transient photovoltage characterizations 

were used in the photovoltaic devices.  

Chapter 3 presents two different blend solutions of P3HT:PCBM at 

(1:0.8) wt% – blend 1 and (1:1) wt% – blend 2 and theses were deposited to 

fabricate the organic solar cells. The photovoltaic devices fabricated with the 

blend 2 after the exposition in air for 72 h, the degradation process becomes 

more predominant. I-V characteristic obtained under light and dark conditions 

in the organic solar cells were well fitted with the electrical model proposed. 

Parameters as saturation current Io, ideality factor n, series and shunt resistances 

Rs, Rsh were extracted from the electrical model. The electrical behavior of the 

device was correlated with the morphology of the active layer and the 

parameters extracted. The Io values for both photovoltaic structures (blend 1 

and blend 2) just after fabrication were the same. Whereas, Io for the devices 

fabricated with the blend 2 after degradation process, the value is greater of one 

order of magnitude than devices fabricated with the blend 1. This suggests that 

the intrinsic properties of the active layer for the devices prepared with the 

blend 2 are more severely affected by the oxygen and water content in the air.  

The electrical model for the I-V curves fit with one and two diodes for 

the devices fabricated with the blend 2 and the blend 1, respectively. This 

morphologically was suggested that the devices manufacture with the blend 1 

had formed two types of junctions for generating, separating and transporting of 

the charge carriers. The first junction is due to formation of the heterojunction 

between the P3HT and PCBM materials; whereas the second diode is by the 

formation of the metal-semiconductor junction. Then, the ideality factor 

extracted of the electrical model for the first junction is n=2 which suggests the 

charge transport mechanism is by recombination and for the second junction is 

n=1 which the charge transport mechanism is by diffusion. The morphology in 

the blend 2 was predominant the formation of heterojunctions between the 
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P3HT and PCBM with n=1 and the charge transport mechanism is the same as 

was described above. The series resistances in the devices manufactured with 

the blend 1 were lower than that the devices manufactured with blend 2 after the 

degradation process in air.  

In chapter 4, the P3HT:PC70BM active blends prepare with different 

amounts of PC70BM to fabricate photovoltaic devices have direct relation with 

the short circuit current density. When the PC70BM amount in the active layer is 

increasing, the disorder and interchain distance-spacing d100 between two 

lamellar structures in P3HT polymer is also increasing. In response, there is an 

increment in the charge carrier recombination inside of the active layer and the 

short circuit current density is reduced in the device. Test of micro-X-ray 

diffraction and I-V characteristic confirm the above described. In the 

experiment with the blend S1 (1:0.5 wt%) shows the highest Jsc and with less 

interchain distance-spacing d100 in P3HT of 1.64 nm, condition that helps to 

have a better transport of charge carriers through by the active layer.  

In chapter 5, the organic solar cells prepare with PTB1 polymer of low-

band gap in combination with PCBM, the best power conversion efficiency is 

5.2%. These photovoltaic devices were exposed under different environments 

such as air, nitrogen and under encapsulation where the ISOS-D1 protocol was 

applied. Cells under nitrogen environment the lifetime at (TS80) is 990 hours, in 

an ambient atmosphere the lifetime is 4 hours, and under encapsulation the 

lifetime is 48 hours. We have seen that the evolution of the power conversion 

efficiency can be modelled by the sum of two decaying exponentials with time 

constants T1 and T2. The values extracted from the model are related with the 

degradation mechanism predominant, according the environment. The 

mechanism responsible for the slow degradation in cells under nitrogen 

environment is identified to be the intrinsic chemical reactions of the polymeric 

materials with values of T1 = T2 = 4800 h. The solar cells under air conditions, 
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the time constants of degradation extracted from the model of PCE are T1 = 10 

h and T2 = 80 h showing two degradation mechanisms and dominating at 

different operation time during its life. In these solar cells, the water is the more 

predominant degradation mechanism. Finally solar cells under encapsulation, the 

time constants of degradation extracted from model of PCE are T1 = 4800 h and 

T2 = 80 h showing two degradation mechanisms too. In this case the oxygen is 

the predominant degradation mechanism for these solar cells. These results 

show that the procedure followed in this work under ISOS-D1 protocols permit 

to gain knowledge of the main degradation mechanisms of the PTB1 donor 

polymer in the solar cells. 

Finally in the chapter 6, interdigitated heterojunction nanostructured 

organic solar cell, IHJN–OSC, are manufactured by soft nanoimprinting method 

in combination with nanoporous anodic alumina templates to produce P3HT–

NP and after by spin coating is deposited the PC70BM on the top of NP in 

combination with anisole orthogonal solvent. The results provide direct 

evidence which the imprinting layer gives FF ~ 61.3% and PCE ~2.6%.  The 

nanoimprinting polymer creates larger interface between the donor and acceptor 

materials, then resulting with more efficient the photogeneration, the exciton 

dissociation and transport of the charge carriers by all the morphology 

interdigitated. The charge extraction and transient photovoltage are electrical 

techniques to quantify the charge density variation over the applied bias in the 

organic solar cells. For the first time these techniques are applied in IHJN–OSC. 

Using both techniques, the results reveal that bimolecular recombination is 

predominant in the dynamic of charge carrier losses for the interdigitated 

heterojunction organic solar cells. The recombination losses in interdigitated 

photovoltaic devices have been of 1.2 times lower than bilayer organic solar 

cells, BL–OSC. According to the results obtain and interpret for the IHJN–OSC 

has been identified an exponential tail of trap density states extending into the 

band-gap of the photoactive layer with values lower than that in BHJ–OSC. 
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This characteristic favors for the transport of charge carriers in IHJN–OSC. In 

other words, there are fewer traps and as results are obtained the reduction of 

the presence of energetic disorder inside of the interdigitated active layer and in 

the recombination processes. 
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Appendix A. Process fabrication of bulk 

heterojunction organic solar cells  

The fabrication process of the solar cell is represented in Fig. A-A1. 

Indium tin oxide was bought with the ITO pattern. Acetone, isopropyl, and 

water are used to clean the substrates. Ultraviolet light is employed to eliminate 

organic waste. PEDOT:PSS was deposited on the previous clean ITO substrate 

as was described in chapter 5. Blend solution was prepared under nitrogen 

conditions. The blend solution takes long time to get good dissolution of the 

polymer. Then, the blend solution is deposited by spin coating. Finally, it is 

deposited the metal contact under ultra-high vacuum to obtain the photovoltaic 

device. 

 

UNIVERSITAT ROVIRA I VIRGILI 
FABRICATION OF BULK AND INTERDIGITATED ORGANIC SOLAR CELLS AND ANALYSIS 
OF DEGRADATION MECHANISMS. 
Victor Samuel Balderrama Vázquez 
Dipòsit Legal: T 1921-2014



Appendix A. Process fabrication of bulk heterojunction solar cells 

 

174 

 

   

 

Fig. A-A1 Typical fabrication process used on PTB1:PCBM organic solar cell 

under nitrogen environment.  
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Appendix B. ISOS-D1 protocols 

ISOS-D1 protocols was applied in PTB1:PCBM solar cells. The 

conditions and parameters apply in the organic solar cells are to stablish the 

standard condition when the photovoltaic devices are exposed under different 

environment. Fig. B-A2 shows the parameters and conditions to analyse the 

degradation process over time in the organic solar cells from the experiments of 

chapter 5. 

 

Fig. B-A2 Protocols applied for the organic solar cells.  
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Appendix C. ESEM micro-analysis by X-

ray 

Environmental scanning electron microscope (ESEM FEI Quanta 600) 

is equipped with an energy dispersive X-ray spectroscope (EDXS). In this 

microscope, a focused high-energy electrons beam generates a diversity of 

signals at the sample surface. These signals are derived between the probe 

electron and the specimen atoms. These electrons reveal information about the 

sample properties such as the external morphology, chemical and crystal 

structure. Lithium-drifted silicon (Si (Li)) was used as detector. The energy 

applied to the sample was 15kV with a working distance of 10 mm. Fig. C-A3 

a) shows the ESEM image of the glue material. Afterward, it was analyzed by 

X-ray. In Fig. C-A3 b) and c) were showed the chemical analysis and 

quantification in weight percentage of EPT-HM, respectively. The quantity of 

carbon, oxygen and silicon were 76.49%, 23.05% and 0.45%, respectively. The 

hydrogen element was not found due to that the detector has a beryllium 

window mount in it. 
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Fig. C-A3 a) ESEM image obtained of EPT-HM material; b) and c) represent 

the chemical analysis and the quantification in weight percentage of each element 

found, respectively.  
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Appendix D. Degradation mechanisms in 

BHJ organic solar cells 

With the tremendous effort over the last few years in achieving higher 

power conversion efficiencies in organic solar cells, studies on device lifetime 

and degradation mechanisms shifted more into focus. Only the understanding of 

these degradation mechanisms can ensure that the stability and lifetime of 

organic solar cells can be increased to several years.  

Up to now investigations often concerned the influence of extrinsic 

parameters like temperature, light, oxygen and humidity on single active layers, 

on the interfaces and contacts, or on fully processed solar cells. Fig. D-A4 

presents several degradation mechanisms which are reported in the literature. 

However, fewer publications deal with intrinsic degradation mechanisms arising 

from the materials used to produce solar cells. Additionally the interfaces 

between materials can also be a bottle neck for improving device lifetime, but it 

is generally difficult to localize and characterize stability issues in complete 

devices. 
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Fig. D-A4. The loss of the Jsc in the photovoltaic devices was due to the physical and 

chemical degradation. The reduction of FF is related by the increase of the series 

resistance into the device.  
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Appendix E. Manufacture of 

interdigitated heterojunction organic 

solar cells 

The NAATs were prepared by two-step anodization process of 

aluminum metal in an aqueous solution of oxalic acid (H2Cr2O7). To obtain the 

P3HT nanopillars, first the solution was prepared in chlorobenzene (C6H5Cl) 

and after it, it was spin coated onto the previous prepared structure of 

glass/ITO/PEDOT:PSS under nitrogen atmosphere. Afterwards, the 

nanoimprinting was done with the NAATs at 2 MPa as was describe in chapter 

6. The PC70BM solution was prepared in anisole (CH3OC6H5) and deposited on 

glass/ITO/PEDOT:PSS/P3HT nanopillars by spin coating. Ca and Ag metals 

were evaporated through a shadow mask. At the same time, planar bilayer 

organic solar cells (BL-OSC) were manufactured to compare against the 

interdigitated heterojunction organic solar cells. All the steps for the fabrication 

are depicted in Fig. E-A5.  
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Fig. E-A5 General sequence is shown for the fabrication of IHJN-OSC. 
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