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Abstract

Phase-field modeling of fracture in ferroelectric materials

Amir Abdollahi

The unique electro-mechanical coupling properties of ferroelectrics make them ideal ma-

terials for use in micro-devices as sensors, actuators and transducers. Nevertheless, because

of the intrinsic brittleness of ferroelectrics, the optimal design of the electro-mechanical de-

vices is strongly dependent on the understanding of the fracture behavior in these materials.

Fracture processes in ferroelectrics are notoriously complex, mostly due to the interactions

between the crack tip stress and electric fields and the localized switching phenomena in

this zone (formation and evolution of domains of different crystallographic variants). Phase-

field models are particularly interesting for such a complex problem, since a single partial

differential equation governing the phase-field accomplishes at once (1) the tracking of the

interfaces in a smeared way (cracks, domain walls) and (2) the modeling of the interfa-

cial phenomena such as domain-wall energies or crack face boundary conditions. Such a

model has no difficulty for instance in describing the nucleation of domains and cracks or

the branching and merging of cracks. Furthermore, the variational nature of these models

makes the coupling of multiple physics (electrical and mechanical fields in this case) very

natural.

The main contribution of this thesis is to propose a phase-field model for the coupled

simulation of the microstructure formation and evolution, and the nucleation and propa-

gation of cracks in single crystal ferroelectric materials. The model naturally couples two

existing energetic phase-field approaches for brittle fracture and ferroelectric domain for-

mation and evolution. The finite element implementation of the theory is described. Sim-

ulations show the interactions between the microstructure and the crack under mechanical

and electro-mechanical loadings. Another objective of this thesis is to encode different crack

face boundary conditions into the phase-field framework since these conditions strongly af-

fect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are

discussed and the results are compared with that of sharp crack models to validate the pro-

posed approaches. Simulations show the effects of different conditions, electro-mechanical
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loadings and media filling the crack gap on the crack propagation and the microstructure

of the material. In a third step, the coupled model is modified by introducing a crack

non-interpenetration condition in the variational approach to fracture accounting for the

asymmetric behavior in tension and compression. The modified model makes it possible to

explain anisotropic crack growth in ferroelectrics under Vickers indentation loading. This

model is also employed for the fracture analysis of multilayer ferroelectric actuators, which

shows the potential of the model for future application. The coupled phase-field model is

also extended to polycrystals by introducing realistic polycrystalline microstructures in the

model. Inter- and trans-granular crack propagation modes are observed in the simulations.

Finally and for completeness, the phase-field theory is extended for the simulation of con-

ducting cracks and some preliminary simulations are also performed in three dimensions.

Salient features of the crack propagation phenomenon predicted by the simulations of this

thesis are directly compared with experimental observations.
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1 Introduction

Ferroelectric ceramics are prominent materials for micro-sensors, actuators and transducers

because of their unique electro-mechanical coupling properties. However, most ferroelectrics

exhibit a fracture toughness similar to that of glass, on the order of 1 MPa
√
m. Their in-

herent brittleness makes them susceptible to fracture. Since practical applications often

involve strong mechanical and electrical loading conditions, it is important to understand

the fracture behavior of ferroelectric components, and this has been the subject of numer-

ous investigations , see (Zhang and Gao, 2004; Schneider, 2007; Kuna, 2010) for excellent

theoretical and experimental reviews. Ferroelectric ceramics exhibit ferroelectric and fer-

roelastic switching behavior with macroscopic dielectric and butterfly hystereses due to the

underlying microscopic mechanisms. The reviews by (Kamlah, 2001; Landis, 2004b; Huber,

2005) present related modeling approaches. The formation and evolution of the microstruc-

ture are more probable under high electro-mechanical loadings and near load concentrations

such as the vicinity of cracks (Hackemann and Pfeiffer, 2003; Jones et al., 2007; Pojprapai

et al., 2011). Nonlinear interactions between the microstructure and the localized stress and

electric fields near the crack tip lead to the complexity of fracture in ferroelectric materials

(Han et al., 2002; Rajapakse and Zeng, 2001; Beom and Atlurib, 2003; Sheng and Landis,

2007). This suggests that the microscopic phenomena should be taken into account in the

analysis of the global reliability of ferroelectric components.

A number of theoretical approaches have been developed to understand fracture phe-

nomena in ferroelectric ceramics. Researchers have proposed approaches based on linear

theory of piezoelectricity where microstructure effects are not taken into account. Due to

simplicity, these models are useful to study the basic concepts of the linear theory in the

context of fracture mechanics and to evaluate the effects of individual and coupled electro-

mechanical fields and different crack-face boundary conditions (McMeeking, 1999, 2004;

Landis, 2004a; Li et al., 2008). These approaches have been developed to identify the effect

of remanent polarization on energy release rates in poled ferroelectrics (Haug and McMeek-

ing, 2006). However the intrinsic nature of ferroelectric materials demands the consideration

of the nonlinear microstructure effects in more realistic approaches. These include models

inspired in plasticity theory and aimed at polycrystalline ferroelectric ceramics (McMeeking

and Landis, 2002). These models do not intend to describe explicitly the domain formation,

but rather the effective phenomenology (Landis, 2003; Sheng and Landis, 2007; Wang and
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Landis, 2006). Other models rely on a simple local switching criterion (Hwang et al., 1995),

which under the assumption of small-scale switching, have allowed researchers to analyze the

local phase transformations near the crack tip (Zhu and Yang, 1997; Yang and Zhu, 1998;

Zhu and Yang, 1999; Beom and Atlurib, 2003). Recently, phase-field or time-dependent

Devonshire-Ginzburg-Landau (TDGL) models are gaining a growing attention. These mod-

els explicitly describe the formation and evolution of individual ferroelectric domains in the

framework of continuum mechanics (Shu and Bhattacharya, 2001; Zhang and Bhattacharya,

2005a; Schrade et al., 2007; Su and Landis, 2007; Dayal and Bhattacharya, 2007; Xu et al.,

2009). Recently, a phase-field model accurately accounting for the stray fields (Yang and

Dayal, 2011a) has been proposed. Related models have also been developed in micromag-

netics (DeSimone et al., 2001; DeSimone and James, 2002). The nucleation and growth of

domains near crack tips have been studied using these microstructural models and the influ-

ence on the stress field (Yang and Dayal, 2011b) and the mechanical and electro-mechanical

J−integrals have been reported (Song et al., 2007; Wang and Zhang, 2007; Wang and Kam-

lah, 2009; Xu et al., 2010; Li and Landis, 2011; Li and Kuna, 2011). For completeness, we

mention that cohesive theories aimed at fracture in ferroelectric materials have also been

proposed (Gao et al., 1997; Arias et al., 2006).

Several experiments have been done to study the fracture behavior of ferroelectric ce-

ramics. However there are a number of contradictions and inconsistencies between reported

results. Experiments on insulating cracks have shown that a positive electric field promotes

crack extension perpendicular to the poling axis of the material, whereas a negative elec-

tric field retards it (Tobin and Pak, 1993; Sun and Park, 2000; Lynch, 1998; Schneider and

Heyer, 1999). Other tests have indicated an opposite phenomenon, where their results show

that a positive applied electric field inhibits crack propagation, whereas crack propagation

is enhanced under a negative applied electric field (Wang and Singh, 1997; Shindo et al.,

2002; Ricoeur and Kuna, 2003; Jiang et al., 2009). On the other hand, experiments do not

show a clear shielding or weakening effect of the microstructure on insulating cracks ori-

ented parallel to the poling and electric field direction (Sun and Park, 2000; Tobin and Pak,

1993). This behavior is not expected since experiments without electric field indicate that

in this configuration a pronounced domain switching zone is developed during crack growth

(Schneider, 2007). Some experiments have been also performed to investigate the fracture

mechanisms of electrically conducting cracks, where the electric field is applied parallel to
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the crack orientation and it is able to fracture ferroelectric specimens without additional

mechanical load (Fu et al., 2000; Zhang et al., 2004). However it is not understood why the

electrical field intensity factors obtained in these works are four times larger than that of

reported in the experiments of (Heyer et al., 1998; Gehrig et al., 2008). These contradictions

and ambiguities confirm that the fracture of ferroelectric materials is a complex phenomenon

and more sophisticated modeling approaches and experiments are required to create a sound

basis of results for the understanding of the fracture behavior in these materials.

All of the above mentioned models of ferroelectric fracture consider fixed or stationary

crack configurations. With this assumption it is not possible to capture the effects of the

microstructure on the crack propagation behavior, specially when the crack tip fields interact

with obstacles such as defects or grain boundaries. Recently, a phase-field model (Miehe

et al., 2010a; Linder and Miehe, 2012) and a strong discontinuity approach (Rosato et al.,

2011) have been proposed to simulate propagating cracks in linear piezoelectric solids, thus

not accounting for the effect of ferroelectric domain microstructures. Towards more realistic

approaches, we propose a family of coupled phase-field models for both the brittle crack

propagation and the microstructure evolution by tackling the full complexity of the fracture

phenomenon in ferroelectric materials (Abdollahi and Arias, 2012c,b, 2011a,b). This thesis

extends the current state of the art in fracture of ferroelectric ceramics by presenting these

models and their developments which are outlined as follows:

1. Coupled phase-field model. A coupled phase-field model is proposed based on two

existing energetic phase-field approaches for brittle fracture and ferroelectric domain

formation and evolution. Using this model, the interactions between the microstruc-

ture and the crack propagation are investigated in ferroelectric single crystals under

mechanical and electro-mechanical loadings. See Section 3 and Appendix A.

2. Modeling of different crack-face boundary conditions. Different electromechani-

cal conditions, introduced as crack-face boundary conditions in sharp models, are en-

coded into the phase-field framework. The smeared imposition of these conditions

are discussed and the results are compared with that of the sharp crack models to

validate the proposed approaches. Numerical simulations are performed to show the

effects of different conditions, electro-mechanical loadings and media filling the crack

gap on the crack propagation and the microstructure of the material. See Section 4

and Appendix B.
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3. Phase-field simulation of anisotropic crack propagation. The coupled phase-field

model is developed by introducing a crack non-interpenetration condition in the vari-

ational approach to fracture accounting for the asymmetric behavior in tension and

compression. The developed model makes it possible to explain anisotropic crack

growth in ferroelectrics under Vickers indentation loading. See Section 5 and Ap-

pendix C.

4. Crack initiation patterns at electrode edges in multilayer actuators. The phase

field model, introduced in Section 5, is employed for the fracture analysis of multilayer

ferroelectric actuators. In particular, the objective of this section is to study the crack

initiation at electrode edges during the poling process of the actuators. Considering

different bonding conditions between the ceramic and electrode layers, different crack

initiation patterns are obtained, which are useful to understand the fracture processes

and to guide the design of this type of actuators. See Section 6 and Appendix D.

5. Inter- and trans-granular crack propagation in ferroelectric polycrystals. The

coupled phase-field model is extended to ferroelectric polycrystals. Different polycrys-

talline microstructures are obtained by implementing a computer simulation of grain

growth model. By incorporating the differential fracture toughness of the bulk and the

grain boundaries, and the different crystal orientations of the grains, the phase-field

fracture model of ferroelectric single crystals is extended to polycrystals. Simulation

results show intergranular crack propagation in fine-grain microstructures while trans-

granular crack propagation is observed in coarse grains. See Section 7 and Appendix

E.

6. Conducting crack propagation driven by electric fields. The aim of this section

is to extend the phase-field theory for the simulation of conducting crack propagation

and investigating the crack propagation mechanisms under purely electrical loading.

This is done by introducing the electrical enthalpy of a diffuse conducting layer into the

phase-field formulation. The results imply that the major driving force to propagate

the conducting cracks is the electrostatic force due to the accumulation of charges with

the same sign at the crack tip. See Section 8.

7. Numerical simulations of 3-D crack propagation. We present some preliminary

3-D simulations of the crack propagation in ferroelectric single crystals. This is done
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by extending the phase-field model to three dimensions and running the simulations

on a parallel machine. See Section 9.

The structure of this thesis is as follows. The background information regarding the

ferroelectric materials and phase-field models is presented in Section 2. Sections 3 - 9

expand on the seven contributions mentioned above. The idea of these sections is to describe

concisely the goals of the contribution, provide representative results and conclusions, and

refer to (accepted or submitted) papers attached as appendices for the details. In each of

these sections the most significant contributions are also highlighted, as well as research ideas

emerging from the work performed. Sections 8 and 9 present some preliminary results of

conducting crack propagation and 3-D simulations, which are two papers under preparation.

The last section is the conclusion of the thesis.



2 Background 8

2 Background

2.1 Ferroelectric Materials

Ferroelectrics are a family of multi-phase crystalline materials with exceptional electro-

mechanical properties. These materials are classified as a subcategory of piezoelectric

materials, possessing dielectric hysteretic behavior. Applications for ferroelectric materi-

als include sensors, capacitors, non-volatile memories, ultrasound imaging and actuators,

electro-optic materials for data storage applications, thermistors, switches known as trans-

chargers or trans-polarizers, oscillators and filters, light deflectors, modulators and displays

(Kanzig, 1957; Lines and Glass, 1979). These materials possess a spontaneous electric polar-

ization below a certain phase transition temperature, called the Curie temperature. This is

due to dipoles formed by displacements of charged ions inside the crystal unit cell. Figure 1

presents the unit cell of ferroelectric lead titanate (PbTiO3) with a non-polar cubic symme-

try above the Curie temperature. In the room temperature, the central atom of the unit cell

(Ti) tends to one of the Oxygen atoms (O), hence stretching the cubic lattice along one of

its lattice vectors. This atomic displacement produces a dipole per unit cell, and therefore a

spontaneous electrical polarization. If the spontaneous polarization can be reversed by the

application of an electric field opposite to its direction, these crystal structures are called

ferroelectrics. The polarization can be oriented along six equivalent directions which give

rise to six equivalent tetragonal phases in ferroelectrics presented in Fig. 2.

Pb

Ti

O

PbTiO3

High temperature
(non-polar cubic)

Room temperature
(polarized tetragonal)

po
la

riz
at

io
n

a

c

c
a = 1.065 

Figure 1: Ferroelectric unit cell in (left) high temperature and (right) room temperature
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Figure 2: Six equivalent tetragonal phases in ferroelectric crystals.

Application of a small mechanical or electrical load parallel to the polarization elongates

the unit cell along the applied load and increases the polarization. In opposite, a small anti-

parallel load results in a shrinkage of the unit cell and decreasing the polarization, see Fig.

3. In fact in response to a low applied mechanical load, a ferroelectric material will produce

an electric charge proportional to the load. Similarly, the material will produce a mechanical

deformation in response to a low applied electric field. These behaviors represent the linear

piezoelectric responses of ferroelectric materials under low electrical and mechanical loads.

By increasing the magnitude of the applied load opposite to the polarization, the unit cell

is reoriented along other tetragonal phases to accommodate the large load. In the case of a

large applied electric field, the polarization of the unit cell is reversed, parallel to the applied

field. This polarization reorientation is called 180o domain switching in ferroelectrics. On

the other hand, a large compressive stress reorients the polarization by 90o, along one of

the adjacent tetragonal phases. This phenomenon is defined as 90o ferroelastic domain

switching, see Fig. 4.

A combination of the tetragonal phases form a multi-domain structure of ferroelectric

crystals. The boundary separating the phases is classified into 90o and 180o domain walls.

Figure 5 presents a sample of the multi-domain structure in two dimensions. Application of

an external mechanical or electrical load can rearrange this domain pattern through domain

switching. In an unpoled ferroelectric material, the polarization of domains is random

through the material and it is distributed in such way that the net macroscopic polarization

is zero. By applying an electric field, the polarization of domains starts to align along

the applied field. If the electric field is strong enough, the material shifts into the polar
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Apply small
 electric field or stress 

(antiparallel)

Apply small
 electric field or stress 

(parallel)

Figure 3: Schematic of the ferroelectric until cell under a small electric field or stress: (top)
parallel to the polarization, and (bottom) anti-parallel to the polarization .

Apply large electric field 

Apply large stress 

180  switching
o

90  switching
o

Figure 4: Schematic of 1800 ferroelectric and 900 ferroelastic switching at the unit cell level
from large applied electric field and stress.
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state. Figure 6 presents the net polarization as a function of the applied electric field. The

transition from the unpoled state (point U) to the polar state (point A) is highlighted by the

red curve. Point A shows a maximum polarization in the unit cell under a strong applied

electric field. When the field is decreased, the polarization decreases and it reaches the

remanent polarization Pr after removal of the electric field.

Figure 5: A multi-domain ferroelectric structure in two dimensions.

One consequence of the domain switching in ferroelectric materials is the occurrence of

the ferroelectric hysteresis loop and butterfly hysteresis curve depicted in Fig. 6. When a

negative electric field is applied (anti-parallel to the polarization), the polarization decreases

from the remanent value until a level where the polarization of some domains starts to

reverse. A further increase of the field in the negative direction will cause the total reversal of

the polarization. The polarization and strain responses in this region are strongly nonlinear.

The field necessary to reverse the polarization is called the coercive field with the magnitude

of Ec. As the magnitude of the reverse field increases, the polarization reaches another

maximum in the opposite direction (point -A). After that, if the field is again reversed, the

polarization can be brought back to the previous maximum point depending on the field

strength. Considerable changes of the polarization and strain under an alternative electric

field are beneficial for many electro-mechanical applications.

2.2 Phase-field models

Phase-field models are powerful tools to deal with moving interface problems (Landau, 1937).

Recently, phase-field models have gained a growing interest in physics and materials science,

see (Sekerka, 2004; Steinbach, 2009) and references therein. They are also employed in a

wide range of applications in applied science and engineering such as fracture (Francfort

and Marigo, 1998; Miehe et al., 2010b), growth of thin films (Ratz et al., 2006) and grain
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Pr

-Pr

A

-A

-Ec EcU

Figure 6: Hysteresis loop (Polarization-Electric field) and butterfly hysteresis curve (Strain-
Electric field) in poled ferroelectrics. The red curve indicates the transition from the unpoled
state (point U) to the polar state (point A).

structures (Krill and Chen, 2002), image segmentation (Benes et al., 2004), vesicle bio-

membranes (Wang, 2005) and multi-phase flows (Jacqmin, 1999), to mention a few. This

thesis also presents another application of phase-field models for microstructure formation

and fracture evolution in ferroelectric materials (Abdollahi and Arias, 2012c,b, 2011a,b).

The idea behind phase-field modeling is to replace the sharp description of the interface

by a smeared continuous layer. For this purpose, an auxiliary field, called order parameter

or phase-field variable, is introduced to represent the phases (e.g. inside and outside of the

crack), and also the interface. The phase-field variable adopts distinct values, say 0 and 1,

in each of the phases, and smoothly varies between these values in the diffuse interface, see

Fig. 7. This approach is also called diffuse-interface modeling.

Phase-field models are typically defined by an energy functional associated with different

energy terms based on the physics of the problem. A general energy function E for these

models can be constructed as

E[η,ϑ] = F1(∇η) + F11[η,ϑ] (1)

where η is the order parameter and ϑ represents a set of physical variables in the problem
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Figure 7: Illustration of a (left) diffuse and (right) sharp interface.

under consideration. Function F1 is the common energy term in the phase-field models asso-

ciated with the gradient of the order parameter. This function penalizes sharp variations in

the order parameter, hence introducing the interfacial energy between the phases. A positive

regularization constant regulates the size of the interface in this energy term. Function F11

characterizes the physical properties of the phases and it is associated with the order and

physical parameters of the problem. In general, this energy furnishes a multi-well energy

landscape with respect to the order parameter η with minima corresponding to the phases.

Figure 8 presents a schematic of this energy landscape where m indicates the number of

phases. This number can be one in single-phase problems such as fracture (Francfort and

Marigo, 1998; Miehe et al., 2010b) or it can be as high as 100 in the model of grain growth

in polycrystalline materials (Krill and Chen, 2002).

. . . 

Figure 8: Schematic of a multi-well energy landscape.
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In complex moving interface problems such as fracture in ferroelectric ceramics, phase-

field models are particularly interesting since a single partial differential equation governing

the phase-field accomplishes at once (1) the tracking of the interfaces in a smeared way

(cracks, domain walls) and (2) the modeling of the interfacial phenomena such as domain-

wall energies or crack-face boundary conditions. Furthermore, the variational nature of these

models makes the coupling of multiple physics very natural. Such a model has no difficulty

in describing the nucleation of domains and cracks, and tracking the evolution of the domain

boundaries and crack tips. This flexibility comes at the expense of a high computational

cost, since the width of the phase-field regularizations of the domain wall and the crack

must be resolved by the discretization for an accurate approximation of the sharp-interface

model. Furthermore, the specific interface boundary or jump conditions under consideration

must be encoded into the phase-field framework.

2.3 Phase-field model for ferroelectric single crystals

In the field of ferroelectric materials, given the extreme difficulty of tracking the interfaces

(the domain walls) explicitly with a sharp interface model, phase-field models are the current

standard models for simulations of microstructure formation and evolution. According to

these models, the Helmholtz free energy density of a ferroelectric material is stated as (Zhang

and Bhattacharya, 2005a; Su and Landis, 2007)

ψ(ε,p,∇p,D) = U(∇p) +W (p, ε) + χ(p) +
1

2ε0
(D − p) · (D − p), (2)

where ε is the strain tensor associated with the mechanical displacement u, ε = 1/2(∇u+

∇Tu), p is the polarization, U is the domain wall energy density penalizing sharp varia-

tions in the polarization, χ is the phase separation potential, and W is the electroelastic

energy density. These two last energy densities penalize deviations from the spontaneous

polarizations and strains of the material, hence introducing the anisotropy and nonlinearity

of ferroelectric materials. The first three terms in Eq. (2) indicate the free energy of the

material. The last term is the free energy of the free space occupied by the material or

the depolarization energy density (Li, 2009). It involves the polarization and the electric

displacement D = p− ε0∇φ, where φ is the electric potential and ε0 is the permittivity of

free space. Following a Legendre transformation, the electro-mechanical enthalpy density
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H is obtained (Su and Landis, 2007)

H(ε,p,∇p,E) = min
D

[ψ(ε,p,∇p,D)−E ·D] (3)

= U(∇p) +W (p, ε) + χ(p)− ε0

2
|E|2 −E · p,

where E is the electric field defined as E = −∇φ. The stresses and electric displacements

are derived from the electrical enthalpy as σ = ∂H/∂ε and D = −∂H/∂E. The energy

functions U , W and χ in Eq. (3) are chosen following (Devonshire, 1949, 1951), adapted to

a plane polarization and plane strain state:

U(pi,j) =
a0

2
(p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2), (4)

W (pi, εjk) = − b1
2

(ε11p
2
1 + ε22p

2
2)− b2

2
(ε11p

2
2 + ε22p

2
1)− b3(ε21 + ε12)p1p2

+
c1

2
(ε2

11 + ε2
22) + c2ε11ε22 +

c3

2
(ε2

12 + ε2
21), (5)

χ(pi) = α1(p2
1 + p2

2) + α11(p4
1 + p4

2) + α12(p2
1p

2
2) + α111(p6

1 + p6
2) + α112(p2

1p
4
2 + p2

2p
4
1)

+ α1111(p8
1 + p8

2) + α1112(p6
1p

2
2 + p6

2p
2
1) + α1122(p4

1p
4
2), (6)

where the combination of energy functions χ and W is the total Landau-Devonshire energy

density, a0 is the scaling parameter of the domain wall energy, bi(i = 1, 2, 3) are the constants

of the coupling terms between strain and polarization and ci(i = 1, 2, 3) are the elastic

constants. The coupling constants bi(i = 1, 2, 3) are obtained by fitting the spontaneous

strains of the tetragonal phase relative to the cubic phase. The phase separation energy

χ is improved by adding the eighth-order terms with coefficients α1111, α1112 and α1122 to

reproduce the dielectric behavior of barium titanate (BaTiO3) single crystals (Li et al., 2005;

Wang et al., 2007). The eighth-order term with coefficient α1122 enables the model to fit

the dielectric constants while retaining a reasonable energy barrier for 900 domain switching

in the tetragonal phase (Zhang and Bhattacharya, 2005a). α1 is linearly dependent on

temperature and its negative value makes the cubic phase unstable. α111 is estimated by
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fitting the spontaneous polarization of the tetragonal phase. α112 and α1112 are fitted to the

dielectric permitivity perpendicular to the spontaneous polarization. α11, α12 and α1111 are

evaluated from linear and nonlinear dielectric measurements above the Curie temperature

(Wang et al., 2007).

For convenience, dimensionless variables are selected through the following normal-

izations: x′i = xi
√
c0/a0/p0, p′i = pi/p0, t′ = tc0/µp

2
0, ε′0 = ε0c0/p

2
0, φ′ = φ/

√
a0c0,

α′1 = α1p
2
0/c0, α′11 = α11p

4
0/c0, α′12 = α12p

4
0/c0, α′111 = α111p

6
0/c0, α′112 = α112p

6
0/c0,

α′1111 = α1111p
8
0/c0, α′1112 = α1112p

8
0/c0, α′1122 = α1122p

8
0/c0, b′i = bip

2
0/c0 and c′i = ci/c0,

where i = 1,2,3. The constants are chosen to fit the behavior of single crystals of barium

titanate (BaTiO3) at room temperature, taking c0 = 1 GPa, a value for the spontaneous

polarization of p0=0.26 C/m2, the relative spontaneous strains εa = -0.44% along a-axis

and εc = 0.65% along c-axis (Zhang and Bhattacharya, 2005a; Wang et al., 2007). The

domain wall scaling parameter is set to a0 = 3.7 × 10−9Vm3C−1 which leads to the value

of 0.5 nanometer for the normalized unit length ∆x′ = 1. The normalized parameters are

presented in Table 1.

Table 1: Normalized parameters
c′1 c′2 c′3 b′1 b′2 b′3 α′1 α′11

185 111 74 1.4282 -0.185 0.8066 -0.0023 -0.0029

α′12 α′111 α′112 α′1111 α′1112 α′1122 ε′0
-0.0011 0.003 -0.00068 0.001 0.0093 1.24 0.131

With the selected parameters, the normalized Landau-Devonshire energy is presented

in Fig. 9 as a function of the normalized polarization p′1 and p′2, for a stress-free state

(σij = 0). Positive values of the energy are truncated to zero in the plot, to highlight the

energy landscape near the minima. The four minima in Fig. 9 correspond to the four variants

of the tetragonal phase with normalized polarization p′ = (1,0),(0,1),(-1,0) and (0,-1).

2.4 Phase-field model for brittle fracture

To analyze quasi-static brittle fracture, we consider a variational regularized model of

Griffith’s fracture that admits a straightforward numerical implementation (Francfort and

Marigo, 1998; Bourdin et al., 2000; Bourdin, 2007; Bourdin et al., 2008; Amor et al., 2009).

This model and its numerical discretization allows naturally for crack nucleation, branch-

ing, and interaction between multiple cracks. It smears the crack in contrast with cohesive
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Figure 9: Normalized Landau-Devonshire energy density as a function of the normalized
polarization components p′1 and p′2 in a stress-free state. Positive values are truncated to
zero for clarity.

methods (Xu and Needleman, 1994; Camacho and Ortiz, 1996) and other sharp crack mod-

els such as the extended finite element method (XFEM) (Moes et al., 1999) and the strong

discontinuity approach (Oliver et al., 2002). If the mesh is sufficiently fine, the method

used here is mesh independent, and it avoids difficulties of XFEM approaches to fracture,

notably nucleation and branching. These difficulties have been tackled combining XFEM

with damage models (Belytschko et al., 2003).

Following (Bourdin et al., 2000), we adopt a variational regularized view of Griffith’s frac-

ture theory. The total energy of a body made of brittle material and occupying a region Ω

is written as:

Eκ[u, v] =

∫
Ω

(v2 + ηκ)F (ε(u)) dΩ +Gc

∫
Ω

[
(1− v)2

4κ
+ κ|∇v|2

]
dΩ−

∫
ΓN,u

t · u dS, (7)

where F is the elastic potential as a function of the strain ε, and Gc is the critical energy

release rate or the surface energy density in Griffith’s theory (Griffith, 1921). The elastic

potential F is the stored energy density as a result of deformation of an elastic body. For

a linear elastic material, this potential is a quadratic function of the strain, i.e. F (ε(u)) =

1
2ε(u) : C : ε(u), where C is the elastic stiffness tensor. The scalar field v provides a diffuse

representation of the fracture zone, κ is a positive regularization constant to regulate the size
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of the fracture zone and ηκ is a small (relative to κ) residual stiffness to avoid the singularity

of the first part of the energy in fully fractured regions of the domain. Natural boundary

conditions are adopted for v. This functional is minimized in subsequent load increments,

imposing additionally an irreversibility condition, namely that the field v (informally, a

measure of the integrity of the material) can only decrease at any point in space during

the incremental process. The minimizers of the total energy develop localized features, in

particular localized regions with low or zero values of v, where the smeared crack is located.

It has been shown that, as long as ηκ converges to zero faster than κ, this regularized

theory converges to the sharp theory of brittle fracture. Furthermore, it has been shown

that the finite element discretization of this theory converges to Griffith’s fracture theory

when the mesh size and κ tend to zero in a concerted manner (Bourdin et al., 2008; Amor

et al., 2009)

The scalar field v is the phase-field parameter describing a smooth transition in space

between unbroken (v = 1) and broken (v = 0) states of the material. By noting that v2

multiplies the elastic potential F , it is clear that the value v = 0 effectively reduces the

stiffness of the material to zero. When the regularization parameter κ tends to zero, this

transition becomes sharper. It can be seen that in the limit of vanishingly small regular-

ization parameter, the phase-field model exhibits traction-free solutions on the crack faces,

as expected in the sharp crack model. For a finite but small value of the regularization

parameter, as used in practical computations, the resulting solutions are very close to being

traction-free in the smeared crack. For ferroelectric materials, similar conditions can also

be considered for the electrical fields, as discussed in Section 3.

The first term in Eq. (7) can be interpreted as the bulk stored elastic energy, while

the second takes the role of the surface energy. The crack propagation results from the

competition between these two energy terms. When the elastic energy density F increases

close to a critical value in a given region, it may become energetically favorable for the system

to decrease the value of v towards zero in that region in order to release elastic energy. This

comes at the expense of increasing the second term in the energy, since deviations from

1 are penalized. It is understandable then that the optimal solutions will release elastic

energy by forming narrow regions of small values of v. However, since variations of v are

also penalized in this second term, this model produces smeared cracks, whose width is

governed by the regularization parameter κ. The critical value for the elastic energy density
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is the energy level required to overcome the surface energy and to develop the fracture zone.

By increasing the value of the critical energy release rate Gc of the material, the surface

energy increases proportionally and it consequently requires a higher value of the elastic

energy density to nucleate or propagate cracks. It can be checked mathematically that the

integrand of the surface energy term converges to the surface area of the crack when κ tends

to zero, as expected in the sharp interface model. For a finite but small value of κ, as used

in practical computations, the second term will be a good approximation of the surface area

of the smeared crack.

An illustration of the diffuse crack is presented in Fig. 10. This figure is obtained from

the minimizer of the surface energy in two dimensions which is an optimal profile as a

function of v and a point x on the crack. Consider a line orthogonal to the crack and

passing through x with a distance function of d(x), then this profile is stated as (Bourdin

et al., 2008)

vκ(x) :=


0 if d(x) ≤ α

1− exp(−d(x)−α
2κ ) otherwise,

(8)

where 2α indicates the fully fractured region where v = 0. The semicircular area in front of

the crack is obtained by considering a distance function of d(r) along the radius of the circle

r. The resulting contour in Fig. 10 initializes the scalar field v and introduces a pre-crack

as an internal layer in a test specimen. This is in contrast to the sharp-crack models, where

the crack faces are geometrically defined in the computational model. The diffuse pre-cracks

are used to control and facilitate crack initiation and to determine energy release rates.

2α

ν

Figure 10: A sample of the smeared crack using the profile in Eq. (8).
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The total energy in Eq. (7) is quadratic and convex in v and u separately. In fact, for

a fixed v or u, the minimizer of either Eκ(u, •) or Eκ(•, v) exists, is unique, and can be

efficiently computed solving a linear system of equations, with the appropriate boundary

conditions. As a consequence, the numerical implementation of this theory is straightforward

by means of an iterative algorithm of two minimizers in subsequent load increments. For

each load increment, the iterations continue until the field v reaches a steady state. An

irreversibility condition is also imposed in this algorithm, namely that the field v can only

decrease at any point in space during the incremental process (Bourdin, 2007; Bourdin et al.,

2008).
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3 Coupled phase-field model of fracture in ferroelectric single

crystals

To study the quasi-static crack propagation in ferroelectric materials, we propose a phase-

field model which couples two energetic phase-field approaches for ferroelectric domain for-

mation and evolution and brittle fracture, summarized in Sections 2.3 and 2.4, respec-

tively. The coupling is done by forming a total electro-mechanical enthalpy that includes

the enthalpy of a possibly fractured ferroelectric material, together with the fracture surface

energy. From a physical point of view, the presence of the crack affects only some of the

contributions to the electro-mechanical enthalpy density H in Eq. (3). The coupling between

the field v representing the crack and the other fields depends on the particular electrical

and mechanical boundary conditions adopted for the crack. Note that in the phase-field

model, these boundary conditions become part of the field equations since the crack faces

are represented by an internal layer. By way of example, most of the crack models assume

that the crack faces are mechanically traction-free, i.e. σ ·n = 0 on the crack faces, n being

the unit outward normal. This condition is satisfied in the phase-field model for brittle

fracture by multiplying the elastic energy density F by the jump set function (v2 + ηκ) (see

Eq. (7)). Working by analogy, in the case of the proposed electro-mechanical model, we

multiply the electro-elastic energy density W in Eq. (3), which involves the elastic strains in

all its terms, by the jump set function. We illustrate in Section 4 that indeed this method

produces numerical solutions satisfying the traction-free boundary conditions at the crack

faces in an approximate but accurate way for a small yet finite value of the regularization

parameter.

When it comes to the electrical boundary conditions, there are two classical extreme

assumptions, namely permeable and impermeable boundary conditions. The former assume

that crack faces are closed and the electric field is not perturbed by the presence of the

crack. In order to encode these conditions in the phase-field model, the last two terms in

the electro-mechanical enthalpy density H in Eq. (3), which involve the electric field E,

should remain unmodified. In addition, free-polarization boundary conditions (Vendik and

Zubko, 2000) are commonly assumed, implying that the gradients normal to the crack faces

of the polarization components vanish at the crack faces. In the phase-field framework,

we introduce this condition by multiplying the only term in H involving the gradient of
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polarization, i.e. the domain wall energy density U , by the jump set function (v2 +ηκ). The

phase separation energy χ is not modified since it does not involve gradients of polarization.

Besides, note that modifying also the phase separation energy would lead to an indetermi-

nacy of the polarization inside the fracture zone. See Section 4 for mathematical description

of different crack-face boundary conditions.

In summary, for a traction-free, electrically permeable, and free-polarization crack, the

electro-mechanical enthalpy density H follows

H(ε,p,∇p,E, v) = (v2 + ηκ) [U(∇p) +W (p, ε)] + χ(p)− ε0

2
|E|2 −E · p (9)

where (v2 + ηκ)W + χ is the modified Landau-Devonshire energy.

In the other extreme case, impermeable boundary conditions were proposed to define

an open and electrically defective crack by assuming zero permittivity for the crack gap

(Deeg, 1980). In this model, the crack faces are treated as charge-free surfaces, i.e. the

normal component of the electric displacement vanishes on both crack faces. In contrast

to the permeable crack, the impermeable crack does not sustain any electric displacement

inside the fractured zone (v = 0) and thus the last two terms of the electro-mechanical

enthalpy density H in Eq. (3) are multiplied by the jump set function (v2 +ηκ) accordingly.

Numerical results in Section 4 indicate that indeed the desired boundary condition on the

crack faces is obtained with this method. Thus, for a traction-free, electrically impermeable,

and free-polarization crack, the electro-mechanical enthalpy density H takes the form

H(ε,p,∇p,E, v) = (v2 + ηκ)
[
U(∇p) +W (p, ε)− ε0

2
|E|2 −E · p

]
+ χ(p) (10)

For both crack models, the total electro-mechanical enthalpy for a ferroelectric body

occupying a region Ω is then

H[u, v,p, φ] =

∫
Ω
H(ε(u),p,∇p,E(φ), v) dΩ

+Gc

∫
Ω

[
(1− v)2

4κ
+ κ|∇v|2

]
dΩ−

∫
ΓN,u

t · u dS +

∫
ΓN,φ

ωφ dS.

(11)

where the electro-mechanical enthalpy density H is given for permeable and impermeable

cracks in Eqs. (9) and (10), respectively. The form of the variations of the electro-mechanical

enthalpy along with a simple algorithm to solve the coupled system are presented in Ap-
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pendix A.

To perform numerical simulations, a rectangular domain is considered and a monotoni-

cally increasing mechanical load is applied by pulling the top and bottom sides of the model

with a uniform vertical mechanical displacement. The four snapshots of the evolution of

the microstructure and the crack are presented in Fig. 11. By increasing the load, domain

switching propagates through the whole sample and the formation of multiple twins is obvi-

ous in Fig. 11(b). To evaluate the effect of twinning on the crack propagation, the evolution

of the total surface energy is presented in Fig. 12 as a function of the load step. The graph

of the permeable model is marked with letters a - d which correspond to four snapshots

presented in Fig. 11. The surface energy graph is also obtained for a single-phase material by

running the simulation with a frozen polarization field, which can be viewed as a reference

to be compared with the multi-phase model and assess the effect of twinning.

Multi-phase models show a slower growth rate than the single-phase one in Fig. 12.

This deviation is attributed to the retarding effect on the crack propagation of the 90o

ferroelastic domain switching in the vicinity of the crack tip. This toughening mechanism is

also reported in experiments of crack propagation in BaTiO3 (Meschke et al., 1997, 2000).

A sequence of abrupt crack propagation events, subsequent crack arrest, and slow crack

propagation periods can also be observed in Fig. 12. These stages reflect the following

sequence of events. As the crack cuts a set of twins, it can propagate easily until it feels the

compressive stresses of the next set of twins ahead of the tip, and it is arrested. Subsequently,

it propagates slowly until the loading is high enough to overcome the compressive stresses

due to the twins, and the process repeats itself. The snapshots in Fig. 11(b)-(d) correspond

to slow propagation periods arrested by the twins ahead of the crack represented with bold

white arrows. The corresponding points b - d in Fig. 12 indicate the starting points of

the slow propagation periods. It is noteworthy that the experimental results in Fang et al.

(2007) show a similar slow-fast crack propagation behavior in a poled BaTiO3 single crystal

specimen under mechanical loading.

Electro-Mechanical Loading. Simulations are also performed under combined electro-

mechanical loading. The behavior of the system is more complex in this case, since the

electric field influences the size and position of the twins, as well as the polarization inten-

sity. Our simulation results show that, by increasing the magnitude of the electric field, the

coercive stress σc for 90o ferroelastic domain switching increases and twinning becomes more
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b

a

d

c

Figure 11: Four snapshots of the evolution of the microstructure and the permeable crack.
The left column shows the vertical polarization field p2, which highlights the domain struc-
ture, and the right column shows the field v representing the fractured area. Domain
orientations are indicated with large arrows, which are bold white for the twins ahead of the
crack. The points where v = 0 are represented in black in the polarization maps to show
the crack position.
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Figure 12: Evolution of the normalized surface energy as a function of the load step.
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Figure 13: Twinning in the permeable crack model under electro-mechanical loading (a)
positive (b) negative electric fields. The black line shows the crack path and the bold black
arrows indicate the domains aligned with the applied electric field.

difficult. A physical consequence is the gradual shrinking of the twins, de-twinning, ahead

of the crack. An illustration of the twins forming under positive and negative electric fields

is shown in Fig. 13. It is apparent from this figure that the vertical twins (white arrows)

decrease in size with respect to Fig. 11(d), while the horizontal domains (bold black arrows),

which align as much as possible with the applied electric field, are significantly larger. Due

to the de-twinning effect, the crack splits the model under a lower load and the effective

fracture toughness decreases approaching the single-phase model.
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Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Abdollahi and Arias, 2011a):

1. A phase-field model is presented for the coupled nucleation and evolution of cracks and

domains in ferroelectric materials. The model naturally couples two energetic phase-

field models for fracture and for the microstructure of such materials. The simulations

reported here are, to the best of our knowledge, the first calculations for the fully

coupled interaction between the crack propagation and the formation and evolution

of microstructure in ferroelectric materials.

2. We reproduce experimental observations, such as the slow-fast crack propagation due

to the formation of twins in the vicinity of the crack tip (Fang et al., 2007) and the

weakening effect of de-twinning for high magnitudes of applied electric field (Schneider

and Heyer, 1999).

3. Our simulations reveal a wealth of complex phenomena, for which competing effects

make it difficult to interpret the experimental record. In particular, the simulations

explain why for low applied electric fields below the coercive field, there is not a clear

shielding or weakening effect of the microstructure (Sun and Park, 2000; Tobin and

Pak, 1993).

Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. Experimental observations by (Fang et al., 2007) reveal that the crack propagates along

the cleavage plane [101] in BaTiO3, following a zig-zag path that matches the domain

pattern. This can be included in our model by considering an anisotropic critical

energy release rate Gc, resulting in a lower surface energy or fracture toughness along

the cleavage planes.

2. Another important issue is the quantification and relative magnitude of the mobility

parameters, which can have an important effect on the resulting response.



4 Modeling of different crack face boundary conditions 27

4 Modeling of different crack face boundary conditions

The specific coupling between the phase-field models of ferroelectric ceramics and brittle

fracture depends on the particular electrical and mechanical boundary conditions adopted

for the crack. We are particularly interested in different crack-face boundary conditions

because they have a strong effect on the fracture behavior of piezoelectrics and ferroelectrics,

and ultimately on the reliability of the devices. We have presented two coupled phase-field

models in Section 3 considering some of these conditions. In this section, we propose a

general framework encompassing all the usual crack-face boundary conditions in the context

of phase-field models. The phase-field model of brittle fracture is viewed as a regularization

of Griffith’s sharp-crack model. In this sense, the aim here is to converge to the corresponding

sharp-crack solutions of the specific fracture problem. For that purpose, we consider the

different crack-face boundary conditions proposed in the literature for sharp-crack models

in electro-mechanical materials and formulate them in the regularized phase-field model.

Again, note that here the cracks are not boundaries of the computational domain, and

hence the different sharp-crack conditions have to be modeled in the bulk partial differential

equations.

In the context of sharp-crack models in electro-mechanical materials, the most common

crack-face boundary conditions in the literature can be classified as follows:

A. Uncoupled electrical/mechanical crack-face conditions

Mechanical boundary conditions: these are mainly: (1) traction-free crack faces and (2)

cohesive zone models (Xu and Needleman, 1994; Camacho and Ortiz, 1996) introduc-

ing a traction-separation law on the crack faces. Here, we consider only traction-free

crack boundary conditions. The encoding of the cohesive crack-face conditions in the

context of the phase-field models is beyond the scope of this section and is the object

of a future work.

Electrical boundary conditions: these are mainly (1) permeable, (2) impermeable and

(2) semi-permeable crack models, each assuming different electrical properties of the

crack gap (Li et al., 2008). The permeable crack boundary conditions were first pro-

posed for electro-mechanical materials (Parton, 1976). These conditions assume that

the crack does not exist electrically, i.e. crack faces are closed and electrical fields are

not perturbed by the presence of the crack. As the opposite assumption, impermeable
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boundary conditions were proposed to define an open and electrically defective crack

by assuming zero permittivity for the crack gap (Deeg, 1980). However, both the

permeable and impermeable crack boundary conditions are not physically justifiable

in many cases, since the effect of the medium filling the crack gap is neglected. As an

improvement, semi-permeable boundary conditions were introduced to treat the crack

gap as a linear dielectric material with a finite permittivity (Hao and Shen, 1994).

As a result, the electric charge can penetrate the crack gap. A physical inconsistency

of the semi-permeable conditions is that the stored electric charge in the crack gap

induces a closing traction on the crack faces which is not considered in these conditions.

B. Coupled electro-mechanical crack-face conditions

The Energetically Consistent (EC) crack model was first proposed to overcome the

inconsistency of the semi-permeable boundary conditions by considering not only the

electric charge inside the crack gap, but also the corresponding induced closing trac-

tion on the crack faces (Landis, 2004a). In fact, the crack acts as a capacitor inside

the material. EC conditions are believed to be the most physically realistic conditions

on the crack faces in electro-mechanical materials.

C. Polarization boundary conditions.

In contrast to piezoelectrics, the modeling of cracks in ferroelectric materials requires

the imposition of some condition for the polarization distribution on the crack faces

(Wang and Kamlah, 2010). There are two usual choices, namely (1) free-polarization

and (2) zero-polarization crack conditions. The former is a homogeneous Neumann

boundary condition for the polarization, leaving it unaffected by the presence of the

crack, and hence dictated by the bulk material model. The latter is a homogeneous

Dirichlet boundary condition for the polarization, thereby modeling an open crack

filled with free space.

Table 2 summarizes different crack-face boundary conditions as described above along with

related mathematical descriptions.

In the following, we first focus on the phase-field formulation of these conditions for

fracture in piezoelectrics based on the linear theory of piezoelectricity where microstructure
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Table 2: Crack-face boundary conditions in electro-mechanical materials.

Crack-face boundary conditions Mathematical description

Uncoupled
Mechanical

Traction-free σ+ · n+ = σ− · n− = 0
Cohesive zone σ+ · n+ = σ− · n− = t

Permeable
φ+ = φ−

Electrical D+ · n+ = D− · n−
Impermeable D+ · n+ = D− · n− = 0

D+ · n+ = D− · n− = Dc = ε0Ec
Coupled Electro-mechanical Energetically σc = ε0E

2
c /2

Consistent (EC) Hc = −ε0E
2
c /2

Polarization
Free-polarization ∇p · n+ = ∇p · n− = 0
Zero-polarization p+ = p− = 0

p: Polarization, σ: Stress, D: Electric displacement, φ: Electric potential
t: Mechanical traction governed by a traction-separation law
n: Unit normal to top (+) and bottom (-) crack faces
Ec and Dc : Electric field and electric displacement induced in the crack gap
Hc : Electrical enthalpy density of the crack gap

effects are not taken into account. Due to their simplicity, these models are useful to

study the basic concepts of the linear theory in the context of fracture mechanics and to

evaluate the effects of individual and coupled electro-mechanical fields (McMeeking, 1999,

2004; Landis, 2004a; Li et al., 2008).

According to the linear theory of piezoelectricity, the electro-mechanical enthalpy density

H of a piezoelectric material is stated as (Tieresten, 1969)

H(ε,E) =
1

2
(ε− εr) : C : (ε− εr)− (ε− εr) : eT ·E − pr ·E − 1

2
E ·KE, (12)

where e is the tensor of piezoelectric coupling constants, εr is the remanent strain, pr is

the remanent polarization, and K is the dielectric tensor. The electric field E is defined as

E = −∇φ, φ being the electric potential. In order to encode different crack-face boundary

conditions, different terms of the electro-mechanical enthalpy density in Eq. (12) are multi-

plied by the jump set function (v2 + ηκ). For traction-free and impermeable conditions, the

jump set should be multiplied by the energy terms associated with strain ε and electric field

E, respectively. In contrast, the permeable conditions imply that the energy terms associ-

ated with electric field E remain unmodified by the jump set. EC conditions assume that
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the crack behaves electrically similar to a capacitor, storing electrical charge between the

capacitor plates. Here, we develop the general formulation of this enthalpy in the context

of the phase-field model. The proposed enthalpy is stated as

Hc = −ε0

2

∫
Ω

(
1− v2

)
|F−T∇φ|2J dΩ, (13)

where F is the deformation gradient tensor defined as F = I+∇u, I is the identity matrix

and J is the Jacobian of the deformation defined as J = detF . The jump set function(
1− v2

)
restricts the added enthalpy to the fracture zone. The electric field in the de-

formed configuration of the fracture zone is Ec = −F−T∇φ and the enthalpy density is

integrated over the area of the deformed body using the Jacobian of the deformation J .

Then the electro-mechanical enthalpy density of the EC crack model is obtained by adding

the proposed electro-mechanical enthalpy of the diffuse crack in Eq. (13) to the enthalpy of

the impermeable crack model. Table 3 summarizes the electro-mechanical enthalpy density,

stresses and electric displacements for different crack-face boundary conditions in piezoelec-

tric materials.

The linear approach for piezoelectric materials assumes a fixed polarization and strain

state under any applied electro-mechanical load. In contrast, this state can be altered in

ferroelectrics in a nonlinear fashion and the additional polarization boundary conditions

should also be considered. To encode the zero- and free-polarization conditions, the energy

terms in Eq. (3) associated with polarization p and the gradient of polarization ∇p should

be multiplied by the jump set function (v2 + ηκ), respectively. Table 4 summarizes the

electro-mechanical enthalpy density, stresses and electric displacements for different crack-

face boundary conditions in ferroelectric materials. See Appendix B for a detailed discussion

on different crack-face boundary conditions, corresponding governing equations and a gen-

eral solution algorithm for the fracture models of piezoelectric and ferroelectric materials.

Verification. We present a set of numerical simulations aimed at verifying different aspects

of the proposed models. In all cases stationary cracks are considered for simplicity. We

study the convergence of the energy-release rate as computed with the phase-field models

summarized in Table 3 for piezoelectrics. Figure 14 presents the energy-release rates in a

four-point bending setup using two mesh sizes. In the case of a permeable crack, contrary
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Table 3: Electro-mechanical enthalpy density, stresses and electric displacements for piezo-
electric materials with different electro-mechanical crack conditions.

Electro-mechanical enthalpy density
Stresses and
Electric displacements

Per
H = (v2 + ηκ)(

1

2
ε : C : ε− ε : eT ·E)

− 1

2
E ·KE

σ = (v2 + ηκ)(C : ε− eT ·E)

D = (v2 + ηκ)e : ε+KE

Imp
H = (v2 + ηκ)(

1

2
ε : C : ε− ε : eT ·E)

− (v2 + ηκ)(
1

2
E ·KE)

σ = (v2 + ηκ)(C : ε− eT ·E)

D = (v2 + ηκ)(e : ε+KE)

EC

H = (v2 + ηκ)(
1

2
ε : C : ε− ε : eT ·E)

− (v2 + ηκ)(
1

2
E ·KE)

− ε0

2

(
1− v2

)
|F−TE|2J

σ = (v2 + ηκ)(C : ε− eT ·E)

+
J

2

(
1− v2

)
σc

D = (v2 + ηκ)(e : ε+KE)

+ J
(
1− v2

)
F−1Dc

Per: Permeable (traction-free), Imp: Impermeable (traction-free)
EC: Energetically Consistent

Dc = ε0Ec = ε0F
−TE,

σc = F−1 (Dc ⊗Ec) + (Dc ⊗Ec)F
−T − ε0

2
|Ec|2

(
F−1 + F−T

)
———————————————————————————————————————–

to one’s intuition, the energy release rate computed for the coarse mesh decreases as the

magnitude of the applied electric field increases. This situation is readily corrected by

refining the mesh and thereby reducing the regularization parameter κ. Indeed, for the

resolved (fine) mesh it is interesting to observe that the value of energy release rate is

insensitive to the magnitude of the applied electric field, in agreement with the results of

the sharp-crack model obtained by (Li et al., 2008). In contrast, the impermeable conditions

indicate a significant decrease of the energy release rate in the presence of applied electric

fields. This behavior is interpreted as a strong retarding effect on the crack propagation.
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Table 4: Electro-mechanical enthalpy density, stresses and electric displacements for ferro-
electric materials with different electro-mechanical crack conditions.
———————————————————————————————————————–

Free-polarization
———————————————————————————————————————–

Electro-mechanical enthalpy density
Stresses and
Electric displacements

Per
H = (v2 + ηκ)(U +W ) + χ

− ε0

2
|E|2 −E · p

σ = (v2 + ηκ)
∂W

∂ε
D = ε0E + p

Imp
H = (v2 + ηκ)(U +W ) + χ

− (v2 + ηκ)(
ε0

2
|E|2 +E · p)

σ = (v2 + ηκ)
∂W

∂ε
D = (v2 + ηκ)(ε0E + p)

EC

H = (v2 + ηκ)(U +W ) + χ

− (v2 + ηκ)(
ε0

2
|E|2 +E · p)

− ε0

2

(
1− v2

)
|F−TE|2J

σ = (v2 + ηκ)
∂W

∂ε

+
J

2

(
1− v2

)
σc

D = (v2 + ηκ)(ε0E + p)

+ J
(
1− v2

)
F−1Dc

Zero-polarization

Per
H = U + (v2 + ηκ)(W + χ−E · p)

− ε0

2
|E|2 − (1− v2)

εr − ε0

2
|E|2

σ = (v2 + ηκ)
∂W

∂ε
D = ε0E + (v2 + ηκ)p

+ (1− v2)(εr − ε0)E

Imp
H = U + (v2 + ηκ)(W + χ)

− (v2 + ηκ)(
ε0

2
|E|2 +E · p)

σ = (v2 + ηκ)
∂W

∂ε
D = (v2 + ηκ)(ε0E + p)

EC

H = U + (v2 + ηκ)(W + χ)

− (v2 + ηκ)(
ε0

2
|E|2 +E · p)

− ε0

2

(
1− v2

)
|F−TE|2J

σ = (v2 + ηκ)
∂W

∂ε

+
J

2

(
1− v2

)
σc

D = (v2 + ηκ)(ε0E + p)

+ J
(
1− v2

)
F−1Dc

Per: Permeable (traction-free), Imp: Impermeable (traction-free), EC: Energetically Consistent
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The behavior of the EC model is very close to that of the impermeable model for the coarse

mesh, while showing a less significant retarding effect for the fine mesh. The converged

results of the phase-field models corresponding to the different crack-face conditions for the

fine mesh, presented in Fig. 14, agree qualitatively with the results of the sharp-crack model

obtained by (Li et al., 2008).

We also present numerical evidence that indeed the phase-field solutions, both for piezo-

electrics and ferroelectrics, satisfy the corresponding crack-face conditions in a diffuse sense,

i.e. in the limit of vanishingly small regularization parameter κ, and converge to the solu-

tions of the corresponding sharp-crack model as the mesh size h and κ tend to zero in a

concerted manner. Figure 15 presents the results for the case of the traction-free, imperme-

able crack model along a cross section of the four-point bending sample normal to the crack

and behind the crack tip. The v field is also plotted along the same section in Fig. 15(a) to

indicate the cross-section of the diffuse cracks. For comparison purposes, the same problem

is solved with the corresponding sharp-crack model by geometrically introducing a pre-crack

of the same length in the computational model. It is obvious in Fig. 15 that by decreasing
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Figure 14: Energy release rates for different crack face conditions: Permeable (Per), Imper-
meable (Imp) and air-filled Energetically Consistent (EC) as a function of applied electric
field. A mechanical loading P = 2000 N is applied and the change of crack length is con-
sidered as ∆a = 0.05. The results are presented for a coarse mesh (κ = 4× 10−2 mm, h =
10−2 mm) and a fine mesh (κ = 4× 10−4 mm, h = 10−4 mm), respectively.
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the value of the regularization parameter with the mesh size, the transition of the field v

between the intact (v = 1) and fractured (v = 0) zones becomes sharper and the stresses

and electric displacements recover the solutions of the sharp-crack model near the edges of

the smeared crack.

In the case of the phase-field models of fracture in ferroelectrics summarized in Table 4,

we have conducted analogous verification tests. We have obtained similar conclusions from

the comparison of the profiles of stresses and electric displacements across of the diffuse

crack with those computed for the sharp-crack, for the case of the permeable and imper-

meable crack models and both for free-polarization and zero-polarization conditions. As

expected, since the crack-face boundary conditions are encoded for ferroelectrics by analogy

to piezoelectrics, we are able to show that the phase-field solutions (1) satisfy the corre-

sponding crack-face conditions in a diffuse manner and (2) converge to the corresponding

sharp-crack solutions. Some of these results are presented in our recent work (Abdollahi

and Arias, 2011a) in Appendix A.

Numerical simulations of propagating cracks. We examine the effects of the different

crack-face conditions on the crack propagation. Figure 16 presents the crack growth as

a function of the time in the piezoelectric four-point bending specimen. External electric

fields E = ±1 MV/m are applied from time t = 190 s. It is apparent that the impermeable

crack is completely arrested by the application of both the positive and negative electrical

load while the permeable crack remains unaffected by it. The crack growth rate for the

EC conditions lies between that of the permeable and impermeable conditions. While the

permeable and impermeable crack models show no sensitivity to the sign of the applied

electric field, the air-filled EC crack is less retarded under the negative applied electric field

than under the positive one. These observations, and in particular the asymmetric response

of the EC crack model with respect of the sign of the applied electric field, are also apparent

from the converged results of energy release rate in Fig. 14.

Similar simulations have also been carried out for ferroelectric materials and the effect

of domain switching in the vicinity of the crack on the crack propagation is evaluated. The

results are presented in Fig. 17 for the different crack-face conditions and under various

applied electric fields. It is obvious that the crack growth increases with the application

of the negative normalized electric field E = −5 × 10−3 for all the crack conditions. This
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Figure 15: (a) Field v along a cross section of the four-point bending sample normal to the
crack and behind the crack tip, (b)-(f) Stresses and electric displacements along the same
section. The results are obtained for a traction-free, electrically impermeable pre-crack.
Different values of the regularization parameter κ and mesh sizes h are chosen near the
smeared crack for each simulation: M1 (κ = 4 ×10−2, h = 10−2) , M2 (κ = 0.4, h = 0.1)
and M3 (κ = 4, h = 1). A simulation is also done for the sharp-crack model (marked with
S) with mesh size h = 10−2 near the crack faces. Both κ and h are normalized by the value
of 10−2 mm.



4 Modeling of different crack face boundary conditions 36

140 160 180 200 220 240
0

2

4

6

8

10

12

Time (s)

C
ra

c
k
 g

ro
w

th
 ∆

a
 (

µ
m

)

 

 

Permeable (+/−)

Air−filled EC (−)

Air−filled EC (+)

Impermeable (+/−)

|E| = 1 MV/m

Figure 16: Crack growth (∆a) as a function of the time in the piezoelectric material consid-
ering the permeable, impermeable and air-filled EC crack face conditions. External electric
fields E = ±1 MV/m are applied from time t = 190 s. The + and - signs indicate a positive
and negative applied electric field.

weakening effect is more pronounced for the EC crack model. The normalized electric field E

= −10−2 (above the coercive field in magnitude) decreases the crack growth significantly and

it shows a similar toughening effect to that of the positive applied electric fields. Similarly to

piezoelectric materials, the strongest retarding effect on the crack propagation is observed

for the impermeable conditions. According to Fig. 17, the impermeable crack is almost

arrested under the normalized electric field E = 10−2.
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Figure 17: Crack growth (∆a) as a function of the magnitude and sign of the electric field
in the ferroelectric material. The results are obtained for the different crack face conditions:
Permeable (Per), Impermeable (Imp) and air-filled Energetically Consistent (EC).
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Contributions

We summarize here the most significant contributions of this work, which has been submitted

for publication as a research paper in (Abdollahi and Arias, 2012c):

1. We present a family of phase-field models of fracture in piezoelectric and ferroelectric

materials. Different electro-mechanical crack conditions (defined as crack-face bound-

ary conditions in sharp-crack models) are encoded into the phase-field framework. A

set of simulations is performed to verify the proposed phase-field models against the

corresponding sharp-crack models. The results provide numerical evidence that for

small enough values of the regularization parameter, the proposed models recover the

solutions of the sharp-crack models near the edges of the diffuse cracks.

2. We have also conducted simulations to examine the effects of the different crack-

face conditions, electro-mechanical loadings and crack-gap filling media on the crack

propagation and the microstructure evolution of the material. Simulation results show

that a negative electric field (below the coercive field) enhances the crack propagation

perpendicular to the initial polarization in ferroelectrics, while a positive electric field

retards it, which is in agreement with experiments (Ricoeur and Kuna, 2003; Wang

and Singh, 1997; Shindo et al., 2002; Jiang et al., 2009).

Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. We have provided numerical evidence that the phase-field solutions converge to those

of the corresponding sharp-crack models for small enough values of the fracture reg-

ularization parameter and the mesh size. However, a rigorous mathematical analysis

would be desirable to prove this convergence.

2. Three dimensional simulations and an extension to polycrystalline materials along the

lines of (Abdollahi and Arias, 2012b) are necessary.



5 Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals 38

5 Phase-field simulation of anisotropic crack propagation in

ferroelectric single crystals

Formation and evolution of ferroelectric domains near the crack tip is responsible for changes

in the fracture behavior of ferroelectric materials such as fracture toughness anisotropy. The

Vickers indentation technique is commonly used in determining this anisotropy (Sun and

Park, 2000; Pisarenko et al., 1985; Tobin and Pak, 1993; Wang and Singh, 1997; Lynch, 1998;

Schneider and Heyer, 1999). These experimental observations show that the cracking along

the poling direction of the material has a shorter length and consequently higher fracture

toughness, and that normal to the poling direction has a longer length and lower fracture

toughness. Ferroelastic domain switching is known as the main cause of the anisotropy. The

main objective of this section is to introduce a model which can simulate the anisotropic

crack growth under Vickers indentation loading with the goal of linking the microstruc-

tural details with the macroscopic observable response. For this purpose, the model pro-

posed in Section 3 is modified following (Amor et al., 2009) by introducing a crack non-

interpenetration condition in the variational approach to fracture accounting for the asym-

metric behavior in tension and compression in the framework of linearized elasticity. This

condition is essential for the simulation of the Vickers indentation test since the indentation

loading induces high compressive stresses near the indenter contact faces. Without the crack

non-interpenetration condition, the variational approach would lead to crack propagation

and interpenetration in the compression zones, along the indenter faces. Furthermore, radial

crack propagation in tension zones is only obtained when this condition is considered in the

model. For the ferroelectric response, we follow the Devonshire-Ginzburg-Landau phase-

field model presented in (Zhang and Bhattacharya, 2005a) just as in the coupled phase-field

model presented in Section 3.

We briefly describe here the coupled phase-field formulation with emphasis on the mod-

ification introduced to account for the asymmetric behavior in tension and compression.

We form a total electro-mechanical enthalpy of a possibly fractured ferroelectric material

occupying a region Ω as

H[u,p, φ, v] =

∫
Ω

[We(ε(u), v) +Wf (ε(u),p, φ, v)] dΩ

+Gc

∫
Ω

[
(1− v)2

4κ
+ κ|∇v|2

]
dΩ, (14)
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where body loads, volume charges, tractions and surface charges have been ignored for

simplicity. In this functional, the bulk energy (first integral) competes with the surface

energy (second integral). All the constants and parameters are defined in Section 3. In the

bulk energy, We is the part of the bulk energy density associated with the strain ε and Wf is

the electro-mechanical energy density associated with the ferroelectric response. To account

for the quite different fracture behavior in tension and compression, the energy density We

is written in (Amor et al., 2009) as

We(ε, v) = κ0
tr−(ε)2

2
+ (v2 + ηκ)

(
κ0

tr+(ε)2

2
+ µ εD · εD

)
, (15)

where κ0 and µ are the bulk and shear modulus of the material, respectively. The decompo-

sition of the trace of the strain tensor ε in positive and negative parts are tr+ = max(tr(ε), 0)

and tr− = max(−tr(ε), 0) and εD are the deviatoric components of the strain tensor. This

decomposition is introduced to distinguish the contributions to the strain energy due to

compression, expansion, and shear. In contrast to (Abdollahi and Arias, 2011a) and Section

3, here only the expansion and shear terms are multiplied by the jump set function (v2 +ηκ)

to prevent crack nucleation, propagation and interpenetration in compressed regions.

The electro-mechanical energy density Wf associated with polarization p, electric po-

tential φ, ε and v is formulated as

Wf (ε,p, φ, v) = (v2 + ηκ)[U(∇p) +W (p, ε)] + χ(p)− ε0

2
|∇φ|2 +∇φ · p, (16)

where energy functions U , χ and W are defined in Appendix C. This particular formulation

of the phase-field model encodes the asymmetric fracture response in tension and compres-

sion, as well as the assumed crack conditions. We assume the crack to be traction-free and

electrically permeable. The governing equations and a solution algorithm are presented in

detail in Appendix C.

We consider an indentation impression lying inside a ferroelectric single crystal in two di-

mensions. A monotonically increasing mechanical load is applied by pulling the indentation

faces with uniform displacement. It is also assumed that the indenter faces are connected

to the ground, therefore the electric potential is fixed to zero on the indentation faces. All
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the material parameters are selected to fit the behavior of single crystals of barium titanate

(BaTiO3). Figure 18 presents a snapshot of the crack propagation. The value of v starts

to decrease towards zero around the vertices of the indentation as the load increases. After

reaching the zero value, the fracture zone grows along the four radial directions as shown in

Fig. 18.
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Figure 18: Snapshot of the fracture evolution. Field v represents the fracture area. Four
equally large areas around the corners of the indentation are considered to obtain the surface
energy evolution of the four radial cracks (crack zones 1− 4) shown in Fig. 19.

To evaluate the radial crack growth, four equally large areas around the corners of the

indentation are considered in Fig. 18 and the value of surface energy (the second integral

in Eq. (14) is obtained for each zone. Note that the surface energy is an indirect measure

of the crack length. The surface energy graphs are shown in Fig. 19. It is obvious in

this figure that surface energies of zones 1 and 3 follow nearly the same path. This also

holds for zones 2 and 4. Interestingly, the surface energies of zones 1 and 3 are larger than

those of zones 2 and 4, i.e. the perpendicular cracks to the polarization are longer than the

parallel ones. This is a clear evidence of the anisotropic crack propagation in agreement

with experimental observations. For comparison purposes, we also compute the surface
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energy for an elastic single-phase material by fixing the initial polarization to zero. The

energy graphs of all the four zones for the single-phase material fall on top of each other,

a testament of the isotropic crack propagation. One of these graphs is presented in Fig. 19

(marked as single-phase graph).
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Figure 19: Evolution of the normalized surface energy of the four zones (crack zones 1− 4)
marked in Fig. 18 as a function of the load step. The single-phase graph is obtained for one
of these zones considering the elastic material with zero fixed polarization.

The origin of the observed fracture toughness anisotropy can be found in the domain

switching during crack growth. Figure 20 presents a snapshot of the domain evolution in

an area around the indentation. Ferroelastic domain switching occurs around the tip of the

parallel cracks (cracks 2 and 4), where the horizontal components of the polarization vectors

indicate wing-shaped domains or twins. This kind of switching is induced by the high tensile

stresses near the crack tip tending to elongate the material in the horizontal direction in

front of the parallel cracks. Due to the absence of ferroelastic domain switching, the per-

pendicular cracks grow more than parallel ones and the effective fracture toughness is lower

perpendicular to the poling direction. It is also obvious in Fig. 19 that the elastic single-

phase material has the lowest fracture toughness due to the absence of the microstructure

effect.
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Px Py

Figure 20: Snapshot of the microstructure evolution in an area near the indentation. The
left and right columns show the horizontal and vertical components of the polarization,
respectively. The black lines in the left column indicate the position of the cracks (v = 0).
The domain orientations are indicated with white arrows.

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Abdollahi and Arias, 2011b):

1. We perform, to the best of our knowledge, the first simulation of Vickers indentation

crack growth in ferroelectric single crystals with the goal of evaluating the effect of the

microstructure on the fracture process. This is done by formulating a coupled phase-

field model based on a modified variational formulation of brittle crack propagation and

the material model to prevent crack formation and interpenetration in the compressed

regions.

2. The simulation results show that radial cracks perpendicular to the poling direction

of the material propagate faster than parallel ones, which is in agreement with experi-

mental observations (Sun and Park, 2000; Pisarenko et al., 1985; Tobin and Pak, 1993;

Wang and Singh, 1997; Lynch, 1998; Schneider and Heyer, 1999). This anisotropy in

the fracture toughness follows from the fully coupled interactions between the material

microstructure and the crack propagation. 90o ferroelastic switching induced by the

intense crack-tip stress field is observed near the parallel cracks, which is believed as

the main fracture toughening mechanism in ferroelectric materials.
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Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. A more precise evaluation of the microstructure effect will be obtained by extending

the proposed model to three dimensions and running longer simulations producing

more extended cracks.

2. Although domain switching is claimed to be the main source of fracture toughness

anisotropy, the intrinsic anisotropy of the crystal, i.e. the different surface energy in

different cleavage planes, is bound to have an effect as well.
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6 Crack initiation patterns at electrode edges in multilayer

ferroelectric actuators

Multilayer ferroelectric actuators are ideal candidates for numerous applications in smart

structures and adaptive systems in view of their small sizes, low driving voltages and quick

response times. Applications include microprecision cutting machines, inkjet printer heads,

laser printers, optical disk drives and laser tuning (Uchino and Takahashi, 1996; Pritchard

et al., 2001), to mention a few. However, the structures of multilayer actuators often employ

internal electrodes, which terminate inside the ferroelectric ceramic. In the vicinity of each

terminated electrode edge, a non-uniform electric field is induced by the driving voltage, pro-

ducing an incompatible strain field. A complex stress field arises from this incompatibility,

which may lead to crack initiation and propagation around the electrode edge. Therefore,

it is necessary to understand the fracture behavior of multilayer ferroelectric actuators to

assure optimum reliability of the systems and guide the design. Towards this goal, numerous

experimental and theoretical investigations have been carried out during the past decades.

Experimental observations confirm that the cracks initiate mainly from the electrode edge

and they can propagate through the ceramic, along the ceramic-electrode interface and

perpendicular to the electrode edge (Uchino and Furuta, 1992; Furuta and Uchino, 1993;

Aburatani et al., 1994; Lucato et al., 2001; Koh et al., 2004; Liu et al., 2005; Zhao et al.,

2010). Early theoretical models were developed for fracture mechanics analysis of multilayer

electrostrictive ceramics (Winzer et al., 1989; Yang and Suo, 1994; Hao et al., 1996; Gong

and Suo, 1996; Ru et al., 1998). Related studies have been also conducted based on the

linear theory of piezoelectricity (Ru, 2000; Ye and He, 2001; Li and Tang, 2003; Wang, 2005;

Guo et al., 2006). However, the intrinsic nature of most piezoelectric materials demands

the consideration of nonlinear electromechanical effects. To address this problem, nonlinear

approaches were proposed taking into account the ferroelectric and ferroelastic behaviors

(Kamlah and Bohle, 2001; Lucato et al., 2001; Elhadrouz et al., 2006; Zhao et al., 2010).

The above mentioned models for the fracture of multilayer actuators are useful to analyze

the electromechanical fields near the electrode edge. Based on this analysis, some design

criteria can be proposed regarding the geometry of the actuators and electrodes to reduce

the probability of fracture from the electrode edge. However, these models do not study

the crack propagation mechanisms of the actuators and these mechanisms are still unclear
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due to the complex interactions between the propagating cracks, electromechanical fields

and microstructure of the material near the electrode edge. The potential of the phase-field

approach, presented in Section 5, to capture the complex interactions between the crack and

the material microstructure motivates us to employ it for the fracture analysis of multilayer

ferroelectric actuators. In particular, the objective of this section is to study the crack

initiation at the electrode edge during the poling process. Considering different bonding

conditions between the ceramic and electrode layers, different crack initiation patterns are

obtained, which are useful to understand the fracture processes in this type of actuators.

The theory of the phase-field model is presented in Section 5, where the formulation

encodes the asymmetric fracture response in tension and compression. This condition is

essential for the simulation of the crack propagation at the electrode edge since high com-

pressive stresses are induced in this region (Furuta and Uchino, 1993; Kamlah and Bohle,

2001).

A schematic of the computational model is presented in Fig. 21. All the material

parameters, boundary conditions and loading are presented in detail in Appendix D. Here

we consider three extreme assumptions for the bonding of the ceramic and electrode layers

at the bottom boundary. The first model assumes that the ceramic layers and internal

electrodes are firmly cofired together without considering any defects between the layers,

i.e. the fully cofired model. As an intermediate assumption, the ceramic-electrode interface

is considered to be fully cofired while there is no ceramic-ceramic bonding ahead of the

electrode edge (Zhao et al., 2010). This model is called the partially cofired model. Finally,

the third assumption considers fully separated layers on both interfaces. In fact this model

represents a single layer of the multilayer actuator where the internal electrode is located at

the surface of the actuator (Lucato et al., 2001). This model is called the surface electrode

model.

Figure 22 presents snapshots of the crack propagation in a small neighborhood of the

electrode edge for the three models. In all of the simulations, as the driving voltage Vd

increases, the v field starts to decrease at the electrode edge until it reaches the threshold

to be considered permanently fractured. By further increasing of the electric field, the v

field evolves in a different direction from the electrode edge in each model. Figure 22(a)

shows that the crack mainly propagates along the ceramic-ceramic interface ahead of the

electrode edge in the fully cofired model. On the contrary, Fig. 22(b) indicates that a
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Figure 21: Schematic of the computational model for a single layer of the multilayer actuator.
The electrodes are indicated with the thick lines and the origin of the coordinate system is
located at the electrode edge. Vd is the driving voltage of the actuator.

preferential path for the crack propagation is along the ceramic-electrode interface in the

partially cofired model. It is noteworthy that the experimental results in (Zhao et al., 2010)

show a similar crack propagation path along the electrode-ceramic interface in a partially

cofired actuator. As for the surface electrode model, it is interesting to observe in Fig. 22(c)

that the crack propagates obliquely from the electrode into the material.

The crack initiation patterns presented in Fig. 22 also suggest a crack propagation

scenario in multilayer ferroelectric actuators. The most common design of these actuators

is that the ceramic layers and electrodes are fully cofired together. For this design, the

simulation results show that the first crack initiation site is the ceramic-ceramic interface

ahead of the electrode edge, see Fig. 22(a). If the crack propagates a certain distance along

this interface, a new crack will initiate in the opposite direction along the electrode-ceramic

interface, as also observed in Fig. 22(a). This fracture process can be explained as follows.

Since the first crack gradually cuts the ceramic-ceramic interface into a traction-free surface,

an interface gap is formed ahead of the electrode edge and the fully cofired actuator becomes

a partially cofired one. Consequently, in the partially cofired actuator, the new crack initiates

along the electrode-ceramic interface, as presented in Fig. 22(b). A sufficient propagation

of the new crack changes the electrode-ceramic interface into a traction-free surface and the

partially cofired actuator gradually converts to a surface electrode one. In this situation,

the third mode of fracture will be activated, which is the oblique crack propagation in

the surface electrode model, see Fig. 22(c). The above mentioned events reflect a crack
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Figure 22: Crack initiation patterns in a small neighborhood of the electrode edge for the
(a) fully cofired, (b) partially cofired, and (c) surface electrode models. The color contour
indicates the distribution of v field representing the fracture area. Recall that the origin of
the coordinate system is located at the electrode edge.
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initiation process in multilayer ferroelectric actuators, which is schematically presented in

Fig. 23. Interestingly, the experimental results show that the crack is initiated at the internal

electrode edge, and it branches basically into three directions from the electrode edge which

results in the delamination and oblique cracking of multilayer ferroelectric actuators (Uchino

and Furuta, 1992; Furuta and Uchino, 1993; Aburatani et al., 1994). Our calculations

suggests a mechanism explaining these observations. Note that far from these initiation

sources, the direction of crack propagation can be affected by the presence of pores, domain

walls or grain boundaries in polycrystals.

Fully cofiredPartially cofired

Surface electrode

Electrode

2 1

3

Figure 23: Schematic of the crack initiation events in multilayer ferroelectric actuators. The
thick line is a schematic of the crack path and the arrows present the crack propagation
directions from the electrode edge. The numbers indicate the sequence of crack initiation
events from the fully cofired to the surface electrode model.

Contributions

We summarize here the most significant contributions of this work, which has been submitted

for publication as a research paper in (Abdollahi and Arias, 2012a):

1. We have performed simulations of crack initiation and propagation at electrode edges

in multilayer ferroelectric actuators by using a coupled phase-field model. The simu-

lation results show different crack initiation patterns depending on the bonding con-

ditions of the ceramic and electrode layers. These crack initiation events can reflect

a fracture process in multilayer actuators. Furthermore, the obtained patterns can be
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interpreted as initiation sources of experimentally observed crack branches near the

electrode edge (Uchino and Furuta, 1992; Furuta and Uchino, 1993; Aburatani et al.,

1994).

2. We also evaluate the effects of the ceramic layer thickness and length of the internal

electrode on the crack initiation. The results show that the crack initiation becomes

more difficult by decreasing the thickness of the ceramic layer and the length of the

internal electrode. A similar behavior has been observed in experiments for crack

initiation and propagation perpendicular to the electrode edge (Lucato et al., 2001).

Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. Dielectric breakdown often occurs during the fracture of multilayer actuators via the

formation of conducting tubular channels (Suo, 1993), which can release a large amount

of thermal energy. This energy may affect the material properties or may induce a

thermal stress near the electrode edge. Therefore, a thermo-electro-mechanical anal-

ysis is required to investigate this effect.

2. The formation and propagation of the tubular channels around the electrode edge can

have an important effect on the electromechanical fields and the microstructure of the

material, which needs to be investigated.
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7 Phase-field model of fracture in ferroelectric polycrystals

To study the fracture process in ferroelectric polycrystals, the effect of polycrystalline mi-

crostructure should be considered by incorporating the differential fracture toughness of the

bulk and the grain boundaries, and the different crystal orientations of the grains. To the

best of our knowledge, no model has been proposed in the literature to study the interactions

between the fracture process and the polycrystalline and domain structure in ferroelectric

polycrystals. The related models (Landis, 2003; Li and Kuna, 2011) have only taken into

account the grains orientations, but the effects of grain boundaries and grain size have not

been considered. In (Verhoosel and Gutierrez, 2009), the grain microstructure is introduced

to model inter- and transgranular crack propagation in linear piezoelectric polycrystals, thus

not accounting for the effect of ferroelectric domain microstructures. The main objective of

this section is to study the fracture processes in ferroelectric polycrystals in its full complex-

ity, and in particular to evaluate the effects produced by the grain and ferroelectric domain

microstructures on the fracture response of the material. For this purpose, we extend to

polycrystals the phase-field model of fracture in ferroelectric single crystals presented in

Section 3. The results obtained with this model prove its potential to capture complex

interactions between the crack and the material microstructure.

The proposed model for fracture of ferroelectric polycrystals is based on two existing

phase-field approaches for: (1) grain growth (Fan and Chen, 1997) and (2) fracture in

ferroelectric single crystals (Abdollahi and Arias, 2011a). The first model provides realis-

tic polycrystalline microstructures with different grain sizes, while the second models the

complex interactions between the fracture processes and the ferroelectric domain formation

and evolution. Following (Zhang and Bhattacharya, 2005b), the latter is extended to fer-

roelectric polycrystals. The resulting model couples three phase-fields describing (1) the

polycrystalline , (2) the location of the cracks, and (3) the ferroelectric domain microstruc-

ture.

According to the phase-field model of grain growth (Fan and Chen, 1997), the total free

energy of a heterogeneous system is stated as

F =

∫
Ω

[f0(η1, η2, ..., ηm) +

m∑
i=1

κi
2

(∇ηi)2] dΩ, (17)

where f0 is the local free energy density presented in detail in Appendix E. κi are the
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gradient energy coefficients and field variables ηi indicate the grains where the minima of

f0 are located at (η1, η2, ..., ηp) = (1, 0, ... , 0), (0, 1, ... , 0), ... , (0, 0, ... , 1). The grain

boundaries are the regions of the domain where the gradient energy terms are non-zero.

The evolution of the grains is governed by Ginzburg-Landau equations.

The total electromechanical enthalpy in Eq. (11) is extended here to study the crack

propagation in ferroelectric polycrystals. For this purpose, the polycrystalline microstruc-

ture given by the model of grain growth is included in the formulation as follows. In the

models of brittle polycrystalline materials, the fracture properties of the grain boundaries

can be characterized by assuming a lower fracture toughness along these boundaries as com-

pared to the grain interiors. Other works (Grah et al., 1996; Sukumar et al., 2003; Verhoosel

and Gutierrez, 2009) have proven the validity of this assumption for the study of the inter-

granular and the transgranular modes of fracture. In the model of grain growth, the grain

boundaries can be identified through a function ξ of the orientation field variables ηi defined

as

ξ =
m∑
i=1

η2k
i , (18)

where k is a positive integer. The function ξ has a unit value inside the grains and smaller

positive values at the grain boundaries. Through this function, we can easily assign a lower

fracture toughness along the grain boundaries than in the grain interiors. The critical energy

release rate in a polycrystal can be defined as

Gpolyc = Gc F (ξ), (19)

where Gc is the critical energy release rate of the bulk crystal, and the function F controls

the weakening of the material at the grain boundaries. This function attains its maximum

for ξ = 1 (inside the grains) and its minimum indicates the ratio of the critical fracture

energy of the grain boundary to that of the grain interior. This ratio can be regulated

in our model by an appropriate selection of the function F and setting the power k in

Eq. (18) and the coefficients of the gradient energy (κi). Here, the function F is chosen

to be proportional to ξ, i.e. F (ξ) = ξ. The power of ξ is also assigned as k = 1 to

avoid decreasing the fracture toughness towards zero along the grain boundaries, which is

unphysical. We also assume that each grain is oriented along a different crystallographic

direction. In 2D, the rotation angle θ is defined and its value is assigned randomly for
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each orientation field variables ηi (i = 1, ...,m). Using the orientation field and following

the phase-field model of ferroelectric polycrystals (Zhang and Bhattacharya, 2005b), the

electromechanical enthalpy density H in Eq. (9) can be extended to polycrystals. For this

purpose, each of the energy terms in Eq. (9) is transformed from the local coordinate system

of each individual grain to the global coordinate system of the polycrystal, θ being the angle

between these two coordinate systems. It can be shown that all the energy terms except χ

remain unchanged by this transformation. The modified energy density χpoly is presented

in Appendix E. By replacing the modified χpoly and Gpolyc in Eq. (11), the electromechanical

enthalpy density for a ferroelectric polycrystal takes the form

Hpoly(ε,p,∇p,E, v) =(v2 + ηκ) [U(∇p) +W (p, ε)]

+ χpoly(p)− ε0

2
|E|2 −E · p+Gpolyc

[
(1− v)2

4κ
+ κ|∇v|2

]
. (20)

The time evolution of the system along with a solution algorithm are presented in detail in

Appendix E.

To perform numerical simulations, a rectangular domain is considered. First, the phase-

field model of grain growth is used to obtain different polycrystalline microstructures. Two

snapshots of the polycrystalline microstructure evolution are presented in Fig. 24(a) and

24(b). Grain boundaries are highlighted by darker regions in these figures. These two

polycrystalline microstructures are selected for the fracture simulations in a fine- and a

coarse-grain ferroelectric polycrystal, respectively.

For the fracture simulations, a monotonically increasing mechanical load is applied by

pulling the top and bottom sides of the model with a uniform vertical mechanical displace-

ment. All the material parameters are selected to fit the behavior of single crystals of barium

titanate (BaTiO3). Figures 24(a) and 24(b) present the final computed crack paths (when

the sample is splitted into two parts) in the fine- and coarse-grain structures, respectively.

It is obvious in Fig. 24(a) that the crack propagates mainly along the grain boundaries,

demonstrating the intergranular mode of fracture in the fine-grain structure. On the other

hand, transgranular crack propagation is observed in Fig. 24(b) where the crack propagates

through the grains. Experimental observations in ferroelectric polycrystals also show this

transition from intergranular fracture for small grains to transgranular fracture in the case

of large grains (Kim et al., 1990; Meschke et al., 1997).
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(a) (b)

Figure 24: Crack path in (a) fine-grain and (b) coarse-grain ferroelectric polycrystals. The
points where v = 0 are depicted in red to indicate the crack position.

To evaluate the effect of the fracture toughening mechanisms, the evolution of the nor-

malized crack length (the integral of the last term in Eq. (20) without the factor Gpolyc ) is

plotted in Fig. 25 as a function of the load step w. Both the fine- and coarse-grain graphs

start from zero (intact model), and are almost identical until the cracks initiate at load

step w = 1.17. After this point, the crack in the fine-grain structure starts to propagate

abruptly, i.e. a small increase of the load leads to a big jump in the crack length. This

is because after cutting the first grain, the crack starts to propagate faster along the grain

boundaries with the lower fracture toughness. Interestingly, the abrupt propagation stops

at load step w = 1.2 (point a in the fine-grain graph). Simulation results show that this

crack arrest is due to crack deflection along the grain boundary. This phenomena is the

so-called crack deflection toughening in intergranular mode of fracture (Faber and Evans,

1983; Kueck et al., 2008). The crack shows this behavior in other load steps b and c.

Regarding the crack propagation in the coarse-grain microstructure, its crack-length

graph in Fig. 25 shows a slower growth rate than the fine-grain structure. This is mainly due

to the fact that, the transgranular mode of fracture in the coarse-grain structure allows the

crack to interact with the ferroelectric domain microstructure inside the grains. Due to the

high tensile stresses around the fracture zone, the polarization vectors start to rotate towards

the vertical direction which leads to 90o ferroelastic domain switching mentioned in Section
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Figure 25: Evolution of the normalized crack length as a function of the load step.

3. Therefore the main toughening mechanism in a coarse-grain ferroelectric polycrystal is

the domain switching-induced toughening. In contrast, 90o ferroelastic switching is less

pronounced in the fine-grain structure since the crack propagates faster along the grain

boundaries with a lower applied load. Therefore the effective fracture toughness of the

coarse-grain structure is higher than the fine-grain, which agrees with experiments (Meschke

et al., 1997).

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Abdollahi and Arias, 2012b):

1. We perform, to the best of our knowledge, the first simulation of crack propagation in

ferroelectric polycrystals with the goal of qualitatively evaluating the effect of the grain

size and ferroelectric domain microstructures on the fracture process. For this purpose,

we extend to polycrystals a phase-field model of fracture in ferroelectric single-crystals

by incorporating the differential fracture toughness of the bulk and grain boundaries,

and different crystal orientations of the grains.

2. Simulation results show intergranular and transgranular crack propagations in fine-

and coarse-grain structures, respectively. Crack deflection is observed as the main

toughening mechanism in the intergranular mode of fracture in the fine-grain struc-

ture. On the other hand, as transgranular fracture is the dominant mode in coarse-
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grain microstructures, the crack interacts with the ferroelectric domains inside the

grains. In particular, 90o ferroelastic domain switching results in a considerable frac-

ture toughening effect. All these observations agree with experiment.

Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. The relative physical size of the grains and ferroelectric domains should be consid-

ered for more realistic simulations. Besides the grain size, the model presents three

lengthscales: (1) the width of the grain boundaries, (2) the width of the ferroelectric

domain walls, and (3) the width of the smeared cracks. The first two lengthscales can

be estimated experimentally. The latter is a numerical artifact, which could have a

significant effect on the simulation results. A sensitivity analysis on the regularization

parameter of the fracture phase-field relative to the other lengthscales of the problem

would be necessary, as well as an extension to three dimensions.

2. Although domain switching is claimed to be the main toughening mechanism in coarse-

grain ferroelectric polycrystals, the intrinsic anisotropy of the crystal in each grain is

bound to have an effect as well.
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8 Conducting crack propagation driven by electric fields in

ferroelectric ceramics

Several experiments have reported electric-field induced crack growth of ferroelectric ceram-

ics from insulating notches and related theories for calculating energy release rates (Lynch

et al., 1995; Lucato et al., 2002; Liu et al., 2002; Lucato et al., 2003; Niefanger et al., 2004;

Shieh et al., 2006; Westram et al., 2007; Westrain et al., 2007; Jiang and Fang, 2007; Jiang

et al., 2009). However, theoretical approaches show that electric field loading, perpendicular

to an insulating crack, decreases the total energy release rate, i.e. electric fields retard the

crack propagation (Suo, 1991; Park and Sun, 1995; McMeeking, 1999, 2004; Landis, 2004a;

Schneider, 2007; Li et al., 2008). This discrepancy indicates that the induced strain incom-

patibility around the notch is the main cause of crack propagation rather than electrostatic

forces. In contrast, electric fields parallel to a conducting crack increase the total energy

release rate, which enhance the crack propagation (Suo, 1991, 1993; Yang and Suo, 1994;

Qian et al., 1998; Schneider, 2007). Experiments on conducting cracks also show the fracture

of ferroelectric ceramics under purely electrical loading (Fu and Zhang, 2000; Zhang et al.,

2003; Zhang and Gao, 2004; Zhang et al., 2004, 2007; Beom et al., 2009). Most of these

experimental results imply that the major driving force to propagate the conducting cracks

is the electrostatic force due to the accumulation of charges with the same sign at the crack

tip. The fracture behavior of conducting cracks has been also investigated under combined

mechanical and electrical loads (Heyer et al., 1998; Gehrig et al., 2008).

The above mentioned models for the conducting cracks are useful to analyze the elec-

tromechanical fields near the crack tips. Most of these models are based on simplified elec-

trostrictive or linear piezoelectricity theories which do not consider the nonlinear effects of

the domain switching in ferroelectrics. Related approaches have been developed to consider

these effects and to investigate the toughening of conducting cracks due to domain switching

(Rajapakse and Zeng, 2001; Jeong and Beom, 2004; Beom and Youn, 2004), which rely on

a simple small-scale switching criterion (Hwang et al., 1995). However, all of these models

assume fixed crack configurations and they are unable to study the crack propagation mech-

anisms in ferroelectric ceramics. In this section, we aim at extending the phase-field theory

proposed in Section 5 to model conducting crack propagation in ferroelectric ceramics and

investigating the crack propagation mechanisms under purely electrical loading.
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In the framework of sharp-crack models, a conducting crack is equivalent to assuming

that the crack surfaces are coated with perfectly conducting electrode. Therefore the electric

potential all over the crack is constant and the electric field inside the crack gap is zero. This

condition can also be obtained by filling the crack gap with a conducting fluid or electrolyte

such as NaCl solution (Heyer et al., 1998; Gehrig et al., 2008) or silver paint (Zhang et al.,

2003, 2004). The crack-gap filling electrolyte resembles an internal conducting layer with

infinite permittivity. In the context of phase-field models, this layer can be defined in

a smeared way by modifying the electro-mechanical enthalpy in Eq. (16) in such a way

that the permittivity reaches infinity inside the fractured zone (v = 0). This is done by

multiplying the vacuum permittivity ε0 by the jump set function 1/(v2 + ε−1
c ), where εc

is the relative permittivity of the fractured zone. Then the electro-mechanical enthalpy

density in Eq. (16) is modified for a conducting crack as

Wc(ε,p, φ, v) = (v2 + ηκ)[U(∇p) +W (p, ε)] + χ(p) +∇φ · p− 1

(v2 + ε−1
c )

ε0

2
|∇φ|2, (21)

If εc is chosen sufficiently large, the last term in Eq. (21) will represent the electrical enthalpy

of a diffuse conducting layer, which is shown schematically in Fig. 26. The jump set function

1/(v2 + ε−1
c ) does not alter the vacuum permittivity outside of the fracture zone (v = 1)

since ε−1
c is an infinitesimal value. On the other hand, this function attains its maximum

for v = 0, encoding the conditions of a conducting layer with the large relative permittivity

εc inside the fractured zone. A semi-conducting layer is defined as a smooth transition

between the insulating vacuum and conducting layers (0 < v < 1). When the regularization

parameter κ tends to zero, this transition becomes sharper and the semi-conducting layer

tends to disappear. It can be seen that, in the limit of vanishingly small regularization

parameter, the proposed phase-field model recovers the conditions of the sharp conducting

crack. Note that this formulation together with the energy density We in Eq. (15) account

for the asymmetric behavior in tension and compression and encode also the free-polarization

conditions, as discussed in Section 5. The governing equations, material parameters and a

solution algorithm are presented in detail in Appendix C.

To perform numerical simulations, we consider a square domain presented in Fig. 27.

The initial polarization p0 is along the positive horizontal direction. Similar to experimental
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Figure 26: Schematic of a diffuse conducting layer.

setups and to facilitate the crack initiation, a sharp pre-notch is considered in the model

parallel to the initial polarization. The model and notch dimensions are chosen as L1 =

10 mm, Ln = 5 mm and W = 50 nm. To create a conducting notch, the electric potential

is fixed to zero on the notch surface and left boundary of the model. Therefore, different

electrical loadings can be applied in the horizontal direction by giving different values to the

driving voltage V . The model is discretized with approximately 100,000 triangular finite

elements of different sizes. The fine mesh with element size h = 1 nm is generated in a small

square area of size L2 = 200 nm around the notch, presented in Fig. 27(b), where fracture is

expected. This element size is small enough for the regularization of the ferroelectric domain

walls with a thickness of few nanometers Stemmer et al. (1995); Floquet et al. (1997). The

rest of the domain is meshed with larger elements. An electric field E = −V/L1 of up to

1.4 KV/mm is applied incrementally in the positive and negative directions by increasing

the driving voltage V through 75, 000 time steps with a load function V (t) = ±At, where

A = 18.75 V/s, and a time step ∆t = 10−2 s. The initial data of the model are set as

u0 = 0, φ0 = 0, and v0 = 1.

Figure 28 presents two snapshots of the crack propagation in a small neighborhood of

the notch tip under the positive electric field. As the electric field increases, the v field

starts to decrease at two points of the circular tip until it reaches the threshold to be



8 Conducting crack propagation driven by electric fields in ferroelectric ceramics 59

 ϕ = V   

 ϕ = 0   

 ϕ = 0   

 ϕ = 0   

P0

(a) (b)

L1 L2

W

1  x

2  x

Ln

Figure 27: (a) Schematic of the computational domain and loading conditions. The initial
polarization p0 is along the positive horizontal direction. A sharp pre-notch is considered
in the model (b) small square area around the notch tip, where fracture is expected.

considered permanently fractured (v < 0.02). By further increasing of the electric field, the

v field evolves in two directions from the notch tip. A similar oblique crack propagation

and branching is also observed under the negative electric field which is presented in Fig.

29. The main difference is that the cracks under the positive field are more curved and

tend to branch again by increasing the load. Interestingly, an oblique crack propagation

is also observed in experiments of conducting cracks in ferroelectric ceramics under purely

electrical loading (Zhang et al., 2004). Another experiment has also reported the formation

of a micro-cracks network driven by electric fields (Gehrig et al., 2008). Our simulation

results also show that the cracks are longer under the negative electric field, cf. Fig 28 and

29. Again, this is in agreement with experiments which have shown that electric fields in

opposite to the initial polarization strongly facilitate the conducting fracture (Gehrig et al.,

2008).

The origin of the observed crack patterns can be found in the domain switching during

crack growth. Figure 30 presents snapshots of the domain evolution in an area around the
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(a) (b)

Figure 28: Two snapshots of the fracture evolution: contour plots of the field v under
positive electric fields (a) E = 1.12 KV/mm (b) E = 1.4 KV/mm.

(a) (b)

Figure 29: Two snapshots of the fracture evolution: contour plots of the field v under
negative electric fields (a) E = -1.12 KV/mm (b) E = -1.4 KV/mm.
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notch tip under positive and negative electric fields. Charge accumulation occurs around

the cracks through the formation of tail-to-tail and head-to-head 90o domains in Fig. 30(a)

and (b), respectively. This charge accumulation with the same sign induces a high electric

field at the crack tip, which in turn leads to a large electrostatic energy (last term in Eq.

(21)) for driving the crack. The formation of new twins is responsible for the nucleation of

small crack branches under the positive electric field, see Fig. 30(a). Polarization reversal

in front of the notch is also obvious in Fig. 30(b) under the negative electric field.

Contributions

We summarize here the most significant contributions of this work, which has been prepared

for publication as a research paper:

1. We perform, to the best of our knowledge, the first simulation of conducting crack

propagation in ferroelectric ceramics under purely electrical loading. For this purpose,

we extend to conducting cracks, a phase-field model of fracture in ferroelectric ceramics

by introducing the electrical enthalpy of a diffuse conducting layer into the phase-field

formulation.

2. Simulation results show an oblique crack propagation and crack branching from a

conducting notch in a ferroelectric sample. Charge accumulation is observed as the

main source to induce a large electrostatic force for driving the conducting cracks. A

negative electric field induces a larger driving force with respect to the positive one.

All these observations agree with experiment.

Open lines for research

We next discuss some open ideas for research derived from the work performed:

1. Dielectric breakdown often occurs during the propagation of conducting cracks, which

can release a large amount of thermal energy. This energy may affect the material

properties or may induce a thermal stress around the cracks. Therefore, a thermo-

electro-mechanical analysis is required to study this effect.

2. Dielectric breakdown mechanisms can be modeled in a similar way to that of conduct-

ing crack propagation since a high electric field is considered to be the main cause of

dielectric breakdown.
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Figure 30: Snapshot of the microstructure evolution in an area near the notch tip under (a)
positive and (b) negative electric fields with a magnitude of |E| = 1.4 KV/mm. The left and
right columns show the horizontal and vertical components of the polarization, respectively.
The white lines indicate the position of the cracks (v = 0). The domain orientations are
indicated with white arrows.
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9 Numerical simulation of 3-D crack propagation in ferro-

electric single crystals

We extend the phase-field model of fracture in ferroelectric single crystals proposed in Sec-

tion 3 to three dimensions for a more precise evaluation of the microstructure effect on the

crack propagation. Here we consider a traction-free, free-polarization and permeable crack.

The electro-mechanical enthalpy density of a possibly fractured ferroelectric for these con-

ditions is stated in Eq. (9) as

h(ε, v,p,∇p,E) = (v2 + ηκ) [U(∇p) +W (p, ε)]− ε0

2
|E|2 −E · p

+ χ(p) +Gc

[
(1− v)2

4κ
+ κ|∇v|2

]
, (22)

Following (Su and Landis, 2007), the energy functions U , W and χ are expanded in terms

of three-dimensional components as

U(pi,j) =
a0

2
(p2

1,1 + p2
2,2 + p2

3,3 + p2
1,2 + p2

2,1 + p2
1,3 + p2

3,1 + p2
2,3 + p2

3,2), (23)

W (pi, εjk) = − b1
2

(ε11p
2
1 + ε22p

2
2 + ε33p

2
3)

− b2
2

(
(ε22 + ε33)p2

1 + (ε11 + ε33)p2
2 + (ε11 + ε22)p2

3

)
− b3 ((ε12 + ε21)p1p2 + (ε13 + ε31)p1p3 + (ε23 + ε32)p2p3)

+
c1

2
(ε2

11 + ε2
22 + ε2

33) (24)

+ c2(ε11ε22 + ε11ε33 + ε22ε33)

+
c3

2
(ε2

12 + ε2
21 + ε2

13 + ε2
31 + ε2

23 + ε2
32),

χ(pi) =
a1

2
(p2

1 + p2
2 + p2

3) +
a2

4
(p4

1 + p4
2 + p4

3) +
a3

2
(p2

1p
2
2 + p2

2p
2
3 + p2

1p
2
3)

+
a4

6
(p6

1 + p6
2 + p6

3) +
a5

4
(p4

1p
4
2 + p4

2p
4
3 + p4

1p
4
3), (25)
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where all of the variables and parameters are defined in Section 3 and Appendix A. The

governing equations, solution algorithm and normalizations are also presented in Appendix

A. The normalized parameters for barium titanate (BaTiO3) are given in Table 5.

Table 5: Normalized parameters
c′1 c′2 c′3 b′1 b′2 b′3 a′0

185 111 74 1.4282 -0.185 0.8066 0.02

a′1 a′2 a′3 a′4 a′5 ε′0 G′c
-0.007 -0.009 0.018 0.0261 5 0.131 15.6

For numerical simulations, a cubic domain is considered with the boundary conditions

depicted in Fig. 31. The normalized dimensions of the domain are 200×200×200 and it

is discretized with approximately 6,000,000 tetrahedral finite elements of size h ' 2. A

monotonically increasing mechanical load is applied by pulling the top and bottom faces

of the model with a uniform mechanical displacement such that u± = (0,±w, 0), where +

and - indicate the top and bottom faces of the model respectively and w is the pseudo-

time. To facilitate the crack initiation, the x2 component of mechanical displacement is also

constrained at the top half and bottom half of the front face highlighted with yellow such

that u2± = ±w. To avoid the compression of the model, the x3 component of mechanical

displacement is fixed on the right (highlighted with green) and left faces. The initial polar-

ization pinit = (1, 0, 0) is assigned along the positive x1 direction, see Fig. 31. As for the

electrical boundary conditions, the electric potential on the front (yellow) and back faces is

set to 0. It is also assumed that the normal component of the electric displacement vanishes

on other faces and they satisfy the free-polarization boundary conditions. The simulation

constants are chosen as follows. The tolerances to achieve steady states for ferroelectric

domains and fracture processes to δferro = 5 × 10−3, δvfield = 2 × 10−3, the threshold to

detect the irreversibly fractured regions to α = 2 × 10−2, the inverse mobilities to µp = 1

and µv = 15, the residual stiffness to ηκ = 10−6 and the regularization parameter to twice

the element size as κ = 4. One hundred load increments are performed in the simulation

(n = 100) with the pseudo-time interval of ∆wn = 5× 10−2. Also the normalized time step

∆t′m = 0.1 leads to convergent and accurate solutions for the semi-implicit integration of

gradient flow equations. The simulations are carried out on parallel processors using the

finite element library of the Kratos multi-physics package (Dadvand et al., 2010).

Figs. 32 and 33 present the four snapshots of the evolution of the microstructure and
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Figure 31: 3-D computational model with boundary conditions.

the crack. The left column shows the field v representing the fractured area and the right

column shows the polarization magnitude |p|, which highlights the domain structure. These

figures indicate a similar interaction of the crack and ferroelectric domains reported in

Section 3 but in this case in three dimensions. This interaction leads to the slow-fast crack

propagation behavior. The snapshots in Fig. 32(b), Fig. 33(a) and Fig. 32(b) correspond

to slow propagation periods arrested by the twins ahead of the crack represented with bold

white arrows. These preliminary results verify the formulation and implementation of the

3-D model. Another purpose of performing this simulation is to optimize the performance

of the parallel computing to obtain more sophisticated 3-D results in the future.
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(a)

 

(b)

Figure 32: Two snapshots of the evolution of the microstructure and the permeable crack
at load steps (a) t = 1.5, (b) t = 4.35. The left column shows the field v representing the
fractured area, and the right column shows the polarization magnitude |p|, which highlights
the domain structure. Domain orientations are indicated with large arrows, which are bold
white for the twins ahead of the crack. The points where v = 0 are represented in black in
the polarization maps to show the crack position.
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(a)

 

(b)

Figure 33: Two snapshots of the evolution of the microstructure and the permeable crack
at load steps (a) t = 4.55, (b) t = 4.65. The left column shows the field v representing the
fractured area, and the right column shows the polarization magnitude |p|, which highlights
the domain structure. Domain orientations are indicated with large arrows, which are bold
white for the twins ahead of the crack. The points where v = 0 are represented in black in
the polarization maps to show the crack position.
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10 Conclusions

This section summarizes the main contributions and research ideas of the thesis. We per-

form, to the best of our knowledge, the first calculations for the fully coupled interaction

between the crack propagation and the formation and evolution of microstructure in ferro-

electric materials. For this purpose, a family of phase-field models is proposed in this thesis

which is outlined as follows:

� A phase-field model for the coupled nucleation and evolution of cracks and domains

in ferroelectric single crystals: The model naturally couples two energetic phase-field

models for fracture and for the microstructure of ferroelectric single crystals. We

exercise the model in plane polarization and plane strain simulations of a sample

under either mechanical or combined electro-mechanical loading conditions.

� Phase-field models to encode various electro-mechanical crack-face boundary condi-

tions: These models are based on a variational formulation of brittle fracture coupled

with the linear theory of piezoelectricity and a phase-field model of ferroelectric do-

main evolution. This coupling encodes various electro-mechanical crack-face boundary

conditions of a sharp-crack into the phase-field framework. We perform a set of simu-

lations to compare the results of the proposed models with that of the corresponding

sharp-crack models.

� A developed phase-field model to explain anisotropic crack growth in ferroelectrics:

The model is developed by introducing a crack non-interpenetration condition in the

variational approach to fracture accounting for the asymmetric behavior in tension and

compression. We exercise the model under Vickers indentation loading and during the

poling process of multilayer ferroelectric actuators.

� A phase-field model to simulate intergranular and transgranular crack propagation in

ferroelectric polycrystals: The proposed phase-field model for ferroelectric single crys-

tals is extended to polycrystals by incorporating the differential fracture toughness of

the bulk and the grain boundaries, and the different crystal orientations of the grains.

We exercise the model with fine- and coarse-grain microstructures.

� A developed phase-field model to simulate conducting crack propagation driven by elec-

tric fields: The model is developed by introducing the electrical enthalpy of a diffuse
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conducting layer into the phase-field formulation of fracture in ferroelectric single-

crystals. We exercise the model under purely electrical loading.

The main simulation results of the proposed models, which agree with experimental obser-

vations, are summarized in the following:

� The interaction of the microstructure and the crack leads to a slow-fast crack propa-

gation behavior in ferroelectric single crystals (Fang et al., 2007).

� 90o domain switching induced by an intense crack-tip stress field is the major mech-

anism behind the fracture toughening effect in ferroelectric materials (Meschke et al.,

1997, 2000).

� There is not a clear shielding or weakening effect of the microstructure on the crack

propagation for low applied electric fields (below the coercive field) parallel to the

crack. (Sun and Park, 2000; Tobin and Pak, 1993).

� An enhanced crack propagation is obtained for parallel cracks under applied electric

fields with the coercive magnitude (Schneider and Heyer, 1999).

� Radial cracks perpendicular to the poling direction of the material propagate faster

than parallel ones (Sun and Park, 2000; Pisarenko et al., 1985; Tobin and Pak, 1993;

Wang and Singh, 1997; Lynch, 1998; Schneider and Heyer, 1999).

� Cracks propagate mainly along the grain boundaries in fine-grain ferroelectric poly-

crystals, demonstrating the intergranular mode of fracture. On the other hand, trans-

granular crack propagation is observed in coarse-grain microstructures where cracks

propagate through the grains (Kim et al., 1990; Meschke et al., 1997).

� Crack deflection is shown as the main toughening mechanism in the fine-grain mi-

crostructures (Faber and Evans, 1983; Kueck et al., 2008). Due to the ferroelectric

domain switching mechanism, noticeable fracture toughness enhancement is also ob-

tained for transgranular crack propagation and the effective fracture toughness of the

coarse-grain microstructures is observed to be higher than the fine-grain (Meschke

et al., 1997).

� An air-filled EC crack under the constraint of electrical breakdown behaves similar to

a permeable crack (Schneider et al., 2003).
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� A negative electric field (below the coercive field) enhances the crack propagation

perpendicular to the initial polarization in ferroelectrics, while a positive electric field

retards it (Ricoeur and Kuna, 2003; Wang and Singh, 1997; Shindo et al., 2002; Jiang

et al., 2009).

� An oblique crack propagation and crack branching from a conducting notch is observed

in a ferroelectric sample under purely electrical loading (Zhang et al., 2004). A negative

electric field induces a larger driving force with respect to the positive one (Gehrig

et al., 2008).

� Different crack initiation patterns are observed at electrode edges in multilayer ferro-

electric actuators. The obtained patterns can be interpreted as initiation sources of

experimentally observed crack branches near the electrode edge (Uchino and Furuta,

1992; Furuta and Uchino, 1993; Aburatani et al., 1994).

� Crack initiation becomes more difficult by decreasing the thickness of the ceramic layer

and the length of the internal electrode in multilayer ferroelectric actuators (Lucato

et al., 2001)

We also mention further conclusions from the simulation results:

� Impermeable conditions have the most retarding effect on the crack propagation while

this is less significant for EC and permeable conditions. Furthermore, the crack growth

rate for the EC conditions lies between that of the permeable and impermeable con-

ditions.

� A water-filled crack shows a similar behavior to a permeable crack due to the high

dielectric permittivity of water. The effect of electrical loads on the crack growth is

more pronounced in silicon-oil and air-filled cracks due to the lower permittivities of

these media.

� Impermeable and EC conditions have a significant influence on the polarization fields

around the cracks.

� The effects of electrical conditions on ferroelectric domain structures around the cracks

are significantly more than zero- and free-polarization conditions.
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The work carried out in this thesis also leaves some open research lines for the future. We

suggest the following lines:

� Experimental observations in (Fang et al., 2007) reveal that the crack propagates along

the cleavage plane [101] in BaTiO3, following a zig-zag path that matches the domain

pattern. This can be included in our model by considering a lower surface energy or

fracture toughness along the cleavage planes.

� Relative magnitude of the mobility parameters can have an important effect on the

resulting response. A parametric study is needed for evaluating the effect of these

parameters.

� A more precise evaluation of the microstructure effect will be obtained by extending

the proposed models to three dimensions and running longer simulations producing

more extended cracks.

� The relative physical size of the grains and ferroelectric domains should be considered

for more realistic fracture simulations of ferroelectric polycrystals. Besides the grain

size, the model presents three lengthscales: (1) the width of the grain boundaries, (2)

the width of the ferroelectric domain walls, and (3) the width of the smeared cracks.

The first two lengthscales can be estimated experimentally. The latter is a numerical

artifact, which could have a significant effect on the simulation results. A sensitivity

analysis on the regularization parameter of the fracture phase-field relative to the other

lengthscales of the problem would be necessary.

� Dielectric breakdown often occurs via the formation of conducting tubular channels

around electrodes and conducting cracks, which can release a large amount of thermal

energy. This energy may affect the material properties or may induce a thermal stress.

Therefore, a thermo-electro-mechanical analysis is required to investigate this effect.

Furthermore, the formation and propagation of the tubular channels can have an

important effect on the electromechanical fields and the microstructure of the material.
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