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Abstract

The study of thermal convection in rotating spherical geometry is fundamental to explain
many geophysical and astrophysical phenomena such as the generation of the magnetic
fields, or the differential rotation observed in the atmospheres of the major planets. The
difficulties associated with the experimental studies enhance the importance of the three-
dimensional numerical simulations, such as those presented in this dissertation.

In order to obtain the evolution equations, the Boussinesq approximation is applied to
the mass, momentum and energy conservation equations, which are rewritten in terms of
toroidal and poloidal potentials. Together with the temperature field, they are expanded
in spherical harmonics over the sphere, and in the radial direction a collocation method
is used. Semi-implicit schemes, based in backward differentiation formulae (IMEX-BDF),
implemented with order and time step control (VSVO), are used for time integration.

Applying non-slip boundary conditions with internal heating and very low Prandtl
numbers (ratio between the thermal diffusive and the viscous time scales), one of the first
exhaustive analysis of the linear stability of the conductive state has been performed. In
addition, the existence of preferred polar antisymmetric modes at the onset of convection
for high rotation rates has been described.

A study of the efficiency of different high order time integration schemes, either with
fixed time-step or VSVO, has been carried out. In our own time evolution codes we apply
the IMEX-BDF formulae with an explicit treatment of the nonlinear terms of the equa-
tions. The use of matriz-free methods allows the implicit treatment of the Coriolis term,
and makes the implementation of a step and order control easier. The results show that
the use of high order methods, especially those with time-step and order control, increase
the efficiency of the time integration, and allows to obtain more accurate solutions.

Finally, at low Prandtl number, and with non-slip boundary conditions, the nonlinear
dynamics is deeply explored by means of temporal evolutions. The type of solutions is
described, and the nonlinear mean flow properties are studied. Using parameters as close
as possible to those of the Earth’s outer core, the numerical simulations are compared
with laboratory experiments and realistic measurements.
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Chapter 1

Introduction

The study of thermal convection in rotating spherical geometries is important for un-
derstanding the dynamics of several astrophysical and geophysical phenomena. For the
latter, in the case of the fluid interiors of the giant planets, the competition between
rotational and buoyancy effects determine the nature of convection, which is the main
responsible of transporting the planet’s internal heat to its surface. In the case of Jupiter,
the Galileo probe gives support to the idea that large-scale zonal winds are part of a deep
global circulation [9], which extends far away the shallow layer heated by solar insulation.
When the rotation controls the dynamics, the convection tends to occur in the form of
quasi-geostrophic columns aligned in the direction of the rotation axis. The Reynolds
stresses produced by the columnar convection can drive zonal flows that can take on a
banded character similar to that observed at the cloud level on Jupiter [29]. Unlike this,
when the buoyancy forces dominate over the Coriolis forces, the rotational constraint can
be broken by the non-linear advection and the convection is then fully three-dimensional
and strongly chaotic. This would be the case of the convection in the interiors of planets
much larger and massive than Jupiter [102].

On the other hand, the idea that magnetic fields of cosmic bodies are generated by
convection of electrically conducting fluids in their interiors, is widely accepted, spe-
cially since Riga and Karlsruhe experiments [37, 38, 78]. For the Earth’s outer core,
geodynamo models have been recently constructed by Glatzmaier and Roberts, among
others [46, 65, 51, 50]. The authors reproduced by means of numerical simulations the
intensity of the geomagnetic field, explained its dipolar structure with a dipole axis nearly
aligned with the Earth’s rotation axis, and why the field occasionally undergoes dipole
reversals. However, in order to stabilise the numerical solutions, these models make use of
hyperviscosity which introduces an offsetting of the rotational constraint altering the basic
dynamics of the geodynamo [123]. In the Earth’s liquid core there are mainly two sources
of buoyancy which could maintain convection, namely, temperature and compositional
gradients. These gradients are generated during the crystallisation of heavy elements like
iron alloys in the inner-outer core boundary. The volatile elements such as sulfur or oxy-



gen diminish the density in this boundary, and the latent heat is transfered to the outer
core. From the Earth’s age, [74] have estimated that the compositional buoyancy forces
supplies nearly 80% of the necessary power to maintain convection, while the other 20%
is supplied by the temperature gradients.

The difficulty of addressing these problems, even without consider the generation of
magnetic field, is well known. They are three-dimensional problems whose discretization
leads to systems of very large dimension O(10°) even for moderate ranges of parameters,
and therefore far away from the estimates corresponding to those of the cosmic bodies.
That is, from 10 — 10% for the dimensionless Taylor number Ta defined as the square
of the rotation in viscous time units, and the Rayleigh number Ra, the ratio between the
change in gravitational potential energy and dissipated viscous and thermal energy, around
the previous range. Other parameters are more attainable but difficult to determine with
precision, for instance the Prandtl number, the ratio between the thermal and viscous
diffusive time scales, 0 = 1072 — 1, or the Lewis number, the ratio between the thermal
and the compositional diffusive time scales, 7 = 1072 — 10~!. Moreover, for the real
problems; some of these dimensionless numbers are difficult to estimate.

Apart of the above mentioned difficulties, in a real planet or satellite, the liquid part
of the core may not rotate uniformly with a constant angular velocity, the container of
the core fluid, the mantle, may not be perfectly spherical with a uniform boundary [60],
the core fluid may not be incompressible, and convective motions may be driven by a
combination of different buoyancies [53]. However, it is widely believed that these details
are of secondary importance, that is, to a first approximation, they do not influence
the dynamics. Accordingly, in this work we will use an spherical homogeneous fluid
employed by a majority of authors, and then the secondary aspects of the problem are
not considered.

The possible interrelationships between convection, rotation, and the generation of
magnetic fields by the dynamo process motivated Chandrasekhar’s study [24]. There it
was shown that an imposed magnetic field can release the constraint imposed by the
rotation on the convection. He solved the linear stability problem and determined Ra as
a function of ¢ and Ta.

In the late 1960s, Roberts and Busse [94, 14] started to find the asymptotic dependence
of the onset of convection in fast rotating self-gravity fluid spheres in the limits F < 1
and o/E > 1, (E~' = Ta'/?). From this preliminary work, it was assumed that, at
very high Taylor numbers, the flow is strongly nonaxisymmetric and the dynamics must
be dominated by rotation and, consequently, the Taylor-Proudman theorem holds in any
geometry. That is, the dynamics of the fluid is essentially independent of the coordinate
in the direction of the axis of rotation. They also found that the columnar rolls are highly
localised in a neighbourhood of a critical cylinder.

The first experimental results at moderate and high Prandtl number and high rota-
tion rates confirmed that the dominant convective modes are columns travelling in the
azimuthal direction, see [16, 17]. In these experiments, the convection is forced by ex-
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ternally applying a radial heating and the centrifugal force emulates the gravitational
field. A subsequent experiment in the Spacelab laboratory [56], in absence of vertical
gravity, confirmed these results. In the Spacelab, the gravity was simulated by polarising
a dielectric fluid with a very intense electric field.

The asymptotic theory of the onset of convection at high T'a has been adjusted several
times. Weakly nonlinear calculations [108] indicated that the theory of Roberts and Busse
underestimated the critical Rayleigh number Ra., although the stability analysis and
three-dimensional simulations in spherical geometry of K. Zhang [118, 120] at moderate
Prandtl numbers, confirmed the power law for the onset of convection given by the theory.
Only in 2004, E. Dormy et al. have developed the definitive asymptotic theory of the onset
of columnar convection at moderate Prandtl number and with internal (Ra = Ra;) or
differential (Ra = Ra.) heating. However, with internal heating and very low Prandtl
number, K. Zhang in [121] showed that the dominant modes are cells confined in the
equator at the outer boundary. These structures were not observed in the laboratory
because of the difficulty of visualising low Prandtl number fluids.

In the late eighties, the experimental evidence of the approximate validity of the
Proudman-Taylor theorem, led researchers to use a quasi-geostrophic model of convection
in a rotating annulus with radial gravity and inclined lids [18, 101, 82, 59, 86, 87, 42] to
study the differential rotation and zonal mean flows observed by the Voyager spacecraft
in the major planets, or to study how these mean flows and the mean heat transport scale
with the parameters. Using the quasi-geostrophic approximation, the analysis can be
reduced from three to two spatial dimensions. Many features of the spherical case can be
found in the cylindrical case because of the strong tendency towards two-dimensionality
induced by the Coriolis force.

Fully three-dimensional calculations always limit the range of parameters that can
be reached [3, 114, 106]. For this reason, although the first attempts date back to the
seventies, the most important advances have been achieved over the last twenty years
with the increasing power of computers. Nowadays, the impossibility to solve success-
fully the problem without limitations opens two additional ways of study. The first is
to use two-dimensional models (quasi-geostrophic) [7, 77, 88, 89, 111, 42] and the sec-
ond calculate three-dimensional solutions with enforced symmetries and/or fixed parity
to achieve simulations with parameter values as high as possible. The existing theoretical
models [19, 126, 90] are based on the results of these calculations and also, in labora-
tory experiments. The closest related to this study are those made with liquid gallium
(0 =0.025) [6, 41], liquid sodium (o = 0.01) [21, 104], water (o = 7) [6, 8, 41] and mag-
netizable fluids to achieve radial force [95]. Some information has been extracted from
direct observations. Such is the case of [81], which deals with the existence of a polar
vortex, from observations of the variations in the Earth’s magnetic field since 1870.

In a problem that involves many parameters (Rayleigh number, Prandtl number, Tay-
lor number and the radius ratio of the spheres), it is difficult to summarise in a few lines
the current state of the issue. For good reviews on the subject see for instance [128, 15].
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Although DNS of the quasi-geostrophic models can be easily performed providing a lot
of information, only the results of three-dimensional simulations, which are directly com-
parable with physical observations and related with our calculations, are commented.

From [115, 106, 114, 113, 29] among others, with rotation rates giving a T'a in the
range 10 < Ta < 10'° and o =~ 1, it is known that when inertial waves lose their
stability, quasiperiodic flows, which modulate the amplitude of the oscillations or produce
spatial modulations, appear. At higher Rayleigh numbers, the flow simulations have
chaotic spatio-temporal dependence that lead to localised convection. This occurs when
the differential rotation becomes so intense that by shear effects the convection is inhibited
in the bulk of the layer. In the fluid regions where there is no convection, the conductive
state tends to be restored. The complex time dependencies favour the heat transport by
convection.

In particular, with differential heating, the dependence of the time-averaged properties
such as the Rossby and the poloidal Rossby numbers, Ro = ReF, R—op, the kinetic en-

ergy density and non zonal kinetic energy density ratio, K/ K™* and the modified Nusselt
number Nu* = NuFEo ™!, on the modified Rayleigh number Ra* = RaE?0~" is known for
E — 0, where the Reynolds number Re = v2K remain defined as the square root of the
mean quadratic velocity:

Ro = 0.65(Ra*)"/?, Ro, = 0.54(Ra*)*/?, (1.1)
K/K,. = 0.36(Ra*)"/, Nu* = 0.077(Ra*)?/°. (1.2)

At low Prandtl numbers the transition to states of chaotic time dependence occurs near
the onset of convection with increasing Rayleigh number. The cost of these simulations
means that in this case, most information comes from laboratory experiments and DNS
using the quasi-geostrophic approximation. For example the results of [6, 104, 41] have
never been contrasted with three-dimensional DNS.

The dissertation is organised in two parts. The first part (Chapters 2 and 3) deals
with the onset of convection while the second part (Chapters 4 and 5) comprises the study
of the nonlinear flows. The understanding of the onset of convection allows to explore the
finite amplitude problem in a more selected way. To achieve these objectives a linear and
nonlinear codes of thermal convection in rotating spherical geometry were written and
checked with several papers [1, 121, 73, 106, 30].

The first part of our study has been published in [79] (Chapter 2) and [40] (Chapter 3).
In Chapter 2, the transition between the spiralling columnar modes (SC) and the outer
equatorially attached (OEA) modes in the parameter space (o, E) using non-slip boundary
conditions and internal heating (Ra = Ra;) for a thick n = 0.2 spherical shell, is analysed.
The study comprises:

e Localisation of the transition between mono and multicellular modes preferred at



very low o = 0.005. Visualisation of the patterns of convection of the multicellular
modes.

e (Clarification of the origin of the transition between prograde and retrograde con-
vective modes for the spiralling columnar modes, preferred at ¢ = 0.1 and low
E.

e Localisation of the transition OEA/SC depending on the Prandtl number (o €
[0.005,0.03]) at low E. Comparison between the OEA and the SC patterns of
convection.

e Linear stability analisys near the transition OEA/SC (¢ = 0.025).

e Asymptotic study in which the potential laws of the critical parameters depending
on FE are obtained for ¢ = 0.005,0.01,0.025 corresponding to OEA modes, to SC
modes, and to modes near the transition OEA/SC, respectively.

In Chapter 3, the linear stability analysis of flows, which are mainly concentrated near
the inner boundary in a moderately thick spherical shell n = 0.4, is performed. This part
contains:

e Study of the equatorially antisymmetric modes preferred at ¢ = 0.01 and low FE,
with both non-slip or stress-free boundary conditions, and internal heating (Ra =
Ra;). These modes are located in the polar regions.

e Study of the equatorially symmetric modes preferred at ¢ = 0.1 and low F, using
non-slip boundary conditions and differential heating (Ra = Ra.). These modes are
located in high latitude regions.

e Asymptotic study in which the potential laws of the critical parameters are obtained
as a function of F, for the two cases considered before. Aside their differences,
similar power laws are obtained.

The second part of the dissertation (Chapters 4 and 5), includes the optimisation of
the time integration methods, and the nonlinear study of the dependence of the physical
properties and of the flow patterns on the Rayleigh number. The parameters are taken
as similar as possible to the Earth’s outer core and previous experimental results.

The optimisation of the temporal integration of the nonlinear problem using multistep
linear methods, such as backward differentiation and extrapolation formulae (IMEX-BDF)
of order k = 2, .., 6, is performed in Chapter 4 and has been published in [39]. It comprises:

e Implementation of a time integration code using IMEX-BDF with fixed time step,
by considering the diagonal part of the Coriolis term and the rest of linear terms
implicit, and the rest of Coriolis terms and nonlinear terms explicit.
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Resolution of the obtained block diagonal linear systems using adapted LU subrou-
tines.

Implementation of a time integration code using IMEX-BDF with fixed time step by
considering the linear terms and the upper tridiagonal Coriolis terms (resp. lower)
implicitly and the rest of the Coriolis and nonlinear terms explicitly, alternatively
at each time step. The resolution of the upper triangular block (resp. lower) lin-
ear systems are performed using backward (resp. forward) substitution using the
previous LU factorisations.

Krylov techniques are used to implement a IMEX-BDF fixed time step based code,
by considering implicit the Coriolis term. A study of the efficiency of the use of
different preconditioners and tolerances is performed in the iterative resolution of
the block tridiagonal linear system.

Use of the Krylov techniques in order to implement the three previous codes with
order and step size control.

Implementation of the necessary subroutines for the use of DLSODPK library in
order to use a method based on the fully implicit BDF.

Comparative study of the efficiency of the previous codes to integrate a travelling
wave at moderate and low FE. The differences between fixed and variable time
step methods are deeply analysed. The influence of the type of solution and of the
physical and integration parameters on the temporal integrations is also addressed.

Finally, the nonlinear properties and patterns of the flow are studied in Chapter 5 for
n = 0.35, 0 = 0.1 and £ < 10~%, non-slip boundary conditions and differential heating
as a function of the Rayleigh number covering from weak to strong supercritical regimes.
The main items of this part are:

Study of the first bifurcated quasiperiodic solutions from the travelling waves, as
well as other families of quasiperiodic solutions at higher Ra.

Description of time complex solutions with intermittent behaviour at moderate Ra,
which are found close to the quasiperiodic regime.

Study of the changes of the time-averaged properties, and the location of convection
for a large sequence of solutions with increasing Ra.

Obtention of the scaling laws of Egs. (1.1) and (1.2), with non-slip boundary con-
ditions and low Prandtl number o = 0.1.

Comparison of the numerical scalings, obtained from the three-dimensional DNS,
with previous numerical [29] as well as experimental results [6, 104, 41].
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e Use of the scalings obtained to make predictions of physical properties of the Earth’s
outer core.

Finally, in Chapter 6 the results exposed along this dissertation are discussed and
summarised, including brief comments on the further work.
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Chapter 2

On the onset of low Prandtl number
convection in rotating spherical
shells: non-slip boundary conditions
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On the onset of low Prandtl number convection in rotating
spherical shells: non-slip boundary conditions

ABSTRACT

Accurate numerical computations of the onset of thermal convection in wide rotating
spherical shells are presented. Low Prandtl number (o) fluids, and non-slip boundary
conditions are considered. It is shown that at small Ekman numbers (E), and very low o
values, the well known equatorially-trapped patterns of convection are superseded by mul-
ticellular outer-equatorially-attached modes. As a result, the convection spreads to higher
latitudes affecting the body of the fluid, and increasing the internal viscous dissipation.
Then, from E < 1075, the critical Rayleigh number (R,) fulfils a power-law dependence
R, ~ E=*3 as happens for moderate and high Prandt] numbers. However, the critical
precession frequency (|w.|) and the critical azimuthal wavenumber (m.) increase discon-
tinuously, jumping when there is a change of the radial and latitudinal structure of the
preferred eigenfunction. In addition, the transition between spiralling columnar (SC),
and outer-equatorially-attached (OEA) modes in the (o, F) space is studied. The evolu-
tion of the instability mechanisms with the parameters prevents that multicellular modes
become selected from o = 0.023. As a result, and in agreement with other authors, the
spiralling columnar patterns of convection are already preferred at the Prandtl number
of the liquid metals. It is also found that, out of the rapidly rotating limit, the prograde
antisymmetric (with respect to the equator) modes of small m. can be preferred at the
onset of the primary instability.

Published in Journal of Fluid Mechanics, 601 (2008) 317 — 337.
Marta Net, Ferran Garcia and Juan Sanchez.
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2.1 Introduction

The first attempts to find the asymptotic dependence of the non-axisymmetric onset of
thermal convection in self-gravitating, and internally heated fluid spheres were of [94],
and [14]. In these early papers the scaling laws R, ~ E~%/3 |w,| ~ E=2/3, m, ~ E~1/3,
the symmetry, and the azimuthal drifting of the marginal columnar modes of convection
at large rotation rates were established. These modes were localised inside a cylinder
centered at a critical interior radius. Later, the nonlocal perturbation analysis of [108]
showed that small disturbances, at values of the Rayleigh number just above R. given
by the Roberts-Busse’s theory, decay exponentially as t — oo. The weak point of their
analysis comes from using a local theory that neglects the dependence of the boundary
inclination with the distance to the axis of rotation.

The numerical calculations of [130], and [118] revealed that, in rapidly rotating spher-
ical shells, the preferred modes of convection are strongly dependent on the Prandtl and
Ekman numbers. At fast rotation rates, and moderate and large Prandtl numbers, they
are thermal Rossby waves in the form of spiralling columns, while, at low Prandtl numbers,
they are waves attached to the equator (equatorially-trapped waves).

A revised asymptotic theory for the spiralling columnar convection was proposed
by [117]. Following the guidelines of [108], he improved the critical parameters for ¢ > 0.1
by extending the solution of [94], and [14] onto a complex plane of the radial coordinate of
the point where the convection amplitude attains its maximum, but maintaining the limit
of small inclination of the boundaries. The projection of the solution onto the real axis
gives the inclination of the columns with respect to the radial direction. His calculations
agree well with the numerical results. Recently, [66] have determined the leading-order
value of R., and the first-order correction for the columnar convection in spheres with
internal heating, and stress-free boundary conditions. They have generalised the work
of [117] by considering the full spherical problem. For the same problem, [19] have found
explicit expressions for the dependence of R. on m.. On the other hand, [32] have com-
pleted the asymptotic theory for the onset of columnar convection in spherical shells.
The differential heating problem, for which there are no heat sources in the fluid, is also
studied. Then, the critical mode of convection localises around the inner radius because,
according to the authors, the conduction temperature gradient (oc r~2) decreases very
rapidly by increasing r. In this work the corrections due to Ekman suction are included.

In the nineties, a lot of theoretical and numerical papers were devoted to study the
spiralling columnar type of convection, mainly with stress-free boundary conditions, since
it is relevant to astrophysical problems. The dependence of R., w., and m, on E and o,
and the influence of the Ekman boundary layers on the onset of convection in spherical
shells were studied by [122]. For fluids of & > O(1), their numerical results show that
the extra dissipation in the Ekman boundary layers generated near the rigid boundaries
destabilises the flow, and also reduces |w,|, and m,.. However, for ¢ < O(1), and moderate
E, the thermal dissipation dominates over the viscous dissipation, and the boundary layers
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stabilise the flow.

Low Prandtl number problems are important in magnetohydrodynamics since they
model planetary metallic cores. The importance of equatorial drifts in the Earth’s core
was stated by [34]. They showed a westward drift of the equatorial patches of the ra-
dial magnetic field from observations of the magnetic field flux over 400 years. This
phenomenon may be due to either waves or advection by the underlying flow. The last
estimations of the thermal and magnetic Prandtl numbers for the Earth’s outer core are
o ~ 0.1 and 1079, respectively. They are based on the value of the viscosity determined
by [116], and on the electrical resistivity determined by [103], at the physical pressure and
temperature conditions of the Earth’s outer core. The study of thermal convection with
liquid metals in these conditions is very difficult. The numerical computations require
very high resolutions to approach the extremely low Ekman numbers of the cores, and to
solve the thin Ekman boundary layers near the rigid boundaries. For this reason there
have been very few attempts to compute the marginal modes in this range of parameters.
Frequently, as in [86], [89], and [41], a quasi-geostrophic model is used to approximate the
real problem.

According to [119, 120], the equatorially-trapped modes are quasi-inertial waves, i.e.,
at leading order are solutions of the Poincaré equation. Moreover, [3] found that, at
moderate rotation rates and stress-free boundary conditions, the dominant modes remain
attached to the outer equator, but can be multicellular before the transition to spiralling
columns at low Ekman numbers. They supplied a sketch of this transition in the (o, E)
plane. In the work of [89], valid for E < o, it is seen that in cylindrical annuli with
curved lids the critical modes at small o are also quasi-inertial, and multicellular. In
addition, they have demonstrated by a perturbation analysis, that R. decreases when
the number of vortices of the streamfunction in the radial direction increases, because it
depends on a balance between dissipation and buoyancy. The increase of power consumed
by viscous dissipation is overcome by a much more efficient release of power developed by
the buoyancy forces. This effect is due essentially to the fall of the precession frequency
of the wave when the number of cells increases.

There are neither accurate experiments on the onset of convection using low Prandtl
number fluids. The only experimental study is that of [63], although the apparatus is
a cylindrical annulus of conical lids. By using mercury (¢ = 0.025) he measured low-
frequency rotating waves for Rayleigh numbers of order E~2. However, it is important
to notice that, in the nonlinear regime, [6], and [41] have found experimental retrograde
zonal flows (generated by Reynolds stresses) storing most of the kinetic energy of the
fluid.

The first study of the asymptotic dependence of R, and w, in the small Ekman number
limit, for the equatorially-trapped convection in a self-gravitating fluid sphere, including
solutions of the spherical boundary layer, is that of [121]. His perturbation analysis is valid
only for very low Prandtl numbers, namely ¢ << Em®?. For small but finite o, no sim-
ple power-law dependence can be derived from this perturbation theory. Recently, [124],
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and [125] have proposed a new method for the study of the asymptotic solutions in a
rapidly rotating sphere, which does not assume any asymptotic scaling for £ << 1. Then
it is valid for 0 < 0/E < o0, i.e., also includes moderately small and high Prandtl num-
bers. The main contribution of these papers is to unify the inertial-oscillation and the
convective instability problems for both stress-free and non-slip boundary conditions. The
eigenfunctions are written either as a single or as a superposition of quasi-geostrophic in-
ertial modes, and it is shown that the viscous coupling of these modes causes the spiralling
structure of convection. The analytical results are compared with those obtained from a
numerical code for a wide spherical shell displaying a good agreement in any considered
case.

This paper seeks to help to understand the onset of thermal convection at small Prandtl
numbers between rigid spherical boundaries. Specifically, the dependence of R,., w. and
m. on E and o, and the features of the preferred modes of convection in the parameter
space are studied. The small value of the radius ratio n = 0.2 will be maintained along
the paper for three reasons. Up till now, the known preferred modes of convection were
spiralling columnar or equatorially attached for any n value, so n = 0.2 facilitates the
calculations because the number of relevant marginal stability curves is small, and they
are much more separated than for higher n values. In the second place, it concerns to
geophysical applications, because the Earth’s outer core is a wide spherical shell, so the
study is restricted to 0.005 < o < 0.1. Finally, it facilitates the comparison with preceding
papers.

In Sec. 2.2 we introduce the formulation of the problem, and the numerical method
used to find the leading spectra of the linearised equations. We also include some of
the tests made in order to check our new computational code. In Sec. 2.3 the marginal
stability curves as a function of E and o, and the structure of the preferred patterns of
convection are analysed. A comparison between these results and previous asymptotic
and numerical analysis, in the low Prandtl number limit, is also established. Finally, in
Sec. 2.4 the paper ends with some brief comments on the results obtained.

2.2 Mathematical model and Numerical method

A spherical shell rotating about an axis of symmetry with constant angular velocity
? = Qk, and radial gravity g = —yr, where 7 is a constant, and r the position vector,
is considered. The gap width is d = r, — r;, where r; and r, are the inner and outer
radii. We use the same formulation of the problem as in [106], which allows to study at
once internal and differential heating. The non-dimensional units are d for the distance,
v? /yad?* for the temperature, and d?/v for the time; v being the kinematic viscosity, and
« the thermal expansion coefficient.
The velocity field is written in terms of toroidal and poloidal potentials

v=Vx (Ur)+V xVx(dr), (2.1)
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consequently, the linearised equations for both potentials, and the temperature perturba-

tion © from the conduction state (v = 0,7 = T.(r)), with r = ||r||o, are
[0y — V*)Ly —2E7'0,] ¥ = —2E7'Q9, (2.2)
(0, = V?)Ly —2E7' 0, V?® + L,© = 2E7'QV, (2.3)
(00, —V?*)© — (R;+ Ren(1 — ) °r %) Ly® = 0. (2.4)

The parameters of the problem are the internal R;, and external R,, Rayleigh numbers,
the Prandtl number o, the Ekman number E, and the radius ratio 7,
B ~yaqd® B yaATd* v v r;

— _ Re —_—, E:—7 :—7 :—7 25
3cpk?y’ KU oz’ T " To (2.5)

R;

x being the thermal diffusivity, ¢, the specific heat at constant pressure, ¢ the rate of heat
due to internal sources per unit mass, and AT the difference of temperature between the
inner and outer boundaries due only to differential heating. The operators Ly and @) are
defined by Ly = —1r*V?+4-0,(r20,), Q = r cos 0V*—(Ly+70,)(cos 00, —r~sin 09), (1,0, ¢)
being the spherical coordinates, with # measuring the colatitude. In non-dimensional units
the conduction state reads

T.(r) = To — (Ri/20)r* + (Ren/o (1 = n)*) /7. (2.6)
Non-slip perfect thermally conducting boundaries
P=0P=0Y=0=0 (2.7)

are used, but for testing purposes also stress-free ® = 92.® = 9,(¥/r) = © = 0, boundary
conditions are implemented.

The system is SO(2) x Zs-equivariant, SO(2) generated by azimuthal rotations, and
Z5 by reflections with respect to the equatorial plane, i.e., the actions

Y — 9+ Y, u—u, and

0 —m—20, u — (u, (2.8)

with v = (¥, ®,0), and (u = (=, P, 0), leave the system invariant. In terms of the
velocity field the same holds with u = (v,, vg, vy, ©), and (u = (v, —vg, vy, O)

The equations for X = (®, ¥, 0) are solved by expanding the eigenfunctions in spher-
ical harmonic series up to degree L, namely

L l

X(tr,0,0) =Y > X", 0)Y"(0,¢), (2.9)

=0 m=—1

with Y;(0, p) = P/"(cos §)e"™?, and P/" being the normalised associated Legendre func-
tions of degree [ and order m. In the radial direction, a collocation method on a Gauss-
Lobatto mesh is employed.
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In order to find the critical parameters we use a new computational code, which
allows to find the leading eigenvalues with a good resolution by means of an iterative
method. The linearised equations (2.2)-(2.4), (2.7) are separated into their azimuthal
Fourier coefficients. Let the equations for a given azimuthal mode m be written as

% = AnXm, (2.10)

where x,, are all the values at the collocation mesh of the amplitudes of the variables
in spherical harmonics of order m. We compute the eigenvalues of A,, by evolving the
equation (2.10) a time interval ¢. Its solution with initial condition x?, is exp (tA,)x2,.
The eigenvalues p of the linear map exp (tA,,) are related to the eigenvalues A of A,
by p = exp (tA). This transformation maps eigenvalues of maximum real part of A,
to multipliers of largest modulus of exp (tA,,). To find the latter we employ subspace
iteration or Arnoldi algorithms (see [72]). The integration of (2.10) is performed by a
multi-step BDF-extrapolation formulae (BDF meaning Backward Differentiation Formu-
lae), with initial conditions obtained by a Runge-Kutta method. It is important to notice
that an explicit treatment of the term in @) allows to decouple the left hand side of equa-
tions (2.2)-(2.4) for each degree I. The time interval ¢ is selected to be as short as possible
to reduce the cost of the evaluation of exp (tA,,)x?,, but large enough to separate the
eigenvalues to make their convergence fast.

The onset of convection breaks the axisymmetry of the conduction state. Then, ac-
cording to [33], it is a Hopf bifurcation giving rise to a wave travelling in the azimuthal
direction. Typically, the critical solutions maintain the Z, symmetry with respect to the
equatorial plane, i. e., they are symmetric with respect to the equator. This implies
that only associated Legendre functions with odd (m + [) for ¥, and even for ® and
© contribute to the linear problem. Then, the number of unknowns can be halved if
needed. However, it will be seen that at low rotation rates also antisymmetric modes can
be selected at onset. Moreover, from moderate rotation rates, the axisymmetric (m = 0)
modes of convection are waves travelling from the equator or mid-latitudes to the poles.
Although they are non-preferred linearly, nonlinear interactions involving these modes
could give rise to waves of this type at higher Rayleigh numbers.

Table 2.1 shows the convergence of the numerical method by increasing the number
of radial points N,, and the maximal degree L of the associated Legendre functions,
for E = 3.16 x 107%. All the results of table 2.1 correspond to a fourth order time
integration method. The tolerances required are kept at each run of the code. However,
we have checked, by changing the time step and the order of the method, that we do
not introduce numerical instabilities that could lead to erroneous critical parameters. In
the table, R; means the critical internal Rayleigh number. The negative frequencies give
positive drifting velocities ¢ = —w./m, i. e., in this case, the waves precess in the prograde
direction.

We have also checked our code working with non-slip boundary conditions with [1] for
differential heating, with [121] for internal heating, with [73] for a non-rotating shell, also
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N, x L R;, —We

40 x 65 8836856.9 16513.198
40 x 85  8850865.2 16513.533
50 x 85  8644084.1 16545.639
50 x 100 8645078.5 16545.794
60 x 85  8627974.3 16547.513
60 x 100 8629021.4 16547.655
70 x 85 8627670.2 16547.753

Table 2.1: Convergence of the iterative method for n = 0.2, o = 0.005, £ = 3.16 x 1075,
m =5 and R, = 0, with a fourth order time integrator.

with internal heating, and finally, with [106] for internal heating and stress-free boundary
conditions. The satisfactory results of the first comparison are plotted in figure 2.1, for
various 7 values. The critical Rayleigh number (R, )4 used in [1] is related with the ours
by (Re.)a = Re./(1—n). The full circles and crosses correspond to their and our numerical
results, respectively, and the solid line is their fitting to the solutions. Our results also
agree very well with those presented in the first figure of [73] with tiny differences less
than 0.06% for the two n of that figure. We do not know exactly the resolution employed
in [106], but, the differences are less than 1.3% in R, , and 0.2% in w, for ¢ = 0.025.
However, we have found discrepancies greater then 13% in R;_ with [121], which will be
explained below.

From now on only n = 0.2, and internal heating is considered, so R, =0, and R = R;
is defined.

2.3 Numerical results

2.3.1 Dependence of very low Prandtl number flows on the Ek-
man number

First of all, the stability of the conduction state is studied for ¢ = 0.005, the very low
Prandtl number case computed in [121]. A mesh N, x L = 50 x 85 is used, because
it guarantees relative errors below 0.2% in the critical Rayleigh numbers at least up to
E = 3.16 x 107% (see table 2.1), and minimises the computing time. Figure 2.2(a-c)
shows the critical Rayleigh number R, and the critical precession frequency |w!"| versus
E, for each neutral stability curve of azimuthal wavenumber m. In order to facilitate
the comparison with the mentioned author, and to display well the change of modes, F
and R} are rescaled in the figure in accordance with Zhang (Z) units. The relations are
Ez = E(1 —n)? and (R™); = R™E/(1 —n)*.
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Figure 2.1: Critical Rayleigh number (R, )4FE"!% versus the radius ratio n for o = 1, and
E = 10*. The integer numbers denote the critical azimuthal wavenumber, m,, of the
preferred modes of convection for each 1 computed.

The cusps in each curve of figure 2.2(a) and its enlargement (c) indicate crossings
between curves of the same wavenumber m. In figure 2.2(a), for E; > 3.6 x 107 the
preferred m = 1 patterns of convection are symmetric retrograde (w. > 0) body modes,
in the sense that they fill the shell up to the polar regions. Then, they are superseded by
prograde waves (w! < 0) of m = 2,3,4, whose shape is weakly influenced by rotation.
When the Ekman number is decreased, they become more and more confined to the
equatorial region, and at £z < 3 x 1075 these critical eigenfunctions can be clearly
recognised as the equatorially-trapped modes (see figure 2.3) described for the first time
in [130]. From this point, the crossings of curves of same m produce decreases of m., which
lead to critical eigenfunctions with the same m., and relative extrema inside the arms of
the spirals (see figure 2.4). The components v, and v, have extrema on the equatorial
plane, and vy and v, on spherical projections very close to the outer boundary. So, these
eigenfunctions display multicellular patterns of convection. From now on, we will refer to
their shape on the equatorial plane as radial structure, that on spherical projections as
latitudinal structure, and the local vortices on these projections as latitudinal cells. This
fact is displayed in figure 2.2(c), where modes with m = 5, 6, 7 dominate successively twice
in a short range of £z. In any case, the main contribution to the latitudinal structure of
the dominant modes corresponds to the associated Legendre functions with [ = m, for ®
and ©, and [ = m. + 1 for U. The only difference seems to be the relative weight of the
associated Legendre functions of higher degree.

Figure 2.2(b) shows |w.| in a logarithmic scale versus Ez. The jumps also indicate
the changes between radial and latitudinal patterns of convection, which can maintain
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Figure 2.2: (a) The critical Rayleigh number (RI")z, and (b) the critical precession fre-
quency |w!|, of each critical mode with azimuthal wavenumber m, plotted versus the
Ekman number E; for o = 0.005. (c) Detail of (a) showing pairs of different preferred
modes with same wavenumber m. The full circles indicate the parameters of figures 2.3-
2.4. (d) The two lowest marginal stability curves for m = 3 (thick and thin solid lines),
m =5 (thick and thin dashed lines), and m = 7 (thick and thin dotted lines) azimuthal
modes. The m = 3,5, 7 thick lines were also calculated before by [121].
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the azimuthal wavenumber. When F decreases, the waves drift slower after every jump.
Moreover, under the influence of rotation, the vortices tend to spiral eastward, and to split
forming cells attached to the outer boundary of the fluid. From now on, we will employ
the term outer-equatorially-attached (OEA) modes to describe both the equatorially-
trapped patterns (mono-cellular) and the multicellular equatorially-attached patterns,
to distinguish them from the well known spiralling columnar (SC) modes preferred at
moderate and large Prandtl numbers.

In the work of [117] the localised columnar convection is explained from the dispersion
relation of the wave. There, it is seen that the existence of a columnar mode requires a
strong buoyancy force counterbalanced by the kinematic diffusivity, and then the thermal
diffusivity acts to isolate the columns. However, without an effective kinematic diffusivity
(0 < O(1)), the pattern becomes a spiralling column. We have checked that when the
multicellular modes become selected the viscous dissipation in the body of the fluid in-
creases, but the buoyancy force decreases significantly, so for these solutions the preceding
balance is not fulfilled. Nevertheless, our result agree with the conclusions of [125]. They
demonstrate that the tendency of the multicellular modes to spiralling is just due to the
viscous coupling of different quasi-geostrophic inertial waves.

Figure 2.2(d) shows the two lowest marginal stability curves for m = 3,5,7, in the
range of Ey of figure 2.1(b) of [121]. The figure 2.1(b) illustrated the comparison between
the m = 3,5, 7 curves found in his numerical analysis for n = 0.2 with those obtained by
a perturbation method, but for a full sphere. Our thick marginal curves agree very well
with those found in Zhang’s paper, but they do not give R]* in the full interval. As can
be seen in figure 2.2(d), from E; < 1.98 x 1075 they are superseded by the thin lines (not
found before), which correspond to multicellular modes. Namely, in the spherical shell the
thick curves, which correspond to equatorially-trapped modes of one cell, only give the
correct R™ down to Ez = 1.98 x 107°. From this point multicellular OEA modes become
preferred. This explains the important differences we found in R]* when comparing both
results at high rotation rates in order to check our code.

Figures 2.3, and 2.4 show the contour plots of two preferred eigenfunctions. The first is
an m = 4 equatorially-trapped mode preferred at moderate E,, and the second an m = 6
mode, selected as sample of the multicellular patterns of convection preferred at small
Ekman numbers. Three projections of the components of the velocity field (v,, vg, v,,), and
the kinetic energy density are displayed in each figure (see figure captions). The contour
plots of the temperature perturbation resemble very much those of the radial velocity,
and they are not plotted. The (a) projections are taken on spheres of r = r; + 0.70d and
r = r; + 0.47d for v,, and r = r; + 0.98d for the rest, although all of them are plotted
of the same size. In this way all the projections are taken nearly cutting the extrema of
every scalar field. The projections on spherical surfaces of smaller radius loose some of
the cells extending only to low latitudes. All (b) projections are taken on the equatorial
plane, and all (¢) meridional sections cut more or less by the centre of a v, vortex. The
scale of greys is the same for each row of contour plots in each figure. White means
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Figure 2.3: Preferred equatorially-trapped mode of convection with azimuthal wavenum-
ber m = 4, plotted at Ez = 1.92 x 107° for ¢ = 0.005. In (a-c) contour plots of the
radial velocity field on a sphere, on the equatorial plane, and on a meridional section,
respectively. In (d-f) idem (a-c) for the colatitudinal velocity. In (g-i) idem (a-c) for the
azimuthal velocity. In (j-1) idem (a-c) for the kinetic energy density.
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Figure 2.4: Preferred tri-cellular mode of convection with azimuthal wavenumber m = 6,
plotted at Ez = 3.69 x 107¢ for o = 0.005. Same contour plots as in figure 2.3.
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positive components of the velocity field. Notice that vg = 0 in the equatorial plane, so
the contour lines in plots labelled (e) are residuals.

Figure 2.3 corresponds to the preferred eigenfunction at Ez = 1.92 x 107>, (R%); =
38.90 of figure 2.2(c). In [119] it is shown that the inertial waves extent to a characteristic
latitude £ = (2/m)'/2, m being the azimuthal wavenumber. Since this latitude is very
small, the presence of an inner sphere is irrelevant for wave motions with m > 7(1 +
n)/2(1 — n), where n is the radius ratio of the spherical shell. We have measured the
extent of the thermal-inertial waves in the equatorial zone following the criterion given
for the solutions of the Poincaré equation, i.e., we consider an exponential decrease of the
waves with latitude, and look for the latitude £ at which the maximum of v, diminishes
down to v,/e. Numerically we found £ = (90° — 6) = 29°. Although E = 3.00 x 107°
is not extremely high, the waves are much more confined than the theoretical prediction.
In the case of figure 2.3, theoretically for m = 4, £ = 40.5°. The discrepancy is probably
due to the inclusion of the buoyancy term in our linear analysis.

For E; < 1.9 x 10~° multicellular patterns of convection become preferred. When the
Ekman number is decreased the convection spreads to high latitudes without detaching
from the equator. The spiralling flow tends to split forming a multicellular spiral in the
boundary layer. The m = 6 tri-cellular pattern found at E; = 3.70 x 107% is shown in
figure 2.4. In this case, the convection affects up to (90° — 6) ~ 44°, the main O cell
moves towards the inner boundary. We think that the bi-cellular mode (not shown here)
was also found numerically in [121] (see its figure 2.3), but interpreted as the spiralling
columnar mode preferred at higher Prandtl numbers.

The meridional sections display the z-dependence of the components of the velocity
field. Except in the very thin Ekman boundary layers, v, fulfils the Taylor-Proudman
constraint, because it is a component orthogonal to the axis of rotation. We have checked
that at high rotation rates this becomes the strongest component on the spherical surfaces
near the outer boundary. In consequence, the contour plots of kinetic energy density
of figure 2.4(j-1) resemble those of v, and the energy is also almost z-independent. The
perturbations from bi-dimensionality mainly come from v, and vy.

2.3.2 Dependence of low Prandtl number flows on the Ekman
number

In order to study the dependence of the low Prandtl number flows on the Ekman num-
ber, including the transition between prograde and retrograde modes, ¢ = 0.1 has been
selected.

Figure 2.5 displays the results of the linear stability analysis as a function of E (see
figure caption). If £ < 107* the regime dominated by the Coriolis force is fully developed,
and, in agreement with [118], and [117] prograde SC modes of convection become pre-
ferred. So, from this point, the flow remains mono-cellular down to the lowest E values
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Figure 2.5: (a) The critical Rayleigh number R, and (b) the critical precession frequency
|w?|, of each critical mode of azimuthal wavenumber m, plotted versus E for ¢ = 0.1.
(c) Detail of (b) in linear vertical scale showing the jump to spiralling columnar modes of
convection.

explored. In this case, the vortices detach from the equator when the rotation rate is in-
creased, avoiding the formation of extremely strong Ekman layers near § = 7/2, and move
towards the inner boundary, i.e., the Ekman layers only affect mid- and high-latitudes.
For instance, at E = 3.78 x 1075 the SC modes have the maximum at r ~ 0.6r,, and the
velocity field near the outer surface affects latitudes higher than (90° — 6) ~ 13°. It is
important to notice that these values vary a lot with the parameters E, o, and 7.

Out from the asymptotic regime, the neutral stability curves of |w?| and w!* versus F
(figures 2.5(b,c)), show clearly three different types of transitions among modes of the same
m. For E > 3.43x1073 and m < 3, there is a competition between antisymmetric prograde
and symmetric retrograde body modes. The former can also be preferred at the onset of
convection, as happens with the m = 1 mode in the interval 5.88x 1072 < F < 6.10x 1073,
located just before the big cusp of the envelope of figure 2.5(a) (see also the detail). We
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Figure 2.6: (a) The Rayleigh number R’, and (b) the precession frequency w® of the three
lowest marginal stability curves of azimuthal wavenumber m = 5, plotted versus E for
o0 =0.1. In (c) and (d) R" and w” for the three lowest curves of m = 7, respectively. The
meaning of labels PS1, PS2, NS1, and NA1 is summarised in Table 2.2.
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Acronyms Symmetry Sign of w Number of latitudinal cells

PS1 Symmetric Positive (retrograde) 1
PS2 Symmetric Positive (retrograde) 2
NS1 Symmetric Negative (prograde) 1
NA1 Antisymmetric Negative (prograde) 1

Table 2.2: Acronyms for the leading modes found at high Ekman number

have compared the balance of terms of the equations for the preferred antisymmetric
mode, and for the neighbouring symmetric solutions of higher and lower E. The only
difference found is a slight decrease of the viscous diffusive and buoyancy terms in the
antisymmetric modes.

If m > 3 only symmetric modes become selected. For 3 < m < 6 the cusp of each
curve in figure 2.5(a) is the intersection of two curves of symmetric retrograde modes,
although one of them becomes prograde when E is decreased. This change of sign of the
precession frequency corresponds to the 'fall’ of |w!™| to zero in figure 2.5(b). The crossings
can also be seen as jumps of w7 in figure 2.5(c). For m > 6 the jumps disappear. To
see in detail why this happens, the three lowest neutral stability curves with m = 5 and
m = 7 are plotted in figure 2.6. The type of line gives the correspondence between the
(E,R™) and (FE,w™) curves. Moreover, the meaning of the acronyms used in the labels
of the curves, and, from now on, in the text is summarised in table 2.2.

Following the solid curve in figure 2.6(a) from high to low E values, the body modes of
the PS2 curve transform their spatial structure continuously, becoming PS1 modes after
the first fold, and NS1 after the second. These NS1 modes are the SC preferred at high
rotation rates. The jump of the m =5 critical curve in figure 2.5(c) is associated to the
intersection of the dotted PS1, and the solid NS1 curves at £ = 2.76 x 10~ in figure 2.6(a).
Notice that at this point both are mono-cellular symmetric solutions of positive precession
frequency (PS1). The change of sign of w. takes place at £ = 2.48 x 1073, marked with
a full circle in the figure, close to the crossing.

For m = 7 there is a qualitative change in the neutral stability curves. By comparing
figure 2.6(a) with figure 2.6(c) it is easy to recognise an interchange of curves. In the
second figure, the right part of PS1 remains connected with the left part of NS1, forming
the first lower marginal curve, and the left part of PS1 (dotted in figure 2.6(a)) remains
connected with the first part of NS1, forming the solid line of figure 2.6(c), which has
two very narrow folds. This phenomenology was also described for stress-free boundary
conditions in the pioneering numerical work of [130].

The interchange of like-parity modes is analysed in detail for the onset of oscillatory
binary fluid convection in [11]. According to these authors, the interchange takes place
at a resonant double-Hopf bifurcation (surely hidden by the critical non-resonant double-
Hopf bifurcations), where the crossing neutral curves become tangent. At this point both
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modes will have the same frequency. This explains why along the critical stability curves
(like those of m = 7,8,9 in figure 2.5(c)) there are cusps without jumps in the frequency,
or abrupt changes in the eigenfunctions. The values of m (3 and 6 in this case) which
separate the different behaviours of the neutral curves depend on 7. A resonant double-
Hopf bifurcation has codimension-three, and to determine the point of tangency without
changing m, a third parameter (7 or o) must be moved.

The continuous transformation of the eigenfunctions along the folds of the curves of
symmetric modes, and the interaction of modes described, explain why never multicellular
modes are preferred at moderate and high ¢ values. Unlike what happens for o = 0.005,
for o0 = 0.1 the crossing of the lowest curves with the same m takes place after the
transformation, and then, all of them are NS1 (SC). For instance, the mono-cellular m = 7
NS1 (SC) mode, which becomes critical at £ & 5.77 x 107, comes from a bi-cellular PS2
mode.

2.3.3 Prandtl number dependence

In order to study the transition between the OEA and the SC patterns of convection,
the envelope of the marginal stability curves (o, RI") is shown in figure 2.7(a-c) for four
E values in the small Ekman number limit (3.16 x 1075 < £ < 107%). In addition, we
include Table 2.3 with the parameters and features of the bi-critical points where changes
of types of preferred eigenfunctions (not just changes of m) take place. The table contains
additional points calculated for E = 4.47 x 107% and E = 1.41 x 10~% without rounding
off new curves up to o = 0.1. Figure 2.7(d) contains a diagram showing the transitions
of the table. From the double-Hopf OEA/SC bifurcation, the SC modes detach from the
equator, moving towards a cylindrical radius r € (r;,7,), while the OEA modes remain
equatorially-trapped when o decreases.

Figure 2.7(b) displays small increasing, and big decreasing jumps in |w.|. The small
correspond either to jumps between OEA modes of the same number of latitudinal cells,
or between SC modes. In both cases m,. increases in one unit. This is the normal situation.
In contrast, the big jumps are due either to jumps between OEA modes of different number
of latitudinal cells, between OEA and SC modes, or between SC modes of decreasing m..,
see figure 2.7(c). In order to help to follow them, the discrete points are joined with a
dotted line.

In figure 2.7(d) it can be seen that there is a direct transition between the equatorially-
trapped (OEA1) and SC modes only near £ = 1074, i.e., just at the beginning of the
small Ekman number limit. For lower F, the transition is directly from multicellular to
SC modes. Moreover, we have been unable to find any simple law defining the OEA/SC
transition with non-slip boundaries, unlike in [3] for stress-free boundary conditions.

At moderate E, the OEA/SC transition occurs near the Prandtl number of some
usual experimental fluids, namely for ¢ < 0.023. This result agrees with the experimental
results of [6] for liquid gallium (o = 0.027). They suggest that the nonlinear flows keep
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Figure 2.7: (a) The critical Rayleigh number R, (b) the critical precession frequency
|we|, (¢) the critical wavenumber m,, plotted versus o. From bottom to top, *, o, A,
and x mean F = 1074,3.16 x 107°,107%, and 3.16 x 107, respectively, and (d) diagram
showing the transitions among the different modes of convection. The stars correspond
to calculated points.
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Figure 2.8: (a, ¢) The Rayleigh number R7, and R'?, and (b, d) the precession frequencies
w’, and w'?, respectively, of the two lowest envelopes of the neutral stability curves of
m =7, and m = 12, plotted versus o, for E = 1 x 107° and E = 3.16 x 107°, respectively.
The solid lines give R}, and the dashed lines correspond to the second mode which

becomes linearly unstable.
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JUMP Ex10° o  Rex107 |w]x1073  m,
OEAI/OEA2  3.16 00052  5.12 7.11/3.63  4/4
OEA2/OEA3  1.00 0.0063 224 12.0/7.49  7/5
OEA3/OEA4 0447 0.0074  66.0 18.2/12.9  9/7
OEA3/OEA4 0316  0.0052  83.3 26.5/18.6  9/7

OEA1/SC 100 0.014 2.47 1.83/1.11  3/3
OEA2/SC 316  0.023 11.1 3.12/220  7/7
OEA3/SC 1.00  0.0186  39.5 7.25/5.14  9/6
OEA4/SC 0.447 0.0168  101.6  12.6/9.56 11/8
OEA4/SC 0.316  0.0104  120. 19.1/14.6  11/9
OEA5/SC 0.141  0.0087  306. 34.9/278 13/11
SC/SC 1.00  0.051 61.4 4.69/4.05 12/9
SC/SC 0.316  0.023 182. 14.2/11.2  14/10
SC/SC 0.316  0.045 250. 10.8/9.09 17/12

Table 2.3: Parameters and critical values of the bi-critical points of figure 2.7 giving rise
to jumps of decreasing |w.|. The number after OEA indicates the number of latitudinal
cells near the outer boundary.

traces of the SC Rossby waves for Ekman numbers of order 1077, in a spherical shell of
n = 0.35. The location of the transition point can also explain why [124] found OEA
critical modes for ¢ = 0.023, a very small 1, and F order 107° Near the OEA/SC
transition a small variation of the parameters and/or the boundary conditions can vary
the type of preferred eigenfunction.

In order to understand the jumps among SC modes of decreasing m (see figure 2.7(c)),
and why the eigenfunctions after the jumps still have the same structure, the two lowest
envelopes of the neutral curves with m = 7 for £ = 107°, and m = 12 for £ = 3.16 x 1076
are plotted in figure 2.8 as functions of o. In figure 2.8(a) it can be seen how the solid
curve develops a cusp, and the dashed line a bump, near 0 = 0.043. This causes an abrupt
decrease of R" along the solid line for larger o. The frequency curves of figure 2.8(b) get
also distorted (see detail), becoming nearly tangent close to ¢ = 0.05. We have checked
that other curves of low m have the same behaviour. In contrast, figure 2.8(c,d) show
the shape of the curves for higher m. It can be seen that close to ¢ = 0.04 the two
curves have already reconnected in the way explained in subsection 2.3.2. The details in
figures 2.8(c,d) show traces of the fold developed by one of the curves before becoming
tangent, and the almost equal frequencies of both modes after the bifurcation.

Since for o > 0.023 the neutral stability curves are more or less folded, the different
degree of deformation of the curves depending on m, propitiates that curves of low m
dominate suddenly again, after others of higher m. This explains the fall of m,. and
|we| in figures 2.7(b,c) at the SC/SC jumps. In addition, at the resonant double-Hopf

33



o Interval (E x 10*) E x 10>  ex, (%) Ew. (%)
0.1 (0.35,1) 3.500 25 x107° 2.1x1073

0.025 (0.01,0.1) 0.100 5.0 x 107! 8.6 x 1072
0.005 (0.01,0.1) 0316 7.8x 1072 9.7x 1073
0.005 (0.01,0.1) 0.112 2.6 2.6 x 1071
0.005 (0.01,0.1) 0.100 2.9 3.4 x 107!

Table 2.4: Prandtl number, interval considered for adjusting the asymptotic laws of fig-
ure 2.9, F of the point in the interval at which the error due to truncation is maximal,
and the corresponding numerical relative errors (¢%) of R, and w...

bifurcations neutral curves of same m interchange their properties, and then when this m
reappears as preferred (in a non-resonant double-Hopf bifurcation) the same structure is
seen again along the critical stability curve. In this case, for a given m, it is possible to
capture the resonant double-Hopf bifurcation by moving n and/or F, in addition to o.

2.3.4 The asymptotic limit

Figure 2.9 shows the critical Rayleigh number R., the precession frequency |w,|, and the
critical wavenumber m,. versus F, for the two fluids studied in the latter section (see figure
caption). For completeness, we include the results of the linear stability analysis of a fluid
of 0 = 0.025 (mercury/liquid gallium), which, in addition of being near the OEA/SC
border, has experimental interest in magnetohydrodynamics. To study experimentally
this transition it is also worth mentioning the usefulness of the liquid sodium. With
o = 0.01, it is below the critical value o = 0.023, but still near the competition between
OEA/SC modes at lower E (see figure 2.7(d)).

For o = 0.025, and high E values, the critical waves have w, > 0, but the antisymmetric
m = 1 mode with w. < 0 is preferred in 3.13 x 107 < E < 3.63 x 1073, According to
the preceding results, the preferred patterns of convection of fluids with o ~ 0.023 can
be either OEA or SC modes depending on E. For E ~ 4.47 x 1079 it is really difficult to
distinguish from the contour plots the type of preferred eigenfunction. In fact, to decide it,
it is necessary to know its position in the (o, R.) plane of figure 2.7. For F < 3.16 x 107°
all the critical patterns are SC.

In figure 2.9(a) the power laws of the numerical fittings for low E are included in
our non-dimensional units. The intervals used for the fitting, and the maximal numerical
relative errors due to the numerical truncation of the data of figure 2.9 are given in Ta-
ble 2.4. They are estimated by recomputing the points with 70 radial, and 110 latitudinal
points. In general an over-truncation overestimates R. and underestimates w.. However,
as can be seen in the table, we have only introduced relative errors below 3% for R, with
o = 0.005 and E ~ 1075, With these values, the estimated error for the exponent of the

34



10° B " 107
R.= 1L61xE ™

1O4§

10%F %AAA%:%\%O = 5. 79xg 12 7 [

R oy . |wc|103?

R
c 2y %‘3
3 Rc = 0.88xE -1.26 ®a o,

RSN :
S

i,
%;;fm%&
NN

loa| = 0.81xE " %bo s

~

A

10°E % LY E
10 T F o
(a) %O%mo (b) % %Qbo
il T R B 101 R R B Ll Ll %
10° 10° 10" 10° 102 10" 10° 10° 10* 10° 107 10"
E E
20
16 == ]
12; x’;: x —
m. L. 1.5 .
C LA 2 M ot e
8j NS x| —
I A L e
47 DO DN ¢ v QRO G ]
L AOAR semococx o QEEDO WD @O EuEED
L (c) i~
07 il el R "
10° 10° 10" 10° 102 10"
E

Figure 2.9: (a) The critical Rayleigh number R., (b) the corresponding precession fre-
quency |w.|, and (¢) the critical azimuthal wavenumber m, versus E. The labels near the
curves give the power laws estimated from the numerical results. The symbols A, x, and
o indicate o = 0.005,0.025, and 0.1, respectively.
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power law of R, is 1.3%, and 17% for the prefactor. For ¢ = 0.025, 60 radial and 100
latitudinal points are used everywhere, so the error of the exponent is less than 0.2%, and
that of the prefactor is 1.7%. For o = 0.1 the truncation error is even smaller, because
the curve is cut at higher F.

In any case the power of R, is not far from —4/3, the leading order of the asymptotic
expansions of [94], [14], and [32] (see introduction) for moderate Prandtl numbers. In
contrast, the dependence of |w.| with E is not so clear. For ¢ = 0.005 the precession
frequency diminishes sharply when a new pattern of convection is selected, but keeping
the previous slope (see figure 2.9(b)). The jumps are smaller as F is decreased. Perhaps
this fact indicates that for w, the asymptotic limit is not fully reached. Although the
fitting of each straight segment gives approximately a 1.10 power, exceeding very much
—2/3 given by the asymptotic limits, the law |w.| = 5.33 x E7%% is found by considering
the interval 107 < E < 107°. The jumps for £ < 3.0 x 1075 along this curve are
between OEA modes. By increasing o the height of the jumps in the same range of E
is smaller. For ¢ = 0.025 and E < 4.47 x 107°, there are some E for which it is very
difficult to classify the eigenfunctions. As in the preceding case, the fitting for £ < 107°
gives |w.| = 2.12 x E7%%8. Finally for ¢ = 0.1, the power law dependence of |w,| is
included, since for £ < 4.47 x 1073 the dominant modes correspond to a same pattern
of eigenfunctions (SC), and the small jumps of increasing |w,.| correspond to changes of
increasing m..

The dependence of m. on E is plotted in figure 2.9(c). Again the discrete points
are joined with a dotted lined. By neglecting the discontinuities, we have checked that
the potential law m,. ~ E~1/3 of the theoretical expansions also fits well to our numerical
values. We have found m, = 0.15x E=3! for o = 0.005, m, = 0.16 x £-%3* for ¢ = 0.025,
both for E < 107°, and m, = 0.30 x £7%32 for 0 = 0.1 and £ < 10~*.

2.4 Concluding remarks

The detailed numerical computations of this work clarify previous results, and also show
some unexpected aspects of the thermal convection at low Prandtl numbers, o.

Far from the small Ekman number limit (£ > 3.16 x 107%), the antisymmetric prograde
waves with low m,. can be preferred; m. depending on 7. For instance, m. = 1 for n = 0.2,
and in other computations with n = 0.35 and differential heating (not displayed here),
m. = 2.

For n = 0.2, and a wide range of E (see table 2.3), the transition OEA/SC takes place
near ¢ = 0.023, namely, it occurs near the Prandtl number of the experimental liquid
metals in normal laboratory conditions. At this value both modes become unstable almost
at once, and consequently nonlinear chaotic dynamics may be expected at or near R.. So,
the numerical and experimental study of these regimes appears as an interesting objective
easy to reach in the near future. By decreasing E the transition to SC modes takes place at
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lower ¢ values, this means that at the very low Ekman numbers of the planetary cores it is
very unlikely that convection can excite the outer-equatorially-attached modes. However,
they could be excited by other mechanisms, or become relevant due to the action of the
magnetic field on the equatorial waves.

The location of the transition point could explain why [106] detect temporal-chaotic
states near the onset of convection with n = 0.4 and ¢ = 0.025, and a transition to
stable travelling waves followed by amplitude vacillations for moderate and large o val-
ues. However, the nonlinear results of [101], [59], [87] and [88] among others, obtained
for cylindrical annuli of large radius ratios, suggest that in thin spherical shells, the pre-
ceding behaviour could have another reason. Sideband instabilities leading to spatially
modulated waves, and mean zonal flow/resonance instabilities at moderate/low o are the
mechanisms responsible for the instability of the thermal Rossby waves. At low o, the
region of stability of the waves comes away from the neutral stability curve, and becomes
narrower until disappearing for very low o values, so stable complex time-dependent flows
develop at the onset of convection.

Our results are restricted to wide spherical shells, and it could be interesting (but very
expensive) to see how the transition OEA/SC moves by narrowing the gap. Other linear
calculations made for n = 0.35 down to £ = 1.20 x 1077 with differential heating, show
that the dominant modes in the small-Ekman-number limit are also columnar for o = 0.1,
but attached to the inner boundary.

For o greater than approximately 0.023, the modulation of the eigenfunctions along the
folds of the neutral stability curves (o, R™) explains the bi-critical bifurcations labelled
SC/SC. When two neutral stability curves become tangent, the eigenfunctions at the
tangency point have the same structure. Moreover, a sudden decrease in the Rayleigh
number takes place (see figure 2.8). Consequently, if a neutral curve becomes preferred
after the tangency, at a higher o, the new preferred modes look like those that were
preferred before (but for the azimuthal wavenumber).

For very low o, the equatorially trapped mono-cellular modes are soon superseded by
multicellular modes when E decreases. Therefore, a direct transition between equatorially
trapped and spiralling columnar modes exists only in a narrow range of Ekman numbers,
at the beginning of the rapidly rotating regime. This result agrees qualitatively with the
sketch of [89].They also found that in rotating annuli at low E and o the transition is
between multicellular and spiralling columnar modes. The z-dependence of the modes
of convection inside the fluid shell is stronger in spherical than in cylindrical geometry.
When the multicellular patterns become selected, the convection tends to fill the shell,
spiralling from the body of the fluid by the effect of the rotation, but without detaching
from the outer equatorial boundary. At the same time, small vortices, which remain stuck
to the outer boundary, appear. By comparing the structure of these modes with those
found by [3], and [124] with stress-free boundary conditions, it seems that the non-slip
boundaries tend to inhibit the formation of such vortices, in the sense that they are smaller
and more confined.
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The numerical potential laws obtained with non-slip boundary conditions and low
Prandtl numbers agree well on average with the leading order of the theoretical asymptotic
expansions of [94], [14] and [32]. However, the jumps of the precession frequencies, for
low o values, can indicate that even at £ = 107% the asymptotic limit for w, is not fully
reached.
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Chapter 3

Antisymmetric polar modes of
thermal convection in rotating fluid
spherical shells at high Taylor
numbers
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Antisymmetric polar modes of thermal convection in rotating
fluid spherical shells at high Taylor numbers

ABSTRACT

The onset of thermal convection in a rotating spherical shell of intermediate radius
ratio = 0.4 is studied numerically for Taylor numbers T'a > 10'! and the Prandtl number
of the liquid sodium (o = 0.01). For the first time, it is shown that at very high Taylor
numbers the first unstable mode can be antisymmetric with respect to the equator, and
confined inside a cylinder tangent to the inner sphere at the equator (polar mode). The
exponent of the power law determined from the asymptotic dependence of the critical
Rayleigh number for very high Ta is 0.57, lower than 2/3, given theoretically for the
spiralling columnar modes, and than 0.63, found numerically for the outer equatorially-
attached modes.

Published in Physical Review Letters, 101 (2008) 194501-1 — 194501-4.
Ferran Garcia, Juan Sanchez and Marta Net.
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The thermal convection in fluid spherical shells is a fundamental problem in geophysics
and astrophysics. For instance, the Earth’s magnetic field is generated in its interior by
convection driven by thermal and compositional buoyancy. In this way, many of the
dynamo features are predetermined by the properties of convection. The large-scale zonal
winds observed in the surface of Jupiter at mid- and low-latitudes and of Saturn seem
to be maintained by deep convection [5]. In the last twenty years, a great quantity of
experimental, theoretical and numerical studies, devoted to improve the understanding of
the basic mechanisms which govern the convection in spherical geometry, have appeared.
The introductory sections of [124, 32, 42, 41, 79], among others, provide good reviews of
the state of the art on this subject.

The theoretical paper [14] established that the critical mode for the onset of thermal
convection in self-gravitating, and internally heated fluid spheres was a columnar travelling
wave, localised around a critical radius r; < r. < r,, and symmetric by reflections with
respect to the equator. In the inequality r; and r, mean the inner and outer radii of
the shell. This critical mode fulfils (v,, vy, v,)(r,8,) = (v., —vg,v,)(r, ™ — 0, ¢), and
O(r,0,¢) = O(r,m — 0, p), where (v,,vg,v,) is the velocity field in spherical coordinates
(0 measuring the colatitude), and © the temperature perturbation of the conduction
state. The validity of this symmetry has been confirmed numerically by several authors,
by comparing with the modes obtained for fluid spherical shells of small n = r;/r,, and
also in laboratory experiments [23]. Since then, symmetric columnar solutions have been
assumed in most of the studies devoted to find or to improve the asymptotic dependence of
the onset of instability in spherical shells, independently of its 17 and of the Prandtl number
o of the fluid. However, there are some ranges of parameters where the latest asymptotic
theories in fluid spheres [66] and spherical shells [32] do not apply. For instance, the latter
does not fit properly for a small range of n around 0.48 and 0 = 1. As far as we know
the reason remains unknown. Moreover, they do not cover small-o fluids because in fluid
spheres and small-n spherical shells the convection sets in with a symmetric pattern, but
outer equatorially-attached and multicellular [124, 125, 79]. So, in a problem with four
parameters it is feasible that other kind of modes become preferred, mainly at very high
Ta.

The numerical linear stability analysis of the conduction state presented in this letter
shows, for the first time, the existence of antisymmetric modes of convection preferred
at high Ta in fluid shells of small ¢ and moderate 7, independently of the boundary
conditions applied. For these solutions, the velocity field and © fulfil (v,, vy, v,)(r, 0, ¢) =
(—vp, v, —v,)(r,m — 0, ¢), and O(r,0,¢) = —O(r,m — 6, ). Antisymmetric equatorially
trapped inertial waves (solutions of the Poincaré equation) were calculated before by [119],
and recently [79] have found numerically preferred antisymmetric thermal Rossby modes
filling the shell at moderate Ta.
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The Boussinesq approximation of the mass conservation, linear momentum and energy
equations in the rotating frame of reference,

V-v = 0,
(O +v-V)v = —Vr+ Vv —2Ta"?’k x v + Or,
o0 +v-V)O = VO+ (R+n(l—n)"*r>R)r-v,

are solved for a fluid spherical shell rotating about an axis of symmetry with constant
angular velocity € = Qk, subject to internal or differential heating and radial gravity
g = —~r, where 7 is a constant, and r the position vector. Stress-free (v, = 0,(vg/1) =
0r(v,/7) = 0) or non-slip (v, = vy = v, = 0), and perfectly conducting (© = 0) boundaries
are employed. Notice that in the formulation the centrifugal force is neglected since in
the Earth’s outer core and in the major planets 2%/ < 1, and that the same units as
in [106] are used. The non-dimensional Taylor, internal (R) and external (R’) Rayleigh
and Prandtl numbers are

Qd* P qyad® R yaATd*

Y

v
v 3epr?y’ KU

Ta'? = , 0= —,

K
and the conduction state is given by v = 0, and T.(r) = Ty — (R/20)r* + (R'n/o(1 —
n)?)/r. In the above definitions o means the thermal expansion coefficient, v the kinematic
viscosity, ~ the thermal diffusivity, c, the specific heat at constant pressure, ¢ the rate
of heat due to internal sources per unit mass, AT the difference of temperature between
the inner and outer boundaries due only to differential heating, and d = r, — r; the gap
width.

The solutions up to Ta = 10'? are computed with the method described in [79],
by using 60 radial points, and spherical harmonics of maximal degree 100, but we have
checked that, at T'a = 5 x 10!, an increase of the resolution to 80 by 160 leads to maximal
differences of 1.2% in the critical Rayleigh number of the preferred modes of azimuthal
wavenumber m, R”', and of 0.02% in the critical precession frequency w!*. From now on
R’ = 0, unless it is said explicitly.

Fig. 3.1, computed with stress-free boundary conditions, shows the dependence of R,
and w™ on Ta > 10", for m = 12,---,19. Negative precession frequencies mean that
the waves travel in the prograde direction with phase speed ¢, = —w?"/m. The changes
of slope in Fig. 3.1(a) and jumps of Fig. 3.1(b) correspond to the crossing of symmetric
outer equatorially-attached modes [120] and the antisymmetric modes of Fig. 3.2 (see
figure caption for the meaning of each plot), which spread from the inner to the outer
boundaries, but confined inside a cylinder tangent to the inner sphere at the equator
(polar modes). The kinetic energy density is almost z-independent, as it happens with
the spiralling columnar and the equatorially-attached modes, although, for the polar
solutions, v, also depends strongly on z, but its maximum value is less than half that of
the other components of the velocity field. The contour plots of © are not shown because
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Figure 3.1: (a) The critical Rayleigh number R, and (b) the critical precession frequency
—w?, of each critical mode of azimuthal wavenumber m = 12,--- 19, plotted versus 7T'a,
forn =04, 0 = 0.01.

they resemble very much those of v,.. The main difference is that they are a few degrees
out of phase in the ¢ coordinate.

The envelope of the curves of R* versus T'a gives the critical Rayleigh number R,
and the preferred pattern of convection. In the range of Ta of Fig. 3.1, the dominant
modes are m = 17,18,14,16, successively. At (Ta, R.) = (1.49 x 10'1,2.13 x 10°) the
m = 18 symmetric equatorial mode is superseded by the m = 14 antisymmetric polar
mode with a decrease of a 31% in —w.. We have checked that with non-slip boundaries
there is a jump from spiralling columnar to antisymmetric polar modes in the same range
of T'a. The eigenfunctions look like that of Fig. 3.2, with very thin Ekman layers for vy
and v, that stabilize the fluid, rising R, by 140% at Ta = 5 x 10'!, although the critical
precession frequency, w,, decreases hardly by 1.4%. Fig. 3.2 is calculated for stress-free
boundary conditions. White means the largest positive velocity and kinetic energy, and
the background grey means v = 0 in any case.
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(b) (©)

(f)

Figure 3.2: Preferred antisymmetric polar mode of convection with azimuthal wavenumber
m = 16 at Ta = 4 x 10!}, for n = 0.4, 0 = 0.01. (a, d) Contour plots of the radial and
azimuthal velocities on spheres of radii » = r; + 0.50d and r ~ r; + 0.99d, respectively.
(b, ¢, e, f) Contour plots of the radial, colatitudinal and azimuthal velocities, and of the
kinetic energy density on meridional sections, respectively.

To calculate the asymptotic dependence of the critical values, we have increased the
degree of the harmonics gradually up to 150 with T'a to maintain the errors into the
range determined previously. Figure 3.3 shows the results. The solid line corresponds
to the potential fitting R, = 0.78 x T'a®57, and, although it is not included in the figure
because of the jumps among modes, that for —w, gives w, = —14.21 x Ta’33. The
power 0.57 is clearly lower than 2/3, the leading order of the asymptotic expansions given
theoretically by [94, 14, 32] for the spiralling columnar modes, and than 0.63, found
numerically in [79] for the outer equatorially-attached modes. However, it is important to
notice that this characteristic is not exclusive of the antisymmetric convection. The same
power rules for the inner modes attached to the external part of the tangent cylinder. See
for instance Fig. 3.4 computed with the parameters of the outer Earth’s core, i.e, with
non-slip boundary conditions and differential heating (R = 0) for n = 0.35 and o = 0.1.
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Figure 3.3: The critical Rayleigh number R., and the critical precession frequency —w,
plotted versus T'a, for n = 0.4, 0 = 0.01. The stars correspond to the computed R, values,
the solid line to its potential fitting, and the dashed line to —w.. The left OY-axis scales
R, and the right OY-axis —w..

In both cases the flow is restricted to a small portion of the fluid at high latitudes. In
contrast to what happen with the equatorially-attached modes of the same number of
radial cells [79], or with the spiralling columnar modes, in Fig. 3.3 by increasing T'a, —w,
decreases when m increases. In addition, only even modes become preferred. Probably,
this fact is due simply to the geometry, since in the case of Fig. 3.4 the preferred modes are
odd for Ta > 10'3. Despite these differences, all of them fulfill the power law w, o T'a'/3.

Fig. 3.5 shows the internal Rayleigh number R™ and w™ versus T'a for the two lowest
envelopes of the neutral stability curves of m = 14 and m = 16, again with n = 0.4 and
o = 0.01. The solid lines correspond to m = 14, and the dashed to m = 16. Notice that
the thick lines, which are the lowest envelopes for each mode, give the R]* and w* of
Fig. 3.1. The thin lines refer to the second modes in becoming unstable and contributing
to the convection. At Ta = 10! the second eigenfunction is already antisymmetric for
m = 14 (thin solid line), but symmetric and bicelullar for m = 16 (thin dashed line).
The curve of bicelullar modes cross that of antisymmetric modes at T'a = 1.28 x 10!, In
both cases (m = 14, 16), by increasing R™ the new interchange of eigenfunctions takes
place in the opposite way than following the thick curves, i.e, the antisymmetric polar
modes are superseded by those equatorially trapped [121]. However, the latter are soon
replaced by polar symmetric modes (see Fig. 3.6), at T'a ~ 1.78 x 10! for m = 14, and at
Ta ~ 2.27 x 10" for m = 16. We have checked that it is so at least up to T'a = 10'3. The
two types of polar solutions have the kinetic energy density confined between # ~ 13° and
0 ~ 21°, remaining almost z-independent. In addition their phase speeds differ less than
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Figure 3.4: The critical Rayleigh number R., and the critical precession frequency —w.
plotted versus T'a, for n = 0.35, ¢ = 0.1, non-slip boundary conditions and differential
heating. The stars and plus symbols correspond to the computed R, and —w,. values,
respectively, and the solid lines to their potential fitting. The left OY-axis scales R, and
the right OY-axis —w..

0.5%, but the Rayleigh number of the symmetric solutions increases by 12%.

In this letter we have reported the existence of preferred polar antisymmetric modes of
thermal convection, and determined numerically the power law dependence of R, with Ta.
Moreover, from the preceding results we can conclude that, although we have not found
preferred symmetric polar modes, it is possible they become critical for other parameters.
Furthermore, the same could happen with other families of modes, not shown in this letter,
but found at not very high R. For instance, the third and fourth preferred eigenfunctions
for m = 18 at T'a = 2 x 10'? are antisymmetric and symmetric polar bicellular modes,
respectively. We have also detected antisymmetric equatorially trapped modes similar to
the inertial waves of [119], and tri and quadricellular modes like those described in [3].

Assuming the equatorial symmetry in the study of low-o convection in spherical ge-
ometries of moderate 7 can lead to wrong solutions, although they can be indistinguishable
from the real flows when they are observed from a pole (compare Fig. 3.2 and Fig. 3.6).

The non-preferred modes of convection may also contribute to nonlinear flows. The
superposition of the polar symmetric and antisymmetric nonlinear waves may give rise to
coherent polygonal structures without equatorial symmetry, of the type observed in the
north pole of Saturn.
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Figure 3.5: (a) The Rayleigh number R™, and (b) the precession frequency —w™, of the
first and second envelopes of the neutral stability curves of m = 14, and m = 16, plotted
versus T'a, for n = 0.4, 0 = 0.01.
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Figure 3.6: Symmetric polar mode of convection with azimuthal wavenumber m = 16 at
Ta = 4 x 101, for n = 0.4, ¢ = 0.01. Same contour plots as in Fig. 3.2.
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Finally, the preceding results motivate the study of the laminar nonlinear dynamics of
the polar flows, and their implication in the generation of planetary and stellar magnetic
fields. The polar convection is known to grow in strongly nonlinear regimes [81, 29].
However, our preliminary nonlinear results indicate the existence of polar antisymmetric
flows at very low Rayleigh numbers.
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A comparison of high-order time integrators for thermal
convection in rotating spherical shells

ABSTRACT

A numerical study of several time integration methods for solving the three-dimensional
Boussinesq thermal convection equations in rotating spherical shells is presented. Implicit
and semi-implicit time integration techniques based on backward differentiation and ex-
trapolation formulae are considered. The use of Krylov techniques allows the implicit
treatment of the Coriolis term with low storage requirements. The codes are validated
with a known benchmark, and their efficiency is studied. The results show that the use
of high order methods, especially those with time step and order control, increase the
efficiency of the time integration, and allows to obtain more accurate solutions.
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4.1 Introduction

The study of the thermal convection in rotating spherical geometries is fundamental to
explain many geophysical and astrophysical phenomena, such as the generation of the
magnetic fields, or the differential rotation observed in the atmosphere of the major plan-
ets. The difficulties related to the experimental studies enhance the importance of three-
dimensional numerical simulations in these fields. For this reason the development and
improvement of the numerical techniques is basic for this research.

Most of the numerical papers dealing with spherical geometries (see [69, 112, 76, 29],
among others), employ second order time integrators to find periodic, quasi-periodic, or
even chaotic attractors by direct numerical simulation (DNS). The exclusive use of time
integrations is not sufficient to establish the origin of the laminar flows and their depen-
dence on the parameters, specially in the case of subcritical or multicritical transitions. In
these situations pseudo-arclength continuation methods [68, 98, 99], and the linear sta-
bility analysis of the time dependent solutions [100, 40] provide powerful instruments to
clarify the dynamics. In addition, the computation of Liapunov exponents is used to assess
if a system is chaotic. All these tools have been historically applied to low-dimensional
systems, but the increase in computational power, and the advances in numerical linear
algebra have motivated their use in high dimensional systems. However, these techniques
require to find accurate solutions, and, in finding these, higher order time integration
methods may prove advantageous. In fact, even if one is only interested in low precision
time evolutions, high order methods can sometimes be more efficient than low order ones.

For the spatial discretization of the equations on the sphere, many of the above men-
tioned codes use pseudo-spectral methods based on spherical harmonics basis functions,
which provide high accurate solutions with relatively few grid points [20]. These methods
are based on transformations from the spectral to the physical space [83]. The calculation
of the quadratic terms, appearing in the truncated equations, is performed in the physical
space.

For time-integration, some authors [44, 112, 30], among others, use semi-implicit inte-
gration methods, namely, they treat the linear terms (except the Coriolis term) implicitly
with a Crank-Nicholson scheme, and the non-linear and the Coriolis terms explicitly with
an Adams-Bashforth method [45]. In [112], a mixed Euler and integrating factor technique
is also considered. Others, as in [62] use a modified second order accurate Runge-Kutta
method. In all these methods the linear systems of equations to be solved at every step
can be separated into spherical harmonic components, which can be solved independently,
so that only a set of small linear systems must be solved at each time step. At high ro-
tation rates, though, when the Coriolis force dominates over the viscous forces, stability
considerations lead to extremely small time steps. To avoid this situation, the Coriolis
term can be treated implicitly [45, 62]. Then the equations for a given spherical harmonic
of order m are coupled for all degrees [. This implies that a large block-banded linear
system has to be solved for each order m. As it was described in [62], solving them by
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means of direct factorization methods becomes prohibitive if relatively high resolutions
are employed.

In this paper we study the efficiency of several time integration methods, with the
Coriolis term treated either as semi-implicit or as fully implicit, giving rise to the different
algorithms presented. We show that (preconditioned) Krylov or Arnoldi iterative methods
can be used to solve the Coriolis-implicit linear system, reducing considerably the amount
of memory required.

The time integration methods we use are based on the backward differentiation for-
mulae (BDF) implemented both with constant stepsize and variable stepsize and variable
order (VSVO). The BDF are widely used in very stiff problems [55]. Being fully-implicit
methods, they are usually implemented with a Newton-Krylov method for solving the
non-linear equations [61]. In real geophysical and astrophysical flows, however, the non-
linear terms are very costly to evaluate, and thus, in our time integration codes, we apply
semi-implicit backward differentiation-extrapolation (IMEX-BDF) formulae, where the
non-linear terms of the equations are treated explicitly.

The rest of the article is organized as follows. In Section 4.2, the formulation of the
problem and the spatial discretization of the equations are introduced. In Section 4.3,
the time discretization schemes and some details of their implementation are described.
Section 4.4 contains a comparison with a previous benchmark [30]. In Section 4.5 the
results of the study are presented, that is, the efficiency of the time integrators is compared
and analyzed, the differences between the constant stepsize methods are shown, and the
study of the implicit and semi-implicit variable stepsize and variable order methods is
reported. Finally, the paper closes in Section 4.6 with a brief summary of the main
conclusions.

4.2 Mathematical model and spatial discretization

We consider the thermal convection of a spherical fluid shell differentially heated, rotating
about an axis of symmetry with constant angular velocity €2 = €2k, and subject to radial
gravity g = —vr, where 7y is a constant and r the position vector. The mass, momentum
and energy equations are written, in a rotating frame of reference with angular velocity
Q, using the same formulation and non-dimensional units as in [106]. The units are the
gap width, d = r, — r;, for the distance, v?/yad?* for the temperature, and d?/v for the
time, r; and r, being the inner and outer radii, respectively, v the kinematic viscosity,
and « the thermal expansion coefficient.
The velocity field is expressed in terms of toroidal, ¥, and poloidal, ®, potentials

v=Vx(Ur)+V xV x(or). (4.1)

Consequently, the equations for both potentials, and the temperature perturbation, © =
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T — T, from the conduction state v = 0,7 = T.(r), with r = ||r||2, are

[0, = V*)Ly —2E7'0,] ¥V = —2E7'Q® — 1V x (w x V), (4.2)
[(0, = V)L, —2E7' 0, VP& 4+ Ly© =2E'Q¥ +r-V XV X (wx V),
(00, —V?)O = Ry(1—n)*r 7 Ly® = —o(v- V)6,

where w = V x v is the vorticity.
The parameters of the problem are the Rayleigh number R, the Prandtl number o,

the Ekman number E, and the radius ratio n. They are defined by
_ yaATd v

v
R —_— = -_— p— p—
kv Qd?’ “ K’ "

T
o (4.5)
where & is the thermal diffusivity, and AT the difference of temperature between the inner
and outer boundaries.

The operators Lo and Q are defined by Ly = —r*V?+0,(r?0,), Q = 1 cos 0V? — (Lo +
r0,)(cos 00, — r~'sin0dy), (r,0, ) being the spherical coordinates, with # measuring the
colatitude, and ¢ the longitude. In non-dimensional units the conduction state reads
T.(r) =To+ Rn/o(1 —n)*r.

Non-slip perfect thermally conducting boundaries ® = 9, = ¥ = © = 0 are used.

A standard treatment of the spatial dependence of the equations is used, so we com-
ment only on the basic points (see e.g., [44, 112], for details). The functions X = (¥, ®, 9)
are expanded in spherical harmonic series up to degree L, namely

L 1
X(tr,0,0)=> > X", )" (0,¢), (4.6)
=0 m=—1
with U, = U7, &, = ¢ ©;™ = O, U = &) = 0 to uniquely determine the two
scalar potentials, and Y;™(0,¢) = P/"(cos#)e"™?, P/™ being the normalised associated
Legendre functions of degree [ and order m. The equations (4.2)-(4.4) written for the
complex coefficients become

DU = DU ¢ - B (mU — [QB]) — [V x (wx V)], (47)

I(1+1)
o, D0 = Doy — O + ) [2E~" (imD, @} 4 [QU]}")
+r-VXxVx(wxv)]"], (4.8)
0,0 = 'DO" + o (I + 1)Rn(1 —n) *r 2@ — [(v-V)O]", (4.9)
with boundary conditions
Ut =9" =0,9" = 0" =0. (4.10)
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The spherical harmonic coefficients of the operator @ = Q% + Q' are

[Q“fI" = —l(l + Q)CﬁlDl—:zfln—ih [Qlf]}n ==+ 1)0?1D;zfzn—lla (4.11)

2 2\ 1/2

with Dj =8, + % = (%) cand Dy =02 + %ar - W; D (119)
In the radial direction, a collocation method on a Gauss-Lobatto mesh of N, + 1 points
is employed (N, — 1 being the inner number of points).

The spherical harmonic coefficients of the non-linear terms in equations (4.7-4.9) are
obtained following [44]. The velocity and vorticity fields are computed first on a colloca-
tion mesh in the three coordinates (r, 6, ¢) with the help of dealiased Legendre and fast
Fourier transforms [13]. The cross product is computed on the mesh, and, finally, trans-
formed to the spectral space. The computation of the coefficients of the non-linear terms
of equation (4.9) requires the evaluation of the inner product (v - V)© on the collocation
mesh, and then to transform back to the spectral space.

The mode m = [ = 0 is only nonzero for ©, and the amplitudes for m = 0 are real.
With these considerations, a large system of ordinary differential equations of dimension
N = (3L? 4+ 6L + 1)(IN, — 1) must be integrated in time.

4.3 Time integration methods

In order to simplify the notation, equations (4.7-4.9) are written in the form
Lot = Lu+ N (u), (4.13)

where u = (V7*(r;), ®)"(r;), ©]"(r;)) is the vector containing the values of the spherical
harmonic coefficients at the inner radial collocation points, and Ly and £ are linear
operators including the boundary conditions. The former is invertible. It is the identity
for ¥} and ©", and the operator D; for @} (see the time derivatives in egs. (4.7-4.9)).
The operator £ includes the terms D, 97", Df®* — O, and o 'D,07 + 0 (1+1)Ry(1—
n) " 2r 3@ of eqs. (4.7), (4.8) and (4.9), respectively, in any of the schemes used, and
part of the Coriolis terms to be specified below. The operator N, which will be treated
explicitly in the IMEX-BDF formulae, will always contain the non-linear, and the rest of
the Coriolis terms.

Time integration methods look for approximations u™ = wu(t,) to solutions of (4.13)
at time levels t, = t,_1 + At,_1, n = 1,2,...,. The IMEX-BDF formulae mentioned
before are related to the backward differentiation formulae (BDF) [31, 55]. These are
collocation multistep methods, which obtain u™*! from the previous approximations u" 7,

7 =0,1,...,k — 1, k being the number of steps in the formula, in the way we now
describe. Consider first the interpolating polynomial g, ; of degree at most k, such that
G k(tn—j) = u", for j = —1,0,...,k — 1, where the unknown u"*! is included. The
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Figure 4.1: a) Absolute stability regions of the BDF up to order six with constant stepsize.
The regions are the exterior of the closed curves. b) Detail close to the origin.

value of the latter is determined by requiring that g, ; satisfies the differential equation
at t = t,y1, that is, Lo i(tnr1) = L™ + N (u™1). In order to avoid solving a full
non-linear problem at every step, in the IMEX-BDF formula [67] the term A/(u"*!) is
replaced by the extrapolated value

Lobnr(tni1) = L™ + pui_1(tnss), (4.14)

where p,, ;_1 is the interpolating polynomial of degree at most k—1, such that p,, j_1(t,—;) =
N(u"9), for j = 0,1,...,k — 1. Tt is useful to express g, .(t) as the sum ¢, x(t) =
qgvk(t) + w1, 1 (t), where 1, is the polynomial of degree at most k taking value 1 at
tnt1, and 0 at ¢,_;, for j = 0,1,...,k — 1. Consequently qgvk coincides with g, at ¢,_;,
for j =0,1,...,k— 1, and takes value 0 at ¢,,.;. Then, the linear system to be solved in
order to find u™*! can be expressed as

qg,k;(thrl)

At At
7— —nﬁlﬁ) Wt = Lo e (ts) — 4.15
( Yo(n) yo(n) 0 1(ft) Lo g (tns1) (4.15)

where 7 is the identity operator, and o(n) = in,k(tn+1)Atn. The practical computation
of v(n), 45 x(tns1)/ Lni(tns1), ete. can be done systematically and easily by following
ideas in [54, S IIL.5].

When the time steps are constant (At,, = At) the expressions (4.14) and (4.15) become
simpler. For example, (4.15) becomes

At oy o At ,
7- —Ll.c) e DTt N ral V(T 4.16
( Y0 0 i—o 0 ; Y0 0 ( ) ( )

where the coefficients «;, 3; and 7o do not depend on n, and are listed, for instance, in [98].
It is well known that, if the step number £ satisfies that £ < 6, and the time steps are
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constant or the ratios At, /At,_; are kept adequately bounded (see e.g. [54, S II1.3]), the
BDF formulae are O-stable, i.e., they propagate the errors in a stable way. If k > 7 they
are unstable and useless for time integration. It is also known that for £ < 6 the k-step
formula is convergent of order k, that is, the errors u(t,) — u" are O((maxo<;j<n—1 At;)").
Therefore the k-step formula is also termed the k-th order formula. Their regions of
absolute stability are shown in Fig. 4.1. A point z = AAt? is in the absolute stability
region of a numerical time integration method, if when it is applied to the equation
y = Ay, A € C, with fixed stepsize At, the numerical solution y, is bounded as n — oo.
For the BDF formulas, the regions are the exterior of the closed curves shown in Fig. 4.1a.
Fig. 4.1(b) shows a detail of them close to the origin. Their knowledge helps to understand
the behaviours described in Section 4.5.

Notice that contrary to the variable stepsize case (4.15), the matrix in the system to
be solved at every step in (4.16) is constant for all n, being this property one of the main
attractions of constant stepsize formulae. On the other hand, the main reason to use
variable stepsizes is to maintain local (time-integration) errors below a desired tolerance,
with the aim of maintaining a given accuracy along all the time interval considered.
Changing the stepsize can also be combined with using formulae of different orders (step
numbers) k, while maintaining accuracy. In this way, the integration can be started with
k =1 (and small Aty), when the lack of previously computed values precludes the use of
higher order formulae, and then increase the order (and the stepsize) as the integration
advances and previous approximations ™7 are available. The strategy of variable stepsize
and variable order (VSVO) codes we have used is outlined in the following paragraph. Let
us mention first that for the fixed-stepsize codes, the starting values v/, j = 1,...,k — 1
are obtained by time integration from ¢;_; to ¢; with a VSVO code and sufficiently small
tolerances € and €” (see (4.18) below for the meaning of these values).

As explained in [54, S IIL.7] the local error of the k-step BDF can be estimated
as Aty [¢ni+1(tns1) — ¢ni(tn)], so that, in a similar way, that of the k-step IMEX-BDF
formula can be estimated as

EST”(]C) = Atn [Eal(pn,k(tnﬂ) o pn,kfl(thrl)) - (Qn,k+1(tn+1) - Qn,k(tn)” : (4'17)

The corresponding factor for the stepsize, i.e., the factor by which At, is multiplied to
obtain the next time stepsize At, 1, is

o gr‘u?+l|+€a 1/(k+1)
[ (k) = min <fma$(k)7z:HllaXN(EST—?(k)) , (4.18)

where €% and " are, respectively, the tolerances below which the absolute and relative
values of the local (time discretization) errors are required, i indexes the components of the
vectors, and fq.(k) are upper bounds for the time step ratio At,1/At,, which are used
in practical implementations of the BDF methods to enhance their stability properties (see
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[54, S II1.5]). They depend on the order k, and we have taken f,..(k) =5,4,3,2,1.6,1.4
for k =1,...,6, after diverse numerical experiments.

If f*(k) < 1, it is assumed that the local error is unacceptably large, and the computed
value u"*1! is rejected and recomputed with a smaller stepsize, namely, At/, = 0.9f"(k)At,
(0.9 being a safety factor). If, on the contrary, f™(k) > 1, u"*! is considered sufficiently
accurate, so that the integration can proceed to find a new approximation u, . Before
doing so, the estimations EST"(k—1) and EST"(k+1) of the local error of the (k—1)-step
and (k+1)-step formulae are obtained, together with their corresponding factors f™(k—1)
and f"(k +1). The value ¥’ = k — 1,k, ork + 1 corresponding to the largest factor is
chosen for the next step (always with &’ not larger than a previously fixed maximum
allowed order), and wu,2 is computed with the k’-step formula, and with stepsize equal
to Aty = 0.9f"(k')AtL,.

Whether the k-step IMEX-BDF formula is used with variable or constant stepsizes,
the linear systems (4.15) or (4.16) have to be solved to compute u"*!. In the sequel, we
will represent these systems as

Hu"t =", (4.19)

H being the radial discretization of Z — hLy 'L with h = At,/vo(n) or h = At /7, and
we comment now on their effective solution. We first notice that once v™ is evaluated,
equation (4.19) decouples for each azimuthal wave number m, thus, at every time step,
L + 1 linear systems of the form

H™U™ =V™ m=0,..L (4.20)

have to be solved. The vectors U™ and V™ contain, respectively, the unknowns and the
right hand side of (4.19) with azimuthal wave number m. The structure of the matrices
H™ depend on which terms of eqs. (4.7-4.9) are included in the operator £, that is, on
which terms are treated implicitly (of course they depend also on the way the unknowns
are ordered). We describe now the main features of these matrices for all the methods
tested. They are summarised in tables 4.1 and 4.2. The full details have been left to the
Appendix.

The inclusion in £ of the diagonal parts of the Coriolis term (from now on referred
to as C?) containing im¥T and im®" (see eqs. (4.7-4.8)), and of Q in N, gives block-
diagonal matrices H™, whose memory requirements are O(N?2(L + 1)(L + 2)) due to the
triangular truncation (4.6), namely, quadratic in the spherical harmonic truncation order.
From now on, the time discretization with this treatment of the operators will be called
the Q-explicit method.

Several authors (see [44, 112], and [62] in the low rotation method section, among
others) take the Coriolis term fully explicit in their codes, then the linear systems (4.19)
decouple also for the spherical harmonic degree [, and all the H™ are equal. They have
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block-diagonal structure, each block depending on /. This means that matrices of dimen-
sion N? must be inverted using LU factorisations for each degree I. This approach is
efficient in memory requirements since only a storage O(N?(L + 1)) is needed. However,
at low Ekman and high Rayleigh numbers (those with realistic significance) very small
time steps are needed to satisfy the CFL condition.

Taking into account that, in principle, the more implicit the method is, the larger
the stepsize can be, and that, for the problem we are considering, the evaluation of the
non-linear terms is expensive in CPU time, it could be computationally efficient to include
other parts of the Coriolis term in the linear operator L.

By adding Q" or Q' (see eq. 4.11) to L, the matrices H™ become upper or lower
block-Hessenberg matrices, respectively. They can be solved with the same memory
requirements and number of operations as the Q-explicit method, because Q% and Q'
must be evaluated in any case. The systems (4.20) are solved by using backward or
forward block substitution, by inverting the same diagonal submatrices as in the (Q-explicit
method. In order to implement this possibility in a symmetric way, the two options are
used alternately, that is, one step is performed with Q" implicit and Q' explicit, and
vice-versa in the following step. From now on, this time discretization will be called the
Q-splitting method.

By setting Q totally implicit the operator N only includes the non-linear terms. Us-
ing this scheme the matrices H™ become block-tridiagonal. A direct block method for
solving these linear systems involves a big amount of memory storage. A LU factorisation
requires the storage of block matrices with a memory size O(N?(L — m + 1)?) for each
m =0,---,L, due to the change of the inner block structure during the Gaussian elimi-
nation. Therefore, the total amount of memory needed is cubic in the spherical harmonic
truncation parameter L. The storage of these matrices becomes prohibitive for high reso-
lutions when dealing with direct solvers [45, 62]. However it will be seen that matriz-free
methods based on Krylov techniques [96], GMRES [97] in our case, can be used efficiently,
to solve the block-tridiagonal linear systems with the same memory requirements as in
the @-explicit case. The increase of the cost in solving the linear systems (4.20) may
be offset by the increase of the time stepsize. The initial approximation for the solution
of the linear system is obtained by extrapolation from the previous steps, as is usually
done in the implementations of the BDF. From now on this method will be called the
@-implicit method.

The key point for using Krylov methods efficiently is to have a good preconditioner.
It has to resemble as much as possible the original matrix, and the linear system with
the preconditioning matrix must be easy to solve. We have used the block-diagonal, or
the upper or lower block-triangular parts of H™ as preconditioners. All of them can be
solved by an adapted direct LU method. We have concluded that adding the non-diagonal
blocks does not improve significantly the convergence, and then only the results for the
block-diagonal preconditioner will be reported.

As it is well-known, time integration with a constant stepsize can be unnecessarily
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expensive because the stepsize has to be taken small enough to cope with possible fast
transients. VSVO methods [54], though, do not suffer from this shortcoming. The price
to pay is that the matrices of the linear systems to be solved at every step depend on
the current time step, which changes during the integration. In order to avoid doing a
massive number of factorisations, Krylov methods can be used with a preconditioning
matrix depending on a fixed time stepsize At*. At each step, the number of iterations
needed by the iterative method will (partly) depend on how close the current At is to At*.
When the convergence of the iterative linear solver degrades the preconditioning matrix
can be updated with the current time step. This is the strategy we have followed for the
all the VSVO algorithms employed (see the Appendix for more details). In the case of
the IMEX-BDF methods, the preconditioner is updated if the number of iterations of the
linear solver exceeds a certain number (10 in all the calculations described).

All the semi-implicit methods described before have been implemented with constant
stepsize, and with variable time stepsize and order using our own codes (except the Q-
splitting VSVO method, which has been used only with constant stepsizes). From now
on, the VSVO implementations of the Q-explicit and Q-implicit methods will be called
Q-explicit VSVO and Q-implicit VSVO, respectively.

The last option considered is to take also the non-linear terms implicitly with a VSVO
formulation of the BDF. This leads to the solution of a non-linear system of equations
at each step. Due to the stiffness of the problem, it cannot be efficiently solved by fixed
point iteration, and it is then solved by an inexact Newton’s method. At each Newton’s
iteration, linear systems of similar structure to (4.19), but now including the Jacobian of
the non-linear operator A/, have to be solved. The matrix products by the Jacobian are
computed by finite differencing, and the linear systems are solved by a Krylov method.
See [61] for further details. From now on this method will be called fully implicit method.
We used the DLSODPK code of the ODEPACK package [61]. In this case the matrices
depend not only on the current time step, but also on the current solution. As before, they
can be preconditioned by the block-diagonal, or by the upper or lower block-triangular
matrices computed with a fixed time step At*. Again, a criterion for recomputing the LU
factorisations must be established. In our implementation, the preconditioner is updated
only if the ratio between the current At and At* exceeds 10 or is smaller than 1/10.

Observe that the fully implicit method requires one evaluation of the nonlinear terms
per iteration of the linear solver, and a further one per iteration in Newton’s method.
Since, in this particular and other computational fluid dynamics problems the evaluation
of the non-linear terms is expensive, semi-implicit are likely to outperform fully-implicit
methods despite the smaller stepsizes At they may be forced to take due to their poorer
stability properties.

Finally it must be stressed that besides preconditioning techniques, the efficiency of
Newton-Krylov methods can be improved by using weighted norms in all error-like vectors,
i.e., using vectorial tolerances to control the convergence. This has proved useful in our
calculations only for the fully implicit method (see [61] for details of the implementation).
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The weights we have used are given in Section 4.5.

Method Terms in £ Terms in A | Symbol, line
Q-explicit C? Qland Q" | +, solid
@-splitting Ce, Qland Q" | QUand Q! x, dotted
alternately alternately
Q-implicit Cc?, Q' and Q¥ x, dashed
Q-explicit VSVO | ¢4 Q! and Q" | +, solid
Q-implicit VSVO | ¢4, Q! and Q *, dashed
DLSODPK fully implicit o, dash-dotted

Table 4.1: Summary of methods tested for the equation Lot = Lu~+N (u). The second and
third columns indicate which part of the Coriolis terms are treated implicitly (included in
L) and explicitly (included in N), respectively. The operators C¢, Q' and Q" represent,
respectively, the diagonal part of the Coriolis terms, and the lower and upper parts of the
operator Q. The last column contains the symbols and lines used in Figs. 4.2 to 4.4 to
label each method.

Method Step and order | Linear solver Preconditioner
Q-explicit fixed block-diag. LU
Q-splitting fixed back and forward

block substitution
Q-implicit fixed GMRES block-diag. LU
Q-explicit VSVO | variable GMRES block-diag. LU
@-implicit VSVO | variable GMRES block-diag. LU
DLSODPK variable GMRES block-diag. LU

Table 4.2: Summary of solvers used for the linear systems with matrix H = Z — hL;'L
and h = At,,/70(n) or h = At/vy (see egs. (4.15-4.16)). The first column indicates if the
time step and the order are fixed or variable, the second indicates the linear solver, and
the third the preconditioner used if the solver is iterative.

Tables 4.1 and 4.2 summarise, for future reference, the main features of the methods
tested, and the linear solvers and preconditioner used for each one.

4.4 Comparison with the benchmark

To check our new non-linear code we have compared our results with the non-magnetic
data of [30], where several research groups present the results of a benchmark study for a
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convection-driven dynamo problem in a rotating spherical shell. Although the benchmark
deals with the convergence and accuracy of several spatial discretizations of the problem,
and not with the time integration, we have used the same parameters because they are
well known to the community of people working on convection in spherical geometry,
and because the kind of computation we are interested in (computation of periodic orbits
and their stability, for instance) are always close to regimes which are not yet chaotic.
Therefore, a transient to a periodic regime such as that of [30] is a good test for our
purposes.

The values of the parameters in [30] are n = 0.35, 0 = 1, F = 1073 and Rp = 100,
Rp being the Rayleigh number defined in [30]. Taking into account the different non-
dimensional units of both formulations, it turns out that R = (1 — n)oTa'/?Rp, so R =
65000. In addition, the relation between the temperatures is T' = Ro~'Tg, Ts being the
temperature scaled as in [30]. The initial condition recommended is velocity v = 0, and

temperature
rire 2A

V2T

with A = 0.1, z = 2r —r; — r,, m = 4, and P™(0) = /(2m + 1)!1/2(2m)!Isin™ 6 the
normalised associated Legendre function of order and degree m. By starting from it the
solution tends, after an abrupt transient, to an azimuthal travelling wave of wave number
m = 4.

In table 4 of [30] the authors provide the values and the estimated errors of some
data corresponding to the reference solution, which can be considered that obtained with
the pseudo-spectral code of Christensen, Wicht and Glatzmaier (CWG). They are the
precession frequency w, the mean kinetic energy density

Tp(r,0,¢) = (1 —2%)>P™(0) cos mep, (4.21)

1
B = — 2 4.22
kin 2‘/3 /VSU d‘/a ( )

Vs being the volume of the fluid shell, and the temperature Ts and the azimuthal velocity
v, at the point r = (r; +r,)/2, § = 7/2, whose @-coordinate is given by v,(r,6,¢) = 0
and 0,v,(r, 6, ) > 0. Their values are

w = 0.1824 £ 0.0050, Ejn = 58.348 +0.050, Tp = 0.42812 4 0.00012,
and v, = —10.1571 + 0.0020.  (4.23)

We have integrated with the spatial resolution which corresponds to the code by
CWG, i.e., with N, = 24, and a triangular truncation of the spherical harmonics (4.6)
with L = 32. The total number of equations is N = 75095. From now on, the test case
with this resolution, and the parameters of the benchmark will be called C}.

Most of the groups in [30] used a second order Crank-Nicholson scheme for the implicit
terms, and a second order Adams-Bashforth method for the explicit ones. Therefore, to
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compare our solutions, it is enough to integrate using order £ = 2. However we have
checked that all the solutions described in section 4.5, for the C case, give values inside the
intervals (4.23), although in the case of VSVO methods only when local error tolerances
were taken smaller than 1072, These results are not surprising because our codes are
based on the same spatial discretization than those of the CWG group, who obtained the
benchmark reference data, and we use at least second-order time integrators.

4.5 Results

To compare the time integration schemes presented in Sect. 4.3 we integrate the C case of
the previous section, and a second test also with 7 = 0.35 and o = 1, but with £ = 1074,
R = 800000, m = 7, N, = 48 and L = 63 (from now on it will be called the Cy case).
The total number of equations is now N = 577442. The higher resolution is needed to
properly solve the problem with a lower Ekman number. The solution tends now to a
travelling wave with m = 7. In both tests R ~ 1.78 R. has been selected to be at the same
relative distance to the critical Rayleigh number, R, at which the convection sets in.

Since at the initial condition (4.21) the norm ||0;ul|2 is extremely large, there is a strong
initial transient. This produces large irregular errors when the equations are integrated
with a constant stepsize method. Therefore the very initial transient has been discarded
to make our comparisons, and all the test runs of the time-stepping codes are started
with the same initial condition obtained after the solution has smoothed by a short time
integration ty. To obtain it, the Q-implicit VSVO method with very low tolerances has
been used. Then the system (4.7-4.10) is evolved from the new initial condition at time ¢,
to a final time ¢, at which the solution, u(t), is close to the periodic regime. As the limit
solution is a wave, ||u||s tends to a constant. In the C; case, tp = 0.053 and ¢y = 0.253,
and, in the Oy case, tp = 0.0112 and ¢ = 0.12. The time ¢, has been selected as the first
time at which ||u(to)||2 = [|u(ts)||2. After ¢y, the norm of u increases until it reaches a
maximum, and then finally decreases to a constant value close to ||u(ty)]|s.

To check the efficiency of the different schemes the relation between the relative error,
and the run time in seconds, rt, is studied. The former is defined as

Hu_urH?

[l |2

e(u) = , (4.24)
where u = u(ty) is the solution we want to check, and u, = u,(tf) is an accurate reference
solution obtained with the Q-implicit VSVO method, with tolerances for the relative and
absolute errors set to ¢” = &% = 10~ and 107!3 in the C; and C, tests, respectively.
The decrease of the relative error (4.24) is achieved by decreasing the stepsize in the
case of fixed stepsize methods, or by decreasing the tolerances for the local errors in the
case of the VSVO methods. In our implementation of the semi-implicit VSVO methods
we demand f"(k) in (4.18) to satisfy f"(k) < 1. In the test we show below we have taken
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e? = ¢", since we checked that other choices of €* do not significantly alter the efficiency
of the methods.

On the other hand, the fully implicit DLSODPK can use component-dependent tol-
erances € for each component e; of the estimated local error. In fact, if N is the size of
the vector u = (uy,...,uy)’, DLSODPK requires

1 N | ‘ 9 1/2

6.
e <1, 4.25
<N (5§\ui| —l—sf) ) ( )

=1

which is in general less demanding than having f"(k) < 1 as in our semi-implicit methods.
For the tests we present below, we have taken the £ proportional to " in the following
way: €f = fype", €} = foe" and ! = feoe”, for the blocks corresponding to the variables
¥, ¢ and O, respectively. The factors used are fy, = 10, fy = 1, and fo = 10 which
correspond to the orders of magnitude of the variables. We checked that the efficiency of
the method was improved only marginally if other values of € were used.

All the calculations have been performed on a cluster of Pentium IV personal comput-
ers using a single processor at 3.4 GHz, with 2 Mb of cache memory. The FFT routines
used to evaluate the non-linear terms are those of the FFTW3 library [36]. The action
of the linear operators required by the linear solvers, the computation of the non-linear
terms, and the Legendre transforms have been implemented as matrix-matrix products
using the GotoBLAS library [48] to increase the efficiency of the codes. The block struc-
ture of some of the matrices is used to minimise the number of operations. For instance,
when matrix products by H™ in any of its variants are required, they are computed by
using matrix-matrix subroutines for their sub-blocks (see the Appendix). It is easy to see
that each sub-matrix of dimension N, —1 of H™ always multiplies the real and imaginary
parts of the same spherical harmonic coefficient of one of the functions ¥, ® or ©. These
products and any other for which it is possible, are grouped to optimise the memory
transfers.

Figs. 4.2(a) and (b) show the dependence of loge(u) against the logarithm of the
constant time step At for the cases C; and Cy, respectively. The order of the methods
can be seen in the slopes of the curves, and it is indicated beside. For every order k
in Figs. 4.2(a) and (b), the largest values of At in each curve are those in the limit of
(absolute) stability of the corresponding k-th order formula, that is, the largest value in
the increasing sequences of At which we tried that did not produced an overflow due
to instability. The negative slopes at the left of the & = 5 curves correspond to the
accumulation of rounding errors, which grows as At decreases. We have checked that, for
very low At, the slope corresponds to a power —1, as is expected when the accumulated
rounding error is proportional to the number of time steps, i.e., to At™* (See e.g., [58,
S1.4-2]). The combination of the Crank-Nicholson and Adams-Bashforth schemes used
by some authors would be comparable to the & = 2 case. Although the coefficient of
the leading term of the local truncation error is lower for the Crank-Nicholson method
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(1/12) than for the second order BDF formula (2/9), the former requires an additional
evaluation of the linear terms of the equations. Moreover if the Crank-Nicholson method
is used with fixed time step, oscillations due to eigenvalues of large and negative real parts
inherent to the scheme are not damped [4, S3.6]. To solve this, usually, either an average
between consecutive steps is done from time to time, or the first steps of the integration
are performed with a smaller time-step size.

With respect to the size of the error for a given At, we notice both in Figs. 4.2(a)
and (b) that the Q-implicit method is in general more accurate than the other two, more
markedly so in Fig. 4.2(b). With respect to the largest stepsize the methods can use
for a given order k, Fig. 4.2(a) shows that, in the C case, the Q-implicit method can
take larger stepsizes than the other two methods for all the orders. In the C5 case, as the
Ekman number is smaller, the O-term starts to be dominant, and, as expected, the relative
differences of the upper limit of At among the methods are larger. Surprisingly, and as
opposed to the C case, for the orders £k = 3 and £ = 4 in the (5 case, the Q)-splitting
method can use larger stepsizes than the Q-implicit. This may be partially explained as
follows. For the smaller Ekman number, the eigenvalues A of the Q-term are close to the
imaginary axis and their imaginary parts grow as E decreases (see [119, 79, 40]). Then,
if At is not very small, the product AAt is outside the absolute stability region of orders
k =3 and k = 4 (see Fig. 4.1(b)). This may render the Q-implicit unstable and, hence,
limit the range of available stepsizes for these orders. Except for this two cases, the upper
limit of At is lower for the Q-splitting method, and even lower for the @)-explicit. Notice
also that in fig. 4.2(b) the slope of the longest curve corresponds to the @Q-implicit method
with order k = 2. For this order, the stability region of the second order BDF contains a
larger portion of the imaginary axis, and this may allow the method to take significantly
larger stepsizes.

Figs.4.2(c) and (d) show the dependence of log e(u) against loge” for the VSVO meth-
ods (recall " = ¢%) . These two plots show that, for a given €”, the ratio of the error
e(u) of DLSODPK over that of the Q-implicit VSVO method is, in average, O(v/N).
This is because our error control is much more restrictive than that of DLSODPK as was
explained before. The figures also indicate the high accuracy of the reference solution,
since in this plot we compare it with that obtained by a standard integrator, and e(u) can
be made smaller than 107!2. On the other hand, the fact that the errors of the Q-explicit
are slightly larger than those of the Q)-implicit method simply indicates that the latter is
a more accurate method.

Fig. 4.3(a~d) contains the efficiency curves for all the methods considered. The loga-
rithm of the relative error £(u) is plotted against the run time in seconds rt. Figs.4.3(a)
and (b) show the results for the constant time stepsize methods of orders 2 to 5, and
Figs.4.3(c) and (d) those for the VSVO codes together with the constant time stepsize
@-splitting method for comparison purposes. As before, plots (a) and (c) correspond to
the Cy case, and (b) and (d) to the Cy case. Each point in Fig. 4.3 has its corresponding
one in Fig. 4.2, but notice that the smaller the values of At and " in Fig. 4.2, the larger
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Figure 4.2: (a) loge(u) versus log At for constant stepsize integration, k from 2 to 5, in
the Cy case. (c) loge(u) versus loge” for the VSVO methods in the Cy case. (b), (d)
Same as (a) and (c), respectively, for the Cy case. The symbols mean: @Q-explicit (+,
solid line), @Q-splitting (x, dotted line), @-implicit (*, dashed line), Q-explicit VSVO (+,
solid line), @-implicit VSVO (%, dashed line) and DLSODPK (o, dash-dotted line). The
vertical axis is the same in each row of plots.

the corresponding run times in Fig. 4.3.

In order to understand the results, the computational cost of the most expensive
processes involved in the time integration with constant stepsize has been considered in
the formulae defined below. The initial integration with a VSVO method has not been
included, but it is negligible because the integration time, ¢ — ¢y, was chosen to be large
enough. The computational cost of a single step of the Q-explicit and the Q-splitting
methods are essentially the same, so only the former will be described.

The run time of the integration with the Q-explicit and @-implicit methods, during the
interval [to, ], and using time steps Atg ey, and Atgm,, respectively, can be estimated
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OQexp - NSexp(CNL + OQ + OLS)>
Coimp = Nsimp(Cnr + (Nomr + 1)(Cup + Crs)),

where Cnp, Cq, Crs, and Cyp are, respectively, the costs of the evaluation of the non-
linear terms, the evaluation of the operator O, the solution of the block-diagonal linear
systems (4.20) in the case of taking Q explicitly, and the matrix products by the block-
tridiagonal matrices H™ when Q is taken implicitly. The integer Ngur is the average
number of iterations performed by the linear iterative solver (GMRES in our case). Each
iteration involves a matrix product and an application of the preconditioner, that is, a
solution with the block-diagonal matrix. An additional unit is added to Ngyr to take
into account the initial evaluation of the residual, and the final preconditioner application.
The numbers of steps are Ngesp = (tf — t0)/Atgeap, a0d Ngimp = (tf — to) /AtQimp. As
Cnp is the highest cost, the rest of them are written as a fraction of it as Cg = foCn1,
CLS = fLsoNL, and OMP = fMpONL. In this way

OQexp - NSea:pCNL(l + fQ + fLS)7 (426)
Coimp = NsimpCnr(1 + (Nemr + 1)(fap + frs))- (4.27)

The cost Cnr, in seconds, and the factors fg, frs, and fup only depend on the spatial
resolution employed, and not on the parameters of the problem. Their ranges of variation
are 0.1 < Cnp < 3.42, 0.043 < fo <0.053, 0.22 < frg < 0.33, and 0.19 < fyp < 0.33
when the truncation parameters vary in the intervals 24 < N, < 70, and 32 < L < 90.
We have checked that the differences between the real run time, and the estimation
obtained by the above formulae are so small that they model accurately the run time of
the integrations.

Figs.4.3(a) and (b) show that for approximately e(u) < 107?, the & = 5 method is
the most efficient. The corresponding curves cannot be extended to the left (higher At)
due to stability reasons. If £(u) > 107 the most efficient methods vary from order 2 to 4
depending on the error required.

In the ranges of run time for which all the methods of a given order are available, and
for a given run time, all the methods of the same order have similar efficiency, except for
the case Cy with k = 2 (see Fig.4.3(b)).

For a given constant stepsize, the (Q-explicit and the @-splitting methods of all the
orders have almost the same computational cost, and therefore the higher order methods
should be preferred.

At first sight it could seem from (4.26-4.27), and the values of the factors given above,
that the computational cost of the @)-implicit method is much higher than for the others,
and that it does not depend on the order. However, as the order increases, the predictions
of the solution at the end of each step, based on extrapolation using the order of the
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Figure 4.3: (a) loge(u) versus the logarithm of the run time, logrt, for constant stepsize
integration, k from 2 to 5, in the C; case. (c¢) Same as (a) for the Q-splitting and VSVO
methods. (b), (d) Same as (a) and (c), respectively, in the Cy case. The symbols mean: Q-
explicit (+, solid line), @-splitting (x, dotted line), @Q-implicit (*, dashed line), Q-explicit
VSVO (4, solid line), Q-implicit VSVO (x*, dashed line), and DLSODPK (o, dash-dotted
line). The vertical axis is the same in each row of plots.

integrator, are better, and then the number of iterations Ngp g to solve the linear system
during the corrections is lower. Moreover, the stepsize required for a given e(u) is larger,
and then Ng;pn, is lower than for the other methods. All this makes its computational
cost comparable to the rest of constant stepsize methods.

In the low-cost regions (left of the plots), not all the methods are available due to
the constraints of stability. If very small errors are not required, the @)-splitting method,
with orders 2 and 3 in the (' case, and 3 and 4 in the C5 case, is the most efficient of the
constant stepsize methods. Determining which are the optimal order and stepsize requires
some experiments. If many computations are going to be performed with a fixed spatial
resolution, and in a relatively small region of parameters, it is worth making these initial
experiments. As stated before the cost of the @Q-explicit and the Q-splitting methods

68



“Sk--3 -

14 -12-10 -8 6 -4 2 0 2 -14-12-10 -8 6 -4 -2 0 2
loge " loge '

O P N W d 0 O

Figure 4.4: (a), (b) The average order, kq,, versus the logarithm of the relative tolerance,
loge”, for the semi-implicit VSVO methods, and the C; and C5 cases, respectively. The
symbols mean: @Q-explicit VSVO (4, solid line), and @Q-implicit VSVO (x, dashed line).
The vertical axis is the same for the two plots.

is essentially the same, but the latter has shown to be more stable, allowing for larger
stepsizes, and hence, better efficiency.

In Figs.4.3(c) and (d) the VSVO methods are compared with the Q-splitting of orders
from 2 to 5, which is the best of the constant stepsize methods, except in some regions
of very low error. The fully implicit method using DLSODPK is always more expensive
than the @Q-implicit VSVO methods because each iteration of the linear solver, and of
the Newton’s method requires an expensive evaluation of the non-linear terms. The Q-
explicit VSVO method is also less expensive than DLSODPK, except for the higher e(u),
for which the cost of the former increases due to the increase of the number of rejections,
and of iterations of the linear solver. The factor f;g indicates that an evaluation of the
non-linear terms is between 3 and 4 times more expensive than a block-diagonal linear
solving. Therefore DLSODPK will never be more efficient than the Q-implicit VSVO
method, unless the former could take much larger time steps. Our numerical experiments
suggest that this is not the case, especially for very low values of the Ekman number,
where very rapid time scales must be resolved to maintain the accuracy.

Fig.4.3(c) shows that the @-implicit VSVO method is the best option for the C}
case. Some constant stepsize methods can be more efficient, but at the price of doing
some previous experiments to find out the optimal stepsize. In the Cy case (Fig.4.3(d)),
there are more eigenvalues of larger imaginary part, and small and negative real part,
as explained before. Therefore, in order to keep the local error below a given tolerance,
the @Q-implicit VSVO method is forced to use the BDF of order 2 in the left part of
the curve shown in Fig. 4.3(d), and 5 in the right part, depending on the tolerance, as
can be seen in Fig.4.4(b), where the average order, k,,, is plotted versus the relative
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tolerance, ", for the semi-implicit VSVO methods. The only curve with a jump is that
corresponding to the Q-implicit VSVO method in the C5 case. At the jump the order
increases, the stepsize becomes larger, and the cost for a given error decreases. The jump
reflects the shape of the stability regions of the BDF for constant stepsizes (shown in
Fig. 4.1) which, as commented above, for orders 3 and 4 contain a smaller portion of
the imaginary axis around to the origin. This abrupt transition between the two parts
prevents the Q-implicit VSVO method from being as efficient as the -splitting method
in the region of intermediate errors.

4.6 Conclusions

We have compared three time-integration semi-implicit methods, both with constant step-
size and VSVO implementations (this last option only for two of them), and a fully implicit
VSVO method. The semi-implicit methods differ among them in the treatment of the
Coriolis term of the equation, which, at very low Ekman numbers (F), dominate the
dynamics.

In view of the difficulties of treating the Coriolis term implicitly, it could be thought
that writing the equations in an inertial frame of reference could be competitive. In
this case there are two possibilities. The first consists in writing the solution of (4.13)
as u = up + Upe, up and uy. satisfying, respectively, homogeneous and non-homogeneous
boundary conditions, the latter coming from the solid-body rotation of the two spheres.
The function wup. can be expressed in terms only of the spherical harmonic Y for the
potential ¥ and would be proportional to E~1. After substituting u into (4.13) some new
linear terms would appear coming from the non-linear operators with a structure at least
as complicated as that of the Coriolis terms. These new terms would be dominant for low
E, and one would be again interested in treating them implicitly to cope with Courant
restrictions of the time step. The second option consists in using non-homogeneous bound-
ary conditions for u. This affects only the boundary conditions for the coefficient W9 of
the spherical harmonic Y, in the expansion of W. In this case E enters not only in the
boundary conditions, but also hidden in the nonlinear terms preventing the use of semi-
implicit methods. There is another reason to avoid the equations in the inertial frame.
The solutions after the first bifurcation from the conductive state are azimuthal waves
of high azimuthal wave number, and drift frequency w usually positive and below that
of the spheres ). Then, integrating in the inertial frame implies coping with the typical
limitation of the time step of high oscillatory problems, no matter the order of the method
employed (see [4, S3.7]). In our case, if one is interested in computations close to this
waves, it could be beneficial to write the equations for the deviations from the waves.

We have shown that when integrating the thermal convection equations of fast rotat-
ing fluid spherical shells, it is possible to handle the Coriolis term, and even the non-linear
term, implicitly, if iterative Krylov methods are used to solve the corresponding linear
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systems. This is due to the low memory requirements of these iterative linear solvers.
We have shown that taking the Coriolis term implicitly results in a more efficient time
integration for low values of the Ekman number. On the other hand, for the high reso-
lutions needed to resolve the Ekman boundary layers, using adapted LU decompositions
to solve the linear systems in semi-implicit or fully implicit methods is not viable, due to
the prohibitive amounts of memory this would require.

We have checked our new time integration codes with a known benchmark [30]. We
have found that to get relative errors of size 1073, of the order of those of the benchmark
results, the most efficient methods are the fully implicit DLSODPK and the Q-implicit
VSVO, with €* = 1072,

The results in the present paper show that high order methods can be used not only
to compute high-accurate solutions, but to obtain the same accuracy as with lower order
ones but more efficiently. In practice, the most efficient method depends on the value of
the Ekman number F, on the precision wanted, and even on the type of solution. For
instance, if one is just interested in obtaining smooth solutions by DNS, the best choice
is to implement a plain Q-explicit or, better, a third or fourth order ()-splitting method.
However, if the time integration is part of a continuation process, and/or one is interested
in calculating the stability of the solutions, small time integration errors must be obtained.
In this case, the @Q-implicit VSVO method will probably be the most efficient option.
Moreover, since the lowest run times correspond to the @-implicit VSVO method with
large tolerances, this method may also be useful for passing long uninteresting transients,
where having a control of the time stepsize might be important.

It must be pointed out that, since the results obtained depend on the solution inte-
grated, and in this case it was smooth, the constant stepsize methods have made accurate
computations with relatively large stepsizes. However, had the selected test solution been
irregular, including for instance repeated transients [70] or bursts [110], it is reasonable
to assume that in order to obtain similar accuracy the constant stepsize methods would
have had to use a very small step, and then the Q-implicit VSVO method would have
been the most efficient method under any circumstances.

With regard to possible parallel implementations, the main difference between the
methods is in the relative number of evaluations of the linear and non-linear terms. Eval-
uating or solving the linear terms is highly parallelizable and is not difficult to implement.
The evaluation of the non-linear terms is completely different. Their parallelisation is
complex, mainly due to the triangular expansion in spherical harmonics. In the fully
implicit method, actions of the full Jacobian are required, which imply evaluations of
the non-linear terms or their linearizations. Therefore it would be more sensitive to any
inefficiency in the parallelisation process. The rest of the methods would experience very
similar speedups if implemented in parallel because they require a similar number of
evaluation of the non-linear terms.

Finally, the results we have obtained are also relevant in other situations, when the
partial differential equations to be solved have linear diffusion terms, which can be treated
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implicitly because the resulting linear systems are relatively easy to solve, and other terms
expensive to compute, and whose inclusion in a fully implicit scheme is impossible or very
difficult.
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4.7 Appendix

The structure of the matrices H™ appearing in eq. (4.20) is detailed here. Recall that
Hu" = o™, with H = T — hLy'L and h = At,/y0(n) or h = At/vp, is the system to
be solved to obtain the solution at time ¢,1, u"*1, once the right hand side of eq. (4.15)
or (4.16), v™, has been computed. When this equation is separated into its azimuthal
components the systems H"U™ = V™ m =0, ..., L are obtained.

If the functions ¥, ®, and © are expanded in spherical harmonics as in eq. (4.6), we
define the vectors U = (ROJ)T, U = (R¥Y, RPY, ROY)T, and
Um = (RY,TUM™ ROM™ IO ROM IOM)T if m # 0, where R and Z indicate real and
imaginary parts, respectively. Then the vector of all amplitudes for a given order m, U™,
and the vector of all unknowns, u, are

ur=omur,,--- Ut ', and w= (U0, U, UM U T

Suppose now that all the linear terms, included C?¢, Q' and QY are treated implicitly
in the operator £. With the ordering given to U™, the matrix H,, has dimension 6(L —
m + 1)(NV, — 1) and the block-tridiagonal structure

Am o Bm™ 0 .. 0
o = | 1 AR o (4.28)
0 0 .. 0 B,
0 0 Cm Am
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where the blocks of dimension 6(/N, — 1), which also have sub-block structure, are

(A ol 0 0 0 0
—arl (A 0 0 0 0
|0 0 apr (B 0
A= 0 0 Zapr A o (B (4.29)
0 0 R 0 (A)° o0
0 0 0 R 0 (4)°
0 0 (B 0 00
0 0 0 (B™° 0 0
N 7 T 0 0 00
BE=1"0" By o 0 00| (4.30)
0 0 0 0 00
0 0 0 0 00

and C" has the same structure as B® with (B/")? substituted by (Ci™)?, etc. The sub-
blocks of dimension N, — 1 are

(A)* =T-nD)",  (A)*=1-nDH)(DP)?,  (A4)°=1—(h/o)(D)®,

(+2)
(l+1)
(=1

QhEilcﬁl(Dlil)(ﬁ(Dlig)w; (Blm)(z) = QhEilcﬁl(DlJ-rﬂ)d)’

2hE~ (D)D), (C)? = 2hE~ (D).
(E)? = W(D{)™Y, Fy = —(h/o)l(l + 1)Ry(1 — )2 Diag(r;®), aj = 2hE~"'m/I(l + 1),
and [ is the identity matrix of dimension N, — 1. The superscripts ¢, ¢ or © over a
radial operator denote to which function they are applied. The corresponding boundary
conditions are different and are included in the matrices.

The diagonals of H™ with blocks B;" and C}" are the discretization of the operators
Q¢ and QU respectively, and the matrices A" include that of the rest of the linear terms.
Therefore, the matrices H™ of eq. (4.28) correspond to the Q-implicit or the @-implicit
VSVO methods, depending on the value of h. If all the non-diagonal blocks B;" and
C]" are set to zero, the resulting block-diagonal matrices correspond to the Q-explicit or
Q-explicit VSVO algorithms. If only B;" or C]" are set to zero, H™ are the lower or upper
block-Hessenberg matrices of the Q)-splitting method.

The LU decomposition is performed only for the diagonal blocks Aj", either to solve
the block-diagonal or block-Hessenberg systems in the Q)-explicit or )-splitting methods,
or to be used as preconditioners for the iterative solvers in the rest of algorithms (see
table 4.2). As can be seen in eq. (4.29), the A" can be separated in two sub-blocks
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of dimensions 2(N, — 1) and 4(N, — 1), for which a tailored block-LU decomposition is
performed.

When the block-diagonal is used as preconditioner, a frozen value h* is set instead of
the exact h. In the case of the Q-implicit method with fixed time stepsize, At is constant
and known in advance and then h* = h. For the VSVO methods, the value of A* is
selected at the first step, and the corresponding block-LU decomposition is computed.
The updating of h* and the preconditioner are performed, as explained in Section 4.3,
when the linear solver requires too many iterations to converge or h* is very different from
h, depending on the method employed. The number of updates during the integrations
used to be very small. In most of our calculations it was below 10. The higher values
corresponded to the higher tolerances for the local errors. In these cases the range of
At used during the time evolution was wider and this forced more updates. Therefore,
except for the calculations for which high order methods are not required, the time spent
in preparing the preconditioner was negligible.
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