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Abstract

A microscopic description of the many-body properties of anisotropic ho-
mogeneous gases of bosonic dipoles in two dimensions is presented and dis-
cussed. By changing the polarization angle with respect to the plane, we
study the impact of the anisotropy, present in the dipole-dipole interaction
on different physical quantities. We restrict the analysis to the range of
polarization angles where the interaction is always repulsive, although the
strength of the repulsion can be strongly dependent on the orientation with
respect to the polarization field. We present a study of the zero energy
two-body problem which allows us to find the scattering length of the in-
teraction and to build a suitable Jastrow many-body wave function that
will be used as a trial wave function for Monte Carlo simulations of the
bulk two-dimensional system of bosonic dipoles. In the first part of this
work we have studied the low-density dipolar Bose gas and we find that the
anisotropy has an almost negligible impact on the ground state properties of
the many-body system in the universal regime where the scattering length
governs the physics of the system. We also show that scaling in the gas
parameter persists in the dipolar case up to values where other isotropic
interactions with the same scattering length yield different predictions. We
also evaluate the excitation spectrum of the dipolar Bose gas in the context
of the Feynman approximation and compare the results obtained with the
Bogoliubov ones. As expected, we find that these two approximations agree
at very low densities, while they start to deviate from each other as the
density increases.

When the density of the system is increased we find that the behavior
of the system depends on the value of the polarization angle of the dipolar
moments of the system. At large densities and moderate values of the polar-
ization angle the system undergoes a first-order quantum phase transition
from a gas and a crystal phase. We also find that the anisotropy of the
dipole-dipole potential causes an elongation of the crystalline lattice of the
system in the direction where the interaction is stronger. At large polar-
ization angles and moderate densities the system undergoes a second-order
quantum phase transition from a gas to a stripe phase. Interestingly, the
critical exponents of this second order transition are nearly independent of
the tilting angle and are compatible with the 3D Ising and 3D XY model
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universality classes within the statistical uncertainty of our simulations. Fi-
nally, at high densities and large tilting angles the system shows a first order
phase transition between the crystal and stripe phases. The slope of this
transition curve is extremely large indicating that, due to the anisotropy of
the interaction, the crystal phase of the system is no longer stable if the
dipole - dipole potential is highly anisotropic.

We consider the ground state of a bilayer system of dipolar bosons, which
is a configuration consisting in the confinement of the particles in two paralel
planes by means of a trapping potential. We consider the simplest situation
where dipole moments are oriented by an external field in the direction per-
pendicular to the parallel planes. Quantum Monte Carlo methods are used
to calculate the ground-state energy, the one-body and two-body density
matrix as a function of the separation between layers. We find that by de-
creasing the interlayer distance for fixed value of the strength of the dipolar
interaction, the behavior of all the physical observables studied are com-
patible with the existence of a second order phase transition modulated by
the inter-layer distance. In this sense, the results presented in this work are
in good agreement with some previous studies of dipolar gases in a bilayer
setup.
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Chapter 1

Introduction

In 1995 Bose-Einstein condensation of dilute Bose gases was achieved [1, 2.
This fact was the starting point for a new era in the field of experimental
quantum physics. Since that pioneering works the interest in the study of
ultracold quantum systems has grown up allowing to achieve also the regime
of quantum degeneracy in fermionic systems [3, 4, 5, 6] which made possible
to observe Fermi superfluidity.

At present, ultracold atomic and molecular physics are at the edge of
both theoretical and experimental research, allowing for an unprecedented
control over the system. It is nowadays commonly accepted that ultracold
systems will soon show applications in the field of quantum information.
From the theoretical point of view, ultracold systems are kind of a meeting
point for researchers coming from different fields like: condensed matter,
nuclear physics, high energy physics and many others.

Despite that quantum gases are extremely dilute systems (their typical
density is about 10 - 10'® c¢cm™3) most of their properties are strongly
influenced by the presence of inter-atomic interactions. The experimental
conditions required to bring gases to the quantum degenaracy regime, where
temperatures are of the order of nK, imply that the energy involved in the
scaterring processes are low enough to be governed by s-wave physics. With
this consideration, the exact inter-particle interaction can be approached by
an s-wave pseudo potential of the form [7]:

B Arhlag
m

Ul(r)

5(r) (1.1)

where m is the mass of the particles, ag is the s-wave scattering length and
0(r) is the Dirac delta function. The overall factor multiplying the Dirac
delta function is the coupling constant, g, so one can write U(r) = gd(r).
In many of the atomic species commonly used in experiments the s-wave
scattering length can be tuned by means of a Feshbach resonance [, 9].

In recent years there has been an increasing interest in the study of quan-
tum systems involving more complex interactions than the simple pseudo
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potential of Eq. (1.1). One of these new systems is the dipolar quantum
gas. The dipolar interaction between particles having an electric or mag-
netic dipole moment has two properties that are radically different from
short range Van der Waals forces more commonly found in other condensed
matter systems:

e It is anisotropic, which means that the interaction strength, and even
the its sign (attractive or repulsive), depends on the relative orienta-
tion appart from the distance between particles.

e Contrarily to the Van der Waals forces, dipole-dipole interaction are
long ranged in three dimensional systems, which means that in dipo-
lar systems the scattering properties are radically different when com-
pared with other systems.

In 2005, it was reported the first Bose-Einstein condensate of ®>Cr atoms
[10, 11], where the magnetic dipole moment of the atoms is large enough (~
6up) to produce observable effects in the collapse of the condensate. More
recently, new and exciting results have been achieved with polar molecules
of Rubidium and Potassium (*°K®7Rb) [12], which have not been easy to
bring down to quantum degeneracy due to strong loss rates in the popula-
tion induced by chemical reactions [13, 14]. A promising route towards a
molecular Bose-Einstein condensate is the Feshbach association of Rubidium
and Cesium, which are not reactive [15]. In the field of atomic condensates,
recent efforts have also been focused on exotic lanthanide magnetic systems,
like 154Dy [16, 17] and 68Er [18]. The main interest in achieving the quan-
tum degeneracy regime using polar molecules is the fact that the electric
dipole moments of molecules are usually much larger than in the magnetic
case, and, additionally they can be tuned by the application of an external
electric field.

The dipole-dipole interaction for particles with a (magnetic or electric)
dipole moment is given by:

_ Caa Py Do~ 3(B1 - 1)(py - 1)

Vdd(r) ~ ur e (12)

where Cyq is pop? for particles having a permanent magnetic dipole moment
p and d? /ey for particles having a permanent electric dipole moment d; p,
and py point along the direction of the dipolar moments of particles 1 and
2, and 1 is the relative position vector r/r. The common setup employed
in the experiments usually involves polarized samples where all the dipole
moments of the particles point in the same direction (see Fig. 1.1). In this
situation the general dipole-dipole interaction can be written in the following
simpler form: ,
Vialr) = %1 — 3cos” 0

T 4r r3 (1)



Figure 1.1: Dipoles in three dimensions polarized along z-axis.

It can be seen from (1.3) that dipole-dipole interaction is repulsive for
dipoles that are side by side configuration, while for dipoles in a head to tail
arrangement it is strongly attractive. This implies that a three dimensional
quantum system of particles interacting only via the dipolar potential will
be unstable due to this head to tail pairs that make the system collapse of
the system. There are two different ways to overcome this problem: On one
hand, one can introduce an additional two-body hard core interaction which
mimics the well known short range behavior of interparticle interactions. On
the other hand the system can be confined along the direction of the dipole
moments, such that head to tail configurations are essentially forbidden by
the trapping potential, yielding an effective quasi-2D system. Along the
rest of this work we have studied the second situation, where the system is
confined to two spatial dimensions.

Two-dimensional or quasi-two dimensional dipolar gases have been a very
active field in the last years. As we have commented, the scattering proper-
ties of the inter-particle interaction have strong influence in the behavior of
the many-body system. For this reason, great effort has been devoted to the

study of the dipolar scattering in two dimensions [19, 20, 21] using standard
two dimensional scattering theory [22, 23] or by means of pseudo-potential
approaches [21].

From the quantum many-body point of view, there are several works
devoted to the study of the stability of the quasi-two dimensional dipolar gas
by analyzing the emergence of a deep roton-like minimum in the elementary
excitation spectrum [25, 26, 27] in the framework of mean-field theory. The
emergence of this roton-like minimum is absent in the pure two dimensional
dipolar gas when the dipolar interaction is isotropic (i. e. when dipole
moments are aligned orthogonally to the plane) [28]. The phase diagram
of two dimensional dipolar gases have been also extensively studied in the
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isotropic situation, for the bosonic [29, 30, 31] and the fermionic case [32].
In both systems, bosonic and fermionic, there is a quantum phase transition
from a gas (at low densities) to a crystalline solid (at high densities).

Although two dimensional isotropic dipolar gases have been a widely
studied many-body system, not much effort has been devoted to the analysis
of dipolar gases, where the dipole moments of the particles are polarized
along a direction that is tilted with respect to the orthogonal direction to
the plane. There are also mean-field studies of the superfluid properties of
quasi two dimensional dipolar Bose gases polarized with a tilt [33], where
it is shown that the anisotropy of the interaction can, potentially, induce
observable macroscopic effects. There have been also several works devoted
to the study of the stability and phase diagram of fermionic dipolar systems
in two dimensions using analytical techniques [34, 35, 36, 37]. There is a
common prediction in all these works: the appearance of a new phase for
strongly interacting systems (i. e. large dipole moment or large density):
the stripe phase. To the best of our knowledge, there is only one theoretical
work devoted to the study of the many-body properties of a dipolar system
of bosons that tries to describe the phase diagram of a trapped sample of
dipoles [38]. The main conclusions of that work also point to the existence
of a stripe phase.

Another interesting two-dimensional arrangement of dipoles is the bi-
layer dipolar system where the particles are confined in two paralel planes
separated by a fixed distance. In this situation, the dipolar interaction be-
tween particles in different layers shows attractive regions that makes possi-
ble the formation of dimers [39]. There have been several works discussing
fermionic dipoles in this setup and showing the existence of a BEC-BCS
crossover [10, 41, 12, 13] and the emergence of pair superfluidity. In the
case of a tight- binding model of hard-core bosons on a lattice, the phase
diagram at zero temperature has been investigated using mean field [11]
and quantum Monte Carlo methods [15], and it was found to include exotic
phases around half filling such as the checkerboard solid and the pair su-
persolid. For a translationally invariant system of bosons the existence of
a second order quantum phase transition from two essentially uncorrelated
superfluids to a single pair superfluid has also been predicted [10].

In conclusion, we have seen that two-dimensional dipolar systems, the
main topic of this Thesis, are a very active research field from both, theo-
retical and experimental sides.

1.1 Objectives and outline of this work
In the following chapters we present a detailed study of the physics of two

dimensional quantum dipolar gases of bosons in two different situations. On
one side, the major part of this work is devoted to the study of the two-
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dimensional dipolar Bose gas with tilted polarization. On the other side,
we have also performed a study of the bilayer system of dipoles which also
show some new and interesting physical properties.

In order to accomplish these objectives, we have developed different
quantum Monte Carlo codes that implement different Monte Carlo meth-
ods that cover the specific requirements of the system of study. We have
used variational and diffusion Monte Carlo methods to analyse the physi-
cal situations where the anisotropy of the dipole-dipole interaction does not
affect significantly the behavior of the system. Alternatively, in the study
of strongly correlated anisotropic systems we have used the path integral
ground state method since it is much less dependent in the a priori knowl-
edge of the physical properties of the system.

The outline of this work is the following:

e In chapter 2 we present the quantum Monte Carlo methods that we
have used in the study of the different many-body systems that are
being analyzed in the Thesis. We give a detailed description of varia-
tional Monte Carlo and diffusion Monte Carlo methods that are then
used in chapters 4 and 6. We also present the basic features of the
path integral ground state method (also known as variational path
integral) that is being used in chapter 5. After a general description
of the Monte Carlo methods we also dicuss how to evaluate the main
physical quantities of interest, from the energy of the system to the
condensate fraction.

e Chapter 3 is devoted to the study of the two-body problem of a two-
dimensional system of bosonic dipoles. We give a detailed description
of the problem and show how to obtain a zero energy solution for the
general situation of tilted polarized dipoles where the dipole-dipole in-
teraction shows an angular dependent strength. We finally derive an
approximate expression for the s-wave scattering length of the two-
body problem that is later required in the study of the low density
dipolar gas presented in chapter 4.The most relevant results of this
Chapter are published in:

A. Macia, F. Mazzanti, J. Boronat, and R. E. Zillich, Microscopic
description of anisotropic low-density dipolar Bose gases in two di-
mensions, Phys. Rev. A 84, 033625 (2011).

e In chapter 4 we analyse the many-body properties of a low density
dipolar gas of bosons with a tilting angle non-orthogonal to the plane.
We find that in the low density regime the anisotropy of the interac-
tion does not influence the many-body behavior of the system. We
provide an accurate description of the equation of state and the con-
densate fraction of the system in terms of the s-wave scattering length
presented in chapter 3. We also evaluate the Bogoliubov excitation
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spectrum of the system which can be compared with the Feynman
spectrum obtained from the simulations only at very low densities.
The results presented in this Chapter can be found in the following
papers:

A. Macia, F. Mazzanti, J. Boronat, and R. E. Zillich, Microscopic
description of anisotropic low-density dipolar Bose gases in two di-
mensions, Physical Review A 84, 033625 (2011).

A. Macia, F. Mazzanti and J. Boronat, Ground state properties and
excitation spectrum of a two dimensional gas of bosonic dipoles, The
European Physical Journal D, 66, 301, (2012).

In chapter 5 we study the phase diagram of the two dimensional dipo-
lar system with a tilt, discussing the influence of the anisotropy of the
interaction in the strongly correlated system. We give both a quali-
tative and a quantitative description of the phase diagram by means
of the path integral ground state method. We find that at moderate
densities and tilting angles the system undergoes a first-order phase
transition from a gas to a crystalline solid. At moderate densities and
large values of the tilting angle there is a second-order phase transition
from the gas phase to a new stripe phase. At large densities and large
values of the tilting angle there is another first-order phase transition
from a crystal to a stripe phase. This work was published in the fol-
lowing works:

A. Macia, D. Hufnagl, F. Mazzanti, J. Boronat, and R. E. Zillich,
Ezcitations and Stripe Phase Formation in a Two-Dimensional Dipo-
lar Bose Gas with Tilted Polarization, Physical Review Letters, 109,
235307, (2012).

A. Macia, J. Boronat and F. Mazzanti, Phase diagram of dipolar
bosons in 2D with tilted polarization, accepted for publication in Phys-
ical Review A Rapid Communications, available in arXiv: 1407.6960
[cond-mat.quant-gas], (2014).

In chapter 6 we consider the ground state of a bilayer system of dipo-
lar bosons, whith dipole moments oriented by an external field in the
direction perpendicular to the parallel planes. Quantum Monte Carlo
methods are used to calculate the ground-state energy and the one-
and two-body density matrices as a function of the separation between
layers. We find that by decreasing the interlayer distance for fixed
value of the strength of the dipolar interaction, the system undergoes
a quantum phase transition from a single-particle superfluid to a pair
superfluid. The single-particle superfluid is characterized by a finite
value of the atomic condensate. The pair superfluid phase is found to
be stable against formation of many-body cluster states. Some of the
results of this chapter are available in:


http://arxiv.org/abs/1407.6960
http://arxiv.org/abs/1407.6960

1.1. OBJECTIVES AND OUTLINE OF THIS WORK

A. Macia, G. E. Astrakharchik, F. Mazzanti, S. Giorgini and J. Boronat,

Single-particle vs. pair superfluidity in a bilayer system of dipolar
bosons, Physical Review A 90, 043623 (2014).
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Chapter 2

Quantum Monte Carlo
methods

In this chapter we will make a description of the numerical methods that
we have been using in order to give a microscopic description of a quantum
many body system.

We are interested in giving an accurate description of a quantum fluid
of identical particles interacting by means of a pair potential. The complete
description of such a system at zero temperature is given by the Schrodinger
equation (SE):

H|V >=E|¥ > (2.1)

where the hamiltonian H is given, in general, by

52 ) 1 NN
H:—%ZV +ZV1(I'Z-)+§Z Y o Wa(ri-r)  (22)

i=1 i=1 i=1 j=1,j#i

where V] is an external potential corresponding to an externally applied field
and V5 is a pair interaction that describe the inter-particle interactions.

In the following, we will use the following notation. We call R the
whole set of coordinates of the system, i. e., R = {ry,...,rny}. With this
definition, the operator V% = Zf\il V? is the laplacian needed for the ki-
netic term, and finally the potential term will be V(R) = SN Vi(r;) +

% Zf\il Z;‘V:Lj;éi ‘/2(1'@ — I‘j).
2.1 Variational Monte Carlo

Variational Monte Carlo (VMC) [17] is the simplest and fastest Monte Carlo
method that can be used to obtain an approximate solution to the many-
body problem by using the variational principle.

9
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2.1.1 Variational principle

The variational principle tells us that if we consider a trial wave function
W the expectation value

< VUp|H|¥Yr >
EFVYp|l=—"7——— 2.3
[¥r] < Up|Up > (2:3)

is an upper bound to the ground state energy of the Hamiltonian H. This
statement can be easily shown by expanding the trial wave function ¥ in
the basis of eigenstates of the Hamiltonian

Wy >= " an|¢n > (2.4)

where the functions |¢,, > verify
H|¢n >= En|¢n > and < ¢n|¢m >= 5n,m (2'5)

We can use the eigenstate expansion (2.4) in the expectation value (2.1)
obtaining the following

n an < Onl) H (32, mlém >)
(2 @i < 0nl) O am|dm >)

where by using the properties (2.5) we can finally write the energy of the
trial wave function as:

E[Wr] =

(2.6)

an2 n
EWﬂ:z§|#§. (2.7)

In the last expression one can easily see that the expectation value of the
energy for the trial wave function |U7 > is always greater than the ground
state energy of the hamiltonian unless |Up >= |¢g >. It is useful to consider
trial (or variational) wave functions that depends on one or more parameters
(A1, ... An) called variational parameters. Those parameters can be optimized
to get the lowest energy for a given family of wave functions |Wp (A1, ...A,) >.
In the simplest case of an uniparametric family of variational wave functions
|Wr(A) > the energy expectation value will be given by

< Ur(NH[Pr(N) >
BN =~ ywr (v >

(2.8)
and we can find the optimal variational energy of the hamiltonian by simply
minimising this energy expectation value:

dE[N]
d)\ ‘)\optimal

=0 (2.9)
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2.1.2 Monte Carlo sampling of a variational wave function

The idea behind the variational Monte Carlo method (VMC) is to perform
the evaluation of the expectation value in (2.3), that is in general a high
dimension integral, by means of an stochastic sampling of a given variational
wave function using the Metropolis algorithm.

In position basis the expectation value in (2.3) can be written as

_ JARY;(R)HI7(R)

B = iR Rywr(R) (2:10)

This integral expression can be written in a more convenient way for Monte
Carlo sampling if we think that the square modulus of the wave function
gives the propability of finding the system in the configuration R,

< E>y,= / dREL(R)P(R), (2.11)

where the following two quantities are defined: the probability distribution,
P(R)

_ Vi R)¥r(R)
P(R) = fdﬁrqn;(R)\pT(R)’ (2.12)
and the so-called local energy, Er(R)
EL(R) = I{I/\I}TTES) (2.13)

The function P(R) is a well behaved probability distribution that can be
sampled using the Metropolis algorithm in order to obtain a sequence of
configurations of the system distributed according to it.

Given an ensemble of Njsc configurations drawn from P(R) we can
simply evaluate the energy expectation value of the hamiltonian as:

1 Nyce
< E >y~ Voo Y ELRy), (2.14)
=1

and, in general, any observable O can be evaluated along the Monte Carlo
sampling as:
1 Nuc

> ORy). (2.15)

<O>\I}T%N7]VIC

So, given a trial wave function one can compute any observable of interest
simply by using expression (2.15).
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2.1.3 Variational Monte Carlo algorithm

At this point we have all the ingredients to give an algorithmic description
of the VMC method. Let’s explain the steps of the VMC algorithm:

1. Draw an initial configuration of the system of interest, R.

2. Guess a new configuration as R’ = R + dR, with JR coming from
a uniform or gaussian probability distribution function that verifies

p(R"—= R)=pR —R).

VZ,(R)

3. Evaluate the transition probability as @ = 3% ®)
T

4. Accept or reject the new configuration using Metropolis algorithm.
5. Compute observables of interest.

6. Repeat 2 - 5 to achieve desired accuracy in the calculation.

2.2 Imaginary time propagation methods

VMC is a fast and simple method to compute properties of a quantum many
- body system, but it has a very important limitation: all the expectation
values of any observable in VMC is completely determined by the trial wave
function. The quality of the results obtained in a VMC simulation is directly
related to the quality of the variational wave function, so one can expect that
for situations where the wave function is poorly known VMC method is not
an accurate solution of the quantum problem.

To overcome the limitations of the VMC method we can consider a
different family of Monte Carlo methods that can solve the Schrédinger
equation by transforming it into an integral equation. The evolution of a
quantum system is given by the time dependent Schrodinger equation:

mf ——ZVQ\I/JrZVlrz\II+ Z Z Va(r; — )0, (2.16)

i=1 j=1,j#i

We are mainly interested in the ground-state properties of the system. This
can be done by defining the imaginary time as 7 = % and thus considering

the imaginary-time dependent Schrodinger equation

‘9‘1’ Zv2\11+2v1r,x1/+ Z Z Va(r; — ;)W (2.17)

i=1 j=1,j#i

The imaginary-time dependent Schrodinger equation can be written in op-
erator form as:
_ o)y (r) >

S = H|¥(7) > (2.18)
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whose formal solution is:
|W(7) >= e 17T (0) > . (2.19)

The wave function at 7 = 0 can be expanded in terms of the eigenstates of
the hamiltonian

[T(0) >= " ail¢; > (2.20)
i=0

and introduce this eigenstate expansion in (2.19) to obtain
o0
T(T) >=) " aie " > . (2.21)
i=0

If the eigenvalues of the hamiltonian are ordered as €y < €1 < €2 < ... one can
see from (2.21) that for 7 — oo all contributions are exponentially vanishing
and the slowest decaying term is the corresponding to the ground state of
the system. So we can write

W (7 — 00) >~ age” 0|y > . (2.22)

There are several ways to implement the imaginary time propagation of
an initial wave function that correspond to different quantum Monte Carlo
methods. We have used two main approaches to solve this problem that we
will see in the following two sections.

2.2.1 Diffusion Monte Carlo

The first method that we present to implement the imaginary time propa-
gation is the diffusion Monte Carlo method (DMC) [17, 18]. DMC exploits
the analogy between the imaginary-time dependent Schrédinger equation
and the diffusion equation to achieve the stationary regime of the problem.
The stationary solution is proportional to the ground state of the many body
quatum problem.

The starting point is the imaginary time dependent Schrodinger equation
with an energy shift H — H — Er:

_O¥(T) >

5, = (H = Er)[¥(r) >, (2.23)

If we write explicitly the hamiltonian operator in eq. (2.23) we can write
the SE as:
oU 2
or  2m

That is a standard diffusion equation with an additional term that can be
interpreted as a sink/source of probability.

V&Y + (V(R) — Er)¥ (2.24)
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If we write now the spectral decomposition of the time-dependent wave
function in terms of the imaginary time 7 we obtain the following expression:

V(R 7) = andn(R)e (" Fr)7 (2.25)

If we assume that the eigenvalues €,, are ordered as g < €1 < -+ < €, < -+
we can infer that the asymptotic behavior of (R, 7) is given by:

e if Ep > ¢y the wave function W diverges.
e if B < ¢y the wave function ¥ vanishes.
o if Ep = ¢y the wave function ¥ = cy¢y.

The physical interpretation of the method is clear, we must perform an
imaginary time evolution until the asymptotic regime is reached, and by
a clever choice of the reference energy, Ep, we will find the ground state
energy.

There are two practical considerations about the outline of the DMC
method as it is presented here. The first one is that the initial many—body
wave function ¥(R, 0) must have a significant overlap with the ground state
wave function ¢g(R) if we want ag being not too small. The second consid-
eration is that this simple version of DMC requires that the ground state
wave function must be positive definite as it effectively happens with the
many-body ground state wave function for a system of bosons; for fermions
the situation is different and some approximations must be done.

After this last considerations, we will explain how the many-body SE
can be integrated using Monte Carlo techniques.

Monte Carlo integration of the many-body Schrédinger equation

For the suitable integration of the many-body SE we have to transform the
differential equation in an equivalent integral equation, and, this is easily
done by considering the Green’s function formalism.

The Green’s function of the SE can be defined in an operatorial for-
malism, and then we will find the equivalent coordinate representation and
using it, a practical expression for the Green’s function.

The independent-basis SE for our problem is given by:

o>
5 = —(H = Br)|v > (2.26)

that can be formally solved by means of the time evolution operator U(,0)
as follows:

W(r) >= U(r,0)|¥(0) > (2.27)
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where U(7,0) is given by:
U(r,0) = e~ (H-En)7 (2.28)

now we can project the solution of the SE given in eq. (2.27) in position
basis

< R|U(r) >= /dR’ < R|U(,0)|R >< R/|[¥(0) > (2.29)
that can be writen as:
U(R,7) = / iR’ < R|U(r,0)[R' > U(R/,0). (2.30)

Then we finally have writen an integral equation, equaivalent to the many-
body SE and the only problem is to determine the kernel of the integral
equation given by < R|U(7,0)|R’ > that we define as:

GR,R/,7) =< R|U(1,0)|R' > (2.31)

that is the Green’s function of the SE. This Green’s function can be deter-
mined by solving the differential equation:

with the initial condition:
G(R,R',0) =§(R-R/) (2.33)
The SE is then written in terms of the Green’s function as:

(R, 7) = / dR'G(R, R/, 7)U(R/,0) (2.34)

This is an integral equation that can be solved using Monte Carlo integra-
tion. The problem with the previous integral equation is that the Green’s
function of the problem is not known. However, we can evaluate the imagi-
nary time evolution of the wave function using the following property of the
Green’s function,

/ JR'G(R,R",7")G(R",R’,7) = G(R, R/, 27) (2.35)

Then, we can consider the full propagation in imaginary time as successive
propagations of time step A7, and then, we only need to find some short-time
approximation for the total Green’s function. We can write the following
expression for the propagation of the wave function:

(R, Ar) = / dR'G(R, R/, AT)U(R/,0) (2.36)
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or generalizing this expression to an arbitrary step n,
VU(R,nAT) = /dR’G(R, R/, AT)U(R/, (n — 1)AT) (2.37)

And then, as we have seen before, we only need to find some suitable ap-
proximation for the Green’s function for small Ar.

Short time Green’s function

The differential equation that defines the Green’s function is given by:

IG(R, R/ 2
- (8’7’7) = |- VR + (VR) - Br) | GR.R,7)  (238)

with the boundary condition G(R,R/,0) = (R — R/).

Now the main problem to obtain an expression for the total Green’s
function comes from the non conmutativity of the kinetic and potential
terms in the hamiltonian. However, the evaluation of the Green’s function
corresponding to each of the individual pieces is trivial to do. If we consider
the two contributions to the Green’s function separately we will have, for
the kinetic term:

52
Gk(R,R/,7) =< Rle 2 |R’ > (2.39)

That can be easily evaluated in position basis by means of gaussian integra-
tion, giving a final kinetic Green’s function:

Gr(R.R,7) = (5 T oxp [—;(RQTRI)Q] (2.40)
where d is the dimensionality of the studied system.
For the interaction term we have:
Gy(R,R/,7) =< R|e" V= FD)T R > (2.41)
that in position basis is:
Gy(R,R/,7) =exp[-(V(R) — E7)7] §(R — R') (2.42)

With the propagators Gx and Gy we can build short time approximations
to the total Green’s function.

The time evolution operator defined in (2.28) can be approximated in
different ways. A possible approximation of order A7? is the following:

U(AT) = e~ E+V=BD)AT  o=KAT~(V=Er)AT 4 (A72) (2.43)
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which gives an approximate Green’s function given by:

dN

G(R,R/,Ar) :< m ) 2~ (V(R)-Er)Ar

2mh2 AT
exXp —ET + O(AT )

that is exact at first order in Ar.
Another possible decomposition of the time evolution operator is the follow-
ing:

U(A7) = e (KHV=BAT o (~(V=Br) 4 (~Ka7~(V=Er) 3 | O(A9)

(2.45)
which gives an approximate Green’s function given by:
i (VR4VER) -
GR,R' A7) = <7m ) = (S Br)A
2wh2 AT (2.46)
o _m(R-R)? +O(AT) '
PR T oA 4

which is exact at second order in AT.

Importance sampling

In real many body problems with hard-core-like interaction potentials the
simple DMC algorithm shows a poor convergence to the ground state solu-
tion, with large statistical fluctuations in the mean values of the evaluated
observables. However, this can be corrected by means of importance sam-
pling.

In this section we will explain the trick that makes DMC a really powerful
method to solve many-body problems: the importance sampling technique.
In the previous section we have seen how the imaginary time-dependent
Schrédinger equation can be solved by means of Monte Carlo techniques. In
this section, we will rewrite it for a different wave function given by:

fR,7) =97 (R)V(R,T) (2.47)

where U7 (R) is a trial (or guiding) wave function that is expected to be a
good approximation to the exact ground state wave function of the system
and it is intended to guide the random walk process in order to obtain a
faster convergence.

We can write the SE for the function f(R,7) from equation (2.24) sim-
ply by substituting ¥(R, 1) = gﬁﬂ% This gives the following differential
equation:

of

~ S VRS VEN + (ELR) - B f (2.48)
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where we have defined the drift force (or velocity) as:
F(R) = Vg log Ur(R) (2.49)

and F1(R) is the local energy defined in (2.13) that can be written using
the definition of the drift force as:
2

EL(R) = 1 [Vlog Ur(R) + (F(R)Y] + V(R) (250

Equation (2.48) can be written in operator notation as:

- gi = (K+D+B)f (2.51)

where K is the kinetic (or diffusive) term, D is the drift term and B is the
termed branching term. As in the non-importance sampling case, we can

write the evolution in imaginary time of the new wave function f(R,7) as
an evolution operator acting on the initial wave function:

|£(r) >=U(7,0)|£(0) >= e~ "FPHET|£(0) > (2.52)
In position basis the previous equation is:
F(R,7) = / iR’ < Rje~E+DBITR! S f(R2,0) (2.53)
The Green’s function of each individual term in the new hamiltonian are:

2T
Gp(R,R/,7) = (R — R(7)) (2.54)
Gp(R,R/,7) = e (EL(R)-En)T§(R — R/)

anN _ R/
Gr(R,R',7) = (5554) * exp [—M}

where R(7) is given by:

S = F(R(7)) (2.55)

that is the classical trajectory of the configuration moving at a velocity given
by the drift term.

As in the non-importance sampling case we can split the time evolution
operator in several ways. A first order decomposition is given by:

U(AT) — 67(K+D+B)AT — e*KATefDATefBAT + O(AT2) (256)

which gives the approximate Green’s function:

dN
' A7) = m 2 —(BEL(R)-Er)AT
G(R, R, A7) (mm?m) ©

m (R — R/ (AT))?
h? 2AT

(2.57)

exp [— } + O(AT?)
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where R'(AT) is the solution of (2.55) with the initial condition R'(0) = R’/
solved at first order in A7, this can be done for example by R/(A7) =
R’ + F(R')Ar.

A higher order decomposition is given by [19]:

AT AT AT AT
U(AT) = e B% e PH e KATe= DS o= BS L O(ATY) (2.58)
which gives the approximate Green’s function:
m )dév —(7EL(R)+2EL(R/’—ET>AT
e

2rh2AT
m " _R'AT 2 .

G(R,R/,Ar) = (

h2 2AT
+O(A7‘3)

where R'(A7/2) and R"(A7/2) are the solutions of (2.55) with initial con-
ditions R’ and R” respectively. In this quadratic Green’s function one must
solve the differential equation 2.55 with a second order algorithm.

Diffusion Monte Carlo algorithm with importance sampling

In the DMC method the probability density function f(R,7) is represented
as an ensemble of Ny points in the configuration space called walkers. A
walker is defined by the positions of all the particles of the system R =
{r1,r9,...rx}. In this approximation we can write the function f as:

Nw
fR,7) =N §(R-Ry(7)) (2.60)

=1

where N simply gives the normalization factor.

Once we have defined the function f(R,7) at the present time step we
need to describe how the Green’s function given in (2.59) acts over it. At this
point we decompose the full effect of the Green’s function in three different
steps.

The first step is a free diffusion. This process describes the isotropic
diffusion of a walker through the configuration space and can be easily im-
plemented by

R =R+ nVAT (2.61)

where 71 is a normalized gaussian random vector drawn from the free (or
kinetic) Green’s function Gk defined in eq. (2.54) with n = R’ — R. This
gaussian diffusion must be performed for walkers in the ensemble at time 7.

After the gaussian diffusion process there is the drift step. This step
represents the effect of the importance sampling technique in the DMC
algorithm. This process tries to guide the imaginary time evolution of the
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walkers to regions of the configuration space where the wave function is
expected to be large. The implementation of this step is as follows, first
one needs to evaluate the drift force defined in eq. (2.49) and then use some
second order integration method to integrate the differential equation (2.55).
In our case we use the second order Runge-Kutta method [19] given by the
two following steps:

R"=R + ATF(R/)

R//I — R/I + %(F(RH) + F(Rl)) (262)
The last part of the effect of the Green’s function over the probability distri-
bution function is the key point of the DMC method, the branching process.
Up to this point the two different contributions to the short time Green’s
function conserves the norm of the function f, but in order to solve ex-
actly the many body Schrédinger equation we have to add a term that is a
source/sink of walkers. The branching process duplicates walkers that best
mimics the exact ground state distribution or alternatively kills walkers that
are far from the desired solution.

The implementation of the branching process can by done by simply

making Ngons copies of each walker where Ng,,s is given by

Nyons = int (e—(EL<R>—ET)T n x) (2.63)

where y is a uniform random number in the range [0,1) and int() is the
integer part function.

At this point it is clear that we can adjust the reference energy Er
in order to reduce the fluctuations in the number of walkers and keep the
population size in the desired range. Another important issue is that when
the number of walkers remains statistically constant the trial energy Erp is
an estimator of the ground state energy of the many body system.

At the end of an imaginary time step we will obtain a new probability
distribution function given by:

Niy
fR,7+ A7) =N §(R—Ri(7 + A7) (2.64)
i=1

So, in summary we can write the DMC algorithm as:

1. Generate an initial set of walkers.

2. Evaluate the drift force (2.49) and the local energy (2.50) for each
walker.

3. For each walker perform the diffusion, drift and branching processes
as explained above.

4. When asymptothic regime is reached repeat 2-3 until statistical accu-
racy is the desired.
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2.2.2 Path integral ground state

In this section we introduce the last Monte Carlo method that we have used
along this work. It is the path integral ground state (PIGS), also known
as variational path integral [50, 51, 52, 53, 54]. This method has common
points with the two methods discussed previously (VMC and DMC). We
can describe briefly the PIGS method as a variational Monte Carlo method
using an imaginary time propagated trial wave function.

As we have seen previously we can write the imaginary time dependent
Schrodinger equation as an equivalent integral equation (2.30), and use that
expression for the wave function ¥(R, 7) as a variational wave function in a
Monte Carlo calculation. In such a Monte Carlo calculation we can use as
the probability distribution function the following expression

W(R,7) = / JR'G(R, R, 7) (R, 0) (2.65)

The idea behind the PIGS method is similar to the previously commented
in DMC. We can decompose the Green’s function in several steps as:

M-1
G(RM,R(],T) ~ /dRMlde H G(Rj+1,Rj,AT) (266)
7=0

where A7 = ;. Using the decomposition of the Green’s function we can
write the ground state wave function as:

M-1

Yo(R) = lim [ dRys—1...dRy I[ ¢®Rj11.R;, Ar)T(Ry,0).  (2.67)
j=0

It is obvious that in a computational simulation one must work with a
finite M value, so the point is to build a variational wave function with
a finite number of convolution terms, using as initial condition a carefully
chosen trial wave function, ¥(R,0) = ¥r(R). With these considerations
the variational wave function in PIGS can be written as:
M—1
Upras(R,7) = / ARy 1..dRo [[ G(Rj11, Ry, AT)Ur(Rg)  (2.68)
i=0

where Rj; = R. With this last expression for the PIGS wave function we
can evaluate the energy of the many body problem as

_ de\I/pjgs(R, T)I{I‘I’PIG’S(Rﬂ—)
de\I/pjgs(R,T)\I/PIGS(Ra T)

Epras(T) (2.69)

The variational principle ensures that this expression is an strict upper
bound of the ground state energy of the many body problem. At this stage
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we can see that the advantage of PIGS over VMC is that within this method
we have a systematic process that allows to obtain a variational energy that
is in principle as close to the exact ground state function as we need. One
only have to increase the number of convolution terms in order to obtain a
better variational estimation for the ground state energy. One can compute
the energy for increasing values of M and find an asymptotic regime where
the bias introduced by considering a finite number of convolution terms is
smaller than the statistical uncertainties introduced by the Monte Carlo
process.

We have seen how to evaluate the energy of the system in terms of the
variational function Wprsg. One can write the expectation value of any
other operator as follows

=~ oo JAROB)|Trrcs(R, 7))
JdR|¥prgs(R, 7)[?

(2.70)

From the previous expression and the explicit form of ¥prgg given in (2.68)
we can write that expectation value as

<O>= / dRO(R)P(R), (2.71)

where the probability distribution function is given by

Ur(Ro) H?fofl G(Rj+1, Ry, AT)¥7r(Ran)

J dRo...dR2y U7 (Ro) [0 G(R41, Ry, AT)Up(Ron)
(2.72)
An important issue of the PIGS method is the short-time approximation of
the Green’s function of the system, which is the representation of the time
evolution operator in the position basis,

P(Ro, .. Ron)

GR,R/, A7) =< R|e 727 R > (2.73)

where H = K + V is the hamiltonian of the system and K and V are the
kinetic and potential energy operators respectively. The simplest short time
approximation to the Green’s function is the primitive approximation given
by

e HT = ¢ KAT=VAT L O(AT?). (2.74)

The representation of the kinetic and potential part of the Green’s function
is shown in the following epxpressions:
aN N2
m 5 _m (R-R)
Gx(R, R, AT) = <7) s oA
K( ™) 2rh2AT ©
Gy (R, R/, A7) = e VRATGR — R)

(2.75)
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where d is the dimensionality of the system. Using the primitive approxi-
mation we can obtain the Green’s function for any imaginary time value 7
increasing the number of convolution terms in (2.72). The convergence to
the exact result is guaranteed by the Trotter formula:

) . o\ M
e”™ = lim (efATKefATV) . (2.76)
M—o0

The classical isomorphism

We have seen in the previous section the theoretical basis of the PIGS
method. In this section we will show an important issue of the method,
the classical isomorphism. The Green’s function G(R, R’, ) can be written
explicitly in terms of the kinetic and potential contributions given in (2.75)
as:

m o\ 95
GRo Row7) = (5paxs)
2M-1 2 (2.77)
x/de,...dRQMl 11 o EEE) _y(R Ay
=0

where Rg = R/, Roys = R and 7 = MA7. The exponent of the kinetic
term can be written as:

N
m (R — Ry)? m 2
2 2AT T 22AT ;(rjﬂ’i ~ i) (2.78)
while the potential term can be written as:
N 1N
— V(R)AT = —ATZ Vl(ri,j) + 5 Z %(ri,j — rk,j) (279)
i=1 k=1,k#i

where N is the number of particles of the system. Using the expressions
(2.78) and (2.79) one can write explicitly the probability distribution func-
tion P(Ry,...Rys) from equation (2.72) as

1 dN M
= (gns)
Z \2wh2AT

N 2M—-1
[* Dlit1 opEar 2oj=0 (ri,j+1fri,j)2]

P(Ry,..Roy) =

X

€ X (2.80)
w el AT ST (V)45 ok s Va(rii—rk )] o
« e1og ¥ (ri,0,..rn,0)+Hlog ¥r(ri 2nr,--rN,20))
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where Z is the following normalization integral

dNM

ZZ/QE%@RW(%QAJ 2

N 2M—1
{— Din1 grras 2j=0 (ri,j+1_ri,j)2]

X € x (2.81)
% e[—AT S T (Viri )+ 5 R ks Vo (rii—Tk )] %

% e(log Yr(ri,0,...rn,0)+Hog Ur(ri onm,...rn2m))

This last expression is completely analogous to the canonical partition func-
tion of a system of IV classical open polimers each of them having 2M + 1
particles (or beads) bounded by harmonic springs (the kinetic energy terms).
Each polymer interacts with the rest by means of the potential terms in a
special way, there is only interaction between beads corresponding to equal
imaginary times.

Basic path integral ground state algorithm

Using the classical isomorphism the PIGS method can be thought as a vari-
ational Monte Carlo method applied to a system of N linear polymers that
interact between them. Starting from a set of initial configurations given
by {X1i,...,Xn} where each X is the set of positions of one of these linear

polymers, i. e. X; = {Rg), ...,Rg}@rl}.
The PIGS algorithm is schematically given by:

1. Draw an initial configuration for each linear polymer {X;,..., Xy}
representing the full imaginary time path of each particle.

2. Guess a new configuration for the system by making X} = X; + 6X;.
3. Evaluate the transition probability to the new configuration as

Q:thwxgﬁxm_
P(X1,...Xi, . XN)

(2.82)

4. Accept or reject the new configuration using Metropolis algorithm.
5. Compute observables of interest.
6. Repeat 2 - 5 to achieve the desired accuracy.

This is a basic PIGS algorithm build in complete analogy with the varia-
tional Monte Carlo method that can be improved in several ways. The first
problem of this simple algorithm is that their efficiency can be not very high
due to the presence of the kinetic terms connecting different beads in each
polymer. In the following, we will see how to improve the efficiency of the
sampling.
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Staging algorithm

As we have commented previously, the simple sampling of the path integral
can have some efficiency problems due to the presence of the kinetic springs.
There are several methods to improve the efficiency of the sampling that can
exploit the fact that the kinetic part of the action can be exactly sampled.
In this work we have used the staging algorithm [55] with this purpose.

The staging algorithm works by purposing smart collective motions of
several beads of each linear polymer. The positions of the new configura-
tion are randomly generated using the kinetic part of the action and then
the Metropolis test must only be applied to the potential part improving
dramatically the efficiency of the algorithm.

In order to implement the collective motions let’s consider the free (or
kinetic) part of the action as a product of kinetic contributions involving all
the beads of a single chain:

G()(X(),XQM,T) = GO Xo,xl,AT> X ... X
X Go(xi, X101, AT) X ...X
(i, Xi1, A7) (2.83)
X GO(X’i—‘y-j—l;Xi—i-jaAT) X ... X
(

x Go(xanm—1, X0, AT)

where the x variable make reference to the d-dimensional coordinates of
any of the NV chains of the system. We are interested in build a new set of
positions {X;41, ..., Xiy;j—1} generated randomly according to the free particle
action. We can define the function S as:

J
S(xi, Xitj, JAT) = [ [ Goxigr—1, %1k, AT) (2.84)
k=1

and define a new set of coordinates y that allows us to write S in a decoupled
form given by

-1
S(xi,Xitj, JAT) = Go(X4, X4, JAT) H G(()k) (Xitk Vit AT) (2.85)
k=1

where the function Gék) is defined as

mk )g _my (xi+k*yz‘+k)2
e

k
G[() )(Xi+k7 Yitks AT) = (m 2 24T . (2.86)

As it can be seen from (2.86) the new coordinates imply a redefinition of
the mass term m — my. So finally we can write the staging coordinates and
the new mass term as:

Xitj + Xijpk— j— k—1
Yitk = 2 H;. l(k ( ) (2.87)
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My = m (“fﬁ;”) (2.88)

Using this smart change of variables we can generate collective motions
of several beads in a single chain by simply generating gaussian random

numbers as:
k2T
Xtk = Yirk + 1 - (2.89)

where 1 is a U(0, 1) random number.

Using this method we generate a set of new coordinates using the ki-
netic action as probability distribution function so we must sample only the
potential action in the Metropolis algorithm.

High order approximation to the Green’s function

Another aspect that can be improved in the simple PIGS method that we
have explained is the approximation to the short time Green’s function of
the system. In the introduction of the method we have developed all the
theory using the so-called primitive approximation that is accurate up to
second order in A7.

< RleTTVA R s=c Rle7A7eTAT T AT R > (2.90)

An obvious improvement is to consider some higher order decomposition
for the propagator of the system.

A more accurate form of the Green’s function allows for a faster con-
vergence of the method and, as a consequence, a decrease in the required
number of beads or a larger time step to achieve the convergence. In this
work we have used the following approximation for the short time propagator

[56, 57, 58]:
< R‘G(T+V)AT|R/ S =< R‘e%ATG%AT€¥AT€%ATe%AT|RI >

+O(AT) (2.91)

where

1
W=Vt VIV (2.92)

Using this high order decomposition for the short time propagator the
Green’s function can be written as:

GR,R A7) = GOR,R", A7) GHR" R/, Ar) + O(AT°)  (2.93)
where the functions G(© and GM) are given by:

GO(R, R/, A7) = Gx(R, R/, A7) x GV (R, R/, A7) (2.94)
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and
GY(R, R/, Ar) VA even (2.95)
) , AT ) = ’ 12 A7 ! '
v T AVER)AT-EAE SN IVV®RIPE g

This expression for the short time Green’s function is a particular case of a
more general family of approximations derived from symplectic decomposi-
tions of the propagator [57].

Fourth order path integral ground state algorithm with staging

The improved PIGS algorithm that incorporates staging sampling to im-
prove the convergence of the method is the following

1. Draw an initial configuration for each linear polymer {X;,..., Xy}
representing the full imaginary time path of each particle.

2. Guess a new configuration for the system by making use of the staging
method.

3. Evaluate the transition probability to the new configuration as

P(Xy,.., X XN)

@= P(Xy, .., X, X))

(2.96)

4. Accept or reject the new configuration using Metropolis algorithm.
5. Compute observables of interest.
6. Repeat 2 - 5 to achieve the desired accuracy.

The main difference between the improved and the basic algorithms is that
in the improved algorithm the new configurations of the system are proposed
using the staging method that, as we have seen, samples exactly the kinetic
part of the action and therefore the transition probability involves only the
evaluation of potential action.

In addition to the given steps it is convenient to accelerate the conver-
gence by performing full chain translations of each chain between several
steps of the simulation. This translations are proposed as:

X, =X, + 6X; (2.97)

and then are accepted or rejected using the Metropolis algorithm.
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2.3 Evaluating properties

In this section we will show how the observables of interest are evaluated
from the Monte Carlo sampling. We are interested in the evaluation of the
energy per particle of the system, that allows us to build the equation of
state, and also in structural quantities like the pair distribution function
and its Fourier transform, the static structure factor. Another important
quantity to evaluate is the one-body density matrix that gives information
about the Bose-Einstein condensation in the system.

2.3.1 Energy per particle

The energy of a quantum system can be evaluated as the expected value of
the many body hamiltonian given by:

:_fzvuzvl ) 1) (208)
1<j
As we have seen the Schrodinger equation is given by:

<V|H|Y>=E<VU|¥ > (2.99)

so the energy can be evaluated by the following expression

< VU|H|Y >
that can be put in integral form as:
[ dRI*(R)HY(R)
EV] = 2.101
T TR m)P 100
and can be expressed in terms of the probability distribution as

J dR)¥(R)] Ty

- —TREE )|2( ) — /dRP(R)ElOC(R) (2.102)

2
where P(R) = % and Fj,e = %g;)-

The hamiltonian acting on the wave function can be split in the kinetic
and potential terms, the potential term can be simply written as:

Zvl (r:) + > Va(r; —1;) (2.103)

1<J
and the kinetic term:

K¥(R)  hr? VRY(R)
GR) " 2mW' (2.104)
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It is convenient to write the acting of the laplacian on the wave function as:

2
Vg‘(lg)m = V& log ¥(R) + (Vg log U(R))? (2.105)

Variational Monte Carlo

In a variational Monte Carlo sampling we have no access to the exact wave
function of the system so, in general, we can evaluate the energy substituting
the exact wave function by the trial wave function ¥7(R), is we do this
change the second term in (2.105) can be identified as the drift force and
the total local energy can be written as:

2

Eie(R) = (Vi log U7(R) + F(R)?) + V(R) (2.106)

m
In a VMC simulation this quantity is obviously an approximation to the
exact ground state energy of the system.

Diffusion Monte Carlo

In a DMC simulation we sample the product of the exact wave function of
the system times the trial (or guiding) wave function so the energy of the
system can be written as:

 [dRU(R)U7(R)Epe(R) [ ARV(R) U7 (R) o 2.107)
- Jr(R)¥(R) - JUrR)Y(R ‘
so finally we can write
_ JdARY(R)HY7(R)
RO (2.108)

thanks to the hermiticity the hamiltonian can act on the left or on the right
and considering that H|¥ >= Ey|¥ > we can write

[ dRU(R) VU7 (R)
[Ur(R)U(R)

E = E, = Ey (2.109)

So in a DMC simulation we also have to evaluate the expectation value of
the local energy function.

Path integral ground state

In a PIGS simulation the evaluation of the energy can be done in several
ways. In this work, we have chosen the mixed estimator as in the case of
DMC. In PIGS the physical observables must be evaluated at the mid-point
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of the chain but in the case of the energy, as we are evaluating the expected
value of the hamiltonian it can act on the extreme points (Rg, Ryas) given
that

[H.e "] =0 (2.110)
So the mixed estimator of the energy on a PIGS simulation is given by:

HU7(Rg
E-= Eoe(Ry) 2.111
; ‘I’T(R Z e Ro) (@111)

2.3.2 Pair distribution function

Another observable of interest in the study of quantum gases is the so called
pair distribution function that is given by the following expression:

N(N - 1) [ |U(R)2drs - - dry

g(ri,re) = T [OR)drs ey

(2.112)

In an homogeneous system the pair distribution function depends only in
the relative position r; — ry. The equation (2.112) can be written in the
following form by defining r = ry — ro

(r) = N(N —1) [é(r1 —ry —1)|¥(R)]*dR
I = ard [ ¥ (R)[2dR

(2.113)

where L is the size of the simulation box and d is the dimensionality of the
system. This last expression is written in a more suitable form for a Monte
Carlo evaluation.

In order to have more statistic and reduce the variance of the estimator
it is common to sum over all possible pairs of particles in the system, if we do
so the final expression that we will evaluate in our Monte Carlo simulations

is
2 [ X, 0(rij — r)[W(R)PdR,
N TTU(R)2dR

g(r) = (2.114)
where r;; = r; —r;.

The evaluation of the pair distribution function in the Monte Carlo sam-
pling it is simply implemented by making an histogram of the relative dis-
tance of each pair of particles of the system.

2.3.3 Static structure factor

A quantity related with the pair distribution function that is very interesting
in the study of the macroscopic state of a quantum gas is the static structure
factor, that is also accessible experimentally.
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The static structure factor is related with the Fourier transform of the
pair distribution function

S(k) =1+ n/dre_iq'r(g(r) —1). (2.115)

Despite of its apparent simplicity, this expression is not the best way to
evaluate the static structure factor in a Monte Carlo calculation. Instead of
using (2.115) it is better to use the alternative definition of S(k) that states
that it is given by the correlation of the momentum distribution between k
and —k

NS(k) =< pipe > —| < pie > 2 (2.116)

Using the property p_x = pj we can write (2.116) as
NS(Kk) =< |pl® > —| < px > |2 (2.117)

The density distribution in a Monte Carlo calculation is given by

N

n(r) =Y 6(r—r) (2.118)

i=1
that can be expressed in the momentum space as:

N N N

PK = /eik'rn(r) = Z ekri = Z cosk-r;+1 Z sink - r; (2.119)
' i=1 i=1

=1

Using the definition of pyx we can write finally the expression for the evalu-
ation of the static structure factor as:

2

N 2 N
N5<k>=<(2cosk-ri> + (zsmk.rz) )
i=1 i=1

N N
—\<Zcosk'ri > |2—|<Zsink-ri> |
i=1 i=1

(2.120)

In an homogeneous system the last two terms vanish.

The last consideration concerns the values of k in an homogeneous sys-
tem, as we simulate the system in a finite simulation cell we must choose
values of k that are compatible with the size of the box:

_ 2m

k‘i = ETLZ (2.121)

where n; = 1,2, ... and L; are the length of the box in the direction i.
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2.3.4 One body density matrix

The last quantity that we are interested in is the one body density matrix
that gives us information about the Bose - Einstein condensation in the
system. In an homogeneous system the one body density matrix p(r) is
given by:

p(r f f\II r I'27-. ’rN)\I}(r/,r27... ’rN)er...drN
S SR, ey Pdry - dry

(2.122)

In VMC the wave function that we are sampling is the ¥ (R) so the previous
expression can be written as:

f f\IfT(:?Q’ ~' ))‘\IIT(I-/J.%... ’I'N)|2d1'2-~-drN
ple=r) = 7 ; (2.123)
f f|\IIT te arN)| drl"'dI'N

2
where P(R) = f|‘\1\/1l(R)|‘2dR

On the other hand in the DMC method we are sampling the mixed
function f(R) = U7(R)¥(R) so the expression (2.122) is

/ f f\I} r,ra, --,r N)‘ll(r,)r27"‘arN)dr2"'drN
— 2.124
plr—1) = [ [1f(r, - ,rn)2dry - dry ( )
that can be written again as:
( = f f Yr :1;22 rN))f(r/ ry, - ,ry)dry - dry (2.125)
r—r .
' [ [ e, ow)der—dry

From the asymptotic behavior of the one body density matrix the con-
densate fraction of the system can be extracted as:

p(r—r') _No

= 2.126
[r—r/| =00 n N ( )

where Ny is the number of particles on the condensate.

2.4 Trial wave functions

A key ingredient of the zero temperature quantum Monte Carlo methods
is the trial wave function of the system. The trial function allows us to
introduce all the a priory information about the physics of the system to
improve the convergence and accuracy of the Monte Carlo sampling.

It is usual in the study of quantum bosonic fluids to consider the wave
function as:

U(ry, - ,ry) =exp (U1 + Uz + Uz + -+ + Un) (2.127)
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where the different functions U; are terms involving correlations of ¢ parti-
cles,

N
Uy = ua(ry)
j=1

U2 = ZUQ(I‘Z‘,I‘]‘) (2128)
1<j
Us= Y us(rir),ry)

i<j<k

A common approximation is to consider a wave function containing only
terms involving two body correlations, which implies U; = 0 Vi > 2, such
a wave function is called Jastrow wave function and can be written as:

U(ry, - ,ry) = exp Zz@(ri,rj) (2.129)
1<J

where ug(r;,r;) = ua(r; — r;j) for an homogeneous system like a gas or a
liquid. The two body correlation function exp(ua(r; — r;)) it is chosen to
reproduce the exact behaviour of the two body problem at low distances in
order to avoid the possible singularities of the local energy at short distances
caused by interactions that are strongly repulsive at short distances. For
a non homogeneous system like a crystalline solid we have to consider in
general a one body term in addition to the two body Jastrow term in order
to help the Monte Carlo sampling to find the ground state configuration of
the system.
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Chapter 3

Two-dipoles quantum
problem

3.1 Introduction

The two-body scattering properties are of crucial importance in the study of
low-density quantum gases since many properties of the many body system
are directly related with two-body scattering parameters. In low-density
quantum gases there are several important quantities that depend on the
two-body scattering properties because the physics of the system is, in this
situation, dominated by two body collisions as the probability of three body
events vanishes as density is decreased.

Additionally to the intrinsic physical relevance of the two body scattering
analysis there is another reason that motivates us to do this study. We are
interested in perform Monte Carlo simulations of a quantum dipolar Bose
gas and, as we have seen before, Monte Carlo methods need a trial many
body wave function. A common approach to the many-body wave function is
the Jastrow function built from two body correlations. It is also common to
use the zero-energy solution of the two-body scattering problem as Jastrow
correlation factor, so it will be useful for our purpose to have at hand this
wave function to use it as input for our Monte Carlo simulations.

In the following sections we present our study of the zero-energy solutions
of the two-body problem of two bosonic dipoles in two dimensions and in
two different situations. First, we solve the well known isotropic two dipoles
problem where the dipole moments of the particles are orthogonal to the
plane. The second situation, and the most important for the purpose of
this work, is when dipole moments are oriented with an angle « respect to
the normal direction to the plane. Finally, we find an expression for the
scattering length of the system that will be useful for the study of the low
density dipolar gas of Bosons.

35
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Py

Figure 3.1: Two dipoles confined in the x-y plane and polarised along a
direction that forms an angle @ with the z axis are shown. In this system
the interaction depends on the relative distance between particles and on
the angle between their positions.

3.2 Interaction

General two-body interaction in a system of dipoles is given by the following

expression
Caa (. . LB-r)(P 1)
V(I‘) - A7r3 (p p - 3 ) (31)

where p and p’ are the unitary dipolar moment of each dipole. If dipoles
are polarised in the same direction, figure 1 shows the system that we are
studying. Then, the dipolar moments of each particle are given by:

p=p = (sina,0,cosa) (3.2)
while the vector r on the x-y plane is given by:
r = (rcosf,rsinf,0) (3.3)

Applying this expressions in Equation (3.1), one can easily obtain an ex-
pression for the interaction that we are looking for, given by

Caa

Vir.0) = 4dmr3

(1 —3X%cos?0) (3.4)

Where we have defined \ = sin a.
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04 02 0 02 04 04 02 0 02 04
X X
(a) Interaction potential for a < ae. (b) Interaction potential for a > ae.

Figure 3.2: Two dimensional dipolar interaction with a tilting angle below
(a) and above (b) the critical angle.

In the case that we are studying, when we have two dipoles in the x-
y plane it can be shown that the potential given in (3.4) is short ranged,
provided that a necessary condition for a potential to be short-range is [59]:

/ U(r)dPr < oo (3.5)
r|>ro

where D is the dimensionality of the system and rg is some short distance
cut off. Since we are working in a two dimensional system the integral above
exists, and this allows us to state that we are working with a short ranged
potential.

In addition our potential is anisotropic. For low values of A (i. e. low val-
ues of polarisation angle) the potential is always repulsive, but with strength
that depends of 6. If 6 = 0 the potential is less repulsive than for the § = 5
direction.

There is a critical polarisation angle a.: if a < a, the potential is always
repulsive, but if a > «, the potential shows repulsive and attractive regions.
One can easily calculate o, solving the following equation for 8 = 0:

1
1-3X2cos’0=0=1-3)? =1 = qa, = arcsin (\/§> = a, ~ 35.26 (3.6)

In figure 3.2 we show the potential for a < a. and a > a..

3.3 Schrodinger equation

The Schrédinger equation for the two dipole system is:
h2

2 -
- ZV Y+ V(r,0)y = Ey (3.7)
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where p is the reduced mass of the two body system, given by:

mi1ms9 m
= —=— 3.8
h= e = 2 (3.8)
where we used the fact that m; = mg = m.
We are interested in analysing scattering states, this implies that we

consider only values of energy E > 0, hence we can write energy as:
R2k?

If we write the Schrodinger equation explicitly in plane polar coordinates,
we find the following partial differential equation:

82¢ 1 a¢ 1 821/1 2,u Cdd
or? + ror | 120602  h?4mrd
Solving the above equation gives us a complete description of the physics of
the two-dipole system, but unfortunately, the anisotropy of the interaction
makes that the solutions of the partial differential equation are not separable,
and this fact makes the resolution of the problem more difficult.
We are interested in the study of low energy solutions of the system,
and in the following sections we show our approach to the solution of the

(3.9)

(1-3\%cos?0) v = —k*p  (3.10)

problem.

3.3.1 Zero-energy solution for the o = 0 case

The first problem that we have studied is the case of &« = 0. In this section
we want to solve the following differential equation:

a%pj&aﬁw 1 0% 2u Cyq

2
o2 ror  r2002  n? 47TT‘3¢ =& (8:11)

This equation corresponds to a system of two dipoles whose dipole moments
are polarised orthogonally to the z-y plane, as shows figure 3. In this sit-
uation the interaction potential is purely isotropic and repulsive. This fact
allows us to find a solution of the problem using the method of separation
of variables.

We are looking for a solution of the differential equation that can be
written in the form:

P(r,0) = R(r)Q(0) (3.12)
If we substitute the form (3.12) of the wave function in equation (3.11) and
simplify the resulting expression we will find that we have converted the par-
tial differential equation in the following system of two ordinary differential
equations:

{@%(9) = —m’Qm(0)

3.13
RAG)+ L) — (25 + 3 G) Bnr) = K2Ry O
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Py

Figure 3.3: Physical situation when the interaction between dipoles is fully
anisotropic and repulsive.

The angular equation has the following solutions:
Qm(0) = A, cosmb + By, sinmf (3.14)

Due to the Bosonic symmetry, the angular part of the wave function must
verify Qm(0) = Qm(—0), that implies B,, = 0 for each value of m, so the
angular wave function will be

Qm(0) = Ay, cosmb (3.15)

Then the problem has been reduced to solve the radial equation given in
(3.13).

We have to consider the equation for the radial wave function when
k = 0. In this case the equation to solve is:

2

1 m 21 Cyq
R;/n(r) + ;R;n(T) - <7’2 + h2471'7“3> Rm(r) =0 (3'16)

In this situation the differential equation can be solved analytically. If we

define = = % we can rewrite the radial equation as:

d2R dR 2# Cdd
2 m m 2 2
— 2 + - — = A7
T 5 +x |:( m) 3 x :| Rm 0 (3 )

The last equation can be easily identified as the modified Bessel equation
given by:
22y 4y — (m?+E*2?)y =0 (3.18)
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(b) (b)
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(a) Modified Bessel functions of the first (b) Modified Bessel functions of the second
kind and orders 0, 2 and 4. kind and orders 0, 2 and 4.

0.0

Figure 3.4: Modified Bessel functions of the argument %

7

This implies that the solution to the radial equation with k£ = 0 is:

Ron() = Ay o ( 2’”%) + B Kom ( 2“Cdd:g> (3.19)

4Amh? Amh?

or in terms of the physical distance between dipoles:

Ron(r) = A Iom ( 20Caa 2 ) +BmK2m< 21Caq 2 ) (3.20)

Amh? \Jr Amh? \Jr

The solutions of the radial equations are shown in figure 3.4. The general
solution of Schrodinger equation is the following:

B > 2qud 2 2ucdd 2
77[)(707 9) = mzzo Aplom ( A k2 \/;> + B Kom ( A h2 \/77 cos mf

21)

The last expression is the two dimensional equivalent of the familiar partial
wave expansion in standard three dimensional scattering theory.

Now that we have the general solution of the zero-energy Schrédinger
equation, we must consider the boundary conditions that must be applied
to our solution.

Provided that the potential is strongly repulsive at r = 0, our wave
function must vanish at the origin, i.e. 1(r = 0) = 0. This condition implies

that A,, = 0 for all m, because Iy, ( 21Cqq 2) — 0o when r — 0. So the

Amh? \/r
solution reads as follows:

= 2 2
U(r,0) = Z B Kom ( HCag ) cosmf (3.22)
m=0

4k \Jr
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The asymptotic behaviour of the wave function can be studied considering
that the potential is short range in two dimensions. This implies that if
r >> 1 dipoles don’t see each other, and then Schrodinger equation at large
distances becomes the Laplace equation:

V)~ 0 (3.23)

The solutions of the Laplace equation in ploar coordinates are given by:

¥(r,0) = Ag + Bplogr + Z [Apr ™™ + Bpr™] cosmb (3.24)

m=1

Setting A,, = 0 for all m one can see that this is exactly the long range
behaviour of the wave function given in (3.22). The asymptotic behaviour
of the modified Bessel function of the second kind K,,(z) for small values
of x are given by [60]:

(3.25)

{Ko(:c) ~ —log (%) —

The expressions above are valid for x << 1 what implies r >> 1, if we do

2uCqq 2
Awh? \/r
wave function for large values of r:

(K 2uCaq 2 ~ —1o 1 /2pCaq 2\
NV amnz ) T %\ N a2 ) T T

_11 r_ _11 2pCad _11 r
T BT T T\ e | T 2%

2uCaq 2 1 21Caal [ 2\
K — | ==T'(2 | —
2’”( Arh? \/F) o (2m) <\/ Amh? 2 (ﬁ))

the substitution x —

we find the asymptotic behaviour of the

(3.26)

The solution of the zero energy Schrodinger equation reproduces adequately
the expected asymptotic behaviour. As an additional result of the asymp-
totic zero energy behaviour we have found the s-wave scattering wave of

dipolar scattering:
2p

c
0. — eQ’erlog( 47”{%(1). (3.27)

S

3.3.2 Zero energy solution for the o # 0 case

In this section we consider the zero energy Schrodinger equation with the
full anisotropic interaction. In this work we restrict ourselves to the regime
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where o < «, this implies that the potential is anisotropic but repulsive for
all r.
The Schrodinger equation that we want to solve is:

R[1o [ 0 1 6?
oo () 4 g VOO =0 @28)

The interaction has two different contributions, the first one is an isotropic
term that we call Vj(r), and the second one is an anisotropic term that we
identify as Vi (r,#). The contributions are defined as:

Vo(r) = £44
T Beos? 0 (3.29)
Vl(,r’H) — Am 3

With these definitions the potential can be rewritten as:
V(r,0) = Vo(r) — N2Vi(r,0) (3.30)

At this point we can write the Schrodinger equation in the following form:

R [1 0 0 1 02 2
- [a (8) N ag} b Vo(n )0 = XVi(r0)p  (331)

that can be understood as an inhomogeneous differential equation,

hQ
(—QMW ; vo<r>) e (3.32)
where the source function p(r) is given in this situation in a self-consistent
form

p(r) = NVi(r)y(r) (3.33)

causing that the source term depends on the wave function itself.
The solution of an inhomogeneous differential equation can be written
in the form:

P(r,0) = o(r,0) + ¥p(r, 0) (3.34)

where 1) is the solution of the homogeneous equation and 1), is a particular
solution due to the source term. From the previous section we know that
the general homogeneous solution is the following;:

= \/2qud 2
Yo(r,0) = Z B Kam ( cosmb (3.35)
= Ath /1

The particular solution ¢, (r) can be evaluated using Green’s function theory
[61, 62, 63] to obtain a perturbative solution in the form of a power series
in the parameter A as we show in the following.
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Green’s function perturbative solution

We can define a Green’s function, G(r,r’), for the two body dipole problem
using the following differential equation:

(v2 - 2“VO(T)> Gr,r') = —3(r — 1) (3.36)

Solving this equation to obtain the Green’s function allows us to transform
the original differential equation into the following integral one:

vlr) = 0(r) + 2 [ d'Gle WA (3.37)

where ¢ is a solution of the homogeneous part of the equation (3.31), or, in
other words, a solution of the isotropic zero energy dipolar scattering.

Thus we expect that the solutions of the integral equation above are valid
for low values of )\, i. e. low values of the polarisation angle. The solution
of the integral equation can be written as a power series in the parameter
A,

p(r) = Yo(r) + XN¢a(r) + Neba(r) Z U (L) A" (3.38)
where we have defined ¢y(r) = ¢(r).

If one substitutes the perturbative expansion (3.38) on the integral equa-
tion (3.37) obtains:

D Un(r)AP = g(r) + A2 / dr'G(r, v )Vi(r Z% A (3.39)
n=0

From the last expression one can identify the terms that contribute at each
order of the series expansion, which are given by the following recurring
relations

W =e)
Rt

that can be written in general as
unle) = [ d'Gle Ao r) (3.41)

Thus, we have to evaluate the Green’s function of the two body dipolar
problem and, using the previous integral relations, evaluate the different
contributions at every A order to build the complete solution of the problem.
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Evaluation of the Green’s function

The equation that defines Green’s function given in (3.36) can be explicitly
written in planar polar coordinates as:

19/ 0 102 2u N O(r—1') /
[rm<rm)+ﬂam‘m%<” Glrr) = —==—0(0-0) (342

In order to obtain a solution for this differential equation it is convenient to
define the Fourier expansions of G(r,r’) and §(0 — 0') as [62]:

Glr,1') = %o g7 25
’ 00 im(6—0") (3-43)
5(0 -0 ) = Zm:—oo € 21
that can be introduced in the equation (3.42) to find the following expression:
> 1d d m?  2u , eim(0=0")
> i (i)~ et g =
e . , , (3.44)
- Z 5(7, _ 7",) ezm(&—@)
N e T 2

The functions ™ form an orthonormal basis, this implies that the expan-
sion above can be decoupled and converted in a system of ordinary differ-
ential equations given by:

1d [ dgm m?  2u Cyq o(r—1")
1d (d9m _(m= 20 Caa ) O =T) e (345
rdr (T dr) (T2+ﬁ247rr3 g r me (3.45)

where it can be seen that the partial Green’s functions g, (r,7") = g_m, (r, ).
It is interesting to comment some issues independent of the particular
form of g,,,(r, 7). The Fourier decomposition of the Green’s function implies
a Fourier decomposition of the wave function itself, thus one could write the
following expression for 1):
oo
P(r,0) = D um(r)e™ (3.46)
m=—0oQ
If we suppose that the solution of the homogeneous part of the equation also
supports a Fourier expansion given by:

G(r,0) = Y pm(r)e™ (3.47)
we can write the following expression for the total wave function:
S un()em = 37 )+

m=—0Q m=—0Q

(3.48)

o0

)\2/dr'G(r,r')V1(r') Z un(r’)emel

n=—oo
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If we substitute the proposal for G(r,r’) we can write:

Z Uy (7)™ = Z P ()™ +
m=—o0 m=—oo

) fe'e) eim(@—e’) o0 - (349)

A / dr' " gm(r, TI)T%(r’) > un(r)e™

m=—0oQ n=—oo

The potential in terms of imaginary exponentials is given by:

21Caq 3cos? 0 2uCyy 3 €20 + 7120 42
Vi(r,0) = uCqq3cos 0  2uCqgq 3 €7 +e + (3.50)

ATh2 3 4xmh? 13 4

If this expression for the potential is introduced in equation (3.49) we can
write the following:

)
§ : Um zm@ § : d)m zm@

m=—o00 m=—o00
21C a4 32 & /gm T, 7" /
Y Y / e ORI D
M=—00Nn=—00
2m etm(0—0") g - 0
X / dG/T (e’ +e " 4 2) e
0 T

where the angular integrals can be easily done considering that:

2 e—imo’ o o L
/ d9,7 (6220 + o120 + 2) et _ 6n,mf2 + 5n,m+2 + 25n,m (352)
0

Using this last expression we can finally simplify the expression (3.51) as

o0
21C g 3N\2
Z eimd _ Z zm@ HCldd
tm Om(r 47rh2 1

m=—00 m=—0Q

X Z / dr ,gm rr) (U2 (") + 2um (1) + wm—a (1) ] €™

m=—00

(3.53)

From this last equation we can write an integral equation for each partial
wave of the solution,

2uCqaq 3\2
Um(']") = (;Sm(')") + 47Th2 T dT‘/X

(r.1") ’ (3.54)
X ngQ’ [um+2("”/) + 2upm (r') + um—2(7“/)} Vm € Z

From this last expression one can see that the anisotropy of the dipolar inter-
action causes the coupling between partial waves corresponding to different
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angular moment, and therefore, the angular moment it is no longer a good
quantum number because the interparticle interaction can cause transitions
between states of different angular moment.

Although we are considering a Fourier expansion in terms of imaginary
exponentials it can be easily shown that this expansion simplifies and only
the terms with cos m# with even m contribute. This simplification is due to
the Bose symmetry of the wave function which leaves it unchanged under
the transformation § — 6 + w. If we apply this symmetry condition we
obtain:

W(r,0) —(r,0 +7)=0=
Z um(r) (eimB _ eim(9+ﬂ')> 0=

m=—0o0

mn = 2kn where k € Z

This condition, in addition with the symmetry of the partial contributions to

the Green’s function g,,(r,7’) = g_,(r,7") that we have commented previ-

ously implies that we can write the wave function in terms of cosine Fourier
series only:

oo
W(r,0) = uo(r) + 2 Z Uy e 2™0 (3.55)
m=1

After this consideration we come back to the evaluation of the Green’s

function. We have seen that the evaluation of the full Green’s function

G(r,r’) can be reduced using a Fourier decomposition to the evaluation of a

set of radial Green’s functions g,,(r,r’) defined by the equation (3.45), that
can be thought as the following operational relation:

Lngm = —0(r —1) (3.56)
where L,, is a self-adjoint operator given by:
d d m2 2u Cdd
Lypy=—|r—|—|—+—= . 3.57
dr (Tdr> < r + h? 472 (3:57)

The generic form of a self-adjoint operator in the Sturm-Liouville theory is

given by:

L= (v ) +ata) (3.58)

so identifying the different functions one can see that in our situation p(r) =
rand g(r) = (mTQ + 24 Cag

h2 4mr2

tor is given by [61, 62]:

). The Green’s function for a self-adjoint opera-

(3.59)
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where y;(r) and y2(r) are two linearly independent solutions of the homo-
geneous differential equation

Lngm(r,7’) =0 (3.60)
and W (r) is the Wronskian of these solutions, defined as:
yi(r) ya(r) ‘
Wi(r) = . 3.61
0=| e % (361
The Green’s function must satisfy the same physical boundary condition

lim g, (r,7") =0 (3.62)

r—0

due to the divergence of the dipolar interaction at short distances.
We have seen in previous sections of this chapter that two independent

solutions of the equation (3.60) are given by y1(r) = Ko, ( 2ffh§d %) and

1

2uCyq 2 — =
2r°

ya2(r) = Iom < i \/;), and the Wronskian determinant is W (r) =

From the two independent solutions and the Wronskian we can build the
Green’s function for each Fourier component as:

2uC, 2uC,
2Kom | \/ it }) Iom ( g 2 r<r
/
gm(r, 1) = — — . (3.63)
2Kom fm{%d q) Iom ( fﬂh%d r r<r

It can be seen that the Green’s function remains bounded for all the range
0 < r < o0, and, as a consequence of the short-ranged nature of the in-
teraction potential in two dimensions, all anisotropic contributions (m # 0)

vanish at large distances given that lim, .. I, ( 2575,1%‘1 % =0 Vm>0.

Once we have evaluated the Green’s function of the problem we can use
the recursive relations in (3.54) to evaluate the different Fourier components
of the full wave function in a perturbative way supposing by means of an
iterative process given by:

2 o'}
a0 (r) = ulf) (r) + AT [ g
() dmh® 4 Jo (3.64)
Im\T, T k k
X [Ufnlz(r/) + 2u) (') + u7(n),2(r')] Vm € Z

where u(()O) (r) = ¢o(r), uly (r) =01if m > 0 and ¢o(r) is the zero angular
momentum solution of the isotropic two body problem

¢o(r) = Ko ( Qiﬁéd }) . (3.65)




48 CHAPTER 3. TWO-DIPOLES QUANTUM PROBLEM

o
e

%) Vo
C

S 008 2
15} Va
5

[ 0.06 -
[0}

>

g 0.04 t
2 o002t
©

o

0

0 02 04
r(ro)

0.6

0.8

0.02 -

0.0004

8e-06 1

1.6e-07

Radial Wave Functions

3.2e-09

Yo
V2
Va

0 02 04 06 08

r(ro)

1

(a) Lowest angular momentum Fourier (b) Same as panel (a) but in logarithmic

components for a = 0.2.

scale on the y-axis.
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tributions to the anisotropic wave function of the two dimensional dipolar
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x (red) and y- directions.

Figure 3.7: Two-body wave function for the a = 0.2 case.

From expression (3.64) one sees that by adding successive orders in A? to the
series expansion of 1(r), more angular momentum channels couple together.

In fact, it can be shown from the previous expressions that u,gf) (r) =0 for
m/2 > k, and that therefore the lowest order contribution to the m-th
Fourier component is O(A"). By adding e (r) for all k£ and fixed m one
recovers the complete Fourier contribution of angular momentum m to the

full wave function (r), given by:

U (1) = i A2k (B () (3.66)
k=m/2

which means that, up to a given order A%*, the total wave function ¥ (r) has
contributions coming only from Fourier components m = 0,2,--- , 2k
Figures 3.5 and 3.6 show the lowest order partial waves contributions to
the two polarization angles o = 0.2 and « = 0.6 respectively. The latter
angle is fairly close to the critical angle a. = 0.615 where the interaction
starts to show attractive regions. At a = 0.6 the contribution of the m # 0
angular momentum states is expected to be larger than for any lower angle.
This is clearly seen from the figure, where the A? corrections to the m = 0,
m = 2 and m = 4 Fourier components are shown (red, green and blue lines
respectively). It is clear from equations (3.63), (3.64) and the positiveness of
the modified Bessel functions that every radial contribution to the two body
wave function is also positive, as seen for the lowest angular momentum
Fourier components shown in the figures. It is also clear that the lower the
angle, the smaller the corrections due to high angular momentum states.
The effect of the anisotropy on the ground state wave function can be
clearly seen in Figures 3.7 and 3.8 for « = 0.2 and o = 0.6 respectively.
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Figure 3.8: Two-body wave function for the a = 0.6 case.

It is shown in the figures a two dimensional map of the wave function (left
panel in both figures) and the value of the wave function in to different cuts
(right panel in both figures), one along the z-axis (contained in the plane
formed by the angular momentum vector and the z-axis), and another in
the perpendicular direction (y-axis) are depicted. The two cuts presented
correspond to the directions where the interaction is the least and most re-
pulsive respectively. As it can be seen, anisotropic effects can be appreciated
in both situations but are much more pronounced at higher values of the
tilting angle of the dipoles.

Scattering length for the two dimensional anisotropic interaction

A very important result that can be extracted from the zero energy scatter-
ing solution is the scattering length of the interaction that is a fundamental
quantity in the theory of low density quantum gases. From the asymptotic
behaviour of the zero-energy two-body wave function v (r) we can extract an
analytical approximate expression for the scattering length of the anisotropic
dipolar interaction in two dimensions. The scattering length is given by the
node of the asymptotic » — oo form of the two body wave function.

As we have seen in the previous sections the m # 0 Fourier components of
the full wave function vanish at large distances, so the asymptotic behaviour
of the wave function is dominated by the m = 0 partial wave, which is
determined by the following equation:

20Caq 3N* “ 4 19o(r, ")
47Th2 2 0 ?”,2

uo(r) = ¢o(r) + [uo(r') +uz(r)] . (3.67)

We want to analyse the behaviour of the the ug(r) function up to A? order,
which implies that the contribution of the ug(r) Fourier component can be
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neglected in this approximation, so the equation that we want to study is

20Cya 3N [ W go(r, 1)
47Tﬁ2 2 0 ?”,2

uo(r) = go(r) + u(r') + O\ (3.68)
If we introduce in this last expression the form of the Green’s function given
in (3.63), and the solution of the isotropic zero energy solution with m = 0
given by (3.65), we can write

2uCqq 2 21Cq4 ., \ o
—K il
uo(r) =Ko ( i i e SV
K 2uCqq 2
I 2,uC’dd 2 rd , 0( Amh? W) QMCdd 2
N\ a2 7 r 7 Ko\\[ o2 7= ) F
Awh? \fr ] Jo r Ah? /[y’
-[O 2uCyqq 2
2uCqq 2 <o Amh® 2uCaq 2
K[) — dr K[)
w2 i ), = e

We want to analyse the long range behavior of the ug(r) function, so we can
safely neglect the second integral when r — oo and consider only the first
contribution where ' < r. The first integral can be extended to the range
[0, 00) and will be given by:

2
o T /r./ 1 4
/ dr’ ( mh ) (3.70)
0

r'2 - 4 2,qud

Now, the asymptotic long range behaviour of the modified Bessel functions
is given by:

201Cq 2 > 1 ( r )
Ko — | ~Zlog| ——— (3.71)
( 4mh? \/r 2 62'y+log(2:§‘§d)
and
2uCqq 2
I — | ~1 72
0 < Awh? \/r (3.72)

Finally we can introduce the asymptotic behaviours and the result (3.70) in

(3.69) to find
r 3\
log [ ——— | + 22 (3.73)
[ <e2”+l°g(2£‘fﬁ%d)) 2 ]

N | =

ug(r) ~
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Figure 3.9: s-wave scattering length as a function of the tilting angle a.
The line and the dots correspond to the A? approximation and the exact
numerical solution respectively.

that can be rearranged as:

1 r
~ — |1 3.74
uo(T) 5 log <e27+l°g<2:idﬁd)e—3§2>] ( )

To find the desired expression we must have in account that our approach

2
is valid only up to an order O(A\?) so we can consider e a1l %, and
we can finally write the desired expression for the asymptotic behaviour of
the ug(r) function as:

uo(r) ~ %log (a;("A)> (3.75)

where as(A) is the lowest order approximation to the scattering length of
the anisotropic dipolar scattering in two dimensions, given by:

2uC 2
as(A) = 627“0%( ) (1 — 3;‘) . (3.76)

It can be seen that the scattering length becomes smaller as the anisotropy
of the dipole - dipole interaction increases, which is an expected behaviour
given that the potential becomes less repulsive in average showing regions
where the strength of the interaction is much lower than in the isotropic
situation. As a conclusion of this section we have compared the scattering
length evaluated using the equation (3.76) with the exact result obtained
by numerically finding the node of the asymptotic m = 0 wave function,
which is isotropic and dominates the large distance behaviour of the wave
function ¢ (r). The results of this comparison are presented in figure As can
be seen from the figure, the approximation works surprisingly well up to
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the critical angle o, where the interaction starts to show attractive regions.
Deviations increase with increasing polarisation angle, but even at a = a,
the separation between the approximation in equation (3.76) and the exact
numerical estimation is less than 3%.
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Chapter 4

Two dimensional dipolar
Bose gas at low density

4.1 Introduction

The analysis of the low density equation of state of a gas of weakly inter-
acting particles has historically attracted great interest. Corrections to the
mean field prediction for three-dimensional [(/] and one-dimensional [(5] sys-
tems have been known for more that fifty years now. The two-dimensional
case has been much more controversial as already the two-body problem
presents logarithmic divergences in the leading scattering parameters that
make series expansions difficult to carry out [22, 23]. In any case, the low
density behaviour of a gas of weakly interacting particles in 2D has been
widely discussed in the literature for the case of isotropic interactions. One
of the most remarkable properties exhibited by these systems is the wuni-
versal behaviour of the energy per particle, which admits a non—analytic
series expansion in the gas parameter = na?, with n the density and a the
s—wave scattering length. The leading order, mean-field term in this series

has been derived by several authors [66, (7] and reads
2ma?\ E dmx
=|—)|==7. 4.1
i) = (55) ¥ = ine .

The detailed form of the next-to-leading correction to this expression has
been the subject of discussion and different authors proposed different forms

in the past, see for instance Refs. [08, 69]. The correct expression was
recently derived in Ref. [70] and checked against numerically intense Monte
Carlo simulations in Ref. [71]. For the model system of hard disks, the mean

field prediction of Equation (4.1) holds well starting at « ~ 0.001 and down
to quite low but still experimentally affordable values of the gas parameter
[72]. However, no particular attention has been paid in all these works to
the special case of anisotropic interactions.

55
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In this chapter we discuss to which extent the mean field law of Equation
(4.1) holds for the special case of the spatially anisotropic dipole-dipole
interaction when the polarisation angle varies between 0 and a.. We are
particularly interested in discerning whether the angular dependence of the
interaction has a noticeable impact on the mean-field prediction of Eq. (4.1)
and on other relevant ground state properties. In order to do that, we use the
previously presented solution of the zero-energy two-body problem to build
a variational many-body Jastrow wave function that will be used as an input
to both variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC)
calculations from where we obtain the equation of state as a function of the
gas parameter x. For the sake of completeness we also analyse structural
properties of the dipolar Bose gas as the pair distribution function or the
static structure factor. Additionally, we have also evaluated the one-body
density matrix and the condensate fraction, and discuss how these quantities
scale on the gas parameter for different polarisation angles and densities.

4.2 Many-Body description

We have used DMC and VMC methods in order to accurately evaluate the
most relevant ground state properties of an homogeneous and anisotropic
gas of bosonic dipoles with a polarisation angle o lower than the critical
angle a, = 0.615. We stick to the low density limit where the system,
characterised by a fully repulsive and anisotropic interaction, remains in a
stable, gaseous phase. One of the most relevant quantities to analyse at low
densities is the total energy per particle and its universal scaling properties.
Quite a lot of work has been devoted in the past to that question, including
both 3D [64, 73, 74, 75] and 2D [66, 67, 68, 69, 70, 71, 72] systems. However,
little has been discussed about the same properties in anisotropic systems as
the dipolar gas considered here. We analyse the impact of the polarisation
angle a formed by the dipoles on the universality scaling law exhibited by
other isotropic, short ranged interactions.

The Hamiltonian of the system of fully polarised dipoles, written in
dipolar units, becomes

N 2 a2
H:—%Zvﬁjuzl?’t%e”, (4.2)
j=1 i<j ij
with A = sin, and r;; and 6;; the distance and angle formed by dipoles ¢
and j, respectively, measured on the plane.

The leading ground state quantities describing the low density static
properties of the system can be obtained using different techniques. In this
work we stick to diffusion and variational Monte Carlo methods, widely
used nowadays in the analysis of weakly and strongly correlated systems.
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The quality of the results is directly related to the quality of the wave
function employed in the VMC case, while DMC is far less demanding and
any reasonable guiding function can be used as long as it is not orthogonal to
the true ground state. But even in DMC a high-quality wave function makes
the method converge faster and with smaller variance towards the exact
result. Consequently, seeking for a good trial many-body wave function
U(ry,re,...,ry) is always desirable.

4.3 Many body wave function

In this work we use a model Bijl-Jastrow wave function

U(ry,ra, ... rn) = [[ fry) . (4.3)

i<j

where the two-body correlation factor f(r;;) = f(r; — r;) depends on the
position vector linking particles ¢ and j. One significant difference between
this Jastrow factor and the ones most commonly employed in the analysis of
other condensed matter systems is that, due to the anisotropic character of
the interaction, f(r) depends explicitly on the whole r vector and not only
on its magnitude. In this way, the wave function in Eq. (4.3) describes an
homogeneous but anisotropic system as the one under study.

At low densities, the zero-energy scattering solution of the two-body
problem greatly influences the structural properties of the gas. For that
reason we use as a Jastrow factor the anisotropic solution of the relative
motion of two dipoles on the plane derived in the previous chapter.

AqbQB(I'Z'j) if rij < R,
f(rij) = _C(;+#) (4.4)
Be \"i LT if 7;; > R
where ¢9p is the two body zero energy solution presented in the previous
chapter. The n = 0 partial wave of this wave function is matched at some
healing distance R, with the symmetrized form of a phononic wave func-
tion [76], taking R,, as a variational parameter. By imposing the continuity
of f(r) and f'(r) at r = R,, the parameters A, B and C can be easily
determined. The n > 0 partial waves of the two-body problem, inducing
the anisotropy of ¥(rj,re,...,ry) in Eq. (4.3), decay to zero at large dis-
tances and so their influence at the boundaries of the simulation box is
marginally small. Alternatively, the optimal Jastrow factor corresponding
to the many-body problem can be obtained from the solution of the HNC/0
Euler-Lagrange equations [77]. Although not exact, the optimised HNC/0
solution gives an accurate variational description of quantum Bose systems
and captures most of the short and long range features of the exact ground
state wave function. For the sake of comparison, we show in Fig. 4.1 the
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Figure 4.1: Cuts of the zero energy two-body scattering wave function de-
scribing the relative motion of two dipoles. The blue solid line and the red
dashed line correspond to the cuts along the x and y axes, respectively. The
green circles and black squares are the prediction of the optimal Jastrow
factor obtained from the solution of the HNC/0 Euler equations for a value
of the gas parameter x = 0.01.
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x a=0.2 a=04 a=0.6
1077 | 4.268 -1079 | 6.490(24) -
5-1077 | 2.389(90) - 10~® | 3.633(91) -
1075 | 5.044(91) - 1078 | 7.631(36) -
5-1076 | 2.874(24) - 1077 | 4.360(89) -
107° | 6.135(87)-1077 | 9.312(22) -
5-107° | 3.596(27) - 1075 | 5.450(94) -

(61) (24) )
(90) (91) )
(91) (36) )
(24) (89) )
(87) (22) )
(27) (94) )
(72) (30) : )
5-107% | 4.757(48) - 107 | 7.205(59) - 10~° | 1.567(73) - 10~*
(31) (58) )
(74) (58) )
(31) (23) )
(29) (18) )
(67) (66) )
(54) (41) )

107* | 7.768(72) - 1076 | 1.177(30) - .107°
1073 | 1.051(31) - 107* | 1.590(58) - 10~* | 3.467(23) - 10~*
5-1073 | 6.807(74) - 10~% | 1.029(58) - 1073 | 2.240(26) - 1073
1072 | 1.551(31) - 1073 | 2.337(23) - 103 | 5.067(97) - 1073
5-1072 | 1.085(29) - 1072 | 1.634(18) - 1072 | 3.544(62) - 102
1071 | 2.572(67) - 1072 | 3.840(66) - 1072 | 8.292(21) - 102
5-107% | 1.962(54) - 1071 | 2.938(41) - 1071 | 6.347(32) - 101

Table 4.1: VMC energies per particle as a function of the gas parameter

r = naz.

optimised HNC/0 Jastrow factor (black and green symbols) at z = 0.01 and
polarisation angle a = 0.6 [78]. The comparison indicates that the two-body
solution provides an accurate description of the two-body correlation factor,
which becomes even better as the gas parameter is reduced.

4.4 Equation of state

The most important part of the analysis of the low density Bose dipolar gas
is the determination of the equation of state of the system. The results of
the Monte Carlo simulations can be compared with the low density equation
of state given in equation (4.1).

Tables 4.1 and 4.2 list both the VMC and DMC energies respectively
obtained from the Jastrow trial wave function of Eq. (4.3) for the polarisation
angles a = 0.2, 0.4 and 0.6. Notice that the energies in the table are
given for fixed x and different polarisation angles, and since the scattering
length varies with «, the densities change accordingly. A direct measure
of the quality of the variational model is given by the separation between
these two measures (VMC and DMC), and one can check that the relative
difference in energies is always of the order of 1% or 2%. Other than that, the
energy is an increasing function of the gas parameter that yields appreciably
different results for different polarisation angles. These energies can be used
to check the influence of the anisotropic character of the dipolar interaction
on the universality scaling property fulfilled by the energy per particle of
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T a=0.2 a=04 a=0.6

1 21079 | 1.414(62) - 1078
-1078
1077
-1077

-1078 | 7.888(15
21078 | 1.664
21077 | 9.448(93

5-1077 | 2.386(24) -

107° | 6.105(64) - 1077 | 9.271(41) - 10~7 | 2.032(90) - 106

5-107° | 3.584(31 . -107°
61)-1076 | 1.170(4

. . -107° | 1.555(62) - 1074

1073 | 1.046(16) - 10~* | 1.577(33) - 10~* | 3.425(30) - 10~*

5-1073 | 6.776(61) - 10~* | 1.018(90) - 1073 | 2.222(51) - 10~3

) (62)
) (15)
) (50)
) (93)
) (90)
)-107% | 1.180(40)
)-1075 | 2.542(88) - 107°
) (62)
) (30)
) (51)
) (55)
(74)
(21)
)

1072 | 1.532(20) - 1073 | 2.316(31) - 1073 | 5.036(55) - 1073

5-1072 | 1.077(11) - 1072 | 1.616(9)-1072 | 3.517(74) - 1072
1071 | 2.534(29) - 1072 | 3.774(42) - 1072 | 8.235(21) - 1072
5-1071 | 1.947(14) - 1071 | 2.908(28) - 107! | 6.311(33) - 101

Table 4.2: DMC energies per particle as a function of the gas parameter

xr = na2.

homogeneous and isotropic systems in 2D. In order to do that, one has
to express the total energy per particle in units of A2/2ma® with a the
scattering length. This is achieved multiplying the energies in Table 4.2
(expressed in dipolar units) by 2a2(\), with as()) the scattering length for
the corresponding polarisation angle.

Figure 4.2 shows the ratio of the energy per particle in units of 42/2ma?
to the mean field prediction of Eq. (4.1) for the three polarisation angles
a = 0.2, 0.4 and 0.6. As it can be seen, expressed in scattering length
units, all curves corresponding to different polarisation angles merge into a
single curve, with very small deviations that are not easily resolved even at
the highest values of gas parameters x considered in this work. That means
that the anisotropy of the interaction, present in the wave function, does not
appreciably affect the energy per particle in the low density regime analysed
in this work. We conclude that the difference in energy values shown in Table
4.2 for fixed =z and varying polarisation angles are to be mostly attributed
to the different density n = 2/a? in each case. It is also shown in Figure 4.2
the universal curve including beyond mean field effects of Ref. [71] and the
optimised HNC/0 prediction for a gas of hard disks of Ref. [72]. As it can
be seen, the universal and the hard disks curves are close to each other
while the dipole curves remain closer to the mean field prediction e,,f(x) as
the gas parameter is raised. Starting at = ~ 0.05 the dipole curves bend
downwards and the energy deviates significantly from e€,,¢(x). In any case,
it is clear from the figure that the universality regime, where the energy per
particle depends only on the gas parameter of the interaction, is left much
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Figure 4.2: Ratio of the energy per particle of the gas of dipoles for different
polarisation angles to the mean field prediction of Eq. (4.1). Black circles,
red triangles and blue triangles correspond to e = 0.2,0.4 and 0.6, respec-
tively. The green squares are the optimised HNC/EL energies for hard disks
of Ref. [75], while the solid line is the universal curve of Ref. [79]. The dotted
line corresponds to the mean field prediction.

before anisotropic effects have an appreciable impact on the energy of the
dipolar gas.

4.5 Structural properties: pair distribution func-
tion and static structure factor

The anisotropic character of the dipolar interaction has a direct influence
on the ground state wave function that is reflected in the ground state
expectation value of any many-body operator.

Figures 4.3 and 4.4 show pure DMC estimations [30] of the pair distri-
bution function g(r) and its Fourier transform, the static structure factor
S(k), for two values of the polarisation angle o = 0.4 and a = 0.6 (left
and right panels), and three values of the gas parameter x = 107,103
and 107! (top to bottom). Notice that in both figures the horizontal axis
has been scaled with the square root of the density for a better compar-
ison. Due to the symmetries of the Hamiltonian, the complete g(r) and
S(k) functions vary continuously on the plane but the pattern on the first
quadrant is repeated and reflected on the other three. The figures show only
the two cuts along the perpendicular and parallel directions with respect to
the polarisation plane, corresponding to the lines where the interaction is
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Figure 4.3: Pair distribution function for & = 0.4 and o = 0.6 and three
values of the gas parameter. The red and blue curves show the two cuts
g(r,0) and ¢(0,7), respectively.

most and least repulsive, respectively. As it can be seen, and in agreement
with what one would expect, the effect of the anisotropy is more clearly
seen at higher polarisation angles and for large values of the gas parame-
ter, being maximal for & = 0.6 and x = 10~!. For fixed o the separation
between g¢(r,0) and g(0,r) is enhanced with increasing x, as happens with
S(k,0) and S(0, k). Accordingly and for a given z, the separation between
the curves also increases when the polarisation angle is raised. In any case
it is remarkable how the anisotropy present in g(r) and S(k) changes with
the polarisation angle as can be seen from the figures at large x, while the
total energies per particle are almost the same when properly scaled with
the scattering length. This points towards a delicate balance between the
kinetic and potential contributions, which change with a but keep their sum
constant once expressed in scattering length units.
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Figure 4.4: (Static structure function for polarisation angles o = 0.4 and
a=0.6 for x =107°,1072 and 10~'. The red and blue curves show the two
cuts S(k,0) and S(0, k), respectively.
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4.6 Excitation spectrum

A relevant issue in the study of tilted dipolar gases is the influence of the
anisotropy of the interaction on the collective excitation spectrum. In this
Section, we analyse this problem within two standard methods used cur-
rently in the study of Bose fluids: the Feynman and Bogoliubov approxima-
tions.

The Feynman spectrum is easy to derive from a simple sum rules ar-
gument and provides a single line in (k,w) space corresponding to a set of
infinite lifetime excitations of energy [31]

R2k?
e(k) = Sk (4.5)
In this approximation, €(k) depends directly on the static structure factor,
the only non-trivial quantity, and provides an upper bound to the actual
excitation spectrum [32]. In systems like liquid “He, this bound is closer to
the experimental mode the lower the total momentum is.

On the other hand, we can study the excitation spectrum of the low den-
sity two-dimensional dipolar gas in the framework of the mean-field theory
using the 2D time-dependent Gross-Pitaevskii equation,

oy

- 5
; V% + 4.

4mh? 1 [ ]
m  |logna?|
standard Bogoliubov-deGennes linearization one finds the well-known Bo-

goiubov spectrum
h2k? [ h2k?
ky=4/—[—+2 . 4.
(k) ¢ (g +20m) (47)

where g is the 2D coupling constant g = Performing a

2m

Although the spectrum obtained using this approach has contributions com-
ing from the anisotropic character of the interaction due to the polarisation
angle dependence of the scattering length, not all contributions of the same
order are taken into account. This simple Bogoliubov approach disregards
the contribution coming from higher angular momentum channels, keeping
only s-wave scattering processes. However, we know that different angular
momentum channels couple in a non-trivial way in a dipolar system and
so we have to take them into account. We know from the analysis of the
zero-energy two-body problem that higher order partial wave contributions
appear with higher orders in A2, so the leading corrections appear in d-wave.
In order to consider the contribution of the d-wave we use the following
pseudo-potential [33]

_ % 322 cos 26

V() = g6(x) — ZH 2250

(4.8)
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that leads to the following Gross-Pitaevskii equation

oy h

SOV Vo2 2,

ih = — 0% 4 gl "
Cuad , 322 cos 20 N '
([ ax TR 0 ) v

The functional form of the pseudopotential V,4(r) (4.8) as a sum of two
terms, one isotropic and another anisotropic, follows the same prescription
used in the three-dimensional problem [$4, 85]. One can consider a linear
perturbation of the condensate wave function of the system of the form

Y(x,t) = e i (Vi + 0y (x, 1)) (4.10)
where the perturbative term di(x,t) is given by
S (x,t) = ce’ kx| (4.11)

where c¢ is the (small) perturbation amplitude.
By inserting (4.10) into Eq. (4.9), and neglecting non-linear terms, one
finds the equation fulfilled by the small perturbation v,

Loy RE *
ih—= == 5 V20 + (20 — )0y + gnoy+ (4.12)
n(F(k)oy* + F(=k)dp) ,
where F'(k) is given by
e 3\2 cos 26 iky

and y = r — r’. Now, taking into account that for a dilute homogeneous
system the chemical potential is u = gn and that for the two-dimensional
dipole-dipole interaction F(k) = F(—k), we finally arrive at the following
expression for the Bogoliubov spectrum [33]

2.2 [/ $27.2
e(k) = \/hz?f; (}12:1 + 2n(g + wkA2 cos 29k)> , (4.14)
where 6y is the angle formed by the momentum of the excitation and the
z-axis.

The comparison between the Bogoliubov approximation given in this
expression and the excitation spectrum obtained from DMC calculations
using the Feynman approximation is shown in Fig. 4.5 for several values
of the density and polarisation angle. We can see from the figure that,
as expected, the Bogoliubov and Feynman approximations coincide at very
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(nrg?) 'e(k,0) & (nrg?) 'e(0,k)

Figure 4.5: Comparison of Feynman (symbols) and Bogoliubov (lines) ex-
citation spectrum for angles a = 0.4 and o = 0.6 and nr% =274276 and
278, Red solid and blue dashed curves show the two cuts €(k,0) and (0, k)
corresponding to Bogoliubov approximation respectively. Red open squares
and Blue open circles show €(k,0) and €(0,k) corresponding to Feynman
approximation respectively
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Figure 4.6: Feynman excitation spectrum for angles a = 0.4 and o = 0.6
for nr% = 2% 2 and 2°. The red open squares and blue open circles show the
two cuts €(k,0) and €(0, k), respectively.

low densities. It is also noticeable the fact that, for a given value of the
density, the Bogoliubov approximation is closer to the Feynman prediction at
large polarisation angles. This stresses once again that the relevant quantity
describing the low density dipolar Bose gas is the gas parameter = na? that
decreases with increasing polarisation angle. For a fixed density, x decreases
when « increases, and the Feynman prediction gets closer to the Bogoliubov
mode, which is know to successfully characterise the excitation spectrum of
Bose gases when © — 0. We can conclude from Fig. 4.5 that Feynman and
Bogoliubov approximations are close to each other at small values of the
momentum k. Finally, one also sees that the excitation spectrum becomes
isotropic when k — 0 indicating that the sound velocity of the system does
not depend on the direction of the propagation.

Furthermore, the Bogoliubov approximation is expected to be valid only
at very low densities while the Feynman approximation is known to provide
an upper bound to the exact excitation spectrum of the system. To have
some insight on how €(k) evolves with the density we show in Figure 4.6 the
Feynman mode at higher values of n. The results presented in the figure
correspond to densities that are still far from the crystallisation point of the
isotropic system [29, 30]. From Fig. 4.6, one can see that with increasing
density the spectrum develops a roton-like minimum which for fixed density
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and polarisation angle is deeper in the most repulsive direction. It is in-
teresting to notice that as the anisotropy of the interaction is increased,i.e.,
when the polarisation angle grows, the roton minimum is deeper in the more
repulsive direction while in the orthogonal direction the spectrum does not
show any minimum in the range of considered densities. In fact, the emer-
gence of the roton and its eventual zero-energy limit has been discussed as a
clear signature of the instability of the system when the critical polarisation
angle is higher than a, [27, 80].

4.7 One body density matrix and condensate frac-
tion

The last quantity analysed in this work is the one-body density matrix

p1(r1,r}), which provides a measure of the overlap between two instances of

the ground state wave function when one particle is shifted from its initial
position at ry to a new position at r

fdrg e I‘N\IJO(I‘l,I'Q, v ,I'N)\I/()(I'll,rz, e ,I‘N)
fdrldl‘g ce I‘N\I/g(rl,l‘g, e 7I‘N)

p1(ry,v)) =N (4.15)
In the case of translationally invariant systems as the one under study, the
one-body density matrix depends on its arguments only through their dif-
ference and thus pi(r1,r)) = p1(r1 — r},0) = pi(r11) Additionally, if the
interaction is isotropic, p; depends only on the magnitude of its argument
ri1y = |r11/] and its large-ri1, limit measures directly the condensate frac-
tion ng which is proportional to the number of particles in the Bose-Einstein
condensate. In the present case, however, the system is homogeneous but
not isotropic so p1(ry1/) will depend on the direction of riy/. Due to trans-
lational invariance, though, momentum is still a good quantum number and
one expects condensation to appear at the zero momentum state. In that
sense one can still write the relation between p;(riy/) and the momentum
distribution in the form

1 ; .
p1(ri1) = pno + @2 /dk e 7 (k) (4.16)

where (k) is the momentum distribution of the non-condensate atoms. The
one-body density matrix of the anisotropic gas of Bose dipoles can be further
expanded in partial waves

pr(r) =D pim(r) cos(2m) , (4.17)
m=0

with pim, () the radial function corresponding to the m-th mode contribu-
tion. Notice that, as before, the Bose symmetry restricts the previous sum
to even modes only.



4.7. OBDM AND CONDENSATE FRACTION 69

P4(r,0) & p4(0,r)

Figure 4.7: Cuts of the one-body density matrix along the x (red dotted
lines) and y (blue lines) axes, for the gas parameter values z = 1072 and x =
107! (top to bottom). The curves on the left and right panels correspond
to a = 0.4 and a = 0.6, respectively.

Once enough modes p1,,(r) are known, one can reconstruct the complete
one-body density matrix for all points in the plane. In particular, the cuts
along the two directions parallel and perpendicular to the polarisation plane,
corresponding to § = 0 and /2 in Eq. (4.17), turn out to be particularly
easy to evaluate

p1(r,0) = pin(r) o p1(07) =Y (=1)"pim(r) (4.18)
m=0 m=0

and display the maximum difference two cuts along different directions can
take at the low densities considered in this work.

Figure 4.7 shows the parallel and perpendicular cuts of pi(r) for the
polarisation angles a = 0.4 and o = 0.6 (left and right panels). The upper
and lower curves correspond to the gas parameter values z = 1072 and
x = 107!, respectively. As before, the coordinates on the horizontal axis
have been scaled with the density. Similarly to what happens to the other
quantities analysed, only at the highest gas parameter values the effects of
the anisotropy start to be visible. This stresses once again the minor role
played by the anisotropy at low densities, even in a non-diagonal quantity
like p1(r11/).

The most significant differences in the one-body density matrix for dif-
ferent values of the gas parameter appear at large distances, where pi(ry1/)
reaches an asymptotic value that can be identified with the condensate frac-
tion ng in isotropic systems. When the anisotropic character of the inter-
action is taken into account, the presence of higher order partial waves in
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Egs. (4.17) and (4.18) could in principle change this behaviour, making the
limiting value of p;(ri1/) depend on the direction. The role of the different
partial waves in that limit can be determined by looking at the momentum
distribution of the system, which can be obtained from p;(r11/) by looking
at the inverse of Eq. (4.16)

o0 2 )
:/ drr/ dfetFr oos(0=¢)
0
[(mo pno) Z p1m (1) cos(2m@) |

with ¢ the angle formed by k and the x-axis. Changing variables o = 0 — ¢,
using the Jacobi-Anger expansion of a plane wave in Bessel functions

(4.19)

eikzcosa _ J()(kz) +9 Z szm(kz) cos(ma) (420)

m=1

and taking into account the orthogonality of the cosine functions in the
range [0, 27], one finally finds

(k) =27 / = Jokr) (plo(r) — o )rdr+
- (4.21)
+27 Z ™ cos 2mgp)/0 Jom (kr) p1m (r) rdr

where the first term on the right is isotropic and constitutes the m = 0 mode
of n(k), while the other terms stand for the m > 0 contributions. Notice
once again that only even modes appear in this expansion.

Requiring n(k) to be finite for all values of k implies all integrals ap-
pearing in Eq. (4.21) to be finite, a constraint that can only be fulfilled
when the functions multiplying the Bessel functions decay to zero at large
distances. This condition particularly means that ng can be obtained as the
large r limit of the m = 0 mode of the one-body density matrix, which is
the isotropic contribution to p;(riy/). This is the direct generalisation of the
usual procedure employed to determine ny in homogeneous and isotropic
systems.

Figure 4.8 shows on the left panel the m = 0 mode contribution pio(r)
for the three polarisation angles @ = 0.2,0.4 and 0.6 in terms of the scaled
distances n'/2r for = 0.1. As can be seen from the figure, all three curves
are hardly distinguishable, stressing once again that to a large extent the
physics is governed by the scattering length, which makes the density change
for different polarisation angles when « is fixed. The right panel in the figure
shows the condensate fraction as a function of the gas parameter z = na?,
obtained from the r — oo limit of a fit to the long range asymptotic limit
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P1o(r)

Figure 4.8: Left panel: isotropic (m = 0) contribution to the one-body
density matrix at x = 0.1 for the three polarisation angles o = 0.2,0.4 and
0.6 (red solid, blue dashed and black dotted lines, respectively). Right panel:
Condensate fraction ng as a function of the gas parameter for o = 0.2,0.4
and 0.6, compared with the Bogoliubov prediction (black line). The color
coding for the symbols is the same as in the left panel.

of the m = 0 partial wave contribution of the one-body density matrix. Up
to the highest value of z considered all three cases yield nearly the same
prediction within statistical errors, while differences start to be significant
only at = ~ 0.1. Therefore, the scaling on the gas parameter is preserved
although moving from o = 0.2 to @ = 0.6 for fixed x implies a change
in density by almost a factor of 2. The figure also shows the Bogoliubov
prediction for an isotropic gas of weakly interacting 2D bosons

1
| In x|

no(x) =1 (4.22)
which agrees reasonably well with the Monte Carlo prediction up to « ~ 0.01
where particle correlations seem to deplete the condensate less effectively
than the mean field model.

4.8 Summary and Conclusions

To summarise, in this work we have described the ground state properties of
a gas of fully polarised Bose dipoles moving on the XY plane, where the po-
larisation field forms an angle o with the normal direction. The projection
of the polarisation vector on the XY plane defines the z-axis, where the po-
tential is softer than in any other direction. In this context, the dipole-dipole
interaction defines a critical angle a. =~ 0.615 where the potential starts to
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have attractive contributions. We have solved the zero energy two-body
scattering problem by means of a Green’s function and a decomposition of
the wave function in partial waves. We have then found the dependence
of the s-wave scattering length on the polarisation angle by inspection of
the m = 0 mode, which dominates at large distances. Equipped with the
two-body solution, we have built a variational wave function of the Jastrow
type that has been used as a guiding function in a DMC simulation of the
gas of polarised dipoles at low densities. We have found that the scaling of
the energy in the gas parameter is preserved up to values of x where other
isotropic systems deviate significantly. This behaviour extends to other rel-
evant ground state quantities like the pair distribution function, the static
structure factor and the one-body density matrix, including the conden-
sate fraction which can be determined from the large distance asymptotic
behaviour of its isotropic part.



Chapter 5

Phase diagram of the
anisotropic two dimensional
dipolar system

5.1 Introduction

In the previous section we have analysed the behaviour of the anisotropic
boson gas of dipoles in two dimensions at low densities and we have seen that
the anisotropy in the interaction does not influence significantly neither the
equation of state nor the structural properties of the system. In that case the
equation of state can be well approximated by the mean-field approach using
the scattering length of the anisotropic dipolar potential. In this section we
want to study the behaviour of the strongly interacting dipolar gas where
the anisotropy of the interaction will play a crucial role in the structure of
the system and particularly in its phase diagram.

In order to study accurately the properties of the two dimensional dipolar
Bose gas at high densities we have used a different approach than in the low
density regime. As we have seen in the previous section, the wave function of
the many-body system at low densities can be well approximated by means
of a Jastrow wave function built on the zero-energy scattering solution of
the two-body Schrodinger equation. Unfortunately, this simple ansatz does
not work anymore at higher densities where the many-body system strongly
interacts and the two-body scattering properties are no longer relevant in
determining the macroscopic behaviour of the dipolar gas. For this reason
it is difficult to use the diffusion Monte Carlo method to study the high
density dipolar system properly. This difficulty is related to the necessity
of a reasonable trial wave function for guiding the diffusion process, task
which is not easy in the high density anisotropic system as the one we are
interested in.

It is important to note that the fundamental reason to not use diffusion

73
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Monte Carlo in this situation is the bias introduced by the guiding wave
function in the evaluation of any observable that does not commute with
the Hamiltonian of the system (mainly the pair correlation function and the
static structure factor). We have used the path integral ground state method
(PIGS) to study the high density dipolar gas. PIGS has a very important
advantage over DMC in situations where a reliable approximation of the
wave function of the system is not available, because the a priori knowledge
of the wave function is much less important than in DMC. In fact, the
guiding (or trial) wave function will only influence the speed of convergence
in a PIGS simulation, i. e. the convergence of the results will be faster for
a good trial wave function.

We are mainly interested in the study of the phase diagram of the two
dimensional dipolar Bose gas with an anisotropic interaction between the
particles of the system. It is known that in the isotropic case (o = 0) the
two-dimensional system shows a phase transition between gas and crystal
phases at high density (nr3 ~ 290) [29, 30]. In our situation, we have
two parameters that can influence the phase diagram: the density and the
tilting angle of the dipolar momenta of the particles respect to the orthogonal
direction to the plane. As we have seen before, the tilting angle of the dipolar
momenta causes that the interaction strength decreases in the direction of
the projection of the dipole moments in the plane, as we will see in the
present chapter this anisotropy enriches the phase diagram of the system.

5.2 Numerical approach to the high density two
dimensional dipolar gas

The numerical study of the high density dipolar gas is performed by means
of the path integral ground state method (PIGS), that allows us to obtain
unbiased estimations for the physical observables that we used to charac-
terise the macroscopic phase of the system. As we have seen in previous
chapters of this work, the PIGS method works by propagating an initial
trial wave function (that is introduced as an input in the simulation pro-
cedure) in imaginary time in order to wipe out all the non ground state
contributions to the wave function of the system.
For the analysis of this problem we chose a standard Jastrow wave func-
tion of the form
Up(ry,....rn) = [ [ f(riy) (5.1)
1<)

where the two body correlation factor is given by

AK, (%) if < Ry

Bexp (— (% 4 L(ir)) it r> Ry ) (5.2)

f(rij) =
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with Ky the modified Bessel function of the second kind and zero order. In
the two body correlation factor (5.2) we distinguish between two different
regions. At small distances the correlation factor corresponds to the solution
of the zero-energy Schrodinger equation for two dipoles in two dimensions
with zero tilting angle (o = 0). At large distances, the correlation factor is
a symmetrized form of the phononic long range part of the wave function
in a two dimensional system [76]. The parameter L is the length of the
simulation box (that will be determined by the density and the number of
particles in the simulation) and the constants A, B and C are determined
by imposing the following two conditions:

e The two body correlation and its first derivative must be continuous
at the matching distance Rj;.

e The two body correlation value at the edge of the simulation box is

F(L/2) = 1.

Finally the parameter Rjs it is chosen by minimising the variational energy
of the many body system.

We notice that the phononic part of the wave function is introduced in a
symmetrized form to ensure that f/(L/2) = 0. This is a generally required
condition in any Monte Carlo simulation in order to guarantee that the
contribution to the kinetic energy vanishes at distances larger than %

In order to give a description of the full phase diagram we need a sys-
tematic method to identify the macroscopic state of the system and to char-
acterise the transitions between the different phases. A commonly used
method for this puspose is to use the static structure factor (S(k)) of the
system [30]. It is known that the static structure factor in a crystal phase
must show Bragg peaks for k values corresponding to the nodes of the re-
ciprocal lattice of the system, contrarily, there is no such Bragg peaks in the
gas phase. In the thermodynamic limit these Bragg peaks are delta peaks,
but in a system with a finite number of particles this is no longer true.
For a finite size system in a crystalline phase one can see that these Bragg
peaks grow linearly with the number of particles, i. e. S(kpeqr) o< IV, this
fact gives us a method to distinguish a gas phase where there are no Bragg
peaks in the structure factor (S(kNL;‘”“) — 0 if Np — o0) and an ordered

phase (w — constant if N — oco). Therefore, we can extract informa-

tion about the long range ordering of the particles of the system using the
strength of the peaks of the static structure factor as the order parameter
of the system. Moreover, this is a quantity that can be easily evaluated in
the PIGS simulation without any kind of bias coming from the chosen trial
wave function.

In the following sections, we will show the results obtained by the nu-
merical study of the phase diagram of the system. First we will provide a
description of the transition from the gas phase to the crystal that happens
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at high densities (nr¢ > 290) and values of the tilting angle 0 < o < 0.45.
After analysing the crystallisation of the system, we will study the transition
from the gas phase to the stripe phase, that occurs for values of the tilting
angle o 2 0.45, and finally we will study the crystal to stripe phase tran-
sition, that happens at high densities (nr3 > 420) and large tilting angles
(a 2 0.45).

5.3 Gas - Crystalline solid phase transition

The fully isotropic (o« = 0.0) dipolar Bose gas present a first order phase
transition from a gas phase to a crystal at high densities [29, 30]. In the
crystal phase the particles of the system are arranged on the nodes of a tri-
angular lattice, the spatial configuration that minimises the potential energy
in two dimensions. Along this section we will see how the anisotropy of the
interaction potential influences the crystallisation of the system.

The characterisation of the crystal phase of the system using PIGS is
done in a different way that using diffusion Monte Carlo. In the DMC
analysis we must use two different trial wave functions: a Jastrow wave
function for the gas phase and a Nosanov-Jastrow function, that includes
the localisation of the particles in the lattice, for the crystal phase. In the
PIGS study we only have used the Jastrow wave function (5.2). In the PIGS
simulation, we start the calculation from a perfect crystal configuration in a
triangular lattice and let the system relax under the path integral algorithm.
When the stationary state of the Monte Carlo sampling is achieved, the
system will be in its ground state and the crystalline ordering can be broken
if it is not the preferred configuration under the given conditions.

The dipolar interaction is no longer isotropic if the tilting angle of the
dipolar momenta is non-zero, so one can expect that the crystal lattice of
the system reflects the anisotropy of the interparticle potential showing an
elongation in the direction where dipolar interaction is stronger (the y-axis
in our model). In order to study the deformation of the lattice we need to
generalise the initial crystalline configuration of the system.

The positions of the particles in a crystalline lattice can be generated
using

r = niaj + nqas (5.3)

where a; and ay are the primitive vectors of the Bravais lattice considered.
For a perfect triangular lattice the primitive vectors are:

a; =ai (5.4)

ay = a (;z + *f;) (5.5)
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Figure 5.1: Comparison between the perfect triangular lattice that repre-
sents the crystalline phase of the two dimensional system of dipoles with
tilting angle equal to zero (a) and the deformed triangular lattice that is
elongated in the direction where the general anisotropic dipolar potential is
stronger (b).

a being the lattice spacing, that will be directly related with the system
density in our simulation.

In the general situation we consider a deformed triangular lattice where
it is allowed that the primitive vectors have different modulus. Specifically
we consider primitive vectors that does not form an angle of 60°, this can
be easily done by supposing that the vectors that generates the lattice are
given by:

a;=ai (5.6)
1. tanp
as = a (2’L + 9 B]) (57)

In this case we have two lattice parameters, the distance between particles
along the z-axis, given by a, and the oblique distance given by §+/1 + tan? 3.
5 is the angle between the two primitive vectors a; and as. In figure 5.1 it is
shown a comparison between the perfect triangular lattice and the deformed
lattice with an angle 3 = 64°.

Solid state theory tells us that the static structure factor S(k) in the solid
phase must show Bragg peaks for k values corresponding to the nodes of
the reciprocal lattice. For a general triangular lattice in two dimensions the
primitive vectors of the reciprocal lattice are simply obtained by considering
that if b; and by are the vectors that generate the reciprocal lattice, they
must verify the following relation:

a; - bj = 27T(5ij (5.8)

that means that reciprocal lattice’s primitive vectors are orthogonal to the
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Figure 5.2: Comparison between the perfect triangular lattice that repre-
sents the crystalline phase of the two dimensional system of dipoles with
tilting angle equal to zero (a) and the corresponding reciprocal lattice (b).

primitive vectors of the crystalline lattice. This relation gives us the follow-
ing pair of vectors:

2 o
by = atan s (tan 57 — J) (5.9)
4
= 7 5.10
2 atanﬁ] ( )

In figure 5.2 we show the direct and reciprocal lattice for a perfect triangular
lattice. In order to determine the deformation of the lattice for each value
of the tilting angle we have analysed the stability of the crystalline phase,
i. e., we performed PIGS simulations for several values of the deformation
angle and then we have chosen the lattice that melts at lower density.

As we have commented in the previous section we will use the strength
of the main peak of the static structure factor as the order parameter of
the phase transition, and, given that the transition between gas and crystal
phases is first order we expect that the order parameter changes in a non-
continuous way. As a test of this statement we have revisited the fully
isotropic two dimensional dipolar system using our PIGS simulation. In
figure 5.3 we show the static structure factor for an isotropic two-dimensional
dipolar Bose system for the gas (left panel) and crystal phases (right panel).
One can see a large difference in the strength of the peak: in both figures
there is a clear peak in S(k), the difference between both situations is that
in the gas phase the strength of the peak does not increase when the number
of particles is increased in the simulation while in the crystal phase there is
an enhancement when the number of particles is increased.

We have used the isotropic (aw = 0) dipolar gas as a test of the method
to determine the phase of the system and characterise the phase transition
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between the gas and crystal phases. In figure 5.4 we show the dependence
of the order parameter (S(kpeqr)/Np) for different system sizes. We can
see in the figure that for the isotropic situation the order parameter shows a
clear discontinuity at a density nrg ~ 280 for all the system sizes analysed.
These results are in good agreement with the studies in Refs. [29, 30] and
indicate the existence of a first-order phase transition in the system.

The anisotropic dipolar interaction has a weaker strength as the tilt-
ing angle of the dipoles increases. Therefore, additionally to the elonga-
tion of the crystalline lattice, the crystallisation density it is also larger
for larger tilting angles. In figure 5.5 we show the evolution of the order
parameter in terms of the density for several values of the tilting angle
(e =0.1,0.2,0.3,0.4) and different system sizes. One can see that the dis-
continuity in the order parameter is nearly independent of the system size
for all « values.

We can also see that the number of particles influences the order param-
eter by reducing its value, in agreement with the expected behaviour of the
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« I5] Ne
0.0 | 60° | 280(20)
0.1 | 60° | 290(20)
0.2 | 60° | 320(20)

(20)
(20)

0.3 | 62° | 350(20
0.4 | 64° | 410(20

Table 5.1: Results for the crystallisation density (n.) and the deformation
angle of the lattice (3) for the two dimensional dipolar system in terms of
the tilting angle («).
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Figure 5.6: Crystallisation curve.

order parameter in the thermodynamic limit is given by:

(5.11)

Np—oo  Np Constant if n > ne

_ S(Kpear) {0 if n < ne

lim ——— =
In Table 5.1, we show the results of the Monte Carlo study of the crystalli-
sation transition of the system. It can be seen that the lattice shows an
increasing elongation in the y-direction that is the direction where the inter-
action is stiffer. At low tilting angles the crystalline lattice does not show a
significant deviation from the perfect triangular lattice, while for large tilts
there is a difference that can be resolved using our simulation method.

As a final comment on the gas - crystal phase transition we may note
that, being a first order phase transition, must have two relevant density
values: the freezing and melting densities. However, our numerical study
does not have enough resolution to evaluate separately these quantities. The
obtained results allows us to find a crystallisation curve of the system in the
parameter space (n, «). In figure 5.6 we show the results obtained for the
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gas - crystal transition of the two dimensional dipolar system. We also show
a fit to the data of the form

ne(a) = a + bsin® a. (5.12)

that gives an approximate crystallisation density of the system in the range
of densities studied. The parameters obtained from the fit are a = 281.75 £
2.76 and b = 836.41 + 34.38.

5.4 Gas - Stripe phase transition

As we have seen in the previous section the tilt of the dipole moments of
the particles introduces a new degree of freedom in the Hamiltonian that
strongly influences the high density behaviour of the system. In the pre-
vious sections we have considered relatively large tilting angles, but quite
far from the critical value that makes the system collapse (a ~ 0.61). In
this section, we want to study the large tilting angle regime of the system,
and the consequences of the high degree of anisotropy of the dipole - dipole
interaction in the phase diagram.

There are several previous approaches to this gas - stripe phase transition
in the context of Fermi dipolar gases in two dimensions using mean field and
other analytical techniques [34, 35, 30], or even in a bilayer configuration [37].
Those studies on Fermi dipolar gases predict the emergence of a density wave
in the system along the direction where the dipolar potential is stronger.
The development of this density wave is related with the strength of the
interaction (the analogous quantity in our work is the density of the system)
and the value of the tilting angle. The most interesting point of those
studies is the prediction that the density wave phase (stripe phase in the
following) appears even in the isotropic (o = 0) situation if the strength
of the interaction is large enough. However, a recent Monte Carlo study of
the isotropic two-dimensional Fermi gas at large densities seems to indicate
that the stripe phase is not energetically favourable, independently of the

strength of the interaction [32]. Concerning bosonic systems, this stripe
phase has been recently found in numerical calculations using Monte Carlo
methods in homogeneous [27] and trapped systems [38], but only in the

regime of large tilting angles and high densities.

In a dipolar Bose gas the stripe phase is a clear consequence of the high
degree of anisotropy of the interaction. When the tilting angle is close to
the critical angle the interaction is extremely soft in the direction of the
projection of the dipolar moments in the plane (x-direction) while, in the
orthogonal direction (y-direction), there is no reduction of the stiffness of
the potential. This fact implies that it is easy for the particles to be tightly
confined in well localised stripes parallel to the z-axis, but with a certain
freedom to move inside each stripe, so particles in a stripe can move along the
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stripe itself. Thus, one clear signature of this stripe phase is the emergence of
spatial long range order in the system, but only in the direction of maximum
strength of the potential.

As in the previous section we used the static structure factor to charac-
terise the phase of the system. Due to he existence of long range order in
the system S(k) must present a strong peak (a “Bragg-like” peak) in the
y-direction but not in any other. S(k) can show also some structure in the
x-direction but it must be completely different from the peak that we can
find in a crystal, in the sense that this peak in the z-direction does not grow
with the number of particles and therefore it is not a Bragg peak. With
these considerations we can conclude that the overall behaviour of the order
parameter of the system is similar to the gas - crystal transition. We have
a disordered phase where the order parameter is very small (the gas phase)
and an ordered one that has a non-vanishing order parameter (the stripe
phase).

From the static structure factor one can evaluate the excitation spectrum
of the system in the Feynman approximation, given by

h2

e(k) = mS(k)’ (5.13)
that is an upper bound of the exact excitation spectrum of the system. It
is known that the excitation spectrum of the dipolar Bose gas shows a deep
roton-like minimum at high densities, but in our situation it is interesting
to study what is the behaviour of this roton as the tilting angle is increased
and the interactions become highly anisotropic. In Figure 5.7, we can see
the evolution of the Feynman excitation spectrum of the system in the x
and y directions as the tilting angle is increased. It can be seen that the
roton minimum in the y direction becomes deeper as the tilting angle grows
and eventually it will touch zero. When this happens the system has two
different states with the same energy, which means that the ground state of
the system becomes degenerate. Another interesting point is that this new
ground state has non zero momentum, which means that it is a standing
wave in the y direction, corresponding to the stripe phase.

Using correlated basis function theory the full dynamic structure factor
S(k, E) can be evaluated in an perturbative way. We are interested in the
dependence of S(k, E') on the polarization angle o and, for a given o > 0, its
dependence on the direction of k. In Fig. 5.8, we show S(k, E) for n = 128
and o = 0.20; 0.50; 0.58 in order to illustrate the evolution from an isotropic
to an anisotropic excitation spectrum and the approach to the stability limit.
The wave vector k is pointing in the y and z-direction (i.e. the direction of
strongest and weakest interaction) in the left and right panels. Also shown
is the Feynman approximation of the spectrum (solid line).

For a = 0.20 the dispersion is almost independent on the direction of
k, with only a slight slope of the Pitaevskii plateau [38], which for isotropic
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Figure 5.7: Feynman excitation spectrum for density nr = 128 and different
values of the tilting angle. Blue symbols correspond to the cut €(0, k) and
red symbols to the orthogonal direction €(k,0).
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systems denotes the sudden onset of damping at twice the roton energy due
to decay into two rotons. As « is increased, S(k, E') becomes very different
in the y- and x-direction and features a highly anisotropic dispersion relation
for a = 0.58. The wave number of the roton depends on the direction of k,
but most strikingly its energy decays almost to zero in the y-direction for o =
0.58, indicating that the system is close to the limit where the homogeneous
gas phase in unstable against infinitesimal density fluctuations. Since the
restriction to pair correlation fluctuations used here typically gives an upper
bound to the excitation energy [39], the exact roton energy in y-direction
is expected to be even smaller. Furthermore, at twice the wave number
of the roton, S(k, F) has another roton-like peak for v = 0.58, following
a quadratic dispersion, albeit broadened and with smaller spectral weight.
In the y-direction, the dispersion relation thus resembles that of a solid,
continued beyond the first Brillouin zone. While for n = 128 and o = 0.58
the system is still in the gas phase, our PIGS results presented below indeed
predict a stripe phase at even higher density.

The dotted lines in Fig. 5.8 depict the damping limit E.(k) above which
decay into two excitations of lower energy is kinematically allowed, hence ex-
citations below E. (k) have infinite lifetime corresponding to peaks in S(k, E)
with zero linewidth. The kinematics of an anisotropic dispersion is different
from the isotropic case, as evidenced e.g. by the lack of a constant Pitaevskii
plateau. The decay into two rotons is very efficient in an isotropic system be-
cause of the high density of states at the roton energy. For the anisotropic
phonon-roton dispersion, the roton energy depends on the direction of k,
thus the roton energies are spread out leading to a smoother density of
states than in the isotropic limit. For example, decay of the maxon in the
y-direction is not allowed, although its energy is higher than twice the roton
energy.

We have done a similar analysis to that of the gas - crystal phase tran-
sition, i. e. we have evaluated the static structure factor and have found a
strong peak in the y-direction, that can be used to characterise the ordering
of the system. We show some of the obtained results in figure 5.9.

The first main difference between the behaviour of the order parameter
in this situation respect to the gas - crystal case is that in this situation
the change from the disordered to ordered phases is done in a continuous
way, this fact indicating that we are facing a different kind of phase tran-
sition: in this case, a second-order phase transition. Besides the continuity
in the transition between the two phases, second-order phase transitions
are characterised by the strong dependence of the physical quantities of the
system on its size. Near a second-order phase transition the correlation
length (&) of the fluctuations in the magnitudes of the system is divergent
in the thermodynamic limit, indicating that near the transition point the
system becomes invariant under scale transformations and has no charac-
teristic length scales. The behaviour of the correlation length of the system
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polarization angles a = 0.20; 0.50; 0.58 at density n = 128. The spectrum in
Feynman approximation is shown as a solid line, and the dotted line denotes
the damping limit E.(k).
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in a second-order phase transition is given by [90]
() ~ ) (5.14)

where v is one of the critical exponents of the system and ¢ is the reduced
density given by:
n—ng

t = . 1
- (515)

The behaviour of the order parameter close to a second order phase tran-
sition is given also in terms of a critical exponent usually called 3, so near
the phase transition we have

—t)P ift<0
M{( )

. 5.16
0 iftt>0 (5.16)

These relations are only valid for a system in the thermodynamic limit. In
the case of a finite-size system, as the one used in Monte Carlo simulations,
is, of course, not possible to have an infinite correlation length because the
use of periodic boundary conditions forces that all physical quantities are
evaluated within the limits of the simulation box. When the correlation
length is £ ~ L the system is effectively ordered and the correlations are of
infinite range. L is the size of the simulation box, determined by the density
of the system and the number of particles used in the PIGS simulation.

In order to give a proper description of a second-order phase transition
it is usual to apply the finite-size scaling, which is a method based on the
homogeneity properties of the thermodynamic functions of the system and,
from these properties, to define the corresponding functions for the finite
size system. This relation allows us to do the reverse road and to study the
behaviour of the order parameter in terms of the size of the system.

The order parameter 7 is defined as before:

S(kPeak)
Np

n . (5.17)
But in this case we use the peak that emerges in the direction where the
dipolar interaction is stronger, the y direction. The scaled form of the order
parameter of the system can be written as [90]:

no(t) = L=P/vi(Lve) (5.18)

where 7y, is the order parameter for the system of size L, and § and v
are the critical exponents of the order parameter and the correlation length
respectively. 7 is the scaling function for the order parameter, which is
constructed to be independent of the system size, but strongly dependent
on the parameters ¢, v and 3. If the correct values for the parameters are
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Figure 5.10: Collapse of the curves corresponding to the order parameter of
the system with o = 0.54 for different number of particles under a scaling
transformation.

chosen, the data obtained for different system sizes will collapse onto a single
curve.

In figures 5.10 and 5.11 we show the scaling of the PIGS data under the
application of the relation (5.18) for o = 0.54 and a = 0.58 respectively.
It can be seen in both examples the collapse of the different curves corre-
sponding to different sizes of the system to a single scale invariant curve
that corresponds to the function 7 in equation (5.18). The accuracy of the
collapse of the curves for different number of particles allows us to give a
good estimation for the critical density of the gas - stripe phase transition
and also for the values of the critical exponents that describe the behaviour
of the thermodynamic variables near the transition point.

The first interesting result provided by the finite size scaling study of the
system is that the values of the critical exponents do not show a significant
dependence with the tilting angle of the system within the accuracy of our
results. The values of the critical exponents are related with the broken
symmetry of the transition and, for the gas - stripe phase transition the
symmetry breaking does not depend on the value of the tilting angle if the
tilting angle exceeds a threshold value of oy, ~ 0.45. The only relevant
parameter that controls the behaviour of the system is the density of the
system, or equivalently the strength of the interaction since we are working
in dimensionless units.

The second important result given by the finite size analysis concerns
the values of the critical exponents obtained. The numerical values of the
critical exponents are compatible with various known universality classes,
namely the 3D Ising and 3D XY model universality classes. It is known
that the critical behaviour of a quantum system in d dimensions it is equiv-
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« Ne
0.52 | 260(20)
0.54 | 205(20)
0.56 | 160(20)
0.58 | 140(20)
0.60 | 125(20)

Table 5.2: Critical density of the gas - stripe transition in terms of the tilting
angle.

alent to the behaviour of the same classical system in d + 1 dimensions [91].
Unfortunately the accuracy of the obtained results is not high enough to
distinguish the universality class. However, in this situation the symmetry
breaking of the phase transition is U(1)/Z2 which means that the critical
exponents must be in the 3D Ising universality class.

From the finite-size scaling analysis of the PIGS results for several tilting
angles we can write the transition curve for the gas - stripe transition in the
parameter space (nr%, «). The critical density of the transition is given in
table 5.2 in terms of the tilting angle.

Using the data in table 5.2 we can plot the critical density transition
curve in terms of the tilting angle, in figure 5.12 we show the numerical

evaluated data and a fit to that data of the form:
ne(a) = ng + asin’(a — ayp). (5.19)

The results obtained for the coefficients of the fit are the following ng =
125.59 + 3.70, a = 18750 £ 2113 and a9 = 0.6047 4+ 0.0052. It can be
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Figure 5.12: Gas to stripe phase transition curve in terms of the density and
the tilting angle of the dipole moments of the system.

observed from the figure that another interesting point involving the stripe
phase is that its emergence requires a minimum density and tilting angle of
the dipoles. For low densities we have not observed any kind of ordering of
the system, it stays on gas phase for all values of tilting angles up to the
collapse limit.

5.5 Crystal - Stripe phase transition

In this section we present the last part of the study of the phase diagram
of the two dimensional system of bosonic dipoles, the high density and high
tilting angle regime. The main interest of this region of the parameter
space is obviously the study of the transition between the stripe and crystal
phases and its properties. This regime is the most difficult to analyse due to
the extremely high densities involved and the limitations of the simulation
methods used in this work. In two dimensions the dipole-dipole interaction
is short ranged (this is different of three dimensions where the dipolar inter-
action is long ranged and therefore requires specific techniques to perform
a numerical simulation), but it is near the limit of long range interactions.
This fact implies that the approximations involved in our Monte Carlo sim-
ulation become less accurate as the density is increased, requiring the use
of much larger system sizes to describe properly the physics of the dipolar
system. But working with a large number of particles in a PIGS simulation
implies that the evolution and relaxation of the system is slower and then
we need a much longer computation time in order to equilibrate the system
to obtain reliable results for the physical observables of interest.

Another problem that we have to address to study the crystal - stripe
phase transition is that the criterion to distinguish between phases that we
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(a) Structure factor for density nrg = 450 (b) Structure factor for density nrg = 450
and tilting angle @ = 0.48. and tilting angle a = 0.48125.

Figure 5.13: Static structure factor of the high density dipolar system at a
density nrg = 450 for two different tilting angles. The case (a) corresponds
to the crystal phase while the (b) situation corresponds to the stripe phase.

have used in the previous sections cannot be used in this situation. As we
have seen the transitions from a disordered phase to a ordered one can be
well described using the largest peak of S(k) as the order parameter of the
transition. This is not possible in this situation because we are facing a
transition between two ordered phases, so we must find a different order
parameter that allows us to distinguish the two different phases. In order to
do that it is convenient to evaluate the full static structure factor S(ky, k)
that contains all the information about the ordering of the particles of the
system. If we consider the structure factor for a two dimensional crystalline
solid, as the one depicted in figure 5.2, it is obvious that it shows Bragg
peaks for each k value that corresponds to a node of the reciprocal lattice,
so in the situation of the figure S(k) will have a Bragg peak in the y direction
and another one in the oblique direction. The structure factor for a stripe
phase will be different in the sense that it has only a peak in the y direction.
So the criterion to distinguish between the solid and stripe phase involves
the emergence of a second peak in the structure factor.

In order to describe the phase transition between the crystal and the
stripe phase we performed PIGS simulations with slightly different tilting
angles for each value of the density and we have determined through the
analysis of the peak structure of S(k;, ky) the tilting angle that makes the
system lose crystalline order. In figures 5.13 and 5.14 we show the change
in the structure factor for two different values of the density, nr% = 450
for a = 0.48 and o = 0.48125 in figure 5.13 and nr = 550 for o = 0.483
and a = 0.485 in figure 5.13 . It is evident from these figures that the
second peak of the structure factor in the solid situation ((a) panel in both
figures) disappears by slightly increasing the tilting angle, indicating the loss
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(a) Structure factor for density nrg = 550 (b) Structure factor for density nr¢ = 550
and tilting angle o = 0.483. and tilting angle o« = 0.485.

Figure 5.14: Static structure factor of the high density dipolar system at a
density m“% = 550 for two different tilting angles. The case (a) corresponds
to the crystal phase while the (b) situation corresponds to the stripe phase.

n O
450 | 0.4806(1)
480 | 0.4819(1)
500 | 0.4819(1)
550 | 0.4838(1)

Table 5.3: Critical tilting angle for the crystal to stripe phase transition in
terms of the density of the system.

of crystalline order in the system and the emergence of the stripe phase.
An obvious question that we must answer about the crystal to stripe
phase transition is about the order of the transition, as we have seen in the
previous sections the gas to stripe transition is second order while the gas
to crystal transition is first order. In the present case we have not seen a
smooth decay of the second peak of the static structure factor by increasing
the tilt of the dipoles, contrarily, as we have shown the second crystalline
Bragg peak sudden disappears as we make a little variation of the tilting
angle indicating that the crystal to stripe phase transition is probably first
order. In spite of this argument, a definite conclusion would require a more
careful analysis due to the technical problems that we have commented
previously. By looking for the loss of crystalline order for several densities
we can evaluate the crystal to stripe phase transition tilting angles in terms
of the density of the system. Table 5.3 summarises the results that we have
obtained from our simulations. In figure 5.15, we show the transition curve.
From the figure it can be shown that the slope of the curve is very large.
This fact implies that if the tilting angle is larger than o ~ 0.47 the stability
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Figure 5.15: Crystal to stripe phase transition curve in terms of the density
and the tilting angle of the dipole moments of the system.

of the crystalline phase requires extremely high density.

5.6 Summary and conclusions

In this chapter we have studied the phase diagram of the two dimensional
system of bosonic dipoles with a non zero tilting angle. Figure 5.16 sum-
marises the results obtained in this work. As we can see from the figure, at
low densities the system is in the gas phase. When the density is increased
and the tilting angle is below a ~ 0.45 the system undergoes a first order
phase transition between the gas and crystal phases. The anisotropy of the
interaction influences the shape of the crystal lattice of the system by elon-
gating the interparticle distance in the direction where the dipole - dipole
potential is larger. If the density is between the crystallisation density of
the isotropic (o = 0.0) system and a threshold density of ny,r3 ~ 125 the
system shows a second order phase transition between the gas and the stripe
phase. Interestingly, the critical exponents of this second order transition
are nearly independent of the tilting angle and are compatible with the 3D
Ising and 3D XY model universality classes within the statistical uncertainty
of our simulations. An accurate numerical determination of the universality
class of the gas - stripe phase transition would require a more accurate eval-
uation of the order parameter of the system and probably the use of larger
systems than the ones used along this work. Finally, at high densities and
large tilting angles the system shows a first order phase transition between
the crystal and stripe phases. The slope of this transition curve is extremely
large indicating that, due to the anisotropy of the interaction, the crystal
phase of the system is no longer stable if the dipole - dipole potential is
highly anisotropic.
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Figure 5.16: Phase diagram for the two dimensional system of anisotropic
bosonic dipoles obtained from PIGS simulations.
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Chapter 6

Bosonic dipolar gas in a
bilayer configuration

6.1 Introduction

A configuration where the anisotropy of the dipole - dipole interaction be-
comes crucial in the physical properties of the system is the dipolar gas in a
bilayer configuration. We consider an homogeneous distribution of bosonic
dipoles confined by an external potential in two parallel two dimensional
layers separated by a distance h as it is shown in Figure 6.1.

The general dipole - dipole potential when we consider the two - body
interaction between particles in different layers reduces to the following form

Cdd 7“2 — 2h2

‘/]nter(r) = Ei(TQ n h2)5/2 .

(6.1)

This form of the dipolar interaction, contrarily to the interaction between
tilted dipoles in a single two dimensional layer, has axial symmetry. In
this situation the interaction shows an azimuthal anisotropy which means
that the interaction between particles in different layers is different that
the interaction between particles in the same layer and shows an strong
dependence with the separation between the layers h.

The inter-layer potential shows an attractive well for values of the in-
plane distance r < rgyv/2h. At large distances, the potential has a repulsive
long range tail of the form Vi (r) ~ r~3. Between these two limiting
distances there is a potential barrier whose height is proportional to h=3 for
a distance r = 2h. With all this information about the inter-layer interaction
potential we can conclude that its shape is strongly dependent on the inter-
layer distance, as we can see in the right panel of Figure 6.2. It can be
seen from the figure that the attractive region is deeper and narrower for
small values of h while the potential is flatter at low values of the inter-layer
distance.

97
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Figure 6.2: Dipole - dipole interaction between particles in different layers
for several values of the inter-layer distance h.

For particles being in the same layer the interaction is the usual two
dimensional isotropic dipolar interaction given by

Caa 1

Vlntra(r) = A 7”3.

(6.2)

Due to the presence of inter-layer and intra-layer interactions there are
also two different effects that compete in the system. On one side, the at-
tractive region of the inter-layer interaction tries to pair particles in different
layers. On the other side, the repulsive part of the inter-layer interaction
and the fully repulsive intralayer interaction prevents the dimerization of
the system. The relative importance of these two effects at fixed density
is only determined by the inter-layer distance that allows us to control the
strength of the inter-layer interaction.

We model the many - body system by considering N dipolar bosons in
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two planes separated by a distance h; the particles are equally distributed
between the two layers with a density n on each of them. We also consider
that the confinement of the dipoles in the layers is strong enough to sup-
press the tunnelling between them, so the number of particles on each layer
remains fixed. The Hamiltonian of such a system is given by:

N/2 N/2
H=— Fi V2 _— Fi 2
2m 4 o 2m «
=1 a=1 (63)
Cdd 1 Cdd 1 Cdd (7’»2 —2h2)
+ — 4+ —— + —_—
; 4 rf’j az;g A7 rgﬂ ;O; 47 (r?a+h2)5/2

where Latin (7, j) and Greek («, () indexes refer to particles on top and
bottom layers respectively. Here, 708y = [Ti(a) — Tj(3)| denotes the in-
plane distance between pairs of particles in the top (bottom) layer, and
Tai = |ro — 14| is the distance between the projections onto any of the layers
of the positions of the a-th and i-th particle.

In the rest of the present chapter we will analyse the physics of the
bilayer system of dipoles. We will study the two body problem of dipoles in
different layers that, as we will see, always show a bound state. We will use
the two body solution for inter-layer and intralayer interaction to build a
many-body wave function that contains the key ingredients for the physics
of the system and finally we use this many-body wave function to perform
Monte Carlo simulations and evaluate physical observables that can help us
to clarify the physical behaviour of the system.

6.2 Two body problem for the inter-layer poten-
tial

It is a well known fact that any attractive potential in two dimensions, V' (r)
that verifies

/ V(r)dr < 0, (6.4)
R2

supports at least one bound state [93, 94] with a binding energy that can
be approximated by:
47
Ep ~ex [] 6.5
P fRQ V(r)dr (6.5)

The inter-layer interaction however, does not verify (6.4), instead it belongs
to the special family of potentials that verify

/ Vinter(r)dr =0 (6.6)
RQ
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Figure 6.3: Binding energy of the ground state of inter-layer two dipole
problem in terms of the distance between layers h.

In [93] it is shown that such a potential also present a bound state whose
binding energy can be approximated by the expression:

1 (4wh?h\?
Ep~—exp| - 6.7
5 p<c<mcdd>> (6.7
with ¢ = —3 [39]. However, this last expression is only valid for & — 0 so in
order to obtain accurate values for the binding energies we must solve the

two body Schrodinger equation numerically. The Schrodinger equation for
the two body inter-layer problem is given by

h2 2 Cdd 7“2 — 2h2
In Figure 6.3 it is shown the absolute value of the energy for the lowest
energy bound state of the system. It can be seen in the figure that the
energy shows an exponential dependence with the inter-layer potential.
In the following sections we will show how the physics of the system is
affected by the existence of the two body bound state between particles in
different layers.

6.3 Numerical solution of the many body problem

The many body problem of quantum dipoles in a bilayer configuration has
been addressed using different techniques. Omne of the first attempts to
describe the phase diagram for a system of bosons is given in [16]. Interest
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has been also devoted to the study of the bilayer system of fermionic dipoles
[11, 42]. In the case of fermionic dipoles it is known that the existence of
the attractive inter layer interaction makes the system undergo a BCS-BEC
crossover and therefore it exhibits pair superfluidity for strong inter-layer
interaction. In the bosonic situation there is a phase transition between two
atomic superfluids for weak interactions (large h values) and a molecular
superfluid at small values of h.

In order to give an accurate description of the physics of the bilayer
dipolar system we have performed Monte Carlo simulations at zero temper-
ature using the diffusion Monte Carlo method. As we have seen in previous
chapters a central element in a DMC simulation is the many body wave
function that must be used to improve the accuracy and to accelerate the
convergence of the numerical calculation.

In order to describe the phase transition of the system we have chosen a
many body wave function that has the following properties:

e The many body wave function is symmetric if we exchange the position
of two particles in the same layer.

e The many body wave function is symmetric under the exchange of the
two layers, i. e. this means that we can permute the upper and lower
layers and the physics of the system is the same.

e The many body wave function is symmetric under the exchange of a
pair of particles in different layers.

All these properties are a consequence of the bosonic symmetry. Having into
account all these requirements our variational guess for the wave function
of the system is [95]:

\I/‘T’,air(rl, co IN) = Hf1(7“ij) H f1(rag)x

1<j a<f
N/2 N/2 N/2 N/2
X HZf?(Tia)+ HZfQ(T’ia) ,
i=1 a=1 a=1i=1

where, again, Latin (i, j) and Greek («, ) indexes refer to particles on top
and bottom layers respectively. The two body correlation factor for particles
in the same layer, fi(r), is given by

AK, (%) if < Ry

flrij) = Bexp (_ (%JFLQT)) if 1> Ry

(6.9)

while the two body correlation factor for particles in different layers, fa(r),

1S
2

fa(r) = exp <— 1?:1)7«) : (6.10)
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a, b and Ry are free parameters that must be determined variationally while
A, B and C' are determined using the continuity conditions of the intralayer
two - body wave function at » = Rjys. The structure of the many - body
wave function strongly favours the emergence of a bound state between pairs
of particles in different layers and, at the same time, it is flexible enough to
allow the system to break the dimers for an accurate choice of the variational
parameters.

6.4 Qualitative description of the phase diagram

As we have commented in the previous section, the system of bosonic dipoles
in a bilayer configuration undergoes a quantum phase transition between a
dimer (or molecular) superfluid for small values of the inter-layer distance
and another phase consisting in two coupled superfluids at large values of h.
The phase transition is modulated by the strength of the dipolar inter-layer
interaction.

A qualitative description of the physics of the system can be done by
analysing the behaviour of the many - body wave function and the two -
body physics of the system. The binding energy of the inter - layer bound
state depends, as we have also seen, exponentially with the inter - layer
distance. A rough estimation of the size (or typical length) of this bound
state can be obtained by considering the following approximation for the
bound state wave function:

m|EpR|

p(r) ~e Vol (6.11)

where the bound state energy is, of course, negative. From this approximate
wave function we can estimate the typical size of the bound state as:

h2

TB ™~ —
m|EB\

(6.12)

Additionally, we have another typical length scale that defines the many -
body physics of the system: the length scale associated with the density of
particles on each layer which is given by:

1

To
It is clear that the physics of the system is strongly influenced by the these
two length scales or, more precisely, by the competition between both length
scales.
Having the two relevant length scales in our system we can distinguish
three different situations:
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o rp << 1o

In this situation the physics of the system is completely dominated
by the interaction between particles in different layers. This strong
interaction causes the dimerization of the system. The separation be-
tween dimers will be ~ rg, much larger than the typical size of a dimer
and, therefore, the energy of the collisions between dimers is much
lower than the energy required to break a dimer.

In this limit we can obtain a simple approximation to the interaction
between dipoles in the system by considering the complete interaction
between two pairs of particles as:

Caa 1 Caqa 1*—2R7

Ulr)=2——+2

Ar 3 4 (r2 + h2)5/2° (6.14)

The distance between layers h will be much smaller that the typi-
cal distance between particles because we are studying the situation
where the inter-layer interaction is very strong. With this considera-
tion we can safely consider the limit h — 0 to obtain the approximate
interaction between dimers:
Cua 1
Ulr) ~4—— 6.15
(r) ~ 4S2 (6.15)
So in this regime we expect that the bilayer dipolar system behaves
as a single layer dipolar gas of particles with d = 2d, m = 2m and
density 7 = 5, which implies an effective dipolar length 7o = 8r.

We can also consider what the trial wave function of the system (6.9)
tells us in this regime. The two Jastrow terms corresponding to par-
ticles on the same layer are independent of the strength of the inter
- layer interaction. The term involving particles on different layers
will try to form dimers between particles on the up and down layers,
and the size of these dimers is very small because the binding energy
is very large. In this situation there is no overlap between the two
body wave functions for the different possible pairs of particles in the
system, and the many body wave function can be approximated by:

| N/2
W (ry,...,rN) = Hfl(Tij) H fi(rag) x H fa(ria)  (6.16)
i<j a<p i=a=1

This many body wave function is only symmetric under the exchange
of a pair of particles in different layers (one of them in the up layer and
the other in the down layer), so we can see that due to the strength
of the inter - layer interaction we have lost the symmetry under the
exchange of a single particle in one of the layers of the system. The
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change on the symmetry implies that in this regime the system can
only present a Bose - Einstein condensation of dimers, which means
that the system can exhibit pair superfluidity but without showing
single layer superfluidity.

e rp >>T1y

When the size of the bound state of the inter - layer interaction is
much larger than the typical distance between particles in the same
layer we can consider that the correlation between layers is very small.
We have seen in a previous section that the inter - layer dipole - dipole
potential supports always a bound state independently of the strength
of the interaction. However, in this regime the binding energy of the
bound state will be exponentially small and any collision will break
any eventual dimer.

In this limitting situation the size of the bound state increases expo-
nentially and the two - body wave function f2(r) in (6.9) can be safely
approximated by fao(r) ~ 1. In this situation the wave function ¥p
has all the symmetry properties that we have shown in the previous
section, but, no correlations between particles in different layers are
negligible. In this regime, the system may present single layer super-
fluidity but there is no pair superfluidity.

® ' ~Tp

This is the most interesting situation in the physical study of the
bilayer dipolar system. For this range of the parameters the physics of
the system is no longer dominated by one of the interactions. Contrar-
ily, in this case both interactions play a crucial role in the behaviour
of the system.

We have an inter-layer interaction that is strong enough to allow for
the existence of dimers and we have also a intra-layer interaction caus-
ing collisions between dimers that are strong enough to allow the ex-
change of one of the particles of a dimer. In this regime we can not
make any kind of simplification on the wave function of the system,
so we have to consider the full ¥z given in (6.9). According to the
form and the symmetries of the wave function, the system can exhibit
simultaneously pair and single layer superfluidity.

In the following sections we will present the results of the numerical sim-
ulations that we have performed for the bilayer dipolar system and we will
show that there are some results that may indicate a second order quan-
tum phase transition between a pair superfluid phase (with no single layer
superfluidity) and another phase that exhibits pair superfluidity and single
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layer superfluidity simultaneously. We have found from our simulations that
Bose condensation of pairs seems to vanish as the strength of the inter - layer
interaction is reduced.

6.5 Equation of state of the bilayer dipolar gas

In this section we will present the results of the Monte Carlo simulations
for the energy per particle of the system in terms of the inter-layer distance
for two different densities of the system. We have analysed a wide range of
values of h that allows us to explore the two different regimes of the system
(dimer and atomic superfluids) and also the transition between them.

We also want to compare the limiting cases h — 0 and h — oo with
the dimerized dipolar gas and the atomic dipolar gas respectively. In the
situation h — 0 the energy of the bound state goes to —oco and the size of
the bound state is exponentially small, in this situation the bilayer dipolar
gas can be described using an equivalent single layer dipolar gas with an
equivalent dipole moment d = 2d and equivalent mass m = 2m as we have
seen in the previous section.

In order to obtain results for the equation of state that can be compared
directly with the atomic dipolar gases equivalent of these cases we have eval-
uated the quantity % — EQ—B where Ep is the energy of the bound state of the
inter-layer potential. This subtraction allows us to extract the contribution
to the energy per particle coming from the inter-layer interaction and allows
us to study, mainly in the h << ro regime, the effective interaction between
the bound pairs of particles.

In Figures 6.4 and 6.5 we show the results of the Monte Carlo simulations
for the quantity % — E—QB at densities n = 1.0 and n = 1072 respectively in
terms of the inter-layer distance h. Red symbols correspond to the results
of the simulations extrapolated to the thermodynamic limit using the stan-
dard tail correction, assuming that the pair correlation function equals one
for inter-particle distances larger than the size of the simulation box. We
notice that F/N becomes negative when the inter-layer distance gets small
enough and approaches the dimer binding energy in the limit A << ry. An
important remark is that in this regime the energy difference % — % is found
to be positive, indicating that dimers feel an effective repulsive interaction
which stabilises the pair phase.

Pairing between dipoles is in fact a strong effect when h << rg, forming
tightly bound dimers which behave as composite objects featuring twice the
mass and dipole moment as compared to single dipoles. The horizontal lines
in figures 6.4 and 6.5 correspond to the energies per particle of a single layer
of dipolar bosons with an effective interaction strength ﬁf%, as obtained us-

n

ing the results of [29], where 7 = % and the dipolar length takes the two

values 79 = g and 79 = 8rg. The first value corresponds to the limiting case
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Figure 6.4: Energy per particle with half of the dimer binding energy sub-
tracted as a function of the reduced inter-layer distance h/rq for nrg = 1.
Red symbols correspond to the results obtained using the diffusion Monte
Carlo simulations. The horizontal lines correspond to the energies of a single
layer of dipoles with effective interaction strength 773 = 0.5 and 77§ = 32

h >> rg of independent layers, whereas the second value refers to the oppo-
site regime, h << 19, where the system behaves as a single layer of particles
having dipole moment d = 2d and mass m = 2m as have commented before.

6.6 Atomic and Dimer condensate fraction

After discussing the equation of state we analyse the one - body and two
- body density matrices as a function of the inter-layer distance and, from
their behaviours, the nature of the transition between atomic and dimerized
superfluid regimes. The one - body density matrix within each layer is
defined as usual

pl(r) — Nf'.-f\:[/*(r17r27'.- 7rN)\Ij(r1—|—I"I‘2’--- ,rN)dI'Q"'dI‘N
ff’qj(ra 7rN)‘2dI‘1-~-drN

(6.17)

The relevant contribution to the two - body density matrix involves instead
a pair of particles residing in different layers [90]

p2(ri+r,ro+1r;11,12) =
Nf"'f‘l’*(rl,rm'“ ,tN)¥(ry + 1,19+ 1, ,rN)dry---dry  (6.18)
ff|\1}(r’ ’rN)|2dr1...drN
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Figure 6.5: Energy per particle with half of the dimer binding energy sub-
tracted as a function of the reduced inter-layer distance h/rq for nr¢ = 1072.
Red symbols correspond to the results obtained using the diffusion Monte
Carlo simulations. The horizontal lines correspond to the energies of a
single layer of dipoles with effective interaction strength fw’% = 0.005 and
nrg = 0.32
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tion of h/rog at the density nr§ = 1. Arrows correspond to the conden-
sate fraction of a single layer of dipoles at the effective interaction strength
fire = 0.5 (red arrow) and A7 = 32 (blue arrow).

as a func-
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From this last expression we can define the projected two - body density
matrix as:

1
h(r) = N//drldrgpg(rl +r,ro+r;r],19) (6.19)

It is important to note that the two density matrices that we have defined
are not normalised in the same way, at » = 0 their normalisation is given
by: p1(0) = 1 and h(0) = §. As we have seen in previous chapters, for
homogeneous systems, off - diagonal long range order in the one - body
density matrix implies a finite value of eq. (6.17) at large separations:

lim p;(r) = no, (6.20)
r—00
where ng < 1 is the fraction of atoms in the condensate of each layer. In
an analogous way, off - diagonal long range order in the two - body density
matrix entails
lim A(r) = . (6.21)

T—00

One should notice that a non - zero asymptotic value at the level of the
one - body density matrix implies also a non - zero at the level of the two
- body density matrix and, in this case, a = %n%, which is macroscopically
large. However, even if ng = 0, we can have a # 0 (with o < 1) that can
be interpreted as the condensate fraction of pairs [97]. We can define an
intrinsic order parameter related to the two - body density matrix as [98]:
niol = o — gn% (6.22)

The molecular condensate fraction nf)n"l coincides with the long - range be-

haviour « of the two - body density matrix when the atomic condensate ng
vanishes and one removes from it the largest contribution, which scales as
the total number of particles, when ng # 0.

The calculation of the two different density matrices using the DMC
method relies on the usual extrapolation technique based on both DMC and
VMUC results in order to extract the pure expectation value of the relevant
operator on the ground state of the system. It is known that, if the guiding
wave function is similar enough to the exact ground state wave function of
the system, the extrapolation technique helps us to eliminate the bias in the
results for the physical observables.

Results for the one - body and two - body density matrices are shown in
Figures 6.6 and 6.7 for densities m’g =1 and m’g = 1072, The particle con-
densate is clearly vanishing for inter - layer distances smaller than a critical
value, and grows continuously until it reaches the value corresponding to a
single layer of dipoles at the density nr3/2 [29]. The molecular condensate
fraction n is extremely small (but finite) in the regime of weak pairing
which means large inter - layer separations, and increases smoothly in the
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Figure 6.7: Atomic condensate ny and molecular condensate nj*® as a func-
tion of h/ry at the density nr% = 1072, Arrows correspond to the conden-
sate fraction of a single layer of dipoles at the effective interaction strength
firg = 0.005 (red arrow) and 772 = 0.32 (blue arrow).

region of the transition to the molecular regime until it reaches the expected
condensate fraction for a single layer of dipolar dimers. We notice that for
the two different densities that we have studied there is a significant range
of h values where ng and ni*°! are simultaneously different from zero.

It is important to note that the behaviour of the atomic condensate
fraction in terms of the inter-layer distance is compatible with the behaviour
of the order parameter in a second order phase transition. In fact, it is
predicted in [46] that the phase transition between the dimer and atomic
superfluids belongs to the Ising universality class, as in the situations studied
in [99, ]. In these references it is shown the existence of a second order
phase transition between a phase where ng and ngwl are both non zero and
another one with ng = 0 and n{)nOl # 0, and this is an Ising like phase

transition according to the spontaneously broken symmetry.

6.7 Pair correlation function

In order to emphasize the existence of a continuous phase transition in the
bilayer dipolar system we show in this section the results obtained by the
Monte Carlo simulations for the radial distribution function. In this system
one can define two different correlation functions: the one corresponding to
pairs of particles in the same layer, and the other one corresponding particles
in different layers. We denote each contribution as g,q(r) and gy, (r) for the
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Figure 6.8: (a) Pair correlation functions corresponding to particles on dif-
ferent layers for several values of the inter - layer distance. (b) Same pair
correlation functions compared with the radial distribution function of a
system of dimers with 79 = 8ry.

inter and intra - layer radial distribution functions respectively.

It is expected that the pair correlation function reflects the fact that the
physics of the system will change when the value of the inter - layer distance
changes. We have performed Monte Carlo simulations for a fixed density of
nrg = 1 and several values of h and we have observed qualitative differences
along the transition range.

At large values of h (h 2 0.5) the pair correlation function for particles
in the same layer (gyy(r)) is similar to the one corresponding to a single
two dimensional layer; the pair correlation function for particles in different
layers (gua(r)) shows a small peak at r = 0 indicating the existence of a
force that tries to put the particles of the system in the dimer configuration,
but despite of this r = 0 peak the shape of the radial distribution function
is shallow. In fact, for values of the inter - layer distance h > 1 the pair
correlation function is approximately flat.

At low values of h (h < 0.3) we have a completely different situation, the
inter - layer interaction strength is large enough to have an strongly bound
state and to cause the dimerization of the system. In this situation it is
clear that the inter - layer pair correlation function will have a very steep
peak at r = 0 that indicates the preference of the system to form dimers.
At distances larger than the typical size of the bound state the shape of
gud(r) approaches the expected pair correlation function for a system of
dimers. Concerning the intra - layer distribution function, the situation
is completely analogous, the typical distance between particles on the same
layer changes during the transition due to the differences between the dipole
- dipole interaction and the dimer - dimer interaction.

Figures 6.8 and 6.9 summarise the results of the Monte Carlo simulations.
In left panel of Figure 6.8 we can clearly see the large peak at r = 0 indicating
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the dimerization transition of the system. In right panel of Figure 6.8 and
in Figure 6.9 it can be seen that the large scale physical properties of the
system are completely dominated by the interaction between dimers. This
change in the dominant interaction in the system can be understood as a
clear sign that indicates the existence of a phase transition in the system.

6.8 Conclusions

We have presented the results of the Monte Carlo study performed over the
dipolar gas of bosons in a bilayer configuration. In this chapter we have
evaluated some physical quantities that could help us to clarify the physical
behaviour of the system as the interaction between layers is changed. We
have found that all the physical observables studied are compatible with the
existence of a second order phase transition modulated by the inter-layer
distance h. In this sense, the results presented in this work are in good
agreement with some previous studies of dipolar gases in a bilayer.
Unfortunately the results obtained with our Monte Carlo simulations
are not accurate enough to allows us to find solid numerical evidence of the
existence of this second order phase transition. We have not been able to
find a dependence of the order parameter (the atomic condensate fraction)
with the number of particles because in order to obtain an accurate enough
result a very large system must be analysed. The main problem with this is
that the structure of the guiding wave function implies that the evaluation
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Figure 6.10: Schematic phase diagram featuring the single-particle (upper
region) and the pair superfluid (lower region). The dots correspond to the
transition points as obtained from DMC simulations. The two arrows show
the freezing density of a single layer of particles (right) and of dimers (left).
The line separates the region where |Ep|/2 < p (weak pairing) from the
region where |Ep|/2 > p (strong pairing)

of the derivatives (needed to evaluate the energy of the system) scale as
N3 rather that the usual N? scaling that we have in an standard Jastrow
function simulation. A possible solution to that problem could be to find a
Jastrow wave function that is able to reproduce the key ingredients of the
physics of the system.

Despite of the lack of precission of our numerical simulations we can give
an approximate description of the phase diagram of the bilayer dipolar gas
in terms of the density n and the inter-layer distance h. The schematic phase
diagram is shown in Figure 6.10. It can be shown from the figure that the
estimated transition line obtained using mean-field arguments gives a good
estimation of the transition point for low values of the density, while for
large values of density the mean-field results and the numerically evaluated
point starts to deviate from each other.



Chapter 7

Conclusions and outlook

In this Thesis we have presented an exhaustive study of the physics of two-
dimensional bosonic dipolar quantum gases. In order to provide an accurate
description of the system, we have developed different quantum Monte Carlo
codes that have been applied to the study of different situations of the
system. The use of different Monte Carlo methods allows us to choose
the best suited technique for each situation. We present results for different
properties of the system spanning a wide range of densities and tilting angles.
In this sense, the most relevant result obtained in this work is the phase
diagram of two dimensional dipoles in a single layer with a tilting angle,
although other aspects have been also explored.

In addition to the study of the single layer two-dimensional dipolar sys-
tem, we have also started to analyse the physics of the bilayer configuration.
As a starting point, we have chosen the simplest situation where the dipolar
moments of all the particles are polarised orthogonally to the layers.

In the following sections we summarize the main conclusions of this The-
sis.

7.1 Two-body dipolar problem and low density
dipolar gas

In Chapter 3 we have solved the zero-energy two-body scattering problem
by means of a Green’s function and a decomposition of the wave function
in partial waves. Using the Green’s function we have built a perturbative
solution for the two-body wave function. From the asymptotic behavior of
the m = 0 angular momentum contribution to the wave function we have
found the dependence of the s-wave scattering length on the polarisation
angle, which dominates at large distances.

In Chapter 4 we have built a variational Jastrow many-body wave func-
tion from the solution of the two-body problem that has been used as a
guiding function in a diffusion Monte Carlo simulation of the gas of polarised
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dipoles at low densities. We have found that the scaling of the energy in the
gas parameter is preserved up to values of x where other isotropic systems
deviate significantly. This behaviour extends to other relevant ground state
quantities like the pair distribution function, the static structure factor and
the one-body density matrix, including the condensate fraction which can
be determined from the large distance asymptotic behaviour of its isotropic
part (m = 0 partial wave). We have also compared the excitation spectrum
of the system coming from Bogoliubov theory with the Feynman approxi-
mation obtained from the numerical simulations. We have seen that, as the
other observables studied, the Bogoliubov approach provides an accurate
estimation of the excitation spectrum at low densities and, as the density is
increased, it starts to deviate from the numerical results.

7.2 Phase diagram of two dimensional dipolar sys-
tem with a tilt

In Chapter 5 we have studied the phase diagram of the two dimensional
system of bosonic dipoles with a non zero tilting angle. As it is expected, at
low densities the system is in the gas phase. When the density is increased
and the tilting angle is below a ~ 0.45 the system undergoes a first-order
phase transition from the gas to the crystal phase. The anisotropy of the
interaction influences the shape of the crystalline lattice by elongating the
interparticle separation in the direction where the dipole-dipole potential is
stronger.

Between the crystallisation density of the isotropic (@ = 0.0) system
and a threshold density of ng,r3 ~ 125 the system undergoes a second-
order phase transition from the gas to the stripe phase. Interestingly, the
critical exponents of this second order transition are nearly independent of
the tilting angle and are compatible with the 3D Ising and 3D XY model
universality classes within the statistical uncertainties of our simulations.
Remarkably, our results show that for large polarization angles the stripe
phase can be observed experimentally at densities significantly lower than
those required to reach the solid phase although still quite large compared
to what it is usually achieved in typical BEC experiments. An accurate
determination of the universality class of the gas - stripe phase transition
requires a more accurate evaluation of the order parameter of the system
and probably the use of larger systems than the used along this work.

Finally, at high densities and large tilting angles the system shows a first
order phase transition between the crystal and stripe phases. The slope of
this transition curve is extremely high, indicating that due to the anisotropy
of the interaction, the crystal phase of the system it is no longer stable if
the dipole-dipole potential is highly anisotropic, at least for the range of
densities analysed.
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7.3 Quantum phase transition in a bilayer system
of dipoles

Chapter 6 contains the results of the Quantum Monte Carlo study of the
dipolar gas of bosons in a bilayer configuration. In this chapter, we have
evaluated some of the physical quantities that could help to clarify the phys-
ical behaviour of the system as the interaction between layers varies. We
have found that all the physical observables studied are compatible with the
existence of a second order phase transition modulated by the inter-layer
distance h. In this sense, the results presented in this work are in good
agreement with previous studies of dipolar gases in bilayer configurations.

Unfortunately the results obtained with our Monte Carlo simulations are
not accurate enough to allows us to find a solid numerical evidence of the
existence of this second order phase transition. We have not been able to find
a dependence of the order parameter (the atomic condensate fraction) on
the number of particles because very large system sizes are required in that
analysis, much larger that those directly available in our simulations. The
main problem with this is that the structure of the guiding wave function
employed implies that the evaluation of the derivatives (needed to evaluate
the energy of the system) scale as N? rather that the usual N? scaling that
one has in standard Jastrow function simulation. A possible solution to that
problem could be to find a Jastrow wave function that is able to reproduce
the key ingredients of the physics of the system.
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