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Abstract

Studies have proven that the desired signal for Magnetotellurics (MT) in

the electromagnetic (EM) field can be regarded as ’quasi stationary’ (i.e.

sufficiently stationary to apply a windowed Fourier transform). However,

measured time series often contain environmental noise. Hence, they may

not fulfill the stationarity requirement for the application of the Fourier

Transform (FT) and therefore may lead to false or unreliable results under

methods that rely on the FT. In light of paucity of algorithms of MT data

processing in the presence of non stationary noise, it is the goal of this thesis

to elaborate a robust, non stationary algorithm, which can compete with

sophisticated, state-of-the-art algorithms in terms of accuracy and precision.

In addition, I proof mathematically the algorithm’s viability and validate its

superiority to other codes processing non stationary, synthetic and real MT

data.

Non stationary EM data may affect the computation of Fourier spectra

in unforeseeable manners and consequently, the traditional estimation of the

MT transfer functions (TF). The TF estimation scheme developed in this

work is based on an emerging nonlinear, non stationary time series analy-

sis tool, called Empirical Mode Decomposition (EMD). EMD decomposes

time series into Intrinsic Mode Functions (IMF) in the time-frequency do-

main, which can be represented by the instantaneous parameters amplitude,

phase and frequency. In the first part of my thesis, I show that time slices

of well defined IMFs equal time slices of Fourier Series, where the instan-

taneous parameters of the IMF define amplitude and phase of the Fourier

Series parameters. Based on these findings I formulate the theorem that non

stationary convolution of an IMF with a general time domain response func-

tion translates into a multiplication of the IMF with the respective spectral

domain response function, which is explicitly permitted to vary over time.
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Further, I employ real world MT data to illustrate that a de-trended sig-

nal’s IMFs can be convolved independently and then be used for further

time-frequency analysis as done for MT processing. Lastly, a discussion is

opened on parallels between the Hilbert-Huang Transform (HHT, the con-

version from time series to instantaneous parameters via EMD) and the

Fourier Transform with respect to the time-frequency domain.

In the second part of my thesis, I apply the newly formulated theorem

to the MT method. The MT method analyses the correlation between the

electric and magnetic field due to the conductivity structure of the sub-

surface. For sufficiently low frequencies (i.e. when the EM field interacts

diffusively), the conductive body of the Earth acts as an inductive system

response, which convolves with magnetic field variations and results in elec-

tric field variations. The frequency representation of this system response is

commonly referred to as MT TF and its estimation from measured electric

and magnetic time series is summarized as MT processing. The main contri-

bution in this thesis is the design of the MT TF estimation algorithm based

on EMD. In contrast to previous works that employ EMD for MT data pro-

cessing, I (i) point out the advantages of a multivariate decomposition, (ii)

highlight the possibility to use instantaneous parameters, and (iii) define the

homogenization of frequency discrepancies between data channels. In addi-

tion, my algorithm estimates the transfer functions using robust statistical

methods such as (i) robust principal component analysis and (ii) iteratively

re-weighted least squares regression with a Huber weight function. The code

can be used with and without aid of any number of available remote reference

stations. Finally, TF uncertainties are estimated by iterating the complete

robust regression, including the robust weight computation, by means of a

bootstrap routine. The code further contains a routine that calculates the

transfer function from noise caused by instrument motion for Marine MT

studies and removes this noise accordingly.

The proposed methodology is applied to synthetic and real data (from

southern Africa) with and without non stationary character and the re-

sults are compared with other processing techniques. I conclude that non

stationary noise can heavily affect Fourier based MT data processing but

the presented non stationary approach is nonetheless able to extract the

impedances correctly even when the other methods fail.



Zusammenfassung

Studien zeigen, dass die für Magnetotelurische (MT) Messungen wichti-

gen elektromagnetischen (EM) Quellen als quasistationär angesehen werden

können, sodass eine Fourier Transformation mit geeigneter Fensterfunktion

angewendet werden kann. Die gemessenen Zeitreihen enthalten jedoch nebst

dem Signal auch Rauschen. Dieses erfüllt nicht notwendigerweise die zwin-

gende Bedingung der Stationarität für die Fourieranalyse und kann daher

zu falschen oder unzuverlässigen Ergebnissen führen. Existierende Lösun-

gen für das Verarbeiten von MT Messreihen mit nichtstationärem Verhalten

sind unzureichend entwickelt, da das Signal selbst als stationär angenommen

werden kann. In dieser Doktorarbeit wurde ein statistisch robustes, nichtsta-

tionäres Verfahren entwickelt, welches mit hoch entwickelten, renommierten

Algorithmen, die auf die Fourieranalyse aufbauen, in Zuverlässigkeit und

Präzision vergleichbar ist. Zusätzlich wird die mathematische Grundlage

für das verwendete Verfahren bewiesen und dessen Überlegenheit im Ver-

gleich zu alternativen Algorithmen anhand echter und synthetischer MT

Messreihen, mit und ohne nichtstationären Eigenschaften, bestätigt.

Nichtstationäre EM Messreihen können die Ermittlung ihres Fourier

Spektrums auf unvorhersehbare Weise beeinflussen und damit auch die Ab-

schhätzung der MT Übertragungsfunktion (TF für Englisch: Transfer Func-

tion) zwischen elektrischen und magnetischen Feldern. Diese Arbeit en-

twickelt ein Verfahren zur Abschätzung der MT TF basierend auf einem

neuen, nichtlinearen und nichtstationären Algorithmus, bekannt als Empir-

ical Mode Dekomposition (EMD, zu Deutsch: Aufspaltung in empirisch er-

mittelte Modi). Die EMD spaltet die Zeitreihen im Zeit- und Frequenzraum

in Funktionen auf (IMF für Englisch: Intrinsic Mode Function), welche über

Parameter, wie Amplitude, Phase und Frequenz, dargestellt werden können.

Diese sogenannten Momentanparameter sind zeitabhängig. Zu Beginn der
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Arbeit wird mathematisch gezeigt, dass IMFs zu jedem Zeitpunkt auch als

Fourierreihe betrachtet werden können, wobei die Momentanparameter der

IMF die Parameter Amplitude und Phase der Fourierreihe bestimmen. Dies

führt zu der Formulierung eines neuen Theorems, welches beschreibt, dass

nichtstationäre Faltung einer IMF mit einer allgemeinen Übertragungsfunk-

tion im Zeitraum gleich der Multiplikation der IMF mit der Übertragungs-

funktion im Frequenzraum ist. Dabei kann die Übertragungsfunktion im

Frequenzraum auch seitabängig sein. Das Theorem wird anschliessend auf

reale MT Messreihen angewandt um zu zeigen, dass dies selbst für Zeitreihen

gilt, welche in IMFs aufgespalten werden können. Abschliessend wird disku-

tiert inwieweit man vor dem Hintergrund des Theorems Parallelen zwischen

der Hilbert-Huang und der Fourier Transformation ziehen kann.

Das MT Messverfahren analysiert die Korrelation zwischen den elek-

trischen und magnetischen Feldern, die aufgrund unterirdischer Strukturen

der elektrischen Leitfähigkeit auftritt. Sobald sich das EM Feld diffus aus-

breitet, wirkt, im Bereich ausreichend kleiner Frequenzen, die leitfähige Erde

als induktive Übertragungsfunktion. Diese faltet sich mit den zeitlichen

Variationen des magnetischem Feldes und erzeugt dadurch messbare Varia-

tionen im elektrischen Feld. Im Frequenzraum ist diese Funktion als MT TF

bekannt und ihre Abschätzung aus magnetischen und elektrischen Messrei-

hen wird als Verarbeitung von MT Daten bezeichnet. Der Hauptbeitrag der

vorliegenden Arbeit ist der Entwurf eines Verfahrens zur Abschätzung der

MT TF basierend auf den EMD Algorithmus. In Gegensatz zu vorherge-

henden Arbeiten zu diesem Thema, werden die Vorteile einer multivariaten

Variante von EMD aufgezeigt und die Möglichkeit hervorgehoben die Mo-

mentanparameter direkt zu verwenden. Weiterhin wird einen Frequenzmit-

telwert für den Fall ermittelt, dass sich die Momentantfrequenzen zwis-

chen Feldkomponenten unterscheiden. Das vorgeschlagene Verfahren basiert

auf robusten statistischen Methoden wie robuste Hauptkomponentenanal-

yse und die schrittweise, gewichtete Methode der kleinsten Quadrate mit

einer Huber Gewichtsfunktion. Durch die Hauptkomponentenanalyse kann

das Verfahren Daten anderer Stationen zur Rauschminderung nutzen. Ab-

schliessend wird die Zuverlässigkeit des Verfahrens mittels Bootstrapping

abgeschätzt. Zusätzlich kann das Verfahren auch Rauschen eliminieren,

welches durch die Bewegung des Messinstrumentes hervorgerufen wurde,
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falls die Winkelbewegungen verfügbar sind. Dies ist insbesondere für ma-

rine Messungen oftmals hilfreich.

Synthetische und gemessene Daten (aus dem südlichen Afrika), welche

sowohl stationäre als auch nichtstationäre Eigenschaften aufweisen, werden

mit dem vorgeschlagenem Verfahren verarbeitet und die Ergebnisse mit al-

ternativen Algorithmen verglichen. Anhand der Beispiele wird gezeigt, dass

nichtstationäres Rauschen die Verarbeitung von MT Messreihen stark behin-

dern kann, wenn Methoden verwendet werden, welche auf die Fourieranalyse

aufbauen. Die Verwendung des vorgeschlagene Verfahrens führt hingegen zu

besseren Ergebnissen.
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CHAPTER 1

Introduction

“We are either progressing or retrograding all the while.

There is no such thing as remaining stationary in life.”

James Freeman Clarke (1810–1888), an american theologian, captured nicely

what is true not only for us but nature in general. Whatever we observe in

nature, we notice that it is at a continuous change, be it very fast or very

slow. Similarly varies the rate of change itself and its rate in turn. Carrying

this reasoning into infinity concludes that truly no process remains constant

forever and everything always changes. A remarkably poetic representation

of this philosophy has been created by Numhauser (1982).

1.1 The Magnetotelluric (MT) Method

The MT method is a geophysical exploration tool in which the variations of

electric and magnetic fields are measured in order to investigate the in-depth

conductivity structure of the subsurface. The method was first introduced

in the 1950’s and, since then, enjoyed ever-rising academic and commercial

attention. Electromagnetic fields are predominantly affected by conductivity

structure and thus, complement well other geophysical exploration methods

like seismic or gravity which provide mechanical properties. Applications of

the MT method have a wide range, because its investigation depth is solely

limited by the frequency range of the observed signal and even though it

exhibits reduced spatial resolution with increasing depth (in contrast to e.g.

seismic) its complement value is highly rated.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Origin of the MT Method

Schröder and Wiederkehr (2000) review the early historic research on elec-

tromagnetic variations in the Earth, which is mostly based on the works

of Carl Friedrich Gauss (1838) and James Clerk Maxwell (1873). Gauss

was first in interpreting mathematically the effects of terrestrial magnetism,

where Maxwell laid out the theoretical relation between electricity and mag-

netism. These findings fueled the desire to better understand the electro-

magnetic system Earth and promptly developed into the description of the

atmosphere as an ’electromagnetic machine’ where, through changes in the

terrestrial magnetism, induced electric currents ’would have an effect on

conductive layers in the Earth’ (Stewart (1880) as cited in Schröder and

Wiederkehr, 2000, page 330, section 7). Stewart (1877) recognized the re-

lation between diurnal cycles and geomagnetic phenomena originating from

the atmosphere and later, Schuster (1886) supported these ideas qualita-

tively. The electromagnetic field inside a conductive Earth has been investi-

gated by Lamb (1883) (homogenous sphere and periodic fields), Price (1930)

(aperiodic fields) and Lahiri and Price (1939) (conductivity as function of

distance to center-point). From these efforts emerged the technique of MT

(proposed independently by Rikitake (1948); Tikhonov (1950) and Cagniard

(1953)), which defines the electric impedance of a location on the surface of

a conductive body as the spectral transfer function between the electric and

magnetic field observed at the same location.

1.1.2 History of MT Data Processing

After Cagniard (1953) laid out the theoretical basis for magnetotelluric ex-

ploration, Sims and Bostick Jr (1969); Sims et al. (1971) provided the so-

lution for the impedance tensor from MT measurements in a mean-square

sense but noted that the presence of noise could induce bias on their esti-

mates. Gamble et al. (1979) showed that inclusion of remote measurements

can completely remove this bias if the noise between station and remote

is not correlated, a method adopted from econometrics and first proposed

by Reiersøl (1941). Weidelt (1972) lists invariant constraints that the solu-

tion must obey and proposes to reject data that does not fulfil these fun-

damentals and thus, opens the field for data quality control in MT data



1.1. THE Magnetotelluric (MT) METHOD 3

processing. Reddy and Rankin (1974) extends this idea and proposes that

statistical coherences inherently control data quality and only proceed pro-

cessing with concentration on the seemingly better parts. Finally, Egbert

and Booker (1986); Chave et al. (1987) and Jones et al. (1989) demonstrate

the supremacy of robust statistical procedures over ordinary least-squares

and Egbert (1997) extend the remote reference method to an unlimited num-

ber of stations by selecting the two most energetic principal components of

all available remote stations as reference. From there on, efforts have been

made to reduce the effect of correlated noise in the final estimations, but the

proposed solutions are generally data set dependent and cannot be applied

without intensive knowledge about the to-be-processed data set.

A concise summary of further data Quality Control (QC) measures is

given by Weckmann et al. (2005) who propose a general workflow to stream-

line manual editing (noise removal) in time and spectral domain. Since

manual editing of large amounts of MT time series and spectra is common

practice but impractical, Manoj and Nagarajan (2003) propose to teach

artificial neural networks.

Oettinger et al. (2001) concentrate on noise removal by estimating a

magnetic transfer function between a noisy site and a noise free site in order

to use the residual magnetic field (that cannot be explained by the remote

reference) as additional regressor to a second quiet remote reference site.

This procedure reduces the variance of the estimated MT transfer functions

if the remote reference sites do not contain correlated noise. However, the

idea is conceptually similar to the multivariate approach proposed by Egbert

(1997).

Garcia and Jones (2002) study Audio-Magnetotelluric (AMT) sources

and conclude that the signal in the AMT dead band (1 to 5 kHz) is drasti-

cally reduced during daytime and therefore, advocate to concentrate mea-

surements for the AMT method during nighttime in high latitudes. Poste-

riorly, Garcia and Jones (2005), propose the use of a new methodology for

high latitudes in which a remote site is measuring continuously MT data,

but a telluric survey is carried out at daytime. Through the calculation of

the telluric-telluric transfer functions, they obtain the responses at each site.
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(a) Low frequency MT source. (b) High frequency MT source.

Figure 1.1: MT signal source types are displayed, (a): magnetospheric fluctuations by
solar wind constitute to signals of frequencies < 8 Hz and (b): energy of frequencies >

8 Hz stem from lightning activity channeled between ionosphere and Earth. Illustrations
are taken from Christopherson (1998).

1.1.3 Magnetotelluric Sources and Noise

Natural Electromagnetic (EM) field variations are caused by two major

working mechanisms: lightning activity at high frequencies (> 8Hz) and

magnetospheric currents excited by solar wind at low frequencies (< 8Hz)

(Garcia and Jones, 2002; Christopherson, 1998, cp. Figure 1.1). Rakov and

Uman (2007) summarize the electromagnetic lightning discharge to three

modes: (a) fast and transient leader-return-stroke sequences, (b) slow and

quasi stationary continuing currents and (c) perturbations and surges on the

continuing currents. The longest lasting and most abundant in an electro-

magnetic time series measurements are the perturbed continuing currents,

which may be viewed as being stationary on a section with a dynamic length

due to recurrent transient strokes. Liu and Fujimoto (2011) conclude that

the magnetospheric current is non linearly driven by the dynamic solar wind

but behaves in a static manner for high magnetospheric pressure conditions.

Both of these EM sources are naturally non stationary, since both, light-

ning strokes and magnetospheric pressure conditions, are very dynamic and

strictly limit the duration of the stationary electromagnetic signal.

In accordance with almost all MT practitioners, Chave and Jones (2012)

argue that the magnetotelluric signal is quasi stationary and therefore advo-
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cate that the Fourier Transform is the preferred tool to transform data into

the frequency domain, even though the Fourier Transform requires a strictly

stationary signal. Nevertheless, for the quasi stationary nature of MT source

signal, this procedure might be correct for processing the signal that we are

after but does not necessary hold for noise sources which certainly can be

non stationary (e.g. a moving train) and are usually inseparably mixed with

the desired MT source in the collected MT data. So, the MT signal may

behave sufficiently stationary but the contained noise clearly does not need

to. If we cannot succeed in separating this non stationary noise, it might

very well leak throughout the Fourier Spectra and hamper any impedance

estimation. In order to diminish this effect, state-of-the-art processing tech-

niques break the MT time series into smaller parts and perform the Fourier

Transform on each part, hoping that the non stationary effects of both, sig-

nal and noise, are negligible in the major part of the data and can be sorted

out by robust statistical routines.

In practice this procedure works very well for data with high signal-to-

noise ratios but frequently encounters problems in the presence of strong

electromagnetic noise (which would include non stationary signal). Detailed

information about electromagnetic noise characteristics is reviewed and de-

scribed concisely by Szarka (1988) and Junge (1996). Table 1.1 summarizes

active and passive sources of noise that can be observed in MT measure-

ments. Passive sources act typically as superficial anomalies and rather lead

to wrong interpretations of the results than really introduce electromag-

netic noise to the measurements, however, even though they do not add

noise directly, in particular the conductive passive noise sources may reduce

the signal strength considerably to the point of being undetectable. Active

sources, on the other hand, add electromagnetic energy to the measurements

and may completely overwhelm the natural signal. Normally, active electro-

magnetic noise can be assumed in the near field and thus is often recognized

(although not removed). Figures 1.2a, 1.2b and 1.3 illustrate noise effects

in MT measurements on three examples, figure 1.2a captures a very obvious

EM noise from a passing radar sweep, figure 1.2b compares the spectra of

a quiet site with the spectra of a site close to a large city, and figure 1.3

exemplifies how difficult it can be to identify hidden noise in the time series.

In these examples the noise effects are known and well understood, serving
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for illustrative purposes, but it is easy to think of any more complicated

form of noise (e.g., non stationarity, aperiodicity, combination of noise) that

could be present in measurements.

Despite the continuos effort and progress in MT processing research,

many obtained data sets are still heavily affected by noise up to the point

that the interesting features are masked and the initial objectives for a sur-

vey cannot be met. When MT sites are located close to industry, agricul-

ture or populated areas, cultural noise easily overwhelms the natural signal,

therefore, for MT data processing, it is of utmost interest to identify and

reduce the noise influence to improve accuracy and precision of impedance

estimates and allow MT surveys in urban areas or during times of low signal

strength.

1.1.4 Principles of MT Data Processing

Magnetotelluric measurements log the natural variation of magnetic and

electric (telluric) fields at the Earth’s surface and these measured time se-

ries can be statistically analyzed to obtain the relative spectral relation of the

electrical to the magnetic field (cp. Figure 1.4 and Vozoff, 1972; Schmucker

and Weidelt, 1975). The subsurface conductivity structure enforces a partic-

ular distribution of underground currents, which alter the external natural

electromagnetic field of the Earth and, therefore, it allows us to derive that

structural information of the subsurface conductivity from the analysis of

the electromagnetic field on the surface.

The EM field propagation is described by Maxwells equations (Maxwell,

1873). Considering (1) harmonic fields with constant frequency ω, (2) the

current density j is proportional to the electric field E at a constant con-

ductivity tensor σ (j = σ ·E) and (3) the field propagates only by diffusion

(neglecting displacement currents and surface charges: iωεE � σ · E and

q = 0), these equations are:

∇×E = −iωB, (1.1a)

∇×B = μ (iωεE + j) = iωμεE + μσ ·E ≈ μσ · E, (1.1b)

∇ ·B = 0, (1.1c)

∇ ·E =
q

ε
≈ 0 (1.1d)
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Figure 1.4: Typical field setup for MT measurements, taken from Vozoff (1972).

with μ describing the magnetic susceptibility as product between the mag-

netic susceptibility of vacuum μ0 and the given medium μr. The penetration

of the field F = E,B in a homogeneous body is described by applying the

curl operator (∇×) to Maxwell’s equations and solve for each field F:

∇
2F = iωμσF = k2F (1.2)

The term k2 = iωμσ is the diffusion parameter, which describes the complex

penetration depth (skin depth) δ = Re
(

1
k

)
of the EM field (Schmucker and

Weidelt, 1975) and represents the impedance Z(ω) = iω
k

for a homogenous

earth. Equations (1.1) for a three dimensional, anisotropic earth are solved

in appendix A.1 and special cases for which the impedance tensor elements

simplify are derived in appendix A.2. Equations (A.7) readily suggest a re-

lationship between the horizontal electric and magnetic fields and justify the

definition of the Tikhonov-Cagniard impedance tensor Z (in the following

only referred to as the impedance Z) as the following relation:

(
Ex(ω)

Ey(ω)

)
=

(
Zxx(ω) Zxy(ω)

Zyx(ω) Zyy(ω)

)
·

(
Bx(ω)

By(ω)

)
. (1.3)
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Mathematically, Z can be understood as the system response tensor of the

Earth, B the input vector and E the output vector of a convolution, thus

E(ω) = Z(ω) ·B(ω) (1.4)

or in time domain

e(t) = z(t) ∗ b(t). (1.5)

Electric and magnetic fields are recorded as time series and need to be trans-

formed into the frequency domain in order to solve for the impedance, be-

cause the impedance tensor is only defined in the frequency domain. Under

ideal conditions, the electromagnetic field varies quasi stationary, meaning

the spectral composition changes sufficiently slow that a windowed Fourier

Transform (FT) can be performed, but for sites closer to inhabited or indus-

trial areas, cultural noise often affects the measurements severely. Cultural

noise can be of any kind and is most often non stationary, therefore, mea-

surements of e(t) and b(t) are often disturbed by non stationary variations,

since the physical measurements contain both, natural signal and cultural

noise. However, assuming ideal measurements for the electric and magnetic

fields, the system of equations in (1.3) can be solved for the impedance Z

by any suitable optimization algorithm.

1.1.5 Importance of Processing for Interpretation

The magnetic and electrical time series acquired for a MT study cannot be

interpreted in their crude form, they always have to be processed to ob-

tain interpretable information. Even after processing the time series, the

resulting impedance is still not very descriptive. It only indicates how sub-

surface resistivity appears for a range of frequencies. In order to obtain a

real, structured resistivity model in spatial coordinates, it is necessary to

find such a model by data forward modeling and inversion. It is clear, that

the success of such procedures heavily depend on the input data quality.

Therefore, studies on the improvement of signal-to-noise ratios, noise iden-

tification and signal filtering are necessary in order to drive the areas of MT

operations closer to urban regions or to extend measurements in times of

low signal strength.
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1.2 Non Stationary Signal Analysis in the MT Method

In digital signal processing, time series convolution is often related to the

FT and therefore implies stationary and linear assumptions on the data.

The reason for this prominence lies within the convolution theorem which

allows to exchange a weighted integral expression to a simple multiplication,

which results in much shorter computation times (Smith, 1997). Margrave

(1998) introduced the theory for non stationary convolution filters based

on the Fourier Transform arguing that a continuous function is completely

described by its Fourier Transform and, therefore, non stationary filtering

should be possible in the frequency domain. Huang et al. (1998) show that

the frequency information of non stationary signals might describe the sig-

nal entirely but gives biased information with respect to the physics of the

signal, concluding that misinterpretation of the Fourier Transform cannot

be ruled out in a truly non stationary setting.

1.2.1 Fourier Transform and its Limitation

While scrutinizing diffusive heat flow, Fourier (1822, translated to English:

Fourier and Freeman, 1878) defined one of the most renown transformation

in time series analysis to date, the Fourier Transform. The transformation

relates two variables x and ξ with a Fourier integral pair such that

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πixξdx = F (f) , ∀ξ ∈ R, (1.6a)

f(x) =

∫ ∞

−∞

f̂(ξ)e2πiξxdξ = F
−1

(
f̂
)

, ∀x ∈ R (1.6b)

and states that f can be reconstructed from f̂ by the Fourier Transform

f = F

(
f̂
)
. However, the integration limits indicate that complete (infi-

nite) knowledge of f̂ would be required. Since periodic functions contain

complete information in a sufficiently long section, adequate for physical

measurements (e.g., in time or space), periodic functions are predestined

for analyses with the Fourier Transform. Often physical relations can be

approximated by periodic functions and thus, qualify more or less for such

analyses themselves with small, mostly known errors known as spectral leak-

age. These assumptions are generally known as stationary (periodic) or

quasi stationary (sufficiently periodic) conditions.
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1.2.2 Convolution Theorem and its Convenience

Wikipedia (2011) provides the following definition of the convolution oper-

ator ∗ for functions f : R → R and g : R → R

h (t) = (f ∗ g) (t) =

∫ ∞

−∞

f (τ) g (t− τ) dτ (1.7)

and its well known properties with respect to the Fourier Transform

F (f ∗ g) = F (f) · F (g) and F (f) ∗ F (g) = F (f · g) (1.8)

In conclusion, the theorem states that if a convolution is carried out in its

Fourier domain (viz. the frequency domain if the convolution is formulated

in the time domain), then the convolution operator transforms to a simple

multiplication instead of the infinite weighted integral. Since many physical

interactions can be described by convolution this theorem is used widely.

However, especially because of its power, practitioners are often tempted

to assume too lightly physical signals to be sufficiently stationary, which in

turn is necessary for the Fourier transform of the signals in question.

1.2.3 Frequency Band-passed Processing as Workaround

Non stationary time series analysis must abstain from the Fourier Trans-

form, which has become a very basic procedure in MT data processing. A

few early attempts to process MT data entirely in the time domain have been

driven by Berdichevsky (Berdichevsky et al., 2002, and references therein)

but have not been developed further into a state-of-the art processing al-

gorithm. One approach without an explicit need for quasi stationary data

is described by Berdichevskiy et al. (1973). In their work, they propose to

limit the frequency content of magnetotelluric time series (e(t) and h(t))

by consequent mathematical bandpass filtering subsequently for any desired

number of frequencies. From these sets of filtered time series, the analytic

signal (ea(t) and ha(t)) of each set can be calculated if the spectral range

ω̄ ± Δω of the bandpass is sufficiently narrow. The impedance is not sen-

sitive to little frequency variations and thus, each set of analytic signals of

the filtered time series can be used to estimate the impedance of the average
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frequency in that set:

(
ea,x(t, ω̄ ±Δω)

ea,y(t, ω̄ ±Δω)

)
=

(
Zxx(ω̄) Zxy(ω̄)

Zyx(ω̄) Zyy(ω̄)

)
·

(
ha,x(t, ω̄ ±Δω)

ha,y(t, ω̄ ±Δω)

)
. (1.9)

Since the impedance Z is assumed to be constant over time, it can be esti-

mated by regression in the same way as it is done for equation (1.3). Because

mathematical filtering does not require stationarity, this approach offers to

process MT data when it is contaminated by non stationary noise or when

the source signal is non stationary.

However, in theory, the frequency band should tend to zero (Δω → 0),

otherwise the analytic signal may not be correct and meaningful (Huang

et al. (1998)). Since, this approach applies a constant bandpass Δω over a

constant centre frequency ω̄, the limit of Δω → 0 effectively leads to the

Fourier transform. In the following section, I will review a novel filter algo-

rithm that is fully data adaptive and thus, it allows to efficiently decompose

non stationary time series into functions that meet - per definition - the

restrictions for constructing the analytic signal correctly.

1.2.4 The Hilbert-Huang Transform

Huang et al. (1998) introduced the Hilbert-Huang Transform (HHT), which

is a new method to transform time series into a time-frequency domain

without any assumptions on stationarity and linearity on the signal. The

method has been extensively tested since then and successfully applied to

different fields (Men-Tzung et al., 2008; Jackson and Mound, 2010; Zeiler

et al., 2011; Chen et al., 2012), although a rigorous mathematical foundation

is not yet available. The definition of HHT is empirical and data dependent,

which on one hand provides a tool that works on non stationary, non linear

bases but, on the other hand, denies a profound understanding of the method

solely based on its definition.

Despite of the lack of a classical explicit mathematical basis, extensive

tests have validated HHT and suggest that it improves time series analysis,

in particular in the presence of non stationary or non linear effects (Huang

et al., 2009). Furthermore, these tests confirm that a Fourier Transform can-

not reliably represent the frequency information in a non stationary signal,
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which require non stationary treatment.

Very often time series include non stationary and non linear effects and

sometimes it is not desirable or not feasible to remove them. For instance,

measurements of natural signals like the Earth’s magnetic field are station-

ary for sufficient long periods of time, but measurements may include en-

vironmental noise which can be non stationary (Egbert, 2002; Chave and

Thomson, 2004; Garcia and Jones, 2008). In this case, neither the exact

noise signal nor the exact desired signal are known. Therefore, the desired

stationary part cannot be isolated and the non stationary combination of

both must be analysed.

Huang et al. (1998) introduced HHT and described thoroughly its appli-

cation, restrictions and direct results. Later, Huang et al. (2009) updated

the procedure by dividing its results into true amplitude and phase modu-

lations. The most fundamental part of the HHT is called Empirical Mode

Decomposition (EMD) which is a recipe for finding a set of orthogonal and

complete Intrinsic Mode Function (IMF) from any given de-trended time

series x(t) = xtotal(t)− xtrend(t).

One can conclude that the technique evolves the Fourier series:

x(t) =
∑
n

an · e
iωnt =

∑
n

an · e
iφn(t) (1.10)

to a transformation with an amplitude and phase term that are dependent

on time:

x(t) =
∑

j

âj(t) · e
i

R t

−∞
ω̂j(t

′)dt′ . (1.11)

Note, that the range of the indices n and j depend on the definition of an

and âj , respectively, as usual for the Fourier Transformation. If an is real

valued n ranges from −∞ to ∞ without 0 and if an is complex n begins

from 1. Consequently, we only use the latter definition. The exact same

convention applies to âj.

The IMF mj(t) of x(t) are defined as

mj(t) = âj(t) · e
iφ̂j(t) (1.12)
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with φ̂j(t) =
∫ t

−∞
ω̂j(t

′)dt′ and by the following properties:

1. In the whole dataset, the number of extrema and the number of zero-

crossings must either equal or differ at most by one, and

2. at any point, the mean value of the envelope defined by the local

maxima and the envelope defined by the local minima is zero.

It is noteworthy, that in the frame of the Fourier expansion, an describes

the complex amplitude of the mono-frequency part (with ωn) of the signal

x(t) for the entire process. Whereas, âj(t0) is the complex amplitude of the

signal at t = t0 which exhibits the frequency ω̂j(t0).

In other words, the HHT separates time-varying Amplitude modulation

(AM) and Phase modulation (PM) in form of oscillatory modes from the

data and provides them as IMFs. The values of the PM are in the open

interval between −1 and +1 and are defined such that they are locally zero-

mean functions (number of extrema and number of zero-crossings differ by

not more than one, for detailed information, confer Huang et al. (2009)).

Huang et al. (1998) argue that phase functions with these properties can

be subjected to the Hilbert Transform in order to acquire their analytic

signal and that these functions exhibit a physical meaningful instantaneous

frequency. The Hilbert Transform of a suitable function y(x) is defined by

H(y)(x) =
p.v.

π
·

∫ ∞

−∞

y(τ)

x− τ
dτ (1.13)

with p.v. as the Cauchy principal value. We can construct the analytic signal

by

ya(x) = y(x) + iH(y)(x) (1.14)

where H(y)(x) is the Hilbert Transform as of equation (1.13) and, thus,

obtain the signal’s phase with

Φ(x) = arctan

(
H(y)(x)

y(x)

)
(1.15)

Ultimately, the instantaneous frequency is defined as time derivative of the

phase:

Ω =
dΦ(x)

dx
. (1.16)
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In conclusion, the HHT provides the complete set of instantaneous pa-

rameters (amplitude, phase and frequency) as functions of time for any given

time series and formulates a mean to obtain complex spectral information

from time series without any stationarity assumptions. Therefore, HHT

seems to be a natural choice for an in-depth investigation on its performance

related to non stationary magnetotelluric processing.

As a final remark, note that the electromagnetic fields in the approach

of Berdichevskiy et al. (1973, see equation (1.9) in previous section) need to

be narrowly band-passed and thus, represent an approximation of an IMF

with the restriction, that the center-frequency (instantaneous frequency)

is constant. HHT decomposes signals into IMFs which can be described

by their instantaneous frequency and thus, IMFs could be considered as

dynamically, band-passed versions of the signal itself.

1.3 Statistical Transfer Function Estimation

The magnetotelluric transfer function Z(ω) is defined through coefficients

that relate the horizontal electric with the horizontal magnetic field (see

equation (1.3) for reference). Expanding this relation results in two equa-

tions, one for Ex and one for Ey, each of which are represented through Bx

and By:

Ex(ω) = Zxx(ω)Bx(ω) + Zxy(ω)By(ω), (1.17a)

Ey(ω) = Zyx(ω)Bx(ω) + Zyy(ω)By(ω). (1.17b)

Each of these two equations can be regarded as a multiple linear regres-

sion problem, which has a unique solution when there are two electric and

magnetic field measurements for the frequency ω. For more than two mea-

surements of the electric and magnetic field at a certain frequency (ω), a

least squares solution can be found that minimizes the residual difference be-

tween the measured and estimated electric field. However, it has been shown

that the least squares solution is not suitable for real MT data (Jones et al.,

1989), since the measurements often contain noise, which leads to a strong

bias in the least squares solution. Therefore robust statistical estimators

are the widely preferred solution. A simple robust least squares estimator,

such as the one applied here, is an algorithm that iteratively weights the
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residuals and finds a solution for which most measurements have the low-

est possible residual. All data with higher residuals are dismissed (Huber,

2005). Unfortunately, the robustness of this estimation is only towards er-

rors in the predictor (here the electric field) and does not take into account

possible errors in the observable (here the magnetic field), thus the estima-

tion will be biased for noise variance in the magnetic fields. The following

sectionadresses this problem.

1.3.1 Principal Component Analysis and Two Step Regression

Egbert (1997) investigates the electromagnetic field in a multivariate sense

and reports that all natural electric and magnetic fields share two com-

mon polarization vectors. He concludes that the Principal Component

Analysis (PCA) of all EM field components of nearby stations would result

in two major principal components, if there was no correlated noise present

in the signal. This finding is the corner stone of his multivariate Errors-

in-Variables processing algorithm, which incorporates intrinsically and thus

generalizes the remote-referencing technique introduced to the MT commu-

nity by Gamble et al. (1979).

Assume that the Principal Components of any given number of horizon-

tal EM field components Ei = [Ei
x, Ei

y] and Bi = [Bi
x, Bi

y] can be computed:

PC = PCA(E1,B1, . . . ,Ei,Bi), (1.18)

where PC are the principal components of the EM field components at site

i returned by PCA, which symbolizes a (preferably robust) principal com-

ponent analysis such as documented by Hubert and Verboven (2003). If

there is no correlated noise present between all the measurements, the two

major principal components should contain the EM signal polarization vec-

tors, which represent the entire EM signal to first order (Egbert, 1997, 2002;

Smirnov and Egbert, 2012). Since the principal components are statistical

entities and not measurements, they can be assumed error-free (free of ran-

dom and uncorrelated noise) and thus can be regarded better observables

than the measurements of the magnetic field itself. For each station, we

can compute the regression parameters of both, the electric field E and the



1.3. STATISTICAL TRANSFER FUNCTION ESTIMATION 19

magnetic field B on the two major principal components PC1,2:

E(ω) = Re(ω) ·PC1,2(ω), (1.19a)

B(ω) = Rh(ω) ·PC1,2(ω). (1.19b)

These reformulated regression problems allow a robust estimation of the new

transfer functions Re and Rh. Errors in the electric and the magnetic field

can be accounted for by the robust regression scheme described previously.

Multiplying (1.19b) by the inverse of Rh and inserting the product in

(1.19a), shows that the impedance Z(ω) is the product of Re and the inverse

of Rh, viz.

Z(ω) = Re(ω) ·
(
Rh(ω)

)−1
. (1.20)

The estimation of Z(ω) with this two step regression yields robust results

insensitive to random gaussian noise present in the electric and magnetic

field.

1.3.2 Estimation Uncertainty

A comprehensive interpretation of results from statistical analyses requires

that they are accompanied by some measure of uncertainty. There are essen-

tially two main branches of uncertainty measures, They can either be derived

from parametric modeling or from non parametric estimation of a statisti-

cal model. Parametric modeling tries to fit an ideal stationary statistical

model and indicates the goodness of fit through descriptive parameters (e.g.

residual variance analysis, curve fitting). Non parametric methods analyze

the behavior of the data under statistical conditions and offer descriptive

parameters on the characteristics of data (e.g. bootstrapping, jackknife,

qq-plots, Theil-Sen estimator).

Since this thesis concentrates on non stationary data analysis, the uncer-

tainty of the data may vary over time and thus, I will use the non parametric

method ’bootstrapping’ (Efron, 1979; Liu et al., 1988) to estimate the MT

Transfer function (TF) and its uncertainty.
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1.4 Objectives of the Thesis

Empirical Mode Decomposition (EMD) is a novel technique, which is de-

signed to transform non stationary data into a time-frequency domain, and

might very well substitute and qualitatively outperform Fourier Transform

based estimation schemes. Some advances with this technique in the field

of MT processing have been reported (Cai et al., 2009; Chen et al., 2012)

but their method uses EMD as a filter rather than a Fourier Transform sub-

stitute and do not take full advantage of the inherent properties of EMD,

which is the full decomposition of the time series into a complete and or-

thogonal set of its instantaneous amplitude, phase and frequency. Therefore,

this thesis focusses on the use of EMD as a true Fourier Transform substi-

tute by developing the theory for non stationary convolution and how it can

be embedded in MT data processing. Following this general introduction,

the chapters 2 to 4 lead stepwise towards a newly proposed MT processing

scheme that is entirely freed of the stationarity assumption. Subsequently,

the thesis concludes with a concise summary and suggestions on how the

work can be continued in chapter 5.

• Chapter 2: Non Stationary Time Series Convolution

In this chapter, I develop the mathematical foundation for using the

HHT for traditional transfer function analysis, like MT data process-

ing. The HHT decomposes time series into IMF, which are in the time

and in the frequency domain, and this chapter demonstrates that time

slices of IMFs equal time slices of Fourier Series, where the instan-

taneous parameters of the IMF define the parameters amplitude and

phase of the Fourier Series. This finding leads to the formulation of

the theorem that non stationary convolution of an IMF with a general

time domain response function translates into a multiplication of the

IMF with the respective spectral domain response function, which is

- in addition - explicitly permitted to vary over time. The theorem is

verified by comparison with convolution by mathematical filtering on

both, stationary and non stationary, synthetic data.

The chapter concludes with an example of MT data processing veri-

fying that a de-trended signal’s IMFs can be convolved independently

and then be used for further time-frequency analysis. Finally, a discus-
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sion is opened on parallels in between HHT and the Fourier Transform

with respect to the time-frequency domain.

• Chapter 3: Frequency Shift Caused by Convolution

By using the Hilbert-Huang Transform, a non stationary time series

can be represented by a number of modes, which are complex time se-

ries with instantaneous amplitudes, phases and frequencies. Following

the non stationary convolution theorem from the previous chapter, I

analyze analytically the characteristics of a convolved time series and

caution that through non stationary convolution the instantaneous fre-

quency of a signal may change. Finally, I quantify the frequency shift

and argue that this difference may hamper any attempt to deconvolve

non stationary signals. The argument is illustrated by synthetic data.

• Chapter 4: Non Stationary MT Data Processing

Because non stationary electromagnetic noise affects the computation

of Fourier Spectra and therefore, the estimation of the MT TF as

outlined in the introduction, this chapter introduces a TF estimation

scheme based on the EMD and the non stationary convolution theorem

from chapter 2. In contrast to previous works that employ EMD for

MT data processing, I argue the necessity of a multivariate analysis,

highlighting the possibility to use instantaneous parameters and define

the homogenization of frequency discrepancies between data channels.

The presented scheme uses the robust statistical estimation of transfer

functions based on principal component regression and can be used

with and without aid by any number of available remote reference

stations. Data errors are estimated by enveloping the entire scheme

with a bootstrap routine. The algorithm is verified on synthetic and

real data (Southern Africa) with and without non stationary character

and the results are compared with different processing techniques.

Furthermore, the algorithm is used to assess the effects of non station-

ary noise in MT data processing. I compare the presented algorithm

with traditional and efficient processing codes based on the Fourier

Transform. The benchmark is carried out on synthetic, non station-

ary data and fair real data with and without added synthetic, non sta-

tionary noise in order to show how easily a quasi stationary method is
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compromised by a non stationary source and that the EMT algorithm

is able to treat the situation correctly.

Lastly, I describe a complementary, free MatLab program that com-

putes non stationary data for the magnetotelluric method. The syn-

thetic source field can be defined by arbitrary frequency and amplitude

functions or by the default parameters from the given example in this

chapter. For the impedance model, a one dimensional conductive earth

model can be computed or any impedance can be imported from files

with the Elecrical Data Interchange (EDI) standard.
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Górriz, J. M., Lang, E. W., 2011. Brain status data analysis by sliding

EMD. In: Proceedings of the 4th international conference on Interplay be-

tween natural and artificial computation: new challenges on bio-inspired

applications - Volume Part II. IWINAC’11. Springer-Verlag, Berlin, Hei-

delberg, p. 77.

URL http://dl.acm.org/citation.cfm?id=2009542.2009551



28 CHAPTER 1. INTRODUCTION



CHAPTER 2

Non Stationary Time Series Convolution:

On the Relation between Hilbert-Huang and

Fourier Transform

published in Journal of Advances in Adaptive Data Analysis

23 April 2013

Maik Neukirch and Xavier Garcia

Barcelona Center for Subsurface Imaging, Institut de Ciències del Mar, CSIC
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Abstract

The Hilbert-Huang Transform (HHT) decomposes time series into

Intrinsic Mode Function (IMF) in time-frequency domain. We show

that time slices of IMFs equal time slices of Fourier Series, where the

instantaneous parameters of the IMF define the parameters ampli-

tude and phase of the Fourier Series. This leads to the formulation of

the theorem that non stationary convolution of an IMF with a gen-

eral time domain response function translates into a multiplication

of the IMF with the respective spectral domain response function

which is explicitly permitted to vary over time. We conclude and

show on a real world application that a de-trended signal’s IMFs

can be convolved independently and then be used for further time-

frequency analysis. Finally, a discussion is opened on parallels in

HHT and the Fourier Transform with respect to the time-frequency

domain.
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2.1 Introduction

In digital signal processing, time series convolution is often related to the

Fourier Transform (FT) and therefore implies stationary and linear assump-

tions on the data. The reason for this prominence lies within the convolu-

tion theorem which allows to exchange a weighted integral expression to

a simple multiplication, which results in much shorter computation time

(Smith, 1997). Margrave (1998) introduced the theory for non stationary

convolution filters based on the Fourier Transform arguing that a continu-

ous function is completely described by its Fourier Transform and, therefore,

non stationary filtering should be possible in the frequency domain. Huang

et al. (1998) show that the frequency information of non stationary signals

might describe the signal entirely but gives biased information with respect

to the physics of the signal, concluding that misinterpretation of the Fourier

Transform cannot be ruled out in a truly non stationary setting.

Huang et al. (1998) introduced the HHT, which is a new method to

transform time series into a time-frequency domain without any assumptions

on stationarity and linearity on the signal. The method has been extensively

tested since then and successfully applied to different fields (Men-Tzung

et al., 2008; Jackson and Mound, 2010; Zeiler et al., 2011; Chen et al.,

2012), although a rigorous mathematical foundation is not yet available.

The definition of HHT is empirical and data dependent, which on one hand

provides a tool that works on non stationary, non linear bases but, on the

other hand, denies a profound understanding of the method solely based on

its definition.

Despite of the lack of a classical explicit mathematical basis, extensive

tests have validated HHT and suggest that it improves time series analysis,

in particular in the presence of non stationary or non linear effects (Huang

et al., 2009). Furthermore, these tests confirm that a Fourier Transform can-

not reliably represent the frequency information in a non stationary signal

which, hence, require non stationary treatment.

Very often time series include non stationary and non linear effects and

sometimes it is not desirable or not feasible to remove them. For instance,

measurements of natural signals like the Earth’s magnetic field are station-

ary for sufficient long periods of time, but measurements may include en-
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vironmental noise which can be non stationary (Egbert, 2002; Chave and

Thomson, 2004; Garcia and Jones, 2008). In this case, neither the exact

noise signal nor the exact desired signal are known. Therefore, the desired

stationary part cannot be isolated and the non stationary combination of

both must be analyzed. In order to solve that exact problem we discuss how

the convolution filter affects non stationary signals and extend the convolu-

tion theorem to non stationary signals.

In this work we present the non stationary convolution based on HHT

which does not imply assumptions on the stationarity of the signal. Since

results of the HHT are neither exclusively in the time nor frequency do-

main, we cannot readily generalize the established convolution theorem for

an analysis based on HHT but we can show, that there are fundamental

similarities between the FT and the HHT with respect to convolution and

use those similarities to find a new formulation for the non stationary con-

volution. Due to the nature of non stationary signals and how the frequency

information can be recovered by HHT, we will argue that a non stationary

convolution based on HHT does not necessarily have an uniquely defined in-

verse, or a deconvolution operator resulting in the original signal, but we will

briefly discuss resulting implications for the deconvolution of such signals.

The paper starts with a brief review of the HHT, highlighting the in-

stantaneous parameters which are the backbone of our theorem. Then, it

continues by presenting the formulation of the non stationary convolution

theorem and the lemma required for the subsequent proofs. The theorems

are interpreted physically and their implications on the relation between FT

and HHT are laid out. The paper concludes with two numerical examples

on a stationary and a non stationary test signal, and an example of a gen-

uine geophysical application with real world data. It follows a discussion on

our findings and suggestions for further work especially with respect to non

stationary deconvolution.

2.2 Hilbert-Huang Transform (HHT)

Huang et al. (1998) introduced the HHT and described thoroughly its ap-

plication, restrictions and direct results. Given a de-trended time series
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f (t) = ftotal (t)− ftrend (t), the HHT generalizes the Fourier series

f (t) =
∑
n

Fn · e
2πiνnt =

∑
n

Fn · e
iφn(t), (2.1)

where the phase is defined as φn(t) = 2πνnt, to a series with an amplitude

F̂ (t) and frequency ν̂(t)

f (t) =
∑

j

F̂j (t) · e2πi
R t

−∞
ν̂j(t′)dt′ =

∑
j

F̂j (t) · eiφ̂j(ν̂j(t),t), (2.2)

with the phase φ̂j(ν̂j (t) , t) = 2π
∫ t

−∞
ν̂j (t′) dt′. Note, that the range of the

index n ∈ Z depends on the definition of the amplitudes Fn as usual for the

Fourier Transform. For Fn ∈ R: n ∈ Z and for Fn ∈ C: n ∈ N
0 with N

0

being the natural numbers including zero. Both definitions are equivalent,

so let us concentrate on the complex definition for Fn in this work. On the

other hand, F̂j ∈ R always is a real amplitude of the signal and is defined for

j ∈ N
+ for an infinite long function f(t) with N

+ being the natural numbers

exclusive zero.

The Intrinsic Mode Function (IMF) mj (t) of f (t) are defined as

mj (t) = F̂j (t) · eiφ̂j(ν̂j(t),t) (2.3)

by the following properties:

1. In the whole dataset, the number of extrema and the number of zero-

crossings must either equal or differ at most by one, and

2. at any point, the mean value of the envelope defined by the local

maxima and the envelope defined by the local minima is zero.

Note, that within the frame of the Fourier expansion, Fn describes the con-

stant complex amplitude of the mono-frequency part (with νn) of the signal

f (t) for the entire process. Whereas, F̂j (t) is the real amplitude of the IMF

j which exhibits a frequency ν̂j (t), which both can vary over time.

In other words, the Hilbert-Huang Transform (HHT) separates narrow-

bandwidth Amplitude modulations (AMs) a = F̂j(t) and Phase modulations

(PMs) p = eiφ̂j(t) from the data and provides them in form of real-valued

Intrinsic Mode Functions (IMFs) Huang et al. (2009). This process is called
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Empirical Mode Decomposition (EMD) of f(t) and yields the corresponding,

real-valued IMFs, which represent the real part of equation (2.3). The AM

values a describe time varying signal power, whereas the PM p only contain

pure oscillations. The real values of p are in the open interval between −1

and +1 and are defined such that they are locally zero-mean functions, which

means that the number of extrema and number of zero-crossings do not differ

by more than one (for detailed information, see Huang et al. (2009)). Huang

et al. (1998) argue that phase functions with these properties can be Hilbert-

transformed to acquire their analytic signal and that they exhibit a physical

meaningful instantaneous frequency. The Hilbert Transform of a suitable

function p (t) is defined by

H (p) (t) =
p.v.

π
·

∫ ∞

−∞

p (τ)

t− τ
dτ, (2.4)

where p.v. indicates Cauchy’s principal value. We can construct the analytic

signal by

m (t) = a (p (t) + iH (p) (t)) , (2.5)

where H (p) (t) is the Hilbert Transform equation (2.4) and, thus, obtain

the signal’s phase using

φ̂ (t) = arctan

(
H (p) (t)

p (t)

)
. (2.6)

Ultimately, the instantaneous frequency is defined as the time derivative of

the phase:

ν̂(t) =
dφ̂ (t)

2πdt
. (2.7)

2.3 Non Stationary Convolution Under HHT

Let us consider an integrable function f : t ∈ R→ R in the integral formula-

tion of the FT pairs (taken from Wikipedia (2011) with references therein):

F (ν) =

∫ ∞

−∞

f(t) · e−2πiνtdt = F (f(t)) (2.8)

f(t) =

∫ ∞

−∞

F (ν) · e2πiνtdν = F
−1 (F (ν)) (2.9)
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with φ(ν, t) = 2πνt, and a general IMF m : t ∈ R → R:

m (t) = M̂(t) · eiφ̂(t) (2.10)

with M̂(t) representing the real-valued, instantaneous amplitude of m. Let

us define a complex amplitude function M̃ (ν̂, t) = M̂(t) · eiφ̃(ν̂,t) and a phase

function φ̃(ν̂(t), t) = φ̂(t)− 2πν̂t to rewrite the IMF m as

m (t) = M̃(ν̂, t) · e2πiν̂t. (2.11)

2.3.1 Theorem 1

Let m(t) be an IMF with instantaneous frequency ν̂(t), F τ (ν) a member of

the group of Fourier Transforms of f τ (t) and τ ∈ R the parameter which

describes each member, then:

m(t) · F τ (ν̂(t)) = m(t) ∗ f τ (t). (2.12)

The frequency wise multiplication of m with F equals the convolution of m

with f .

2.3.2 Lemma 1

Let m(t) be an IMF with instantaneous frequency ν̂(t), then the convolution

of m(t) with the delta distribution δ(t) is

(m ∗ δ) (t0) =
(
M̃t0 · e

2πiν̂(t0)t
∗ δ(t)

)
(t0) , (2.13)

with M̃t0 = M̂(t0) · e
iφ̂(t0)−2πiν̂(t0)t0 = M̃(ν̂(t0), t0) being the complex am-

plitude of a monochromatic oscillation with frequency ν̂(t0).

The proof of this lemma is trivial, but we include it to stress that this

property of the IMF can be used to find more properties of the HHT with

the help of well-known properties of the FT. Figure 2.1 provides a graphical

illustration of this Lemma.
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Figure 2.1: This figure illustrates Lemma 1. The black curve is an IMF (a chirp
function with linearly increasing frequency and constant amplitude, cp. section 2.8)
and the light curves are sine curves with the frequency, phase and amplitude chosen to
be identical with the IMF at the intersection points marked by reddish circles. The IMF
evolves along the actual time axis, whereas the sine curves are displayed in an auxiliary
time domain whose sole purpose is to visualise them. The vertical axis describes the
deviation for both, the IMF and the sine curves.

2.4 Proof for Theorem 1

Starting on the Right hand side (RHS) from the following identity:

(m(t) ∗ f τ (t)) (t) = (δ ∗m ∗ f τ ) (t), (2.14)

focusing on an isolated time instant t0

((δ ∗m) ∗ (f τ )) (t0) (2.15)

and using the sifting property of the delta function with Lemma 1, the RHS

yields

((δ ∗m) ∗ f τ ) (t0) =
[(

δ ∗ M̃t0 · e
2πiν̂(t0)t

)
∗ f τ (t)

]
(t0)

=
[
δ ∗ M̃t0 · F

−1 (δ(ν̂(t0)− ν)) ∗ F−1 (F τ (ν))
]
(t0) .

(2.16)
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When we resolve the convolution with the help of the convolution theorem

for Fourier Transforms, we obtain

((δ ∗m) ∗ f τ (t)) (t0) =
[
δ ∗ M̃t0 · F

−1 (δ(ν̂(t0)− ν) · F τ (ν))
]
(t0)

=

[
δ ∗ M̃t0 ·

∫ ∞

−∞

δ(ν̂(t0)− ν) · F τ (ν) · e2πiνtdν

]
(t0)

=
[
δ ∗ M̃t0 · F

τ (ν̂(t0)) · e
2πiν̂(t0)t

]
(t0)

= M̃t0 · e
2πiν̂(t0)t0 · F τ (ν̂(t0)).

(2.17)

Now, the Left hand side (LHS) of Theorem 1 can be written as:

(δ ∗m(t) · F τ (ν̂(t))) (t0) =
(
δ ∗ M̂(t) · eiφ̂(t)

· F τ (ν̂(t))
)

(t0)

=
(
δ ∗ M̂(t) · eiφ̂(t)−2πiν̂(t)t+2πiν̂(t)t

· F τ (ν̂(t))
)

(t0)

= M̂(t0) · e
iφ̂(t0)−2πiν̂(t0)t0 · e2πiν̂(t0)t0 · F τ (ν̂(t0)),

(2.18)

for M̃t0 = M̂(t0) · e
i(φ̂(t0)−2πν̂(t0)t0) as required for Lemma 1, LHS and RHS

of Theorem 1 are equivalent for all times t0.

2.5 Proof for Lemma 1

The proof is a straight forward application of the sifting property of the

delta distribution in a convolution and the insertion of a zero term. The

LHS can be reformulated as follows by using equation (2.11):

(m ∗ δ) (t0) =
(
M̃ (ν̂(t), t) · e2πiν̂(t)t

∗ δ(t)
)

(t0)

= M̃ (ν̂(t0), t0) · e
2πiν̂(t0)t0 .

(2.19)

M̃(ν̂, t) can be understood as a complex-valued, instantaneous amplitude

which incorporates an instantaneous starting phase in order to linearize the

phase term of the IMF m. By reformulating the RHS of Lemma 1, we find

(
M̃t0 · e

2πiν̂(t0)t
∗ δ

)
(t0) = M̃t0 · e

2πiν̂(t0)t0 . (2.20)
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and readily see that both sides are equivalent for M̃t0 = M̃ (ν̂(t0), t0).

2.6 Physical Interpretation

2.6.1 Theorem 1

Assuming we know exactly the spectral response F (ν) of a physical mea-

surement device, this theorem states that we can simply multiply the known

spectral response F (ν) by a known time signal m(t) in order to obtain the

signal n(t) measured by the device, if the signal m(t) is an IMF. Per defi-

nition, n(t) is exactly the convolution of the time domain response function

f(t) of the device with the incoming signal m(t). Our reformulation of a

non stationary convolution to a simple multiplication leads to a better un-

derstanding of the behavior of physical systems in a non stationary set up

and further increases the application range of the HHT.

An important note is that a de-trended signal x(t) should convolve in

the same manner as if each of its IMFs mj(t) are convolved independently

to nj(t) and then are summed over to the total convolved signal y(t). Un-

fortunately, the non stationary character of IMFs cannot guarantee that the

convolution of an IMF results in another IMF; thus, it may not be allowed

to sum over nj in order to form the total convolved signal y. If the present

non stationarity is too severe in mj or in the transfer function F (ν, t) the

convolution of mj cannot yield another IMF, because the convolution may

introduce new extrema without additional zero crossings to the function

which is not permitted in the definition of an IMF. In such a case it remains

an open question whether nj still are base functions of y. Certainly, the

convolved signal y can not decompose into nj if not all nj qualify as IMFs.

This restriction on the inverse to our theorem depends very much on the

non stationary phase-time relation of signal and transfer function and may

be discussed in detail in another work. Here, we only want to stress that the

convolution results of IMFs do not need to be IMFs and may not always be

summed up in order to compose a total convolved signal of a general time

series. However, the theorem will always apply to a signal that is an IMF

all by itself, even though the convolved result may or may not be an IMF

after the convolution.

Later we will discuss an example for which we can add up the convolved
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IMFs of a signal in order to get the total convolved signal. Moreover, in

that example we will use the spectral information given by the IMFs of a

signal and its convolution in order to estimate the system’s transfer function.

Therefore, we claim that the convolution of a signal’s IMFs may well describe

physical properties of signal convolution.

2.6.2 Lemma 1

This Lemma states that the instantaneous parameters of the IMFs at any

time t = t0 can be used as parameters of a sine curve to fully describe the

IMF at that time. It provides a link between the HHT and the FT and

can likely be used to find more properties of the HHT with the help of well-

known properties of the FT, since a sine curve is the fundamental base of the

FT. Note, that the FT is defined on an infinite time axis and that the time

axis of this “virtual” sine curve is not equivalent to the one of the original

signal but rather to an imaginary, infinite one, therefore even a piece of a

continuous time signal can be described by these virtual sine curves and

anything that applies to the entire virtual sine curve also applies to the

IMF at time t0. The Hilbert spectrum is the common mean to visualize the

time-frequency behavior of an IMF and therefore, we suggest to refer to the

Hilbert spectrum as two-dimensional, time-evolving Fourier spectrum.

2.7 On the Relation between HHT and FT

First of all, we would like to propose the term “time-varying Fourier Trans-

form”, which we define as the RHS of equation (2.13). Virtually every

function f(t) : t ∈ R → C can be represented by a Fourier amplitude in

this way but it is worth noting that the implications coming along with the

definitions of an IMF, like that it must have a physically meaningful instan-

taneous frequency, give meaning to the time-varying Fourier amplitudes as

physical representations of the IMF in the time and frequency domain.

When we apply Lemma 1 (equation 2.13) to equation (2.2), which is

the original formulation of the HHT as taken from Huang et al. (1998) ,we

find that the function f(t) is represented by a series of time-varying Fourier
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Transforms:

(f ∗ δ) (t0) =
∑

j

(mj ∗ δ) (t0) =
∑

j

(
M̃

j
t0
· e2πiν̂j(t0)t

∗ δ
)

(t0), (2.21)

where j ∈ N
+ is the order of the IMF and ν̂j assumes the spectral coordinates

of the signal f . This formulation represents (in time slices) how the time-

frequency information, obtained from the HHT, is commonly displayed: the

Hilbert spectrum.

2.8 Two sandbox examples - Sine and Chirp

In order to demonstrate Theorem 1, we designed two synthetic time series,

the first superposes two sine curves with distinct frequency values and the

second is a chirped sine with a linearly increasing frequency. Both of these

signals are then subjected to the convolution with a 1st-order Butterworth

low pass filter.

Stationary signal - two sine curves The first example is stationary and

validates that Theorem 1 holds for the conventional convolution theorem,

which states that the convolution of two time series is the inverse FT of the

multiplication of the Fourier Transform of each time series. The superposi-

tion of two sine functions, here one with a frequency of 5 Hz and another

with 5 kHz, is decomposed equally by the HHT and FT. Both Transforms

find the exact same two oscillations with the constant amplitude from the

signal. The signal is displayed as a black line in Figures 2.2a and 2.2b high-

lighting its slow and fast oscillation, respectively. In the same graphs are

the convolution results with two distinct Butterworth filter. The filter are

set up as 1st order low pass filter with normalized cut-off frequencies at 0.05

and 0.005. The convolution with both filters has been applied in forward

and reverse direction in order to achieve zero phase filter with amplitudes

as shown in Figure 2.2c. Figures 2.2a and 2.2b show that the amplitude

of the low frequency oscillation is not affected as both filter are in the pass

band, whereas the high frequency part is damped according to the amplitude

value of the corresponding frequency and filter. We tested three methods,

FT based filtering, time series convolution filtering and the non stationary
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(a) The first synthetic test signal is a superposition of two sine functions with a frequency
of 5 Hz and 5 kHz, respectively. The colored lines show the same signal filtered by 1st

order low pass Butterworth filter with normalized cut-off frequencies at 0.05 and 0.005.
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(b) This zoom-in around 0.1 s of figure 2.2a
highlights the details of the test signal.
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(c) The amplitude spectra of the filter that
are used here have distinct values at 5 kHz.
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Figure 2.2: This figure illustrates the first test signal represented by a superposition
of two sine functions and its convolution with a 1st order low pass filter. The signal is
completely stationary and the convolution can be carried out in the time domain, with
the FT or with our theorem and yields the exact same results.

convolution theorem as presented in this work. All three methods yield

exactly the same result.

Non stationary signal - chirped sine with linear frequency The

second example on synthetic data is on a pure, non stationary signal in

form of a chirped sine function with a linearly increasing frequency, which

is per definition an IMF. The signal is plotted in Figure 2.3 as a black line

with its frequency axis at the top and the time axis at the bottom. Note,

that the very same signal illustrates Lemma 1 in Figure 2.1. To perform

a convolution, we use the Butterworth filter with the cut-off frequency at

0.05 as described for the previous example. The filter is again set up as

zero phase filter with the amplitude displayed as blue line in Figure 2.3.

The convolution is carried out via the time series convolution and via the
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Figure 2.3: The second test signal is a chirp function with a linearly increasing fre-
quency over time and constant amplitude. This figure compares the convolution of
the chirp with a 1st order low pass Butterworth filter applied with two methods: time
domain convolution and theorem 1 from this paper. Besides the numeric errors at the
edge from the numeric convolution algorithm, both methods yield the same result.

non stationary convolution theorem. Both results are displayed in Figure

2.3 and both are almost identical. The only difference is that the time

series convolution algorithm can not deal with the beginning of the time

series, since it is defined as a weighted sum that requires values around

the location where it calculates the convolution but there exist no values

lower than t = 0 so the algorithm assumes zero-padding and experiences

“edge problems”. The calculation based on the non stationary convolution

theorem uses only local information and therefore is exact as well at the

edges, where the frequency is very low and there is virtually no effect of

the low pass filter to be expected. In fact, we tested different filter types

(Chebyshev I and II, Elliptic and Bessel analog filter) with the order up to

10 and for several cut-off frequencies, and the convolution theorem presented

here gave accurate results for any sampling rate as it is defined on the local,

instantaneous parameters, whereas numeric filter procedures depend much

on sampling as it relies on weighted sums.

2.9 A Real World Example - Magnetotellurics

In this section we want to present an application of Theorem 1. The au-

thors’ field of expertise lies in Magnetotelluric (MT) exploration and, hence,

the theorem has been developed in light of processing magnetotelluric data.

Magnetotelluric measurements log the natural variation of magnetic and



42 CHAPTER 2. NON STATIONARY TIME SERIES CONVOLUTION

(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component

�

 �


 �





��"��������

��
	

��
�


�
�

�
�
��


��
��
��
��
��

"�
��
� ��������

������

Figure 2.4: Magnetotelluric data is given as an example application of the non sta-
tionary convolution theorem with the electric impedance as the Earth’s system response
function relating magnetic to electric fields. The main entries of the impedance tensor
Z are displayed as amplitude and phase over a range of periods. It describes the sub-
surface electric conductivity structure and can be used to detect electric anomalies like
phase boundaries, ore minerals or water deep inside the Earth.

electrical (telluric) fields at the Earth’s surface and these measured time se-

ries can be statistically analyzed to obtain the relative spectral relation of the

electrical to the magnetic field Vozoff (1972). The subsurface conductivity

structure enforces a particular distribution of underground currents, which

alter the external natural electromagnetic field of the Earth and, therefore,

it allows us to derive that structural information of the subsurface conduc-

tivity from the analysis of the electromagnetic field on the surface.

Knowing the spectra of the surface electrical field E(ω) and the spectra

of the surface magnetic field B(ω), we can write the relation between the
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horizontal spatial field components as

(
Ex(ω)

Ey(ω)

)
=

(
Zxx(ω) Zxy(ω)

Zyx(ω) Zyy(ω)

)
·

(
Bx(ω)

By(ω)

)
(2.22)

where Z is the impedance which describes the subsurface conductivity vol-

ume for a given frequency ω. With respect to the work described in this

paper, Z can be simply understood as the system response function of the

Earth, B the input and E the output of the convolution. Electrical and

magnetic fields are recorded as time series and need to be transformed

into the frequency domain in order to solve for the impedance, because

the impedance tensor is only defined in the frequency domain. Under ideal

conditions, the electromagnetic field varies quasi stationary, meaning the

spectral composition changes sufficiently slow that a windowed FT can be

performed, but for sites closer to inhabited or industrial areas, cultural noise

often affects the measurements severely. Cultural noise can be of any kind

and is most often non stationary, therefore, measurements of e(t) and b(t)

are often disturbed by non stationary variations, since the physical measure-

ments contain both, natural signal and cultural noise.

Clearly, the problem described here is not exactly in the format of the

theorem where we know input and system response and seek the output

but it is similar; we do know input and output and need to find the system

response by an optimization procedure. Thus, in this example we also have

to assume Theorem 1 to hold in order to search for the optimal solution.

The algorithm that solves for this magnetotelluric data is too complex

to be discussed here in detail and will be treated in its entirety in a different

work, but we do need to stress that equation (2.22) states a multivariate

optimization problem, which requires the use of a special EMD introduced

by Rehman and Mandic (2010) and designed for multivariate data but for

our purpose it performs an EMD no different than the univariate EMD, only

that it ensures data channel correlation within the index of the IMFs (e.g.

IMF number two of channel ex will be at a similar time scale as any other

channel’s IMF number two).

Looking at the MT problem from the point of this work, E = F(e) is

the output or result of the convolution (electrical field spectra), B = F(b)

is the convolution input (magnetic field spectra) and the system response is
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Z(ν) = F(z(t)) (Impedance) with the unknown temporal system response

function z(t)

E = Z ·B (2.23)

or in time domain

e = z ∗ b. (2.24)

Both, e and h, are then decomposed into their respective IMFs with the al-

gorithm by Rehman and Mandic (2010) ,which ensures that for both signals

the time scales remain correlated throughout the decomposition process.

Theorem 1 suggests that

mj
e = z ∗m

j
b

= Z ·mj
b

(2.25)

with mj being the respective IMFs for input and output.

Using equation (2.25) and a statistical optimization, we find an optimal

solution for Z(ν) for the instantaneous parameters given by m
j
b

and m
j
e.

The results of the Impedance tensor for the test data set is presented in

Figure 2.4 in dark color. The curves in bright color correspond to a Fourier-

Transform-based algorithm processing the same data set.

Note, that this last example shown here also suggests that the convolved

IMFs from a signal can be added to produce the complete convolved signal

if the results still are IMFs. Here, we used measured time series of the signal

and its convolution, b and e, respectively, and carried out the convolution

on their respective IMFs to find the system response function, thus it proofs

that the sum of the convolved IMFs indeed reproduce the convolved mea-

surement, even though the convolution has been carried out on each IMF

independently. Our example only uses stationary transfer functions with a

relatively constant phase, therefore it shall be said that other more complex

cases may yield a different experience. For example, let there be a high

degree of non stationarity in the phase-time relation between the IMF and

the transfer function, then the IMF-system characteristics may preclude the

convolution to result in another IMF, because some situations may alter the

rotational sense of the phase and, hence, introduce new extrema without ad-

ditional zero-crossings. However, the observation is interesting enough that

we feel it would deserve a more thorough investigation in the next chapter.
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2.10 Conclusion

• The convolution between an Intrinsic Mode Function and a temporal

system response can be translated into a multiplication.

• The Hilbert-Huang spectra can be represented as a Fourier spectra

with time varying complex amplitude.
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Abstract

By using the Hilbert-Huang Transform, a non stationary time se-

ries can be represented by a number of modes, which are complex

time series with instantaneous amplitudes, phases and frequencies.

Following the non stationary convolution theorem which allows to

translate a convolution into a multiplication, we analyze the charac-

teristics of a convolved time series and show that through convolution

the instantaneous frequency may change. We quantify the frequency

shift and argue that this difference greatly hampers any attempt to

deconvolve non stationary signals.

3.1 Introduction

The Hilbert-Huang Transform (HHT, Huang et al., 1998) is a novel tool to

analyze non stationary time series and describes them with their instanta-

neous, spectral information. HHT decomposes a time series into a number

of zero-mean, oscillatory modes, called Intrinsic Mode Function (IMF), in
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order to ensure existence of an interpretable analytic signal of each IMF and

to express the analytic signal in terms of time series of the instantaneous pa-

rameters: amplitude, phase and frequency. The IMF reside in the time and

frequency domain and are described by amplitude and phase as functions of

time, where the time derivative of the phase constitutes the frequency.

Neukirch and Garcia (2013) present a non stationary convolution the-

orem that is similar to the convolution theorem for Fourier transform but

that does not imply assumptions on the stationarity of the signal since it

is based upon the definitions of the IMFs of the Hilbert-Huang Transform.

However, they argue that such a non stationary convolution does not neces-

sarily have an uniquely defined inverse, or a deconvolution operator resulting

in the original signal, and we wish to continue this discussion focussing on

some resulting implications for the deconvolution of non stationary signals.

Since the convolution of a non stationary time series with a response

function in the time domain can be transformed into a basic algebraic for-

mulation, in this work, we focus on the repercussions of a non stationary

convolution by analyzing the instantaneous phase and its time derivative.

Most notably, we find that there can be a frequency shift in the resulting

signal with respect to the original signal depending on the degree of non

stationarity. This finding may be important for non stationary time series,

which are filtered by a system response for technical reasons, as it is often

the case for physical measurements.

Table 3.1: These conventions are used in the course of this chapter.

(a) Table of Functions

t time
φ(t) phase function

ω(t)= φ̇ instantaneous angular frequency
m(t) Intrinsic Mode Function (IMF)
s(t) temporal system response
S(ωm, t) spectral system response
x(t) convolution result of s and m

Δω(t) frequency shift

(b) Table of Subscripts

m relates to original signal
s relates to system response
x relates to convolved signal
0 identifies amplitudes
j order of IMF
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3.2 HHT and Non Stationary Convolution

In the Hilbert-Huang Transform (Huang et al., 1998, 2009), the Intrinsic

Mode Function (IMF) mj (t) of x (t) are defined as

mj (t) = m0,j (t) · eiφj(t). (3.1)

with φj (t) =
∫ t

−∞
ωj (t′) dt′.

In essence, the HHT separates narrow-bandwidth Amplitude modulation

(AM) mj(t) and Phase modulation (PM) φj(t) from the data and provides

them in form of IMFs. This process is called Empirical Mode Decomposition

(EMD). Since the phase of the signal is well defined, the instantaneous

frequency can be derived from the phase by:

ωm(t) =
dφm (t)

dt
. (3.2)

Neukirch and Garcia (2013) show that the convolution of an IMF mj(t)

with any time domain system response function s(t) translates into a com-

plex multiplication of the IMF with the frequency domain representation

S(ωm, t) of that response function.

mj(t) ∗ s(t) = mj(t) · S(ωm(t), t) (3.3)

Equation (3.3) simplifies non stationary convolution drastically and one may

infer that the same is true for the equally interesting deconvolution of signals.

Unfortunately, the simplicity of the inverse operation for multiplication is

misleading here and distracts from the fact that there can be involved quite

different and unknown phase functions. Let us shed light on the problematic

with an analysis of the phase function and allow us to ignore the amplitude

functions in this work.

3.3 Phase Analysis of Convolved Time Series

We separate the complex values m(t) and S(ωm(t), t) of equation (3.3) for a

single IMF in the amplitudes m0(t) ∈ R
+ of the IMF m and S0(ωm(t), t) ∈

R
+ of the response function S, and in the phases φm(t) ∈ R of m and

φs(ωm(t), t) ∈ R of S. Note, that both, the amplitude and phase of the
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response function, are functions of the instantaneous frequency ωm(t) =
dφm(t)

dt
= φ̇m(t) of m and the time t ∈ R. Then the convolution x(t) =

m(t) ∗ s(t) writes:

x0 exp (iφx) = m0 exp (iφm) · S0

(
φ̇m, t)

)
exp

(
iφs(φ̇m, t)

)
(3.4)

with the following amplitude and phase functions:

x0 = m0 · S0

(
φ̇m, t

)
, (3.5)

φx = φm + φs

(
φ̇m, t

)
. (3.6)

The observed amplitude x0 is a function of amplitude and phase of the IMF

m whereas the observed phase φx is independent of the amplitude, therefore,

in this work, we restrict the analysis to the phase and leave the amplitudes

for another time. The time derivative of equation (3.6) yields:

φ̇x = φ̇m +
∂φs

(
φ̇m, t

)
∂t

+
∂φs

(
φ̇m, t

)
∂φ̇m

φ̈m. (3.7)

Hence, we find that φ̇x = φ̇m only for the case that either

1. the phase of the spectral system response φs is constant over time for

a certain frequency φ̇m and one of both, φs is constant for a varying

φ̇m or φ̇m is constant over time, or

2. the second two summands cancel each other.

In all other cases, φ̇x will differ from φ̇m by the frequency shift

Δω =
∂φs

(
φ̇m, t

)
∂t

+
∂φs

(
φ̇m, t

)
∂φ̇m

φ̈m. (3.8)

This observation tells us, that in a non stationary convolution a different

instantaneous frequency may be observed than the one that the underlying

process m had before it convolved with the response function s. The dif-

ference will depend on the nature of the response function (phase behavior

over frequency and time) and on the signal itself (swiftness of changes in the

instantaneous frequency). Furthermore, x(t) will only retain the status of
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qualifying as an IMF like m if and only if the frequency shift is larger than

the negative instantaneous frequency of m:

Δω > −φ̇m. (3.9)

If not, the phase φx will run backwards introducing new extrema without

zero crossings and prohibiting x to fall into the definition of an IMF. Even

if the frequency shift allows the convolved signal to fall into the definition

of an IMF its mere presence may easily cause mode mixing in a time signal

that contains more than one IMF, since the instantaneous frequency of one

IMF can become larger/smaller than its predecessor/successor.

3.4 A Representative Example

Figure 3.1 illustrates numerically the theoretical findings of the last section.

There we define an IMF as a chirped function with a linearly increasing

frequency and constant amplitude (see Figure 3.1 (1) to (3), blue dotted line)

and a system response function with a quadratic frequency-phase relation

and decreasing amplitude (see Figure 3.1 (1) to (3), red line). Naturally,

the IMF is defined as a time series but since the time-frequency relation

is linear in this example, we can equally use the abscissa for both, time

and frequency. Then, the system response function is defined as a spectra,

but again, since the time-frequency relation is linear and unique, the same

reasoning applies for the abscissa for the system response function. The

convolution of both is computed via equation (3.3) and displayed in Figure

3.1 (1) to (3) as purple dashed line. Note here, that in contrast to IMF and

system response function the abscissa of the convolution represents the true

time but the original frequency of the IMF and not the shifted frequency due

to the convolution. The first plot illustrates how the varying amplitude of

the system response function envelopes the convolution because the unitary

chirp constitutes nothing to the multiplication of amplitudes in equation

(3.3). Plot number two and three represent the addition of phases and

frequency, respectively. And lastly, the frequency shift is plotted in the

fourth diagram in form of the ratio between the frequency shift and the

frequency of the IMF. The frequency shift in this example increases up to the

value of the original frequency, effectively doubling the observed frequency

from before to after the convolution.
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Figure 3.1: From top to bottom: (1) a Intrinsic Mode Function (unitary chirp), the
amplitude of a spectral system response and the convolution of IMF and SR, (2) phase
functions, (3) phase gradients and (4) the ratio between the frequency shift and original
frequency.
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3.5 Remarks on Deconvolution

For solving a non stationary deconvolution knowing only x and S, we would

need to solve equation (3.7) for φm to recover the phase of m, ignoring the

amplitudes for now. Clearly, if equation (3.8) is not equal to zero, solving

equation (3.7) will be challenging and might only yield a solution via an

iterated optimization algorithm. Furthermore, since x does not need to

qualify for an IMF in theory, it may be impossible to find the correct φx

directly from a convolved time series x by means of HHT.

3.6 Conclusion

Convolution of non stationary time series with a general system response

function may alter the characteristic time scale of the time series and intro-

duce a shift in the instantaneous frequency depending on the characteristics

of the convolved system response function and the instantaneous frequency

of the original signal. This frequency shift renders any deconvolution at-

tempt difficult as such that no analytic solution exists but optimization

may be successful.
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Abstract

Non stationarity in electromagnetic data affects the computation of

Fourier Spectra and therefore, the traditional estimation of the mag-

netotelluric (MT) transfer functions (TF). We provide a TF estima-

tion scheme based on an emerging non linear, non stationary time

series analysis tool, called Empirical Mode Decomposition (EMD)

and show that this technique can handle non stationary effects with

which traditional methods encounter difficulties.

In contrast to previous works that employ EMD for MT data

processing, we argue the advantages of a multivariate decomposi-

tion, highlight the possibility to use instantaneous parameters and

define the homogenization of frequency discrepancies between data

channels. Our scheme uses the robust statistical estimation of trans-

fer functions based on robust principal component analysis and a

robust iteratively re-weighted least squares regression with a Huber

weight function. The scheme can be applied with and without aid

of any number of available remote reference stations. Uncertainties
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are estimated by iterating the complete robust regression, including

the robust weight computation, with a bootstrap routine.

We apply our scheme to synthetic and real data (southern Africa)

with and without non stationary character and compare different

processing techniques to the one presented here. As a conclusion, non

stationary noise can heavily affect Fourier based MT data processing

but the presented non stationary approach is nonetheless able to

extract the impedances.

4.1 Introduction

Natural electromagnetic (EM) field variations are caused by two major work-

ing mechanisms: lightning activity at high frequencies (> 8Hz) and mag-

netospheric currents excited by solar wind at low frequencies (< 8Hz) (e.g.

Garcia and Jones, 2002; Viljanen, 2012). Rakov and Uman (2007) summa-

rize the electromagnetic lightning discharge to three modes: (a) fast and

transient leader-return-stroke sequences, (b) slow and quasi stationary con-

tinuing currents and (c) perturbations and surges on the continuing cur-

rents. The longest lasting and most abundant in an electromagnetic time

series measurements are the perturbed continuing currents, which may be

viewed as being stationary on a section with some dynamic length confined

by the recurrent transient strokes. Liu and Fujimoto (2011) conclude that

the magnetospheric current is non linearly driven by the dynamic solar wind

but behaves in a static manner for high magnetospheric pressure conditions.

Both of these EM sources are naturally non stationary, since both, lightning

strokes and magnetospheric pressure conditions, are very dynamic and thus,

strictly limit the duration of any stationary electromagnetic signal.

Practitioners argue that the magnetotelluric (MT) signal is quasi sta-

tionary (stationary on reasonably long time windows) and, thus, justify the

application of the windowed Fourier Transform. In practice this procedure

works very well for data with high signal-to-noise ratios but frequently en-

counters problems in the presence of electromagnetic noise (clearly what is

called noise here would include non stationary signal, cp. Junge (1996)). A

concise treatise of sophisticated MT signal processing based on the Fourier

Transform is given by Chave (2012) in which non stationarity is listed as
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one of the problems that affect transfer function estimation.

For instance, if there would be a non stationary electric discharge, the

window (data segment) of this event would not qualify as containing sta-

tionary data and such a window would have to be considered noise in a

windowed Fourier transform algorithm. Moreover, noise sources (which do

not include non stationary signal) can be of any kind and do not need to

be quasi stationary (e.g. imagine a road with irregularly passing cars near

the instruments, cp. Adam et al. (1986)). All non stationary noise sources

(may also include non stationary signal) will affect the (windowed) Fourier

Transform in unpredictable ways just because the data breaks the necessary

assumption for the Fourier Transform at least in the relevant windows. This

is not an issue when there are few affected windows, but it would become a

problem when non stationary effects are frequent. A more concise treatment

of electromagnetic noise and its characteristics is given by Szarka (1988) and

Junge (1996), where both acknowledge non stationary noise sources and the

aforementioned difficulties. Therefore, we argue, that even though the MT

signal may behave sufficiently stationary, the contained noise in the data

clearly cannot always be assumed quasi stationary as it would be required

for the application of the Fourier Transform.

The isolation or separation of noise has been studied intensively since

the introduction of the MT method and the two major noise counteract

breakthroughs date back to the 1980s. Gamble et al. (1979) propose the

use of a remote station to apply the technique of instrumental variables

(Reiersøl, 1941) in order to drastically reduce bias by uncorrelated noise.

Later Jones and Jödicke (1984), Egbert and Booker (1986) and Chave et al.

(1987) advocate robust regression procedures for transfer function estima-

tion to reduce the influence of unlikely but highly influential data points.

Besides these two milestones, there has been much effort in reducing noise

influence further by either trying to estimate and remove the noise directly

(e.g. Egbert, 1997; Oettinger et al., 2001) in the frequency domain or by fil-

tering, or extracting quiet data sections in the time domain by visual inspec-

tion (Garcia et al., 1997) and in the time-frequency domain (e.g. Weckmann

et al., 2005, and references therein). The latter procedures are reported to

be effective for particular data sets but require intense user attention and

good, detailed knowledge about the data. Moreover, noise identification,
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separation and/or removal is not always successful, sometimes practitioners

encounter data from which it is seemingly impossible to extract reasonable

transfer functions. This could be, partly due to the fact that EM data (the

combination of signal and noise) is not as quasi stationary as required for

the (windowed) Fourier Transform. A very simplistic example would be

the presence of a spike in the data, which would compromise the particular

data segment (or window) in which it is present. Clearly, the presence of

a moderate number of spikes is easy to counteract (through interpolation,

e.g. Jones et al., 1989; Junge, 1996), but we argue that the same principle

applies to other non stationary effects which might not be as easily identified

and mitigated.

Huang et al. (1998) introduce Empirical Mode Decomposition (EMD) in

the framework of the Hilbert-Huang Transform (HHT), a novel time series

analysis tool, which is data adaptive and suitable for non linear and non

stationary data. The decomposition provides data modes (called Intrinsic

Mode Functions, IMF) which are defined such that they can be represented

as a single oscillation. Thus, Huang et al. (1998) argues that the definition of

the IMF allow for a meaningful computation of its instantaneous parameters,

like amplitude, phase and frequency, with the Hilbert Transform. In practice

however, Huang et al. (2009) demonstrate that the Hilbert Transform often

is numerically unstable and advocate a more practical routine to obtain the

instantaneous parameters, which first separates amplitude and oscillation

and then acquires the instantaneous phase by direct quadrature.

EMD has been tried and applied in several fields, including geophysics

and the magnetotelluric method (Battista et al., 2007; Zhang et al., 2003;

Cai et al., 2009; Chen and Jegen, 2008). In particular for MT, Cai et al.

(2009) present how EMD could be used to separate obvious noise from the

signal. Later, Cai (2013) attempts to substitute the Fourier Transform in fa-

vor of HHT in MT processing but the segmentation and averaging of data in

order to construct marginal spectra (comparable to Fourier Spectra) is un-

necessary and limits the potential strength of EMD. In the same year, Chen

et al. (2012) present an estimation scheme for the transfer functions in MT

data by using the instantaneous parameters (in contrast to marginal spec-

tra). However, they conclude that the implementation of remote reference

processing and robust statistics can further improve their approach, because
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both techniques are very often required to estimate transfer functions from

regular field data.

This work follows Chen et al. (2012) by using directly the instantaneous

parameters obtained from EMD but in contrast to their work, here the

multivariate variant of EMD by Rehman and Mandic (2010) is discussed

and applied. Robust procedures are introduced to estimate instantaneous

parameters and a data selection scheme is proposed to ensure independent

data. For transfer function estimation a robust regression is advocated,

which uses regressors defined by the two major robust principal components

(Robust Principal Component Analysis described by Hubert et al. (2009))

of all remote data sets or for single site processing, all the available channels.

Effectively this procedure excludes the site channels from the regressors if

remote data is available in order to further reduce the risk of propagating

correlated noise from between site channels into the principal components.

Synthetic examples demonstrate the effect of non stationarity of the source

on traditional processing schemes. Semi-synthetic signals, which consist of

real signal and synthetic (non stationary) noise, present the effects due to

non stationary of noise in real data and lastly, real world data sets verify the

power of the algorithm for regular data and most notably, data in which non

stationary noise is suspected. Additionally, a MatLab routine is presented,

which creates (non) stationary synthetic MT data (or noise).

4.2 Outline of the EMT Algorithm

Figure 4.1 outlines the workflow chart of the algorithm that we have de-

veloped to process MT data using the EMD technique. We call the fol-

lowing scheme Empirical mode decomposition based Magnetotelluric Data

Processing (EMT). Here we present the outline of the code, the following

sections will describe each of the steps thoroughly:

1. Decompose time series with MEMD. The Multivariate Empirical Mode

Decomposition (MEMD) method is used to decompose the multivari-

ate data of all available channels (station and remotes) into oscillatory

modes.

2. Compute instantaneous Parameters. Separate amplitude and oscilla-

tory phase functions of the modes with Amplitude Phase Demodula-
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Figure 4.1: EMT workflow chart to compute spectra.

tion according to Huang et al. (2009). Generate the complex IMFs

from amplitude and oscillatory phase for each channel to permit the

computation of the instantaneous phase and the instantaneous fre-

quency defined as time derivative of the phase.

3. Gather independent data points. We ensure linear independence of

the data points by defining a time scale of data dependency.

4. Organize data in frequency domain. The data points are collected in

wide bins, typically 5 to 10 bins per decade, ensuring enough estimates

per decade and statistical stability of the impedance estimation for

each bin by exploiting the fact that the MT transfer functions vary

slowly with frequency.

5. Estimate transfer functions

(a) Compute the two major robust principal components from data.

(b) Robust regression of each channel on principal components.

(c) Estimate confidence intervals by bootstrapping the regression.
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(a) Univariate EMD - original signal
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(b) Multivariate EMD - original signal
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(c) Univariate EMD plus 5% noise
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(d) Multivariate EMD plus 5% noise

� ��� ��� ��� ��� ���

�������������	

����

����

�

���

���

��
��
��
��
��
��


�
���

	 ����������������

����������������
�������
�������

(e) Multivariate EMD plus 25% noise
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(f) Multivariate EMD with 100% noise
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Figure 4.2: The related modes for two channels of a short example signal from Southern
Africa data are compared with respect to time scale consistency for different EMD
algorithms and added gaussian noise variance. The presented mode is #8 out of 11
IMFs obtained from 1, 000 data points, however, note, that the actual mode number is
irrelevant for the example being representative, since gaussian noise is equally present
in all modes. The dashed boxes emphasize where there are major differences in the time
scale between the two channels for the univariate case and then, for the multivariate
algorithm, the boxes highlight the differences due to the added noise in Ey. Panel (e)
shows that the time scale in the mode of Ey is affected by loosing one oscillation when
adding 25% noise variance and in Panel (f) the noise variance added to Ey even begins
to affect the time scale in the modes of Hx. Percentage of noise refers to the noise
variance for gaussian noise relative to the average signal amplitude.

4.3 Step 1: Multivariate Empirical Mode Decomposition

Huang et al. (1998) only present the application of their technique to uni-

variate data, but MT data consists of at least four data channels, which

depend on each other. Using a univariate EMD each signal is sifted and

Hilbert Transformed independently, decreasing the likelihood that the sig-

nals remain dependent throughout all modes due to the possible channel-

independent noise characteristics. For example, if there would be a high

frequency noise in one channel which is absent in the other three, the first

IMF of the first channel would contain that noise and start with the rest



62 CHAPTER 4. NON STATIONARY MT DATA PROCESSING

of the signal from mode two on, whereas the other channels would contain

signal from mode one on, resulting in different time scales for all modes

(Figure 4.2). In this example, without any previous knowledge of this noise,

the corresponding modes of different channels could never be used jointly

for a linear least squares approach, since they do not contain the signal of

the same frequency range. For that reason Chen and Jegen (2008) and Cai

(2013) suggest to calculate the marginal spectra for each channel and use

those in a similar manner as it would be done with the Fourier spectra.

This approach has been shown to work very similarly to the usual Fourier

approach and to provide novel noise control mechanism but does not take

full advantage of the possibilities that EMD offers, namely the instantaneous

parameters. Chen et al. (2012) circumvent this problem by only taking into

account the data points of a time instant when they find a match for the

Instantaneous frequency (IF) for each channel but in any mode. This proce-

dure certainly solves the problem given in the simple example above, but a

procedure that only uses data points where the IF matches (arguably within

a certain limit) might run into problems as soon as the channels are more

seriously distorted by noise and hence, the frequency computation for one

or more channels is rather poor, ultimately decreasing the number of valid

data points. In this section we discuss a multivariate decomposition algo-

rithm that alleviates that problem by forcing all channels to decompose into

correlated IMFs, or in other words, into IMFs of similar time scales, so that

we can attribute one common IF value to all channels.

Rehman and Mandic (2010) developed a scheme to analyze multi-variate

signals and compute IMFs of each of the signal’s components such that they

remain correlated in their time scale as much as possible. The algorithm is

summarized in the following:

1. Project the multi-variate signal on an orthogonal n-dimensional hy-

persphere (basis functions defined by Hammersley sequences). The

dimensions of the hypersphere represents different time scales much

like the orthogonal sine functions in the Fourier Transform.

2. Locate the extrema of each projection (n projections in total).

3. Interpolate the multivariate signal by using the projection extrema

locations for each dimension, to obtain a distinct upper and lower en-



4.3. MULTIVARIATE EMPIRICAL MODE DECOMPOSITION 63

velope of the multivariate signal for each dimension of the hypersphere.

4. Average the means of upper and lower envelope for each channel over

all dimension.

5. Subtract the average envelope mean from the data and repeat to con-

vergence to obtain the multivariate IMF.

MEMD provides a set of IMFs for each channel and retains the dependency

in between those with respect to a most similar time scale (frequency) in

all channels. It is also worth noting that for a source in EM field theory

all components of the electric and magnetic field have the same frequencies

present at all times, meaning that if there is an electric source of 10 Hz it will

be accompanied by a magnetic field of 10 Hz. Therefore, MEMD does not

at all introduce additional assumptions on the field components but rather

ensures a fundamental property inherent in EM field theory for each IMF

and thus, it decomposes the MT data into IMFs which can be conceived as

independent data sets.

MEMD decomposes the data set into a number of IMFs, which have

the information of instantaneous amplitude, phase and frequency at each

time step and each IMF is a time series with a dynamic and locally narrow-

banded, IF (Flandrin et al., 2004). Each IMF is inter-channel dependent

and each time step fulfills the MT equation for its IF in the same way as

narrow frequency-banded time series do (Berdichevskiy et al., 1973; Chen

et al., 2012; Neukirch and Garcia, 2013). However, real data will always

contain noise in all channels and the effect of the noise on the IMFs will

largely depend on the (timely-) local signal-to-noise ratio and can easily

span from subtle effects (e.g. some noise is present in one of many clean

channels) to affecting the amplitude in (originally) clean channels (e.g. half

the channels are corrupted by coherent noise and affect the clean ones) to

even introduce false information in all channels (e.g. severe noise introduces

new extrema). As an example for noise effects, panels (c) to (f) in Figure

4.2 illustrate data with added gaussian noise to a single channel.

This effect is conceptually comparable to how noise leaks in an ordinary

Fourier Transform where the signal-to-noise ratio distorts the true (noise-

free) spectra, but in the EMD case the effect is local and only affects the

signal at some distance around the noise occurrence whereas the Fourier
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Spectra is always affected in the whole segment, since it is formulated as an

integral.

The Fourier transform is a univariate algorithm and noise in different

channels cannot affect each other. Further, obviously non stationary effects

can be reduced if the time series are broken in windows (windowed FFT).

However, any non stationary noise in a data window will affect the entire

Fourier spectrum of that window and often, robust procedures will drop

exactly those spectra entirely regardless whether or not there shorter good

data sections in that window. For an MEMD-based algorithm, the decision

of excluding spectral information can be made for each individual time step

instead of entire windows, if desired. However, care has to be taken, because

even though spectral estimates are delivered at each time step, the real time

frequency resolution is much lower and depends largely on the extrema in

the corresponding IMF, but let us defer discussion on this matter to section

5: Independent Data Points.

The most important point, which can be observed in Figure 4.2 is that

channels influence each other already during the MEMD. Apparently, noise

spreads throughout channels and clean channels may be affected by noise,

becoming biased. This noise spreading across channels occurs because the

algorithm does not assume that one of the channels can be affected by noise

while the others are not, it simply finds the best correlated signal for all

modes and accounts the noise as a distortion of the total electromagnetic

wave field. It becomes clear that this multivariate decomposition excels with

the number of provided clean channels, which aid stabilizing the mode sift-

ing and reduce noise in noisy channels by spreading it over all channels. For

this reason the mode of the Ey component in panel (e) and (f) in Figure 4.2

appears to contain less noise than one would expect from adding 25% and

100% variance of gaussian noise, respectively. Naturally, it seems undesir-

able to spread noise from one channel to the others (which could be entirely

avoided with a univariate EMD algorithm as Chen et al. (2012) propose),

because we should preferably extract the best undistorted signal possible

from our data. But, since MT is an intrinsically multivariate problem, we

always need the information of all channels (of the site of interest) for the

final TF estimation and the more data points we loose due to large devi-

ations (in, for instance, the IF, which is a data selection criteria by Chen
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et al. (2012)) in only one heavily distorted channel, the more difficult it will

be to find an accurate transfer function. Using MEMD instead of EMD and

enforcing a similar time scale on all channels, robustifies the decomposition

procedure and yields more spectral data points which can be evaluated in

the regression step at the cost of spreading the multivariate noise and thus

increasing noise in some channels.

Usually a good portion of the noise is not correlated between the chan-

nels and therefore, affects the channels unequally, resulting in instantaneous

parameters that depart from their correct values depending on the noise. Al-

though this is certainly not appreciated for parameters like amplitude and

phase, it does come in handy for the frequency computation, which we as-

sume to be constant between the channels. Any deviation of the IF between

channels must be due to any of the following:

1. the modes do not fulfill sufficiently the definition of IMFs (having a

locally zero-mean),

2. the signal (channel) has been contaminated by noise (heavier contam-

ination will result in larger deviations),

3. the frequency has been altered by non stationary convolution with the

system response of the receiver.

The first problem is a very common issue for the first modes in EMD, since

the data is always sampled on some rate and the location of the extrema

in the data depend much on the sampling rate (in a real non stationary

situation, the extrema can be anywhere in between the measurement directly

before and directly after the recorded extrema). Routinely applied low-pass

filters may alleviate much of this problem but the exact location of the true

extrema is the most crucial information for calculating the instantaneous

parameter from IMFs and this is usually not well defined for frequencies

close to the sampling rate. However, in our experience the uncertainty on

the location of the extrema only disperses the instantaneous parameters

and does not usually introduce bias, the larger scatter in the regression

is not problematic due to the larger number of data points for the higher

frequencies in a data set. The second point is almost always an issue in MT

and it is broadband, meaning it is found in all frequency ranges and thus,
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all IMFs. But, since we know that the frequencies between the channels

should be equal, we could use deviations between them as a selective quality

marker or down weights in the later regression (similar to Chen et al. (2012)),

however, we have not tested this idea in the present work. The last point is a

rather new conclusion derived from the non stationary convolution theorem

in Neukirch and Garcia (2013) and will be discussed thoroughly in another

work. The problem only occurs for non stationary data convolved with a

system response that varies over frequency, just like the instrument system

responses for MT equipment usually do. It is not present during stationary

sections and therefore, a minor issue for most MT data but fairly complicated

to analyze, therefore it is out of the scope of this article. In any case,

these disturbances are listed for sake of completeness as they will also affect

amplitude and phase and thus, can introduce undesired bias to the transfer

function estimation if not removed from the data or being accounted for.

Before we continue with the subject of IF, we need to focus on the

recovery of the amplitude and phase from the IMFs in the following section.

4.4 Step 2: Computing Instantaneous Parameters

(Huang et al., 2009) thoroughly discuss the computation of instantaneous

parameters from an IMF and Chen et al. (2012) continues the discussion

with respect to an application in MT. We mostly follow their suggested in-

structions, since the IMFs of MEMD are methodically no different from the

ones obtained from univariate EMD. Essentially, Huang et al. (2009) advise

to separate amplitude and oscillatory phase with a procedure called Am-

plitude Phase Demodulation from the IMF. Then the instantaneous phase

can be computed by direct quadrature from the separated, oscillatory phase

function. In contrast to the original idea (Huang et al., 1998) of using the

Hilbert Transform to obtain the phase, the direct quadrature method does

not guarantee a strict analytic signal, but the routine performs well in prac-

tice and estimates the correct phase of the underlying signal more robust

than the Hilbert Transform.

Focussing on the differences between this work and previous studies

(Huang et al., 2009; Chen et al., 2012), examples of Instantaneous Parame-

ters are given in Figure 4.3, which feature two modes of a short section of a
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real data set from Southern Africa. Panels (d) and (e) display the Instanta-

neous amplitude (IA), panels (f) and (g) the Instantaneous phase (IP), and

panels (h) and (i) the instantaneous frequency (IF).

By definition, the direct quadrature method divides by very small num-

bers at the extrema of the phase modulation function leading to numerical

instability at those points, which additionally amplifies uncertainties and

noise. Since we apply the direct quadrature method (Huang et al., 2009;

Chen et al., 2012), the IP usually contain small numerical errors. Especially,

these numerical instabilities have a great impact on the time derivation of

the phase function and are depicted by simple poles in the IF (see panels

(h) and (i) in Figure 4.3).

The poles are of first order and almost cancel each other out when

summed over, which is why the phase function itself still looks smooth and

the mean average over a sufficiently long time range is hardly affected. We

found that a 7-point-median-average filter applied on the phase function be-

fore differentiating is a sufficient counteract and does not restrict the signal

much more than the cubic spline interpolation already did during the sifting

procedure, but produces a much more stable IF (cp. panels (j) and (k) in

Figure 4.3).

In addition to the numerical instability associated with the direct quadra-

ture method, the particular noise in each channel may cause differences in

the IF between channels, where we would expect an electromagnetic field

to have the very same frequency in all of its components (electric field and

magnetic field) at a given time. However, we can use this fact to find a likely

estimate for the common IF for all channel by using its mean or median av-

erage. The IF average is a physical meaningful representation of the true

frequency of the electromagnetic signal (which is represented by all channels

together) for a given time and mode. Heavy outliers from that mean average

can be counteracted by using the median average and may be used to iden-

tify problematic data sections and can contribute to data quality control as

mentioned in the section above. We found the median average to provide us

with better estimates of the IF because of the frequent instabilities produced

by the direct quadrature. These large irregularities in the IF usually do not

occur in all channels at the same time, because of the impedance related

phase shift between channels (refer to Huang et al. (2009) for a discussion



68 CHAPTER 4. NON STATIONARY MT DATA PROCESSING

(a) Data section example, plotted twice for comparison’s sake
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(b) High: intrinsic mode function
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(c) Low: intrinsic mode function
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(d) High: instantaneous amplitude
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(e) Low: instantaneous amplitude
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(f) High: instantaneous phase
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(g) Low: instantaneous phase
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(h) High: instantaneous frequency
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(i) Low: instantaneous frequency

� ��� ���� ���� ����

����

�

������

������

������

������

������

��
��
��
��
��
��
��

�

������

������

������

������

������
��
��
��
��
��
��
���������������
��������

�������������
��������

(j) High: smoothed instantaneous frequency
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(k) Low: smoothed instantaneous frequency
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Figure 4.3: Examples of instantaneous parameters are displayed. Left: high frequency
mode (IMF #2). Right: low frequency mode (IMF #5). Both modes are extracted
from the same data [site 072], however, panel (a) only displays the sum of the two
modes in the spirit of comparability.
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on the nature of these numerical instabilities), but occur very frequently

and thus, the median average compensates this problem, whereas the mean

average would be drawn towards the outlier regularly.

All three instantaneous parameters: IA, IP, IF, and time form data

quadruples and fully describe the original data. The IA and IP can be

combined to form the representation of the complex spectra for a given

time and frequency. Neukirch and Garcia (2013) lay out the fundamentals

for signal-system convolution in a HHT context and provide proof that the

convolution of complex, non stationary IMFs with a system response in

time domain can be reformulated as the multiplication of the complex, non

stationary IMFs with the system response function in the frequency domain.

Therefore, when processing MT time series we can use the complex IMFs in

the very same way as a Fourier spectra and carry out a statistical analysis

in order to find the spectral physical relation between the channels, known

as transfer functions.

For the sake of meaningful statistics with linear regression, we should

try to ensure that (1) the data errors are independent (estimation accuracy)

and that (2) the errors are identically distributed (accuracy and precision of

estimation). Starting with the second, since we explicitly allow for non sta-

tionarity in our scheme, it is clear that our spectral data cannot be assumed

to be drawn from a single distribution. The parameters of any distribution

from which the data might start with will likely change during time, this

is exactly what non stationarity means. However, the data decomposed by

EMD is represented by oscillating modes which are bound to their definition

and therefore always are locally zero mean functions. Thus, the definition of

the IMFs ensures that the centre (location) of the data distribution is zero

for whatever time-varying distribution it follows. Liu et al. (1988) discussed

the importance of data being Identically and independently distributed (IID)

in statistical system analysis with non parametric methods and came to the

conclusion that when the bootstrap algorithm is used, the requirement of the

data being IID can be somewhat relaxed, such that it is sufficient to ensure

data point independency and that the underlying distributions of the data

have a common location. They argue that the non parametric nature of the

bootstrap algorithm includes a robustness towards dissimilar distributions

in the data as long as the locations of the distributions are very similar (in
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our case even equal).

The requirement that the data points are independent is more involved

and has not yet been discussed in literature for an EMD setting, therefore,

we dedicate the following section to that issue, then we will return to the

discussion of the statistical analysis.

4.5 Step 3: Independent Data Points

Data independency is an important criteria for the statistical analysis de-

scribed in this work, which, if left unconsidered, may bias accuracy and/or

precision of the used methods. Besides, the understanding of the dependency

of data points allows to draw inference about the time frequency resolution.

In our case we need to understand how data points interact and depend

on each other in the total framework of HHT. Both, IA and IP derive from

an analysis of the inner structure of the corresponding IMF. Each IMF is

constructed by a loose sifting procedure based on the signal’s extrema and

guided by the required properties based on the IMF definition, a highly data

adaptive procedure. The subsequent amplitude phase demodulation and the

computation of the complex IMF do not rely any more on any data charac-

teristics. For the demodulation the amplitude function and oscillatory phase

function are already defined through the IMF definition and it only strips the

two apparently different signals apart. Then, the direct quadrature uses the

oscillatory phase function to recover locally the argument of the assumedly

complex oscillation. The demodulation procedure is comparable to calcu-

lating the argument and absolute value of a complex number, which does

not change or add any data dependencies, but only changes the way data

are described (via the complex IMF which does not introduce information

to the data). Therefore, we focus on the mode decomposition itself, when

looking for dependencies in the data.

First of all, keep in mind, that per definition all IMFs of a signal are

theoretically locally orthogonal, which implies that one mode to the next

is linearly independent and uncorrelated. However, independency is by no

means guaranteed along a mode. Since the IMFs are solely defined by a sub-

set of points of the entire signal, namely the extrema, the IMF itself cannot

have more degrees of freedom than number of extrema. All data points of
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an IMF between two extrema usually share a third order interpolation poly-

nomial, a cubic spline, which defines these data points based on the same

set of extrema. Therefore, all these points between the same two extrema

are dependent, whereas points that base on different sets of extrema are

independent (even if just one extrema is different). Hence, it is important

to only take into account one single data value for each span between two

extrema to impose independency between the final data points. Naturally,

the lack of independency in the definition of an IMF compromises greatly

the time domain resolution suggested by IMFs but indicates that HHT does

not provide a higher spectral resolution than what would be expected by the

observed frequency (thus we still need a complete oscillation to meaningful

describe spectral data). Furthermore, since the cubic spline requires the

closest four extrema at each data point, the distance of influence of every

extrema is about two full oscillations and represents some measure of time

frequency resolution.

Since only one inter-extrema data point is independent, we have to pick

the one which represents the entire range. Each data point should be equally

valid since they are dependent. However, noise characteristics can make

some points be a poorer choice than others (be reminded on the numeric

instabilities due to the direct quadrature discussed in the section above). For

the moment we have not designed a selection criteria based on data quality,

so we simply take one point per half oscillation defined by the location of

the extrema of the function

P = sin φ cos φ. (4.1)

Since MT processing is multivariate, we suggest to use equation (4.1) with

the integral of the common IF ωc between the channels, thus

φ(t) =

∫ t

−∞

ωc(t
′)dt′. (4.2)

This integral is basically the inverse of the time derivative of the phase used

to obtain the IF in the first place, only that now the integrand is the common

IF, which results in some sort of common phase for the EM data in equation

(4.2), and provides an oscillatory function in equation (4.1) according to the
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intrinsic oscillation of the EM data. The choice of this particular function

is mainly because of its fairly random selection, if we would choose data

points with certain properties (e.g. low/high amplitudes), we could easily

introduce bias to the transfer functions, which is not the case for this general

function. However, a more careful or sophisticated selection criteria (like a

weighted average) for this point could help to reduce numeric or perhaps,

even electromagnetic noise and could be discussed elsewhere.

4.6 Step 4: Frequency Sorting

As noted above, EMD results in a distinct frequency value for each channel.

The average of those values for a given time and mode over all channels is

a physical meaningful but biased representation of the true frequency of the

electromagnetic signal (which is represented by all channels together). The

bias should be lower for data points which have a similar frequency value

and may even be considered for data quality control as we stated before.

Keeping in mind that we use a common frequency function for all channels

defined by the median average between them, in the following we will assume

the median frequency as the common frequency between the data channels.

Remember that the instantaneous frequency (IF) is the time derivative of

the phase of the complex IMF and does not yield equidistant (as for example

the Fourier Transform) but rather continuous frequency values which vary

with time and thus, along a mode. For this reason, it is unlikely that we

can find two data points (each with two electrical (e) and two magnetic (b)

components) with the very exact frequency value (ω0), but this would be

necessary in order to find a unique estimate for the transfer function tensor

(Z), which is only defined at a constant frequency:

(
ex(ω0, t)

ey(ω0, t)

)
=

(
Zxx(ω0) Zxy(ω0)

Zyx(ω0) Zyy(ω0)

)
·

(
hx(ω0, t)

hy(ω0, t)

)
. (4.3)

Note, that this equation deviates from the traditional form as it includes time

variance for the electromagnetic fields, since the complex IMFs of the data

channels are still time series. A similar form of this time variant formula has

been introduced by Berdichevskiy et al. (1973) and recycled by Chen et al.

(2012), until this form has been proofed for the EMD context by Neukirch
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and Garcia (2013). However, even though equation (4.3) suggests that the

MT impedance equation is valid at each time instant for the IMFs of the

electromagnetic field, the impedance itself cannot be solved for unless there

are at least two independent measurements for the same frequency value.

But, since the electrical impedance only changes smoothly with frequency

(Cagniard, 1953), we can group similar frequency values to increase the

amount of measurements available around a certain centre frequency. For

this procedure, we select the independent data points based on equation (4.1)

and arrange them according to the common IF, omitting time dependency

of the data by considering the time axis rather as index for measurements

than physical time. The data reorganization in these frequency bins follows

the proposed method by Chen et al. (2012), only that we do not allow IMF

mixture for the reasons discussed in section 4.3.

Following this reorganization, we form an over-determined system of

equations that we can solve for the transfer function tensor at distinct fre-

quency values. The estimation procedure is a bootstrapped, robust principal

component regression and will be discussed in detail in the following section.

4.7 Step 5: Robust Principal Component Regression

Egbert (1997) shows that MT sources are well described by two electro-

magnetic field polarizations. Practically, this means that the entire data

vector space of all channels in a data set can be represented by the combi-

nation of two polarization vectors. Theoretically, the high dimensional data

(electric, magnetic and all remote channels) can be described by a funda-

mental two-dimensional polarization space that contains all the variance of

the data. Such a reduction of dimensionality of data vectors can be achieved

by a (robust) principal component analysis (PCA), which provides the in-

herent components of the data vector, ordered by its eigenvalues. The two

most dominant Principal components (PC) are the magnetotelluric source

vectors since they should be present in all channels and contribute most

to the variance of the data (cf. Egbert, 1997). However, in practice MT

data are often contaminated by noise and source field effects, which limit

this procedure (Egbert, 1997, 2002; Smirnov and Egbert, 2012) such that

there are more than two dominant eigenvalues which contain a mixture of
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source polarization vectors and correlated noise. In order to separate the

dominant principal components in such cases a much more sophisticated

multi site analysis is required and described by Smirnov and Egbert (2012),

which should be followed for data sets with coherent noise contamination,

however the discussion or incorporation of such an analysis is beyond the

scope of this work, although, it could be implemented in our algorithm if

desired. For this work we assume that the first two principal components

are a sufficiently good estimate of the MT source polarization vectors but

we restrict the data used for the PCA to remote channels only, if at least

two are available. If not, the site channels can be used as usual.

A robust principal component analysis tool is provided by Hubert and

Verboven (2003) within the frame of the free Library for Robust Analysis

(LIBRA) package (Verboven and Hubert, 2005) for MatLab and referred

to as robpca.m. Smirnov and Egbert (2012) compare this code for con-

sideration of its usage in the aforementioned multisite analysis of MT data

and acknowledge its power, but prefer a self-made solution for its flexibility.

Since we do not attempt a multisite data analysis and assume two principal

components to be sufficient, the algorithm from LIBRA appears the most

reasonable solution at this stage of our algorithm.

After the computation of the two dominant PCs (say r = (r1, r2)), we

formulate four (or five if the vertical magnetic field is provided) two-variate

regression problems in order to separately deal with the noise distributions in

each data channel. Assume the North-South electric field e1, the East-West

electric field e2, the North-South magnetic field b1, the East-West magnetic

field b2 and, if available, the vertical magnetic field b3 as data channels. For

each data channel x, the regression writes in a matrix notation

x = r ·Rx + σx (4.4a)

Z = (Re1
;Re2

) · inv(Rb1 ;Rb2) (4.4b)

T = (Rb3) · inv(Rb1 ;Rb2). (4.4c)

Rx is a row vector and denotes the regression parameter for vector x on

the PCs r, σx represents the noise in x and (· ; ·) refers to the column wise

combination of two row vectors. The tensor Z is the electric impedance

according to equation (4.3) and T the tipper, which is the magnetic transfer
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function between the horizontal and vertical magnetic fields. The inv( )

operator produces the inverse matrix and the dot operator denotes the ma-

trix multiplication. The formulation of the regression is slightly different

from the one that is usually applied in MT, but not as much as it seems

at first. Actually, for an ordinary least squares solution for, say Z, this

formulation yields exactly equation (4.3), which is the original formulation

if time only indicates measurements. The idea behind this alternative for-

mulation is, that the regressors r result from a robust statistical procedure,

which describe a part of the variance in the data, and thus, do not contain

outliers that deviate from the dominant inherent information provided by

the data. Originally, the regression is carried out on data channels directly,

which firstly, may bias the result by correlated noise and secondly may con-

tain highly influential outliers as discussed by Chave and Thomson (2004)

and Chave (2012). In our solution, influential outliers in the regressor are

unlikely unless they represent a repeated feature in most channels, which

would only be the case for correlated noise, but if correlated noise would be

present, only a careful and sophisticated data analysis (e.g. a multi site anal-

ysis (Smirnov and Egbert, 2012) or noise identification (Weckmann et al.,

2005)) can mitigate the influence of this kind of noise. In any way, such

noise would be removed, if possible, before any regression attempt and thus,

validates the assumption that such noise is not present in the regressors.

We divide the total regression problem in sub steps to separate the ex-

pected noise from all channels (compare equations (4.4)) in order to avoid a

direct effect of coherent noise between channels. The regressions themselves

are carried out robustly with an iteratively re-weighted Huber weight func-

tion by calling the MatLab intrinsic function robustfit.m, only specifying

the desired weight function. Other weight functions are possible (refer to

the MatLab documentation for a discussion on the options) and we experi-

mented with each one, concluding that the results obtained with the Huber

weight function were most accurate and precise. The robust regression only

accounts for outliers in the data channels and not for any possible outlier in

the PCs, which have been computed robustly in the PCA and have disre-

garded bad influence points already.

EMT bootstraps the entire robust regression step in order to compute a

data dependent distribution of impedance values and estimate the data in-
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trinsic errors of the procedure. Furthermore, as discussed before, the boot-

strap operation also relaxes the requirement for statistical regressions for

which data should be identically distributed and therefore reflects more re-

liably the estimates in case of non stationary data. Empirically, we found

1, 000 iterations a sufficient trade off between accuracy and computation

time to estimate the uncertainty of our results.

4.8 SynDat - Computing (Non) Stationary Synthetic Data

Availability of synthetic data is fundamental for hypothesis testing in many

areas of applied science, since it offers a simple and noise-free mean of acquir-

ing test data, which could be expensive, difficult or time consuming in the

laboratory or in the field, and it allows to design easily custom-made prop-

erties of test data, which often help to spotlight both, important problems

and findings in a hypothesis.

We use the MatLab program SynDat to generate (non) stationary syn-

thetic data in the course of this work. It allows to define freely the fre-

quency and amplitude time series of numerical remote channels (as given in

equation (4.6)), which are used to compute synthetic MT data (as given in

equation (4.5)) by means of the non stationary convolution theorem accord-

ing to Neukirch and Garcia (2013). Additionally, the synthetic data can be

modeled for any impedance by importing the respective transfer function

(TF) from files of the EDI format, or be computed for the impedance of a

one-dimensional conductivity model (Keller and Frischknecht, 1966).

This program is freely available upon request to the author.

4.9 Example Datasets

In this section we compare the processing scheme outlined above with the

state-of-the-art processing algorithms Bounded Influence Robust Reference

Processing (BIRRP) by Chave and Thomson (2004), Electromagnetic Trans-

fer Function (EMTF) by Egbert (1997) and the LIMS data acquisition pro-

cessing algorithm (LIMS) by Jones and Jödicke (1984). The four algorithms

are applied to a number of synthetic, half synthetic/half real and real data

sets. We start with two synthetic data sets, one based on white noise as

source signal and the other on a purely non stationary wave form. These
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two examples will shed light on the differences between a quasi station-

ary and non stationary processing scheme. Then we present two examples

of real-world data (Southern Africa (Evans et al., 2011)) to compare per-

formance of the processing algorithms on a natural problem. In order to

illustrate the effect of non stationary disturbances in the data, we add the

electric fields from the second synthetic test to the electric fields of fairly

good real data, which effectively introduces non stationary noise in the elec-

tric fields but leaves the magnetic fields completely unaffected. Lastly, we

process one real data set in which non stationary noise sources are known

to interfere and demonstrate the supremacy of EMT in such a situation.

All plots contain the data and estimated confidence intervals for 95% of the

data (doubled standard deviation).

4.9.1 Synthetic Data based on White Noise

Using the SynDat program to create MT synthetic data, in this first example,

we prepared two complex remote spectra s = (sx, sy) from white noise

sx = nw,real
x + i · nw,imag

x and sy = nw,real
y + i · nw,imag

y .

The number of frequencies is Nf = 12, 500 with a step size of df = .25 Hz to

obtain a time series of 25, 000 samples with a sampling rate of dt = 4 s. The

data E = (Ex, Ey) and B = (Bx, By) is computed in the frequency domain

from s = (sx, sy) by:

E = s · Z
1

2 and B = s · inv(Z
1

2 ) (4.5)

with Z
1

2 defined as the principal square root of any matrix Z such that

Z
1

2 · Z
1

2 = Z in order to fulfill E = B · Z. Let us assume the following

impedance model

Z =

(
0 3000

1000 0

)
∗ exp

(
i

[
0 −π

4
π
4 −π

])
.

Note, that here the asterisk operator denotes the element wise multiplication

of the matrices, and exp() refers to the exponential of the matrix, element-

by-element. The results of processing this synthetic data are displayed in
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.4: The EMT algorithm is compared with BIRRP for synthetic stationary data
based on spectral white noise as source signal. The assumed homogenous impedance
model is defined as Zxy = 103 · exp(iπ

4
) and Zyx = 3 · 103 · exp(−iπ

4
) and is plotted

as a black line.

Figure 4.4 for the processing algorithms BIRRP and EMT. Both algorithms

resemble the model fairly well but BIRRP has the edge. We explain this by

the fact that this synthetic source does not have any wave form and therefore

the (M)EMD algorithm struggles to find correlated modes which it can relate

to each other. On the other hand, BIRRP uses the spectral characteristics

of the time series which are, per source definition, well defined.

4.9.2 Synthetic Data based on a Chirp

In order to clearly demonstrate the difference of the processing schemes, the

synthetic data discussed here is completely non stationary. Again using Syn-

Dat, we define each of two orthogonal magnetic source fields s = (sx, sy) by
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Figure 4.5: The chirp signal shown here is used as non stationary synthetic signal. The
North - South magnetic field component is illustrated with its non stationary amplitude
and frequency. Note, that the frequency of the computed signal ranges from 1 to
30 mHz and therefore, if data is processed outside of that range it can only contain
numerical noise.

a logarithmic frequency oscillation f and a logarithmic amplitude oscillation

a = (ax, ay):

s

log(f)

log(a)

=

=

=

Re
(
a · exp(i

∫
fdt)

)
,

A + B cos(Ff t),

C + D sin(Fat)).

(4.6)

The parameters A, B, C = (Cx, Cy) and D = (Dx,Dy) define frequency

and amplitude range and the parameters Ff and Fa control the degree of

non stationarity by the oscillation rate of f and a, respectively. The time

axis t is sampled at a rate of 4 s for a total length of 100, 000 s or 25, 000

samples. Figure 4.5 displays the magnetic North - South component with

its respective amplitude and frequency function. By design the signal is a

locally zero mean function to ensure that it complies with the definition of

the IMFs, even without the need to apply (M)EMD. As in the last example,

the impedance Z is assumed to be homogenous with

Z =

(
10 3000

1000 30

)
∗ exp

(
i

[
π
4 −

π
4

π
4 −π

4

])
.

The electric and magnetic fields are computed according to equation (4.5).

Figure 4.6 compares the results of processing the electric and magnetic data

with BIRRP and EMT. Both algorithms are called with their respective

default parameters to compare the results assuming no a priori knowledge
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.6: The EMT algorithm is compared with BIRRP for synthetic non stationary
data based on a chirp signal as shown in Figure 4.5. The assumed homogeneous
impedance model is defined as Zxy = 103 · exp(iπ

4
) and Zyx = 3 · 103 · exp(−iπ

4
) and

is plotted as a black line. Note, that the frequency of the computed signal ranges from
1 to 30 mHz and therefore, the processed data outside that range can only contain
noise, however, inside the range only EMT is successful in recovering the model.

about the data. EMT successfully recovers the model in the frequency range

of the computed data but BIRRP fails processing the data, which can only

be addressed to the strict non stationarity of the signal and exemplifies that

Fourier Transform based methods are not suitable for strictly non stationary

signals, even those that apply the windowed Fourier Transform. However,

this example is not a fair comparison as this kind of signal is not natural and

treatises of the physics of typical MT sources (see Rakov and Uman, 2007;

Liu and Fujimoto, 2011) suggest that the sources are not as non stationary

as this example for an extended period of time and instead, can be treated

as quasi stationary. This example serves only illustrative purposes and is
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component

�� ��� ���� �����

�
������
�

�

��

��

��

��

��

��

��
�



�
��


�
�





�

��	


	�

Figure 4.7: Good example data from Southern Africa (site 072). The LIMS results
are the original results from the SAMTEX experiment (Evans et al., 2011).

designed to highlight the strength of EMD, to expose the weakness of the

Fourier methods and most of all, to demonstrate clearly how non stationarity

appears in the results of Fourier methods. In the following section, we

present more practical examples using real data.

4.9.3 Fairly Good Real Data from Southern Africa

Now, let us compare the algorithms using three real data sets from Southern

Africa which correspond to the sites 027 and 072 with site 045 as remote

reference, and 042 with 027 as remote reference for long period data and 043

as remote reference for the short period data (Evans et al., 2011). The first

two time series have approximately 500, 000 samples on a sampling rate of

5 s and we only consider the horizontal magnetic fields as remote reference,
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.8: Fair example data from Southern Africa (site 027). The LIMS results are
the original results from the SAMTEX experiment (Evans et al., 2011).

since they have proven to be sufficiently efficient in removing coherent noise

from the local fields. The last example has up to 2 million samples for the

high frequencies at 2560 Hz and around 500, 000 samples on a sampling rate

of 5 s. The high frequency data only has one remote reference site and for

the long periods we selected the best suitable one.

The first example (site 072) is considered good for MT processing pur-

poses when processed with the available remote magnetic channels (of site

045). Figure 4.7 displays the processing results for the LIMS processing

algorithm (original results) and EMT and both algorithms agree very well.

The second example (site 027) contains somewhat more noise even when

processed with the available remote magnetic channels (site 045). Figure 4.8

compares the LIMS processing algorithm (original results) with EMT and
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(a) Electric Field with Synthetic Noise - North/South component

(b) Synthetic Noise Section
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Figure 4.9: Southern Africa data (site 072) jammed with synthetic non stationary
electric noise. Panel (a) displays the electric field channel with and without the added
noise to illustrate the impact of the noise compared to the data. Panel (b) zooms into
a section of the added noise to emphasize that both amplitude and frequency content
of this noise is clearly non stationary.

shows that there are only marginal differences. Both algorithms agree well

with the phase but there is a slight difference in the amplitudes. Conclud-

ing this example, EMT appears to obtain similar results but the smaller

confidence intervals are less conservative or suggest higher precision.

4.9.4 Real Data Jammed with Synthetic Non Stationary Noise

As a semi-synthetic test, we combine the good real data set (site 072) from

the previous section with synthetic, non stationary noise. The goal of this

test is to learn how easily a quasi stationary source can be compromised

by non stationary noise and to test if our algorithm is able to treat the
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.10: Southern Africa data (site 072) jammed with synthetic, non stationary
electric noise of low amplitude.

situation correctly. We consider the non stationary noise to be present in

the electric fields only and leave the magnetic and remote channels com-

pletely unaffected. This way we can see if the computation of the spectra

via Fourier Transform fails or succeeds, since stationary noise in the elec-

tric channels could be cleaned by the unaffected magnetic and/or remote

reference channels by the remote referencing technique.

As data, we use the data set shown in Figure 4.7 and add independent,

purely non stationary noise as defined in equation (4.6) to each electric field

channel

(ex, with noise, ey, with noise) = (ex, ey) + (s1, s2).

Then, we try to recover the original impedance (Figure 4.7) by processing the

altered data with BIRRP and EMT to study the effects of the added, non
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.11: Southern Africa data (site 072) jammed with synthetic, non stationary
electric noise of medium amplitude.

stationary noise. The test is performed trice, first with a certain noise level,

then again with the noise doubled and quadrupled. Figure 4.9a displays the

electrical field North-South component with and without the added noise for

all three tests and as an example, a section of the added noise is illustrated

in Figure 4.9b with its parameters amplitude and frequency. The spectral

range of the noise is set between 1.7mHz and 19mHz, respective 52 s and

610 s, so we expect to see the biggest impact on the data processing results

in that range.

Figures 4.10 to 4.12 display the estimated impedances with the increasing

impact of the non stationary noise. Where in Figure 4.10 the noise only

raises the confidence limits for BIRRP, it camouflages the estimates in their

entirety for larger noise amplitudes in Figures 4.11 and 4.12 so much that the
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component
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(d) Phase - yx component
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Figure 4.12: Southern Africa data (site 072) jammed with synthetic, non stationary
electric noise of high amplitude.

impedance cannot be retrieved. On the other hand, EMT is barely affected

by the lowest and medium amplitude noise, and still provides interpretable

results with the highest noise amplitude.

4.9.5 Problematic Real Data from Southern Africa

This last example is a real, broad band data set and has been acquired in a

region where DC trains operate and active mining takes place. Evans et al.

(2011) report problems in processing the data in particular due to these

noise sources.

We focus on site 042 with 027 as reference for long period measurements

(> 20 s) and with 043 as reference for short period data (< 20 s). The

long period data have been collected with LIMS instruments and the short

period data were measured by band 5 of Phoenix Systems’ instruments.
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(a) Resistivity - xy component
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(b) Resistivity - yx component
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(c) Phase - xy component


�
� 
�� � �
 �

 �


 �





�� ���!��!�������

�

	


��

�



�

�


��

��
��
��
��
��
��
��
�

���������������������� ����
���

(d) Phase - yx component
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Figure 4.13: Site 042 contains a tremendous amount of noise which complicates
interpretation of periods of 3 s and more. The EMTF (Egbert, 1997) (BBMT) and
the LIMS (Jones and Jödicke, 1984) (LMT) results are the original results from the
SAMTEX experiment (Evans et al., 2011). The merge of BBMT and LMT responses
was performed manually and as it still is common practice, the LMT apparent resistivity
were shifted to match the BBMT apparent resistivity at the overlapping periods.

The site contains a tremendous amount of noise which makes interpretation

difficult from about 3 s on (Figure 4.13). The data of this site were origi-

nally processed with EMTF (Egbert, 1997) for short periods (Broad Band

Magnetotellurics (BBMT)) and with the LIMS processing algorithm (Jones

and Jödicke, 1984) for the Long period Magnetotellurics (LMT). The ampli-

tude results from LMT have been scaled by the acquisition team to account

for static shift according to the interpretation of the BBMT data, whereby

the results from EMT are unchanged, since it does not suggest that the the

long period data have been affected notably by static shift.

We use originally published data for this plot, because we argue, that
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(in time of original publication) the interpretation of the data (that it is

affected by static shift) was wrong due to some noise effect. The EMT

result is not shifted, because it does not lead to the conclusion that the

LMT data requires a shift, which exemplifies the long ranging effect of noise

beyond data processing and highlights the strength of the algorithm in this

situation.

Besides the apparent noise between 3 s and 20 s, the phase estimations

between 1 s and 100 s obtained from EMT are consistently 5 ◦ to 10 ◦ lower

than the results estimated by the other algorithms, which we cannot explain

at this point. Two possible reasons for this discrepancy could be due to non

stationary spectral leakage in the other algorithms (compare processing of

a purely non stationary data set in Figure 4.6) or due to strong correlated

noise distorting significantly the first two dominant principal components.

4.10 Conclusion

In the course of this work, we outlined a robust magnetotelluric data process-

ing scheme purely based on non stationary methods and showed that its re-

sults compare to state-of-the-art algorithms. In contrast to other groups, our

algorithm directly uses the instantaneous parameters of the measured mul-

tivariate time series and therefore, naturally handle non stationary sources.

In theory, our scheme is less apt to introduce bias from spectral leakage due

to this kind of noise and our synthetic and real data examples support this.

The algorithm carefully incorporates the most general and important

data quality control measures like remote referencing and robust statistics

as countermeasures for uncorrelated noise between occupied sites and control

of highly influential but statistically unlikely data points, respectively.

This new methodology operates in a time-frequency domain and, there-

fore, potentially enables new data quality control measures like controlling

instantaneous changes in the parameters amplitude, phase and frequency,

which could be investigated in a future work.

The function to select the independent data samples assures that the

correct amount of data is selected, but the function of choice is somewhat

arbitrary. On one hand it can be seen as an advantage that the samples are

drawn arbitrary or random, but on the other hand alternative ways should
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be investigated for assessing their performance.

We demonstrated on synthetic and real data that a non stationary ap-

proach in MT processing can be fruitful. The synthetic, non stationary

source in this work is specifically designed to disturb the Fourier Transform

and to break its assumptions, however, the results provide an insight in how

bad real, non stationary noise can affect MT measurements and encourage

to verify the findings on more real world data sets that are suspected to

contain, in particular, non stationary noise, e.g. data that is acquired close

to train lines, mining activity or electric fences.

Lastly, we present one such example of real data and find that, at the

time of original data processing, even the interpretation of the data has

been affected by non stationary noise, because the long period data has

been corrected unnecessarily for static shift by the original processing team.

We encourage to reassess more data sets that have been difficult to pro-

cess in the past in order to investigate for non stationary effects. However,

we wish to stress that, at this moment, our proposed algorithm is realized

in MatLab and runs rather slow (about 1 day for 10 million data points) on

desktop computers. Most of the time, it delivers similar results compared

to much faster and more efficient processing algorithms like BIRRP (Chave

and Thomson, 2004), EMTF (Egbert, 1997) or the LIMS processing algo-

rithm (Jones and Jödicke, 1984). Therefore, we consider our algorithm a

special purpose code for data that is suspected to be contaminated by non

stationary effects.
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CHAPTER 5

Conclusions and Outlook

5.1 Conclusions

The purpose of this thesis is to investigate the necessity of a non stationary

time series analysis in the magnetotelluric (MT) method. The introduction

outlines that, even though, the MT signal is at most times sufficiently sta-

tionary, the inevitable noise can be of any form and therefore, can be non

stationary as well. The effort in developing a non stationary method in

MT has been little for the popularity of the Fourier Transform (FT) but we

highlight one approach by Berdichevskiy et al. (1973) that can be regarded

as a precursor to this work and an early attempt on truly non stationary

analysis. By emphasizing the limitations of that approach, I set the stage

for my approach by introducing the Hilbert-Huang Transform (HHT, Huang

et al., 1998) and establishing the necessary, basic foundations.

In the following, I conclude the main parts of this thesis, which lead to

the development of a new, non stationary processing scheme for MT data

that is based on the HHT and non stationary convolution.

5.1.1 Convolution and Deconvolution of Non Stationary Signals

I demonstrate mathematically that the convolution between an Intrinsic

Mode Function (IMF) that is described by its fully decomposed instanta-

neous parameters and a temporal system response can be translated into a

multiplication of the same IMF and the spectral system response. As a re-

sult I found, that the Hilbert-Huang spectra can be represented as a Fourier
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spectra with time varying complex amplitude.

This finding proofs for the first time that the HHT is a suitable tool for

typical transfer function analyses methods like MT data processing and that

the instantaneous frequency of non stationary processes obtained through

HHT is a physically meaningful entity comparable with the frequency ob-

tained by the Fourier analysis for stationary processes.

By analytically analyzing the results implied by the non stationary con-

volution theorem, I find that convolution of non stationary time series with

a general system response function may alter the characteristic time scale of

the time series and introduce a shift in the instantaneous frequency depend-

ing on the characteristics of the convolved system response function and the

instantaneous frequency of the original signal. This frequency shift renders

any deconvolution attempt difficult as such that no analytic solution exists

but numeric optimization procedures may be successful. Fortunately, the

MT impedance tensor is relatively smooth over frequency and therefore, the

change in frequency for a non stationary signal would likely be much smaller

than the usual smoothing bandwidth for the impedance tensor estimation.

5.1.2 Applying Non Stationary Convolution to MT

In the course of this work, I outlined a robust magnetotelluric data pro-

cessing scheme purely based on non stationary methods and showed that

its results compare to state-of-the-art algorithms. In contrast to other pro-

posed solutions, my algorithm directly uses the instantaneous parameters of

the measured multivariate time series and therefore, naturally handles non

stationary sources. In theory, the presented scheme is less apt to introduce

bias from spectral leakage due to this kind of noise and the synthetic and

real data examples support this.

The algorithm carefully incorporates the most general and important

data quality control measures like remote referencing and robust statistics

as countermeasures for uncorrelated noise between occupied sites and control

of highly influential but statistically unlikely data points, respectively.

I demonstrate on synthetic and real data that a non stationary approach

in MT processing can be fruitful. The synthetic, non stationary source in this

work is specifically designed to disturb the Fourier Transform and to break

its assumptions, however, the results provide an insight in how bad real,
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non stationary noise can affect MT measurements and encourage to verify

the findings on more real world data sets that are suspected to contain, in

particular, non stationary noise, e.g. data that is acquired close to train

lines, mining activity or electric fences.

Lastly, one example of non stationary, real data is presented, where, at

the time of original data processing, even the interpretation of the data has

been affected by the non stationary noise, because the long period data has

been corrected unnecessarily for static shift by the original processing team.

5.1.3 Justification for the Non Stationary Approach

I compare the Empirical-mode-decomposition-based MagnetoTelluric pro-

cessing algorithm (EMT) with BIRRP by Chave and Thomson (2004), which

is a traditional, efficient and renown processing code based on the Fourier

Transform, by performing several synthetic tests, first, synthetic, non sta-

tionary data is constructed from two non stationary sources to demonstrate

the inability of a Fourier based method to deal with non stationary sources.

Then, secondly, these sources are used as a synthetic noise source. The non

stationary noise is added only to the electric fields and leaves the magnetic

and remote channels completely unaffected. Therefore, I can show that the

computation of the spectra via Fourier Transform fails, because uncorrelated

stationary noise in the spectra should be cleaned by the remote referencing

technique, which is applied in the test. Since any uncorrelated (random)

non stationary noise acts as any random stationary noise and does not af-

fect the measurements other than decreasing the confidence in the results

(larger error bars), this test shows that the mere fact, that the added noise

is non stationary, affects the estimated results by a Fourier Transform based

method or even makes it impossible to extract reasonable transfer functions,

whereas the EMT algorithm is able to deal with the non stationarity and

allows a more precise estimation to a lower signal-to-noise ratio.

Conclusively, these tests demonstrate that non stationary sources can

heavily impact on traditional MT processing routines which rely on the

Fourier Transform but that this effect can be diminished by relying on a

purely non stationary analysis. Even though, the non stationary source

is specifically designed to disturb the Fourier Transform and to break its

assumptions, the results provide an insight in how bad real non stationary



98 CHAPTER 5. CONCLUSIONS AND OUTLOOK

noise can affect MT measurements. This becomes even more evident, when

the real data example exhibits very similar problems in conjunction with

other Fourier based method but not with the EMT algorithm.

However, I wish to stress that, at this moment, the proposed algorithm

is realized in MatLab and runs rather slow (about 1 day for 10 million

data points) on desktop computers. Most of the time, it delivers similar re-

sults compared to much faster and more efficient processing algorithms like

BIRRP (Chave and Thomson, 2004), EMTF (Egbert, 1997) or the LIMS

processing algorithm (Jones and Jödicke, 1984). Therefore, I consider this

algorithm a special purpose code for data that is suspected to be contami-

nated by non stationary effects.

5.2 Outlook

Besides the development of the EMT algorithm, this thesis provides a set of

new ideas for further research on the field of non stationary electromagnetic

methodology.

5.2.1 Development of Quality Control Measures

The proposed algorithm operates in a time-frequency domain and, there-

fore, potentially enables new data quality control measures like controlling

instantaneous changes in the parameters amplitude, phase and frequency,

which could be investigated in a future work. This could include coherence

based rejection techniques as well as exclusion of overly non stationary parts

of the data (note that the natural sources are rarely non stationary).

5.2.2 Selection of Independent Data Points

The function to select the independent data samples in the presented algo-

rithm assures that the correct amount of data is selected, but the function of

choice is somewhat arbitrary. On one hand, it can be seen as an advantage

that the samples are drawn arbitrary or random, but on the other hand,

alternative ways should be investigated for assessing their performance.
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5.2.3 Re-examine Previously Problematic Real World Data

It would be of the utmost importance to the success of the algorithm to verify

it on more real world data sets that are suspected to contain non stationary

noise, e.g., data that is acquired close to train lines, mining activity or

electric fences. More data sets that have been difficult to process in the

past could be reprocessed in order to investigate for the possibility of non

stationary contamination.

5.2.4 Fortran Conversion, Parallel Computing and Open Access

As mentioned before, the code execution is slow compared to Fourier based

methods and under regular conditions, the results are similar. Since the

development of the code has mostly finished and in order to make it more

competitive, it would be advantageous to convert it to the Fortran program-

ming language and enable parallel computing.

Another critical point would be to allow open access to the code in

order to spread its usage. Firstly, this would increase the rate of bug fixing;

secondly, yield more (or less) confidence from a larger testing community;

thirdly, raise awareness of (or lower uncertainty about) non stationary effects

in the data; and fourthly, motivate the algorithm’s further development.

5.2.5 Non Stationary Controlled Sources for CSEM

Controlled Source Electromagnetic (CSEM) methods are sensitive to the

subsurface conductivity structure and thus had led to its use in resource

exploration. Since the frequency for peak sensitivity and the exact location

of an exploration target is normally unknown prior exploration, it is desirable

to acquire the transfer functions for a broad range of frequencies and in a

wide area. Investigations in both directions have been driven by optimizing

properties of the Fourier transform in order to enhance the frequency range

and the source-receiver distances. My research on Non stationary (NS)

time series analysis tools significantly enhanced processing of NS time series,

hence the possibility of NS source waveforms could be assessed. For instance,

the source could be defined by a chirp function that is highly customizable

in amplitude and frequency range in order to accommodate any frequency

range in combination with virtually any amplitude for each frequency (e.g.
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in order to counter attenuation by decreasing power from low frequencies to

increase high frequency power assuming constant energy supply).

Using a chirp as source waveform, we can chose any bandwidth and

we could account amplitude attenuation over source-receiver distance, since

both the amplitude and frequency can be tailored to specific needs. Both

are typical problems for CSEM as discussed by Myer et al. (2010) among

others. As an example, by reducing low frequency amplitude in favor for

high frequency amplitude, source signal range could be increased for high

frequencies assuming a given power generator output. This idea has been

proposed by Neukirch and Garcia (2014).
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APPENDIX A

The Tikhonov-Cagniard Impedance derived from

Maxwell’s Equations for Plane Wave Sources

and a full Apparent Conductivity Tensor

A.1 Derivation of the Impedance

The EM field is described by Maxwells equations (Maxwell, 1873). Consid-

ering (1) harmonic fields with constant frequency ω, (2) the current density

j is proportional to the electric field E at a constant conductivity σ (j = σE)

and (3) the field propagates only by diffusion (neglecting displacement cur-

rents and surface charges: iωεE� σ · E and q = 0), these equations are:

∇×E = −iωB, (A.1a)

∇×B = μ (iωεE + j) = iωμεE + μσ ·E ≈ μσ ·E, (A.1b)

∇ ·B = 0, (A.1c)

∇ · E =
q

ε
≈ 0 (A.1d)

with μ describing the magnetic susceptibility as product between the mag-

netic susceptibility of vacuum μ0 and the magnetic susceptibility of the given

medium μr. The penetration of the field F = E,B in a homogeneous earth

is described by applying the curl operator (∇×) to Maxwell’s equations and

solve the equations for each field F:

∇
2F = iωμσF = k2F (A.2)
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The term k2 = iωμσ is the diffusion parameter, which describes the com-

plex penetration depth (skin depth) δ = Re
(

1
k

)
of the EM field (Schmucker

and Weidelt, 1975) and represents the impedance Z(ω) = iω
k

for a homoge-

nous earth. The solution for the fields F is given by F = F0 · e
−k·x with

x = (x, y, z) and k = (kx, ky, kz) as the space dimension and their respective

wave numbers. That the wave number is directly related to the impedance

becomes clear when one solves equations (A.1) for a three dimensional,

anisotropic body with the apparent conductivity tensor σ = σij , i, j ∈

[x, y, z]. Then, the components of equations A.1a and A.1b yield:

−kyEz + kzEy = −iωBx, (A.3a)

−kzEx + kxEz = −iωBy, (A.3b)

−kxEy + kyEx = −iωBz, (A.3c)

−kyBz + kzBy = μσxxEx + μσxyEy + μσxzEz, (A.3d)

−kzBx + kxBz = μσyxEx + μσyyEy + μσyzEz, (A.3e)

−kxBy + kyBx = μσzxEx + μσzyEy + μσzzEz. (A.3f)

Traditionally, the impedance is defined as the relation between the hori-

zontal field components, so we need to eliminate the vertical components.

Rearrange equations (A.3c) and (A.3f):

Bz = −
i

ω
kxEy +

i

ω
kyEx, (A.4a)

Ez = −
kx

μσzz
By +

ky

μσzz
Bx −

σzx

σzz
Ex −

σzy

σzz
Ey. (A.4b)

Since it is only guaranteed for the diagonal elements of σ to be larger than

zero, we may only divide by the main diagonal elements, hence we need to

reformulate equation (A.3d) to yield Ex and equation (A.3e) to yield Ey:

Ex = −
ky

μσxx
Bz +

kz

σxx
By −

σxy

σxx
Ey −

σxz

σxx
Ez, (A.5a)

Ey = −
kz

μσyy
Bx +

kx

μσyy
Bz −

σyx

σyy
Ex −

σyz

σyy
Ez. (A.5b)

Inserting equations (A.4) in (A.5) and rearranging to isolate the electric field
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component yields:

(
1 +

ik2
y

ωμσxx
−

σxzσzx

σxxσzz

)
Ex =−

kyσxz

μσxxσzz
Bx +

(
kz

μσxx
+

kxσxz

μσxxσzz

)
By

+

(
ikxky

ωμσxx

−
σxy

σxx

+
σxzσzy

σxxσzz

)
Ey, (A.6a)(

1 +
ik2

x

ωμσyy

−
σyzσzy

σyyσzz

)
Ey =−

(
kz

μσyy

−
kyσyz

μσyyσzz

)
Bx +

kxσyz

μσyyσzz

By

+

(
ikxky

ωμσyy

−
σyx

σyy

+
σyzσzx

σyyσzz

)
Ex. (A.6b)

Multiply equations (A.6a) and (A.6b) by the factors of the left hand side,(
1 + ik2

x

ωμσyy
−

σyzσzy

σyyσzz

)
and

(
1 +

ik2
y

ωμσxx
−

σxzσzx

σxxσzz

)
, respectively, and separate

the electric field components:

Ex =
Zn

xx

μZd
Bx +

Zn
xy

μZd
By (A.7a)

Ey =
Zn

yx

μZd
Bx +

Zn
yy

μZd
By. (A.7b)

Further, the electric fields in equation (A.7) can be substituted in equation

(A.4a) to yield the transfer function that relates the vertical magnetic field

to the horizontal magnetic field (commonly known as tipper):

Bz =
iZn

zx

μ2Zd
Bx +

iZn
zy

μ2Zd
By. (A.8a)

with Zn
ij as the numerator and Zd as denominator for Zij:

Zn
xx = μωkyσxyσyz − ikxky

2σyz − μωkyσxzσyy + μωkzσxyσzz

− μωkzσxzσzy − ikxkykzσzz − ikx
2kyσxz (A.9a)

Zn
xy = ikx

2kyσyz − μωkxσxyσyz + μωkxσxzσyy + μωkzσyyσzz

− μωkzσyzσzy + ikx
2kzσzz + ikx

3σxz (A.9b)

Zn
yx = μωkyσxzσyx − μωkyσxxσyz − ikxky

2σxz − μωkzσxxσzz

+ μωkzσxzσzx − iky
2kzσzz − iky

3σyz (A.9c)

Zn
yy = ikxky

2σyz + μωkxσxxσyz − μωkxσxzσyx − kzμωσyxσzz

+ μωkzσyzσzx + ikxkykzσzz + ikx
2kyσxz (A.9d)
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Zn
zx = ky

2σxyσyz − ky
2σxzσyy + kxkyσxxσyz − kxkyσxzσyx

+ kxkzσxxσzz − kxkzσxzσzx + kykzσxyσzz − kykzσxzσzy (A.9e)

Zn
zy = −kx

2σxxσyz + kx
2σxzσyx − kxkyσxyσyz + kxkyσxzσyy

+ kxkzσyxσzz − kxkzσyzσzx + kykzσyyσzz − kykzσyzσzy (A.9f)

Zd = μωσxxσyyσzz − iky
2σyzσzy − ikxkyσxzσzy − ikxkyσyzσzx

− ikx
2σxzσzx − μωσxxσyzσzy − μωσxyσyxσzz + μωσxyσyzσzx

+ μωσxzσyxσzy − μωσxzσyyσzx + iky
2σyyσzz + ikxkyσyxσzz

+ ikxkyσxyσzz + ikx
2σxxσzz (A.9g)

A.2 Simplification of Impedance Tensor Elements

The general impedance is a complex relation between the anisotropic con-

ductivity and the spatial wave numbers. However, we can extract some

special cases under which the tensor elements reduce complexity.

A.2.1 Isotropic Material

One-dimensional structures One-dimensionality refers to the fact that

there are no changes of the conductivity structure along x− and y− direc-

tion. For us, this means kx = ky = 0 because both, the electric and magnetic

field of a plane wave, do not vary laterally over a laterally uniform media.

Isotropy is defined as directional independence of a measure, which means

the conductivity tensor elements are σxx=yy = σ0 and σi�=j = 0. Further,

the amplitude of the wave number vector k is defined by k2 = k2
x + k2

y + k2
z .

Hence the tensor elements simplify to:

Zxx = Zyy = Zzx = Zzy = 0, Zxy = −Zyx =
kz

μσ0
=

iω

kz
. (A.10)

Note that the impedance has no information about the vertical conductivity

σzz since all currents flow horizontal for a plane wave propagating through

such a media with variation only along the axis of propagation.
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Two-dimensional structures For a two-dimensional subsurface conduc-

tivity, the horizontal wave numbers have a principal axis defined by angle φ

and the lateral diffusion coefficient in strike direction k2
0 , thus the measure-

ments can be obtained in strike direction so that the wave number ky = 0 and

the apparent conductivity tensor elements σyx = σxy = σzy = σyz = 0. Note,

that even though the material in the subsurface itself may be isotropic, when

we analyze the impedance for a certain frequency, we cannot directly relate

it to that geologic structure with isotropic material, because the impedance

only relates to a volume of material and can only describe macroscopic prop-

erties of that volume, which, for a two dimensional structure, will appear

anisotropic. The apparent conductivity tensor of isotropic material in a two

dimensional arrangement will appear anisotropic in the direction of varying

isotropic conductivity, that is in our case the x− and z− direction.

Zxx = Zyy = Zzy = 0 (A.11a)

Zxy =
kxσxz + kzσzz

μ · (σxxσzz − σxzσzx)
(A.11b)

Zyx = −
kz · ω

μωσyy + ikx
2 (A.11c)

Zzx =
ikxkz

μωσyy + ikx
2 (A.11d)

A.2.2 Anisotropic Material

Mart́ı (2014) provides a complete summary of the concurrent understanding

of anisotropy. The role of anisotropy and how it is interpreted in data is

still in debate, in the following are the resulting equations for the impedance

tensor elements assuming a homogenous anisotropic media which anisotropy

properties are determined by the geologic structure and the material prop-

erties as before for the isotropic material special cases.

One-dimensional and Anisotropic For one dimensional geologic mod-

els, a plane wave still has no lateral variation and thus, kx = ky = 0 but the

conductivity is directionally dependent, thus σ is a full tensor. Since the

material does not change laterally, the anisotropic elements of the conduc-
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tivity tensor are symmetric, viz. σxy = σyx, σxz = σzx and σzy = σyz, and

hence the impedance simplifies to:

Zn
xx = kz · (σxyσzz − σxzσyz) (A.12a)

Zn
xy = kz ·

(
σyyσzz − σyz

2
)

(A.12b)

Zn
yx = kz ·

(
σxz

2
− σxxσzz

)
(A.12c)

Zn
yy = kz · (σxzσyz − σxyσzz) (A.12d)

Zd = σxxσyyσzz + 2σxyσxzσyz − σzzσxy
2
− σyyσxz

2
− σxxσyz

2 (A.12e)

Zzx = Zzy = 0 (A.12f)

(A.12g)

Note that Zxx + Zyy = 0 as suggested by computations (Vozoff, 1972) and

theoretic studies (Kováčiková and Pek, 2002).

Two-dimensional and Anisotropic As for isotropic material, in a two-

dimensional, anisotropic subsurface conductivity, the horizontal wave num-

bers have a principal axis defined by angle φ and the lateral diffusion coeffi-

cient in strike direction k2
0 , thus the measurements can be obtained in strike

direction so that the wave number ky = 0 and the apparent conductivity

tensor elements exhibit symmetry along the uniform axis, viz. σxy = σyx

and σzy = σyz. Then the impedance tensor elements simplify to:

Zxx = μω · kz · (σxyσzz − σxzσyz) (A.13a)

Zn
xy = (kxσxz + kzσzz) ·

(
ikx

2 + μωσyy

)
− μω · σyz · (kxσxy + kzσyz)

(A.13b)

Zn
yx = −μω · kz · (σxxσzz − σxzσzx) (A.13c)

Zn
yy = μω · (kxσxxσyz − kxσxyσxz − kzσxyσzz + kzσyzσzx) (A.13d)

Zn
zx = ikxkz (σxxσzz − σxzσzx) (A.13e)

Zn
zy = ikx

2
· (σxzσyx − σxxσyz) + ikxkz · (σyxσzz − σyzσzx) (A.13f)

Zd = μω · σyz · (σxyσxz − σxxσyz) + μω · σxy · (σyzσzx − σxyσzz)

+
(
μωσyy + ikx

2
)
· (σxxσzz − σxzσzx) (A.13j)
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A.3 Impedance and Apparent Conductivity

From the previous section, we can conclude that the impedance represents

an apparent conductivity tensor that the electromagnetic field experiences

for a given frequency very similar to the descriptive value of the apparent

resistivity. The EM wave experiences the subsurface as a volume and thus

the assumed mean anisotropic parameters of a homogenous media in an in-

tegrated volume yield an equal impedance as the real conductivity structure

of the same volume, be it isotropic or anisotropic and in any dimensionality.

From a practical point of view, apparent conductivity tensors for different

sites and at a range of frequencies, may be used to estimate real conductivity

tensorial structure by inversion, similar as it is achieved in other methods,

like Electrical Resistivity Tomography.

Considering the variables k and σij with i, j ∈ [x, y, z] in their relation

given by Z(ω), we find that the impedance tensor contains a given number

of unknown parameters:

• One-dimensional and isotropic: 3, the complex-valued kz and the real

valued σ0,

• Two-dimensional and isotropic: 9, the two complex-valued kz and kx,

and five real-valued apparent conductivity tensor elements σxx, σxz,

σyy, σzx and σzz.

• One-dimensional and anisotropic: 8, the complex-valued kz and six

real-valued conductivity tensor elements σxx, σxy, σxz, σyy, σyz and

σzz,

• Two-dimensional and anisotropic: 11, the two complex-valued kz and

kx, the seven real-valued apparent conductivity tensor elements σxx,

σxy, σxz, σyy, σyz, σzx and σzz,

• Three-dimensional: 15, the three complex-valued kz, kx and ky, and

all nine real-valued conductivity tensor elements.

Since the impedance tensor only contains up to 8 (12) known variables (the

four complex-valued impedance tensor elements, 6 complex-valued elements

including the tipper), the information about the apparent conductivity ten-

sor elements are naturally ambiguous and only joint information from more



112 APPENDIX A. DERIVATION OF IMPEDANCE

than one frequency and/or more than one site are necessary to reconstruct

the subsurface structure by inversion. This quick analogy also shows that

it is fundamentally more difficult to invert for a three-dimensional structure

and that, in such a case, it is not possible to simplify the impedance tensor

whether or not anisotropy is present.
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The Hilbert–Huang Transform (HHT) decomposes time series into intrinsic mode func-
tions (IMF) in time-frequency domain. We show that time slices of IMFs equal time slices
of Fourier series, where the instantaneous parameters of the IMF define the parameters
amplitude and phase of the Fourier series. This leads to the formulation of the theorem
that nonstationary convolution of an IMF with a general time domain response function
translates into a multiplication of the IMF with the respective spectral domain response
function which is explicitly permitted to vary over time. We conclude and show on a
real world application that a de-trended signal’s IMFs can be convolved independently
and then be used for further time-frequency analysis. Finally, a discussion is opened on
parallels in HHT and the Fourier transform with respect to the time-frequency domain.

Keywords: Time series; convolution; nonstationary; Hilbert–Huang transform; Fourier
transform.

1. Introduction

In digital signal processing, time series convolution is often related to the Fourier

transform (FT) and therefore implies stationary and linear assumptions on the data.

The reason for this prominence lies within the convolution theorem which allows to

exchange a weighted integral expression to a simple multiplication, which results in

much shorter computation time [Smith (1997)]. Margrave [1998] introduced the the-

ory for nonstationary convolution filters based on the FT arguing that a continuous

function is completely described by its FT and, therefore, nonstationary filtering

should be possible in the frequency domain. Huang et al. [1998] show that the fre-

quency information of nonstationary signals might describe the signal entirely but
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gives biased information with respect to the physics of the signal, concluding that

misinterpretation of the FT cannot be ruled out in a truly nonstationary setting.

Huang et al. [1998] introduced the Hilbert–Huang Transform (HHT), which is

a new method to transform time series into a time-frequency domain without any

assumptions on stationarity and linearity on the signal. The method has been exten-

sively tested since then and successfully applied to different fields [Lo et al. (2008);

Jackson and Mound (2010); Zeiler et al. (2011); Chen et al. (2012)], although a

rigorous mathematical foundation is not yet available. The definition of HHT is

empirical and data dependent, which on one hand provides a tool that works on

nonstationary, nonlinear bases but, on the other hand, denies a profound under-

standing of the method solely based on its definition.

Despite of the lack of a classical explicit mathematical basis, extensive tests have

validated HHT and suggest that it improves time series analysis, in particular in the

presence of nonstationary or nonlinear effects [Huang et al. (2009)]. Furthermore,

these tests confirm that a FT cannot reliably represent the frequency information

in a nonstationary signal which, hence, require nonstationary treatment.

Very often time series include nonstationary and nonlinear effects and some-

times it is not desirable or not feasible to remove them. For instance, measurements

of natural signals like the Earth’s magnetic field are stationary for sufficient long

periods of time, but measurements may include environmental noise which can

be nonstationary [Egbert (2002); Chave and Thomson (2004); Garcia and Jones

(2008)]. In this case, neither the exact noise signal nor the exact desired signal are

known. Therefore, the desired stationary part cannot be isolated and the nonsta-

tionary combination of both must be analyzed. In order to solve that exact problem

we discuss how the convolution filter affects nonstationary signals and extend the

convolution theorem to nonstationary signals.

In this work, we present the nonstationary convolution based on HHT which

does not imply assumptions on the stationarity of the signal. Since results of the

HHT are neither exclusively in the time nor frequency domain, we cannot readily

generalize the established convolution theorem for an analysis based on HHT but

we can show, that there are fundamental similarities between the FT and the HHT

with respect to convolution and use those similarities to find a new formulation

for the nonstationary convolution. Due to the nature of nonstationary signals and

how the frequency information can be recovered by HHT, we will argue that a

nonstationary convolution based on HHT does not necessarily have an uniquely

defined inverse, or a deconvolution operator resulting in the original signal, but we

will briefly discuss resulting implications for the deconvolution of such signals.

The paper starts with a brief review of the HHT, highlighting the instantaneous

parameters which are the backbone of our theorem. Then, it continues by presenting

the formulation of the nonstationary convolution theorem and the lemma required

for the subsequent proofs. The theorems are interpreted physically and their impli-

cations on the relation between FT and HHT are laid out. The paper concludes

with two numerical examples on a stationary and a nonstationary test signal, and
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an example of a genuine geophysical application with real world data. It follows a

discussion on our findings and suggestions for further work especially with respect

to nonstationary deconvolution.

2. The HHT

Huang et al. [1998] introduced the HHT and described thoroughly its application,

restrictions and direct results. Given a de-trended time series f(t) = ftotal(t) −
ftrend(t), the HHT generalizes the Fourier series

f(t) =
∑

n

Fn · e2πiνnt =
∑

n

Fn · eiφn(t), (1)

where the phase is defined as φn(t) = 2πνnt, to a series with an amplitude F̂ (t)

and frequency ν̂(t)

f(t) =
∑

j

F̂j(t) · e2πi
R t
−∞ ν̂j(t

′
)dt′ =

∑
j

F̂j(t) · eiφ̂j(ν̂j(t),t), (2)

with the phase φ̂j(ν̂j(t), t) = 2π
∫ t

−∞ ν̂j(t
′)dt′. Note that the range of the index

n ∈ Z depends on the definition of the amplitudes Fn as usual for the FT. For

Fn ∈ R : n ∈ Z and for Fn ∈ C : n ∈ N0 with N0 being the natural numbers including

zero. Both definitions are equivalent, so let us concentrate on the complex definition

for Fn in this work. On the other hand, F̂j ∈ R always is a real amplitude of the

signal and is defined for j ∈ N+ for an infinite long function f(t) with N+ being

the natural numbers exclusive zero.

The intrinsic mode functions (IMF) mj(t) of f(t) are defined as

mj(t) = F̂j(t) · eiφ̂j(ν̂j(t),t) (3)

by the following properties:

(i) In the whole data set, the number of extrema and the number of zero-crossings

must either equal or differ at most by one, and

(ii) at any point, the mean value of the envelope defined by the local maxima and

the envelope defined by the local minima is zero.

Note that within the frame of the Fourier expansion, Fn describes the constant

complex amplitude of the mono-frequency part (with νn) of the signal f(t) for the

entire process. Whereas, F̂j(t) is the real amplitude of the IMF j which exhibits a

frequency ν̂j(t), which both can vary over time.

In other words, the HHT separates narrow-bandwidth amplitude modulations

(AM) a = F̂j(t) and phase modulations (PM) p = eiφ̂j(t) from the data and provides

them in form of real-valued IMFs [Huang et al. (2009)]. This process is called

empirical mode decomposition (EMD) of f(t) and yields the corresponding, real-

valued IMFs, which represent the real part of Eq. (3). The AM values a describe

time varying signal power, whereas the PM p only contain pure oscillations. The real
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values of p are in the open interval between −1 and +1 and are defined such that

they are locally zero-mean functions, which means that the number of extrema and

number of zero-crossings do not differ by more than one (for detailed information,

see Huang et al. [2009]). Huang et al. [1998] argue that phase functions with these

properties can be Hilbert-transformed to acquire their analytic signal and that they

exhibit a physical meaningful instantaneous frequency. The Hilbert Transform of a

suitable function p(t) is defined by

H(p)(t) =
1

π
p.v .

∫ ∞

−∞

p(τ)

t− τ
dτ, (4)

where p.v. indicates Cauchy’s principal value. We can construct the analytic sig-

nal by

m(t) = a(p(t) + iH(p)(t)), (5)

where H(p)(t) is the Hilbert Transform Eq. (4) and, thus, obtain the signal’s phase

using

φ̂(t) = arctan

(
H(p)(t)

p(t)

)
. (6)

Ultimately, the instantaneous frequency is defined as the time derivative of the

phase:

ν̂(t) =
dφ̂(t)

2πdt
. (7)

3. Nonstationary Convolution Under the HHT

Let us consider an integrable function f : t ∈ R → R in the integral formulation of

the FT pairs (taken from Wikipedia [2011] with references therein):

F (ν) =

∫ ∞

−∞
f(t) · e−2πiνtdt = F(f(t)), (8)

f(t) =

∫ ∞

−∞
F (ν) · e2πiνtdν = F−1(F (ν)), (9)

with φ(ν, t) = 2πνt, and a general IMF m : t ∈ R → R:

m(t) = M̂(t) · eiφ̂(t), (10)

with M̂(t) representing the real-valued, instantaneous amplitude of m. Let us define

a complex, time-frequency amplitude function M̃(ν̂, t) = M̂(t) · eiφ̃(ν̂,t) and a phase

function φ̃(ν̂(t), t) = φ̂(t)− 2πν̂t to rewrite the IMF m as

m(t) = M̃(ν̂, t) · e2πiν̂t. (11)

Theorem 1. Let m(t) be an IMF with instantaneous frequency ν̂(t) and F τ (ν) a
member of the group of Fourier Transforms of f τ (t), where τ ∈ R is the parameter
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which describes each member, then:

m(t) · F τ (ν̂(t)) = m(t) ∗ f τ (t). (12)

The frequency wise multiplication of m with F equals the convolution of m with f .

Lemma 1. Let m(t) be an IMF with instantaneous frequency ν̂(t), then the con-
volution of m(t) with the delta distribution δ(t) is

(m ∗ δ)(t0) = (M̃t0 · e2πiν̂(t0)t ∗ δ(t))(t0), (13)

with M̃t0 = M̂(t0) · eiφ̂(t0)−2πiν̂(t0)t0 = M̃(ν̂(t0), t0) being the complex amplitude of
a monochromatic oscillation with frequency ν̂(t0).

The proof of this lemma is trivial, but we include it to stress that this property of

the IMF can be used to find more properties of the HHT with the help of well-known

properties of the FT. Figure 1 provides a graphical illustration of this lemma.

Proof. (for Theorem 1) Starting on the right-hand side (RHS) from the following

identity:

(m(t) ∗ f τ (t))(t) = (δ ∗m ∗ f τ )(t), (14)

focusing on an isolated time instant t0

((δ ∗m) ∗ (f τ ))(t0) (15)

and using the sifting property of the delta function with Lemma 1, the RHS yields

((δ ∗m) ∗ f τ )(t0) = [(δ ∗ M̃t0 · e2πiν̂(t0)t) ∗ f τ (t)](t0)

= [δ ∗ M̃t0 · F−1(δ(ν̂(t0)− ν)) ∗ F−1(F τ (ν))](t0). (16)

0

0.005

0.01

0.015

0.02

−0.02

−0.015

−0.01

−0.005

0

−1

0

1

real time [seconds]auxiliary time [seconds]

de
vi

at
io

n

Fig. 1. This figure illustrates Lemma 1. The black curve is an IMF (a chirp function with linearly
increasing frequency and constant amplitude, Sec. 6.2) and the light curves are sine curves with
the frequency, phase and amplitude chosen to be identical with the IMF at the intersection points
marked by reddish circles. The IMF evolves along the actual time axis, whereas the sine curves
are displayed in an auxiliary time domain whose sole purpose is to visualize them. The vertical
axis describes the deviation for both, the IMF and the sine curves.
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M. Neukirch & X. Garcia

When we resolve the convolution with the help of the convolution theorem for FT,

we obtain

((δ ∗m) ∗ f τ (t))(t0) = [δ ∗ M̃t0 · F−1(δ(ν̂(t0)− ν) · F τ (ν))](t0)

=

[
δ ∗ M̃t0 ·

∫ ∞

−∞
δ(ν̂(t0)− ν) · F τ (ν) · e2πiνtdν

]
(t0)

= [δ ∗ M̃t0 · F τ (ν̂(t0)) · e2πiν̂(t0)t](t0)

= M̃t0 · e2πiν̂(t0)t0 · F τ (ν̂(t0)). (17)

Now, the left-hand side (LHS) of Theorem 1 can be written as:

(δ ∗m(t) · F τ (ν̂(t)))(t0) = (δ ∗ M̂(t) · eiφ̂(t) · F τ (ν̂(t)))(t0)

= (δ ∗ M̂(t) · eiφ̂(t)−2πiν̂(t)t+2πiν̂(t)t · F τ (ν̂(t)))(t0)

= M̂(t0) · eiφ̂(t0)−2πiν̂(t0)t0 · e2πiν̂(t0)t0 · F τ (ν̂(t0)), (18)

for M̃t0 = M̂(t0) · ei(φ̂(t0)−2πν̂(t0)t0) as required for Lemma 1, LHS and RHS of

Theorem 1 are equivalent for all times t0.

Proof. (for Lemma 1) The proof is a straight forward application of the sifting

property of the delta distribution in a convolution and the insertion of a zero term.

The LHS can be reformulated as follows by using Eq. (11):

(m ∗ δ)(t0) = (M̃(ν̂(t), t) · e2πiν̂(t)t ∗ δ(t))(t0)

= M̃(ν̂(t0), t0) · e2πiν̂(t0)t0 . (19)

M̃(ν̂, t) can be understood as a complex-valued, instantaneous amplitude which

incorporates an instantaneous starting phase in order to linearize the phase term

of the IMF m. By reformulating the RHS of Lemma 1, we find

(M̃t0 · e2πiν̂(t0)t ∗ δ)(t0) = M̃t0 · e2πiν̂(t0)t0 (20)

and readily see that both sides are equivalent for M̃t0 = M̃(ν̂(t0), t0).

4. Physical Interpretation

4.1. Theorem 1

Assuming we know exactly the spectral response F (ν) of a physical measurement

device, this theorem states that we can simply multiply the known spectral response

F (ν) by a known time signal m(t) in order to obtain the signal n(t) measured by the

device, if the signal m(t) is an IMF. Per definition, n(t) is exactly the convolution of

the time domain response function f(t) of the device with the incoming signal m(t).

Our reformulation of a nonstationary convolution to a simple multiplication leads

to a better understanding of the behavior of physical systems in a nonstationary

set up and further increases the application range of the HHT.
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Nonstationary Time Series Convolution

An important note is that a de-trended signal x(t) should convolve in the same

manner as if each of its IMFs mj(t) are convolved independently to nj(t) and

then are summed over to y(t). Unfortunately, the nonstationary character of IMFs

cannot guarantee that the convolution of an IMF results in another IMF; thus, it

may not be allowed to sum over nj in order to form the total convolved signal y.

If the present nonstationarity is too severe in mj or in the transfer function F (ν, t)

the convolution of mj cannot yield another IMF, because the convolution may

introduce new extrema without additional zero-crossings to the function which

is not permitted in the definition of an IMF. In such a case it remains an open

question whether nj still are base functions of y. Certainly, the total convolved

signal y cannot decompose into nj if not all nj qualify as IMFs. This restriction

on the inverse to our theorem depends very much on the nonstationary phase-time

relation of signal and transfer function and may be discussed in detail in another

work. Here, we only want to stress that the convolution results of IMFs do not

need to be IMFs and may not always be summed up in order to compose a total

convolved signal of a general time series. However, the theorem will always apply

to a signal that is an IMF all by itself, even though the convolved result may or

may not be an IMF after the convolution.

Later we will discuss an example for which we can add up the convolved IMFs

of a signal in order to get the total convolved signal. Moreover, in that example

we will use the spectral information given by the IMFs of a signal and its convolu-

tion in order to estimate the system’s transfer function. Therefore, we claim that

the convolution of a signal’s IMFs may well describe physical properties of signal

convolution.

4.2. Lemma 1

This lemma states that the instantaneous parameters of the IMFs at any time

t = t0 can be used as parameters of a sine curve to fully describe the IMF at that

time. It provides a link between the HHT and the FT and can likely be used to

find more properties of the HHT with the help of well-known properties of the FT,

since a sine curve is the fundamental base of the FT. Note that the FT is defined

on an infinite time axis and that the time axis of this “virtual” sine curve is not

equivalent to the one of the original signal but rather to an imaginary, infinite one,

therefore even a piece of a continuous time signal can be described by these virtual

sine curves and anything that applies to the entire virtual sine curve also applies

to the IMF at time t0. The Hilbert spectrum is the common mean to visualize the

time-frequency behavior of an IMF and therefore, we suggest to refer to the Hilbert

spectrum as two-dimensional, time-evolving Fourier spectrum.

5. On the Relation between HHT and FT

First of all, we would like to propose the term “time-varying FT”, which we define as

the RHS of Eq. (13). Virtually every function f(t) : t ∈ R → C can be represented by
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M. Neukirch & X. Garcia

a Fourier amplitude in this way but it is worth noting that the implications coming

along with the definitions of an IMF, like that it must have a physically meaningful

instantaneous frequency, give meaning to the time-varying Fourier amplitudes as

physical representations of the IMF in the time and frequency domain.

When we apply Lemma 1 [Eq. (13)] to Eq. (2), which is the original formulation

of the HHT as taken from Huang et al. [1998], we find that the function f(t) is

represented by a series of time-varying FTs:

(f ∗ δ)(t0) =
∑

j

(mj ∗ δ)(t0) =
∑

j

(M̃ j
t0 · e2πiν̂j(t0)t ∗ δ)(t0), (21)

where j ∈ N+ is the order of the IMF and ν̂j assumes the spectral coordinates of

the signal f . This formulation represents (in time slices) how the time-frequency

information, obtained from the HHT, is commonly displayed: the Hilbert spectrum.

6. Two Sandbox Examples — Sine and Chirp:

Two Synthetic Signals

In order to demonstrate Theorem 1, we designed two synthetic time series, the

first superposes two sine curves with distinct frequency values and the second is

a chirped sine with a linearly increasing frequency. Both of these signals are then

subjected to the convolution with a 1st-order Butterworth low pass filter.

6.1. Stationary signal — two sine curves

The first example is stationary and validates that Theorem 1 holds for the conven-

tional convolution theorem, which states that the convolution of two time series is

the inverse FT of the multiplication of the FT of each time series. The superpo-

sition of two sine functions, here one with a frequency of 5Hz and another with

5 kHz, is decomposed equally by the HHT and FT. Both transforms find the exact

same two oscillations with the constant amplitude from the signal. The signal is

displayed as a black line in Figs. 2(a) and 2(b) highlighting its slow and fast oscilla-

tion, respectively. In the same graphs are the convolution results with two distinct

Butterworth filter. The filter are set up as 1st-order low pass filter with normal-

ized cut-off frequencies at 0.05 and 0.005. The convolution with both filters has

been applied in forward and reverse direction in order to achieve zero phase fil-

ter with amplitudes as shown in Fig. 2(c). Figures 2(a) and 2(b) show that the

amplitude of the low frequency oscillation is not affected as both filter are in the

pass band, whereas the high frequency part is damped according to the ampli-

tude value of the corresponding frequency and filter. We tested three methods,

FT based filtering, time series convolution filtering and the nonstationary convolu-

tion theorem as presented in this work. All three methods yield exactly the same

result.
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Nonstationary Time Series Convolution

(a)

(b) (c)

Fig. 2. This figure illustrates the first test signal represented by a superposition of two sine
functions and its convolution with a 1st-order low pass filter. The signal is completely stationary
and the convolution can be carried out in the time domain, with the FT or with our theorem
and yields the exact same results. (a) The first synthetic test signal is a superposition of two
sine functions with a frequency of 5Hz and 5 kHz, respectively. The colored lines show the same
signal filtered by 1st-order low pass Butterworth filter with normalized cut-off frequencies at 0.05
and 0.005. (b) This zoom-in around 0.1 s of Fig. 2(a) highlights the details of the test signal. (c)
The amplitude spectra of the filter that are used here have distinct values at 5 kHz.

6.2. Nonstationary signal — Chirped sine with linear frequency

The second example on synthetic data is on a pure, nonstationary signal in the form

of a chirped sine function with a linearly increasing frequency, which is as per defini-

tion an IMF. The signal is plotted in Fig. 3 as a black line with its frequency axis at

the top and the time axis at the bottom. Note that the very same signal illustrates

Lemma 1 in Fig. 1. To perform a convolution, we use the Butterworth filter with the

cut-off frequency at 0.05 as described for the previous example. The filter is again

set up as zero phase filter with the amplitude displayed as blue line in Fig. 3. The

convolution is carried out via the time series convolution and via the nonstation-

ary convolution theorem. Both results are displayed in Fig. 3 and both are almost

identical. The only difference is that the time series convolution algorithm cannot

deal with the beginning of the time series, since it is defined as a weighted sum that

requires values around the location where it calculates the convolution but there

exist no values lower than t = 0 so the algorithm assumes zero-padding and expe-

riences “edge problems”. The calculation based on the nonstationary convolution
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M. Neukirch & X. Garcia

Fig. 3. The second test signal is a chirp function with a linearly increasing frequency over time
and constant amplitude. This figure compares the convolution of the chirp with a 1st-order low
pass Butterworth filter applied with two methods: time domain convolution and Theorem 1 from
this paper. Besides the numeric errors at the edge from the numeric convolution algorithm, both
methods yield the same result.

theorem uses only local information and therefore is exact as well at the edges,

where the frequency is very low and there is virtually no effect of the low pass filter

to be expected. In fact, we tested different filter types (Chebyshev I and II, Elliptic

and Bessel analog filter) with the order up to 10 and for several cut-off frequencies,

and the convolution theorem presented here gave accurate results for any sampling

rate as it is defined on the local, instantaneous parameters, whereas numeric filter

procedures depend much on sampling as it relies on weighted sums.

7. A Real World Example — Magnetotelluric Transfer Functions

In this section, we want to present an application of Theorem 1. The authors’

field of expertize lies in magnetotelluric (MT) exploration and, hence, the theorem

has been developed in light of processing MT data. MT measurements log the

natural variation of magnetic and electrical (telluric) fields at the Earth’s surface

and these measured time series can be statistically analyzed to obtain the relative

spectral relation of the electrical to the magnetic field Vozoff [1972]. The subsurface

conductivity structure enforces a particular distribution of underground currents,

which alter the external natural electromagnetic field of the Earth and, therefore, it

allows us to derive that structural information of the subsurface conductivity from

the analysis of the electromagnetic field on the surface.

Knowing the spectra of the surface electrical field E(ω) and the spectra of the

surface magnetic field H(ω), we can write the relation between the horizontal spatial

field components as(
Ex(ω)

Ey(ω)

)
=

(
Zxx(ω) Zxy(ω)

Zyx(ω) Zyy(ω)

)
·
(

Hx(ω)

Hy(ω)

)
, (22)

where Z is the impedance which describes the subsurface conductivity volume for

a given frequency ω. With respect to the work described in this paper, Z can be
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Nonstationary Time Series Convolution

simply understood as the system response function of the Earth, H is the input and

E is the output of the convolution. Electrical and magnetic fields are recorded as

time series and need to be transformed into the frequency domain in order to solve

for the impedance, because the impedance tensor is only defined in the frequency

domain. Under ideal conditions, the electromagnetic field varies quasi-stationary,

meaning the spectral composition changes sufficiently slow that a windowed FT

can be performed, but for sites closer to inhabited or industrial areas, cultural

noise often affects the measurements severely. Cultural noise can be of any kind

and is most often nonstationary, therefore, measurements of e(t) and h(t) are often

disturbed by nonstationary variations, since the physical measurements contain

both, natural signal and cultural noise.

Clearly, the problem described here is not exactly in the format of the theorem

where we know input and system response and seek the output but it is similar; we

do know input and output and need to find the system response by an optimization

procedure. Thus, in this example we also have to assume Theorem 1 to hold in

order to search for the optimal solution.

The algorithm that solves for this MT data is too complex to be discussed here

in detail and will be treated in its entirety in a different work, but we do need to

stress that Eq. (22) states a multivariate optimization problem, which requires the

use of a special EMD introduced by Rehman and Mandic [2010] and designed for

multivariate data but for our purpose it performs an EMD no different than the

univariate EMD, only that it ensures data channel correlation within the index of

the IMFs (e.g. IMF number two of channel ex will be at a similar time scale as any

other channel’s IMF number two).

Looking at the MT problem from the point of this work, E = F(e) is the

output or result of the convolution (electrical field spectra), H = F(h) is the con-

volution input (magnetic field spectra) and the system response is Z(ν) = F(z(t))

(Impedance) with the unknown temporal system response function z(t)

E = Z ·H (23)

or in time domain

e = z ∗ h. (24)

Both, e and h, are then decomposed into their respective IMFs with the algorithm

by Rehman and Mandic [2010], which ensures that for both signals the time scales

remain correlated throughout the decomposition process. Theorem 1 suggests that

mj
e = z ∗mj

h = Z ·mj
h (25)

with mj being the respective IMFs for input and output.

Using Eq. (25) and a statistical optimization, we find an optimal solution for

Z(ν) for the instantaneous parameters given by mj
h and mj

e. The results of the

impedance tensor for the test data set is presented in Fig. 4 in dark color. The

curves in bright color correspond to a FT-based algorithm processing the same

data set.
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M. Neukirch & X. Garcia

Fig. 4. MT data is given as an example application of the nonstationary convolution theorem
with the electric impedance as the Earth’s system response function relating magnetic to electric
fields. The main entries of the impedance tensor Z are displayed as amplitude and phase over a
range of periods. It describes the subsurface electric conductivity structure and can be used to
detect electric anomalies like phase boundaries, ore minerals or water deep inside the Earth.

Note that the last example shown here also suggests that the convolved IMFs

from a signal can be added to produce the complete convolved signal if the results

still are IMFs. Here, we used measured time series of the signal and its convolution,

h and e, respectively, and carried out the convolution on their respective IMFs to

find the system response function, thus it proofs that the sum of the convolved

IMFs indeed reproduce the convolved measurement, even though the convolution

has been carried out on each IMF independently. Our example only uses stationary

transfer functions with a relatively constant phase, therefore it shall be said that

other more complex cases may yield a different experience. For example, let there be

a high degree of nonstationarity in the phase-time relation between the IMF and the

transfer function, then the IMF-system characteristics may preclude the convolution

to result in another IMF, because some situations may alter the rotational sense

of the phase and, hence, introduce new extrema without additional zero-crossings.

However, the observation is interesting enough that we feel it would deserve a more

thorough investigation in another work.

8. Conclusion

• The convolution between an IMF and a temporal system response can be trans-

lated into a multiplication.
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Nonstationary Time Series Convolution

• The Hilbert–Huang spectra can be represented as a Fourier spectra with time

varying complex amplitude.
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By using the Hilbert-Huang Transform, a non stationary time series can be represented
by a number of modes, which are complex time series with instantaneous amplitudes,
phases and frequencies. Following the non stationary convolution theorem which allows to
translate a convolution into a multiplication, we analyse the characteristics of a convolved
time series and show that through convolution the instantaneous frequency may change.
We quantify the frequency shift and argue that this difference greatly hampers any
attempt to deconvolve non stationary signals.

1. Introduction

The Hilbert-Huang Transform (HHT, Huang et al., 1998) is a novel tool to analyse

non stationary time series and describes them with their instantaneous, spectral

information. HHT decomposes a time series into a number of zero-mean, oscillatory

modes, called Intrinsic Mode Functions (IMF), in order to ensure existence of an

interpretable analytic signal of each IMF and to express the analytic signal in terms

of time series of the instantaneous parameters: amplitude, phase and frequency. The

IMF reside in the time and frequency domain and are described by amplitude and

phase as functions of time, where the time derivative of the phase constitutes the

frequency.

Neukirch and Garcia (2013) present a non stationary convolution theorem that

is similar to the convolution theorem for Fourier transform but that does not imply

assumptions on the stationarity of the signal since it is based upon the definitions

of the IMFs of the Hilbert-Huang Transform. However, they argue that such a non

stationary convolution does not necessarily have an uniquely defined inverse, or a

deconvolution operator resulting in the original signal, and we wish to continue this

1
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discussion focussing on some resulting implications for the deconvolution of non

stationary signals.

Since the convolution of a non-stationary time series with a response function

in the time domain can be transformed into a basic algebraic formulation, in this

work, we focus on the repercussions of a non-stationary convolution by analysing

the instantaneous phase and its time derivative. Most notably, we find that there

can be a frequency shift in the resulting signal with respect to the original signal

depending on the degree of non stationarity. This finding may be important for non

stationary time series, which are filtered by a system response for technical reasons,

as it is often the case for physical measurements.

2. Hilbert-Huang Transform and Non-Stationary Convolution

In the Hilbert-Huang Transform (Huang et al., 1998, 2009), the Intrinsic Mode

Functions (IMF) mj (t) of x (t) are defined as

mj (t) = m0,j (t) · eiφj(t). (1)

with φj (t) =
∫

t

−∞

ωj (t′) dt′.

In essence, the HHT separates narrow-bandwidth amplitude modulations (AM)

mj(t) and phase modulations (PM) φj(t) from the data and provides them in form

of IMFs. This process is called Empirical Mode Decomposition (EMD). Since the

phase of the signal is well defined, the instantaneous frequency can be derived from

the phase by:

ωm(t) =
dφm (t)

dt
. (2)

Neukirch and Garcia (2013) show that the convolution of an IMF mj(t) with any

time domain system response function s(t) translates into a complex multiplication

of the IMF with the frequency domain representation S(ωm, t) of that response

function.

mj(t) ∗ s(t) = mj(t) · S(ωm(t), t) (3)

Table 1: These conventions are used in the course of this article.

t time

φ(t) phase function

ω(t) = φ̇ instantaneous angular frequency

m(t) Intrinsic Mode Function (IMF)

s(t) temporal system response function

S(ωm, t) spectral system response function

x(t) convolution result of s and m

Δω(t) frequency shift

(a) Table of Functions

m relates to original signal

s relates to system response

x relates to convolved signal

0 identifies amplitudes

j order of IMF

(b) Table of Subscripts
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Equation 3 simplifies non stationary convolution drastically and one may infer that

the same is true for the equally interesting deconvolution of signals. Unfortunately,

the simplicity of the inverse operation for multiplication is misleading here and

distracts from the fact that there can be quite different phase functions be involved,

which may not necessarily be known. Let us shed light on the problematic with an

analysis of the phase function and allow us to ignore the amplitude functions in this

work.

3. Phase Analysis of Convolved Time Series

We separate the complex values m(t) and S(ωm(t), t) of Equation (3) for a single

IMF in the amplitudes m0(t) ∈ R+ of the IMF m and S0(ωm(t), t) ∈ R+ of the

response function S, and in the phases φm(t) ∈ R of m and φs(ωm(t), t) ∈ R of S.

Note, that both, the amplitude and phase of the response function, are functions

of the instantaneous frequency ωm(t) = dφm(t)

dt
= φ̇m(t) of m and the time t ∈ R.

Then the convolution x(t) = m(t) ∗ s(t) writes:

x0 exp (iφx) = m0 exp (iφm) · S0

(
φ̇m, t)

)
exp

(
iφs(φ̇m, t)

)
(4)

with the following amplitude and phase functions:

x0 = m0 · S0

(
φ̇m, t

)
, (5)

φx = φm + φs

(
φ̇m, t

)
. (6)

The observed amplitude x0 is a function of amplitude and phase of the IMF m

whereas the observed phase φx is independent of the amplitude, therefore, in this

work, we restrict the analysis to the phase and leave the amplitudes for another

time. The time derivative of Equation (6) yields:

φ̇x = φ̇m +
δφs

(
φ̇m, t

)
δt

+
δφs

(
φ̇m, t

)
δφ̇m

φ̈m. (7)

Hence, we find that φ̇x = φ̇m only for the case that either

(1) the phase of the spectral system response φs is constant over time for a certain

frequency φ̇m and one of both, φs is constant for a varying φ̇m or φ̇m is constant

over time, or

(2) the second two summands cancel each other.

In all other cases, φ̇x will differ from φ̇m by the frequency shift

Δω =
δφs

(
φ̇m, t

)
δt

+
δφs

(
φ̇m, t

)
δφ̇m

φ̈m. (8)

This observation tells us, that in a non stationary convolution a different instanta-

neous frequency may be observed than the one that the underlying process m had
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before it convolved with the response function s. The difference will depend on the

nature of the response function (phase behaviour over frequency and time) and on

the signal itself (swiftness of changes in the instantaneous frequency). Furthermore,

x(t) will only retain the status of qualifying as an IMF like m if and only if the

frequency shift is larger than the negative instantaneous frequency of m:

Δω > −φ̇m. (9)

If not, the phase φx will run backwards introducing new extrema without zero

crossings and prohibiting x to fall into the definition of an IMF. Even if the frequency

shift allows the convolved signal to fall into the definition of an IMF its mere

presence may easily cause mode mixing in a time signal that contains more than

one IMF, since the instantaneous frequency of one IMF can become larger/smaller

than its predecessor/successor.

4. A Representative Example

Figure 1 illustrates numerically the theoretical findings of the last section. There

we define an IMF as a chirped function with a linearly increasing frequency and

constant amplitude (see Figure 1 (1) to (3), blue dotted line) and a system response

function with a quadratic frequency-phase relation and decreasing amplitude (see

Figure 1 (1) to (3), red line). Naturally, the IMF is defined as a time series but

since the time-frequency relation is linear in this example, we can equally use the

abscissa for both, time and frequency. Then, the system response function is defined

as a spectra, but again, since the time-frequency relation is linear and unique,

the same reasoning applies for the abscissa for the system response function. The

convolution of both is computed via Equation 3 and displayed in Figure 1 (1) to

(3) as purple dashed line. Note here, that in contrast to IMF and system response

function the abscissa of the convolution represents the true time but the original

frequency of the IMF and not the shifted frequency due to the convolution. The first

plot illustrates how the varying amplitude of the system response function envelopes

the convolution because the unitary chirp constitutes nothing to the multiplication

of amplitudes in Equation 3. Plot number two and three represent the addition of

phases and frequency, respectively. And lastly, the frequency shift is plotted in the

fourth diagram in form of the ratio between the frequency shift and the frequency

of the IMF. The frequency shift in this example increases up to the value of the

original frequency, effectively doubling the observed frequency from before to after

the convolution.

5. Remarks on Deconvolution

For solving a non stationary deconvolution knowing only x and S, we would need

to solve Equation (7) for φm to recover the phase of m, ignoring the amplitudes

for now. Clearly, if Equation (8) is not equal to zero, solving Equation (7) will be

challenging and might only yield a solution via an iterated optimisation algorithm.
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Fig. 1: From top to bottom: (1) a Intrinsic Mode Function (unitary chirp), the

amplitude of a spectral system response and the convolution of IMF and SR, (2)

phase functions, (3) phase gradients and (4) the ratio between the frequency shift

and original frequency.

Furthermore, since x does not need to qualify for an IMF in theory, it may be

impossible to find the correct φx directly from a convolved time series x by means

of HHT.
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6. Conclusion

Convolution of non stationary time series with a general system response function

may alter the characteristic time scale of the time series and introduce a shift

in the instantaneous frequency depending on the characteristics of the convolved

system response function and the instantaneous frequency of the original signal.

This frequency shift renders any deconvolution attempt difficult as such that no

analytic solution exists but optimisation may be successful.
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Abstract Nonstationarity in electromagnetic data affects the computation of Fourier spectra and
therefore the traditional estimation of the magnetotelluric (MT) transfer functions (TF). We provide a TF
estimation scheme based on an emerging nonlinear, nonstationary time series analysis tool, called
empirical mode decomposition (EMD) and show that this technique can handle nonstationary effects
with which traditional methods encounter difficulties. In contrast to previous works that employ EMD for
MT data processing, we argue the advantages of a multivariate decomposition, highlight the possibility
to use instantaneous parameters, and define the homogenization of frequency discrepancies between
data channels. Our scheme uses the robust statistical estimation of transfer functions based on robust
principal component analysis and a robust iteratively reweighted least squares regression with a Huber
weight function. The scheme can be applied with and without aid of any number of available remote
reference stations. Uncertainties are estimated by iterating the complete robust regression, including the
robust weight computation, with a bootstrap routine. We apply our scheme to synthetic and real data
(Southern Africa) with and without nonstationary character and compare different processing techniques
to the one presented here. As a conclusion, nonstationary noise can heavily affect Fourier-based MT data
processing but the presented nonstationary approach is nonetheless able to extract the impedances.

1. Introduction

Natural electromagnetic (EM) field variations are caused by two major working mechanisms: lightning
activity at high frequencies (>8Hz) and magnetospheric currents excited by solar wind at low frequencies
(<8Hz) [e.g., Garcia and Jones, 2002; Viljanen, 2012]. Rakov and Uman [2007] summarize the electromag-
netic lightning discharge to three modes: (a) fast and transient leader-return stroke sequences, (b) slow
and quasi-stationary continuing currents, and (c) perturbations and surges on the continuing currents. The
longest lasting and most abundant in an electromagnetic time series measurements are the perturbed
continuing currents, which may be viewed as being stationary on a section with some dynamic length con-
fined by the recurrent transient strokes. Liu and Fujimoto [2011] conclude that the magnetospheric current
is nonlinearly driven by the dynamic solar wind but behaves in a static manner for high magnetospheric
pressure conditions. Both of these EM sources are naturally nonstationary, since both, lightning strokes and
magnetospheric pressure conditions, are very dynamic and thus strictly limit the duration of any stationary
electromagnetic signal.

Practitioners argue that the magnetotelluric (MT) signal is quasi-stationary (stationary on reasonably long
time windows) and, thus, justify the application of the windowed Fourier transform. In practice, this pro-
cedure works very well for data with high signal-to-noise ratios but frequently encounters problems in the
presence of electromagnetic noise (clearly what is called noise here would include nonstationary signal)
[cp. Junge, 1996]. A concise treatise of sophisticated MT signal processing based on the Fourier trans-
form is given by Chave [2012] in which nonstationarity is listed as one of the problems that affect transfer
function estimation.

For instance, if there would be a nonstationary electric discharge, the window (data segment) of this event
would not qualify as containing stationary data and such a window would have to be considered noise in a
windowed Fourier transform algorithm. Moreover, noise sources (which do not include nonstationary sig-
nal) can be of any kind and do not need to be quasi-stationary (e.g., imagine a road with irregularly passing
cars near the instruments) [cp. Adam et al., 1986]. All nonstationary noise sources (may also include non-
stationary signal) will affect the (windowed) Fourier transform in unpredictable ways just because the data
breaks the necessary assumption for the Fourier transform at least in the relevant windows. This is not an

NEUKIRCH AND GARCIA ©2014. American Geophysical Union. All Rights Reserved. 1
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issue when there are few affected windows, but it would become a problem when nonstationary effects
are frequent. A more concise treatment of electromagnetic noise and its characteristics is given by Szarka
[1987] and Junge [1996], where both acknowledge nonstationary noise sources and the aforementioned
difficulties. Therefore, we argue that even though the MT signal may behave sufficiently stationary, the con-
tained noise in the data clearly cannot always be assumed quasi-stationary as it would be required for the
application of the Fourier transform.

The isolation or separation of noise has been studied intensively since the introduction of the MT method
and the two major noise counteract breakthroughs date back to the 1980s. Gamble [1979] propose the use
of a remote station to apply the technique of instrumental variables [Reiersøl, 1941] in order to drastically
reduce bias by uncorrelated noise. Later, Jones and Jodicke [1984], Egbert and Booker [1986], and Chave and
Thomson [1987] advocate robust regression procedures for transfer function estimation to reduce the influ-
ence of unlikely but highly influential data points. Besides these two milestones, there has been much effort
in reducing noise influence further by either trying to estimate and remove the noise directly [e.g., Egbert,
1997; Oettinger et al., 2001] in the frequency domain or by filtering or extracting quiet data sections in the
time domain by visual inspection [Garcia et al., 1997] and in the time-frequency domain [e.g.,Weckmann et
al., 2005, and references therein]. The latter procedures are reported to be effective for particular data sets
but require intense user attention and good, detailed knowledge about the data. Moreover, noise iden-
tification, separation, and/or removal is not always successful, sometimes practitioners encounter data
from which it is seemingly impossible to extract reasonable transfer functions. This could be partly due to
the fact that EM data (the combination of signal and noise) are not as quasi-stationary as required for the
(windowed) Fourier transform. A very simplistic example would be the presence of a spike in the data, which
would compromise the particular data segment (or window) in which it is present. Clearly, the presence of
a moderate number of spikes is easy to counteract (through interpolation) [e.g., Jones et al., 1989; Junge,
1996], but we argue that the same principle applies to other nonstationary effects which might not be as
easily identified and mitigated.

Huang et al. [1998] introduce empirical mode decomposition (EMD) in the framework of the Hilbert-Huang
Transform (HHT), a novel time series analysis tool, which is data adaptive and suitable for nonlinear and non-
stationary data. The decomposition provides data modes (called intrinsic mode functions (IMFs)) which are
defined such that they can be represented as a single oscillation. Thus, Huang et al. [1998] argues that the
definition of the IMF allow for a meaningful computation of its instantaneous parameters, like amplitude,
phase, and frequency, with the Hilbert Transform. In practice, however, Huang et al. [2009] demonstrate
that the Hilbert Transform often is numerically unstable and advocate a more practical routine to obtain
the instantaneous parameters, which first separates amplitude and oscillation and then acquires the
instantaneous phase by direct quadrature.

EMD has been tried and applied in several fields, including geophysics and the magnetotelluric method
[Battista et al., 2007; Zhang et al., 2003; Cai et al., 2009; Chen and Jegen, 2008]. In particular, for MT, Cai et al.
[2009] present how EMD could be used to separate obvious noise from the signal. Later, Cai [2012] attempts
to substitute the Fourier transform in favor of HHT in MT processing, but the segmentation and averaging
of data in order to construct marginal spectra (comparable to Fourier spectra) are unnecessary and limit the
potential strength of EMD. In the same year, Chen et al. [2012] present an estimation scheme for the transfer
functions in MT data by using the instantaneous parameters (in contrast to marginal spectra). However, they
conclude that the implementation of remote reference processing and robust statistics can further improve
their approach, because both techniques are very often required to estimate transfer functions from regular
field data.

This work follows Chen et al. [2012] by using directly the instantaneous parameters obtained from EMD but
in contrast to their work; here the multivariate variant of EMD by Rehman and Mandic [2009] is discussed
and applied. Robust procedures are introduced to estimate instantaneous parameters, and a data selection
scheme is proposed to ensure independent data. For transfer function estimation, a robust regression is
advocated, which uses regressors defined by the two major robust principle components (robust principal
component analysis described by Hubert et al. [2009]) of all remote data sets or for single site processing, all
the available channels. Effectively, this procedure excludes the site channels from the regressors if remote
data are available in order to further reduce the risk of propagating correlated noise from between site chan-
nels into the principal components. Synthetic examples demonstrate the effect of nonstationarity of the

NEUKIRCH AND GARCIA ©2014. American Geophysical Union. All Rights Reserved. 2



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010494

Figure 1. EMT workflow chart to compute spectra.

source on traditional processing schemes. Semisynthetic signals, which consist of real signal and synthetic
(nonstationary) noise, present the effects due to nonstationary of noise in real data, and lastly, real-world
data sets verify the power of the algorithm for regular data and most notably, data in which nonstationary
noise is suspected. Additionally, a MATLAB routine is presented, which creates (non)stationary synthetic MT
data (or noise).

2. Outline of the EMTAlgorithm

Figure 1 outlines the workflow chart of the algorithm that we have developed to process MT data using the
EMD technique. We call the following scheme empirical mode decomposition-based magnetotelluric data
processing, in short EMT. Here we present the outline of the code, the following sections will describe each
of the steps thoroughly:

1. Decompose time series with multivariate empirical mode decomposition (MEMD). The MEMD method
is used to decompose the multivariate data of all available channels (station and remotes) into
oscillatory modes.

2. Compute instantaneous Parameters. Separate amplitude and oscillatory phase functions of the modes
with amplitude-phase demodulation according to Huang et al. [2009]. Generate the complex IMFs from
amplitude and oscillatory phase for each channel to permit the computation of the instantaneous phase
and the instantaneous frequency defined as time derivative of the phase.

3. Gather independent data points. We ensure linear independence of the data points by defining a time
scale of data dependency.

4. Organize data in frequency domain. The data points are collected in wide bins, typically 5 to 10 bins per
decade, ensuring enough estimates per decade and statistical stability of the impedance estimation for
each bin by exploiting the fact that the MT transfer functions vary slowly with frequency.

5. Estimate transfer functions. (i) Compute the two major robust principal components from data to use as
regressor, (ii) robust regression of each channel on principal components, and (iii) estimate confidence
intervals by means of bootstrapping the robust regression.

3. AlgorithmStep 1:MEMD

Huang et al. [1998] only present the application of their technique to univariate data, but MT data consist of
at least four data channels, which depend on each other. Using a univariate EMD, each signal is sifted and

NEUKIRCH AND GARCIA ©2014. American Geophysical Union. All Rights Reserved. 3
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Figure 2. (a–f ) The related modes for two channels of a short example signal from Southern Africa data are compared with respect to time scale consistency for
different EMD algorithms and added Gaussian noise variance. The presented mode is #8 out of 11 IMFs obtained from 1000 data points; however, note that the
actual mode number is irrelevant for the example being representative, since Gaussian noise is equally present in all modes. The dashed boxes emphasize where
there are major differences in the time scale between the two channels for the univariate case, and then, for the multivariate algorithm, the boxes highlight the
differences due to the added noise. Figure 2e shows that the time scale in the mode of Ey is affected by loosing one oscillation when adding 25% noise vari-
ance, and in Figure 2f the noise variance added to Ey even begins to affect the time scale in the modes of Hx . Percentage of noise refers to the noise variance for
Gaussian noise relative to the average signal amplitude.

Hilbert transformed independently, decreasing the likelihood that the signals remain dependent through-
out all modes due to the possible channel-independent noise characteristics. For example, if there would be
a high-frequency noise in one channel which is absent in the other three, the first IMF of the first channel
would contain that noise and start with the rest of the signal from mode two on, whereas the other chan-
nels would contain signal from mode one on, resulting in different time scales for all modes (Figure 2). In
this example, without any previous knowledge of this noise, the corresponding modes of different chan-
nels could never be used jointly for a linear least squares approach, since they do not contain the signal of
the same frequency range. For that reason Chen and Jegen [2008] and Cai [2012] suggest to calculate the
marginal spectra for each channel and use those in a similar manner as it would be done with the Fourier
spectra. This approach has been shown to work very similarly to the usual Fourier approach and to provide
novel noise control mechanism but does not take full advantage of the possibilities that EMD offers, namely,
the instantaneous parameters. Chen et al. [2012] circumvent this problem by only taking into account the
data points of a time instant when they find a match for the instantaneous frequency (IF) for each chan-
nel but in any mode. This procedure certainly solves the problem given in the simple example above, but
a procedure that only uses data points were the IF matches (arguably within a certain limit) might run into
problems as soon as the channels are more seriously distorted by noise, and hence, the frequency compu-
tation for one or more channels is rather poor, ultimately decreasing the number of valid data points. In this
section we discuss a multivariate decomposition algorithm that alleviates that problem by forcing all chan-
nels to decompose into correlated IMFs or in other words into IMFs of similar time scales, so that we can
attribute one common IF value to all channels.

Rehman and Mandic [2009] developed a scheme to analyze multivariate signals and compute IMFs of each
of the signal’s components such that they remain correlated in their time scale as much as possible. The
algorithm is summarized in the following:

NEUKIRCH AND GARCIA ©2014. American Geophysical Union. All Rights Reserved. 4
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1. Project the multivariate signal on an orthogonal n dimensional hypersphere (basis functions defined by
Hammersley sequences). The dimensions of the hypersphere represents different time scales much like
the orthogonal sine functions in the Fourier transform.

2. Locate the extrema of each projection (n projections in total).
3. Interpolate the multivariate signal by using the projection extrema locations for each dimension,
to obtain a distinct upper and lower envelopes of the multivariate signal for each dimension of
the hypersphere.

4. Average the means of upper and lower envelopes for each channel over all dimensions.
5. Subtract the average envelope mean from the data and repeat to convergence to obtain the
multivariate IMF.

MEMD provides a set of IMFs for each channel and retains the dependency in between those with respect
to a most similar time scale (frequency) in all channels. It is also worth noting that for a source in EM field
theory all components of the electric and magnetic field have the same frequencies present at all times,
meaning that if there is an electric source of 10 Hz, it will be accompanied by a magnetic field of 10 Hz.
Therefore, MEMD does not at all introduce additional assumptions on the field components but rather
ensures a fundamental property inherent in EM field theory for each IMF, and thus, it decomposes the MT
data into IMFs which can be conceived as independent data sets.

MEMD decomposes the data set into a number of IMFs, which have the information of instantaneous ampli-
tude, phase, and frequency at each time step, and each IMF is a time series with a dynamic and locally
narrow banded IF [Flandrin and Rilling, 2004]. Each IMF is interchannel dependent, and each time step ful-
fills the MT equation for its IF in the same way as narrow frequency-banded time series do [Berdichevsky and
Bezruk, 1973; Chen et al., 2012; Neukirch and Garcia, 2013]. However, real data will always contain noise in
all channels, and the effect of the noise on the IMFs will largely depend on the (timely) local signal-to-noise
ratio and can easily span from subtle effects (e.g., some noise is present in one of many clean channels) to
affecting the amplitude in (originally) clean channels (e.g., half the channels are corrupted by coherent noise
and affect the clean ones) to even introduce false information in all channels (e.g., severe noise introduces
new extrema). As an example for noise effects, Figures 2c to 2f illustrate data with added Gaussian noise to a
single channel.

This effect is conceptually comparable to how noise leaks in an ordinary Fourier transform where the
signal-to-noise ratio distorts the true (noise-free) spectra, but in the EMD case the effect is local and only
affects the signal at some distance around the noise occurrence, whereas the Fourier spectrum is always
affected in the whole segment, since it is formulated as an integral.

The Fourier transform is a univariate algorithm, and noise in different channels cannot affect each other. Fur-
ther, obviously, nonstationary effects can be reduced if the time series are broken in windows (windowed
FFT). However, any nonstationary noise in a data window will affect the entire Fourier spectrum of that win-
dow, and often, robust procedures will drop exactly those spectra entirely regardless whether or not there
shorter good data sections in that window. For an MEMD-based algorithm, the decision of excluding spec-
tral information can be made for each individual time step instead of entire windows, if desired. However,
care has to be taken, because even though spectral estimates are delivered at each time step, the real-time
frequency resolution is much lower and depends largely on the extrema in the corresponding IMF, but let us
defer discussion on this matter to section 5.

The most important point, which can be observed in Figure 2, is that channels influence each other already
during the MEMD. Apparently, noise spreads throughout channels and clean channels may be affected
by noise, becoming biased. This noise spreading across channels occurs because the algorithm does not
assume that one of the channels can be affected by noise while the others are not; it simply finds the best
correlated signal for all modes and accounts the noise as a distortion of the total electromagnetic wave field.
It becomes clear that this multivariate decomposition excels with the number of provided clean channels,
which aid stabilizing the mode sifting and reduce noise in noisy channels by spreading it over all channels.
For this reason the mode of the Ey component in Figures 2e and 2f appears to contain less noise than one
would expect from adding 25% and 100% variances of Gaussian noise, respectively. Naturally, it seems unde-
sirable to spread noise from one channel to the others (which could be entirely avoided with a univariate
EMD algorithm as Chen et al. [2012] propose), because we should preferably extract the best undistorted
signal possible from our data. But since MT is an intrinsically multivariate problem, we always need the
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information of all channels (of the site of interest) for the final TF estimation, and the more data points we
loose due to large deviations (in, for instance, the IF, which is a data selection criterion by Chen et al. [2012])
in only one heavily distorted channel, the more difficult it will be to find an accurate transfer function. Using
MEMD instead of EMD and enforcing a similar time scale on all channels robustifies the decomposition pro-
cedure and yields more spectral data points which can be evaluated in the regression step at the cost of
spreading the multivariate noise and thus increasing noise in some channels.

Usually, a good portion of the noise is not correlated between the channels and therefore affects the chan-
nels unequally, resulting in instantaneous parameters that depart from their correct values depending on
the noise. Although this is certainly not appreciated for parameters like amplitude and phase, it does come
in handy for the frequency computation, which we assume to be constant between the channels. Any
deviation of the IF between channels must be due to any of the following:

1. The modes do not fulfill sufficiently the definition of IMFs (having a locally zero mean).
2. The signal (channel) has been contaminated by noise (heavier contamination will result in
larger deviations).

3. The frequency has been altered by nonstationary convolution with the system response of the receiver.

The first problem is a very common issue for the first modes in EMD, since the data are always sampled on
some rate and the location of the extrema in the data depends much on the sampling rate (in a real nonsta-
tionary situation, the extrema can be anywhere in between the measurement directly before and directly
after the recorded extrema). Routinely applied low-pass filters may alleviate much of this problem, but the
exact location of the true extrema is the most crucial information for calculating the instantaneous parame-
ter from IMFs, and this is usually not well defined for frequencies close to the sampling rate. However, in our
experience the uncertainty on the location of the extrema only disperses the instantaneous parameters and
does not usually introduce bias; the larger scatter in the regression is not problematic due to the larger num-
ber of data points for the higher frequencies in a data set. The second point is almost always an issue in MT,
and it is broadband, meaning it is found in all frequency ranges and thus all IMFs. But since we know that the
frequencies between the channels should be equal, we could use deviations between them as a selective
quality marker or down weights in the later regression (similar to Chen et al. [2012]); however, we have not
tested this idea in the present work. The last point is a rather new conclusion derived from the nonstationary
convolution theorem in Neukirch and Garcia [2013] and will be discussed thoroughly in another work. The
problem only occurs for nonstationary data convolved with a system response that varies over frequency,
just like the instrument system responses for MT equipment usually do. It is not present during stationary
sections and therefore a minor issue for most MT data but fairly complicated to analyze; therefore, it is out of
the scope of this article. In any case, these disturbances are listed for sake of completeness as they will also
affect amplitude and phase and thus can introduce undesired bias to the transfer function estimation if not
removed from the data or being accounted for.

Before we continue with the subject of IF, we need to focus on the recovery of the amplitude and phase from
the IMFs in the following section.

4. AlgorithmStep 2: Computing Instantaneous Parameters

Huang et al. [2009] thoroughly discuss the computation of instantaneous parameters from an IMF, and Chen
et al. [2012] continue the discussion with respect to an application in MT. We mostly follow their suggested
instructions, since the IMFs of MEMD are methodically no different from the ones obtained from univariate
EMD. Essentially, Huang et al. [2009] advise to separate amplitude and oscillatory phase with a procedure
called amplitude-phase demodulation from the IMF. Then the instantaneous phase can be computed by
direct quadrature from the separated, oscillatory phase function. In contrast to the original idea [Huang et
al., 1998] of using the Hilbert transform to obtain the phase, the direct quadrature method does not guaran-
tee a strict analytic signal, but the routine performs well in practice and estimates the correct phase of the
underlying signal more robust than the Hilbert transform.

Focusing on the differences between this work and previous studies [Huang et al., 2009; Chen et al., 2012],
examples of instantaneous parameters are given in Figure 3, which feature two modes of a short section of
a real data set from Southern Africa. Figures 3d and 3e display the instantaneous amplitude (IA), Figures 3f
and 3g the instantaneous phase (IP), and Figures 3h and 3i the instantaneous frequency (IF).
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Figure 3. (a) The sum of the two modes in the spirit of comparability. Examples of instantaneous parameters are displayed. (b, d, f, h, and j) High-frequency mode
(IMF #2). (c, e, g, i, and k) Low-frequency mode (IMF #5). Both modes are extracted from the same data (site 072).
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By definition, the direct quadrature method divides by very small numbers at the extrema of the phase mod-
ulation function leading to numerical instability at those points, which additionally amplifies uncertainties
and noise. Since we apply the direct quadrature method [Huang et al., 2009; Chen et al., 2012], the IP usu-
ally contains small numerical errors. Especially, these numerical instabilities have a great impact on the time
derivation of the phase function and are depicted by simple poles in the IF (see Figures 3h and 3i).

The poles are of first order and almost cancel each other out when summed over, which is why the phase
function itself still looks smooth and the mean average over a sufficiently long time range is hardly affected.
We found that a seven-point median average filter applied on the phase function before differentiating is a
sufficient counteract and does not restrict the signal much more than the cubic spline interpolation already
did during the sifting procedure but produces a much more stable IF (cp. Figures 3j and 3k).

In addition to the numerical instability associated with the direct quadrature method, the particular noise in
each channel may cause differences in the IF between channels, where we would expect an electromagnetic
field to have the very same frequency in all of its components (electric field and magnetic field) at a given
time. However, we can use this fact to find a likely estimate for the common IF for all channel by using its
mean or median average. The IF average is a physical meaningful representation of the true frequency of
the electromagnetic signal (which is represented by all channels together) for a given time andmode. Heavy
outliers from that mean average can be counteracted by using the median average and may be used to
identify problematic data sections and can contribute to data quality control as mentioned in the section
above. We found the median average to provide us with better estimates of the IF because of the frequent
instabilities produced by the direct quadrature. These large irregularities in the IF usually do not occur in all
channels at the same time, because of the impedance-related phase shift between channels (refer to Huang
et al. [2009] for a discussion on the nature of these numerical instabilities), but occur very frequently, and
thus, the median average compensates this problem, whereas the mean average would be drawn toward
the outlier regularly.

All three instantaneous parameters: IA, IP, IF, and time form data quadruples and fully describe the original
data. The IA and IP can be combined to form the representation of the complex spectra for a given time
and frequency. Neukirch and Garcia [2013] lay out the fundamentals for signal system convolution in a HHT
context and provide proof that the convolution of complex, nonstationary IMFs with a system response in
time domain can be reformulated as the multiplication of the complex, nonstationary IMFs with the system
response function in the frequency domain. Therefore, when processing MT time series we can use the com-
plex IMFs in the very same way as a Fourier spectrum and carry out a statistical analysis in order to find the
spectral physical relation between the channels, known as transfer functions.

For the sake of meaningful statistics with linear regression, we should try to ensure (1) that the data errors
are independent (estimation accuracy) and (2) that the errors are identically distributed (accuracy and pre-
cision of estimation). Starting with the second, since we explicitly allow for nonstationarity in our scheme,
it is clear that our spectral data cannot be assumed to be drawn from a single distribution. The parameters
of any distribution from which the data might start with will likely change during time; this is exactly what
nonstationarity means. However, the data decomposed by EMD are represented by oscillating modes which
are bound to their definition and therefore always are locally zero mean functions. Thus, the definition of the
IMFs ensures that the center (location) of the data distribution is zero for whatever time-varying distribu-
tion it follows. Liu [1988] discussed the importance of data being identically and independently distributed
(IID) in statistical system analysis with nonparametric methods and came to the conclusion that when the
bootstrap algorithm is used, the requirement of the data being IID can be somewhat relaxed, such that it is
sufficient to ensure data point independency and that the underlying distributions of the data have a com-
mon location. They argue that the nonparametric nature of the bootstrap algorithm includes a robustness
toward dissimilar distributions in the data as long as the locations of the distributions are very similar (in our
case even equal).

The requirement that the data points are independent is more involved and has not yet been discussed in
literature for an EMD setting; therefore, we dedicate the following section to that issue, then we will return
to the discussion of the statistical analysis.
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5. AlgorithmStep 3: Independent Data Points

Data independency is an important criterion for our statistical analysis, which if left unconsidered may
bias accuracy and/or precision of the methods we use in this work. Besides, the understanding of the
dependency of data points allows to draw inference about the time-frequency resolution.

In our case we need to understand how data points interact and depend on each other in the total frame-
work of HHT. Both IA and IP derive from an analysis of the inner structure of the corresponding IMF. Each
IMF is constructed by a loose sifting procedure based on the signal’s extrema and guided by the required
properties based on the IMF definition, a highly data adaptive procedure. The subsequent amplitude-phase
demodulation and the computation of the complex IMF do not rely any more on any data characteristics.
For the demodulation the amplitude function and oscillatory phase function are already defined through
the IMF definition and it only strips the two apparently different signals apart. Then, the direct quadrature
uses the oscillatory phase function to recover locally the argument of the assumedly complex oscillation.
The demodulation procedure is comparable to calculating the argument and absolute value of a complex
number, which does not change or add any data dependencies but only changes the way data are described
(via the complex IMF which does not introduce information to the data). Therefore, we focus on the mode
decomposition itself, when looking for dependencies in the data.

First of all, keep in mind that per definition, all IMFs of a signal are theoretically locally orthogonal, which
implies that one mode to the next is linearly independent and uncorrelated. However, independency is by
no means guaranteed along a mode. Since the IMFs are solely defined by a subset of points of the entire
signal, namely, the extrema, the IMF itself cannot have more degrees of freedom than number of extrema.
All data points of an IMF between two extrema usually share a third-order interpolation polynomial, a
cubic spline, which defines these data points based on the same set of extrema. Therefore, all these points
between the same two extrema are dependent, whereas points that base on different sets of extrema are
independent (even if just one extremum is different). Hence, it is important to only take into account one
single data value for each span between two extrema to impose independency between the final data
points. Naturally, the lack of independency in the definition of an IMF compromises greatly the time domain
resolution suggested by IMFs but indicates that HHT does not provide a higher spectral resolution than
what would be expected by the observed frequency (thus, we still need a complete oscillation to meaning-
ful describe spectral data). Furthermore, since the cubic spline requires the closest four extrema at each data
point, the distance of influence of every extrema is about two full oscillations and represents some measure
of time-frequency resolution.

Since only one interextrema data point is independent, we have to pick the one which represents the entire
range. Each data point should be equally valid since they are dependent. However, noise characteristics
can make some points be a poorer choice than others (be reminded on the numeric instabilities due to the
direct quadrature discussed in the section above). For the moment we have not designed a selection crite-
rion based on data quality, so we simply take one point per half oscillation defined by the location of the
extrema of the function:

P = sin𝜙 cos𝜙. (1)

Since MT processing is multivariate, we suggest to use (1) with the integral of the common IF 𝜔c between
the channels; thus,

𝜙(t) = ∫
t

−∞
𝜔c(t′)dt′. (2)

This integral is basically the inverse of the time derivative of the phase used to obtain the IF in the first
place, only that now the integrand is the common IF, which results in some sort of common phase for the
EM data in (2), and provides an oscillatory function in (1) according to the intrinsic oscillation of the EM
data. The choice of this particular function is mainly because of its fairly random selection, if we would
choose data points with certain properties (e.g., low/high amplitudes), we could easily introduce bias to the
transfer functions, which is not the case for this general function. However, a more careful or sophisticated
selection criterion (like a weighted average) for this point could help to reduce numeric or perhaps, even
electromagnetic noise and could be discussed elsewhere.
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6. AlgorithmStep 4: Frequency Sorting

As noted above, EMD results in a distinct frequency value for each channel. The average of those values
for a given time and mode over all channels is a physical meaningful but biased representation of the true
frequency of the electromagnetic signal (which is represented by all channels together). The bias should
be lower for data points which have a similar frequency value and may even be considered for data quality
control as we stated before. Keeping in mind that we use a common frequency function for all channels
defined by the median average between them, in the following we will assume the median frequency as the
common frequency between the data channels.

Remember that the instantaneous frequency (IF) is the time derivative of the phase of the complex IMF and
does not yield equidistant (as, for example, the Fourier transform) but rather continuous frequency values
which vary with time and thus along a mode. For this reason, it is unlikely that we can find two data points
(each with two electrical (e) and two magnetic (h) components) with the very exact frequency value (𝜔0),
but this would be necessary in order to find a unique estimate for the transfer function tensor (Z), which is
only defined at a constant frequency:(

ex(𝜔0, t)
ey(𝜔0, t)

)
=
(
Zxx(𝜔0) Zxy(𝜔0)
Zyx(𝜔0) Zyy(𝜔0)

)
⋅
(
hx(𝜔0, t)
hy(𝜔0, t)

)
. (3)

Note that this equation deviates from the traditional form as it includes time variance for the electro-
magnetic fields, since the complex IMFs of the data channels are still time series. A similar form of this
time variant formula has been introduced by Berdichevsky and Bezruk [1973] and recycled by Chen et al.
[2012], until this form has been proofed for the EMD context by Neukirch and Garcia [2013]. However, even
though (3) suggests that the MT impedance equation is valid at each time instant for the IMFs of the elec-
tromagnetic field, the impedance itself cannot be solved for unless there are at least two independent
measurements for the same frequency value. But since the electrical impedance only changes smoothly
with frequency [Cagniard, 1953], we can group similar frequency values to increase the amount of mea-
surements available around a certain center frequency. For this procedure, we select the independent data
points based on (1) and arrange them according to the common IF, omitting time dependency of the data
by considering the time axis rather as index for measurements than physical time. The data reorganization
in these frequency bins follows the proposed method by Chen et al. [2012], only that we do not allow IMF
mixture for the reasons discussed in section 3.

Following this reorganization, we form an overdetermined system of equations that we can solve for the
transfer function tensor at distinct frequency values. The estimation procedure is a bootstrapped, robust
principal component regression and will be discussed in detail in the following section.

7. AlgorithmStep 5: Robust Principal Component Regression

Egbert [1997] shows that MT sources are well described by two electromagnetic field polarizations. Practi-
cally, this means that the entire data vector space of all channels in a data set can be represented by the
combination of two polarization vectors. Theoretically, the high-dimensional data (electric, magnetic, and
all remote channels) can be described by a fundamental two-dimensional polarization space that contains
all the variance of the data. Such a reduction of dimensionality of data vectors can be achieved by a (robust)
principal component analysis (PCA), which provides the inherent components of the data vector, ordered
by its eigenvalues. The two most dominant principal components (PCs) are the magnetotelluric source vec-
tors since they should be present in all channels and contribute most to the variance of the data [cf. Egbert,
1997]. However, in practice, MT data are often contaminated by noise and source field effects, which limit
this procedure [Egbert, 1997, 2002; Smirnov and Egbert, 2012] such that there are more than two dominant
eigenvalues which contain a mixture of source polarization vectors and correlated noise. In order to sep-
arate the dominant principal components in such cases, a much more sophisticated multisite analysis is
required and described by Smirnov and Egbert [2012], which should be followed for data sets with coher-
ent noise contamination; however, the discussion or incorporation of such an analysis is beyond the scope
of this work, although it could be implemented in our algorithm if desired. For this work, we assume that
the first two principal components are a sufficiently good estimate of the MT source polarization vectors,
but we restrict the data used for the PCA to remote channels only, if at least two are available. If not, the site
channels can be used as usual.
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A robust principal component analysis tool is provided by Hubert [2003] within the frame of the free LIBrary
for Robust Analysis (LIBRA) package [Verboven, 2005] for MATLAB and referred to as robpca.m. Smirnov
and Egbert [2012] compare this code for consideration of its usage in the aforementioned multisite analysis
of MT data and acknowledge its power but prefer a self-made solution for its flexibility. Since we do not
attempt a multisite data analysis and assume two principal components to be sufficient, the algorithm from
LIBRA appears the most reasonable solution at this stage of our algorithm.

After the computation of the two dominant PCs (say r = (r1, r2)), we formulate four (or five if the vertical
magnetic field is provided) two-variate regression problems in order to separately deal with the noise dis-
tributions in each data channel. Assume the north-south electric field e1, the east-west electric field e2, the
north-south magnetic field h1, the east-west magnetic field h2, and, if available, the vertical magnetic field
h3 as data channels. For each data channel x, the regression writes in a matrix notation:

x = r ⋅ Rx + 𝜎x , Z = inv(Rh1 , Rh2 ) ⋅ (Re1 , Re2 ) and T = inv(Rh1 , Rh2 ) ⋅ (Rh3 ). (4)

Rx is a row vector and denotes the regression parameter for channel x on the PCs r; 𝜎x represents the noise
in x; Z is the electric impedance according to (3); and T is the tipper function, which is the magnetic trans-
fer function between the horizontal and vertical magnetic fields. The inv( ) operator produces the inverse
matrix, and the dot operator denotes the matrix multiplication. The formulation of the regression is slightly
different from the one that is usually applied in MT but not as much as it seems at first. Actually, for an ordi-
nary least squares solution for, say Z, this formulation yields exactly (3), which is the original formulation if
time only indicates measurements. The idea behind this alternative formulation is that the regressors r result
from a robust statistical procedure, which describe a part of the variance in the data and thus do not contain
outliers that deviate from the dominant inherent information provided by the data. Originally, the regression
is carried out on data channels directly, which first, contain highly influential outliers as discussed by Chave
and Thomson [2004] and Chave [2012] and second, may contain correlated noise. In our solution, influential
outliers in the regressor are unlikely unless they represent a repeated feature in most channels, which would
only be the case for correlated noise, but if correlated noise would be present, only a careful and sophisti-
cated data analysis (e.g., a multisite analysis [Smirnov and Egbert, 2012] or noise identification [Weckmann et
al., 2005]) can mitigate the influence of this kind of noise. In any way, such noise would be removed, if possi-
ble, before any regression attempt and thus again validates the assumption that such noise is not present in
the regressors.

We divide the total regression problem in substeps to separate the expected noise from all channels (com-
pare (4)) in order to avoid a direct effect of coherent noise between channels. The regressions themselves
are carried out robustly with an iteratively reweighted Huber weight function by calling the MATLAB intrinsic
function robustfit.m, only specifying the desired weight function. Other weight functions are possible
(refer to the MATLAB documentation for a discussion on the options), and we experimented with each one,
concluding that the results obtained with the Huber weight function were most accurate and precise. The
robust regression only accounts for outliers in the data channels and not for any possible outlier in the PCs,
which have been computed robustly in the PCA and have disregarded bad influence points already.

EMT bootstraps the entire robust regression step in order to compute a data-dependent distribution of
impedance values and estimate the data intrinsic errors of the procedure. Furthermore, as discussed before,
the bootstrap operation also relaxes the requirement for statistical regressions for which data should be
identically distributed and therefore reflect more reliably the estimates in case of nonstationary data. Empir-
ically, we found 1000 iterations a sufficient trade-off between accuracy and computation time to estimate
the uncertainty of our results.

8. Example Data Sets

In this section, we compare the processing scheme outlined above with the state-of-the-art process-
ing algorithms Bounded Influence Remote Reference Processing (BIRRP) by Chave and Thomson [2004],
EMTF by Egbert [1997], and the Long period Intelligent Magnetotelluric System (LIMS) data acquisition
processing algorithm by Jones and Jodicke [1984]. The four algorithms are applied to a number of syn-
thetic, half synthetic/half real and real data sets. We start with two synthetic data sets, one based on
white noise as source signal and the other on a purely nonstationary waveform. These two examples
will shed light on the differences between a quasi-stationary and nonstationary processing scheme.
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Figure 4. The EMT algorithm is compared with BIRRP for synthetic stationary data based on spectral white noise as
source signal. The assumed homogenous impedance model is defined as Zxy = 103 ⋅ exp(i

π
4
) and Zyx = 3 ⋅ 103 ⋅ exp(−i

π
4
)

and is plotted as a black line.

Then we present two examples of real-world data (Southern Africa) [Evans et al., 2011] to compare
performance of the processing algorithms on a natural problem. In order to illustrate the effect of non-
stationary disturbances in the data, we add the electric fields from the second synthetic test to the
electric fields of fairly good real data, which effectively introduces nonstationary noise in the electric
fields but leaves the magnetic fields completely unaffected. Lastly, we process one real data set in which
nonstationary noise sources are known to interfere and demonstrate the supremacy of EMT in such a
situation. All plots contain the data and estimated confidence intervals for 95% of the data (doubled
standard deviation).

8.1. Synthetic Data Based on White Noise

Using an auxiliary program to create MT synthetic data (see Appendix A), in this first example, we prepared
two complex remote spectra s = (sx , sy) from independent white noise:

sx = nw,realx + i ⋅ nw,imagx and sy = nw,realy + i ⋅ nw,imagy .

The number of frequencies is Nf = 12, 500 with a step size of df = 0.25 Hz to obtain a time series of 25, 000
samples with a sampling rate of dt = 4 s. The data E = (Ex , Ey) and H = (Hx ,Hy) are computed in the
frequency domain from s = (sx , sy) by

E = s ⋅ Z
1
2 and H = s ⋅ inv(Z

1
2 ) (5)

with S = M
1
2 as the principal square root S of matrixM such that S ⋅ S = M in order to fulfill E = H ⋅ Z with

the model

Z =
(

0 3000
1000 0

)
∗ exp

(
i

[
0 −π

4π
4
−π

])
.

Note that here the asterisk operator denotes the element wise multiplication of the matrices, and exp()
refers to the exponential of the matrix, element by element. The results of processing this synthetic data
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Figure 5. The chirp signal shown here is used as nonstationary synthetic signal. The north-south magnetic field com-
ponent is illustrated with its nonstationary amplitude and frequency. Note that the frequency of the computed signal
ranges from 1 to 30 mHz, and therefore, if data are processed outside of that range, it can only contain numerical noise.

are displayed in Figure 4 for the processing algorithms BIRRP and EMT. Both algorithms resemble the model
fairly well, but BIRRP has the edge. We explain this by the fact that this synthetic source does not have any
waveform, and therefore, the (M)EMD algorithm struggles to find correlated modes which it can relate to
each other. On the other hand, BIRRP uses the spectral characteristics of the time series which are, per source
definition, very well defined.

8.2. Synthetic Data Based on a Chirp

In order to clearly demonstrate the difference of the processing schemes, the synthetic data discussed
here are completely nonstationary. Again, using SynDat (Appendix A), we define each of two orthogonal

Figure 6. The EMT algorithm is compared with BIRRP for synthetic nonstationary data based on a chirp signal as shown
in Figure 5. The assumed homogeneous impedance model is defined as Zxy = 103⋅exp(i

π
4
) and Zyx = 3⋅103⋅exp(−i

π
4
) and

is plotted as a black line. Note that the frequency of the computed signal ranges from 1 to 30 mHz, and therefore, the
processed data outside that range can only contain noise; however, inside the range, only EMT is successful in recovering
the model.
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Figure 7. Good example data from Southern Africa (site 072). The LIMS results are the original results from the Southern
African Magnetotelluric Experiment (SAMTEX) [Evans et al., 2011].

magnetic source fields s = (sx , sy) by a logarithmic frequency oscillation f and a logarithmic amplitude
oscillation a:

s = ℜ𝔢
(
a ⋅ exp

(
i ∫ fdt

))
log(f ) = A + B cos(Ff t)
log(a) = C + D sin(Fat)).

(6)

The parameters A, B, C = (Cx ,Cy) and D = (Dx ,Dy) define frequency, and amplitude range and the param-
eters Ff and Fa control the degree of nonstationarity by the oscillation rate of f and a, respectively. The time
axis t is sampled at a rate of 4 s for a total length of 100, 000 s or 25, 000 samples. Figure 5 displays the mag-
netic north-south component with its respective amplitude and frequency function. By design the signal is a
locally zero mean function to ensure that it complies with the definition of the IMFs, even without the need
to apply (M)EMD. As in the last example, the impedance Z is assumed to be homogenous with

Z =
(

10 3000
1000 30

)
∗ exp

(
i

[
π
4
−π
4π

4
−π
4

])
.

The electric and magnetic fields are computed according to (5). Figure 6 compares the results of processing
the electric and magnetic data with BIRRP and EMT. Both algorithms are called with their respective default
parameters to compare the results assuming no a priori knowledge about the data. EMT successfully recov-
ers the model in the frequency range of the computed data, but BIRRP fails processing the data, which can
only be addressed to the strict nonstationarity of the signal and exemplifies that Fourier transform based
methods are not suitable for strictly nonstationary signals, even those that apply the windowed Fourier
transform. However, this example is not a fair comparison as this kind of signal is not natural and treatises
of the physics of typical MT sources [see Rakov and Uman, 2007; Liu and Fujimoto, 2011] suggest that the
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Figure 8. Fair example data from Southern Africa (site 027). The LIMS results are the original results from the SAMTEX
[Evans et al., 2011].

sources are not as nonstationary as this example for an extended period of time and instead can be treated
as quasi-stationary. This example serves only illustrative purposes and is designed to highlight the strength
of EMD, to expose the weakness of the Fourier methods and most of all, to demonstrate clearly how non-
stationarity appears in the results of Fourier methods. In the following section, we present more practical
examples using real data.

8.3. Fairly Good Real Data From Southern Africa

Now let us compare the algorithms using three real data sets from Southern Africa which correspond to
the sites 027 and 072 with site 045 as remote reference, 042 with 027 as remote reference for long-period
data, and 043 as remote reference for the short-period data [Evans et al., 2011]. The first two time series have
approximately 500, 000 samples on a sampling rate of 5 s, and we only consider the horizontal magnetic
fields as remote reference, since they have proven to be sufficiently efficient in removing coherent noise
from the local fields. The last example has up to 2 million samples for the high frequencies at 2560 Hz and
around 500, 000 samples on a sampling rate of 5 s. The high-frequency data only have one remote reference
site, and for the long periods, we selected the best suitable one.

The first example (site 072) is considered good for MT processing purposes when processed with the avail-
able remote magnetic channels (of site 045). Figure 7 displays the processing results for the LIMS processing
algorithm (original results) and EMT, and both algorithms agree very well.

The second example (site 027) contains somewhat more noise even when processed with the available
remote magnetic channels (site 045). Figure 8 compares the LIMS processing algorithm (original results)
with EMT and shows that there are only marginal differences. Both algorithms agree well with the phase, but
there is a slight difference in the amplitudes. Concluding this example, EMT appears to obtain similar results
but the smaller confidence intervals are less conservative or suggest higher precision.
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Figure 9. Southern Africa data (site 072) jammed with synthetic nonstationary electric noise. (a) The electric field chan-
nel with and without the added noise to illustrate the impact of the noise compared to the data. (b) Section of the added
noise to emphasize that both amplitude and frequency contents of this noise is clearly nonstationary.

8.4. Real Data JammedWith Synthetic Nonstationary Noise

As a semisynthetic test, we combine the good real data set (site 072) from the previous section with syn-
thetic, nonstationary noise. The goal of this test is to learn how easily a quasi-stationary source can be
compromised by nonstationary noise and to test if our algorithm is able to treat the situation correctly. We
consider the nonstationary noise to be present in the electric fields only and leave the magnetic and remote
channels completely unaffected. This way we can see if the computation of the spectra via Fourier transform
fails or succeeds, since stationary noise in the electric channels could be cleaned by the unaffected magnetic
and/or remote reference channels by the remote-referencing technique.

As data, we use the data set shown in Figure 7 and add independent, purely nonstationary noise as defined
in (6) to each electric field channel:

(ex, with noise, ey, with noise) = (ex , ey) + (s1, s2).

Then, we try to recover the original impedance (Figure 7) by processing the altered data with BIRRP and EMT
to study the effects of the added, nonstationary noise. The test is performed thrice, first with a certain noise
level, then again with the noise doubled and quadrupled. Figure 9a displays the electrical field north-south
component with and without the added noise for all three tests and as an example; a section of the added
noise is illustrated in Figure 9b with its parameters amplitude and frequency. The spectral range of the noise
is set between 1.7mHz and 19mHz, respectively 52 s and 610 s, so we expect to see the biggest impact on
the data processing results in that range.

Figures 10 to 12 display the estimated impedances with the increasing impact of the nonstationary noise.
Where in Figure 10 the noise only raises the confidence limits for BIRRP, it camouflages the estimates in their
entirety for larger noise amplitudes in Figures 11 and 12 so much that the impedance cannot be retrieved.
On the other hand, EMT is barely affected by the lowest and medium amplitude noises and still provides
interpretable results with the highest noise amplitude.
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Figure 10. Southern Africa data (site 072) jammed with synthetic, nonstationary electric noise of low amplitude.

Figure 11. Southern Africa data (site 072) jammed with synthetic, nonstationary electric noise of medium amplitude.
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Figure 12. Southern Africa data (site 072) jammed with synthetic, nonstationary electric noise of high amplitude.

8.5. Problematic Real Data From Southern Africa

This last example is a real, broadband data set and has been acquired in a region where DC trains operate
and active mining takes place. Evans et al. [2011] report problems in processing the data in particular due to
these noise sources.

We focus on site 042 with 027 as reference for long-period measurements (> 20 s) and with 043 as refer-
ence for short-period data (<20 s). The long-period data have been collected with LIMS instruments and the
short-period data were measured by band 5 of Phoenix Systems’ instruments. The site contains a tremen-
dous amount of noise which makes interpretation difficult from about 3 s in Figure 13. The data of this site
were originally processed with EMTF [Egbert, 1997] for short periods (BBMT) and with the LIMS processing
algorithm [Jones and Jodicke, 1984] for the long-period data (long-period magnetotelluric (LMT)). The ampli-
tude results from LMT have been scaled by the acquisition team to account for static shift according to the
interpretation of the BBMT data, whereby the results from EMT are unchanged, since it does not suggest
that the measurements of the long-period data have been affected notably by static shift.

We use originally published data for this plot, because we argue that (in time of original publication) the
interpretation of the data (that it is affected by static shift) was wrong due to some noise effect. The EMT
result is not shifted, because it does not lead to the conclusion that the LMT data require a shift, which exem-
plifies the long-ranging effect of noise beyond data processing and highlights the strength of the algorithm
in this situation.

Besides the apparent noise between 3 s and 20 s, the phase estimations between 1 s and 100 s obtained
from EMT are consistently 5◦ to 10◦ lower than the results estimated by the other algorithms, which we can-
not explain at this point. Two possible reasons for this discrepancy could be due to nonstationary spectral
leakage in the other algorithms (compare processing of a purely nonstationary data set in Figure 6) and due
to strong correlated noise distorting significantly the first two dominant principal components.
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Figure 13. Site 042 contains a tremendous amount of noise which complicates interpretation of periods of 3 s and more.
The EMTF [Egbert, 1997] (BBMT) and the LIMS [Jones and Jodicke, 1984] (LMT) results are the original results from the
SAMTEX [Evans et al., 2011]. The merge of BBMT and LMT responses was performed manually, and as it still is common
practice, the LMT apparent resistivity were shifted to match the BBMT apparent resistivity at the overlapping periods.

9. Conclusion

In the course of this work, we outlined a robust magnetotelluric data processing scheme purely based on
nonstationary methods and showed that its results compare to state-of-the-art algorithms. In contrast to
other groups, our algorithm directly uses the instantaneous parameters of the measured multivariate time
series and therefore naturally handles nonstationary sources. In theory, our scheme is less apt to introduce
bias from spectral leakage due to this kind of noise and our synthetic and real data examples support this.

The algorithm carefully incorporates the most general and important data quality control measures like
remote referencing and robust statistics as countermeasures for uncorrelated noise between occupied sites
and control of highly influential but statistically unlikely data points, respectively.

This new methodology operates in a time-frequency domain and, therefore, potentially enables new data
quality control measures like controlling instantaneous changes in the parameters amplitude, phase, and
frequency, which could be investigated in a future work.

The function to select the independent data samples assures that the correct amount of data is selected, but
the function of choice is somewhat arbitrary. On one hand it can be seen as an advantage that the samples
are drawn arbitrary or random, but on the other hand alternative ways should be investigated for assessing
their performance.

We demonstrated on synthetic and real data that a nonstationary approach in MT processing can be fruit-
ful. The synthetic, nonstationary source in this work is specifically designed to disturb the Fourier transform
and to break its assumptions; however, the results provide an insight in how bad real, nonstationary noise
can affect MT measurements and encourage to verify the findings on more real-world data sets that are sus-
pected to contain, in particular, nonstationary noise, e.g., data that are acquired close to train lines, mining
activity, or electric fences.
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Lastly, we present one such example of real data and find that at the time of original data processing, even
the interpretation of the data has been affected by nonstationary noise, because the long-period data have
been corrected unnecessarily for static shift by the original processing team.

We encourage to reassess more data sets that have been difficult to process in the past in order to inves-
tigate for nonstationary effects. However, we wish to stress that at this moment, our proposed algorithm
is realized in MATLAB and runs rather slow (about 1 day for 10 million data points) on desktop computers.
Most of the time, it delivers similar results compared to much faster and more efficient processing algo-
rithms like BIRRP [Chave and Thomson, 2004], EMTF [Egbert, 1997], or the LIMS processing algorithm [Jones
and Jodicke, 1984]. Therefore, we consider our algorithm a special purpose code for data that are suspected
to be contaminated by nonstationary effects.

Appendix A: SynDat: Computing (Non)Stationary Synthetic Data forMT

Availability of synthetic data is fundamental for hypothesis testing in many areas of applied science, since
it offers a simple and noise-free mean of acquiring test data, which could be expensive, difficult, or time
consuming in the laboratory or in the field, and it allows to design easily custom-made properties of test
data, which often help to spotlight both, important problems and findings in a hypothesis.

We use the MATLAB program SynDat to generate (non)stationary synthetic data in the course of this work.
It allows to define freely the frequency and amplitude time series of numerical remote channels (as given
in (6)), which are used to compute synthetic MT data (as given in (5)) by means of the nonstationary con-
volution theorem according to Neukirch and Garcia [2013]. Additionally, the synthetic data can be modeled
for any impedance by importing the respective transfer function (TF) from files of the Electrical Data Inter-
change format or be computed for the impedance of a one-dimensional conductivity model [Keller and
Frischknecht, 1966]. This program is freely available upon request to any of the authors.
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NNon Stationary Magnetotelluric Data Processing�

Studies have proven that the desired signal in the electromagnetic (EM) field for 

Magnetotelluric (MT) surveys can be regarded as ’quasi stationary’ (i.e. sufficiently 

stationary to apply a windowed Fourier transform). However, the measured time series 

often contain environmental noise, which may not fulfill this requirement for the application 

of the Fourier Transform (FT) and therefore may lead to false or unreliable results under 

methods that rely on the FT. In light of paucity of MT data processing algorithms in the 

presence of non stationary noise, in this thesis, I elaborate a robust, non stationary 

algorithm, which can compete with sophisticated, state-of-the-art algorithms in accuracy 

and precision. In addition, I proof mathematically the algorithm’s viability and validate its 

superiority to other codes processing non stationary, synthetic and real MT data.�
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